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Summary

This thesis consists of two parts. Part I, containing chapters 2, 3 and 4, concerns classical, massive,

scalar and vector (Proca) fields on static and rotating black hole spacetimes. Part II, containing

chapters 5, 6 and 7, concerns quantum, massless, scalar fields on static black hole spacetimes and

the spacetimes of spherically symmetric stars.

The goal of Part I is to present our numerical calculation of the quasinormal modes (QNMs) of

the odd-parity, charged Proca field on the Reissner-Nordström spacetime and all three polarization

states of the uncharged Proca field on the Kerr and Kerr-Newman spacetimes. In chapter 2 we

introduce the static and rotating black hole spacetimes we will be concerned with and the formalism

used to describe the propagation of scalar and vector fields on these spacetimes. Then, in chapter 3,

we discuss the known methods of solving the equations of motion of these fields on static spacetimes

and how this leads to the concept of QNMs, including our new application of Leaver’s method [96] to

the odd-parity, charged Proca field on the Reissner-Nordström spacetime. Finally, chapter 4 details

the much more recent method (the LFKK ansatz [66]) used to solve the Proca equation of motion on

rotating black hole spacetimes and our new application of Leaver’s method to the uncharged Proca

field on the Kerr and Kerr-Newman spacetimes.

The focus of Part II is on our numerical exploration of the method of taking differences between

quantum expectation values (QEVs) evaluated in the same vacuum state, but on different background

spacetimes. In chapter 5 we introduce the concept of semiclassical gravity and the method of Levi

and Ori [100] for calculating QEVs, including the results of our own numerical implementation of

said method that are consistent with the literature. Then, in chapter 6, we discuss the method of

Anderson and Fabbri [7] to find the differences ∆
〈
φ2
〉
and ∆ 〈Tµν〉 of the vacuum polarization and

stress-energy tensor of a scalar field between the spacetimes of a Newtonian star and a black hole in

the Boulware vacuum state. We apply this method to a toy model consisting of an infinitesimally

thin shell on a flat background spacetime. In chapter 7, we extend this method to more general

spherically symmetric stellar models and verify our new results numerically. We also present a new

numerical analysis of ∆
〈
φ2
〉
and ∆ 〈Tµν〉 near the star surface and consider its dependence on the

star structure and the coupling ξ to the scalar curvature.

Finally, chapter 8 contains our conclusions and ideas for possible extensions to the work presented

here.
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Chapter 1

Introduction

Einstein’s theory of General Relativity (GR), completed in 1915, is the most experimentally veri-

fied theory of gravity that currently exists, refining the prior Newtonian theory that had been the

consensus for centuries. It was able to predict new phenomena, the most startling of which being

the existence of black holes, the effects of which were recently observed in gravitational wave exper-

iments [3]. Prior to that, GR explained a long-standing discrepancy between the Newtonian theory

and experimental observation, namely, the perihelion shift of the planet Mercury (for a review of

experimental tests of GR see [147]). GR also forms the theoretical foundations of modern cosmology

[31] and is the basis for many technologies that we today take for granted, such as GPS [9].

Broadly speaking, GR consists of two components that are constantly interacting with each other:

matter and spacetime. This interaction is governed by a system of partial differential equations

(PDEs) called Einstein’s field equations. These equations read [104]

Gµν + Λgµν = κTµν . (1.0.1)

On the left-hand side, gµν is the spacetime metric, Gµν is the Einstein tensor, containing all the

information about how the spacetime geometry is curved and Λ is the cosmological constant, currently

theorised to be small and positive due to the observed accelerating expansion of the universe [62].

Throughout this work we will set Λ = 0, as current estimates indicate Λ to be of the order 10−122`−2
P

(where `P is the Planck length) and so it will not produce observable effects at non-cosmological

scales. On the right-hand side, Tµν is the stress-energy tensor containing all the information about

how the various matter fields are distributed. As such, the Einstein field equations in a vacuum

are Eq. (1.0.1) with the right hand side set to zero. The constant of proportionality is κ = 8πG/c4

where G is Newton’s gravitational constant and c is the speed of light in a vacuum. Let’s consider

these two ingredients, spacetime and matter, in more detail.
13



14 CHAPTER 1. INTRODUCTION

A spacetime is a differentiable manifold endowed with a Lorentzian metric, which in four dimen-

sions and under the conventions we shall use is a metric with the signature (−,+,+,+). As such,

one dimension is designated as timelike and the remaining dimensions are designated as spacelike.

Due to the Lorentzian signature, spacetime intervals as calculated with the metric can be positive,

negative or zero. If two spacetime points (events) are separated by a positive spacetime interval

(that is, if they are spacelike separated) then they cannot communicate with one another: they are

not causally connected.

Shortly after the theory of GR was completed, Schwarzschild published his static, spherically

symmetric solution of the vacuum Einstein equations [132]. This Schwarzschild spacetime has the

startling property that it contains a singularity, a point at which the spacetime curvature (the

“square” of the Riemann tensor) diverges. Fortunately, the singularity exists behind an event horizon.

Events within the event horizon are spacelike separated from those without and so no information

that crosses the event horizon can ever again reach the outside world. Spacetimes that have an event

horizon, whether or not they have a curvature singularity shrouded behind them, are called black

holes.

Within a few years of the Schwarzschild solution being found (between 1916 and 1918), the solu-

tion was generalised to that of a spherically symmetric, electrically charged black hole (a solution of

the electrovacuum Einstein-Maxwell equations) that we today call the Reissner-Nordström solution

[124, 110]. However, it took over four decades before Schwarzschild’s solution could be generalised

to the rotating case, in work done by Kerr in 1963 [87]. This in turn was swiftly generalised to

the solution of a charged and rotating black hole (named the Kerr-Newman solution) in 1965 [109].

This solution is specified by just three parameters: the mass, charge and angular momentum of the

black hole. Black holes may have accrued a reputation for being mysterious in the century or so

since their existence was first proposed, but from a mathematical perspective they are remarkably

simple objects, requiring only these three parameters to fully describe [125].

When two black holes are about to collide and spiral around each other in what is called a black

hole merger, ripples in spacetime called gravitational waves are released [3]. Even after the merge, the

resulting object continues to release gravitational waves at resonant frequencies (called quasinormal

modes (QNMs) [95] a concept that we will elaborate on soon) as it returns to an undisturbed, latent

state. The advent of gravitational wave astronomy has allowed these ripples to be observed, providing

the strongest evidence to-date of the existence of black holes. Gravitational wave astronomy has

advanced rapidly since the first gravitational wave detection in 2015: the GWTC-2 [4] is a catalog

of 39 gravitational wave events that are either the result of the merger of two black holes, or a black
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hole and a neutron star. Together, these are referred to as compact binary coalescences, where a

compact object is the general term for the final state of collapse of a stellar object, be that a white

dwarf, a neutron star, or a black hole.

Now let’s consider the topic of matter fields. The most complete and well-verified theory of matter

fields that exist in Nature is the Standard Model (SM) of particle physics, which encapsulates every

fundamental particle known to exist and three of the four fundamental forces [102] (the convention

that we will adopt in this work is that all SM fields will be referred to as “matter” fields, even those

such as the photon that mediate force interactions). The fourth force, gravity, is described in classical

field theory by GR. Although the SM has survived every experimental test it has been put under, the

theory is incomplete because it does not provide a quantum description of the gravitational force.

Matter fields can be categorised by their spin, which is either an integer (in which case the field

is referred to as a boson) or a half-integer (in which case the field is referred to as a fermion). We

will begin with an entirely classical description of these fields, where they are all given by tensorial

functions of the spacetime coordinates.

The only fundamental spin-0 field (described by a scalar function of the spacetime coordinates

and obeying a Klein-Gordon equation) known to exist is the Higgs boson, which has only been

observed in high energy particle physics experiments [2]. However, modern cosmological models of

inflation in the early universe often make use of additional hypothetical scalar fields [107]. Regardless

of their physical relevance, scalar fields are useful for theoreticians as they are the most simple to

handle and so can be used in the construction of toy models. Spin-1/2 fields (obeying the Dirac

equation and described by spinor functions) model, among others, neutrinos in the massless case and

electrons in the massive case. Spin-1 fields (described by vector functions) model the electromagnetic

field in the massless case. A massive spin-1 field obeys the Proca equation and massive spin-1 bosons

govern the weak and strong nuclear interactions in the SM. There are many proposed extensions to

the SM, including a spin-2 boson that would govern gravitational interactions (the graviton) and

supersymmetric partners to every existing SM particle [146].

The hypothetical particles we will focus on in this work are ultra-light vector bosons which

have been proposed as potential candidates for dark matter [58, 11, 86]. With very long Compton

wavelengths, these particles have the potential to gather in “clouds” around black holes, with certain

frequencies called quasibound state frequencies. Like quasinormal modes, we will discuss quasibound

states in more detail shortly.

Now that we have discussed both spacetime and the matter fields that will live in that spacetime,

let’s return to describing how these two aspects interact with each other. To understand how
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these fields propagate on spacetime, and thus make predictions that can be tested, we must study

their equations of motion. These equations are systems of coupled PDEs that can be technically

challenging to solve. However, in many situations these PDEs can be separated into systems of

much less daunting ordinary differential equations (ODEs). Whether or not such a separation can

be performed depends both on the symmetries of the spacetime being considered and on the nature

of the perturbing matter field. Work done by Teukolsky [137] allowed the equations of motion of

massless fields of integer spin to be separated on rotating black hole spacetimes and similar work by

Unruh [140] did the same for the massless spin-1/2 Dirac field. In the cases of scalar fields and the

Dirac field, this was extended to the case of non-zero mass by Brill et al.,[26] and Chandrasekhar

[42] respectively, but for massive vector fields the equation of motion proved much more resistant

to attempts to separate it. For the decades that followed, it was widely believed that the equation

of motion of the Proca field could not be separated on a rotating black hole spacetime, forcing

researchers to tackle the PDEs directly. This limited the results that could be obtained to various

approximations, such as the slowly rotating black hole [113].

It wasn’t until 2018 that this problem was solved. Rotating black hole spacetimes have hidden

symmetries, symmetries that can be seen when one considers the phase space of a particle moving

on that spacetime [64]. This can be contrasted with explicit symmetries, such as time translation

and axial rotation, that are described by Killing vectors. Hidden symmetries are described by higher

rank Killing objects and, in the case of a rotating black hole, can be encapsulated in an object called

the principal tensor. It was the work of Frolov et al. [66], building on the prior work of Lunin [101],

that showed how the principal tensor could be applied to separate the equation of motion of the

massive vector field. This immediately paved the way for detailed calculations of the interactions

between massive vector fields and rotating black holes that could have experimentally observable

effects. Two effects that have drawn attention, and those that we will be interested in, have already

been mentioned: quasinormal modes (QNMs) and quasibound states (QBSs).

On a black hole spacetime, quasibound state frequencies are the special frequencies of a massive

field where two boundary conditions are met: the field is regular on the future event horizon and

decays away far from the black hole. If the black hole is charged or rotating, then it is possible for

the field to be reflected off the gravitational potential of the hole with more energy than it impacted

with (an effect called superradiance [28]), but at the same time, if the field is in a quasibound state,

the mass of the field could prevent it from then escaping the black hole allowing it to be pulled in

and amplified again. As such, the amplitude of the field will continue to grow in a phenomenon

called a superradiant instability [27]. This allows the field to form a “cloud” around the black hole,
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which could potentially be observed as the black hole having bosonic hair [82], but can also be used

to constrain the mass of these hypothetical particles [33, 112]. The QBSs of the Proca field around a

rotating black hole were found using the newly-found separation of the equations of motion in [54].

Quasinormal modes were mentioned earlier in the context of the gravitational waves emitted by

black hole mergers, but they are also relevant whenever a matter field, massive or not, interacts

with a black hole. Any perturbing field will cause the black hole to emit radiation at quasinormal

mode frequencies as it relaxes back to a quiescent state. In this case, the spectrum of observed

frequencies depends on the field parameters (mass and spin) as well as the black hole parameters

(mass, charge and angular momentum). In the case of a massless spin-2 field this represents a

gravitational perturbation, which predicts the existence of the QNMs found in gravitational wave

observations described earlier. The field of black hole spectroscopy aims to spot these QNMs within

the broader gravitational wave signal [10] and if higher overtones can be observed [72] then this

can either constrain the black hole parameters, or be used to test the theory of GR itself. QNMs

of massless fields in general are well studied, in part due to the separability of their equations of

motion, but there are larger gaps in the literature when it comes to the QNMs of massive fields.

Now that the equation of motion of the Proca field has been shown to be separable, one of those

gaps can be filled, which we did with Dolan in [117] and which will be described in the first half of

this thesis.

So far, we have considered only classical fields propagating on various background spacetimes,

described by functions of the spacetime coordinates. The current consensus is that the universe, at a

fundamental level, is quantum mechanical. Hence, any classical theory can only be an approximation

of the fundamental physics and a theory of quantum gravity is required to describe the universe

fully. Such a theory would most certainly be needed in situations where both gravity and quantum

mechanics play a leading role, such as in the very early universe, or near spacetime curvature

singularities such as those in the centre of black holes.

Unfortunately a complete theory of quantum gravity that agrees with experimental observation

is still unknown, though there are several promising candidates, with perhaps the most well studied

being string theory [19]. The central problem is that it is known how to describe the matter fields on

the spacetime quantum mechanically, but not the spacetime itself. The former is done by treating

the fields no longer as functions, but as operators acting on a Hilbert space of state vectors. As such,

an approximate theory of quantum gravity presents itself, that of semiclassical gravity, in which the

matter fields are quantised, but spacetime is still treated classically. At the heart of this theory is
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the semiclassical Einstein equation (cf. Eq. (1.0.1), with the cosmological constant set to zero),

Gµν = κ 〈Tµν〉 , (1.0.2)

where on the right-hand side, the source term of the classical Einstein equation has been replaced

with the expectation value of the stress-energy tensor Tµν in a chosen quantum state.

Semiclassical gravity has been studied for several decades and has produced some fascinating

results. Perhaps the most well known is Hawking’s famous conclusion that black holes cannot exist

forever. They will evaporate away over time by the emission of thermal Hawking radiation [78].

Other results concern the properties of 〈Tµν〉 itself, in particular that it violates many of the energy

conditions satisfied by its classical counterpart [142]. In essence, this means there exist reference

frames where an observer could measure that the quantum field has a negative energy density. This

has consequences for the potential existence of exotic spacetimes, such as wormholes [105].

However, semiclassical gravity comes with its own share of challenges that need to be overcome.

Quantum expectation values (QEVs) are constructed out of products of operator valued distributions

and as such, they are divergent. This isn’t unique to semiclassical gravity: quantum field theory in

flat spacetimes also encounters this problem. The process known as renormalisation allows us to

make sense of these divergences. There are many different schemes that can be used to carefully

isolate the divergent terms of a QEV and remove them (for example, the methods we will discuss in

this work are based on Hadamard renormalisation, [76]), but there are also ways to arrive at a finite

quantity while avoiding renormalisation entirely. One such way is to calculate the QEV of interest

in two different quantum states where it happens to diverge in the same manner and then take the

difference between the two. This method has been well studied in the literature for decades [32].

Another method, described by Anderson and Fabbri in [7] much more recently, is to calculate

the QEV in the same quantum state, but in two different spacetimes that are locally equivalent. By

this, it is meant that the two spacetimes are identical within a neighbourhood of the point the QEV

is to be measured and hence it is guaranteed to diverge in the same manner on both of them.

In the second half of this thesis, we will explore potential numerical applications of this method.

The two spacetimes we will focus on are those of a non-rotating, uncharged black hole (where multiple

QEVs have already been calculated fully and renormalised, [8]) and a spherically symmetric star with

some specified internal structure (where QEVs are much less well studied, especially near the star

surface). We know that outside the gravitational source these two spacetimes are equivalent due to

Birkhoff’s theorem [63]. Hence, we hope to construct QEVs on a spacetime that is globally more

complicated (that of a star) by exploiting its local similarity to a spacetime that is much simpler

(that of a black hole).
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Classical Fields
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Chapter 2

Black Hole Spacetimes and Classical

Fields

Introduction and Overview

In this chapter, we introduce the formalism required to describe classical scalar and vector fields

propagating on black hole spacetimes. We begin by introducing the fields, specifying the action and

finding the equations of motion. We cover some general properties of fields on curved spacetimes

including gauge freedom, symmetries and conservation laws. We then introduce the black hole

spacetimes on which the fields will propagate and describe some of their features, such as their

circular geodesic orbits. Finally, we outline the primary method we will be using in chapters 3 and 4

to find the quasinormal modes and quasibound states of these fields: the continued fraction method

[95, 96].

Throughout the chapter we will use natural units, in which the gravitational constant G and the

speed of light c are set to unity.

2.1 Fields Propagating on Curved Spacetimes

2.1.1 Principle of Least Action and Lagrangians

Throughout the next three chapters of this work, we will be primarily discussing the theory of

massive, charged scalar and vector fields (as well as massless, uncharged electromagnetic fields)

propagating in a curved spacetime. In classical field theory, the equations of motion of all these

fields are found via the principle of least action [37], which states that the classical trajectory of

these fields in phase space will be one that gives an extremum of the action S. The action is a
21
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functional of all the fields, written as an integral over spacetime of the Lagrangian density L. More

specifically,

S =

∫ √
−gLd4x, (2.1.1)

L = LG + LF + LΦ + LW , (2.1.2)

where LG,LF ,LΦ and LW are the Lagrangian densities of the gravitational, electromagnetic, massive

scalar and massive vector (i.e., Proca) fields respectively and g is the determinant of the spacetime

metric gµν . Throughout this work, the connection defined on a metric ∇µ will be the unique, torsion-

free connection that is compatible with the metric, i.e., ∇ρgµν = 0.

The four Lagrangian densities are given by [63, 37, 80]

LG =
R

16π
, (2.1.3)

LF = −1

4
FµνF

µν , (2.1.4)

LΦ = −1

2

(
gµν

(
∇̃µΦ

)∗
∇̃νΦ + µ2Φ∗Φ

)
, (2.1.5)

LW = −
(

1

4
W †µνW

µν +
1

2
µ2W ∗νW

ν + 2ieW ∗µWνF
µν

)
. (2.1.6)

We will now describe these terms in order. In LG, R is the Ricci scalar defined according to

R = gµνRµν = gµαgνβRµναβ , where Rµν is the Ricci tensor and Rµναβ is the Riemann tensor

[63]. The Riemann tensor is constructed from the metric and its derivatives through the Christoffel

Symbols Γµαβ ,

Rµναβ = gµρRρναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα, (2.1.7)

Γµαβ =
1

2
gµν (∂βgνα + ∂αgνβ − ∂νgαβ) . (2.1.8)

In LF , Fµν is the Faraday tensor of the electromagnetic field. This tensor is antisymmetric and

consists of six real component functions describing the electric and magnetic fields in each of the

three spatial directions. By construction, it satisfies the identity

∇[αFµν] = 0, (2.1.9)

where the square brackets around the indices indicate antisymmetrisation. Written in terms of the

electric and magnetic fields, this contains two of the four of Maxwell’s equations. It follows that

Fµν , at least locally, can be written in terms of a vector potential Aµ

Fµν = ∇µAν −∇νAµ. (2.1.10)



2.1. FIELDS PROPAGATING ON CURVED SPACETIMES 23

In LΦ, Φ is a complex scalar field of mass µ and charge e, with complex conjugate Φ∗. The

derivative ∇µ is modified to include the charge,

∇̃µ = ∇µ − ieAµ. (2.1.11)

Similarly, in LW , Wµ is a complex vector field of mass µ and charge e (we will adopt the same

symbols for mass and charge for both the scalar and vector fields as we will not be considering both

of these fields at the same time). Wµν is a tensor constructed from the vector field

Wµν = ∇µWν −∇νWµ (2.1.12)

and W †µν is its Hermitian conjugate.

2.1.2 The Equations of Motion

The condition that the action S in (2.1.1) be extremised is equivalent to the requirement that the

action be invariant under a small variation of each of the fields Φ,Wµ, Aµ and gµν . In other words,

the functional derivative of S with respect to these fields is zero.

We demonstrate the general procedure on a Lagrangian L
(
Ψi, ∂µΨi

)
of a set of fields and their

derivatives labeled by the index i. We can add a small variation δΨi to the field, add the derivative

of this variation to the derivative of the field and then Taylor expand, as follows,

√
−gL

(
Ψi + δΨi, ∂µΨi + ∂µδΨ

i
)

=
√
−gL

(
Ψi, ∂µΨi

)
+
∂ (
√
−gL)

∂Ψi
δΨi +

∂ (
√
−gL)

∂ (∂µΨi)
∂µδΨ

i +O
(
δ2
)
.

Hence, the total variation in the action is the spacetime integral of the last two terms

δS =

∫
d4x

[
∂ (
√
−gL)

∂Ψi
δΨi +

∂ (
√
−gL)

∂ (∂µΨi)
∂µδΨ

i

]
.

The second term can be integrated by parts to get∫
d4x

∂ (
√
−gL)

∂ (∂µΨi)
∂µδΨ

i = −
∫
d4x∂µ

(
∂ (
√
−gL)

∂ (∂µΨi)

)
δΨi +

∫
d4x∂µ

(
∂ (
√
−gL)

∂ (∂µΨi)
δΨi

)
.

The last term here is now the integral of a divergence. Hence, by Stokes’ theorem, it is equal to a

term dependent only on the value of the variations at the boundary. But the integration is over the

entire spacetime, which has no boundary and thus this term vanishes and the variation of the action

becomes

δS =

∫
d4x

[
∂ (
√
−gL)

∂Ψi
− ∂µ

(
∂ (
√
−gL)

∂ (∂µΨi)

)]
δΨi.

With the δΨi factored out, we can see δS vanishes when the quantity in the square brackets vanishes.

This is the Euler-Lagrange equation,
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∂µ

(
∂ (
√
−gL)

∂ (∂µΨi)

)
− ∂ (

√
−gL)

∂Ψi
= 0. (2.1.13)

This can now be applied to each of the Lagrangian densities in Eqs. (2.1.3)-(2.1.6). We do the

calculation explicitly for the case of the complex scalar field, Eq. (2.1.5). The two terms of the

Euler-Lagrange equation are

∂ (
√
−gLΦ)

∂Φ∗
= −1

2

√
−g
(
ieAµg

µν∇̃νΦ + µ2Φ
)
,

∂µ

(
∂ (
√
−gLΦ)

∂ (∂µΦ∗)

)
= ∂µ

(
−1

2

√
−ggµν∇̃νΦ

)
.

Putting these together and dividing by −1
2

√
−g gives

1√
−g

∂µ

(√
−ggµν∇̃νΦ

)
− ieAµgµν∇̃νΦ− µ2Φ = 0.

Factorising then gives

1√
−g

(∂µ − ieAµ)
(√
−ggµν∇̃νΦ

)
− µ2Φ = 0

and now note the divergence formula 1√
−g∂µ (

√
−gBµ) = ∇µBµ for Bµ an arbitrary vector

∇µ
(
gµν∇̃νΦ

)
− ieAµgµν∇̃νΦ− µ2Φ = 0.

Factorising once more leads to the Klein-Gordon equation

(
gµν∇̃µ∇̃ν − µ2

)
Φ = 0. (2.1.14)

By instead taking derivatives with respect to Φ we would get the complex conjugate of this equation

satisfied by Φ∗.

Applying the Euler-Lagrange equation to the remaining three Lagrangian densities involving

gµν , Aµ and Wµ, one gets the field equations [37, 63, 80]

Rµν −
1

2
gµνR = 8πTµν , (2.1.15)

∇νFµν = Jµ, (2.1.16)

∇µWµν − µ2W ν − ieWµF
µν = 0. (2.1.17)

The first of these is the Einstein field equation, the second is the remaining pair of Maxwell’s

equations and the third is the (charged) Proca equation. On the right hand side of (2.1.15) is the

stress-energy tensor Tµν and on the right hand side of Eq. (2.1.16) is the current distribution Jµ.
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As the Einstein equation comes about from the variation of the action with respect to the metric

gµν , and as the metric is included in LF ,LW and LΦ through the covariant derivative or the raising

and lowering of indices, Tµν contains contributions from each of the matter fields,

Tµν = TFµν + TΦ
µν + TWµν . (2.1.18)

Similarly, as the pair of Maxwell’s equations (2.1.16) comes from the variation of the action with

respect to the vector potential Aµ, and Aµ is present in both LW and LΦ, Jµ contains contributions

Jµ = JµΦ + JµW . (2.1.19)

In this work, we will be considering massive scalar and vector fields as small perturbations of

background black hole spacetimes. The black holes may carry an electromagnetic charge. Hence, the

electromagnetic field governed by Fµν will be large compared to the charge of the scalar and vector

fields and we neglect the contributions of Φ and Wµ to Tµν . The contribution from the remaining

Lagrangian density LF is

TFµν = FµαF
α

ν −
1

4
gµνFαβF

αβ (2.1.20)

and this tensor is traceless, gµνTFµν = 0.

It is worth noting that, although Tµν must satisfy the conservation equation ∇µTµν = 0, this is

not necessarily true of each term in (2.1.18) individually. This is because energy can be transferred

between the electromagnetic field and the charged scalar and vector fields. This energy must be

conserved according to the equation

∇νTµνF = −FµνJν , (2.1.21)

which is derived by applying ∇µ to (2.1.20) and using Maxwell’s equations (2.1.9) and (2.1.16). But,

similarly to how we neglected TΦ
µν and TWµν , treating the massive scalar and vector fields as test fields

allows us to neglect the contributions JµΦ and JµW to the current distribution and so we simply have

Jµ = 0. Hence, ∇νTµνF = 0 and conservation holds.

2.1.3 Gauge Freedom

We can apply gauge transformations to the charged scalar field Φ and the vector field Aµ without

altering their equations of motion ((2.1.14) and (2.1.16)) or Fµν , and hence without changing the

underlying physics. These transformations are

Aµ → Aµ −∇µχ, Φ→ e−ieχΦ, (2.1.22)
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where χ is an arbitrary scalar function. For the field Aµ we typically choose to work in the Lorenz

gauge defined by the condition

∇µAµ = 0. (2.1.23)

This gauge freedom does not exist for the massive vector field Wµ. Taking the gradient of

Eq. (2.1.17) and rearranging,

∇νW ν =
1

µ2
[∇ν∇µWµν − ie∇ν (WµF

µν)]

= − ie
µ2

(Fµν∇νWµ +Wµ∇νFµν) =
ie

µ2
F νµ∇νWµ =

ie

µ2
F νµWνµ. (2.1.24)

To go from the first line to the second we have used the fact that the double divergence of a

two-form is zero. Then we have noted ∇νFµν = 0 and then we have applied the antisymmetry of

Fµν and the definition of Wµν (2.1.12).

From the above it is clear that there is no freedom to choose the form of ∇νW ν . In the case of a

uncharged field e = 0 the Lorenz condition ∇νW ν = 0 is a direct consequence of the Proca equation

(2.1.17).

2.1.4 The Eikonal Approximation

2.1.4.1 From Fields to Particles

We will now introduce a commonly used approximation which, in the limit of large field frequency,

relates the equation of motion of a field, such as (2.1.14), to the equation of motion of a particle.

This is called the eikonal approximation [56, 94] and it will be especially important when we come

to discuss quasinormal modes and quasibound states of these fields in Sec. 3.2. We demonstrate this

approximation in the case of a charged scalar field.

Let the scalar field be of the form Φ = eiωS , for S a phase and ω � 1. We substitute this into

the Klein-Gordon equation (2.1.14), assume Aµ and µ are O (ω) and keep only the leading order

O
(
ω2
)
contribution. If we define πµ = ∇µS this gives

gµν (πµ − eAµ) (πν − eAν) + µ2 = 0. (2.1.25)

To obtain an equation of motion, we then take the gradient of (2.1.25) and introduce pµ = πµ− eAµ

(πµ − eAµ) (∇νπµ − e∇νAµ) = 0, (2.1.26)

⇒ pµ (∇µπν − e∇νAµ) = 0, (2.1.27)

⇒ pµ (∇µ (pν − eAν)− e∇νAµ) = 0,

⇒ pµ∇µpν − epµFµν = 0. (2.1.28)
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Here, in the second line we have used the commutivity of covariant derivatives on scalar functions,

∇µ∇νS = ∇ν∇µS.

We have thus arrived at the equation of motion for a charged, massive particle

pµ∇µpν = epµF
µν . (2.1.29)

In the case of a uncharged particle, Eq. (2.1.29) reduces to the timelike geodesic equation

pµ∇µpν = 0. (2.1.30)

Geodesics will be discussed in more detail in Sec. 2.3.

2.1.4.2 Lagrangians and Hamiltonians

In the language of Lagrangian and Hamiltonian mechanics, the quantity πµ is the canonical momen-

tum of a massive, charged particle in an electromagnetic field. This can be shown by considering

the Lagrangian of such a particle

L =
1

2
(gµν ẋ

µẋν + 2eAµẋ
µ) , (2.1.31)

where ẋµ = dxµ/ds, the derivative of xµ with respect to an affine parameter s. The canonical

momentum with respect to ẋµ is

πµ =
∂L

∂ẋµ
= gµν (ẋν + eAν) = pµ + eAµ, (2.1.32)

agreeing with our previous definitions of pµ and πµ. The Hamiltonian is a scalar function on the

phase space H (xµ, pµ; s) found via the Legendre transformation,

H = ẋµπµ − L =
1

2
(gµν (πµ − eAµ) (πν − eAν)) (2.1.33)

and the equations of motion are given by Hamilton’s equations

ẋµ =
∂H

∂πµ
, π̇µ = − ∂H

∂xµ
. (2.1.34)

It is clear that this Hamiltonian is autonomous, i.e., it does not depend explicitly on s. Conse-

quently (after applying Hamilton’s equations) the total derivative dH/ds is zero and so H is constant

along the integral curves of (2.1.34) like so,

H =
1

2
(gµν (πµ − eAµ) (πν − eAν)) =

1

2
gµν ẋ

µẋν = k, (2.1.35)

for k a constant. To fix the constant, the 4-velocity ẋµ is normalised according to gµν dx
µ

dτ
dxν

dτ = −1

where τ is the particle’s proper time. The affine parameter s is related to τ by dτ = µds and so

k = −1
2µ

2.
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To make the connection between Hamiltonian mechanics and the eikonal approximation, we

consider the Hamilton-Jacobi equation, in which one tries to find a characteristic function W (xµ, πµ)

that satisfies H (xµ, ∂µW )−k = 0 (see for example [38] where this analysis is performed in the Kerr

spacetime). In full, the equation is

gµν (∂µW − eAµ) (∂νW − eAν) + µ2 = 0 (2.1.36)

and this matches precisely with the eikonal equation of motion (2.1.25) if we identify the character-

istic function W with the phase of the field S and then, as in the previous subsection, identify πµ

with ∇µS.

2.1.5 Symmetries and Killing Vectors

In this subsection and the next, we will discuss symmetries of spacetimes and the tools used to

describe them. This will be vitally important to solving the equations of motion ((2.1.14) and

(2.1.17)) of fields propagating on these spacetimes, see in particular Sec. 4.2 on the uncharged Proca

field.

The language of Lie derivatives and Killing vectors can be used to study the symmetries and

conserved quantities of a physical theory. The Lie derivative of a general tensor field Tµ1µ2···µk
ν1ν2···ν`

in the direction of a vector field V µ is denoted £V T and is defined by [37]

£V T
µ1µ2···µk

ν1ν2···ν` = V α∇αTµ1µ2···µk
ν1ν2···ν` (2.1.37)

− (∇βV µ1)T βµ2···µk
ν1ν2···ν` − (∇βV µ2)Tµ1β···µk

ν1ν2···ν` − · · ·

+
(
∇ν1V

β
)
Tµ1µ2···µk

βν2···ν` +
(
∇ν2V

β
)
Tµ1µ2···µk

ν1β···ν` + · · · .

In particular the Lie derivative of the metric along a vector field V µ is

£V gµν = V α∇αgµν + (∇µV α) gαν + (∇νV α) gµα = ∇µVν +∇νVµ = 2∇(µVν)

and a Killing vector ξ is one such that this Lie derivative vanishes

∇(µξν) = 0. (2.1.38)

There is a connection between symmetries in spacetime and conservation laws for fields and

particles. Killing vectors can be used to bridge the gap between these two concepts. On the one

hand, Killing vectors are the infinitesimal generators of the isometries of the metric. If M is the

underlying manifold, an isometry is a diffeomorphism φ :M→M that leaves the metric invariant,

i.e., it defines a map between the tangent spaces at the points p and φ (p), φ∗ : Tp → Tφ(p), such
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that (φ∗g)µν = gµν [144]. The left hand side of this equation is called the pullback of the metric, see

Appendix A of [37].

On the other hand, Killing vectors can be used to construct quantities that are conserved along

particle trajectories. Let’s consider the example of a charged scalar particle once more. Suppose we

know of a Killing vector ξµ such that £ξgµν = 0 and suppose further that the Lie derivative of the

vector potential is also zero £ξAµ = 0. It can then be shown that the quantity πµξµ is conserved

on trajectories defined by the equation of motion (2.1.29)

pν∇ν (πµξ
µ) = ξµpν∇νπµ + πµp

ν∇νξµ

= eξµpν∇µAν + eAµp
ν∇νξµ + pµp

ν∇νξµ

= epν (£ξAν) = 0,

where we have applied ∇νπµ = e∇µAν from Eq. (2.1.26) and πµ = pµ + eAµ. In addition, we have

used the fact that pµpν∇νξµ vanishes, as pµpν is symmetric while ∇νξµ is antisymmetric, for ξµ a

Killing vector.

If we return to thinking about scalar particles as modes of a scalar field obeying the Klein–

Gordon equation (2.1.14), then the importance of the Killing vector is that it forms a differential

operator ξµ∇µ that commutes with the d’Alembertian operator � = ∇µ∇µ,

� (ξµ∇µΦ) = ξµ∇µ (�Φ) . (2.1.39)

Hence if Φ is a solution to the Klein-Gordon equation, then so is ξµ∇µΦ. Now, consider the

eigenmodes of the ξµ∇µ operator, such that

ξµ∇µΦ = ikΦ, (2.1.40)

for k a constant. By substituting the eikonal approximation Φ = eiωS into (2.1.40) we arrive at

k = ξµ∇µS = ξµπµ, which is exactly the quantity that is conserved on a particle trajectory.

When ξµj = ∂µj is the Killing vector that arises from the metric being independent of a given

co-ordinate xj (like the time translation and rotational Killing vectors to be discussed in Sec. 2.2.1)

this implies that the eigenstate Φ depends on xj only through a trivial exponential factor eikxj .

Hence, in this case we can infer information about the separability of the field from the Killing

vector and the separation constant is k. This relationship between Killing objects and separability

of differential equations will now be expanded on further.

2.1.6 Killing Tensors and the Principal Tensor

The goal of this section is to introduce the principal tensor hµν . An understanding of this tensor is

vital to successfully applying the method of separation of variables to massive vector perturbations
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on the Kerr spacetime, a method that was thought to be ineffective as little as six years ago, before

the work of Frolov et al in [66], following the work of Lunin in [101]. We will describe this method

in Sec. 4.2.

To describe such a tensor, a general discussion of spacetime symmetries is first required. For a

comprehensive review of the symmetries of the Kerr-NUT-(A)dS family of spacetimes, see [64]. This

will be our primary reference for this subsection.

In the previous subsection we discussed how spacetime symmetries can be encapsulated by Killing

vector fields ξµ . The symmetries that can be described by Killing vectors will be referred to as

explicit symmetries because they have direct analogues to symmetries of the configuration space.

More specifically, the conserved quantity I that arises from the symmetry is linear in momentum,

I = ξµpµ and so the corresponding Hamiltonian vector field in the phase space [64],

XI = ξµ
∂

∂xµ
− (∇µξν) pν

∂

∂pµ
, (2.1.41)

loses all reference to momentum after a canonical projection onto the spacetime.

In contrast, there exist symmetries that have no simple expression in the spacetime when pro-

jected from the phase space into the configuration space. The conserved quantities from these

symmetries contain larger powers of the momenta. These symmetries are only apparent in the

phase space itself, i.e., when looking at the trajectories of relativistic particles on the spacetime and

are hence referred to as hidden symmetries. They are generated by symmetric Killing tensors K of

rank s ≥ 2, that satisfy the Killing equation

∇(µ0
Kµ1···µs) = 0, (2.1.42)

of which the corresponding conserved quantity is I = Kµ1µ2···pµ1pµ2 · · · . In particular the metric

itself, gµν , is a Killing tensor of rank 2.

Let’s consider the specific case when Kµν is a rank 2 Killing tensor and derive from that a

conserved quantity of the motion of a charged scalar particle. Remarkably, we don’t need to use the

canonical momentum πµ = pµ + eAµ, rather the 4-momentum of the particle pµ = µuµ (for uµ the

particle’s 4-velocity) is sufficient,

K ≡ Kµνp
µpν , (2.1.43)

dK

ds
=

1

µ
pµpνpρ∇ρKµν +

2

µ
Kµνp

νpρ∇ρpµ

= −2e

µ
KµνF

µρpρp
ν = −2e

µ
Kµ(νF

µ
ρ)p

ρpν , (2.1.44)

where to get to the third line we have used the equation of motion (2.1.29). This vanishes (and

so K is conserved along particle motion) if the particle has no charge (e = 0) or in the absence of
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electromagnetic fields (Fµν = 0), but also if the symmetry condition

Kµ(νF
µ
ρ) = 0 (2.1.45)

is satisfied. We will find in Sec. 2.2.2 that this is indeed true in the spacetime of a charged, rotating

black hole.

Conformal Killing tensors are similar to Killing tensors, but generate constants of the motion of

null particles only. A rank-s conformal Killing tensor satisfies the conformal Killing equation

∇(µ0
Kµ1···µs) = g(µ0µ1

αµ2···µs), (2.1.46)

for α a symmetric tensor of rank s− 1. In the specific case s = 1 these are conformal Killing vectors

ξµ satisfying

∇(µξν) = αgµν , (2.1.47)

for α a scalar function and it is straightforward to show that the quantity I = ξµ`µ (with `µ the

4-momentum of the null particle) is indeed conserved along null geodesics.

To go further, we can consider more complicated functions of position and momentum f (x, p)

and consider the question, “when are these quantities parallel transported along geodesics”? If a

tensor K satisfies the generalised Killing equation

∇(µ0
Kµ1...µr)ν1...νs = 0, (2.1.48)

then the rank-s tensorial quantity,

fµ1...µs ≡ Kν1...νrµ1...µsp
ν1 . . . pνr , (2.1.49)

is parallel transported along geodesics. In the specific case when r = 1 and K is anti-symmetric, we

call the tensor K a Killing-Yano form. In such a case, the rank-s tensorial quantity,

fµ1...µs = Kνµ1...µsp
ν , (2.1.50)

constructed from K is perpendicular to each of the pνj for all j,

fµ1...µj ...µsp
µj = 0. (2.1.51)

Since Killing-Yano forms K are defined to be anti-symmetric, the covariant derivative ∇K be-

longs to the space of tensors that are anti-symmetric in every index except the first. A subspace

of this space of tensors is one in which ∇K depends only on the divergence ∇ · K. We call K a

closed, conformal Killing-Yano form if ∇K belongs to this particular subspace. The term “closed”
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is used because this also implies that the exterior derivative dK vanishes and the term “conformal”

is used because such a tensor behaves nicely under a conformal transformation of the metric. If one

were to conformally scale the metric tensor to g̃ = Ω2g, and K is a conformal Killing-Yano form of

rank s in g then K̃ = Ωs+1K is a conformal Killing-Yano form in g̃. Such a form satisfies the closed,

conformal Killing-Yano equation, which in four dimensions reads

∇ρhµν = gρµχν − gρνχµ, χµ ≡
1

3
∇νhνµ. (2.1.52)

We are finally able to define the principal tensor hµν as a non-degenerate, closed, conformal,

Killing-Yano 2-form. Non-degenerate, in this context, means it has maximum rank when considered

as a matrix and has the maximal number of independent eigenvalues.

If it is known that two Killing-Yano forms K1 and K2 (that may or may not be equal) of the

same rank exist in a spacetime, then a Killing tensor Kµν can be constructed from them by taking

the symmetrised product

K
(µ
1ρ2...ρs

K
ν)ρ2...ρs
2 = Kµν . (2.1.53)

In particular, this can be used to construct a Killing tensor if the principal tensor is known, as the

Hodge dual (∗h) of a closed, conformal Killing-Yano form is a Killing-Yano form and so the above

equation implies

Kµν ≡ (∗h)µρ (∗h) ρ
ν (2.1.54)

is a Killing tensor. This tensor will be important in the next section when we discuss the conserved

quantities of geodesic motion on the Kerr spacetime.

It perhaps isn’t surprising that the existence of a principal tensor highly restricts the spacetime

metric. In fact, the only family of spacetimes that admit such an object are the family of off-shell

Kerr-NUT-(A)dS spacetimes [64].

2.2 Black Hole Solutions of the Einstein Field Equations

2.2.1 Finding the Solutions

We now want to work towards specifying the background metric gµν on which our charged scalar

and vector fields will propagate. As mentioned in Sec. 2.1.2, we treat these as test fields (i.e., they

don’t contribute to Tµν or Jµ in Eqs. (2.1.15) and (2.1.16)) and so we require a solution to the

electrovacuum equations

Rµν −
1

2
gµνR = 8πTFµν , (2.2.1)

∇νFµν = 0. (2.2.2)
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We give only a schematic overview, the details of the various methods to solving (2.2.1) and (2.2.2)

can be found in [43, 109].

