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Abstract

Future car parks will require significant power to support electric vehicle

(EV) charging as there will be both an increase in the penetration of EV

chargers and a higher demand for charging power as battery packs increase

in capacity and users demand short charge durations. Effective control of the

charging and local storage can be installed to help avoid excessive increases in

electrical feeder capacity, however, car parks will inevitably attain significant

power capability in the future compared to that seen today. It is therefore

proposed in this research to leverage this power capability and use vehicle-

to-grid charging, under the central control of the car park operator, to act

as an aggregated energy storage system to deliver grid frequency response

services. In this thesis, an agent-based model of a novel smart EV car park

(SECP) is presented that can incorporate detailed power models for agents

whilst providing a centralised command-based control structure to support

advanced power flow management. It is first used to analyse how to man-

age the peak power demand of the EVs through charging management with

four different power management methods proposed and evaluated. These

methods are demonstrated to enable the power feeder to the SECP to be con-

strained whilst providing an equitable EV charging service. The thesis then

investigates how photovoltaic panels and a battery energy storage system

can be integrated into the SECP model to support improved EV charging.

A methodology to control the power flow between the elements is presented

and this is demonstrated to effectively increase the available power for EV

charging and maximise the use of available PV energy over the day reducing

the demand from the grid. The results show how the power feeder can be

then minimised with the appropriate sizing of PV and the BESS. Finally, a

power flow management strategy is proposed to enable the import and export

of power to the grid to provide frequency response services as a single aggre-

gated unit. Two frequency response services used by the Electricity System

Operator in GB are simulated and it is validated that the SECP can deliver

to the requirements of the services. A sizing methodology is proposed for

the BESS to maximise service availability and EV charging capability whilst
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meeting the constraints of a power feeder limit. The research presented in

this thesis transforms an EV car park from a burden on the grid to being

effectively a short term energy storage system that can provide a fast power

response to help balance the electrical transmission system.
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Chapter 1

Introduction

1.1 Background & Motivation

With the increasing concerns about climate change, massive emission of

greenhouse gases, noise generation, the price, and the depletion volatility

of fossil fuels, electric vehicle (EV) as competitive green transportation has

attracted a lot of attention. In a recent survey, the environmental benefits

such as reduced pollution was the most common response, followed by more

economical benefits, quieter driving, and reduced on-the-road costs (tax,

fuel) [6]. Meanwhile, the EV also has the advantage in control performance,

such as accurate and quick torque generation, quicker torque measurement,

and the motor can be installed for each wheel [7].

Recent research on the scale of EVs has revealed that the EVs will play a

vital role in the future. Figure 1.1 shows global plug-in hybrid EV (PHEV)

and battery EV (BEV) stock in the period 2010-2020. Globally, EVs ex-

ceeded 5.1 million in 2018 with this number doubling by 2020 to over 10

million. The UK government announced in November 2020 that the phase-

out date for new petrol and diesel vehicles and vans would be pushed back

to 2030, with all new vehicles and vans being entirely zero-emission at the

tailpipe by 2035 [8]. The predicted trend in growth of EVs is based on

two scenarios: the New Policy Scenario, which introduces the impact of an-

nounced policy ambitions and it illustrates that in 2030, global EV sales will

1



Figure 1.1: Global EVs stock 2010-2020 [1].

reach 23 million and the stock will exceed 130 million EVs. Another scenario,

the EV30@30 Campaign is organized by Clean Energy Ministerial, and sets

a collective aspirational goal to reach 30% sales share for EVs by 2030, it

forecasts that EV stock and sales will nearly double in 2030 with roughly

250 million of EV stock and 43 million sales [9].

The number and distribution of EV chargers in an area are vital factors

for customers who consider purchasing an EV. The research in [2] classified

EV chargers into two types: slow chargers (with charging below 22kW) and

fast chargers (with charging over 22kW). The number of slow and fast EV

chargers’ stock in the worldwide public area in the period of 2015-2020 is

shown in Figure. 1.2. From the figure, the public accessible EV chargers

reached 1.3 million in 2020, which is almost 7 times more than the numbers in

2015, and almost 30% are fast chargers. The installations in 2020 increased

by 45%. Meanwhile, according to [10], as of 1 October 2019, there were

15,116 public EV charging devices available in the UK, an increase of 312%
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Figure 1.2: Global slow and fast EV chargers stock in public area 2015-
2020 [2].

since 2015. Of these, 2,495 were fast chargers. Fast chargers have also grown

quickly, rising by 260%, in the same period.

EV charging speeds are increasing sharply, the entry AC Level 1 charging

speed was set below 2kW, whereas AC level 2 chargers can achieve 10kW and

DC fast charging already has reached 120kW. Some research has developed

Extreme Fast charging, which could charge an EV in excess of 350kW [11].

Taking an example of an EV park with 100 spaces, if 20% of those spaces

are installed with a DC fast charger, the total potential maximum power

requirement will be 2,400kW; such massive instantaneous power demand

would be a burden on the local power supply, if available at all in some

locations.

Many research projects have started to investigate how the power grid sys-

tem is impacted by EV charging, and how to manage EVs charging to reduce

these impacts. Overall, these impacts can be summarized as load demand

increase, component overloading, phase and voltage unbalance, harmonics

injection, and power loss and stability [4]. Research uses power management
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methods to shift EV peak load to other periods, or integrated PV and BESS

into EV charging to reduce these impacts of EV charging on the grid.

Meanwhile, in order to maintain the quality of electricity supply across

Britain’s transmission system and balance demand and supply, Britain’s na-

tional grid provides services for generators/storage providers to participate

in, such as frequency response service, reserve service and reactive power

services. Some of these services require a significant capacity of BESS. The

battery in EVs can be considered as energy storage unit when connecting

with gird via a bi-directional charger. EVs can therefore both import and

export electricity energy from/to the grid, this is also known as V2G tech-

nology.

1.2 Thesis Contributions

The literature has presented research in distributed charging on the electrical

grid whereby chargers are installed at our homes and workplaces, however,

car parks have had less attention, particularly when considering them as a

single large storage asset with the potential to both import and export power

to support the grid through frequency response services. In this thesis the car

park is considered as such, whereby, all the parked EVs that are connected to

chargers can both import and export power under the central control of the

car park operator. Ultimately, the car park would be viewed by the grid as

a standalone grid connected battery yet still provide a satisfactory charging

service to the EV users. To achieve this there needs to be

• an understanding in how to manage the peak power demand of the EVs

through charging management

• an evaluation of how renewable energy sources such as PV and addi-

tional energy storage can support EV charging to reduce the demand

from the grid

• the development of power management strategies in the car park to

enable grid services to be supported effectively
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Therefore, the aim of this thesis is to model a novel smart EV car park

(SECP) that can then be used to research the above points and validate

whether the burden on the grid can be minimised and grid frequency response

services provided.

The contributions can be summarised as:

1. Introducing a novel agent-based model (ABM) of an SECP that can

both incorporate detailed power models for each agent whilst providing

a centralised command-based control structure to support advanced

power flow management. (Chapter 3)

2. Four novel charging power management methods that allow the peak

power feeder requirements to be constrained. These are evaluated and

the effect on the charging to the EVs is quantified demonstrating the

need for additional power. (Chapter 4)

3. Introducing how PV and a BESS can be integrated into the SECP

model to support EV charging. A methodology to control the power

flow between the elements is presented and this is demonstrated to

effectively increase the available power for EV charging and maximises

the use of available PV energy over the day. The results show how the

power feeder can be minimised with the suitable sizing of PV and the

BESS. (Chapter 5)

4. Simulating two frequency response services based on the National Grid

Electricity System Operator (NGESO) in GB and developing the ef-

fective power flow strategies for the services. It is validated that a

PV-BESS based SECP can provide these services and a sizing method-

ology is proposed for the BESS to maximise service availability and EV

charging capability. (Chapter 6)
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Chapter 2

Literature Review

This review has been divided into three sections. In the first section, the

review is concentrated on introducing some concepts about EV and EV pa-

rameters. The second section focuses on PV, which will be used in SECP

concept. In the third section, the objective of the work is first to introduce

the disadvantage of EV load, and the work aims to reduce the EV load.

Hence the review has concentrated on analysing the previous research on EV

total charging load prediction for an EV car park and the optimisation of

SECP which includes EV load management, integration of PV and control

of BESS. The end focus is on exploring the use of SECP for providing grid

ancillary services.

2.1 The useful EV information

2.1.1 EV types

There are three types of EVs: hybrid electric vehicles (HEVs), plug-in hybrid

electric vehicles (PHEVs), and all-electric vehicles (AEVs). HEVs are pow-

ered by an electric motor (EM) and an internal combustion engine (ICE).

Based on EM or ICE supporting the drive train, HEV can be further classi-

fied as the parallel hybrid, the series hybrid, and the power-split hybrid. For

the parallel hybrid, ICE and EM are both connected to the drive train. The

series hybrid uses ICE as a generator to support battery and EM, and EM is
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the only power source support for the drive train. For the power-split hybrid,

the ICE can directly power the drive train or support the EM to power the

drive train, HEV equipped with a battery, however, can only be charged by

regenerative braking and ICE. PHEVs are very similar to HEVs, however,

the battery of PHEVs can also be charged by connecting with an electrical

charger. AEVs only have EMs, these are further divided into battery electric

vehicles (BEVs) and fuel cell electric vehicles (FCEVs). BEVs do not have

an ICE, which means there is no fuel tank, no exhaust pipe, and no emissions

from driving. The EM directly connects with the drive train, the battery sup-

porting the EM is charged by regenerative braking or EV charger. FCEVs

are powered by EM, but there is no need for an external charging system

with a FCEV. Figure. 2.1 shows the details of EV types. Therefore, the EV

charging points in the market only provide charging services to PHEV and

BEV. In this thesis, EV mainly refers to BEV, or PHEV and BEV.

2.1.2 Battery state estimation

Batteries in the vehicles need to be considered for modelling and simulation.

In literature, there are some important concepts to this, in particular, the

state estimation of the battery.

2.1.2.1 Measuring the SoC

SoC refers to the battery charge level. SoC is divided into two types. The

first one is absolute SoC (ASoC) as indicated in Equation 2.1 [12], which

always focuses on a new battery. The second is relative SoC (RSoC) for

a faded battery since charging and discharging a battery repeatedly leads

to significant damage to its behaviors and life, which is shown in Equation

2.2 [13]. Voltage method, Coulomb Counting and Hydrometer measurement

[13,14] have been employed in the SoC estimation.

ASoC =
Cremaining

Crated

× 100% (2.1)
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Figure 2.1: EVs’ types.

RSoC =
Cremaining

Cfaded

× 100% (2.2)

where the Crated and Cfaded represent the rated capacity of the battery

and the capacity of the faded battery respectively. Cremaining is the remaining

capacity of the battery in the current situation. The unit of capacity depends

on the measurement methods, such as Wh or Ah.

Voltage is a straightforward way to measure state-of-charge, although
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it might be incorrect due to cell materials and temperature. The battery

must rest in the open circuit condition for at least four hours to acquire

reliable measurements; battery manufactures recommend 24 hours for lead-

acid batteries [14].

Coulomb counting is used to estimate SoC by measuring the in-and-out-

flowing current. The energy losses are a significant problem of coulomb

counting, which results in the electricity available in the battery at the end

always being less than the electricity that had been put in. If the Ah capacity

is used, the change of ASoC and RSoC from time t0 to t can be expressed

as [13]:

ASoC = ASoC(t)− ASoC(t0) =

∫ t

t0
i(t)dt

Crated

× 100% (2.3)

Cfaded =

∫ t2

t1

i(t)dt (2.4)

RSoC = RSoC(t)−RSoC(t0) =

∫ t

t0
i(t)dt

Cfaded

× 100% (2.5)

Where i is the battery current, Cfaded is defined as the maximum total

electrical charge which a faded battery can deliver from the fully charged

state (SoC of 100%) at time t1 to a fully discharged state (SoC of 0%) at

time t2.

The hydrometer is another way to measure the SoC of flooded lead-acid

batteries. The principle of this method is when the lead-acid battery is

charged, the concentration of sulfuric acid increases, and the specific gravity

increases, so the SoC will increase. SoC can be estimated to build the con-

nection between the average specific gravity and approximate SoC. However,

specific gravity might vary with battery applications and temperature.

The Kalman Filter is a nonlinear estimation algorithm, which was firstly

proposed by R.E Kalman. It can estimate the state of dynamic systems

from a series of incomplete measurements which contain noise. Kalman filter
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on SoC estimation can be seen from [14–18]. Other methods include, a

neural network scheme which is used to build a prediction model for SoC

estimation [15,19–21]. Fuzzy logic methods employ a fuzzy rule set to analyse

the observed data of complex and nonlinear systems. Fuzzy logic is employed

to estimate SoC in [22].

2.1.2.2 Measuring the SoH

SoH is a tool to provide the general condition of a battery. It can be used as an

indicator to the condition of a battery and potentially the remaining life of the

battery. There are three main SoH indexes of a battery, which are capacity,

internal resistance, and self-discharge. Generally, a battery is considered

to reach its end of life when the battery capacity fades to 80% of its initial

value [23]. Unlike SoC, SoH does not have an absolute definition over the last

few years, the measurement of SoH may depend on different indicators and

will have various methods. In [24], they classify SoH estimation with four

approaches: The direct assessment approach, the Adaptive approach, the

data-driven approach, and others. Therefore capacity loss alone is commonly

used as a measure of battery degradation, where it is referred to as the SoH

of the cell, which is generally defined as:

SoH(t) =
Ct

Crated

× 100% (2.6)

where Ct is the measured capacity at time t and Crated is the rated capacity

of the battery.

Coulomb counting is also used to calculate the SoH. The discharge value

which the battery has been discharged to a SoC value of 0 is divided by

the rated capacity to calculate SoH. The open-circuit voltage method is pro-

vided to estimate SoH by using the relationship between SoH and open-

circuit voltage which is tested in the laboratory. SoH can also be determined

via impedance spectroscopy, which employs a wide frequency spectrum with

which to measure the impedence over [25].

A Kalman filter can accurately estimate battery SoH, its application can

be seen from [26, 27]. The particle filter method is provided for nonlinear
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non-Gaussian system state estimation. The Particle filter algorithm selects

a set of random samples for state approximation with the least amount of

estimation variance. In [28, 29], the researchers applied the particle filter on

SoH estimation.

The Fuzzy logic and Neural network application of SoH estimation are

similar to SoC, which can be seen in [30, 31] and [32, 33] respectively. A

Probability Density Function (PDF) is also used to calculate SoH based on

the history data of battery capacity [24].

2.1.3 EV charging infrastructure

2.1.3.1 EV charger protocols

The increasing number of EVs requires more EV charging points to meet

the high customer demand. Usually, EV batteries are DC systems, any de-

vices with AC input or output requirements, such as a BESS, will require an

AC/DC converter. EV charging also requires DC/DC converter to achieve

different voltage levels. EV charger equipped with AC/DC and DC/DC func-

tions can be classified into the on-board charger and the off-board charger,

where the on-board charger is installed inside the actual EV, and the main

function is to convert AC power from the grid to DC power. The off-board

charger is an outside charger that directly provides a DC output power. Both

of them are shown in Figure 2.2.

