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Abstract

In this thesis, we propose three interpretable domain-aware machine learning approaches to

analyse large-scale neuroimaging data from multiple domains, e.g. multiple centres and/or

demographic groups. We focus on two questions: how to learn general patterns across do-

mains, and how to learn domain-specific patterns.

Our first approach develops a feature-classifier adaptation framework for semi-supervised

domain adaptation on brain decoding tasks. Based on this empirical study, we derive a

dependence-based generalisation bound to guide the design of domain-aware learning algo-

rithms. This theoretical result leads to the next two approaches. The covariate-independence

regularisation approach is for learning domain-generic patterns. Incorporating hinge and

least squares loss generates two covariate-independence regularised classifiers, whose supe-

riority are validated by the experimental results on brain decoding tasks for unsupervised

multi-source domain adaptation. The covariate-dependent learning approach is for learning

domain-specific patterns, which can learn gender-specific patterns of brain lateralisation via

employing the logistic loss.

Interpretability is often essential for neuroimaging tasks. Therefore, all three domain-

aware learning approaches are primarily designed to produce linear, interpretable models.

These domain-aware learning approaches offer feasible ways to learn interpretable general or

specific patterns from multi-domain neuroimaging data for neuroscientists to gain insights.

With source code released on GitHub, this work will accelerate data-driven neuroimaging

studies and advance multi-source domain adaptation research.
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Chapter 1

Introduction

The subject of this thesis is learning patterns from neuroimaging data with multiple domains

automatically. That is, using computational algorithms to convert the underlying patterns

of neuroimages into knowledge, or expertise. The learnt knowledge or expertise are usually

in the form of statistical models. Due to the high cost of data acquisition, the sample

sizes of neuroimaging datasets are usually small but with high feature dimensions. The

emergence of public neuroimaging datasets opens a door to analysing brain imaging data

across datasets. However, generalisation is still a challenging problem. On the other hand,

for some neuroscience research problems, neuroimaging data need to be viewed as different

blocks/groups, e.g. understanding the patterns across genders, age groups, or patient/control.

In this thesis, we formulate these cross datasets or groups, gender, or age analysis as a

“multi-domain” problem and tackle domain-aware learning approaches. More importantly,

the proposed approaches are primarily designed to be linear for interpretability. By visualising

the linear model coefficients in feature space, we validated existing findings of neuroscience

and identified new, meaningful patterns to offer additional insights.

1.1 Machine Learning and Multi-Domain Problems

Machine learning is a kind of technique to detect underlying patterns automatically from

training data (Shalev-Shwartz & Ben-David, 2014). The learning tasks can vary, e.g., classi-

fication, regression, and clustering. The focus of this thesis is classification of neuroimaging

1
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Figure 1.1: Visualisation of the resting-fMRI data from ABIDE (Craddock et al., 2013)
dataset. Different colours denote different centres where the samples were acquired. In total
there are 20 centres. Image source: Kunda et al. (2020).

data analysis. The objective of classification is assigning an input vector x to one of K

discrete classes y, where x ∈ X , y ∈ Y , |Y| = K, and X ,Y are input and output spaces,

respectively. Conventionally, each input instance can only be assigned to only one class. It

is also the basic problem setting of this thesis, and multi-output classification problems, i.e.

an instance can have more than one label, are not considered here.

For classification problems, what needs to be learnt is a labelling function (or a hypothesis)

for assigning an input to a class, i.e., y = f(x), where f is the labelling function. Usually

the labelling function f is learnt by fitting the data of the labelled training set, and its

performance is evaluated by how well it can assign unseen samples (test data) to correct

classes. In the most common scenario, the training and testing sample sets are assumed

drawn from the same distribution, where the performance on test sets (generalisability)

is guaranteed according to the statistical learning theory (Vapnik & Chervonenkis, 1971).

However in practice, the distributions of training / testing input data can be changed in some

way. For example, for neuroimaging data acquired from different sites, the distributions can

be shifted due to the differences in devices, physical environments, etc. Figure 1.1 shows

an example of multi-centre resting-fMRI dataset ABIDE (Craddock et al., 2013). From the

visualisation, it can be observed that samples from different centres are usually in different
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clusters. Traditional methods can still be applied to such problems by either ignoring the

potential relationships or differences between different sources, or only taking one subgroup

of data to perform machine learning. However, this could lead to a degeneration in learning

performance, especially when the number of total available training samples is small.

Domain adaptation (DA) is an emerging machine learning technique to solve the problem

of generalisability. DA is a branch of transfer learning, where data distribution is assumed

to change across sample sets, and each distribution is viewed as a domain. In a domain

adaptation problem, the learning tasks are the same cross domains (Redko et al., 2020), the

target dataset (for making prediction) is usually called the target domain, and the other

sources leveraged for training are called source domains. From the theoretical perspective,

Ben-David et al. (2010) pointed out that the expected risk (error) of a labelling function f

on target is bounded by the error on sources plus divergence between domains. Therefore in

practice, domain adaptation methods adopted distribution divergence as regularisations to

perform DA, including single-source (Pan et al., 2011; Long et al., 2013a,b; Wang et al., 2018),

and multi-source (Guo et al., 2018; Zhao et al., 2018; Dou et al., 2019; Zhu et al., 2019; Peng

et al., 2019) DA studies. The experimental results in these works indicate domain adaptation

is a promising approach for multi-domain data analysis.

Contrary to domain adaptation that aims at improving generalisability, learning domain-

specific patterns is another research direction. For this problem, separating general and

specific features (Lock et al., 2013; Zhou et al., 2015) is the most popular solution, which

assumes the multi-domain data is the mixture of general and specific features plus noise.

The most important step of feature separation is extracting general features across domains,

which is similar to domain adaptation approaches. Then specific features can be obtained

by deducting general features from cleaned / denoised data.

1.2 Background of Neuroimaging Data

Neuroimaging is a set of techniques for investigating human brain structures or functions.

This thesis will focus on the analysis of functional imaging, i.e., functional magnetic resonance

imaging (fMRI) (Ogawa et al., 1990). Functional neuroimaging analysis highly relies on
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statistical approaches, due to lacking of structural information and therefore not readable by

human visually. This section will introduce the basic background of functional neuroimaging

data and popular methods of analysis.

1.2.1 Functional MRI (fMRI)

Functional magnetic resonance imaging (fMRI) is a medical imaging technique that records

the Blood Oxygenation Level Dependent (BOLD) signal caused by changes in blood flow

Ogawa et al. (1990). Typically, an fMRI sequence is composed of MRI volumes sampled

every few seconds, where each MRI volume has over 100,000 voxels and each voxel represents

the aggregate activity within a small volume (2 − 3mm3). fMRI can measure the neural

activity associated with multiple cognitive behaviours and examine brain functions in healthy

relatives to disordered individuals.

There are two distinct types of fMRI data: task-based fMRI (or model-based fMRI) and

resting-state fMRI (Friston et al., 1998). The task-based fMRI which is based on designed

experiments or models is aiming at measuring the brain response to a stimulus/event (or event

block). Neuroscientists need to design cognitive experiments associated with specific brain

functions of interest for data collection (Brodersen et al., 2011). The fMRI data are recorded

when the participants are performing the cognitive tasks according to the instructions. By

contrast, resting-state fMRI reflects the “finger-print” (Finn et al., 2015) of one subject’s

brain, which is model-free so participants do not need to do some tasks during the data

collection (Fox & Raichle, 2007).

1.2.2 Machine Learning in fMRI Analysis

Distinguishing functional brain activities can be framed as classification problems and solved

with machine learning techniques. The following will introduce two most common applica-

tions: classifying cognitive conditions (tasks) (Norman et al., 2006; Tong & Pratte, 2012)

and clinical populations (Cheng et al., 2015c; Gheiratmand et al., 2017).
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Figure 1.2: An example of the brain decoding process. In a cognitive experiment, partic-
ipants are usually required to perform some tasks that react to the stimulus designed by
neuroscientists. The corresponding brain signals will be recorded by the scanners and en-
coded as statistical brain activation maps. The objective of brain decoding is using machine
learning approaches to decode (classify) the given brain activation maps into correct brain
conditions (stimuli), to help neuroscientists to understand human brain functions.

Brain Decoding with Task-Based fMRI

Task-based fMRI images are usually pre-processed, and modelled through a General Linear

Model (GLM). The resulting statistical brain activation maps represent the impact of different

experimental stimuli (conditions) on fMRI signals. This process is usually called encoding.

Traditional analysis for brain activation maps relies on univariate statistical tests (Friston

et al., 1994, 1995; Worsley & Friston, 1995). This approach can help neuroscientists to iden-

tify the activated voxels corresponding to experimental stimuli. However, the multivariate

structure of fMRI data cannot be taken into account.

In the recent two decades, a brain decoding (or “brain reading”) approach (Cox & Savoy,

2003) has been proposed by using machine learning methods to decode the neural encodings.

This multivariate pattern recognition framework can provide more sensitive analysis than the

univariate methods. Many algorithms have been applied for classifying and regressing brain

activation images, such as Linear Discriminant Analysis (LDA), Support Vector Machines

(SVM), Lasso, and Elastic net (Mandelkow et al., 2016; LaConte et al., 2005; Toiviainen

et al., 2014; Ng et al., 2010). Figure 1.2 depicts the whole process of brain decoding.
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Brain Network Modelling and Classification

Brain network connectome (functional connectivity) analysis is another popular feature ex-

traction method for fMRI data, especially for resting-state fMRI time-series. A functional

connectome is a set of connections representing brain interactions between regions. The re-

gions used to extract the signal can be defined by brain parcellations, which are pre-defined

brain atlases with regions of interest (ROI). Alternatively, these regions can be defined by

performing independent component analysis (ICA) (Hyvärinen & Oja, 2000).

A functional connectome can be represented by a number of regions × number of regions

square matrix, such as a correlation matrix (shown in Fig. 1.3a), and can also be seen as a

graph: a set of nodes, connected by edges. In fMRI analysis, these nodes are brain regions,

and the edges capture interactions between them, this graph is a functional connectome

(shown in Fig. 1.3b). There are several different kind of correlation to measure the interaction

between brain regions, such as covariance, partial covariance, group-sparse covariance (Smith

et al., 2011; Varoquaux et al., 2010b) and tangent connectome (Varoquaux et al., 2010a).

With the brain connectivity measurement, the brain networks can be further represented

as the vectorised upper (or lower) triangle of the connectome matrix, where each feature

represents the connectivity between two brain regions. Since resting-state reflects natural

patterns of one’s brain, brain network features can be used to investigate some brain disorders.

Especially for the diseases that cannot be identified directly from brain structures, functional

neuroimaging plays an important role in understanding the cause and localising biomarkers.

In such research areas, machine learning classifiers have been widely used, such as classifying

patients and health controls, to investigate brain disorders in a data-driven way (Kunda

et al., 2020; Schirmer et al., 2021).

1.2.3 Challenges

The primary challenge with using an fMRI dataset to train a machine learning model for

both task-based and resting-state fMRI analysis suffers from the “curse of dimensionality”.

For example in brain decoding tasks, the number of training samples available for machine

learning are typically less than one hundred (∼100) per brain state, which is much smaller
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Figure 1.3: Examples of visualised brain networks, where each feature represents the connec-
tivity between two brain regions. The figures are generated by the Python library Nilearn
(Abraham et al., 2014).

compared to the feature (voxel) space (∼100,000). Similar in resting-state fMRI analysis,

using hundreds of brain regions can result in over ten thousands of connectivity features, e.g,

over 20,000 features can be extracted with one of the most popular atlas CC200 (200 regions),

while the samples for training are usually less than one thousand. This makes accurate “out

of sample” prediction a challenging problem.

Traditionally, this challenge is dealt with by pre-selecting voxels that belong to regions

of interest (ROIs) based on prior work and established knowledge of domain experts Pol-

drack (2007), or by performing a “searchlight” analysis (Kriegeskorte et al., 2006). While

making the problem computationally more tractable, it may ignore a significant portion of

information in fMRI, and miss potentially valid and superior solutions in the first place.

Recently, studies of whole-brain fMRI are becoming increasingly popular (Allen et al., 2014;

Gonzalez-Castillo et al., 2015; Vu et al., 2015). This approach not only broadens the scope of

potentially important differences between cognitive states, but also lifts the need for a priori

assumptions about which parts of the brain are most relevant. Whole-brain fMRI analysis

can take all available information into account in a more data-driven workflow, however the

major bottleneck remains the size discrepancy between training example and features.

Furthermore, neuroimaging analysis requires not only accurate models, but also the capa-

bility of model interpreting and understanding which brain areas are important for classifica-

tion. As mentioned in Section 1.2.1, functional neuroimaging analysis is important for neu-
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roscientists to understand human brain functions and highly relies on statistical approaches.

Linear models have advantages in interpretability however they may not be able to capture

the non-linear correlations between input and output, which makes accurate prediction a

more challenging problem.

While any individual fMRI dataset provides only a few training examples, growing public

data repositories collectively contain much more training examples, such as OpenNeuro1

(Gorgolewski et al., 2017) and the Human Connectome Project2 (HCP) (Smith et al., 2013).

Although every neuroimaging experiment is importantly different, many recruit similar sets of

cognitive functions. If training examples from related, pre-existing datasets can be leveraged

to improve the performance and interpretability of decoding models, it would unlock immense

latent power in big data resources that already exist in the neuroimaging community. These

data from multiple domains enable multi-domain learning studies on neuroimaging data

analysis, which is the primary focus of this thesis.

1.3 Hypothesis and Research Questions

Hypothesis: For multi-domain neuroimaging data, it is hypothesised there exist general and

specific patterns. Based on the hypothesis, by letting machine learning algorithms be aware

of the domain information, this thesis aims to answer the two following research questions:

• Q1: How to learn general patterns across different domains.

• Q2: How to learn patterns specifically for a domain.

1.4 Organisation

To answer the aforementioned two questions, the rest of this thesis will be organised into six

chapters. Q1 will be mainly targeted by Chapter 3 and 5, Q2 will be targeted by Chapter

6, and a theoretical support can be used for both Q1 and Q2 will be presented in Chapter

1https://openneuro.org/
2https://www.humanconnectome.org/

https://openneuro.org/
https://www.humanconnectome.org/
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Figure 1.4: Organisation of this thesis (Chapter 2 ∼ 6), where the pathways of each chapter
are denoted by different colours and/or styles.

4. Figure 1.4 depicts the relationships of these chapters. Detailed summaries for each of the

following chapter are listed below:

Chapter 2 Fundamentals of Learning from Multiple Domains. In this chapter,

the background knowledge required for later theory and algorithm development will be

covered. This includes: 1) Probably Approximately Correct (PAC) learning model based

statistical theory of generalisation. The generalisation bounds for standard machine learning

scenarios will be introduced first and then extended to multi-domain learning problems. 2)

A summary of popular multi-domain learning methods with their applications, which covers

both domain adaptation and common individual feature separation algorithms. 3) Existing

multi-domain learning studies on neuroimaging data analysis.

Chapter 3 A Two-Stage Pipeline for Semi-Supervised Single Source Adaptation.

This chapter aims to understand the feasibility of domain adaptation approaches to the

small-sample, high-dimensional neuroimaging data analysis problems. For this purpose, a

domain adaptation pipeline is proposed for whole brain fMRI decoding and evaluated on

public fMRI datasets. This pipeline consists of two steps: feature adaptation and classifier

adaptation. For implementation, transfer component analysis (Pan et al., 2011) and cross-

domain SVM (Jiang et al., 2008) are employed at each step of the pipeline. This study

adopted a workflow: learning, evaluation, and interpretation, which is also followed by the
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studies in Chapter 5 and 6. Based on the experimental results and findings, two important

research questions will be pointed out, where the multi-source domain adaptation will be

the primary focus of Chapter 4 and 5.

Chapter 4 Dependence-Based Generalisation Theory. This chapter extends the

statistical learning theory for the generalisation bounds of multi-domain learning. By lever-

aging the concept from multi-class classification, generalisation bounds for multi-source

domain adaptation will be categorised as “one vs one” and “one vs rest” bounds. Analysis

and derivations will be given to understand the relationships between these generalisation

bounds, and a correlation between distribution divergence and statistical independence mea-

surement. Then a dependence-based generalisation bound will be derived.

Chapter 5 Covariate-Independence Regularisation for Unsupervised Multi-Source

Adaptation. This chapter aims to learn generalised patterns for multiple neuroimaging

datasets. Public neuroimaging datasets with homogenous brain conditions from the Open-

Neuro (Gorgolewski et al., 2017) repository are selected to construct a novel multi-source

domain adaptation task for brain decoding. Moreover, following the theoretical analysis in

the previous chapter, a framework for multi-source domain adaptation is proposed. Under

this framework, there are two algorithms implemented by incorporating hinge and least

squares loss. We study both algorithms on not only brain decoding but also textual senti-

ment classification and visual object recognition to investigate their efficacy across multiple

applications.

Chapter 6 Covariate-Dependence Learning for Recognising Domain-Specific Pat-

terns This chapter aims to learn domain-specific neuroimaging data. A neuroscience re-

search problem, gender-related brain lateralisation, is formulated as a left / right hemisphere

classification problem, and the objective is to learn a gender-specific classifier. Based on the

theoretical results in Chapter 2 and 4, a framework will be proposed for learning domain-

dependent models, and a variant of logistic regression will be derived under this framework.

Effectiveness of the methods will be evaluated on the left / right classification tasks with

the resting-state fMRI data from the HCP project.
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Chapter 7 Conclusion. This chapter will summarise the results and findings of the above

chapters and then point out the potential future research directions based on the studies

involved in this thesis.

1.5 Contributions

This thesis includes theoretical and algorithmic contributions to the field of machine learning,

and novel applications of neuroimaging data analysis. The contributions are summarised

as following:

• Feasibility. A domain adaptation framework is proposed for whole brain fMRI decod-

ing, which consists of two steps: feature adaptation, and classifier adaptation to reduce

the generalisation error bound on target domain. Experimental results on OpenNeuro

data confirm the feasibility of domain adaptation approach for functional neuroimaging

analysis, with interpretable model provided.

• Theory. A statistical dependence based generalisation theory is derived for multi-

domain learning. A proportional relationship between Hilbert-Schmidt Independence

Criterion (HSIC) and Maximum Mean Discrepancy (MMD) is developed and results

in a HSIC-based generalisation bound for multi-source domain adaptation.

• Learning Frameworks. The theoretical studies enable the formulation of two ma-

chine learning frameworks. One is Covariate-Independence Regularisation (CoIR) frame-

work for multi-source domain adaptation that simultaneously minimises the empirical

prediction risk on source domain and the dependence on domain covariates, to learn

generalised models across domains. The other is Covariate-Dependent Machine Learn-

ing (CoDeML) framework that minimises the empirical prediction risk on target domain

and maximises the dependence on domain covariates, to learn domain-specific models.

• Algorithms. Under the CoIR framework, a simplified HSIC is constructed and in-

corporated with the hinge and least square loss that can take unlabelled samples into

account following the Manifold Regularization framework formulation (Belkin et al.,

2006). This gives the CoIRSVM and CoIRLS algorithm. Under the CoDeML framework,
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with the simplified HSIC above, a Covariate-Dependent Logistic Regression (CoDeLR)

algorithm is derived by maximising the likelihood of sample classes and domain covari-

ate dependence.

• Novel domain adaptation tasks for brain decoding. New learning tasks are

constructed by identifying datasets with homogeneous brain conditions from public

repositories. Experiments on these brain decoding tasks, together with the popular

textual sentiment and visual recognition tasks, show the superior performance of CoIR

over competing methods.

• Novel domain-specific learning task. The problem of gender-related brain lateral-

isation in neuroscience is formulated as a left / right hemisphere classification problem

for CoDeML. Experiments on the HCP resting-state fMRI data show gender-specific

models can be learnt by CoDeLR, compared to a standard logistic regression.



Chapter 2

Fundamentals of Multi-Domain

Learning

In Chapter 1, some basic concepts of multi-domain learning have been introduced. This

chapter will further provide more detailed background of this research problem. A machine

learning model is called generalisable if it can assign labels or values to unseen samples cor-

rectly, which is also expected. This chapter will start with the theoretical support behind

generalisability under the Probably Approximately Correct (PAC) framework, and then ex-

tends to recent theoretical studies of generalisation on multi-domain learning problems. Fol-

lowing the statistical theory, popular methods and applications will be presented, and this

chapter will end with the recent multi-domain learning works on neuroimaging analysis.

2.1 Statistical Theory of Generalisation

Machine learning is a technique of learning from data. Suppose giving a sample dataset

S = {(x1, y1), . . . , (xm, ym)},xi ∈ X , yi ∈ Y , i ∈ [1,m], where X denotes the input space, i.e.

the set of all possible instances or examples, Y denotes the output space, i.e. all possible target

values or labels. For convenience, the chapter only consider binary classification problem,

i.e. |Y| = 2, and Y ∈ {0, 1} if not specified. A concept (or labelling function) c : X → Y

is defined as a mapping from input space X to output space Y . The task of learning is:

selecting a hypothesis h from a set of possible concepts H, which is called hypothesis set, to

13



14 CHAPTER 2. FUNDAMENTALS OF MULTI-DOMAIN LEARNING

approximate the target concept c.

Because the target concept is unknown, the key question is the feasibility of learning c

with limited examples in S. The following Probably Approximately Correct framework will

provide an attempt to answer this question and a guarantee from a theoretical perspective.

2.1.1 The PAC Learning Framework

The Probably Approximately Correct (PAC) is a theoretical framework developed from the

“learnability” analysis of machine learning proposed by Valiant (1984). It helps to understand

the number of training examples needed to obtain an approximate learnable concept. It

can also provide generalisation bounds (theoretical guarantee) for the cost of computational

learning and the guidance for algorithm design. This section will firstly introduce several

essential definitions and notations for presenting the PAC learning framework, which will

also be used throughout the thesis.

In the learning task defined above, the instances of X are assumed following an unknown

distribution D, and the samples in S are drawn independently from D, i.e. independent and

identically distributed (i.i.d). For a hypothesis h, the risk (or error) of disagreeing with a

concept c is called generalisation risk, which is defined as follows:

Definition 2.1 (Generalisation risk). Given a hypothesis h ∈ H, a target concept c: X →

[0, 1], the generalisation risk or error of h on a distribution D is

R(h, c) = Px∼D
[
h(x) 6= c(x)

]
= Ex∼D

[
|h(x)− c(x)|

]
. (2.1)

For convenience, the shorthand notation R(h) = R(h, c) will be used in the rest of the

thesis. By reusing the above definition, for an arbitrary pair of hypotheses (h, h′) ∈ H2, we

have

R(h, h′) = Ex∼D
[
|h(x)− h′(x)|

]
. (2.2)

Due to the distribution D and target concept c are unknown, the generalisation risk

cannot be directly estimated. However the empirical risk (or error) of a hypothesis h ∈ H

can be estimated directly on sample set S, which is defined as follows:
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Definition 2.2 (Empirical risk). Given a hypothesis h ∈ H, a target concept c: X → [0, 1],

the empirical risk of h on a sample set S = {xi, yi}mi=1 is

R̂(h) =
1

n

n∑
i=1

[
h(xi) 6= c(xi)

]
. (2.3)

The empirical risk (error) R̂(h) obtained within the training sample set is also called

the in-sample error Rin(h), and the generalisation risk (error) R(h) is also called the out-of-

sample error Rout(h). By having the definition of generalisation and empirical risk, the PAC

learning framework can be defined as follows:

Definition 2.3 (PAC-learning (Valiant, 1984)). Let X be samples of size m drawn i.i.d

from any distribution D, a concept class C is PAC-learnable if exists an algorithm A and a

polynomial function poly(·, ·, ·, ·) so that for ε > 0, δ ∈ (0, 1), and ∀c ∈ C, the following holds

for any m ≥ poly(1/ε, 1/δ, size(x), size(c)):

P(R(hX) ≤ ε) ≥ 1− δ. (2.4)

where the minimum of m ≥ poly(1/ε, 1/δ, size(x), size(c)) that required by the learning algo-

rithm A is called the sample complexity.