We will be considering black hole spacetimes that are either stationary and axisymmetric (those

of rotating black holes) or static and spherically symmetric (those of non-rotating black holes). In

addition, all of these spacetimes will be asymptotically flat. As the second set of spacetimes is a

special case of the first, we will discuss only the first, weaker pair of assumptions. In a general

coordinate system this is the assumed existence of two linearly independent Killing vectors [14].

These are the time-translation Killing vector ξµt , which at infinity is timelike and normalised to

ξµt ξ
t
µ = −1 and the rotational Killing vector ξµφ which has closed integral curves of length 2π. Both

of these satisfy Killing’s equation (2.1.38). These Killing vectors will be used to construct conserved

quantities of geodesic motion and will be important when discussing circular geodesic orbits in

Sec. 2.3.

We can choose a coordinate system such that these Killing vectors take on a simple form, ξµt =

∂µt ≡ [1, 0, 0, 0] and ξµφ = ∂µφ ≡ [0, 0, 0, 1]. These coordinates (t, r, θ, φ) are the Boyer-Lindquist

coordinates. Taking these simple forms for the Killing vectors is equivalent to the condition that

all the metric functions gtr, grφ etc... are independent of t and φ. If we also include the condition

that the spacetime is invariant under the simultaneous inversion t → −t and φ → −φ this requires

gtr = gtθ = gφr = gφθ = 0. As such, what remains is a metric of the form

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 +
[
grrdr

2 + 2grθdrdθ + gθθdθ
2
]
. (2.2.3)

The term in the square brackets is the metric of a two dimensional space (r, θ) with positive definite

signature (+,+) and so there exists a co-ordinate transformation [43] that reduces it to the form

e2κ1dr2 + e2κ2dθ2 where κ1 and κ2 are functions of r and θ only. Hence there are five metric

components to find. Full derivations of the form of these five functions can be found in [43] and

[109], leading to the Kerr-Newman metric,

ds2 = −
(

1− 2Mr −Q2

Σ

)
dt2 −

(
2Mr −Q2

)
2a sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2 +

h sin2 θ

Σ
dφ2, (2.2.4)

where

∆ = r2 − 2Mr + a2 +Q2, (2.2.5)

Σ = r2 + a2 cos2 θ, (2.2.6)

h =
(
r2 + a2

)2 −∆a2 sin2 θ (2.2.7)

and the corresponding vector potential that satisfies both the Lorenz gauge condition (2.1.23) and



34 CHAPTER 2. BLACK HOLE SPACETIMES AND CLASSICAL FIELDS

the vacuum field equation (2.2.2) is [63]

Aµ =
Qr

Σ∆

[
r2 + a2, 0, 0, a

]
. (2.2.8)

This is the metric of the spacetime of a charged and rotating black hole. Each of the three

constants introduced takes on a physical meaning: M is the mass of the black hole, Q is its charge

and a is its angular momentum per unit mass, a = J/M . Remarkably, these are the only three pieces

of information needed to completely specify the metric. In addition, under certain sensible regularity

conditions (see theorems 3.2 and 3.3 of [47] ), the Kerr-Newman solution is the only stationary,

axisymmetric, asymptotically flat solution of the electrovacuum equations with a connected event

horizon (event horizons will be discussed in the next subsection). Results of this kind have been

known for decades [125] but more recent treatments are given in [47] and [103].

From (2.2.4), various specific cases can be considered. Setting the charge Q = 0 gives the Kerr

metric of a rotating, uncharged black hole,

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2 +

h sin2 θ

Σ
dφ2, (2.2.9)

(where Q is set to zero in the definitions of ∆ and h). Setting only a = 0 produces the Reissner-

Nordström metric of a charged but static black hole,

ds2 = −frn (r) dt2 +
dr2

frn (r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2.2.10)

where we have defined frn (r) = 1 − 2M/r + Q2/r2. This spacetime is spherically symmetric and

has the electromagnetic vector potential,

Aµ =

[
Q

rfrn
, 0, 0, 0

]
. (2.2.11)

Finally, setting both a = 0 and Q = 0 gives the Schwarzschild metric of an uncharged, static

black hole,

ds2 = −fsch (r) dt2 +
dr2

fsch (r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2.2.12)

where fsch (r) = 1 − 2M/r. The Schwarzschild spacetime is, according to Birkhoff’s theorem [67],

the only spherically symmetric, asymptotically flat solution of the Einstein vacuum field equation

(Eq. (2.2.1) with the right hand side equal to zero).

Due to the spherical symmetry, the Reissner-Nordström and Schwarzschild metrics possess ad-

ditional Killing vectors compared to the Kerr and Kerr-Newman metrics. These vectors are [37]

ξµ1 = − sinφ∂µθ − cot θ cosφ∂µφ , (2.2.13)

ξµ2 = cosφ∂µθ − cot θ sinφ∂µφ , (2.2.14)
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such that, if we define ∂µφ = ξµ3 , then these three vectors satisfy the commutation relations
[
ξµi , ξ

µ
j

]
=

−εijkξµk , where εijk is the three dimensional Levi-Civita symbol.

2.2.2 The Kinnersley Tetrad and the Principal Tensor

Any Lorentzian spacetime metric can be written in terms of a null tetrad and the Kerr-Newman

metric is no exception [43]. A null tetrad is a set of four vectors {`µ, nµ,mµ, m̄µ} (where m̄µ is the

complex conjugate of mµ) with Lorentzian inner products given by

− `µnµ = mµm̄µ = 1 (2.2.15)

and all other products equal to zero. The inverse metric can be decomposed in terms of these vectors

gµν = −2
(
`(µnν) −m(µm̄ν)

)
. (2.2.16)

A natural choice for the four vectors is the Kinnersley tetrad given by

`µ =
1

∆

[
r2 + a2,∆, 0, a

]
,

nµ =
1

2Σ

[
r2 + a2,−∆, 0, a

]
, (2.2.17)

mµ =
1√

2 (r + ia cos θ)
[ia sin θ, 0, 1, i csc θ] .

The Kinnersley tetrad has the property that the vectors `µ and nµ are aligned with the principal

null vectors of the spacetime. Such vectors are tangent to shear-free, null geodesic congruences (see

for example [37] or [118]). The introduction of this null tetrad will be important when we come to

discuss electromagnetic perturbations of rotating black hole spacetimes in chapter 4.

We now want to take the ideas of Killing and principal tensors developed in Sec. 2.1.6 and apply

them specifically to the Kerr-Newman spacetime, as in [64]. In the Kinnersley tetrad, the principal

tensor hµν and the Killing tensor Kµν constructed from it according to (2.1.54) read

hµν = 2r`[µnν] + (2ia cos θ)m[µm̄ν], (2.2.18)

Kµν =
(
2a2 cos2 θ

)
`(µnν) + 2r2m(µm̄ν) (2.2.19)

and it can be shown that this hµν satisfies the closed, conformal Killing-Yano equation (2.1.52). The

Lorenz gauge vector potential (2.2.8) is

Aµ = Qr

(
1

2Σ
`µ +

1

∆
nµ
)

(2.2.20)

and so the Faraday tensor Fµν = 2∇[µAν] is

Fµν =
Q

Σ2

(
−2
(
r2 − a2 cos2 θ

)
`[µnν] + (4iar cos θ)m[µm̄ν]

)
. (2.2.21)

From this it can be shown that in the Kerr-Newman spacetime the symmetry condition (2.1.45) is

satisfied via the vanishing inner products of the Kinnersley tetrad (2.2.15).
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2.2.3 The Existence and Nature of Horizons

Here we summarise some properties of black hole spacetimes by discussing their Killing vectors, as

well as the existence and nature of various important surfaces. All the black holes we study will

be stationary and axisymmetric and so the metrics will possess the Killing vectors ξµt = ∂µt and

ξµφ = ∂µφ .

There are three types of important surfaces we will discuss. An event horizon as defined by [37]

is...

"...a 3D hypersurface in a 4D spacetime that separates those events that are connected

to infinity by a timelike path from those that are not."

The cosmic censorship hypothesis [115] asserts that any realistic spacetime has any curvature sin-

gularities shrouded behind an event horizon.

A stationary limit surface is a hypersurface on which the time translation Killing vector ξµt

becomes null, gµνξ
µ
t ξ

ν
t = 0. This surface can be found by considering where the gtt component of

the metric vanishes. Immediately behind the stationary limit surface, ξµt becomes spacelike.

Finally, a Killing vector field ξµ can have a Killing horizon, which is a null hypersurface on which

ξµ becomes null. Note that a stationary limit surface is not necessarily a Killing horizon as that

hypersurface is not necessarily null. As ξµ is null everywhere on this surface it must also be normal

to this surface (see [37, 118]) and so it satisfies the null geodesic equation,

ξµ∇µξν = −κξν , (2.2.22)

where κ is a constant called the surface gravity of the Killing horizon.

2.2.3.1 Static, Spherically Symmetric Black Holes

In static spacetimes (such as the Schwarzschild and Reissner-Nordström spacetimes) each of these

three surfaces coincide with one another [37], that is, the event horizon is both a stationary limit

surface and a Killing horizon for the Killing vector ξµt and we simply refer to this single surface as

the event horizon. It is clear from the line elements (2.2.10) and (2.2.12) that the stationary limit

surface where gtt = 0 is defined by fsch (r) = 0 or frn (r) = 0. Immediately behind this surface ξµt

will be spacelike. For the Schwarzschild spacetime this occurs only at r = 2M , but for the Reissner-

Nordström spacetime this occurs at two radii, r± = M ±
√
M2 −Q2. The outer surface r = r+ is

the event horizon, while r = r− is referred to as the Cauchy horizon, beyond which ξµt flips back

to being a timelike vector. The locations of these horizons motivates the definition of the extremal

limit Q→M , in which these two horizons merge into one at r = M .
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Figure 2.2.1: The Penrose-Carter diagram of the Schwarzschild spacetime. H± indicates the past

(−) and future (+) event horizons, while I ± indicates past and future null infinity. i± and i0 are

the timelike and spacelike infinities. The past and future singularities at r = 0 are indicated by

zig-zag lines. The blue curve is a timelike trajectory that crosses the future event horizon and is

doomed to hit the singularity.

In the Schwarzschild spacetime any timelike trajectory that crosses the event horizon is doomed

to reach the spacelike curvature singularity at r = 0 in a finite proper time, as shown in Fig. 2.2.1

The situation is different in the Reissner-Nordström spacetime. The event horizon at r = r+

still has the property that matter and information cannot return from the event horizon to the same

asymptotically flat region of spacetime from which it entered. However, it is no longer true that

timelike trajectories that pass through it are guaranteed to hit the, now timelike, curvature singu-

larity. This is a by-product of the existence of the Cauchy horizon, past which the time-translation

Killing vector ξµt flips from being spacelike back to being timelike. There are, as Chandrasekhar

puts it [43],

“...an infinite range of rich possibilities of experience, that are denied to one who crosses
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the event horizon in the Schwarzschild geometry.”

Among these possibilities is for a trajectory to reach a new asymptotically flat region of the spacetime,

distinct from the one from which it entered the event horizon, as shown in Fig. 2.2.2.

2.2.3.2 Stationary, Axisymmetric Black Holes

In stationary (but not static) spacetimes, it is no longer true that the stationary limit surface and

the event horizon coincide, though the event horizon will still be a Killing horizon for some Killing

vector ξµ. In particular, there exists a constant ΩH such that the Killing vector, [37]

ξµ = ∂µt + ΩH∂
µ
φ , (2.2.23)

is null on the event horizon. This constant is then called the angular velocity of the event horizon.

A coordinate singularity of the Kerr-Newman spacetime (2.2.4) in the Boyer-Lindquist coordinate

system occurs whenever ∆ = 0 (2.2.5), which is at the two radii r± = M ±
√
M2 − a2 −Q2. It can

be shown by considering the metric induced on the 3-surfaces of constant r (see for example, [143])

that null curves on these surfaces for r ≤ r+ cannot escape to infinity, and so r = r+ is the event

horizon. In analogy with the Reissner-Nordström spacetime, the surface r = r− is called the Cauchy

horizon. For Q = 0 (Kerr spacetime), the merging of these two horizons (the extremal limit) occurs

as a→M . Otherwise, for a fixed a, this occurs when Q→ Qmax, where Qmax =
√
M2 − a2.

There are two radii that satisfy the condition of a stationary limit surface gtt = 0 given by

rS± = M ±
√
M2 − a2 cos2 θ −Q2. The outer surface rS+ is what we will concern ourselves with, as

rS− lies within the event horizon. For a fixed t, r = rS+ is a surface that meets the event horizon

only at the poles θ = 0 and θ = π, see Fig. 2.2.3. The region that lies in between r+ and rS+ is

called the ergoregion [63] and will be especially important when we come to discuss superradiance

in these spacetimes.

2.3 Geodesic Orbits

The timelike and null geodesic equations (2.1.30) and (2.2.22) arose when discussing the motion of

uncharged particles and Killing horizons respectively. Here we discuss geodesics in more detail, in

particular the circular geodesic orbits. These orbits have a connection to the quasinormal mode

frequencies of perturbing fields in the eikonal limit, which will be explored in the coming chapters.

The primary reference for this section is [63].
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Figure 2.2.2: The Penrose-Carter diagram of the Reissner-Nordström spacetime, with the same

conventions as Fig. 2.2.1 . The blue curve is a timelike trajectory that crosses both the outer and

inner horizons, but does not hit the timelike singularity. The dashed lines indicate the diagram

repeats indefinitely into the past and future.
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r=r+ r=rS+

Figure 2.2.3: A Kerr or Kerr-Newman black hole. The event horizon and outer stationary limit

surfaces are labeled. The black region is inside the event horizon, the grey region is the ergoregion.

2.3.1 Conserved Quantities and Equations of Motion on Kerr-Newman

The derivation of the equations of motion of a charged test particle in Boyer-Lindquist coordinates

on the Kerr-Newman spacetime are summarised in [63]. Instrumental in the description of the

trajectories of these particles are the conserved quantities of their motion. These quantities will

come from the Killing vectors ξµt and ξµφ as well as the Killing tensor Kµν .

The conserved quantities associated with the Killing vectors are I = ξµπµ. These are the energy

and the axial component of the angular momentum of the particle [63],

E = −ξµt πµ, Lz = ξµφπµ. (2.3.1)

(We will omit the z subscript from Lz in subsequent equations).

The Killing tensor of the Kerr-Newman black hole (2.2.19) in Boyer-Lindquist coordinates is [63]

Kµνdx
µdxν = a2

[
1−

(
2Mr −Q2

)
cos2 θ

Σ

]
dt2 +

sin2 θ

Σ

[
1

4
∆a4 sin2 2θ + r2

(
r2 + a2

)]
dφ2 (2.3.2)

− a sin2 θ

Σ

[
∆a2 cos2 θ + r2

(
r2 + a2

)]
dtdφ− a2 cos2 θ

∆
dr2 + r2Σdθ2,

from which another conserved quantityK = Kµνp
µpν (Eqs. (2.1.43) and (2.1.44)) can be constructed

K =

(
Ea sin θ − L

sin θ

)2

+ (pθ)
2 + µ2a2 cos2 θ. (2.3.3)
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More commonly, one instead works with the Carter constant C, defined as C = K − (Ea− L)2 .

Recall that the motion of a particle of mass µ and charge e is governed by the equation (2.1.29)

µuν∇νuµ = eFµνu
ν , (2.3.4)

where the 4-velocity uµ can now be written in terms of the conserved quantities E,L and C. With

respect to the affine parameter s = τ/µ the equations of motion for each of the components of uµ

are [63]

Σ
dr

ds
= ±

{[
E
(
r2 + a2

)
− La− eQr

]2 −∆
[
µ2r2 + (L− aE)2 + C

]}1/2
, (2.3.5)

Σ
dθ

ds
= ±

{
C − cos2 θ

[
a2
(
µ2 − E2

)
+

L2

sin2 θ

]}1/2

, (2.3.6)

Σ
dφ

ds
= −

(
aE − L

sin2 θ

)
+
a

∆

[
E
(
r2 + a2

)
− La− eQr

]
, (2.3.7)

Σ
dt

ds
= −a

(
aE sin2 θ − L

)
+

(
r2 + a2

)
∆

[
E
(
r2 + a2

)
− La− eQr

]
. (2.3.8)

These are the most general equations of motion we will consider. We will now find the circular

geodesic orbits in various special cases by setting various parameters to zero in these equations.

2.3.2 Geodesic Orbits

2.3.2.1 Geodesic Effective Potential

All of the above expressions can be simplified to their Kerr counterparts simply by setting the black

hole charge Q to zero. The quantity in the square-root on the right-hand-side of the radial differential

equation (2.3.5) will be called R. As a polynomial in r it is (where ṙ = dr/ds) [63]

(Σṙ)2 = R =
(
E2 − µ2

)
r4 + 2Mµ2r3 +

[(
E2 − µ2

)
a2 − L2 − C

]
r2 (2.3.9)

+ 2M
[
C + (Ea− L)2

]
r − a2C.

A bound orbit can only occur if ṙ cannot remain positive for arbitrarily large r. In the large r

limit the r4 term clearly dominates and this will be negative for E2 < µ2, hence this condition on

the energy is sufficient for a bound orbit to exist (As we shall see later however, this condition is

not necessary. There also exist unstable bound orbits for which E2 > µ2). A necessary condition

for circular orbits is R = 0 and such a condition can be written as a quadratic in the energy

R = αE2 − 2βE + γ = 0, (2.3.10)
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where

α = r4 + a2
(
r2 + 2Mr

)
,

β = 2aMLr,

γ = L2a2 −
(
µ2r2 + L2 + C

)
∆.

Thus, we can write the condition R = 0 in terms of an effective potential function V± (r),

ṙ2 = (E − V+) (E − V−) , (2.3.11)

V± (r) =
β ±

√
β2 − αγ
α

. (2.3.12)

Worth noting here is the a→ 0 limit of this equation, where the effective potential reduces to what

we will call Vg,

ṙ2 = E2 − Vg (r) , (2.3.13)

Vg (r) = f

(
µ2 +

L2

r2

)
, (2.3.14)

where f = fsch defined in Sec. 2.2.1. Had we instead set a = 0 but kept Q 6= 0 we would arrive at

the same geodesic potential except with f = frn.

2.3.2.2 Stable and Unstable Orbits, Photon Orbits and the ISCO

Using Kerr black holes as an example, we will now describe the various different kinds of circular

geodesic orbits that can arise in a given spacetime. Each of these types of orbits have their own

importance in relation to the quasinormal modes and quasibound states of perturbing fields, to be

described in Sec. 3.2.

Although the Kerr spacetime is not spherically symmetric, we can still restrict our attention to

the equatorial plane θ = π/2 without loss of generality, as all circular geodesic orbits (i.e., orbits of

constant r and θ) will exist in this plane. This can be shown by looking at the θ equation of motion

(2.3.6). The quantity inside the square-root must be non-negative, hence if E2 < µ2 then C ≥ 0.

For θ to be constant we need C = 0, which happens only for θ = π/2.

Expressions for the energy and angular momentum of a particle on a circular orbit of radius rc

are then found from the condition R (rc) = R′ (rc) = 0 which gives

E/µ =
r2
c − 2Mrc ± a

√
Mrc

rc
(
r2
c − 3Mrc ± 2a

√
Mrc

)1/2 , (2.3.15)

L/µ = ±
√
Mrc

(
r2
c ∓ 2a

√
Mrc + a2

)
rc
(
r2
c − 3Mrc ± 2a

√
Mrc

)1/2 , (2.3.16)
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where the upper and lower signs correspond to orbits moving with the black hole rotation or against

the black hole rotation respectively. The denominator of these expressions is key to finding the radii

of the circular orbits. To ensure E and L are real we must impose the inequality

r2
c − 3Mrc ± 2a

√
Mrc ≥ 0. (2.3.17)

In the variable k =
√
r,this can be written (after pulling out a factor of k) as a cubic in k, which

has a standard solution in terms of trigonometric functions. Converting back to r, the smallest (i.e.,

innermost) solution for the circular orbit radius we will label rp and this is attained only in the limit

of massless particles µ→ 0. It is given by

rp = 2M

{
1 + cos

[
2

3
arccos

(
∓ a

M

)]}
. (2.3.18)

We call such an orbit a photon orbit. For a = 0 (i.e., the Schwarzschild limit) the co-rotating and

counter-rotating photon orbits combine into a single unstable photon orbit at rp = 3M . In the

extremal limit a → M the photon orbit either shrinks to rp = M (co-rotating orbit) or grows to

rp = 4M (counter-rotating orbit).

We can determine whether or not a circular orbit is stable by considering the second derivative

R′′ = V ′′± at the circular orbit radius rc. If V ′′± > 0 then the potential function has a minimum at

that radius and the circular orbit is stable. If V ′′± < 0 then the potential function has a maximum

at that radius and the circular orbit is unstable. The photon orbits found above are unstable.

Another important (unstable) circular orbit occurs when E = µ, in which case the expression

for the energy of a circular orbit (2.3.15) produces the radius

rb = 2M ∓ a+ 2
√
M (M ∓ a) . (2.3.19)

This is the minimum radius a particle incoming on a parabolic trajectory can achieve.

As the sign of the second derivative R′′ = V ′′± determines the stable/unstable nature of an orbit,

it is worth considering the caseR (rI) = R′ (rI) = R′′ (rI) = 0. The orbit with radius rI that satisfies

this is called the Innermost Stable Circular Orbit (ISCO). The three simultaneous equations this

gives have to be solved for E,L and the ISCO radius rI . The result is presented in [63] as

rI = M
{

3 + Z2 ∓ [(3− Z1) (3 + Z1 + 2Z2)]1/2
}
, (2.3.20)

Z1 = 1 +

(
1− a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(

1− a

M

)1/3
]
,

Z2 =

(
3a2

M2
+ Z2

1

)1/2

,
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where once again the upper sign is for co-rotating orbits and the lower sign is for counter-rotating.

In the Schwarzschild limit a → 0 this becomes the Schwarzschild ISCO of rI = 6M and in the

extremal limit a→M the orbit either shrinks to rI = M in the co-rotating case (identically to the

photon orbit) or grows to rI = 9M in the counter-rotating case.

We can perform a similar analysis in the Reissner-Nordström spacetime starting from the radial

equations (2.3.13) and (2.3.14) when f = frn. The equation to solve for rc coming from V ′g = 0 is

now a cubic in r−1
c [43]

−Q2r−3
c +

3

2
Mr−2

c −
1

2

(
1 +

Q2µ2

L2

)
r−1
c +

Mµ2

2L2
= 0. (2.3.21)

We can extract information about the unstable photon orbit at radius rp by setting µ = 0 and

reducing the above equation to a quadratic with the solutions

r−1
p =

3M

4Q2

(
1±

√
1− 8Q2

9M2

)
⇒ rp =

3

2
M

(
1∓

√
1− 8Q2

9M2

)
. (2.3.22)

The lower sign is the one to choose, as this corresponds to a radius that is outside the event

horizon. This is the unstable photon orbit in the Reissner-Nordström spacetime and the expression

reduces to the Schwarzschild result of rp = 3M when Q = 0.

For the ISCO, we must impose V ′g = 0 and V ′′g = 0. We can use this extra condition to eliminate

L2 from Eq. (2.3.21) which reduces it to another cubic equation for the ISCO radius

4Q4r−3
I − 9Q2Mr−2

I + 6M2r−1
I −M = 0, (2.3.23)

which allows the solution rI = 6M when Q = 0 (consistent with the a → 0 limit of Kerr) and

rI = 4M in the extremal limit Q = M . For general Q 6= 0 this equation has only one real root

which we will write as

rI = 2M +
(
4M2 − 3Q2

)
Z−1

1 + Z1, (2.3.24)

Z1 =
(
8M3 − 9MQ2 + 2Q4/M + Z2

)1/3
,

Z2 = Q2
(
5M4 − 9M2Q2 + 4Q4

)1/2
.

Finally, we deal with the Schwarzschild spacetime f = fsch. Setting Q = 0 in Eq. (2.3.21) gives

3L2Mr−2
c − L2r−1

c +Mµ2 = 0, (2.3.25)

and by checking the discriminant, we see that a circular orbit can only occur if L/Mµ ≥ 2
√

3. For

L/Mµ > 2
√

3 there are two such orbits located at

r−1
c =

L±
√
L2 − 12M2µ2

6LM
. (2.3.26)
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In particular, when L/Mµ approaches 2
√

3 from above, the two orbits coalesce into a single

circular orbit at the ISCO radius rI = 6M . We can consider the situation of a massless particle

µ = 0 by allowing L/Mµ→∞ which reproduces the photon orbit at rp = 3M .

2.3.3 Relation to Energy Extraction

In the equatorial plane the radial differential equation in the Kerr-Newman spacetime (2.3.5) can

be re-cast into the form [63]

r3

(
dr

ds

)2

= E2
(
r3 + a2r + 2Ma2

)
− 4aMEL− (r − 2M)L2 − µ2r∆, (2.3.27)

which can then be solved for the energy E

E =
2aML±

[
L2r2∆ +

(
r3 + a2r + 2Ma2

) (
µ2r∆ + r3 (dr/ds)2

)]1/2

r3 + a2r + 2Ma2
. (2.3.28)

The sign in front of the square-root can be determined by the condition that the particle 4-

momentum be future directed, i.e., that dt/ds > 0. This can only occur forE > 2aML/
(
r3 + a2r + 2Ma2

)
which clearly requires us to take the positive root.

This expression for energy can clearly become negative under many physically relevant circum-

stances. A simple example is taking L < 0 and setting µ = 0 (motion at the speed of light) and

dr/ds = 0 (motion in the azimuthal direction). The energy then becomes negative if 2aM < r
√

∆

which occurs exactly when r < rS+, i.e., the particle is inside the ergoregion.

This conclusion is not exclusive to any of the conditions we have imposed, or indeed to motion

in the equatorial plane. The possibility for the energy to be negative follows from the definition

E = −pµξµt and the fact that ξµt is spacelike inside the ergoregion. Indeed, [63] explains that given

a spacelike ξµt , there will always exist some timelike or null pµ such that E < 0.

A particle having negative energy opens up the possibility of rotational energy being extracted

from the black hole via a Penrose process [116]. Suppose a particle with energy E falls into the

ergoregion of a black hole and breaks apart into two particles of energy E− < 0 and E+ > E. The

particle of energy E− can fall into the black hole (thus reducing the black hole’s energy) while the

particle of energy E+ can escape to infinity and so this particle is the vehicle by which energy is

extracted. The wave analogue of a Penrose process is called superradiance and will be discussed in

the context of Reissner-Nordström black holes in Sec. 3.1 and for rotating black holes in chapter 4.
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2.4 Solving Recurrence Relations

To find the quasinormal modes and quasibound states of the scalar and vector fields (to be defined

in the following chapter) we will be employing Leaver’s continued fraction method [96], in which

a particular ansatz is used to transform the problem into solving a recurrence relation. The exact

details of the ansatz used will be relegated to later (see Secs. 3.2.2, 3.2.3 and 4.2.4), as it depends

not only on the equation but also the background spacetime. Here we will discuss general aspects

of solving three-term recurrence relations.

2.4.1 Gaussian Elimination

The first step to solving a recurrence relation via Leaver’s continued fraction method is to reduce

the relation to a three-term one, if it has more than three terms. We can do this via Gaussian

elimination. This is presented in [96] for the case of a four-term relation, like the one we use in

Sec. 3.4, and we will apply the process twice to the five-term relation we find in Sec. 4.2.4. This

two-step Gaussian elimination is also performed in [35], where the author arrived at a five-term

recurrence relation in the context of more exotic spacetimes involving black branes and strings.

A general five-term recurrence relation of the form

α0a1 + β0a0 = 0,

α1a2 + β1a1 + γ1a0 = 0,

α2a3 + β2a2 + γ2a1 + δ2a0 = 0,

αnan+1 + βnan + γnan−1 + δnan−2 + εnan−3 = 0 n > 2, (2.4.1)

for an (ω) functions of some parameter ω can be written in in the form of a matrix equation

β0 α0 0 0 0 0 . . .

γ1 β1 α1 0 0 0 . . .

δ2 γ2 β2 α2 0 0 . . .

ε3 δ3 γ3 β3 α3 0 . . .

0 ε4 δ4 γ4 β4 α4 . . .
...

...
...

...
...

...
. . .





a0

a1

a2

a3

a4

...


=



0

0

0

0

0
...


. (2.4.2)

A solution to these equations occurs for a (possibly infinite) discrete set of ω such that the

determinant of this matrix is zero. The determinant is unchanged by row operations, allowing us to

eliminate εn as follows

ε′n = 0, δ′n = δn −
εnγ

′
n−1

δ′n−1

, γ′n = γn −
εnβ

′
n−1

δ′n−1

, β′n = βn −
εnα

′
n−1

δ′n−1

, α′n = αn, (2.4.3)
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valid for n ≥ 2. Gaussian elimination is then applied again to remove δ′n

ε′′n = δ′′n = 0, γ′′n = γ′n −
δ′nβ

′′
n−1

γ′′n−1

, β′′n = β′n −
δ′nα

′′
n−1

γ′′n−1

, α′′n = α′n, (2.4.4)

valid for n ≥ 1. This transforms the matrix in Eq. (2.4.2) into

β0 α0 0 0 0 0 . . .

γ1 β1 α1 0 0 0 . . .

0 γ′′2 β′′2 α2 0 0 . . .

0 0 γ′′3 β′′3 α3 0 . . .

0 0 0 γ′′4 β′′4 α4 . . .
...

...
...

...
...

...
. . .


(2.4.5)

and this matrix now represents a three-term recurrence relation.

2.4.2 Continued Fractions

A standard method of acquiring solutions to a three-term recurrence relation is the continued fraction

method. It has been applied to the equations of motion of perturbing fields on black hole spacetimes

in many different contexts, see for example [96], [90], and [126].

We are searching for a minimal solution of the recurrence as n→∞. A set of coefficients {an}

forming a solution is minimal if, for a linearly independent solution of the same recurrence {bn} [120]

lim
n→∞

an
bn

= 0. (2.4.6)

The solution {bn} is called a dominant solution of the recurrence. The minimal solution is

unique, but any multiple of the minimal solution can be added to a dominant solution and it will

remain dominant. The minimal solution is the only one whose coefficient sum
∑

n an is guaranteed

to converge. To find the minimal solution, we note that the ratio of successive radial coefficients an

must die away in the large n limit. Such a ratio can be calculated in two different ways

an+1

an
=
γn
αn

αn−1

βn−1 − αn−2γn−1

βn−2−αn−3γn−2/...

− βn
αn

= − γn+1

βn+1 − αn+1γn+2

βn+2−αn+2γn+3/...

(2.4.7)

and these two expressions will be equal when the recurrence relation is solved, i.e., when ω takes a

value in the discrete solution set. Setting the first expression to zero, the equation we wish to solve

is

β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
· · · = 0. (2.4.8)

The numerical method to evaluate a continued fraction of this form to a given order is called the

modified Lentz algorithm and is detailed in [121]. The problem of then finding an ω such that this

vanishes is then solved by any standard numerical root-finding algorithm.



48 CHAPTER 2. BLACK HOLE SPACETIMES AND CLASSICAL FIELDS

Conclusion

In this chapter, we set the stage on which the following two chapters will take place: classical scalar

and vector fields propagating on black hole spacetimes. We are now prepared to move on to the

details of solving the equations of motion for these fields and an analysis of their quasinormal modes

and quasibound states.



Chapter 3

Bosonic Fields on Static Black Hole

Spacetimes

Introduction and Overview

This chapter contains work pertaining to classical scalar and vector fields on the Schwarzschild

and Reissner-Nordström spacetimes. It begins with background material available in the existing

literature before leading into a piece of original work we will detail below.

We begin by returning to the equations of motion for scalar and vector perturbations of black

holes presented in the previous chapter, Eqs. (2.1.14) and (2.1.17). We detail how these equations

can be solved via the method of separation of variables on these spacetimes. By considering the

boundary conditions one can impose on perturbations, we are led to discuss quasinormal modes

(QNMs) and quasibound states (QBSs) of the perturbing fields. In the case of charged fields on the

Reissner-Nordström metric, this also leads to a discussion of the phenomenon of superradiance, in

which charge can be removed from the black hole by the field. We relate the circular geodesic orbits

of the spacetimes to the QBSs and QNMs through the Eikonal approximation that is valid for large

frequency or large angular momentum.

It is with the analytical and numerical calculation of QNMs and QBSs that we will be primarily

concerned with over the course of this chapter and the next. We detail the method of asymptotic

matching and how it can be used to analytically approximate the bound state frequencies, as well

as the WKB approximation applied to study the behavior of QNMs and quasi-resonances. Most

importantly, we consider the role recurrence relations play in finding QNMs and QBSs numerically

and Leaver’s continued fraction method [95] for evaluating these recurrences.

The chapter concludes with a piece of original work: we find a recurrence relation for the odd-
49
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parity charged Proca field on Reissner-Nordström spacetime and so calculate the respective QNMs

for the first time.

3.1 Solving the Perturbation Field Equations

3.1.1 Scalar Fields

Suppose a scalar field has a charge e and is propagating in a Reissner-Nordström spacetime of

black hole charge Q [44]. The Klein-Gordon equation is Eq. (2.1.14) or, if we expand the covariant

derivatives,{
(−g)−1/2 ∂µ

[
(−g)1/2 gµν (∂ν − ieAν)

]
− ieAµ [gµν (∂ν − ieAν)]

}
Φ = µ2Φ, (3.1.1)

where Aµ is the electromagnetic 4-potential of the Reissner-Nordström black hole (2.2.11).

As the Reissner-Nordström spacetime is spherically symmetric we can perform a mode decom-

position of the form

Φ`m =
u` (t, r)

r
Y`m (θ, φ) , (3.1.2)

where the functions Y`m (θ, φ) = Y`m (θ) eimφ are the spherical harmonics and satisfy the equation

1

sin θ

∂

∂θ

(
sin θ

∂Y`m
∂θ

)
+

1

sin2 θ

∂2Y`m
∂φ2

+ ` (`+ 1)Y`m = 0. (3.1.3)

Here, ` (`+ 1) is a separation constant where ` carries the physical interpretation of total angular

momentum of the field. Similarly, m will have the physical interpretation of azimuthal angular

momentum of the field and is an integer in the set m ∈ {−`, · · · , `}. The corresponding radial

equation is (
frn

∂

∂r
frn

∂

∂r
− ∂2

∂t2
− V` (r)

)
u` (t, r) = 0, (3.1.4)

where the effective potential V` (r) is

V` (r) = frn

(
` (`+ 1)

r2
+

2M

r3
− 2Q2

r4
+ µ2

)
+

2ωeQ

r
− e2Q2

r2
. (3.1.5)

For an uncharged particle e = 0, this potential can be related to the potential of a null (µ = 0)

or timelike (µ > 0) geodesic Vg (r) from Eq. (2.3.12) if we take the eikonal limit ` � 1. We do this

by making the association L ↔ ` + 1/2 and then dropping “small” terms not proportional to `2 or

µ. We will use this to draw a link between the energies E of geodesic orbits and the frequencies ω

of quasinormal modes in Sec. 3.2.

One can now introduce the tortoise coordinate r∗ defined by

d

dr∗
= frn

d

dr
, (3.1.6)
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then the equation for the radial function u` can be cast as a wave equation(
∂2

∂r2
∗
− ∂2

∂t2
− V` (r)

)
u` (t, r) = 0. (3.1.7)

An expression for r∗ can be found explicitly by integrating the definition in (3.1.6)

r∗ = r +
r2

+

r+ − r−
log |r − r+| −

r2
−

r+ − r−
log |r − r−| (3.1.8)

and the respective coordinate for the Schwarzschild spacetime can be obtained by setting r+ = 2M

and r− = 0. The range of this coordinate is the entire real line, such that r∗ → −∞ as r approaches

the event horizon of the spacetime and r∗ → +∞ as r → +∞.

If the time dependence of the perturbation is harmonic, i.e. u` (t, r) = u`ω (r) e−iωt for some

(potentially complex) frequency ω, the partial differential equation (PDE) in (3.1.7) reduces to an

ordinary differential equation (ODE)(
d2

dr2
∗

+ ω2 − V` (r)

)
u`ω (r) = 0. (3.1.9)

This equation is called the scalar Regge-Wheeler equation. It was first formulated in the context of

gravitational perturbations [123] and we will comment on this equation for general fields in Sec. 3.1.2.

It is clear from (3.1.5) that ω2 − V` (r) tends to ω2 − µ2 as r∗ →∞ and tends to

ω̃2 ≡
(
ω − eQ

r+

)2

(3.1.10)

as r∗ → −∞ [13]. Hence, the linearly independent asymptotic behaviors of the solutions to the

Regge-Wheeler equation in those limits are

u`ω (r) ∼


e±iω̃r∗ r∗ → −∞

e±ikr∗ r∗ → +∞
, (3.1.11)

where k =
√
ω2 − µ2.

This makes it straightforward to consider what kinds of boundary conditions should be placed

on the solution. In a classical, physical scenario no waves should be emerging from the black hole

event horizon, meaning there should be no e+iω̃r∗ contribution there. A mode that satisfies this

condition is called an IN mode,

uin`ω (r∗) ∼


e−iω̃r∗ r∗ → −∞

Aout (ω) eikr∗ +Ain (ω) e−ikr∗ r∗ → +∞
, (3.1.12)

the complex conjugate of which is called an OUT mode. The coefficients Ain/out (ω) are simply the

amplitudes of the ingoing and outgoing waves at infinity. No normalisation is specified here but this
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H -

I +
I
-

i+

i-

i0

H
+

Figure 3.1.1: A Penrose diagram depicting the IN modes on the exterior of a black hole spacetime.

Waves are incoming from I − before being partially reflected back to I + with the rest being

transmitted through the event horizon H+.

will be needed when discussing the propagation of quantised fields in chapter 5. The IN modes are

shown on a Penrose diagram in Fig. 3.1.1. It is clear to see why this is the correct visualisation when

we recall that r∗ → −∞ in the approach to the horizon, H+ ∪H− and r∗ → +∞ in the approach

to infinity, I + ∪I −.

Another typical solution to consider corresponds to waves that are purely outgoing at spatial

infinity. These are called UP modes,

uup`ω (r∗) ∼


Bout (ω) e+iω̃r∗ +Bin (ω) e−iω̃r∗ r∗ → −∞

e+ikr∗ r∗ → +∞
(3.1.13)

and these are shown on a Penrose diagram in Fig. 3.1.2. The complex conjugates of these modes are

called DOWN modes.

Any two of these four linearly independent mode types can be taken as a basis of the space of

all solutions.

Some standard results in scattering theory can now be derived. Any two functions u1 and u2

that satisfy the wave equation (3.1.9) must have a constant Wronskian W (u1, u2), where

W (u1, u2) = u1
du2

dr∗
− u2

du1

dr∗
. (3.1.14)
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Figure 3.1.2: A Penrose diagram depicting the UP modes on the exterior of a black hole spacetime.

Waves are outgoing from the past horizon H− before being partially reflected back into the event

horizon H+ with the rest escaping to I +.

Computing the Wronskian of the IN and OUT solutions at the two boundaries r∗ → ±∞ and then

equating these gives the condition

2iω̃ = 2ik
(
|Ain|2 − |Aout|2

)
. (3.1.15)

We could also, if we wish, select u1 and u2 to be any pair of IN,UP,OUT or DOWN to derive more

relations between the various A and B coefficients.

Dividing (3.1.15) by |Ain|2, rearranging, and defining the transmission amplitude T and reflection

amplitude R leads to a form of conservation law

T =
1

Ain
, R =

Aout
Ain

, |R|2 = 1− ω̃

k
|T |2 , (3.1.16)

where |T |2 and |R|2 will be referred to as the transmission and reflection coefficients. We will briefly

consider the consequences of this relation more closely.

3.1.1.1 Superradiance

A recent and comprehensive review of the history and current developments in the field of superra-

diance is given in [28]. For a modern description based on quantum field theory, see [61].
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Superradiance, in the context of black hole physics, is the phenomenon where waves incident on

a rotating or charged black hole are reflected with a greater amplitude than they started with. In

the language of reflection and transmission coefficients, (3.1.16) superradiance occurs when |R|2 > 1

i.e., when ω̃/k < 0. As the real part of k must be positive, < (k) > 0, to ensure the waves can escape

to infinity, one can infer the superradiant condition on the frequency is ω < eQ/r+.

If superradiance occurs, it could lead to a superradiant instability. These were first formulated

by Press and Teukolsky for massless field perturbations by introducing an artificial “mirror” around

the black hole [119]. Such a reflective barrier would direct the field amplified by superradiance

back onto the black hole allowing it to be amplified again repeatedly, causing the field’s amplitude

to grow exponentially, an effect known as a “black hole bomb”. However, the same effect can be

achieved without the mirror by simply endowing the field with a non-zero mass µ and imposing

the boundary condition that there is no outgoing radiation at infinity (i.e., we are looking at a

quasibound state). We will discuss superradiance and superradiant instabilities more after we have

introduced quasinormal modes and quasibound states in Sec. 3.2.