Because of the weight and cost constraints and the limitation of space and

cooling system, on-board chargers are limited in the amount of energy they

can transfer [34]. Due to the limiting power ratings of on-board chargers,

off-board chargers, normally rated at 50 kW and, more recently, at 350 kW,

have been developed. EV chargers are frequently designed for use as off-

board arrangements because of their large size and weight resulting from

the required inductors, capacitors, cooling system, and eventual isolating

transformer [35]. Despite the higher cost of an off-board charger, they offer

some promising features such as decreasing the weight of the EV; charging at

high power levels; faster charging capability; less heating issues; and proper

communications between utility companies and owners of commercial sites for
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Figure 2.2: On-Board charger and off-board charger.

Figure 2.3: Unidirectional and bidirectional charger and power flow.

creating charging situations to provide better congruence [34]. On the other

hand, the use of EV chargers with an on-board arrangement would allow

battery charging at any time, given the availability of the supply grid [35].

Meanwhile, EV chargers can also be classified as unidirectional and bidi-

rectional, where Figure. 2.3 shows their electricity flow. The unidirectional

charger has benefits such as simplification of interconnection, fewer Compo-

nents needed [36]. By contrast, the bidirectional charger can provide the op-

portunity of integrating an EV with grid for ancillary services. The research

of bidirectional chargers on on-board [37–39] and off-board versions [40, 41]

designs are vital topics in V2G technology.
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2.1.3.2 Classification of EV charging

EV charging can be classified into AC and DC charging. The charging speed

of an EV can be classified as either slow charging (level 1 and level 2) or fast

charging (level 3 and DC charging). There are some EV charging standards

available to give the exact value of different charging levels, but different

countries follow different charging standards. USA uses SAE and IEEE,

whereas IEC is wildly used in Europe, and China has Guobiao (GB/T) as

standard for AC and DC charging. The AC charging part of GB/T is similar

to IEC standard. The details can be seen in Table. 2.1.

Levels 1 and 2 charging stations can be put in a private site, whereas,

Level 3 charging stations require dedicated electrical connections and trans-

formers, and are typically installed at public charging stations, so require

permission from grid companies. DC fast charging is faster than AC charg-

ing and usually has a higher charging power capacity at the same voltage

level. The most common DC fast charging points can charge at a power

of 50 kW using CHArge deMOve (CHAdeMO), Combined Charging System

(CCS) or GB/Tstandard connectors. Tesla was the first to provide 120kW

charging points (Tesla Superchargers) equipped with custom connectors. The

Table 2.1: Current and voltage level in SAEJ1772, IEC62196, and IEC61851
[4]

Stan-
dards

AC/DC Level/Mode Max Current
(A)

Voltage
(V)

Power
(kW)

SAEJ1772 AC Level 1 16 120 1.92
AC Level 2 32–80 240 7.68-19.2
DC Level 1 80 200–450 16-36
DC Level 2 200 200–450 40-90

IEC62196 AC Mode 1 16 120 1.92
AC Mode 2 32 240 7.68
AC Mode 3 32–250 250 8-62.5
DC Mode 4 400 600 240

IEC61851 AC Mode 1 16 120 1.92
AC Mode 2 80 240 19.2
DC Mode 4 80 200–450 16-36
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North American CCS 1, the European CCS 2, the CHAdeMO (a standard

established by China and Japan) and the Tesla Super Charger are the four

main charging connectors that have been launched.

In 2017, Porsche first installed two 350kW CCS chargers which is the

highest power rating permitted by CCS in Berlin [42]. The UK’s first 350kW

EV charging station was opened in Kent in 2019, however, no current electric

vehicles were capable of fully benefiting from such a fast charging rate until

the Porsche Taycan, which can be charged at 350kW [43]. In December 2018,

BMW and Porsche in collaboration with Siemens presented a CCS charging

station with an output of up to 450 kW in Bavaria, Germany. At this new

charging station, a Porsche research vehicle with a net battery capacity of

around 90 kWh reached a charging power of more than 400 kW, allowing

charging periods of less than 3 minutes for the first 100 km range [44]. China

and Japan have been making a push on a new global EV charging standard in

which the maximum charging power is tentatively set at 900kW. This allows

large vehicles such as earthworks, buses, trucks and helicopters to be charged

faster [45]. DC fast charging reduces the range anxiety of EV customers, and

can help to enable rapid growth of the EV market by minimising vehicle

downtime [46].

The progress of the EV charger can not always lead to a high-speed

charge. It also depends on the specification of the EV battery, the cable

and the environmental conditions [47, 48]. High charging current requests

larger diameters cable to avoid overheating. Meanwhile, high environment

temperature causes the high temperature of the battery, which may slow

down charging and reduce the lifetime of the battery. Most batteries can be

charged in the temperature range of 5°C to 45°C. DC fast charging has been

known to reduce energy efficiency and cause accelerated capacity and power

fade and generate massive heat. Further information of EV Lithium-ion

battery DC fast charging can be seen in [47,49], and the converter typologies

of DC fast charging of EV charging station is in [50–53].

An EV battery, known as a traction battery, is a battery used to power

the EMs of a BEV or HEV. Lithium-ion batteries are presently the most

widely used traction battery in EVs, due to its high energy density and en-

14



Table 2.2: The key feature of each Lithium-ion battery [5]

Chemistry NMC LFP NCA
Specific Energy (Wh/kg) 150–220 90–120 200-260
Cycle life (ideal) 1000–2000 1000–2000 500
Thermal runaway (°C) 210 270 150

hanced power per mass battery unit, which has enabled the development

of various types of batteries with decreased weight and dimensions at com-

petitive prices [54]. The most popular Lithium-ion battery for the traction

battery are lithium-iron phosphate battery (LFP battery) and lithium nickel

manganese cobalt oxides battery (NMC or NCM battery) and lithium nickel

cobalt aluminium oxides battery (NCA). LFP is a type of lithium-ion bat-

tery using lithium iron phosphate as the cathode material, and a graphite

carbon electrode with a metallic backing as the anode. The difference with

LFP battery is that NMC mixed metal oxides of lithium, nickel, manganese

and cobalt as the cathode material and NCA mixed metal oxides of lithium,

nickel, aluminium, cobalt oxides as the cathode material [55]. The specific

energy and the cycle life of the three types of battery have been shown in

Table. 2.2, NCA has the highest specific energy (200-260Wh/kg), NMC and

LFP have similar cycle life (1000–2000), while LFP batteries has the highest

thermal runaway and can stand high voltage for extended periods of time

which means LFP has lower risk of electric shortages and possibly fires [56].

2.2 PV

A solar panel, also known as a PV module, is an installation of PV cells

arranged in a framework. PV generates direct current electricity using sun-

light as a source of energy. PV as a renewable energy has been applied in

many areas, such as domestic and commercial generation, and grid support.

According to the PV deployment [57], there are 1,088,027 solar equipment

installations in the UK with a total capacity of 13,530 MW by the end of June

2021. By contrast, in January 2012, there were only 244,322 solar equipment
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Figure 2.4: Schematic framework of the solar-PV system

installations in the UK with a total capacity of 1027.2 MW. The time data

shows large capacity step changes in March for the years 2013 to 2017.

2.2.1 PV modelling

Figure 2.4 shows a normal framework of a PV system. PV performance

modelling is essential to anticipate energy yield and rate the performance of

the running plant. The relationship of maximum power generation of a PV

panel PMPV and operating conditions [58] can be expressed by the equation

below:

PMPV = PMPV (G, TC) (2.7)

where G and TC represent the irradiance and the cell temperature respec-

tively. The standard test condition (STC) of a PV (the irradiance is 1000W/m2,

the spectrum is AM 1.5, the cell temperature equals to 25°C) is employed to

get the rated power of a PV generator. Various studies on the modelling of

PV technology have been provided. In [59], the author calculates generated

PV power Pj in time slot j based on the equation:

Pj = PMPV
Gj

1000
[1− βPV (TCj − TCRj)] (2.8)

PjR = ηconvρPV ηMPPTPj (2.9)
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where Gj is the solar irradiance in the jth time slot, βPV is the coefficient of

temperature for the PV module’s efficiency, and TCRj is the rated cell tem-

perature. PjR is the output power which includes efficiency of the converter

(ηconv) and maximum power point tracking (ηMPPT ), and derating factor of

PV panel (ρPV ).

2.3 Smart EV charging (SEC)

2.3.1 The disadvantages of EV grid integration

Overall, the negative impacts of EV grid integration can be classified into six

aspects which are load demand increase, component overloading, phase and

voltage unbalance, harmonics injection, power loss, and stability [4].

2.3.1.1 Load demand increase

Along with the increasing number of EVs, the capacity of batteries continues

to grow and the demand for public EV fast charging points is higher than

ever before. Research in [60] finds that the number of fast charging stations

per 1000 vehicles for EVs will be similar to the fuel station network in the

future. Car parks have to increase EV charging points to meet the high

customer demand. Research in [61] states that according to information

from Germany, before 2030, EV growth is likely to result in slight increases

in power demand, which will likely add around 1% to the total and require

roughly 5 GW of additional generation capacity. By 2050, that percentage

might rise to over 4%, necessitating an additional 20 GW of capacity. These

results focus on a country, however, high densities in large cities will become

early EV adoption hot spots, increased local grid support requirements for

significant EV populations will probably emerge.

Estimated data shows that globally EVs consumed 58 TWh of electricity

in 2018, which is equal to the electricity demand of the whole of Switzerland

in 2017. In the New Policies Scenario, worldwide EV fleet electricity demand

is expected to reach over 640 TWh in 2030, which is the same as France and

Spain’s combined total electricity consumption in 2016. The larger worldwide
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EV fleet in the EV30@30 Scenario results in 1110 TWh of electricity demand

in 2030, nearly double that of the New Policies Scenario [62]. EVs will

bring a significant increase in power demand on the grid, especially during

the high-power demand period, which might be a big problem without any

management.

2.3.1.2 Component overloading

The analysis in [61] found that a typical residential feeder circuit of 150

dwellings with 25% local EV penetration would see a 30 percent increase in

local peak power load, they also anticipate that if nothing is done, the total

cost of grid investment will be several hundred Euros per EV. Massive elec-

tricity demand will be a burden on the local grid and the local transformers

in the substation will eventually be overloaded. A case study in Toronto [63]

chose the two most loaded distribution transformers (OT1 and OT2) rated at

100 kVA to model the impact of EV chargers on the distribution substation.

In this study, 35 houses are using the transformers, three hours in a random

day are selected which are 4:00–5:00, 12:00–13:00, and 20:00–21:00. The

basic load without EVs in this period are 31.833, 44.566, and 60.904 kVA

respectively. The EVs are using 6.6 kW chargers with a penetration rate

of 33%, 66%, and 100%. The results reveal that a 6.6 kW charger creates

potential system overloading even under low EV penetration. This case just

uses a 6.6 kW EV charger, if it were upgraded to a DC fast charger supplying

50kW or over, the transformer can easily exceed the capacity limit. In [64],

to quantify transformer ageing under both unmanaged and smart charging

situations, the author employs a Monte Carlo simulation of a 25kVA dis-

tribution transformer with ambient temperature data from Burlington, VT

and Phoenix, AZ. The data show that AC Level 2 charging causes more sig-

nificant ageing than AC Level 1. Smart charging, where the power level of

charging is dynamically controlled, has the potential to greatly reduce these

side effects.
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2.3.1.3 Phase and voltage unbalance

[65–67] reveal that that as the penetration level of EV charging or discharging

increases, the voltage imbalance will grow. EVs also have an impact on the

voltage imbalance at the feeder’s end, if EVs connect to a low load phase of

the system which is operating in the discharging mode, voltage unbalance at

the end of the feeder may exceed the regulatory limits, if PEVs are connected

to a heavily loaded phase and operate in charging mode, similar results are

expected. When the charging rate of EVs is raised, the voltage unbalances

between the phases will increase. Furthermore, if EVs charge or discharge

when the grid system is under a high demand period, the voltage unbalance

will increase.

2.3.1.4 Harmonics injection

The total harmonic distortion of the grid current must be less than 5%, and

the individual harmonic components must be tightly regulated [68], high

harmonic current distortion in charging systems can result in secondary dis-

tribution line and transformer de-rating, as well as quality of service issues,

the main source of EV charging related harmonics is the interface circuit

architecture that connects to the grid network [69]. Unidirectional chargers

are used in electric vehicles to transfer energy in one direction and might

inject harmonic current into the grid network [70]. [71] reveals that an EV

penetration level of 45 percent can produce a significant voltage drop in the

system, and voltage total harmonic distortion with a current total harmonic

distortion of 17.4 % is over the permissible limit of 8%.

2.3.1.5 Power loss and stability

Power loss in an electricity network can be caused by a variety of factors,

such as faults in power plants, damage to electric transmission lines, substa-

tions, or other sections of the distribution system. The higher power demand

resulting from the increasing EVs leads to the growth of power loss. Research

in [72] demonstrates that with 62% of EV penetration, up to 40% power loss

increment can occurs when considering two large-scale real distribution areas.
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EV loads are nonlinear and require a huge amount of power in a short period

of time, causing power system instability [4]. In [73], the author simulated

results reveal fast charging of several EVs can put excessive stress on the

components of power grids, which leads to voltage instability and shortened

life.

2.3.2 The definition of SEC

The management of EV charging is necessary along with the increase of the

EV penetration and their charging speed, SEC as a hot research topic gets a

lot of attention. SEC entails changing charging to a different time of day, such

as overnight when electricity demand is lower or during periods of significant

renewable energy generation. According to [8], the smart charging point can

be described as:

1. Send and receive information

2. Respond to this information by increasing or decreasing the rate of

electricity flowing through the charge point; and changing the time at

which electricity flows through the charge point.

According to the UK government response to SEC [8], the UK government

proposed four objectives to support smart charging policy: consumer uptake,

innovation, grid protection and consumer protection. For achieving SEC,

the Automated and Electric Vehicles Act 2018 gives the UK government

the power to require all EV charging points sold and installed in the UK

to have smart functionality and meet minimum device-level criteria through

secondary legislation. In 2021, the UK government intends to impose a

minimum set of regulations to promote the early SEC market.

2.3.3 EV charging load modelling

In order to develop SEC strategies, the EV charging points or the EV charg-

ing park need a power management system which integrate the information

of each devices and manage these devices. there are a lot of parameters in
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the system that need to be studied, the EV charging load model is one of the

most complex parts as it is related to many complex factors, such as people

behaviour which is affected by external and internal environments. It is chal-

lenging to predict people’s actions without massive and long term behaviour

captures and analysis. Hence, most research will transfer these questions to

small parts in some particular cases. For example, how long and how often an

EV owner would like to charge their EV can be divided into how far the EV

owner drive every day, what model of EV they have (battery capacity/charge

capability), and the parameters of this EV, the charging speed of the charg-

ing point, etc. Many factors affect EV charging load, this can be classified

to indirect factors which are benefit, market, policy and environment; and

direct factors which are infrastructure, user and technology [74], where the

infrastructure includes the capacity of power supply from the power conver-

sion system and the distribution of EV charging facilities etc; The user factors

include the user behaviour such as driving time, charging performance, EV

size etc; The technology includes the power supply level, battery charac-

teristics, cooling system for facilities, battery management system (BMS)

development.

