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Ayşenur who joined me at the middle of this journey and gave me an

incredible support. Words are not enough to describe her kindness and

patience. I will always be in debt to her.



Abstract

We study the Voronoi tessellation-based lifting scheme in two-dimensional

regions where the spatial data is available in a finite and bounded two-

dimensional region. The lifting scheme is a second-generation wavelet

method that is used for the analysis of spatial data which we model

as being an underlying ‘true’ surface corrupted by noise. On the other

hand, Voronoi tessellation is a standard technique to partition the space

into smaller sub-regions called Voronoi cells that are used as an ingre-

dient in the lifting scheme.

We investigate the statistical properties of Voronoi cells for homogeneous

Poisson points in the infinite plane and bounded regions. The properties

are the cell area, perimeter, and the number of cell edges. Our findings

show that the distributions of cell properties differ substantially when

boundaries are imposed. These differences are affected by proximity.

We emphasize the consequences of the boundaries on the Voronoi cells,

and we devise a method that treats the spatial data in the finite region

as if it is a subset of a larger region or an infinite plane. This approach

predicts the true cell area that is actually clipped by a boundary line

using regression-based models. The models are updated for general data

cases, and have an overall promising performance.

Lifting scheme uses the features of Voronoi tessellation and the infor-

mation obtained from the Voronoi cells. The ultimate goal of this thesis

is to implement the devised method, which adjusts the cell area near

boundaries, into the lifting scheme framework and compare its perfor-

mance to the standard approaches. Various configurations are consid-

ered; standard and proposed weight methods, noisy test functions with

different spatial characteristics, and randomly distributed, regular, and

clustered point patterns. The proposed approach over-perform the exist-

ing options and even gives better performance over the standard spatial

prediction techniques such as kriging in certain cases.
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Chapter 1

Introduction

1.1 Overview

In this thesis, we study Voronoi tessellations and the lifting scheme, and how these

two topics combine in situations where the estimation of an underlying function

from noisy spatial data is disrupted by artificially imposed boundaries. The idea

of Voronoi tessellation is the division of the space into smaller sub-regions called

Voronoi cells, and the lifting scheme is used for denoising irregularly spaced data in

multidimensions. The focus of this thesis is to study the Voronoi tessellation-based

lifting scheme in two-dimensional space, and investigate what happens if the infinite

plane is disrupted by a boundary.

When the spatial data is constrained by the boundaries, there are certain limiting

circumstances since the boundary act as a cutoff point of the data. Boundaries

also change the shapes of the Voronoi cells. Hence, it is important to investigate

and understand the effects of the boundaries on the Voronoi cells. Furthermore,

we propose methods that behave as if there is an infinite plane which the bounded

region is a subset of. For the spatial data observed within a bounded region, this

approach has an implicit assumption that the bounded region in which we observe

data is actually a subset of a larger region or an infinite plane. Therefore, the data

in a finite region is treated as if there is no boundary.

Voronoi tessellation has a wide usage in many disciplines as well as its links to

lifting scheme. The lifting framework in (Jansen et al., 2009) uses the cell area and

the neighbourhood structure provided by the Voronoi tessellation of data locations.

The lifting scheme is a denoising method for irregularly spaced data and has advan-

tages over conventional wavelet methods, and other well-known spatial prediction
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1.2 Voronoi tessellation

methods. The flexibility and applicability of lifting on general data situations is one

of its key strengths. Also the theoretical properties of lifting allow it to deal with

functions that are smooth or with discontinuities, or even in the case of uncertainty

of either cases.

1.2 Voronoi tessellation

Voronoi tessellation is a standard space subdivision method. In one dimension, the

real line is divided into intervals, whereas the two-dimensional space is divided into

non-overlapping convex cells or polygons in two-dimensional case, and three dimen-

sional case is also possible that the partitions are referred to as the polyhedron. In

this thesis, the particular focus is on the two-dimensional case where we investigate

the statistical properties of Voronoi cells in the absence and presence of boundaries.

There is a vast literature on Voronoi tessellation regarding its theoretical aspects

and its applications to many different areas which will be discussed in Chapter 2.

Consider a set of n finite number of points x1, x2, . . . , xn ∈ R2 within some finite

region Ω ⊂ R2 where Ω is a suitable region that contains all the points, Voronoi

tessellation subdivides the two-dimensional Euclidean space into a collection of non-

overlapping convex polygons or mosaics V = {Vi; i = 1, . . . , n} called Voronoi cells.

This is done by associating each point xi with all the closest points x in that space

based on the Euclidean distance. Each Voronoi cell Vi associated with the point xi

is defined as

Vi = {x ∈ R2
∣∣‖x− xi‖ ≤ ‖x− xj‖ for j = 1, 2, ..., i− 1, i+ 1, ..., n} (1.1)

where ‖.‖ denotes Euclidean distance. Each cell Vi is defined to be that segment

of Ω which is closer to the corresponding point xi than any other point. The

edges of the Voronoi cells may consists of line segments, half lines or infinite lines.

We consider the line that separates two cells has nearly zero thickness hence the

intersection of two cells Vi
⋂
Vj is nearly nonempty. Therefore, Voronoi cells satisfy

Ω =
n⋃
i=1

Vi and
n⋂
i=1

Vi = ∅ up to a measure zero and the statement can be generalized

for d−dimensional cases as explained in Okabe et al. (2000) and Møller (2012).

1.3 A motivating example for boundaries

Given a set of points, Voronoi tessellation can be constructed based on the locations

of the points. A simple example is illustrated in Figure 1.1. The left plot shows
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1.3 A motivating example for boundaries

the Voronoi tessellation of randomly distributed points in a continuous region but

only a part of the region is shown. The solid lines continue outside the window

based on the locations of other points. The geometric structure created by Voronoi

tessellation is non-overlapping convex polygons or the Voronoi cells where each cell

edge is the perpendicular bisector between two points.

Figure 1.1: A zoomed in version of Voronoi tessellation of points with ρ = 200 in an
infinite plane. Gray lines are the original tessellation lines before any boundary is
used. Dashed lines are the tessellation lines after the vertical solid line is imposed as
a boundary to the points on the right side. Cells with the ( ) had an intersected the
boundary, and cells with (•) did not intersect the boundary but also had a changes
in their shapes. Gray and black circle points are the points of remaining cells.

In this thesis, we are also interested in the cases where the spatial region is disrupted

by a boundary. The right plot shows an example of this situation. Voronoi tessella-

tion of the same set of points subject to a boundary line is given. The objective of

this illustration is to demonstrate the consequences of the boundaries. Consider the

vertical solid line is an imposed boundary, and the Voronoi tessellation of points on

the right side is performed again. Changes on the shape of cells are observed for the

cells that are closer to the boundary and most of the cells far from the boundary

remains the same.

There are interesting features of the cells in the presence and absence of the bound-

ary. The cells with a ( ) point have vertices on the boundary line and the boundary

line clipped a part of the cell at the top. The remaining two cells with ( ) are both

clipped and expanded after the boundary is imposed. More importantly, although

some cells with (•) point did not have a vertex on the boundary, their shapes are
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1.4 Spatial point patterns and Poisson point process

also affected by the boundary. Therefore, a statement ‘only the cells that have a

vertex on the boundary are likely to be affected by the boundary’ be inefficient.

The boundaries and the boundary types is an important context in spatial statistics

and a clear explanation of their functionality and effect is necessary. A boundary is

a real or artificial line or point based on the dimension of the space that separates

two things or acts as an end point of an existing space. In Figure 1.1 (right),

we visualised the Voronoi tessellation of points and draw an artificial boundary

line. The vertical line acts as an end point of the tessellation and has an effect

on the existing structure. However, the dashed lines can also be considered as

the boundaries of polygons which are perpendicular bisectors that separates two

neighbour points. In this thesis, we focus on boundaries for simulated data, and

real data examples where the boundary is an artificially imposed boundary or a

study region.

In the real life, physical boundaries occur due to the existence of a natural factor,

for instance, a coastline, river, or the starting point of a desert. The political

boundaries are another example of real boundaries such as the border between two

states or countries. Occasionally, the political boundaries are determined based

on the natural factors such as a river may be referenced to separate the states.

Also, a smaller sampling regions may be defined on a large geographical region to

study the features of the plants or the soil. The defined sampling region may be

a suitable rectangular window and acts as the boundary. The natural boundaries

have different effects compared to the boundaries such as the sampling regions.

For instance, proximity to a natural boundary may have a negative effect on the

fertility of the soil or the existence of the trees. However, if a rectangular region is

sampled from a larger region, the observations in the sampled region are related to

the ones outside the boundary, hence it is important to consider ways to understand

and reduce the bias near the boundaries. Throughout the thesis, we give examples

of these kind of induced boundary types, discuss the issues that may occur, and

propose ways to reduce the boundary effects.

1.4 Spatial point patterns and Poisson point pro-

cess

A spatial point pattern is a set of randomly located points on a specified region

that is designated as the two-dimensional Euclidean space in this thesis but one

and three-dimensional cases are also likely. The locations of trees in a forest, cell
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1.4 Spatial point patterns and Poisson point process

nuclei of a tissue, earthquake centres, bird nests, particles, and the positions of the

galaxies in the universe are the examples of point patterns. The locations of points

are also referred to as the events, and the information carried at the locations are

called marks such as the tree diameter. These type of data are called the marked

point pattern data.

On the other hand, the point processes are stochastic mechanisms, and are useful

to understand, describe and analyse the point patterns. It is mostly used for the

identification of the short-range relationship between the points that characterizes

whether a spatial randomness, regularity, or clustering exist. Our aim is not to

give a complete treatment about point process statistics, it is rather to explain

the methods which are useful to implement the Voronoi tessellation and the lifting

framework that are the main focus of this thesis.

The point patterns are assumed to have an underlying mechanism that can be

formulated by point processes. Voronoi tessellation explained in Section 1.2 require

points x1, x2, . . . , xn ∈ R2, however, have not mentioned yet whether the points rely

on a mathematical concept.

In this thesis, we consider several types of geometrical structures of the point pat-

terns that are realisations from point processes. Hence, we use the point processes

to generate point patterns that obey the parameters of certain point processes. A

point process N is described as a random counting measure or a function that is op-

erating on sets in (Illian et al., 2008). For instance, for any bounded region B ∈ R2,

N(B) stands for the number of events or points within the region B.

One of the simplest but a fundamental point process is the homogeneous Poisson

process whose realisations exhibit complete spatial randomness. A point process N

is a homogeneous Poisson process if it has the following properties:

i The number of points in any bounded region B follows a Poisson distribution

with mean ρ|B|. In the formal way,

Pr{N(B) = n} =
(ρ|B|)n

n!
e−ρ|B|

where |B| denotes the area of B,

ii and given n points xi, those points form an independent random sample with a

uniform distribution on B.
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1.5 Regular and clustered points

The parameter ρ in (i) is called the intensity that refers to the mean number of

points per unit area. The second property constitutes the complete spatial ran-

domness of the points. We will use the homogeneous Poisson points essentially in

Chapter 2 and occasionally in the other chapters.

1.5 Regular and clustered points

The regularity and clustering of points or events happen towards departure from

complete spatial randomness. In the parts of the thesis, we are interested in the

usage of examples of regular and clustered points, in addition to the homogeneous

Poisson points. The reason of the consideration of regular and clustered points

is to see how the core methods we develop throughout the thesis that rely on

point patterns are affected by the departure from complete spatial randomness. In

other words, the intention is to examine the performance of the methods when the

regularity and clustering approaches to its extreme forms.

Regularly spaced and clustered data locations are the two important cases we con-

sider. These point patterns are frequently seen in real life data. Regular and

clustered point processes are also called inhibition or repulsion, and clumping or

attraction respectively in the literature. These two processes can be expanded to

examples where different levels of regularity or clustering is observed such as depar-

tures from homogeneity to highly clustered and regular points.

There is a convenience of generating point patterns that are examples of cluster-

ing and regularity and control this process with a single parameter. The saturation

process by Geyer (1999) permits both the attraction and repulsion processes for spa-

tial data. Geyer’s saturation process is an extension to the Strauss process Strauss

(1975) that is a method for repulsion within a fixed radius. The saturation process

of Geyer modifies the Strauss process by constraining the overall contribution of

each point to a maximum value (Goldstein et al., 2015). The probability density of

the saturation model is

f(x; β, γ, r, s) = cβn
n∏
i=1

γ
min(

∑
j 6=i 1‖xi−xj‖≤r,s) (1.2)

where c is a constant, β, γ, r, s are the parameters,
∑
j 6=i

1‖xi−xj‖≤r denotes the number

of neighbours of the point xi within a distance r. The saturation threshold s ≥ 0

prevents each term in the product from being larger than γs and hence the product

is never larger than γsn. This prohibits the attraction from becoming very strong,
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1.6 Lifting scheme

which discourages highly clustered patterns. If s = 0, the model becomes a Poisson

point process, if s > 0, the interaction parameter γ can take any values such that

γ > 1 indicates attraction or clustering and γ < 1 indicates repulsion or inhibition.

Also, in the case of s =∞, the model reduces to the Strauss process.

This model will also be used for generating realisations of regular and clustered point

patterns as is aimed for the Poisson point process. The method is useful in terms

of controlling the departure from homogeneous pattern with a single parameter γ.

Hence, it allows flexibility to decide on the degree of clustering and regularity which

we are especially interested in.

1.6 Lifting scheme

The lifting scheme transforms a noisy function at irregularly spaced data locations

into the lifting domain where the data is represented by a set of coefficients. Then

the coefficients are modified by a thresholding rule that aims to separate the noise

and preserve the important features in the data such as the step changes or spikes in

a function. The inverse transform of the thresholded coefficients gives an estimate of

the true function. We adopt the lifting one coefficient at a time technique proposed

by Jansen et al. (2009), which iteratively transforms the data into coefficients in

the lifting domain by starting with localised or fine-scale details and working up to

broader or coarse-scale patterns.

Within the stages of the lifting transform, the weights, which are obtained from

the areas of Voronoi cells are used. This is the part where the Voronoi tessellation

and the lifting scheme merge. Voronoi tessellation is used for the detection of the

neighbourhood of the points, and the cell area is used for the calculation lifting

coefficients. The standard choice for the weights is using the observed cell area that

is calculated using the boundaries. We alternatively use adjusted cell area as the

weights that are attained from the a method we will devise later.

The noise is a usual and an unavoidable issue which happens during data collection

or the recording of the data by measurement tools. In a general sense, noisy data

in real life case may be an image of a person or an ultrasound image that contain

noise, or a recorded noisy signal from sound. The underlying true patterns are the

true functions in this case which we would like to estimate by separating the noise

from the data. In this thesis, we are more interested in developing some aspects

of existing denoising methods and propose alternative ways that can improve the

estimation of the underlying true patterns. Therefore, we use the two-dimensional
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1.7 Thesis structure

analogues of some well known functions and artificially add noise. The functions

which are treated as the true functions are explained in Section 6.1. The noise-

added test functions are the noisy functions which we apply the lifting scheme to

separate the noise from the data.

Function estimation using the lifting scheme has the standard model yi = f(xi) + εi

where we consider {xi}ni=1 ∈ R2 as the irregularly spaced data locations, yi are the

observed noisy data, f(xi) are the values of some underlying true function corrupted

by independent and identically distributed Gaussian noise such that εi ∼ N(0, σ2).

However, we are interested in the estimation of the function fi when only the noisy

observations yi are available. In this situation, we use the lifting scheme to obtain

an estimate of f̂i.

Voronoi tessellation-based lifting scheme aims to estimate the underlying true func-

tion fi using the Voronoi tessellation cell area as weights during the process. Lifting

is a linear transformation that transforms the observed noisy data yi into the lifting

domain, and the transform can be represented by a transform matrix L. Hence,

the resulting representation of the noisy data can be shown as d = Ly where the

vector d consists of lifting coefficients. These coefficients in d are usually a sparse

representation of the observed data y that explains the data by a small number of

non-zero coefficients. The zero or small coefficients indicate small deviations in the

data that are due to the noise and the larger coefficients are attributed to the real

features in the function. The transform matrix L is independent of the observed

data values and only depends on the data locations hence it has a reusable feature

for other data observed at the same locations. The process of estimation of f̂i in-

cludes the adjustment or thresholding of the coefficients in d that aims to shrink the

small coefficients to zero, and keep the larger ones, obtaining a vector of adjusted

coefficients d′. Finally, the inverse transform is performed on the thresholded coeffi-

cients to estimate the underlying true function as f̂ = L−1d′ that is separated from

noise. The transform can be inverted by both using the inverse of the transform

matrix L or following the steps of the lifting in an inverse way. The steps of the

lifting scheme will be explained in detail in Chapter 5.

1.7 Thesis structure

Voronoi cells have geometrical properties such as the cell area, perimeter, number

of edges, interior angles of cells etc., that have been widely studied. Currently the

8
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literature include the analytic derivation of the mean cell properties and numeri-

cal approximations using appropriately selected parametric distributions based on

computer experiments for particular point pattern types.

We extend the study on the statistical properties of Voronoi cells by consider-

ing Voronoi cells in the infinite plane and finite regions using different types of

boundaries, and demonstrate the differences in the cell properties in the presence of

boundaries in Chapter 2. This separate part of the study contributes significantly

to the Voronoi tessellation literature since little attention has been given to how

these properties change when a boundary is imposed. A better understanding of

the statistical properties of Voronoi cells in bounded regions is especially important

due to the usage of such properties on the next topic that we focus on, the lifting

scheme.

The consideration of various boundary types and their effects is also important. A

convex hull of points is the smallest polygon that includes all points and can be

drawn for any type of point patterns. On the other hand, a suitable window i.e.,

a rectangular window can be used as the boundary. However, different boundary

types are likely to have distinct impact on cell properties. For instance, consider a

set of uniform random points X = {x1, . . . , xn} generated in a unit square. Hence,

the finite region is defined as Ωu = [0, 1]2 which we can consider as a boundary.

Then we perform Voronoi tessellation of points and record the cell area for each cell

Vi. If the convex hull of points is used for the same set of sampled points, unless

there are points precisely at the corners of the unit square, the convex hull will be a

subset of the unit square such that Ωc ⊂ Ωu. Therefore, the observed cell area will

be different for the cells close to the boundary with the usage of these two types of

boundaries. Although the choice of the boundary could be expanded, we consider a

limited number of boundary types that demonstrates the important consequences

caused by the boundaries.

We conduct a simulation study in Chapter 2 to investigate the statistical properties

of Poisson Voronoi cells in the infinite plane, and when unit square and convex

hull boundaries are imposed. The chapter discusses the exploratory analysis of the

cell properties for different boundary cases, the fitting of parametric distributions

for cell area, perimeter and number of cell edges, and explores the changes in cell

properties when the boundaries are imposed. It also presents the results for different

intensities of points. Findings in Chapter 2 open an important discussion about the

reduction of issues caused by the boundaries which is discussed in Chapter 3.
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Another major contribution of this thesis is to propose a method that treats the

data in a finite bounded region as if it is a subset of a larger region or an infinite

plane. This part of the thesis aims to reduce the unfavourable consequences of the

boundaries and is a transition between the Voronoi tessellation study and the lifting

scheme. In Chapter 3, we use the data obtained from the simulation in Chapter 2

that is a large data set containing many variables which are characteristic infor-

mation such as the cell area (infinite plane, unit square, convex hull), perimeter,

number of cell edges, cell type (interior, edge, corner), distance from the boundary

etc., for 106 cells that are sampled from individual realisations. Using the remaining

variables, we fit regression models to predict the true cell area that is the cell area

in the absence of boundary. This is done by dividing the data obtained from simu-

lation into training and validation sets, fitting regression models to the individual

training sets which we call base models, and using an ensemble approach in the

prediction of cell area in the validation set. We also identify influential points that

cause large error in the validation set and add them to the training sets, and fit aug-

mented models that are capable of predicting observations that are hard to predict.

Evaluation of the performances of the base and augmented models, and implemen-

tation of this approach into the lifting framework is an important contribution of

the thesis.

Chapter 4 investigates the application of the method in Chapter 3 for general data

situations such as the departure from homogeneity. The models are used for the

area prediction of Voronoi cells based on regular and clustered point patterns. The

preliminary objective is to see the performances of the models on the violation of

the homogeneous patterns. Furthermore, we present a way to update the models

hence they perform more efficiently for the regular and clustered data cases.

Next, we explain the lifting scheme and how the Voronoi tessellation is used as an

ingredient in the method Chapter 5. Non-parametric regression is one of the classi-

cal concerns in statistics including the analysis of spatial data. The lifting scheme is

a relatively new method introduced by Sweldens (1998), and is an extension of the

wavelet methods that are used for function estimation in non-parametric regression

using shrinkage schemes (Donoho & Johnstone, 1994; Donoho et al., 1995). While

the conventional wavelet methods require equally spaced data with size n = 2J

for some J ∈ N, the lifting scheme relaxes such restrictions as being applicable to

any type of data structure regardless of the size n. We rely on the framework de-

scribed in Jansen et al. (2009) when using Voronoi tessellation-based lifting scheme

in two-dimensions.
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Chapter 5 is a background chapter for lifting scheme in two dimensions with some

discussion on wavelet methods which the lifting scheme is built upon. The technical

details about the steps of the lifting scheme and illustrative examples are given.

Thresholding methods are also explained.

As mentioned previously, the Voronoi cell area is used as the weights in the lifting

scheme. These weights determine the calculation order of the coefficients in d, and

the update of function values in the stages of lifting. Hence, the choice of the weights

has a direct effect on the estimation of the underlying true function. For spatial data

in a finite region, we consider observed weights such as the calculated cell area using

boundaries. More importantly, we use the predicted cell area from the models we

developed, and use the predicted area as weights. Ultimately, we consider various

weight methods, and evaluate their performances especially aiming our proposed

method to reduce the boundary effects and improve the function estimation. Since

we target our new method to be used in general data situations, we take into

account various data location structures, such as randomly distributed, regularly

spaced and clustered points and test the method using numerous test functions that

have different spatial characteristics.

Chapter 6 explains the types of weight methods, and two-dimensional test functions

we consider throughout the thesis. Then it presents the lifting results for simulated

homogeneous data locations with different configurations of weight methods. We

focus on the local information to check and identify the differences between weight

methods in the estimation of test functions. Lifting results for regular and clustered

data from simulations, and real data sets are presented in Chapter 7 where we

evaluate the weight methods in the case of departure from homogeneity and use the

suggested method for the real data examples. The weight methods we consider in

this chapter also include the area prediction with local intensity-based scaling since

we use regular and clustered points that have local features.

Finally, we give an overall summary of the thesis, discuss the meaning and impor-

tance of our findings, and talk about the potential future work in Chapter 8.
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Chapter 2

Statistical properties of Voronoi

tessellations in bounded regions

2.1 Objective of of the study

Voronoi tessellation is a standard space subdivision method that has wide applica-

tion areas such as seismology, astronomy, ecology, meteorology, metallurgy, material

science, and architecture. Also, the structures obtained from Voronoi tessellation

are used as an auxiliary tool in the analysis of spatial data. For instance, the par-

titions obtained from the Voronoi tessellation are used as a curvature parameter in

spline methods as discussed in Ripley (2005) or as the weights in spatio-temporal

analysis methods, and for the intensity estimation and efficient computation algo-

rithms Illian et al. (2008).

Although Voronoi tessellation is a wide topic on its own, it is also used in conjunction

with other methods such as the lifting scheme which we aim to develop some aspects

of in this thesis. The lifting scheme discussed in Jansen et al. (2009) uses Voronoi

tessellation as a key ingredient in the algorithm. The neighbourhood structure

determined from the Voronoi tessellation, and the properties of Voronoi cells such

as the cell area are used in the steps of the lifting scheme. Therefore, this thesis

aims to give a good understanding of the Voronoi tessellation and investigate the

aspects which are important but has not been studied thoroughly.

This chapter discusses the statistical properties of Voronoi tessellations based on

homogeneous Poisson points in the infinite plane and in the bounded regions. The

description and examples of Poisson Voronoi tessellation is given in Section 2.2.

Geometrical and statistical characteristics of Voronoi cells have been investigated
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theoretically and numerically for decades and applied to a range of data types. Over

the years, properties of the Voronoi cells such as the mean cell area, perimeter,

numbers of edges or vertices and vertex angles have been explored. These cell

properties are used in different context in many disciplines. Hence, the relevant

literature was reviewed and findings are discussed in Section 2.3.

The techniques and approaches used in the previous work provide us guidance how

the experiments on point patterns were conducted for particular cases. However, in

this chapter, new perspectives are considered which will be a significant contribution

to improve the current approaches. Point patterns are generally considered to be

in an infinite plane so that Voronoi cells are surrounded by the neighbour cells.

This chapter mainly focuses on Voronoi tessellation in two-dimensional space, and

explores the characteristics of the cells when boundaries are imposed on the point

patterns. Section 2.4 explains the design of the simulation study we perform and

Section 2.5 summarizes our results. This chapter is published as a journal article

in Gezer et al. (2021).

2.2 Voronoi and Poisson Voronoi tessellation

Revisiting the definition (1.1) in Section 1.2, Voronoi tessellation partitions the

two-dimensional space into disjoint regions Vi called Voronoi cells, given a set of

points xi ∈ R2, i = 1, 2, ..., n. Each Vi is associated with a point xi and cells are

determined by the perpendicular bisectors between the point and its neighbours.

In the formal way, it can be expressed as

Vi = {x ∈ R2
∣∣‖x− xi‖ ≤ ‖x− xj‖ for j = 1, 2, ..., i− 1, i+ 1, ..., n}

where ‖.‖ is the Euclidean distance (Møller, 2012; Okabe et al., 2000).

The formal definition of the Poisson point process is given in Section 1.4. When

the number of randomly generated points n in R2 follow a Poisson distribution

with a finite and constant intensity ρ > 0, this standard point pattern is called a

homogeneous Poisson point process. Therefore, the Voronoi tessellation based on

homogeneous Poisson points is called the Poisson Voronoi tessellation.

Consider the set of points {xi}ni=1 ∈ Ω and let Ω ⊂ R2 be a convenient region

in the space which contains all the points. Therefore, for n homogeneous Poisson

points we shall denote n ∼ Po(ρ|Ω|) where |Ω| is the area of the region Ω. The

region may be a suitable rectangle, the convex hull of the points, or some other
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(a) (b) (c)

Figure 2.1: Examples of Voronoi tessellation of points with intensity (a) ρ = 20,
(b) ρ = 100 and ρ = 200 in a unit square bounded region Ω = [0, 1]2.

specified region. Realizations of Poisson Voronoi tessellations (PVT) with intensities

ρ = {20, 100, 200} respectively in a unit square Ω = [0, 1]2 are given in Figure 2.1

where solid points represent the generated points in each realization. Points are

generated uniformly in a unit square and the number of points follows a Poisson

distribution with mean ρ. Perpendicular bisectors between points are shown with

dashed lines which generate the cells. These lines are called the cell edges and two

points are considered as neighbours if they have a common edge.

2.3 Background and previous work

The importance of space subdivision methods to investigate spatial splines, and

examples of different spatial point patterns for both simulated and real data to

relate the subject to the estimation of distributions of the locations within a region

using the Voronoi tessellation are discussed in Ripley (2005), Illian et al. (2008) and

Okabe et al. (2000). The Voronoi tessellation has been applied in different sciences

such as in seismology (Schoenberg et al., 2009) to find the distribution of the cell

areas of Voronoi tessellations based on the locations of earthquakes in Southern

California; astronomy (Icke & Weygaert, 1987; Ramella et al., 2001; Yoshioka &

Ikeuchi, 1989) to discover how galaxies are distributed in space; to investigate the

conditions of the habitat of animals when they are establishing territories (Tane-

mura & Hasegawa, 1980); in agriculture for maximal weed suppression to plant

crops (Fischer & Miles, 1973) and to study atomic crystals (Mackay, 1972), liquids

(Finney, 1970), glasses (Luchnikov et al., 2000), and wireless networks (Baccelli

& B laszczyszyn, 2001; Koufos & Dettmann, 2019). An application of constrained

Voronoi tessellation is used in micro-structure modeling (Xu & Li, 2009) where a
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new space subdivision method is introduced using reverse Monte Carlo based on

conditions such as moving the randomly placed points until their geometric features

obey a particular distribution.

Preliminary studies (Gilbert, 1962; Meijering, 1953) investigated the mean of in-

terface area, edge length, and number of faces for an aggregate of crystals that are

considered as the points. Let N denote the number of cell edges, P the perimeter

and A the area of a Voronoi cell. Meijering (1953) presented the initial theoretical

results of the Voronoi cells and showed that the mean cell area perimeter and the

number of cell edges are

E(N) = 6, E(P ) = 4ρ−1/2, E(A) =
1

ρ
(2.1)

where ρ is the unit intensity of the points as explained in Section 1.4. Even though

the distributions of the cell properties has been investigated empirically, no ex-

act representative distribution has yet been found. However, various authors have

recommended that appropriate approximations can be made using the Gamma dis-

tribution with appropriately chosen parameters.

Kiang (1966) proposed an appropriate fit for the length of Voronoi line segments in

one-dimension, the area of cells in two-dimensions and the volume of polyhedrons in

three-dimensions. The length distribution of the Voronoi segments in one dimension

is derived analytically and Monte Carlo experiments are performed to estimate the

distribution of areas and volumes in two and three-dimensional spaces. A fixed

number of points are randomly distributed on a square lattice and the cell areas are

recorded for all points. To avoid boundary effects, the coordinates of the points on

the opposite end of the region is translated. This process is repeated independently

for many realizations to increase the sample size.

Standardized measures are obtained through (2.1). For instance, the standardized

cell area and perimeter are derived as s = A × ρ and p =
√
ρ/4 × P , therefore,

E(s) = E(p) = 1 for the standardized measures and number of edges E(N) is taken

as the same since it is independent of ρ, (Crain, 1978). This makes the comparison

of the parameter estimation results accurate when different studies used different

ρ. The two-parameter gamma distribution has density function

f(s|b, c) =
bc

Γ(c)
s(c−1)e−bs, 0 < s <∞, b, c > 0 (2.2)

where b is the shape parameter, c is the rate parameter and s is the standardized
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cell area. Kiang (1966) found that (2.2) can explain the observed histograms of the

standardized cell areas. The cell area A is standardized and denoted as s instead of a

due to simplicity of the expression of the Gamma distribution with three parameter

which we will use later.

Analytic derivation of the distribution of cell area for Voronoi tessellation cells

in two dimensions in Weaire et al. (1986) approximated the shape parameter as

b = 3.63. Both in Kiang (1966) and Weaire et al. (1986), it is assumed that b = c

based on the similarity of the parameter estimation results.

Another study by Kumar & Kurtz (1993) was based on Poisson-Voronoi tessellation

with intensity ρ = 100 were one of the points was always placed at (0.5, 0.5) and the

remaining points are randomly placed within a unit square. Then, the distributions

of the area, perimeter, length of the each side of the cell and the numbers of the

sides were investigated for the centered point. Kumar & Kurtz (1993) also found

that the two-parameter gamma distribution gave an accurate fit for the observed

histograms of the cell properties. The shape and rate parameters are estimated

b = 3.7176 and c = 3.7174, respectively.

Hinde & Miles (1980) carried a simulation based on homogeneous Poisson point

process with intensity ρ = 100 and recorded the properties of the point that is closest

to the centre of the unit square region based on many independent simulations.

The observed shape of cell area and perimeter distributions suggested a uni-modal

density function dominated by an exponential and controlled by a simple power in

(0,∞). Therefore, the three-parameter generalized gamma distribution in (2.3) is

used.

The three-parameter gamma distribution by Stacy (1962) has density function

f(s|a, b, c) =
abc/a

Γ(c/a)
s(c−1)e−bs

a

, 0 < s <∞ a, b, c > 0. (2.3)

Note that (2.3) is a two-parameter gamma distribution as in (2.2) when the shift

parameter a = 1. Parameters of the generalized gamma distribution should ideally

be estimated by maximum likelihood estimations as stated in (Stacy & Mihram,

1965). However, two other computationally simpler methods gave very similar

results.

Statistical distributions of the Voronoi cells from homogeneous Poisson points in

two and three dimensions are studied by Tanemura (2003) in an extensive manner.

A set of homogeneous Poisson points with intensity ρ = 200 is generated in a
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two-dimensional space where the unit square is used as the sampling region. To

construct an independent sample of Voronoi cells, a point shifting method is used.

The procedure is based on random selection of a point and to move it to the centre

of the sampling region Ω = [0, 1]2 that is (0.5, 0.5) while the relative positions of

the other points are kept. This procedure will be explained in Section 2.4.

The intensity of the points and the numbers of the realizations were modified in

Tanemura (2003) to check whether any difference exists but the results for the

standardized cell properties were very similar. Three-parameter gamma distribution

is fitted for the observed histograms using the maximum likelihood estimations. The

log-likelihood function l(a, b, c|s) for the standardized areas is derived as

l(a, b, c|s) = log
r∏
i=1

f(si|a, b, c)

=
r∑
i=1

log f(si|a, b, c)

=
r∑
i=1

{log
abc/a

Γ(c/a)
+ (c− 1) log si − bsai }

= r log
abc/a

Γ(c/a)
+ (c− 1)

r∑
i=1

log si − b
r∑
i=1

sai . (2.4)

Tanemura’s approach was to approximately maximize the log-likelihood function

given in (2.4). The same distribution for the perimeter, as well as for discrete

measures such as the numbers of the edges is used even though the generalized

gamma distribution is a continuous distribution. Estimated parameters in Table 2.1

shows that a 6= 1, and b and c are not as similar in multi-dimensions as is seen in

the previous work that relied on two-parameter gamma distribution.

Dimension a b c

1 1.0 2.0 2.0
2 1.07950 3.03226 3.31122
3 1.16788 4.04039 4.79803

Table 2.1: Generalized gamma distribution parameter estimates for dimensions
d = 1, 2, 3 in Tanemura (2003).

Arvanitakis (2014) overlaid the density lines of the estimated parameters of the

generalized gamma distribution by Tanemura (2003) over the two-parameter gamma
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density fitted by Tanemura (2005) for the same data. However, two densities did

not show a meaningful difference on fitting the histograms.

In a recent paper, Koufos & Dettmann (2019) conducted research on the distribution

of bounded Poisson Voronoi cell areas. An integral based method from Brakke

(1987) is extended to calculate the mean cell area. The method is to consider

PVT over a quadrant in two-dimensional space and calculate the mean cell area for

the points located at the edge and corner of the region, and in the bulk which is

interior part of the region. The parameters are estimated by two-parameter gamma

distribution in (2.2) from the first two moments of the cell area as

c =
E(s)2

V ar(s)
and b =

E(s)

c
.

The mean and variance for area of the cells located at the corner, edge and bulk are

given in Table 2.2. A corner cell is a Voronoi cell that has more than two vertices

located on the boundary, the edge cell has exactly two vertices, and a bulk cell has

no vertices on the boundary. The standardized mean cell area is found less than 1

at the corner and edges of the region. Also, the parameter estimates are different

in these two cases. Under these considerations, computer simulations verify the

results from the integral based method.

Type E(s) V ar(s) b̂ 1/ĉ

Corner 0.36351 0.10567 1.25052 0.29069
Edge 0.61082 0.17198 2.16935 0.28157
Bulk 1 0.28018 3.56918 0.28018

Table 2.2: Mean cell area, variance and parameter estimations for two-parameter
gamma distribution by Koufos & Dettmann (2019) for corner, edge and bulk cells.

In this section, a discussion of previous studies and the directions that they followed

are given. The main purpose of the previous work was to find suitable distributions

to estimate the properties of Voronoi cells. Analytic derivations of the cell properties

are verified as the performance of programs for statistical computing increased. In

the remainder of this chapter, investigation of Voronoi cells in two dimensional

space will be extended to the cases of regions with imposed boundaries.
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2.4 Design of the simulation

In the entire experiment, the intensity of the points is set to ρ = 200 for r = 106

realizations. To generate independent samples of Voronoi cells, a technique briefly

mentioned in Section 2.3 is used. We generate uniform random points with the

specified intensity and perform the Voronoi tessellation. Next, one cell is selected

at random and moved to the centre of the region. The relative positions of the

other points are kept the same using periodic boundary conditions. Finally, the

properties of the selected cell are calculated. The procedure is repeated for a new

set of points, for a total of r = 106 realizations. An illustration of this the point

shifting process for a randomly selected point is given in Figure 2.2 for ρ = 100 for

visual clarity.