In the definition of PAC learnability, the confidence parameter δ can indicate the proba-

bility of approximated classifiers to satisfy the accuracy requirements, i.e. “probably”, and

the accuracy parameter ε determines how far the classifier can be from the target concept,

i.e. “approximately correct” (Shalev-Shwartz & Ben-David, 2014). The complexity of hy-

pothesis space H is another key point of PAC-learning. In general, the larger H, the higher

probability that a target concept c ∈ H. However the higher complexity can also increase

the difficulty of learning c. The following subsection will present the metrics for measuring

complexity space.

2.1.2 VC-Dimension and Rademacher Complexity

The hypothesis set in real world machine learning tasks is usually infinite (e.g. hyper-planes

in Rd). In the following two popular metrics, VC-dimension and Rademacher complexity will
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be introduced to prove that infinite hypothesis space can be measured and it is PAC-learnable.

Before that, the definitions of growth function and dichotomy need to be introduced first:

Definition 2.4 (Growth function (Vapnik & Chervonenkis, 1971)). Given a hypothesis set

H, ∀m ∈ N, the growth function is

ΠH(m) = max
{x1,...,xm}⊆X

∣∣{h(x1), . . . , h(xm)|h ∈ H}
∣∣. (2.5)

Although the hypothesis set is infinite, the number of ways to label the sample set S is

finite. For m samples in a binary classification problem, there are 2m hypotheses in maximum.

The growth function ΠH(m) is the maximum number of unique solutions to classify m sample

points with hypotheses in H. Each unique classification is called a dichotomy. When all

possible dichotomies of a sample set S can be realised by the hypotheses in H, the set S

is said to be shattered by H. By Hoeffding Inequality (Lemma A.1) and Definition 2.4, the

following bound can be derived for generalisation risks:

Theorem 2.5 (Growth function generalisation bound (Vapnik & Chervonenkis, 1971)).

Given a hypothesis set H, for m ∈ N, ε ∈ (0, 1), for any h ∈ H

R(h) ≤ R̂(h) +

√
8

m
ln

4ΠH(2m)

δ
. (2.6)

Proof. See Appendix A.

VC Generalisation Bound

Definition 2.6 (Vapnik–Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971; Vap-

nik, 2006)). The VC-dimension of a hypothesis set H, is the largest value of m for a sample

set {(xi, yi)}mi=1 can be shattered by H, where yi ∈ {−1, 1}:

VC(H) = max{n : ∀xi, yi ∈ {(xi, yi)}mi=1,∃h ∈ H, so that h(xi) = yi} (2.7)

Theorem 2.7 (VC generalisation bound (Vapnik & Chervonenkis, 1971; Vapnik, 2006)).

Given a hypothesis set H : X → Y, Y = {−1,+1}, with VC-dimension VC(H), then for any
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δ ∈ (0, 1], with probability of at least 1− δ, ∀h ∈ H, the following holds

R̂(h) ≤ R̂(h) +

√
8

m

(
VC(H) ln

2em

VC(H)
+ ln

4

δ

)
. (2.8)

The form of the VC generalisation can be written as

R(h) ≤ R̂(h) + O
(√ ln(m/VC(H))

(m/VC(H))

)
, (2.9)

where O(·) denotes the computational complexity. Equation 2.9 highlights the the importance

of the ratio VC(H)/m, which indicates that with the increasing of training instances and lower

complexity of hypothesis set, the generalisation risk will get close to the empirical risk. It

is also the reason that many machine learning algorithms optimise empirical prediction loss

and regularisation on model parameters as objectives.

Rademacher Complexity Generalisation Bound

The data distribution D is not considered in VC-dimension and therefore the VC generalisa-

tion bound is distribution-independent. By contrast, Rademacher Complexity (Koltchinskii

& Panchenko, 2000; Koltchinskii, 2001; Bartlett et al., 2002) is another approach for mea-

suring the complexity of hypothesis space, which can take empirical data distribution into

consideration.

Definition 2.8 (Empirical Rademacher complexity (Koltchinskii & Panchenko, 2000; Koltchin-

skii, 2001)). Given a hypothesis set H: X → Y, and X = {xi}ni=1 a fixed sample set of size

m from X , the empirical Rademacher complexity of H w.r.t X is

<̂X(H) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)
]
, (2.10)

where σ = {σi}ni=1 is a set of random variables defined as

σ =

1,with probability 1
2

−1, otherwise,
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which is called the Radmecher variable.

The empirical Rademcher complexity measures the correlation between of a hypothesis

set (H) and random noise presented in the sample set S. By sampling m samples from

distribution D i.i.d, resulting the expectation as:

Definition 2.9 (Rademacher complexity (Koltchinskii & Panchenko, 2000; Koltchinskii,

2001)). For m ≥ 1, the Rademacher complexity of a hypothesis set H is the expectation of

the empirical Rademacher complexity over finite sample X = {xi}mi=1 of size m drawn from

the distribution D, i.e.

<m(H) = EX∼Dm [<̂(H)]. (2.11)

Song (2008) introduced a relationship between Rademacher complexity and kernel rep-

resentations in a reproducing kernel Hilbert space (RKHS). For a RKHS H, ∀h ∈ H, where

‖h‖H ≤ 1:

<m(H) = EXEσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)
]

= EXEσ

[
sup
h∈H

1

m

m∑
i=1

σih(xi)
]

= EXEσ

[
sup
h∈H

〈
h,

1

m

m∑
i=1

σik(xi)
〉]

=
1

m
EXEσ

[∥∥∥ m∑
i=1

σik(xi)
∥∥∥
H

]
≤ 1

m
EX

[(
Eσ

[ m∑
i,j=1

σiσjk(xi,xj)
])]

=
1

m
EX

[√
tr(K)

]
,

(2.12)

where k(·) denotes a kernel function, and K ∈ Rm×m denotes a kernel matrix.

Based on Definition 2.9, the following theorem presents the Rademacher complexity bound

Theorem 2.10 (Rademacher complexity bound (Koltchinskii, 2001)). Let H be a hypothesis

set: X → Y, and X = {xi}mi=1 a finite sample set of size m drawn from distribution. Then
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for any δ ∈ (0, 1], with probability of at least 1− δ, ∀h ∈ H, the following holds

R(h) ≤ R̂(h) + <m(H) +

√
ln 1

δ

2m
, (2.13)

and

R(h) ≤ R̂(h) + <̂X(H) + 3

√
ln 1

δ

2m
. (2.14)

2.2 Theory of Learning from Multiple Domains

Section 2.1 summarises the popular theoretical analysis framework for machine learning al-

gorithms, where the data samples are assumed to come from the same distribution (domain).

However, for the multi-domain problem mentioned in Chapter 1, the generalisation bounds

introduced previously are not applicable. This section will present the theoretical guarantees

for learning from multiple domains. The learning problem of single-source domain adapta-

tion will be defined mathematically first and followed by an introduction of the generalisation

bounds for domain adaptation.

2.2.1 Problem Definition of Domain Adaptation

Given a source domain labelled sample set S = {(xs1, ys1), (xs2, y
s
2), . . . , (xsms , y

s
ms)} and an

unlabelled target set T = {xt1,xt2, . . .xtmt}, the objective is learning a classifier (hypothesis)

h for the target domain, using the knowledge from S and T (Pan & Yang, 2010). Behind

the learning problem, there are three main assumptions (Pan & Yang, 2010; Redko et al.,

2020):

1. Covariate shift. Denoting Ps(x) and Ps(y|x) as the marginal and conditional distri-

bution of a source domain, respectively, using the same way of notation for a target

domain, it is assumed that Ps(x) 6= Pt(x), Ps(y|x) = Pt(y|x).

2. Domain marginal distribution similarity. This assumption assumes that the feasi-

bility / learnability of domain adaptation can be assessed by the divergence (or similar-

ity) between the marginal distributions of source and target. This is a straightforward
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assumption for deriving the generalisation bounds presented later.

3. Risk of ideal joint hypothesis. The assumption assumes an existing ideal hypothe-

sis, which is low-risk for both domains. If the combined risk of the ideal joint hypothesis

is high, it is not possible to expect to learn a good classifier by minimising the error on

the source data set. The ideal joint hypothesis is defined as follows:

Definition 2.11 ((Ben-David et al., 2010)). Given a hypothesis set H, the ideal joint

hypothesis is the hypothesis which minimises the combined error

h∗ = arg min
h∈H

(
Rs(h) + Rt(h)

)
. (2.15)

The combined risk of the ideal hypothesis is denoted as λ∗ = Rs(h
∗) + Rt(h

∗).

2.2.2 Domain Divergence Metric and Generalisation Bounds

As mentioned in the above assumptions, distribution divergence between source and target is

an important criteria to assess the learnability of a domain adaptation problem. In this sub-

section, three popular divergence metric, H-divergence (Ben-David et al., 2007), symmetric

difference hypothesis space H∆H (Ben-David et al., 2010), and maximum mean discrepancy

(MMD) (Borgwardt et al., 2006), will be introduced and then presenting the generalisation

bounds based on these metrics.

Definition 2.12 (H-divergence (Ben-David et al., 2007)). Let H be a hypothesis set, Xt and

Xs are sample sets drawn from distributions Ds (source) and Dt (target), respectively. Then

for h ∈ H, the H-divergence between Ds and Dt is

d̂H(Dt,Ds) = 2 sup
h∈H
|Pxt∼Dt [h(xt) = 1]− Pxs∼Ds [h(xs) = 1]|. (2.16)

Here an example is given to explainH-divergence, let Xs = [x1, . . .x10], Xt = [x11, . . .x20],

H = {h1, h2}, where

• h1(xi) = 1, i = 1 . . . 5, 11 . . . 15, h1(xi) = 0, i = 6 . . . 10, 16 . . . 20, and

• h2(xi) = 1, i = 1 . . . 10, h2(xi) = 0, i = 11 . . . 20,
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and therefore

• Pxt [h1(xti) = 1] = 0.5, Pxs [h1(xsi ) = 1] = 0.5,

• Pxt [h2(xti) = 1] = 1, Pxs [h2(xsi ) = 1] = 0.

So in this case d̂H(Dt,Ds) = 1.

H-divergence can measure the divergence between two distributions. However, it cannot

be linked to a hypothesis set for using in a generalisation bound, and therefore Ben-David

et al. (2010) further proposed the symmetric difference hypothesis space H∆H, which is

defined as follows

Definition 2.13 (Symmetric difference hypothesis space H∆H (Ben-David et al., 2010)).

For a hypothesis space H, the symmetric difference hypothesis space H∆H is the set of

hypothesis

H∆H = {h(X)⊕ h′(X)|h, h′ ∈ H},

where ⊕ is the XOR operation.

In terms of the symmetric difference hypothesis space, a generalisation bound on the

target risk is derived as follows (Ben-David et al., 2010):

Theorem 2.14 (Single-source domain adaptation generalisation bound (Ben-David et al.,

2010)). Let H be a hypothesis space of VC dimension VC(H), and Xs, Xt are sample sets

of size m drawn from Ds and Dt, respectively, then for any δ ∈ (0, 1), with the probability at

least 1− δ, ∀h ∈ H:

Rt(h) ≤ Rs(h) +
1

2
d̂H∆H(Xt,Xs) +

√
1

m

(
2VC(H) ln 2m+ ln

2

δ

)
+ λ∗, (2.17)

where λ∗ is the combined risk of the ideal hypothesis as defined in Definition 2.11.

Maximum mean discrepancy (MMD) is one of the integral probability metrics. It is a

popular metric of distribution divergence used by domain adaptation algorithms. It can be

computed effectively from finite available samples, which is defined as follows
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Definition 2.15 (Maximum mean discrepancy (MMD) (Borgwardt et al., 2006)). For F =

{f : ‖f‖H ≤ 1}, where H is a reproducing kernel Hilbert space, the maximum mean discrep-

ancy between two distributions X and Y is

d̂MMD(X ,Y) = sup
f∈F

∣∣∣ ∫ fd(X − Y)
∣∣∣. (2.18)

The empirical MMD between two sample sets X and Y can be computed via

MMD[F ,X,Y] = sup
f∈F

( 1

mx

mx∑
i=1

f(xi)−
1

my

my∑
i=1

f(yi)
)

=
[ 1

m2
x

mx∑
i,j=1

k(xi,xj)−
2

mxmy

mx,my∑
i,j=1

k(xi,yj) +
1

m2
y

my∑
i,j=1

k(yi,yj)
]
,

(2.19)

where H denotes a reproducing kernel Hilbert space (RKHS) (Berlinet & Thomas-Agnan,

2011), k(·, ·) denotes a kernel function, such as linear, Gaussian, and polynomial, xi and yj

are the ith and jth sample of X and Y, respectively.

Unlike the H∆H-based generalisation bound, which was derived under the framework

of VC-dimension, Redko et al. (2020) derived the following MMD-based theorem under the

framework of Rademachmer complexity:

Theorem 2.16 ((Redko et al., 2020)). Let H be a hypothesis space, Xs, Xt are samples with

size m drawn from Ds and Dt, respectively, then for any δ ∈ (0, 1) with probability of at least

1− δ, ∀h ∈ H:

Rt(h) ≤ Rs(h) + d̂MMD(Xt,Xs) +
1

n

(
EXt

[√
tr(Kt)

]
+EXs

[√
tr(Ks)

])
+ 2

√
ln 2

δ

2m
+λ∗. (2.20)

Generalisation Bounds for Multi-Source Domains

Compared to learning from a single source domain, learning from multiple source domains

is a practical problem in real world tasks. Ben-David et al. (2010) proved the following

two H∆H-based theorems for multi-source domain adaptation. Let Xs be a sample set

of samples drawn from J distributions, the first generalisation bound can be obtained by

applying Theorem 2.14 J times and can be summarised as “one vs target” bound:
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Theorem 2.17 (One vs target (Ben-David et al., 2010)). Let H be a hypothesis space of VC

dimension VC(H). For each j ∈ {1, . . . , J}, let Xj be labelled sample of size βjm drawn from

distribution Dj with weight αj, then for any δ ∈ (0, 1), with the probability at least 1− δ, for

every h ∈ H:

Rt(h) ≤ Rs(h) +
J∑
j=1

(1

2
d̂H∆H(Xt,Xs

j) + λj
)

+ O

√√√√ J∑
j=1

(α2
j

βj

) 1

m

(
VC(H) lnm+ ln

1

δ

)
, (2.21)

where λj = minh∈H{Rj(h) + Rt(h)}.

Ben-David et al. (2010) also proved a tighter generalisation bound in theory by considering

the mixture of source domain sets as a single source, i.e. “source combine” strategy used in

many domain adaptation studies as baselines, such as (Zhu et al., 2019; Peng et al., 2019),

which gives the following theorem:

Theorem 2.18 (Source combine (Ben-David et al., 2010)). Let H be a hypothesis space of

VC dimension VC(H). For each j ∈ {1, . . . , J}, let Xj be labelled sample of size βjm drawn

from distribution Dj with weight αj that constitutes the mixture Xs, then for any δ ∈ (0, 1),

with the probability at least 1− δ, for every h ∈ H:

Rt(h) ≤ Rs(h) + d̂H∆H(Xs,Xt) + λα + O

√√√√ J∑
j=1

(α2
j

βj

) 1

m

(
VC(H) lnm+ ln

1

δ

)
, (2.22)

where λα = minh∈H{
∑J

j=1 αjRj(h) + Rt(h)}.

The generalisation bounds of multi-domain learning, including Eq. (2.21), (2.22), and

single source bounds such as Eq. (2.17) can be summarsed as the following equation:

Rt(h) ≤ R̂s(h) + Divergence + Complexity + Constant, (2.23)

where the major difference is the divergence term. To better understand the two multi-source

generalisation bounds, assume there are three domains: A, B, and C, and A is the target

domain. In terms of tightness, the relationship between the divergences in Eq. (2.21) and
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(2.22) can be summarised as the following inequality:

|A− BC|︸ ︷︷ ︸
“Source Combine”

≤ |A− B|+ |A− C|︸ ︷︷ ︸
“One vs Target”

,

where |A− BC| is the source combine divergence and |A− B|+ |A− C| is the one vs target

divergence.

2.3 Multi-Domain Learning Methods

By Theorem 2.14 ∼ 2.18, the generalisation error are determined by an additional divergence

between source and target domains comparing to the standard generalisation bounds, as

summarised in Eq. (2.23). Therefore, the basic idea behind domain adaptation in practice is

minimising the domain divergence. Popular domain adaptation methods will be introduced

in the following three categories: feature mapping learning, cross-domain classifier learning,

and deep neural networks.

2.3.1 Feature Mapping Learning

One of the most popular approaches of domain adaptation is to minimise the distribution

mismatch between a source and a target, typically measured by the maximum mean dis-

crepancy (MMD) criterion (Borgwardt et al., 2006), via learning one (or two) mapping(s)

of the input data to a subspace. Pan et al. (2011) proposed Transfer Component Analysis

(TCA) to learn such a mapping by minimising the MMD of marginal distribution mismatch

and maximising the captured variances. Pan et al. (2011) also proposed Semi-Supervised

TCA (SSTCA) for extracting more discriminate features by maximising HSIC on the data

labels. Gong et al. (2016) proposed conditional transferable components (CTC) to minimise

the conditional distribution mismatch. Long et al. (2013b) extended TCA to Joint Distri-

bution Adaptation (JDA) to minimise both marginal and conditional distribution mismatch.

We can summarise these methods in a general formula

min
φ
d(φ(Xs), φ(Xt))− Var(φ(X)), (2.24)
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Table 2.1: Six feature mapping learning methods as in Eq. (2.24). # of φ denotes the number
of learnt feature mappings.

Method Objective to Minimise Objective to Maximise # of φ
TCA (Pan
et al., 2011)

MMD (marginal) Captured variance One

CTC (Gong
et al., 2016)

MMD (conditional) Target label dependence One

JDA (Long
et al., 2013b)

MMD (marginal + conditional) Captured variance One

VDA (Tah-
moresnezhad &
Hashemi, 2017)

◦ MMD (marginal + conditional)
◦ Within class covariance

Captured variance One

BDA (Wang
et al., 2018)

MMD (λ marginal + (1−λ) con-
ditional)

Captured variance One

JGSA (Zhang
et al., 2017)

◦ MMD (marginal + conditional)
◦ λ Subspace distance
◦ β Within class covariance

◦ µ Target covariance
◦ β Between class covari-
ance

Two

where d(·, ·) denotes a function of domain divergence measurment, φ is a feature mapping,

Xs and Xt are source and target domain data, respectively, D(φ(Xs), φ(Xt)) is the distri-

bution mismatch (MMD) between source and target domains, X is the combined source

and target data, Var(·) denotes the total captured variance. A regularisation term on the

feature mapping matrix is typically incorporated. SSTCA has a label dependence objective

−µρh(φ(X),Y) added to Eq. (2.24), where µ is a hyper-parameter, and Y is a label matrix

(e.g. yi,j = 1 if xi belongs to the jth class; yi,j = 0 otherwise).

JDA has several extensions. For example, visual domain adaptation (VDA) and (Tah-

moresnezhad & Hashemi, 2017) Joint Geometrical and Statistical Alignment (JGSA) (Zhang

et al., 2017) incorporate JDA with Fisher’s linear discriminant analysis (LDA), and balanced

distribution adaptation (BDA) (Wang et al., 2017) introduces a trade-off between marginal

and conditional distribution mismatch.

Domain Dependence Minimisation

Yan et al. (2018) proposed the method Maximum independence domain adaptation (MIDA)
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using a new approach. It obtains cross-domain features by learning a mapping to minimise

the dependence on auxiliary domain information. In contrast, such domain information is

not directly modeled in the distribution mismatch minimisation mapping or domain-invariant

classifier learning approaches. We summarise the objective of MIDA as

min
φ
ρh(φ(X),C)− Var(φ(X)), (2.25)

where C encodes the auxiliary domain information (domain covariates). Similar to TCA,

MIDA also has a semi-supervised version (SMIDA) that maximises label dependence to Eq.

(2.25):

min
φ
ρh(φ(X),C)− Var(φ(X))− µρh(φ(X). (2.26)

2.3.2 Cross-Domain Classifier Learning

Classifier Adaptation

Model/Classifier adaptation is another domain adaptation approach that aims at training

a model for target domain using the knowledge, such as coefficients or parameters, from

a pre-trained model. The key difference between domain invariant classifier and classifier

adaptation is: the input for domain invariant classifier is data from source and target domain,

while the input for classifier adaptation is a pre-trained (on source) model and target domain

data.

Yang et al. (2007) proposed adaptive SVM (ASVM) to fit an pre-trained SVM for target

domain data by adding a “delta function” ∆f(x) = w>Φ(x). The overall obejctive of ASVM

is given by

f(x) = w>Φ(x) + f s(x) (2.27)

Where Φ(x) is the feature vector, w is the weight vector, f s() is a classifier trained on the

source data. The objective function of ASVM is same as the SVM except the constrains,
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Table 2.2: The four domain-invariant classifier learning methods as in Eq. (2.29): Semi-
supervised kernel matching domain adaptation (SSMDA) (Xiao & Guo, 2015), Selective
Transfer Machine (STM) (Chu et al., 2017), Distribution Matching Machine (DMM) (Cao
et al., 2018), and Manifold Embedded Distribution Alignment (MEDA) (Wang et al., 2018).

Method L(f(φ(Xl),y)) d(φ(Xs), φ(Xt)) M(φ(Xs), φ(Xt))

SSMDA Square loss −ρh(φ(Xs), φ(Xt)) Graph Laplacian
STM Hinge loss MMD (marginal) ×
DMM Hinge loss MMD (marginal) ×
MEDA Square loss MMD (λ marginal + (1− λ) conditional) Graph Laplacian

given by

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi,

s.t. ξi ≥ 0, yif
s(xi) + yiw

>φ(xi) ≥ 1− ξi,∀(xi, yi) ∈ Dt
l .

(2.28)

where Dt
l denotes the labelled data of target domain, N is the number of samples of Dt

l . C is

a parameter which controls the extent that how large f(x) is affected by f s(x). f(x) would

be highly influenced by f s(x) when C is small. While the effect of f s(x) would be small if

C is large.

On the basis of ASVM, Jiang et al. (2008) proposed CDSVM, which leverages the source

support vectors learnt by a standard SVM on source domain samples to find a better decision

boundary for target samples. It re-weights each source support vector according to its average

distance to the target (training) feature vectors, and then the target classifier will be trained

with the target training samples and re-weighted source support vectors.