2.3.3.1 Introduction of probability density function (PDF) and

cumulative distribution function (CDF)

For estimating the EVs load and solving some probability problems, PDF

and CDF are normally used.

The link between observations and their probability is defined as a prob-

ability density. Some random variable outcomes will have a low probability

density, while others will have a high probability density. A probability distri-

bution is the general shape of the probability density, while a PDF calculates

probabilities for distinct outcomes of a random variable. A random variable

x has a PDF f(x) [75].

The cumulative distribution function (CDF) F (x) describes the probabil-

ity that a random variable x with a given PDF will be found at a value less
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than or equal to M [76]. This CDF is given as:

F (M) =

∫ M

−∞
f(x)dx (2.10)

Meanwhile, CDF also has the following properties:

lim
x→−∞

F (x) = 0 (2.11)

lim
x→∞

F (x) = 1 (2.12)

2.3.3.2 The application of queuing theory and the Poisson process

on load modelling

When analysing the consequences of consumers randomly arriving and being

serviced by a system, queuing theory is typically applied. In [77], A EV

charging station equipped with AC chargers and DC chargers is modelled to

provide the charging services for connecting EVs. This research presumes

that fast charging leads to battery degradation. Hence, this charging station

process allows EV owners to consider short charging duration, long battery

lifetimes or both of them. However, the service unavailability rate might

increase when most EV owners prefer one type of charger. Hence, the author

presumes EV owners are price sensitive, then uses an optimal pricing scheme

to guide the selection of EV owners. The author uses the queuing theory

for modelling EV charging load. The implications of consumers arriving at

random and being served by a system are often theoretically analysed using

queuing theory since the chargers are limited to customers. The research uses

queuing theory to analyse a specific case and to design a balanced system

that serves customers quickly and efficiently but does not cost too much to

be sustainable. The basic queuing theory includes an analysis of arrivals at

a facility, and an analysis of the processes currently in place to serve them.

In queuing theory the possibility of the numbers of EVs arriving in at a time

slot follows a Poisson process, this can also be seen in [78,79], the probability

of n EVs arriving at the EV charging station during the time slot t (P (n))

can be expressed by
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P (n) =
e−λt ∗ λt

n

n!
, n = 0, 1, 2, 3... (2.13)

where λt represents the average number of EVs arriving during this t time

slot. In [78, 80], the charging time requested by an EV is transferred to an

exponential distribution, [78] divides the charging period into exponential

distribution in the daytime and a log-normal distribution in the night-time.

The probability density function of an exponential distribution for n EVs’

the charging duration time td of EVs can be expressed by

P (td) = α ∗ e−αtd , (2.14)

where α is the average EV charging duration. The probability density func-

tion of log-normal distribution for the charging duration td is

P (td) =
1

tdσ
√
2π

∗ e−
ln td−µ2

2σ2 (2.15)

where µ is the average charging duration time, σ2 represents the variance of

all EVs’ charging duration. The charging duration is related to the travel

distance of an EV, as a longer travel distance might lead to more energy

demand. EV customers with more energy demand might request a longer

charging period to feed the EV battery.

For the travel distance, a lot of papers use the normal distribution or ex-

ponential distribution or Poisson distribution, however, in some cases, these

distributions can not reflect the actual as the travel distance might contain

multiple regions with high probability mass. A mixture model is a probabilis-

tic model for expressing the sub-populations within a larger populationwhich

does not require an observed data set to determine the sub-population to

which an individual observation belongs. In [80], the mixture model-based

technique is used to analyse for more general outcomes. The mixture model
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can be express as

P (x|θ) =
K∑
k=1

ηklm(x|θk) (2.16)

In this function, θ is the parameters of this PDF, K is the PDF numbers.

ηk represents the probability that the x belongs to the k-th selected PDF,

lm(x|θk) is the k-th PDF. The mixture model simulates random variables by

combining some significant PDFs.

2.3.3.3 The application of neural networks and deep learning on

load modelling

A neural network is a set of algorithms that attempts to recognise underlying

relationships in a batch of data using a method that mimics how the human

brain works. In the [81], three types of the EV charging load forecasting

model for the EV charging station are established by using neural networks

and the Grey model, which are the BP neural network, RBF neural network,

and GM(1,1) model. The idea is to analyse the data of a forecasting day,

the same type of days in the past weeks will be chosen as the inputs to the

forecasting model to predict the daily load curve of the forecasting day, then

the result will be acquired based on the flexible factors and EV driver action.

A selection of training databases is extracted from the preceding 70 days

before the forecasting day in this paper.

Deep learning algorithms, which are aided by an unprecedented ability to

learn from large amounts of data, offer novel approaches to solving difficult

predicting problems. [82] provides a comparison of deep learning algorithms

for forecasting PHEV super-short-term stochastic charging load by using

long-short-term memory which is also used in [83] for building energy load

prediction. In [80], the traffic flow around an EV charging park is predicted

by using a deep learning based convolution neural network. The data from

the M42 motorway between J5 and J6 in England for the first two months of

each season are employed as the training data-set for the convolution neural
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network model. Then the arrival rate at time t can be predicted by

δt = β ∗ Pt ∗ ft (2.17)

where the ft is the traffic flow around the EV charging park, β is the penetra-

tion of EVs, Pt is the probability that the EVs travelling around will choose

to charge in the charging park.

2.3.3.4 The application of the Markov Chain on load modelling

In [84], the author uses Markov Chain to represent variations in battery SoC

by using three decision-making behaviours: driving, charging, and neither

charging nor driving during the entire day of an EV owner’s journey. The

Markov chain model is a type of stochastic dynamic system that describes a

system with a random state at each time and a state transition probability

from one time to the next time that is only connected to the current state and

its transition probability which is defined. In this model, the random state

is the SoC of EVs, EVs have corresponding transition probabilities based

on different decision-making behaviours. It is worth noting that the author

classifies the chargers into fast and slow chargers. The decision is made based

on the long statistics, hence the charging load can be predicted by using the

coulomb counting and the SoC of EVs in the different time periods and their

decisions.

In [3], Markov Chain is employed to represent the EV state transition from

‘driving’ (D),‘parking at home’ (H),‘parking at workplace’ (W), and ‘parking

at commercial areas’ (C). Figure. 2.4 shows all the state transitions that

could happen in the system. All state transitions have their corresponding

possibility at each time slot based on imperial PDF Monte Carlo simulation.

Based on that, the author could calculate the driving time, the charging time

and the initial SoC of the EVs. In the model, the charging profile of BMW

i3 in 2013 is employed as the charging data. The result shows that the initial

SoC of EVs are 100% and those EVs are recharged back to 100% by the end

of the day.
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Figure 2.5: Possible cases of vehicle state transitions at time t [3]

2.3.3.5 The application of ABM on EV load modelling

Many papers discuss the EV charging load based on ABM as this method can

show the details of each EV. In [85], each EV agent represents an EV driver

and its vehicle. There are two other agents which are the electricity retailer

agent and the EV aggregator agent, they are able to set the electricity price

and manage the EVs’ charging time to reduce the electricity price. In the

provided system, the EV agents have their own EV model such as Nissan

Leaf or BMW i3, etc. the main parameters of EV agents include the number

of the daily trips based on a Poisson distribution function, travel distance

per trip, destination, velocity, driving time and period, and social variables

which contain a lot of different charging variables. The main advantage of

ABM in [85] are:

1. Individual components that are independent and different which can

be viewed as an EV model and mobility pattern for each EV owner.

2. The system is adaptable, EV’s charging demand can be managed.

3. Location influence: the impacts of the charging point’s position in the

power network is considered.

4. Social interaction representation: different sorts of EV owners may have

varied effects on the overall system.
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[59] employs an agent-based methodology with NetLogo software. NetLogo

is a multi-agent programmable modelling environment that allows agents

to communicate, making it ideal for complex systems researchthousands of

agents can receive instructions and act autonomously at the same time. The

author classifies the parameters of the agents (EVs) to the micro-level pa-

rameters and macro-level parameters. The micro-level includes: a category

of EV which includes private and commercial EV; Range anxiety and bat-

tery capacity; Initial SoC and final SoC of EVs which are the SoC when

an EV is arriving and leaving respectively; Mode of charging which includes

fast and slow charging; charging time; parking duration; range anxiety and

driver experience, the range anxiety refers to the fear of the battery being

empty before arriving at the destination, the fear is influenced by the driver

experience. The macro-level parameters are: the availability of the slots in

the charging stations, velocity of EVs, number of EVs, type of day, purpose

of travel, and charging cost.

2.3.4 Optimisation of EV charging station

In brief, SEC can be divided into two types of control: decentralised and

centralised. Decentralised control divides computation effort to individual

EV charging sites [86], making it easier to operate and install for private use.

However, due to a lack of global coordination, decentralised charging cannot

attain system-wide optimal performance. A centralised system, on the other

hand, uses aggregators to connect electricity markets, vehicle owners, and

charging data of EVs, which is enabled by managing charging power across

a large population of EVs [87, 88]. According to an EV owners’ preferences,

an EV aggregator groups EVs to provide new economic prospects in the

electricity market, therefore, the market contribution of individual EVs can

be improved.

2.3.4.1 EV charging station aggregator

Figure. 2.6 shows the potential activities aggregators can do, where the

GENCO is responsible for providing the capacity of electricity generation
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Figure 2.6: The aggregator functions and collaboration with other grid sys-
tems [4]

and ensures lucrative power generation; TSO is responsible for the trans-

mission system’s operation security as well as system service procurement

such as operational reserve and frequency control; The businesses responsi-

ble for distributing and managing energy from generation sources to supplier

or retailer agent are known as the DSO. LSE and aggregators are retailer

agents which sell the electricity to end-user and bidding for electricity from

GENCO. To EV owners, aggregators provide the real-time charging price

and the number, and the locations, of available EV charging points, and

the optimised EV charging curve for a limited power feeder. Aggregators

could also estimate power demand behaviour for the next day and prepare

their buy/sell prices for EVs. To the grid side or EV charging park owner,

aggregators buy electricity from the market at lower prices and could sell

them during daily peak power consumption period or use them to provide

other ancillary grid services by taking advantage of their clients’ EV storage

capability through the link of the aggregators with the TSO.
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2.3.4.2 Decentralised EV charging

Many papers discuss EV charging management from decentralised and cen-

tralised methods. In decentralised control, EV owners do not need to provide

information of EVs such as SoC or the capacity of the battery, meanwhile,

EV owners are able to choose their charging schedules based on the elec-

tricity price or other information from the upper level of the grid system

such as the aggregator. The decentralised strategy achieves ”valley-filling”

in [89–91], which flattens the load profile by filling valleys in load curves,

for example, scheduling EV charging from daylight to midnight to cover the

nighttime valley in power demand. Decentralized charging might require

the increased computation capability of EV chargers as the charger might

be required to seek the best charging period for EVs based on the infor-

mation from upper level. [92] provides a probability transition matrix which

allows EV charging loads to be scheduled to fill the nightly load valley while

still fulfilling the EV owners charging demand. The transition probability of

transferring a EV charging load from time j to time i is represented by the

elements of the probability transition matrix at the ith row and jth column.

The aggregator calculates the probability transition matrix, EVs will upload

the their charging schedule based on the probability transition matrix and

EV owner requirements such as preferring charging period, then aggregator

calculated the total power demand of all EVs in new schedule, if the total

power demand is still higher than the limit, the new probability transition

matrix will be calculated repeatedly until all the EVs can be scheduled with

total power demand lower than power feeder limit. A distributed algorithm

is developed in [93] to tackle the decentralized EV charging problem and

achieve the maximizing user convenience. Same with [92], each EV is only

required to upload its power demand to the aggregator, and EVs only have

two charging options which are charging or not charging. For the situation

where the aggregator provides the same optimization instructions to all EVs,

and EVs decides the charging power individually based on the instructions

and individual parameters, this control also called distributed control [94].

In [94], the author provides a fully decentralized EV charging strategy
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without communication among the aggregator and EVs, this method is an

autonomous stochastic charging control strategy that employs power man-

agement control from the on-board charger. To achieve that, the on-board

charger management system has to acquire a baseload profile (non-EV load)

by analyzing historical load data on the power grid, and the daily baseload

variations must be very small. However, from a practical perspective, the

variations of daily base load are not always minimal, if the base load profile

is not updated frequently for on-board charger or the way of analyzing histor-

ical load is not very accurate, valley filling by the method might be invalid.

References [95, 96] provide a decentralised charging approach that optimises

charging profiles for the following day through a negotiation process between

the grid and EVs based on the grid’s inelastic base load profile (non-EV load)

forecast. The optimised charging profiles are then utilised the next day to

plan EV charging with the goal of keeping the overall load curve flat (base

load plus aggregate EV load). However, the optimisation requires extremely

precise load profile prediction and all data of EV charging demand must be

known before their arrival [97].

Decentralised charging control around frequency regulation is proposed

in [98, 99], where EVs function as producers or energy receivers, preventing

the grid frequency from decreasing or growing through bi-directional power

transfer. The technical drawback of this technique is that the total combined

EV power is unknown (decentralised scenario), which makes balancing the

system more difficult for the electrical grid operator.

Reference [64] introduces two decentralised charging strategies for EVs

charging management with a limited transformer power to reduce the age-

ing of a transformer. Method one first calculates whether there is enough

capacity of the transformer to facilities the charging through receiving the

EVs charging demand information from each EV, if there is enough, the EV

charging park will provide charging on a first come first served for all EVs,

otherwise, the charging request will be denied. The second method builds

the connection of charging cost with the charging urgency level, along with

the charging urgency increasing, the price of electricity rises, assuming the

customer accept this method, EV owners may choose to receive more charge
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urgently. If the EV has a high priority charging requirement, there will be

a higher chance of obtaining a charge than if the EV requires charging less

urgently.

Building an EV charging station consumes a lot of time to work with the

power grid, since there is a lot of infrastructural work and planning that goes

into such projects, meanwhile, the local grid must be taken into account.

Volkswagen and a developer E.ON [100] provided a solution that directly

integrated BESS with an EV charger, and the charger called Drive Booster

draws power from a standard power outlet found in any supermarket, like a

soda machine. The charger can charge two EVs at once at speeds of up to

150 kW. The battery has a capacity of 193.5 kWh and is charged between

charging sessions and at night, during off-peak hours. The aim of the Drive

Booster is to make fast EV charging stations easier for anywhere without the

need for major infrastructure construction.

2.3.4.3 Centralised EV charging

In a centralised architecture, a central aggregator is employed to collect data

from EVs, and process it centrally, and deliver a globally optimal solution

that takes into account all user constraints and grid information to deliver a

smoothing aggregated electric load profile in a region and minimise system-

wide electricity cost. The advantage of centralised EV charging compared

with decentralised charging is centralised charging provides the guarantee to

reach the global optimal solution for the overall system, but individual EV

users might have peaks in their charging profiles resulting in high costs or

longer charging periods [4, 101].