Figure 2.2: A randomly sampled cell with solid black point along with its neighbour
points as red triangles is shown (left). The arrow shows the direction of the sampled
point to the centre of the region where all other points keep their relative positions.
Cell moved to the centre of the region (right), where new points from the opposite
end of the region form the new neighbourhood.

It is known that the properties of Poisson Voronoi cells do not change by condition-

ing on the location of a point in an infinite plane for the homogeneous Poisson points

(Koufos & Dettmann, 2019). This first step of the experiment focuses on PVT in

an infinite plane and adopts the shifting illustrated in Figure 2.2 to generate inde-

pendent samples of cells in the infinite plane. Additionally, two different boundary

cases (the unit square and the convex hull of points) are used as in Figure 2.3 to

investigate how the imposed boundaries affect the cells.
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Figure 2.3: Voronoi tessellation of points with ρ = 100 bounded with a unit square
(left). The convex hull of points shown with red lines and points which are on the
convex hull are in blue (right).

2.5 Results

This section presents the simulation results based on the three cases; infinite plane,

unit square, and convex hull bounded cells, fitting of parametric distributions, and

a discussion of the effects of the boundaries on the cell properties. We present the

results for three cases separately.

2.5.1 Voronoi tessellation in the infinite plane

In the first part of the experiment, Voronoi tessellation of points in the absence of

the boundary is considered. Initially, homogeneous Poisson points with ρ = 200 are

simulated within the unit square region Ω = [0, 1]2 domain, and a point is sampled

randomly. Then the sampled point is moved to the centre of the region (0.5, 0.5) by

keeping the relative positions of all other points as described in Figure 2.2. Finally,

the Voronoi tessellation of the shifted points is performed, and the cell properties

of the sampled point is recorded. This temporary process allows us to eliminate a

possible boundary effect on the sampled cell. Therefore, the recorded cell property

reflects as if there is no boundary.

Histogram of the cell area of one million Poisson Voronoi cells each of which is

randomly sampled from one million realisations of point patterns is presented in

Figure 2.4 (left). A uni-modal left skewed distribution is observed in the histogram.

Mean cell area over pixel bins is sown as a image plot (right) that summarizes the

information over the two-dimensional surface. The region is divided into equal size

of bins and the mean cell area is visualized based on the cell area observed at the
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sampled points in each bin. The initial positions of the sampled points before the

shifting process are used when creating the image plots.

Figure 2.4: Area of Voronoi cells in the infinite plane (left). Surface plot of cell area
in the infinite plane (right). The unit square is divided into a 50 × 50 grid of bins
and the mean of the observations falling in each bin is plotted.

The histogram and the surface plot summarizes the results from all realizations

in the experiment. Hence, each pixel bin of the image contains a number of data

points from different realizations. The surface plot therefore shows the spatial

patterns of cell area at different locations. We observe an unstructured pattern

in Figure 2.4 since the data is based on the cells in the infinite plane where the

unstructured pattern is expected. However, there are interesting spatial features

when the boundaries are imposed which will be discussed later. Although the

right plot in Figure 2.4 appears to be a trivial example, it is included since the

equivalent plots will be presented in the following sections. The surface plots in the

results section and throughout the other chapters of the thesis are created using the

functions in the ggplot2 package by Wickham (2016). The observed unstructured

pattern in Figure 2.4 implies that the cell area takes value around the expectation

1/ρ, and does not change over the infinite plane, that supports the statement that

the characteristics of Poisson Voronoi cells are independent of the location.

Similarly, the perimeter of each cell in one million realizations is calculated and

the histogram and the surface plot is shown in Figure 2.5. The histogram of the

perimeter (left) is less skewed and even has a symmetric-like shape compared to

the area. However, the observed cell perimeter over the infinite plane (right) shows

unstructured characteristics as in the cell area.
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The bar chart of the number of Voronoi cell edges along with the surface plot is

shown in Figure 2.6. It is likely for the cells to have 6 edges as expected and

no anomalies over different parts observed. Numbers of the cell edges and their

occurrences in the infinite plane is shown in Table 2.3 which ranges from 3 to 15

and has very small number of observations for N > 9.

Figure 2.5: Perimeter of Voronoi cells in the infinite plane (left). Surface plot of
cell perimeter in the infinite plane (right).

Figure 2.6: Number of cell edges in the infinite plane (left). Surface plot of number
of cell edges in the infinite plane (right).
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# of edges 3 4 5 6 7 8 9

Counts 11360 106358 260419 293821 199110 90317 29523

# of edges 10 11 12 13 14 15

Counts 7312 1495 252 27 5 1

Table 2.3: Number of cell edges in the infinite plane and the occurrences observed.

2.5.2 Voronoi tessellation using unit square boundary

In this section, we consider imposing boundaries for homogeneous Poisson points in

the infinite plane, particularly, the unit square boundary. Similar to the Figure 2.4,

cell areas are calculated for one million Poisson Voronoi cells bounded with the unit

square and the surface (left) and line (right) plots are produced in Figure 2.8. The

lines are created based on the points that are sampled from different transects of

the region that are explained in Figure 2.7. This allows us to investigate the local

details of the surface plots.

We select three transects and create line plots based on the cell area of the points

located on these transects. In Figure 2.8 (right) the line plots are created for the

transects based on the image (left). The transects are shown in Figure 2.7 using

the arrows with the same colours of lines in Figure 2.8. First, we chose a diagonal

transect from bottom-left corner to the top-right corner of the region and showed in

red colour. Note that this can be achieved in four different ways. Second, another

transect called middle that is horizontal and located at the y = 0.5, and shown

in a green colour. The vertical middle transect can also be used which will have

symmetrical properties with the horizontal transect. Lastly, an edge transect is

selected and shown in blue. This can also be done for any four edges of the region.

Using these transects, we average the data over the pixel bins in that transect to

create the line plots in Figure 2.8 (right).

In the surface plot in Figure 2.8, it is seen that the Voronoi cells are likely to behave

differently depending on their location. Points that are very close to any edge have

smaller cell areas (region coloured in blue) than the ones close to the centre of the

region which are not affected by the boundary. The red parts that are relatively

close to the boundaries show that the cell area is higher than the mean cell area

at these regions. This is the case when the point associated with a Voronoi cell is

far from the boundary but the cell has a vertex on the boundary. Hence the size of

the cell become large. Cells which are not affected by the boundary, which can be
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Figure 2.7: Transects used in the line plots in Figure 2.8.

thought as the ones located interior to the region shows the same characteristics as

in the infinite plane case.

Figure 2.8: Surface plot of cell area in a unit square (left). Averaged cell area over
the grids against the scaled distance of the direction being followed on the region
(right). Different directions are shown in Figure 2.7.

In conclusion, restriction of the infinite plane with a regular rectangle boundary,

namely the unit square, causes cells to have different sizes conditioning on the

location. For instance, Voronoi cells located very close to the corner of the boundary

are found to be very small in size as it deviates from location to location as specified

from blue to red colour in the surface plot in Figure 2.8. Line plots also demonstrate

the changes in the cell area proximity to the boundary.

Another measure, cell perimeter, is similarly visualized in Figure 2.9. Cells intersect

the unit square boundary, have perimeter partly constitute a small part of the
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Figure 2.9: Surface plot of cell perimeter in a unit square (left). Averaged cell
perimeter over the grids against the scaled distance of the direction being followed
on the region (right).

boundary. We observe similar patterns in both surface and line plots as the cell

area but the gap between the cell perimeter for cells laying on the boundary is not

too wide than the mean cell perimeter that means the cells close to the boundary

do not have very small perimeter. Only the corner cells have noticeably small

perimeter.

Number of cell edges as a surface plot for unit square boundary is given in Fig-

ure 2.10. Considering the expected number of cell edges E(N) = 6 over the infinite

plane, cells affected with a regular rectangle boundary are likely to have smaller

number of edges than the mean cell edges and the number of cell edges gets smaller

as it gets closer to the boundary. Diagonal and middle transects from the surface

plot shows a similar pattern in terms of the mean cell edges. However, if we walk

from one corner to the next corner, namely on the edges of the region, a significant

reduction in the mean cell edge is observed. More importantly there is no location

where the number of cell edges are observed to be greater than 6.

2.5.3 Voronoi tessellation using convex hull boundary

In this section, the properties of Voronoi cells within the convex hull of points will

be investigated. In this case, homogeneous Poisson points generated in Ω = [0, 1]2

are restricted using the convex hull of the points. Hence, the convex hull stands for

the boundary that restricts the Voronoi cells. Convex hull is the smallest convex

polygon which contains all the generated points. For the sets of points we generated

in the realizations of of the simulation, we use the convex hull as the boundary and
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Figure 2.10: Surface plot of number of cell edges in a unit square (left). Averaged
number of cell edges over the grids against the scaled distance of the direction being
followed on the region (right).

calculate the cell properties for the cells that are restricted by the convex hull. The

results for each property are presented and discussed respectively.

Figure 2.11: Surface plot of cell area in convex hull (left). Averaged cell area over
the grids against the scaled distance of the direction being followed on the region
(right).

Surface plots are given in Figure 2.11, 2.12, and 2.13 for the area, perimeter and

number of cell edges respectively with line plots as described in Figure 2.7. Recall

the cells in a unit square which intersect the boundary with point falls apart from

the boundary were likely to be larger than the mean cell area. Area of such cells are

observed in the levels of the red colour. On contrary to the unit square boundary,

it is seen from Figure 2.11, 2.12, and 2.13 that the area of cells close to the

convex hull are usually smaller than the expected cell area. Also, cells affected
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by the convex hull are likely to have smaller area and perimeter compared to the

ones affected by the unit square and such measures take the smallest values at the

corners of the region. Number of cell edges will be larger in the convex hull case

than the unit square for the cells close to the boundary which is possibly because of

having irregular shapes in the convex hull compared to the unit square where the

boundary has four straight lines which reduces the number of cell edges intersecting

the boundary.

Figure 2.12: Surface plot of cell perimeter in convex hull (left). Averaged cell
perimeter over the grids against the scaled distance of the direction being followed
on the region (right).

Figure 2.13: Surface plot of number of cell edges in convex hull (left). Averaged
number of cell edges over the grids against the scaled distance of the direction being
followed on the region (right).
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2.6 Comparisons of different boundary cases and

the previous work

In this section, the aim is to discuss the results from Section 2.5.1, 2.5.2, and 2.5.3

in a comparative manner. The same standardization method with the previous

work is used and the results are presented for standardized area s, standardized

perimeter p, and the number of cell edges N . Summary statistics are given in

Table 2.4 for the measures of Voronoi cells for three different cases. Mean cell area

s̄I and perimeter p̄I are calculated for cells in the infinite plane are found very

close to the analytically calculated expectations E(s) = E(p) = 1, however, the

mean cell area and perimeter for the unit square boundary case are calculated as

s̄U = 1.137 and p̄U = 1.097. For the convex hull case, it is calculated as s̄C = 0.886

and p̄C = 0.951. Therefore, cells bounded with unit square will have larger area

and perimeter than the cells in the infinite plane, and convex hull bounded cells will

have the smallest area and perimeter. Here, when calculating the measures for cells

in the unit square and convex hull, only the cells affected by the boundary are taken

and the ones interior to the region are avoided which carries the same information

from the infinite plane case. Hence, the summary statistics are calculated for the

cells given they are affected by the boundary.

Case Mean SD Skewness Kurtosis

A
re

a Infinite plane 1.004 0.531 1.022 1.525
Unit square 1.137 0.654 1.164 2.247
Convex hull 0.886 0.599 1.186 1.957

P
er

im
. Infinite plane 1.002 0.244 0.190 -0.025

Unit square 1.097 0.294 0.240 0.106
Convex hull 0.951 0.307 0.146 -0.141

E
d
ge

s Infinite plane 6 1.334 0.432 0.204
Unit square 5.364 1.203 0.497 0.278
Convex hull 5.432 1.185 0.509 0.321

Table 2.4: Mean, standard deviation, skewness and kurtosis of standardized area,
perimeter and number of edges of Poisson Voronoi cells in infinite plane, and for
unit square and convex hull boundaries.

Two and three-parameter gamma distributions are fitted for the standardized cell

area, perimeter and number of edges. It is discussed in the previous work that

the gamma distribution gives the best approximation for these measures. Although

the number of cell edges takes integer values in the rage of [3, 15] and hence has
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a discrete distribution, the gamma distribution is still used and the parameters

of the gamma distribution are estimated only using the observed integer values as

suggested in Hinde & Miles (1980). We used the gamma distribution for the number

of cell edges to have a comparison of the estimated parameters with the previous

work Hinde & Miles (1980) and Tanemura (2003). An appropriate alternative could

be the Poisson distribution.

Figure 2.14 shows the mid points of the histogram bins for the observed measures

with solid points (•) and fitted two and three-parameter gamma densities ( )

and ( ) with estimated parameters from Table 2.5 and 2.6 respectively. Plots

in the first column are the results for the infinite plane, second row for the unit

square, and the bottom row are for the convex hull cases. Three-parameter gamma

distribution with blue lines shows a great performance to fit the measures, however,

even though two-parameter gamma performs well in many cases, it cannot fit the

cell perimeter as good as the three-parameter. In addition to the gamma distri-

bution, several others, Weibull and log-normal distributions are checked but their

performances were not satisfactory as can be seen in Figure A.1 in Appendix A for

the standardized areas in the infinite plane.

Disparities on the statistical properties are discovered through the surface plots,

and summary statistics for three cases of Voronoi cells are verified by the estimated

parameters of two and three-parameter gamma distributions in Table 2.5 and 2.6

respectively. We can conclude that the measures of Voronoi cells can be estimated

via three-parameter gamma distribution with appropriately chosen parameters. Pa-

rameters estimated for the cells in the infinite plane shows a great agreement with

(Hinde & Miles, 1980) and (Tanemura, 2003) for three-parameter gamma distribu-

tion, and similar parameters are estimated for two-parameter gamma case.

In addition to the parameter estimates in Table 2.5 and 2.6, we also calculated

the 95% confidence intervals for the parameter estimates. The parameters are

estimated by maximizing the log-likelihood function in (2.4). The second-order

partial derivative of the log-likelihood function evaluated at the maximum creates

the Hessian matrix

H =


∂2l
∂a2

∂2l
∂a∂b

∂2l
∂a∂c

∂2l
∂b∂a

∂2l
∂b2

∂2l
∂b∂c

∂2l
∂c∂a

∂2l
∂c∂b

∂2l
∂c2

 . (2.5)

The diagonal elements of the inverse of negative Hessian matrix (−H−1) are the

estimated variances (σ̂2
a σ̂2

b σ̂2
c ) for the parameters. Then a confidence interval for
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Infinite plane Unit square Convex hull

Figure 2.14: Density lines of two and three-parameter gamma distributions following
the estimated parameters given in Table 2.5 and 2.6. Mid points of the histogram
bins of observed values for cell measures are shown in (•). Two and three-parameter
gamma fit are shown in ( ) and ( ) respectively. First column of plots are for
the cells in the infinite plane, second column for the unit square and the third column
is for the convex hull case. Each row of plots are for the measures; standardized
area, perimeter, and number of edges respectively.

an estimated parameter â is calculated as [L,U ]â = â ± 1.96 × σ̂a where L and U

are the lower and upper bounds of the interval respectively.

Lastly, fitted density lines for cell area and perimeter based on the number of cell

edges are overlaid on lattice plots in Figure 2.15 and 2.16 for all boundary cases.

Since the fitted gamma distribution does not differ much for cells having more
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Case b̂ ĉ
ar

ea

Infinite plane 3.510 (3.500-3.520) 3.526 (3.516-3.535)
Unit square 2.626 (2.612-2.640) 2.986 (2.971-3.000)
Convex hull 2.271 (2.259-2.284) 2.012 (2.003-2.022)
Kiang (1966) 4.0 4.0
Weaire et al. (1986) 3.63 3.63
Kumar & Kurtz (1993) 3.7176 3.7174
Koufos & Dettmann (2019) 3.5691 3.5691

p
er

im

Infinite plane 16.038 (15.993-16.082) 16.074 (16.030-16.118)
Unit square 11.903 (11.840-11.965) 13.062 (12.995-13.129)
Convex hull 8.892 (8.846-8.938) 8.464 (8.422-8.507)

ed
ge

s Infinite plane 3.370 (3.361-3.380) 20.220 (20.164-21.276)
Unit square 3.740 (3.721-3.760) 20.064 (19.960-20.167)
Convex hull 3.911 (3.891-3.931) 21.245 (21.137-21.353)

Table 2.5: Parameter estimations and confidence intervals in the parentheses of
the two-parameter gamma distribution fitted to the area, perimeter and number of
edges of Poisson Voronoi cells in the infinite plane, and with unit square and convex
hull boundaries.

than 7 edges, observations for N = 8, ..., 15 are aggregated and denoted as N > 7.

Infinite plane, unit square, and convex hull cases are shown in ( ), ( ),

and ( ) respectively. It is obvious that different number of cell edges leads

to different estimates for parameters of three-parameter gamma distribution. Also,

fitted density lines never coincide as the number of cell edges change. Consequently,

the mean of the fitted gamma distributions are different for different values of N .

The mean is smallest when N = 3 and it increases for larger N . We note that the

cell perimeter distributions are more similar for the two bounded cases than for the

infinite plane case, while the cell area distributions do not show this pattern.

The changes in the cell propeties is also considered. We denote the change in the

area of a cell as

area reduction = (area with no boundary - area with boundary).

To visualize the area reduction when the boundaries are imposed, we presented the

histogram and surface plot concerning this reduction in Figure 2.17 for unit square

(first row) and convex hull (second row) boundaries. Surface plot in the first row of

Figure 2.17 indicates that cells very close to the unit square boundary had shrinkage

in their sizes where the ones close to the corner shrank the most. Also, cells whose
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2.6 Comparisons of different boundary cases and the previous work

Case â b̂ ĉ
A

re
a

Infinite plane 1.080 (1.073-1.106) 3.015 (2.961-3.069) 3.311 (3.285-3.336)
Unit square 1.089 (0.969-0.987) 2.195 (2.123-2.267) 2.792 (2.755-2.828)
Convex hull 1.336 (1.320-1.352) 1.336 (1.304-1.367) 1.667 (1.652-1.681)
Tanemura (2003) 1.0795 3.0322 3.3112
Hinde & Miles (1980) 1.0787 3.0328 3.3095

P
er

im
.

Infinite plane 2.334 (2.313-2.356) 2.963 (2.906-3.019) 7.593 (7.533-7.654)
Unit square 2.278 (2.242-2.314) 2.062 (1.987-2.137) 6.412 (6.326-6.498)
Convex hull 2.917 (2.882-2.953) 1.156 (1.126-1.186) 3.779 (3.746-3.812)
Tanemura (2003) 2.33609 2.97006 7.58060
Hinde & Miles (1980) 2.3389 2.9563 7.5579

E
d

ge
s

Infinite plane 0.931 (0.920-0.941) 4.406(4.222-4.590) 21.706(21.469-21.943)
Unit square 0.775 (0.768-0.783) 9.088 (8.807-9.368) 25.804 (25.543-26.064)
Convex hull 0.813 (0.805-0.820) 8.089 (7.843-8.335) 25.928 (25.675-26.181)
Tanemura (2003) 0.96853 3.80078 20.86016
Hinde & Miles (1980) 1.0186 3.130 19.784

Table 2.6: Parameter estimations and confidence intervals in the parentheses of the
three-parameter gamma distribution fitted to the area, perimeter and number of
edges of Poisson Voronoi cells in the infinite plane, and with unit square and convex
hull boundaries.

points are far from the boundary likely to expand if they intersect the boundary.

Cells located at the white area has no change in their area.

On the other hand, convex hull bounded cells in the second row are more likely to

shrunk when the boundary is imposed. There are some cells located far from the

boundary but affected boundary showed a slight expansion that is visible at the

parts with the light-blue colour. Histograms of area reduction in both cases show a

high peak around zero where the change is very small. The skew on the histogram

of area reduction for convex hull bounded cells indicates that having convex hull

boundary causes higher reduction on their sizes.

Perimeter reduction for the imposed boundaries are given in Figure 2.18 which

shows similarities with cell area results. The perimeter reduction is formulated as

perimeter reduction = (perimeter with no boundary - perimeter with boundary).

Shrinkage on the perimeter in the unit square case is not very dramatic and similar

patterns are observed in both boundary cases. Figure 2.19 shows the reduction in

the number of cell edges. Imposing both boundary cases causes the number of cell

edges be less than the infinite plane case. Especially, cells very close to the corner

of the boundary are likely to have smallest number of edges. Reduction in the edge
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.15: Density lines of three-parameter gamma distribution for the estimated
parameters of standardized area for infinite plane ( ), unit square ( ), and
convex hull ( ) cases with respect to number of cell edges N = 3, 4, ..., 7 and
N > 7.

is also formulated as

edge reduction = (# of edges with no boundary - # of edges with boundary).

Ratio of the area, perimeter and and number of cell edges are shown in Figure 2.20,

2.21 and 2.22. Ratios are calculated replacing the formulas above by the proportion

of the cell properties rather than the differences. Gray area corresponds to ratio of

1. In the unit square boundary case, similar patterns for the ratio of all measures

are observed with the reduction. However, very extreme values are detected for

the convex hull boundary. These extreme values of area and perimeter ratios are

generally located very close to the corners of the unit square boundary.

Reduction and ratio of cell properties have histograms with a high peak is attempted

to be estimated through possible distributions. Two candidate distributions are

considered and fitted to the histograms of reductions and ratios of the measures.
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.16: Density lines of three-parameter gamma distribution for the estimated
parameters of standardized perimeter for infinite plane ( ), unit square ( ),
and convex hull ( ) cases with respect to number of cell edges N = 3, 4, ..., 7
and N > 7.

First, asymmetric Laplace distribution with density function

f(y|µ, σ, p) =
p(1− p)

σ
exp

{
−ρp(

y − µ
σ

)

}
(2.6)

with location parameter −∞ < µ < ∞, scale parameter σ > 0 and skewness

parameter 0 < p < 1 is used (Koenker & Machado, 1999; Yu & Moyeed, 2001).

Here, ρp(.) is the loss function defined as ρp(u) = u(p − Iu<0). Second, a weighted

double exponential distribution with a variant mode which has a density function

f(x;ω, a1, a2, µ) =

{
ωa1 exp (−a1(µ− z)) for z < µ

(1− ω)a2 exp (−a2(z − µ)) for µ ≥ z
(2.7)

is defined. Here, 0 < ω < 1 is the weight parameter corresponding to some mean

parameter µ which is taken as fixed but can take values in −∞ < µ < ∞, and

a1, a2 > 0 are the rate parameters.

Parameters of both distributions are estimated using maximum likelihood method,
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.17: Area reduction of cells when the unit square (top) and convex hull
(bottom) are imposed as a boundary. Histogram of density (left) and surface plot
of area reduction (right).

and fitted density lines are given for the standardized area reduction for the unit

square boundary case in Figure 2.23. Only one example for the performance of

asymmetric Laplace and adjusted density is shown. Estimated parameters for the

asymmetric Laplace are µ = −0.021, σ = 0.122 and p = 0.480 and for the ad-

justed density, ω = 0.601, a1 = 4.810, a2 = 3.304 and µ = 0.004. Although the

best approximations are observed using these densities, their performance is not

satisfactory. Therefore, the rest of the properties are not considered.
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.18: Perimeter reduction of cells when the unit square (top) and convex
hull (bottom) are imposed as a boundary. Histogram of density (left) and surface
plot of perimeter reduction (right).
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.19: Reduction on the number of cell edge when the unit square (top) and
convex hull (bottom) are imposed as a boundary. Histogram (left) and surface plot
of reduction on the number of cell edge (right).
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.20: Area ratio of cells when the unit square (top) and convex hull (bottom)
are imposed as a boundary. Histogram of density (left) and surface plot of area ratio
(right).
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.21: Perimeter ratio of cells when the unit square (top) and convex hull
(bottom) are imposed as a boundary. Histogram of density (left) and surface plot
of perimeter ratio (right).
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2.6 Comparisons of different boundary cases and the previous work

Figure 2.22: Ratio of number of cell edges when the unit square (top) and convex
hull (bottom) are imposed as a boundary. Histogram of density (left) and surface
plot of ratio of number of cell edges (right).

Figure 2.23: Histogram of area reduction for the unit square bounded cells and den-
sity lines of asymmetric Laplace and the adjusted distributions with the estimated
parameters.
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2.7 PVT for different intensities

2.7 PVT for different intensities

In this section, Poisson Voronoi tessellation for different intensities is explored. The

entire experiment discussed in Section 2.5 was based on PVT with intensity ρ = 200,

however, it is important to discover whether the behaviour of cells vary as the ρ

changes. Hence, another experiment is performed considering ρ = {30, 50, 100, 300}
for r = 106 realizations and results are compared with the ones obtained before.

Again, surface plots are aimed to be created to see the patterns of cell measures over

the surface as in Section 2.5.2 and 2.5.3. Since the mean cell area depends on the

intensity of points as E(s) = 1/ρ, the same standardization method is applied for

all experiments based on different ρ values to make results comparable. Line plots

are produced in Figure 2.24 from the surface plots following a horizontal direction

at the middle of the region as described in Figure 2.7. Each ρ value is assigned to

a colour and put together for i.e standardized area for unit square bounded region

(top left), number of edges for convex hull bounded region (bottom right) and so

on.

Standardization of measures is useful for the comparison of different cases. A gen-

eral comment from the plots is the occurrence of different patterns over a surface

depending on the location. However, the variability is mostly observed on the cells

closer to the boundary of the region. There is not a big difference on the cell mea-

sures when moved closer to the centre of the region which are possibly the cells that

are not affected by the boundary for all cases except when ρ = 30. The initial intu-

ition for ρ = 30 is that the number of the points generated for such intensity could

sometimes be very smaller than 30. Hence, a randomly sampled cell could still be

affected by the boundary even though it is located very far from the boundary.

Probability of a cell being affected by the boundary for lower intensities lead us to

understand the circumstances of having smaller number of points and the pattern

that they generate on the surface. Particularly, unit square or convex hull boundary

may still affect the characteristics of a Voronoi cell whose associated point is very

far from the boundary. Another simulation is performed to find the probability of a

randomly sampled cell being affected by the boundary when the number of points

are m = {10, 15, 20, 30, 50}. Number of points are fixed in each simulation instead

of fixing the intensity to avoid the variability on the number of points generated for

each specified intensity especially when the ρ is very small, and the simulation is

run for r = 105 realizations.
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2.7 PVT for different intensities

Unit Square Convex Hull

Figure 2.24: Standardized PVT properties for intensities ρ = 30, 50, 100, 200, 300
for points across the centre of the region. Each ρ is assigned to a colour that show
the pattern standardized cell properties. First and second column of the plots show
the results for unit square and convex hull bounded cells, and rows panels are for
cell area, perimeter and number of edges respectively.
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2.8 Conclusion

Proportions of number of cells affected by the unit square and convex hull bound-

aries based on the number of points is presented in Figure 2.25. Almost every

randomly sampled cell among 10 points is affected by the boundary and the pro-

portion decreases as the number of points increases. The proportion of cells affected

by the convex hull is slightly higher than the unit square case but the proportions

converge at higher number of points. The different pattern observed in Figure 2.24

for ρ = 30 is also highlighted here for lower intensities in general.

Figure 2.25: Proportion of boundary-affected cells in 106 realizations for varying
numbers of points n ∈ {10, 15, 20, 30, 50, 100, 200, 300}

2.8 Conclusion

To sum up, this chapter investigated Poisson Voronoi cells in two-dimensional space

and their statistical properties extensively. Simulations are performed for intensity

ρ = 200 for r = 106 realizations. Poisson Voronoi cells are initially considered in

the infinite plane where the results related to distribution fitting showed a great

association with the relevant literature. More importantly, boundaries are imposed

to the homogeneous Poisson points. Using the unit square and the convex hull

of points as boundaries, cell area, perimeter, and the number of cell edges can be

estimated using the three-parameter gamma distribution. The difference in the

fitted distributions raises the importance of taking into account these boundary

effects in the analysis of spatial data which usually comes with its own boundary

case.

Although the cell properties do not change over the infinite plane, it is not the case

when the boundaries are imposed. The distance and location of the points from
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2.8 Conclusion

from the boundary play a key role on the statistical properties of the cells. Also,

we observe similar properties of cells at the edges and the corners. For instance

the cell properties show symmetric properties when the unit square is folded with

respect to the axes x = 0.5 or y = 0.5. In Gezer et al. (2021), the image plots are

constructed using the folded regions to increase the sample sizes in the pixel bins.

The cells affected by both boundaries do not have identical properties. Hence, in

practice, further study considering other specifically determined boundaries or real

boundaries such as state borders or coastlines may need to be performed for any

given data set.

We have only considered the homogeneous Poisson points in a unit square region,

hence further work may investigate how he results change for other point patterns

and boundary types. In the previous work, Schoenberg et al. (2009) studied the

distributions of the Voronoi tessellation cell area and perimeter of the locations of

earthquakes in Southern California. The data is based on the epicentres of 7567

earthquakes that had magnitude over 3.0 between 1984 and 2007 in Southern Cal-

ifornia. The cells intersecting the various boundary options are excluded from the

study due to their biased values. The study found that the tapered Pareto distribu-

tion is a suitable distribution to model the area and perimeters of the Voronoi cells.

The same distribution is also used to approximate the seismic moments. This study

is an example of the application of Voronoi tessellation to a real data set which has

an irregular boundary type and clustered earthquake epicentres. We learn from this

study that the Voronoi cells that are obtained from data types with different spatial

characteristics can be modeled through different distributions than the gamma that

is mostly suitable for data locations with spatial randomness.
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Chapter 3

Prediction of Voronoi tessellation

cell area

3.1 Overview

The statistical properties of Voronoi tessellation cells of homogeneous Poisson points

in two dimensions is studied in Chapter 2. Careful attention is necessary when

boundaries are imposed since they change the geometric structure of the Voronoi

cells and hence the statistical properties, such as the cell area, perimeter, number

of cell edges. Figure 1.1 was an excellent illustration of the changes on the Voronoi

cells when a boundary line is drawn.

Previous chapters clarified that Voronoi tessellations subject to boundaries may not

reflect the true cell properties since the boundary has a constraining effect. In this

chapter, we aim to propose and develop ways that treats the spatial data available

in a finite bounded region as if there is a larger region or an infinite plane which

the data in the finite region is a subset of. Hence, the boundary effects in the data

are aimed to be reduced.

One approach to accomplish this would be to predict the true cell area using

regression-based models. We will give a detailed explanation and examples of con-

ducting this approach throughout this chapter. This process can be thought as

creating models that adjusts the cell area especially for the cells near the boundary.

The predictors of the model is the observed cell properties within a boundary and

the response is the true cell area (as if there is no boundary). To fit the regression

models, we need a data set. The simulation study in Chapter 2 generated large data

set of many cell properties. Splitting this data into training and validation sets, we
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3.2 Boundary issues

aim to fit regression models using the training set and evaluate and improve the

performances of the fitted models in the validation sets.

The issues that the boundaries cause in the analysis of spatial data is briefly dis-

cussed in Chapter 3.2. Then, we described the data set and variables that we are

going to use in the modeling in Section 3.3. The methodology we use, the steps

of the model fitting process such as the division of the data into the training and

validation sets, and model selection criterion etc. are explained in Section 3.4. The

results of model fitting are presented in Section 3.5 and discussed extensively. Sec-

tion 3.6 mentions an approach to classify the boundary-effected cells respectively.

Finally, the suggestions for alternative scenarios are given in Section 3.7.

3.2 Boundary issues

Spatial data usually come with its own boundary structure. This can be a regular

or irregular boundary of any sort. In some situations, a suitable rectangle can be

defined as the boundary for a set of data points in two-dimensional space. This is

suitable if the points are generated within the constraint of a rectangular domain.

However, it is always possible to take the convex hull of points whether or not a

rectangular boundary is useful. Consider a data set that contain data locations in

a two-dimensional space but we do not know the exact boundary of the data. In

such cases, we use the sampling region, or we can always draw the convex hull of

data points and consider the convex hull as the boundary.

In the simulation study in Chapter 2, the sampling region was defined as the unit

square hence we used both the unit square and convex hull as two boundary types

and investigated the cell properties based on them. We may generalize the definition

as ‘known’ boundary and ‘unknown’ boundary for these two cases respectively.

Known boundary stands for the case where we are given the boundary information

such as the sampling region. Otherwise, we can use the convex hull in the unknown

boundary case.

There are properties that can be calculated for Voronoi cells such as the cell area,

perimeter, number of cell edges, cell type, or the shortest distance from a boundary.

The relationship between the cell properties may help us to understand the changes

in the cell area which we are interested in. For each boundary type, unit square

known and convex hull unknown, these properties are calculated differently. For

instance, the closest distance from a data point to the unit square, and to the convex
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3.3 Description of variables

hull boundary is likely to be different. Hence, we define these two distances as

separate variables. In Section 3.3, we give a detailed explanation of these variables.

3.3 Description of variables

The variables are the properties of the Voronoi cells which we are able to measure.

In Chapter 2 we presented how the distributions of cell area, cell perimeter and

the number of cell edges change in the presence and absence of the boundaries

and only focused on these three cell properties. However, in this chapter, we are

interested in the prediction of true cell area (in the absence of the boundary) using

the information obtained from the cells in the presence of a boundary. This approach

has an implicit act such that the Voronoi cells are treated in a continuum rather

than a restricted region.

To create models that predicts the true cell area, that is the outcome, we rely on

regression methods that require independent variables which are the other measured

properties of the Voronoi cells. We consider measuring all possible meaningful cell

properties that is likely to have an effect on the cell area and use them as predictor

variables. Hence the collection of variables are the ones which are likely to have a

casual relationship with the outcome. Since a variable selection procedure for the

choice of best model is also taken into account when fitting the models, the number

of variables we initially consider is not restricted and we included as many variables

as possible.

The list of candidate variables are presented in Table 3.1. These variables are ob-

tained from the simulation data in Chapter 2 and the code to perform a single

realization of the simulation is given in Appendix B. We repeatedly perform the

simulation to obtain independent realizations of data sets. First, a set of homo-

geneous Poisson points with a specified intensity within a unit square region is

generated and a point is selected at random. Voronoi tessellation of the points is

done when the boundary is the original unit square boundary and the convex hull

of the generated points. Then, the cell properties listed in Table 3.1 are recorded

for the sampled cell. Some cell properties are calculated differently based on the

boundary type that is why the first and the last columns are created separately. Fi-

nally, the sampled point is moved to the centre of the unit square by translating the

relative positions of the other points and the cell area is recorded which indicates

the outcome variable, true cell area.
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3.3 Description of variables

The separate sets of variables are considered for the unit square and convex hull

boundary cases. There are (i) variables in common, such as the point coordinates

x1, x2, (ii) similar variables such as the cell area that is calculated differently based

on the boundary type such as the unit square area x3, and the convex hull area z3

respectively, and (iii) some variables which are only possible to calculate for one

boundary type such as the cell type x11. As it is not obvious how to define the

corner cells for irregular boundaries.

Unit Square Boundary Type Definition Unknown Boundary

y: inf.area CN Cell area without boundary. y: inf.area
x1, x2: x.coord & y.coord CN Coordinates of data points. -
x3, x4, x5: unit.area CN, CN, DN Area, perimeter and number of edges. z3, z4, z5: chull.area
unit.per, unit.edge chull.per, chull.edge
x6: on.chull C Whether a point is located on the convex hull. z6: on.chull
x7: m DN Number of points generated. -
x8: dist.edge CN Distance of the point from the nearest boundary. z8: dist.edge2
x9: dist.vert CN Minimum distance between the boundary z9: dist.vert2

and the cell vertices.
x10: dist.cent CN Distance of the point from -

the centre of the finite region.
x11: type DN Cell type based on how many points of the cell -

segments intersect the boundary (0, 2, 3, 4).