Domain-Invariant Classifier

Another approach learns a classifier by minimising the prediction error and distribution mis-

match jointly. Long et al. (2013a) proposed a general framework, Adaptation Regularisation

based Transfer Learning (ARTL). The formula of ARTL is

min
f,φ
L(f(φ(Xs),ys)) + λdMMD(φ(Xs), φ(Xt)) + γM(φ(Xs), φ(Xt)), (2.29)
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Figure 2.1: Illustration of general single-source domain adaptation networks. Neural network
architectures (trainable parameters) are circled by dashed rounded rectangles.

where f(·) is a decision function of a classifier, L(f(φ(Xs),ys)) denotes a loss function that

measures the prediction error of labelled source domain samples, M(φ(Xs), φ(Xt)) denotes

the manifold regularisation (Belkin et al., 2006), Xl denotes labelled data, which can be

source data only or source data plus target data according to different settings, and y is a

data label vector. Table 2.2 summarises four such recent methods.

2.3.3 Domain Adaptation via Deep Neural Networks

The advances of deep learning on computer vision (CV) tasks also promote deep domain

adaptation approaches. The simplest application is using the neural network trained large

datasets (e.g. ImageNet) and “fine-tune” the last (or last few) layer(s) on the target data,

where fixed layers are considered as a feature extractor. There are also more advanced deep

DA networks trained end-to-end, i.e. learning feature embedding and classification networks

simultaneously. Pre-trained convolutional neural networks (CNNs) are usually leveraged as

backbones. Domain distribution divergence loss, such as adversarial loss in Ganin et al. (2016)

and Maximum Mean Discrepancy (MMD) in Long et al. (2019) are used to regularise and

fine-tune the parameters of embedding networks, and therefore general representations for

different domains can be extracted and a generalised model can be learnt for target domains.

Figure 2.1 demonstrates the architecture of these approaches.

While the single-source DA problem has been widely explored, multiple sources is a more

practical scenario in applications. Recent research has shown the advantages of modelling

multi-source domains over neglecting the differences between the multiple sources (i.e. ap-

plying single-source DA approaches to multi-source DA problems by viewing multiple source
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(a) Moment Matching for Multi-Source Domain Adaptation (M3SDA). This figure is reproduced
according to descriptions in (Peng et al., 2019).
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(b) Multiple Feature Spaces Adaptation Network (MFSAN). This figure is reproduced accord-
ing to descriptions in (Zhu et al., 2019).

Figure 2.2: Two examples of deep neural networks for multi-source domain adaptation.
Neural network architectures (trainable parameters) are circled by dashed rounded rectangles.

domains as a single one). For example, Peng et al. (2019) proposed Moment Matching for

Multi-Source Domain Adaptation (M3SDA) to learn domain generic features by minimising

the distribution divergence between arbitrary pair of domains, as depicted in Fig. 2.2a. Ad-

ditionally, there is a classifier specifically for each domain and final prediction is the ensemble

of predictions given by these domain-specific classifiers. Zhu et al. (2019) proposed a more

complicated deep neural network Multiple Feature Spaces Adaptation Network (MFSAN) for

multi-source visual domain adaptation, where an additional domain-specific feature extractor

is adopted for each domain. Figure 2.2b shows the architecture of this neural network.
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Figure 2.3: Assumptions of general and specific feature separation approaches, where the data
of each domain is a mixture of general and specific features plus noise. The first two steps
of these approaches are de-noising and extracting general features. Then domain specific-
features can be obtained by subtracting general (reconstructed) features from de-noised data.

2.3.4 General and Specific Feature Separation

Similar to the domain adaptation methods, there is another branch of approaches (Lock et al.,

2013; Zhou et al., 2015) also aim at extracting general features across different domains, while

learn specific features for each domain at the mean time, i.e. general and specific feature

separation. The problem is formulated as

∑
n

min
Ā,Ăn

‖Yn − ĀB̄>n − ĂnB̆
>
n ‖,

s.t. ĀĀ> = I, ĂnĂ
>
n = I, ĀĂ>n = 0,

(2.30)

where Yn denotes the nth block of data, Ā, Ăn are the common basis/components for all

data blocks/groups and specific basis/components for data block n, respectively, and B̄n and

B̆n are the matrix of mixing coefficients for common and specific basis, respectively.

Here it is assumed that general and specific features are mixed by adding together, as

shown in Figure 2.3. The core to solve Eq. (2.30) is de-noising and learning the common

basis Ā and then we can easily obtain individual features via subtraction.

2.3.5 Applications in Neuroimaging Analysis

Recently, domain adaptation techniques have been applied to studying human brain states.

For example, Zhang et al. (2018a) proposed two approaches by making use of shared subjects

between target and source fMRI datasets. They employed two factorisation models Varo-
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quaux et al. (2011); Chen et al. (2015) to learn subject-specific bases, which are assumed to

be invariant across datasets. Using a source dataset with shared subjects can help the models

learn better subject-specific bases, and therefore improve the prediction accuracy. However,

the approaches are not applicable when no subjects are shared between datasets, which is

common for multi-site data sharing projects. Mensch et al. (2017) take a multi-task learning

approach to use resting-state data from the Human Connectome Project (Van Essen et al.,

2012) to learn a general representation via matrix decomposition and then jointly optimize

multiple heterogeneous task-based fMRI classification tasks. Deep models such as autoen-

coder (Velioglu & Vural, 2017; Li et al., 2018) and AlexNet (Zhang et al., 2019) pre-trained

on generic source data have also been used to represent the target fMRI data for classifica-

tion. However, the source data used by these existing fMRI DA studies are independent to

the target classification task.

There is another related multi-task learning (MTL) approach for neural decoding. Rao

et al. (2013); Cox & Rogers (2021) proposed sparse overlapping sets lasso (SOS Lasso) for

fMRI, with an MTL approach. MTL is a branch of domain adaptation, which aims at

improving the performance of all tasks considered and does not differentiate source and target

domains. In the context of SOS Lasso, the multiple “tasks” are datasets associated with each

of several participants of the same experiment. The tasks are related as in multitask group

lasso (Yuan & Lin, 2006), but groups can be overlapped with one another, and features can

be sparsely selected both within and across groups. This technique uses all data relevant

to a specific classification problem, but it does not leverage similarities among different

classification problems.

In diagnosing brain diseases or disorders, Li et al. (2018) developed a deep domain adap-

tation neural network to improve the autism spectrum disorder classification by leveraging an

autoencoder Vincent et al. (2010) trained on the data of a large number of healthy subjects.

Ghafoorian et al. (2017) applied deep learning based domain adaptation to brain MRI for

lesion segmentation with a convolutional neural network trained on a source domain of 280

patients and the last few layers fine-tuned on a target domain of 159 patients. Wachinger et al.

(2016) proposed an instance re-weighting framework to improve the accuracy of Alzheimer’s

Disease (AD) diagnosis by making the source domain data to have similar distributions as
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target domain data. Cheng et al. (2012, 2015a,b, 2017) proposed several workflows to perform

domain adaptation to improve AD diagnosis accuracy by leveraging data of mild cognitive

impairment, which is considered as the early stage of AD.

Separating general and specific features have also been applied in neuroimaging data

analysis. For example, Pakravan & Shamsollahi (2018) used Common Orthogonal Basis Ex-

traction (COBE) Zhou et al. (2015) to obtain subject-specific features by removing common

components for the resting-state fMRI from HCP. On the extracted subject-specific features,

behavioural prediction improved significantly compared to using the original features.

2.4 Summary

This chapter presented the fundamental theories and methods of domain-aware learning. The

theoretical generalisation bounds of classical and multi-domain machine learning problems

were reviewed, where the most significant difference is the domain distribution divergence in

the multi-domain learning bounds. Then some popular methods were introduced by cate-

gories: feature mapping, domain-invariant classifier learning, domain adaptation neural net-

works, and feature separation, where the main focus is minimising the domain divergence as

pointed out by the theory. Lastly, applications of multi-domain learning in neuroimaging data

were briefly reviewed with the discussions on their limitations. The following chapters will

present our research on domain-aware learning to improve the performance on neuroimaging

data analysis.



Chapter 3

A Two-Stage Framework for

Semi-Supervised Single-Source

Adaptation

3.1 Introduction

In cognitive neuroscience, neuroimaging can help relate different cognitive functions to pat-

terns of neural activity using functional magnetic resonance imaging (fMRI) (Ogawa et al.,

1990). This often takes the form of a classification problem (Cox & Savoy, 2003), e.g. dis-

tinguishing between brain conditions associated with experimental stimuli. While fMRI pro-

duces volumes with the number of voxels in the order of 105, a typical experiment will have

on the order of 10∼100 discrete trials, i.e. samples per cognitive condition/stimulus. This

severely constrains the number of training examples available for the classifier. Moreover,

neuroimaging data are noisy and contain a significant amount of physiological, respiratory,

and mechanical artifacts, which requires robust modelling against noise (Aydore et al., 2019).

Domain adaptation is an attractive machine learning scheme and a potential solution to

this problem. Chapter 2 has introduced existing domain adaptation works on neuroimaging

data analysis. Despite the progress in the broad domain of neuroimaging, to the best of our

knowledge, the existing state-of-the-art domain adaptation methods have not been system-

atically studied in whole-brain fMRI decoding for cognitive insights. This chapter proposes

33
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Figure 3.1: DawfMRI framework consists of two steps: feature adaptation, and classifier
adaptation, e.g. via transfer component analysis, and cross-domain SVM, respectively. This
is a semi-supervised domain adapation framework and therefore the target domain instances
need to be partly labelled. Learnt model can be visualised on a brain atlas for interpretation.

a Domain adaptation framework for whole-brain fMRI (DawfMRI) to improve the perfor-

mance in a target domain classification problem with the help of source domain data. As

shown in Fig. 3.1, this framework consist of two stages: feature adaptation and classifier

adaptation, to reduce the distribution divergence and combined risk of the ideal-hypothesis

in the generalisation bounds introduced in Theorem 2.14 and 2.16.

This framework enables systematic study of domain adaptation for whole-brain fMRI

to evaluate and further develop feasible solutions. It can also help discover novel findings,

understand how domain adaptation works in the context of neuroimaging, and identify key

technical challenges. Our main contributions are twofold:

1. Methods: We formulated the DawfMRI framework consisting of two steps: 1) feature

adaptation, and 2) classifier adaptation. Under this framework, we employed one state-

of-the-art realisation of each step and evaluated all four possible variations.

2. Results: We designed experiments systematically using a collection of tasks from the

OpenNeuro project. Results demonstrated a promising way of leveraging existing

source data to improve brain decoding on target data. We discovered a plausible

relationship between psychological similarity and adaptation effectiveness and revealed

additional insights obtained via adaptation.

We also adopted a learning → evaluation → interpretation workflow, which will be followed
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by the remaining empirical studies in Chapter 5 and 6 of this thesis. Our source code is

available at: https://github.com/sz144/DawfMRI.

3.2 Methodology

3.2.1 A Feature-Classifier Adaptation Framework

We propose a two-stage domain adaptation framework for whole-brain fMRI (DawfMRI) as

shown in Fig. 3.1. This framework consists of two steps: feature adaptation, and classifier

adaptation.

• Feature adaptation is a domain adaptation scheme that utilises the source domain

samples for target model training. The motivation is to leverage the samples from a

related (source) domain when the information provided by the target domain samples

is limited for training a good model. However, a classifier trained on source domain

data will typically perform poorly on the target domain classification, which is assumed

to be the result of domain feature distribution mismatch under the domain adaptation

setting. The objective of feature adaptation is to minimize this mismatch by feature

mapping or re-weighting (Pan & Yang, 2010). After performing feature adaptation, the

adapted samples from source domain can be used as additional samples for training

the target model.

• Classifier adaptation is another domain adaptation scheme that aims at improving the

classifier performance in a target domain using the knowledge, such as coefficients or

parameters, from a pre-trained classifier. The motivation is that when the information

provided by target domain data is limited to train a good classifier, the discriminative

information that a classifier learnt from source data can be leveraged to train a better

target classifier.

There is a key difference between feature adaptation and classifier adaptation. The goal

of feature adaptation is to make the source and target domain data similar. Classifier adapta-

tion, in contrast, involves fitting a model to the source domain data, and using this model to

https://github.com/sz144/DawfMRI


36CHAPTER 3. A TWO-STAGE FRAMEWORK FOR SEMI-SUPERVISED ADAPTATION

Table 3.1: Additional notations and descriptions used in this chapter.

Notation Description
D Input feature dimension
Dt
l Labelled target data

d Output (lower) feature dimension
n Number of samples
U Feature mapping/transformation matrix
Vs Source support vectors
Zt, Zs Learned target/source representation

set priors for another model of the target domain. When feature adaptation is used without

subsequent classifier adaptation, the feature-adapted source domain is used directly as if it

contains additional training examples in the feature-adapted target domain. That is, a single

model will be fit to the feature-adapted source and target domain data.

Each step of DawfMRI can be optional. If both of the two steps are skipped, we train

a classifier directly on the whole-brain data, i.e. degenerating to standard machine learning

setting. To study DawfMRI systematically, we employ a state-of-the-art method for each step

in DawfMRI: transfer component analysis (TCA) (Pan et al., 2011) for feature adaptation,

and cross-domain SVM (CDSVM) (Jiang et al., 2008) for classifier adaptation. Table 3.1

lists the key notations used for easy reference in the following presentation of these methods.

Feature Adaptation by TCA

TCA aims to find a feature mapping to minimize the mismatch between target and source

distributions, and preserving the variance at the same time. For distribution mismatch,

Maximum mean discrepancy (MMD) (Borgwardt et al., 2006) is used as the distribution

mismatch metric. Given source domain data Xs ∈ RD×ms , target domain data Xt ∈ RD×mt ,

where ms and mt denote the number of samples of Xs and Xt respectively, and D denotes

the input feature dimension, MMD between the two domains is

MMD(Xs,Xt)=

∣∣∣∣∣
∣∣∣∣∣ 1

ms

ms∑
i=1

(xsi ,X
s)− 1

mt

mt∑
i=1

(xti,X
t)

∣∣∣∣∣
∣∣∣∣∣
2

H

=
[ 1

n2
s

ms∑
i,j=1

k(xsi ,x
s
j)−

2

msmt

ms,mt∑
i,j=1

k(xsi ,x
t
j) +

1

n2
t

mt∑
i,j=1

k(xti,x
t
j)
]
,

(3.1)
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where H denotes a reproducing kernel Hilbert space (RKHS) (Berlinet & Thomas-Agnan,

2011), k(·, ·) denotes a kernel function, such as linear, Gaussian, and polynomial, xsi and

xtj are the ith and jth sample of Xs and Xt, respectively. TCA assumes that the domain

difference is caused by marginal distribution mismatch, i.e, p(Xs) 6= p(Xt). Hence, the

objective is to learn new feature representations Zs and Zt by mapping the input data to a

feature space where the MMD between the two domains is minimised, i.e., p(Zs) ≈ p(Zt).

Equation (3.1) can be rewritten as MMD(Xs,Xt) = tr(KL), where L ∈ Rn×n is:

Lij


1

ms2
if xi,xj ∈ Xs,

1
mt2

if xi,xj ∈ Xt,

− 1
msmt

otherwise,

(3.2)

and n = ms + mt. To minimize MMD, TCA employs a dimension reduction approach to

learn a mapping matrix U ∈ Rn×d to map the samples from kernel space to a d-dimensional

space (d� ms+mt) with a minimal difference in distribution. The MMD of the learnt space

is

tr((KUU>K)L) = tr(U>KLKU). (3.3)

The second objective is preserving the variance of the original input data. Similar to Kernel

PCA (Schölkopf et al., 1998), covariance matrix cov[U>K] = U>KHKU is used as the

constraint of the TCA objective function, where H ∈ Rn×n is a centering matrix (Marden,

2014). Then the overall learning objective is

min
U

tr(U>KLKU) + λ · tr(U>U)

s.t. U>KHKU = Id, λ > 0,

(3.4)

where Id ∈ Rd×d is an identity matrix, λ is a tradeoff parameter for regularisation. Problem

(3.4) can be optimised by the method of Lagrange multipliers and eigen-decomposition. The

solution is the d smallest eigenvectors of (KLK + λI)(KHK)−1.
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Classifier Adaptation by CDSVM

CDSVM is an SVM classifier that utilises the source support vectors learnt by a standard

SVM on source domain samples to find a better decision boundary for target samples. It re-

weights each source support vector according to its average distance to the target (training)

feature vectors, and then the target classifier will be trained with the target training samples

and re-weighted source support vectors. We learn the decision function of CDSVM f(x) =

w>x by optimizing the following objective:

min
w

1

2
‖w‖2 + C

M∑
i=1

ξi + C

K∑
j=1

σ(vsj ,D
t
l)ξ̄j

s.t. yif(xi) ≥ 1− ξi, ξi ≥ 0, ∀(xi, yi) ∈ Dt
l ,

ysjf(vsj) ≥ 1− ξ̄j, ξ̄j ≥ 0, ∀(vsj , ysj ) ∈ Vs,

σ(vsj ,D
t
l) =

1

M

∑
(xi,yi)∈Dt

l

exp(−β‖vsj − xi‖2
2).

(3.5)

Dt
l represents the labelled (training) target domain data. Vs denotes a matrix composed

of all source support vectors. M is the number of samples in Dt
l . K is the number of

source support vectors in Vs. vsj is the jth source support vector in Vs. ξi and ξ̄j are slack

variables for the ith target feature vector and jth source support vector respectively. C is

a hyperparameter controlling the trade-off between the slack variable penalty and the SVM

soft margin. σ(vsj ,D
t
l) is a function that evaluates the distance between vsj and Dt

l . β is a

hyperparameter controlling the influence of the source support vectors. Larger value of β

leads to less influence of source support vectors, and vice versa.

3.2.2 Method for Model Coefficients Interpretation

Apart from model training and evaluation, interpretation is another important part of neu-

roimaging data analysis. The final classifier coefficients (or weights) indicate the significance

of the corresponding features for a classification problem. Visualising them in the brain voxel

space can help us gain some insights into which areas contribute more to prediction perfor-

mance. To achieve this, we chose a linear kernel in TCA, SVM and CDSVM and developed



3.2. METHODOLOGY 39

Figure 3.2: Mapping classifier coefficients w ∈ Rd×1 back to voxel weights ŵ ∈ RD×1 in the
voxel feature space.

a method to map the classifier coefficients back to voxel weights in the original brain voxel

space for interpretation, as shown in Fig. 3.2.

In the following, we detail how to map the model coefficients of TCA+SVM (or TCA+

CDSVM) to the original voxel space.

Using the same notations above, we have X ∈ RD×n (or X ∈ R(D+1)×n if the bias/intercept

is fitted) composed of target and source data, TCA learnt a feature transformation U ∈ Rn×d,

and SVM has learnt coefficients w ∈ Rd. According to Eq. (3.3), the TCA features can

be represented as Z = U>X>X ∈ Rd×n. For a sample x ∈ RD (or x ∈ R(D+1) if the

bias/intercept is fitted), its transformed feature z = U>X>x ∈ Rd×1. The predicted class is

ŷ = sgn(w>z) = sgn(w>U>X>x), (3.6)

where sgn is the sign function (1 for positive values, -1 for negative values). Let ŵ> =

w>U>X> ∈ R1×D (or ∈ R1×(D+1) if the bias/intercept is fitted), we obtain

ŷ = sgn(ŵ>x). (3.7)

Hence, ŵ contains the weights corresponding to each voxel in the whole brain space for final

prediction. When a linear kernel svm, e.g. CDSVM, is used only, the prediction for an

instance x can be obtained via

ŷ = sgn(w>z) = sgn(w>X>x), (3.8)

where w ∈ Rn. Similarly, Eq. (3.7) can be obtained by letting ŵ> = w>X> ∈ R1×D (or
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∈ R1×(D+1) if the bias/intercept is fitted), and ŵ contains the weights corresponding to the

original feature for final prediction.

3.3 Materials and Experiments

3.3.1 OpenNeuro Data and Pre-processing

Dataset

Eleven datasets1 from OpenNeuro were used in the experiments. Table 3.2 lists the details

of the selected datasets. Each dataset is from a cognitive experiment. Each sample was

processed with the protocol in (Poldrack et al., 2013) to obtain the Z-score statistical para-

metric map (SPM) (Friston et al., 1994, 1998; Gorgolewski et al., 2015) of standard MNI152

template size 91×109×91, which is then reduced to a vector of size 211, 106 containing only

the voxels within the brains. The contrasts associated with each task represent differences

between the primary tasks and baseline conditions. We conducted our experiments using the

single contrast per task. The contrasts used are also reported in Table 3.2.

Pre-processing Pipeline

To process the data from OpenNeuro, we implemented a standard preprocessing pipeline

using FSL (Jenkinson et al., 2012) based on the processing stream2 implementation (Poldrack

et al., 2013). The output of one step will be the input of next step. As shown in Table 3.3,

the pipeline has five steps:

1. Perform motion correction on the BOLD signal sequences from OpenNeuro using

MCFLIRT (FSL).

2. Perform brain extraction using BET (FSL).

3. Perform first-level analysis to generate Z-score statistical parametric maps (SPMs)

(Friston et al., 1994, 1998) of contrasts for each experiment condition using FEAT

(FSL). FSL design files are generated from the onsets files using the custom code.

1We use the data in legacy format available at https://legacy.openfmri.org
2https://github.com/poldrack/openfmri

https://legacy.openfmri.org
https://github.com/poldrack/openfmri
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Table 3.2: List of OpenNeuro datasets used in our experiments (ACN denotes accession num-
ber. #Sample denotes the number of samples for each dataset. Abbr denotes abbreviations,
which are used in the rest of this chapter for easy reference).

ACN #Sample Task & Contrast Description Abbr
ds001 32 Balloon analog risk task: Parametric pump effect vs. control BART
ds002 34 Probabilistic classification: Task vs. baseline CT1
ds002 34 Deterministic classification: Feedback vs. baseline CT2
ds002 34 Mixed event-related probe: Task vs. baseline CT3
ds003 13 Rhyme judgement: Task vs. baseline RJT
ds005 32 Mixed-gambles task: Parametric gain response MGT
ds007 40 Stop signal task: Letter classification vs. baseline SST1
ds007 38 Stop signal task: Letter naming vs. baseline SST2
ds007 39 Stop signal task: Pseudoword naming vs. baseline SST3
ds101 42 Simon task: Incorrect vs. correct ST
ds102 52 Flanker task: Incongruent vs. congruent FT

Table 3.3: Preprocessing pipeline for the selected OpenNeuro data.

Steps Operation Description Tools Used
1 Motion correction MCFLIRT (FSL)
2 Brain extraction BET (FSL)
3 Within-run statistical analysis FEAT (FSL)
4 Alignment of Z statistic maps featregapply (FSL)
5 Masking (MNI152 T1 2mm brain mask) and Vectorisation Nibabel

4. Align the spatially normalised SPMs obtained in Step 3 with the MNI152 standard

atlas of size 91× 109× 91 using featregapply (FSL).