Conventional centralised EV charging research mainly focuses on the op-

timisation of power management methods to achieve ”valley-filling”. In [102],

a double-layer optimal charging method is introduced to minimise EV charg-

ing load variance, in the first layer, the central control allocates electricity

sources to each charging station. In the second layer, the electricity allocated

from the first layer is planned to each EV charging device which is connected

to the same node transformer, by doing this, the large-scale computing re-
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quirements are converted to several small groups, but this method might not

be a sensible strategy for global optimisation. Another double-layer smart

charging strategy is proposed in [102], the first layer help EVs to reach the

most suitable charging station by considering transformer power demand,

transformer capacity and charging station status, the shortest way algorithm

is used to guide EVs to charging stations. The function of the second layer

is to reduce the charging cost by considering the dynamic pricing and min-

imising peak demand. A receding horizon control framework is proposed

in [103], RHC is a general-purpose control scheme that makes a decision on

EV charging strategies for each time step (e.g. every 10 minutes) by using

the prediction of the non-PEV load profile and charging demands of EVs

connected inside this system within the pre-set prediction time horizon (e.g.

24h) and the information of current charging demands. In this framework,

a two-stage hierarchical optimisation is introduced to calculate the energy

constraints by utilising the charging information to reduce the computation

complexity, however, lots of forecasted data might bring uncertainties. Time-

of-use pricing has been widely adopted in the electricity market, in [104], the

difference of the retail electricity price and the market price is employed to

seek the balance between the profit of EV park owners and the satisfaction of

customers. Customers specify their charging requirement when they arrive

in the EV charging park, an admission control mechanism is introduced to

guarantee all admitted EVs can be charged to the target SoC before their

departure. EVs are refused entry if the algorithms calculate that their charg-

ing requirement will unbalance the current charging strategy and/or reduce

potential profit. In [105], quality of service is provided to measure user sat-

isfaction, the capacity of an EV charging station and the type of chargers

are optimised to achieve the minimum investment cost of the EV charging

station for its owner and meet a certain quality of service for EVs by using

the chance-constraints method. The quality of service in this paper is de-

fined based on the various charging delay levels and the satisfaction of EVs

charging demand.

32



2.3.4.4 Renewable energy integrated centralised and decentralised

EV charging

Significant PV penetration can result in a number of drawbacks, including

component overloading and voltage fluctuations, adding EV charging load

with PV can improve PV self-consumption and reduce EV loads on a dis-

tribution network [106]. The research incorporates PV and BESS into cen-

tralised EV charging to reduce the loads in high power demand periods of

the power grid.

The local distribution network among multiple chargers, PV, and BESS

can be AC or DC transmission. Figure. 2.7 shows the AC-connected system

and DC-connected system. For the AC-connected system, the number of

conversion stages between the distribution network and the DC port of the

EV, PV or BESS is greatly increased with this strategy, which leads to an

increase in the system’s complexity and reduces the system efficiency. The

advantages of using the AC bus include well-established standards and the

maturity of related electrical equipment such as rectifiers and inverters, by

contrast, a DC-connected system has fewer conversion stages, higher system

efficiency and lower system installation cost, however, the DC protection,

DC metering, and standards are issues for this method [50].

To reduce the load variability resulting from PV generation and EV charg-

ing loads, [106] investigates the PV integrated EV charging and household

electricity consumption at residential buildings from a decentralised and a

centralised EV smart charging system. For the decentralised charging, EV

energy demand, the electricity consumption of a single household, and PV

power generation, EV arrival and departure time are the input of the op-

timisation formulation, to describe load variability, the population variance

equation was employed and it could be minimised by adjusting the charg-

ing rate and charging time. For the centralised charging management, in-

stead of using data from a single household, the elements in the population

variance equation are considered from multi-users levels such as the electric-

ity consumption of all households and PV power generation, the centralised

charging management would minimise the load variability of the whole res-
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Figure 2.7: AC-connected system and DC-connected system

idential buildings. The results reveal that from multi-users, the centralised

EV charging has better performance on reducing load variability.

In [107], the authors introduced an EV charging park with renewable

energy and non-renewable energy supply, a group of EVs with an EV leader

is considered as an EV platoon coming into the charging park, A queuing

system including first-come-first-serve and random selection are employed to

pick up platoons to charge from the waiting EV platoon lists. In the model,

renewable energy is the main energy source to supply the EVs, if the EVs

power demand exceeds the generated renewable power, the difference will be

provided by a non-renewable feeder. However, PV power depends highly on

the weather and season, once the EV power demand is far higher than the

real-time PV power generation, this method has limited success in reducing
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the load on the grid.

The research [108] adds an additional BESS for storing energy with power

transferring modes presented to address the energy flow among the facilities,

which are PV to EV, BESS to EV, PV to BESS, Grid to EV, and PV to Grid.

The BESS exports energy to EVs when PV is insufficient for EVs charging,

and be charged by PV when there is surplus PV energy after supporting

EVs.

In [109], the author presents storing the energy in the BESS from the

grid based on the pricing on the electricity market in Singapore. When the

real-time electricity price is lower than a defined price, and the surplus PV

energy cannot fill the BESS, the energy will be imported from the grid to the

BESS, this energy will be further used to charge EVs. This method enables

the BESS to supply more energy directly to EVs to reduce electricity demand

from the grid in high load periods.

The above papers provide the methods of utilisation of renewable energy

in EV charging stations, [110] proposes a novel method to design the power

generation planning of renewable energy in EV charging stations. The author

firstly uses HOMER® Pro software to generate a list of different configu-

rations for the system by inputting the local renewable resources and EV

charging station demand and then performs a new multi-criteria analysis to

assess them to get the most suitable renewable energy power generation plan-

ning for EV charging station based on economic, environmental and technical

parameters.

EV charging parks containing many EV charging points provide an oppor-

tunity to manage the power flow compared to unmanaged isolated charging

points. Centralised control of all EV charging points can support control for

power-limited electricity feeders and can provide V2G services. This cen-

tralised charging coordination can provide SEC and ancillary services such

as frequency response to the grid. [49]
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2.3.4.5 The concept of V2G and its economics

Kempton and Letendre first proposed V2G [111]. V2G is considered a ben-

eficial technology for vehicle owners and the grid, it provides profit for the

vehicle owners when they feedback electricity energy to the grid under certain

conditions. These services may include regulation (second by the second bal-

ancing of demand and supply), spinning reserve, and peak power provision,

load levelling and reactive power compensation [112].

The concept of V2G is that every EV can be seen as a mobile power

source, which stores electricity from the grid. However, this stored electric-

ity may not be used when the grid is in high demand condition, so V2G

technology will return this unused electricity to the grid when it is in high

demand condition and will store electricity in vehicle batteries when the

power grid is in low demand condition. According to [113], there could be

90% of EV vehicles available for V2G at any given time. Meanwhile, the

research on fast charging and battery has become very popular. The devel-

opment of these advanced technologies provides a huge potential for V2G.

The faster EV charging speed, the higher the flexibility in the EV charging

period. The larger capacity of EVs batteries can meet higher demands from

the grid and EV owners. Reference [114] summarises that V2G offers ben-

efits to the grid including both the TSO and the DSO. The most popular

topic of V2G for TSO services was providing auxiliary services, frequency

regulation; The other two topics, dealing with grid intermittency on the grid

and peak shaving, were frequently addressed together. For DSO services,

V2G is utilised to resolve local electricity congestion and reduce the cost on

upgrading the local transformers, electrical cables.

For the economic benefits of the vehicle to grid, V2G revenues are es-

timated to be about 900 Danish kroner (€120) per month based on the

income potential of the pilot project in Denmark [114]. V2G economic data

was analysed in [115] in three U.S. cities, authors use hourly electricity prices

to calculate the daily profit, the battery degradation was considered as the

economy loses. The results show that the maximum annual profit could be

$142-249 without considering the losses of battery degradation, and $12-118
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with the cost of the battery degradation. [116] analyses price data of the

V2G experiment that was held in New York City area from 2010 to 2014

by using the Tesla Model S and Chevrolet Bolt. The author finds that the

one-way power efficiency and battery lifetime have a significant impact on

the economics of V2G. The extra cost might lead to low economic benefits for

electric vehicle owners to sell electricity back to the grid. Especially, if it re-

sults in higher battery degradation. Therefore, V2G might not be attractive

for EV owners given the current economic benefits. However, the potential

economic benefits of V2G technology have shown a positive trend over the

last few years. Carbon dioxide tax to the normal vehicles will promote V2G

adoption, which provide additional opportunities for V2G economics. Along

with the development of smart grid technology and market, V2G services will

have more opportunities to seek profits in different areas such as lifesaving

by providing electricity to hospitals when the grid suffers a power outage.

V2G can be used to do frequency regulation for the grid. The number

of researchers investigating frequency regulation using V2G are minimal, al-

though some papers named their paper as frequency regulation, it is actually

valley filled grid service.

For a system, the frequency deviation is mainly caused by the mismatch

between the load and generation. [117] calculates mismatch power based on

the grid frequency and the area control error, and gets the required regula-

tion power based on PI control and calculated mismatch power. The grid

frequency is divided into three zone by two trigger points, in the range be-

tween two trigger points, the grid does not request any response. In other

zones, aggregators will allocate the required regulation power for EVs by

sending global control signal. When EVs respond to the global control sig-

nal, their original charging schedules and preferred charging requirements

are disrupted in order to achieve frequency regulation. [117] also provided

a state recovery strategy to reduce the disturbance of regulation service to

EVs’ charging preferences, the strategy controls EVs back to their charging

schedule with conventional generator power supporting when the grid does

not request any response, the authors also set the upper/lower boundary

for EVs power to reduce the disturbance of frequency regulation. In [117],
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the power regulation cases mainly focus on the frequency deviation result-

ing from the local wind generator, in the real-world, the frequency deviation

might be caused by several reasons such as the fluctuation of PV power and

market power demand. Responding to the grid frequency might request more

power from EVs, hence a threshold of maximum regulation power with the

grid is necessary to prevent EVs deep discharging even with power support

from a conventional generator. In addition, EVs can not always provide the

required power due to reaching SoC limits, if there is no other electricity

storage system, the power capacity of frequency respond will have significant

change over time, which is not preferred by the grid.

[118] provides a method that using EVs to provide frequency response,

the service in Great Britain (GB) is called dynamic frequency response. The

EV charging/discharging power is regulated using a droop control mechanism

in response to the frequency signal. To ensure that adequate energy in the EV

battery for user travel at the plug-out time, a forced-charge boundary and a

forced-charge area are proposed. However, providing the dynamic frequency

response in GB might request a contracted maximum power, the dynamic

EV numbers in the charging station might not meet the this requirement at

all times.

[119] develops an energy management system to integrate V2G tech-

nology in a residential scale micro-grid which includes PV and BESS, EVs

in this research only provide frequency regulation when the SoC of the EV

battery exceeds a user-defined threshold, the frequency is also divided three

parts by two trigger points, the regulation power from EV changes along

with the grid frequency, the maximum regulation power is set as the maxi-

mum EV charging/discharging power when the grid is under the maximum

frequency deviation. However, in the developed system, BESS is only for do-

mestic load, which means the EV owner has to reserve a minimum SoC level

for frequency regulation, even though, the EV charging status might jump

between normal charging and V2G mode. However, the grid prefers a stable

frequency regulation unit, but not an uncontrollable unit, and EV owners

may find it conflicting to choose a reasonable and expected SoC threshold

for self-use and V2G service.
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2.4 Conclusion

In this chapter, the background and presented research for this thesis have

been provided. The first section describes the fundamental information of

EV, such as EV classification and trend and charging parameters, a con-

clusion of the necessity of SEV is drawn based on the background. The

second section introduces some basic knowledge of PV. In the third section,

several EV charging load model strategies and parameters are introduced.

Meanwhile, this section provides popular researches on how to optimise EV

charging to shift EV peak load, and reduce the capacity of the power feeder.

In the end, some basic knowledge of the V2G concept and the application

are provided.
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Chapter 3

SECP model

3.1 Introduction

A SECP model requires the calculation of the EV charging load to be driven

by a specific modelling strategy and the parameters. It has been discussed in

Chapter 2 that the parameters of the EV charging load can be classified into

indirect factors and direct factors, to further sort these parameters, queu-

ing theory, neural networks, Markov Chain and ABM have been introduced.

In this chapter, an ABM method is employed to simulate SECP and calcu-

late EV charging load. A system is modelled as a collection of independent

decision-making units called agents in ABM. Each agent analyses its circum-

stances independently and takes decisions based on a set of rules. ABM

is characterised by repetitive competitive interactions between agents [120].

The bottom-up method replicates the system by coupling all of the agents.

In this chapter, each EV is considered to be an agent and autonomously de-

cides its parameters, such as EV brand (including charging power, capacity

of battery), charging time, charging period, energy consumption, etc. The

decisions are based on some rules acquired by the Monte Carlo method.

The advantages of using ABM for SECP are:

1. The details of each agent charging process in each time slot can be

observed. Then a relevant optimisation can be applied to the model

accordingly to achieve a better charging performance.
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2. ABM can produce some events which have a low probability of occur-

rence in real life; these events will help us face emergencies in advance

and propose corresponding solutions.

3. ABM allows for competitive interactions between agents. For an SECP

with a limited power feeder, the total power demand of EVs in different

time slots might exceed the power capacity of the SECP feeder. ABM

gives us a chance to allocate power for these EVs based on various

algorithms.

Many papers which build EV charging load models concentrate on the

distribution of EV charging points in some particular areas such as commer-

cial or residential places. In this research, a SECP including fast and slow

chargers is modelled to explore the relationships between the SECP, EV

owners and the grid. Different from a gas station, vehicles leave quickly once

their requests are met, a SECP provides chargers for EV charging and allows

EVs to park for long periods of time. Longer duration parking gives SECP

a chance to utilise their batteries as energy storage units to import/export

electricity and provide grid services (the details are introduced in Chapter

5).

The ABM of SECP is simulated in MATLAB. The real-time total charg-

ing power requirement of the SECP depends on the number of connected

EVs, the charging power profile of each EV and its current SoC. Therefore,

simulation of SECP traffic flow and the SoC of each EV is required. The

main parameters include EVs’ and SECP’s.

3.2 The parameters of EVs and SECP with

their setup

3.2.1 Daily driving distance of an EV (Ld)

Ld represents the mileage of an EV in a day, a longer driving distance of EVs

results in more electricity demand. Hence, in a SECP, daily driving distance

is a vital parameter related to the charging period of an EV in a certain
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charging power level. The daily driving distance mainly connects to the EV

owners’ commuting distance and driving experience.

Table 3.1 shows the vehicle mileage and occupancy in 2017 in the UK,

which is reported by the UK Department of Transport [58]. The median

value of each range of annual mileage in Table 3.1 is chosen to represent the

average yearly mileage of an EV (La) for each range, where the daily drive

distance is calculated by:

Ld =
La

365
(3.1)

In this case, the probability density function (PDF) of daily driving distance

is then directly expressed in Figure 3.1 based on the Monte Carlo method.