3.1.2 Vector Fields

3.1.2.1 Electromagnetic Field

The equation of motion of a massless, neutral vector (electromagnetic) field in the absence of any

external current is (2.2.2). The introduction of the Kinnersley tetrad (2.2.17) allows one to extract

three complex scalar functions out of the Faraday tensor Fµν as follows

Ψ1 = Fµν`
µmν ,

Ψ0 =
1

2
Fµν (`µnν −mµm̄ν) , (3.1.17)

Ψ−1 = Fµνm̄
µnν ,

referred to as the Maxwell scalars by Teukolsky in [138]. These carry the same information content

as the original six real scalar functions for the three spatial components of the electric and magnetic

fields. It should be noted that we are using different notation to Teukolsky, including labeling the

scalars with different indices (Our Ψ1,Ψ0 and Ψ−1 correspond to his φ0, φ1 and φ2 respectively).

As in [15] the index on each of these scalars in our notation represents their spin-weight: under a

transformation of the tetrad vector mµ → eiαmµ for α an arbitrary phase, Ψp transforms to eiαpΨp.

On the Schwarzschild or Reissner-Nordström spacetime, the Maxwell scalars are amenable to a

separation of variables in a similar manner to that of the scalar field, except one must use spin-
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weighted spherical harmonics Y `m
p [74] of spin weight p ∈ {1, 0,−1},

Ψp (t, r, θ, φ) =
∞∑
`=|p|

u`mp (t, r)

r
Y `m
p (θ, φ) , (3.1.18)

which can be defined in terms of spin-raising and spin-lowering differential operators on the original

Y `m of Eq. (3.1.3), see [57]. It is then possible to find functions gp (r) such that gp (r)u`mp (t, r)

satisfies the Regge-Wheeler equation (3.1.7) with a new effective potential that depends on the spin

of the field (for an electromagnetic field , s = 1 and so the second term vanishes),

V`s (r) = f

(
` (`+ 1)

r2
+
df

dr

(
1− s2

)
r

)
. (3.1.19)

Here, and for the remainder of this section, the function f can refer to either fsch or frn. This

is the generalised Regge-Wheeler equation. The cases p = ±1 are covered in Table 1 of [138] while

p = 0 was covered by Price in [122]. Hence the p = 0 equation, where g0 (r) = r2 such that r2Ψ0

satisfies the Regge-Wheeler equation, is sometimes referred to as the Price equation.

The reason for writing the potential (3.1.19) in a form that includes s, is that this general

method also works to some extent when studying gravitational perturbations. Such perturbations

can be decomposed into five scalar functions called the Weyl scalars Θp, labeled by the index

p ∈ {0,±1,±2}. There exist functions g±2 (r) such that the two scalars g±2 (r) Θ±2 satisfy the

generalised Regge-Wheeler equation for s = 2. As such, the Regge-Wheeler equation is a master

differential equation that has utility regardless of the spin of the perturbing field [15].

3.1.2.2 Uncharged Proca Field

The majority of our work will be focused on the massive vector field or Proca field, for which we

refer primarily to [126]. Unlike in the case of the scalar field, adding a mass to the vector field is

not just a simple matter of modifying the effective potential in (3.1.19) with a µ2 term. We will see

that this is at least partially to do with the multiple polarization states of the field, which isn’t a

consideration for the scalar field.

The equation of motion for a massive, uncharged vector field W ν of mass µ is (see [66] and

(2.1.17))

∇µWµν = µ2W ν . (3.1.20)

The Lorenz gauge condition ∇µWµ = 0 is a direct consequence of (3.1.20), see (2.1.24)

The massive vector field can be decomposed into modes in the following manner [126]

Wµ (t, r, θ, φ) =

4∑
i=1

∑
`m

ci
u`m(i) (t, r)

r
Z(i)`m
µ (θ, φ) , (3.1.21)
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where c1 = c2 = 1, c3 = c4 = (` (`+ 1))−1/2 and the Z(i)
µ are vector spherical harmonics (not to

be confused with the spin-weighted spherical harmonics used for separating the Maxwell scalars)

constructed from the standard scalar spherical harmonics like so

Z(1)`m
µ = [1, 0, 0, 0]Y `m, (3.1.22)

Z(2)`m
µ =

[
0, f−1, 0, 0

]
Y `m, (3.1.23)

Z(3)`m
µ =

r√
` (`+ 1)

[0, 0, ∂θ, ∂φ]Y `m, (3.1.24)

Z(4)`m
µ =

r√
` (`+ 1)

[
0, 0,

∂φ
sin θ

,− sin θ∂θ

]
Y `m. (3.1.25)

The functions u(i) now satisfy four coupled, second-order PDEs. The equations were derived in

[126] in the Schwarzschild spacetime. Here, we will derive a more general set of equations that also

applies to the Reissner-Nordström spacetime, by assuming a metric of the form (2.2.12) or (2.2.10),

but with the function f unspecified.

In (3.1.20) we are free to add a term involving ∇µWµ as long as the Lorenz condition is satisfied,

i.e. we will now work with the equation

P ν ≡ ∇µWµν +∇ν (∇µWµ)− µ2W ν = 0. (3.1.26)

As in [126] we will opt to expand the Lorenz condition using the ansatz (3.1.21) and include it

as a supplementary condition to the four component equations of (3.1.26). The reason for these

manipulations is so that the resulting equations are of a similar form to the Regge-Wheeler equation.

These equations are

D1u(1) +
df

dr

(
u̇(2) − u′(1)

)
= 0, (3.1.27)

D1u(2) +
df

dr

(
u̇(1) − u′(2)

)
− 2f2

r2

(
u(2) − u(3)

)
= 0, (3.1.28)

D1u(3) +
f

r2
2` (`+ 1)u(2) = 0, (3.1.29)

D1u(4) = 0, (3.1.30)

where we have defined the second-order differential operator (cf. Eq. (3.1.7))

Ds =
∂2

∂r2
∗
− ∂2

∂t2
− f

(
` (`+ 1)

r2
+ µ2 +

df

dr

(
1− s2

)
r

)
. (3.1.31)

Ds is the Regge-Wheeler differential operator of spin s and mass µ. In these equations a dot denotes

differentiation with respect to t and a dash differentiation with respect to r∗. The first two equations

(3.1.27) and (3.1.28), in the language of Eq. (3.1.26), arise from Pt = 0 and Pr = 0 while Eqs. (3.1.29)

and (3.1.30) are ∂θPφ − ∂φPθ = 0 and ∂θ (Pθ sin θ) + ∂φ (Pφ/ sin θ) = 0 respectively.
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Of particular note is the equation for u(4), which is completely decoupled from the other modes.

The remaining three equations for u(i) when i ∈ {1, 2, 3} are all coupled together, but the system

can be simplified with the use of the Lorenz condition. The Lorenz condition ∇µWµ = 0 can be

written

− u̇(1) + u′(2) +
f

r

(
u(2) − u(3)

)
= 0, (3.1.32)

which can be used to eliminate u̇(1) from (3.1.28), giving

D1u(2) +
f

r

(
df

dr
− 2f

r

)(
u(2) − u(3)

)
= 0. (3.1.33)

This equation forms a coupled system with Eq. (3.1.29). Hence, the massive vector field has

three degrees of freedom, encapsulated in the modes u(i) for i ∈ {2, 3, 4}. The two coupled modes

are referred to as even-parity modes and the remaining decoupled mode is referred to as the odd-

parity mode. This naming convention comes from the behavior of the corresponding vector spherical

harmonics Z(i)`m
µ under the parity inversion transformation x→ −x, where x is the vector of spatial

components of the spacetime point x. For a vector function, this doesn’t just require the substitutions

θ → π − θ and φ → φ + π, but we must also consider how the spatial components of the vector

transform, [Wr,Wθ,Wφ]→ [−Wr,Wθ,−Wφ]. We conclude that, under parity inversion, Z(2)`m
µ and

Z
(3)`m
µ acquire a factor of (−1)` (even parity) and Z(4)`m

µ acquires a factor of (−1)`+1 (odd-parity).

3.1.2.3 The Massless Limit

Some important information about the behavior of massive vector perturbations can be attained

if we look at the massless limit and compare the results to what we know about electromagnetic

perturbations. The decoupled equation for u(4) (3.1.30) is nothing other than the Regge-Wheeler

equation for s = 1. Taking the massless limit of this equation reduces it further to Price’s equation,

D1

(
r2Ψ0

)
= 0 [126, 122].

The coupled system (3.1.29) and (3.1.33) has some satisfying properties. Combining the two

coupled PDEs for u(2) and u(3) into a single fourth-order PDE and then taking the massless limit,

the resulting equation can be written as one Regge-Wheeler equation “nested” inside another one,

1

r
f−3D1

[
f−1D0

(
ru(3)

)]
= 0. (3.1.34)

The mode u(2) has been eliminated and we can now think of our two even-parity modes as being

u(3) and the new mode ψ:

ψ ≡ f−1D0

(
ru(3)

)
. (3.1.35)
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The form of this “nested” equation allows us, as is done in [126], to infer information about the

different degrees of freedom of the field. If the “inner” wave equation is satisfied, (i.e. ψ = 0) it

follows that our vector field Wµ can be written as the gradient of a scalar field χ

Wµ = ∂µχ, χ =
u(3)

` (`+ 1)
Y`m (θ, φ) , (3.1.36)

meaning that the field is pure gauge. In other words, the solution ψ = 0 to the “inner” Regge-Wheeler

equation has no physical significance as it can be removed by a gauge transformation.

Notice also that the “outer” differential equation this mode satisfies, D1ψ = 0 is identical to

the one u(4) satisfies. In other words, the massless limit introduces a degeneracy in the degrees

of freedom of the vector field. This was to be expected, as the polarization states of the massless

limit of this field must agree with those of the electromagnetic field, which we know has only two

independent polarization states.

This analysis motivates the following classification. One of the two coupled modes, in this case

u(3), will be referred to as a mode of scalar-type, for two main reasons: firstly, the differential

equation satisfied by ru(3) is simply the Regge-Wheeler equation for s = 0 and secondly, when this

differential equation is satisfied the vector field Wµ can be written as the gradient of a scalar field.

Hence, the scalar mode is a gauge mode in the electromagnetic case (µ = 0). In contrast, the modes

ψ and u(4) will be referred to as modes of vector-type as they solve the Regge-Wheeler equation for

s = 1.

3.1.2.4 Charged Proca Field

The separation of the Proca equation of a massive, charged vector field of charge e is discussed in

[80]. The separation is performed on a spacetime that can be locally written as the product of a

m-dimensional spacetime with metric hab (spanned by the coordinates {ya}) and an n-dimensional

spacetime with a metric of constant curvature K and line element dσ2. The metric of the full

spacetime has a line element that can be written in the form [88]

ds2 = hab (y) dyadyb + r2 (y) dσ2 (3.1.37)

and this includes spherically symmetric spacetimes as a special case.

The equation of motion of the charged Proca field is (2.1.17). The calculations performed in

the previous subsection for an uncharged field don’t easily carry over to a charged field as ∇µWµ

doesn’t vanish as it does for a uncharged field. In fact, ∇µWµ in terms of the u(i) modes takes the

form (cf. Eq. (3.1.32))

−u̇(1) + u′(2) +
f

r

(
u(2) − u(3)

)
= −2ieQ

r2µ

(
u̇(2) − u′(1) +

f

r
u(1)

)
. (3.1.38)
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Adding the gradient of the above quantity to (2.1.17) doesn’t reduce the equation to a wavelike

equation like adding the gradient of the Lorenz condition did for (3.1.26).

Instead, we turn to the work of [127] where charged, massive vector fields around Reissner-

Nordström black holes are discussed. The equation for the single decoupled mode (which they call

the transverse mode) can be cast into a Schrödinger-like form (3.1.9) just like the charged and

uncharged scalar fields(
d2

dr2
∗

+ ω2 − V` (r)

)
u(4) = 0, V` (r) = frn

(
` (`+ 1)

r2
+ µ2

)
+

2ωeQ

r
− e2Q2

r2
. (3.1.39)

This is exactly the potential function that one might naively expect, considering the potentials

of the charged scalar field (3.1.5) and the uncharged vector field (3.1.19). If we assume a harmonic

time dependence u (r, t) = u (r) e−iωt ,this reduces to D1u(4) = 0 in the limit e → 0. In particular,

the form of the potential motivates us to define the charged wave operator

D̃1 =
∂2

∂r2
∗
− ∂2

∂t2
− f

(
` (`+ 1)

r2
+ µ2

)
− 2ieQ

r

∂

∂t
+
e2Q2

r2
, (3.1.40)

such that the equation for the charged transverse mode is D̃1u(4) = 0. In Sec. 3.4 we will numerically

investigate this decoupled, odd-parity mode of the charged Proca field.

As a brief aside, we will complete this discussion for the two coupled modes also. [127] denotes

these modes as ψ and χ and report the following pair of coupled equations for these modes of a

charged field around a charged black hole[
f2
rnr

2 d
2

dr2
+ (ωr − eQ)2 − frn

(
` (`+ 1) + µ2r2

)]
χ+

[
2ieQfrn − ir (ωr − eQ)

dfrn
dr

]
ψ = 0,

(3.1.41)[
f2
rn

d

dr

(
r2 d

dr

)
+ (ωr − eQ)2 − frn

(
` (`+ 1) + µ2r2

)]
ψ +

[
2iωrfrn − ir (ωr − eQ)

dfrn
dr

]
χ = 0.

(3.1.42)

Like the decoupled equation, we can also write these equations in a similar manner to [126]. Under

the identification χ = u(1) and ψ = u(2) (3.1.41) reduces to (3.1.27) in the uncharged limit and

(3.1.42) reduces to

D1u(2) +

(
df

dr
− 2f

r

)(
u̇(1) − u′(2)

)
= 0, (3.1.43)

which is also the equation we obtain if we use (3.1.32) to eliminate u(3) in Eq. (3.1.28). In particular,

(3.1.41) and (3.1.42) can be written in the wave equation formalism of [126] using the charged wave

operator, as follows

D̃1u(1) +
df

dr

(
u̇(2) − u′(1)

)
+

2ieQ

r2
fu(2) = 0, (3.1.44)

D̃1u(2) +

(
df

dr
− 2f

r

)(
u̇(1) − u′(2)

)
− ieQ

r
fu(1) = 0. (3.1.45)
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3.2 Quasinormal Modes and Quasibound States

3.2.1 Introduction and Motivation

3.2.1.1 Massless Quasinormal Modes

As was described in chapter 1, when a black hole is perturbed by an external field it will attempt

to revert to a latent state by emitting radiation at certain characteristic frequencies, which we call

quasinormal modes (QNMs) [63]. Similarly, when two black holes merge into one, the final black

hole undergoes a “ringdown phase” where it emits gravitational waves at QNM frequencies. These

frequencies depend only on the mass and spin parameters of the black hole itself [89]. Hence, if

QNMs can be observed in gravitational wave data, one can infer the properties of the black hole

that produced the signal. A review of other phenomenological consequences of QNMs, including

their relevance to string theory, can be found in [93].

The complex QNM frequencies ω`mn form an infinite discrete set, the elements of which are

labeled by the parameters `,m, and n [95]. Here, ` is the total angular momentum of the perturbing

field (3.1.3), m is the azimuthal angular momentum and integer n ≥ 0 is the overtone number. For

the massive vector (Proca) field, we may also add a label S to ω to indicate which of three polarization

states we are in. For the Proca field, the odd-parity vector mode is labeled S = 0, the even-parity

scalar mode with S = −1 and the even-parity vector mode with S = +1. The QNMs experimentally

observed from the ringdown of black hole mergers correspond to the ` = m = 2, n = 0 QNM of

the gravitational field [3]. The real part of the frequency < (ω) corresponds to the characteristic

frequency of the oscillation while the imaginary part = (ω) < 0 corresponds to the decay rate.

An analogy can be drawn to the electron energy levels in a hydrogen atom which are found

by the solution of the Schrödinger equation with regular boundary conditions at the origin and a

decaying probability amplitude at infinity. These boundary conditions quantise the allowed energies

of the electron into discrete, real values. The corresponding black hole problem has the boundary

condition of purely ingoing waves at the event horizon and it is this draining of the field into the

horizon that leads to complex frequencies with a non-zero decay rate.

We consider first the QNMs of massless fields, such as a massless scalar field, the electromagnetic

field or the gravitational field. QNM frequencies will occur near the square root of the maximum

of the potential function V` (r) in the radial differential equation (3.1.7) as described in [131]. The

maximum is assumed to occur at a radial value r = rQNM , hence we have ω2
QNM ≈ V` (rQNM ). This

comes from the lowest order WKB approximation in the eikonal limit,

ω2
QNM ≈ Vg (rQNM )− i (n+ 1/2)

√
−2V ′′g (rQNM ), (3.2.1)
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Figure 3.2.1: The massless limit of the geodesic potential Vg (r) in Eq. (2.3.12). The red point marks

the potential peak (the energy of an unstable geodesic orbit, or the frequency of a QNM in the

eikonal limit).

where it is because of the eikonal approximation that we can instead use the geodesic potential

Vg (r) (2.3.12) in the above equation. A typical such potential is shown in Fig. 3.2.1. Hence, there is

a clear connection between QNM frequencies and the energies of unstable circular geodesic orbits.

Links of this kind have been studied for a long while, see for example [73]. After we have covered

the case of massive QNMs later in this section we will expand on this concept further.

As rQNM is the location of a local maximum of Vg we must have V ′g (rQNM ) = 0 and V ′′g (rQNM ) <

0. In the limit that V ′′g (rQNM )→ 0 the imaginary part (the damping rate) of the QNM frequency

vanishes and so the QNM is arbitrarily long-lived [111]. Such a mode is called a quasiresonance.

3.2.1.2 Quasibound States

Now let’s introduce a mass to the field, µ 6= 0. This shifts the typical potential to one shown in

Fig. 3.2.2. The important additional feature is the presence of a local minimum. As QNMs are linked

to the local maximum of the potential, another type of frequency is linked to the local minimum: the

quasibound state (QBS) frequencies [126]. In the eikonal limit, these are linked to the energies of the

stable circular geodesic orbits. Classically, these states would be confined to the potential well near

the local minimum, but as fields they can tunnel through the potential barrier and into the event

horizon, thus leading to the field decaying over time. Unlike a QNM, a field in a quasibound state
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Figure 3.2.2: The geodesic potential in Eq. (2.3.12) plotted for L/Mµ = 5. The red point marks the

potential peak (the energy of an unstable geodesic orbit, or the frequency of a QNM for large `) and

the blue point marks the local minimum (the energy of a stable geodesic orbit, or the frequency of

a QBS in the eikonal limit).

cannot propagate to infinity, as the local minimum of the potential will be at a value ω2
QBS < µ2.

If a bound state frequency ωQBS also happens to satisfy the superradiance condition, which

in the Reissner-Nordström spacetime reads ω < eQ/r+ (see Sec. 3.1.1.1), then the positive energy

extraction from the black hole can lead to = (ωQBS) > 0, i.e., the bound state is not decaying,

but growing. This can lead to the superradiant instabilities mentioned at the end of Sec. 3.1. We

will find in Sec. 3.3 that superradiant instabilities actually cannot occur in the Reissner-Nordström

spacetime, but in chapter 4 we will see that they can occur in rotating black hole spacetimes.

The existence of quasibound states has interesting phenomenological consequences, as was dis-

cussed in chapter 1. It has been hypothesised that ultra-light vector bosonic particles could be

potential dark matter candidates [58, 11, 86]. If these beyond Standard Model particles exist,

they would potentially collect in “clouds” around black holes at specific bound state frequencies

[27, 82, 127, 129]. These clouds can then extract mass or charge (and for rotating black holes, an-

gular momentum) from the black hole through superradiance, leading to superradiant instabilities

[16, 17, 148]. The existence of these clouds would constrain the mass of these hypothetical particles

[33, 112].
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Figure 3.2.3: The geodesic potential in Eq. (2.3.12) plotted for L/Mµ = 2
√

3. The red point marks

the stationary point (the energy of the ISCO geodesic, or the frequency of an evanescent QNM in

the eikonal limit).

3.2.1.3 Massive Quasinormal Modes

While including a non-zero mass allows for the possibility of QBSs, it also enriches the spectrum

of QNMs. Equation (3.2.1) motivates the definition of two distinct types of QNM: the propagative

modes and the evanescent modes, for which Vg (rQNM ) > µ2 or Vg (rQNM ) < µ2 respectively.

As noted in [49], evanescent modes are potentially less physically relevant than their propagative

counterparts as they are harder to pick out of gravitational wave signals. This is made clear in

Fig. 3.2.3 where the maximum that indicates the QNM has become an inflection point and it can be

seen that the potential barrier will impede the motion of the field perturbation towards infinity, in

a similar manner to that of a QBS. The merging of the maximum and the minimum into a single

stationary point is analogous to the merging of the unstable and stable circular geodesic orbits into

a single innermost stable circular orbit (ISCO).

The authors of [134] make a comment about the maximum mass µ for which we would expect

propagative quasinormal mode solutions to exist (i.e., the mass at which we would expect quasires-

onance to occur), based on the WKB approximation (3.2.1). That the QNM is propagative means

ω2 > µ2. Combining this with ω2
QNM ≈ Vg (rQNM ), it follows that we would expect µ2 < Vg (rQNM ).

It is straightforward in the Schwarzschild spacetime to find rQNM by considering the derivative of
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the potential function, leading to an estimate for the maximum mass

µ2
max =

1

54

[
1 +

3

2
l − 3

2
l2 − l3 +

(
1 + l + l2

)3/2]
, (3.2.2)

where l = ` (`+ 1). This general method works for spacetimes other than the Schwarzschild space-

time and fields other than the scalar field, but it becomes much more difficult, if not impossible, to

procure an analytical expression for µmax.

3.2.1.4 QNMs and Geodesics

The link between QNMs and geodesic orbits can be made more explicit than Eq. (3.2.1) shows. A

more detailed relationship between the two was derived for scalar fields in [34]. They perform the

derivation for any static, spherically symmetric, asymptotically flat spacetime but we will describe

the method specifically for Reissner-Nordström spacetime for simplicity.

First, one can define the orbital angular velocity of a timelike, circular geodesic orbit and then

express it in terms of the gtt metric function frn,

Ω ≡ φ̇

ṫ
=

√
f ′rn
2r

∣∣∣∣∣
r=rc

, (3.2.3)

where rc is the radius of the orbit. Here we have used expressions for E and L in the Reissner-

Nordström spacetime

E = −ξµt pµ = frnṫ, (3.2.4)

L = ξµφpµ = r2φ̇ (3.2.5)

and then written E2 and L2 in terms of frn by setting Vg = V ′g = 0,

E2 =
2f2
rn

2frn − rf ′rn
, L2 =

r3f ′rn
2frn − rf ′rn

. (3.2.6)

Equation (3.2.3) also happens to be valid for a null geodesic orbit, which can be seen as the innermost

possible timelike geodesic orbit [34].

Next we define the Lyapunov exponent of a geodesic orbit. In a spacetime, one can consider

trajectories that are “close” to each other through a small change in initial conditions. The Lyapunov

exponent λ then measures how quickly these neighboring trajectories converge to (λ < 0), or diverge

from (λ > 0), the original trajectory. For circular timelike geodesics an expression for λ is [34]

λ ≡

√
V ′′g

2ṫ2
=

1

2

√
(2frn − rf ′rn)V ′′g

∣∣∣∣∣
r=rc

(3.2.7)
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and for null orbits it is

λ =
1√
2

√
− r2

frn

(
d2

dr2
∗

frn
r2

)∣∣∣∣∣
r=rc

. (3.2.8)

The lowest order WKB approximation for the QNMs of a scalar field (3.2.1) can then be written

in terms of these quantities. In any static, spherically symmetric, asymptotically flat spacetime

lim
`→∞

< (ω) = Ω`, lim
`→∞

= (ω) = −
(
n+

1

2

)
|λ|. (3.2.9)

This is put to use in [56], where an expansion in powers of (`+ 1/2)−1 is found for the scalar

field QNMs in the Schwarzschild spacetime, valid in the eikonal limit. We compare this large ` result

to numerical data for the QNMs of the odd-parity Proca field in Sec. 3.4.

3.2.1.5 Unifying QNMs and QBSs

Although QNMs and QBSs have very different physical properties, mathematically they are in-

trinsically linked through the boundary conditions imposed on the the radial differential equation

(Eq. (3.1.9) for the scalar field, for example). QNMs can be defined by the condition that the Wron-

skian of the IN and UP solutions W
(
uin, uup

)
(see Sec. 3.1), vanishes. (This definition of QNM

comes from a consideration of the Green’s function of the radial differential equation, see for exam-

ple [39] where this is explained in the context of self-force calculations. The QNM frequencies are

then the poles of the Green’s function in the complex plane.) Hence, uin and uup must be linearly

proportional. As r∗ → +∞ this implies that Ain = 0, while as r∗ → −∞ this implies that Bout = 0,

leading to the boundary conditions that must be satisfied by QNMs

uQNM`ω (r∗) ∼


CQNM− e−iω̃r∗ r∗ → −∞

CQNM+ e+ikr∗ r∗ → +∞
, (3.2.10)

where CQNM± are constants, ω̃ was defined in (3.1.10) and k was defined below Eq. (3.1.11). The

corresponding boundary conditions for a QBS are, similarly to the condition for an electron bound

state in a hydrogen atom, that the field must decay away exponentially quickly as r∗ → +∞

uQBS`ω (r∗) ∼


CQBS− e−iω̃r∗ r∗ → −∞

CQBS+ e−qr∗ r∗ → +∞
, (3.2.11)

where q ≡ ik =
√
µ2 − ω2. The connection between QNMs and QBSs then follows from the fact

that these two boundary conditions can be combined into
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u`ω (r∗) ∼


C−e

−iω̃r∗ r∗ → −∞

C+e
±qr∗ r∗ → +∞

, (3.2.12)

where taking the + sign on the second condition specifies QNMs and taking the − sign specifies

QBSs. The fact that these two sets of frequencies are related by a simple sign change in the boundary

condition is why our recurrence relation results presented at the end of this chapter and the next

can be applied to find both of the spectra.

3.2.2 QNMs and QBSs of a Scalar Field

In this subsection we will briefly look at some prior work done on searching for the QNM and QBS

frequencies of the scalar field on static black hole spacetimes. The QNMs of the massive scalar field

on the Schwarzschild spacetime, with particular attention paid to the imaginary part (the decay rate)

were studied in [90], and on the Reissner-Nordström spacetime in [91]. The QBSs of the massive,

charged, scalar field on the spacetime of a charged, rotating black hole were discussed in [85] using

Leaver’s method, but the non-rotating limit can be taken to observe how the situation would be

handled on the Reissner-Nordström spacetime. We will summarise the methods used to find these

frequencies.

The boundary conditions on the radial function u (r∗) take the general form of Eq. (3.2.12)).

The steps to obtain a recurrence relation to apply Leaver’s method on are as follows: one forms a

Frobenius series style ansatz for u (r∗) that takes into account the irregular singular point of the

radial equation (3.1.9) at infinity. This ansatz will contain a series of coefficients an that can be

found by substituting the ansatz back into the equation. The result will be a recurrence relation of at

least three terms of which we must seek a minimal solution, i.e., a solution for which the coefficients

an decay as n → ∞, see Sec. 2.4. Such a solution will exist only for QNM or QBS frequencies,

depending on the boundary condition chosen. For the rest of this subsection we will work with the

boundary condition for QNMs, with the understanding that the substitution q → −q will adapt the

results to be suitable for finding QBSs.

To account for the irregular singular point, the boundary condition at infinity must be modified

with the sub-leading in r behavior as follows,

u (r∗) ∼ C+e
qr∗r−Mµ2/q. (3.2.13)

An appropriate ansatz for the radial function now takes the form of the Frobenius series,

u (r) = eqr (r − r−)χ−1
∞∑
n=0

an

(
r − r+

r − r−

)n−iρ
, (3.2.14)
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with

χ =
M
(
µ2 − 2ω2

)
+ eQω

q
, ρ =

r+ (r+ω − eQ)

r+ − r−
. (3.2.15)

When this is substituted back into the radial equation (3.1.9), it can be solved term by term for

each individual power of (r − r+) / (r − r−) and so one can arrive at a three-term recurrence relation

for the radial coefficients an

α0a1 + β0a0 = 0, (3.2.16)

αnan+1 + βnan + γnan−1 = 0 n > 0,

where αn, βn and γn are given by [90],

αn = (n+ 1) (n+ 1− 4iMω) ,

βn = iMq−1 (ω − iq)
(

4M (ω − iq)2 + i (2n+ 1) (ω − 3iq)
)
− 2n (n+ 1)− 1− ` (`+ 1) , (3.2.17)

γn =

(
n+

M (ω − iq)2

q

)2

.

This recurrence relation can then be solved with the continued fraction method detailed in Sec. 2.4.

3.2.3 QNMs and QBSs of a Vector Field

The QNMs and QBSs of a vector field on the Schwarzschild spacetime were studied using an extended

version of Leaver’s method in [126] following prior work by Konoplya [92]. An ansatz similar to the

non-rotating, uncharged limit of the scalar field ansatz (3.2.14) is used,

u(i) (r) = e−qrrχ
(

1− 2M

r

)−2iMω ∞∑
n=0

a(i)
n

(
1− 2M

r

)n
, (3.2.18)

for each of the radial functions u(i) (r) defined in (3.1.21), each with different radial coefficients,

labeled a(i)
n . Recurrence relations must then be found for each i.

For the odd-parity decoupled mode the coefficients a(4)
n satisfy a three-term recurrence relation

somewhat similar to Eq. (3.2.17) (see equations (34-38) of [126]). For the coupled even-parity modes,

the recurrence relations for a(2)
n and a(3)

n also become coupled together. This is best represented as

a matrix valued recurrence relation of the form

α0U1 + β0U0 = 0, (3.2.19)

αnUn+1 + βnUn + γnUn−1 = 0 n > 0,

where Un is a vector coefficient

Un =

 a
(2)
n

a
(3)
n
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and αn, βn and γn are 2x2 matrices (see equation 41 of [126]). In particular the matrix βn is non-

diagonal, which is how the coupling between the recurrence relations manifests. An extension of

Leaver’s method using matrix-valued continued fractions is then needed to solve this [133].

To our knowledge, there is no work on recurrence relations for a charged vector field on a charged

black hole spacetime. We perform this work at the end of this chapter in Sec. 3.4.2.2. This crosses

over with our original work in chapter 4, where we find a five-term recurrence relation to solve the

radial differential equation of the massive vector field on the Kerr spacetime (Eqs. (4.2.75)-(4.2.79)).

In the non-rotating limit and for odd-parity modes, this reduces to a three-term recurrence relation

(as expected, as a(4)
n satisfies a three-term relation) and produces the same QNM spectrum as that

found in [126].

3.3 Analytical Approximations for Quasibound States

In this section, in anticipation of finding QBSs numerically via Leaver’s method, we discuss analytical

approximations to these quantities. These approximations are found by the method of asymptotic

matching, where two solutions to the radial differential equation valid in two different regions of the

spacetime have their leading-order behaviours matched together where the two regions overlap. In

the case of the scalar field we present some of the results of [69], while a more detailed explanation of

the derivation of these results is given in the appendix. For the vector field, we present elements of

the asymptotic matching calculation for the odd-parity, uncharged field on an uncharged black hole

spacetime, while directing to reader to [126] for the full details. We briefly comment on progress

made for the charged vector field in [127].

3.3.1 Scalar Field

The primary results we are interested in from [69] are the approximate results for the real and

imaginary parts of the QBS frequencies of a charged scalar field in the Reissner-Nordström spacetime.

These are derived in more detail in appendix A. In particular we refer to Eq. (A.1.8) for the real

part

< (ω) ≈ µ

[
1− 1

2

(
Mµ− eQ
`+ n+ 1

)2
]

(3.3.1)

and Eq. (A.1.9) for the imaginary part

= (ω) = µδν
(Mµ− eQ)2

(`+ 1 + n)3 , (3.3.2)
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where δν is defined in Eq. (A.1.10). The important feature of (3.3.1) are that the real part is

hydrogenic, in that it has a similar structure to the allowed energy levels of an electron in a hydrogen

atom.

The imaginary part of the frequency is often written as a power of µ. This allows us to more

easily compare the relative magnitude of = (ω) with that of other fields and so compare their decay

rates (when = (ω) < 0) or rate of superradiant growth (when = (ω) > 0). In general, because µ is

small, a smaller power implies a faster rate of decay or growth. Equations (A.1.9) and (A.1.10) show

that the imaginary part of the scalar field scales like µ4`+6. It is a closer inspection of the structure

of the imaginary part (3.3.2) that leads one to the conclusion that the superradiant instability

condition = (ω) > 0 is incompatible with the superradiance condition ω < eQ/r+ and so superradiant

instabilities cannot occur for a charged scalar field on the Reissner-Nordström spacetime.

3.3.2 Vector Field

The work of [126] performs a similar asymptotic matching calculation to approximate the bound

state frequencies of the massive, uncharged vector field in the Schwarzschild spacetime. Here, they

consider separately the single, decoupled odd-parity mode u(4) and the two coupled even-parity

modes u(2,3). As our numerical work in Sec. 3.4 will focus on the odd-parity mode, we will detail

the asymptotic matching calculation for that mode here. The asymptotic matching for the even

parity modes is also attempted in [126], but it is much harder to perform and gives relatively limited

results.

On the Schwarzschild spacetime the radial variable x = r/2M − 1 is a natural choice, such that

x = 0 at the event horizon. The equation for the odd-parity mode is written in this variable as

follows [126], [
x2 (x+ 1)2 d2

dx2
+ x (x+ 1)

d

dx
+ V (x)

]
u(4) = 0, (3.3.3)

with the potential function

V (x) = 4M2ω2 (x+ 1)4 − 4M2µ2x (x+ 1)3 − ` (`+ 1)x (x+ 1) . (3.3.4)

The asymptotic matching of the odd-parity equation is very similar to that of the scalar field

equation, shown in appendix A. The solution to Eq. (3.3.3) far from the black hole obeying the QBS

boundary condition is (cf. Eq. (A.1.4))

ufar(4) ∼ e
−z/2z`+1U (`+ 1− χ, 2`+ 2, z) , (3.3.5)

where z = 4Mqx and U is a confluent hypergeometric function. The solution close to the event
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horizon obeying the boundary condition of being purely ingoing is (cf. Eq. (A.1.7)),

unear(4) = x−2iMω (x+ 1)1+δ/M
2F1 (−`− 2iω + δ/M, `+ 1− 2iMω + δ/M, 1− 4iMω,−x) , (3.3.6)

where δ =
√

1− 4ω2 and 2F1 is a Gauss hypergeometric function. Asymptotically matching these

two functions in the overlap between the near and far regions leads to an expression for < (ω) for

the odd-parity mode of the massive vector field that is hydrogenic, in the same manner to that of

the scalar field (3.3.1).

The imaginary part = (ω) is calculated by continuing this matching process to the next-to-leading

order, in the same manner as in [69], see equation (64) of [126]. This has the same scaling as for

the scalar field (µ4`+6), but the odd-parity vector field still decays faster due to a larger coefficient,

twice as fast for the most unstable mode ` = 1, n = 0.

Analytical approximations for the quasibound states of charged vector fields on the Reissner-

Nordström spacetime have only been obtained under certain circumstances. In the case of a

marginally bound vector field (where the bound state condition is only just satisfied, Mµ = eQ) the

authors of [127] (see equation (40)) produce an exact result in the double-extremal limit, Q = M

and e = µ .The most that can be shown away from this limit is that non-trivial solutions exist.

We will return to asymptotic matching arguments in the next chapter (Sec. 4.2.3) to obtain

information about the quasibound states of these fields around rotating black holes. See also,

Sec. A.2 in the appendix.

3.4 Numerical Methods and Results

Having discussed the various analytical methods that can be used to obtain approximations to the

QBS frequencies, as well have having discussed the eikonal approximation and its relevance to QNM

frequencies (see Eq. (3.2.1)), we now describe some of the methods used to find the frequencies

numerically. We begin by detailing the method of direct integration of the radial equation used in

prior works. This allowed the authors of [127] to arrive at a hydrogenic spectrum of frequencies for

the even-parity polarizations of the Proca field. Then, we move on to presenting our original results

from a direct application of Leaver’s method to the case of the odd-parity, massive, charged vector

field in Reissner-Nordström spacetime.

3.4.1 Direct Integration

The authors of [127] do not produce a recurrence relation while searching for QBSs of scalar and

vector fields on the Reissner-Nordström spacetime. Instead they rely on direct numerical integration
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of the radial differential equation starting from the event horizon and heading outwards to large r.

They use as their starting value for the integration the value of the radial Frobenius series ansatz

(3.2.14) just outside the event horizon.

They perform this integration for a grid of values of ω in the complex plane and evaluate the

solutions u(i) at large values of r = rmax. These u(i) (rmax) form a merit function that will be large

for ω not close to a bound state frequency, but very small for ω in the vicinity of a bound state

frequency. They find numerically a good approximation for the real part of these frequencies for

small µ for the three polarizations of the vector field

< (ω) ≈ µ

[
1− 1

2

(
Mµ− eQ

`+ S + n+ 1

)2
]
, (3.4.1)

where the integer n ≥ 0 is the overtone number and S ∈ {−1, 0,+1} is the label used to designate

the polarization state defined in Sec. 3.2.1. This agrees with the form of the analytical approximation

found by [69], Eq. (3.3.1), if we designate that S = 0 for the scalar field.

Details about the scaling of the imaginary part of the QBS frequencies of the Proca field are

found numerically in [126] using both direct integration and a recurrence relation. The scaling is

= (ω) ∼ µ4`+2S+6 which also matches with the scalar field when S = 0. This shows a clear link

between the QBSs of the odd-parity Proca field and the QBSs of the scalar field, but tells us nothing

of the QNMs. We will study the relationship between the QNMs of the various polarizations of the

Proca field and the QNMs of the scalar field numerically towards the end of chapter 4.

As the results of [127] and [126] show, direct integration of the radial equation is a suitable

method for finding QBSs. However, it is much less useful when trying to find QNMs. This is

because of the exponential growth of the QNM solution in the limit of large r on account of the

boundary condition Eq. (3.2.12). This exponential growth is not a problem when finding QNMs

through a recurrence relation, which we will now detail.

3.4.2 Recurrence Relations and Leaver’s Method

3.4.2.1 How many terms?

In [96] it is hypothesised that when solving a differential equation subject to QNM or QBS boundary

conditions via a recurrence relation, the minimum number of terms in the relation is equal to the

number of singular points the equation has. This is why all the recurrence relations in Schwarzschild

spacetime we have described were three-term relations: the radial differential equation (for the scalar

field, Eq. (3.1.9) with e = Q = 0 in the potential) has two regular singular points situated at the

origin and at the event horizon and a confluent singular point at radial infinity.
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Leaver in [96] finds a four-term recurrence relation when considering the odd-parity gravitational

perturbations of the Reissner-Nordström spacetime. This is consistent with four singular points

located at 0, r+, r− and infinity. Following this, one would also expect four-term recurrence relations

for the scalar field and the odd-parity vector field on this spacetime.

We briefly note here that our five term recurrence relation for the vector field on the Kerr

spacetime (Eqs. (4.2.75)-(4.2.79)), when applied to the two even-parity polarizations, retains all five

terms even in the non-rotating limit a → 0. This is because the radial differential equation for the

even-parity vector field (see Eq. (4.2.51)) has singular points in such a limit at 0, 2M , infinity and

an additional pair of conjugate singularities in the complex plane.

3.4.2.2 A Recurrence Relation for Odd-Parity, Charged, Massive Vector Fields in

Reissner-Nordström

In this section we will produce a recurrence relation and apply Leaver’s method to find the QNMs

and QBSs of an odd-parity charged, massive vector field on the Reissner-Nordström spacetime. To

our knowledge, these QNMs have not been calculated previously.

We begin with equation (6) of [127], which is equivalent to Eq. (3.1.39)

[
r2frn

d

dr

(
frn

d

dr

)
+ (ωr − eQ)2 −

(
` (`+ 1) + µ2r2

)]
Υ = 0, (3.4.2)

where Υ is the decoupled odd-parity mode, that can be expanded according to the ansatz (3.2.14).