5. Vectorise the voxels from the SPMs that fall within the standard MNI152 brain mask

(distributed with FSL) using the Python package Nibabel (Brett et al., 2017).

The contrasts associated with each task represent differences between the primary tasks

and some baseline conditions. Rather than considering the influence of various baseline

conditions, we conducted our experiments using the same single contrast per task as (Poldrack

et al., 2013). The contrasts used are also reported in Table 3.2.

3.3.2 Experiment Settings and Evaluation Methods

Our experiments will focus on using domain adaptation to improve performance on challeng-

ing binary classification problems that require distinguishing brain states associated with
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different cognitive tasks. Thus, we only considered the most basic scenario, specifically, both

target and source classification problems are binary. We studied DawfMRI in the setting of

one-to-one domain adaptation only. This means that one target domain will be supplemented

by only one set of source domain data.

Algorithm Setup

Four possible variations of the DawfMRI framework, including one non-adaptation algorithm:

1) SVM, and three adaptation algorithms: 2) CDSVM,3) TCA+SVM, 4) TCA+CDSVM,

are evaluated.

For TCA+SVM, a SVM was fit to the both source and target training samples after

performing TCA. For CDSVM and TCA+CDSVM, a SVM was fit to the source samples,

and then the source support vectors were used as additional input for training CDSVM on

the target samples.

As mentioned in Sec. 3.2.2, we chose a linear kernel in TCA, SVM, and CDSVM for

easy interpretation. We optimised hyperparameters on regular grids of log scale for each

algorithm, with a step size of one in the exponent. We searched for the best C and µ values

within the range [10−3, 103] and [10−5, 105] for SVM and TCA, respectively. For CDSVM,

we grid-searched for the best combination of C and β values in [10−3, 103]. We also varied

the feature dimension of TCA output from 2 to 100 (2, 10, 20, 50 and 100), and optimize

the relevant algorithms with the best feature dimensions.

Target and Source Domain Setup

Each task (listed in Table 3.2) is associated with data collected from a number of participants

over one or two scanner runs. An SPM expressing a particular contrast between task and

baseline exists for each run for each subject. These SPMs comprise the set of possible

training examples, and the tasks serve as the category labels. Each pair of tasks is a domain,

and our problem is binary classification between two tasks. Each domain can be used as

a target (the primary problem that we want to improve performance on) or a source (the

secondary problem from which we want to leverage knowledge to help better solve the primary

problem). We anticipate the classification problems with lower prediction accuracy to have
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Figure 3.3: Multi-class classification confusion matrix for linear SVM performance on the
whole-brain SPMs. Entry (i, j) in the confusion matrix is the number of observations actually
in task i, but predicted to be in task j. Four most challenging pairs of classification tasks
(BART vs FT, MGT vs CT2, MGT vs ST, and MGT vs FT) were selected as target domains
to perform domain adaptation.

higher potential of improvement via domain adaptation. Therefore, we selected four most

challenging domains, with highly confusable pairs of tasks:

1. BART (32 samples) vs FT (52 samples),

2. MGT (32 samples) vs CT2 (34 samples),

3. MGT (32 samples) vs ST (42 samples),

4. MGT (32 samples) vs FT (52 samples)

These domains were identified by performing multi-class classification. Specifically, we

used a linear SVM to classify all eleven classes of the whole-brain SPMs. Figure 3.3 shows

the 10-fold cross-validation results as a confusion matrix, where an entry (i, j) is the number

of observations actually in task i, but predicted to be in task j. This allows us to identify the

most confusable pairs. The results indicate that the balloon analog risk task (BART) and

mixed-gambles task (MGT) were often confused with other tasks. BART was misclassified as

flanker task (FT) more than half the time. MGT was the least accurately classified overall,
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of which the samples were often misclassified as the deterministic classification (CT2), Simon

task (ST), or flanker task (FT). We then identified the four aforementioned pairs of tasks as

target domains to focus on. These selected pairs are confirmed later to be those benefiting

the most from domain adaptation in our adaptation effectiveness study (Sec. 3.3.3).

Source selection and class labels: When using one pair of tasks as the target domain,

the remaining nine tasks are combined pairwise to give 36 unique pairs, each of which is a

candidate source domain. For each pair, one task is labelled 1 and the remaining task is

labelled −1, also called positive and negative classes, respectively. There are two ways to

match source domain labels with target domains labels, i.e., 1 with 1 and −1 with −1, or 1

with −1 and −1 with 1. We studied both cases.

Evaluation Methods

We performed 10 × 10-fold cross-validation (CV) evaluation. All training samples were sam-

pled uniformly at random for cross validation. CV was only applied to target domain samples.

Source domain samples were all used for training when performing domain adaptation. We

will report the mean classification accuracy with standard derivations for performance eval-

uation. To study the statistical significance of the results obtained by adaptation algorithms

compared to those by non-adaptation algorithms, we will report the p-values of paired t-tests.

3.3.3 Classification Results

Results on Different Target Domains

Figure 3.4 shows the 10-CV classification results across the four different target domains. For

adaptation algorithms, we tested all possible source domains to report the best results in Fig.

3.4, with the corresponding sources indicated in the bars. The best results on the four target

domain were obtained by TCA+SVM and TCA+CDSVM. TVA+SVM and TCA+CDSVM

outperformed the non-adaptation algorithms consistently and significantly (maximum p-value

< 0.0001 in paired t-test). The largest accuracy improvement was obtained by TCA+CDSVM

on BART vs FT with the source SST2 vs CT2. This improves over the SVM by 10.47%

(from 77.26% to 87.73%).
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Figure 3.4: Classification accuracy of four DawfMRI variations (x-axis) on the four target do-
mains (coloured bars). Error bars indicate the standard derivations. Adaptation algorithms
use the best source domains, as indicated in the bars.

Effectiveness of Each DawfMRI Step

In feature adaptation, TCA can extract features with lower dimension from whole-brain

SPMs. Moreover, features extracted by TCA are common and useful across source and target

domains. As shown in Figures 3.4, TCA+SVM outperformed non-adaptation algorithms

with appropriate sources. This indicates that by performing TCA, samples from appropriate

source domains can be used as additional training data for target domain.

In classifier adaptation, CDSVM can improve the accuracy when combined with TCA.

However, by comparing the results in Figs. 3.4, SVM outperformed CDSVM consistently,

while TCA+CDSVM did not outperform TCA+SVM consistently. This indicates that the

effectiveness of CDSVM tends to be related to the distribution distances between domains.

Sensitivity to Source Domain

Figure 3.5 summarises the adaptation effectiveness of different source domains over the

four different target domains, which are sorted by the largest accuracy improvements of

TCA+CDSVM over SVM. The accuracy were improved on 123 out of 144 possible target

and source combinations. However, the improvement varies across different source domains.

It shows that the effectiveness of domain adaptation was significantly affected by the source

domain, which motivated our target domain selection strategy in Sec. 3.3.2. We also observed
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Figure 3.5: Adaptation effectiveness of TCA+CDSVM (coloured dots) over SVM (black
vertical bars) across all target domains, with 10-fold cross-validation. Target domains are
sorted with respect to the maximum improvement. The top three and bottom three source
domains are listed on the right half, in the order of the worst, the second worst, the third
worst, the third best, the second best, and the best, from left to right.

that SVM outperformed TCA+CDSVM in some cases, which is called “negative transfer”

(Pan & Yang, 2010).

3.4 Discussion

This section will further analyse DawfMRI with two objectives to facilitate further discussion:

1) exploring whether adaptation effectiveness is related to psychological similarities between

tasks, 2) understanding how domain adaptation improves brain decoding by visualising the

model coefficients.

3.4.1 Psychological Interpretation of Source Domain Effectiveness

Domain adaptation effectiveness is closely related to meaningful relationships between the

target and source domains. On the other hand, psychological experiments are intrinsically

related by the cognitive mechanisms that support the ability to perform the tasks. Hence,

we expect the cognitive similarity between a set of tasks to be predictive of whether or not

domain adaptation will be effective.
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Table 3.4: Statistics of the four psychological similarity features used for logistic model
training, which are target domain similarity (TDSim), source domain similarity (SDSim),
cross-domain similarity (CDSim) and target domain SVM accuracy (TDSVM Acc).

CDSim TDSim SDSim TDSVM Acc
Min -1.78 -1.02 -1.21 -1.60

Median -0.05 -0.59 -0.36 -0.026
Mean 0.00 0.00 0.00 0.00
Max 3.47 1.93 2.73 1.33

Table 3.5: Logistic model learning for studying the relationship between psychological sim-
ilarity and adaptation effectiveness. The model was regressed on four variables, TDSim,
SDSim, CDSim, and TDSVM Acc, for predicting improved or not improved.

Beta Standard Error t-value p-value
(intercept) -0.085 0.097 -0.88 0.38

TDSim -0.10 0.11 -0.98 0.32
SDSim -0.20 0.11 -1.89 0.057
CDSim 0.26 0.11 2.38 0.017

TDSVM Acc -0.80 0.10 -7.75 9.15e-15

Psychological Similarity Study

We explored a potential relationship between psychological similarity and adaptation effec-

tiveness by modelling the probability of domain adaptation with TCA+CDSVM improving

prediction accuracy as a function of the psychological similarity between tasks within and

across domains.

To estimate the psychological similarity, we associated each task with a set of cognitive

functions that it relies on. The associations were defined by referring to the cognitive concepts

in Cognitive Atlas3 (Poldrack et al., 2011). Out of the 11 tasks in Table 3.2, 10 were associated

with a number of cognitive functions (min = 5, max = 13, median = 7). The mixed event

related probe (CT3) had an incomplete entry so it was excluded from these and further

studies. There were 42 functions in total, and each task was represented as a binary feature

vector. The psychological similarity between each pair of tasks was computed as the cosine

similarity between their feature vectors.

Because each domain is composed of a pair of tasks, the similarity between the target and

3http://www.cognitiveatlas.org/

http://www.cognitiveatlas.org/
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source domains in each model is associated with four pairwise task similarities. The overall

psychological similarity between each pair of domains was estimated by averaging these four

pairwise similarities. We will refer to this estimate as the Cross-Domain Similarity (CDSim).

Moreover, the similarity between the two tasks of the target domain is denoted as the Target-

Domain Similarity (TDSim), and the similarity between the two tasks of the source domain

is denoted as the Source-Domain Similarity (SDSim).

This study focused on 504 target and source combinations of the classification problems

with no more than 90% in accuracy obtained by whole-brain SVM. Of these 504 models,

261 were improved. We labelled them as ‘improved’ or ‘not improved’ to train a logistic

model. This binary outcome was regressed on four variables, CDSim, TDSim, SDSim, and

TDSVM Acc (the accuracy of the standard SVM in the target domain). The variables were

standardised to have a mean of zero and standard deviation of one before fitting the model.

Table 3.4 lists the statistics of the four variables.

Table 3.5 reports the learning outcome of the logistic model, where increasing CDSim

increased the probability of improved accuracy. This relationship between psychological

similarity and adaptation effectiveness is important. On the one hand, it is consistent with

how these adaptation methods are meant to work. On the other hand, it suggests that it

may be possible to predict the adaptation effectiveness in advance, without resorting to a

post-hoc selection of the source domain through trial and error.

Source Selection Validation

We also adopted a leave-one-target-domain-out strategy to learn to “select” an appropriate

source domain. For the hold-out target domain, we selected the source domain with the

highest likelihood of accuracy improvement given by the logistic model. Then we compared

the real improvement of using the selected source data against random source selection, i.e.,

the mean improvement, for TCA+SVM and TCA+CDSVM. Results showed that psycholog-

ical similarity based source selection led to 0.0068, 0.0065, and 0.0371 higher classification

accuracy than random selection. Therefore, it can help source selection.

In addition, we did the same analysis to TCA+SVM to compare MMD-based source

selection with random source selection. We computed the MMDs for all possible target
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Figure 3.6: Visualisation of the voxels with top 1% weight magnitude and occurring in
clusters of at least 20 voxels in the four models: target SVM, source SVM, TCA+SVM,
and TCA+CDSVM. Numbers of distinct and overlapped voxels identified by the models are
shown in the middle bars.

and source combinations using Eq. (3.3) after performing TCA, as well as the accuracy of

respective TCA+SVM. Results showed that on average, selecting source domains with the

smallest MMD can achieve 0.064 higher accuracy than random source selection.

3.4.2 Neural Decoding Visualisation and Cognitive Interpretation

It is also important to understand why a model performs well and which brain networks

are particularly important, e.g. for advances in cognitive neuroscience and understanding

neural disorder physiology. Exploring what information tends to emerge through domain

adaptation will provide insights into how these methods work and what cognitive similarity

is being leveraged through domain adaptation. Therefore, we carried out two studies to

examine where the important voxels are in the brain, and how much the voxel sets in the

target domain, source domain, and adapted models overlap.

Model Overlapping Study I

We firstly studied the case of a balanced target classification problem, which is the mixed-

gambles task (MGT) vs deterministic classification task (CT2). Pseudoword naming stop
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signal task (SST3) vs flanker task (FT) is used as source, which showed the biggest improve-

ment in classification accuracy for the selected target problem. Figure 3.6 shows the voxels

with the top 1% weight magnitude in the four models (target SVM, source SVM, TCA+SVM,

and TCA+CDSVM) and occurring in clusters of at least 20 voxels. The target and source

domain SVMs place their important voxels in completely different areas. Not only is there

no overlap, but the supra-threshold voxels in each model are sampled from different lobes

of the brain: the target domain SVM is associated primarily with supra-threshold voxels in

the frontal lobes, while the source domain SVM is associated primarily with supra-threshold

voxels in the occipital lobe and sensory motor cortex. The distribution of coefficients is so

different between source and target models, but adaptation can be nevertheless very effective.

We then overlaid the adapted models from TCA+SVM and TCA+CDSVM. TCA+SVM

has substantial overlap with the source domain SVM, and nearly no overlap with the target

domain SVM. This substantial overlap, however, is only about 1/3 of the supra-threshold

voxels in the TCA+SVM model. The remaining 2/3 are completely distinct from either the

target or source models, indicating that information from the source domain has revealed

a different dimension along to which to dissociate the tasks in the target domain than was

apparent in the target data in isolation.

This general pattern is echoed in the model adapted with TCA+CDSVM, except that in

this case there is virtually no overlap with the source domain and there is instead modest

overlap with the target domain. Again, the adapted model is largely associated with supra-

threshold voxels that do not overlap with either the target or source SVMs. Thus, the

adaptation procedure has provided additional insights into the classification problem, showing

the exploited information to be more than the simple sum of information from the target

and source domain models.

Model Overlapping Study II

We further analysed the overlapped important voxels (with top 1% weight magnitude) in

the four aforementioned models for 142 different target-source pairs where TDSVM Acc≤

90% and TCA+CDSVM leading to at least 3% improvement. We examined the number of

(overlapped) voxels for all 15 possible combinations of the four models, including individual
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1) Target SVM only
2) Source SVM only

3) Target and Source
4) TCA+SVM only

5) TCA+SVM and Target SVM
6) TCA+SVM and Source SVM

7) TCA+SVM, Target SVM and Source SVM
8) TCA+CDSVM only

9) TCA+CDSVM and Target SVM
10) TCA+CDSVM and Source SVM 

11) TCA+CDSVM, Target SVM and Source SVM
12) TCA+SVM, TCA+CDSVM

13) TCA+SVM, TCA+CDSVM and Target SVM
14) TCA+SVM, TCA+CDSVM and Source SVM

15) TCA+SVM, TCA+CDSVM, Target SVM, and Source SVM

Figure 3.7: The overlapped important voxels for all 15 possible combinations (y-axis) of the
four models: target SVM, source SVM, TCA+SVM, and TCA+CDSVM. The x-axis denotes
142 different target-source pairs where TDSVM Acc≤ 90% and TCA+CDSVM leading to at
least 3% improvement. The (overlapped) voxel numbers for the 15 model combinations form
a 15-element vector for each target-source pair. This vector is normalised to unit length and
visualised as a column, where the normalised number of voxels (from 0 to 1) is denoted as
the colour (from blue to yellow) in the heatmap.

models. We formed a 15-element vector for each target-source pair with 15 such numbers

and then normalised it to unit length. Figure 3.7 depicts the normalised vectors as columns

for all 142 target-source pairs, labelled with the corresponding model(s).

There is a clear effect that each model identifies a fairly distinct set of voxels (rows 1, 2, 4,

and 8), which are more than the overlapped voxels between non-adaptation and adaptation

models (rows 5, 6, 9 and 10). On the other hand, by comparing the results shown in rows of

5, 6, 9 and 10, TCA+SVM overlaps with the source domain SVM much more than with the

target domain SVM, and the opposite is true for TCA+CDSVM. This again confirmed that

adaptation is exploiting information additional to the target and source domain models, and

different adaptation schemes are exploiting different information.

3.4.3 Technical Challenges

Based on the experimental results, we can see two technical challenges in DawfMRI. One is

how to select a good source domain automatically (without exhaustive testing) to reduce or
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even avoid “negative transfer”, as observed in our experiments. The plausible relationship

between psychological similarity and adaptation effectiveness in Sec 3.4.1 can lead to a bet-

ter than random solution. However, it is not the optimal selection of sources. The other

challenge is how to make use of multiple source domains to further improve the classification

performance. We need to carefully leverage the positive effects from each source domain

while minimising the potential negative impacts. This needs a smart, adaptive procedure to

be introduced. We consider both challenges are important directions to explore in the future.

3.5 Summary

In this chapter, a two-stage domain adaptation framework is proposed for whole-brain fMRI

(DawfMRI), which consists of two key steps: feature adaptation and classifier adaptation, to

reduce the distribution divergence and combined. Two state-of-the-art algorithms TCA and

CDSVM are employed for each step of DawfMRI, respectively. Experimental studies of two

non-adaptation algorithms and six adaptation algorithms on task-based whole-brain fMRI

from eleven OpenNeuro datasets shown that DawfMRI can significantly improve the learning

performance for challenging binary classification problems. Additionally “negative transfer”

was observed in the experiments, indicating that domain adaptation does not always give

better performance and should be used with care. Furthermore, we discovered a plausible

relationship between psychological similarity and adaptation effectiveness, and interpreted

how the models provide additional insights. Finally, we pointed out two important research

directions to pursue in future work.



Chapter 4

Dependence-Based Multi-Domain

Generalisation Theory

Chapter 3 pointed out an important research question: multi-source domain adaptation. For

this problem, two H∆H-based generalisation bounds on VC dimension have been introduced

in Chapter 2, where the tighter bound (Theorem 2.18) is proved by viewing the mixture of

source domains as a single source domain. This strategy is usually called “source combine”.

However, it has been shown in many practical studies that the source combine strategy

can hardly outperform aligning each source-target pair (Theorem 2.17). This chapter will

present further theoretical analysis for multi-source domain adaptation generalisation bounds

and then derive a statistical dependence based bound, which will be the theoretical support

for the following two chapters.

4.1 “One vs One” and “One vs Rest” Bounds

In multi-source domain adapattion, there has been many algorithms proposed by follow-

ing Theorem 2.17 and 2.18, which have been introduced in Chapter 2. There is another

multi-source domain adaption network introduced in Chapter 2: Moment Matching for

Multi-Source Domain Adaptation (M3SDA) (Peng et al., 2019), which optimises the sum

of divergence between an arbitrary pair of domains, i.e. the divergence between two source

domains are also considered, instead of optimising the sum of divergences between each pair

53
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One vs One 𝓗Δ𝓗-Based Bounds

One vs Rest 𝓗Δ𝓗-Based Bounds

One vs One MMD-Based Bounds

One vs Rest MMD-Based Bounds

One vs Rest HSIC-Based Bounds

Theoretical Study between 
MMD and HSIC

Tighter Tighter

Figure 4.1: Relationships of the generalisation bounds derived in this chapter, where the
statistical dependence/HSIC-based bound is the proposed and recommended one.

of source target domain, because “it is difficult to align a target domain with every source

domain without aligning source domains together”. Using the example of three domains A,

B and C in Chapter 2 again, the divergence mesurment in the objective function of M3SDA

is |A − B| + |A − C| + |B − C|. However, the optimal |A − B| + |A − C| + |B − C| cannot

guarantee |A− B| + |A− C| (divergence in Theorem 2.17) to be optimal. Therefore, unlike

the authors claimed, M3SDA does not optimise the “one vs target” generalisation bound of

Theorem 2.17. Inspired by the multi-class classification problems, the objective of M3SDA

can be summarised as an “one vs one” divergence, and the following theorem can be derived:

Theorem 4.1 (One-vs-one H∆H multi-source bound). Let H be a hypothesis space of VC

dimension VC(H). Let Xj be labelled samples of size βjm drawn from distribution Dj with

weight αj for j ∈ {1, . . . , J + 1}, where αJ+1 = 1/J , and βJ+1 = 1, let Xt = XJ+1, Xs =

[X1, . . . ,XJ ], then for any δ ∈ (0, 1), with the probability at least 1− δ, for every h ∈ H:

Rt(h) ≤ R̂s(h) +
J+1∑

i,j=1,i 6=j

(αi + αj)
(1

2
d̂H∆H(Xi,Xj) + λi,j

)
+ O

(√
VC(H)

m

)
(4.1)

where λi,j = minh∈H{Ri(h) + Rj(h)}, and O

(√
VC(H)
m

)
is the complexity term.
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Proof. Let h∗i,j = arg minh∈H{Ri(h) + Rj(h)}. Then

|Rs(h)− Rt(h)|

=
∣∣∣ J∑
j=1

αjRj(h)− Rt(h)
∣∣∣ ≤ J∑

j=1

αj
∣∣Rj(h)− Rt(h)

∣∣
≤

J+1∑
j=1

αj

J∑
i=1,i 6=j

∣∣Ri(h)− Rj(h)
∣∣

≤
J+1∑
j=1

αj

J∑
i=1,i 6=j

(∣∣Ri(h)− Ri(h, h
∗
i,j)
∣∣+
∣∣Ri(h, h

∗
i,j)− Rj(h, h

∗
i,j)
∣∣+
∣∣Rj(h, h

∗
i,j)− Rj(h)

∣∣)
≤

J+1∑
j=1

αj

J∑
i=1,i 6=j

(
Ri(h

∗
i,j) +

∣∣Ri(h, h
∗
i,j)− Rj(h, h

∗
i,j)
∣∣+ Rj(h

∗
i,j)
)

≤
J+1∑
j=1

αj

J∑
i=1,i 6=j

(1

2
d̂H∆H(Di,Dj) + λi,j

)
.

(4.2)

Now with Eq. (4.2) and Hoeffdings inequality, for any δ ∈ (0, 1), with the probability 1− δ,

Rt(h) ≤Rs(h) +
J+1∑
j=1

αj

J∑
i=1,i 6=j

(1

2
d̂H∆H(Di,Dj) + λi,j

)
≤R̂s(h) +

J+1∑
j=1

αj

J∑
i=1,i 6=j

(1

2
d̂H∆H(Xi,Xj) + λi,j

)
+ O

(√
VC(H)

m

) (4.3)

where λi,j = minh∈H{Ri(h) + Rj(h)}. This completes the proof.