3.2.2 Daily energy consumption of an EV (Ed)

Daily energy consumption of an EV is limited by a few parameters, such

as driving experience. For example, varying driving speed leads to more

Table 3.1: Annual mileage of cars in England and energy consumption

Annual Mileage
(Miles)

Percentage
(%)

Average Daily Energy Consumption
(kWh)

0-499 1 0.208
500-999 1 0.623
1000-1999 5 1.245
2000-2999 6 2.075
3000-3999 8 2.905
4000-4999 7 3.736
5000-6999 22 4.981
7000-8999 16 6.641
9000-11999 17 8.716
12000-14999 8 11.207
15000-17999 4 13.697
18000-20999 3 16.188
21000-29999 1 21.168

30000+ 1 24.904
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Figure 3.1: PDF of daily mileage

energy consumption compared with constant driving speed. Meanwhile, most

modern EVs are equipped with regenerative braking systems, which is an

energy recovery device that slows down a moving EV by transforming its

kinetic energy into a form that may be utilised right away or stored into

a battery for later use, which increases the efficiency of EVs, however, this

makes the prediction of the energy consumption of EVs more difficult from

technical analysis. Hence, the energy consumption is predicted based on the

historical experience data.

The daily energy consumption of an EV in this research is transferred

using the Equation below:

Ed = Ld ∗ Eev (3.2)

In this equation, Ed is the average daily energy consumption for an EV

(kWh), and Eev is the average energy consumption of different brands of

EVs (kWh/mile). Based on Eev of 0.304 kWh/mi of EVs in 2019 [48] and

Equation 3.2, the Ed is then calculated and shown in the third column in

Table 3.1.
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Figure 3.2: CDF of daily energy consumption

The PDF of daily energy consumption of each EV (f(x)) could be gener-

ated based on the PDF of daily drive distance and Equation 3.2. The CDF

of daily energy consumption, F (Ed), can be calculated using the function:

F (Ed) =

∫ Ed

0

f(x)dx (3.3)

The result is shown in the Figure. 3.2. Inverse transform sampling

method is then used to generate random daily energy consumption based

on Figure. 3.2. Inverse transform sampling is a method for randomly select-

ing sample numbers from any probability distribution by using its inverse

CDF. Ed is generated by:

U = Unif(0, 1) (3.4)

Ed = F (U)−1 (3.5)

where Unif represents the uniform distribution, U = Unif(0, 1) means gen-

erating an independent random variable U between 0 and 1 based on an

uniform distribution. F (U)−1 is the inverse CDF of daily energy consump-
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tion. This can also be used to understand that a daily energy consumption

with a higher probability in PDF is likely to occupy a longer x-axis in the in-

verse CDF, random numbers generated from 0 to 1 have an increased chance

to fall into this area.

3.2.3 The initial SoC of EV (SoCinitial)

In AMB of SECP, SoCinitial represents the SoC of an EV at the moment of

connection to a charger. In reality, SoCinitial might be impacted by a lot of

factors, such as EV owners’ working time, or charging habits. Although there

are some probability distributions that describe how SoCinitial EV owners

prefer to manage the SoC of their EVs, these probability distributions are

obtained via end-user surveys. They might vary in different areas where the

penetration of EVs or the charging habits are determined.

In this research, the daily SoC drop of an EV (SoCd) can be expressed

as:

SoCd =
Ed

Ecev

× 100% (3.6)

where Ecev is the capacity of the EV battery in kWh. Ed is generated for

each EV based on the PDF of daily drive distance

Subsequently, SoCinitial can be represented as:

SoCinitial = SoC ll − SoCd

= (
Ecev ∗ SoC ll

Ecev

− Ed

Ecev

)× 100%

=
Ecev ∗ SoC ll − Ld ∗ Eev

Ecev

× 100% (3.7)

where SoC ll represents the SoC of EV on its last departure. Ld ∗ Eev is a

random value based on the previous section.
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Figure 3.3: Charging power vs SoC of tested EV brands

3.2.4 EV types

Different EV brands might lead to various battery capacities and charging

curves when EVs connect with the same charger and charge with the same

charging level. In the model, 4 types of EV are considered, which are two

types of Nissan Leaf, BMW i3, and Volkswagen Golf; the proportion of them

in the SECP are based on their registration for the first time in GB during

2019 [121], and their details are provided in Table 3.2. The Nissan Leaf is the

most popular EV type with the highest registration number in 2019 of 53,000,

followed by BMW i3 and Golf being 41,000 and 38,000 respectively. The EV

brand of an EV in the model is randomly generated corresponding to their

registration number by using the inverse transform sampling method. How

their charging power changes with time can be seen from Figure. 3.3, the

Table 3.2: EVs battery capacity and their registration number

EV Types Battery Capacity (kWh) Registration Number
Nissan Leaf 24kWh/30kWh 53,000
BMW i3 33kWh 41,000

Volkswagen Golf 26kWh 38,000
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charging power is controlled by the EV’s BMS based on DC CCS standard

(PBmax). The SoC vs PBmax profiles for the different EV types are obtained

from sources that experimentally measure this relationship in [122]. Most

of the experiments end the charging at approximately 90% SoC, according

to [123], when SoC is greater 90%, the charging power of EVs show slight

changes until about 99% SoC. Hence, in this model, we use this assumption

to plot the entire charging curve from 0% to 100% SoC where the last 10%

is slightly lower than the last experimental data point. From the graph, we

can see the charging power at the beginning shows a slight uptrend. Nissan

Leaf 24kWh starts decreasing sharply at the end of 55% SoC, then the other

three drop significantly at about 80%. The charging power for all of these

vehicles drop to 0 kW as the SoC of the vehicle approaches 100%.

3.2.5 EVs charging power

The real-time total charging power requirement (also called total EV load)

of the SECP depends on the number of connected EVs, the charging power

profile of each EV and their current SoC. In this section, EV charging power

is investigated.

Research [124] proposes that the EV charging power (PAmax) could be

represented by:

PAmax = min{PUmax, PCmax, PBmax} (3.8)

where min means choosing the minimum value from PUmax, PCmax, and

PBmax. PUmax is the maximum charging power of an EV set by the EV user

and PCmax is the maximum output power of an EV charger.

In the ABM of SECP, EV users are not allowed to choose PUmax as

forecasting PUmax requires large amounts of customer data. Therefore, the

system maximum charging power (PSmax) is used to replace the PUmax and

PCmax. PSmax is the power allocated to each EV by an aggregator in a fair

way for each customer based on some charging management methods (these

methods will be introduced in chapter 4). For an SECP, the total EV charging

power requirement could be very high, taking an example of 50 EVs, with the
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maximum charging power individually being 50kW, the total EV load of the

SECP could reach 2.5MW. For a given SECP location, there is likely to be

a limit on electrical capacity due to local electrical network constraints, and

upgrade through re-enforcement is often physically complicated with long

lead times and costly. Furthermore, on the GB grid, connections are subject

to a fixed capacity charge based on £/MW/Day at the maximum potential

power requirement regardless of actual usage. Controlling PSmax can reduce

the peak power demand and therefore reduce the overall power requirements

from the local power feeder thus reducing this cost. Equation 3.8 is then

transferred to:

PAmax = min{PSmax, PBmax} (3.9)

where PBmax can be acquired by matching the real-time SoC of an EV (SoCR)

with the charging profile of SoC vs PBmax [124]. The charging profiles of the

four types of EV are shown in Figure. 3.3. For instance, a BMWi3 at 75%

SoC will demand PBmax of 49kW at that instant.

In applications where energy transferred to/from the battery is measured

in kWh, the integration of the terminal voltage multiplied by battery current

is required, which is useful in cases where the real power transmitted between

system assets is critical [13].

According to [13], SoCR is given as :

SoCR =
α ∗
∫ T

Tin
PAmax

Ecev

× 100% + SoCinitial (3.10)

T is the current time, and α represents the charging efficiency. According

to Figure 3.3 and Equation 3.10, when PAmax = PBmax, the relationship of

SoC from four types of EV vs time and corresponding charging power vs

time are calculated and shown in Figure. 3.4 and Figure. 3.5 respectively.

From Figure. 3.4 we can see that the Nissan Leaf 30kWh is the first EV

reaching 100% SoC at 45 minutes, followed by the Volkswagen Golf 26kWh

at 54 minutes, BWM i3 33kWh at 65 minutes, and Nissan Leaf 24kWh at
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Figure 3.4: SoC vs time charging profile of tested EV brands

Figure 3.5: Charging power vs time of tested EV brands

67 minutes. According to Figure. 3.5, the charging power of the Nissan Leaf

24kWh decreases after 18 minutes, followed by the Volkswagen Golf 26kWh

reducing after 28.5 minutes, whilst the Nissan Leaf 30kWh is lower after 34

minutes and the BWM i3 after 36 minutes.

EV drivers might choose to charge their EVs with lower power to minimise

the degradation of the battery [125]. Based on mode 2 in the IEC62196
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Figure 3.6: Charging Power vs SoC by adjusting the charging power of the
DC fast charging points to a maximum of 7.68kW

protocol from Table. 2.1, the maximum slow charging power (Ps) is 7.68kW,

this protocol is widely employed in the UK. To simulate this, the charging

power from the DC fast charging points are scaled to a maximum of 7.68kW

once customers request slow charging. We can then plot the charging power

profile vs SoC for four types of EV as shown in Figure. 3.6. The slow

charging power is supported by DC fast charging points in this model, hence

the charging profile is still modelled by using the fast charging equation based

on Figure. 3.3 and Equation. 3.10. The result might be different with mode

2 AC charging.

3.2.6 EVs charging period (Tp)

An EV charging period can indirectly affect the EV charging load since EV

charging power varies with charging time. Occupying a charging point for

a long time might result in no charging points left for other EVs. In this

model, we also need to consider that an EV might be requested to provide

ancillary grid services where the EV charging period can be used to estimate

the period when the EV could provide ancillary grid services. The charging

period of each EV is directly related to SECP traffic flow.
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Figure 3.7: The traffic flow of the car park in 24 hours on a weekday

Figure 3.8: PDF of traffic flow (Hainault Station in London)

To formulate Tp, real-world car park data (Hainault Station in a com-

mercial area of London) is acquired from Transport for London, seen in

Figure. 3.7. Tp can be represented as:

Tp = Tout − Tin (3.11)
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Figure 3.9: CDF of traffic flow (Hainault Station in London)

Tin and Tout are the time when an EV arrives and departs the SECP.

A PDF, a CDF and inverse transform sampling method is employed again

to generate Tin and Tout randomly for each EV based on the vehicle park

in Figure. 3.7. For example, from Figure. 3.7, at around 450 minutes, the

highest number of vehicles arrives at the real-world car park, so Tin has the

highest probability of being equal to 450 minutes in the traffic flow simulation.

The PDF and CDF of traffic flow are indicated in Figure. 3.8 and Figure. 3.9

respectively. The process of generating Tin and Tout is similar to the steps to

produce Ed.

Tp of each EV is then calculated based on Equation. 3.11. The simu-

lation results of Tp, Tout and Tin of all EVs have been demonstrated to be

a good approximation of the original EVs’ traffic flow in Hainault Station.

Figure. 3.10 shows the comparison of real park occupancy and one random

simulated occupancy.

The model is configured with the capacity of the SECP. During the sim-

ulation, the number of EVs leaving and entering is managed to ensure that

the model maintains the number of available spaces and ensures that the

number of EVs entering the SECP does not exceed the capacity.
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Figure 3.10: The comparison of real park occupancy and one random simu-
lated occupancy

3.2.7 The penetration of DC fast charging (Rp)

In the simulated SECP, it is presumed that every charging point is equipped

with DC charging facilities, however, EV users are allowed to charge their

EVs with slow charging power (Ps) if their charging needs are not urgent

and slow charging might prolong their EV battery life [125]. It is clear that

the total EV charging load will vary depending on the mix (penetration)

of fast and slow charging. The estimation of the EV load under different

penetration levels of DC fast and slow charging can also help the SECP owner

to estimate if the power range of the local feeder can supply the total EV

load, if not, the SECP owner can reduce the penetration (allowable number of

fast charger selections by the user) or the charging spaces. Rp is represented

as Equation. 3.12. The number of fast charging EVs (Nf ) and slow charging

EVs (Ns) are indicated in Equation. 3.13 and Equation. 3.14 respectively.

Rp =
Nf

Np

(3.12)

Nf = Np ∗Rp (3.13)
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Ns = Np ∗ (1−Rp) (3.14)

where Np is the number of EVs charging in the SECP.

3.3 EV load model and results

In this section, the EV load model is introduced using the parameters pre-

sented in the previous section to simulate the charging loads of the EVs.

A sensitivity analysis is carried out to investigate the load of the SECP on

the grid and the EV charging behaviour as the penetration of fast charges

is increased. Figure. 3.11 shows the model of the EV load calculation for

each time slot by the provided parameters. It should be noted that before

the time loop, all traffic flows and EV initial conditions have already been

generated, the details of how to generate these parameters have been well

introduced above. The loop only checks the space availability and calculates

the required outputs.

The proposed model is simulated for a weekday over a 24 hour time

period from 12:00 midnight to 11:59pm. All the parameters of the SECP are

Figure 3.11: Diagram of EVs’ load procedure of SECP
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Figure 3.12: EVs power load vs time

indicated in Table 3.3.

Figure. 3.12 shows the total EV power load on a weekday. From the

figure we can see that the charging power of the first wave increases from 81

to 84 minutes. According to Figure. 3.13, from 81 to 84 minute, three EVs

come into the SECP and charge with slow chargers, the total charging load

reaches the maximum charging power of 23.04kW in this wave. The total

EV power load drops back down to 0kW at 158 minutes, and the three EVs

have already fully charged since Figure. 3.13 shows the three EVs remain

Table 3.3: The parameters of SECP for EVs charging load

Parameters Details
EV brands 4
Traffic Flow Hainault Station (London)
Simulation time one day
Rp 50%
Cm 80
Maximum fast charging power 50kW
Maximum slow charging power 7.68kW
Power efficiency 97%
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Figure 3.13: The comparison of fast charging and slow charging and total
EVs occupancy

Figure 3.14: Distribution of EVs’ increasing SoC
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Table 3.4: Analysis with various penetration of fast charging points

Rp(%) Pa(kW ) SoCa(%)
0 401.70 30.74
20 415.97 31.30
40 512.20 31.58
60 770.16 31.69
80 818.59 31.96
100 802.16 32.57

in the SECP. The second wave starts from 314 minutes, and the charging

power has a sharp increase. After a few significant fluctuations, the charging

power demand finally reaches its highest point (547.7kW at 419 minutes) for

the whole day, and the SECP is fully occupied at 446 minutes. Then most

EVs are gradually charged fully, and there are no more spaces left for other

EVs to park, hence the total EV power load reduces to 0kW at 574 minutes;

meanwhile, SECP is still fully occupied until 718 minutes. The last wave

of total EV load starts from 728 minutes and reaches its highest point at

962 minutes with 238.3kW. For this wave, the previous EVs gradually leave,

while other EVs have a chance to park in; the total parked EVs remain with

slight fluctuations until 1089 minutes and then decrease significantly. At

1262 minutes total EV load reduces back to 0kW, and at 1322 minute all

EVs have left the SECP. Figure. 3.14 represents the value of the increase

in SOC referring to the number of EVs. The SoC of most EVs increases

by 10-50%, whereas the average increasing SoC of all EVs (SoCa) is 31.7%

which is calculated by the equation:

SoCa =

∑N
i=1 SoCi

N
(3.15)

Where N is total number of EVs which are parked in the SECP, and SoCi

represents the increasing SoC of the ith EV.