The number of terms in the recurrence relation for the radial coefficients an is sensitive to multiplying

the radial differential equation (3.4.2) by an overall factor. We hypothesise the minimum number

of terms for the recurrence relation is four, as mentioned at the beginning of this section. This can

be achieved by imposing that the coefficient of the second derivative term in (3.4.2) is the horizon

function r2frn. The coefficients of the resulting recurrence relation can be written in the form
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αn = −8 (n+ 2) q2r+ (b (n+ 2) + ir+ (eQ− r+ω)) , (3.4.3)

βn = 2q

{
2q3r2

+

(
r2

+ −Q2
)

+ 2ω (eQ−Mω)
(
− (2n+ 3)Q2 + r2

+ (3 + 2ieQ+ 2n− 2ir+ω)
)

− 2q

[(
n2 − 1

)
r2
− +Q2

(
5 + ` (`+ 1) + n (6− 2ieQ+ n) + 2inr+ω + r2

+ω
2
)

+ r2
+

(
2e2Q2 − ` (`+ 1)− 2 (n+ 1) (n+ 2) + 2i (2n+ 3) r+ω + 3r2

+ω
2 − 2ieQ (2n+ 3− 3ir+ω)

)]

+ q2
[
3r3

+ (3 + 2ieQ+ 2n− 2ir+ω) +Q2 ((2n+ 3) r− + 2ir+ (6i− eQ+ 4in+ r+ω))
]}

,

(3.4.4)

γn = −q2

[
8b` (`+ 1) r− + 8bn2 (r+ + 2r−) + 4n

(
2r2
− + qr3

− + r2
+ (qr+ + 2) +Q2 (−4− 5qr− + 3qr+)

)
+ q

(
−2r3

− +Q2 (4r− − 6r+) + 4r3
+ + q

(
−5Q4 −Q2r2

− + 5Q2r2
+ + r4

+

)) ]
+4iωq3r4

+

− 2iq2ω
(
6MQ2 + 2qQ4 − 2Q2r− − 2Mr2

− + r3
− + (3− 8n)Q2r+ − 4r2

+

(
M + 2qQ2

)
− 2 (2n+ 1) r3

+

)
+ qω2

(
32bM2n+ q

(
Q4 +Q2r2

− + 11Q2r2
+ + 3r4

+

)
+ 2M

(
2r2
− + r2

+ (4 + 3qr+) +Q2 (−6 + qr− + 4qr+)
))

− 2iMqω3
(
4bMr+ + 3r3

+ +Q2 (r− + 4r+)
)
− 8bM2r+ω

4 + 4e2Q2 (q − iω)
(
q
(
3Q2 + r2

+

)
− 2ibr+ω

)
+ 4eQ

[
−iq2

(
r2

+ (2 + 2n+ qr+) +Q2 (−2 + 4n− qr− + 4qr+)
)

+ iqω2
(
3r3

+ +Q2 (r− + 4r+)
)

− 2Mω3 (Q− r+) (Q+ r+)− qω
(
8bMn+ r2

− + r2
+ (2 + 3qr+) +Q2 (−3 + qr− + 8qr+)

) ]
,

(3.4.5)

δn = 4r−

{
−2ib2Mqω (q − iω)2 + q

[
−2eQ2M (q − iω)− 2iω

(
(n− 1) qr2

+ +M3 (q − iω)2
)

+ eQ
(
2iqr+ (n− 1 +Mq) + qω

(
Q2 + r2

− + 2r+ (M + r+)
)
− iω2

(
Q2 + r2

− + 2r2
+

)) ]

+ 2b

[
M2Q4 + ω2 (eQ−Mω)2 + 2Mq3 (n− 1− iMω) + q2

(
(n− 1)2 − 2M2ω2

)
+ qω

(
ie2Q2 + 2eQ (n− 1− iMω) + 2Mω (1− n+ iMω)

) ]}
. (3.4.6)

We then apply one use of Gaussian elimination, see Eq. (2.4.4), before numerically solving the

resulting continued fraction equation (2.4.8). In the recurrence, q can be set to either ±
√
µ2 − ω2,

where we select < (q) > 0 for QBSs and < (q) < 0 for QNMs. Hence, the recurrence relation is
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suitable for calculating both sets of frequencies. To verify our result, we used the recurrence to

calculate some QBSs to compare with the data presented in [127] Table I and we find agreement

to seven significant figures in the real part and three significant figures in the imaginary part (this

discrepancy in the level of accuracy between the real and imaginary parts is also present in the case

of the rotating black hole, and is discussed in more detail in Sec. 4.2.5). We used the hydrogenic

approximation (3.4.1) (with S = 0 according to [127]) to form the initial guess for the root-finding

algorithm for a small value of the mass µstart = 0.1 and then used the previous QBS frequency as

the initial guess to find the next as we increment µ. Some example data for the real part is presented

in Fig. 3.4.1, where we have plotted

f (< (ω)) = 2 (`+ n+ 1)
1−< (ω) /µ

(Mµ)2 (3.4.7)

to show agreement with the hydrogenic approximation in the small µ limit. The corresponding

imaginary part is shown in Fig. 3.4.2 and the results are also consistent with the mass scaling of the

analytical approximation presented in Sec. 3.3.2.

For the QNMs, we fixed the mass µ of the field and used the known QNM of the uncharged field

in Schwarzschild spacetime (see [126, 54]) as the initial guess for the root-finding. We then varied

the black hole charge Q from Q/M = 0 up to Q/M = 1, the extremal value, in small increments,

using the previously found QNM as the initial guess for the root-finding each time. Finally, we fix

Q and vary the charge coupling eQ in small increments in the same manner as we did with Q. This

produces the data in Figs. 3.4.3 and 3.4.4 for ` = 1 and ` = 2 respectively.

We now discuss some of the qualitative features of the QNM data. For the uncharged field we

see that the oscillation frequency < (ω) increases with Q all the way up to the extremal value. The

decay rate −= (ω) increases until a critical value of Q, after which the QNMs curve upwards towards

the real axis. We can compare this data for the uncharged field with the eikonal approximation in

Eq. (3.2.1). This is done in Fig. 3.4.5. We see that the eikonal approximation has the same qualitative

behaviour as the data obtained from the recurrence relation, even for low ` modes.

In the case of the charged field, both the oscillation frequency and the decay rate consistently

increases as the particle charge e increases.

Conclusion

In this chapter we have summarised results throughout the literature concerning uncharged and

charged, massive scalar and vector fields propagating on the Schwarzschild and Reissner-Nordström

spacetimes. These included analytical approximations to their quasinormal modes and quasibound
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Figure 3.4.1: A function f (< (ω)) of the real part of the QBS frequencies of the odd-parity ` = 1, n =

0 Proca field on the Reissner-Nordström spacetime of charge to mass ratio Q/M = 1/2. The dashed

lines show (1 − eQ/Mµ)2, the expected behaviour of f (< (ω)) from the hydrogenic approximation

in the small µ limit.
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Figure 3.4.2: The decay rate −= (ω) of the QBS frequencies of the odd-parity ` = 1, n = 0 Proca

field on the Reissner-Nordström spacetime of charge to mass ratio Q/M = 1/2. The red points show

a guide line proportional to µ10, the expected scaling of = (ω) in the small µ limit for the odd-parity

vector polarization.
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Figure 3.4.3: The QNMs of the odd-parity, ` = 1, n = 0 Proca field of charge e in the Reissner-

Nordström spacetime of charge to mass ratio Q/M , in the complex frequency plane. Black points

are for no charge coupling e = 0 and Q/M increasing in increments of 0.025. The red points are for

non-zero eQ increasing in increments of 0.005 to a maximum of 0.2, with Q/M fixed at 0.5,0.9 or

0.975. Circles, squares and triangles are for mass couplings of Mµ = 0, 0.1, 0.2 respectively.
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Figure 3.4.4: The QNMs of the odd-parity, ` = 2, n = 0 Proca field of charge e in the Reissner-

Nordström spacetime of charge Q/M , in the complex frequency plane with the same Q and e

increments as the previous figure.
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Figure 3.4.5: The QNMs of the odd-parity, uncharged, massive vector field in the Reissner-Nordström

spacetime of charge Q, plotted in the complex plane. The ` = 1, n = 0 QNMs are plotted in black

and the ` = 2, n = 0 QNMs are plotted in red. The circle points are the results of the eikonal

approximation, Eq. (3.2.1) with the geodesic potential of (2.3.12), the triangle points are the results

of using the recurrence relation, Eqs. (3.4.3)-(3.4.6).
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state frequencies. We concluded with an original numerical calculation of the QNMs of the odd-

parity charged, massive vector field around a static, charged black hole, the results of which are

presented in Figs. 3.4.3, 3.4.4 and 3.4.5.



Chapter 4

Bosonic Fields on Rotating Black Hole

Spacetimes

Introduction and Overview

In this chapter we discuss QBSs and QNMs of scalar and vector fields on rotating black hole space-

times. As we did in the static case in the previous chapter, we begin with the solution of the

equations of motion via separation of variables. We then discuss the asymptotic matching method

to analytically approximate the quasibound state frequencies and the numerical methods used to

calculate them and the QNMs [18, 45]. We conclude with an original calculation of the QNMs of

the Proca field on the Kerr spacetime via Leaver’s method, as per our own work with Dolan in

[117] and then an extension of that work to the calculation of the same QNMs on the Kerr-Newman

spacetime.

4.1 Massless Fields on the Kerr Spacetime

Before we discuss massive vector perturbations on rotating black hole spacetimes, we describe the

derivation of the corresponding equation for massless perturbations. This will be used in Sec. 4.2

when we consider the propagation of the electromagnetic field on the Kerr spacetime.

The motion of the massless scalar field and of two of the the Maxwell scalars of the electromag-

netic field on the Kerr spacetime are governed by the same differential equation, called the Teukolsky
81
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equation, [138, 137]. Written fully, it takes the form[(
r2 + a2

)2
∆

− a2 sin2 θ

]
∂2Φ

∂t2
+

4Mar

∆

∂2Φ

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2Φ

∂φ2
(4.1.1)

−∆−s
∂

∂r

(
∆s+1∂Φ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂Φ

∂φ

−2s

[
M
(
r2 − a2

)
∆

− r − ia cos θ

]
∂Φ

∂t
+
(
s2 cot2 θ − s

)
Φ = 0.

The three quantities we are interested in that will satisfy this equation are the massless scalar

field (when s = 0), the Maxwell scalar Ψ1 (when s = 1) and (r − ia cos θ)2 Ψ−1 (when s = −1), see

Eq. (3.1.17) . Note that the remaining Maxwell scalar Ψ0 does not satisfy the Teukolsky equation.

We now discuss the derivation of this equation. We will focus primarily on the derivation when

s = ±1, as for s = 0 Eq. (4.1.1) is exactly the massless Klein-Gordon equation ((2.1.14) with µ = 0)

in the Kerr spacetime in Boyer-Lindquist coordinates.

The Maxwell equations on the tensor Fµν ((2.1.9) and (2.2.2)) can be written as a set of four

differential equations between the Maxwell scalars. The form of these equations depends on the

null tetrad chosen. In a general null tetrad {`µ, nµ,mµ, m̄µ} with spin coefficients α, β, γ, ε, ρ, τ, π, µ

defined in [108] these four equations are

(D − 2ρ) Ψ0 = (δ∗ + π − 2α) Ψ1, (4.1.2)

(δ − 2τ) Ψ0 =
(
∆̄ + µ− 2γ

)
Ψ1, (4.1.3)

(D − ρ+ 2ε) Ψ−1 = (δ∗ + 2π) Ψ0, (4.1.4)

(δ − τ + 2β) Ψ−1 =
(
∆̄ + 2µ

)
Ψ0, (4.1.5)

with the three differential operators D = `µ∂µ, ∆̄ = nµ∂µ, δ = mµ∂µ. Following [138], Eqs. (4.1.2)

and (4.1.3) can be combined into a single second order equation for Ψ1 and (4.1.4) and (4.1.5) can

be combined into an equation for Ψ−1[
(D − ε+ ε∗ − 2ρ− ρ∗)

(
∆̄ + µ− 2γ

)
− (δ − β − α∗ − 2τ + π∗) (δ∗ + π − 2α)

]
Ψ1 = 0, (4.1.6)[(

∆̄ + γ − γ∗ + 2µ+ µ∗
)

(D − ρ+ 2ε)− (δ∗ + α+ β∗ + 2π − τ∗) (δ − τ + 2β)
]

Ψ−1 = 0. (4.1.7)

When we specify the Kinnersley tetrad (2.2.17) the spin coefficients are

ρ = −1/ (r − ia cos θ) , β = −ρ∗ cot θ/
(

2
√

2
)
, π = iaρ2 sin θ/

√
2, α = π − β∗, (4.1.8)

τ = −iaρρ∗ sin θ/
√

2, µ = ρ2ρ∗∆/2, γ = µ+ ρρ∗ (r −M) /2, ε = 0

and this reduces Eq. (4.1.6) to the Teukolsky equation (4.1.1) for s = 1 satisfied by Ψ1 and (4.1.7)

to the Teukolsky equation for s = −1 satisfied by (r − ia cos θ)2 Ψ−1. In a similar manner to the
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generalised Regge-Wheeler equation (Eq. (3.1.7) with potential given by (3.1.19)), the Teukolsky

equation can also be applied in the context of gravitational perturbations: in terms of the Weyl

scalars, Θ2 and (r − ia cos θ)4 Θ−2 satisfy (4.1.1) with s = 2 and s = −2 respectively.

The Teukolsky equation, like the Regge-Wheeler equation, is amenable to a decomposition into

modes

Φ =

∫
dω
∑
`m

R`m (r)S`m (θ) e−iωt+imφ. (4.1.9)

The angular functions are called spin-weighted spheroidal harmonics of spin weight s and they satisfy

the equation

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ a2ω2 cos2 θ − (m+ s cos θ)2

sin2 θ
− 2aωs cos θ + s+ 2maω − a2ω2 + λ̃

]
S`m = 0,

(4.1.10)

where λ̃ is a separation constant called the spin-weighted spheroidal eigenvalue. This separation also

leads to a second order ODE for the radial function

∆−s
d

dr

[
∆s+1dR

dr

]
+

[
K2
r − 2is(r −M)Kr

∆
+ 4isωr − λ̃

]
R = 0, (4.1.11)

where

Kr =
(
r2 + a2

)
ω − am. (4.1.12)

4.2 Vector Fields on Kerr Spacetime

4.2.1 The Electromagnetic Field

The discussion of the electromagnetic field on the Kerr spacetime begins with the same separation

of Fµν into complex scalar functions (the Maxwell scalars, see Eq. (3.1.17)) as was done in the non-

rotating case, with the Kinnersley tetrad {`µ, nµ,mµ, m̄µ} as in (2.2.17). Then, Maxwell’s equations

(2.1.9) and (2.2.2) become four equations relating the Maxwell scalars. From these equations, Ψ0

can be eliminated and the remaining two scalars Ψ±1 satisfy Teukolsky’s equation (4.1.1). Thus, a

separation of variables can be applied to both of them

Ψ+1 = R+1S+1e
−iωt+imφ, 2 (r − ia cos θ)2 Ψ−1 = R−1S−1e

−iωt+imφ. (4.2.1)
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The equations for the functions R±1 and S±1 can be written succinctly as (see for example [54])(
∆D†0D0 − 2iωr

)
R−1 = λR−1, (4.2.2)(

∆D0D†0 + 2iωr
)

∆R+1 = λ∆R+1, (4.2.3)(
L0L†1 + 2aω cos θ

)
S−1 = −λS−1, (4.2.4)(

L†0L1 − 2aω cos θ
)
S+1 = −λS+1, (4.2.5)

where λ is defined

λ ≡ λ̃+ 2maω − a2ω2 (4.2.6)

and λ̃ is the spin-weighted spheroidal eigenvalue for s = −1. The radial differential operators D and

angular differential operators L are (see [43])

Ln = ∂θ +m csc θ − aω sin θ + n cot θ, (4.2.7)

L†n = ∂θ −m csc θ + aω sin θ + n cot θ, (4.2.8)

Dn = ∂r − i∆−1Kr + n∆−1∂r∆, (4.2.9)

D†n = ∂r + i∆−1Kr + n∆−1∂r∆. (4.2.10)

This clearly shows that the functions with index +1 and those with index −1 are not independent of

one another: R−1 and ∆R+1 satisfy complex-conjugate equations and the equations for S±1 satisfy

a symmetry between each other under the transformation θ → π − θ.

In this formalism the remaining Maxwell scalar Ψ0 isn’t separable and doesn’t satisfy Teukolsky’s

equation. As is explained by Lunin in [101], this remaining scalar carries the required information

to be able to discuss both polarization states of the electromagnetic field, without it we can only

describe a single polarization. Lunin attempts to address this problem by forming a different ansatz.

This will be the precursor to the Lunin-Frolov-Krtouš-Kubizňák (LFKK) ansatz that will allow the

differential equation for the massive vector field in Kerr spacetime to be separated.

The ansatz specifies the form of the inner product of the vector potential with each of the four

basis null vectors

`µAµ = G+ (r) `µ∂µZ, nµAµ = G− (r)nµ∂µZ, (4.2.11)

mµAµ = F+ (θ)mµ∂µZ, m̄µAµ = F− (θ) m̄µ∂µZ, Z = eiωt+imφR (r)S (θ) .

To show that this ansatz covers both polarizations, Lunin remarks that to maintain consistency with

Maxwell’s equations the only way to get physically relevant solutions is to choose either G+ 6= 0

or F+ 6= 0. These choices are mutually exclusive, leading to two distinct “branches” of solution,
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representing the two polarization states. Maxwell’s equations can also be satisfied by setting each

of the functions G±, F± to unity, but this corresponds to a solution that is pure gauge. This third

“gauge polarization” state will become physically relevant when we discuss massive vector fields.

It is possible to derive a direct relationship between Lunin’s ansatz (with the two functions R,S)

and the original ansatz used by Teukolsky (with the four functions R±, S±), but the explanation is

best left until the analysis is performed in the massive case, see Eqs. (4.2.41) and (4.2.42).

4.2.2 The Separability of the Proca Equation on Kerr Spacetime

4.2.2.1 The LFKK Ansatz

Frolov, Krtouš, Kubizňák and Santos showed in [66], contrary to the consensus at the time, that

the Proca equation in a Kerr-NUT-(A)dS spacetime is separable through the use of the principal

tensor hµν , defined in Sec. 2.1.6. This remarkable result has since been utilised to study the QBSs

and superradiant instabilities of the Proca field on the Kerr [54] and Kerr-Newman spacetimes [41],

building on work done prior in [59, 60]. Such work was often restricted to slowly-rotating black

holes [113], a restriction that is not required with the LFKK method. This separability of the Proca

equation has also been used to study the possibility of the existence of black holes with Proca hair,

see [128].

Explicitly, Frolov et al., showed the equation of motion of a massive, uncharged vector pertur-

bation (cf. Eq. (2.1.17)),

∇νWµν + µ2Wµ = 0, (4.2.12)

is amenable to a separation of variables if one applies the LFKK ansatz

Wµ = Bµν∇νZ, (4.2.13)

where Z is a scalar function. Here, Bµν is called the polarization tensor and is defined in terms of

the principal tensor hµν via

Bµν (gνρ + iνhνρ) = δµρ , (4.2.14)

where ν is a separation constant, called the angular eigenvalue. The polarization tensor can be

written in Boyer-Lindquist coordinates as (with ∆ and Σ as in (2.2.5) and (2.2.6) respectively, with

Q = 0)

Bµν =
∆

2Σ

(
`µ+`

ν
−

1− iνr
+

`µ−`
ν
+

1 + iνr

)
+

1

2Σ

(
mµ

+m
ν
−

1− aν cos θ
+

mµ
−m

ν
+

1 + aν cos θ

)
, (4.2.15)
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using the basis null vectors

`µ± =

[
±r

2 + a2

∆
, 1, 0,± a

∆

]
, (4.2.16)

mµ
± = [±ia sin θ, 0, 1,±i csc θ] . (4.2.17)

The separation splits the Proca equation into two second-order ODEs. To show this, we follow

the explanation of [55]. The LFKK ansatz allows us to write Wµ in the form

Wµ =
1

2Σ

[
∆D†0Z
1− iνr

`µ+ +
∆D0Z

1 + iνr
`µ− +

L0Z

1− aν cos θ
mµ

+ +
L†0Z

1 + aν cos θ
mµ
−

]
, (4.2.18)

with the radial D and angular L operators defined in Eqs. (4.2.7)-(4.2.10). We know that the Proca

equation necessarily implies the Lorenz condition (see Sec. 2.1.3) and so we need to write both the

Proca equation and the Lorenz condition in this ansatz. We start with the Lorenz condition, like so,

∇µWµ = D0

(
∆D†0Z
1− iνr

)
+D†0

(
∆D0Z

1 + iνr

)
+ L†1

(
L0Z

1− aν cos θ

)
+ L1

(
L†0Z

1 + aν cos θ

)
= 0. (4.2.19)

This PDE for the scalar function Z is clearly separable in the usual manner

Z = R (r)S (θ) e−iωteimφ (4.2.20)

and so Eq. (4.2.19) splits into two ODEs like so,

D0

(
∆D†0R
1− iνr

)
+D†0

(
∆D0R

1 + iνr

)
+ κ1R = 0, (4.2.21)

L†1
(

L0S

1− aν cos θ

)
+ L1

(
L†0S

1 + aν cos θ

)
− κ1S = 0, (4.2.22)

where κ1 is a separation constant.

Moving on to the Proca equation, the left-hand-side of (4.2.12) reads [65]

∇νWµν + µ2Wµ = −Bµν∇νJ, (4.2.23)

where

J = �Z − 2iξµtWµ − µ2Z (4.2.24)

and ξµt is the Killing vector of time-translation, which is ∂µt in Boyer-Lindquist coordinates, see

Sec. 2.2.1. If we assume harmonic dependence on t and φ (in accordance with the separation (4.2.20))

the equation J = 0 becomes the following PDE for Z,

2µ2ΣZ = iνr

(
D†0
(

∆D0Z

1 + iνr

)
−D0

(
∆D†0Z
1− iνr

))
+ aν cos θ

(
L1

(
L†0Z

1 + aν cos θ

)
− L†1

(
L0Z

1− aν cos θ

))

− iν

(
∆D0Z

1 + iνr
− ∆D†0Z

1− iνr

)
+ aν sin θ

(
L†0Z

1 + aν cos θ
− L0Z

1− aν cos θ

)
= 0. (4.2.25)
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This also clearly separates in the variables r and θ, splitting this into two ODEs with a new separation

constant κ2,

(
2µ2r2 + κ2

)
R = iν

((
rD†0 − 1

) ∆D0R

1 + iνr
− (rD0 − 1)

∆D†0R
1− iνr

)
, (4.2.26)

(
2µ2a2 cos2 θ − κ2

)
S = aν

(
(cos θL1 + sin θ)

L†0S
1 + aν cos θ

−
(

cos θL†1 + sin θ
) L0S

1− aν cos θ

)
.

(4.2.27)

Information about the separation constants can be obtained by comparing this pair of ODEs

with the pair (4.2.21) and (4.2.22). Multiplying (4.2.21) by ν2r2 and subtracting (4.2.26) produces

the following,

(κ2 − 2aν (m− aω)) +

(
κ1 − 2

(
ω

ν
− µ2

ν2

))
ν2r2 = 0, (4.2.28)

which clearly indicates the forms of κ1 and κ2. Finally, substituting κ1 into the pair of ODEs (4.2.21)

and (4.2.22) completes the separation of the Proca equation. The result is,

qr
d

dr

[
∆

qr

dR

dr

]
+

[
K2
r

∆
+

2− qr
qr

σ

ν
− qrµ

2

ν2

]
R = 0, (4.2.29)

qθ
sin θ

d

dθ

[
sin θ

qθ

dS

dθ

]
−
[
K2
θ

sin2 θ
+

2− qθ
qθ

σ

ν
− qθµ

2

ν2

]
S = 0, (4.2.30)

where Kr was defined previously in Eq. (4.1.12) and

Kθ = m− aω sin2 θ, (4.2.31)

qr = 1 + ν2r2, (4.2.32)

qθ = 1− ν2a2 cos2 θ, (4.2.33)

σ = ω + aν2 (m− aω) . (4.2.34)

Both of these ODE’s can be rearranged into a form such that all the terms that were present in

the equations for a massive scalar field are on the left-hand-side (such scalar equations are presented

in the appendix, Eqs. (A.2.2) and (A.2.1)),

d

dr

(
∆
dR

dr

)
+

(
K2
r

∆
− Λ + 2aωm− a2ω2 − µ2r2

)
R =

2rν2

qr

(
∆
d

dr
+ r

σ

ν

)
, (4.2.35)

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
Λ− m2

sin2 θ
+ a2

(
ω2 − µ2

)
cos2 θ

)
S =

2a2ν2 cos θ

qθ

(
sin θ

d

dθ
+
σ

ν
cos θ

)
S,

(4.2.36)

where

Λ =
µ2

ν2
− σ

ν
+ 2aωm− a2ω2. (4.2.37)
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To retain consistency with the known radial and angular equations in the non-rotating limit

(consider for example Eq. (3.1.3) with m = 0), Λ must reduce to ` (`+ 1) as a→ 0, which produces

a quadratic equation to solve for ν

νstatic =


µ2/ω ` = 0

− ω
`(`+1)

1±
√

1+4`(`+1)µ2/ω2

2 ` > 0

. (4.2.38)

We will denote as ν0 the angular eigenvalue when both the non-rotating and massless limits

are taken. Taking the massless limit of Eq. (4.2.38), the eigenvalue reduces to ν0 = 0 or ν0 =

−ω/` (`+ 1).

4.2.2.2 The Maxwell Scalars

Just like in the Teukolsky formalism for the separation of variables described in Eq. (4.2.1) , the

Maxwell scalars can also be separated using the LFKK ansatz

Ψ−1 =
iν√

2

D0R

1 + iνr

L†0S
1 + aν cos θ

, (4.2.39)

2 (r − ia cos θ)2 Ψ+1 = − iν√
2

∆D†0R
1− iνr

L0S

1− aν cos θ
. (4.2.40)

As mentioned at the end of the previous section, we can directly compare this form of Ψ±1 to

that of Teukolsky to get a relationship between (R,S), and (R±, S±)

R+1 =
iν√
2C+

D0R

1 + iνr
, R−1 = − iν√

2C−

∆D†0R
1− iνr

, (4.2.41)

S+1 =
C+L†0S

1 + aν cos θ
, S−1 =

C−L0S

1− aν cos θ
, (4.2.42)

for C± normalisation constants. These can be substituted back into Teukolsky’s equations in the

massless limit, to get a relationship between ν and λ in this limit

νmassless =
λ± B

2a (m− aω)
, B =

√
λ2 + 4maω − 4a2ω2, (4.2.43)

where B is referred to as the Teukolsky-Starobinsky constant. In the non-rotating limit, this either

reduces to ν0 = 0 or diverges like a−1 to ν0 =∞.

As such, we have found that ν0 has three possible values that will correspond to the three

polarization states of the Proca field, as we detail in the next subsection.

4.2.2.3 The Three Polarization States

Teukolsky’s original separation of variables only covered a single polarization state. This was im-

proved by Lunin’s ansatz that covered both non-gauge polarizations of the electromagnetic field.

How does the LFKK ansatz handle the three polarization states of the Proca field?
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We know from the discussion in Sec. 3.1.2 of the Proca field on static spacetimes that the field

consists of two coupled modes (the even-parity modes, one of scalar-type and one of vector-type)

and a third decoupled mode (the odd-parity mode which is of vector-type). It was just demonstrated

that in the a → 0 and µ → 0 limit, there are three choices for the angular eigenvalue ν0. Which

polarization the LFKK solution describes depends on the choice taken for ν0.

Consider first the polarization of scalar-type. We would expect the LFKK ansatz to reduce in

the massless limit to Wµ = ∇µZ in this case, hence Eq. (4.2.13) implies that Bµν = gµν and from

the definition of the polarization tensor in Eq. (4.2.14) we see that ν0 = 0, so this is the correct

non-rotating, massless eigenvalue for the polarization.

Next, we consider the circumstance in which ν diverges in the non-rotating limit, ν0 = ∞. We

will begin by relating the radial function R from the LFKK ansatz in the non-rotating limit to

the u(i) functions of Ref. [126], see Eq. (3.1.21). This is done by substituting the vector spherical

harmonic expansion of Wµ that was used in Eqs. (3.1.22)-(3.1.25) into the LFKK ansatz. For an

even-parity mode this is (see Appendix B of [117])

u1 (r) = − ir
qr
fsch

(
νr

d

dr
+

ω

fsch

)
R, (4.2.44)

u2 (r) =
r

qr
fsch

(
d

dr
− ωνr

fsch

)
R,

u3 (r) = ΛR

and u4 (r) = 0, with an angular function S (θ) = Y`m. For an odd-parity mode one simply has

u1 = u2 = u3 = 0, u4 = R, but the angular function satisfies a pair of ODE’s

(sin θ∂θ +maν cos θ)S =
imqθ

` (`+ 1)
Y`m, (4.2.45)

(m+ aν sin θ cos θ∂θ)S =
i sin θqθ
` (`+ 1)

∂θY`m. (4.2.46)

These need to have the same non-rotating limit as Eq. (4.2.36), implying the following,

lim
a→0

aν =
` (`+ 1)

m
, (4.2.47)

which is only possible if ν diverges in the non-rotating limit, ν0 =∞.

We can now confirm that this refers to the odd-parity polarization by taking the non-rotating

limit of the radial and angular equations (4.2.35) and (4.2.36), using Eq. (4.2.47) as well as

− lim
a→0

Λ = lim
a→0

σ

ν
= ` (`+ 1) (4.2.48)

and so the radial differential equation (4.2.35) as a whole is finite in the non-rotating limit. In fact,

the radial equation reduces exactly to the Regge-Wheeler equation for s = 1 (3.1.31), establishing
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that this mode is of vector-type. To determine whether this is the even-parity or odd-parity vector

mode, Eqs. (4.2.45) and (4.2.46) can be solved simultaneously to get

S (θ) =
i

` (`+ 1)m
(sin θ∂θ − ` (`+ 1) cos θ)Y`m. (4.2.49)

This can be written in terms of associated Legendre polynomials. Up to an overall constant we have

S (θ) ∝ `2 (`+ 1−m)Pm`+1 (cos θ) + (`+ 1)2 (`+m)Pm`−1 (cos θ) , (4.2.50)

which demonstrates that this is an odd-parity solution.

This leaves the remaining ν0 = −ω/` (`+ 1) to refer to the even-parity vector mode.

4.2.3 Analytical Approximations for QBSs

As was discussed in Sec. 3.3.2, the asymptotic matching method when applied to a vector field

is potentially fraught with problems. However, using the LFKK ansatz, Baumann et.al in [18]

managed to successfully procure an analytical approximation for the bound state frequencies of a

massive vector field on the Kerr spacetime by performing the matching in a two-step process. For

this they introduce, as well as a near-horizon region and a far-field region, an intermediate region

between the two.

To begin, they write the radial equation in a form that will be very useful to us in Sec. 4.2.4, as

it highlights very clearly the five singular points the equation has

d2R

dr2
+

(
1

r − r+
+

1

r − r−
− 1

r − i/ν
− 1

r + i/ν

)
dR

dr
(4.2.51)

+

[
− Λ̃

∆
− q2 +

ρ2
+

(r − r+)2 +
ρ2
−

(r − r−)2 −
A+

(r+ − r−) (r − r+)

+
A−

(r+ − r−) (r − r−)
− σ

ν

r

∆ (r − i/ν)
− σ

ν

r

∆ (r + i/ν)

]
R = 0,

where

A± = ρ2
+ + ρ2

− +
1

4
(r+ − r−)2 q2 +

[
M2

(
q2 − 6ω2

)
±M (r+ − r−)

(
q2 − ω2

)]
, (4.2.52)

ρ± =

(
r2
± + a2

)
ω − am

r+ − r−
(4.2.53)

and in the Kerr spacetime, Λ̃ is equal to the Λ defined in (4.2.37). When we discuss the QNMs of

the Kerr-Newman spacetime in Sec. 4.3 Λ̃ will have to be modified.

The singular points of (4.2.51) are located at the radial values r+, r−,∞, and r = ±i/ν. Ref. [18]

cites the existence of the singularities in the complex plane as the reason the near and far regions

no longer overlap. Said regions are treated similarly to the Schwarzschild case, by defining suitable
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radial coordinates labeled z and x respectively, but they also introduce a coordinate y to be used in

the intermediate region

x = 2q (r − r+) , (4.2.54)

y = r − r+, (4.2.55)

z =
r − r+

r+ − r−
. (4.2.56)

(Note that each of these are proportional to r).

For the rest of this section, it is important to note that we will be denoting the total angular

momentum by ` and the orbital angular momentum by ˆ̀. The relationship between the two is

` = ˆ̀− S, where S = −1 for the even scalar-type mode, S = +1 for the even vector-type mode and

S = 0 for the odd vector-type mode. This labeling convention is different to [18], where the total

angular momentum is labeled j and the orbital angular momentum is labeled `.

The near-horizon solution of (4.2.51) is written in terms of a Gauss hypergeometric function, the

far-field solution in terms of a confluent hypergeometric function and the intermediate solution is

Rint (y) = Cinty−λ0 +Dintyλ0−1
(
λ2

0 (2λ0 + 1) + (2λ0 + 1) y2
)
, (4.2.57)

where Cint and Dint are integration constants. The quantity λ0 is ˆ̀+ 1 or −ˆ̀ for the scalar-type

and vector-type even-parity modes respectively and λ0 is either ˆ̀ or −ˆ̀− 1 for the odd-parity mode

(in particular, the substitution ˆ̀→ −ˆ̀− 1 swaps the even-parity modes and leaves the odd-parity

mode invariant).

There are now two overlap regions, one between the far region and the intermediate region and

one between the intermediate region and the near region. Here it can be seen that there are three

distinct “branches” in the intermediate solution (4.2.57) proportional to r−λ0 , rλ0−1 and rλ0+1. For

example, if we choose the polarization ` = ˆ̀− 1 such that λ0 = −`, the three branches become

proportional to r`, r−`−1 and r−`+1, see equation (3.44) of [18]. For comparison, the far region and

near region solutions contain two branches each, proportional to r−`+1, r` and r`, r−`−1 respectively.

Hence, in each overlap region, two branches of each solution have the same behavior and can be

matched up.

The matching conditions provide information about the bound-state frequencies ω, that depend

on the parameters
{
N, `, ˆ̀,m

}
(where N = ˆ̀+ n + 1 = ` + S + n + 1 for an overtone number n).

The real part of the frequency takes the same form as Eq. (A.2.12) for the scalar field, which we

repeat here,

< (ω) = µ

(
1− α2

2N2
− α4

8N4
+
fN ˆ̀̀

N3
α4 +

h ˆ̀̀

N3
maα5 + · · ·

)
, (4.2.58)
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where α = Mµ, with modified fine and hyper-fine structure coefficients

fN ˆ̀̀ = −
4
(

6ˆ̀̀ + 3ˆ̀+ 3`+ 2
)

(
ˆ̀+ `

)(
ˆ̀+ `+ 1

)(
ˆ̀+ `+ 2

) +
2

N
, (4.2.59)

h ˆ̀̀ =
16(

ˆ̀+ `
)(

ˆ̀+ `+ 1
)(

ˆ̀+ `+ 2
) . (4.2.60)

The imaginary part of the frequency is given by equations (2.34)-(2.36) of [18], as follows,

= (ω) = 2r+Cn ˆ̀̀ gˆ̀m (a, α, ω) (mΩH − ω)α2ˆ̀+2`+5, (4.2.61)

Cn ˆ̀̀ =
22ˆ̀+2`+1

(
n+ ˆ̀

)
!

n2ˆ̀+4
(
n− ˆ̀− 1

)
!

 ˆ̀!(
ˆ̀+ `

)
!
(

ˆ̀+ `+ 1
)

!

2 1 +
2
(

1 + ˆ̀− `
)(

1− ˆ̀+ `
)

ˆ̀+ `

2

,

(4.2.62)

g`m (a, α, ω) =
∏̀
k=1

(
k2
(
1− a2

)
+ (ma− 2r+ω)2

)
(4.2.63)

and ΩH is the angular velocity of the black hole event horizon, see (A.2.6). This scales like α2ˆ̀+2`+5 ∼

µ4ˆ̀−2S+5. The least suppressed vector mode at small µ (and hence the fastest growing mode), occurs

when
∣∣∣N ˆ̀̀ m

〉
= |1011〉 and so = (ω) ∼ µ7, which is faster than the fastest growing mode of the

scalar field in the Kerr spacetime, which scales like µ9, see Eq. (A.2.8). This scalar field scaling is

consistent with setting S = 0 and ` = ˆ̀= 1 in the general formula. We will compare our numerical

data found via a recurrence relation to some of these analytical approximations in Sec. 4.2.5.

4.2.4 Solving the Proca Equation

Now that the Proca equation has been separated through the LFKK ansatz and we have covered

analytical results obtained through asymptotic matching, we will now detail the numerical methods

we will use to solve the Proca equation.

4.2.4.1 The Angular Eigenvalue: Spectral Decomposition

The known massless and non-rotating limits of ν, which we labeled ν0 in Sec. 4.2.2, can be used

as initial guesses for a numerical scheme to find ν for general a and µ. This will be done through

the spectral decomposition method, which was first applied to the calculation of QNMs in [48]. The

scheme is detailed in [54] and is constructed using a spectral ansatz for the angular function S (θ)

satisfying (4.2.36)

S (θ) =

∞∑
k′=0

bk′Y
m
`′ (θ) `′ = |m|+ 2k′ + η. (4.2.64)
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This expansion will be entirely in terms of even-parity or odd-parity ` modes, because of the

fixed and definite parity of Eq. (4.2.36). Here, “even-parity” refers to the function S (θ) acquiring a

factor of (−1)`+m under parity inversion θ → π − θ, while “odd-parity” refers to S (θ) acquiring a

factor of (−1)`+m+1. The parameter η takes either the value 0 or 1 depending on the parity being

considered and the values of ` and m,

η =
1

2

(
1− (−1)`+m+P

)
, (4.2.65)

where P = 0 for an even-parity mode and P = 1 for the odd-parity mode.

This spherical mode decomposition is substituted into the angular equation (4.2.36) and then

integrated against 2π
∫ π

0 Y ∗m` (θ) sin θ. The orthogonality of the spherical harmonics allows the

coefficients bk′ to be isolated in the form of a matrix equation
∞∑
k′=0

Mkk′bk′ = 0, (4.2.66)

with matrix elements

Mkk′ =
[
Λ− `′

(
`′ + 1

)]
δ``′ + a2

[
ν2`′

(
`′ + 1

)
− ν2Λ− 2σν − q2

]
c

(2)
``′ − 2a2ν2d

(2)
``′ + q2ν2a4c

(4)
``′ ,

(4.2.67)

where ` = |m| + 2k + η. The coefficients c(2)
``′ , c

(4)
``′ and d

(2)
``′ are defined in equation (32) of [54].

The important properties of these coefficients are that c(2)
``′ and d

(2)
``′ vanish for |k − k′| > 1 and c(4)

``′

vanishes for |k − k′| > 2, hence the matrix Mkk′ is penta-diagonal in general, tri-diagonal when

q = 0 (i.e. when ω2 = µ2) and diagonal when a = 0. The matrix equation for the coefficients bk′

has solutions when detM = 0, hence [54] and ourselves in [117] search numerically for a root of the

determinant ofM over the complex ν plane.

This method works well for the two vector-type polarization states where, for a 6= 0, ν takes

a non-zero, finite value in the massless limit given by Eq. (4.2.43), which forms a suitable starting

guess for the numerical solver. For the remaining, scalar-type polarization, ν → 0 in the massless

limit for all values of ` causing these eigenvalues for different values of ` to “pile-up” together and

so a numerical solver struggles to pick out the correct massive ν. We can infer the behavior of ν in

the small mass regime by noting that in the massless limit the angular differential equation (4.2.36)

must reduce to the s = 0 spheroidal harmonic equation (Eq. (4.1.10) with s = 0). This motivates us

to introduce the change of variables

ν =
µ2

ω

(
1 + τµ2

)
, (4.2.68)

where as µ → 0 the parameter τ must reduce to τ0 = −λ0/ω
2 where λ0 is the eigenvalue of the

s = 0 Teukolsky equation. After this change, τ can be found by the same numerical scheme used to

find ν with τ0 as the starting guess.
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This method works well for QNMs. For QBSs, we cannot start the angular eigenvalue finder

from the massless eigenvalue, as QBSs don’t exist for massless fields. We instead use the scheme

described in [54] where the eigenvalue finder begins from the marginally bound case ω2 = µ2. The

form of the marginally bound eigenvalue depends on the chosen polarization of the Proca field. For

S = −1 and m = ±` it is

ν =
∓ω

m− aω
, (4.2.69)

for S = 0 it is

ν =
1

2a

(
±`− aω ±

√
(∓`+ aω)2 + 4aω

)
(4.2.70)

and for S = +1 one must take the middle root of the cubic equation

aν3 (1− aω)− (6− aω (2− aω)) ν2 + ων + ω2 = 0. (4.2.71)

4.2.4.2 The Radial Equation via Direct Integration

As in the non-rotating case, there are multiple methods that can be employed to solve the radial

differential equation (4.2.35). In [54], a numerical integration scheme was employed to find the

bound state frequencies of the Proca field. A Frobenius series initial condition is imposed near the

black hole horizon of the form

R (z) = z−iρ+
(
1 + c1z + c2z

2 + · · ·
)
, (4.2.72)

where the radial variable z is the same as in Eq. (4.2.56) and the index ρ+ is the same as in

Eq. (4.2.53). The differential equation is then integrated from the horizon to a large value of r = rmax.

To satisfy the boundary condition of a bound state, one would expect this radial function to die

away as r → ∞. In practice, if r is taken to be too large, the radial function will begin to grow

again even if ω is chosen to be a bound state frequency due to the accumulation of numerical error,

but this doesn’t pose much of an issue in practice. A merit function is constructed by attempting

to minimise log |R (rmax)|2 over the complex frequency plane, using the hydrogenic approximation

(4.2.58) as an initial guess. The results obtained by Dolan in [54] are consistent with the analytical

approximations of [18] detailed in Sec. 4.2.3. In particular, Dolan concludes that the even-parity

scalar-type mode, corresponding to S = −1, has the largest imaginary part and so has the largest

growth rate.