Table 3.1: A list of the variables for both the unit square and the unknown bound-
aries. The variable labels x and z refer to the variables obtained using the unit
square and convex hull boundaries respectively. Variable names and notations with
corresponding definitions are given. Variable types are labeled as CN: continu-
ous numerical, DN: discrete numerical, and C: categorical. Dashes represent the
unavailability of the usage of a particular variable.

There are several variables shown in Table 3.1 that have direct or indirect rela-

tionships in some fashion. This situation is called collinearity or multicollinearity

which happens when an independent variable can be linearly predicted by other

variable or multiple variables. A more general term for this case is concurvity that

happens when a smooth term is predicted by other smooth terms is the model, i.e.

the generalized additive model (Morlini, 2006). Collinearity and concurvity cause

interpretation issues and unstable predictions that may lead large errors.

The variables x1 and x2 are the coordinates of the points, so the distance from

the boundary x8 and the distance from the centre x10 use x1 and x2 to calculate

the Euclidean distances. Hence, there is a situation where one of the variable is

being a function of the other variables. However, we do not have any collinearity

issues for the unknown boundary case since we do not calculate the distance from

the boundary or the centre and use them as variables in the model. The available

variables when the boundary is unknown are given at the right column of Table 3.1.

Their existence in the models will be discussed in Section 3.4.
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3.4 Area prediction for Voronoi tessellation cells
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Figure 3.1: Scatterplots of selected variables at the lower triangular part of the
scatterplot matrix. Variable labels are given in the boxes on the diagonal panel.

The scatterplot matrix in Figure 3.1 shows the correlations among some variables

we are interested in. We aimed to inspect the data and see what kind of patterns are

observed among the variables. Therefore, this would help us to decide on the model

we would like to use. The plots are created using a randomly chosen sub-sample

from the entire data since the visualisation would not be clear for 106 observations.

The levels of categorical variables, cell type, being located on the convex hull and

number of cell edges are separately checked. In Figure 3.2, the cell area based on

the data points that are affected by the unit square and convex hull boundaries

are shown based on cell type, being located on the convex hull, and number of cell

edges. The cell area gets larger as the number of cell edges increases for both unit

square and convex hull boundaries. The cell type has a slight effect on the unit

square boundary area where the smallest median cell area is observed for the edge

cells. Being on the convex hull causes the cells to have a smaller area than the

otherwise case.

3.4 Area prediction for Voronoi tessellation cells

In this section, the study design and methodology of the area prediction is explained.

Area prediction procedure involves model fitting using regression models based on
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Figure 3.2: Unit square area and convex hull area based on cell type, convex hull
points and the number of cell edges.

the variables given in Table 3.1. The infinite plane area labeled as inf.area is

the response variable we aim to predict, and the remaining variables are used as

covariates.

Considering the presence of non-linear relationships between the covariates and the

response, there is a need for appropriate regression methods. The linear regression

would not capture the non-linear pattern in the data. The techniques such as

the polynomial regression that models the response variable by adding k−th degree

polynomials of the covariates might be useful, however, it may only capture a certain

amount of non-linearity. Hence, the usage of a more flexible method such as spline

regression is essential.

3.4.1 The generalized additive model

Generalized Additive Models (GAMs), a generalized form of the linear and gen-

eralized linear models, is a flexible non-parametric regression method that models

non-linear relationship using the sum of smooth functions
∑

fj(θj) of the predic-

tors {θj}pj=1 (Hastie & Tibshirani, 1990; Wood, 2017) by a replacement of the linear

components
∑
βjθj in the multiple linear regression. The advantage of GAMs is
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3.4 Area prediction for Voronoi tessellation cells

the flexibility of the non-linear smooth functions fj that are calculated for each θj

and added together. The general form of the additive model is expressed as

Yi = β0 +

p∑
j=1

fj(θij) + εi (3.1)

where fj denote smooth, non-parametric functions that can take various shapes, p

is the total number of covariates, and εi ∼ N(0, σ2) is the error term. The smooth

functions are generated by many smaller functions called basis functions that can

be expanded as

fj(θj) =

Kj∑
k=1

βjkbjk(θj) (3.2)

where bjk(θj) denote the basis functions that construct the smooth components,

and βjk are the coefficients to be estimated during the model fitting. The Kj is the

dimension of the basis function for the component fj where an optimal choice is

necessary since it decides on the wiggliness of the smooth component fj. A small

number of basis functions is likely to miss the wiggly patterns of the data as known

as under-fitting, whereas very large number of basis functions results over-fitting

that captures very fine details. The sum of the basis functions constructs the smooth

functions as shown in (3.2).

When a spline basis is used, we obtain a form of linear model that has a penalty

term which can be written as

Yi = Bβββ + εi (3.3)

where the matrix B is created stacking the columns of a basis matrix for each covari-

ate together. Hence the matrix B evaluates the basis functions for each observation.

Then the model fit is achieved by choosing the vector of βββ that minimizes

(y-Bβββ)>(y-Bβββ) + βββ>Pβββ (3.4)

where P is the penalty matrix in a block-diagonal form. The penalty matrix is

obtained from individual components of the model such that the j−th component is

being λjD
>
j Dj, where Dj is a differencing matrix. Therefore, the following solution

for the estimate of the vector of weights β̂ββ is obtained as

β̂ββ = (B>B + P)−1B>y. (3.5)

The components fj are identifiable only when a constraint is imposed. We require
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3.4 Area prediction for Voronoi tessellation cells

the sum-to-zero constraints
∑

i fj(θij) = 0 so that the addition of a constant to f1

whereas it is subtracted from f2 without changing the prediction Claire & Neocleous

(2019).

The estimation of the smoothing parameter can be done using maximum likelihood

(ML), and restricted maximum likelihood (REML) that uses the random effects

to estimate smoothing parameters. Wood (2011) showed that their performance is

better than other methods such as generalized cross validation (GCV) and AIC.

The generalized additive can also be expressed in the form of

g(µi) = β0 +

p∑
j=1

fj(θij) (3.6)

where µ = E(y|θ1, . . . , θp) is the mean and g(.) is a link function function such that

ηi = g(µi). The possible choices for the distribution of the response include the

normal, gamma, Poisson, binomial, inverse Gaussian, negative binomial and quasi

distributions and the fitting of the model for different link functions can be done

using a local scoring procedure or penalized iteratively re-weighted least squares

Hastie & Tibshirani (1990); Wood (2017).

Based on the variables listed in Table 3.1, we denote the response variable true area

that we aim to predict as Âi for i = 1, . . . , n, and the full set of covariates is denoted

as θ = {x1, x2, . . . , z3, z4, . . . }, hence we have {θj}pj=1 are the vectors of covariates

such that θ1 = x1, θ2 = x2, . . . , θp = z9 for all j = 1, 2, . . . , p. We will use the θj

notation in the expression of the model for simplicity, and xj, zk will be used as

labels of the variables when necessary. Then the full model that we consider takes

the form

Âi = β0 +

p∑
j=1

fj(θij) + εi

= β0 + f1(θi1) + f2(θi2) + · · ·+ fp(θip) + εi, (3.7)

Some low-dimensional interaction terms can be added into the model. For instance

the interaction function is denoted as fp+1(θk, θm) where k,m ∈ [1, · · · , p] and

k 6= m. The fp+1(θk, θm) term indicates a two dimensional spline for the interacting

covariates (James et al., 2013). However, this is only valid when both of the co-

variates are numerical variables. If one of the variables is categorical, then smooth

functions of the numerical variables are separately determined based on each level

of the categorical variable.
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3.4 Area prediction for Voronoi tessellation cells

3.4.2 Study design

The data set obtained from Chapter 2 is for the statistical properties of n = 106 cells

that are sampled from independent realizations. This large data set can be split

into training, and validation sets with specifically determined sizes to fit the models

and evaluate the performance of the models. The sample sizes for the partitioned

data sets are given in Table 3.2. The training and validation sets are independent.

Training Validation–1 Validation–2

Size 5× 105 105 105

Table 3.2: Sample sizes of training, and validation sets. The numbers refer to the
number of randomly sampled cells from independent realisations.

The training set is used for fitting additive models that we call ‘base models ’. The

Validation–1 is used to test these models and identify influential data points that

lead to large prediction error. Then, some influential points are added to the training

data and the models are fitted again which we call these models ‘augmented models ’.

Therefore, the augmented models are aimed to be capable of predicting the ‘hard to

predict ’ cells better than the base models. This is checked in the separate ‘left alone’

data set, Validation–2. We evaluate the performances of the base, and augmented

models in Validation–2 and highlight in which situations these models perform

better. These steps will be explained in detail in the following sections.

3.4.2.1 Description of training data

It is aimed to fit initial base models to the training data based on the model as-

sumption in (3.7). Due to the high number of predictors, we consider the trade-off

between the goodness of fit and the model complexity to decide the model that has

the most useful variables and leaves the insignificant ones out. Two approaches

are tried for variable selection. The first one, is achieved by starting with an in-

tercept only model yi = β0 and iteratively adding and removing variables, namely

the stepwise model selection that optimizes the goodness of fit. That is perform-

ing a model selection based on the Akaike information criterion (Akaike, 1987),

AIC = 2p − 2 ln(L̂), where L̂ is the maximum value of the likelihood function of

the model may be an appropriate approach. There is an option to achieve this in

the gam package (Hastie, 2020) in R using the step.Gam() function.

The second approach is called the double penalty approach, introduced by Marra &

Wood (2011) and found to perform significantly better along with another proposed
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method that is shrinkage-based than the competing methods in a comparative study.

The space of a spline basis is expressed as a sum of two components where the first

term is based on the functions in the penalty null space and the second is based on

the penalty range space. Marra & Wood (2011) explains the approach as follows;

functions in the range space can be shrunk to zero via a high penalization by the

smoothing penalty but the function component in the null space is unchanged.

Therefore, penalization of the null space is required in order to shrink the entire

spline component to zero. Their double penalty approach applies penalty for the null

space hence the smooth component can be eliminated. Double penalty is applied

for each smooth function and the functions with smoothing parameters approach

to infinity (such as the straight lines), will be removed the model. The R package

mgcv introduced in Wood (2015) has functions to fit additive models with an option

of variable selection by double penalization as described in Marra & Wood (2011).

This approach has significantly lower computational cost compared to the stepwise

model selection hence it is adopted for variable selection.

The model fitting and variable selection in the training data is performed using avail-

able functions in the mgcv package. The model is defined as gam(y ∼ s(theta 1)

+ s(theta 2) + · · · ) in the function where s(·) denotes the smooth terms. Also,

some interaction terms can be added as f(θ3, θ8) for the interaction of (unit square

area) and (the distance from the nearest edge) that fits a two-dimensional surface.

The interaction of the (convex hull area) and a categorical variable (being located

on the convex hull) takes binary values f(θ12, θ15) can also be added. These interac-

tions are defined in the function by writing s(theta 3, theta 8) and s(theta 12,

by = theta 15) respectively.

Instead of using the entire training set at once, we divide it into training subsets

since the size of the training set permits this flexibility. Therefore, we may fit model

using each training subset and these models can be used in an ensemble learning

approach. We first randomly sample smaller training subsets with equal size ntrain =

5000 without replacement that gives 100 training subsets. Then the GAMs are

fitted to each training subset and these models are used for area prediction in the

Validation–1. We check the individual and combined performances of the models

in the Validation–1. Having numerous models from independent training sets for

the same prediction purpose is also useful to reduce the sampling bias and the

variability in the predictions.
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3.4.2.2 Description of validation–1 data

The initially fitted base models in the training subsets are used for the prediction

of the cell area in the Validation–1, and an unbiased evaluation of the model fit is

made. Next, we investigate the influential points that we define as the observations

that cause large prediction error. These observations are the ones that the model

is not able predict well. One could suspect that this is due to the lack of the data

with similar characteristics in the training set. Hence we identify the influential

points and investigate whether they have characteristics in common (such as all

being corner cell, or extremely large cell, etc.). Moreover, we consider enriching

the training sets by adding the influential points and fitting previously mentioned

augmented models using the augmented training sets. The augmented models are

aimed to improve the accuracy of the base models.

The predicted cell area can be denoted as Âi for i = 1, 2, . . . , nV1 where nV1 is the

size of the Validation–1. Since the area prediction is made using 100 individual

models, the predicted area can be denoted as Âit where t = 1, 2, . . . , 100 indicate

each training subset. We may represent the predicted area using all models in a

matrix since there will be a practical use of it later. The matrix of predicted cell

areas Â can be expressed as

Â =


Â11 Â12 Â13 · · · Â1,100

Â21 Â22 Â23 · · · Â2,100
...

...
...

. . .
...

ÂnV11 ÂnV12 ÂnV13 · · · ÂnV1100

 , (3.8)

where the columns indicate the vector of predicted area using the t-th model for the

Validation–1. Each row is the predicted area for the observations of Validation–1.

For instance, the first row Â11, Â12, . . . , Â1,100 indicates the prediction of area for

the 1st observation of Validation–1 using individual base models which are 100 in

total.

3.4.2.3 Influential points

A classical modelling approach that fits models in the training data and evaluate

the performances of the models in a test or validation data is not our sole target.

We would also like to create improved versions of the initial models that have

a better predictive performance. To achieve this, we propose a way that takes

hard to predict observation in the Validation–1 data into account. Hard to predict

observations refer to the area of Voronoi cells which the model is the least capable of
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predicting. We identify these data points by checking the observations that causes

the largest absolute prediction error. Since the individual models are applied to the

Validation–1 data separately, each model has its own set of hardly predicted data

points. Therefore, we call this sets of points as the influential points.

The separate sets of influential points, chosen by individual models, are going to

be combined with the training data sets which constructs the augmented training

data sets. Then the new models are fitted using the augmented data which we

call augmented models, and keep the previously fitted base models. The augmented

models are aimed to be the updated versions of the base models. These type

of modeling approaches are discussed in Hofner et al. (2014) where a model-based

boosting method is introduced and used to fit boosted additive models by optimizing

the general risk functions using penalized least squares estimates as base-learners.

Also the ensemble learning approach we use is similar to the random forest technique

for classification and regression introduced by Ho (1995) and Liaw et al. (2002).

The columns of Â in (3.8) indicate the predicted cell area using the initially fitted

models on Validation–1. Each column is obtained using a separate model. There-

fore, for each column a set of influential points can be identified. Here, we define the

set of influential points as being the data points which has the largest 500 absolute

prediction error. By choosing this threshold, we aim to select the most influential

points.

The next stage will be using the base and augmented models in our second vali-

dation data Validation–2 that is going to be discussed in Section 3.4.2.4 and their

performances are going to be compared in the results section. We also investigate

what is special with these influential points and check whether they have common

features. Hence, we can have a better understanding of what type of cells cause

largest absolute prediction error.

3.4.2.4 Description of validation–2 data

A hold out data set with the same size as Validation–1 is created for further in-

ference about the base and augmented models. This is the stage that the two

modeling approaches are compared and the most appropriate model is suggested.

Area prediction in Validation–2 is made using individual base and augmented mod-

els, and the individual performances, and their overall performances are aimed to

be evaluated. Besides the design of the training, Validation–1 and Validation–2, the

specification of the distribution family of the residuals and link functions has an im-

portance. As the default choice, the residual distribution has a Gaussian family and
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identity link function. Hence, it is worth considering the alternative assumptions

as well.

3.5 Results

This section presents and discusses the results of base model fitting, identification

of influential points using Validation–1, data augmentation, fitting the augmented

models, and eventually the comparison and evaluation of the base and augmented

models in Validation–2. We consider fitting models and presenting the results for

two types of boundary scenarios separately: the unit square boundary, and the

unknown boundary where the convex hull of points is used as the boundary in

Sections 3.5.1 and 3.5.2 respectively.

3.5.1 Unit square boundary case

This section presents the results for the unit square boundary case which is used as

the sampling region for the data we use from Chapter 2.

3.5.1.1 Training base models

The additive model in (3.7) is fitted to 100 randomly sampled training data sets,

and hence we obtained individual models for each training subsets. Model fitting is

performed by taking the variable selection into account. We are interested in seeing

how frequently the variables are chosen based on separate models. Then we may

have an idea about the importance of the frequently selected variables.

In Figure 3.3, the occurrences of the variables based on 100 base models are listed.

Note that (:) stands for the interaction of variables. We use the x and y labels of the

variables referring to Table 3.1. The ranking of the selected variables highlights some

important variables in the base models. For instance, (unit square boundary area)

and its interaction with the (cell type), that is x3 : x11, are selected in all models.

Similarly the interaction of (cell type) and the (distance from the boundary) that

is x8 : x11. Also, z8 (distance from the convex hull boundary), x4 (unit square

boundary perimeter), the interaction of (convex hull boundary area) and (being on

the convex hull) that is z3 : z6, and z4 (convex hull boundary perimeter) are selected

in most of the models. On the other hand, the least important variables are x10

(distance from the centre), x8 (distance from the unit square boundary), x1 and x2

that are (the point coordinates), and x7 (the number of points).
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Figure 3.3: Variables and interaction terms, and how many times selected in the
base models.

Each base model can be expressed as a function as shown in the model in (3.7) that

contains all variables and some interactions. The useless variables in the models

will still appear in the equations, but since their coefficients are penalized to zero,

they have no effect in the model.

To see the trajectories of the individual models in the prediction of cell area, we

may visualize the estimated smooth components. The smooth components for the

covariates are given in Figure 3.4. Each plot is associated with a covariate that is

labeled in the title and many curves appear in each plot. The curves or straight

lines are the estimated smooth components for individual models. The smooth

components with gray colour are obtained from the base models, and the black

lines are for the augmented models which will be discussed in Section 3.5.1.2. The

y-axis always shows the values of the response variable and the x-axis is for the value

range of the covariate. Hence, we will be able to compare the smooth components

obtained from the base and augmented models.

Flat lines in particular variables, such as the point coordinates and the number of

points, indicates the penalized covariate that has no effect on the response variable.

The smooth components that show different characteristics have the major effects in

the base models. The smooth components that have the curvy shapes are the ones

that are frequently selected in the models whereas the least selected variables are

the flat lines. It is also observed that some individual models behave very differently
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Figure 3.4: Estimated smooth components of the GAMs in the individual base and
augmented models. Gray lines are the smooth components for the base models that
are overlaid for 100 models, and the smooth components for the augmented models
are shown in black.

to the majority of the other models. It is possible to make this conclusion based on

the smooth lines that do not follow the pattern of the majority.

The GAM is a generalization of the linear model, hence, it is natural to have a

mixture of smooth and linear components in a model even though our models do not

include any linear terms explicitly. The x8 (distance from the unit square boundary)

shows an example of this case where the lines are nearly straight in all models. Note

that there are only the numeric variables and no interaction terms shown in this

figure since the other types of interactions should be presented in different ways.

For instance, the interaction of two numeric variables in the model generates a

two-dimensional spline, and the interaction of a numeric and a categorical variables

estimates separate smooths based on each category level.

Lastly, let us check the residual patterns of the base models. Figure 3.5 shows

the normal quantile plot of base models in grey lines. The variation is high at

the lower and higher values of the residuals within models, but the lines get closer

around zero. Also, there are many values close to zero in the sample quantiles, that

is because many points that are close to the centre of the spatial region are not

affected by the boundaries and the prediction is very accurate.

3.5.1.2 Training augmented models

In this section, we explain the procedure of training the augmented models. The

augmented models are a continuation of the base models which are fitted using
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Figure 3.5: The normal quantile-quantile plot of residuals versus fitted values in
base models in gray lines, and the averaged values as the black line.

the training subsets and used in Validation–1 to identify the influential points that

is explained in Section 3.4.2.3. Augmented models are fitted using the augmented

training data which is obtained adding the influential points identified in Validation–

1. We first explain how to identify the influential points, and summarize their

characteristics, and explain how the augmented models are fitted.

Recall the matrix Â of predicted cell area in equation (3.8) where each column is

the vector of predictions using individual base models. To identify the influential

points, we base on the criterion of absolute error that can be denoted as |Ait− Âit|
for observations i = 1, 2, . . . , nV1 in Validation–1, and for models t = 1, 2, . . . , 100.

For each column t, we select from the points that cause the largest absolute errors.

Using each base model in Validation–1, we identify 500 points that cause the largest

absolute error. Therefore, each base model identifies a set of points that are the

most influential. Each set of influential points can be denoted as as I1, I2, . . . , I100.
In this case, I1 is the set that contains influential points identified using the first

base model and would contain some points such as I1 = {x125, x431, x1480, . . . }.

It is important to note that sets I1, I2, . . . , I100 are independently generated, there-

fore, these sets are likely to contain influential points in common. Hence, we can

check the influential points in terms of the number of sets in which they are ob-

served. The union of separate sets can be denoted as I = I1 ∪ I2 ∪ · · · ∪ I100 where I
is the set that has all influential points. Figure 3.6 shows the number of times each

influential point is identified in the y-axis, and the x-axis shows the index numbers

of influential points. Note that it is not the index numbers i in {xi}
nV1
i=1, we sorted

the influential points based on the number of base models they are identified by, and
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Figure 3.6: Index of the influential points and how many times they are identified
as influential.

gave new index numbers k ∈ 1, 2, . . . , K. Therefore, x-axis in Figure 3.6 denotes

the k. The unique number of influential points in I is approximately K ≈ 1500,

and around 200 points are identified as influential point by all base models.

It is important to check what is special with these influential points. The summary

statistics of the influential points and all other points are presented for comparison

in Table 3.3. The first row for each variable panel shows the summary statistics

of all points and the second row shows the influential points coloured in blue.

Many comparisons can be made based on this table. The mean properties are

significantly different for the influential and all points. The distance between the

influential points to the boundaries are much smaller compared to the all points,

which demonstrates the influential points are located closer to the boundaries. The

area and perimeter of influential points are larger than the and points and influential

points have fewer cell edges. Also the standard deviations of these properties are

substantially different.

Cell types of the influential points show differences compared to all points. The

proportions of cell types are calculated for influential, and all points are shown in

Table 3.4. The dominance of type–2 (edge cells) is obvious in the influential points.

Also, the proportions of type–3 (corner) and type–4 (corner+) cells which are close

to the corner but has two cell vertices lying on each perpendicular boundary is

higher. Only a small number (≈ 1%) of interior cells are identified as influential.

Similar differences on the proportions of convex hull points are seen in Table 3.5.

Most of the influential points are located on the convex hull boundary whereas it

is not the case when all points are considered.
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Min Max Mean SD Range

inf.area 0.0001 0.0197 0.0050 0.0026 0.0196
0.0006 0.0250 0.0115 0.0039 0.0244

unit.area 0.0000 0.0197 0.0050 0.0027 0.0196
0.0006 0.0284 0.0062 0.0035 0.0278

unit.per 0.0222 0.6085 0.2845 0.0723 0.5863
0.1203 0.6696 0.3404 0.0828 0.5493

unit.edge 3 13 5.759 1.306 10
3 8 4.923 1.044 5

dist.cent 0.0020 0.7056 0.3793 0.1412 0.7036
0.4258 0.6978 0.5566 0.0696 0.2720

dist.edge 0 0.4981 0.1690 0.1175 0.4981
0.0002 0.0986 0.0190 0.0161 0.0985

m 139 264 200.05 14.036 125
157 239 193.50 14.254 82

chull.area 0.0000 0.0197 0.0047 0.0026 0.0197
0.0001 0.0147 0.0041 0.0027 0.0146

chull.per 0.0100 0.5965 0.2744 0.0730 0.5865
0.0583 0.4970 0.2791 0.0876 0.4387

chull.edge 3 13 5.7826 1.294 10
3 8 5 1.144 5

dist.edge2 0 0.4932 0.1564 0.1191 0.4932
0 0.0757 0.0068 0.0117 0.0757

Table 3.3: Summary statistics of the variables in the validation data. The first
row for each variable panel is the results for all points and the second row for the
influential points coloured in blue.

Sets of influential points I1, I2, . . . , I100 identified by the base models are moved from

Validation–1 to the corresponding training data sets Dtr1 , Dtr2 , . . . , Dtr100 . Then

GAMs are refit using these augmented training data that contain the initial training

data sets and the influential points. The new models, namely the augmented models

are expected to improve some features of the base models.

The variable selection results are given for the augmented models in Figure 3.7.

These results are an extension to the results in Figure 3.3 with the variable selection

results for the augmented models given on the right. Some variables keep their

position in the ranking, and some changed position. For instance, x7 (number of

points) was one of the least selected variables in the base models, however, it was
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type 0 2 3 4

All points 0.761 0.219 0.020 0.0006
Influential points 0.008 0.603 0.350 0.0400

Table 3.4: Proportion of the cell types (0: interior, 2: edge, 3: corner, 4: corner+)
for all points, and the influential points.

on.chull 0 1

All points 0.933 0.067
Influential points 0.351 0.649

Table 3.5: Proportion of the cells located on the convex hull (0: No, 1: Yes) for all
points, and the influential points.

selected by all augmented models. Also, one of the variables selected in all base

models x3 (unit square area), and z8 (distance from the convex hull boundary) are

less important variables in the augmented models. The interaction terms x8, x11

(interaction of the distance from the unit square boundary and type), x3, x11 (unit

square area and cell type) are included in all base and augmented models so they

have importance in both methods.

The overlaid smooth components for single variables from individual augmented

models are also shown in Figure 3.4 where the estimated components for the base

models are given in the background in gray. Most black curves lie between the

minimum and maximum value of the x-axis. This means the larger observations of

the variables are available in the augmented data. The gray lines do not always lie

within the same range of x-axis because the initial training data did not have that

observations, but addition of the influential points to the training data provided

these observations. This means while the base models do extrapolation, augmented

models are doing interpolation for the influential points. The gray and black curves

for a specific variable, the unit square, shows that the lengths of many of the curves

in the base models are different. The issue is reduced in the augmented training data

by the placement of the influential points because the influential points enriched

the training data with infrequently seen observations.

There are slight changes on the patterns of the estimated smooth curves for the

base and augmented models. Also, penalized variables are closer to a straight line

at zero in the augmented models where they were slightly off from being flat in the

base models. The residual pattern of the augmented models using the augmented
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Figure 3.7: Selected variables in the unit square boundary models and the number
of times each term is selected. Results are given for the base models (left) and
augmented models (right). The change in the ranking for each term is highlighted
in blue and the total number of times selected is given in parentheses.

training data is given in Figure 3.8 which shows some difference from the base

models.

Figure 3.8: The normal quantile-quantile plot of residuals versus fitted values in
augmented models in gray lines, and the averaged values as the black line.

We now move on to the final evaluation of base and augmented models in an in-

dependent data set. The Validation–1 data is only used for the base models to

identify the influential points which are moved to the training data for augmenta-

tion. Hence, Validation–1 is lacking some important data points (influential) and

can no longer be used. As an independent data set, Validation–2, will be used
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for the further evaluation and inference on the base and augmented models. The

Validation–2 has a size 105.

An ensemble approach is used for the area prediction in Validation–2 to obtain a

better predictive performance of the individual models. The 100 individual base

and augmented models are used to predict the area, and the ensemble prediction

is calculated by averaging the estimates over data points. Using general notations,

the matrices for the prediction in the Validation–2 data be denoted as Ŷ ′ and Ŷ ∗

for base and augmented models respectively

Ŷ ′ =


ŷ′11 ŷ′12 ŷ′13 · · · ŷ′1t
ŷ′21 ŷ′22 ŷ′23 · · · ŷ′2t
...

...
...

. . .
...

ŷ′nv21 ŷ′nv22 ŷ′nv23 · · · ŷ′nv2 t

 , Ŷ ∗ =


ŷ∗11 ŷ∗12 ŷ∗13 · · · ŷ∗1t
ŷ∗21 ŷ∗22 ŷ∗23 · · · ŷ∗2t
...

...
...

. . .
...

ŷ∗nv21 ŷ∗nv22 ŷ∗nv23 · · · ŷ∗nv2 t


(3.9)

for points i = 1, . . . , nv2 and models j = 1, . . . , t, where nv2 = 105 and t = 100.

The ensemble prediction is calculated as

Ỹ ′ =
( 1

100

t∑
j=1

ŷ′1t
1

100

t∑
j=1

ŷ′2t · · ·
1

100

t∑
j=1

ŷ′nv2 t

)>
(3.10)

Ỹ ∗ =
( 1

100

100∑
j=1

ŷ∗1t
1

100

t∑
j=1

ŷ∗2t · · ·
1

100

t∑
j=1

ŷ∗nv2 t

)>
(3.11)

where Ỹ ′ and Ỹ ∗ are the vectors of predictions for base and augmented models

respectively.

To compare the performance of prediction, the prediction error over the spatial

region is a good way to see where these methods perform well and badly. Area

prediction is made for a total of nv2 = 105 data points. The squared error at each

point is calculated as SE ′ = (yi−Ỹ ′)2 and SE∗ = (yi−Ỹ ∗)2 for base and augmented

ensemble predictions. The mean squared error (MSE) is calculated by averaging

the squared error over pixel bins and it is visualized in Figure 3.9. The unit square

region has symmetric properties on each quadrant, so the spatial region is folded to

increase the data points in each bin using the data points at the relevant bin.

The high MSE occurs near the boundaries and highest at the corners for both

base and augmented models in (a) and (b) in Figure 3.9. The pixel bins in (a)

have lighter colour compared to (b) near the edges that means the MSE is smaller

for base models. The ensemble predictions perform very well if the points are

located far from the boundary. In (c) and (d), the squared error is calculated as
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Figure 3.9: The squared error of infinite plane area and predicted area averaged
over pixel bins for (a): base models, (b): augmented models, (c) unit square area,
and (d) convex hull area.

the difference between the infinite plane area, and the observed area due to both

boundary scenarios. The MSE in (c) and (d) seems higher compared to (a) and (b)

that shows the predicted area is closer to the truth. The darkest colour is at the

edges and the corner of the observed area due to the convex hull boundary in (d).

We may also check the numeric values of the MSE. Table 3.6 shows the MSE calcu-

lated globally, and for interior and edge parts of the region. The first two columns

are results for the base models and the last two columns are for the augmented

models. For these two modelling types, we obtained the results for the full models

and reduced models separately. The full model considers all variables listed in Ta-

ble 3.1. On the other hand, the reduced model excludes the variables coordinates

x1 and x2, and the distance from the centre x10 that have dependence with distance

from the edge x8 that is kept in the model.

We observe from Table 3.6 that the results for the full models and reduced models
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are extremely similar and even almost identical for the base models. For the aug-

mented models, the reduced models gave just slightly higher MSE. We also checked

the ranking of variables based on how many times they appear in the reduced mod-

els and showed in Figure A.2 and compared to the full models from Figure 3.7.

The rankings are very similar and only a few minor differences are seen. Since the

variable selection method also penalized the correlated variables in the full model,

similar results are expected. However, the collinearity is an essential issue that

should be considered in modelling.

Base Augmented

Full Models Reduced Models Full Models Reduced Models

Global 0.5441 0.5440 0.8525 0.8648

Interior 0.0033 0.0033 0.0418 0.0449

Edge 1.9032 1.9031 2.9001 2.9357

Table 3.6: MSE values calculated in the Validation-2 data using the models that
include all variables, and the models that do not contain the correlated variables.
The MSE values are multiplied as MSE×106.

The surface plots are not completely informative since it is hard to evaluate different

methods by eye. Therefore, we check the MSE along different surface transects in

Figure 3.10. Cross checking of the surface plots and the transect plots verifies

the previous conclusions and adds more details about the results. We see that

the ensemble predictions for both base and augmented models are in the first two

quartiles of boxplots. More importantly, the base ensemble predictions always give

smaller MSE for all transects and it is the best among all individual models. When

the outlier points of the individual model prediction boxplots are checked, some of

the individual base models give extremely larger MSE than the augmented models.

Therefore, the augmented model approach reduces the maximum errors in the data,

but the overall performance of the base models is better. In the edge transect,

some of the boxplots have unusual shapes since there are individual base models

insufficient to predict the cell area well. But the ensemble prediction performs

satisfactorily accurate.

The error plots are shown in Figure 3.11 and 3.12 where the transect boxplots show

that base ensemble predictions are spread around zero but the augmented ensemble

models mostly predict values to be larger than the truth.
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Figure 3.10: The boxplots of MSE for predictions from individual base models
(blue) and augmented models (red) over pixel bins along different transects. The
ensemble predictions are shown with the solid points in the same colour at each
transect bin. The MSE for unit square and convex hull area are shown with square
and diamond shaped points.
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Figure 3.11: The error of infinite plane area and predicted area averaged over pixel
bins for (a): base models, (b): augmented models, (c) unit square area, and (d)
convex hull area.
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Figure 3.12: The boxplots of mean error for predictions from individual base models
(blue) and augmented models (red) over pixel bins along different transects. The
ensemble predictions are shown with the solid points in the same colour at each
transect bin. The MSE for unit square and convex hull area are shown with square
and diamond shaped points.
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3.5.2 Unknown Boundary case

This section considers the case where no boundary information is available. In this

case, we take the convex hull of the points and use it as the boundary. The model

fitting procedure is performed for the unknown boundary case using the available

variables from Table 3.1 (right column). A similar strategy is followed to fit the

base models as in Section 3.5.1. Then these models are used to predict the cell area

in Validation–1 and influential points are identified. Finally, the influential points

are added to the training data sets to fit augmented models.

The variable selection results for the base and augmented models are given in Fig-

ure 3.13. z4 (convex hull perimeter), z5 (convex hull number of edges), z3 : z6 (the

interaction of convex hull area and being on the convex hull), z3 : z8 (the interac-

tion of convex hull area and distance from the convex hull boundary) are the most

selected variables in the base models. z4 and z5 kept its position in the ranking

for the augmented models and the interaction terms slightly went down although

the number of times selected increased. There is a significant jump for x7 (the

number of points) which was also the same for unit square boundary results, and

z8 (distance from the boundary) are the least important terms in the augmented

models.
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Figure 3.13: Selected variables in the unknown boundary models and the number
of times each term is selected. Results are given for the base models (left) and
augmented models (right). The change in the ranking for each term is highlighted
in blue and the total number of times selected is given in parentheses.

The equivalent process of the identification of the influential points from Sec-

tion 3.4.2.3 is done for the unknown boundary case models as well. Figure 3.14
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shows the number of points which were identified as influential by all models was

around 250 which is very close to the previous results in the unit square boundary

in Figure 3.6. Figure 3.6 and 3.14 summarizes that there are many influential points

which are commonly identified by all 100 models. This shows that influential points

may have features in common and the data augmentation process we perform has

an importance to deal with the predictive performances of the base models. There

are approximately 1000 influential points, and 816 of them are identified as influen-

tial in the unit square base models. This demonstrates that mostly the same points

are identified as influential. Therefore, another analysis on the influential points is

not necessary.
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Figure 3.14: Index of the influential points and how many times they are identified
as influential.

The estimated smooth components in Figure 3.15 shows that curves for base mod-

els in gray and augmented models in black which shows some differences. The

data augmentation here also provides the training data to have some infrequently

observed data points. Hence the augmented models are trained to estimate such

points more accurately. The residuals patterns are very similar to the unit square

boundary results.

The spatial patterns of the MSE in Figure 3.17 and at the transects in Figure 3.18

have some overall similarities but also differences in specific parts. For instance, the

base and augmented models almost perform equally at the corner. This is noticeable

in Figure 3.17 (a) and (b) near the corner, and top panel in Figure 3.18 where the

first few boxplots are for the pixels near the corner and they overlap. There are no

unusual boxplots for either of the base and augmented ensemble predictions so there

are no extreme errors. Apart from the corners, the base models perform better than
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Figure 3.15: Estimated smooth components of the GAMs in the individual base
and augmented models. Black lines are the estimated smooth components for the
augmented models that are overlaid for 100 models, and the estimated components
for the base models are shown in the background in gray lines.