In order to observe the impact of the penetration of fast charging on the

SECP, a sensitivity analysis on the penetration of fast charging is provided

for a week long time period, where the outputs are average maximum daily

57



Figure 3.15: The comparison of EVs load of Rp=80% and Rp=100%

EVs’ load (Pa) and SoCa in the week where SoCa could reflect the behavior of

SECP in EVs charging and Pa could reflect the maximum power requirement

of SECP to local power feeder. Pa can be calculated by finding the daily

maximum total EV load for the week and calculating their average value.

From Table. 3.4 we can see that with the penetration of EV fast charg-

ing rising, the Pa has a significant increase and reaches its highest point

818.59kW from 401.70kW. From 80% to 100% penetration. Pa slightly de-

creases from 818.59kW to 802.16kW, which can be explained by Figure. 3.15,

as we can see that from 315 minutes to 412 minutes, the charging power of

100% penetration is always higher than 80% penetration. This directly leads

to most EVs having being fully charged before the peak of EVs load at 418

minutes, and hence Pa of 100% penetration is slightly lower. However, the

maximum charging power of 100% penetration in this week is still the highest

value of 1038kW. SoCa in the days simulated show a gradual increase from

30.74% to 32.57%.

The penetration of fast charging has a clear impact on SoCa when all

EVs arrive with a very low level of SoCinitial. It is worth noting that most

EVs arrive in this SECP with high SoCinitial which is about 68%, since we

presume that they come here and get charged every day, hence most EVs
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Table 3.5: SoCa value with various Rp when all EVs arrive with SoCinitial =
10%

Rp(%) SoCa(%)
0 77.06
20 80.77
40 82.36
60 83.34
80 84.70
100 86.84

can be fully charged, however, in reality, some EV owners might prefer to

charge their EVs when their EVs are under very low level SoCinitial. Charging

EVs with low level SoCinitial allows SoCa to increase more. Hence, we set

SoCinitial = 10% for all EVs and calculate SoCa with various Rp. The one

day simulation results could be seen from Table. 3.5, SoCa increases from

77.06% to 86.84% when Rp rises from 0% to 100%.

3.4 Conclusion

In this Chapter, an ABM of SECP and the parameters are introduced as the

basic model to produce EV load. The higher penetration of fast charging is

a trend across the world, and it also requires more investment on the grid

facilities and more payment on the electricity capacity for the SECP owner.

The penetration of fast charging has a significant impact on peak EV load.

To observe the impact, a sensitivity analysis of Rp is applied, the results show

that as the Rp reaches 100%, the peak EV load is nearly double under the

simulation conditions, however, the average increasing SoC only has small

improvement. Only when all EVs arrive with a very low level SoCinitial, the

penetration of fast charging could have an obvious impact on the average

increasing SoC. Hence, the power capacity of the local feeder is not well

utilized, and some optimisations for EV charging is necessary for SECP.
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Chapter 4

Power management of SECPs

4.1 Introduction

The results of Chapter 3 show that growing power requirements due to faster

charging development is a burden to the grid. It is often the case that

for either technical or commercial reasons, the power feed for a SECP is

restricted, and it is also advantageous to manage the total EV load and avoid

the on-peak charges to reduce electrical costs dynamically. In this Chapter,

a SECP is modelled that contains a defined number of rapid chargers with a

limited incoming power supply. This study proposes four methods to manage

the charging of EVs when the power feed is limited in capacity resulting in a

necessary sharing of power. Simulation results show that by controlling the

charging rate of each EV the overall power limits can be met. Furthermore,

it is shown that the methods chosen can be used to influence the variance in

SoC across all EVs.

4.2 Simulation of power management

In this chapter it is considered how we manage the power limits for EVs if

the sum of power demand exceeds the power capacity of the power feeder.

Four methods are compared here to demonstrate how different strategies can

be implemented.
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The four power management methods are presented as equations for cal-

culating the EV charging power of each EV allocated by the SECP system

(PSmax), the final charging power of each EV (PAmax) then could be calcu-

lated based on Equation 3.9. Figure. 4.1 shows the model of the managed

EV charging power calculation for each time slot. The part which is different

with Figure. 3.11 is presented in the dashed box. In the dashed box, the

system first calculates the EV power demand of each EV for the time slot

(PBmax) based on Figure. 3.3 and the SoCR calculated from the last time slot.

If the EVs’ load calculated by summing all EVs’ PBmax is larger than the

power limit (PL), the EV charging power management is required to restrict

the charging power, one of the four power management methods’ equations

is used to calculate PSmax; Otherwise, the EVs power demand can be fully

supported by the power feeder, hence PSmax = PBmax. Finally, PAmax and

SoCR are calculated based on Equation 3.9 and Equation 3.10, respectively.

Figure 4.1: Diagram of the four EV charging management methods’ proce-
dure of SECP
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4.2.1 The first power management method by recov-

ering the shortfall power based on proportional

power

The first method is based on proportional power where power is shared across

the vehicles according to the power demand of each vehicle. The charging

system calculates the real-time power demand of each EV and sums all the

EVs power demand, if the total power demand is larger than the power limit,

then the shortfall is treated as the total amount of power that needs to be

recovered across all EVs. This amount is split per vehicle according to the

proportion of charging power of each vehicle to the total charging power. The

final charging power for each EV is its calculated power demand minus its

share of the power shortfall. The function of the method can be represented

as:

PSmaxi = PBmaxi − (

Np∑
N=1

PBmaxN − PL) ∗
PBmaxi∑Np

N=1 PBmaxN

(4.1)

In this function, PSmaxi represents the power which is allocated to the ith

vehicle, PBmaxi is the maximum power demand of the ith vehicle controlled

by BMS in this time slot, PAmaxi can be calculated based on Equation 3.9,∑Np

N=1 PBmaxN represents the total demand power of all EVs. PL and Np are

the power limitation and the numbers of EVs in the SECP, respectively.

4.2.2 The second power management method by re-

covering the shortfall power based on SoC pro-

portion

The second method is to share the shortfall power proportionally to the SoC

of each EV. In the first method, the power to recover is split between each EV

based on their real-time maximum power demand proportion, in this method,

it is calculated based on the real-time SoC proportion. The relationship can
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be represented as:

PSmaxi = PBmaxi −

(
Np∑
N=1

PBmaxN − PL

)
∗ 1− SoCRi∑Np

N=1 (1− SoCRN)
(4.2)

In the function, SoCRi is the SoC of the ith EV.

4.2.3 The third power management method by sharing

the available power based on SoC proportion

The third method is similarly based on SoC proportion, however, rather than

recovering the shortfall burden across the EVs when the demand power is

greater than the limit, the available power is shared proportionally according

to the SoC of each EV. The relation is represented as follows:

PSmaxi = PL ∗ 1− SoCRi∑Np

N=1 1− SoCRN

(4.3)

The practical differences between Method 2 and 3 can be explained. For

a given EV in Method 2, the calculated charging power may be 0kW, this

is because power demand is less than or equal to their split of the shortfall

power, in this situation, the algorithm will stop charging the EV and redis-

tribute the available power. For example, if two EVs are in an EV car park

with a power limit of 20kW, one with 20% SoC and 40kW power demand

and the other with 80% SoC and 5kW power, the excess power can be cal-

culated as 25kW. According to Equation. 4.3, the calculated charging power

is zero for the second EV, the system will, therefore, stop charging this EV.

In Method 3, this situation will never occur, however, the allocated power

could still be larger than the demanded power, in this case, the excess power

is shared between the other EVs proportionally to their SoC.
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(a) Power of the main feeder (green) and power for each vehicle

(b) SoC of each vehicle

Figure 4.2: The results without applying any power management method

4.2.4 Simulation results

To simulate and compare the three methods, the Nissan Leaf (24kWh) is

used. The model is configured for 10 EVs that will arrive into the vehicle

park independently with a SoC of 10% and max SoC of 95%. The car park

is given a maximum power limitation of 100kW. The simulation time is 150

minutes and the arrival times of the EVs are at 10, 20, 30, 31, 40, 50, 60, 70,

80, and 90 minute. The total power demand of all vehicles is sampled each

time slot. The simulation is based on Figure. 4.1

Figure. 4.2 shows the results of the simulation without applying any
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(a) Power feeder capped at 100kW (green), and power for each vehicle

(b) SoC of each vehicle, this method has a smaller average variance than Method
2

Figure 4.3: The simulation results of applying Method 1

power management method. The green line in Figure. 4.2a is the total final

EVs’ charging power by summing all EVs’ PAmax and other colours represent

different EVs’ PAmax, it can be seen that the total power demand reaches its

highest point (168.7kW) at 41 minutes and the system completes charging at

131 minutes, the energy consumption is calculated by integrating the power

and is approximately 193kWh.

The results of the first, the second and the third methods are shown

in Figure. 4.3, Figure. 4.4 and Figure. 4.5. From the green line in graphs
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(a) Power feeder capped at 100kW (green), and power for each vehicle

(b) SoC of each vehicle

Figure 4.4: The simulation results of applying Method 2

(a), all methods limit the total final EVs’ charging power below 100kW. At

the end of the simulation, the total energy consumption of each method is

191.76kWh, 191.38kWh, and 192.11kWh, respectively. Compared with all

methods, Method 3 could utilize more energy for the same power feeder.

This means Method 3 has the highest energy utilization in the provided test

conditions, followed by Method 1 and Method 2.

It is also possible to compare the average SoC variance of each solution.

The average SoC variance means the difference in SoC between each vehicle
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starting from the second EV. The functions are given:

Vt =
1

Np − 1

Np∑
i=1

|SoCRit − µt|2 (4.4)

µt =
1

Np

Np∑
i=1

SoCRit (4.5)

AV =
1

T2 − T1

T2∑
t=T1

Vt (4.6)

where Vt means the variance of SoC in the given time t, SoCRit represents

the SoC of the ith EV at time t, µt is the mean of all EVs’ SoCRt, T1 and T2

are start time and end time, AV is the average SoC variance for the entire

working time.

If EVs tend to be at a higher SoC at the same time, the average variance

is smaller. A smaller or larger average variance demonstrates whether the

method is biased to provide power for EVs with lower SoC or higher SoC

respectively. Observing the results for graphs (b) in Figure. 4.3, Figure. 4.4

and Figure. 4.5, it can be seen that the SoC value of each EV are much

closer in Method 3 and the final EV to arrive reaches a higher SoC compared

to other methods. Method 3 is reducing power to EVs with high SoC in

favour of those with low SoC. The SoC variance of each method from 1 to 3

is 471.68, 562.06 and 382.72, respectively.

The SoC variance is a useful metric and depending on the situation,

customers and EVs park owners might benefit from either a large or small

average variance. For example, if the SECP provides grid services (explored

in Chapter 6) then it might be advantageous if the SoC variance is small

meaning that load sharing between EVs is more equal. Meanwhile, more

customers will have higher satisfaction as their EVs will have a higher SoC

when they want to leave. If these are desirable outcomes, then Method 3

should be chosen.
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(a) Power feeder capped at 100kW (green), and power for each vehicle

(b) SoC of each vehicle, The SoC curve is the closest in the three methods

Figure 4.5: The simulation results of applying Method 3
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Table 4.1: The calculation details of R

If SoCRi <= AS + F AndZ == 1
If 1−SoCRi

1−AS
>= 2 Ri = 2 ∗ (1− SoCRi)

If 1 < 1−SoCRi

1−AS
< 2 Ri =

1−SoCRi

1−AS
∗ (1− SoCRi)

If 1−SoCRi

1−AS
<= 1 Ri = 1− SoCRi

If SoCRi > AS + F And Z == 1 Ri = 0, Z = 0

If SoCRi >= AS − F And Z == 0 Ri = 0

If SoCRi < AS − F And Z == 0
If 1−SoCRi

1−AS
>= 2 Ri = 2 ∗ (1− SoCRi),Z = 1

If 1 < 1−SoCRi

1−AS
< 2 Ri =

1−SoCRi

1−AS
∗ (1− SoCRi),Z = 1

4.2.5 Fourth method on power management based on

the results of Method 3

Using the results of Method 3, Method 4 is now proposed that goes further

to prioritising the charging of each EV to an equal SoC (low SoC variance).

The methodology is that the average SoC is calculated every time slot, if the

SoC of an EV is larger than the average SoC, then the charging of the EV

will be paused, if it is smaller, the charging power will be allocated based

on the SoC proportion and the ratio factor (R) in each minute. The details

of the ratio factor can be seen from Table. 4.1, SoCRi is real-time SoC of

the ith EV, AS represents the average SoC of all EVs, R is the ratio factor

that will be used to calculate the allocated power of each EV. Meanwhile, a

hysteresis band is set to reduce fluctuations, F is the hysteresis factor. For

a given factor R, the power of the ith EV in each minute can be calculated

from the function:

PSmaxi = PL ∗ Ri∑Np

N=1 RN

(4.7)

In some situations, PSmaxi might be larger than the PBmaxi, if so, the given

EV charging power PAmaxi will be PBmaxi based on Equation 3.9, and the

excess power PSmaxi−PBmaxi will be split to other EVs based on SoC.

Method 4 is simulated with the same parameters as in methods 1-3 with
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F=0.02. The results can be seen in Figure. 4.6, from the green line in

Figure. 4.6a, the model remains within the 100kW limit and the system

stops charging at 136 minutes, and in Figure. 4.6b, all EVs are fully charged

to the target SoC almost at the same time with 201.80 average SoC variance,

the maximum time gap is four minutes. Table. 4.2 shows the results of the

provided four methods. Compared with the results from the previous three

methods, Method 4 has the highest energy utilisation and the lowest average

variance.

4.3 Cases study of the provided four methods

The previous test results are based on the ideal situations, in reality, the

results might be affected by the real-world conditions. An important con-

sideration when using these four power management methods is how they

impact the increasing SoC of EVs. In this section, the proposed four meth-

ods are applied to the SECP model introduced in Chapter 3 which is closer

to real-world. The aim of the case study is to find out if these four methods

can allocate the charging power for all EVs with a power limited feeder and

achieve a acceptable average increasing SoC. Meanwhile, a sensitivity anal-

ysis on various power limits is introduced to observe the behaviour of these

four methods.

The SECP parameters are indicated in Table. 4.3, where slow charging

has a very limited impact on the system, for analysing these four methods,

Table 4.2: Comparison of the simulation results of the provided four methods
and the result without a power limit

Method Energy consumption (kWh) SoC variance
1 191.76 471.68
2 191.38 562.06
3 192.11 382.72
4 193.01 201.80

Without power limit 193.01 -
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(a) Some EVs stop charging when their SoC is larger than the average SoC, Charg-
ing power for each vehicle

(b) Each EV is almost fully charged at the same time, SoC for each EV

Figure 4.6: The simulation results of applying the Method 4
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it is necessary to give all the EVs in the EV charging park the same charging

conditions, Rp is set to 100%. All EVs in this charging park will be con-

nected with DC fast chargers, which means that all EVs have chances to

charge with maximum charging power based on the power allocation from

the four provided methods. The simulation is developed with inputs from

20kW to 200kW at 20kW increments and based on Figure. 4.1. The out-

put is the average increasing SoC of all EVs, which is shown in Table. 4.4.