Theorem 4.1 can also be proved by using Theorem 2.17 directly:

Rt(h) ≤R̂s(h) +
J∑
j=1

αj
(1

2
d̂H∆H(Xj,X

t) + λj
)

+ O

(√
VC(H)

m

)

≤R̂s(h) +
J+1∑

i,j=1,i 6=j

αj
(1

2
d̂H∆H(Xi,Xj) + λi,j

)
+ O

(√
VC(H)

m

) (4.4)

Theorem 4.1 explains the exact objectives of M3SDA as a generalisation bound. The only

difference is the H∆H-divergence is replaced by moment distance in (Peng et al., 2019).



56CHAPTER 4. DEPENDENCE-BASEDMULTI-DOMAIN GENERALISATION THEORY

By borrowing the concept of one-vs-one from multi-class classification, this bound can be

called as one-vs-one multi-source generalisation bound. By leveraging the theoretical results

in Theorem 2.16, a MMD-based one-vs-one bound for multi-source domain adaptation can

be proved as the following theorem.

Theorem 4.2 (One-vs-one MMD multi-source bound). Let H be a hypothesis space. Let Xj

be labelled samples of size βjm drawn from distribution Dj with weight αj for j ∈ {1, . . . , J +

1}, where αJ+1 = 1/J , and βJ+1 = 1, let Xt = XJ+1, Xs = [X1, . . . ,XJ ], and Kj be the

kernel matrix of Xj with kernel function k(·, ·) then for any δ ∈ (0, 1), with the probability at

least 1− δ, for every h ∈ H:

Rt(h) ≤R̂s(h) +
J+1∑

i,j=1,i 6=j

(αi + αj)
(
d̂MMD(Xi,Xj) +

2

βim
EXi

[√
tr(Ki)

]
+

2

βjm
EXj

[√
tr(Kj)

]
+
(
β
− 1

2
i + β

− 1
2

j

)√ ln 2
δ

2m
+ λi,j

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

(4.5)

where λi,j = minh∈H{Ri(h) + Rj(h)}.

Proof. By Theorem 2.16,

Rt(h) ≤Rs(h) +
J∑
j=1

αj

(
dMMD(Dj,Dt) + λj

)

≤R̂s(h) +
J∑
j=1

αj

(
dMMD(Dj,Dt) + λj

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

≤R̂s(h) +
J∑
j=1

αj

(
d̂MMD(Xj,X

t) +
2

βjm
EXj

[√
tr(Kj)

]
+

2

m
EXt

[√
tr(Kt)

]
+ λj

)

+ <̂Xs(H) + 3

√
ln 2

δ

2m

≤R̂s(h) +
J+1∑

i,j=1,i 6=j

(αi + αj)
(
d̂MMD(Xi,Xj) +

2

βim
EXi

[√
tr(Ki)

]

+
2

βjm
EXj

[√
tr(Kj)

]
+
(
β
− 1

2
i + β

− 1
2

j

)√ ln 2
δ

2m
+ λi,j

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

(4.6)
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This completes the proof.

Inspired by the multi-class classification, the generalisation bounds of “one-vs-one” do-

main have been derived. Intuitively, there should be “one-vs-rest” generalisation bounds.

Recall the source-combine generalisation bounds in Theorem 2.18, which is derived from the

risk of target domain vs the risk of the rest (combined source domains). Hence on the basis

of Theorem 2.18, a new “one-vs-rest” generalisation bound can be derived as the following

theorem.

Theorem 4.3 (One-vs-rest H∆H multi-source bound). Let H be a hypothesis space of VC

dimension VC(H). Let Xj be labelled samples of size βjm drawn from distribution Dj with

weight αj for j ∈ {1, . . . , J + 1}, where αJ+1 = 1, and βJ+1 = 1, let Xt = XJ+1, Xs =

[X1, . . . ,XJ ], then for any δ ∈ (0, 1), with the probability at least 1− δ, for every h ∈ H:

Rt(h) ≤ R̂s(h) +
J+1∑
j=1

αj
(1

2
d̂H∆H(Xi,Xα\j) + λj

)
+ O

(√
VC(H)

m

)
(4.7)

where λj = minh∈H{Rj(h) + Rα\j(h)}, and O

(√
VC(H)
m

)
is the complexity term.

Proof. Let h∗j = arg minh∈H{Ri(h) + Rj(h)}. Then

|Rs(h)− Rt(h)|

=
∣∣∣ J∑
j=1

αjRj(h)− Rt(h)
∣∣∣

≤
J+1∑
j=1

αj
∣∣Rα\j(h)− Rj(h)

∣∣
≤

J+1∑
j=1

αj
(∣∣Rα\j(h)− Rα\j(h, h

∗
j)
∣∣+
∣∣Rα\j(h, h

∗
j)− Rj(h, h

∗
j)
∣∣+
∣∣Rj(h, h

∗
j)− Rj(h)

∣∣)
≤

J+1∑
j=1

αj
(
Rα\j(h

∗
j) +

∣∣Rα\j(h, h
∗
j)− Rj(h, h

∗
j)
∣∣+ Rj(h

∗
j)
)

≤
J+1∑
j=1

αj
(1

2
d̂H∆H(Dα\j,Dj) + λj

)
.

(4.8)
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The remainder of proof is almost identical to the proof in Theorem 4.1.

Similar to Theorem 4.1, Theorem 4.3 can also be proved by using the theoretical results

in Theorem 2.18:

Rt(h) ≤R̂s(h) +
1

2
d̂H∆H(Xt,Xs

j) + λJ+1 + O

(√
VC(H)

m

)
≤R̂s(h) +

J+1∑
j=1

αj
(1

2
d̂H∆H(Xi,Xj) + λj

)
+

(
O

√
VC(H)

m

) (4.9)

Corollary 4.3.1. “One vs Rest” bounds are tighter than “one vs one” bound.

Proof.

J+1∑
j=1

αj
∣∣Rα\j(h)− Rj(h)

∣∣ =
J+1∑
j=1

αj

∣∣∣∣ J∑
i=1,i 6=j

Ri(h)− Rj(h)

∣∣∣∣
≤

J+1∑
j=1

αj

J+1∑
i=1,i 6=j

∣∣Ri(h)− Rj(h)
∣∣ (4.10)

This completes the proof.

Same as the “one vs one” bounds, which can derive two generalisation bounds under

the frameworks of VC-dimension and Rademacher complexity, respectively, an MMD-based

“one-vs-rest” bound for multi-source DA can be derived, which gives the following lemma.

Lemma 4.4 (One-vs-rest MMD multi-source bound). Let H be a hypothesis space. Let Xj be

labelled samples of size βjm drawn from distribution Dj with weight αj for j ∈ {1, . . . , J+1},

where αJ+1 = 1, and βJ+1 = 1, let Xt = XJ+1, Xs = [X1, . . . ,XJ ], and Kj be the kernel

matrix of Xj with kernel function k(·, ·) then for any δ ∈ (0, 1), with the probability at least

1− δ, for every h ∈ H:

Rt(h) ≤R̂s(h) +
J+1∑
j=1

αj

(
d̂MMD(Xα\j,Xj) +

2

(2− βj)m
EXα\j

[√
tr(Kα\j)

]
+

2

βjm
EXj

[√
tr(Kj)

]
+
(
(2− βj)−

1
2 + β

− 1
2

j

)√ ln 2
δ

2m
+ λj

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

(4.11)
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where λj = minh∈H{Rα\j(h) + Rj(h)}.

Proof. By Theorem 2.16,

Rt(h) ≤Rs(h) +
(
dMMD(Ds,Dt) + λJ+1

)
≤R̂s(h) +

(
dMMD(Ds,Dt)

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

≤R̂s(h) +
J∑
j=1

αj

(
dMMD(Dj,Dα\j) + λj

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

≤R̂s(h) +
J+1∑
j=1

αj

(
d̂MMD(Xα\j,Xj) +

2

(2− βj)m
EXα\j

[√
tr(Kα\j)

]
+

2

βjm
EXj

[√
tr(Kj)

]
+
(
(2− βj)−

1
2 + β

− 1
2

j

)√ ln 2
δ

2m
+ λj

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

(4.12)

This completes the proof.

4.2 Dependence Based Multi-Domain Learning Theory

4.2.1 Hilbert-Schmidt Independence Criterion (HSIC)

Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005) is a non-

parametric criterion for measuring the statistical dependence between two sets X = {xi}

and Y = {yi}, both with n samples. HSIC is zero if and only if X and Y are independent,

i.e. PX,Y = PXPY. A larger HSIC value suggests stronger dependence. The empirical HSIC

between X and Y, ρh(X,Y) (Gretton et al., 2005), is given by

ρh(X,Y) =
1

(m− 1)2
tr(KHLH), (4.13)

where K,H,L ∈ Rn×n, Ki,j := kx(xi,xj), Li,j := ky(yi,yj), kx(·), ky(·) are two kernel

functions, H = I− 1
m

11> is a centring matrix, I is an identity matrix.

The domain dependence of the data can be computed via ρh(X,C), using the domain

covariate matrix C defined above. Now we show when using one-hot encoding and a linear

kernel for C in HSIC, we can derive an equivalence between HSIC and MMD, as shown in the
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following lemma. Based on this lemma, we can derive generalisation bounds for HSIC-based

TL and formulate our new framework.

Lemma 4.5. Let Xs, Xt be the source and target sample sets with size ms and mt, respec-

tively, and c0 ∈ Rm be a degenerated one-hot domain covariate vector, i.e. c0 = [

ms︷ ︸︸ ︷
0 · · · 0

mt︷ ︸︸ ︷
1 · · · 1],

where m = ms+mt, then HSIC(X, c0) is proportional to MMD(Xs,Xt), where X = [Xs,Xt],

and linear kernel is used for c0 in HSIC.

Proof. By Eq. 2.19, the empirical MMD between Xs and Xt is

MMD(Xs,Xt) =

∥∥∥∥ 1

ms

ms∑
i=1

xsi −
1

mt

mt∑
i=1

xti

∥∥∥∥2

Hk
, (4.14)

where Hk denotes a reproducing kernel Hilbert space (RKHS). The empirical MMD can be

computed via tr(KL′) (Pan et al., 2011), where

K ∈ Rm×m = k([Xs,Xt], [Xs,Xt]) =

Ks,s Ks,t

Kt,s Kt,t

 , (4.15)

X = [Xs,Xt] ∈ Rd×n, and L′ ∈ Rm×m is defined as

L′ij =


1

ms2
if xi,xj ∈ Xs,

1
mt2

if xi,xj ∈ Xt,

− 1
msmt

otherwise.

(4.16)

By Eq. (4.13), ρh(X,d0) = tr(KHLH)/(n− 1)2, where K = k(X,X) is exactly the same

kernel matrix as in the MMD, and L = d>0 d0, i.e. Li,j = 1, if xi,xj ∈ Xt, and otherwise

Li,j = 0. Let L̂ = HLH, resulting

L̂ij =


mt2

m2 if xi,xj ∈ Xs,

ms2

m2 if xi,xj ∈ Xt,

−msmt
m2 otherwise.

(4.17)
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By comparing Eq. (4.16) and Eq. (4.17), we have

MMD(Xs,Xt) = uρh(X, c0), (4.18)

where u = m2(m−1)2

(msmt)2
, which is a constant for fixed samples in a learning task. This completes

the proof.

By Lemma 4.5, MMD can be viewed as a special case of HSIC, i.e. when there are only

two discrete domains and encoded as one-hot covariates, and linear kernel is used for domain

covariates when computing HSIC. This is also the theoretical evidence for proving that TCA

(Pan et al., 2011) is a special case of MIDA (Yan et al., 2018).

4.2.2 HSIC-Based Generalisation bound

For the multi-source setting, we define a domain j as the samples Xj drawn from a distribution

Dj on the inputs X and a labelling function fj : X → {0, 1}. A hypothesis f ∈ H is a function

f : X → {0, 1}. We consider a classifier f trained on a total of ms samples Xs that drawing

from J (J ≥ 1) distinct source domains with a domain weight vector α = [α1, . . . , αJ ], where∑J
j=1 αj = 1, and derive the bounds on its generalisation performance on a target domain,

i.e. Rt(f) or Rt(f, ft).

Theorem 4.6 (HSIC Multi-source Bound). Let H be a hypothesis space, αJ+1 = 1, and

DJ+1 = Dt, for j ∈ {1, . . . , J}, let Xj be labelled samples of size nj drawn from Dj with

domain weight αj and labelled by function fj. Let C be a one-hot domain covariate matrix,

then for h ∈ H:

Rt(h) ≤R̂s(h) + ρh(X,CU) + Ω + <̂Xs(H) + 3

√
ln 2

δ

2m
, (4.19)

where

Ω =
J+1∑
j=1

αj

(
d̂MMD(Xα\j,Xj) +

2

(2− βj)m
EXα\j

[√
tr(Kα\j)

]

+
2

βjm
EXj

[√
tr(Kj)

]
+
(
(2− βj)−

1
2 + β

− 1
2

j

)√ ln 2
δ

2m
+ λj

)
,
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and R̂s(f) is the empirical risk of f on the source data, U = diag(u), diag(·) is the diagonal

function, u ∈ R2m is a vector, ui = 4αim
2(2m − 1)2/(m2

j(2m − mj)
2), if xi ∈ Xj, i =

1, . . . , 2m.

Proof. By Lemma 4.4)

Rt(h) ≤R̂s(h) +
J+1∑
j=1

αj

(
d̂MMD(Xα\j,Xj) +

2

(2− βj)m
EXα\j

[√
tr(Kα\j)

]
+

2

βjm
EXj

[√
tr(Kj)

]
+
(
(2− βj)−

1
2 + β

− 1
2

j

)√ ln 2
δ

2m
+ λj

)
+ <̂Xs(H) + 3

√
ln 2

δ

2m

=R̂s(h) +
J+1∑
j=1

αj d̂MMD(Xα\j,Xj) + Ω + <̂Xs(H) + 3

√
ln 2

δ

2m

=R̂s(f) +
J+1∑
j=1

ujtr(KHLjH) + Ω + <̂Xs(H) + 3

√
ln 2

δ

2m
(Lemma 4.5)

=R̂s(h) + ρh(X,CU) + Ω + <̂Xs(H) + 3

√
ln 2

δ

2m
,

(4.20)

where Lj = d>j dj, dj ∈ Rm is the jth row of C, e.g. c1 = [

β1m︷ ︸︸ ︷
1 · · · 1

(2−β1)m︷ ︸︸ ︷
0 · · · 0 ]. This completes the

proof.

Mathematically, the generalisation bound in Theorem 4.6 is equivalent to the one in

Lemma 4.4, which is also shown in Eq. 4.20 of the proof. However, HSIC-based bounds have

nice properties of higher flexibility and potential for extensions:

• Multiple domain covariates, e.g. subjects’ age group, gender, and handiness in neu-

roimaging analysis, etc.

• Continuous values as covariates, e.g. subjects’ age, IQ score, etc.

• Incorporating prior knowledge for covariates, i.e. using other kernel functions, such as

Gaussian RBF kernel, instead of linear kernel for computing HSIC.

• Can be estimated in linear time (Jitkrittum et al., 2017; Yokoi et al., 2018; Zhang et al.,

2018b) without requiring source target sample sizes to be the same like estimating
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linear-time MMD .

4.3 Summary

In this chapter, two multi-source domain adaptation divergence measuring strategies: one-vs-

one and one-vs-rest, are developed from Theorem 2.17 and 2.18, respectively. With the two

strategies, five generalisation bounds are derived and summarised in Fig. 4.1. Theoretical

analysis indicates that bounds with one-vs-rest strategy are tighter than the ones with one-

vs-one. In total, there are four generalisation bound introduced for the multi-source domain

learning problem, and their relationships can be summarised as the two following inequalities:

|A− BC|︸ ︷︷ ︸
“Source Combine” (Theorem 2.18)

≤ |A− B|+ |A− C|︸ ︷︷ ︸
“One vs Target” (Theorem 2.17)

≤ |A− B|+ |A− C|+ |B− C|︸ ︷︷ ︸
“One vs One” (Theorem 4.1, 4.2)

,

and

|A− BC|︸ ︷︷ ︸
“Source Combine” (Theorem 2.18)

≤ |A− BC|+ |B− AC|+ |C− AB|︸ ︷︷ ︸
“One vs Rest” (Theorem 4.3,4.4, 4.6)

≤ |A− B|+ |A− C|+ |B− C|︸ ︷︷ ︸
“One vs One” (Theorem 4.1, 4.2)

.

Moreover, the statistical dependence based bound derived from one-vs-rest MMD bound has

higher flexibility. The effectiveness of Theorem 4.6 in multi-source domain adaptation will

be evaluated in the next chapter, which is the recommended generalisation bound and one

of the main contributions of this thesis.
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Chapter 5

Covariate-Independence

Regularisation for Unsupervised

Multi-Source Adaptation

The previous chapter derived a statistical dependence based generalisation bound for multi-

domain learning. Motivated by the theoretical study, this chapter proposes a machine learn-

ing framework, Covariate-Independence Regularisation (CoIR), for unsupervised multi-source

domain adaptation. Specifically, CoIR simultaneously minimises the empirical risk and the

statistical dependence on the domain covariates, to reduce the theoretical generalisation error

bound. The CoIR framework will be applied to tackle not only the challenge of learning ro-

bust decoding models for fMRI data across different cognitive experiments and subjects, but

also unsupervised multi-source domain adaptation of textual sentiment analysis and visual

object recognition.

5.1 Introduction

The growth of public neuroimaging data from multiple sites, e.g. the OpenNeuro Gorgolewski

et al. (2017), have many similar brain conditions across different cognitive experiments.

This enables domain adaptation studies to leverage the power of overlapping labels across

domains. Furthermore, it may potentially offer interpretation/insights from the domain shift

65
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perspective for neuroscientists.

Though domain adaptation techniques have been widely applied in computer vision (CV)

or natural language processing (NLP) tasks, brain condition decoding presents domain adap-

tation challenges different from those in CV/NLP. fMRI data are generated by brain signals,

which are not natural images that human visual system has adapted to interpret. Conse-

quently, fMRI analysis relies heavily on statistics. Furthermore, cognitive stimuli are imple-

mented varying across experiments. Even the same information can be encoded as different

patterns of activity by different brains (Chen et al., 2015). Hence, each subject can be

considered as a unique learning task to extract subject-specific features (Rao et al., 2013) in

fMRI studies. Additionally, as mentioned before, fMRI data are noisy. Therefore, for domain

adaptation in brain condition decoding, it can be beneficial to take more domain information,

such as experiment designs and subjects, into account to learn a robust model.

Recently, the maximum independence domain adaptation (MIDA) (Yan et al., 2018) in-

troduces a new domain dependence minimisation approach to domain adaptation. It learns

common, cross-domain features by minimising statistical dependence on auxiliary domain

information, as measured by the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton

et al., 2005). This inspired us to encode different experiment designs and subjects as auxiliary

domain covariates for domain adaptation in brain condition decoding.

In this chapter, we propose a Covariate Independence Regularisation (CoIR) framework

for domain adaptation in brain condition decoding. The contributions are threefold: (1) We

discover the relationship between HSIC and maximum mean discrepancy (MMD) and derive

two HSIC-based generalisation bound for multi-source domain adaptation. The theoretical

studies enable the formulation of the CoIR framework that simultaneously minimises the

empirical prediction risk and the dependence on domain side information. (2) Under this

framework, we construct a simplified HSIC and incorporate the hinge loss that can take un-

labelled samples into account following the Manifold Regularisation framework formulation

(Belkin et al., 2006). This gives us the CoIRSVM algorithm. (3) We construct new homo-

geneous brain decoding domain adaptation tasks by identifying datasets with homogeneous

brain conditions from public repositories. Experiments on these tasks show the superior

performance of CoIR over competing methods.
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5.2 Methodology

5.2.1 Multi-Source Domain Adaptation View of Brain Decoding

In a cognitive experiment, each subject is presented a set of stimuli (conditions) designed

by neuroscientists. An experiment typically features one or a few (if repeated) samples per

condition per subject. We consider a target dataset (experiment) have both labelled and un-

labelled samples, and there are labelled samples with the homogeneous brain conditions that

acquired from one or more source experiments, where the experiment designs are different.

The objective is to predict the human brain conditions of unlabelled target samples.

The target cognitive experiment has mt unlabelled fMRI data samples Xt ∈ Rd×mt ,

where d is the number of fMRI features, e.g. voxels. The learning task is to classify the sam-

ples into C brain conditions (classes), where C = 2 in this chapter, i.e. binary classification.

The source consists of data from one or more cognitive experiments with ms labelled

samples Xs ∈ Rd×ms in total. The learning task has the same C brain conditions to classify

as the target domain.

Domain covariate encoding. Denote the target and source data jointly as X =

[Xs,Xt] ∈ Rd×m, m = ms + mt. Each fMRI sample xi (i = 1, · · · ,m) is collected with

a particular experiment implementation j from a particular subject k, where j = 1, · · · , p

and k = 1, · · · , q, i.e. there are p unique experiment implementations and q unique subjects.

These are the domain covariates to be utilized in our domain adaptation method. We use

a simple one-hot-encoding strategy to encode such domain covariates. Specifically, we con-

struct a one-hot experiment implementation covariate matrix E ∈ Rm×p, where its (i, j)th

element ei,j = 1 if xi is collected from experiment j and ei,j = 0 otherwise. Similarly, we

construct a one-hot subject covariate matrix S ∈ Rm×q, where si,k = 1 if xi is from subject k

and si,k = 0 otherwise. We then obtain the auxiliary domain covariate matrix C ∈ Rd̂×m by

concatenating E> and S>, where d̂ = p+ q.

Multi-source view of brain decoding. As mentioned in Sec. 5.1, each cognitive

experiment can be designed differently, and each subject can encode the stimuli differently,

i.e. P(X|Ei) 6=P(X|Ej), and P(X|Si) 6=P(X|Sj), where E and S denote an experiment and a

subject, respectively. Traditional domain adaptation methods consider two different datasets
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(experiments in brain decoding) as different domains. If we also consider each subject as a

domain as in Rao et al. (2013), then each unique experiment-subject combination is a domain,

i.e. brain decoding domain adaptation tasks is essentially a multi-source transfer problem.

Therefore, in the following, we study HSIC in the multi-source domain adaptation setting.

5.2.2 The Covariate-Independence Regularisation Framework

Our ultimate goal is to learn a classifier for the unlabelled target data. From Theorem

4.6, the bound of Rt(f) can be decreased by simultaneously minimising 1) the empirical

error on labelled data, 2) the dependence on domain covariates. This observation enables

us to propose a new Covariate Dependence Regularisation (CoIR) learning framework that

optimises these two objectives, and 3) model complexity. Here, we follow the Manifold

Regularisation framework (Belkin et al., 2006) that can take unlabelled samples into account

and formulate CoIR as

min
f

L(f(Xl),Y)︸ ︷︷ ︸
Empirical Prediction Risk

+ µ‖f‖2
K︸ ︷︷ ︸

Tikhonov Regularisation

+ λρh(f(X),C)︸ ︷︷ ︸
Domain Covariate Dependence Regularisation

, (5.1)

where µ, λ ≥ 0 are hyper-parameters, Xl ∈ Rd×m̃ denotes all labelled samples, and Xl = Xs

in the unsupervised domain adaptation setting, f(·) is the decision function of a classifier,

‖f‖2
K is the Tikhonov regularisation term, and Y denotes training labels. For each term

in CoIR framework, L(f(Xl),Y) minimises the empirical risk, ‖f‖2
K minimises the model

complexity, and ρh(f(X),C) minimises the domain dependence in the label decision space.