Figure 3.16: The normal quantile-quantile plot of residuals versus fitted values for
individual base (left) and augmented models (right).

the augmented models. The spatial patterns of the errors are shown in Figure 3.19

and 3.20. The unusual appearance of the augmented models also exists here.
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Figure 3.17: The squared error of infinite plane area and predicted area averaged
over pixel bins for (a): base models, (b): augmented models, (c) unit square area,
and (d) convex hull area.
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Figure 3.18: The boxplots of MSE for predictions from individual base models
(blue) and augmented models (red) over pixel bins along different transects. The
ensemble predictions are shown with the solid points in the same colour at each
transect bin. The MSE for unit square and convex hull area are shown with square
and diamond shaped points.
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Figure 3.19: The error of infinite plane area and predicted area averaged over pixel
bins for (a): base models, (b): augmented models, (c) unit square area, and (d)
convex hull area.
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Figure 3.20: The boxplots of mean error for predictions from individual base models
(blue) and augmented models (red) over pixel bins along different transects. The
ensemble predictions are shown with the solid points in the same colour at each
transect bin. The MSE for unit square and convex hull area are shown with square
and diamond shaped points.
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3.6 Classification of boundary-affected points

Area prediction for Voronoi cells discussed in Section 3.4 is useful for the area

prediction of both the interior and edge cells. The area prediction results show that

the predicted area differs from what is observed especially near boundaries. This

gives an idea that the clipped cell area does not reflect the true cell area since the

cells are affected by the boundaries. On the other hand, the interior points that are

closer to the centre of the region are less likely to be affected by the boundaries.

The boundary-affected points constitute approximately 28% of a test data with

size ntest = 3× 105 which we will use for the classification of the boundary-affected

points. This section aims to give an idea on the classification of cells that are likely

to be effected by the boundaries and performs a simple logistic regression.

The same training sets from Section 3.4 are used to create individual models for the

prediction of the probabilities of being boundary-affected. The model in equation

(3.7) is modified to a generalized linear model with Binomial family to fit logistic

regression models. The binary response variable Y is denoted as p = P (Y =

1|θ) that indicates the probability of a point to be boundary-affected given θ =

{x1, x2, . . . , z3, z4, . . . , z9} and the relationship between the predictors and log-odds

is written as

log
p

1− p
= β0 + β1x1 + β2x2 + · · · (3.12)

and the probabilities are recovered as

p =
eβ0+β1x1+β2x2+···

1 + eβ0+β1x1+β2x2+···
. (3.13)

Let p̂ be the prediction matrix of probabilities calculated using individual logistic

regression models that are fitted to the previously generated training subsets. Hence

the p̂ is created using the individual logistic regression models in the test set as

p̂ =


p̂11 p̂12 p̂13 · · · p̂1t
p̂21 p̂22 p̂23 · · · p̂2t
...

...
...

. . .
...

p̂nts1 p̂nts2 p̂nts3 · · · p̂ntst

 ntest = 1, . . . , 3× 105 and t = 1, . . . , 100.

Then the ensemble predictions of the probabilities in the test set are calculated as

p̃ =
( 1

100

t∑
j=1

p̂1t
1

100

t∑
j=1

p̂2t · · ·
1

100

t∑
j=1

p̂ntst

)>
.
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The prediction results in the test set are illustrated using the receiver operating

characteristic (ROC) curves that present a useful evaluation of the performance of a

binary classifier depending on the measures of sensitivity and specificity at different

thresholds. The ROC curve is calculated based on the values on the confusion

Actual

P
re

d
.

Boundary-affected Unaffected
Boundary-affected True Positives False Positives
Unaffected False Negatives True Negatives

Table 3.7: The confusion matrix table.

matrices as in Table 3.7. We calculate the sensitivity and specificity to construct

the ROC curve for all possible thresholds.

True Positive Rate = Sensitivity =
True Positives

True Positives + False Negatives

False Positive Rate = (1− Specificity) =
False Positives

False Positives + True Negatives

The ROC curve in Figure 3.21 summarizes all confusion matrices from all possible

threshold values. The varying threshold values are used to calculate the true positive

and false positive rates for each threshold, and the calculated rates construct the

curve in Figure 3.21. The curve close to the top-left corner indicates the good

performance of the model to classify the boundary effected cells. The threshold

that gives the desired rates can be selected as the optimal threshold. A random

classifier that has equal true positive and false positive rates gives the diagonal line.

3.7 Alternative data scenarios

We considered two types of modeling strategies; in the case of known and unknown

boundaries. These two types of conditions can cope with many important data

structures but cannot cover all possible data scenarios. It is not practical to go

over all boundary scenarios, however, the methodology we use can be adopted for

alternative scenarios possibly with appropriate modifications.

The are two main stages in our study; first, a large data set is created through

the simulation where the settings of the simulation such as which cell properties

to calculate are carefully chosen for a specific point pattern type. Second, the
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Figure 3.21: ROC curve created from the confusion matrices for the test data.

methodology to predict the cell area or classify the boundary-affected cells should

be considered where we gave the major emphasis on the prediction of cell area. The

models we created can be used for any type of point pattern and boundary cases,

but we have not checked the accuracy of the predictions in this chapter. Therefore,

we will investigate and explain the usage of the models for general data scenarios

in Chapter 4.

We considered the set of n recorded points X ∈ Ω where the sampling region is a

unit square Ω = [0, 1]2 andX follow a homogeneous Poisson process so n ∼ Po(ρ|Ω|)
where |Ω| is the area of the region. The simulation study is designed to generate a

data set to learn more about the properties of homogeneous Poisson points. Then

the parts of this data set is used as training, and validation sets to fit and evaluate

models.

The R code in Appendix B calculates the statistical properties of homogeneous

Poisson points with intensity ρ = 200 for a single realization. Given a set of homo-

geneous Poisson points within a finite region Ω, it performs the Voronoi tessellation

of points, randomly select a point and calculate the cell properties which are listed

in Table 3.1. We repeated the process given in the code for one million independent

realizations, and by randomly sampling a point at each realization and recording

the cell properties, the entire data set is created. If the similar path is followed

to repeat the simulation for a different data or boundary scenario, the data ob-

tained from the simulation can be used for further purposes such as fitting models
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to predict a cell property or a classification case.

3.8 Conclusions

This chapter discussed a thorough analysis of constrained Voronoi tessellation cell

area due to imposed boundaries and provides ways to deal with the issues caused

by boundaries. Since the data points in a finite region lack neighbour points beyond

the boundaries, the boundaries determine the characteristics of cells that lie on the

boundary or close to the boundary. However, the base and augmented models we

created treats the Voronoi cells as they are in a larger region or in an infinite plane.

The Voronoi tessellation has a wide use in spatial data analysis and we demon-

strated how its statistical properties change near the boundaries. There are ways

to reduce the problems that boundaries cause by fitting regression models that

predict the cell area. The base and augmented ensemble models are the two ap-

proaches we proposed. For the general use, base models perform satisfactorily well.

Augmented models on the other hand are able to improve some of the weaknesses

of the base models such as reducing the extreme errors, but not have a sufficient

global performance. Therefore, one could decide whether to achieve a good global

performance, or to minimize the largest errors. Based on accurate area prediction,

we suggest the use of base models due to its global performance.

One of the circumstances of this chapter is the consideration of particular boundary

types and point patterns. Since it is not possible to cover all possible scenarios, we

considered the most important cases that may have a general use. However, as in

the previous section, we explained how one can perform the simulation by adopting

the code we provided which can be modified easily for different boundary types and

point patterns.
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Chapter 4

Robustness of area prediction

This chapter extends the study on the area prediction of Voronoi cells described in

Chapter 3 by considering homogeneous Poisson points with varying intensity cases,

and the situations where the spatial data shows regular and clustered patterns.

The main objective of this chapter is to develop generalized versions of the previous

models so they can be applied to a wide range of data cases that have different

spatial characteristics. More importantly, our proposed approach aims to allow the

models to be applicable to real data sets as well.

First, we start by testing the models from Chapter 3 which were created using

training sets of Voronoi cells from homogeneous Poisson points with a specific in-

tensity. Section 4.1 explores the beahviour of these models on the test sets that

contain Voronoi cells of homogeneous Poisson points from different intensities. In

Section 4.2, we describe regular and clustered points based on an existing method,

and focus on the local intensities (i.e. the highly clustered parts) that may be

also different than the global intensity of the points. Then we propose a way that

the models created in Chapter 3 can be updated based on the local intensities to

improve the prediction performance. Finally, we use the updated versions of the

models for area prediction for regular and clustered points in a simulation study

and real data sets in Section 4.3, and an overall summary is given in Section 4.4.

4.1 Misspecification of intensity

Chapter 3 considered models that predict the true area of Voronoi cells given the

other properties of the cells. These models are fitted using a training data that

contains properties of Voronoi cells from homogeneous Poisson points with point
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4.1 Misspecification of intensity

intensity ρ0 = 200. However, it is uncertain how the models perform for data sets

with varying point intensities. more specifically, we have not tested the model for

data sets that has ρ = 50 or ρ = 500. In this chapter, we consider the cases of

varying intensities which we call as misspecified intensity which is an often case in

the real data. Therefore, the aim is to check the robustness of the models that are

fitted to the training data with intensity ρ0 on test data sets that have number of

points n ∼ Po(ρ) where ρ 6= ρ0. The choices of different ρ values will be discussed

later.

To investigate the robustness of the models for misspecified intensities, the simu-

lation study is extended to generate new training and test sets. A simulation is

performed which we generate data sets of homogeneous Poisson points with inten-

sities ρ ∈ {50, 100, 200, . . . , 600}. First, we consider each data separately and fit

additive models for each case. Additionally, these models are used for area predic-

tion for unrelated intensities. For instance, we fitted separate models for each of

ρ ∈ {50, 100, 200, . . . , 600} but we used the model fitted for ρ = 50 data on ρ = 600

data to see how the model with misspecified intensity performs. The purpose of this

approach is to detect if any issues occur with misspecified intensity, and propose

ways to improve the predictions in such situations. Otherwise, relying on a single

model for any data set may not be accurate.

To compare all cases, let ρ and ρ? indicate the intensity of the training and test data

respectively. Results are summarized in Table 4.1 in terms of the mean squared

errors. The predicted and true area are standardized as Âi = ρtÂi,ρ?t and A?
i =

ρtAi,ρ?t hence E(Âi) = E(A?
i ) = 1 for cell areas associated with points xi, i =

1, . . . , n for all intensity cases t = 1, 2, . . . , 7, and the values in the table are MSE×
102. The mean squared error is calculated as MSEi =

∑n
i (Âi −A?

i )
2/n. The rows

in the table indicate the MSE for a specific data intensity ρt when different models

that has ρ?t are used. The top panel shows the results for base models and the

bottom panel is for augmented models. The blue colour shows the smallest MSE

achieved for each data. The most important conclusion from the table is that the

smallest MSE is always achieved using the models which are fitted to data which

have the same intensity as the data being analysed. Usage of models from different

intensities, that is when ρt 6= ρ?t , gives a larger MSE. Hence, it is not appropriate to

use a model when there is a mismatch between the training and test set intensities

(ρt and ρ?t ). There is a better performance of the base models as concluded in

Chapter 3.
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4.1 Misspecification of intensity

Data Model intensity, ρ?

intensity ρ 50 100 200 300 400 500 600
50 4.48 7.81 8.45 9.23 11.95 12.46 17.70
100 4.66 3.09 4.79 5.09 5.73 6.56 7.29
200 3.22 3.01 2.22 3.01 3.11 3.37 3.41
300 2.65 2.40 2.25 1.81 2.24 2.31 2.44
400 2.27 2.06 1.89 1.85 1.51 1.86 1.87
500 1.99 1.80 1.65 1.60 1.56 1.31 1.57
600 1.83 1.65 1.49 1.43 1.40 1.39 1.19

50 6.21 10.94 10.43 10.93 11.09 14.45 12.07
100 5.98 5.05 5.90 6.39 6.36 6.61 6.69
200 4.87 5.14 3.70 4.34 3.96 3.92 3.84
300 4.17 4.69 3.54 3.02 3.01 2.95 2.81
400 3.75 4.14 3.16 2.91 2.25 2.50 2.31
500 3.42 3.93 2.99 2.77 2.36 2.09 2.10
600 3.07 3.62 2.76 2.57 2.19 2.07 1.75

Table 4.1: Mean squared errors of area prediction for base (top panel) and
augmented models (bottom panel). The rows are for the data set intensities
ρ ∈ {50, 100, . . . , 600} and columns are for the models that is fitted for each
ρ? ∈ {50, 100, . . . , 600}. The case when ρt = ρ?t for t = 1, . . . , 7 indicates the
usage of the same model fitted for the data that has intensity ρt, and ρt 6= ρ?t
indicates the usage of models fitted from different data intensities.

In this experiment, another consideration might be to evaluate the joint performance

of models from other models that has the lower and higher intensities. For instance,

the area prediction for ρt = ρ?t is Âi,ρ?t for a specific intensity. As an alternative

approach, we take the weighted average (Âi,ρ?t−1
+Âi,ρ?t+1

)/2 to check how robust the

prediction of Âi,ρ?t is to misspecified intensity. The MSE of the weighted average of

predictions from models ρ?t−1 and ρ?t+1 are given in Table 4.2. The results show that

the weighted average is not very accurate. In particular, for augmented models,

a lower MSE is obtained by just using a prediction model based on the higher

intensity ρ?t+1. However, for base models, this is not true and averaging the two

predictions gives marginally lower MSE.

One possible violation of the modelling assumptions is the misspecification of the

intensity which can lead to problems in the area prediction. Some of the cell prop-

erties such as the cell area and perimeter depend on ρ. When the model is fitted

using a training set with ρ0, and the test set has intensity ρ 6= ρ0, the mean cell

area and perimeter for the training and test data will be different. Therefore, the

issue can be approached by modifying the variables (that depend on ρ) in the test
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4.2 Regular and clustered point patterns

Data Model intensity, ρ?

intensity ρ 50 100 200 300 400 500 600
50 – 5.46 8.26 10.02 22.16 17.48 –
100 – 4.60 3.62 5.15 6.48 7.94 –
200 – 2.48 2.94 2.46 3.14 3.23 –
300 – 2.38 1.95 2.22 1.91 2.33 –
400 – 2.03 1.92 1.60 1.84 1.60 –
500 – 1.78 1.67 1.59 1.38 1.56 –
600 – 1.63 1.51 1.43 1.40 1.24 –

50 – 6.28 8.99 10.58 12.09 11.12 –
100 – 5.60 4.79 5.97 6.23 6.43 –
200 – 3.83 4.50 3.38 4.02 3.84 –
300 – 3.73 3.50 3.17 2.76 2.86 –
400 – 3.36 3.34 2.53 2.65 2.15 –
500 – 3.13 3.19 2.61 2.29 2.19 –
600 – 2.84 2.95 2.42 2.27 1.87 –

Table 4.2: Mean squared errors calculated from the weighted average of the predic-
tions from models with ρ?t−1 and ρ?t+1 when the particular interest is the intensity
ρt. Results are given for base (top panel) and augmented models (bottom panel)
respectively. The smallest MSE in each row is highlighted in blue colour. The (–)
symbol indicates no weighted average is calculated since there are no more columns
on the left or right.

data appropriately with respect to ρ0. The misspecified intensity can happen for

the intensity of the homogeneous Poisson points as we considered in this section, or

it is possible to obtain variable local intensities for different sub regions of clustered

point patterns. The latter case will be considered in the next section by taking into

account various regular and clustered point patterns.

4.2 Regular and clustered point patterns

The foundation sources to study the point patterns include Cox & Isham (1980);

Cressie (2015); Cressie & Wikle (2015); Diggle (1983); Gelfand et al. (2010); Illian

et al. (2008); Ripley (1988, 2005) and Baddeley et al. (2015). Various ways to

generate different point patterns are explained and discussed in these references.

We are interested in using a model to generate realizations of regular and clustered

point patterns. The saturation process by Geyer (1999) explained in Section 1.5 has

practical features that the different types of point patterns can be both analysed

and simulated by the implementation of the method in a R.
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4.3 The prediction of Voronoi cell area based on regular and clustered
points

The saturation process can be performed in R using the routines in the spatsat

package as explained in Baddeley et al. (2015). There are two ways of choosing the

parameters of the process, i) the values of the parameters β, γ, r, s can be predefined,

or ii) the process can be fitted to a point pattern data, hence the parameters are

estimated, then simulated realizations of the fitted point process are created using

Metropolis-Hastings algorithm. There are also other well known processes such as

the Poisson cluster process, Neyman-Scott, and Bartlett-Lewis cluster processes, or

jittering the grid points, but the scheme we describe is more convenient in terms of

the flexibility and practicality of the control of the parameters.

By the modification of the parameter γ it is possible to generate realizations of

regular and clustered point patterns. The different values of γ decides the magnitude

of regularity and clustering. For instance, the homogeneous point pattern case is

obtained by setting γ = 1. However, setting of γ < 1 results more regular patterns

and γ > 1 clustered points where the more regular and clustered points are achieved

by departure from γ = 1 increases.

An example of different point patterns generated from the saturation process is

shown in Figure 4.1. From top-left to bottom-right, n points are generated for the

values γ = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, where n ∼ Po(200). The centre plot

where γ = 1 indicates homogeneity which can be considered as the baseline and

realizations of regular and clustered points are shown for different values of γ < 1

and γ > 1.

4.3 The prediction of Voronoi cell area based on

regular and clustered points

Area prediction for regular and clustered points is not straightforward as in the

homogeneous Poisson point pattern case, but it is possible to use the models fitted

for homogeneous data with modified covariates of regular and clustered points as

we briefly mentioned. In this section, we explain the process of area prediction for

regular and clustered points that aimed to be done by using the local intensities.

Let the local intensities at the locations of the regular or clustered points {xi}ni=1

be ρi which can be estimated as ρ̂i.

One method to estimate the local intensity is to use the kernel smoothed intensity

from the point pattern. Given a point pattern data, the method computes a fixed-

bandwidth kernel estimate of the intensity function of the related point process
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4.3 The prediction of Voronoi cell area based on regular and clustered
points

g  = 0 g  = 0.25 g  = 0.5

g  = 0.75 g  = 1 g  = 1.25

g  = 1.5 g  = 2 g  = 3

Figure 4.1: Simulated points from Geyer’s saturation process (Geyer, 1999). Ex-
amples of inhibition or repulsion to homogeneity and to clustering or attraction are
shown from top-left to bottom right with incremental magnitudes of repulsion and
attraction where the plot with bold frame at the centre is the homogeneous case.
The intensity parameter β = 200, interaction radius r = 0.05, and the saturation
threshold s = 2 are fixed for all point patterns, and the interaction parameter γ
takes values 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3 where γ < 1 indicates regularity,
and clustering if γ > 1.

using an isotropic Gaussian kernel as the default option (Diggle, 1985). The edge

corrected intensity estimate at an arbitrary location u is

ρ̂(u) = e(u)
∑
i

κ(xi − u)ωi (4.1)

where κ is the kernel function based on isotropic Gaussian distribution, ωi are the

weights if assigned to the points, and e(u) is the correction term for bias at the

edges defined as
1

e(u)
=

∫
W

κ(v − u)dv (4.2)

87



4.3 The prediction of Voronoi cell area based on regular and clustered
points

where W is the observation window. The edge corrected estimate of the local

intensity is obtained through dividing the convolution of the Gaussian kernel by

the edge correction term e(u).

An example of the local estimate of the intensity over the region with edge correction

is shown in Figure 4.2 using the method shown in (4.1) for the point patterns from

Figure 4.1. The density.ppp functions in the spatstat package is used to compute

the kernel smoothed intensity given the point patterns.

Figure 4.2: Kernel smoothed intensity of the point patterns.

The local intensities can be estimated at the data points rather than the entire

region which is particularly useful for area prediction. Given a set of points Xγ =

{xi ∈ [0, 1]2; i = 1, . . . , n} generated based on the value of γ, and n ∼ Po(ρ0 = 200),

we have a local estimate of the intensity ρ̂i at each point xi. The area prediction

for points is then performed as

Âi =

p∑
j=1

fρ0,j(θij) (4.3)

where fj are the unknown smooth functions fitted in the additive model for area

prediction, p is the number of predictors, θj are the covariates j = 1, 2, . . . , p such
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4.3 The prediction of Voronoi cell area based on regular and clustered
points

as the raw cell area, perimeter, number of edges due to induced boundaries, cell

type and so on for p covariates in total. The model in (4.3) does not depend on the

local intensity ρ̂i and may have the issues highlighted in Section 4.1, however the

model can be improved as

Â?i =

p∑
j=1

fρ̂i,j(θ
?
ij). (4.4)

The model in (4.4) uses the feature of the ρ̂i to scale some of the covariates θ?j

that depend on the ρ̂i. For instance, the scaled cell area due to boundaries is

A?i = Aiρ̂i/ρ0, and the scaled perimeter is P ?
i = Pi

√
ρ̂i/ρ0. These scaling factors are

defined based on the theoretical derivation of the expected cell area and perimeter

from equation (2.1). Other covariates such as the number of cell edges do not

depend on the data intensity ρ0. Although we only considered the scaling of the

cell area and the perimeter based on different global or local point intensities, other

cell properties such as the closest distance between the point and the boundary can

also be investigated to see whether it depends on the intensity.

The true area A′i is determined by generating the point pattern in a larger region

Ω? = [−1, 2]2, and studying the points inside the region Ω = [0, 1]2. The shifting

approach in Chapter 2 is not used because the periodic boundary conditions are not

very appropriate especially for clustered points. Consider clustered points at the

corner of the region where the cluster is clipped by the boundary. We only observe

some of the points that belong to the cluster. If shifting is applied, then the new

neighbour points of the cluster may be far from the cluster. Therefore, the cell

area A′i obtained by shifting for a sampled point in the cluster may be very large.

Instead, we use an approach that simulates points in a larger region, Ω? = [−1, 2]2

but samples from the points in Ω = [0, 1]2. The true cell area is calculated based on

the Voronoi tesselation of all points in Ω? = [−1, 2]2. Therefore, irregularities such

as clusters are not clipped, and the true area is calculated based on a continuum of

the cluster rather than shifting the clipped cluster to the centre.

4.3.1 Results for simulated data

Area prediction is performed for the simulated data. In each simulation, sets of

n points are generated for a specific value of γ, and the statistical properties of

a randomly selected point is calculated. This is done for 104 realizations for each

value of γ. The data is used to predict the cell area of the randomly selected points

using models (4.3) and (4.4) and the results are summarized in the Table 4.3.
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4.3 The prediction of Voronoi cell area based on regular and clustered
points

The mean squared error values are given in Table 4.3 where the values are for

MSE×106, and their standard errors are in Table 4.4 for (SE×108). B and Ag

notations indicate the area prediction results using model (4.3) for the base and

augmented models. On the other hand, B? and Ag? are the base and augmented

model prediction results using the model (4.4). The base and augmented model

results are separated as the two main row panels (top and bottom) in Table 4.3.

Each panel is also separated into three sub-panels which are for the global, interior

and edge regions respectively. The interior region is defined as Ωin = [0.15, 0.85]2

and edge region is for the points that are located within Ωed = Ω′in where Ω =

Ωin ∪ Ωed.

The MSE results in Table 4.3 show an overall better performance of model (4.4) in

all irregular data situations both for base and augmented models. The MSE and

the standard deviation is extremely small for interior points, which is expected, but

differences are more apparent for the edge points. In terms of the values of γ, the

MSE is smallest when γ = 0 that is the most regular point pattern and highest for

the highly clustered points when γ = 3. The recommended model based on this

experiment is to use B? (base model that use the local estimate of intensity).

To check whether the differences between MSE values from models (4.3) and (4.4)

are significant, consider the MSE values with confidence intervals in Figure 4.3. The

black and red colours represent models (4.3) and (4.4) respectively for base models,

and pale colours for the augmented models. Results are separated for global, interior

and edge regions from left to right respectively. In the global case, B? (•) always

have the smallest MSE. We see the same pattern for edge region which is the case

that is being of interest. Although all models give very small MSE values for the

interior region, B? (•) is the smallest except when γ = 3. Also, the confidence

intervals between the base and augmented models generally do not overlap which

suggests the base models are significantly better than the augmented models in

area prediction. It is appropriate to keep relying on the model in (4.4) that uses

the estimated local intensities. However, we do not suggest a strict usage of the

base models since the augmented models reduce the maximum error, and the base

models give the smallest global MSE. The preference between two models should

be based on which of these criteria is more important in a particular application.

4.3.2 Results for real data

In this section, the area prediction method is applied to several real data sets, all

are available in the spatstat library in R. We selected four data sets finpines,
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γ

Cases 0 0.25 0.50 0.75 1 1.25 1.50 2 3

G
lo

b
al

B 0.186 0.226 0.298 0.411 0.529 0.628 0.807 0.907 1.254
B? 0.163 0.196 0.243 0.334 0.429 0.520 0.631 0.758 1.173
Ag 0.698 0.691 0.690 0.800 0.863 0.960 1.092 1.170 1.478
Ag? 0.639 0.629 0.614 0.717 0.749 0.840 0.934 1.059 1.477

In
te

ri
or

B 0.001 0.001 0.001 0.002 0.004 0.004 0.011 0.015 0.023
B? 0.000 0.000 0.001 0.001 0.003 0.002 0.006 0.013 0.038
Ag 0.019 0.021 0.026 0.035 0.043 0.048 0.066 0.073 0.095
Ag? 0.020 0.017 0.015 0.015 0.017 0.019 0.030 0.050 0.112

E
d
ge

B 0.365 0.442 0.592 0.805 1.021 1.222 1.566 1.742 2.487
B? 0.321 0.385 0.483 0.656 0.830 1.016 1.227 1.458 2.314
Ag 1.353 1.337 1.348 1.536 1.633 1.831 2.070 2.198 2.865
Ag? 1.239 1.219 1.210 1.393 1.437 1.625 1.798 2.006 2.849

Table 4.3: Mean squared error of the predicted area using base B and augmented
Ag models. B indicates the base model, whereas B? is a base model that uses the
scaled covariates based on the estimated local intensities ρ̂i at the data points. The
same case applies for the Ag and Ag?. Results are given in three row panels that
are for global, interior and edge parts respectively. Columns show the MSE results
for each point pattern type based on the value of γ. In each column, results are
obtained from 104 data points each of which is sampled from 104 realizations of
independent data sets. Results are for MSE× 106.

γ

Cases 0 0.25 0.50 0.75 1 1.25 1.50 2 3

G
lo

b
al

B 0.670 0.850 1.332 2.167 2.737 2.947 4.182 4.759 7.166
B? 0.532 0.674 0.903 1.235 1.653 2.098 2.741 3.595 5.940
Ag 2.065 2.195 2.297 2.781 3.132 3.400 4.111 4.498 6.828
Ag? 1.957 2.000 2.036 2.401 2.560 2.873 3.253 3.922 5.897

In
te

ri
or

B 0.001 0.002 0.033 0.033 0.144 0.046 0.200 0.218 0.529
B? 0.001 0.001 0.031 0.007 0.127 0.024 0.156 0.209 0.581
Ag 0.032 0.038 0.062 0.089 0.188 0.131 0.728 0.296 1.022
Ag? 0.018 0.018 0.038 0.036 0.126 0.054 0.528 0.562 0.939

E
d
ge

B 1.267 1.612 2.587 4.179 5.213 5.637 8.024 9.064 14.126
B? 0.998 1.270 1.735 2.340 3.105 3.983 5.222 6.827 11.671
Ag 3.909 4.190 4.401 5.355 6.060 6.563 7.944 8.741 13.335
Ag? 3.661 3.748 3.880 4.520 4.773 5.396 6.100 7.347 11.459

Table 4.4: Standard error of the MSE values from Table 4.3. Results are for SE×108.
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Figure 4.3: Confidence intervals for MSE values. The points (of all colours) show the
MSE and the lines (of all colours) show the confidence intervals based on different
methods that are shown in the centre plot legend.

longleaf, spruces, and waka that have different spatial features. These data sets

are created from different types of trees within specific sampling regions and are

examples of point pattern data. The locations of trees are marked by the height

and the diameter of trees which make it a marked point pattern. However, we will

only use the tree locations as points in this chapter.

We additionally use a data set that contain the chemicals measured in the soil in

Barro Colorado Island (BCI) at sampled locations. The BCI data has two-thirds

of the locations from the equidistant grid points and one-thirds are sampled at a

random isotropic direction with some distance from the regular points. Therefore,

this data set has a completely different nature compared to the tree data sets men-

tioned earlier. The BCI data is a geo-referenced data that has coordinate-based

sampled points where chemical levels are measured. The BCI data, is collected by

a part of the Effects of soil-borne resources on the structure and dynamics of low-

land tropical forests project by principal investigators: Jim Dalling, Robert John,

Kyle Harms, Robert Stallard and Joe Yavitt. The data that are publicly available

in http://ctfs.si.edu/webatlas/datasets/bci/soilmaps/BCIsoil.html only

contains sampling locations and kriging estimates of the soil data. However, the

raw soil data was obtained from Dalling et al. (2021) by personal communication.

Descriptive information about the data sets is given in Table 4.5 and the locations

are shown in Figure 4.4. In Table 4.5, the estimated parameter γ̂ is also given for
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each data set; these fall in the range 0 ≤ γ ≤ 3 which we used in the simulations.

The γ̂ values indicate that spruces and BCI are the data sets that have regular

pattern, waka is almost completely homogeneous data, and finpines and longleaf

have clustering. Hence the presentation order of the data sets are decided based on

the γ̂.

Data set n γ̂ Ω Description

spruces 134 0.28 56 × 38 meter Locations of Norwegian spruces trees
and diameters in a rectangle sampling
region in Saxony, Germany.

BCI 300 0.32 1000 × 500 meter Soil nutrient data for 13 different chem-
icals at the sampled locations in a rect-
angular sampling region in Barro Col-
orado Island.

waka 504 1.04 100 × 100 meter Locations and diameters of trees in
square sampling region at Waka Na-
tional Park, Gabon.

finpines 126 1.25 10 × 10 meter Locations and diameters of pine
saplings in a Finnish forest.

longleaf 584 1.60 200 × 200 meter Locations and diameters of longleaf
pine trees in southern Georgia, USA.

Table 4.5: Data set name, number of points n, estimated parameter γ̂, sampling
region Ω, and the description of the data sets.

Ripley’s K statistic

The real data sets can be diagnosed using the Ripley’s K function (Ripley, 1976,

1977) that checks the spatial homogeneity (complete spatial randomness) in the

data. Let X be a set of points X = {x1, x2, . . . , xn} in two-dimensional region, then

the general form of the K statistic is defined as

K̂(r) =
1

ρ

∑
xi 6=xj∈X

1{d(xi, xj ≤ r)}
n

, (4.5)

where d(xi, xj) is the Euclidean distance between the i-th and j-th points, 1 is

the indicator function that takes values 1 if the condition is true and 0 otherwise,

with a search radius r, ρ is the intensity of the points estimated as ρ̂ = n/|Ω|
where |Ω| is the area of the region Ω within which all points are located. If the

process is a homogeneous Poisson point process then K̂(r) = πr2 which indicates

a complete spatial randomness whereas departure form πr2 means clustered or

dispersed pattern (Kiskowski et al., 2009).
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The following standardization is recommended in Besag (1977)

L̂(r) =

√
K̂(r)/π (4.6)

so the expected value of L function is r for homogeneous data. The randomness

of the points are tested using the hypothesis Ho : L̂(r) − r = 0 (X follows a

homogeneous Poisson process with intensity ρ). In the violation of Ho, positive

values of L̂(r) − r indicate clustering and negative value indicate dispersion. In

Chapter 4, we will consider regular and clustered points both from simulations and

examples from real life data. The K function and the hypothesis would be useful

to examine the pattern of real data examples particularly.

Results for the K function are shown in Figure 4.5 for the real data sets. The

top-left plot in Figure 4.5 is an example of the K function from the simulated data

for γ = 0.25, 1, 1.5. Plots from top-centre to the bottom-right are the K functions

for real data sets with the same presentation order as in Table 4.5. In Figure 4.5

(a), which is obtained from the simulated data, the red dashed line is the expected

K(r) for an independent simulated homogeneous Poisson points. The black lines

are obtained using point patterns when γ ∈ {0.28, 1, 1.50}. The black line above the

red line when γ = 1.50 is the expected K̂(r) for observed data locations, indicating

that the number of expected points within the search region (isotropic distance r

from the data locations) is higher compared to the red line. In this case the, the line

for γ = 1.50 indicates clustering. On the other hand, the black solid line obtained

for γ = 1 almost overlap with the red line since γ = 1 indicates homogeneity of

points. The case when γ = 0.28, the black line is always below the red line that is

interpreted as the regularity.

The K function plots for each real data set are shown in Figure 4.5 (b – e) separately.

The black line in Figure 4.5 (b) which is for spruces is under the red line that

indicates regularity. The waka data set (c) is a clear example of homogeneous

points since black line follows exactly the same pattern as the red line at different

r. The finpines data in (d) is slightly clustered since the black curve is above the

red curve. The last plot (e) indicates more clustering of locations in the longleaf

data. The BCI data set is not included in Figure 4.5 since it is a geo-referenced

data and the K function is suitable for point pattern data.

The advantage of using various types of data sets is to see how the area prediction

works for such different scenarios. Therefore, the validity and the limitations of the

modeling approaches that we suggested can be evaluated.
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spruces ( ĝ  = 0.28) BCI ( ĝ  = 0.32)

waka ( ĝ  = 1.04) finpines ( ĝ  = 1.25) longleaf ( ĝ  = 1.60)

Figure 4.4: Locations of the data points in the real data sets. From top-left to
bottom-right, spruces, Barro Colorado Island, waka, finpines, and longleaf data
are shown. The estimated parameter γ̂ = 0.28, 0.32, 1.04, 1.25, 1.60 is given for each
data set respectively.
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Figure 4.5: Ripley’s K function plots for (a) simulated data for different values of
γ, (b) spruces, (c) waka, (d) finpines, and (e) longleaf data sets. The red line
is known analytically for the K-function. The black line is the expected K̂(r) from
observed locations.
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-0.6 -0.3 0.0 0.3 0.6
-0.2 -0.1 0.0 0.1 0.2

-0.4 0.0 0.4 -0.4 0.0 0.4 -2 -1 0 1 2

Figure 4.6: The adjustment pattern on the cell area using base B? models. The
difference between the observed and adjusted area is calculated as Ai− Â?i where Ai
is the calculated area due to the given rectangular boundary and Â?i is the predicted
area. From top-left to bottom-right, the data sets follow the same order.

Area prediction results for real data are presented in Figure 4.6 using base models,

and in Figure 4.7 using the augmented models by illustrating how the cells are

adjusted. It looks that the predicted area for the cells near the edges are different

than the observed cell area, and the predicted area for interior cells is similar to

the observed cell area. That means the edge cells are likely to be adjusted when

the models are used. The blue and red coloured cells indicate shrinkage and ex-

pansion respectively. Some very large cell areas are reduced and the small ones are

expanded in the prediction. As expected, interior cells are white indicating that no

adjustments are happening to interior cells.
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-1.0 -0.5 0.0 0.5 1.0
-0.2 0.0 0.2

-0.8 -0.4 0.0 0.4 0.8 -1 0 1 -2 0 2

Figure 4.7: The adjustment pattern on the cell area using augmented Ag? models.
The difference between the observed and adjusted area is calculated as Ai − Â?i
where Ai is the calculated area due to the given rectangular boundary and Â?i is the
predicted area. From top-left to bottom-right, the data sets follow the same order.
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4.4 Conclusion

This chapter investigates the robustness of the area prediction by testing the perfor-

mances of models on data sets with misspecified intensities. The weak performance

of the models are improved by using the local estimate of the intensity at data lo-

cations. The local estimate of intensity is used in the models to scale the covariates

of the cells. The improvement is achieved in different degrees of regularity, and

clustering of points that contain the extreme examples as well. The base models

give the smallest overall MSE compared to the augmented models. However, if one

would wish to reduce the maximum error, then augmented models may be preferred.

It is important to decide on the best model based on the conclusions from the

simulated data and use the suggested model in the further studies where the Voronoi

tessellation cell area is useful. B? is selected as the best model to predict the area

and it may be more appropriate for the real data sets. The real data sets are

examples of homogeneous, regular and clustered point patterns. It is useful to apply

the method on such data sets that pushes the assumptions such as having large

number of points and rectangle boundary. However, the area prediction method

give reasonable results in the real data sets such as expanding very small edge cells

or shrinking very large edge cells. These leads to the usage of the adjusted area as an

alternative weight method in lifting. We will explore this application in Chapter 6,

after first explaining the lifting method in Chapter 5.