Table 4.3: The parameters of the simulated SECP

Parameters Details
EV brands 4
Traffic Flow Hainault Station (London)
Simulation time one day
The probability of EV fast charging 100%
The penetration of DC fast charging 100%
SECP charging spaces 80
Maximum fast charging power 50kW
Power efficiency 97%

Table 4.4: The average increasing SoC of four power management methods

Power feeder
limit (kW)

Average increasing SoC (%)
Method 1 Method 2 Method 3 Method 4

0 0 0 0 0
20 9.37 8.74 9.64 9.66
40 17.57 16.65 17.98 18.00
60 24.82 23.98 25.22 25.11
80 30.47 29.94 30.77 30.90
100 31.81 31.14 32.02 32.17
120 32.26 32.00 32.34 32.37
140 32.38 32.30 32.42 32.41
160 32.45 32.46 32.46 32.43
180 32.49 32.51 32.49 32.45
200 32.52 32.53 32.52 32.47
Max 32.64 32.64 32.64 32.64
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From this table, we can see that the trend of four methods is for them to

have a significant increase from 0kW to 80kW. Along with the rise in power

feeder limit, the average increasing SoC of all four methods keeps increasing,

however the increments of them decrease gradually. When the power feeder

limit is 20kW, Method 4 achieves the highest average increasing SoC of all

EVs (9.66%), followed by Method 3 (9.64%), then Method 1 (9.37%) and

lastly Method 2 (8.74%). This ranking has been maintained until the 120kW

power feeder limit. at 140kW the Method 3 has the highest value of 32.42%,

which is 0.1% higher than Method 4, and then followed by Method 1 and

Method 2 with 32.38% and 32.30%, respectively. From 160kW to 200kW,

the average increasing SoC of Method 2 is gradually larger than Method 3

and becomes the highest value of 32.51%, and the value of Method 4 remains

the minimum. Method 1 and Method 3 are same at 180kW and 200kW. The

maximum average increasing SoC is 32.64% for the system without a power

limit. Overall, for the same power limit, the differences of the four methods’

average increasing SoC are small for the simulated SECP.

4.4 Conclusions

This Chapter discusses the power management strategies for SECP. Three

power management strategies are introduced, one limits power based on each

EV demanded power, and two use SoC of the EVs to allocate power propor-

tionally. The Nissan leaf (24 kWh) charging profiles were used to provide

the power demand data for analysing the behaviour of these strategies. The

simulated results show that the power feed to the car park can be managed

according to an artificial limit whilst each method has differing resulting

SoC profiles for the vehicles. All three methods are based on a proposed fair

method to share power for meeting the overall car park power limit. The

results from Method 3 were the most significant in that they showed that

the cars parked early were artificially held back from charging at higher SoC

which had the effect, at the end of the simulation, of all cars being closer to

the same SoC.

As discussed, this was possibly seen as desirable, therefore Method 4
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was introduced to force the EVs to charge according to the average SoC of

all the vehicles in the car park. This exaggerated the effect to the extent

that at times vehicles were not charging at all to enable other EVs to catch

up. The extreme nature of this method could be seen as unfair from a

user perspective unless there were possible benefits to the user such as lower

parking costs requiring further research. The simulations in this part were

intentionally used with matching vehicles and initial SoC values to highlight

the differences in control methods. This method also gives the SECP owner

a chance to prioritize some EVs’ charging by adjusting ratio factor to seek

more benefits from EV owners.

In the end, the four methods are introduced to the ABM of SECP pro-

vided in Chapter 3. The cases study shows that for different EVs and initial

SoC illustrated in Table. 4.3, Method 4 can achieve the highest average in-

creasing SoC when the power limit remains at a very low level from 0kW to

80kW, which results from Method 4 seeking the lowest variance of all EVs’

SoC and forcing the EVs closer to the SoC at every time slot. For example,

two EVs charge with 50kW chargers and a 100 kW power feeder, so if one is

fast fully charged, then the total charging power reduces to 50kW, however

if both of them are keeping closer to the SoC, then the total charging power

can remain at 100kW for a longer period, hence the average increasing SoC

of all EVs is higher than other methods until some of EVs are charged fully.

Method 1, Method 2, and Method 3 have higher average increasing SoC when

the average increasing SoC is close to its highest point (32.64%) over 80kW

power limit. This is because that among these situations most EVs are fully

charged.
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Chapter 5

The integration of BESS and

PV

5.1 Introduction

Previous chapters have shown that the total EV charging peak load might

reach a very high level. Simulations have modelled the situation where most

EVs arrive and get charged in the same SECP every day, hence EVs have

relatively high initial SoC. In real-world performance, some EVs might come

with very low SoC, which results in the peak load period lasting longer for

charging these EVs. Power management methods provided in Chapter 4 sig-

nificantly reduce the peak charging power of the SECP, therefore reducing

the equipment investment and electricity cost since the electricity capacity

fee is charged based on £/MW/Day at the maximum potential power require-

ment regardless of actual usage in the UK. However, those methods work by

extending the charging time and could result in an EV that leaves earlier

than expected not having sufficient SoC and therefore does not fundamen-

tally solve the problem of EV charging demand. Meanwhile, the small power

feeder limit might lead to very limited electricity transferred to EV in the

requested charging periods. For example, In Table. 4.4, EVs in the SECP

with a power feeder of less than 60kW power supply do not see a significant

increase in SoC.
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In this chapter, the EVs’ charging power are still calculated based on

Figure. 4.1, the difference is the power limit (PL) with bold format in the

dashed box is enlarged by using a BESS and PV panels.

A BESS is an energy storage system using batteries as energy storage

units, hence, the BESS could be used to shift peak EV load for SECP. Dif-

ferent from power management methods provided in Chapter 3, the BESS

shifts peak EV load by storing energy when the EV load does not exceed the

power feeder limit and exporting this energy when EV load is higher than

the power limit. The BESS is also widely used for ancillary services like fre-

quency response or ramping to smooth out intermittent renewable output.

The BESS is typically made up of many battery modules, a BMS, and a

power conversion system.

The power generated by the PV can be used to charge EVs. Solar en-

ergy as renewable energy can be acquired easier in cities compared to other

renewable energy sources and could achieve a reduction in CO2 emissions.

The application of the PV in a SECP has been achieved in both theory and

practice, UK’s first solar-power EV car park opened in 2021 in Leeds [13].

the PV can also help EVs to shift the peak load through collaboration with

the BESS, since the energy generated by the PV can be stored in the BESS

or directly transferred to the EVs.

In this chapter, a BESS is first integrated into our ABM of SECP with

different capacities to observe and analyse the results. The PV is then in-

troduced with the BESS which stores the PV and grid energy and releases

it when EVs need the most power.

5.2 The BESS based SECP

In this section, the BESS is integrated with the SECP. The BESS based SECP

is first introduced from the structure of the system, followed by simulations

of the system based on the ABM, then a sensitivity analysis on the capacity

of the power feeder and the capacity of the BESS are provided to investigate

their impacts on the average increasing SoC of EVs.
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Figure 5.1: The BESS based SECP.

5.2.1 The structure of the BESS based SECP

The BESS based SECP is shown in Figure. 5.1. The aggregator in this stage

mainly collects information from the BESS, EVs, and the grid, and sends

commands to the BESS and EV chargers to manage the charging power

in the system. Figure. 5.2 shows the energy flow with respect to power

from the grid (GP), EVs (EVP), and BESS. BSCP and BSDP represent the

available power of the BESS for charging/discharging. ’2’ in the middle of

a word represents ’to’ meaning power transfer (e.g. Grid2BESS means the

power transferring from Grid to BESS). The contents inside the dashed box

illustrate the energy flow between the EV, BESS, and Grid for each condition,

whilst the bottom dotted box formulates the power. For the BESS, the power

conversion system is bidirectional, BESS can be charged or discharged. The

aggregator only requests the SoC from the BESS. Based on the SoC, local

power feeder, and total EV load, the aggregator sends a power command to

the BESS to either charge, discharge or do nothing (pause).

The BESS is in the charging state when the total EV load is less than

the power limit of the local feeder and the BESS is not fully charged (SoC is
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Figure 5.2: The energy flow of BESS based SECP.

less than 100%), the charging power of BESS (PBESS) is equal to the power

limit of the local feeder minus the total EV load (PEV ).

The BESS is in the discharging state when the total EV load is higher

than the power limit of the local feeder, and there is energy stored in the

BESS. The energy is transferred from the BESS to the EVs to provide the

power that the the local power feeder can not provide.

The BESS remains a static state (zero power) only when the BESS is

fully charged and no power request from the BESS. The function of PEV and

PBESS is:

PEV =

Np∑
N=1

PdN (5.1)

where Np is the total number of EVs.
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PBESS = PL − PEV (5.2)

PBESS could be positive or negative representing the charging power or dis-

charging power, respectively.

The aggregator collects the the real-time charging power requirement of

each EV, and calculates the total EV load. According to the SoC of the

BESS and local power feeder and EVs load, the charging or pause command

will be sent with corresponding charging power to each EV based on the

power management method.

The charging command will be sent to EVs if the power supplied by the

local power feeder is higher than the EVs load, or power from the local power

feeder plus BESS is higher than the EVs load. All EVs are charged with their

maximum charging power.

If power from the local power feeder plus BESS is lower than the total

EV load but larger than 0kW, the charging power allocated for each EV is

based on the power management methods system introduced in Chapter 4.

The EVs receive pause commands only when they are fully charged or the

EVs are not allocated any power based on the power management method.

For the Grid, the aggregator collects market information for the SECP

operator, which was introduced in the literature review.

5.2.2 Modelling the BESS based SECP

Based on the structure of the BESS based SECP, the BESS is then intro-

duced in, Equation 5.3 shows the calculation function of the SoC of BESS

(SoCBESS):

SoCBESS =
α ∗
∫ Te

Ts
PBESS

EcBESS

× 100% + SoCTs (5.3)

where Ts and Te represent the start time of charging/discharging and end time

of charging/discharging respectively. and PBESS is the charging/discharging
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Table 5.1: The parameters of BESS based SECP

Parameters Details
Power feeder limit 80kW
Capacity of BESS 200kWh
Initial SoC of BESS 100%
Power management method Method 1

power in kW, EcBESS is the capacity of the BESS in kWh. SoCTs represents

the SoC of the BESS when the charging/discharging process starts.

5.2.3 Cases study of the BESS based SECP

We pick Method 2 as the power management strategy to observe the be-

haviour of the system. Because with BESS support, the power limit for all

EVs is much higher than it with just a power feeder, and Method 2 have

better performance in the average increasing SoC when the power limit is

high based on Table. 4.4. The detail of the BESS is listed in Table. 5.1, and

the other information is same as in Table. 4.3. The initial SoC of the BESS

is reset to 100% every day.

The results are shown in Figure. 5.3, and where the first of four subplots

show the total EV charging power (PEV ), then the grid power (PGrid), where

a negative value corresponds to the SECP importing energy from the feeder.

The last two subplots are the BESS power and SoC of BESS, respectively,

where a positive value represents the BESS charging, and discharging is ex-

pressed as a negative value. Three representative time points are chosen to

refer to BESS states (grey lines) with the data shown in Table 5.2. At the

first charging point (347 minutes), the BESS is operating in the charging

period, where PEV is 40.48kW, and the SoCBESS is 82.06%. BESS is not

fully charged, hence the grid not only charges EVs but also transfers the rest

of the charging power to the BESS of 37.12kW with the maximum power

feeder limit of 77.6kW (80kW without considering the efficiency). At the

second charging point (560 minutes), the BESS is operating in the pause pe-

riod. The EV power demand is far higher than the maximum power feeder
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Figure 5.3: System response for EV load

Table 5.2: Data points as shown in Figure 5.3

Time (Min) PEV (kW ) PGrid(kW ) PBESS(kW ) SoCBESS (%)
347 40.48 -77.6 37.12 82.06
560 77.6 -77.6 0 0
1052 244.2 -77.6 -166.6 55.75
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limit of 77.6kW, hence, all the power from the grid is transferred to the EVs.

Meanwhile, the BESS is already fully discharged, SoCBESS is 0%, there is no

more power left to export to EVs, hence PBESS is 0kW, and PEV is 77.6kW.

The BESS is operating in the discharging period at the last charging point

(1052 minutes), where the BESS still has energy stored with SoCBESS of

55%, and the EV power demand is over the maximum power feeder limit,

hence the BESS exports its energy to the EVs with power of -166.6kW. The

PEV is the power of the BESS plus the maximum grid power (244.2kW).

Overall, from Figure. 5.3 we see that, along with the power demand from

the EVs increasing, the BESS starts exporting energy to the EVs at 315

minutes, and the SoC of the BESS quickly drops back to 0% from 315 minutes

to 400 minutes. SoCBESS and PBESS remain at 0% from 400 minutes to 800

minutes. When PEV can not utilize all the grid power from 800 minutes

onward, the sufficient power from the grid is then transferred to the BESS,

the SoC of the BESS rises gradually. After several fluctuations, the SoC of

the BESS finally rises back to 100% at 1219 minutes. The average increasing

SoC of the EVs is 32.53% with an 80kW power feeder which is already higher

than the data in Table. 4.4 with a 200kW power feeder.

5.2.4 Sensitivity analysis of power feeder limit and the

capacity of BESS based on the cases study

In this part, our investigation focuses on how the average increasing SoC is

affected by the power feeder and the capacity of the BESS. Increasing the

investment in the power feeder and BESS can improve the average increasing

SoC, SECP owners with a limited budget might want to seek the investment

balance between the power feeder and BESS to get higher customer satisfac-

tion. The simulation parameters of the sensitivity analysis are introduced in

Table. 5.3, and other information is same as in Table. 4.3.

The results of the four methods are shown in Figure. 5.4. It is difficult to

distinguish the behaviour of the four methods from each other by inspecting

the figures, the tables of four methods are made by choosing some data

points from the figures to show the results clearly, the capacity of the BESS
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Table 5.3: The parameters of EV based charging load for sensitivity analysis

Parameters Details
Power feeder limit 0-100kW
Capacity of BESS 0-500kW
Initial SoC of BESS 100%
Power management method 1-4 Method

Table 5.4: Sensitivity analysis results of Method 1

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 0 9.37 17.57 24.82 30.47 31.81
100 2.64 12.04 20.26 27.15 31.80 32.23
200 5.32 14.73 22.94 29.53 32.19 32.42
300 8.00 17.42 25.62 31.69 32.44 32.48
400 10.68 20.15 28.17 32.45 32.49 32.52
500 13.39 22.91 30.58 32.50 32.53 32.57

is increased from 0kW to 500kWh with 100kWh increments and the power

limit is increased from 0kW to 100kW with 20kW increments, where the

results are shown in Table. 5.4, Table. 5.5, Table. 5.6, and Table. 5.7. From

the figures and the tables, we can see that for the four power management

methods, the increase of capacity of the BESS has a significant improvement

on the average increasing SoC for the same power limit. However, as the

power feeder limit rises, the improvement decreases gradually. For example,

from 0kWh to 500kWh BESS, the SoCa of Method 1 increases by 13.54%

with a 20kW power feeder, the increment is reduced to 0.76% with a 100kW

power feeder. The maximum increment for the four methods from 0kWh

to 500kWh are 13.54% , 13.29% for Method 1 and Method 2 with a 20kW

power limit respectively, and 13.73%, 13.75% for Method 3 and Method 4

where there is no power feeder (off-grid).
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Figure 5.4: Sensitivity analysis result of SECP with BESS.
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Table 5.5: Sensitivity analysis results of Method 2

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 0 8.74 16.65 23.97 29.94 31.14
100 2.50 11.48 19.13 26.52 31.13 31.98
200 4.97 14.03 21.85 29.10 31.83 32.41
300 7.56 16.53 24.66 31.27 32.44 32.51
400 10.18 19.21 27.79 32.40 32.52 32.53
500 12.83 22.03 30.03 32.52 32.54 32.59

Table 5.6: Sensitivity analysis results of Method 3

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 0 9.64 17.98 25.22 30.77 32.02
100 2.71 11.95 20.40 27.45 31.95 32.34
200 5.47 14.59 22.96 29.65 32.32 32.45
300 8.24 17.28 25.55 31.68 32.46 32.49
400 10.98 19.96 28.10 32.45 32.50 32.52
500 13.73 22.64 30.40 32.50 32.53 32.54

Table 5.7: Sensitivity analysis results of Method 4

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 0 9.66 18.00 25.11 30.90 32.17
100 2.72 12.00 22.44 27.35 32.15 32.37
200 5.49 14.66 22.98 29.40 32.37 32.42
300 8.27 17.36 25.52 31.68 32.43 32.45
400 11.03 20.02 28.00 32.43 32.45 32.47
500 13.75 22.68 30.35 32.46 32.48 32.49
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Figure 5.5: The BESS and PV based SECP.