Interpretations: The classifiers of CoIR can be viewed as a feature mapping, which

project the input features to one-dimensional output space, where samples of all domains are

in the same distribution. It can also be viewed as regularisation on the hypothesis space H,

which further reduces the complexity of H.
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5.2.3 Covariate-Independence Regularised SVM and Least Squares

Simplified HSIC with Kernels

In the CoIR framework, we aim to optimise the domain dependence in the decision space. If

we view the coefficient vector w as a classifier-based feature mapping, this mapping projects

input features to a one-dimensional space (i.e. a line), where the projected values represent

the decision scores. Following the principle of dependence minimisation, we aim to learn

a domain-independent classifier by minimising the dependence of the decision scores (pro-

jected values) on domain covariates, i.e. experiment implementations and subjects. By the

Representer Theorem (Schölkopf et al., 2001), we can simplify the HSIC ρh(f(X),C) to the

following version

ρsh(f(X),C) = tr((w>K)>(w>K)HLH)

= w>KHLHKw,
(5.2)

where L = C>C (linear kernel) according to Lemma 4.5. The simplified HSIC is constructed

directly from classifier outputs so there is no separate feature mapping step as in (Chu et al.,

2017; Cao et al., 2018).

Covariate-Independence Regularised SVM (CoIRSVM)

We can plug in any loss function for the first term in CoIR of Eq. (5.1), such as the square

loss, logistic loss, or hinge loss. In this chapter, we consider only binary classification with

y ∈ Rm̃, yi ∈ {−1, 1}, i = 1, · · · m̃, i.e. decoding C = 2 brain conditions. Here we choose

hinge loss, which is robust to binary classification problems, for empirical risk minimisation

as in support vector machines (SVMs). We define f(X) = w>φ(X), φ is a linear or non-linear

kernel mapping, w is a coefficient vector, y = sgn(f(x)), where sgn(·) is the sign function

that extracts the sign of a real number, i.e. (1 or −1). Using the Representer Theorem again,

we have

f(·) =
m̃∑
i=1

wikx(·,xi),



70 CHAPTER 5. COIR FOR UNSUPERVISED MULTI-SOURCE ADAPTATION

Algorithm 1 Covariate Dependence Regularised Support Vector Machine (CoIRSVM)

Input: Input data matrix X ∈ Rd×n (first m̃ samples are labelled), label vector y ∈ Rm̃, and
domain covariates.
Hyper-parameters: Penalty C, trade-off parameter λ, kernel function kx(·, ·) and corre-
sponding hyper-parameters.
Output: Coefficient vector w.

1: Encode domain covariates into a matrix C ∈ Rd̂×m with one-hot encoding;
2: Construct matrix Ỹ ∈ Rm̃×m, where Ỹi,i = yi, and the rest are zeros, identity matrix I,

and centring matrix H;
3: Construct kernel matrices K = kx(X,X), L = C>C;
4: Learn the optimal Lagrange multipliers α∗ by solving the QP problem of Eq. (5.8);
5: Compute w = (I + λHLHK)−1Ỹ>α∗.
6: return Coefficient vector w.

and therefore resulting

f(xj) =
m̃∑
i=1

wikx(xi,xj) = w>kx(X,xj).

By incorporating Eq. (5.2) into SVM loss, we formulate the primal objective function of

CoIRSVM as

min
w,ξ,b

1

2
w>Kw+C

m̃∑
i

ξi+
λ̃

2
w>KHLHKw,

s.t. yi(w
>ki + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , m̃,

(5.3)

where yi ∈ {−1, 1}, ξi is the “slack variable” for the ith sample, b is a bias term, C > 0

controls the trade-off between penalty and the margin, and λ̃ = λ/(n − 1)2 controls the

significance of simplified HSIC regulariser.

Optimisation of CoIRSVM

To solve Eq. (5.3) effectively, we follow the steps in (Belkin et al., 2006) and reformulate

Eq. (5.3) via Lagrange dual. The Problem (5.3) can be rewritten as

min
w,ξ

1

2
w>(K + λ̃KHLHK)w + C

m̃∑
i

ξi

s.t. yiw
>ki + b ≥ 1− ξi, i = 1, . . . , m̃, ξi ≥ 0, i = 1, . . . , m̃.

(5.4)
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By defining G = K + λ̃KHLHK, the primal problem becomes

min
w,ξ

1

2
w>Gw + C

m̃∑
i

ξi

s.t. yiw
>ki + b ≥ 1− ξi, i = 1, . . . , m̃, ξi ≥ 0, i = 1, . . . , m̃.

(5.5)

We introduce two sets of Lagrange multipliers αi ≥ 0 and βi ≥ 0, then the Lagrangian of

the primal problem is as the following:

L(w, b, ξ, α, β) =
1

2
w>Gw + C

m̃∑
i=1

ξi −
m̃∑
i=1

βiξi −
m̃∑
i=1

αi(yi(w
>ki + b)− 1 + ξi). (5.6)

Computing the gradients w.r.t. b and ξi, and let them equal to zero, resulting

∂L

∂b
= 0 =⇒

m̃∑
i=1

αiyi = 0,

∂L

∂ξi
= 0 =⇒ C − αi − βi = 0 =⇒ 0 ≤ αi ≤ C.

Then Eq. (5.6) becomes

L(w, α) =
1

2
w>Gw −

m̃∑
i=1

αi(ỹiw
>ki − 1)

=
1

2
w>Gw −w>KỸα +

n∑
i=1

αi,

(5.7)

where Ỹ ∈ Rm̃×m, Ỹi,i = yi, i = 1, . . . m̃, and the rest are zeros, by considering the first m̃

samples are labelled. Let Q=ỸK(I + λ̃HLHK)−1Ỹ> and leads to the dual formulation

min
α

1

2
α>Qα−

m̃∑
i=1

αi,

s.t.
m̃∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , m̃.

(5.8)

Equation (5.8) is a quadratic programming (QP) problem that can be solved by standard
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QP tools. Denoting α∗ as the optimal solution to Eq. (5.8), and the gradients w.r.t. w is

∂L

∂w
= (K + λ̃KHLHK)w −KỸα∗.

Then the optimal w can be obtained via

w = (I + λ̃HLHK)−1Ỹα∗.

Algorithm 1 is the pseudo-code for CoIRSVM.

Covariate-Independence Regularised Least Squares (CoIRLS)

The regularised least squares classifier is a supervised learning algorithm to solve:

min
f∈H

1

m

m∑
i=1

(yi − f(xi))
2 + µ‖f‖2

K . (5.9)

Using the Representer Theorem again, the objective of least squares algorithm becomes:

arg min
w

(Y −Kw)>(Y −Kw) +
µ

2
w>Kw (5.10)

Similar to the formulation of CoIRSVM, by incorporating simplified HSIC and considering the

unlabelled target domain data, the objective function of CoIRLS can be formulated as

arg min
w

(Y − JKw)>(Y − JKw) +
µ

2
w>Kw +

λ̃

2
w>KHLHKw, (5.11)

where Y ∈ Rm×m, Yi,i = yi, for i = 1, . . . m̃, and J ∈ Rm×m, Ji,i = 1, for i = 1, . . . m̃. By

taking the partial derivative of (5.11) with regard to w and let it equals to zero, the optimal

w can be obtained via

w = (JK + µI + λ̃HLHK)−1Y. (5.12)

Algorithm 2 is the pseudo code for CoIRLS.
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Algorithm 2 Covariate Dependence Regularised Least Squares (CoIRLS)

Input: Input data matrix X ∈ Rd×n (first m̃ samples are labelled), label vector y ∈ Rm̃, and
domain covariates.
Hyper-parameters: µ1, µ2, kernel function kx(·, ·) and corresponding hyper-parameters.
Output: Coefficient vector w.

1: Encode domain covariates into a matrix C ∈ Rd̂×m with one-hot encoding;
2: Construct matrix Y ∈ Rm×m, where Yi,i = yi, and the rest are zeros, for i = 1, . . . , m̃,

matrix J ∈ Rn×n, where Ji,i = 1, and the rest are zeros, for i = 1, . . . , m̃, identity matrix
I, and centring matrix H;

3: Construct kernel matrices K = kx(X,X), L = C>C;
4: Compute w = (JK + µ1I + µ2HLHK)−1Y.
5: return Coefficient vector w.

5.2.4 Analysis

The Role of Unlabelled Samples

The unlabelled target samples have no labels, but they have domain covariates available.

Thus, they affect (regularise) the model coefficients w directly via the simplified HSIC term.

Computational Complexity

The complexity of computing HSIC is O(m(d2 + d̃2)) when linear kernel is used, i.e. K =

X>X, L = C>C (Gretton et al., 2005). For the multi-source domain adaptation problems

considered in this thesis, d� d̃, so the overall computational complexity of HSIC is O(md2).

e.g. brain decoding, d � m and For hinge loss, the complexity of solving the quadratic

programming problem for Eq. (5.8) is O(m3), which is also the complexity for solving Eq.

(5.12) of least square loss. To sum up, for multi-source domain adaptation tasks with high-

dimensional features and smaller sample sizes, such as brain decoding, the computational

complexity of both CoIRSVM and CoIRLS is O(md2). For the tasks with larger sample size,

such as sentiment analysis and object recognition, the computational complexity of both

CoIRSVM and CoIRLS is O(m3)

Connection to Existing Methods

CoIR minimises prediction error and domain dependence simultaneously, and therefore it can

also be viewed as combining the virtues from both domain-invariant classifier methods and
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domain dependence minimisation mapping. We summarise the relationship between CoIR

and related methods as follows.

CoIR vs. ARTL. By Lemma 4.5, ARTL without manifold regularisation and conditional

distribution mismatch is equivalent to CoIR with the degenerated domain covariate matrix

C0. However, CoIR can model multiple sources and domain covariates, making it more

flexible than ARTL. Moreover, it is easier to extend CoIR to leverage the rich continuous

covariates in public neuroimaging dataset, such as subjects’ age, IQ, and handiness score.

For the same reason, TCA is equivalent to MIDA with c0.

CoIR vs. MIDA. We can also view CoIR as 1) replacing the label dependence term

ρh(φ(X),Y) in semi-supervised version of MIDA with the prediction loss, and 2) learning a

mapping to a one-dimensional classification space (i.e. a line) rather than a low-dimensional

subspace.

CoIR vs. Multi-task learning (MTL). MTL learns N different hypotheses for predicting

unlabelled samples from N tasks. CoIR learns only one hypothesis (homogeneous task) for

predicting unlabelled target samples.

5.3 Experiments

5.3.1 Multi-Source Domain Adaptation Tasks and Datasets

Brain Decoding with OpenNeuro (Stop-Signal Tasks) Data

The datasets of five stop-signal cognitive experiments from the public OpenNeuro repository1

(Gorgolewski et al., 2017) are selected for multi-source adaptation of brain decoding, which

are the experiments of A to E summarised in Table 5.1. Each dataset is from an experiment

with specific cognitive settings, but under the same paradigm of stop-signal. Subjects from

the same accession number (ds×××) are the same and there is no overlapping subject between

accession numbers. Specifically, there were 20 unique subjects involved in ds007 (Experiments

A, B, and C), and 13 subjects in ds008 (Experiments D and E). There are two brain conditions

“Successful stop” and “Unsuccessful stop” selected from each dataset, with each as a class

1We used the OpenNeuro data in the legacy format available at https://legacy.openfmri.org

https://legacy.openfmri.org
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and having the same number of samples. Thus, we have binary classification problems that

discriminate between brain conditions in an experiment.

Neuroimaging preprocessing. Using the same data processing workflow introduced in

Section 3.3.1 (Chapter 3), the neuroimaging samples were preprocessed using FSL (Jenkinson

et al., 2012) with the protocol in (Poldrack et al., 2013) to obtain the Z-score statistical

parametric maps (SPMs) (Friston et al., 1994, 1998) of size 91 × 109 × 91, which is then

reduced to a vector of size 228, 546 by masking the voxels outside of the brain.

Sentiment Analysis with Amazon Review Data

Sentiment analysis is a binary classification task to identify whether the sentiment of a

product review is positive or negative. We use the multi-domain Amazon reviews dataset

(Blitzer et al., 2007; Chen et al., 2012), which consists of the reviews from four categories of

products on Amazon: Books (B), DVDs (D), Electronics (E), and Kitchen appliances (K).

For each domain, there are 2,000 examples (1,000 positive and 1,000 negative), and each

sample has been processed and represented as 5,000 TF-IDF features.

Visual Object Recognition with Office-Caltech Data

This is a multi-class classification task to recognise the category of object from images. The

Office-Caltech dataset (Gong et al., 2012) contains 2533 images of the ten overlapped classes

between the Office-31 (Saenko et al., 2010) and Caltech-256 datasets. There are four domains

in this dataset: Amazon (A), Caltech (C), DSLR (D), and Webcam (W). In the experiments,

ResNet (ResNet50) (He et al., 2016), a Convolutional Neural Network (CNN) pre-trained on

the ImageNet dataset (Deng et al., 2009), will be used to extract 1,000 dimensional features

for the non-deep methods, and as the backbone network for the deep learning based methods.

5.3.2 Experimental Setup

Baseline

We evaluate CoIR framework against the following methods: two standard source only base-

lines 1) SVM and 2) Deep Neural Networks (NN); six single source domain adaptation
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Table 5.1: Information on the OpenNeuro data used. ‘Exp’ indexes the five cognitive exper-
iments A–E. #AC is the accession number of an OpenNeuro project, where the same group
of subjects are used in each project and there is no overlapping subject between projects.
#Sub indicate the number of unique subjects for each dataset. Each of the five experiments
has two brain conditions to classify, which are “Successful stop” and “Unsuccessful stop”.
Each subject in each experiment contributed two positive and two negative brain condition
samples, respectively.

Exp #AC Exp Description #Sub

A ds007 Stop signal with spoken pseudo word naming Xue et al. (2008) 20
B ds007 Stop signal with spoken letter naming Xue et al. (2008) 20
C ds007 Stop signal with manual response Xue et al. (2008) 20
D ds008 Unconditional stop signal Aron et al. (2007) 13
E ds008 Conditional stop signal Aron et al. (2007) 13

methods (combine and view all source domains as a single domain): 3) TCA (Pan et al.,

2011), 4) ARSVM & 5) ARRLS under ARTL (Long et al., 2013a), 6) MEDA (Wang et al.,

2018) 7) DANN (Ganin et al., 2016), 8) DAN (Long et al., 2019); and three state-of-the-art

multi-source methods: 9) MIDA (Yan et al., 2018) , 10) MFSAN (Zhu et al., 2019), 11)

M3SDA (Peng et al., 2019). These baselines can also be categorised as follows:

• None-deep methods: SVM, TCA, ARSVM, ARRLS, MEDA, MIDA

• Deep-learning methods: NN (MLP or ResNet), DANN, DAN, MFSAN, M3SDA.

For all of the deep neural networks, we use the implementations from the Python package

PyKale (Lu et al., 2021) of the PyTorch ecosystem. For each learning task, deep methods

will be repeated five times under the same setting with different random seeds and the mean

accuracy will be reported. Since the dimension of neuroimaging data is too high for the deep

learning methods, PCA will be applied first to reduce the feature dimension to 350 (97%

of variance kept). For both brain decoding and sentiment analysis tasks, because the input

data has been pre-processed as vectors, and the relationship between features is different

from the image pixels in the object recognition task, CNN is not appropriate to be used as

backbone feature extractor. Therefore, a three layer fully connected network, i.e. multilayer

perceptron (MLP), is used as the backbone for both non-adaptation NN and DA networks.

For brain decoding tasks, both experiments and subjects will be considered as domain

covariates for dependence minimisation approaches, i.e. MIDA and CoIR. Figure 5.1 gives
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Exp 1 ... Exp p Sub 1 ... Sub q

Sample 1 
1 0 0 1 0 0

Sample 2 1 0 0 1 0 0

Sample 3 0 1 0 0 1 0

Sample 4 0 1 0 0 1 0

... ... ... ... ... ... ...

Sample m 0 0 1 0 0 1

Figure 5.1: Example of a domain covariate matrix for brain decoding learning task.

an example of the domain covariate matrix C. For other approaches, samples acquired from

one cognitive experiment is considered as a domain.

In object recognition, a further study will be to understand the effectiveness of the four

multi-domain generalisation bounds, which are “source-combine” (Theorem 2.18), “one vs

target” (Theorem 2.17), “one vs one” (Theorem 4.1 and 4.2), and “one vs rest” (Theorem

4.3, 4.4, and 4.6). Three deep learning baselines will be selected for experiments: DAN

for “source combine”, MFSAN for “one vs target”, and M3SDA for “one vs one”. Because

the divergence metric adopted in M3SDA (k-moment) is different from the one in DAN and

MFSAN (MMD), a new variant of M3SDA is developed by replacing k-moment with MMD

to make it comparable. Moreover, another variant of M3SDA with HSIC as divergence is also

developed to construct a neural network for the “one vs rest” bound. The two new invariants

of M3SDA are named as M3SDAMMD and M3SDACoIR.

Cross-Validation Strategy

Leave-one-domain-out is the basic cross validation strategy for the experiments. For non-

adaptation approaches, the models will be trained on source domains, and then tested on

held out target domain data. For domain adaptation approaches, including single- and multi-

source adaptation methods, both source and target data are used for training, however the

labels of target instances are unknown for the models.

The optimal values of hyper-parameters for all methods determined by the same leave-

one-domain-out cross-validation strategy on source domain data only. For non-deep methods,
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Table 5.2: Binary brain condition decoding accuracy (%) on the OpenNeuro Stop-signal data
with whole brain features obtained by non-deep approaches. ‘Avg’ is the weighted average
accuracy (by domain sample sizes) over the five tasks. The abbreviations of the proposed
methods are both italicised and underlined . The best result for each task is in bold, and the
second best is underlined.

Source Only Source Combine Multi-Source

Target SVM TCA ARSVM ARRLS MIDA CoIRSVM CoIRLS

A 71.25 76.83 74.00 73.75 73.75 80.00 83.76
B 67.11 79.27 68.42 67.11 68.42 78.95 77.63
C 62.82 64.10 69.23 66.67 62.82 64.10 69.23
D 73.17 76.83 76.83 80.49 79.27 80.49 85.37
E 80.49 79.27 85.26 85.27 86.59 85.37 90.24

Avg 70.01 74.81 73.74 73.33 72.74 76.94 80.18

i.e. TCA, MIDA, ARSVM, ARRLS, MEDA, CoIRSVM, and CoIRLS, the value of hyper-

parameter for model coefficients regularisation (e.g. C for CoIRSVM and µ for CoIRLS) is fixed

to be 1 at first and then search the optimal values for the importance of domain divergence

regularisation (e.g. λ for CoIRSVM and CoIRLS) in the range of [0.001, 0.01, 0.1, 1, 10, 100,

1000]. Then fix the optimal value of hyper-parameter for domain divergence regularisation,

and then search the optimal values for model coefficients regularisation also in [0.00, 0.01,

0.1, 1, 10, 100, 1000]. For the dimension reduction methods, i.e. TCA and MIDA, the

optimal values of feature dimension will be searched in [128, 256, 350], followed by a kernel

SVM with the optimal values are determined by the grid search functions implemented in the

Scikit-learn library (Pedregosa et al., 2011). The hyper-parameters for deep neural networks

can be determined adaptively by the pipelines in PyKale library.

5.3.3 Results

Brain Decoding

Table 5.2 presents the brain decoding accuracy on whole brain features. Among all DA

methods, the proposed CoIRLS obtained the best performance with a 5.37% improvement

over the best comparing method (TCA, 74.81%) on average. CoIRSVM is the second best

algorithm, with a 3.24% difference behind CoIRLS.
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Table 5.3: Binary brain condition decoding accuracy (%) on the OpenNeuro Stop-signal data
with features extracted by PCA. ‘Avg’ is the weighted average accuracy (by domain sample
sizes) over the five tasks. The abbreviations of deep-learning methods are ITALICISED, and
the proposed methods are both italicised and underlined . The best result for each task is in
bold, and the second best is underlined.

Source Only Source Combine Multi-Source

Target SVM NN ARSVM ARRLS MEDA DANN DAN M3SDA MFSAN CoIRSVM CoIRLS

A 72.50 50.07 76.25 80.00 73.75 48.40 49.00 49.87 56.10 81.25 80.00
B 63.16 47.94 69.74 75.00 69.74 51.13 49.06 49.61 50.91 73.68 75.00
C 66.67 49.75 71.79 75.64 64.10 50.06 52.62 53.51 54.81 71.79 75.64
D 64.63 48.07 81.71 84.15 81.71 54.20 52.53 54.29 58.44 85.37 85.37
E 69.51 48.07 84.15 81.71 87.81 52.47 48.07 53.51 59.48 87.80 82.93

Avg 67.29 48.89 76.73 79.30 75.42 51.25 50.26 52.16 55.95 79.98 79.79

Table 5.3 reports the decoding accuracy on the fMRI features extracted by PCA. The

results obtained by all deep neural networks are below 60%, which shows the difficulty of

learning the model parameters with such small sample sizes (less than 400) for deep learning

based methods. For the results obtained by the non-deep methods, CoIR classifiers still per-

formed the best. CoIRSVM obtained the highest weighted-average accuracy 79.98%. However,

the improvement is not as significant as on whole brain features. The accuracy of ARSVM,

ARRLS, and CoIRSVM improved significantly on PCA features, the improvement over these

comparing methods reduced to 0.68% (vs 79.30% by ARRLS).

In general, for brain decoding tasks, all domain adaptation methods (non-deep) outper-

formed the none-adaptation SVM, and the improvement is larger on PCA features. By

contrast, the improvement of CoIR over the comparing domain adaptation baselines is larger

on whole brain features. Furthermore, hundreds of examples are not enough to train deep

neural networks for decoding brain conditions.

Sentiment Analysis

Table 5.4 shows the sentiment classification results of four multi-source adaptation tasks

across different algorithms. Two main observations can be summarised from the results:

• Multi-source methods outperformed the corresponding single-source (i.e. source com-

bine) methods, i.e.. CoIRSVM and CoIRLS vs ARSVM, ARRLS, and MEDA, MIDA vs
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Table 5.4: Binary sentiment classification accuracy (%) on the Amazon review data. The
four domains are Books (B), DVDs (D), Electronics (E), and Kitchen appliances (K), where
each domain contains 2000 product reviews (1000 positive and 1000 negative). ‘Avg’ is
the averaged accuracy over the four tasks. The abbreviations of deep-learning methods are
ITALICISED, and the proposed methods are both italicised and underlined . The best result
for each task is in bold, and the second best is underlined.