4.2.4.3 The Radial Equation via Leaver’s Method

In our work with Dolan in [117], we instead apply Leaver’s method to solve a recurrence relation

derived from Eq. (4.2.51). As the equation has five singular points, following the discussion in
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Sec. 3.4.2 this leads us to hypothesise that the minimum number of terms our recurrence relation

can have is five,

αnan+2 + βnan+1 + γnan + δnan−1 + εnan−2 = 0 n ≥ 2. (4.2.73)

The coefficients an are those in the radial ansatz that we impose to solve the equation with the

correct boundary conditions

R (r) =

(
r − r+

r − r−

)−iρ
(r − r−)χ e−qr

∞∑
k=0

ak

(
r − r+

r − r−

)k
, (4.2.74)

where χ and q carry the same definitions as they did in the Schwarzschild case

q = ±
√
µ2 − ω2, χ =

M
(
µ2 − 2ω2

)
q

.

Here we have absorbed the ± sign from the QNM and QBS boundary conditions (3.2.12) into

the definition of q, so < (q) < 0 for QNMs and < (q) > 0 for QBSs. If this ansatz is substituted into

the radial equation (4.2.51) and then the equation is expanded around r = r+, setting the leading

order term to zero imposes the condition ρ = ±ρ+. Imposing regularity of the solution at the future

horizon (in any coordinate system that is also regular on the future horizon) requires that we choose

ρ = ρ+, which is also consistent with the Schwarzschild case.

Setting every other power of the expansion around r = r+ to zero gives a series of equations that

can be solved term by term for the coefficients an. The manipulations are very involved and so are

best performed in a symbolic algebra package such as Mathematica. We have defined the following

quantities so that the recurrence can be presented more succinctly: u± = 1+ν2r2
±, t± = 1±ν2r+r−,

c± = 1 + r±Mν2, b = 1
2 (r+ − r−),

αn = 16b2 (n+ 2) q2u+ (n+ 2− 2iρ+) , (4.2.75)

βn = −4bq

{
16b (n+ 1)2 qc+ + (A− −A+)u+ (1− 2iρ+) + 4bqA+u+

− 2 (n+ 1)
[
u+ (A+ −A−) + 8bq

(
b
(
q + r+ (qr+ − 1) ν2

)
+ 2ic+ρ+

)]
− 4bq

[
−Λ + 2bqu+ (1− 2iρ+)− 2ir−r+ν

2ρ+ + 2ρ2
+ + r2

+ν (−Λν + 2νρ+ (i+ ρ+)− 2σ)
]}
,

(4.2.76)
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γn = u+ (A− −A+)2 + 8A−bq
(
1 + n

(
3 + r+ (2M + r−) ν2

)
− 3iρ+ + r+ν

2 (r+ − i (2M + r−) ρ+)
)

+ 8A+bq
(
−1 + 4bqt+ + n

(
−3− r+ (2M + r−) ν2

)
+ 3iρ+ + ir+ν

2 (2r−ρ+ + r+ (i+ ρ+))
)

− 16b2q2

[
−2t+Λ + n2

(
−6−

(
4M2 + 2r+r−

)
ν2
)

+ 8bn
(
−Mν2 + qt+

)
− u+ρ

2
−

+ 2in
(
6 +

(
4M2 + 2r+r−

)
ν2
)
ρ+ + ρ+

(
8ibMν2 − 8ibqt+ + 5ρ+ + r+ (2M + 3r−) ν2ρ+

)
− 4r−r+νσ

]
,

(4.2.77)

δn = −2

{
t+ (A− −A+)2 + 32b2 (n− 1)2 q2c− − 2A−bq

(
−1 + 6iρ+ + r−ν

2 (−2b− r+ + 2i (2M + r+) ρ+)
)

+ 2A+bq
(
−1 + 4bqu− + 6iρ+ + r−ν

2 (−2b− r+ + 2i (2M + r+) ρ+)
)
− 64ib2 (n− 1) q2c−ρ+ + 8b2q2Λu−

− 4b (n− 1) q
[
A−
(
−3− r− (2M + r+) ν2

)
+A+

(
3 + r− (2M + r+) ν2

)
+ 8bq

(
b
(
q + r− (qr− − 1) ν2

))]
− 8b2q2

[
−2ρ2

− − 2bqu− (1 + 2iρ+) + 4ρ2
+ + 2r−r+ν

2
(
−ρ2
− + ρ+ (i+ ρ+)

)
− r2
−ν (−2νρ+ (ρ+ − i) + 2σ)

]}
,

(4.2.78)

εn = u− (A− −A+ + 4bq (n− 2 + iρ− − iρ+)) (A− −A+ + 4bq (n− i (−2i+ ρ− + ρ+))) , (4.2.79)

where A± are as in (4.2.52).

This recurrence relation was used to find the an by the methods presented in Sec. 2.4, beginning

with two applications of Gaussian elimination to reduce it to a three term relation. Then, the

continued fraction method was used to find a minimal solution to this recurrence, which occurs

when ω is either a QNM or a QBS frequency, depending on the boundary conditions chosen.

4.2.5 Numerical Results

4.2.5.1 Consistency Checks and QBSs

First, to test the recurrence relation we followed a direct approach and calculated the radial co-

efficients an by a standard forward recurrence on Eqs. (4.2.75)-(4.2.79) for some large number of

iterations nmax. Then |anmax| forms a suitable merit function to minimise with respect to ω. In a

similar manner to the log |R (rmax)|2 merit function constructed by Dolan in [54], the magnitude of

the merit function decreases with n initially (|an+1| < |an|) but taking nmax large enough causes the

merit function to grow without bound, even if it is evaluated at a QNM or QBS frequency ω. This

is due to the accumulation of numerical error. An example merit function is plotted in Fig. 4.2.1.

There are two clear minima located at the fundamental mode (n = 0) and first overtone (n = 1)

QNMs for the shown parameter set. As a second test, we set a = 0 in the recurrence relation and
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Figure 4.2.1: An example merit function plotted over the complex plane, for the parameters a =

0.5, ` = m = 1, µ = 0.

calculated QNMs for the Schwarzschild spacetime, which agreed with the data presented in [126] to

9 significant figures.

The recurrence relation can also be validated by using it to calculate QBSs and comparing the

results to the data in [54]. All that is required to substitute q → −q and change the initial guess

for the angular eigenvalue, according to the scheme laid out in [54], see Eqs. (4.2.69)-(4.2.71). The

imaginary part of these bound state frequencies are plotted in Fig. 4.2.2 for the two polarizations

labeled by S = −1 and S = 0. Note that in the mass range considered, = (ω) > 0, i.e., the modes

are unstable. The frequencies found agree with the known data to at least six significant figures

in the real part and at least three significant figures in the imaginary part, with better agreement

(up to six significant figures for S = −1 and up to five significant figures for S = 0) as the mass

increases towards the peak of the superradiant instability. For the remaining S = +1 polarization,

the recurrence relation as we have implemented it fails to converge to a smooth curve of QBS

frequencies. We discuss the possible reasons for this in the conclusion to this chapter. This will not

be a problem when we come to discuss QNMs.

We can also compare this numerical bound state data to the analytical approximations described
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Figure 4.2.2: The imaginary part of the bound state frequencies of the Proca field in the Kerr

spacetime for ` = m = 1, n = 0 and various a. The upper curves are for the polarization S = −1

and the lower curves are for S = 0.
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Figure 4.2.3: The imaginary part of the bound state frequencies of the Proca field in the Kerr

spacetime for ` = m = 1, n = 0, a = 0.6 and polarization S = 0. The red dashed line is the

analytical approximation of Eq. (4.2.61).

previously, Eqs. (4.2.58) and (4.2.59)-(4.2.60) for the real part and Eqs. (4.2.61)-(4.2.63) for the

imaginary part. The imaginary part is compared with its approximation in Fig. 4.2.3. We can see

that although the approximation matches the qualitative shape of the data, at the peak of the

superradiant instability at Mµ ≈ 0.15 the approximation underestimates = (ω) by a factor of about

2. This is consistent with Figure 8 of [18], where the analytical approximation is shown to perform

worse as µ and a grow. The fine structure of the real part of the bound state frequency is compared

with the analytical approximation in Fig. 4.2.4.

4.2.5.2 QNM Data

We now present our original data for the QNMs of all three polarizations of the Proca field in the

Kerr spacetime. We begin by presenting the found QNM data for the ` = m = 1, fundamental mode,

shown in Fig. 4.2.5. The two vector-type polarizations agree, in the massless limit, with the QNMs of

the electromagnetic field, represented by the upper blue curve. The scalar-type polarization agrees,

in the massless limit, with the QNMs of the massless scalar field, represented by the lower blue

curve. This is in contrast to QBSs, where it was the odd-parity vector polarization S = 0 of the
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Figure 4.2.4: The fine structure of the real part of the bound state frequencies of the Proca field

in the Kerr spacetime, for the small mass regime where the analytical approximations are most

applicable, ` = m = 1, n = 0 and a = 0.6. The upper points are for polarization S = −1, the lower

points for S = 0. The data points were found by subtracting 1− α2

2N2 (see (4.2.58)) from < (ω) /µ to

obtain an estimate of the fine structure coefficient fN ˆ̀̀ . The black dashed lines are the analytical

approximation to the fine structure coefficient from Eq. (4.2.59).
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Figure 4.2.5: Fundamental QNMs of massless and massive vector fields in the complex plane, ` =

m = 1;n = 0. The blue curves show the QNMs of the massless vector (electromagnetic) and scalar

fields for varying a. On the upper curve, the black points show the odd-parity Proca QNMs, and

the red points show the even-parity Proca QNMs of vector type. On the lower curve, the purple

points show QNMs of even-parity scalar type. The mass spacing between large (small) points is

Mµ = 0.1(0.01).

Proca field that was best compared to the scalar field.

For the odd-parity vector-type and even-parity scalar-type modes, as µ increases the oscillation

frequency < (ω) increases and the decay rate −= (ω) decreases, so the modes become more long-

lived. The one exception to this is for the scalar-type polarization for a large black hole spin a,

for which the decay rate increases for small µ, before beginning to decrease again when µ passes a

certain value (about Mµ = 0.4 for a = 0.99). The even-parity vector-type modes behave differently:

the oscillation frequency decreases as µ increases and the decay rate increases for small µ for all a.

In all cases, as µ grows large, the QNMs approach the real axis and hence approach quasiresonance,

see Sec. 3.2.

These same general trends also hold in the case of the first overtone n = 1 presented in Fig. 4.2.6.
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Figure 4.2.6: QNMs of massless and massive vector fields in the complex plane, ` = m = 1;n = 1,

with the same conventions as in Fig. 4.2.5. The upper blue curves are the massless QNMs for the

electromagnetic and scalar fields from Fig. 4.2.5.

The main differences from the fundamental mode are that the decay rates are much larger and the

QNMs approach the real axis much slower with increasing µ.

Figs. 4.2.7 and 4.2.8 display the vector-type and scalar-type QNMs respectively for ` = 1 and all

three possible values ofm ∈ {−1, 0, 1}. It can be seen that the QNMs that would be characterised by

counter-rotating geodesic orbits in the eikonal approximation (i.e., m < 0) have smaller oscillation

frequencies than their co-rotating counterparts (m > 0). The QNMs of the odd-parity vector

polarization of the Proca field are not presented when m = 0. This was the one circumstance

where our recurrence relation failed to produce a smooth curve of QNM frequencies. Like the QBS

frequencies we were unable to find in Sec. 4.2.5.1, we will briefly consider why this might be in the

conclusion to this chapter.

In Fig. 4.2.9 we show a direct comparison of the QNMs of the scalar-type polarization of the

Proca field and those of the scalar field. It can be seen that, in the small mass limit, the two are

close together, even more so the larger the black hole rotation. As the mass increases, the spectrum

of the two fields become more and more different. In all cases the Proca field has a larger damping
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Figure 4.2.7: Vector-type QNM frequencies for m = −1 ( left, orange), m = 0 (centre, green) and

m = 1 (right, blue) modes, for ` = 1, with a mass spacing ∆ (Mµ) = 0.01. The plot shows the

detail of the m = −1 and m = 0 cases; the m = 1 cases for higher a are shown in Fig. 4.2.5.
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Figure 4.2.8: The scalar-type Proca QNMs for the m = −1, m = 0 and m = 1 branches of

the ` = 1, n = 0 spectrum. As in Fig. 4.2.5, the mass spacing between large (small) points is

Mµ = 0.1(0.01).
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Figure 4.2.9: Comparing the QNM spectrum of the scalar-type polarization of the Proca field (black)

with the QNM spectrum of the massive scalar field (red). As in Fig 4.2.5, the mass spacing between

large (small) points is Mµ = 0.1(0.01).

rate and a smaller oscillation frequency than the scalar field for the same mass value.

The higher multipoles (higher values of `) of the fundamental mode of the even-parity vector-

type Proca field are presented in Fig. 4.2.10. We see that the behavior that was present for ` = 1

persists into these high multipoles, the damping rate increases for small µ, before all the modes

trend upwards towards the real axis as µ grows larger.

4.3 QNMs in the Kerr-Newman Spacetime

In this section, we calculate the QNMs of the (uncharged) massive scalar field and all three polariza-

tions of the Proca field on the Kerr-Newman spacetime using a recurrence relation and the continued

fraction method. The scalar field is studied to compare the results to the scalar polarization of the

Proca field in Fig. 4.3.3. Like the Kerr case, to our knowledge the data for the Proca field is entirely

new.
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Figure 4.2.10: The higher multipoles of the even-parity vector QNMs on the Kerr spacetime for

a = 0.5 andm = 1. As in Fig. 4.2.5, the mass spacing between large (small) points isMµ = 0.1(0.01)

with the largest mass values being closest to the real axis.



4.3. QNMS IN THE KERR-NEWMAN SPACETIME 107

4.3.1 Scalar Field

The radial equation for a scalar field in a rotating black hole spacetime can be written in the following

form,
d

dr

(
∆
dR

dr

)
+

(
K2
r

∆
− Λ + 2aωm− a2ω2 − µ2r2

)
R = 0. (4.3.1)

The form of this equation is obtained by setting the right-hand-side of (4.2.35) to zero and is

valid in the Kerr and Kerr-Newman spacetimes. The QBSs of the scalar field on the Kerr spacetime

were studied in [52] by applying Leaver’s method to a three term recurrence relation and the same

was done for a charged scalar field in the Kerr-Newman spacetime in [85]. Neither of these papers

covered the QNMs and so we opt to find the scalar field QNMs ourselves by deriving a recurrence

relation from (4.3.1).

Substituting into this equation the same ansatz used in [52], which is very similar to that in

(4.2.74),

R (r) =

(
r − r+

r − r−

)−iρ
(r − r−)χ−1 e−qr

∞∑
k=0

ak

(
r − r+

r − r−

)k
, (4.3.2)

(note the χ− 1), the indices ρ and χ take their usual values

ρ =

(
r2

+ + a2
)
ω − am

r+ − r−
, χ =

M
(
µ2 − 2ω2

)
q

.

Setting the coefficient of each power of the radial variable to zero in the usual way gives the three

term relation,

αnan+2 + βnan+1 + γnan = 0 n > −1,

αn = 8bq2 (n+ 2) (2iρ− n− 2) , (4.3.3)

βn =2q

{
4q3r2

+b+ 4qb (5 + 2n (n+ 3) + Λ)− 4i (3 + 2n) qr2
+ω − 4qr2

+ (M + r+)ω2 (4.3.4)

+ 4
(
Mω2 − q2 (b+ r+)

) (
ir2

+ω − (3 + 2n) b
)

4ia (aω −m)
(
q (−3− 2n− q (b+ r+)) +Mω2

)
− 4a2ω2q (M + r+) + 8amqMω

}
,

γn =4
(
M
(
q2 − ω2

)
+ q (1 + n− 2iMω)

)
(4.3.5)

×
(
iq
(
2a2 + r2

− + r2
+

)
ω +

1

2

(
r2

+ − r2
−
)
ω2 − 2iamq − 2qb (1 + n+ qM)

)
.

The angular eigenvalue Λ is found using the Black Hole Perturbation Toolkit for Mathematica

[1]. We first test this recurrence relation by using it to calculate the well known QNMs of the
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massless scalar field on the Kerr spacetime for a range of a. We find agreement with the data in [21]

to at least six significant figures.

We now present the QNMs of the scalar field in the Kerr-Newman spacetime in Fig. 4.3.1. The

blue points are the QNMs of the massless scalar field for ` = m = 1, n = 0 and the given values

of a. These were found by using the known massless QNMs in the Kerr spacetime from [21] as an

initial guess to minimise the continued fraction (2.4.8). The charge Q on the hole is then increased

in increments, with the previously found QNM forming the initial guess for the next one in the

sequence. As can be seen from the figures, the QNMs vary more rapidly as we approach the extreme

value of charge Qmax =
√
M2 − a2 and so we clustered the sampled values of Q closer to this

extreme. We then selected three values of charge and increased µ in increments of 0.01, producing

the purple points.

For values of Q and a not close to the extremal limits, as µ increases the oscillation frequency

< (ω) increases and the decay rate −= (ω) decreases. This pattern no longer holds as a approaches

M or Q approaches Qmax, where we see an initial increase in the decay rate (= (ω) becomes more

negative) until the mass reaches a specific value, before the QNMs trend once more towards the

real axis. When both the spin and charge are near the extremal values, we see that the oscillation

frequency of the QNM decreases and the decay rate increases as the mass increases.

4.3.2 Proca Field Numerical Results

We will now move on to discussing the Proca field. Equations (4.2.75) to (4.2.79) can be easily gen-

eralised to apply to the Kerr-Newman spacetime. Let’s consider two forms of the radial differential

equation for the Proca field on a rotating black hole spacetime, Eqs. (4.2.51) and (4.2.29). When we

subtract Eq. (4.2.51) (multiplied by ∆−1) from (4.2.29), rather than getting zero, we are left with a

difference in the form of a term [
ω2

∆

(
a2 − r+r−

)]
R (r) . (4.3.6)

This reflects the fact that Eq. (4.2.51) is valid only in the Kerr spacetime, while Eq. (4.2.29) is

valid in the Kerr and Kerr-Newman spacetimes. Indeed, this difference term (4.3.6) vanishes if the

black hole charge Q = 0, as in that case a2 = r+r−. To generalise the Kerr specific differential

equation (4.2.51) to the Kerr-Newman spacetime, we see that this term (4.3.6) can be canceled

through a re-definition of Λ̃

Λ̃ = Λ− ω2Q2, (4.3.7)

with Λ defined in (4.2.37).
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Figure 4.3.1: The QNMs of the scalar field in the Kerr-Newman spacetime found from the recurrence

in Eqs. (4.3.3)-(4.3.5), for a = 0.5 (top) 0.9 (middle) and 0.99 (bottom). The blue points are the

QNMs of the massless field for various Q and the purple points are for fixed Q and increasing mass.

The small (large) purple points are in mass increments of 0.01 (0.1).
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This re-definition must be performed in the radial differential equation (and hence in the re-

currence relation Eqs. (4.2.75)-(4.2.79). It is not required in Eq. (4.2.67) when finding the angular

eigenvalue, as the angular differential equation (4.2.36) does not change when adding a black hole

charge.

This is all that is required to calculate the QNMs of all three polarizations of the Proca field in

the Kerr-Newman spacetime using the same scheme explained for the scalar field in the previous sub-

section, which are presented for ` = m = 1, n = 0 in Fig. 4.3.2. As the mass increases they behave

qualitatively similar to the QNMs presented in Fig. 4.2.5 for the Kerr spacetime, with < (ω) and

= (ω) initially decreasing as µ increases for the even-parity vector polarization and both increasing

for the odd-parity vector and scalar polarizations. This trend changes when either a or Q approaches

their extremal values, with = (ω) initially decreasing with µ for the odd-parity vector and scalar

polarizations. As we approach the double extremal limit, < (ω) and = (ω) for the QNMs of the

scalar polarization both decrease with mass, as for the scalar field.

A point needs to be made here about the interpretation of the blue points in Fig. 4.3.2. It is

tempting to say that they are the QNMs of the electromagnetic field in the Kerr-Newman spacetime,

but the truth is more complicated. In Ref. [75] it is shown that incident electromagnetic waves can,

at least partially, be reflected from the potential of a charged black hole as gravitational waves (and

vice versa). Hence, the most we can say is that the blue points are the massless QNMs of some

combination of electromagnetic and gravitational waves.

As for the Kerr spacetime, we can directly compare the QNMs of the scalar field and the scalar

polarization of the Proca field, shown in Fig. 4.3.3 and observe that they have qualitatively similar

behavior. Unlike in the Kerr case however, for non-extremal black hole charge and spin, the Proca

QNMs have a larger oscillation frequency and a smaller decay rate than their scalar counterparts.

When either the spin or the charge approaches the extremal limit, the Proca QNMs still have a

larger oscillation frequency, but now also have a larger decay rate.

Conclusion and Further Study

In this chapter we have primarily focused on the analytical approximation and numerical calculation

of QNMs and quasibound state frequencies of scalar and vector fields in the Kerr and Kerr-Newman

spacetimes. As far as we are aware, the QNM results for the massive scalar field in Kerr-Newman

spacetime and for the massive vector field in both the Kerr and Kerr-Newman spacetimes are entirely

new. We also discussed the similarities and differences between the QNMs of the scalar field and

the QNMs of the scalar polarization of the Proca field.
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Figure 4.3.2: The QNMs of the Proca field in the Kerr-Newman spacetime, for a = 0.5 (top) 0.9

(middle) and 0.99 (bottom). The upper (lower) blue points are the QNMs of the massless vector

(scalar) field for various Q and the red, black and purple points are for fixed Q and increasing mass

in the even-parity vector, odd-parity vector and scalar polarizations respectively.
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Figure 4.3.3: A comparison of the QNMs of the scalar field (red) and the scalar polarization of the

Proca field (black) in the Kerr-Newman spacetime, for a = 0.5 (top) 0.9 (middle) and 0.99 (bottom).
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We now briefly discuss the difficulties we encountered in applying our recurrence relation,

Eqs. (4.2.75)-(4.2.79). The decrease in the accuracy (which we here define as agreement with the

data in [54]) of our QBS results as we move away from the peak of the superradiant instability in the

complex plane raises the possibility that our recurrence relation is less reliable when = (ω) is small.

However, this cannot be the full story, as the data is accurate for the parameters S = 0, a = 0.6 but

not for S = +1, a = 0.99, where = (ω) is comparable. A possibility exists that numerical error is

accumulating during the Gaussian elimination step if either δn or εn are too small. With more time

to continue the project, this is the first possibility that we would consider.

Figure 4.2.7 lacks data for the odd-parity Proca QNMs when m = 0, as using our recurrence

relation did not produce a smooth curve of data. We hypothesise that this is due to the failure of the

argument given in Sec. 4.2.2.3 when m = 0 (particularly Eq. (4.2.47)) to establish that the branch

of the eigenvalue ν that diverges in the static limit is the correct branch to take for the odd-parity

mode. See also Eq. (4.2.43) for the massless eigenvalue, which for m = 0 implies it is a2ν that tends

to a constant as a→ 0, rather than aν, which was required to match with the non-rotating angular

equation (4.2.36).

This concludes the first half of this work, on the propagation of classical bosonic fields on black

hole spacetimes. We will now shift our focus to discussing the propagation of the quantum scalar

field.
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Chapter 5

Quantum Field Theory on Curved

Spacetime

Introduction and Overview

Throughout the next three chapters, we will be focusing entirely on the semiclassical theory of a

scalar field φ propagating on static, spherically symmetric spacetimes. The principles of semiclassical

gravity were covered in chapter 1. Recall, in particular, that φ is an operator on a Hilbert space of

state vectors and so we wish to calculate expectation values of these operators. We will begin with a

general discussion of quantising such a field on an arbitrary curved spacetime, before moving on to

the calculation of
〈
φ2
〉
outside of a Schwarzschild back hole. The quantity

〈
φ2
〉
is called the vacuum

polarization and is a prerequisite to the calculation of 〈Tµν〉 while sharing a few of its important

properties.

The work presented in this chapter is a summary of the relevant literature and it forms the

foundation of our original numerical analysis of
〈
φ2
〉
outside a spherically symmetric star in chapter

7. This chapter also contains the details of our own numerical implementation of the Levi and Ori

method of calculating
〈
φ2
〉
in the Boulware state outside a Schwarzschild black hole in Sec. 5.2.3.

We will work in natural units, such that G = c = ~ = 1.

5.1 Quantisation of a Scalar Field

5.1.1 Canonical Quantisation

There are many resources discussing the extension of Quantum Field Theory (QFT) from flat space-

time to curved spacetime, such as [22] and [114]. In this section we will briefly cover the fundamentals
117
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of the topic, focusing on their application to a scalar field.

As in chapter 2, the first step of discussing a physical theory is to specify a Lagrangian density

(cf. Eq. (2.1.5))

L = −1

2

(
gµν∇µφ∇νφ+

(
µ2 + ξR

)
φ2
)
, (5.1.1)

where φ is a scalar field of mass µ and coupling ξ to the Ricci scalar R. From this density we can

construct the Klein-Gordon equation of motion (cf. Eq. (2.1.14))

(
�− µ2 − ξR

)
φ = 0, (5.1.2)

where � = gµν∇µ∇ν is the d’Alembertian wave operator.

Two values of the coupling constant ξ are especially important: minimal coupling ξ = 0 and

conformal coupling ξ = 1/6. The latter is so named because under a conformal transformation of

the metric

gµν → g̃µν = Ω2gµν , (5.1.3)

which also transforms the Ricci scalar

R → R̃ = Ω−2R+ 6Ω−3�Ω, (5.1.4)

a coupling of ξ = 1/6 would leave the equation of motion for a massless field invariant, as follows,(
�− 1

6
R
)
φ→

(
�̃− 1

6
R̃
)
φ̃ = Ω−3

(
�− 1

6
R
)
φ, (5.1.5)

where φ̃ = Ω−1φ.

We can define a scalar product between two solutions of Eq. (5.1.2)

(φ1, φ2) = −i
∫

Σ
dΣnµ

√
gΣ [φ1∂µφ

∗
2 − (∂µφ1)φ∗2] , (5.1.6)

where Σ is a spacelike hypersurface with volume element dΣ and metric gΣ and nµ is a future-

directed unit vector orthogonal to Σ. If the spacetime is globally hyperbolic (which is true for all

spacetimes we will consider) we can take the surface Σ to be a Cauchy surface and the inner product

is independent of the Cauchy surface chosen. The condition of global hyperbolicity can be defined

as the requirement that a Cauchy surface exists in the spacetime [71] and a Cauchy surface can be

defined, as in [79], as “a spacelike hypersurface which every non-spacelike curve intersects exactly

once”. The invariance of (5.1.6) with respect to Σ follows from the fact that two Cauchy surfaces

Σ1 and Σ2 will enclose a volume V, within which the vector field

Jµ ≡ φ1∂µφ
∗
2 − (∂µφ1)φ∗2, (5.1.7)
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is divergence-free. The invariance of the scalar product with respect to Σ then follows from Gauss’s

theorem.

We now wish to expand the field φ using a complete set of solutions fi to the Klein-Gordon

equation (5.1.2), in the following way

φ =
∑
i

(
aifi + a†if

∗
i

)
. (5.1.8)

The index i may be discrete or continuous. In the continuous case the sum in Eq. 5.1.8 must be

replaced by an integral. The fi are chosen to be orthonormal with respect to the inner product

(5.1.6)

(fi, fj) = δij ,
(
f∗i , f

∗
j

)
= −δij ,

(
fi, f

∗
j

)
= 0 (5.1.9)

and the a†i and ai are the creation and annihilation operators respectively. The signs in front of the

Kronecker deltas in (5.1.9) are a convention: we call the fi the positive frequency modes and the f∗i

the negative frequency modes [114].

Finally, canonical quantisation can be performed by imposing commutation relations between

the ai and a
†
i [

ai, a
†
j

]
= δij , [ai, aj ] = 0,

[
a†i , a

†
j

]
= 0 (5.1.10)

and a vacuum state |0〉 can be defined as a state that is annihilated by the annihilation operator,

ai |0〉 = 0 for all i.

5.1.2 Non-Uniqueness of the Vacuum State

It might appear at first sight that the quantisation of a scalar field in a curved spacetime proceeds

very similarly to quantisation in Minkowski spacetime. Although the process is very similar, there

is a crucial difference: an ambiguity arises in how we choose to expand the field φ into modes, as

in Eq. (5.1.8). This is equivalent to an ambiguity in how we choose to define what modes are to be

considered positive frequency. In Minkowski space this ambiguity isn’t present, as one can construct

a “preferred” vacuum state that is invariant under the action of the Poincaré group and so is valid in

all inertial reference frames. In a curved spacetime, the Poincaré group no longer leaves the metric

line element unchanged and this “preferred” vacuum state is lost [22].

This means that when discussing the properties of a quantum field in a curved spacetime, we

must specify which state we are working in. In the Schwarzschild spacetime, there are generally

three vacuum states that are commonly used and they can be classified according to which surface

we choose to define the positive frequency modes on [40].
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• The Boulware state [23]: This is the vacuum state constructed using the coordinate system of

an observer far from the gravitational source, i.e., on the surface I + ∪I −. In other words,

the IN and UP modes described in Sec. 3.1 (see Figs. 3.1.1 and 3.1.2) are devoid of particles.

The Boulware state is considered to be the appropriate vacuum state in the spacetime of a

static, spherically symmetric star. The stress-energy tensor of a quantum field 〈Tµν〉, when

evaluated in this state, diverges as one approaches the event horizon of the black hole.

• The Hartle-Hawking state [77]: This is the vacuum state measured according to a free falling

observer near the black hole’s event horizon, i.e., positive frequency modes are defined on the

surface H+ ∪ H−. An observer on I + ∪ I − would measure this state to contain thermal

radiation, i.e., the IN and UP modes are thermally populated. The stress-energy tensor in this

state is regular in the entirety of the exterior Schwarzschild spacetime, including on the event

horizon and so this state is the most suitable to study black hole thermodynamics. This state

models a black hole inside a thermal bath of radiation at the Hawking temperature, i.e., the

black hole is in unstable equilibrium.

• The Unruh state [141]: Like the Hartle-Hawking state, this state is defined according to its

properties on H−. However, instead of being defined according to positive frequency modes

with respect to the Schwarzschild time coordinate t it is defined with respect to the Kruskal

coordinate,

U = −4Me−u/4M , u = t− r − 2M log
( r

2M
− 1
)
. (5.1.11)

This state is empty at I −, but at I + it contains a flux of thermal radiation at the Hawking

temperature. As such, this state is used to model an evaporating spherically symmetric black

hole.

5.2 Calculating Vacuum Polarization

5.2.1 The Two Point Function and Counterterms

We wish to calculate the vacuum polarization
〈
φ2
〉
(i.e., the vacuum expectation value of φ2) of a

scalar field in the spacetime of a spherically symmetric gravitational source, be it a Schwarzschild

black hole or a star. From Eqs. (5.1.8), (5.1.10) and the definition of the vacuum state |0〉 we have
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that

〈
φ2
〉
≡ 〈0|φφ |0〉 = 〈0|

∑
ij

(
aifi + a†if

∗
i

)(
ajfj + a†jf

∗
j

)
|0〉

= 〈0|
∑
i

|fi|2 |0〉 =
∑
i

|fi|2 , (5.2.1)

where in the last line we used that the vacuum state is normalised such that 〈0|0〉 = 1.

In the Schwarzschild coordinates (t, r, θ, ϕ) the field φ can be decomposed into modes in the

following way

φ (x) =

∫ ∞
0

dω

∞∑
`=0

∑̀
m=−`

(
fω`m (x) aω`m + f∗ω`m (x) a†ω`m

)
, (5.2.2)

where a†ω`m and aω`m are the creation and annihilation operators of the mode fω`m, which have the

commutation relations (cf. Eq. (5.1.10))[
aω`m, a

†
ω′`′m′

]
= δ``′δmm′δ

(
ω − ω′

)
(5.2.3)

and every other commutator vanishes.

These modes can in turn be expressed through the separation of variables

fω`m (x) = e−iωtY`m (θ, ϕ) ψ̄ω` (r) , (5.2.4)

where the radial modes are defined ψ̄ω` ≡ r−1 (4πω)−1/2 ψω` and ψω` are the solutions of the radial

differential equation (the Regge-Wheeler equation (3.1.9), in the case of a scalar field in the spacetime

of a Schwarzschild black hole) with chosen boundary conditions. It was briefly mentioned in Sec. 3.1

that the normalisation of these modes would be important in the case of quantised fields. The factor

of
√

4πω ensures that the fω`m are normalised with respect to the inner product (5.1.6).

Formally speaking,
〈
φ2
〉
diverges. More specifically, if one substitutes Eq. (5.2.4) into (5.2.2) and

applies (5.2.3) to get 〈
φ2
〉

=

∫ ∞
0

dω
∞∑
`=0

∑̀
m=−`

|Y`m (θ, ϕ)|2
∣∣ψ̄ω` (r)

∣∣2 , (5.2.5)

(cf. Eq. (5.2.1)) one finds that the integral over ω always diverges, whether it is performed before or

after the sums over ` and m.

The method that we will be considering to regularise this divergence is point-splitting regulari-

sation, in which we define the Green’s function

G(1)
(
x, x′

)
=

1

2

〈
φ (x)φ

(
x′
)

+ φ
(
x′
)
φ (x)

〉
, (5.2.6)

constructed out of the two-point function (TPF) 〈φ (x)φ (x′)〉, where x and x′ are different spacetime

points. When x and x′ are nearby, the Green’s function can be written as a Hadamard series
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expansion [76]

G(1)
(
x, x′

)
=

∆1/2

(4π)2

(
2

σ
+ v lnσ + w

)
, (5.2.7)

where σ (x, x′) is one half of the square of the geodesic distance separating the points x and x′ and

∆ (x, x′) is the Van-Vleck-Morette determinant,

∆
(
x, x′

)
= − |g (x)|−1/2 det

[
−∂µ∂ν′σ

(
x, x′

)] ∣∣g (x′)∣∣−1/2
. (5.2.8)

In this expansion, v (x, x′) and w (x, x′) are analytic functions of σ, i.e., they admit series expansions

v =
∞∑
n=0

vnσ
n, w =

∞∑
n=0

wnσ
n. (5.2.9)

The coefficients vn and wn are then found by recursion relations obtained by substituting (5.2.7)

into the Klein-Gordon equation (5.1.2). This uniquely determines each of the vn and each of the wn

for n ≥ 1 as long as w0 is specified [114] (for more recent work on the Hadamard renormalisation

of a scalar field and in particular the calculation of these vn and wn coefficients, see the extension

to the charged scalar field in [12]). The coefficient w0 is fixed by the global boundary conditions on

the Green’s function, that is to say, it is not determined locally. Hence, one can isolate the purely

local part of the Green’s function GL by setting w0 to zero in (5.2.7) [5]. This is the tool that will

be used to regularise the divergences: we define the regularised Green’s function G
(1)
reg = G(1) −GL

and then the vacuum polarization can be found by taking the coincidence limit〈
φ2
〉
ren

= lim
x′→x

[
G(1)

(
x, x′

)
−GL

(
x, x′

)]
= lim

x′→x

[〈
φ (x)φ

(
x′
)〉
−GL

(
x, x′

)]
, (5.2.10)

where we have now chosen to work directly with the TPF as is done in [100].

The countertermsGL (x, x′) were found in [46] through the use of a (truncated) DeWitt-Schwinger

expansion of G(1) and presented in [8] for an arbitrary mass µ and curvature coupling ξ. We will

refer to the counterterms expressed in this form as GDS (x, x′). They are

GDS
(
x, x′

)
=

1

8π2σ
+
µ2 + (ξ − 1/6)R

8π2

[
γ +

1

2
ln

(
k2σ

2

)]
− µ2

16π2
+

1

96π2σ
Rαβ∇ασ∇βσ, (5.2.11)

where γ is Euler’s constant, R and Rαβ are the Ricci scalar and Ricci tensor of the background

spacetime and k is a regularisation parameter. In the case of a massive field this parameter is just

the mass, k = µ, but for a massless field the parameter is arbitrary and must be determined from

experiment [8]. Regardless, we do not need to be unduly concerned about this parameter, as for

a massless field in the Schwarzschild spacetime µ = 0 and R = 0, so the coefficient of the term

containing it vanishes.

Some care must be taken in how the points x and x′ are separated. As can be seen from

Eq. (5.2.11), the counterterms diverge not just when x = x′, but also for any pair of points such that
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σ = 0, i.e. when there exists a null geodesic connecting the two points. In most circumstances it is not

an issue to simply assume that the two points remain either timelike or spacelike separated as they are

brought together, but an interesting question presents itself, see for example [99]: can null geodesics

create singularities in the TPF that the counterterms cannot account for? In Schwarzschild spacetime

the answer is yes: all one has to consider are the null geodesics that leave a point xi = (ti, ri, θi, ϕi)

and wrap around the black hole n times before arriving at the point xn = (tn, ri, θi, ϕi). Then, the

TPF has a singularity for the pair of points (xi, xn). Understanding the location of these singularities

can be important when implementing certain variants of the pragmatic mode sum regularisation

method [99], to be described in Sec. 5.2.3.

It has already been mentioned that the counterterms are entirely local, but this can also be seen

directly from Eq. (5.2.11): GDS (x, x′) depends only on the spacetime structure in the vicinity of

the points x and x′, as well as the parameters of the field itself. The locality of these terms can

be exploited in many calculations involving the vacuum polarization: for instance, evaluating the

difference in
〈
φ2
〉
between two different quantum states circumvents the need to renormalise, as the

counterterms are independent of the state chosen and so cancel in the subtraction [32]. The same is

also true when one calculates the difference ∆
〈
φ2
〉
in the vacuum polarization between two different

spacetimes in the same quantum state, provided the two spacetimes are locally indistinguishable in

a neighbourhood of the spacetime point x [7]. This will be explained in more detail when we come

to look at QFT differences in chapter 6.

5.2.2 Evaluation Methods

5.2.2.1 WKB Methods

Evaluating the TPF 〈φ (x)φ (x′)〉 is not a simple task for two primary reasons: the radial functions

ψω` are only known numerically and, as just discussed, the TPF contains σ−1 and lnσ divergences

as the points x and x′ are brought together. A semi-analytical scheme to handle these problems

was devised by Anderson, Hiscock and Samuel [8] following prior work by Anderson, Candelas and

Howard [6, 32, 83, 84], where the vacuum polarization in Eq. (5.2.10) is rewritten in the following

manner

〈
φ2 (x)

〉
ren

= lim
x′→x

[〈
φ (x)φ

(
x′
)〉
−
〈
φWKB (x)φWKB

(
x′
)〉]

+ lim
x′→x

[〈
φWKB (x)φWKB

(
x′
)〉
−GDS

(
x, x′

)]
. (5.2.12)

Here, φWKB (x) is an analytical approximation to the singular piece of the field φ (x), consisting of

all the high frequency modes, up to order ω−2 found using the WKB method. This is then added
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and subtracted from the vacuum polarization to form (5.2.12). The purpose of this construction

is to split
〈
φ2 (x)

〉
into two terms: one that is calculated completely numerically (the first limit in

(5.2.12)) and one that is computed analytically (the second limit in (5.2.12)). The coincidence limit

of both of these terms is well defined and the mode sums in the first term will converge rapidly,

as one is essentially summing the “remainder” of the TPF after the WKB approximation has been

subtracted. This method was used to calculate both
〈
φ2 (x)

〉
and 〈Tµν (x)〉 in an arbitrary static,

spherically symmetric spacetime in [8], building on previous approximations to these quantities

formed by Page, Brown and Ottewill [29] and Frolov and Zel’nikov [68].

The difficulty of implementing this scheme is in the calculation of φWKB (x). In the Schwarzschild

metric this difficulty largely arises due to the existence of a turning point in the effective potential

of the Regge-Wheeler equation V` (r) ((3.1.5) with e = Q = 0) at some critical value rturn. The

two WKB approximations of the radial mode, one prior to this turning point and one after this

turning point, have radically different behaviors and so must be carefully matched in the vicinity of

r = rturn. This matching becomes harder to do the higher the order of the WKB approximations

required. Even for a WKB approximation of just second order (like that required to find φWKB (x))

the calculation is formidable.

This motivated Anderson et al. to perform a Wick rotation of the spacetime, which is a trans-

formation of the time coordinate t → iτ , such that the metric has a positive definite signature,

i.e., the metric has been Euclideanised. This has the effect of removing the turning point from the

effective potential. However, this method is only guaranteed to work if the background spacetime

is static and so for spacetimes with a time dependent metric, another route must be taken. This is

what motivated Levi and Ori, in [99], to develop their pragmatic mode sum approach to calculating〈
φ2 (x)

〉
, to be detailed in Sec. 5.2.3.

The methods of Anderson et al., were also used by Anderson and Fabbri in [7] to consider QFT

differences between locally equivalent spacetimes, to be detailed in Sec. 6.1.

5.2.2.2 Counterterm Mode Sum Prescriptions

Before we discuss the pragmatic mode sum (PMR) method of Levi and Ori, note should be made

of other methods that utilise mode sums. These contrast with the WKB method described in the

previous subsection in that rather than regularising the entire Green’s function “all at once” by the

subtraction of GL, both the Green’s function and the counterterms are expanded as mode sums and

the regularisation is done mode by mode.