Consequently, the area prediction for Voronoi cells for homogeneous points in Chap-

ter 3 and for the regular and clustered points in the current chapter aims to treat

the Voronoi cells in the bounded region as if they are in an infinite plane by the

adjustments in the cell areas. The approach we devised in Chapter 3 and 4 might be

useful for the methods such as the lifting scheme that uses the Voronoi cell area. In

the next chapters the area prediction approaches will be combined with the lifting

scheme.
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Chapter 5

Lifting scheme

In this chapter, we explain the background of the lifting scheme, and Voronoi

tessellation-based lifting in the two-dimensional case particularly. Lifting is an ex-

tension of wavelet methods and has grown out for the need of a generalized version

of wavelet decomposition. The lifting scheme is an instrument that we use in the

remainder of this thesis as an application of the ideas and approaches we developed

in the previous chapters based on Voronoi tessellations. In this background chapter,

we highlight some important ideas of wavelet methods and their limitations, and

explain the need for a generalized version. We explain the general framework of the

lifting scheme, discuss thresholding methods and why we use them, and illustrate

a few initial steps of Voronoi tessellation-based lifting. In the following chapters,

we will consider using various weight methods in lifting such as the observed cell

area using boundaries, and predicted cell area using the methods we discussed in

Chapters 3 and 4 to reduce the boundary effects.

It is possible to understand the mathematical framework of lifting without any prior

knowledge of wavelet methods, but since the wavelet theory includes the fundamen-

tal concepts that the lifting scheme is built upon, we give a short introduction to

wavelet methods and explain how the lifting scheme aims to improve some of its

aspects in Section 5.1. Moreover, we describe the lifting scheme in two dimensions

in Section 5.3, which we will use in the remainder of this thesis in conjunction with

Voronoi tessellations. We describe some important thresholding methods, and out-

line their usage in the context of wavelet analysis and lifting in Section 5.4. We

finally give an example in Section 5.5 to show the steps of the algorithm and how

the Voronoi tessellation-based lifting scheme works in two dimensions.
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5.1 Background

The lifting scheme is referred to as a second-generation wavelet method. The general

form of lifting is explained in Sweldens (1998) who defined the idea behind lifting as

an iterative transformation of the data starting with localised or fine-scale details

and working up to broader or coarse-scale patterns. Unlike conventional wavelet

methods, lifting can be applied to irregularly spaced data with an arbitrary sam-

ple size which is often the case in reality. Lifting also relaxes the requirement of

equidistant data with size n = 2J , J ∈ N of the wavelet methods. For the prelimi-

nary studies that lead to the construction of lifting scheme, earlier work of Sweldens

(1995, 1996) can be reviewed.

Lifting also has advantages over well known methods to analyze spatial data such

as Gaussian process regression (kriging) or model based spatial methods. Lifting

is capable of modeling irregularities such as sharp discontinuities or spikes which

other methods tend to do poorly on, such as over-smoothing at the boundary of the

discontinuity. Pope et al. (2021) aimed to reduce such issues by partitioning the

sampling region using Voronoi tessellations and fitting a Gaussian process in each

sub-region (Voronoi cell) separately. The method does a good job if the data has a

step change, but less well in the case of repeated wiggles. However, wavelet-based

or lifting-based approaches have been demonstrated to be effective approaches to

deal with these kind of situations.

5.2 Discrete wavelet transform

Wavelet methods are commonly used in the estimation of functions corrupted by

noise. For an introduction to wavelets, good resources include Daubechies (1992)

and Vidakovic (1999). The estimation of the true function involves the transforma-

tion of the noisy data into a set of coefficients, and shrinkage/thresholding proce-

dures to remove noise followed by the inverse transform on the modified coefficients.

The lifting scheme serves the same purpose as an extension of the idea of multireso-

lution analysis and discrete wavelet transform (DWT) introduced by Mallat (1989).

The multiresolution analysis allows the decomposition and reconstruction of noisy

data.

Wavelet-based function estimation methods often assume the following model set-

ting:

yi = f(ti) + εi,
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5.2 Discrete wavelet transform

where f(ti) is the function that we are interested in at point ti which may be a time

(in one-dimensional case) or location (two-dimensional case), εi are Gaussian noise,

assuming εi ∼ N(0, σ2) independently, and yi are the observed noisy data.

Consider we have observations y(ti), the discrete wavelet transform assumes that

{ti = i/N : i = 0, 2, . . . , N} are discrete equispaced points in time or space. DWT

requires N = 2J for some positive integer J hence the full transform can be carried

out. If the full transform is not desired, this transform can be performed for the

first J0 steps which is called as the non-decimated DWT.

The idea of the discrete wavelet transform is to transform a vector of noisy data y

into a vector of coefficients d using the low pass filter H = {hk} and high pass filter

G = {gk} where hk and gk are the coefficients of filters. We first define the scaling

coefficients as cJ,i = y(ti)
> at level J and perform the discrete wavelet transform at

levels j = J − 1, . . . , 0 and by calculating

cj,i =
∑
n

hn−2icj+1,n (5.1)

dj,i =
∑
n

gn−2icj+1,n (5.2)

that gives a collection of wavelet coefficients dj,i and an individual coefficient c0,0

at the end of the full transform. This transform is an orthogonal transform of the

observed data yi of length N into the wavelet domain. The yi can be reconstructed

by applying the inverse transform.

Since the discrete wavelet transform is a linear transformation of the noisy data, it

can be expressed as

d = Wy,

where W is an orthogonal matrix and multiplying the noisy data y by W gives the

collection of coefficients d.

The lifting scheme can also be explained in the same way which we will show

in Section 5.3 by describing the calculation of the transform matrix in the lifting

scheme context. Jansen & Oonincx (2005) explains the usage of filter banks in

the lifting scheme. Further details of the wavelet transform are given in Mallat

(1989), and Nason (2008) but are beyond the scope of our core mechanism lifting

one coefficient at a time which will be discussed later.
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5.3 Lifting in two dimensions

In this section, we explain and use the lifting one coefficient at a time (LOOCAT)

method in two dimensions based on the description in Jansen et al. (2009). Another

related study based on LOOCAT by Jansen et al. (2001) used the lifting scheme as

a smoothing method for irregularly spaced data which was one of the preliminary

studies after the lifting scheme is introduced in Sweldens (1998). We adopt the

lifting one coefficient at a time technique introduced in (Jansen et al., 2009), where

data points are lifted and coefficients are calculated sequentially. The general form

of lifting consists of three major steps: split, predict and update, and the lifting one

coefficient at a time technique differ from earlier versions of lifting in the way that

it splits the data. The standard wavelet and lifting methods use dyadic splitting

based on the odd and even indices of the data such as in Claypoole et al. (1998)

which is why the n = 2J condition is required. LOOCAT relies on a method to

decide on the order of the calculations of the coefficients one by one.

There are other approaches such as the adaptive lifting in Nunes et al. (2006)

who used the local features of the data in the prediction step when calculating the

coefficients. The calculation of the coefficients includes different regression methods

and ways of defining neighbours, and they choose the configuration that gives the

smallest absolute value of the coefficient. Non-decimated lifting, introduced in

Knight & Nason (2009), considers paths or trajectories that are n! possible lifting

orders rather than relying on one. However, they sub-sample a smaller number of

paths from n! trajectories and obtain a set of coefficients at each point rather than

one coefficient. The lifting scheme is also used in Heaton & Silverman (2008) in the

context of imputation.

Now let us explain the lifting scheme based on Voronoi tessellations proposed by

Jansen et al. (2009). Recall the settings where x is a set of data locations x =

{x1, x2, . . . , xn} which are n irregularly spaced points in a two-dimensional space,

that is {xi}ni=1 ∈ R2. At each point xi, we observe noisy data yi. Now we assume

the model

yi = f(xi) + εi (5.3)

where fi are the values of an underlying true function which we are interested in

but only the data yi are available, and εi ∼ N(0, σ2) are independent Gaussian

noise. LOOCAT aims to transform the vector of noisy data values into a set of

coefficients by calculating each coefficient at a time. The operation of transforming

an individual data point into a coefficient is referred to as lifting that observation.
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5.3 Lifting in two dimensions

The lifting method has two important aspects: the order of lifting the observations

and the neighbourhood structure of the points. Therefore, the decision of the lifting

order and the determination of the neighbourhood structure is crucial. This is the

first part where Voronoi tessellation is used in the lifting scheme. More importantly,

using the Voronoi tessellation cell areas attributed to points {xi}ni=1, we perform

the split, predict and update stages in lifting that are explained in the next section

in detail.

5.3.1 Steps of the lifting transform

The steps of the lifting scheme are explained in this section. These steps are the

intermediate calculations in the lifting transform that eventually maps the noisy

data into a set of coefficients in the lifting domain. Since the transform is linear

and can be expressed as a non-singular matrix, it is easily invertible. That means

the noisy values can be recovered exactly from the coefficients. The inversion can

also be accomplished by following the lifting algorithm in reverse.

The lifting transform is an iterative process, and we repeatedly perform the steps

until we have a small number of non-lifted points. We start the (forward) transform

by selecting the first data location to be lifted; this selection process is called the

splitting step. Then we predict the observed value at the selected point from its

neighbours, which is the prediction step. Finally the values of the neighbours are

updated in the update step, and the selected point is lifted.

Let r be the current stage of the lifting transform. We first set r = n and increment

by −1 at each step until r = l + 1, where l is the number of points to keep (not

to lift). The general form of the Voronoi tessellation-based lifting scheme has the

following steps:

1. At stage r of the lifting transform, we identify the next point to be lifted,

which is the point with the smallest Voronoi cell area. This ensures we lift

the point with the finest level of detail in the data. The point with the

smallest cell area is likely to have nearby neighbours that tend to have similar

characteristics with the neighbours unless there is a large local feature in the

data. Hence the noise at the selected point can be well detected by the values

of its neighbours. Also, the coefficient that we obtained for that point has the

information that is representative only for a small region. At stage r = n we
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5.3 Lifting in two dimensions

select the smallest cell by

ir = argmin
i∈{1,...,n}

Ir,i (5.4)

where ir is the index number of the selected point at stage r, and Ir,i is the

area of the Voronoi cell associated with point xi at stage r. Then, let Jr

denote the set of indices of neighbours of the selected point xir .

x1

x2

x3

x4

x5

Figure 5.1: An illustration of the neighbourhood structure of a selected point x1
given that ir = 1, and its neighbours x2, x3, x4, x5 such that Jr = {2, 3, 4, 5}.

This first step is illustrated in Figure 5.1. The selected point xir = x1 at stage

r is shown as (•) and its neighbours Jr = 2, 3, 4, 5 with ( ) points. The index

numbers of the points in Figure 5.1 are arbitrarily chosen to illustrate the

neighbourhood more clearly. In this step, the red cell has the smallest area

and we predict the value at xir using its neighbours Jr at the next step.

2. Now, we predict the value yir of the selected point xir by ŷir = a>yJr where

yJr is a vector of values of the neighbours Jr, and a is the vector of prediction

weights obtained from a regression procedure over the neighbours Jr which

will be discussed later in detail in Section 5.3.2. We then calculate the detail

coefficient dir , which is the difference between the observed and predicted

value,

dir = yir − ŷir . (5.5)

3. We update the values of the neighbours of the removed point, using the detail

coefficient dir by setting

y?Jr = yJr + dirb, (5.6)
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where the elements of vector b are calculated by

bj =
Ir,irIr−1,j∑
k∈Jr

I2r−1,k
. (5.7)

Here Ir−1,j is the cell area of the neighbours after the point xir is lifted, so the

area of Ir,ir will be shared by its neighbours. We define Ir−1,j = Ir,j + ajIr,ir

for all j ∈ Jr, where r − 1 indicates the next stage of lifting transform. The

aj are the values of the vector of weights a in Step 2.

4. Finally, we remove xir from the entire data set and return to the first step,

recalculating the Voronoi tessellation of points. From the remaining data, we

choose the next point that has the smallest cell area and follow the predict

and update steps accordingly until we are left with l non-lifted points.

x1

x2

x3

x4

x5

x2

x3

x4

x5

Figure 5.2: An illustration of the neighbourhood structure of a selected point x1
(left), and the change in the cells of the neighbours x2, x3, x4, x5 after x1 is removed
(right).

We illustrate the appearance of the cells of the neighbours x2, x3, x4, x5 after x1 is

removed from the data set in Figure 5.2 (right). We show the cell edges of x1 in gray,

and how its area is shared by its neighbours after x1 is removed. The neighbouring

cells are expanded in the new tessellation in the absence of x1. The expansion of

neighbouring cells is denoted as Ir−1,j = Ir,j + ajIr,ir where the first term indicates

the original cell area, and the second term is the part gained from Ir,ir which will

be clarified in Section 5.3.2. Algorithm 1 shows the pseudo code of the forward

transform.
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5.3 Lifting in two dimensions

Algorithm 1: Lifting transform

Input: Points x = xi, function values y = f(xi) + εi for i ∈ {1, ..., n} and
εi ∼ N(0, σ2) is the Gaussian noise.

Decide l, the number of points to keep
Let the stages of the transform be r = {n, n− 1, ..., l + 1}
for r = n to l + 1 do

Partition the space into Voronoi cells Vi
Calculate cell area Ir,i for cells Vi
Splitting step: Find the cell with smallest area

Choose ir = argmini∈{1,...,n} Ir,i
Determine the set of neighbours Jr

Prediction step: Calculate the detail coefficient
dir = yir − a>yJr where aj =

Iir,j
Iir

, for all j ∈ Jr
Update step: Update the function values of neighbours

y?Jr = yJr + dirb where bj =
Ir,ir Ir−1,j∑
k∈Jr

I2r−1,k
and Ir−1,j = Ir,j + ajIrir

Remove xir

Output: Detail coefficients d = {dir , dir−1 , ..., dil+1}, lifting order s =
{ir, ir−1, ..., il+1}, remaining points xi and function values fi for all
i /∈ s, and the transform matrix L.

5.3.2 Methods of prediction

For the LOOCAT algorithm based on Voronoi polygons in two-dimensional space,

Jansen et al. (2009) discussed two prediction schemes, natural neighbour interpo-

lation and local least squares prediction. As mentioned at Step 2 in Section 5.3.1,

for the selected point xir at stage r, we aim to predict yir by a weighted average of

the values of its neighbours yJr specifying the prediction weights a at each stage.

When the point xir is removed, the Voronoi tessellation of the remaining points at

the next stage r−1 can be recomputed. However, Voronoi cell Vir will disappear and

its area is shared by its neighbours Jr. Let us carry on the explanation assuming

the selected point is x1 and its neighbours are x2, x3, x4, x5 as previously mentioned.

In a finite region Ω, let Vir,j be the part of Vir which joins to neighbour j ∈ Jr. We

adopt the natural neighbourhood interpolation explained in Jansen et al. (2009)

that works by setting

aj =
|Vir,j|
|Vir |

(5.8)

where |.| denotes the area of the Voronoi cell. Note that
∑
aj = 1 by definition and

0 < aj ≤ 1 for all j ∈ Jr.

In the examples from Figure 5.1 and 5.2, let V1 = V1,2∪V1,3∪V1,4∪V1,5 be the Voronoi

cell of x1, and let V1,j, j ∈ 2, . . . , 5 be the divided parts of V1, and V2, . . . , V5 be the
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cells of the neighbours. The division of the cell V1 by the neighbours is illustrated

in Figure 5.3.

V1

V2

V3

V4

V5

V2

V3

V4

V5

V1,2

V1,3

V1,4

V1,5

Figure 5.3: An illustration of the calculation of weights based on partitioned cell of
the removed point.

In this case, the prediction weights are calculated as

a> =

(
|V1,2|
|V1|

,
|V1,3|
|V1|

,
|V1,4|
|V1|

,
|V1,5|
|V1|

)
. (5.9)

Using the weights aj from the natural neighbour interpolation, the detail coefficient

for x1 is calculated as

d1 = y1 − (a2y2 + a3y3 + a4y4 + a5y5).

Natural neighbour interpolation can also be expanded to d = 1 or d ≥ 3 dimensional

cases. Computational intensity is the only disadvantage of this method.

Another prediction method called local least squares is a computationally simpler

approach. In stage r, a least squares plane is fitted to the selected site ir and its

neighbours Jr, however, this method is not interpolating. Limitations arise when

a point is very close to one of its neighbours; more distant neighbours will still

have a high influence. Hence, as a more stable method, natural neighbourhood

interpolation is recommended when calculating the detail coefficients in Jansen

et al. (2009).

5.3.3 Derivation of transform matrix

The lifting transform can be represented by a transform matrix which is independent

of the observations or the function values and only depends on the data locations.
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Therefore, once the transform matrix is obtained, it can be reused for different

observed values at the same locations. In this section, the construction of the

transform matrix will be explained. Recall that we have data locations xi ∈ R2

for i = 1, . . . , n, and observe yi at each location. While performing the lifting

transform as explained in Section 5.3.1, a transform matrix L can be constructed

simultaneously. Then the split, predict, and update steps of the lifting transform

can be achieved through pre-multiplication of the data vector y by the transform

matrix L to obtain the vector of detail coefficients d:
d1
d2
...
dn


︸ ︷︷ ︸

d

=


w11 w12 w13 . . . w1n

w12 w22 w23 . . . w2n
...

...
...

. . .
...

wn1 wn2 wn3 . . . wnn


︸ ︷︷ ︸

L


y1
y2
...
yn


︸ ︷︷ ︸

y

, (5.10)

where the elements wij of L depend on the cell areas and data locations. This is the

general form of L that allows us to calculate detail coefficients as d = Ly for any

observed data vector y. The transform matrix L can also be used for the inverse

transform to reconstruct the observed data y = L−1d. The inverse transform is

more useful to invert the adjusted or thresholded detail coefficients which will be

discussed in Section 5.4.

We start the construction of the transform matrix by initializing the transform

matrix as being an identity matrix L = In×n and hence y = Ly which returns the

same vector of observed data y as

dn︷ ︸︸ ︷
y1
y2
...
yn

 =

Ln︷ ︸︸ ︷
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


yn︷ ︸︸ ︷
y1
y2
...
yn

 . (5.11)

Assume that the lifted point is x1 at the first stage r = n−1 of the lifting transform

and x2, x3, and x4 are its neighbours. Then the transform matrix Ln−1 at stage

108



5.3 Lifting in two dimensions

r = n− 1 takes the form

d?(n−1)︷ ︸︸ ︷

d1
y2
y3
y4
...
yn


=

L?(n−1)︷ ︸︸ ︷

1 −a2 −a3 −a4 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



y(n)︷ ︸︸ ︷

y1
y2
y3
y4
...
yn


(5.12)

where the vector d?(n−1) only includes the detail coefficient d1 which is calculated

from the first row of L?(n−1) and vector y(n) as d1 = y1− (a2y2 + a3y3 + a4y4) which

is the first value of d?(n−1) and the remaining values in d?(n−1) are the original

observed values y2, . . . , yn.

To update the values of neighbours y2, y3, y4, we make the following calculation

d(n−1)︷ ︸︸ ︷

d1
y?2
y?3
y?4
...
yn


=

L(n−1)︷ ︸︸ ︷

1 0 0 0 . . . 0
b2 1 0 0 . . . 0
b3 0 1 0 . . . 0
b4 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



d?(n−1)︷ ︸︸ ︷

d1
y2
y3
y4
...
yn


(5.13)

hence the vector d(n−1) includes the first detail coefficient d1 and the updated values

y?2, y
?
3, y

?
4 and remaining values y5, . . . , yn. The aj and bj are the coefficients obtained

from the calculation explained in Section 5.3.1. The point x1 is lifted and can no

longer be a lifted point or a neighbour in the further stages.

Now we move on to the next step r = n − 2 of the transform. Let us assume the

next point to be lifted is x2 and its neighbours are x3, x4, and x5 at stage r = n−2.

This stage is similarly performed by calculating d?(n−2) as

d?(n−2)︷ ︸︸ ︷

d1
d2
y3
y4
y5
...
yn


=

L?(n−2)︷ ︸︸ ︷

1 0 0 0 0 . . . 0
0 1 −a3 −a4 −a5 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1



d(n−1)︷ ︸︸ ︷

d1
y?2
y?3
y?4
y5
...
yn


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where d(n−1) include the information from the previous stage r = n − 1 but we

overwrite it and do not need to keep in the memory. Then the updated values of

the neighbours y?3, y
?
4, y

?
5 are calculated as

d(n−2)︷ ︸︸ ︷

d1
d2
y?3
y?4
y?5
...
yn


=

L(n−2)︷ ︸︸ ︷

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 b3 1 0 0 . . . 0
0 b4 0 1 0 . . . 0
0 b5 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1



d?(n−2)︷ ︸︸ ︷

d1
d2
y3
y4
y5
...
yn


Now we have the vector d?(n−2) that contain the detail coefficients d1, d2 and updated

values y?3, y
?
4, y

?
5. The transform continues by the selection of the next point to lift

and so on until we have l points left. The idea is the same as in the first two

steps and the full transform is performed by the following matrix multiplications.

Collapsing the first two stages r = n− 1, n− 2 into a more compact from, we can

show how the transform matrix L is constructed as

d(n−1) = L(n−1) L?(n−1)y︸ ︷︷ ︸
d?(n−1)

d(n−2) = L(n−2) L?(n−2)L(n−1)L?(n−1)y︸ ︷︷ ︸
d?(n−2)

d(n−3) = L(n−3) L?(n−3)L(n−2)L?(n−2)L(n−1)L?(n−1)y︸ ︷︷ ︸
d?(n−3)

...

d(l) = L(l)L?(l) . . . L(n−1)L?(n−1)y. (5.14)

We obtain the final vector of detail and scaling coefficients (updated values) d(l)

on the left hand side of (5.14), and the final form of the transform matrix L in

equation (5.10) is calculated as

L = L(l)L?(l)L(l+1)L?(l+1) . . . L(n−2)L?(n−2)L(n−1)L?(n−1). (5.15)

As mentioned previously, L only depends on the locations xi. One would prefer

the matrix calculation d = Ly to calculate the detail coefficients instead of running

the full lifting transform each time. This is useful in the case of multiple vectors

of observed data yi,yii, . . . observed at the same data locations xi. This choice

reduces the computational cost since the multiplication of the matrix with a vector
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will be faster than running the steps of the lifting transform each time. However,

note that we have to run the full transform once to obtain the matrix L.

5.3.4 Implementation of 2D lifting in R

In this section, we explain the implementation of two-dimensional lifting in R pro-

gramming language, (R Core Team, 2021). Available libraries to perform lifting in

R do not have the option of Voronoi tessellation-based lifting in two-dimensional

cases. Current packages allow adaptive lifting, using the adlift package (Nunes

& Knight, 2018), and nondecimated lifting transform using nlt package (Knight &

Nunes, 2018), however, they are only useful for lifting in one-dimensional cases and

their mathematical framework is not suitable for our two-dimensional case. There-

fore, we wrote our own function lift2D to implement lifting on two-dimensional

data. The lift2D function has various options to choose the type of the boundary,

and to assign any vector of weights including the Voronoi cell area-based weights.

The routines to perform the two-dimensional lifting in lift2D function requires

the key packages deldir and tripack introduced by Turner (2021) and Gebhardt

et al. (2020) respectively to compute the Voronoi tessellation of points and to extract

information such as the identification of neighbourhood structure, calculation of cell

area, etc. Another package rgeos by Bivand & Rundel (2020) is used to intersect the

polygons with the boundaries during the intermediate steps of the lifting transform.

The lift2D function has the following input structure:

lift2D(x, y, f, nleft, stage, keepnbrs, Lmat, rw, method, ... )

where vectors x and y are the coordinates of the data locations, and f is the vector

of observed values at the locations. The number of points to leave (not to lift) l

is defined as nleft. The stage option is to save the data in the selected stages

of lifting such as stage=c(90, 70, 50, 25, 12) that saves the coordinates of the

remaining points and the updated values of f at the specified stage. This is useful

to check and illustrate the different stages of the algorithm. If keepnbrs = TRUE,

then the indices of the neighbours of the lifted point at each stage is recorded.

An important option Lmat specifies whether to calculate and output the transform

matrix L. The rw is the window of observed locations such as the rectangular

boundary. If known, it can be specified, otherwise convex hull of points may be

used. Finally the method option is used to specify the weights to be used in the

transform. The weights we use in this thesis are based on the Voronoi cell area

which are discussed in Section 6.2 but any vector of weights can be specified.
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We designed the lift2D function to perform the Voronoi tessellation-based lifting

given a set of irregularly spaced data in two dimensions when the boundaries are

taken into account. Cell area-based weights can be specified in multiple ways such as

the cell area calculated directly from the Voronoi tessellation. However, the method

we introduced in Chapter 3 allows us to reduce the boundary affect by adjusting

the cell area. The adjusted cell area can also be used in the lifting framework as an

alternative weight method; we shall investigate this in Chapter 6 and 7. Therefore,

we can investigate the performances of different weight methods in lifting. The

method in the function option allows us to specify these different weights. However,

it is important to note that the use of different weights will create different transform

matrices L since the weights are used in the steps of the lifting algorithm to calculate

the coefficients aj and bj and to determine the lifting order.

5.4 Shrinkage in lifting

Wavelet methods and lifting are often used in situations where one would like to

analyze a data corrupted by noise and estimate the underlying true patterns in the

data. The purpose of thresholding is to identify the coefficients that represent only

noise, and hence follow a N(0, σ2) distribution. Thresholding schemes assume that

the small empirical coefficients are due to the small variations in the data (noise),

hence we assume their true values to be zero. The large coefficients are kept or

adjusted depending on the thresholding technique since they are considered to be

due to activity in the true function f , and are referred to as the signal.

We have discussed the lifting scheme that transforms data that contain iid Gaussian

noise yi = f(xi) + εi into a vector of coefficients d in the lifting domain. The

resulting transform gives a vector d which includes a collection of detail and scaling

coefficients. Usually, d is a sparse representation of y in the wavelet or lifting

domain. However, we are interested in the estimation of f̂i which is achievable using

the shrinkage techniques. This is done by the inverse transform of the thresholded

coefficients to have an estimate f̂ of the function f .

Donoho & Johnstone (1994) and Donoho et al. (1995) suggested thresholding or

shrinking the coefficients in d. Thresholding methods aim to identify and modify

the coefficients that represent noise, and preserve the coefficients that represent the

actual activity in the underlying pattern. The coefficients that are smaller than a

threshold are assumed to be due to the noise in the data and these coefficients are

shrunk to zero. Larger coefficients are either kept unchanged or also adjusted but
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not shrunk to zero depending on the thresholding technique. The estimation of f̂i

is then followed by the inversion of the modified coefficients.

The shrinkage techniques in Donoho & Johnstone (1994) and Donoho et al. (1995)

are known as the wavelet shrinkage, but it can be easily extended to the lifting

context. Let us consider the setting in (5.3) such that we have the noisy data

yi = f(xi) + εi observed at the data locations xi ∈ R2 for i = 1, ..., n, where the

underlying true function values f(xi) are corrupted by the Gaussian noise term

εi
iid∼ N(0, σ2).

Using the transform matrix L, we are able to calculate the detail coefficients from

the noisy observations yi. Let us show how the noise component is translated into

the lifting domain. Let us expand the notation d = Ly as

di = Lyi = L(f(xi) + εi) = L(f(xi)) + L(εi) = d∗i + εi

where εi is the lifting transform of the noise component and ε ∼ N(0, σ2
ε) where

ε = Lε ∼ N(L0,L>σ2L) = N(0, σ2L>L).

Hence the variance of the noise component is denoted σ2
ε = σ2L>L and it is σ2

ε = σ2I

if the lifting transform is orthogonal L>L = I where I is the identity matrix. The

wavelet transform is orthogonal but it is not always the case for the lifting.

Thresholding methods are applied on di to have an estimate d̂i = t(di) where t stands

for the thresholding scheme being used. Next, the small coefficients are assumed

to be zero and coarser coefficients are kept unchanged that is the stage where the

noise is suppressed. The threshold δ is estimated from the data itself which will be

discussed later. Three thresholding rules are widely used in the wavelets and lifting

literature; hard, soft and empirical Bayes thresholding.

5.4.1 Hard and soft thresholding

The hard and soft thresholding methods are introduced in Donoho & Johnstone

(1994). In the hard thresholding method, a ‘kill or keep’ strategy is adopted. If the

absolute value of a detail coefficient is larger than the threshold, it is not changed,

otherwise, it is set to zero. A detail coefficient d is thresholded based on the thresh-

old δ as

d̂ = tH,δ(d) =

{
d if |d| ≥ δ

0 if |d| < δ
. (5.16)
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On the other hand, the soft thresholding applies an adjustment on the coefficients

larger than the threshold by reducing them by δ,

d̂ = tS,δ(d) =

{
(|d| − δ)sgn(d) if |d| ≥ δ

0 if |d| < δ
. (5.17)

One popular choice for δ is the universal threshold defined as

δ =
√

2 log(N − l)ζ2 (5.18)

in Donoho & Johnstone (1994) where (N − l) is the number of coefficients. The

variance of the noise ζ is usually estimated from the median absolute deviation of

finest-scale detail coefficients from zero.

5.4.2 Empirical Bayesian thresholding

Empirical Bayesian threshold (Johnstone & Silverman, 2004, 2005a) has great adap-

tivity features and has been widely used in the lifting scheme. We assume the model

of observations Zi = h(ti) + εi where the noise is ε ∼ N(0, σ2) independently. Con-

sider we have a parameter θ and an observation Z ∼ N(θ, 1) where the parameter θ

is the lifting coefficient of h hence the variance can be scaled if σ2 6= 1 to have unit

variance. In the context of this approach, sparsity is modeled through a suitable

prior distribution of independent θi as

fprior(θ) = (1− ω)δ0(θ) + ωγ(θ)

where ω is the mixing weight and γ is a symmetric, uni-modal density. One way to

estimate thresholded coefficient is the posterior median θ̂(z;ω) which is a monotonic

function of z and there exist a function t(ω) > 0 such that θ̂(z;ω) = 0 if and

only if |z| ≤ t(ω). Hence for each observation Zi = zi, the posterior distribution,

fpost(θi|Zi = zi) can be calculated.

The mixing weight w, or the threshold t(ω) can be specified by letting φ(z) be the

standard normal distribution and defining g = γ ? φ where ? denotes convolution.

The marginal density of Z is

Z ∼ (1− ω)φ(z) + ωg(z). (5.19)

The maximum likelihood estimator of ω̂ of ω can be obtained by maximizing the
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marginal log-likelihood

l(ω) =
n∑
i=1

log{(1− ω)φ(z) + ωg(zi)}. (5.20)

In order to prevent the empirical Bayesian threshold being greater than the universal

threshold, we set a restriction t(ω) ≤
√

2 log n which assures the removal of all pure-

noise coefficients. The posterior distribution of θ|X = x can be expressed as

fpost(θ|X = x) = (1− ωpost)δ0(θ) + ωpostf1(θ|x), (5.21)

where ωpost(x) = P (θ 6= 0|X = x) and f1(θ|X = x) = f(θ|X = x, θ 6= 0). Let

β(x) = g(x)
φ(x)
− 1, then the posterior probability is defined as

ωpost(x) =
1 + β(x)

ω−1 + β(x)
.

We define the posterior median θ̂(x;w) by considering

F̃1(θ|x) =

∫ ∞
θ

f1(u|x)du.

Thus, if x ≥ 0{
θ̂(x;w) = 0 if ωpost(x)F̃1(0|x) ≤ 1/2

F̃1

(
θ(x;w)|x

)
= 1/2ωpost otherwise.

(5.22)

If x < 0, then θ(x;w) = −θ(−x;w) by the anti-symmetry property.

There is an implementation of empirical Bayes thresholding in the EBayesThresh

package in R (Johnstone & Silverman, 2005b). The EBayesThresh function thresh-

olds each coefficient using an empirical Bayesian procedure instead of fixing the

threshold.

These thresholding methods are widely used in the lifting literature. However,

there are various other methods available such as block thresholding in Cai (1999,

2002) and Hall et al. (1999) that considers thresholding the coefficients in groups

instead of individual adjustments, NeighBlock and NeighCoeff (Cai & Silverman,

2001) that is built upon block thresholding and takes neighbouring coefficients into

account, SureShrink, based on Stein’s Unbiased Risk Estimator (SURE) introduced

in Donoho & Johnstone (1995) based on (Stein, 1981) that chooses the threshold

by minimizing the SURE, cross validation based thresholding to find the optimal
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threshold parameter in Nason (1996) and Jansen & Bultheel (1999). Antoniadis

et al. (2001) gave an extensive comparative study considering many alternative

methods in addition to the ones listed above.

5.5 Example

In this section, an example is given to show the calculations of the coefficients in

the first few steps of the lifting transform, and to perform the thresholding and the

estimation of the underlying function. In this example, we first generate n = 100

uniform random points inside a unit square sampling region Ω = [0, 1]2. Locations

of data points x = {x1, x2, . . . , x100} are shown in Figure 5.4. If the points were

considered in an infinite plane where no points were outside the unit square, some of

the edge cells would have infinite areas, and some would have finite but extremely

large areas. This would affect the steps of the lifting and misguide us on the

calculations. Since the cell areas are used in the lifting scheme, use of boundaries

is important. Here we show two simple types of boundaries. The unit square is

shown as the black square, and the convex hull of points is shown as the large red

polygon. These options are considered as the boundaries and the cell areas due

to these imposed boundaries are calculated. In this example we only use the unit

square boundary as an illustration but we will consider various options later in

Chapters 6 and 7.

At each point xi, we observe some function value f = {f1, f2, ..., f100} by taking

fi = f(xi) based on a two-dimensional function called Doppler. The formula of the

Doppler test function is given in (B.1) and it is explained with other test functions

in Section 6.1 in detail. We artificially add iid Gaussian noise ε ∼ N(0, 0.2) to the

test function, and obtain the noisy observations yi = f(xi) + εi. The vector of noisy

function values are y = {0.741, 0.019, . . . ,−0.765, 1.133}. The locations and the

noisy function values at the data locations are shown in Figure 5.5. The R package

ggvoronoi by Garrett et al. (2021) is used to create the Voronoi tessellation plots

with coloured cells with the colour scheme throughout the thesis.

The index numbers i = 1, 2, . . . , 100 help us to keep track of the points we lift and

identify their neighbours. We shall start the algorithm by identifying the cell with

the smallest area.

1. As the first step r = 100, the smallest area calculated at the site i100 = 34

and its area is I100,34 = 0.00195. The set of neighbours of x34 is found as
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Figure 5.4: Voronoi tessellation of 100 uniform random points generated in a unit
square. The black square is the unit square boundary and the red polygon is the
convex hull of points. Gray dashed lines show the shapes of the polygons if no
boundary was imposed.

-1.0

-0.5

0.0

0.5

1.0

y

Figure 5.5: Voronoi tessellation of 100 uniform random points generated in a unit
square. Cells are coloured based on the noisy function value at the locations.

J100 = {x8, x28, x99}. Also, the observed noisy value calculated for x34 is

y34 = −1.04, and yJ100 = {−0.869,−1.215,−0.765} for its neighbours.

2. In order to calculate the detail coefficient d34 for the point x34 using equa-

tion (5.5), we need to calculate the vector of weights a first. After removing

the point to be lifted at this stage, its area is shared by the neighbours and
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each piece of the shared area allows us to calculate the weights taking the

ratio over the entire area. Figure 5.6 shows an illustration of this process. We

see a zoomed version of the Voronoi tessellation of the point x34 along with

its neighbours x8, x28 and x99. After lifting point x34, the Voronoi cells of the

neighbours take the form of the solid lines. Dashed gray lines are the former

lines of x34. Note that all other cells will remain the same since the lifting

only affect the neighbouring cells.

x34

x8

x28

x99

x8

x28

x99

Figure 5.6: Zoomed in plot of Voronoi tessellation of the lifted point x34 and its
neighbours x8, x28 and x99 (left), and the partition of the V34 by the neighbours
(right).

By equation (5.8), the weights are calculated as

a8 =
0.00154

0.00195
= 0.788, a28 =

0.00003

0.00195
= 0.002, a99 =

0.0004

0.00195
= 0.210,

and using (5.5), the detail coefficient is

d34 = 1− (0.788, 0.002, 0.210)>(−0.869,−1.215,−0.765) = −0.193.