Source Only Source Combine Multi-Source

Target SVM NN TCA ARSVM ARRLS MEDA DANN DAN MIDA M3SDA MFSAN CoIRSVM CoIRLS

B 73.35 66.79 74.05 77.25 76.00 71.90 73.20 74.48 74.15 76.06 71.37 79.75 80.30
D 76.60 67.80 74.40 79.70 76.90 74.25 74.61 75.97 75.40 76.24 69.89 80.20 81.70
E 84.40 71.16 80.15 81.70 85.50 80.30 79.76 81.48 80.50 66.60 75.01 84.65 85.55
K 85.70 72.84 80.90 85.65 85.00 81.18 82.85 52.86 81.45 79.32 76.36 85.55 85.50

Avg 80.01 69.65 77.38 81.08 80.85 76.99 77.19 78.69 77.88 74.56 73.16 82.54 83.26

TCA, M3SDA and MFSAN vs DANN and DAN. On average CoIRLS obtained the best

accuracy (83.26%), and CoIRSVM is the second best. The improvement over the best

comparing baseline is 2.18% (vs 81.08% by ARSVM).

• “Negative” transfer is observed. Only classifier learning based methods CoIR and

ARTL outperformed the baseline SVM. This may indicate the domain adaptation reg-

ularisation is more effective via regularising classifiers directly. For deep domain adap-

tation methods, all of them outperformed the non-adaptation deep-learning baseline

NN(MLP) but could not outperform SVM.

Visual Object Recognition

Table 5.5 and 5.5 reports the accuracy of object recognition on the Office-Caltech dataset.

The deep neural networks outperformed the non-deep methods significantly on this task. The

observations for these two tables will be summarised separately as follows:

• For non-deep methods, almost all classifier-based methods outperformed SVM. By con-

trast, all feature mapping approaches, i.e. TCA and MIDA, could not outperform SVM.

CoIRLS is still the best performing non-deep method. However, the improvement is not

significant compared to ARRLS and MEDA.

• All DA neural networks outperformed the fine-tuned ResNet50 (NN), and multi-source

approaches, i.e. MFSAN and M3SDA, outperformed single-source approaches DANN
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Table 5.5: Ten-class object recognition accuracy (%) on the Office-Caltech dataset obtained
by non-deep methods. The four domains are Amazon (A): 958 images, Caltech (C): 1123
images, DSLR (D): 157 images, and Webcam (W): 295 images. ‘Avg’ is the weighted (by
domain sample size) average accuracy over the four tasks. The abbreviations of the proposed
methods are both italicised and underlined . The best result for each task is in bold, and the
second best is underlined.

Source Only Source Combine Multi-Source

Target SVM TCA ARSVM ARRLS MEDA MIDA CoIRSVM CoIRLS

A 80.48 76.93 81.52 82.46 81.73 77.45 78.29 84.03
C 68.30 60.64 70.70 72.84 72.75 57.17 66.43 72.04
D 91.72 82.17 90.45 96.82 92.36 83.44 87.90 93.63
W 82.37 74.24 84.07 87.12 82.03 77.29 74.58 90.85

Avg 76.00 69.72 77.58 79.63 78.44 68.81 73.20 80.10

and DAN. Better results were obtained by M3SDAMMD and M3SDACoIR, the two vari-

ants of networks developed on the basis of the baseline M3SDA. It should also be noticed

that M3SDACoIR not only outperformed all of the baselines here, but also outperformed

the results on the same dataset reported in the original paper of M3SDA (Peng et al.,

2019), where a much deeper backbone network, ResNet-101, was used.

Hyper-Parameter Sensitivity

The sensitivity of CoIRSVM and CoIRLS with linear kernels against their hyper-parameters are

evaluated under leave-one-domain-out setting. As shown in Fig. 5.2a and 5.2c, both CoIRSVM

and CoIRLS are not sensitive to λ, which indicates the stability of covariate-independence reg-

ularisation importance. Figure 5.2b shows the sensitivity of CoIRSVM against C ∈ [10−4, 103]

when fixing λ = 1. It can be observed that the accuracy stays stable when C ≥ 0.1. When

C ∈ [10−4, 10−1] the accuracy is unstable but there is a trend of increase with the growth

of C. Since a larger value of C can lead to a smaller SVM classification margin and weaker

regularisation on model parameters, which suggests less weight on model parameter regular-

isation can lead to higher prediction accuracy CoIRSVM. For CoIRLS, it is not sensitive to µ,

while larger values (≥ 103) can also lead to changing of performance, as shown in Fig. 5.2d.
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Table 5.6: Ten-class object recognition accuracy (%) on the Office-Caltech dataset obtained
by deep neural networks. The four domains are Amazon (A): 958 images, Caltech (C):
1123 images, DSLR (D): 157 images, and Webcam (W): 295 images. ‘Avg’ is the weighted
(by domain sample size) average accuracy over the four tasks. M3SDAMMD and M3SDACoIR

are two new variants developed on the basis of the baseline M3SDA by replacing the domain
divergence metric k-moment with MMD and HSIC, respectively. The best result for each
task is in bold, and the second best is underlined. The effectiveness of the four multi-domain
generalisation bounds can be reflected by: DAN-“source-combine” (Theorem 2.18), MFSAN-
“one vs target” (Theorem 2.17), M3SDAMMD-“one vs one” (Theorem 4.2), and M3SDACoIR-
“one vs rest” (Theorem 4.6)

Source Only Source Combine Multi-Source

Target NN DANN DAN MFSAN M3SDA M3SDAMMD M3SDACoIR

A 68.01 67.96 86.73 90.50 91.94 93.41 95.30
C 66.07 66.17 77.67 87.90 82.37 91.81 92.90
D 86.41 86.28 95.21 86.11 94.50 91.01 98.53
W 82.43 82.43 92.79 87.55 94.27 91.10 98.14

Avg 68.97 69.99 83.95 88.73 87.96 92.28 94.76

5.4 Discussion

5.4.1 Further Analysis of Results

Effectiveness of Covariate-Independence Regularisation

For the three learning tasks in experiments, all of the best results are obtained by covariate-

independence regularised methods, including a deep neural network on visual object recog-

nition tasks. This confirms not only the effectiveness of CoIR, but also the high potential

applications in deep learning to explore. In addition, domain adaptation classifiers outper-

formed their corresponding feature learning methods on average. This suggests the source

label information is helpful in learning domain-generic patterns.

Advantage of Neural Networks

Deep neural networks could not outperform non-deep domain adaptation approaches on the

brain decoding and textual sentiment analysis. The use PCA and TF-IDF features may be

one possible reason to the underperformance of the deep learning methods, and as a result
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Figure 5.2: Sensitivity of the classification accuracy with respect to hyper-parameters of
CoIRSVM and CoIRLS on the five multi-source brain decoding tasks.

the power of deep neural networks to learn “good” representations (Bengio, 2012) is not fully

exploited. The good performance on visual object recognition can be an evidence, where raw

images are used as input, and a well-designed and pre-trained backbone network is used.

Link to Generalisation Bounds

According to the experimental results of object recognition, where M3SDACoIR outperformed

M3SDAMMD, MFSAN, and DAN, the empirical generalisation risk/error (the lower the better)

can be summarised as

“One vs Rest” ≤ “One vs One” ≤ “One vs Target” ≤ “Source Combine”.
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This confirmed the effectiveness of the proposed “one vs rest” (dependence/HSIC-based)

generalisation bound, and therefore it is recommanded to apply this bound/regularisation in

multi-source problems. However, this inequality is inconsistent with the theoretical results

summarised at the end of Chapter 4, where the relationship between the four multi-domain

generalisation bounds in terms of tightness (the lower the better) are

“Source Combine” ≤ “One vs Target” ≤ “One vs One”,

and

“Source Combine” ≤ “One vs Rest” ≤ “One vs One”.

Moreover, in most cases on all of the three learning tasks, single-source (source-combine)

methods could not outperform multi-source methods, which is also inconsistent with the

theory. This needs to be further studied in the future.

Choice of Kernels

For CoIR on brain decoding tasks, the linear kernel is selected by cross validation and ob-

tained the best results. This indicates the high-dimension neuroimaging features are rich and

also benefits the model interpretability. For sentiment analysis and visual object recognition,

which have much more train instances and lower feature dimension compared to brain de-

coding, the RBF kernel is selected and obtained better accuracy. These results are consistent

with the suggestion of (Hsu et al., 2003), where a linear kernel is suggested when the feature

dimension is very high but the sample size is small.

5.4.2 Model Visualisation and Interpretation

After validating the effectiveness of CoIR, the best performing CoIRLS is re-trained on the

five datasets. The top 1% coefficients in magnitude of the obtained model are visualised

for interpretation, which are shown in Figure 5.3. Figure 5.3a and 5.3b show the identified

activation areas (in cluster) in cerebral cortex, where the cingulate gyrus (marked by pink

circles), and an area consists of precentral gyrus and precuneous cortex (marked by green
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(a) Cerebral Cortex (Left)

(b) Cerebral Cortex (Right)

(c) Putamen (Left)

(d) Putamen (Right)

Figure 5.3: Top 1% model coefficients in magnitude visualised on standard brain atlas. The
clusters are considered as identified activation areas and have been marked by circles. The
model is trained on the data from the five stop-signal cognitive experiments. The values of
the coefficients are shown in the colorbar. Red and blue colours denote positive and negative
values, respectively. For each feature, by increasing the value, the final decision will be
biassed towards the positive class, i.e. successful stop, if the corresponding coefficient is in
red, and the negative class, i.e. unsuccessful stop, if blue. The images are presented in the
order from left (less x) to right (greater x). The figures are generated by the Python library
Nilearn (Abraham et al., 2014).
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circles) are activated. These areas are distributed on both left and right sides, but more

active (larger clusters) on the right side. These results are consistent with the meta-analysis

across 99 stop-signal tasks on Neurosynth2 (Yarkoni et al., 2011).

Moreover, some potential new patterns are also discovered. The juxtapositional lobule

cortex on the left side of the brain is identified as activation, as shown in Fig. 5.3a (marked

by orange circles). However, this area is not a common activation area of stop-signal tasks

on Neurosynth. In addition, new activation areas of putamen are also identified, which are

nearly equally distributed in both left and right brains, as shown in Fig. 5.3c and 5.3d.

However, these areas are only learnt from the five public stop-signal datasets and need to be

further investigated by neuroscientists in the future.

5.5 Summary

This chapter proposed a machine learning framework, Covariate-Independence Regularisa-

tion (CoIR), for learning generalised patterns across multiple domains. CoIR is motivated by

the dependence-based generalisation bound derived in the theoretical analysis in Chapter 4.

To reduce the upper bound of generalisation risk, CoIR minimises the empirical prediction

risk and domain dependence simultaneously. Based on the CoIR framework, two non-deep

algorithms: CoIRSVM and CoIRLS were proposed, and then validated on three different multi-

source domain adaptation tasks. On the brain decoding and sentiment analysis tasks, CoIR

outperformed all comparing methods. By contrast, deep neural networks obtained better

results on the visual object recognition task. The best result on this task is obtained by

a new variant of the Moment Matching for Multi-Source Domain Adaptation (Peng et al.,

2019), where the domain divergence loss is replaced by CoIR. The experimental results con-

firmed effectiveness of CoIR (on both non-deep and deep methods), and the “one vs rest”

dependence-based generalisation bound.

2https://www.neurosynth.org/analyses/terms/stop%20signal/

https://www.neurosynth.org/analyses/terms/stop%20signal/


Chapter 6

Covariate-Dependence Learning for

Recognising Domain-Specific Patterns

The previous chapters have presented theoretical and experimental results on learning gen-

eralised patterns for multi-domain neuroimaging data. This chapter will focus on a different

problem: learning specific patterns for a given domain. Specifically, the research question of

this chapter is identifying gender-related human brain lateralisation (functionally asymme-

try) areas. This question is formulated as a left/right brain hemisphere classification problem,

which will be tackled by a novel covariate-dependent learning approach.

6.1 Introduction

Human brains are both structurally and functionally asymmetric, and the lateralisation of

brain functions is a popular research topic of neuroscience. Conventionally, human brain

lateralisation areas are measured by laterality index (LI) (Seghier, 2008), or identified by

comparing the signals of a pair of regions by statistical univariate analysis, e.g. Liégeois et al.

(2002). However, the interactions between different functional areas may not be captured. To

discover the potential lateralisation patterns, a multivariate machine learning approach will

be applied, by constructing brain lateralisation as a left right brain hemisphere classification

problem. Then general linear classifiers can be used to learn the patterns of differences

between the left and right hemisphere.

87
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Beyond this, a more challenging research question is learning gender-related lateralisation

patterns. It is an interesting research problem in neuroscience. Existing studies have shown

there are differences in lateralisation between males and females (e.g. (Bechtel & Richard-

son, 2010)). However, it has not been explored as a classification problem by data-driven

approaches. More importantly, male and female are usually nearly equally distributed, which

can avoid the potential problem of imbalance. In addition, if a machine learning algorithm

can learn gender-specific patterns of lateralisation, then the application can be extended to

other interesting research questions, such as handedness, age, or disease-related lateralisation

(e.g. Autism disorder).

To tackle this question, a covariate-dependent machine learning (CoDeML) framework is

proposed and generates an algorithm covariate-dependent logistic regression (CoDeLR) by in-

corporating logistic loss. The effectiveness of CoDeML is validated on the resting-state fMRI

data from HCP (Smith et al., 2013). It can successfully learn models with accuracy divergence

on data of different genders, compared to a standard logistic regression and general-specific

feature separation approaches. By interpreting the learnt model coefficients, some known

gender-related lateralisation areas are confirmed, and some potential new patterns are also

discovered.

6.2 Methodology

This section will introduce the research problem of gender-related human brain lateralisation

and covariate-dependent learning, by building a connection between the neuroscience problem

and a mathematical formulation. Statistical theories introduced in Chapter 2 and derived in

Chapter 4 will be also applied to analyse the research question of this chapter.

6.2.1 Lateralisation and Brain Hemisphere Classification

To understand (gender-related) brain lateralisation via multivariate machine learning ap-

proach is considered in this study, a left/right hemisphere classification problem is con-

structed. The weights of models that can classify left/right brain hemispheres correctly are

hypothesised to represent the importance of each brain area for distinguishing between the
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two hemispheres. For this task, machine learning classifiers can be used to train models for

classifying brain hemispheres. The discovered patterns can be interpreted by visualising the

learnt model weights (or coefficients).

6.2.2 Covariate-Dependent Machine Learning

This subsection presents the covariate-dependent machine learning problem and theoretical

analysis, which motivated the Covariate-Dependent Machine Learning (CoDeML) frame-

work. Its formulation will be proposed at the end of this subsection.

Problem Formulation

Let (xi, yi, ci) be an instance, where x ∈ X ∈ Rd denotes an input data vector, yi ∈ Y

denotes an output variable (label), c ∈ C ∈ Rv denotes an covariate vector, and i ∈ [1,m],

m is the number of all samples. In the context of this work, x denotes a feature vector that

represents one subject’s left or right brain hemisphere, y is the label indicates left or right,

and c is a one-hot (zero and one) indicator to represent whether a sample is from a male or

female subject (e.g. ci = 0 if male and ci = 1 if female). In this study, a gender-specific model

is defined as: has good generalisation performance for target samples specifically, but with

high generalisation risk for non-target samples. By this definition, a gender-specific model,

e.g. male-specific, should satisfy the two following requirements:

• Making correct predictions on unseen samples of target gender (male), the ideal case

is an 100% accuracy.

• Making less correct predictions on unseen samples of non-target gender (female), the

ideal case is random level accuracy, e.g. a 50% accuracy for a binary classification

problem.

By considering gender as covariate or domain, the learning problem can be called covariate

(or domain) dependent machine learning, where the objective can be formulated as: learning

a model hθ with parameters θ specifically for the data of a target covariate. Denoting Rt(hθ)

and R\t(hθ)as the risk of hθ on samples from target and non-target covariate, respectively.
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For this, we define the objective of a covariate (or domain) specific model hθ as:

arg max
hθ

R\t(hθ)− Rt(hθ). (6.1)

Hence, the overall objective minimising the generalisation risk for the samples of target

covariate, and maximising the generalisation risk for samples of non-target covariate.

Theoretical Analysis

By Theorem 4.6, if target traning samples are labelled, an upper bound of the generalisation

risk on non-target samples as following

R\t(h) ≤ R̂t(h) + ρh(X,CU) + Ω, (6.2)

where Ω is a constant for fixed data as defined in Theorem 4.6. For unseen target samples, the

standard Rademacher generalisation bound applies. By applying Theorem 2.10, the upper

bound of the risk on target domain samples is

Rt(h) ≤ R̂t(h) + <̂Xt(H) + 3

√
ln 2

δ

2m
. (6.3)

According to the problem of covariate-dependnent learning, accurate predictions for target

samples are required. Therefore Rt(h) needs to be optimised via minimising R̂t(h), which is

also part of the uppper bound of R\t(h). Consequently, the upper bound of R\t(h) can only be

increased via the dependence term ρh(X,CU) to achieve the objective of Eq. (6.1) It should

be noted that the objective of Eq. (6.1) is not guaranteed to be increased by maximising

ρh(X,CU). However, the risk gap is guaranteed to decrease by minimising the dependence

on domain covariates. Hence, it is still essential to maximise the statistical dependence for the

covariate-dependent learning problem. Based on the above analysis, the covariate-dependent

learning can be solved via:

• Maximising the dependence on domain covariates, and

• Minimising the empirical risk on labelled target domain samples.
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The theory also indicates that the samples of non-target domain are also important for

optimising the dependence, while their label information is not used.

The Framework

On the basis of the learning objective from the theoretical analysis, the Covariate-Dependent

Machine Learning (CoDeML) Framework is formulated as following:

arg min
hθ

L(hθ(Xt),yt) + µ‖hθ‖2
K − λρh(hθ(X),C), (6.4)

where µ ≥ 0 and λ ≥ 0, and ρh(·, ·) is the simplified HSIC that has been defined in Eq. (5.2).

The differences between Eq. (5.1) and Eq. (6.4) are:

• Equation 5.1 minimises the prediction loss on labelled source data, while Equation 6.4

minimises the prediction loss on labelled target data, and

• Equation 5.1 minimises dependence loss, while Equation 6.4 maximises the dependence

loss, i.e. the signs before hyper-parameter λ are different.

6.2.3 Covariate-Dependent Logistic Regression (CoDeLR)

Since the statistical dependence needs to be maximised, using maximum likelihood estima-

tion could be a better option to optimise model parameters θ. Therefore, an algorithm

for covariate-dependent learning is developed as a new variant of logistic regression, i.e.

Covariate-Dependent Logistic Regression (CoDeLR). Denoting w as a vector of model pa-

rameters θ, the probability of target labels given data and model as P(yt|w,Xt), and the

probability of dependence given data, model, and covariates as P(w)P(ρsh|w,X,C), the

overall likelihood to be maximise is

L(w) = P(yt|w,Xt)P(w)P(ρsh|w,X,C)

=
( mt∏
i=1

h(xi)
yi(1− h(xi))

(1−yi)
) 1√

2πσ
e
(
− w>w

2σ2

) 1

1 + e−w>XHLHX>w
,

(6.5)
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where L = C>C, and P(w) can be viewed as `2 regularisation for w by assuming the param-

eters following a normal distribution of mean 0 and standard deviation σ. By taking − ln of

Eq. (6.5), and letting µ and λ be the two hyper-parameters for controlling the importance

of `2 norm and covariate dependence regularisation, the objective function becomes

− lnL(w) =−
mt∑
i=1

[
yi lnh(xi) + (1− yi) ln(1− h(xi))

]
+
µ

2
w>w − λ

2
lnσ(ρsh(w

>X,C))

=−
mt∑
i=1

[
yi ln

1

1 + e−w>x
+ (1− yi) ln(1− 1

1 + e−w>x
)
]

+
µ

2
w>w

− λ

2
ln

1

1 + e−w>XHLHX>w
.

(6.6)

Equation 6.6 is convex and can be optimised by gradient descent. To make the optimisation

process easier to read, let

pi = h(xi) =
1

1 + e−w>xi
, (6.7)

and

q = σ(ρsh(w
>X,C)) =

1

1 + e−w>XHLHX>w
, (6.8)

and then the gradient of pi and q can be computed first before deriving the gradient of the

whole objective function. Firstly, taking the partial derivatives of pi w.r.t w by chain rule,

resulting

∂p

∂wi

=
( 1

1 + e−w>xi

)′
= −

( 1

1 + e−w>xi

)2
(1 + e−w

>xi)′

= − 1

(1 + e−w>xi)2
e−w

>x(−xi)

=
e−w

>xi

(1 + e−w>xi)2
xi

= pi(1− pi)xi.

(6.9)
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Then similarly, the partial derivatives of q w.r.t w is

∂q

∂w
=
( 1

1 + e−w>XHLHX>w

)′
= −

( 1

1 + e−w>XHLHX>w

)2
(1 + e−w

>XHLHX>w)′

= − 1

(1 + e−w>x)2
e−w

>XHLHX>w(−2XHLHX>w)

=
e−w

>XHLHX>w

(1 + e−w>x)2
(2XHLHX>w)

= q(1− q)(2XHLHX>w).

(6.10)

Let J(w) = − lnL(w) = −
∑mt

i=1

[
yi ln pi + (1 − yi) ln(1 − pi)] + µw>w − λ ln q, then J(w)

become the overall objective and the gradient of J(w) is

∇J(w) = −
mt∑
i=1

[
yi
pi(1− pi)xi

pi
+ (1− yi)

−pi(1− pi)xi
1− pi

]
+ µw − λq(1− q)(XHLHX>w)

q

= −
mt∑
i=1

(yi − pi)xi + µw + λ(q − 1)XHLHX>w

= (pt − yt)Xt + µw + λ(q − 1)XHLHX>w,

(6.11)

where pt = h(Xt). To optimal values of w can be approximated via updating the following

equation in each iteration

wk+1 = wk − η∇J(wk), (6.12)

where k denotes the kth iteration, η is the learning rate (step size). Algorithm 3 is the

pseudo-code for CoDeLR.

6.3 Materials and Experiments

This section presents the experiments and results of left/right brain hemisphere classifica-

tion, which includes: extracting features from resting-state fMRI to present human brain

hemisphere, train-test validation strategy for conducting machine learning experiments, ex-

perimental results, and an additional study of using domain common and individual feature
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Algorithm 3 Covariate Dependent Logistic Regression (CoDeLR)

Input: Input data matrix X ∈ Rd×m, label vector y ∈ Rmt , domain covariates, and indices
of samples from target covariate (optional, if not given, first mt samples are assumed to be
the labelled target samples).
Hyper-parameters: µ for `2 norm , λ for HSIC regularisation, and γ for learning rate.
Output: Coefficient vector w.

1: Encode domain covariates into a matrix C ∈ Rd̂×m with one-hot encoding, the construct
kernel matrix L = C>C and centring matrix H;

2: Add a row of 1s to X
3: Random initialise the parameters of coefficient vector w ∈ Rd+1;
4: while Not converge do
5: Compute gradient ∇J(w) by Eq. (6.11);
6: Update wk+1 = wk − γ∇J(wk);
7: end while
8: return Coefficient vector w.

separation for solving gender-related brain lateralisation.

6.3.1 HCP Resting-state fMRI and Half Brain Connectivity

Resting-state fMRI (rs-fMRI) data from the HCP project (Smith et al., 2013) is used for this

brain lateralisation experiment, which consists of four sessions for each subject: one scanned

from left to right (LR), one scanned from right to left (RL), and repeated two times in two

days. In total, rs-fMRI acquired from 9601 subjects are selected for experiments.