One method of this type was developed by Breen and Ottewill for an arbitrary spherically



5.2. CALCULATING VACUUM POLARIZATION 125

symmetric spacetime, [25, 24], where it was applied to calculate
〈
φ2
〉
and 〈Tµν〉 in the exterior

region of the “lukewarm” Reissner-Nordström-de-Sitter black hole in the Hartle-Hawking state. The

distinctive feature of their method is their exploitation of the freedom to redefine the stress-energy

tensor in such a way that it is independent of the renormalisation technique used, provided certain

axioms are satisfied [145].

Another mode sum prescription was developed by Taylor and Breen for evaluating
〈
φ2
〉
in

the Hartle-Hawking state in an arbitrary static, spherically symmetric spacetime in any number

of dimensions d ≥ 4. It is presented in [135] for odd dimensions and [136] for even dimensions.

Although the method also requires Euclideanising the spacetime via a Wick rotation, it does not

rely on a WKB expansion. Instead, Eq. (5.2.7) is expanded in a certain set of coordinates that are

referred to as “extended coordinates”. In this carefully chosen system, the counterterms GL to be

subtracted can be written as a mode sum and subtracted from G(1) term by term. This method was

used to calculate
〈
φ2
〉
outside of a Schwarzschild-Tangherlini black hole with number of spacetime

dimensions d = 4, . . . , 11. An interesting property of this method is that it requires separating the

points x and x′ in multiple of the d spacetime dimensions as opposed to the methods of [8] that

required only splitting in one dimension. Splitting in more than one direction simultaneously will

also be required in the “angular” variant of the pragmatic mode sum method employed by Levi and

Ori, which we will cover next.

5.2.3 The Pragmatic Mode Sum Regularisation (PMR) of Levi and Ori

The details of this method have been outlined in a series of papers by Levi, Ori and others, including

[99, 100, 97] and [98]. The primary distinction of the method is its wide range of applicability: all

that is required is that the underlying spacetime have some form of symmetry. This symmetry is

then utilised to decompose the DeWitt-Schwinger counterterm (5.2.11) into modes, allowing the

regularisation procedure to be performed mode by mode. Hence, there are similarities between this

method and that of Taylor and Breen. Though this method is not restricted to static, spherically

symmetric spacetimes, it has not been generalised to spacetimes of higher dimension.

In the case of the Schwarzschild spacetime there are multiple such symmetries one could choose:

utilising the staticity of the spacetime leads to a variant of the method Levi and Ori call t-splitting,

(this is the variant of the method where an analysis of null geodesics that wrap around the black

hole is very important) while utilising the spherical symmetry leads to angular-splitting. One could

also utilise the axial symmetry, to obtain the method of azimuthal-splitting (This is done in the case

of an evaporating Kerr black hole in [98]). We will be focusing primarily on the angular splitting
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method described in [100]. Although this method is somewhat more complicated than the t-splitting

variant, we found it less computationally intensive to implement.

5.2.3.1 Generalised Sums and Integrals

Before diving into the specifics of the method, there is an important point that must first be ad-

dressed. As mentioned underneath Eq. (5.2.5), the integral over ω in the calculation of
〈
φ2
〉
does not

converge. In the case of the angular-splitting method, we will find that in addition, the infinite sum

over the ` modes also fails to converge (in fact, it diverges more strongly than the integral). These

divergences are not unexpected and one would hope to remove them through the subtraction of a

suitable counterterm. However, at various steps in the pragmatic mode sum method, one will find

that even the subtraction of counterterms is not enough to prevent certain sums and integrals from

diverging. This is generally due to oscillations of the integrand or summand at large values of ω or

`. The full details will be given in the next subsection, but in this subsection we will detail how Levi

and Ori handle these divergent sums and integrals through the use of the generalised sum/integral.

The generalised sum of a function f (`) is defined as

lim
α→0+

∞∑
`=0

e−α`f (`) (5.2.13)

and the generalised integral of a function f (ω) is defined as

lim
α→0+

∫ ∞
0

e−αωf (ω) dω. (5.2.14)

Part of the strategy of the pragmatic mode sum method is whenever the sum or integral of a

quantity would diverge in the traditional sense, to instead consider its generalised sum or integral.

Throughout the following section, as in Levi and Ori’s work, we will often omit the exponential

factors in the integrands and summands and thus denote generalised sums/integrals as if they were

“traditional” sums/integrals. This does not cause any ambiguity because if a traditional sum/integral

converges, it will always agree with the result of the corresponding generalised sum/integral, as

detailed in [99] and [100].

5.2.3.2 PMR by Angular-Splitting in a Static Spacetime

In this section we briefly describe the theory and techniques behind the PMR method applied in a

static, spherically symmetric spacetime. A complete understanding of the analytical techniques is

not required to numerically implement the method and so a numerical “recipe” is provided at the

end of the section.
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When applying the angular-splitting method, the first step is to write the metric in a manifestly

spherically symmetric form. For a static, spherically symmetric spacetime this is

ds2 = Γ (z)
(
−dt2 + dz2

)
+ r2 (z) dΩ2, (5.2.15)

for z a suitable radial coordinate.

The order of the sums and integrals in (5.2.5) should be interchanged such that the operation

corresponding to the direction of the point splitting is performed last. For x and x′ split in the θ

direction by an amount ε, this means the sum over ` is performed last. Hence the expression for the

vacuum polarization is

〈
φ2
〉
ren

= lim
ε→0

[ ∞∑
`=0

∫ ∞
0

dω
∑̀
m=−`

Y`m (θ, ϕ)Y ∗`m (θ + ε, ϕ)
∣∣ψ̄ω` (z)

∣∣2 −GDS (x, x′)]

= lim
ε→0

[ ∞∑
`=0

2`+ 1

4π
P` (cos ε)

∫ ∞
0

dω
∣∣ψ̄ω` (z)

∣∣2 −GDS (x, x′)] , (5.2.16)

where in the second line the sum over m has been performed, and P` is a Legendre polynomial.

Now we must consider the integral over ω. Splitting the points in the θ direction has no effect on

the value of this integral and so it still diverges. Levi and Ori regulate this divergence by choosing

to perform a second, additional split in the t direction by an amount δ, such that the point x′ is now

given by the coordinates (t+ δ, z, θ + ε, ϕ). This is justified, as long as the limit of small δ (which

will regulate the integral over ω) is taken before the limit of small ε (which will regulate the sum

over `). The vacuum polarization is now

〈
φ2
〉
ren

= lim
ε→0

[
lim
δ→0

∞∑
`=0

2`+ 1

4π
P` (cos ε)

∫ ∞
0

dω
∣∣ψ̄ω` (z)

∣∣2 eiωδ −GDS (ε)

]
, (5.2.17)

where the limit of small δ applies only to the first term in the square brackets because GDS is regular

when δ = 0, as long as ε > 0.

In (5.2.17), we see that GDS is a function of ε. The form of this function needs to be found.

Although GDS could be expanded in simple powers of ε (and indeed, this is what Levi and Ori opt

to do for the t-splitting variant of the PMR method), it will prove more useful to expand it in powers

of sin (ε/2), as follows

GDS (ε) = a (z) (sin (ε/2))−2 + c (z) [log (kr sin (ε/2)) + γ] + d (z) +O (ε) , (5.2.18)

where γ is Euler’s constant and the functions a, c and d will depend only on the form of the spacetime

metric and on the field parameters.

The next step is to handle the integral over ω. In the limit of small δ, this integral diverges

logarithmically, as the integrand is proportional to ω−1 at leading order when ω is large (see the
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analysis in Appendix D of [100]). However, this leading order ω−1 term is independent of `. Hence,

one can regularise the integral by adding and subtracting the ` = 0 contribution to the integrand in

the following way∫ ∞
0

dω
∣∣ψ̄ω` (z)

∣∣2 eiωδ =

∫ ∞
0

dω
(∣∣ψ̄ω` (z)

∣∣2 − ∣∣ψ̄ω0 (z)
∣∣2) eiωδ + Z (δ) (5.2.19)

Z (δ) ≡
∫ ∞

0
dω
∣∣ψ̄ω0 (z)

∣∣2 eiωδ.
The limit as δ → 0 of the first term of (5.2.19) can now be taken with no issue and will be denoted

F (`, z) ≡
∫ ∞

0
dω
(∣∣ψ̄ω` (z)

∣∣2 − ∣∣ψ̄ω0 (z)
∣∣2) . (5.2.20)

The vacuum polarization is now

〈
φ2
〉
ren

= lim
ε→0

[ ∞∑
`=0

2`+ 1

4π
P` (cos ε)F (`, z) + lim

δ→0

{ ∞∑
`=0

2`+ 1

4π
P` (cos ε)Z (δ)

}
−GDS (ε)

]
.

(5.2.21)

To finish this step all we need is one additional result (see Appendix B of [100]): that the

following (generalised) sum vanishes for all ε 6= nπ where n is an integer
∞∑
`=0

(2`+ 1)P` (cos ε) = 0. (5.2.22)

Thus, as long as the limit of small δ is taken before the limit of small ε, the term in curly brackets

in (5.2.21) vanishes. The equation then simplifies to

〈
φ2
〉
ren

= lim
ε→0

[ ∞∑
`=0

2`+ 1

4π
P` (cos ε)F (`, z)−GDS (ε)

]
(5.2.23)

and we are now left to consider the sum over `. To this end, GDS (ε) must also be written as a sum

over ` and this can be accomplished through a Legendre transform. The relevant identities (proven

in Appendix C of [100]) are

(sin (ε/2))−2 = −8π

∞∑
`=0

2`+ 1

4π
h (`)P` (cos ε) , (5.2.24)

log [sin (ε/2)] = 2π
∞∑
`=0

2`+ 1

4π
Λ (`)P` (cos ε) , (5.2.25)

where the `th harmonic number is defined

h (`) ≡
∑̀
k=0

1

k
,

with h (0) = 0, while Λ (`) is defined

Λ (`) ≡


−1 ` = 0

− 1
`(`+1) ` > 0

.
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Combining the Legendre transform identities with the expansion of GDS (ε) in (5.2.18), the

vacuum polarization can now be written in the form

〈
φ2
〉
ren

= lim
ε→0

[ ∞∑
`=0

2`+ 1

4π
P` (cos ε)Freg (`, z) +W (z)

]
, (5.2.26)

where

W (z) ≡ − [(log (kr) + γ) c (z) + d (z)] , (5.2.27)

Freg (`, z) ≡ F (`, z)− Fsing (`, z) , (5.2.28)

Fsing (`, z) ≡ −8πa (z)h (`) + 2πc (z) Λ (`) . (5.2.29)

At first glance,
〈
φ2
〉
as presented in (5.2.26) should now be a finite quantity, as the counterterms

GDS (ε) should regulate the sum over ` in the limit of small ε. This unfortunately is not the case, due

to a phenomenon that Levi and Ori refer to as a “blind spot”. This is where GDS (ε) loses information

about the divergences of
〈
φ2
〉
through the non-uniqueness of the Legendre transformation. In

actuality, (5.2.24) should read

(sin (ε/2))−2 = −8π
∞∑
`=0

2`+ 1

4π
(h (`) + k)P` (cos ε) , (5.2.30)

for k an arbitrary constant. This can contribute an extra term to Freg , which we now write in the

form

Freg (`, z) = B (`, z) +A (`, z) . (5.2.31)

A (`, z) contains all the “well behaved” parts of Freg, such that
∑∞

`=0 (2`+ 1)A (`, z) = 0, while

B (`, z) is the potential “blind spot” from the arbitrary constant in (5.2.30). It has the property that

∞∑
`=0

(2`+ 1)B (`, z)P` (cos ε) = 0, (5.2.32)

but taking the ε→ 0 limit one would find that
∑∞

`=0 (2`+ 1)B (`, z) diverges. This blind spot now

needs to be somehow found and removed, such that we could replace Freg by A (`, z) in (5.2.26),

which would leave a
〈
φ2
〉
that is finally finite in the limit as ε→ 0,

〈
φ2
〉
ren

=
∞∑
`=0

2`+ 1

4π
A (`, z) +W (z) . (5.2.33)

Although there are multiple potential forms this blind spot could take, we will now specify that the

blind spot will be a constant with respect to `, B (`, z) = B0 (z). The PMR method is applicable to

other kinds of blind spots, but this is the only kind that needs to be considered in the Schwarzschild

spacetime, which we will be applying this method to in the next section. The numerical method used
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by Levi and Ori to remove the blind spot is to calculate the quantity A (`, z) somewhat indirectly,

by first defining the partial sum

H (`, z) ≡
k∑
`=0

2k + 1

4π
[Freg (k, z)− Freg (`, z)] (5.2.34)

and then realising that the first term in (5.2.33) is nothing more than the limit of this sequence, as

follows

lim
`→∞

H (`, z) = lim
`→∞

∑̀
k=0

2k + 1

4π
[A (k, z)−A (`, z)]

=

∞∑
k=0

2k + 1

4π
A (k, z) + lim

`→∞

(`+ 1)2

4π
A (`, z)

and the second term in the above vanishes. Hence, the final expression for the renormalised
〈
φ2
〉
to

be evaluated numerically is 〈
φ2
〉
ren

= lim
`→∞

H (`, z) +W (z) . (5.2.35)

We can summarise the complete method as a “recipe” with five steps to be followed,

1. Solve the radial mode equation to obtain
∣∣ψ̄ω` (z)

∣∣2. We chose to do this using the Black Hole

Perturbation Toolkit [1].

2. Subtract from each ` mode the ` = 0 contribution,
∣∣ψ̄ω0 (z)

∣∣2 .
3. Integrate the result with respect to ω. This is F (`, z), as in Eq. (5.2.20).

4. Compute the coefficients a (z) , c (z) and d (z) in the expansion of GDS (ε). From these, com-

pute W (z), Fsing (`, z) and hence Freg (`, z) from Eqs. (5.2.27), (5.2.29) and (5.2.28).

5. Compute H (`, z) from Freg (`, z) using (5.2.34) and take the large ` limit. Add this to W (z)

to obtain
〈
φ2
〉
ren

.

How this method can be implemented numerically in the Schwarzschild spacetime will be covered

in the next section.

5.2.3.3 Application to Schwarzschild

In Schwarzschild spacetime the metric can be written in the form

ds2 =

(
1− 2M

r

)(
−dt2 + dr2

∗
)

+ r2dΩ2 (5.2.36)

and so by comparison with (5.2.15) the radial coordinate z is the tortoise coordinate r∗ and Γ (z) =

1− 2M/r (r∗). In practice however, it is still acceptable to use r as the radial coordinate as, in the
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Figure 5.2.1: The solid lines show F (`, r), Eq. (5.2.20), as a function of ` for three values of r. The

dashed lines show Fsing (`, r) defined in (5.2.29) and (5.2.44).

exterior region of the Schwarzschild spacetime, the function r (r∗) is monotonic. Then, the functions

ψω` = r
√

4πωψ̄ω` in (5.2.5) are found by solving the Regge-Wheeler equation (3.1.9). As was already

discussed in Sec. 3.1 we can take the IN and UP modes (the two modes that are devoid of particles

in the Boulware state) to be two linearly-independent solutions to this equation, defined by the pair

of boundary conditions

r
√

4πωψ̄inω` (r) = ψinω` (r) =


Aine−iωr∗ r∗ → −∞

e−iωr∗ +Bineiωr∗ r∗ → +∞
, (5.2.37)

r
√

4πωψ̄upω` (r) = ψupω` (r) =


eiωr∗ +Bupe−iωr∗ r∗ → −∞

Aupeiωr∗ r∗ → +∞
. (5.2.38)

Then, in the Boulware vacuum state,
∣∣ψ̄ω` (r)

∣∣2 =
∣∣ψ̄inω` (r)

∣∣2 +
∣∣ψ̄upω` (r)

∣∣2.
These functions must be computed for a wide range of values of ω and `. The values we chose

are ω ∈ [0, 4] and ` ∈ {0, 1, . . . , 11}. Then from each ` mode the ` = 0 contribution is subtracted

and the result can be integrated numerically with respect to ω to find F (`, r), shown in Fig. 5.2.1.

The value of ω we choose to integrate to (ωmax = 4) is not large enough by itself to obtain the

value of the integral to the accuracy we desire, but we are reluctant to take it much higher due to the

increase in the required computation time. This issue can be remedied by computing an asymptotic
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expansion in powers of ω−1 for the ψω` functions and integrating that expansion over the remaining

large frequencies. This is done in Appendix D of [100] up to an order ω−8 expansion for |ψω`|2 (such

that
∣∣ψ̄ω`∣∣2 ∼ ω−1 |ψω`|2 is known to order ω−9).

We will now briefly detail the derivation and properties of this large ω expansion. The asymptotic

behaviour of both ψinω` and ψ
up
ω` can be encapsulated in a single equation as follows,

ψ
in/up
ω` = e±iωr∗

∞∑
k=0

a
in/up
k (r∗)

ωk
+R (ω) , (5.2.39)

where the +(−) sign is for ψup(ψin) and the remainder R (ω) contains all the terms that decay

faster than a power of ω−1 and thus will be discarded. Substituting this into the radial differential

equation, a recurrence relation between the ak’s can be found which can then be solved via an

integral

aink+1 = − i
2

(
aink
)′

+
i

2

∫ r∗

∞
V` (r̄∗) a

in
k dr̄∗, (5.2.40)

aupk+1 =
i

2

(
aupk
)′ − i

2

∫ r∗

−∞
V` (r̄∗) a

up
k dr̄∗, (5.2.41)

where V` (r∗) is the radial effective potential and ′ indicates a derivative with respect to r∗. The

asymptotic expansion of the square of the radial function can be written in the form,

|ψω`|2 =
∞∑
k=0

bk (r∗)

ωk
, (5.2.42)

where the coefficients bk will be combinations of the various ak. It is important to note that we have

dropped the “in/up” label on both the radial function and the bk coefficients. This is due to the first

of three remarkable properties described in [100]: the bk coefficients for the functions ψinω` and ψ
up
ω`

are identical. The second of these properties is that bk vanishes for any odd k, allowing us to write

(5.2.42) in the form

|ψω`|2 =
∞∑
k=0

b2k (r∗)

ω2k
, (5.2.43)

for k ≥ 0 an integer. These coefficients also satisfy a third interesting property: despite the ak

coefficients being written in terms of integrals of V` (r∗), the b2k coefficients can be written entirely

in terms of the derivatives of V` (r∗). Results up to and including b8 are presented in [100] for

general V`. To continue the expansion past this order, rather than deriving general expressions for

b2k we instead set V` to be the Schwarzschild radial effective potential ((3.1.5) with e = Q = 0)

and calculate ak up to the desired k directly from either (5.2.40) or (5.2.41). Then, considering the

square of (5.2.39) allows us to find b2k.

We have found that we can take ωmax = 4 in our numerical integration and still obtain results

consistent with [100, 99] by including more terms in this asymptotic expansion, up to order ω−14
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Figure 5.2.2: The top (dark blue) line in this figure is
∣∣ψ̄ω10 (r)

∣∣2 − ∣∣ψ̄ω0 (r)
∣∣2 at the value r = 6M .

Subsequent lines show the result of subtracting the asymptotic expansion valid for large ω (5.2.42)

term by term. The legend shows each line’s scaling as a power of ω.

(such that
∣∣ψ̄ω`∣∣2 is known to order ω−15). Fortunately, additional terms in the expansion are

not difficult to compute with Mathematica. This approach is justified by the excellent agreement

between the expansion and the numerical data at each order, even for relatively small values of ω,

as shown in Fig. 5.2.2.

The coefficients of the expansion of the counterterm defined in (5.2.18) take relatively simple

forms in the Schwarzschild spacetime

a (r) =
1

16π2r2
, c (r) = 0, d (r) = − M

24π2r3

and so W (r) and Fsing (`, r) are straightforward to compute

W (r) =
M

24π2r3
, Fsing (`, r) = − 1

2πr2
h (`) (5.2.44)

and so we can construct Freg (`, r), shown in Fig. 5.2.3 and then H (`, r), shown in Fig. 5.2.4.

If H (`, r) fails to converge as ` grows, this is an indication that numerical error is accumulating.

An example of this is shown in Fig. 5.2.5, although for ` ≤ 11 the growth with ` is very slight. We

stop evaluating ` modes before this accumulation becomes significant, as we explain in the next

subsection on error estimation.
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Figure 5.2.3: Freg (`, r) (5.2.28) as a function of ` for three values of r.
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Figure 5.2.4: H (`, r) (5.2.34) as a function of ` for three values of r.
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Figure 5.2.5: The r = 5M line in Fig. 5.2.4, plotted on a different scale.

5.2.3.4 Error Estimation

We have identified and estimated the magnitudes of three potential sources of error in this numerical

calculation,

• ` mode cutoff error: As we can only compute a finite number of ` modes in the sum over

` there is an error introduced by the truncation of the sum. This error is estimated by the

magnitude of the integral of the last ` mode we include. As demonstrated in Fig. 5.2.5 it is

possible that past a certain number of ` modes the ` cutoff error may actually increase with

additional terms in the sum. This informed the decision on the number of ` modes to calculate

for each value of r.

• Large ω tail error: As we only numerically compute each ` mode in the integrand in
〈
φ2
〉
up

to a value ωmax, after which we integrate the asymptotic expansion (5.2.42), this introduces

an error. Our estimate of this error is simply the integral of the last term in the expansion

(i.e., the term proportional to ω−15 in the expansion of
∣∣ψ̄ω` (r)

∣∣2 − ∣∣ψ̄ω0 (r)
∣∣2 ) from ωmax to

infinity.

• Discretisation error: Each ` mode of the integrand is constructed by calculating it over a

grid of ω values and then interpolating the result. This introduces an error that we estimate

by re-calculating the integrand using only half as many points in the grid and then computing

the difference between that and the original result.
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r/M
〈
φ2
〉

2.26 (−6.7868± 0.0005)× 10−4

2.5 (−2.4549± 0.0005)× 10−4

3.0 (−5.705± 0.009)× 10−5

3.5 (−1.585± 0.004)× 10−5

4.0 (−2.878± 0.025)× 10−6

4.5 (1.762± 0.025)× 10−6

5.0 (3.405± 0.028)× 10−6

5.5 (3.859± 0.031)× 10−6

6.0 (3.821± 0.031)× 10−6

Table 5.1: Data for
〈
φ2
〉
outside a Schwarzschild black hole as a function of r/M with error estimates.

For both the large ω tail error and the discretisation error, the contribution to the error from each

of the individual ` modes is combined in quadrature as they are assumed to be independent of

one another. We then choose to combine these three errors (` cutoff, ω tail and discretisation) in

quadrature to obtain an estimate of the total error, even though they are not strictly independent

of one another.

Of the three errors, the discretisation error is the largest, often by multiple orders of magnitude.

This implies that the total error could be best reduced by using more points in the interval of

ω values or changing how the points are distributed. In general this is not straightforward to do

however, because the range of ω that is most relevant to the integral depends on both r and `.

5.2.3.5 Results

In Table I and Fig. 5.2.6 we present the final data for
〈
φ2
〉
in the Schwarzschild spacetime, with error

bars calculated by the above prescription. This can be compared with figure 4b of [99] in which

this was calculated using the t-splitting variant of the PMR method, or figure 4a of [100] calculated

using the same angular splitting method we have employed here.

We will now discuss some of the properties of this data. The radial derivative of
〈
φ2
〉
Schw

changes sign from positive to negative in the approach to the event horizon, such that
〈
φ2
〉
Schw

< 0

for r < r1 ≈ 4.3M . As such
〈
φ2
〉
Schw

has a local maximum, which is located between r = 5.5M and

the radius of the innermost stable circular orbit r = 6M , with a value of
〈
φ2
〉
Schw

≈ 3.86×10−6. It is

finite and negative on the radius of the light ring. Finally, as was mentioned in our discussion of the
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Figure 5.2.6:
〈
φ2
〉
outside a Schwarzschild black hole calculated using the angular-splitting PMR

method, with error bars.

various different vacuum states that can be defined in the Schwarzschild spacetime, (see Sec. 5.1.2,

[40] and [23]) we know that
〈
φ2
〉
Schw

diverges on the approach to the event horizon at r = 2M.

Conclusion

In this chapter, we detailed the calculation of the vacuum polarization of a scalar field
〈
φ2
〉
outside

of a Schwarzschild black hole, focusing specifically on the pragmatic mode sum method of Levi and

Ori. We showed the individual steps of this method and their numerical results in Figs. 5.2.1-5.2.5.

This data will be vital in chapter 7 when we extend the calculation of
〈
φ2
〉
to the spacetime of the

spherically symmetric star.
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Chapter 6

QFT Differences on Locally Equivalent

Spacetimes

Introduction and Overview

In this chapter we describe Anderson and Fabbri’s work on QFT differences between locally equiv-

alent spacetimes presented in Ref. [7], before applying it ourselves to the situation of a spherically

symmetric shell in a flat spacetime. In this simple example, some results can be obtained purely

analytically and we use these results to gain intuition as to how these QFT differences will behave

for more realistic stellar models.

6.1 Mode Sum Expressions for ∆
〈
φ2
〉

and ∆
〈
T µν
〉

6.1.1 Vacuum Polarization

In Ref. [7], exact expressions for the differences in
〈
φ2
〉
and 〈Tµν〉 between the spacetimes of a

Schwarzschild black hole and a spherically symmetric star were derived, using the scheme proposed

in [8] where the spacetime is Euclideanised. These differences are denoted

∆
〈
φ2
〉

=
〈
φ2
〉
star
−
〈
φ2
〉
BH

(6.1.1)

and similarly for 〈Tµν〉. Combining these results with the PMR method to calculate these quantities

for a black hole directly, one can numerically investigate the behavior of
〈
φ2
〉
and 〈Tµν〉 in the

spacetime of a star, in the range of r that both methods are applicable, which will be the topic of

chapter 7.

Before considering any specific method of calculating
〈
φ2
〉
, we note what we would expect to

139



140 CHAPTER 6. QFT DIFFERENCES ON LOCALLY EQUIVALENT SPACETIMES

occur upon taking the difference in (6.1.1). From (5.2.10) for
〈
φ2
〉
ren

and the knowledge that GL

depends only on the local geometry, we see that any subtraction performed in the vacuum region

of both spacetimes circumvents any need to be concerned with counterterms. More specifically,

the counterterms (5.2.11) depend only on the metric functions and their derivatives at the radial

coordinate of interest r and by Birkhoff’s theorem, the two spacetime metrics are identical in a

neighborhood of that point in the vacuum region. We can see explicitly how this happens in the

method of Anderson, Hiscock and Samuel. Recall Eq. (5.2.12) for
〈
φ2
〉
in the scheme of [8]. This is

the sum of two terms, one to be calculated analytically and the other numerically〈
φ2
〉

=
〈
φ2
〉
numeric

+
〈
φ2
〉
analytic

. (6.1.2)

The analytically-determined piece, constructed from φWKB and GDS (5.2.11), is identical outside

the event horizon of a black hole and outside the surface of a spherically symmetric star of the same

mass. This means that when taking the difference, only the numerically-calculated piece needs to

be considered. This takes the form〈
φ2
〉
numeric

=
1

4π2

∫ ∞
0

dω

[ ∞∑
`=0

(
(2`+ 1)Cω`pω` (r) qω` (r)− 1√

r (r − 2M)

)
+

ω

1− 2M/r

]
,

(6.1.3)

where pω` and qω` are radial modes that satisfy the differential equation

1

h

d2ψω`
dr2

+

[
2

rh
+

f ′

2fh
− h′

2h2

]
dψω`
dr
−
[
ω2

f
+
`(`+ 1)

r2
+ ξR (r)

]
ψω` = 0, (6.1.4)

with the boundary conditions that pω` is regular at the event horizon of the black hole or the center

of the star and qω` is regular at radial infinity. Here, the functions f (r) = gtt (r) and h (r) = grr (r)

depend on the metric (such that in Schwarzschild spacetime f = 1/h = 1 − 2M/r), R is the Ricci

scalar

R (r) = − f
′′

fh
+

1

2

(f ′)2

f2h
+

1

2

f ′h′

fh2
− 2f ′

rfh
+

2h′

rh2
+

2(h− 1)

r2h
(6.1.5)

and Cω` is a normalisation constant defined via the Wronskian

Cω`

[
pω`

dqω`
dr
− dpω`

dr
qω`

]
= − 1

r(r − 2M)
. (6.1.6)

We will refer to the mode functions in the Schwarzschild spacetime as pS and qS and the mode

functions in the star spacetime as p∗ and q∗. As the qω` function is determined by the boundary

condition at infinity, which is the same for both spacetimes, we have q∗ = qS . To find p∗ outside the

star surface we match p∗ at the star surface (found by solving (6.1.4) with f and h determined by

the star’s interior structure) onto a linear combination of pS and qS such that the function and its

first derivative are continuous. Hence

p∗ = αω`pS + βω`qS , (6.1.7)
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where

αω` =
p∗q
′
S − p′∗qS

q′SpS − p′SqS

∣∣∣∣∣
r=R

, (6.1.8)

βω` =
pSp

′
∗ − p′Sp∗

q′SpS − p′SqS

∣∣∣∣∣
r=R

(6.1.9)

and each of the modes are evaluated on the star surface r = R. Then, using (6.1.6) we see that

αω`C∗ = CS . Putting all of this together, the difference in
〈
φ2
〉
between the two spacetimes takes

the form

∆
〈
φ2
〉

=
1

4π2

∫ ∞
0

dω
∞∑
`=0

(2`+ 1)CS
βω`
αω`

q2
S (6.1.10)

and this is an exact expression, as presented in [7]. It is also independent of the choice of normali-

sation of the functions pS and qS .

6.1.2 Extension to the Stress-Energy Tensor

The methods of Anderson, Hiscock and Samuel, applicable to asymptotically flat spherically sym-

metric spacetimes, allow also calculation of the stress-energy tensor 〈Tµν〉. The details were originally

presented in [8], but schematically the method is similar to the calculation of the vacuum polariza-

tion. In particular, as shown in [7], to calculate the stress-energy difference ∆ 〈Tµν〉 between a star

and a black hole we only need to be concerned with an entirely numerically determined piece, as the

analytically determined term cancels in the subtraction. This numerical term is constructed out of

five integrals labeled ∆Si with the index i ∈ {1, . . . , 5},

∆Si =
1

4π2

∫ ∞
0

dω
∞∑
`=0

(2`+ 1) ∆si (6.1.11)

where

∆s1 = ω2Cω`
βω`
αω`

q2
ω`, (6.1.12)

∆s2 = Cω`
βω`
αω`

(
dqω`
dr

)2

, (6.1.13)

∆s3 =

(
`+

1

2

)2

Cω`
βω`
αω`

q2
ω`, (6.1.14)

∆s4 = 2Cω`
βω`
αω`

qω`

(
dqω`
dr

)
, (6.1.15)

∆s5 = Cω`
βω`
αω`

q2
ω`, (6.1.16)
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such that ∆S5 = ∆
〈
φ2
〉
. For each of the three independent components of ∆ 〈Tµν〉 the construction

is as follows,

∆
〈
T tt
〉

=

(
2ξ + 1

2

)
1− 2M/r

∆S1 +

(
2ξ − 1

2

)((
1− 2M

r

)
∆S2 +

1

r2
∆S3 −

1

4r2
∆S5

)
− Mξ

r2
∆S4,

(6.1.17)

∆ 〈T rr〉 = − 1

2 (1− 2M/r)
∆S1 +

1

2

(
1− 2M

r

)
∆S2 −

1

2r2
∆S3 +

ξ

r

(
2− 3M

r

)
∆S4 +

1

8r2
∆S5,

(6.1.18)

∆
〈
T θθ

〉
=

(
2ξ − 1

2

)
1− 2M/r

∆S1 +

(
2ξ − 1

2

)(
1− 2M

r

)
∆S2 + ξ

(
2

r2
∆S3 −

(
1− 2M

r

)
1

r
∆S4 −

1

2r2
∆S5

)
.

(6.1.19)

We will use the results (6.1.10)-(6.1.19) in two ways. Firstly, in section 6.2, instead of taking the

difference between a spherically symmetric star and a black hole, we will consider a toy model where

we take the difference between the spacetime of a spherical shell and flat spacetime. This situation

is simple enough for information about (6.1.10) to be extracted analytically without resorting to far

field approximations.

Then, in chapter 7, we will perform a numerical analysis of the behavior of ∆
〈
φ2
〉
and ∆ 〈Tµν〉

near the surface of stars with a specified internal structure and, by combining this with the results

of the PMR method covered in the previous chapter, also infer the behavior of
〈
φ2
〉
star

in that same

region.

6.1.2.1 Stress Energy Conservation

It can be shown directly from the expressions for the individual components (6.1.17)-(6.1.19) that

∆ 〈Tµν〉 satisfies the conservation equation ∇µ [∆ 〈Tµν〉] = 0 outside the star. We will briefly run

through this calculation. First we apply the inverse metric to raise an index in each of (6.1.17),

(6.1.18) and (6.1.19) and following the definition of the covariant derivative on a tensor of rank (2,0)

Xν ≡ ∇µ [∆ 〈Tµν〉] = ∂µ [∆ 〈Tµν〉] + Γµµσ [∆ 〈T σν〉] + Γνµσ [∆ 〈Tµσ〉]

=
1√
−g

∂µ
(√
−g∆ 〈Tµν〉

)
+ Γνµσ [∆ 〈Tµσ〉] , (6.1.20)

where in the the second line we have used the simplification of the Christoffel symbols that comes

from contracting the upper index with one of the lower ones

Γµµσ =
1√
−g

∂σ
(√
−g
)
. (6.1.21)

The only component of the vectorXν in Eq. (6.1.20) that does not vanish is the ν = r component.

This is due to vanishing Christoffel symbols and the fact that each component of ∆ 〈Tµν〉 depends
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on r only. A short calculation shows,

Xr =

[
∂r +

2

r
− M

r2fsch

]
∆ 〈T rr〉+

Mfsch
r2

∆
〈
T tt
〉
− 2rfsch∆

〈
T θθ
〉
. (6.1.22)

Using Eqs. (6.1.12)-(6.1.16) outside the star this can be written entirely in terms of qS and

its derivatives. The second derivatives of qS can be removed using the radial equation (6.1.4) in

Schwarzschild spacetime, leading to the vanishing of (6.1.22) and so conservation is satisfied.

6.1.3 Far Field Limit for Newtonian Stars

Some information about the form of ∆
〈
φ2
〉
and ∆ 〈Tµν〉 far from the star or black hole can be

obtained without knowledge of the nature of the gravitational source. In this region (ωr � `) the

spacetime is asymptotically flat and the solutions of Eq. (6.1.4) are

pS → pflat = ω−`i` (ωr) , (6.1.23)

qS → qflat = ω`+1k` (ωr) , (6.1.24)

where i` and k` are the modified spherical Bessel functions of the first and second kinds respectively.

This produces a normalisation constant Cflat = 2/π. The function qflat can be expanded as a finite

power series for large ωr in the following manner

qflat =
π

2
ω`+1e−ωr

[
c0

ωr
+ · · ·+ c`

(ωr)`+1

]
, (6.1.25)

where c0 = 1 and ck are constants that depend on `. Taking the same approach as [7] we assume

that the coefficients αω` and βω` admit a series expansion around ω = 0 of the form

αω` = α0` + ωα1` + ω2α2` + · · · , (6.1.26)

βω` = β0` + ωβ1` + ω2β2` + · · · . (6.1.27)

Then, as the sum over ` in (6.1.10) is now a terminating sum, we swap the order of the sum and

the integral and perform integration by parts. The result is a series in inverse powers of r

∆
〈
φ2
〉

=
1

16πr3

β00

α00
+O

(
r−4
)

(6.1.28)

and hence, at leading order in r−1 the dominant contribution to ∆
〈
φ2
〉
comes from the ω = ` = 0

piece of β/α. By continuing this expansion to terms higher order in r−1 it can be seen that the first

contribution from a given ` mode is at order r−2`−3. It is worth noting that, although Eq. (6.1.10)

was independent of the normalisation of the functions pω` and qω`, Eq. (6.1.28) is not, as a specific

normalisation was chosen in Eqs. (6.1.23) and (6.1.24).
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This is as far as we can go without specifying the internal structure of the star, as knowledge of

p∗ is required to calculate αω` and βω`. For a star that has a radius R�M, (a Newtonian star) it

was shown in [7] that for general coupling ξ one has β00/α00 = −4Mξ/π and so (6.1.28) becomes

∆
〈
φ2
〉

= − Mξ

4π2r3
+O

(
r−4
)
. (6.1.29)

It can be seen that, at leading order, the difference in
〈
φ2
〉
between a Newtonian star and a black

hole depends only on the mass of the gravitational source and that for minimal coupling ∆
〈
φ2
〉

= 0.

This latter result is what Anderson and Fabbri call the universality of the vacuum polarization in

the far field limit.

The same method can be applied to the difference in the stress-energy tensor, resulting in

∆
〈
Tµν
〉

=
3

16πr5

β00

α00

(
ξ − 1

6

)
diag [2,−2, 3, 3] +O

(
r−6
)
, (6.1.30)

−3Mξ

4π2r5

(
ξ − 1

6

)
diag [2,−2, 3, 3] +O

(
r−6
)
. (6.1.31)

As well as vanishing in the case of minimal coupling, like ∆
〈
φ2
〉
does, this also vanishes for conformal

coupling ξ = 1/6.

This universality is explored further in [36] where the authors consider more exotic spacetimes

such as wormholes and also in [70] for spacetimes of dimension D > 4. We will instead extend the

results of Anderson an Fabbri to more general stellar structures in chapter 7.

6.2 Toy Model: Spherical Shell on Flat Spacetime

In the next chapter, we will be using the method of Anderson and Fabbri to numerically analyse

the vacuum polarization and stress-energy differences of a scalar field between a star and a black

hole near the star surface, where analytical approximations applicable in the far field (such as those

discussed in the previous section) cannot be used. In preparation for this, we will first consider a toy

model from which some information can be extracted analytically, even near the boundary between

the interior and exterior regions of the spacetime. We will use this model to gather information

about the convergence of the sums over ` and integrals over ω in ∆
〈
φ2
〉
and ∆ 〈Tµν〉, which we can

then compare and contrast with more realistic star models.

The toy model is as follows: the spacetime will consist of two flat regions, an interior and an

exterior, separated by a spherically symmetric, infinitesimally thin shell of radius R. We will impose

Dirichlet boundary conditions on the shell surface. This model differs from that of a constant

density star, to be described in Sec. 7.1, in multiple aspects. While the metric functions across the

shell surface are smooth, (on account of being identical on both sides of the boundary) the metric
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functions of a constant density star are not smooth across the star surface. In addition, the surface

of the shell forms a “hard” boundary due to the Dirichlet boundary condition (only the value of φ

is fixed on the shell surface, not its derivative), as opposed to the star surface where agreement of

both the radial mode and its derivative will be imposed. A hard boundary has the possibility of

introducing additional divergences that would not be present otherwise.

Despite these differences, the vacuum polarization and stress-energy differences in this model

will be shown to have some properties similar to their equivalents in a more realistic stellar model

in the next chapter, namely, their pointwise convergence properties when we consider the sum over

`.

6.2.1 Outside the Shell

We will be taking the difference of the vacuum polarization and the energy density between the flat

spacetime without a spherical shell (Minkowski spacetime) and flat spacetime with a shell at radius

r = R on which Dirichlet boundary conditions (φ = 0) are imposed. First, the linearly independent

solutions on a spacetime without the shell are just the flat space solutions pflat and qflat from the

previous section, Eqs. (6.1.23) and (6.1.24). By the same logic as presented in Sec. 6.1, pext and qext

in the exterior region of the spacetime with the shell must be

pext = αω`pflat + βω`qflat, (6.2.1)

qext = qflat (6.2.2)

and we find the ratio of αω` and βω` using the Dirichlet boundary condition pext (R) = 0,

βω`
αω`

= −
pflat (R)

qflat (R)
= −ω−2`−1 i` (ωR)

k` (ωR)
. (6.2.3)

Substituting into Eq. (6.1.10), the vacuum polarization difference is

∆
〈
φ2
〉
ext

=
−1

4π2

∫ ∞
0

dω
∞∑
`=0

(2`+ 1)
2

π

i` (ωR)

k` (ωR)
ωk2

` (ωr) . (6.2.4)

To proceed we assume that we can look at each ` mode individually, i.e., that the order of

summation and integration can be interchanged. The ` = 0 contribution is

∆
〈
φ2
〉
ext0

=
−1

2π3

∫ ∞
0

dω
i0 (ωR)

k0 (ωR)
ωk2

0 (ωr) (6.2.5)

and this integral converges for r > R to

∆
〈
φ2
〉
ext0

=
−1

8π2r2
log

(
r

r −R

)
. (6.2.6)
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This demonstrates a logarithmic divergence on the approach to the shell surface r → R. The large

r limit of this result is

lim
r→∞

∆
〈
φ2
〉
ext0

=
−R

8π2r3

∞∑
n=0

(
R

r

)n 1

n+ 1

=
−R

8π2r3
+O

(
r−4
)
, (6.2.7)

which we can see has the same scaling with r as in the case of the Newtonian star, Eq. (6.1.28).