3. Note that to update the function values of the neighbours, we need to calculate

the weights b first. By equation (5.7),

b8 =
0.00195× 0.0648

0.000098
= 0.129, b28 =

0.00195× 0.0637

0.000098
= 0.127

b99 =
0.00195× 0.0039

0.000098
= 0.078,
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hence we update the function values of neighbours using (5.6)

y?J100 = (−0.869,−1.215,−0.765) + (−0.193)(0.129, 0.127, 0.078)

= (−0.894,−1.239,−0.780).

4. Finally, x34 is removed at stage r = 100 and the same procedure is repeated

at the next stage r = 99.

In the stage r = 99, i99 = 49, so we lift x49 whose function value is y49 = 0.804

and area is I99,49 = 0.00275. Now, J99 = {x15, x30, x67, x80, x83} are the neighbours

of x49. The detail coefficient at x49 is found to be d49 = −0.048. Also, updated

function values for x15, x30, x67, x80, x83 are calculated as

y?J99 = (0.852, 0.907, 0.834, 1.007, 0.910),

respectively. For the next stage i98 = 7, so the site x7 will be lifted and the process

will be repeated until r = l + 1.

Now we shall perform the full lifting transform using the lift2D function we created.

Based on the same data locations and function values, the lifting transform is

performed setting l = 12. In Figure 5.7, the progression of the forward transform of

lifting is illustrated with snapshots of the updated function values of the remaining

points in the intermediate steps. The top-left plots is the Voronoi tessellation of

all points where the cells are coloured based on the observed noisy function values.

The remaining plots show the updated function values of the non-lifted points at

different stages of lifting r = 80, 60, 50, 40, 30, 20, 13.

The plots except the top-left one, are colored based on the updated function value

where the mutual color scheme is given on the right end of the figure. The points

appear on the plots are the points that remain in the data set. The function has

activity near the bottom-left corner and is smooth otherwise. The initial data at

the top-left plot is smoothed over the stages of the lifting. The Voronoi cells of the

removed points join the areas of their neighbours hence the cell areas increase as

the number of points decrease. Also, the updated function values of the removed

points include averaging over the neighbours hence we obtain the smoothest pattern

at the final stage.

We now show the detail coefficients di and estimated function values f̂i in Figure 5.8

at the data points. The detail coefficients are calculated for each removed point xi

and the cells are colored based on the value of the coefficient. The color scheme is
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Figure 5.7: Progression of the lifting transform. Top-left plot is the Voronoi tessel-
lation of all points where the cells are coloured based on the noisy function values.
Remaining plots show the updated function values for the non-lifted points at dif-
ferent stages of the lifting transform.

-1.0

-0.5

0.0

0.5

1.0

d

-1.0

-0.5

0.0

0.5

1.0

f̂

Figure 5.8: Detail coefficients calculated at each lifting stage (left), and the esti-
mated function values for the points (right). Cell areas are coloured based on the
detail coefficient or the estimated function value. Gray polygons on the left plot
indicate the non-lifted points for which the detail coefficients are not calculated

given at the right side of both plots. Gray polygons signify points that are not lifted

hence no detail coefficients are calculated. The negative coefficients are colored in

red and the positive ones are in blue. The coefficients very close to zero are colored

in white. We observe the majority of the detail coefficients that are close to zero

are located in the less active parts of the function. Large detail coefficients (both

positive and negative) occur for the points where the function has high activity. The

inverse transform is performed on the thresholded detail coefficients to estimate the

underlying function f̂i at points xi. We used the empirical Bayes threshold in this
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5.5 Example

example. The estimated function values do not contain the variations caused by

the Gaussian noise as in the top-left plot in Figure 5.7 since the noise is separated

from the yi by thresholding the detail coefficients di. Hence, the inverse transform

of the thresholded coefficients gives an estimate of the underlying true function that

is denoised, and the active parts in the true function are not over-smoothed which

is one of the main advantages of using lifting as a smoothing technique..
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Chapter 6

Lifting results for homogeneous

data

We report the lifting results for homogeneous simulated data in this chapter. The

lifting scheme explained in Chapter 5 is used for function estimation using sim-

ulated data comprising two-dimensional tests functions with artificial noise. The

test functions used in this thesis are explained in Section 6.1. One of the important

aspects of the lifting scheme is a set of weights which are used in the calculation

of the lifting coefficients and to decide on the lifting order. The Voronoi tessella-

tion cell area-based weight methods we propose are described in Section 6.2. The

simulated data is generated based on the design in Chapter 2 that considers points

from the homogeneous Poisson process with ρ = 200 within a unit square. How-

ever, we generate independent replications of data sets each of which contain a set

of test function values at a set of Poisson points. The design of the simulation is

explained in Section 6.3. Finally, function estimation results are presented for each

test function in Section 6.4 and conclusions are in Section 6.5.

6.1 Test functions

The function estimation performance of the lifting scheme is evaluated using two-

dimensional test functions: Doppler, Heavisine, Blocks, Bumps and Maartenfunc

that are shown in Figure 6.1. The test functions in (a)-(d) were first introduced

by Donoho & Johnstone (1994) in one dimensional form, and Maartenfunc in (e) is

designed to be used in lifting by Jansen et al. (2009). Two-dimensional analogues

of these test functions are used in Nason et al. (2004). The formulae and R imple-

mentation of the test functions are provided in Appendix B.1. The true function
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6.2 Weight methods

values f(x) is obtained from the formulae of the functions given in Appendix B.1

and the noise is added artificially. Therefore, the estimated function values f̂i are

compared to the true function values fi.

(a) (b) (c) (d) (e)

Figure 6.1: Test functions: (a) Doppler, (b) Heavisine, (c) Blocks, (d) Bumps, (e)
Maartenfunc.

The test functions have different spatial characteristics. The Doppler in Figure 6.1

(a) is spherically symmetric function around the origin and has higher frequency

oscillation closer to the origin and lower frequency activity otherwise. The Heavisine

(b) has spherically symmetric with regular sinusoidal waves, and has a sharp spike

around the centre at coordinates (0.55, 0.5). The Blocks function (c) generates

blocks that form a smiling face where the block heights take different integer values.

The Bumps function (d) has three spikes where each spike has different heights

and width. Lastly, the Maartenfunc (e) is a piecewise function that has a planar

discontinuity at the intersection of the two planes.

6.2 Weight methods

The usage of the Voronoi cell area-based weights in the steps of lifting scheme is

explained in Section 5.3.1. The basic idea is to use the cell area to decide on the lift-

ing order as shown in (5.4), and in the calculations of the predict and update stages

in (5.5) and (5.6) respectively. Also, the neighbourhood structure is determined

using the Voronoi tessellation of data points as shown in Figure 5.1. Hence, the

weights play a key role in the function estimation since they affect the calculations

of the lifting coefficients that are then transformed to the estimated function values.

Given that the statistical properties of cell area differ for the cells near the bound-

aries as demonstrated in Chapter 2 regardless of the boundary types we used, we

expect to see differences in the estimated function values if we were to use different

methods to calculate cell area. In this chapter, we will use various available options

to calculate the cell area that correspond to observed weights, and the prediction of

cell area as we devised in Chapter 3 which we call adjusted weights.
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6.3 Design of the simulation

Two main groups of weight methods are considered. The observed weights contain

the cell area calculated using unit square and convex hull boundaries. On the other

hand, adjusted weights includes the predicted cell area using base and augmented

models, and doubled edge cell area. The observed weights are the standard ones

used in the literature. However, using the adjusted weights, particularly the pre-

diction of cell area, is the novel approach we propose. We introduced this method

in Chapter 3 for homogeneous data and expanded it in Chapter 4 for the regular

and clustered data cases. Now we combine this method with the lifting scheme in

the context of the weights. The full list of weight methods we consider and their

explanations is:

i. convex: Cell area using the convex hull boundary.

ii. unit: Cell area using the unit square boundary.

iii. double: Edge cell area using the unit square boundary is doubled, and interior

cells area is kept the same.

iv. base: The ensemble prediction of cell area is calculated using the base models

from Chapter 3.

v. augm.: The ensemble prediction of cell area is calculated using the augmented

models.

These five weight methods are used separately in the lifting transform in the cal-

culation of detail coefficients which are thresholded and inverted later for function

estimation. We aim to investigate whether the usage of different weight methods

matters in function estimation, highlight which methods are accurate and robust

for different test functions, and look at local performance such as in the places

where discontinuities happen, edges, corners, etc. Whilst the weight methods from

observed cell area are more rigid methods, adjusted weights, especially the base

and augmented model predictions are novel approaches that also aim to advance

the performances of the other methods.

6.3 Design of the simulation

The simulation follows these steps:

i) Generate a set of n homogeneous Poisson points where n ∼ Po(200) in the unit

square sampling region Ω = [0, 1]2.
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6.4 Results for simulated homogeneous data

ii) At each point xi for i = 1, . . . , n, calculate yi = f(xi) + εi using the selected

test function. The εi are iid Gaussian noise assuming ε ∼ N(0, σ2) and the

variance is determined from σ = σt/z where σt is the standard deviation of the

true function values f(xi) and z is the root signal to noise ratio to define the

magnitude of the noise, which is taken as z = 3 in this experiment.

iii) Perform the forward lifting transform using the selected weight method to

determine the vector of detail coefficients d = Lf?.

iv) Shrink the detail coefficients using the hard, soft, and empirical Bayes thresh-

olding methods to obtain d̂i = t(di).

v) Perform the inverse transform ŷ = L−1d̂ on the vector of thresholded coeffi-

cients d̂ to obtain the vector of function estimates ŷ (denoised values).

vi) Record the locations xi and estimates ŷi for all points, and repeat the process

for r = 250 independent realizations.

6.4 Results for simulated homogeneous data

The simulation study generates 250 data sets and each data set has {nj}250j=1 ∼
Po(200) locations. In total, there are expected to be ρ × 250 ≈ 5 × 104 points

generated in the unit square. Data sets are independent from each other. However,

we do not change the 250 data sets for different configurations such as the test func-

tions, weight methods, and the thresholding rule. Therefore, function estimation is

made using the same data locations for different techniques that makes the function

estimation results comparable based on the weight methods.

The way of presentation and discussion of the results is important. We combine

the results from all data sets. The accuracy of the function estimation may be

discussed for the unit square globally. However, we are actually interested in the

local details as well. Therefore, different parts such as the interior and edge regions,

and diagonal, vertical and horizontal transects, especially near the boundaries, may

be used. We focus on the edges particularly because different weight methods

usually have different values for edge cells and minor or no differences for interior

cells. To define the transects and for the summary results, the entire unit square

is divided into equal-sized square bins as shown in Figure 6.2. The zoomed-in plot

of the bins shows how the points are scattered into each bin. Checking the data

reveals that there are no bins missing a data point.
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6.4 Results for simulated homogeneous data
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Figure 6.2: Zoomed in bottom left corner of the unit square divided into a 50× 50
grid of square bins, showing how the points fall into the first few.

In the remainder of this chapter, the function estimation using five different weight

methods is discussed for each test function separately in the global, local, and

transect-based parts of the region. The parts where the differences between weight

methods occur are highlighted and the advantages of using particular weight meth-

ods are discussed.

6.4.1 Doppler

Starting with the Doppler test function, a pairwise comparison of different weight

methods is the first step. This can be checked by looking at the global mean squared

error (MSE) between the estimates and the true function values based on different

methods. The formula to calculate the global MSE for a data set is

1

nj

nj∑
i=1

(fi − ŷi)2 (6.1)

where nj is the size of the j−th data set and fi and ŷi are the true and estimated

function values using the data locations in the j−th data set respectively. Even

though global inference is important, it may not be very informative since the

local details are hidden behind the global inference. What is more interesting and

valuable is to check the MSE at the transects and at the locations where the test

function show high activity, spikes, and discontinuities.

The same data sets are used for function estimation when we alter the weight

method. Hence the function estimation is made for the same data locations but

using different approaches. This allows us to see the function estimation at the same

locations using different configurations of weight methods. Therefore, it is possible
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6.4 Results for simulated homogeneous data

to have a pairwise comparisons of the weight methods for each test function. We

rely on the mean squared error when comparing the methods, which can be global

MSE, or MSE at different parts such as the edge, or transects. If the global MSE

is not being used, we use a version of equation in (6.1) by sampling the locations

in the defined area or transect which we are interested in.

We first look at whether there are significant differences between the weight methods

in terms of function estimation. If we look at Figure 6.2 again, there are numerous

data locations in each bin. The pairwise comparison of the weight methods is going

to be made for the data locations in each bin separately and the results are going

to be transformed to plots and the tables.

We are interested in the comparison at local details in addition to the standard

global results. The MSE results using different methods and transects are given

in Figure 6.3. Some vertical and horizontal transects v1, v2, h1, h2, and diagonal

transect are selected over the sampling region, and shown in the top-left image on

original Doppler test function; different transects will be used for other test func-

tions. These transects are mainly selected in the regions that we are interested in.

The transects are denoted as the v1, v2, h1 and h2 in Figure 6.3. The v1, v2, . . . , vmax,

and h1, h2, . . . , hmax are always the vertical and horizontal edge transects and there

are no other transects between these transects and the boundary for the other test

functions we are going to consider.

The MSE is calculated based on the estimated function values for the data locations

in each bin that the transects pass over. There are 50 bins in each transect, and

the MSE is calculated for the data locations in each bin separately. Then the 50

MSE values are shown in the line plots in Figure 6.3 for each transect separately.

The line colours signify the weight method which are labeled in the bottom right

plot. In each line plot from top-centre to the bottom-right, we aim to check the

differences between the MSE values obtained from each weight method based on

different transects.

There are parts where the results for different methods have obvious differences

and similarities. The differences mainly exist near the edges at v1 and h1 where

the oscillation of the function has higher activity. At v1 and h1, the green line

(augmented method) generally has the smallest MSE and the black line (convex

hull boundary) has the highest. The pattern is similar for both transects since the

Doppler has symmetric properties. On the other hand, the MSE is very small at the

v2 and h2 transects where the function show lower activity. The performances of the

different weight methods are both similar and satisfactory at v2 and h2. The bins
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6.4 Results for simulated homogeneous data
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Figure 6.3: The original Doppler test function (top left). The lines show the mean
squared error calculated at transect bins using different weight weight methods.
Transects are shown with dashed lines on the test function.

located at the diagonal transect mostly take place far from boundaries hence the

edge effect is minimal. Here, the methods show similar patterns and some variation

at different parts which is due to the small sample size in individual bins.

The numerical results of the MSE in different spatial regions and transects are shown

in Table 6.1. The results are separated into MSE calculated globally, interior and

outer region, and the transects. The entire sampling region is Ω = [0, 1]2, and the

interior region is defined as Ωin = [0.15, 0.85]2 and the outer region (edge) is the

Ωed = Ω′in. The smallest MSE in each row is coloured in blue, and multiple values

are highlighted if they are equal or very close. The augmented method outperforms

the others in most cases especially close to the boundaries and where there is high

activity in the function. The results in the table validates the conclusions from

Figure 6.3.

6.4.2 Heavisine

Results for the Heavisine test function are presented and discussed in this section.

We check the accuracy of the estimations based on the MSE in the line plots and

summarize the numerical values in the table that gives a better understanding of

the best and worst methods.
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6.4 Results for simulated homogeneous data

Convex Unit Double Base Augm.

Ω 0.046 0.046 0.047 0.045 0.044
Ωin 0.039 0.041 0.044 0.041 0.040
Ωed 0.054 0.051 0.050 0.050 0.049
v1 0.111 0.102 0.093 0.094 0.087
v2 0.017 0.014 0.013 0.013 0.013
h1 0.100 0.089 0.080 0.088 0.083
h2 0.016 0.014 0.014 0.013 0.013
D 0.070 0.069 0.070 0.067 0.062

Table 6.1: Results for the Doppler test function. Table shows the global Ω, interior
Ωin and edge Ωed MSE, and MSE at vertical v1, v2, horizontal h1, h2, and diagonal
D transects. The smallest MSE is highlighted in blue.

The MSE values calculated along the transects are shown in Figure 6.4 using the

transects v1, v2, h1, h2, and the diagonal transect. Since the v1, h1 and the v2, h2

are the transects where the function values are symmetric, the MSE calculated for

these pairs of transects are very similar. The line plots show that the green line

(augmented method) is having smaller MSE in general and the black line (convex

hull method) is the highest hence we can conclude the overall performance of the

augmented methods is satisfactory and the worst method is the convex hull bound-

ary as in the Doppler case. In Table 6.2, the augmented model has smallest MSE

globally and at the edges, and at edge transects v1, h1.

Convex Unit Double Base Augm.

Ω 0.334 0.304 0.309 0.297 0.293
Ωin 0.300 0.307 0.336 0.303 0.307
Ωed 0.367 0.301 0.282 0.291 0.279
v1 0.438 0.365 0.317 0.336 0.307
v2 0.639 0.433 0.345 0.399 0.351
h1 0.437 0.379 0.332 0.342 0.306
h2 0.628 0.434 0.323 0.390 0.332
D 0.362 0.282 0.308 0.285 0.294

Table 6.2: Results for the Heavisine test function. Table shows the global Ω, interior
Ωin and edge Ωed MSE, and MSE at vertical v1, v2, horizontal h1, h2, and diagonal
D transects. The smallest MSE is highlighted in blue.
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Figure 6.4: The original Heavisine test function (top left). The lines show the mean
squared error calculated at transect bins using different weight weight methods.
Transects are shown with dashed lines on the test function.
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6.4 Results for simulated homogeneous data

6.4.3 Blocks

The Blocks test function has different characteristics compared to the previous test

functions with its block spikes in different shapes and heights. The spatial pattern of

the MSE in Figure 6.5 is not very clear to visually distinguish, and a generalization

of the overall quality of the best method is difficult. The MSE values have spikes

where the function has sharp changes. Otherwise, the MSE for all methods are

very close to zero at the parts where the function is flat. The numerical values are

shown in Table 6.3 where the augmented method has the smallest MSE at most of

transects. The base and augmented methods perform similarly in some transects,

and it is important to highlight their comparability for the edge MSE.
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Figure 6.5: The original Blocks test function (top left). The lines show the mean
squared error calculated at transect bins using different weight weight methods.
Transects are shown with dashed lines on the test function.
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6.4 Results for simulated homogeneous data

Convex Unit Double Base Augm.

Ω 0.531 0.513 0.538 0.511 0.518
Ωin 0.759 0.764 0.818 0.767 0.780
Ωed 0.312 0.271 0.270 0.265 0.266
v1 0.545 0.435 0.351 0.403 0.380
v2 0.800 0.801 0.858 0.800 0.787
v3 0.445 0.438 0.465 0.434 0.399
v4 0.320 0.260 0.249 0.255 0.263
h1 0.257 0.190 0.183 0.188 0.179
h2 0.488 0.482 0.501 0.492 0.479
h3 0.133 0.116 0.120 0.111 0.113

Table 6.3: Results for the Blocks test function. Table shows the global Ω, interior
Ωin and edge Ωed MSE, and MSE at vertical v1, . . . , v4, and horizontal h1, h2, h3
transects. The smallest MSE is highlighted in blue.
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6.4 Results for simulated homogeneous data

6.4.4 Bumps

The results for the Bumps test function show that the noticeable differences between

the weight methods occur near the boundaries. The transects v1, v2, v3, v4, v5, h1,

and h2 are selected to see the patterns of MSE for different weight methods in

Figure 6.6. The are edge transects, and transects where the function has spikes.

We also selected v3 where the function is flat as a control case where all methods

are expected to work equally well.

Figure 6.6 shows the noticeable differences between weight methods on v1, v2, v4, v5

and the non flat parts of h1 and h2 that are all transects close to the edges. In the

vertical transects v1 and v5, the green line is the closest one to zero in most bins

hence the augmented method outperforms the other methods. The usage of unit

square and the convex hull methods give the worst estimates on these transects. The

differences are less obvious for v2 and v4 which are relatively close to the boundary,

however, the green line of the augmented method seems to have the smallest MSE

values which is confirmed in Table 6.4. The augmented method also performs well

at the horizontal transects h1 and h2 where the differences are detected when the

function is not flat. The high MSE values are calculated in regions where the

function has spikes, which is a general issue in all test functions.

Table 6.4 clarifies the good performance of the augmented method in all cases. Even

though the augmented method MSE is not the smallest in some cases such as the Ωin

and v3, it is very close to the smallest value found from another weight method. The

results for the Bumps test function clearly suggest the usage of augmented method.

The exceptional scenarios are for the interior region and v3 transect which the

function is flat. The MSE values for these two cases are very close between weight

methods but the augmented method has the best performance in all important

cases.

6.4.5 Maartenfunc

The last test function used in the simulations is the Maartenfunc. The differences

between the weight weight methods are not very obvious from the MSE line plots

in Figure 6.7. The most visible differences between weight methods are in v3 which

is an edge transect and the function is close to be linear. The edge cell doubling

method seem to give the smallest MSE values along the transect and the MSE

between the best and worst method is larger near the corners as the convex hull
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Figure 6.6: The original Bumps test function (top left). The lines show the mean
squared error calculated at transect bins using different weight weight methods.
Transects are shown with dashed lines on the test function.

Convex Unit Double Base Augm.

Ω 0.427 0.376 0.377 0.358 0.349
Ωin 0.295 0.299 0.328 0.293 0.295
Ωed 0.553 0.449 0.424 0.420 0.402
v1 0.969 0.734 0.645 0.592 0.548
v2 0.589 0.468 0.499 0.485 0.468
v3 0.099 0.098 0.100 0.093 0.100
v4 0.701 0.589 0.588 0.586 0.576
v5 1.265 0.974 0.801 0.837 0.721
h1 0.607 0.495 0.429 0.429 0.396
h2 0.302 0.213 0.192 0.179 0.177

Table 6.4: Results for the Bumps test function. Table shows the global Ω, inte-
rior Ωin and edge Ωed MSE, and MSE at vertical v1, . . . , v5, and horizontal h1, h2
transects. The smallest MSE is highlighted in blue.

method is the worst. The differences between weight methods are more apparent

at the other edge transects v1, h1, h3 for the parts [0, 0.2] and [0.8, 1].

The MSE values in Table 6.5 are very close to each other especially when the double,

base, and augmented methods are used. They have compatible performances in the

edge region and it is appropriate to use the adjusted weights. However, since the

doubling is a rigid process compared to the prediction of cell area using base and

augmented models, the usage of augmented method would be more appropriate

considering its overall performance in the other test functions.
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Figure 6.7: The original Maartenfunc test function (top left). The lines show
the mean squared error calculated at transect bins using different weight weight
methods. Transects are shown with dashed lines on the test function.

Convex Unit Double Base Augm.

Ω 0.055 0.049 0.045 0.047 0.047
Ωin 0.040 0.040 0.038 0.039 0.039
Ωed 0.070 0.058 0.053 0.055 0.054
v1 0.057 0.047 0.044 0.041 0.040
v2 0.053 0.050 0.050 0.049 0.052
v3 0.206 0.162 0.116 0.146 0.134
h1 0.106 0.079 0.077 0.077 0.074
h2 0.046 0.042 0.043 0.043 0.044
h3 0.054 0.046 0.049 0.044 0.043

Table 6.5: Results for the Maartenfunc test function. Table shows the global Ω, in-
terior Ωin and edge Ωed MSE, and MSE at vertical v1, v3, v3, and horizontal h1, h2, h3
transects. The smallest MSE is highlighted in blue.

6.5 Conclusions

This chapter presented and discussed the function estimation results using the lifting

scheme for homogeneous data, giving emphasis on what happens when different

weight methods are used in the lifting. The simulation setting considers various

important configurations such as the usage of test functions that have different

spatial characteristics, and weight methods to evaluate the performances of different

approaches in function estimation. The MSE values attained at different parts and

transects of the region highlight the differences between the usage of different weight

methods.
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6.5 Conclusions

The results in this chapter highlight two important aspects of function estimation

using lifting. First, the significant differences between weight methods are demon-

strated, then the best method to estimate the function is suggested. More impor-

tantly, we focused on local details such as the parts that are close to the boundaries,

and functions having discontinuities, spikes, etc. Throughout the discussion of the

results for each test function, the augmented method gave a better performance

compared to the other weight methods. It achieved more accurate function estima-

tion especially at the edge transects in which we aimed to improve the accuracy of

the function estimation obtained from standard observed weights.

Earlier lifting research used traditional weight methods and emphasized the issues

that may occur for the data locations near the boundaries. Our work in this thesis

primarily suggests ways to eliminate, or at least reduce the boundary effects in

function estimation. Simulation results show that our proposed weight method,

which uses the predicted cell area from augmented models, is the favourable option.

Therefore, a general use of the augmented weight method is suggested in lifting for

homogeneous data.

136



Chapter 7

Lifting results for regular,

clustered and real data examples

7.1 Lifting for regular and clustered data

In this chapter, the lifting study is extended to the case of regular and clustered

data cases. An introduction to the regular and clustered points was given in Sec-

tion 4.2, where we relied on the saturation process introduced by Geyer (1999) to

create regular and clustered points with different types of irregularity such as clus-

tering and inhibition. We rely on the same point process to simulate regular and

clustered points in this chapter. The lifting scheme is a multiscale method used to

analyze irregularly spaced data, and it is important to see its capability in dealing

with different types of irregularity. In this chapter, we not only investigate the

performance of the lifting scheme in function estimation for regular and clustered

points, we also consider the extreme cases of highly regular and clustered point

patterns and check how the lifting scheme performs.

This chapter presents and discusses the lifting results for regular and clustered

data from simulations, and real data examples. The design of the simulation is

similar to Section 6.3, however, there are various point pattern cases rather than a

single homogeneous Poisson point process case. The point patterns are determined

based on different values of the parameter γ of the process. Essentially, the same

parameter values γ = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3 are used to generate the

data sets as in Figure 4.1 in Section 4.2. For each value of γ, a set of n points,

where n ∼ Po(200), are generated and function estimation is conducted for the test

functions from Section 6.1. This process is carried out for 250 replicates of each
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7.2 Results for simulated data

point pattern altering γ. Therefore we have 250 × 9 data sets each of which has a

size {nj}250j=1. Function estimation results attained from lifting scheme with various

weight methods are compared to kriging estimates.

The main purpose of this chapter is to investigate how the regularity and cluster-

ing in the data affects the function estimation. Also, a comprehensive analysis is

performed to see the effects of different weight methods. In addition to the five

weight methods used in Chapter 6, we introduce another version of the base and

augmented model prediction methods. Area prediction for regular and clustered

points is done using the scaled covariates based on the estimated local intensities

as explained in Chapter 4 that draw attention to the better performance of the B?

and Ag? models over B and Ag models in the sense of area prediction. The weight

methods with ? superscript are the versions of B and Ag that are designed for

regular and clustered data cases, and we use both versions to have a comparison in

this chapter. Application of the lifting for the regular and clustered points does not

have methodological differences to the homogeneous case, so the same lifting steps

for forward transform, thresholding the detail coefficients, and the inverse transform

are followed.

This chapter also considers the application of lifting to the real data sets; spruces,

Barro Colorado Island (BCI), waka, finpines, and longleaf which are explained

in Section 4.3.2. We examine how lifting works for real data locations and measure-

ments at the locations that show examples of regular, clustered and homogeneous

patterns. These data sets are especially chosen for the purpose of having examples

of homogeneous and regular and clustered real data examples. The lifting results

for simulated and real data sets are presented and discussed in Sections 7.2 and 7.4

respectively. We also compared results for function estimation using lifting and

kriging in Section 7.3, using the weight method that gave the best results in lifting

for simulated regular and clustered data.

7.2 Results for simulated data

The lifting results for the regular and clustered data cases from all the test functions

are presented in Figures 7.1 - 7.5. The number of cases we investigate is enormous,

hence discussion of the numerical results is not very practical. Tables C.1 - C.5 in

Appendix C show the MSE values for the function estimation for different configu-

rations of point patterns, weight methods, and test functions at different parts and
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7.2 Results for simulated data

transects of the sampling region. Due to the complex structure of the tables, it is

more effective to inspect the plots.

7.2.1 Doppler

We start presenting lifting results from the simulations based on the Doppler test

function. We selected the same vertical, horizontal and diagonal transects as in the

previous chapter to compare the weight methods at different point pattern cases.

The coloured points in the plots in Figure 7.1 show the MSE value corresponding to

the different weight methods, and the values i = 1, 2, . . . , 9 in the x−axis correspond

to the index value of parameter {γi}9i=1 = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3. In each

plot, the results are given for global, interior and edge of the region, and at different

transects of the region. Note that the range of the y−axis is different for each plot.

The MSE values shown with points in different shapes and colour are the overall

MSE for the associated transect, global, interior, or edge points. Numerical results

are presented in Tables C.1 - C.5 in Appendix C.

The top-left plot in Figure 7.1 shows the global MSE for the Doppler test function.

Whilst the points are very close for the regular point pattern and even overlap,

the differences are more apparent for the homogeneous and clustered points as γ

increases to 3. For the interior points, the MSE is smaller than the global MSE

values. It is more interesting to analyze the edge points and the points located

on the edge transects as the differences between the methods are clearer and have

some pattern. For the ease of interpretation, convex hull, unit square and doubling

are shown in red, base and augmented methods in blue, and ? models in black.

The weight methods show differences in terms of the MSE values for edge points.

The smallest MSE is achieved with the solid black triangle for most of the regular

and clustered point patterns which is the augmented weight method Ag?. The

solid circles of the B? method are either very similar or better in occasional cases

that shows the robustness of the usage of local intensity methods in the Doppler

example. The weight methods using the observed cell area generally give the worst

estimation results.

The edge transects v1 and h1 are the transects where the function has spherically

symmetric properties, hence conclusions can be made jointly. A satisfactory perfor-

mance of the Ag? method exists in v1 and h1 for the regular and clustered points.

It is important to note that the smallest MSE is found using the blue triangle at

γ5 = 1 which indicates the homogeneity of the points. It is also the same for the
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7.2 Results for simulated data
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Figure 7.1: Lifting MSE results for Doppler at different parts and the transects.
x−axis shows the index of γi for i = 1, ..., 9, and y−axis is the MSE which varies
for each plot.

plot titled with ‘edge’. This means the Ag method that is created for the homoge-

neous data has better performance than methods that uses the local intensities. It

is pertinent because the B and Ag models are trained to predict the cell area for

homogeneous points but the B? and Ag? models scale the covariates based on the

estimated local intensity which are designed to be used for regular and clustered

data cases.

Revisiting the ‘global, edge, interior’ plots, the pattern of the MSE values for ad-

justed weights from γ7 to γ9 deviate from each other. The solid points remain

the smallest, however the non-solid points increase in MSE and perform almost as

badly as the convex hull method. Although the performances of the weight methods

shown with solid and open points were similar for regular point patterns, they are

extremely different for the highly clustered points. Considering the regular point

patterns, where the cells would have similar sizes, and the estimated local intensity
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7.2 Results for simulated data

ρ̂i at the points is not too different than the global point intensity ρ0 as can be

seen in Figure 4.2. Therefore, in these cases the scaling procedure of the B? and

Ag? models will have minimal changes on the covariates since the scaling factor is

ρ̂i/ρ0 ≈ 1. Hence the (B,Ag), and (B?, Ag?) methods obtain similar function esti-

mation results for the regular point patterns. However, the usage of estimated local

intensity ρ̂i become more important for the clustered points because the estimated

local intensity ρ̂i can have a larger deviation from the global intensity ρ0. There-

fore, the new methods, especially Ag?, has better performance for the clustered

data cases than the unscaled methods (B,Ag).

7.2.2 Heavisine

In this section, lifting results for the Heavisine function are presented. Figure 7.2

shows the MSE values for different weight methods. The function estimates at the

edge region give smaller MSE using the proposed weight methods B,Ag,B?, and

Ag? compared to the weight methods from observed cell area. The solid and open

triangles and circles give very similar MSE for regular points that indicates the

similarity of the B,Ag,B?, and Ag? methods. However, the solid points of B? and

Ag? methods persistently perform better for highly clustered points, and the open

points of B and Ag start giving higher MSE after γ7. For the interior points, the

weight methods generally show compatible results except the highly regular and

clustered cases at γ = 1 and γ = 9.

The results at the separate edge transects give similar conclusions. The augmented

method Ag? gives the smallest MSE for all point pattern types at transects v1, v2, h1

and h2. The MSE values for all methods decrease from γ1 to γ9 that points out the

Heavisine function can be better estimated using the clustered points, and highly

clustered point pattern types give the smallest MSE. The function has sinusoidal

waves with a sharp spike around the centre. The neighbourhood structure has a

major impact on the prediction of the function values in the prediction step of

lifting. The function value at a data location is predicted as the weighted average

of the function values of its neighbours. If the points have a regular pattern, then

the interesting features of the test function may not be captured properly by the

more distant neighbours, especially in functions like Heavisine. The function value

at a selected point may be very different from its neighbours.

To make the example more specific, consider a point x1 located on the spike, and

it has several neighbours say x2, x3, x4 and x5 with a reasonable distance due to

a regular point pattern. If the point x1 on the spike is selected to be lifted, then
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7.2 Results for simulated data
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Figure 7.2: Lifting MSE results for Heavisine at different parts and the transects.
x−axis shows the index of γi for i = 1, ..., 9, and y−axis is the MSE which varies
for each plot.

its function value is predicted based on the values of its neighbours. Since its

neighbours’ function values range between the highest and lowest values of the

sinusoidal waves, hence the predicted function value f̂(x1) for x1 will be affected

by the discrepant values of the neighbours. However, if the points are clustered

which means the neighbours are likely to be closer (at least most of them), then the

neighbours have more relevant information about the function value to be predicted

at x1. This is likely to happen for the functions that short range irregularities like

Heavisine.

7.2.3 Blocks

The Blocks test function has different types of sharp changes than those seen in

the Doppler and Heavisine functions. The results are shown in Figure 7.3. The

global results show little difference between methods, but differences between weight
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7.2 Results for simulated data

methods are noticeable at the edge region and separate transects. The global MSE

for all weight methods have a decreasing trend from γ1 to γ9 as observed for the

Heavisine. The Blocks and Heavisine test functions have characteristics in common

in terms of the spikes in Heavisine and the discontinuities in Blocks. However, the

discontinuities of the Blocks function are rectangular prisms in different shapes and

heights.
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Figure 7.3: Lifting MSE results for Blocks at different parts and the transects.
x−axis shows the index of γi for i = 1, ..., 9, and y−axis is the MSE which varies
for each plot.

The number of transects we selected is higher for Blocks since this function also

has interesting features at both the edge and intermediate transects. In the edge

plot (top-centre) in Figure 7.3, the weight methods show similar results except for

the convex hull. Even though the smallest MSE is achieved by the Ag? method

for only γ2, γ4, γ5, and γ9, it is very close to the best method in the other cases.

The function has similar features at edge transects v1 and h1. They overlap at
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7.2 Results for simulated data

the bottom-left corner, and there is a sharp discontinuity on v1 compared to the

moderate discontinuity on h1.

The smallest MSE at v1 ranges within the approximate interval of (0.33, 0.4), but

for h1, it is (0.17, 0.2). The two flat parts of the function in v1 form a step that

is higher compared to h1 hence the MSE is larger at v1. The Ag? method (shown

with solid triangles) has good performance in both transects. The point shown with

(×) symbol interestingly gives the smallest MSE for γ4 − γ8 at h1. The other two

edge transects, v4 and h3, also have similar features. A large part of both transects

contain the same constant value of the function. A small part of h3 at the top left

corner of the function has slightly higher value than the remaining part. For v4,

the bottom right part of the function has higher values, hence the h3 give smaller

MSE.

If the intermediate transects are checked, for instance, the v2, v3, and h2, the MSE

values are the highest for v2 that passes over three blocks of the function and it is

hard to suggest a specific weight method due to the inconsistent patterns. However,

the MSE has a decreasing trend from regular to clustered points which validates

the previous conclusions regarding the better function estimations using clustered

points for the functions that have discontinuities and spikes.