Figure 6.1 illustrates the data processing workflow for obtaining features to represent the

human brain hemisphere from time-series. The time sequences of 246 (123 per half brain)

regions of interest were extracted with the BNA parcellations (Fan et al., 2016). Pearson

correlation is then computed as the brain region-to-region connectivity, i.e. a 123 × 123

matrix can be obtained to represent each subject’s full brain connectives. Following (Liang

et al., 2014), the correlation coefficients are transformed to z scores using Fisher’s z transform

and then averaged across the scans of RL and LR for each day. To extract half brain features,

the columns and rows of the connectivity matrix are reordered by the corresponding ROIs

from left to right, and take the within half brain connectivity (the red and blue areas shown

in Figure 6.1) as the features used in this study. Table 6.1 summarises the information of

1960 is the number of subjects who have the full four sessions of scan available, there are over 1,000
subjects involved in the HCP project in total.
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Figure 6.1: Workflow for data processing and machine learning. The resting-state fMRI are
processed to obtain within half brain connectivities to represent each subject’s left or right
brain hemisphere, then machine learning classifiers are trained for classifying the left/right
hemisphere. The coefficient of learnt models will be visualised for interpretation.

# Males # Females Parcellations Atlas # ROIs (Full/Half) # Features
445 515 BNA 246/123 7503

Table 6.1: Summary of processed resting-state function MRI used for experiments, where #
denotes “Number of”.

used atlas and features.

6.3.2 Experimental Settings

Comparing Baselines

The proposed covariate-dependent logistic regression (CoDeLR) will be compared with a

standard logistic regression, i.e. λ = 0 of Eq. (6.6). Additionally, an unsupervised domain-

generic and -specific feature separation approach, Common Orthogonal Basis Extraction

(COBE) (Zhou et al., 2015), will be used as an alternative baseline. Both of the general

and specific features will be used for the brain left/right hemisphere classification problems.

Training-testing Strategy

Since each subject can contribute two half brain hemispheres (one left and one right), the

potential correlation between left and right brain of a subject may impact the learning perfor-

mance of machine learning models. Therefore when using a session for training, two different

training-testing strategies are designed to construct a training set:

1. Selecting left half brains from 50% subject randomly, and right brains from the remain-
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ing 50% subjects, or

2. Selecting 50% brain hemispheres randomly without considering the impact of subjects,

where the number of left and right hemispheres are equal.

Then models trained on the training set will be tested on the remaining hemispheres within

the training session and the samples from the held out session. The train-test splits will be

repeated 1,000 times for each session and the mean accuracy will be reported later.

Algorithm Setup

For CoDeLR, only gender is considered as domain covariates in the experiments, and the

covariate matrix C degenerates to a vector in experiment. There are two hyper-parameters

of CoDeLR: µ and λ. In this experiment, the value of µ is fixed to be 0.1, and the values of

λ in [0, 1.0, 2.0, 5.0, 8.0, 10.0]. When λ = 0, i.e. the dependence on domain covariates does

not have any impact on model parameters, CoDeLR will degenerate to a standard logistic

regression, which is the baseline for comparison.

For the feature separation approach, domain-generic features will be extracted firstly by

COBE. Then to obtain domain-specific features, we follow the strategy introduced in (Lock

et al., 2013; Zhou et al., 2015) by subtracting domain-generic features (reconstruction to

original space) from cleaned data (as shown in Figure 2.3). As suggested by Zhou et al.

(2015), the cleaned data can be obtained by PCA reconstruction. To gain insights of the

feature separation approach, the number of common bases for domain-generic features will

be varied in range [2, 3, 5, 10, 15], and then observe the changes of classification performance.

A linear standard logistic regression will be used as the following classifier for the features

extracted by COBE.

6.3.3 Results

Performance of Covariate-Dependent Machine Learning

Figure 6.2 presents classification accuracy obtained across different values of λ with the first

cross-validation strategy. As shown in all Fig. 6.2a6.2b6.2c6.2d, when λ = 0, the baseline



6.3. MATERIALS AND EXPERIMENTS 97

0 2 4 6 8 10
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy

Male
Female

(a) Test accuracy on the held out samples from
the session for training. Models are trained on
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(c) Test accuracy on the samples from the held
out session. Models are trained on labelled fe-
male and unlabelled male samples.
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(d) Test accuracy on the samples from the held
out session. Models are trained on labelled male
and unlabelled female samples.

Figure 6.2: Averaged left/right brain hemisphere classification accuracy with standard de-
viations. When one session is used for training, each subject contributes either left or right
hemisphere to training set. The learnt models are tested on the samples remaining within
and session, and of the held out session.

logistic regression obtained near 100% classification accuracy on both male and female test

samples, even the models are trained on male (or female) samples only. By increasing the

value of λ, i.e. the importance of dependence on the covariate of gender, a gap between

accuracy on male and female test samples is created. When λ > 2, a 20% accuracy difference

can be observed for both male-specific and female-specific learning, which shows the proposed

CoDeLR can help to learn more specific models.

Figure 6.3 reports the classification accuracy with the second cross-validation strategy. In

general, the results are very similar to Fig. 6.2. By performing significance test between the
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Figure 6.3: Averaged left/right brain classification accuracy with standard deviations. Mod-
els are trained on the random selected 50% of brain hemispheres from one session (number of
left and half right hemispheres are equal). The learnt model will be tested on the remaining
50% of the samples within and session, and the held out session.

accuracy obtained by the two cross-validation strategies, the p-value is less than 0.05, which

means statistically there is no significant difference between the two strategies, i.e. the paired

brain hemispheres do not have impact on machine learning models in terms of accuracy.

Figure 6.4 presents the average training loss across different values of the hyper-parameter

λ, for both male- and female-specific models. It is obvious that with the increase of λ, the

loss of covariate dependence drop significantly, especially when λ ≤ 5. While the larger value

of λ can also lead to a mild growth in prediction loss. By comparing the results in Fig. 6.4a

and Fig. 6.4b, there is no significant difference. To sum up, all the results in Fig. 6.4 are
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Figure 6.4: Averaged training losses over the hyper-parameter λ.

consistent with the findings in Fig. 6.2 and 6.3.

Performance of General and Specific Feature Separation

Figure 6.5 reports the brain hemisphere classification results across number of common basis

for domain-generic features. For both male- and female-specific features, highest accuracy

are around 95%, which are obtained when the number of common basis equals 2. Then it

dropped to below 70% when common basis increased to 3, and kept decreasing with the

growing of common basis.

On the contrary, an opposite trend is shown on the classification performance with general

features across genders. When the number of common basis equals 2, the accuracy is the

lowest at 65%. When common basis ≥ 3, the accuracy kept steadily above 95 %.

6.4 Discussions

6.4.1 Further Analysis of Experimental Results

Covariate-Dependent Learning: from Theory to Experimental Results

The effectiveness of regularising covariate dependence has been validated in the previous

section. With the increasing of the hyper-parameter λ, i.e. larger impact of covariate-

dependence regularisation, the accuracy gap between data of different genders become larger.
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Figure 6.5: Brain hemisphere classification accuracy obtained on general and specific fea-
tures extracted by Common Orthogonal Basis Extraction (COBE) Zhou et al. (2015) across
different numbers of common basis for domain-generic features.

This is consistent with the theoretical analysis in Section 6.2, which indicates higher covariate-

dependence can lead to larger upper bounds of the accuracy gap.

It should be emphasised here that it is the upper bound of the gap increased with the

growth of covariate dependence but not the real gap. Another interesting observation from

Figure 6.2 and 6.3 can support the theory. The standard deviations for non-target gender

(the lines below) are larger than the ones of target gender (the lines above). This can be

evidence to support the previous theoretical analysis. In the objective functions (Eq. (6.5)

and (6.6)), the prediction loss on target domain is optimised, and therefore the risk on non-

target domain can be unstable and with a higher upper bound, which is reflected as the

higher standard deviation.

Feature Separations

Figure 6.5 shows the informative features for classifying left/right brains that cannot be

preserved for both domain-generic and -specific features. The results obtained by CoDeML

have shown there exist gender-generic and -specific patterns of brain lateralisation, which

are considered as discriminative information for brain hemisphere classification. Therefore,

the results obtained by COBE suggest that the general and specific lateralisation patterns

were not successfully separated. This could be another evidence to prove that using label
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Figure 6.6: Top 20 discriminative features for left/right brain hemisphere classification, where
the rank is determined by the frequency of the correspoding weight coefficients are in top 50
by magnitude over the models obtained from the 1,000 random train-test splits. Each circle
represents a brain hemisphere, where each small block represents a ROI and each chord rep-
resents the connection between two regions, which are also presented in the top right figures
for locations in the brain. The edge of each circle is divided into nine arches that represent
the seven subnetworks defined in the Yeo7 brain functional network parcellation (Yeo et al.,
2011) plus nucleus and “Asymmetric ROIs”, which is the homotopic (same position in the
two hemispheres) ROIs but in different functional subnetwork. Each subnetwork is denoted
by a colour. The colour of chords denotes the frequency and the sign of their correponding
weights (Red/1.0: top positive weights and frequency=1000; Blue/-1.0: top negative weights
and frequency=1000). For more figures and details, please see Appendix B.

information can improve the effectiveness of domain-aware learning.

6.4.2 Model Visualisation and Interpretation

Figure. 6.6 demonstrates the frequency of top 20 discriminative features (by magnitude of

corresponding weight coefficients) over the models obtained in the 1,000 random train-test
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splits. From this figure, we can observe:

• When λ = 0, the patterns learnt from labelled male and female samples are different,

despite the generalision error on the non-target gender samples is low in experiments.

• When λ = 2, the “male-specific” and “female-specific” patterns learnt are still visually

similar, althought there are accuracy gaps reported in the previouse section. It should

be noted here that although some of the connections between subnetworks are similar,

the exact nodes/ROIs of the connections are different, e.g. the connections between

default mode network (DMN) and Somatomotor, and the connections between front-

parietal network (FPN) and dorsal attention network (DAN).

• For patterns learnt with different values of λ but the same target gender, the similarity

is relatively low. This difference can only be observed when λ ∈ [0, 2]. When λ ≥ 2,

the patterns become stable and similar. Please see Appendix B for more details.

• The inter-subnetwork connections is much more than intra-subnetwork connections.

These observation can be a guidence for future neuroscience studies to understand gender-

related brain lateralisation. Especially the areas of DAN, DMN, somatomotor, and asym-

metric ROIs, which are highly weighted and need to be further explored.

6.5 Summary

This chapter explored a research question which is opposite to the previous chapters: learning

domain-specific patterns. For this purpose, a novel framework Covariate Dependent Machine

Learning (CoDeML) is proposed, which is also based on the theoretical study in Chapter 4.

A new variant of logistic regression, Covariate-Dependent Logistic Regression (CoDeLR) is

developed under the framework, by minimising the empirical risk on target domain, and

maximising the dependence on domain covariates. There are two main differences from the

framework in the previous chapter: 1) the empirical prediction risk is minimised on target

samples instead of source (non-target) samples; 2) the dependence on domain covariates needs

to be maximised but not minimised. Experimental results on HCP resting-state fMRI data
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show CoDeLR can successfully learn gender-specific models on brain hemisphere classifica-

tion tasks. A classification accuracy is created by increasing the importance of the covariate

dependence regularisation. By interpreting the learnt model coefficients, meaningful lateral-

isation patterns and insights are discovered.
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Chapter 7

Conclusion and Future Work

In this thesis, three domain-aware learning approaches have been presented for learning

general or specific patterns from multi-domain neuroimaging data, combined with a new

derived dependence-based generalisation bound. Two empirical studies of learning general

patterns on brain decoding tasks and one research on learning gender-specific patterns of brain

lateralisation confirmed the effectiveness of domain-aware learning approaches. A summary

of the thesis and potential future works will be presented in the following.

7.1 Summary of Thesis

Standard machine learning approaches face great challenges of high dimensionality, low

signal-to-noise ratio, and small sample size in functional neuroimage analysis. The emer-

gence of public neuroimaging datasets makes analysing large-scale data from multiple do-

mains possible. This thesis explored using domain-aware learning approaches to tackle the

above challenges and answered two research questions: 1) How to learn general patterns

across domains, and 2) How to learn domain-specific patterns.

Chapter 3 presented our first attempt, which is a two-stage framework with feature and

classifier adaptation developed under the semi-supervised domain adaptation setting. Ex-

perimental results confirmed the effectiveness of this two-stage adaptation approach on brain

decoding tasks constructed on OpenNeuro data.

Based on the empirical study above, in Chapter 4 we derived a dependence-based gen-

105
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eralisation bound to guide the design of domain-aware learning algorithms for the more

challenging unsupervised multi-source domain adaptation problem. This theoretical result

leads to a covariate-independence regularisation (CoIR) framework in Chapter 5 by viewing

domain information as covariates. Incorporating hinge and least squares loss in this frame-

work generates two algorithms: covariate-dependence regularised support vector machine and

least-squares classifier. We studied both algorithms on not only brain decoding but also tex-

tual sentiment classification and visual object recognition to investigate their efficacy across

multiple applications. Experimental results validated the superiority of CoIR over competing

methods.

Motivated by both the classic and dependence-based generalisation bounds, in Chapter

6 we propose a covariate-dependent machine learning framework to learn domain-specific

patterns. Under this framework, we employ logistic loss to obtain covariate-dependent logistic

regression, which successfully learnt gender-specific patterns of brain lateralisation on brain

hemisphere classification tasks with data from Human Connectome Project.

All domain-aware learning approaches proposed in this thesis are primarily designed to

produce linear, interpretable models for neuroimage classification tasks. By visualising the

linear model coefficients in feature space, we validated existing findings of neuroscience and

identified new, meaningful patterns to offer additional insights.

As shown theoretically and empirically in this thesis, interpretable domain-aware learning

offers feasible ways to learn interpretable general or specific patterns from multi-domain

neuroimaging data for neuroscientists to gain insights.

7.2 Future Works

7.2.1 Further Development of Domain-Aware Learning

Covariate-Independence Regularisation for Deep Neural Networks

In Chapter 5, we developed a new variant of deep multi-source domain adaptation network, by

incorporating the proposed covariate-independence regularisation (CoIR) to an existing net-

work architecture Moment Matching for Multi-Source Domain Adaptation (M3SDA) (Peng
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et al., 2019). The developed variant obtained the best result on the visual object recognition

tasks, which is even better than the results with a deeper backbone network reported in the

original paper. This shows the potential of CoIR application for deep neural networks, which

can be an interesting research question to explore.

Further Theoretical Studies

In this thesis, Chapter 2 presented several generalisation bounds, and Chapter 4 derived a new

generalisation bound. Based on the previous theoretical analysis, “source-combine” ≤ “one

vs rest” ≤ “one vs one” in terms of tightness. However, according to the experimental results

on multi-source domain adaptation in this thesis (and other studies), the source-combine, or

single-source methods are usually performed the worst among domain adaptation methods,

and “one vs rest” methods outperformed “one vs one” methods on average, i.e. the tighter

bounds does not guarantee better performance. Therefore, further theoretical analysis is

needed to explain this phenomenon and guide the applications in the future.

7.2.2 New Applications of Domain-Aware Learning Algorithms

Cardiac MRI Analysis

We have had some successful experience (Swift et al., 2021; Alabed et al., 2022) of applying

machine learning methods to Cardiac MRI (CMRI) data collected locally in Sheffield, with

good classification results and high interpretability. In the future, there will be more data

collected from our collaborating hospitals across the world. Domain-aware learning can be

used for such data to tackle the potential heterogeneity by viewing different hospitals or other

covariates, such as race, as domains.

Computer Vision or Natural Language Processing Tasks

Deep neural networks are powerful on computer vision and natural language processing tasks,

which requires lower interpretability. Therefore, the research of covariate-independence reg-

ularised networks introduced in Chapter 5 has shown some promising results. In the future,

by combining the advantage of domain-aware learning and feature representation learning of
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deep neural networks (convolutional neural network, transformer (Vaswani et al., 2017), more

studies can be conducted on these tasks, and therefore the potential impact of domain-aware

learning approaches in general machine learning applications can be improved.

Other Domain-Specific Brain Lateralisation Studies

As mentioned in Chapter 6, applications of covariate-dependent can be extended to other

interesting research questions in neuroscience, such as handedness, age, or disease-related

lateralisation. These researches can bring neuroscientists deeper insights about human brain

functions or brain disorders, with the potential serving for better healthcare.
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Appendix A

Proofs

Lemma A.1 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, . . . , Xm be independent ran-

dom variables with Xi, taking values in [ai, bi] for all i ∈ [m]. Then, for any ε > 0, the

following inequalities hold for Sm =
∑m

i=1 Xi:

P[Sm − E[Sm] ≥ ε] ≤ e−2ε2/
∑m
i=1(bi−ai), (A.1)

P[Sm − E[Sm] ≤ −ε] ≤ e−2ε2/
∑m
i=1(bi−ai). (A.2)

Theorem 2.5 (Growth function generalisation bound (Vapnik & Chervonenkis, 1971)).

Given a hypothesis set H, for m ∈ N, ε ∈ (0, 1), for any h ∈ H

R(h) ≤ R̂(h) +

√
8

m
ln

4ΠH(2m)

δ
. (2.6)

Proof. By Hoeffding Inequality in Lemma A.1 and Definition 2.4, the following probabilistic

bound can be derived

P
[∣∣R(h)− R̂(h)

∣∣ > ε
]
≤ 4ΠH(2m)exp

(
− mε2

8

)
. (A.3)
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Denoting the right hand side of Eq. (A.3) as δ, i.e.

4ΠH(2m)exp
(
− mε2

8

)
= δ

exp
(
− mε2

8

)
=

δ

4ΠH(2m)

mε2

8
= ln

4ΠH(2m)

δ

ε =

√
8

m
ln

4ΠH(2m)

δ
,

(A.4)

then Eq. (A.3) becomes

P
[∣∣R(h)− R̂(h)

∣∣ > ε
]
≤ δ

1− P
[∣∣R(h)− R̂(h)

∣∣ > ε
]
≥ 1− δ

P
[∣∣R(h)− R̂(h)

∣∣ ≤ ε
]
≥ 1− δ.

(A.5)

We can say, with the confidence of 1− δ

∣∣R(h)− R̂(h)
∣∣ ≤ ε→ R(h) ≤ R̂(h) + ε, (A.6)

then by substituting ε in terms of δ in Eq. (A.4), resulting in

R(h) ≤ R̂(h) +

√
8

m
ln

4ΠH(2m)

δ
. (2.6)

This completes the proof.



Appendix B

Additional Experimental Results

B.1 Multi-Domain Brain Decoding

Additional Views of Learnt Activation Areas to Stop-Signal Tasks
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Figure B.1: Activation areas identified by CoIRLS across five cognitive experiments. The
images are presented in the order from bottom (smaller value of z) to top (larger value of z).
The figures are generated by the Python library Nilearn (Abraham et al., 2014).
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Table B.1: Classification accuracy in percentage semi-supervised domain adaptation of brain
decoding tasks on the selected datasets in Chapter 5 with same subjects. SVM and PCA
(followed by a SVM) are trained on labelled target samples only. Avg denotes the averaged
accuracy on the multi-source adaptation tasks.

SVM PCA TCA ARSVM MEDA MIDA CoIRSVM

A→B 63.4±2.6 62.5±4.4 55.0±4.3 65.7±2.2 57.8±5.3 64.5±5.0 78.6±2.9
B→A 59.2±4.0 60.4±5.7 58.9±3.2 64.0±2.8 62.5±4.5 71.2±3.5 79.6±2.7
A→C 68.4±2.6 66.9±6.3 70.6±6.3 70.9±2.7 70.1±2.1 78.4±2.9 87.4±2.1
C→A 59.2±4.0 60.4±5.7 63.6±4.0 59.5±3.4 59.7±3.1 70.6±4.0 68.8±3.8
B→C 68.4±2.6 66.9±6.3 86.4±5.3 73.5±2.1 73.6±3.6 80.1±4.4 90.5±1.5
C→B 63.4±2.6 62.5±4.4 75.3±4.0 62.5±2.1 57.0±2.1 73.2±3.3 77.4±2.8

B&C→A 59.2±4.0 60.4±5.7 52.1±1.1 63.2±2.5 52.6±1.4 51.4±1.8 80.3±3.1
A&C→B 63.4±2.6 62.5±4.4 54.5±3.1 67.6±1.6 52.6±1.3 61.7±2.2 79.5±2.0
A&B→C 68.4±2.6 66.9±6.3 52.1±1.1 71.9±2.6 57.0±0.8 65.4±2.2 89.9±1.7
Avg 63.7±3.1 62.6±5.5 52.9±1.8 67.6±2.2 54.1±2.6 59.5±2.0 83.2±2.3

Multi-Source Adaptation Results under Semi-Supervised Setting

Table B.1 reports the brain decoding accuracy under semi-supervised domain adaptation

setting (with labelled target domain samples). We have two key observations:

• On the whole, CoIRSVM outperformed all the comparing methods. CoIRSVM outper-

formed the best existing method (ARSVM) by 15.6% (83.2% vs. 67.6%) in DA tasks

with multi-source experiments. On the other hand, CoIRSVM obtained lower accuracy

on A&B→C compared to B→C, and the rest results show using multiple source ex-

periments is better. Thus, source selections can influence the transfer performance. If

there is no clear preference of a particular source dataset, transfer with multiple sources

is preferred in our opinion.

• MIDA and CoIRSVM outperformed the corresponding MMD-counterparts TCA and

ARSVM, respectively. Based on Theorem 4.6, this confirmed that making use of mul-

tiple domain covariates (experiments and subjects) is beneficial in brain decoding.

B.2 Gender-Related Brain Lateralisation
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(b) Top general discriminative features of mod-
els trained on male samples when λ = 0
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(c) Top female-specific discriminative features
learnt when λ = 1
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(d) Top male-specific discriminative features
learnt when λ = 1

Figure B.2: Frequency of top discriminative features for left / right brain hemisphere classi-
fication among learnt specific models on ROIs of Yeo BrainNet R. The features were sorted
by the weight magnitudes and the frequency over random train test splits.
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(e) Top female-specific discriminative features
learnt when λ = 2
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(f) Top male-specific discriminative features
learnt when λ = 2
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(g) Top female-specific discriminative features
learnt when λ = 5
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(h) Top male-specific discriminative features
learnt when λ = 5

Figure B.2: Frequency of top discriminative features for left / right brain hemisphere classi-
fication among learnt specific models on ROIs of Yeo BrainNet R. The features were sorted
by the weight magnitudes and the frequency over random train test splits.
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(i) Top female-specific discriminative features
learnt when λ = 8
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(j) Top male-specific discriminative features
learnt when λ = 8
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(k) Top female-specific discriminative features
learnt when λ = 10
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(l) Top male-specific discriminative features
learnt when λ = 10

Figure B.2: Frequency of top discriminative features for left / right brain hemisphere classi-
fication among learnt specific models on ROIs of Yeo BrainNet R. The features were sorted
by the weight magnitudes and the frequency over random train test splits.
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