Next, we consider the energy density difference, which is the tt-component of the stress-energy

difference. In a flat spacetime, Eq. (6.1.17), simplifies to

∆
〈
T tt
〉

=

(
2ξ +

1

2

)
∆S1 +

(
2ξ − 1

2

)(
∆S2 +

1

r2

((
`+

1

2

)2

− 1

4

)
∆
〈
φ2
〉)

. (6.2.8)

For ` = 0, ∆S1 and ∆S2 in the exterior can be found as follows, where we make use of the dimen-

sionless parameter ρ = R/r < 1,

∆S1ext0 =
−1

2π3

∫ ∞
0

dω
i0 (ωR)

k0 (ωR)
ω3k2

0 (ωr)

=
−1

32π2r4

(
1

(ρ− 1)2 − 1

)
, (6.2.9)

∆S2ext0 =
−1

2π3

∫ ∞
0

dω
i0 (ωR)

k0 (ωR)
ω

[
d

dr
k0 (ωr)

]2

=
−1

32π2r4

(
(6− 5ρ) ρ

(ρ− 1)2 − 4 log (1− ρ)

)
→ −1

32π2r4

(
1

(ρ− 1)2 −
4

ρ− 1
− 5− 4 log (1− ρ) +O (1− ρ)

)
, (6.2.10)

∆
〈
T tt
〉
ext0

=

(
2ξ +

1

2

)
∆S1ext0 +

(
2ξ − 1

2

)
∆S2ext0

=
−1

16π2r4

[
ρ (8ξ − 1− (6ξ − 1) ρ)

(ρ− 1)2 − (4ξ − 1) log (1− ρ)

]
→ −1

8π2r4

[
ξ

(ρ− 1)2 +
1− 4ξ

2 (ρ− 1)
+

1

2
(1− 6ξ − (4ξ − 1) log (1− ρ)) +O (1− ρ)

]
,

(6.2.11)

where “→” indicates the behavior of each quantity on the approach to the shell surface ρ → 1−.

Note that these expressions all scale like r−4 , which in natural units ~ = c = 1 is the correct scaling

for an energy density.

We see that the external energy density difference contribution from the ` = 0 (6.2.11) mode

diverges quadratically on the shell surface for non-minimal coupling and diverges linearly for minimal

coupling ξ = 0. We also see that the energy density difference outside the shell is always positive

for minimal coupling. We will return to discussing these divergences after examining the vacuum

polarization and stress energy differences inside the shell.
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Continuing to the ` = 1 mode, the vacuum polarization difference in the exterior is given by

∆
〈
φ2
〉
ext1

=
−3

2π3

∫ ∞
0

dω
i1 (ωR)

k1 (ωR)
ωk2

1 (ωr) . (6.2.12)

We perform the change of variables to x = ωR and employ the same dimensionless parameter as

before, ωr = x/ρ where ρ = R/r < 1. The integrals over x can be performed with a computer

algebra package such as Mathematica, an in each case we check that the obtained function agrees

with the result obtained via a numerical integration scheme to some large x.

∆
〈
φ2
〉
ext1

=
−3

4π2r2

∫ ∞
0

dx
ex(1−2/ρ) (x+ ρ)2 (x coshx− sinhx)

x3 (x+ 1)

=
−3

8π2r2

[
ρ (ρ− 2)− 2 (ρ− 1)2 e2/ρ−2Ei

(
2− 2

ρ

)
− log (1− ρ) +O (1− ρ)

]
→ −3

8π2r2
(−1− log (1− ρ) +O (1− ρ)) , (6.2.13)

where the last line is the limit as ρ→ 1− and Ei (x) is the exponential integral function

Ei (x) ≡
∫ ∞
−x

e−t

t
dt. (6.2.14)

The second line of Eq. (6.2.13) has an expansion for small ρ (large r),

∆
〈
φ2
〉
ext1
≈ −3R3

8π2r5

(
5

6
+

7

10
ρ2 − 5

6
ρ3 + · · ·

)
(6.2.15)

and so, like the ` = 0 mode in Eq. (6.2.7), has the same scaling with r as the corresponding ` mode

for the Newtonian star, r−2`−3. This expansion can also be inferred by performing a simpler integral

than the one in the first line of Eq. (6.2.13) at the cost of losing knowledge of ∆
〈
φ2
〉
ext1

outside of

the small ρ regime. This is done by expanding the integrand on the first line of (6.2.13) for small x

while keeping the exponential factor present such that the integral over x remains convergent. The

small ρ expansion of the resulting integral then agrees with (6.2.15).

We can continue the calculation of the energy density difference by finding ∆S1 and ∆S2

∆S1ext1 =
−3

4π2r2R2

∫ ∞
0

dx
ex(1−2/ρ) (x+ ρ)2 (x coshx− sinhx)

x (x+ 1)

=
−3

4π2r2R2

[
− (ρ− 1)2 e2/ρ−2Ei

(
2− 2

ρ

)
+

1

8
ρ

(
−4 +

1

(ρ− 1)2 +
1

ρ− 1
+ 5ρ+ 4 log (1− ρ)

)]
→ −3

32π2r4

(
1

(ρ− 1)2 +
2

ρ− 1
+ 2 (1 + 2 log (1− ρ)) +O (1− ρ)

)
(6.2.16)

and we see a quadratic divergence as ρ→ 1−. For ∆S2 we get,

∆S2ext1 =
−3

4π2r2R2

∫ ∞
0

dx
ex(1−2/ρ)

(
2ρ2 + x (2ρ+ x)

)2
(x coshx− sinhx)

x3 (x+ 1)

=
3

32π2r2R2

[
ρ

(
7ρ− 16ρ (ρ− 1)2 +

4 + ρ (8ρ− 13)

(ρ− 1)2

)
+ 8 (1 + 2ρ (ρ− 1))2 e2/ρ−2Ei

(
2− 2

ρ

)]
→ −3

32π2r4

[
1

(ρ− 1)2 −
2

ρ− 1
− 2 (9 + 4γ + 4 log 2 + 4 log (1− ρ)) +O (1− ρ)

]
(6.2.17)
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and we observe the same quadratic divergence as ∆S1 and a linear divergence of the same magnitude

as ∆S1 but with the opposite sign. This has consequences when we come to form the energy density

difference

∆
〈
T tt
〉
ext1

=

(
2ξ +

1

2

)
∆S1ext1 +

(
2ξ − 1

2

)(
∆S2ext1 +

2

r2
∆
〈
φ2
〉
ext1

)
→ −3

8π2r4

[
ξ

(ρ− 1)2 +
1

2(ρ− 1)
+

7

2
+ γ (4ξ − 1) (6.2.18)

− 4ξ (3 + log 2) + log 2 +

(
5

2
− 6ξ

)
log (1− ρ) +O (1− ρ)

]
,

which, like the ` = 0 mode, diverges quadratically for non-minimal coupling, diverges linearly for

minimal coupling, and is positive for minimal coupling.

For the ` = 2 mode ∆
〈
T tt
〉
ext2

becomes difficult to compute analytically due to the complexity

of the integrals over x, but ∆
〈
φ2
〉
ext2

remains feasible. We omit the full analytical expression for

∆
〈
φ2
〉
ext2

as it is somewhat unwieldy, but we present the asymptotics on the approach to the shell

surface and in the far field respectively,

lim
r→R

∆
〈
φ2
〉
ext2

=
−5

16π2r2

(
−3− 2 log

(
1− R

r

)
+O

(
1− R

r

))
, (6.2.19)

lim
r→∞

∆
〈
φ2
〉
ext2

=
−7R5

16π2r7
+O

(
r−8
)
. (6.2.20)

Fig. 6.2.1 shows ∆
〈
φ2
〉
ext

for the first three ` modes and uses numerical results to verify the

analytical calculations.

6.2.1.1 The Far Field Limit

If we restrict ourselves to the far field limit (small ω), we can use the same method used by Fabbri

and Anderson in [7] to get an approximate result for ∆
〈
φ2
〉
ext

for general `. The ratio in Eq. (6.2.3)

admits an expansion around ω = 0, with a leading order coefficient

β0`

α0`
=

−2R2`+1

4`π (1/2)` (3/2)`
, (6.2.21)

where (a)n is a Pochammer symbol. Combining this with Eq. (6.1.25), the integral in (6.2.4) can be

evaluated for general ` (cf. Eq. (6.2.20))

lim
r→∞

∆
〈
φ2
〉
ext`

= −(2`+ 1)

π22`+4

Γ (`+ 1) Γ (2`+ 3/2)

Γ (`+ 1/2) Γ2 (`+ 3/2)

R2`+1

r2`+3
+O

(
r−2`−4

)
(6.2.22)

and the sum over ` then converges to

∆
〈
φ2
〉
ext
≈ −R

24π2r5

[
3r2

4F3

(
3

4
, 1, 1,

5

4
;
1

2
,
3

2
,
3

2
;
R2

r2

)
+ 5R2

4F3

(
7

4
, 2, 2,

9

4
;
3

2
,
5

2
,
5

2
;
R2

r2

)]
,

(6.2.23)
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Figure 6.2.1: ∆
〈
φ2
〉
ext

outside a thin shell of radius R = 1, for the first three ` modes. The points

were found by numerical integration while the solid curves are the analytical results, which for ` = 0

and ` = 1 are Eqs. (6.2.6) and (6.2.13) respectively.

where pFq (z) is a hypergeometric function. This method can be extended to ∆
〈
T tt
〉
ext

also. For

minimal coupling and general ` the energy density in the far field is

∆
〈
T tt
〉
ext`
≈ − (`+ 1) (2`+ 3) Γ (4`+ 3)

28`+7Γ2 (`+ 1/2) Γ2 (`+ 3/2)

R2`+1

r2`+5
,

which converges when summed over ` to

∆
〈
T tt
〉
ext
≈ −R

32π2r7

[
6r2

4F3

(
3

4
, 1, 1,

5

4
;
1

2
,
1

2
,
3

2
;
R2

r2

)

+ 25R2
4F3

(
7

4
, 2, 2,

9

4
;
3

2
,
3

2
,
5

2
;
R2

r2

)
+ 10R2

5F4

(
7

4
, 2, 2, 2,

9

4
; 1,

3

2
,
3

2
,
5

2
;
R2

r2

)]
. (6.2.24)

Both (6.2.23) and (6.2.24) are regular everywhere outside the shell and so we conclude that

even though each individual ` mode may diverge on the approach to the shell surface, we still

have pointwise convergence of the sum over ` far from the shell. We will find in Sec. 7.3 that this

divergence of each ` mode individually as r → R is a property that does not hold for a more realistic

stellar model, although the sum over ` in this limit will remain divergent. This would appear to

imply that at r = R, the divergence of each individual ` mode is a product of the hard boundary

of the shell model, but the divergence of the sum over ` is caused by something more fundamental.

We will return to discussing this in Sec. 7.3.
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6.2.2 Inside the Shell

In the interior region of the shell spacetime, the roles of p and q are swapped compared to the

exterior, as follows

qint = αω`pflat + βω`qflat, (6.2.25)

pint = pflat, (6.2.26)

such that βCshell = Cflat. This is because inside the shell the boundary condition on p is known

(regularity at the origin) and so it is q that now must be fixed on the shell surface. We find the

ratio of αω` and βω` by imposing the Dirichlet boundary condition qint (R) = 0 on the shell surface.

The vacuum polarization difference is

∆
〈
φ2
〉
int

=
1

4π2

∫ ∞
0

dω

∞∑
`=0

(2`+ 1)C
α

β
p2

=
−1

4π2

∫ ∞
0

dω

∞∑
`=0

(2`+ 1)
2

π

k` (ωR)

i` (ωR)
ωi2` (ωr) , (6.2.27)

or for ` = 0

∆
〈
φ2
〉
int0

=
−1

2π3

∫ ∞
0

dω
k0 (ωR)

i0 (ωR)
ωi20 (ωr) (6.2.28)

and this integral converges whenever r < R. To perform the integral, we change variables once more

to x = ωR, set ωr = ρ̄x where ρ̄ = 1/ρ = r/R < 1 and write the integral in terms of hyperbolic

functions

∆
〈
φ2
〉
int0

=
−1

4π2r2

∫ ∞
0

dx

x
(cothx− 1) sinh2 (ρ̄x) . (6.2.29)

Despite the simplicity of this integrand, evaluating the integral must be done in multiple steps.

First we expand the integrand in powers of ρ̄

∆
〈
φ2
〉
int0

=
−1

4π2r2

∫ ∞
0

dx

∞∑
n=1

ρ̄2n

(3/2)n−1 (2)n−1

(cothx− 1)x2n−1. (6.2.30)

This can be integrated term by term to get

∆
〈
φ2
〉
int0

=
−1

4π2r2

∞∑
n=1

ζ (2n)

2n
ρ̄2n

=
−1

8π2r2
log (πρ̄ cscπρ̄) , (6.2.31)

where ζ (x) is the Riemann zeta function. In this calculation and in the calculation of the energy

density difference below, whenever we evaluate an integral via an expansion in powers of ρ̄ we

check the final result against numerical integration for a range of ρ̄ up to ρ̄ = 0.999 and find good

agreement.
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Now to extend this to the energy density difference. The only important integrals are ∆S1 and

∆S2, like the exterior.

∆S1int0 =
−1

4π2r2R2

∫ ∞
0

x (cothx− 1) sinh2 (ρ̄x) dx (6.2.32)

and this integral is comparatively straightforward to evaluate without requiring an expansion in ρ̄,

∆S1int0 =
−1

32π2r4

(
ρ̄2π2

(
csc2 πρ̄− 1

3

)
− 1

)
→ −1

32π2r4

(
1

(ρ̄− 1)2 +
2

ρ̄− 1
+O (ρ̄− 1)

)
, (6.2.33)

where “→” means taking the limit on the approach to the shell surface, ρ̄→ 1−. The second integral

however is more involved and is handled as follows,

∆S2int0 =
−1

4π2r4

∫ ∞
0

dx

x
(cothx− 1) (sinh ρ̄x− ρ̄x cosh ρ̄x)2

=
−1

4π2r4

∫ ∞
0

dx
∞∑
n=1

n

9 (5/2)n−1 (4)n−1

ρ̄2n+4 (cothx− 1)x2n+3

=
−1

4π2r4

[ ∞∑
n=1

n (2n+ 3)

4 (n+ 2)
ζ (2n+ 4) ρ̄2n+4

]

=
−1

32π2r4

(
1

3
π2ρ̄2 + πρ̄

(
4 cotπρ̄+ πρ̄ csc2 πρ̄

)
+ 4 log (πρ̄ cscπρ̄)− 5

)
→ −1

32π2r4

(
1

(ρ̄− 1)2 +
6

ρ̄− 1
+

2

3

(
π2 − 6 log (1− ρ̄)

)
+O (ρ̄− 1)

)
, (6.2.34)

where in the second line we have expanded the integrand in powers of ρ̄ and in the third line the

integral has been evaluated after interchanging it with the sum. Finally, the energy density is

∆
〈
T tt
〉
int0

=

(
2ξ +

1

2

)
∆S1int0 +

(
2ξ − 1

2

)
∆S2int0

=
−1

16π2r4

[
1− 1

6
π2ρ̄2 − 6ξ − πρ̄(1− 4ξ) cotπρ̄+ 2π2ρ̄2ξ csc2 πρ̄− (1− 4ξ) log (πρ̄ cscπρ̄)

]
→ −1

8π2r4

[
ξ

(ρ̄− 1)2 +
8ξ − 1

2 (ρ̄− 1)
+

1

12
(4ξ − 1)

(
π2 − 6 log (1− ρ̄)

)
+O (ρ̄− 1)

]
.

(6.2.35)

This diverges quadratically for non-minimal coupling and linearly for minimal coupling, in which

case the energy density difference is negative.

6.2.3 The Total Energy Difference

6.2.3.1 Analytical Calculation: ` = 0

For ` = 0, we have an expression for the energy density difference both inside and outside the

shell. Hence, we can obtain a total energy difference by integrating the energy density over the full
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spacetime. For general coupling the expansions of ∆
〈
T tt
〉
near the shell, are (see Eqs (6.2.11) and

(6.2.35))

∆
〈
T tt
〉
ext0
→ −1

8π2r4

[
ξ

(ρ− 1)2 +
1− 4ξ

2 (ρ− 1)
+

1

2
(1− 6ξ − (4ξ − 1) log (1− ρ))

]
, (6.2.36)

∆
〈
T tt
〉
int0
→ −1

8π2r4

[
ξ

(ρ̄− 1)2 −
1− 8ξ

2 (ρ̄− 1)
+

1

12
(4ξ − 1)

(
π2 − 6 log (1− ρ̄)

)]
. (6.2.37)

We now perform the integral of the exterior energy density over the exterior region of the spacetime∫ ∞
R+ε

dr4πr2∆
〈
T tt
〉
ext0

= − ξ

2πε
+

2ξ − (4ξ − 1) log
(
R
ε

)
4πR

+O (ε) (6.2.38)

and the integral of the interior energy density over the interior region of the spacetime∫ R−ε

0
dr4πr2∆

〈
T tt
〉
int0

= − ξ

2πε
+

1

24πR

(
π2 − 12ξ + 6 (4ξ − 1) log

(
R

ε

))
+O (ε) . (6.2.39)

It is intriguing that the coupling ξ continues to play a role in the expressions for ∆
〈
T tt
〉
, even

though the Ricci tensor should vanish everywhere except on the infinitesimally thin shell. Indeed,

for non-minimal coupling we see that the total energy difference retains a ε−1 style divergence.

Conversely, for minimal coupling, we obtain a finite result for the energy in the ` = 0 mode, due to

the cancellation of the logarithmically divergent terms when (6.2.38) and (6.2.39) are summed,

E0 =
π

24R
(6.2.40)

and this has the expected scaling with R for an energy in natural units.

6.2.3.2 Numerical Verification: ` = 0

We can use numerical results to verify this analytical calculation. Fig. 6.2.2 shows ∆
〈
T tt
〉
ext0

and

∆
〈
T tt
〉
int0

for minimal coupling, indicating agreement between the analytical and numerical results

both inside and outside the shell. Other than r = R the only other point where a numerical result

cannot be obtained is at r = 0, where we instead interpolate over the remaining small values of r.

To find the total energy numerically we subtract a counterterm from the data in Fig. 6.2.2

motivated by the form of the linear divergence of 4πr2∆
〈
T tt
〉
, that also has a vanishing integral

over all positive r such that the total energy isn’t affected. The counterterm is, for general `,

fc (r) =
2`+ 1

4π

2

(r +R)

1

(r −R)
, (6.2.41)

such that the total energy difference for general ` is

E` =

∫ ∞
0

(
4πr2∆

〈
T tt
〉
`
− fc (r)

)
dr +

∫ ∞
0

fc (r) dr, (6.2.42)
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Figure 6.2.2: ∆
〈
T tt
〉
for minimal coupling ξ = 0 both inside and outside a shell of radius R = 1

for ` = 0. The points were found by numerical integration while the solid curves are the analytical

results from Eqs (6.2.11) and (6.2.35).
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Figure 6.2.3: The regularised energy density 4πr2∆
〈
T tt
〉
− fc (r) for a thin shell of radius R = 1,

minimal coupling ξ = 0 and ` = 0.

where the second integral vanishes.

The expression in the first integrand of (6.2.42) produces the data in Fig. 6.2.3, which retains a

logarithmic divergence at r = R. To integrate this data over all positive r numerically we approxi-

mate the behaviour of the energy density for r > rmax (typical values of rmax range from 20 to 40)

by a function of the form ar−5 + br−6 with constants a and b found via numerical fitting. Addi-

tionally, to reduce potential numerical error near the logarithmic divergence at r = R, we integrate

the analytical expression of Eq. (6.2.11) from r ∈ (R− ε,R) and the expression of Eq. (6.2.35) from

r ∈ (R,R+ ε) where ε is of order 10−4. The numerical verification produces a result that agrees

with the analytical expression for the total energy (6.2.40) to at least six significant figures.

6.2.3.3 Numerical Calculation: ` > 0

For ` > 0 we don’t have an analytical expression for ∆
〈
T tt
〉
both inside and outside the shell,

so we can only obtain a result for the full energy numerically using the process described above.

This also means we cannot attempt to reduce numerical error near the shell surface by integrating

analytics. We can estimate this error by performing a similar process to the one performed in

the far field: for a shell of radius R = 1 we approximate the near shell behavior by the function

aext+bext log
(
1− 1

r

)
+cext (r − 1) outside the shell and aint+bint log (1− r)+cint (r − 1) inside the
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` E`

0 0.1309± 0.0032

1 1.132± 0.010

2 3.132± 0.020

3 6.13± 0.04

4 10.13± 0.07

Table 6.1: The total energy difference, found by integrating inside and outside a shell for the first

five ` modes, with error bars.

shell. We combine this error in quadrature with the magnitude of the integral of the approximate

function in the far field ar−2`−5 + br−2`−6 from rmax to ∞ and the magnitude of the interpolation

over the small values of r to obtain the error values in Table (6.1).

This table indicates that, while the contribution to the total energy from each individual ` mode

is finite, the terms in the sum over ` are increasing and so the sum diverges. However, there is a

clear pattern in the results, consistent with the form

E` =
π

24R
+
` (`+ 1)

2R
(6.2.43)

and so this raises the possibility of employing a regularisation scheme in which we subtract this

expression from each numerically found E` and sum together any potentially remaining small terms.

We would expect such a result to be somehow comparable to the known Casimir zero-point energy

of the scalar field induced by a spherical shell on a flat spacetime, see [106]. However, what is left

after the numerical subtraction of (6.2.43) from the data in Table 6.1 has large enough error bars

that the result is consistent with zero, so we cannot ignore the possibility that the E` of Eq. (6.2.43)

is the exact result.

Conclusion

After summarising the method of Anderson and Fabbri to calculate QFT differences between locally

equivalent spacetimes, we applied the method to a toy model consisting of a scalar field on the

spacetime of a thin spherical shell, with flat exterior and interior regions. We completed a fully

analytical calculation of E0, the ` = 0 contribution to the total energy difference of the minimally

coupled scalar field with a Dirichlet boundary condition on the shell surface. We extended the

calculation semi-analytically to E` for ` > 0 and found a clear pattern in the final results. Each E`
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is finite due to the cancellation of the divergences in each ` mode of the energy density difference

∆
〈
T tt
〉
on the interior and exterior of the shell surface (a cancellation that does not occur if the

coupling is non-minimal), but the resulting sum of E` over ` is clearly divergent. We will contrast

this in the next chapter with the more realistic model of a star sitting in a Schwarzschild spacetime.



Chapter 7

Numerical Analysis of QFT Differences

Introduction and Overview

One of the goals of this chapter is to perform a numerical calculation of
〈
φ2
〉
on the spacetime of

a spherically symmetric star. To perform this calculation we will be utilising the results for
〈
φ2
〉

outside a Schwarzschild black hole from chapter 5 and work performed by Anderson and Fabbri in

Ref. [7] on the topic of QFT differences described in the previous chapter. We compare and contrast

the results for different star radii and different coupling to the scalar curvature. We also perform a

numerical calculation of the stress-energy difference between a star and a black hole near the star

surface.

Within Ref. [7] is also an analysis of vacuum polarization differences and stress-energy differences

in the far field limit of Newtonian stars and black holes, which we described in Sec. 6.1.3. In the next

section we show how these analytical approximations can be extended to more general spherically

symmetric stars. We test these approximations numerically in Sec. 7.4.

7.1 Approximation in the Far Field Limit

7.1.1 Constant Density Stars

A simple stellar model is that of a constant density star, whose (Euclideanised) spacetime is specified

by the interior Schwarzschild metric [132]

gtt (r) ≡ f∗ (r) =

(
3

2

√
1− 2M

R
− 1

2

√
1− 2Mr2

R3

)2

, (7.1.1)

grr (r) ≡ h∗ (r) =

(
1− 2Mr2

R3

)−1

, (7.1.2)

157
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in the region r < R where R is the radius of the star. For r > R the metric is simply specified by the

standard Schwarzschild metric, such that the metric functions of the full spacetime are continuous,

i.e., the complete metric line element for the star spacetime is

ds2 =

[
θ (R− r) f∗ (r) + θ (r −R)

(
1− 2M

r

)]
dt2

+

[
θ (R− r)h∗ (r) + θ (r −R)

(
1− 2M

r

)−1
]
dr2 + r2dΩ2, (7.1.3)

where θ (x) is the Heaviside step function.

Now, according to (6.1.28), we want to consider the “static” (ω = 0) behavior of (6.1.4). In the

exterior Schwarzschild spacetime this equation has solutions in terms of Legendre functions, which

we write as

pstatic =
π

2M

1

N
P`

( r
M
− 1
)
, (7.1.4)

qstatic = NQ`

( r
M
− 1
)
, (7.1.5)

where the constant N is

N =
22`

M `+1

Γ (`+ 1/2) Γ (`+ 3/2)

Γ (`+ 1)
. (7.1.6)

This normalisation is chosen such that the Cω` calculated from (6.1.6) is equal to 2/π, so that we

can compare our results directly with Eq. (6.1.28) and also such that qstatic and qflat will agree in

the far field to leading order in r−1,

lim
ω→0

qstatic
qflat

= 1 +O

(
M

r

)
. (7.1.7)

Now we need to find p∗. An approximate solution can be found by constructing a Frobenius

series around the singular point at the origin, of the form

p∗ (r) = r`
∞∑
k=0

a2kr
2k (7.1.8)

and a0 = 1. This is substituted into (6.1.4) with the metric functions (7.1.1) and (7.1.2) and the

coefficients a2k for k ≥ 1 are found by solving the equation term by term in powers of r. The first

of these coefficients is

a2 =
M` (R (21 + 10`− 3X (2`+ 5))− 18M (`+ 2))− 6Mξ (18M +R (9X − 11))

(1− 3X)2 (2`+ 3)R4
(7.1.9)

and we have defined

X =

√
1− 2M

R
. (7.1.10)
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These a2k coefficients grow in complexity rapidly and so it is often easier and less computationally

intensive to specify the parameters ` and ω in the radial differential equation (6.1.4) and calculate

the a2k for each set of parameters individually to the order k we desire.

The functions pstatic, qstatic and p∗ are then substituted into (6.1.8) and (6.1.9) to get α0` and

β0` as a power series in M/R. To calculate such an expansion to order R−n requires us to compute

(7.1.8) to order k = n+ 2`+ 1.

All that is needed to get an expression for ∆
〈
φ2
〉
at leading order in r−1 according to (6.1.28)

is to perform this process for ` = 0. The result is

∆
〈
φ2
〉

= − Mξ

4π2r3
S0

(
M

R

)
+O

(
r−4
)
, (7.1.11)

where we have defined the ` = 0 structure function

S0 (x) = 1− 6

5
(2ξ + 1)x+

12

35

(
17ξ2 + 10ξ − 4

)
x2 +O

(
x3
)
. (7.1.12)

As we approach the limit of a small compactness parameter M/R (i.e. as R → ∞), we see that

(7.1.11) reduces to the result for a Newtonian star in (6.1.29). As for the Newtonian star, it can

be seen from (7.1.11) that ∆
〈
φ2
〉
vanishes for minimal coupling only. For any non-zero value of

coupling the vacuum polarization far from the star is sensitive to its mass at leading order and to

its internal structure at subsequent orders in M/R.

It is straightforward to combine our knowledge of β00/α00 with Eq. (6.1.30) to generalise ∆ 〈Tµν〉

to a constant density star also,

∆
〈
Tµν
〉

= − 3Mξ

4π2r5

(
ξ − 1

6

)
S0

(
M

R

)
diag [2,−2, 3, 3] +O

(
r−6
)
. (7.1.13)

Although only the ` = 0 contribution is needed at leading order in r−1, we can also find the

leading order contributions to ∆
〈
φ2
〉
for general ` ≥ 0, which takes the form,

∆
〈
φ2
〉static
`

=
2`+ 1

4π2

2

π

β0`

α0`

∫ ∞
0

ω2`+2k2
` (ωr) dω (7.1.14)

and the general expression for the integral over ω for r > 0 is given by∫ ∞
0

ω2`+2k2
` (ωr) dω =

π2Γ (`+ 1) Γ (2`+ 3/2)

8Γ (`+ 3/2)
r−2`−3. (7.1.15)

The static contribution to the ratio of β to α is

2

π

β0`

α0`
= − 3 (2`+ 3)MR2`ξ

22`+1πΓ2 (`+ 5/2)
S`
(
M

R

)
, (7.1.16)
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where S` (x) = 1 +O (x) is the structure function for general `. As such, Eq. (7.1.14) can be written

in a form that emphasises the scaling with respect to R and r,

∆
〈
φ2
〉static
`

= MξA`r
−3

(
R

r

)2`

S`
(
M

R

)
, (7.1.17)

with a coefficient A` given by

A` = − 3 (2`+ 3) (`!)Γ (2`+ 3/2)

22`+5πΓ (`+ 1/2) Γ2 (`+ 5/2)
. (7.1.18)

Equation (7.1.17) implies that the scaling of the static contributions is
(
M/r3

)
(R/r)2`. This agrees

with the general scaling as that predicted by [130], for
〈
φ2
〉
outside a star in the “weak field” limit,

which is a star with a constant density (as we have assumed here, but will no longer assume in

Sec. 7.1.3) but with R�M (which we have not assumed).

Calculating the terms in the structure function series S` for general ` is time consuming, but it

is straightforward to calculate terms for a specified `. For example, for ` = 1 Eq. (7.1.16) reads

2

π

β01

α01
= −8MξR2

15π2

(
1−

2
(
2ξ2 + 11ξ − 1

)
7ξ

M

R
+

(
108ξ3 + 600ξ2 + 655ξ − 100

)
315ξ

M2

R2
+ · · ·

)
,

(7.1.19)

such that the structure function S1 can be read off as

S1 (x) = 1−
2
(
2ξ2 + 11ξ − 1

)
7ξ

x+

(
108ξ3 + 600ξ2 + 655ξ − 100

)
315ξ

x2 + · · · . (7.1.20)

7.1.2 Ultra Compact Objects

For a fixed mass M there is a minimum radius attainable by a static, spherically symmetric matter

configuration (such as a constant density star), referred to as the Buchdahl limit [30]. At this limit,

the central pressure (i.e., the pressure at the origin r = 0) as a function of the compactness R/M

diverges. This imposes the following inequality, (in natural units)

R >
9

4
M. (7.1.21)

We could also infer this limit from the Frobenius expansion of the scalar field inside the star.

For ` = ω = 0, the coefficients ak in the Frobenius series for p∗ (7.1.8) dramatically simplify. The

first two even order coefficients become (after simplification)

a2 =
Mξ (18M +R (3X − 7))

R3 (9M − 4R)
, (7.1.22)

a4 =
M2ξ [54M (8X − 5 + 6ξ (X − 1)) +R (23 (6ξ + 5)− 9X (18ξ + 23))]

10R6 (3X − 1) (9M − 4R)
, (7.1.23)
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with X defined in (7.1.10). These coefficients diverge at the Buchdahl limit R = 9
4M , as does every

following non-zero ak.

In the numerical analysis of ∆
〈
φ2
〉
and ∆ 〈Tµν〉 to follow in Sec. 7.2 onwards, we will consider the

case of an Ultra Compact Object (UCO), a constant density star with a radius R close to Buchdahl

limit, chosen to be R = 2.26M .

7.1.3 Different Stellar Models

The method we used to arrive at the far field result in (7.1.11) can be applied to different stellar

models. To select an additional example, we refer to the analysis of Delgaty and Lake [50], in which

127 static, spherically symmetric, perfect fluid solutions to Einstein’s equations are presented. In

each circumstance, they performed a series of tests to determine the physical validity of the solution.

The interior Schwarzschild solution passes all their chosen tests except one, that the speed of sound

should be subluminal, i.e., dp/dρ < 1 where p is the internal pressure and ρ is the density. As such,

to demonstrate our method further we will choose a stellar structure that, at the very least, passes

the same tests as the interior Schwarzschild metric.

The metric we choose is given the label “Tolman IV” by [50], originally presented in [139]. This

passes each physical test, including having a subluminal sound speed. It is given in the Euclideanised

form

gtt (r) = B2
(
1 + r2/A2

)
, (7.1.24)

grr (r) =
1 + 2r2/A2

(1− r2/C2) (1 + r2/A2)
, (7.1.25)

where A,B and C are integration constants (we have used C instead of the symbol R used in [50]

and [139] so as to not confuse this integration constant with the radius of the star). The density

ρ (r) and pressure p (r) can be found through Einstein’s equations and are given by

8πρ =
1

A2

1 + 3A2/C2 + 3r2/C2

1 + 2r2/A2
+

2

A2

1− r2/C2

(1 + 2r2/A2)2 , (7.1.26)

8πp =
1

A2

1−A2/C2 − 3r2/C2

1 + 2r2/A2
. (7.1.27)

In particular, the density is not constant, unlike for the interior Schwarzschild metric.

The radius of the star, R, can then be found by finding the value of r at which the pressure

vanishes. This is

R = C

√
1

3

(
1− A2

C2

)
. (7.1.28)
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The mass of the star M is found by matching the grr component of the Tolman IV metric to the

corresponding component of the exterior Schwarzschild metric at the star radius r = R. This gives

M =
R

2

[
1−

(
1−R2/C2

) (
1 +R2/A2

)
1 + 2R2/A2

]
, (7.1.29)

while performing the same matching for the gtt component specifies the constant B,

B2 =
(
1−R2/C2

)
/
(
1 + 2R2/A2

)
. (7.1.30)

This provides enough information to re-write the metric components entirely in terms of M and R

gtt (r) = 1 +
M
(
r2 − 3R2

)
R3

, (7.1.31)

grr (r) =
R3
(
2Mr2 − 3MR2 +R3

)
(R3 −Mr2) (R3 +M (r2 − 3R2))

. (7.1.32)

This stellar model has its own equivalent of the Buchdahl limit, although rather than 9
4M being

the limiting value of R we instead find that we must impose R > 3M . This is because when

R = 3M , grr diverges at r = 0 and it can be shown by a calculation of the square of the Riemann

tensor RabcdRabcd that this is a curvature singularity. This singularity persists when R < 3M but

moves to larger values of r while still remaining inside the star.

From here, we find the solution p∗ (r) inside the star using a Frobenius series of the same form

as Eq. (7.1.8). As before, ak = 0 for all odd k. The first two even-order coefficients for ` = ω = 0

are a2 = Mξ/R3 and

a4 =
M2ξ

[(
9M2 +R2

)
(3ξ + 4)− 6MR (3ξ + 5)

]
10R6 (R− 3M)2 . (7.1.33)

We note every non-zero coefficient from a4 onward diverges when the star radius is at the light

ring R = 3M , in accordance with the existence of the curvature singularity discussed above.

The final expressions for ∆
〈
φ2
〉
and ∆ 〈Tµν〉 at leading order in r−1 take the same form as

Eq. (7.1.11) and (7.1.13) respectively, with the modified structure function

STol0 (x) = 1− 6

5
(2ξ + 1)x+

6

35

(
34ξ2 + 18ξ − 9

)
x2 +O

(
x3
)
. (7.1.34)

This structure function agrees with the one obtained from the interior Schwarzschild metric (7.1.12)

up to first order in the parameter x = M/R, but differs thereafter. This makes sense, as the metric

coefficients in the interior Schwarzschild and Tolman IV metrics also agree to first order after an

expansion in this parameter.
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7.2 Outline of the Numerical Method

The remainder of this chapter will be focused on the numerical computation of ∆
〈
φ2
〉
and ∆ 〈Tµν〉,

which proceeds in the following manner: first we solve the radial mode equation (6.1.4) in the exterior

Schwarzschild spacetime with the required boundary conditions to find pS and qS and then in the

interior star spacetime to find p∗. We then construct the integrands in (6.1.10) for each ` mode,

integrate them with respect to ω and then perform the sum over `. Here, we describe each step in

detail.

To find qS we transform the radial mode equation using the independent variable s = 1/r,

s4f
d2qS
ds2

+ s4 df

ds

dqS
ds
−
[
ω2

f
+ s2` (`+ 1)

]
qS (s) = 0. (7.2.1)

This equation must be solved with the boundary condition that qS decays exponentially as s → 0

(r →∞). To aid numerical computation we transform the dependent variable in the manner qS = eQ

as is performed in Ref. [81], to produce a non-linear equation for Q (s)

s4f
d2Q

ds2
+ s4

[
f
dQ

ds
+
df

ds

]
dQ

ds
−
[
ω2

f
+ s2` (`+ 1)

]
= 0. (7.2.2)

We then impose initial data for the solution at s = δq for δq � M−1 and integrate inwards

towards the surface of the star. The initial data for qS takes the form of an asymptotic series

expansion (with b0 = 1)

qS = sρe−
Ω
s

∞∑
k=0

bks
k (7.2.3)

and so the logarithm of this forms the initial data for Q. The coefficients Ω, ρ and bk for k ≥ 1 are

found by substituting (7.2.3) into (7.2.1) and solving the equation term by term in powers of s. This

gives Ω = ω, ρ = 1 + 2Mω, and the first two non-trivial bk coefficients are

b1 =
` (`+ 1)

2ω
+ 4M2ω, (7.2.4)

b2 =
(`− 1) ` (`+ 1) (`+ 2)

8ω2
+
M

2ω
+ 2` (`+ 1)M2 + 4M3ω + 8M4ω2. (7.2.5)

The function pS is found similarly. Defining the “shifted” radial variable x = r − 2M the radial

mode equation is transformed to

d2pS
dx2

+

[
1

x
+

1

x+ 2M

]
dpS
dx
−

[
ω2

(
1 +

2M

x

)2

+
` (`+ 1)

x (x+ 2M)

]
pS (x) = 0 (7.2.6)

and the boundary condition of regularity at the black hole horizon is imposed at x = δp for δp �M

by the Frobenius series ansatz (with a0 = 1)

pS = xν
∞∑
k=0

akx
k. (7.2.7)
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The coefficients ν and ak for k ≥ 1 are then found by substituting (7.2.7) into (7.2.6) and solving

the equation term by term in powers of x. This gives ν = ±2Mω, of which we choose the positive

root so that pS satisfies the boundary condition of regularity on the black hole event horizon. The

first two non-trivial ak coefficients are

a1 =
` (`+ 1)− 2Mω + 8M2ω2

2M + 8M2ω
, (7.2.8)

a2 =
(`− 1) ` (`+ 1) (`+ 2) + (4− 8` (`+ 1))Mω + 8 (1 + 2` (`+ 1))M2ω2 − 16M3ω3 + 64M4ω4

16M2 (1 + 2Mω) (1 + 4Mω)
.

(7.2.9)

The Schwarzschild radial equation is then integrated outwards from x = δp up to r = R, where the

surface of the star would be in the star spacetime.

The initial data imposing regularity of the function p∗ at the center of the star is the same as

that in Eq. (7.1.8). This is imposed at r = δ∗ for δ∗ � M and the interior Schwarzschild radial

equation (Eq. (6.1.4) with f and h specified by Eqs. (7.1.1) and (7.1.2)) is integrated from δ∗ up to

the star surface.

We chose to take each of the three initial data series to an order of kmax = 10 and impose them

at δp = δq = δ∗ = 10−3. Each of the three functions pS , qS and p∗ (and from these, the integrand in

(6.1.10)) are numerically calculated for a range of values of ω ∈ (0, ωmax) and ` ∈ {0, 1, . . . , `max}.

Appropriate choices of internal parameters will be discussed in the next section.

We must also choose how to divide the range of ω into a grid of points for the evaluation of the

integrand in Eq. (6.1.10). An example integrand is plotted in Fig. 7.2.1. It is clear that the small

frequency behavior provides a much larger contribution to the integral than the large frequency

behaviour and so we choose to cluster the grid of points more tightly when ω is small. For ω < 0.1

we choose a spacing dω = 0.001 and for ω > 0.1 we choose a spacing dω = 0.004. We will also assess

these choices in the subsection on error estimation.

In the static case ω = 0, we do not find the functions pS and qS numerically. Instead they are

known exactly in terms of Legendre polynomials, as in Eqs. (7.1.4) and (7.1.5).

A logarithmic plot of the integrand for each of the ` modes for chosen values of R and r is shown

in Fig. 7.2.2. It can be seen that as ω approaches ωmax the gradient approaches a constant, i.e.,

the integrand is decaying exponentially. This motivates the following analytical approximation: for

ω > ωmax we integrate a function of the form a`e
−b`ω, where the constants a` and b` are found by

numerical fitting.

Finally, we repeat this process for multiple values of r and ξ ∈ {0, 1/10, 1/6}. The results are

shown in Fig. 7.2.3. The figure shows that there is an approximately linear dependence of ∆
〈
φ2
〉
on
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Figure 7.2.1: The integrand of Eq. (6.1.10) for the parameters R = 4M, r = 6M, ξ = 1/6, ` = 0.
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Figure 7.2.2: The (absolute value of the) integrand of Eq. (6.1.10) for R = 4M, r = 6M, ξ = 1/6 and

each ` value from 0 to `max = 5.
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Figure 7.2.3: ∆
〈
φ2
〉
for R = 4M and various values of r and ξ. Error bars are included, but are

too small to be visible. The solid lines are found by a least squares fit. The dashed lines are the

corresponding values of
〈
φ2
〉
in the Schwarzschild spacetime at the same r values.

the coupling ξ and the coefficient of proportionality decreases with increasing r. These two traits

are shared by the behaviour of ∆
〈
φ2
〉
in the limit of large r, see Eq. (7.1.11).