7.2.4 Bumps

The Bumps test function has three spikes at different parts of the region. However,

the spikes are due to the finite exponential increases in the function value rather

than rectangular prisms as in Blocks. The function is constant on the rest of the

region. The global MSE in Figure 7.4 shows a decreasing trend from regular to

clustered points as it was in the Heavisine and the Blocks. These three functions

may be considered to belong to the same family based on having sharp increases

such as discontinuities and spikes.

The edge region MSE shows that the smallest values are achieved using the Ag?

method in most γi cases, and the Ag method has a comparable performance for

regular and homogeneous points. But the performance of Ag becomes worse for

clustered points. The edge transects v1, v5, h1 and h2 give the same conclusions

in terms of the best weight methods. The solid and non-solid points mostly have

similar MSE values except for the highly clustered cases. For general use, Ag? weight

method would be the preferred method since it has a consistent performance for all
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Figure 7.4: Lifting MSE results for Bumps at different parts and the transects.
x−axis shows the index of γi for i = 1, ..., 9, and y−axis is the MSE which varies
for each plot.

point patterns. The intermediate transect v3 do not contain any variability of the

function, hence the MSE is very similar and close to zero for all weight methods.

7.2.5 Maartenfunc

Maartenfunc is a completely different type of test function than the previously

discussed ones. It has two separate intersecting planes where a discontinuity exists

at the intersection line. The global MSE results for Maartenfunc in Figure 7.5 show

an increasing trend from regular to clustered points. The regular point patterns

give better function estimation in this case, since the function value of a selected

point and its neighbours would be similar except near the discontinuity.

The smallest global and edge MSE values are achieved by the Ag? method (with

solid triangle) for all cases and this exists in most cases of the edge transect plots
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v1, v3, h1, and h3, showing the Ag? method to be more favourable. The minimum

MSE in v3 is always higher than 0.10 for all γ values, but it is always smaller than

0.05 in v1 and h3. Maartenfunc has its highest values at v3 and the lifting has a

weakness on estimating the maximum values of the function, hence the MSE at the

transects where the function has local or global maximums are higher. Higher MSE

was also observed in Chapter 6 when the transect bins coincided with the local or

global maximums of the function. In this chapter, the information based on the

transect bins are collapsed for the ease of interpretation.
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Figure 7.5: Lifting MSE results for Maartenfunc at different parts and the transects.
x−axis shows the index of γi for i = 1, ..., 9, and y−axis is the MSE which varies
for each plot.

7.3 Comparison of lifting estimates with kriging

In this section, we compare the lifting method using the suggested weight method

Ag? to kriging or Gaussian process regression which is a standard spatial interpola-
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7.3 Comparison of lifting estimates with kriging

tion method introduced in Cressie (2015). Given the observations {z(x1), . . . , z(xn)}
at locations {x1, . . . , xn}, kriging aims to give a linear prediction of the value Z(x0)

at a location x0 that is the Best Linear Unbiased Estimator (BLUE) (Christensen,

1991). We use the ordinary kriging method which assumes spatial stationarity

in Z(x) = µ + ε(x) where the unknown constant µ is mean of Z(x). The linear

prediction at a location x0 is made as,

Ẑ(x0) =
n∑
i=1

λiZ(xi) + ε(x0), (7.1)

where λi is the kriging weight and estimated by minimizing the prediction variance

as

{λ̂i}ni=1 = argmin E[ε(x0)
2]

= Var[Ẑ(x0)− Z(x0)]

= E[{Ẑ(x0)− Z(x0)}2]− {E[Ẑ(x0)− Z(x0)]}2. (7.2)

Denote X = (x1, . . . , xn)>,Σ = Cov(X) and c = Cov(X, x0) and c ∈ Rn, the

linear prediction of Z(x0) minimizing (7.2) is

Ẑ(x0) = c>Σ−1X. (7.3)

We used the functions in the R package gstat developed by Gräler et al. (2016);

Pebesma (2004) to perform kriging. Although kriging is mainly used to estimate

the value of a random variable over a continuous region using unknown locations

such as the grid points, our study aims to attain estimations at the actual data

locations by detecting and separating the measurement errors. In this case, the

kriging estimates can be compared to the lifting estimates. We used a ‘nugget

effect ’ to determine the short scale random variability in the data. The value of the

nugget term can be obtained from the variogram as the intercept of the variogram

function at a lag distance of almost zero. A large nugget effect value indicates high

short-range variability in the random variable and would lead to smooth kriging

estimates.

The same replicates of regular and clustered point patterns and the same noisy func-

tion values are used to perform the kriging as explained in Section 7.1. The kriging

estimates are obtained for the data locations for 250 replicates, using the Doppler,

Heavisine, Blocks, Bumps and Maartenfunc for various regular, homogeneous, and

clustered point patterns. In Table 7.1 we compared the function estimation results
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7.3 Comparison of lifting estimates with kriging

using Ag? which was the most favourable weight method in lifting, and kriging re-

sults in terms of MSE values with its standard errors. We only selected γ1, γ5, γ9

point pattern cases rather than using all alternatives, and summarized the results

based on the global, interior and edge MSE. For each case, the method with the

smallest MSE is highlighted in blue colour. The presented values are for MSE×100,

and se× 100.

In the Doppler test function, Ag? method performed better than kriging for all

cases. The variability for the Ag? is similar for interior and edge regions however

the variability at the edges is always higher than interior in kriging. Although the

Doppler test function generally has smooth features which is suitable for kriging

estimation, there is a highly oscillated part located at the corner which cause very

large MSE for kriging.

We make opposite conclusions for Heavisine, for which kriging performs better in

all cases with less variation in the estimated function values. The periodic waves

of Heavisine can be better estimated by kriging, and both Ag? and kriging have

higher MSE for interior region where the spike occurs.

The Blocks test function includes various discontinuities over the surface which is

difficult for kriging to capture. Kriging over-smooths the blocks and hence causes

very high MSE and standard error. It is important to note that the MSE is higher

for the interior part where the blocks mostly take place and the edges are flat with

minor discontinuities.

Kriging gives better performance in the Bumps test function for homogeneous and

clustered points, and only for the interior of the regular points. The MSE at the

edges where the bumps are located is higher than the interior. Since the bumps are

not sharp discontinuities, the kriging method still works better than Ag?.

Finally, in the Maartenfunc, both methods perform similarly but kriging MSE and

standard errors are slightly smaller especially for the clustered point patterns. Krig-

ing would not find it difficult to estimate the flat parts of the piecewise linear func-

tions, but to understand how well it estimates the parts with discontinuity, we may

check the results for the transect h1 which is both an edge transect and contain the

sharpest discontinuity. Since we are interested in the part of the h1 where the dis-

continuity happens, we cut the transect and take only the part when x = [0.2, 0.4].

The MSE results are as follows; Kriging: (R : 17.52, H : 16.63, C : 15.14), and

Ag?: (R : 14.13, H : 11.69, C : 13.42) for regular, homogeneous and clustered points

respectively. It is clear that the Ag? method performs much better than kriging
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7.4 Real data application of lifting

where the discontinuity exists, and this is valid for the other transect sub-parts as

well.

If entire transect, or the global, interior and edge parts are considered, the dom-

inance of the good estimation results at the smooth parts of the function in that

transect may overshadow the identification of the local performance where the dis-

continuity occur. Hence checking finer details where the discontinuity happen is

more accurate as we uncovered. To sum up, the lifting scheme with Ag? method has

significantly better performance for the test functions or sub-regions with the dis-

continuities, which kriging over-smooths. For some cases in Bumps and in Maarten-

func, the Ag? method compares favourably with kriging, and kriging perform better

for the functions with smooth features.

Regular Homogeneous Clustered

Method Ag? Kriging Ag? Kriging Ag? Kriging

Global 4.41 ± 0.02 8.95 ± 0.04 4.33 ± 0.02 8.73 ± 0.04 4.20 ± 0.02 8.82 ± 0.04
DP Interior 4.03 ± 0.03 6.80 ± 0.04 3.99 ± 0.03 7.17 ± 0.05 3.75 ± 0.02 7.26 ± 0.05

Edge 4.75 ± 0.03 10.83 ± 0.07 4.65 ± 0.03 10.2 ± 0.06 4.65 ± 0.03 10.42 ± 0.07

Global 44.19 ± 0.20 34.14 ± 0.15 29.17 ± 0.13 17.19 ± 0.08 22.77 ± 0.10 14.73 ± 0.07
HV Interior 45.74 ± 0.30 37.30 ± 0.24 30.37 ± 0.19 19.15 ± 0.12 23.74 ± 0.15 16.68 ± 0.10

Edge 42.84 ± 0.26 31.38 ± 0.19 28.02 ± 0.17 15.30 ± 0.10 21.79 ± 0.14 12.72 ± 0.08

Global 55.03 ± 0.25 200.68 ± 0.90 52.27 ± 0.23 158.26 ± 0.71 50.30 ± 0.22 156.28 ± 0.70
BL Interior 86.91 ± 0.57 361.71 ± 2.37 79.06 ± 0.50 271.79 ± 1.73 74.14 ± 0.47 259.02 ± 1.62

Edge 27.15 ± 0.17 59.81 ± 0.37 26.60 ± 0.17 49.42 ± 0.31 26.25 ± 0.17 50.42 ± 0.32

Global 36.26 ± 0.16 42.32 ± 0.19 34.61 ± 0.15 25.53 ± 0.11 33.12 ± 0.15 21.92 ± 0.10
BM Interior 31.12 ± 0.20 22.79 ± 0.15 30.09 ± 0.19 16.06 ± 0.10 28.23 ± 0.18 14.22 ± 0.09

Edge 40.75 ± 0.25 59.40 ± 0.36 38.93 ± 0.24 34.61 ± 0.22 38.06 ± 0.24 29.86 ± 0.19

Global 4.22 ± 0.02 3.02 ± 0.01 4.66 ± 0.02 3.11 ± 0.01 4.73 ± 0.02 3.31 ± 0.01
MR Interior 3.49 ± 0.02 3.02 ± 0.02 3.88 ± 0.02 3.03 ± 0.02 4.00 ± 0.03 3.25 ± 0.02

Edge 4.86 ± 0.03 3.02 ± 0.02 5.42 ± 0.03 3.19 ± 0.02 5.47 ± 0.03 3.37 ± 0.02

Table 7.1: Mean squared errors with standard errors (both ×100) for lifting esti-
mates using Ag? method and kriging. Only the results for γ1 = 0: regular, γ5 = 1:
homogeneous, and γ9 = 3: highly clustered points are shown. Row panels show
the global, interior and edge MSE for Doppler, Heavisine, Blocks, Bumps, and
Maartenfunc respectively.

7.4 Real data application of lifting

In this section, we present lifting estimation results for the real data sets spruces,

Barro Colorado Island (BCI), waka, finpines, and longleaf described in Sec-

tion 4.3.2. These data sets are particularly selected since the estimated γ̂ for the

data sets fall in the interval [0, 3] we used in the simulations, and the real data

sets also have examples of regular, clustered and homogeneous points. Also, the

number of data locations in these data sets has a large range. The sizes of each
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7.4 Real data application of lifting

data, estimated parameter γ̂, the sampling region Ω, and the data set descriptions

are given in Table 4.5.

In the area prediction, only the locations of the points were necessary to tessellate

the points in the sampling region and to calculate the cell properties. However,

lifting requires both the data locations xi for i = 1, . . . , n and the observations yi at

the locations yi. The spruces, waka, finpines, and longleaf data sets from the

spatstat package contain locations of the trees (xi) and tree diameter observations

(yi). The Barro Colorado Island data set is based on the soil nutrient measurements

(yi) at the sampled locations (xi) in a region. There are several chemicals measured

but we only used the Aluminum level in the soil.

These real data examples have different structures; the BCI data set is a geo-

referenced data that we measure chemical levels at sampled locations and these

type of data are ideally analyzed using kriging methods. The remaining data sets

are marked point patterns where the marks are the tree diameter and height. We

initially used the locations obtained from these data sets in Chapter 4 for the pre-

diction of Voronoi cell area. We also use these data sets for the application of the

lifting scheme since it is our intention to see how the lifting method works in dif-

ferent data structures. Therefore, in this chapter, we are more interested in the

illustration of lifting method for real data sets that have homogeneous, clustered,

regular, and sampled points with different sizes and boundary windows, and mea-

surements rather than solving a real life problem. Hence we aim to inspect the if

lifting method has limitations in certain cases.

We concluded in Section 7.2 that the weight method Ag? has the best overall per-

formance for the test functions over varying point patterns in terms of the accuracy

of the lifting estimates. Therefore, it is suggested as the best method and we apply

it to the real data since its validity has been demonstrated based on the different

configurations in the simulation study. We performed the lifting scheme for the

real data sets based on the tree diameters at tree locations, and the Aluminum lev-

els at the sampled locations. The forward transform, thresholding and the inverse

transform procedures give the lifting estimations at the locations.

The observed values and the results of the estimated values are visualized in Fig-

ure 7.6 for all real data sets together. Rows correspond to spruces, BCI, waka,

finpines, and longleaf data sets respectively. In each row, the left plot is the

observed measurements, centre is the lifting estimates, or the denoised values, and

the normal quantile-quantile plot of the residuals are on the right. Voronoi cells

are coloured based on the observed or estimated values. In this thesis, we do not
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Figure 7.6: From top row panel to bottom, the lifting results are presented for
spruces, BCI, waka, finpines, and longleaf data sets respectively. At each row
panel, original tree diameter (left), lifting estimations (centre), the normal q-q plot
of the residuals (right) are shown.
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7.4 Real data application of lifting

study the imputation feature of the lifting at unobserved locations such as the grid

points. It is one of the challenging aspect of the lifting as discussed in Heaton &

Silverman (2008) and Peck (2010). The estimated surface is created by disjoint

polygons which are piecewise linear sub-surfaces.

The presentation order of the results is determined based on their estimated γ̂

parameter values from Table 4.5. The spruces data set has the most regular

pattern in the first row panel. The original tree diameter measurements have some

irregularity with observed high diameter near the top and left boundary lines and

small diameters at intermittent locations. The lifting estimates at the centre plot

creates a quite smooth pattern. The estimated high values are located near the

top and left boundary lines where the high diameter was observed at the relevant

locations. The locations at the centre of the region are mainly similar and take

approximately the mid value of the scale.

There is over-smoothing cases at some locations, for instance, two points at the

top right corner originally have very small and high diameters that are coloured

in green and dark blue, however, lifting estimated the very similar values for these

points. Hence over-smoothing might be a concern here. The normal q-q plot of

the residuals on the right show that the majority of the points are located on the

reference line, but minor violations indicate a slightly right skewed distribution.

The Barro Colorado Island data in the second row panel has different nature due

to the mixture of regular and irregular points. The sampling region is rectangular,

hence the BCI data set is an example of lifting in a non-square region. The mea-

surements (yi) at the locations (xi) is the soil Aluminum level. The smoothing in

the lifting estimates at the centre is reasonable and not over-smoothed. We also

see some of the discontinuities are preserved from the observed values. The soil

Aluminum estimation is the lowest at the centre of the region and top right corner,

and high values are observed at the centre-left and top-centre-right. If the over-

all surfaces for measured and estimated values are compared, the estimated values

seem to be an appropriately denoised version. The residuals for this data has a

slight left-skewed shape.

A homogeneous point pattern, waka, is given the third row panel. It is actually

difficult to identify any pattern from the observed tree diameters on the left. One

extreme observation is located around the top left corner for which the estimated

value is smaller. The overall pattern of the lifting estimates do not show anomaly

and occasional patterns are identified. Although irregular discontinuities occur near

the boundary, the lifting estimations are smooth. The centre plot gives a sensible
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underlying pattern using lifting. The right skew on the residuals is heavier than

that seen for spruces.

Although the tree locations in finpines data set constitute some clustering, the

clusters are not isolated from each other. The pattern of the tree locations generally

looks homogeneous but contains clusters at slightly right of centre at the bottom,

and the top-right corner. The original tree diameter measurements look irregular

and it is hard to identify if any pattern exists. However, the lifting estimations

on the centre plot show estimated values that clarifies the underlying pattern by

smoothing the random variations and also preserving discontinuities. We do not see

any anomalous boundary effect in the estimated values. The lifting estimates are

the highest at the bottom right corner due to the high observed values, however,

some of the cells with light yellow colour became darker due to the smoothing.

In the original tree diameter values, there are examples of two trees very close to each

other, one with large and the other with very small diameter. It is possible for two

adjacent trees to have small diameters, but it is not likely to have both trees to have

large diameter. The lifting estimates for such adjacent trees are indistinguishable

although they are very different in the reality. Other high diameter values are

estimated at the top-left corner and top-centre, and there are three parts where the

estimated diameter is small two of which are near the clusters, and one is closer to

the top-centre. At the other locations, the lifting estimates are similar and close to

the median value.

The last row panel in Figure 7.6 shows the results for the longleaf data which also

show some degree of clustering. At the highly clustered locations, trees have smaller

diameter coloured in yellow and the most high values are observed at the bottom-

right and bottom-centre. The lifting estimates clarify the underlying pattern that is

smooth but the parts where the tree diameter is small and high are still noticeable.

The residuals have a skewed distribution as observed in the previous data sets.

7.5 Conclusions

This chapter extends the application of lifting for regular and clustered data sce-

narios, and real data sets. As concluded in Chapter 6 which suggested the usage of

the adjusted weights rather than the observed weights, and Ag? in particular. Since

cell properties such as the area depend upon global point intensity ρ for homoge-

neous points, and local intensity ρi for regular and clustered points, we estimated

the {ρ̂}ni=1 and scaled the covariates with respect to ρ̂i and highlighted the area
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prediction with ? superscript. The base and augmented model prediction of area

using ρ̂i is denoted as B? and Ag? which are used as the new weight methods in

this chapter hence the total number of weight methods we consider is increased to

seven.

The performances of the weight methods are investigated for the test functions

using regular and clustered point patterns with different degrees of regularity and

clustering. The process we used to generate regular and clustered points is the

saturation process by Geyer (1999). The lifting estimates are examined globally,

interior, and edge regions, and at different transects. The Ag? method gave the

smallest MSE for most cases, especially near the boundaries. The usage of the

standard weight methods that are the observed cell area using the boundaries do

not give satisfactory results. In fact, we demonstrated that the convex hull boundary

has a poor performance. The area prediction model framework we proposed can be

used in the situations where the spatial data has a boundary that is either known

or unknown as we explained in Section 3.5.1 and 3.5.2.

The adjusted weight methods B,Ag,B? and Ag? generally have compatible perfor-

mances, except for highly clustered points. When points are highly clustered, the

range for {ρ̂i}ni=1 is expected to be higher than the regular points and hence the

cell area is highly affected by the local intensities. We concluded in Chapter 4 that

the area prediction is not robust for regular and clustered points and it is better to

use the estimated local intensity (ρ̂i) to scale the covariates which gave better pre-

dictions. Similarly, in lifting, the use of B? and Ag? methods gives better function

estimations compared to B and Ag. For the regular points, the lifting is robust

within the adjusted weight methods.

The area prediction results in Chapter 3 and 4 showed that the base model gave

an overall smaller MSE and the augmented method gave larger MSE but reduced

the maximum error. It is surprising that the usage of augmented model in the

lifting generally outperformed the base model but the lifting estimations in some

cases were very similar. It is our conclusion that the reduced maximum error on

the area prediction yield better lifting estimates since the area is predicted more

accurately, or the predicted area that has an extreme error gives unstable lifting

estimates since the area is used as the weight. Hence, although it is difficult to

suggest one of the base or augmented methods strictly, we recommend that if one

would wish to reduce the maximum error, then augmented models may be used for

both area prediction and lifting scheme.
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There are cases where the lifting using the Ag? weight method performs better

against kriging for the test functions, or the parts of the test functions. The better

performance of the lifting is usually near the edges, and on the sub-regions where

discontinuities occur. We performed lifting using the Ag? method for real data sets

which are examples of regular, homogeneous, and clustered point patterns. It is

useful to apply the method on such data sets that forces the previously considered

settings of the lifting such as the highly clustered and regular point patterns, hav-

ing large number of points, and rectangle boundaries. However, the lifting scheme

works well for all real data sets and the results are satisfactory. The only downside

of the algorithm is to become computationally expensive for large n since matrix cal-

culations are involved which would also happen in many other spatial data analysis

method.
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Chapter 8

Discussion

This thesis investigated the statistical properties of Voronoi cells in bounded regions,

proposed ways that consider the data in a finite region as if it is in the infinite

plane, and implemented this method into the lifting scheme framework which is

a denoising method for spatial data. We started the thesis with the investigation

of the statistical properties of Voronoi cells in the bounded regions using various

boundary types in Chapter 2. This part of the study was based on the homogeneous

Poisson points with a specific point intensity and discovered the effects of imposed

boundaries on the cell properties such as cell area, perimeter, and number of cell

edges. The distributions of the cell properties differed for the cells that are close to

the boundary compared to the cells in the infinite plane. Also, we found that the

boundary type matters. The study was also carried out for various unit intensities

of points and we found that the differences in the cell properties near the boundaries

remained.

Our initial study in Chapter 2 raised an important concern in the analysis of spa-

tial data that usually come within a finite region and depend on a neighbourhood

structure. In the case of bounded or finite regions, the neighbourhood structure is

disrupted by the boundary. Therefore a data point located at or near the edge or

the corner of the region may only have neighbours occasionally. This may cause

issues if the neighbourhood structure is used in the analysis of the spatial data such

as the lifting scheme we used.

In the lifting scheme, a weighted sum of the values of the neighbours is calculated.

For a data point located at the edge or corner of the region, there might be only a

few neighbours which the weighted sum is calculated from, and no neighbours on the

other side. Boundaries act as a cutoff point and hence no further observations are
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available. In the context of Voronoi tessellations, boundaries restrict the Voronoi

cells that affect the cell area. Since the lifting scheme uses both the neighbourhood

structure and the cell area that are determined by the Voronoi cells, our findings in

Chapter 2 have importance on understanding the boundary effects on the function

estimation.

We devised a process in Chapter 3 that treats the areas of Voronoi cells in the

bounded region as if they are in an infinite plane by area adjustment based on a

regression-based method. We extended this method for regular and clustered data

case in Chapter 4 and combined it with the lifting scheme later in Chapter 6 and 7

and compared the performances of the proposed and standard methods. However,

the approaches we proposed in Chapter 3 and 4 would have a general potential use

in the analysis of spatial data.

One application would be the case where data are represented as a marked point

process, with the marks being related to the area surrounding each point. For

instance, consider ecological or forestry data that contain plant or tree locations

and the territories that the plants occupy. Voronoi cells can be considered as the

territories that the plants occupy, and we would adjust the cells (territories) near

the edges using the method we created. This would be useful when the areas of

Voronoi cells are considered as the mark process that is associated with a point

process, hence the correction of the cell areas would aim to reduce the bias near

the edges. Such issues related to dependencies between the marks and locations are

mentioned in Schlather et al. (2004).

An exploratory analysis is performed in Section 3.6 for the classification of the cells

that are likely to be affected by a boundary. We used the simplest approach to

classify the boundary effected cells which gave promising results. However, the

classification of boundary effected cells can be a separate extensive study where

more sophisticated binary classification methods such as decision trees or random

forests.

The lifting scheme in two dimensions based on Voronoi tessellations is the mech-

anism we used throughout the thesis based on the specifications in Jansen et al.

(2009). The lifting scheme requires data locations and observations, and has vital

configurations which depend on cell area such as the decision of the lifting order,

and the weights that are used in the calculations. Voronoi tessellations assist to

handle these facets of the method. However, one should be careful about the bound-

ary effects on the Voronoi cells. The standard way of performing the Voronoi-based

lifting is to use the cell areas as the weights. If the data is given within a finite
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region, the actual sampling region Ω or the convex hull can be taken as the bound-

ary as standard options to calculate the cell areas. However, Ω may not always be

available or we would like to use a more sophisticated way that deals with this issue.

Here the area adjustment method introduced in Chapter 3 becomes a functional

tool to assign new weights to the cells rather than using observed cell area.

The steps of the lifting scheme are described in Chapters 5 which we explained the

role of the weights. The method in Chapter 3 and 4 works well in conjunction with

the lifting scheme and gives promising results, as presented in Chapter 6 and 7.

When such a method is suggested, it is important to validate its performances for

various scenarios so we considered many different point patterns, test functions, and

weight methods, and compared the results with methods such as kriging which our

suggested method compares favourably to many cases. However, the settings of the

configurations can be expanded and other situations may be taken into account. For

instance, we considered homogeneous Poisson points, clustered points, and regular

points, but there are many other point processes for which the lifting scheme and cell

area adjustment method can be tested. Also, we focused on two essential boundary

types: convex hull and unit square, and have not used other types of imposed or real

boundaries to avoid moving beyond the scope of the thesis, but this is a potential

avenue for future work.

We understood from this thesis that the geometrical properties of Voronoi cells

change when the boundaries are imposed. This consequence should be contemplated

in the usage of methods that rely on Voronoi tessellations. We used the cell area in

the lifting scheme but there are many areas where the properties of Voronoi cells

are used such as astronomy, geology, agriculture, physics, and wireless networks.

It is important to consider the impact of the boundaries on the cell perimeter and

the number of cell edges when these cell properties are used in a study solely or in

conjunction with other methods. Furthermore, the study of Voronoi tessellations

in two-dimensional bounded regions can be expanded to three-dimensional case.

Although the three-dimensional Voronoi tessellation is investigated in Kumar et al.

(1992); Lazar et al. (2013); Muche (1996); Tanemura (2003), the focus was not on

the properties of the polyhedrons due to imposed boundaries. The lifting scheme in

three dimensions using the Voronoi polyhedrons would be another important future

study.

The lifting scheme we used aims to estimate underlying true patterns separated

from noise by the inverse transform of the thresholded detail coefficients. These
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estimations are made for the data locations itself. However, another interesting ob-

jective would be to estimate the value at an unobserved location. The lifting scheme

is a recently developed method and most of its aspects are still being developed.

Heaton & Silverman (2008) and Peck (2010) introduced lifting-based imputation

methods which our weight method approaches might be combined with, and the

performances of different weight methods could be tested. Finally, we have checked

the q-q plots of the lifting estimates for real data cases and the results show that

the residuals do not obey a particular parametric distribution. Hence, the future

work may also consider the residual analysis of the lifting estimates.
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Appendix A

Extra plots and tables

Figure A.1: Gamma, Weibull and log-normal distributions are fitted for the stan-
dardized cell area in the infinite plane.
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Figure A.2: Selected variables in the unit square boundary models when the related
variables are removed. Results are given for the base models (left) and augmented
models (right).
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Appendix B

Test functions and R Codes

B.1 Test functions

Let us specify the theoretical definitions of the test functions.

Doppler

f(x, y) = sin

(
1

x2 + y2

)
, 0 < x, y ≤ 1 (B.1)

Heavisine

f1(z;µ, σ2) =
1

σ
√

2π
e−

1
2( z−µσ )

2

f2(x, y) = sin(a
√
x2 + y2)

f3(x, y) = f1(x;µ1, σ
2)f1(y;µ2, σ

2)

f(x, y) = f2 + f3 0 ≤ x, y ≤ 1 (B.2)

(a = 20, σ = 0.01, p = 0.005, µ1 = 0.55, µ2 = 0.50)

162



B.1 Test functions

Blocks

f(x, y) =



1 if 0 ≤ x < 0.1

2 if 0 ≤ y < 0.2

3 if 0.3 < x < 0.4, 0.7 < y < 0.8

4 if 0.7 < x < 0.8, 0.7 < y < 0.8

5 if 0.5 < x < 0.6, 0.4 < y < 0.6

6 if 0.3 < x < 0.8, 0.2 < y < 0.3

7 if 0.2 < x < 0.3, 0.3 < y < 0.4

8 if 0.8 < x < 0.9, 0.3 < y < 0.4

0 otherwise

for all 0 ≤ x, y ≤ 1 (B.3)

Bumps

f1(z;µ, b) =
1

2b
exp

{
−|z − µ|

b

}
f(x, y) =

3∑
j=1

f1

(
x;µxj ,

√
bj

)
f1

(
y;µyj ,

√
bj

)
0 ≤ x, y ≤ 1 (B.4)

(µx = (0.1, 0.8, 0.9), µy = (0.4, 0.7, 0.1), b = (0.01, 0.02, 0.015))

Maartenfunc

f(x, y) =

{
2x+ y if 3x− y < 1

5x− y if 3x− y ≥ 1
for all 0 ≤ x, y ≤ 1 (B.5)
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B.1 Test functions

## Doppler test function

dopplerfunc <- function (x,y) {

r = sqrt(x^2 + y^2)

f = sin(1/(r^2))

f }

## Blocks test function

blockfunc <- function(x,y){

f <- rep(0, length(x))

sv <- x < 0.1; f[sv] <- f[sv] + 1

sv <- y < 0.2; f[sv] <- f[sv] + 2

sv <- (x>0.3)&(x < 0.4)&(y<0.8)&(y>0.7); f[sv] <- f[sv] + 3

sv <- (x>0.7)&(x < 0.8)&(y<0.8)&(y>0.7); f[sv] <- f[sv] + 4

sv <- (x>0.5)&(x < 0.6)&(y<0.6)&(y>0.4); f[sv] <- f[sv] + 5

sv <- (x>0.3)&(x < 0.8)&(y<0.3)&(y>0.2); f[sv] <- f[sv] + 6

sv <- (x>0.2)&(x < 0.3)&(y<0.4)&(y>0.3); f[sv] <- f[sv] + 7

sv <- (x>0.8)&(x < 0.9)&(y<0.4)&(y>0.3); f[sv] <- f[sv] + 8

f }

## Heavisine test function

heavisinefunc = function(x,y, pp=0.005, sd=0.01, freq=20){

r = sqrt(x^2 + y^2)

f1 = sin(freq*r)

f2 = pp*dnorm(x,0.55,sd=sd)*dnorm(y,0.5, sd=sd)

f1+f2

}

## Bumps test function

bumpsfunc <- function (x,y) {

xc = c(0.1, 0.8, 0.9); yc = c(0.4,0.7, 0.1); vc = c(0.01,0.02, 0.015)

nc = length(xc)

ans = rep(0,length(y))

for(i in 1:nc) {ans = ans + doubexp(x, mean=xc[i], rate=sqrt(vc[i]))*

doubexp(y, mean=yc[i], rate=sqrt(vc[i]))}

ans}

doubexp = function(x, mean=0, rate=1){exp(-abs(x-mean)/rate)/(2*rate)}

## Maartenfunc

maartenfunc <- function(x,y){

fun = numeric()

for (i in 1:length(x)) {

if((3*x[i] - y[i]) < 1) {fun[i] = 2*x[i] + y[i]}

if((3*x[i] - y[i]) >= 1){fun[i] = 5*x[i] - y[i]}

}

fun

}

164



B.2 Example code for statistical properties of Poisson Voronoi cells

B.2 Example code for statistical properties of Pois-

son Voronoi cells

require(deldir)

require(tripack)

require(rgeos)

## function to calculate distance from a point to a line

pt.ln = function(x0, y0, x1, y1, x2, y2){

distance = abs((y2-y1)*x0 - (x2-x1)*y0 + x2*y1 - y2*x1)/sqrt((y2-y1)^2 + (x2-x1)^2)

distance

}

## Generate points

set.seed(22)

rho = 200

n = rpois(1, rho)

x = runif(n, 0, 1);y = runif(n, 0, 1)

## Voronoi tessellation

tes = deldir(x,y, rw = c(0,1,0,1))

## Convex hull of the points

chull1 = convex.hull(tri.mesh(x, y))

poly1 = Polygon(cbind(chull1$x,chull1$y))

p1 = SpatialPolygons(list(Polygons(list(poly1), "p1")))

## Define variables

unit.area = unit.per = unit.edge = chull.area = chull.per = chull.edge = numeric()

dist.edge = dist.edge2 = dist.cent = unit.vert = chull.vert = numeric()

on.chull = type = logical()

for (k in 1:n) {# Loop to calculate cell properties for n points

## Cell vertex coordinates

ss = rbind(as.matrix(tes$dirsgs[(tes$dirsgs[,5] == k)|(tes$dirsgs[,6] == k),]))

v = matrix(unlist(ss[, 1:4]), ncol = 4)

bp1 = ss[, 7]

bp2 = ss[, 8]

v1 = cbind(v[, 1:2, drop = FALSE], 0 + bp1)

v2 = cbind(v[, 3:4, drop = FALSE], 0 + bp2)

vv = rbind(v1,v2)
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B.2 Example code for statistical properties of Poisson Voronoi cells

angle = atan2(vv[, 2] - y[k], vv[, 1] - x[k])

angle.0 = sort(unique(angle))

vert = vv[match(angle.0, angle), ]

vv1 = vert[, 1]

vv2 = vert[, 2]

bp = as.logical(vert[, 3])

rw = tes$rw

i.crnr = get.cnrind(x, y, rw)

ii = i.crnr %in% k

x.crnrs = rw[c(1, 2, 2, 1)]

y.crnrs = rw[c(3, 3, 4, 4)]

vert.x = c(vv1, x.crnrs[ii])

vert.y = c(vv2, y.crnrs[ii])

## Cell vertices ordered

vert.coord = cbind(vert.x,vert.y)

f.bp = c(bp, rep(TRUE, sum(ii)))

f.sort = atan2(vert.coord[, 2] - y[k], vert.coord[, 1] - x[k])

f.sort.0 = sort(f.sort)

f.vert = vert.coord[match(f.sort.0, f.sort), ]

## Cell edge segments

lgth = numeric()

sgm = dim(f.vert)[1]

for (kk in 1:sgm) {

lgth[kk] = if(kk+1 <= sgm){

sqrt((f.vert[kk,][1]-f.vert[kk+1,][1])^2 +

(f.vert[kk,][2]-f.vert[kk+1,][2])^2)

}

else{sqrt((f.vert[1, ][1]-f.vert[kk,][1])^2 +

(f.vert[1,][2]-f.vert[kk,][2])^2) }

}

# ------------------------------------------------

unit.per[k] = sum(lgth) # <-- unit perimeter

# ------------------------------------------------

# ------------------------------------------------

unit.edge[k] = sgm # <-- unit edges

# ------------------------------------------------

# ------------------------------------------------
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B.2 Example code for statistical properties of Poisson Voronoi cells

type[k] = sum(f.bp) # <-- cell type

# ------------------------------------------------

# Cell vertices as SP class

chull2 = convex.hull(tri.mesh(vert.coord[,1], vert.coord[,2]))

poly2 = Polygon(cbind(chull2$x, chull2$y))

p2 = SpatialPolygons(list(Polygons(list(poly2), "p2")))

# Intersect the cell with convex hull

res = gIntersection(p1, p2)

# -----------------------------------------------------------------------------

chull.area[k] = unlist(sapply(slot(res, "polygons"), function(p) sapply(

slot(p, "Polygons"), slot, "area")))

# -----------------------------------------------------------------------------

# vertices of the intersection

pts = matrix(unlist(sapply(slot(res, "polygons"), function(p) sapply(

slot(p, "Polygons"), slot, "coords"))), ncol=2)

# chull line segments

chull.line = numeric()

chull.lgth = dim(pts)[1]

for (jj in 1:(chull.lgth-1)) {

chull.line[jj] =

sqrt((pts[jj,][1]-pts[jj+1,][1])^2 +

(pts[jj,][2]-pts[jj+1,][2])^2)

}

# ------------------------------------------------------------------

chull.per[k] = sum(chull.line) # <-- Convex hull perimeter

# ------------------------------------------------------------------

# -----------------------------------------------------------------

chull.edge[k] = (chull.lgth - 1) # <-- Convex hull edges

# -----------------------------------------------------------------

# -----------------------------------------------------------------------------

dist.edge[k] = min(abs(x[k]-1), abs(x[k]-0), # <-- distance from the point to

abs(y[k]-1), abs(y[k]-0)) # unit boundary

# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------

on.chull[k] = sum(on.convex.hull(tri.mesh(x,y),x[k], y[k])) # <-- on convex hull
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B.2 Example code for statistical properties of Poisson Voronoi cells

# -----------------------------------------------------------------------------

## unit vertex dist

rwin = matrix(c(0,0,0,1,

0,1,1,1,

1,1,1,0,

1,0,0,0), 4,4)

d = dd = numeric()

for (zz in 1:(nrow(vert.coord))) {

for (ll in 1:4) {

d[ll] = pt.ln(vert.coord[zz, 1], vert.coord[zz, 2], rwin[1,ll],rwin[2,ll],

rwin[3,ll],rwin[4,ll])}

dd[zz] = min(d)}

# ---------------------------------------------------------------------------

unit.vert[k] = min(dd) # <-- min distance from the vertices to the

to the unit square boundary

# ---------------------------------------------------------------------------

## chull vertex distance

cwin = slot(poly1, ’coords’)

cver = pts

d = dd = numeric()

for (zz in 1:(nrow(cver))) {

for (ll in 1:(nrow(cwin) -1)) {

d[ll] = pt.ln(cver[zz, 1], cver[zz, 2], cwin[ll,1],cwin[ll,2],

cwin[ll+1,1],cwin[ll+1,2])}

dd[zz] = min(d)}

# ---------------------------------------------------------------------------

chull.vert[k] = min(na.omit(dd)) # <-- min distance from the vertices

to the chull boundary

# ---------------------------------------------------------------------------

## min distance from chull boundary

dc = numeric()

for (ll in 1:(dim(cwin)[1] -1)) {

dc[ll] = pt.ln(x[k], y[k], cwin[ll,1],cwin[ll,2],

cwin[ll+1,1],cwin[ll+1,2])}

# -----------------------------------------------------------------------------

dist.edge2[k] = min(dc) # <-- distance from the point to chull boundary

# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------
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B.2 Example code for statistical properties of Poisson Voronoi cells

dist.cent[k] = (0.5-x[k])^2 + (0.5-y[k])^2 # <-- distace from the centre

# -----------------------------------------------------------------------------

}# end of loop

# -----------------------------------------------------------------------------

unit.area = tes$summary$dir.area # <-- unit area

# -----------------------------------------------------------------------------

sim.df = data.frame(x, y, unit.area, unit.per, unit.edge, chull.area,

chull.per, chull.edge, dist.edge, dist.edge2, dist.cent,

unit.vert, chull.vert,on.chull, type)
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Appendix C

Tables of MSE values for regular

and clustered data
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γ = 0 γ = 0.25

Conv. Unit Doub. B0 A0 B? A? Conv. Unit Doub. B0 A0 B? A?

G 0.045 0.044 0.044 0.045 0.044 0.045 0.044 0.045 0.045 0.046 0.045 0.045 0.045 0.045
I 0.038 0.039 0.040 0.040 0.040 0.040 0.040 0.039 0.041 0.042 0.040 0.041 0.041 0.041
E 0.052 0.048 0.048 0.049 0.048 0.050 0.047 0.051 0.048 0.049 0.049 0.048 0.049 0.048

v1 0.100 0.090 0.087 0.087 0.087 0.091 0.084 0.103 0.092 0.089 0.090 0.090 0.089 0.087
v2 0.015 0.014 0.012 0.013 0.012 0.013 0.012 0.015 0.014 0.013 0.012 0.011 0.012 0.011
h1 0.105 0.093 0.090 0.089 0.086 0.091 0.082 0.106 0.090 0.088 0.093 0.088 0.091 0.086
h2 0.014 0.013 0.012 0.012 0.011 0.012 0.011 0.014 0.013 0.012 0.012 0.012 0.013 0.012
D 0.068 0.068 0.069 0.066 0.067 0.069 0.065 0.072 0.066 0.068 0.067 0.065 0.068 0.064

G 0.468 0.456 0.455 0.451 0.444 0.449 0.442 0.451 0.430 0.432 0.424 0.422 0.419 0.420
I 0.425 0.438 0.447 0.451 0.459 0.451 0.457 0.408 0.417 0.428 0.424 0.435 0.421 0.439
E 0.506 0.472 0.461 0.450 0.431 0.446 0.428 0.489 0.442 0.435 0.424 0.410 0.418 0.403

v1 0.551 0.517 0.508 0.494 0.480 0.501 0.480 0.554 0.488 0.476 0.481 0.460 0.468 0.463
v2 0.818 0.678 0.588 0.584 0.520 0.573 0.515 0.783 0.630 0.545 0.560 0.500 0.532 0.488
h1 0.544 0.512 0.503 0.501 0.487 0.503 0.475 0.528 0.483 0.474 0.458 0.454 0.452 0.443
h2 0.813 0.680 0.593 0.580 0.539 0.590 0.534 0.790 0.621 0.538 0.560 0.501 0.542 0.492
D 0.489 0.459 0.456 0.445 0.444 0.466 0.431 0.484 0.419 0.412 0.415 0.411 0.418 0.396

G 0.553 0.520 0.521 0.545 0.555 0.560 0.550 0.545 0.528 0.529 0.533 0.536 0.533 0.524
I 0.839 0.800 0.807 0.852 0.876 0.873 0.869 0.812 0.812 0.819 0.818 0.837 0.827 0.820
E 0.303 0.276 0.271 0.277 0.275 0.286 0.272 0.312 0.281 0.276 0.285 0.274 0.276 0.267

v1 0.505 0.422 0.374 0.400 0.362 0.417 0.360 0.532 0.448 0.387 0.425 0.363 0.403 0.338
v2 0.875 0.802 0.789 0.923 0.915 0.917 0.904 0.824 0.832 0.827 0.836 0.806 0.809 0.821
v3 0.447 0.423 0.428 0.432 0.436 0.458 0.443 0.417 0.407 0.413 0.408 0.411 0.415 0.416
v4 0.273 0.242 0.229 0.249 0.253 0.252 0.250 0.281 0.252 0.244 0.261 0.265 0.233 0.255
h1 0.246 0.207 0.194 0.203 0.182 0.205 0.173 0.272 0.208 0.198 0.212 0.179 0.204 0.172
h2 0.518 0.516 0.512 0.525 0.531 0.516 0.531 0.544 0.587 0.583 0.546 0.566 0.580 0.532
h3 0.132 0.115 0.109 0.115 0.109 0.119 0.119 0.129 0.110 0.105 0.109 0.104 0.107 0.103

G 0.443 0.396 0.385 0.380 0.360 0.376 0.363 0.419 0.399 0.388 0.366 0.356 0.360 0.358
I 0.306 0.294 0.296 0.305 0.306 0.304 0.311 0.292 0.294 0.299 0.295 0.310 0.294 0.313
E 0.562 0.485 0.464 0.445 0.408 0.438 0.408 0.531 0.490 0.464 0.427 0.396 0.417 0.397

v1 0.840 0.706 0.599 0.566 0.507 0.579 0.485 0.852 0.717 0.597 0.548 0.496 0.554 0.461
v2 0.519 0.453 0.488 0.462 0.474 0.454 0.467 0.494 0.438 0.467 0.428 0.409 0.395 0.423
v3 0.096 0.093 0.090 0.092 0.092 0.089 0.088 0.102 0.103 0.100 0.092 0.102 0.094 0.098
v4 0.649 0.559 0.624 0.563 0.562 0.569 0.552 0.652 0.587 0.641 0.582 0.577 0.569 0.610
v5 1.208 1.033 0.819 0.862 0.711 0.825 0.723 1.158 1.050 0.828 0.802 0.649 0.766 0.672
h1 0.674 0.566 0.483 0.469 0.399 0.458 0.399 0.580 0.548 0.476 0.426 0.387 0.409 0.381
h2 0.297 0.209 0.167 0.202 0.156 0.180 0.155 0.277 0.222 0.174 0.173 0.150 0.169 0.154

G 0.053 0.048 0.048 0.045 0.043 0.045 0.042 0.054 0.048 0.047 0.046 0.044 0.046 0.044
I 0.038 0.037 0.039 0.037 0.035 0.036 0.035 0.040 0.037 0.039 0.038 0.037 0.036 0.036
E 0.066 0.057 0.055 0.052 0.049 0.052 0.049 0.066 0.057 0.054 0.054 0.050 0.054 0.051

v1 0.051 0.045 0.041 0.038 0.034 0.041 0.035 0.057 0.044 0.039 0.039 0.039 0.041 0.038
v2 0.050 0.046 0.046 0.047 0.045 0.045 0.045 0.050 0.046 0.047 0.046 0.045 0.048 0.048
v3 0.185 0.160 0.133 0.131 0.112 0.126 0.108 0.181 0.154 0.125 0.130 0.106 0.127 0.108
h1 0.101 0.085 0.078 0.074 0.070 0.074 0.070 0.100 0.084 0.076 0.077 0.072 0.076 0.070
h2 0.047 0.041 0.042 0.041 0.039 0.040 0.037 0.044 0.044 0.045 0.039 0.039 0.042 0.041
h3 0.052 0.042 0.042 0.043 0.039 0.043 0.039 0.053 0.044 0.043 0.043 0.040 0.044 0.043

Table C.1: Mean squared error for the lifting estimations for regular and clustered
points when γ = 0, 0.25. The rows denote the different spatial parts of the region,
and the columns give the results for different weight methods. If the parameter γ <
1 it indicates the incremental magnitudes of inhibition or repulsion, and clustering
if γ > 1. Results are given for Dopper, Heavisine, Blocks, Bumps and Maartenfunc
test functions from top to bottom panel respectively. MSE calculated globally is
denoted as (G), interior (I), edge (E) of the region, and the vertical (v), horizontal
(h), and diagonal (D) transects.

171



γ = 0.5 γ = 0.75

Conv. Unit Doub. B0 A0 B? A? Conv. Unit Doub. B0 A0 B? A?

G 0.046 0.044 0.045 0.045 0.045 0.044 0.045 0.045 0.044 0.045 0.044 0.042 0.042 0.043
I 0.039 0.039 0.040 0.042 0.041 0.040 0.041 0.038 0.039 0.040 0.039 0.039 0.039 0.039
E 0.053 0.049 0.049 0.049 0.048 0.047 0.048 0.052 0.048 0.049 0.047 0.045 0.045 0.046

v1 0.106 0.094 0.092 0.090 0.087 0.089 0.087 0.105 0.088 0.086 0.086 0.084 0.086 0.086
v2 0.015 0.014 0.013 0.013 0.011 0.012 0.011 0.015 0.014 0.013 0.012 0.012 0.012 0.011
h1 0.106 0.097 0.096 0.087 0.086 0.089 0.085 0.111 0.098 0.097 0.089 0.081 0.085 0.080
h2 0.014 0.013 0.012 0.013 0.011 0.012 0.012 0.016 0.013 0.012 0.013 0.012 0.012 0.012
D 0.064 0.066 0.067 0.062 0.059 0.056 0.061 0.064 0.058 0.060 0.057 0.061 0.058 0.057

G 0.426 0.399 0.401 0.386 0.381 0.384 0.375 0.387 0.350 0.352 0.345 0.336 0.347 0.338
I 0.391 0.392 0.404 0.392 0.390 0.390 0.389 0.354 0.347 0.357 0.349 0.353 0.350 0.353
E 0.456 0.405 0.399 0.379 0.372 0.379 0.362 0.418 0.353 0.348 0.341 0.321 0.344 0.323

v1 0.514 0.462 0.451 0.431 0.404 0.418 0.403 0.462 0.414 0.408 0.369 0.345 0.371 0.334
v2 0.730 0.590 0.510 0.512 0.459 0.496 0.459 0.728 0.520 0.454 0.483 0.410 0.484 0.406
h1 0.540 0.459 0.451 0.435 0.412 0.422 0.415 0.492 0.426 0.416 0.387 0.368 0.384 0.363
h2 0.750 0.600 0.522 0.523 0.460 0.525 0.438 0.710 0.521 0.457 0.467 0.400 0.470 0.401
D 0.451 0.388 0.390 0.367 0.361 0.366 0.357 0.407 0.345 0.347 0.364 0.350 0.353 0.330

G 0.549 0.537 0.539 0.533 0.527 0.542 0.539 0.548 0.521 0.522 0.528 0.538 0.524 0.538
I 0.815 0.819 0.827 0.820 0.813 0.835 0.832 0.798 0.783 0.794 0.803 0.826 0.798 0.826
E 0.308 0.283 0.279 0.275 0.270 0.277 0.276 0.315 0.277 0.269 0.272 0.269 0.269 0.270

v1 0.525 0.432 0.375 0.395 0.367 0.387 0.359 0.550 0.453 0.383 0.424 0.381 0.414 0.361
v2 0.824 0.843 0.836 0.819 0.804 0.845 0.814 0.813 0.788 0.781 0.794 0.847 0.812 0.838
v3 0.389 0.393 0.399 0.384 0.393 0.403 0.392 0.393 0.371 0.362 0.380 0.390 0.377 0.395
v4 0.300 0.264 0.249 0.261 0.253 0.267 0.256 0.309 0.241 0.223 0.236 0.226 0.240 0.241
h1 0.260 0.216 0.207 0.203 0.196 0.201 0.208 0.262 0.216 0.197 0.216 0.212 0.207 0.199
h2 0.545 0.549 0.553 0.551 0.567 0.543 0.563 0.555 0.521 0.508 0.535 0.572 0.522 0.551
h3 0.127 0.111 0.108 0.110 0.102 0.110 0.104 0.141 0.109 0.105 0.121 0.115 0.121 0.113

G 0.416 0.386 0.381 0.367 0.351 0.357 0.358 0.421 0.374 0.371 0.360 0.348 0.352 0.338
I 0.291 0.296 0.300 0.297 0.293 0.297 0.304 0.296 0.296 0.302 0.296 0.302 0.287 0.293
E 0.529 0.468 0.454 0.430 0.402 0.411 0.407 0.536 0.447 0.436 0.420 0.391 0.413 0.380

v1 0.846 0.687 0.606 0.578 0.504 0.549 0.510 0.872 0.657 0.565 0.588 0.514 0.569 0.495
v2 0.566 0.502 0.552 0.477 0.468 0.496 0.459 0.556 0.423 0.449 0.491 0.446 0.462 0.448
v3 0.094 0.092 0.091 0.091 0.092 0.090 0.101 0.099 0.087 0.087 0.099 0.095 0.094 0.085
v4 0.649 0.606 0.687 0.619 0.583 0.579 0.570 0.670 0.593 0.670 0.571 0.535 0.550 0.519
v5 1.142 0.964 0.781 0.817 0.713 0.769 0.720 1.193 0.964 0.799 0.777 0.682 0.787 0.674
h1 0.561 0.514 0.441 0.414 0.370 0.388 0.373 0.600 0.494 0.443 0.435 0.364 0.426 0.368
h2 0.285 0.203 0.170 0.197 0.156 0.168 0.166 0.300 0.220 0.190 0.193 0.168 0.179 0.154

G 0.052 0.049 0.049 0.046 0.045 0.046 0.044 0.055 0.048 0.049 0.047 0.046 0.047 0.046
I 0.039 0.039 0.041 0.039 0.038 0.038 0.038 0.039 0.039 0.041 0.038 0.039 0.038 0.038
E 0.065 0.059 0.057 0.053 0.052 0.054 0.050 0.069 0.057 0.055 0.056 0.053 0.055 0.053

v1 0.053 0.050 0.045 0.042 0.040 0.042 0.039 0.057 0.044 0.042 0.046 0.044 0.043 0.044
v2 0.052 0.049 0.049 0.047 0.051 0.048 0.048 0.051 0.049 0.050 0.051 0.048 0.049 0.048
v3 0.180 0.150 0.122 0.138 0.121 0.137 0.112 0.191 0.148 0.124 0.135 0.119 0.134 0.120
h1 0.097 0.085 0.079 0.073 0.070 0.076 0.068 0.106 0.086 0.081 0.080 0.075 0.074 0.074
h2 0.044 0.043 0.044 0.040 0.038 0.038 0.040 0.046 0.045 0.045 0.038 0.043 0.042 0.041
h3 0.048 0.046 0.046 0.041 0.039 0.042 0.040 0.053 0.042 0.041 0.044 0.041 0.043 0.042

Table C.2: Mean squared error for the lifting estimations for regular and clustered
points when γ = 0.5, 0.75. The rows denote the different spatial parts of the region,
and the columns give the results for different weight methods. If the parameter γ <
1 it indicates the incremental magnitudes of inhibition or repulsion, and clustering
if γ > 1. Results are given for Dopper, Heavisine, Blocks, Bumps and Maartenfunc
test functions from top to bottom panel respectively. MSE calculated globally is
denoted as (G), interior (I), edge (E) of the region, and the vertical (v), horizontal
(h), and diagonal (D) transects.
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γ = 1 γ = 1.25

Conv. Unit Doub. B0 A0 B? A? Conv. Unit Doub. B0 A0 B? A?

G 0.046 0.043 0.045 0.043 0.043 0.043 0.043 0.044 0.044 0.045 0.043 0.043 0.042 0.043
I 0.040 0.040 0.042 0.038 0.040 0.038 0.040 0.037 0.040 0.042 0.038 0.039 0.038 0.039
E 0.052 0.047 0.048 0.048 0.045 0.047 0.047 0.051 0.047 0.048 0.047 0.046 0.047 0.046

v1 0.110 0.088 0.088 0.085 0.081 0.084 0.085 0.111 0.091 0.088 0.081 0.081 0.083 0.083
v2 0.016 0.013 0.012 0.013 0.012 0.013 0.012 0.015 0.014 0.013 0.013 0.013 0.013 0.013
h1 0.113 0.096 0.094 0.090 0.080 0.086 0.088 0.106 0.093 0.090 0.090 0.088 0.088 0.085
h2 0.015 0.013 0.012 0.013 0.012 0.012 0.013 0.016 0.013 0.012 0.013 0.012 0.013 0.013
D 0.069 0.062 0.064 0.065 0.059 0.062 0.064 0.064 0.052 0.054 0.065 0.066 0.064 0.065

G 0.346 0.311 0.312 0.304 0.296 0.295 0.292 0.311 0.285 0.289 0.274 0.269 0.265 0.260
I 0.311 0.314 0.322 0.308 0.306 0.302 0.304 0.281 0.288 0.297 0.282 0.283 0.269 0.273
E 0.379 0.308 0.302 0.301 0.285 0.288 0.280 0.341 0.283 0.281 0.266 0.255 0.260 0.248

v1 0.451 0.356 0.346 0.330 0.305 0.317 0.298 0.401 0.331 0.328 0.286 0.265 0.294 0.264
v2 0.683 0.482 0.425 0.428 0.373 0.406 0.362 0.606 0.432 0.378 0.393 0.321 0.350 0.315
h1 0.426 0.367 0.358 0.333 0.315 0.317 0.304 0.382 0.319 0.318 0.302 0.272 0.289 0.276
h2 0.682 0.483 0.420 0.436 0.370 0.404 0.366 0.628 0.439 0.387 0.377 0.345 0.379 0.321
D 0.377 0.307 0.307 0.307 0.283 0.297 0.281 0.357 0.267 0.269 0.270 0.280 0.273 0.274

G 0.535 0.506 0.509 0.533 0.538 0.527 0.523 0.523 0.489 0.492 0.506 0.507 0.510 0.509
I 0.769 0.746 0.753 0.801 0.813 0.791 0.791 0.739 0.718 0.728 0.750 0.752 0.753 0.755
E 0.311 0.276 0.275 0.276 0.274 0.274 0.266 0.312 0.265 0.261 0.268 0.268 0.272 0.269

v1 0.594 0.468 0.415 0.414 0.382 0.446 0.378 0.574 0.435 0.374 0.436 0.375 0.430 0.381
v2 0.771 0.774 0.759 0.787 0.782 0.746 0.785 0.762 0.768 0.756 0.783 0.789 0.735 0.771
v3 0.390 0.377 0.388 0.405 0.396 0.399 0.382 0.379 0.367 0.373 0.367 0.404 0.401 0.378
v4 0.313 0.277 0.262 0.261 0.252 0.246 0.240 0.297 0.251 0.241 0.252 0.239 0.244 0.248
h1 0.284 0.197 0.193 0.203 0.220 0.209 0.204 0.286 0.193 0.177 0.218 0.202 0.217 0.214
h2 0.511 0.507 0.498 0.547 0.548 0.543 0.532 0.566 0.518 0.518 0.534 0.551 0.540 0.539
h3 0.132 0.124 0.121 0.115 0.107 0.108 0.105 0.125 0.108 0.107 0.105 0.110 0.110 0.105

G 0.415 0.370 0.367 0.351 0.347 0.345 0.346 0.406 0.361 0.362 0.351 0.342 0.343 0.339
I 0.295 0.294 0.301 0.293 0.303 0.288 0.301 0.284 0.279 0.288 0.286 0.293 0.278 0.286
E 0.531 0.443 0.431 0.408 0.390 0.399 0.389 0.525 0.442 0.434 0.415 0.389 0.406 0.391

v1 0.870 0.644 0.563 0.559 0.499 0.548 0.521 0.896 0.670 0.603 0.545 0.490 0.554 0.520
v2 0.532 0.448 0.464 0.439 0.431 0.427 0.443 0.532 0.460 0.491 0.463 0.457 0.455 0.458
v3 0.102 0.098 0.098 0.101 0.106 0.094 0.106 0.101 0.098 0.096 0.102 0.101 0.096 0.103
v4 0.740 0.618 0.675 0.581 0.601 0.584 0.577 0.708 0.578 0.643 0.617 0.578 0.591 0.583
v5 1.174 0.959 0.802 0.784 0.666 0.791 0.674 1.160 0.967 0.799 0.797 0.649 0.790 0.672
h1 0.637 0.501 0.456 0.416 0.395 0.394 0.375 0.588 0.515 0.468 0.436 0.408 0.408 0.392
h2 0.322 0.243 0.200 0.198 0.176 0.203 0.169 0.350 0.232 0.201 0.214 0.193 0.206 0.189

G 0.054 0.050 0.050 0.049 0.048 0.049 0.047 0.055 0.050 0.050 0.047 0.046 0.047 0.046
I 0.039 0.040 0.043 0.039 0.039 0.040 0.039 0.041 0.040 0.043 0.039 0.039 0.040 0.039
E 0.068 0.058 0.057 0.059 0.055 0.057 0.054 0.070 0.059 0.058 0.054 0.053 0.055 0.053

v1 0.062 0.046 0.042 0.049 0.043 0.046 0.043 0.062 0.049 0.046 0.046 0.043 0.046 0.044
v2 0.056 0.051 0.052 0.053 0.053 0.052 0.052 0.052 0.054 0.054 0.049 0.051 0.048 0.054
v3 0.185 0.155 0.131 0.146 0.127 0.141 0.120 0.192 0.158 0.134 0.136 0.126 0.137 0.119
h1 0.104 0.085 0.081 0.079 0.075 0.080 0.074 0.107 0.084 0.079 0.074 0.075 0.074 0.072
h2 0.043 0.047 0.047 0.045 0.041 0.041 0.041 0.045 0.044 0.044 0.043 0.042 0.043 0.041
h3 0.051 0.043 0.043 0.047 0.045 0.046 0.045 0.050 0.043 0.042 0.042 0.040 0.043 0.040

Table C.3: Mean squared error for the lifting estimations for regular and clustered
points when γ = 1, 1.25. The rows denote the different spatial parts of the region,
and the columns give the results for different weight methods. If the parameter γ <
1 it indicates the incremental magnitudes of inhibition or repulsion, and clustering
if γ > 1. Results are given for Dopper, Heavisine, Blocks, Bumps and Maartenfunc
test functions from top to bottom panel respectively. MSE calculated globally is
denoted as (G), interior (I), edge (E) of the region, and the vertical (v), horizontal
(h), and diagonal (D) transects.

173



γ = 1.5 γ = 2

Conv. Unit Doub. B0 A0 B? A? Conv. Unit Doub. B0 A0 B? A?

G 0.045 0.043 0.044 0.043 0.044 0.042 0.043 0.045 0.043 0.042 0.046 0.046 0.042 0.042
I 0.038 0.040 0.041 0.039 0.041 0.038 0.039 0.038 0.038 0.040 0.041 0.043 0.038 0.038
E 0.051 0.047 0.047 0.048 0.047 0.046 0.046 0.052 0.048 0.045 0.050 0.049 0.046 0.046

v1 0.105 0.088 0.088 0.088 0.081 0.078 0.082 0.097 0.091 0.089 0.092 0.087 0.073 0.076
v2 0.015 0.012 0.013 0.012 0.012 0.012 0.012 0.016 0.014 0.013 0.014 0.014 0.013 0.012
h1 0.108 0.097 0.090 0.093 0.088 0.089 0.090 0.107 0.096 0.091 0.094 0.088 0.088 0.088
h2 0.015 0.013 0.012 0.012 0.013 0.013 0.013 0.016 0.013 0.012 0.014 0.013 0.013 0.013
D 0.063 0.065 0.064 0.063 0.065 0.055 0.062 0.074 0.061 0.061 0.068 0.070 0.068 0.061

G 0.298 0.263 0.269 0.252 0.251 0.247 0.249 0.281 0.244 0.249 0.265 0.267 0.233 0.229
I 0.267 0.270 0.278 0.258 0.264 0.252 0.261 0.249 0.244 0.257 0.268 0.270 0.238 0.244
E 0.329 0.257 0.261 0.247 0.238 0.242 0.237 0.312 0.243 0.241 0.262 0.263 0.228 0.214

v1 0.397 0.315 0.309 0.280 0.262 0.261 0.257 0.380 0.283 0.285 0.277 0.270 0.256 0.223
v2 0.606 0.405 0.368 0.354 0.306 0.333 0.294 0.558 0.385 0.343 0.351 0.327 0.318 0.268
h1 0.382 0.292 0.297 0.254 0.254 0.265 0.255 0.364 0.276 0.269 0.280 0.272 0.253 0.223
h2 0.601 0.408 0.357 0.362 0.313 0.350 0.300 0.584 0.404 0.336 0.360 0.348 0.326 0.269
D 0.320 0.259 0.264 0.252 0.239 0.247 0.241 0.311 0.228 0.240 0.265 0.256 0.249 0.242

G 0.530 0.519 0.495 0.514 0.517 0.503 0.509 0.508 0.498 0.494 0.494 0.496 0.491 0.494
I 0.744 0.761 0.730 0.761 0.768 0.738 0.751 0.703 0.731 0.725 0.715 0.726 0.719 0.722
E 0.319 0.279 0.263 0.270 0.269 0.271 0.270 0.313 0.264 0.260 0.273 0.266 0.263 0.267

v1 0.592 0.456 0.393 0.430 0.387 0.413 0.398 0.555 0.444 0.382 0.407 0.358 0.388 0.374
v2 0.734 0.746 0.704 0.747 0.761 0.742 0.744 0.761 0.639 0.659 0.716 0.709 0.752 0.776
v3 0.379 0.367 0.341 0.368 0.384 0.370 0.364 0.381 0.360 0.369 0.373 0.375 0.344 0.360
v4 0.300 0.262 0.223 0.231 0.248 0.246 0.235 0.288 0.231 0.229 0.236 0.230 0.234 0.223
h1 0.300 0.224 0.185 0.210 0.210 0.236 0.233 0.285 0.209 0.185 0.224 0.215 0.210 0.212
h2 0.496 0.503 0.506 0.522 0.532 0.479 0.476 0.489 0.466 0.518 0.490 0.481 0.459 0.457
h3 0.123 0.112 0.118 0.111 0.109 0.104 0.107 0.121 0.102 0.101 0.115 0.114 0.109 0.104

G 0.408 0.366 0.375 0.354 0.340 0.350 0.337 0.400 0.362 0.360 0.367 0.370 0.338 0.334
I 0.283 0.290 0.311 0.294 0.290 0.284 0.285 0.275 0.299 0.301 0.305 0.312 0.280 0.288
E 0.533 0.441 0.437 0.414 0.389 0.416 0.389 0.524 0.425 0.419 0.429 0.427 0.396 0.380

v1 0.909 0.675 0.667 0.615 0.530 0.546 0.542 0.931 0.706 0.596 0.612 0.592 0.544 0.532
v2 0.539 0.475 0.470 0.489 0.473 0.454 0.459 0.523 0.439 0.473 0.480 0.498 0.427 0.419
v3 0.096 0.097 0.099 0.102 0.105 0.104 0.099 0.109 0.109 0.103 0.110 0.124 0.114 0.106
v4 0.713 0.552 0.637 0.544 0.545 0.608 0.567 0.700 0.556 0.621 0.551 0.575 0.543 0.550
v5 1.192 0.992 0.810 0.801 0.682 0.849 0.690 1.243 0.936 0.819 0.819 0.750 0.760 0.653
h1 0.603 0.499 0.486 0.398 0.382 0.414 0.365 0.581 0.545 0.469 0.444 0.463 0.399 0.362
h2 0.322 0.212 0.198 0.206 0.179 0.223 0.178 0.333 0.256 0.218 0.214 0.212 0.204 0.184

G 0.056 0.049 0.051 0.048 0.047 0.048 0.047 0.058 0.050 0.052 0.051 0.050 0.048 0.047
I 0.041 0.039 0.045 0.040 0.040 0.041 0.040 0.042 0.040 0.045 0.043 0.043 0.041 0.040
E 0.071 0.059 0.057 0.056 0.054 0.054 0.054 0.074 0.059 0.058 0.059 0.058 0.055 0.054

v1 0.064 0.047 0.045 0.045 0.042 0.047 0.045 0.067 0.050 0.048 0.052 0.048 0.045 0.044
v2 0.055 0.049 0.050 0.051 0.054 0.054 0.051 0.054 0.056 0.053 0.058 0.056 0.054 0.052
v3 0.195 0.158 0.127 0.140 0.133 0.133 0.128 0.210 0.164 0.139 0.157 0.150 0.145 0.128
h1 0.111 0.084 0.076 0.078 0.071 0.073 0.076 0.120 0.084 0.081 0.094 0.087 0.081 0.079
h2 0.047 0.043 0.050 0.043 0.043 0.047 0.046 0.047 0.046 0.050 0.047 0.045 0.044 0.041
h3 0.049 0.043 0.045 0.040 0.042 0.040 0.041 0.048 0.047 0.045 0.047 0.046 0.039 0.042

Table C.4: Mean squared error for the lifting estimations for regular and clustered
points when γ = 1.5, 2. The rows denote the different spatial parts of the region, and
the columns give the results for different weight methods. If the parameter γ < 1
it indicates the incremental magnitudes of inhibition or repulsion, and clustering if
γ > 1. Results are given for Dopper, Heavisine, Blocks, Bumps and Maartenfunc
test functions from top to bottom panel respectively. MSE calculated globally is
denoted as (G), interior (I), edge (E) of the region, and the vertical (v), horizontal
(h), and diagonal (D) transects.
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γ = 3

Conv. Unit Doub. B0 A0 B? A?

G 0.045 0.042 0.043 0.046 0.046 0.042 0.042
I 0.037 0.037 0.039 0.041 0.042 0.038 0.037
E 0.052 0.047 0.048 0.051 0.051 0.047 0.046

v1 0.102 0.087 0.088 0.092 0.092 0.091 0.086
v2 0.016 0.014 0.013 0.014 0.013 0.014 0.013
h1 0.115 0.090 0.096 0.106 0.106 0.091 0.086
h2 0.016 0.014 0.012 0.013 0.014 0.013 0.013
D 0.069 0.059 0.063 0.075 0.073 0.058 0.057

G 0.267 0.217 0.222 0.260 0.262 0.223 0.228
I 0.237 0.220 0.230 0.264 0.267 0.227 0.237
E 0.298 0.213 0.214 0.256 0.256 0.218 0.218

v1 0.351 0.234 0.236 0.261 0.270 0.239 0.228
v2 0.548 0.348 0.320 0.335 0.317 0.297 0.263
h1 0.364 0.255 0.256 0.277 0.297 0.251 0.243
h2 0.565 0.349 0.316 0.358 0.350 0.314 0.277
D 0.288 0.212 0.210 0.254 0.247 0.220 0.234

G 0.505 0.509 0.492 0.495 0.501 0.491 0.503
I 0.699 0.740 0.709 0.711 0.722 0.718 0.741
E 0.308 0.270 0.269 0.277 0.277 0.263 0.262

v1 0.544 0.426 0.394 0.396 0.380 0.391 0.378
v2 0.632 0.752 0.718 0.689 0.689 0.653 0.682
v3 0.379 0.395 0.380 0.390 0.405 0.346 0.372
v4 0.285 0.238 0.221 0.267 0.252 0.244 0.200
h1 0.264 0.221 0.211 0.221 0.219 0.212 0.191
h2 0.459 0.491 0.492 0.505 0.496 0.444 0.452
h3 0.118 0.110 0.116 0.107 0.111 0.097 0.098

G 0.408 0.345 0.360 0.368 0.370 0.339 0.331
I 0.287 0.278 0.304 0.300 0.308 0.279 0.282
E 0.530 0.415 0.418 0.436 0.432 0.399 0.381

v1 0.984 0.624 0.591 0.689 0.632 0.578 0.509
v2 0.528 0.450 0.456 0.475 0.505 0.448 0.425
v3 0.106 0.096 0.104 0.101 0.107 0.104 0.105
v4 0.752 0.525 0.570 0.617 0.625 0.580 0.572
v5 1.166 0.955 0.907 0.854 0.805 0.763 0.685
h1 0.560 0.486 0.454 0.485 0.462 0.444 0.404
h2 0.382 0.257 0.230 0.279 0.265 0.196 0.180

G 0.059 0.050 0.053 0.053 0.052 0.048 0.047
I 0.042 0.041 0.046 0.044 0.044 0.040 0.040
E 0.076 0.059 0.059 0.062 0.061 0.056 0.055

v1 0.064 0.050 0.046 0.060 0.056 0.046 0.045
v2 0.059 0.053 0.054 0.053 0.053 0.050 0.050
v3 0.207 0.168 0.152 0.169 0.157 0.146 0.127
h1 0.123 0.079 0.080 0.090 0.087 0.078 0.076
h2 0.052 0.045 0.047 0.050 0.049 0.045 0.045
h3 0.055 0.049 0.052 0.052 0.053 0.045 0.040

Table C.5: Mean squared error for the lifting estimations for regular and clustered
points when γ = 3. The rows denote the different spatial parts of the region, and
the columns give the results for different weight methods. If the parameter γ < 1
it indicates the incremental magnitudes of inhibition or repulsion, and clustering if
γ > 1. Results are given for Dopper, Heavisine, Blocks, Bumps and Maartenfunc
test functions from top to bottom panel respectively. MSE calculated globally is
denoted as (G), interior (I), edge (E) of the region, and the vertical (v), horizontal
(h), and diagonal (D) transects.

175



References

Akaike, H. (1987). Factor analysis and AIC. In Selected Papers of Hirotugu

Akaike, 371–386, Springer. 53

Antoniadis, A., Bigot, J. & Sapatinas, T. (2001). Wavelet estimators in

nonparametric regression: a comparative simulation study. Journal of Statistical

Software, 6, 1–83. 116

Arvanitakis, G. (2014). Distribution of the number of Poisson points in Poisson

Voronoi tessellation. Tech. Rep. RR-15-304 . 17

Baccelli, F. & B laszczyszyn, B. (2001). On a coverage process ranging from

the Boolean model to the Poisson–Voronoi tessellation with applications to wire-

less communications. Advances in Applied Probability , 33, 293–323. 14

Baddeley, A., Rubak, E. & Turner, R. (2015). Spatial point patterns:

methodology and applications with R. CRC press, New York. 85, 86

Besag, J. (1977). Discussion on Dr Ripley’s Paper. Journal of the Royal Statistical

Society: Series B (Methodological), 39, 192–212. 94

Bivand, R. & Rundel, C. (2020). rgeos: Interface to Geometry Engine - Open

Source (‘GEOS’). R package version 0.5-5. 111

Brakke, K.A. (1987). Statistics of random plane Voronoi tessellations. Depart-

ment of Mathematical Sciences, Susquehanna University (Manuscript 1987a). 18

Cai, T.T. (1999). Adaptive wavelet estimation: a block thresholding and oracle

inequality approach. Annals of Statistics , 27, 898–924. 115

Cai, T.T. (2002). On block thresholding in wavelet regression: Adaptivity, block

size, and threshold level. Statistica Sinica, 2, 1241–1273. 115

176



REFERENCES

Cai, T.T. & Silverman, B.W. (2001). Incorporating information on neighbour-

ing coefficients into wavelet estimation. Sankhyā: The Indian Journal of Statis-
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