The three main sources of error in this calculation are the ` cutoff, ω tail and discretisation

errors described in the calculation of
〈
φ2
〉
in the Schwarzschild spacetime (see Sec. 5.2.3.4) and

they are estimated through the same methods. The primary difference in the results is the relative

orders of magnitude of the different errors. Far from the star, the discretisation error is the largest

error by multiple orders of magnitude, while still being small compared to the value of ∆
〈
φ2
〉
. As

we approach the star surface, the ` cutoff and ω tail errors grow until they are larger than the

discretisation error and the total error relative to ∆
〈
φ2
〉
becomes larger. Hence, near the surface

of the star, the calculation could be best improved by including additional ` modes in the sum and

including larger ω values in the integral. In the next section, we will now present this numerical

data, with error bars included.
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7.3 Numerical Analysis Near the Star Surface

7.3.1 Vacuum Polarization Near a Compact Object

The vacuum polarization outside of a constant density star
〈
φ2
〉
Star

is simply the sum of the vacuum

polarization outside a Schwarzschild black hole
〈
φ2
〉
Schw

and the difference ∆
〈
φ2
〉
between a black

hole and a constant density star. We numerically calculated
〈
φ2
〉
Schw

in chapter 5 and described

the method used to numerically calculate ∆
〈
φ2
〉
in the previous section.

Typical values for the highest ` mode considered and the largest frequency ω for each mode are

`max = 5 and Mωmax = 1. We will consider two values of the compactness parameter, R/M = 4

and R/M = 2.26. The first value models a compact neutron star, but not so compact that a light

ring has formed. The second models an ultra compact object with a radius just larger than the

Buchdahl bound, Eq. (7.1.21). Outside this ultra compact object a light ring exists at R = 3M .

7.3.1.1 R = 4M (Compact Neutron Star)

The results for
〈
φ2
〉
Schw

, ∆
〈
φ2
〉
and

〈
φ2
〉
Star

for conformal and minimal coupling are shown re-

spectively in Figs. 7.3.1 and 7.3.2. For conformal coupling it can be seen that ∆
〈
φ2
〉
< 0 for

r > r1 ≈ 5.5M , a similar radius to where
〈
φ2
〉
Schw

has its maximum. In addition, ∆
〈
φ2
〉
<
〈
φ2
〉
Schw

for r > r2 ≈ 4.8M . We see that, unlike
〈
φ2
〉
Schw

,
〈
φ2
〉
Star

is everywhere positive and monotonically

increasing on the approach to the star surface. The error bars grow in size as r decreases because

the contributions from modes with ` > `max become more relevant, as do the contributions to each

individual `-mode from the large frequencies ω > ωmax.

For minimal coupling, ∆
〈
φ2
〉
is everywhere positive. In the region r < 10M plotted in Fig. 7.3.2

it can be seen that ∆
〈
φ2
〉
dominates over

〈
φ2
〉
Schw

and hence, so does
〈
φ2
〉
Star

. In other words,

replacement of the black hole by a compact neutron star has drastically changed the vacuum polar-

ization.

The value of
〈
φ2
〉
Star

at a radius r = 4.5M is (7.5± 0.06) × 10−5 for minimal coupling and

(6.6± 0.6)×10−6 for conformal coupling respectively, such that the ratio of the minimal value to the

conformal value is (11.4± 1.0). This shows that the coupling term plays a large role in determining

the magnitude of the vacuum polarization near a compact neutron star: see also Fig. 7.2.3 that

demonstrates that this relationship to the coupling is approximately linear.

The values of ∆
〈
φ2
〉
and

〈
φ2
〉
Star

on the surface of the neutron star are not shown in either

figure. This is because we have numerical evidence that these two quantities diverge at r = R, but

remain finite for r > R. This evidence is presented in Fig. 7.3.3. It can be seen that when r = R
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Figure 7.3.1:
〈
φ2
〉
outside a Schwarzschild black hole, outside a compact neutron star and ∆

〈
φ2
〉

for conformal coupling ξ = 1/6. The vertical dashed line indicates the star surface at R = 4M .
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Figure 7.3.2:
〈
φ2
〉
outside a Schwarzschild black hole, outside a compact neutron star and ∆

〈
φ2
〉

for minimal coupling ξ = 0. The vertical dashed line indicates the star surface at R = 4M .
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Figure 7.3.3: The magnitude of the contribution of each ` mode to ∆
〈
φ2
〉
outside a R = 4M

compact neutron star for minimal coupling. The black dashed line is proportional to (`+ 1/2)−1.

the contribution to ∆
〈
φ2
〉
from each ` mode does not decay faster than (`+ 1/2)−1 ,which implies

that the sum over the ` modes does not converge, while for r > R the terms do decay fast enough

for a convergent sum. This is similar behaviour to the shell model studied in Sec. 6.2, with the

exception that each ` mode contribution is itself finite on the star surface. A potential reason for

this divergence of the sum over ` could be a breakdown of our method to calculate ∆
〈
φ2
〉
on the

star surface caused by the violation of one of the assumptions made. Namely, that the spacetime of

the star and the spacetime of the black hole are locally equivalent in a neighborhood of the point

∆
〈
φ2
〉
is to be found.

7.3.1.2 R = 2.26M (Ultra Compact Object)

Analogous results for an ultra compact object are presented in Figs. 7.3.4 and 7.3.5 for conformal and

minimal coupling respectively. In both cases, ∆
〈
φ2
〉
is everywhere positive and in the region r < 7M

shown ∆
〈
φ2
〉
once again dominates over

〈
φ2
〉
Schw

. In the case of conformal coupling
〈
φ2
〉
Star

once

again monotonically increases on the approach to the UCO surface. Unlike the case of the larger

compact object above, in the case of minimal coupling
〈
φ2
〉
Star

does not monotonically increase.

Instead the radial derivative vanishes at approximately r ≈ 3.5M before becoming negative. For

the range of radii r1 < r < r2 where r1 ≈ 2.4M and r2 ≈ 2.8M , we find that
〈
φ2
〉
Star

< 0 with a
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Figure 7.3.4:
〈
φ2
〉
outside a Schwarzschild black hole, outside an ultra compact object and ∆

〈
φ2
〉

for conformal coupling ξ = 1/6. The vertical dashed line indicates the star surface at R = 2.26M .

local minimum at r ≈ 2.5M . We cut off the plot of
〈
φ2
〉
Star

here, as it then sharply increases in

the same manner that ∆
〈
φ2
〉
does, which we believe is the consequence of a divergence on the star

surface, which we will address shortly.

By comparing the two figures it can be seen that ∆
〈
φ2
〉
is of the same order of magnitude for

both minimal and conformal coupling. It would seem that for the ultra compact object the coupling

term plays a much less important role in determining the magnitude of
〈
φ2
〉
Star

. This could perhaps

be understood if we consider that by decreasing the radius R of the compact object we bring it closer

to the Schwarzschild radius RS = 2M at which point we would expect the behaviour of
〈
φ2
〉
to

approach the behaviour of
〈
φ2
〉
Schw

which is independent of coupling. Another potential explanation

comes from the fact that the coupling term is proportional to the Ricci scalar R and so its influence

on the value of
〈
φ2
〉
is proportional to the size of the spacetime region for which R 6= 0, i.e., the

region inside the star. Naturally, the size of this region shrinks as the star radius is decreased.

Once again, the value of ∆
〈
φ2
〉
on the surface of the compact object is not shown, as we have

numerical evidence that the sum over ` when r = R does not converge, see Fig. 7.3.6.

Finally, we plot a direct comparison of
〈
φ2
〉
Star

between the minimal and conformal coupling

cases for the compact neutron star in Fig. 7.3.7 and for the ultra compact object in Fig. 7.3.8. It is

clear to see that for the neutron star,
〈
φ2
〉
Min

>
〈
φ2
〉
Con

while for the ultra compact object the
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Figure 7.3.5:
〈
φ2
〉
outside a Schwarzschild black hole, outside an ultra compact object and ∆

〈
φ2
〉

for minimal coupling. The vertical dashed line indicates the star surface at R = 2.26M .
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Figure 7.3.6: The magnitude of the contribution of each ` mode to ∆
〈
φ2
〉
outside a R = 2.26M

ultra compact object for minimal coupling. The black dashed line is proportional to (`+ 1/2)−1.
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Figure 7.3.7:
〈
φ2
〉
outside a Schwarzschild black hole and outside a compact neutron star for minimal

and conformal coupling. The vertical dashed line indicates the star surface at R = 4M .

opposite is true.

7.3.2 Stress-Energy Tensor Near a Compact Object

7.3.2.1 R = 4M (Compact Neutron Star)

We now repeat the analysis of the previous section, but applied to the stress-energy difference

∆ 〈Tµν〉. The three non-trivial, independent components of the stress-energy difference (given by

Eqs. (6.1.17)-(6.1.19)) outside a compact neutron star for conformal and minimal coupling are shown

in Fig. 7.3.9 and Fig. 7.3.10 respectively. In the conformal coupling case, the temporal and radial

components are positive while the angular components are negative. In the minimal coupling case,

the radial component is positive while the temporal and angular components are negative and further

from the star we have the approximate relation ∆
〈
T tt
〉
≈ −∆ 〈T rr〉. We will revisit this relation in

Sec. 7.4 when we consider ∆ 〈Tµν〉 in the far field numerically.

We take particular note of the behaviour of ∆
〈
T tt
〉
. The sign of this component depends on the

value of coupling chosen, unlike the other two components whose signs remain the same. This is

another property that we will revisit when we come to discuss the far field limit numerically.

As ∆
〈
φ2
〉
diverges on the star surface, it is unsurprising to find that ∆ 〈Tµν〉 does also, as shown
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Figure 7.3.8:
〈
φ2
〉
outside a Schwarzschild black hole and outside an ultra compact object for

minimal and conformal coupling. The vertical dashed line indicates the star surface at R = 2.26M .
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Figure 7.3.9: ∆ 〈Tµν〉 outside a compact neutron star of radius R = 4M for conformal coupling

ξ = 1/6.
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Figure 7.3.10: ∆ 〈Tµν〉 outside a compact neutron star of radius R = 4M for minimal coupling.

in Fig. 7.3.11. The divergence is much more severe than that of ∆
〈
φ2
〉
. In fact, the numerical

evidence indicates that the individual terms of the sum over ` are not decreasing.

This can be explained by considering each of the five integrals that form ∆ 〈Tµν〉 individually,

Eqs. (6.1.12)-(6.1.16), in particular we note that ∆s3 = (`+ 1/2)2 ∆s5 will diverge like ` + 1/2 on

the star surface. We will look closer at this in the next subsection, where we present results for the

ultra compact object.

7.3.2.2 R = 2.26M (Ultra Compact Object)

∆ 〈Tµν〉 outside an ultra compact object for conformal and minimal coupling are shown in Fig. 7.3.12

and Fig. 7.3.13 respectively. For conformal coupling, swapping the compact neutron star for an ultra

compact object has changed the sign of ∆ 〈T rr〉 near the star surface, while this is not the case for

minimal coupling. We look closer at this in the next subsection.

Another effect of decreasing R, for conformal coupling only, is that the temporal and radial

components no longer have a fixed sign. In the direction of decreasing r, the temporal component’s

sign changes from negative to positive between r = 5M and r = 4M while the angular component’s

sign changes from positive to negative between r = 4M and r = 3.5M . This cannot be seen in

Fig. 7.3.12, but is shown in Table 7.1.

Next, in Fig. 7.3.14 we show the contributions from each ` mode to ∆
〈
T tt
〉
both on the UCO
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Figure 7.3.11: The magnitude of the contribution of each ` mode to ∆
〈
T tt
〉
outside a R = 4M

compact neutron star for minimal coupling. The black dashed line is proportional to (`+ 1/2)−1 .
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Figure 7.3.12: ∆ 〈Tµν〉 outside a constant density ultra compact object of radius R = 2.26M for

conformal coupling ξ = 1/6.
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Figure 7.3.13: ∆ 〈Tµν〉 outside a constant density ultra compact object of radius R = 2.26M for

minimal coupling.

r/M ∆
〈
T tt
〉

∆ 〈T rr〉 ∆
〈
T θθ
〉

2.5 (2.47± 0.14)× 10−5 (−1.08± 0.04)× 10−6 (−1.18± 0.07)× 10−5

2.7 (3.80± 0.10)× 10−6 (−1.219± 0.010)× 10−7 (−1.84± 0.05)× 10−6

3.0 (5.10± 0.05)× 10−7 (−2.7133± 0.0035)× 10−8 (−2.414± 0.023)× 10−7

3.5 (3.672± 0.009)× 10−8 (−1.0524± 0.0004)× 10−8 (−1.310± 0.005)× 10−8

4.0 (1.575± 0.004)× 10−9 (−4.6460± 0.0014)× 10−9 (1.5354± 0.0023)× 10−9

5.0 (−1.26459± 0.00007)× 10−9 (−1.0688± 0.0004)× 10−9 (1.16672± 0.00015)× 10−9

6.0 (−4.91403± 0.00019)× 10−10 (−3.0482± 0.0013)× 10−10 (3.9811± 0.0006)× 10−10

7.0 (−1.88586± 0.00007)× 10−10 (−1.0345± 0.0006)× 10−10 (1.46019± 0.00025)× 10−10

Table 7.1: The three independent components of ∆ 〈Tµν〉 and their error estimates outside a radius

R = 2.26M ultra compact object for conformal coupling ξ = 1/6.
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Figure 7.3.14: The magnitude of the contribution of each ` mode to ∆
〈
T tt
〉
outside a R = 2.26M

ultra compact object for minimal coupling. The black dashed line is proportional to (`+ 1/2)−1 .

surface and near the surface. The behaviour is qualitatively similar to the case of a R = 4M star

(Fig. 7.3.11), where the terms in the summand increase in magnitude with ` on the star surface and

decrease off the star surface.

To look closer at the source of this divergence of the sum over ` on the star surface, we consider

∆s3, defined in Eq. (6.1.14), in the case of minimal coupling, plotted in the small ω regime in

Fig. 7.3.15. We have scaled the frequency axis by (`+ 1/2)−1 to bring the peak of each integrand

into a similar position. We can see that for ω/ (`+ 1/2) > ωpeak ≈ 0.15 the integrands appear to

asymptotically approach a “universal curve” as ` increases. This also holds for ∆s1 and ∆s2: the

other two summands with terms that increase as ` increases. This is not the case for ∆s4 and ∆s5,

the summands with terms that decrease with `, but not fast enough to ensure convergence.

7.3.2.3 Comparison

Of the four cases considered (two values of R, two values of ξ), the fact that ∆ 〈T rr〉 < 0 on

the approach to the star surface only for the compact neutron star with conformal coupling, see

Fig. 7.3.12, warrants further examination. Equation (6.1.18) expresses ∆ 〈T rr〉 in terms of the five

integrals labeled ∆Si. Since this expression is a linear combination if the ∆Si with coefficients that

are independent of ω we can instead consider it as a single integral. This integrand for ξ = 1/6
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Figure 7.3.15: ∆s3 on the surface of a R = 2.26M ultra compact object with minimal coupling, as

a function of ω/ (`+ 1/2) for various ` .

is plotted in Figs. 7.3.16 and 7.3.17 for the compact neutron star and the ultra compact object

respectively. Directly comparing the two, we can see that the change of sign in ∆ 〈T rr〉 comes almost

entirely from a drastic change in behaviour of the ` = 0 mode when the star radius is decreased.

7.4 Numerical Analysis Far From the Star Surface

7.4.1 Vacuum Polarization

The numerical method described in Sec. 7.2 is applicable to all ranges of r and so can also be used to

calculate ∆
〈
φ2
〉
and ∆ 〈Tµν〉 far from the star. We will use this to test the validity of the approximate

expressions given in Eqs. (7.1.11) and (7.1.13). In particular, we only need to numerically calculate

the ` = 0 contribution to both quantities, as this was all that was required to generate the leading

order analytical approximation. For ∆
〈
φ2
〉
these results are presented for the compact neutron star

of radius R = 4M in Fig. 7.4.1 and for the ultra compact object of radius R = 2.26M in Fig. 7.4.2.

On both figures data is shown for both minimal and conformal coupling.

It can be seen that for ξ = 0, ∆
〈
φ2
〉
scales like r−4 in the far field. This is numerical evidence

that the universality result reported by [7] (i.e., the vanishing of ∆
〈
φ2
〉
for minimal coupling) is

only valid to leading order in r−1. For ξ = 1/6, outside of both a compact neutron star and an ultra
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Figure 7.3.16: The integrand of Eq. (6.1.18) for R = 4M, r = 5M, ξ = 1/6. The solid red dots are

the ω = 0 values of the integrand, calculated using the known static solutions for pS and qS in terms

of Legendre functions, Eqs. (7.1.4) and (7.1.5).
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Figure 7.3.17: The integrand of Eq. (6.1.18) for R = 2.26M, r = 3M, ξ = 1/6. The solid red dots

are the ω = 0 values of the integrand, calculated using the known static solutions for pS and qS in

terms of Legendre functions, Eqs. (7.1.4) and (7.1.5).
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Figure 7.4.1: The ` = 0 contribution to ∆
〈
φ2
〉
outside a R = 4M star, for minimal and conformal

coupling. The black dashed line is determined by Eq. (7.1.11) with seven terms in the structure

function series. The red dashed line is proportional to r−4.

compact object ∆
〈
φ2
〉
scales like r−3 (as [7] originally predicted).

For R = 4M the r−3 coefficient matches well with our new result in Eq. (7.1.11). In fact, this

agreement seems to hold for any R that is sufficiently large, as shown in Fig. 7.4.3.

On the other hand, Eq. (7.1.11) does not accurately predict the r−3 coefficient of ∆
〈
φ2
〉
far

from an ultra compact object. Considering the behaviour of the structure function, Eq. (7.1.12), for

different values of its argument M/R helps to highlight why. The partial sums of the terms in the

structure function are shown in Fig. 7.4.4 and for the ultra compact object it is unclear if the sum

converges. We hypothesise that the underlying problem is that the derivation of Eq. (7.1.11) requires

the evaluation of the function qstatic on the star surface, see Eqs. (6.1.8) and (6.1.9). However, the

validity of qstatic (see Eq. (7.1.5)) as an approximate solution when r = R to the static, radial

differential equation in Schwarzschild spacetime (Eq. (6.1.4 with ω = 0 and f = h−1 = 1− 2M/r))

breaks down when R is too small. Hence, our result in Eq. (7.1.11) also becomes invalid if R is too

small.

We can continue this analysis beyond the leading order in r−1 by looking at higher order ` modes.

The analytical approximation in the far field for these modes comes from Eqs. (7.1.17), (7.1.18) and

for ` = 1, Eq. (7.1.20). An example comparison is plotted in Fig. 7.4.5, showing the expected r−5
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Figure 7.4.2: The ` = 0 contribution to ∆
〈
φ2
〉
outside a R = 2.26M ultra compact object, for

minimal and conformal coupling. The black dashed line is proportional to r−3 and the red dashed

line is proportional to r−4.
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Figure 7.4.3: The ` = 0 mode of ∆
〈
φ2
〉
, for ξ = 1/6 and for various values of R. The solid lines are

obtained by the numerical method, the dashed lines are the analytical approximations of Eq. (7.1.11).

R→∞ indicates the weak field limit derived in [7], see Eq. (6.1.29).
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Figure 7.4.4: The value of the structure function S0 (x) in Eq. (7.1.12) as we increase the number of

terms in the series, for various star radii.

scaling for large r.

7.4.2 Stress-Energy Tensor

We now consider the far field behaviour of the stress-energy difference ∆ 〈Tµν〉. In Fig. 7.4.6 all three

independent components of the difference are shown in the far field limit for a compact neutron star

of radius R = 4M , for a coupling that is neither minimal nor conformal (ξ = 1/12) so that our

result in Eq. (7.1.13) can be used. We see that ∆ 〈Tµν〉 scales like r−5 in a manner that agrees with

(7.1.13). We also tested this for the single component ∆
〈
T tt
〉
on the spacetimes of larger radii stars,

with the results shown in Fig. 7.4.7.

For the two special values ξ = 0 and ξ = 1/6 the far field asymptotic approximation of Eq. (7.1.13)

vanishes. ∆ 〈Tµν〉 for both minimal and conformal coupling far away from a R = 4M compact

neutron star is plotted in Figs. 7.4.8 and 7.4.9 respectively and it can be seen that in both cases it

scales like r−6. This means that, as found for the vacuum polarization, universality of the stress-

energy in the far field is only valid to leading order in r−1.

In the case of minimal coupling we note that ∆
〈
T tt
〉

= −∆ 〈T rr〉 and it is clear to see why

this is from Eqs. (6.1.17) and (6.1.18) when ξ = ` = 0. The data also shows, for minimal coupling,

that as r grows, ∆
〈
T θθ
〉
→ 2∆

〈
T tt
〉
and so we can write down the general behaviour of the stress-

energy difference for minimal coupling in the far field limit: ∆ 〈Tµν〉 ≈ −0.075r−6diag [1,−1, 2, 2].

This contrasts with the behaviour for when the coupling is not equal to zero or 1/6, which was
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Figure 7.4.5: The ` = 1 contribution to ∆
〈
φ2
〉
(solid line) for ξ = 1/6 and R = 4M , compared

with the analytical approximation in the far field (dashed line) obtained from (7.1.17), (7.1.18) and

(7.1.20), with eight terms in the structure function series.

∆ 〈Tµν〉 ∼ −r−5diag [2,−2, 3, 3].

For conformal coupling there isn’t a clear integer-multiple relationship between the components

in the far field like there was for minimal coupling. We do however, notice that the sign of ∆
〈
T tt
〉

depends on the choice of coupling, like it did near the star surface in Figs. 7.3.9 and 7.3.10. The r−6

coefficient in the far field is approximately 0.002× diag [9, 1,−5,−5].

Conclusion

Vacuum polarization differences and stress-energy differences between spherically symmetric stars

and black holes were considered numerically both near the star surface and in the far field limit.

In the latter case, the numerical results were compared to analytical approximations and good

agreement was found when R ≥ 3M , i.e. when the star radius was not close to the Buchdahl limit

R = 9
4M .

We found that the magnitude of
〈
φ2
〉
near the surface of a star becomes more dependent on

coupling ξ as the size of the star increases. For an ultra compact object, the surface values of
〈
φ2
〉
for

both minimal and conformal coupling were of the same order of magnitude, although the qualitative
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Figure 7.4.6: The ` = 0 contribution to ∆ 〈Tµν〉 outside a R = 4M compact neutron star, for

ξ = 1/12. The dashed lines are determined from Eq. (7.1.13) with seven terms in the structure

function series.

features on the approach to the star surface were different, see Fig. 7.3.8.

In addition, it was shown that the universality results proven by Anderson and Fabbri in [7] only

hold to leading order in r−1, by performing a numerical calculation in the far field limit for values

of ξ such that the leading order result vanishes.
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Figure 7.4.7: The ` = 0 mode of ∆
〈
T tt
〉
, for ξ = 1/12 and for various values of R. The solid

lines are obtained by the numerical method, the dashed lines are the analytical approximations of

Eq. (7.1.13). R→∞ indicates the weak field limit derived in [7], see Eq. (6.1.31).
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Figure 7.4.8: The ` = 0 contribution to ∆ 〈Tµν〉 outside a R = 4M compact neutron star for minimal

coupling.
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Figure 7.4.9: The ` = 0 contribution to ∆ 〈Tµν〉 outside a R = 4M compact neutron star for

conformal coupling ξ = 1/6.



Chapter 8

Conclusion and Outlook

This thesis has covered our research concerning both classical and quantum bosonic fields on black

hole spacetimes. In this chapter we will summarise our primary results and suggest possible avenues

of further study.

8.1 Summary of Results

8.1.1 Classical Fields

We presented our original work on the application of Leaver’s method to the charged Proca field

on the Reissner-Nordström spacetime in Sec. 3.4.2. We found a new four-term recurrence relation,

presented in Eqs. (3.4.3)-(3.4.6), arising from the radial ODE of the decoupled, odd-parity component

of the charged Proca field on the Reissner-Nordström spacetime. We applied the continued fraction

method to solve this recurrence relation and find the QBSs and QNMs of this odd-parity polarization

of the Proca field, presented in Figs. 3.4.1-3.4.5. We compared the QBS frequencies to known

analytical approximations and to previously collected data and found good agreement.

Following the relatively recent LFKK method [66] of separating the Proca equation on the

Kerr and Kerr-Newman spacetimes, we found a new five term recurrence relation presented in

Eqs. (4.2.75)-(4.2.79) from the resulting radial ODE. This recurrence can be used to find QNMs of

the Proca field for all three polarization states after a careful consideration of the angular eigenvalue

ν via the method of spectral decomposition, detailed in [54]. Our original results for the QNMs

are presented for the Kerr spacetime in Figs. 4.2.5-4.2.10 and for the Kerr-Newman spacetime in

Figs. 4.3.2-4.3.3. This recurrence can also be used to find QBSs for at least two of the three polar-

ization states of the Proca field, the results of which are presented in Figs. 4.2.2-4.2.4. We found

good agreement in the real part with the known QBS data in these cases, with agreement in the
187
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imaginary part dependent on the mass of the field.

8.1.2 Quantum Fields

We investigated, numerically and analytically, a recently proposed method of calculating differences

in QEVs evaluated in the same quantum state in locally equivalent spacetimes. This method was

described by Anderson and Fabbri in [7] for the difference in the vacuum polarization and stress-

energy tensor of a scalar field in the Boulware vacuum state between a Schwarzschild black hole and

a Newtonian star, ∆
〈
φ2
〉
and ∆ 〈Tµν〉 respectively. We first used the method to perform a complete

analytical calculation of the ` = 0 contribution to the energy density difference ∆
〈
T tt
〉
between the

spacetime of a spherically symmetric shell and flat spacetime, Eq. (6.2.40). We then explored the

higher ` modes via a combination of numerics and analytics. We found a surprising pattern in the

results for the integral of the energy density difference over the entire shell spacetime, presented in

Table (6.1).

We extended Anderson and Fabbri’s far field analytical approximations of ∆
〈
φ2
〉
and ∆ 〈Tµν〉 be-

tween the spacetimes of a Schwarzschild black hole and a Newtonian star, Eqs. (6.1.29) and (6.1.31),

to more general stellar models. For the interior Schwarzschild metric and the Tolman metric these

results are given in Eqs. (7.1.11) and (7.1.34). These far field results depend on the internal matter

distribution of the star through a structure function S (M/R) which was obtained as a series expan-

sion. We saw that two metrics specifying the star interior that agreed to first order in an expansion

for small impact parameter x = M/R had structure functions S (x) that also agreed to this order.

The results for the interior Schwarzschild metric were compared to numerics in the far field and

found to agree well for values of coupling where the leading order term does not vanish (Fig. 7.4.6).

The expected sub-leading order scaling with r−1 was found in the cases where the leading order

term did vanish (Figs. 7.4.8 and 7.4.9).

The results of our own numerical implementation of Levi and Ori’s PMR method [100] to the

calculation of
〈
φ2
〉
for a massless scalar field outside a Schwarzschild black hole are presented in

Table (5.1) and Fig. 5.2.6 and agree with previously collected data to within the quoted numerical

error bars. We combined this with a new numerical exploration of ∆
〈
φ2
〉
and ∆ 〈Tµν〉 near the star

surface for a variety of star radii and couplings ξ to the scalar curvature to find
〈
φ2
〉
near the surface

of a spherically symmetric star. The results are presented throughout Sec. 7.3.
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8.2 Further Study

On the Reissner-Nordström spacetime we have only applied the recurrence relation method to the

decoupled odd-parity polarization of the Proca field. In theory, it would be possible to apply

an extension of the method using matrix-valued continued fractions, as was done in [126] for the

uncharged Proca field, to the other two polarizations.

Our recurrence relation method appears to be less reliable when calculating QBS frequencies

for field masses much smaller than the mass value of the most unstable superradiant mode. This

is most noticeable for the S = +1 polarization where no reliable data could be obtained. We were

also unable to obtain reliable data for the QNMs of the odd-parity mode of the Proca field in the

specific case when m = 0. Possible reasons for these difficulties were discussed at the end of chapter

4. These issues warrant further investigation to see if these difficulties can be remedied.

The techniques we used in Sec. 7.1 to extend Anderson and Fabbri’s method to more general

stellar structures has room to be explored further. In particular it would be interesting to see if a

more detailed link between the interior metric functions and the form of the structure function could

be established.

We currently have no explanation for the interesting pattern in the values for the total energy

difference presented in Table 6.1. We hypothesise that there should exist a regularisation scheme

that can make the sum over ` finite and the final result should be in some way comparable to the

value of the Casimir energy around a spherical shell, see for example [106].

A full treatment of 〈Tµν〉 via the angular splitting PMR method has yet to be published. As

such, we did not numerically compute 〈Tµν〉 for a scalar field outside a Schwarzschild black hole.

However, there is scope to combine our numerical calculation of the difference ∆ 〈Tµν〉 with data for

〈Tµν〉 outside a Schwarzschild black hole calculated using the t-splitting variant of the PMR method

[97] to obtain data for 〈Tµν〉 outside a spherically symmetric star.
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Appendix A

Quasibound States of a Scalar Field

In this appendix we cover the matched asymptotic expansion techniques used to approximate the

QBS frequencies of a scalar field, in both static and rotating black hole spacetimes. The correspond-

ing calculations for the vector field were covered in Secs. 3.1.2 and 4.2.3 respectively. At the end of

this section, we briefly discuss some previous numerical work testing these approximations.

A.1 Non-rotating Spacetimes

Although the work of Furuhashi and Nambu for a charged, massive, scalar field in [69] was conducted

in the Kerr-Newman spacetime, it is found that the leading order approximation to the bound state

frequencies is independent of the black hole rotation a. Hence this approximation is also valid for

the Schwarzschild and Reissner-Nordström spacetimes and we detail the general method here.

Furuhashi and Nambu begin by assuming that each of the parametersMω,Mµ and eQ are small,

O (Mω) = O (Mµ) = O (eQ) ≡ O (α)� 1 (A.1.1)

and then considering the radial differential equation (3.1.9) with the effective potential (3.1.5) in the

region far from the black hole r � r+

d2ψ

dr2
+

[
ω2 − µ2 +

2
(
2Mω2 −Mµ2 − eQω

)
r

− ` (`+ 1) + α2

r2

]
ψ = 0. (A.1.2)

Here the radial function is

ψ (r) =
√

∆R (r) =
√

∆
u (r)

r
, (A.1.3)

where u (r) is the same function in the mode decomposition (3.1.2) and ∆ = r2frn is the horizon

function of Reissner-Nordström spacetime. It is worth noting that this equation takes the exact

same form even when a 6= 0: very far from the black hole the effects of the rotation are minimal
191
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(This is unsurprising given the Kerr metric (2.2.9) reduces to the Schwarzschild metric in the large

r limit for fixed a). This must be solved with the regular boundary condition at infinity, i.e., we

must use the − sign in Eq. (3.2.12). This equation has a solution for u (r) in terms of the confluent

hypergeometric function

u (r) = (2qr)`+1 e−qrU
(
`+ 1 + χ+ α2, 2`+ 2 + 2α2, 2qr

)
, (A.1.4)

where χ is as in (3.2.15). Although this solution is, strictly speaking, only valid far from the

black hole, the behavior of the solution in the limit of small r is known, with leading order terms

proportional to (2qr)`+1 and (2qr)−` such that R (r) = u (r) /r has leading order terms proportional

to r` and r−`−1. This can be taken to be the behavior of the solution in an “overlap” region neither

close to nor far from the black hole.

A similar analysis is then performed near the horizon of the black hole. Defining a new radial

variable z

z =
r − r+

r − r−
, (A.1.5)

the radial equation can be cast in the form for r � `(
z
d

dz

)2 (
∆−1R

)
+

[
ρ2 − ` (`+ 1)

z

(1− z)2

] (
∆−1R

)
= 0, (A.1.6)

where the index ρ is the same as that in (3.2.15). This equation has a solution in terms of the Gauss

hypergeometric function

∆−1R = ziρ (1− z)`+1
2F1 (`+ 1, `+ 1 + 2iρ, 1 + 2iρ, z) , (A.1.7)

whose behavior in limit as z → 1 (limit of large r) is known. Once again it is found that in the

overlap region, R (r) has two leading order terms, proportional to r` and r−`−1.

The behavior of the two solutions in this overlap region can be matched up and this provides

conditions on the bound state frequency ω, see equation 15 of [69]. What is learned is that the real

part of the spectrum of ω is approximately hydrogenic, i.e., it is comparable to the allowed energies

of the electron orbitals around a hydrogen atom,

< (ω) ≈ µ

[
1− 1

2

(
Mµ− eQ
`+ n+ 1

)2
]
. (A.1.8)

For a non-rotating black hole there are no further relevant corrections to the real part of the

bound state spectrum. The next-to-leading order correction is entirely imaginary,

= (ω) = µδν
(Mµ− eQ)2

(`+ 1 + n)3 , (A.1.9)
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where δν is defined in equation 24 of [69],

δν = 2iρ(0)

[
2 (Mµ− eQ)

`+ n+ 1
µ (r+ − r−)

]2`+1

× (2`+ n+ 1)!

n!

[
`!

(2`)! (2`+ 1)!

]2 ∏̀
k=1

(
k2 + 4ρ(0)2

)
. (A.1.10)

Here, ρ(0) is the first order approximation to ρ found by substituting the hydrogenic approximation

to < (ω), Eq. (A.1.8) into (3.2.15) in place of ω. Hence, the total scaling of = (ω) as a power of the

mass is µ4`+6.

From Eq. (A.1.9) we can recognise that to remain consistent with the boundary condition at

infinity, a bound state can only occur when

=
(√
< (ω)2 − µ2

)
=
Mµ− eQ
`+ n+ 1

> 0, (A.1.11)

requiring Mµ > eQ.

Superradiance will occur when = (ω) > 0, which is when ρ(0) > 0. This condition can be written

as
1

2κ

(
eΦH − ω(0)

)
> 0, (A.1.12)

where the surface gravity and electromagnetic potential of the black hole have been introduced

κ =
1

2

(
1

r+
− r−
r2

+

)
, ΦH =

Q

r+
. (A.1.13)

This form is useful when comparing the superradiance condition in Reissner-Nordström spacetime

to that in the Kerr spacetime in chapter 4, but it is easy to show that in Reissner-Nordström space

time this is just the same superradiance condition we wrote down in Sec. 3.1, ω < eQ/r+.

As ω ≈ µ the superradiance condition can also be phrased as µ < eQ/r+. However, this is

incompatible with the bound state condition Mµ > eQ. We can conclude that, while superradiance

does occur for a charged scalar field around a Reissner-Nordström black hole, there can be no

superradiant instabilities.

A.2 Rotating Spacetimes

A.2.1 Analytical Methods

In this section we will discuss a massive, charged scalar field around a Kerr-Newman black hole

with charge Q, as including a mass µ and a charge e on the field doesn’t cause any issues for
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the separability of the solution (for an earlier discussion of the uncharged scalar field on the Kerr

spacetime, see [26]). The angular and radial equations are then given by [51] and [69][
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ a2

(
ω2 − µ2

)
cos2 θ − m2

sin2 θ
+ λ

]
S = 0, (A.2.1)

∆
d

dr

(
∆
dψ

dr

)
+
{
−∆

(
µ2r2 + λ

)
+
[(
r2 + a2

)
ω − am− eQr

]2}
ψ = 0, (A.2.2)

where we are using the radial function ψ (r) =
√

∆R (r) =
√

∆u (r) /r as we did in the non-rotating

case (A.1.3) (where ∆ was defined in (2.2.5)) and have absorbed some terms into the angular

eigenvalue

λ ≡ λ̃+ 2maω − a2ω2. (A.2.3)

A comparison to the known equations in the non-rotating limit, in particular the potential in

Eq. (3.1.5), allows us to infer that as a→ 0, λ = λ̃ = ` (`+ 1) .

A.2.1.1 Leading Order

Both [51] and [69] perform asymptotic matching arguments on the radial differential equation (A.2.2).

The far field analysis for r � r+ , to leading order, is identical to the non-rotating case in the

previous section (Eq. (A.1.2)) as any terms involving the rotation a are contained in the α2. In the

near-horizon region, the index ρ in Eq. (3.2.15) now depends on a

ρ =

(
r2

+ + a2
)
ω −ma− eQr+

r+ − r−
. (A.2.4)

Recall the expression for the imaginary part of ω obtained from this analytic method in Eq. (A.1.9).

In particular, superradiance occurs for ρ(0) > 0, a condition which now reads

1

2κ
(mΩH + eΦH −< (ω)) > 0, (A.2.5)

with the surface gravity, κ, angular velocity ΩH and electromagnetic potential ΦH

κ =
1

2

(
r+ − r−
a2 + r2

+

)
, ΩH =

a

a2 + r2
+

, ΦH =
Qr+

a2 + r2
+

. (A.2.6)

(For more on the superradiance of a massive, charged scalar field on the spacetime of a Kerr-

Newman black hole, see [20]). In particular, the most unstable mode occurs when = (ω) scales with

the smallest possible power of Mµ, when ` = m = 1 and n = 0

= (ω) =
µ4

24
(Mµ− eQ)5 (a2 + r2

+

)3
(ΩH + eΦH − µ)

(
κ2 + (ΩH + eΦH − µ)2

)
. (A.2.7)

In the Kerr spacetime this reduces to

= (ω) =
a

M2

(Mµ)9

24
(A.2.8)
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and so we see this is more unstable than the fastest growing mode of the scalar field in the

Schwarzschild or Reissner-Nordström spacetimes (see Eq. (A.1.9, which scales like µ10 when ` = 1))

but not as unstable as the fastest growing vector mode in the Kerr spacetime (see Eq. (4.2.61) where

the fastest scaling is µ7).

A.2.1.2 Higher Orders

We now refer to the more recent work of [18], where they study the massive (uncharged) scalar field

in the Kerr spacetime. They, like Furuhashi and Nambu in [69], assume that Mµ = α � 1 and

expand all quantities in the radial and angular differential equations (A.2.2) and (A.2.1) in terms

of this parameter. In this notation the leading order hydrogenic approximation already stated is

ω ≈ µ
(
1− α2/2N2

)
where N = `+ n+ 1. Schematically, the radial function is expanded as

R =
∑
k

αkRk, (A.2.9)

that satisfies a differential equation

[
�(0) + α�(1) + α2�(2) + · · ·

] [
R0 + αR1 + α2R2 + · · ·

]
= 0, (A.2.10)

where each � represents a differential operator. This expansion is performed on both the near-

horizon and far-field differential equations. To extend the asymptotic matching argument described

above to higher orders they rearrange this into an in-homogeneous equation

�(0)Ri = −
i−1∑
k=0

�(i−k)Rk ≡ Ji, (A.2.11)

that can be solved order by order for each Ri. The process is quite involved and requires them to

consider the cases ` = 0 and ` 6= 0 separately, but the final result is valid for all ` ≥ 0. It is

< (ω) = µ

(
1− α2

2N2
− α4

8N4
+
fN`
N3

α4 +
h`
N3

maα5 + · · ·
)
, (A.2.12)

fN` = − 6

2`+ 1
+

2

N
, (A.2.13)

h` =
16

2` (2`+ 1) (2`+ 2)
. (A.2.14)

The term proportional to fN` is referred to as the fine structure correction and the term pro-

portional to h` is the hyper-fine structure correction. Note that there is no hyper-fine correction in

the case where ` = 0, as this forces us to set m = 0.
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A.2.2 Numerical Methods

The validity of these analytical results was tested through direct integration of the radial differential

equation in [69]. Using the tortoise coordinate r∗ suitable for the Kerr(-Newman) spacetime

r∗ =

∫
dr
r2

∆
= r +

1

r+ − r−
[
r2

+ log (r − r+)− r2
− log (r − r−)

]
(A.2.15)

and the radial function u (r) = rR (r), the solutions near the horizon and far from the black hole

can be written as

unear (r∗) = exp

[
−i
(

2Mω − eQ
r+

− am+Q2ω

r2
+

)
r∗

]
, (A.2.16)

ufar (r∗) = r
(Mµ2−eQω)/q
∗ e−qr∗ . (A.2.17)

Then, these two solutions are used as the starting data for two numerical integrations, one going

outwards from the horizon and one going inwards from infinity. This gives two mode solutions u(1)

and u(2). We want these solutions to be the same solution up to a constant factor, i.e., we want them

to be linearly dependent. This occurs when the Wronskian W (ω) of the two solutions is zero (see

Eq. (3.1.14)) and so the Wronskian forms a merit function that can be minimised over the complex

frequency plane. The imaginary part of the frequency that minimises this merit function is the field

instability rate for the parameters (a, µ, e) chosen.

For a given black hole rotation and charge the (µ, e) parameter space can be scanned to find the

largest instability rate. For example, [69] report that for a black hole with parameters a = 0.98M ,

Q = 0.01M the largest instability magnitude = (Mω) ≈ 1.13 × 10−7 occurs at Mµ = 0.35 and

eQ = −0.08. The asymptotic matching approximation method picked out the location of the

instability correctly, but not the magnitude. This shortcoming of the predictions of the asymptotic

matching method is also present for the vector field, see Fig. 4.2.3.

Similar results were presented for the uncharged scalar field on the Kerr spacetime in [52], but

they also calculated the QNMs as well as the QBSs. Rather than asymptotic matching they derived

a three-term recurrence relation using the same method as was described in the non-rotating case in

Sec. 3.2.2 (as direct integration is not a suitable numerical scheme for finding QNMs, see Sec. 3.4.1),

which they then solve using continued fractions. See also [53] where the superradiant instabilities of

the scalar field are studied in the time domain (as opposed to the frequency domain).
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