5.3 The BESS and PV based SECP

In this section, the BESS and PV are integrated with the SECP to further

reduce the power demand to the power grid. The BESS and PV based SECP

is firstly introduced from the structure of the system which includes the

PV power calculation, followed by the application of BESS and PV system

based on the ABM of SECP, then a sensitivity analysis on the battery size

is provided to investigate the impact of the capacity of the power feeder and

the size of the BESS on average increasing SoC of EVs and the utilization of

the energy generated by the PV for the SECP system.

5.3.1 The structure of the BESS and PV based SECP

The BESS and PV based SECP is shown in Figure. 5.5. The functions of the

aggregator in this stage are almost the same as the BESS base SECP, where
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the differences are that the aggregator also needs to collect generating data

from the PV, and send commands to the PV to decide if the PV transfers

power to the SECP or the grid or both of them. The PV will be on all the

time. Figure. 5.6 shows the energy flow respecting to power from the grid,

EVs, BESS and PV (PVP).

For the BESS, based on the information from the SoC of the BESS,

the power feeder, the EVs’ load, and PV power, the aggregator sends the

charging or discharging or pause command with the corresponding charging

and discharging power.

The BESS is charging when the EVs’ load is less than the power limit of

the local feeder plus PV power (PPV ) and the BESS is not fully charged (the

SoC is less than 100%). The charging power of the BESS (PBESS) is equal

to the power limit plus PV power minus total the EV power load (PEV ).

The BESS is discharging when the total EV power load is higher than the

power limit of the power feeder plus PV power, and there is energy stored in

the BESS, then power is supplied from the BESS to the EVs to make up the

difference that the power feeder and PV cannot provide.

The BESS remains in the static state only when the BESS is fully charged

or discharged and no power is requested from or sent to the BESS.

PBESS in this section is represented as:

PBESS = PL + PPV − PEV (5.4)

For the EVs, the aggregator sends the charging or pause command with

corresponding charging power for each EV based on the power management

methods.

If the power supplied by the local power feeder plus PV and BESS power

is higher than the EVs’ load, then the charging command will be sent, and

the maximum charging power is allowed for all EVs.

If power from the local power feeder plus BESS and PV power is lower

than the total EV power load but larger than 0kW, then the charging power

allocated for each EV is based on the power management methods.

An EV receives the pause command only when it is fully charged or the
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Figure 5.6: The energy flow of the BESS and PV based SECP
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EV is not allocated any power based on the power management method.

For the PV, the aggregator sends commands to decide if the power gen-

erated by PV is outputted to the SECP, or the grid, or both of them with

corresponding power value.

The PV power is considered as the priority power source to charge the

EVs. The PV will export all its power to the EVs with any excess being

delivered to the BESS according to the SoC strategy and the remaining

surplus exported to the grid. In the case where the SECP power demand is

0kW, the PV will receive the command to directly output the power to the

grid. SECP owners can benefit by exporting PV power to the grid through

an export tariff [126].

5.3.2 Model of the BESS and PV based SECP

In [127], the capacity of the PV panel (PCpv) is approximately 150Wp/m2

-200Wp/m2. In this work, PCpv is set as the median value 175Wp/m2. PV

power (Ppv) output varies with solar irradiance, and normally can not reach

PCpv. For example, [128], shows that the recorded installed capacity of PV

in the UK was 13.08GWp in June 2021, and achieved a peak PV power of

9.68GW. Z(t) represents the relation between the installed capacity of PV

(PCpvUK) and PV power in the UK (PCpvUK) which changes with time:

Z(t) =
PpvUK(t)

PCpvUK

(5.5)

In the model, the PV canopy is over the car park spaces and the SECP

only has a single floor. The area of the PV panel could be equal to the

parking area which does not include the space between the car park spaces.

The UK standard single car park space size is 11.52m2.Ppv of SECP changing

with the time (t) is then given as:

Ppv(t) = Z(t) ∗ PCpv ∗ Cm ∗ 11.52 (5.6)
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Figure 5.7: The PV power generation based on the 80 charging spaces

Table 5.8: The parameters of BESS and PV based SECP

Parameters Details
Power feeder limit 80kW
Capacity of BESS 200kWh
Initial SoC of BESS 100%
Power management method Method 1
Simulation date 01/01/2019

Power of PV panel 175Wp/m2

where Cm is the number of parking spaces, Z(t) ranges from 0 to 1 calculated

every minute based on the historical GB PV data supplied by NEGSO [128].

According to the capacity of the SECP with 80 charging spaces shown in

Table. 4.3, and using PV data from 01/01/2019 and 01/07/2019 to represent

winter and summer, the PV power in the SECP is shown in Figure. 5.7. No

matter the duration or the power generation, the PV power generation on

01/07/2019 is obviously longer and higher than on 01/01/2019, which is

because 01/01/2019 is a normal day of winter, and 01/07/2019 is a normal

day of summer, the solar irradiance in the UK is much higher in the summer

than in other seasons, and it is also related to the weather conditions.
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5.3.3 Cases study of the BESS and PV based SECP

The second power management method is chosen to observe the behaviour

of the system. The details of the BESS are listed in Table. 5.8, where other

information is same as in Table. 4.3.

The results are shown in Figure. 5.8, where the first three subplots show

the total EV power demand (PEV ), grid power (PGrid), and PV power PPV .

The last two subplots show the BESS power (PBESS) and the SoC of BESS

power (SoCBESS) respectively. In the PV power subplot, the blue line repre-

sents the maximum PV power the system can generate, the PV2EV line (the

orange line) is the power sent from the PV to the EVs, and the PV2BESS

line (the yellow line) represents the PV power transferred to the BESS, the

power sold to grid are not shown since the results focus on the power flow in

the SECP.

Four representative time points were chosen to refer to PV states (grey

lines) with the data shown in Table 5.9. At the first charging point (600

minutes), PPV is 10.86kW, which is lower than the total EV power demand,

hence, all PV power is transferred to the EVs, therefore, PV2EV is 10.86kW

and PV2BESS is 0kW. The rest of the power is supported by the local power

feeder of 77.6kW, and SoCBESS is 0%, therefore, the BESS has no energy to

export, PEV is 88.46kW which is PPV plus PGrid. For the second time point

(794 minutes), PEV (5kW) is smaller than PPV (23.72kW), and PV2EV is

then set to 5kW. Meanwhile, SoCBESS is only 31.12%, and the BESS is

not fully charged, part of the PV power is transferred to the BESS, and

PV2BESS (18.72kW) is PPV minus PV2EV. The power from the feeder is

also sent to the BESS, so PBESS (96.32kW) is PV2BESS plus PGrid (77.6kW).

For the third point (853 minutes), there is no power demand from the EVs,

and BESS is not fully charged, hence, all power from the PV and the feeder

are injected to PBESS (92.28kW), which is equal to PGrid (77.6kW) plus PPV

(14.68kW). For the last time point (895 minutes), although the maximum

PV power generation is 9.108kW, there is no power demand in the SECP

system, hence, the PV receives command to output power to grid.

Overall, from Figure. 5.8 we can see that the power from the PV is utilized
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Figure 5.8: The response of PV-BESS based SECP to the various EV load

Table 5.9: Data points as shown in Figure. 5.8

Time (Min) PEV (kW ) PGrid(kW ) PPV (kW ) PPV 2EV (kW ) PPV 2BESS(kW ) PBESS(kW ) SoCBESS (%)

600 88.46 -77.6 10.86 10.86 0 0 0

794 5 -77.6 23.72 5 18.72 96.32 31.12

853 0 -77.6 14.68 0 14.68 92.28 78.57

895 0 0 9.108 0 0 0 100
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efficiently for the SECP system in the whole working period. Only from 882

minutes to 901 minutes, the BESS and EVs are fully charged, and the PV

power is exported to the grid. The average increasing SoC of the EVs is

32.56kW which is higher than it would be without the PV, meanwhile PV-

BESS based SECP requests less energy from the power feeder than BESS

based SECP by comparing the grid power from Figure. 5.8 and Figure. 5.3.

Also SoCBESS in the PV-BESS based system reminds at 100% for longer

period.

5.3.4 Sensitivity analysis of power feeder limit and the

capacity of BESS based on the case study with

PV integrated

In this subsection, various power feeder limits and capacities of the BESS are

employed to analyse how the average increasing SoC is affected by the PV

and the BESS. The PV power usage for the SECP system is bonded with

the capacity of the BESS, since the BESS can improve the utilisation rate

of the PV for the SECP system by storing the energy generated from the

PV and exporting this energy when needed. Meanwhile, the collaboration

between the PV and the BESS can improve the average increasing SoC when

the power limit is at a low level. Two test days are picked from two seasons

shown in Figure. 5.7, since the PV behaviour has a huge difference between

the two seasons. The outputs of the sensitivity analysis are the average in-

creasing SoC (SoCa), and the PV energy utilization for the SECP system

(EPV ) in kWh. The PV energy utilization for the SECP system does not

include the power exported to the grid. This investigation could assist SECP

owners to schedule the investment to seek the cost balance of infrastructures

of the power feeder and the BESS and the PV to get higher customer satis-

faction. The simulation parameters of the sensitivity analysis are introduced

in Table. 5.10. From Figure. 5.4, we see that the different methods have

limited impact on the average increasing SoC than the BESS, adding the

PV could further reduce this impact, hence Method 2 is chosen as the only

power management method for the rest research. The other parameters are
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Table 5.10: The parameters of PV-BESS based SECP for sensitivity analysis

Parameters Details
Power feeder limit 0-100kW
Capacity of BESS 0-500kW
Initial SoC of BESS 100%
Power management method Method 2
Simulation date 01/01/2019&01/07/2019

the same as in Table. 4.3.

The results on 01/01/2019 are shown in the Figure. 5.9a and Figure. 5.9b

which show the average increasing SoC and PV energy utilization for SECP

system, respectively. For better observation, some of the data points are

picked and shown in Table. 5.11 and Table. 5.12. The results on 01/07/2019

are shown in Figure. 5.10a and Figure. 5.10b with certain data points shown

in Table. 5.13 and Table. 5.14. The capacities of BESS are increased from

0 to 500kWh with 100kWh increments and the power limits are selected

from 0kW to 100kW with 20kW increments. Comparing with Figure. 5.4,

Figure. 5.9a and Figure. 5.10a and their data profiles, we can see that as the

PV power generation increases, the slopes of the three figures get steeper, the

average increasing SoC could exceed 30kW with a 100kW power limit with-

out PV power; or with an 80kW power limit and the PV energy generated

on 01/01/2019; or with only a 60kW power limit and the PV energy gen-

erated on 01/07/2019. Meanwhile, based on Figure. 5.9b and Table. 5.13,

the maximum PV energy utilization for the SECP system is 112.82kWh for

most situations when the power limit is lower than 80kW. Increasing the

80kW power limit causes the PV energy usage for the SECP to decrease

sharply, however, for the same power limit, as the capacity of the BESS

rises, the PV energy utilization for the SECP increases slightly. According

to Figure. 5.10b and Table. 5.14, the maximum PV energy utilization for

the SECP is 650.42kWh, however, as the power limit increases, the PV en-

ergy utilization for the SECP decreases gradually from 0kW to 20kW power

limit, and the decrease becomes sharp from 20kW to 100kW power limit.
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(a) Average increasing SoC

(b) PV energy

Figure 5.9: Sensitivity analysis result of SECP with BESS and PV on
01/01/2019.

Comparing the results of the two dates, we find that PV energy utilization

for the SECP system on 01/07/2019 is higher than on 01/01/2019, while the

increasing power limit has more negative impact on the PV energy utilization

for the SECP. Along with the power limit increases from 0kW to 100kW, the

PV energy utilization for the SECP drops by almost 45% on 01/07/2019,

and 25% on 01/01/2019.
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(a) Average increasing SoC

(b) PV energy

Figure 5.10: Sensitivity analysis result of SECP with BESS and PV on
01/07/2019.
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Table 5.11: Sensitivity analysis result: average increasing SoC on 01/01/2019

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 4.02 11.83 19.52 26.94 30.18 31.52
100 5.23 14.36 22.29 29.13 31.27 32.08
200 7.92 16.82 25.16 31.20 32.14 32.41
300 10.58 19.53 27.54 31.99 32.44 32.51
400 13.10 22.41 30.17 32.47 32.52 32.53
500 15.73 25.45 32.49 32.52 32.54 32.59

Table 5.12: Sensitivity analysis result: PV energy utilization on 01/01/2019

EcBESS (kWh)

EPV (kWh) PL (kW)

0 20 40 60 80 100

0 112.82 112.82 112.82 112.82 106.08 83.55
100 112.82 112.82 112.82 112.82 104.85 81.13
200 112.82 112.82 112.82 112.82 108.30 81.96
300 112.82 112.82 112.82 112.82 109.63 82.57
400 112.82 112.82 112.82 112.82 109.81 82.57
500 112.82 112.82 112.82 112.82 109.99 82.88

Table 5.13: Sensitivity analysis result: average increasing SoC on 01/07/2019

EcBESS (kWh)

SoCa (%) PL (kW)

0 20 40 60 80 100

0 16.64 26.08 29.58 30.81 31.47 31.95
100 19.38 28.92 30.63 31.53 32.00 32.24
200 22.26 30.64 31.75 32.04 32.32 32.46
300 25.32 31.55 32.12 32.37 32.48 32.52
400 28.12 32.19 32.42 32.50 32.53 32.55
500 31.02 32.45 32.51 32.53 32.56 32.64
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Table 5.14: Sensitivity analysis result: PV energy utilization on 01/07/2019

EcBESS (kWh)

EPV (kWh) PL (kW)

0 20 40 60 80 100

0 650.42 648.55 580.75 493.99 427.27 375.81
100 650.42 648.57 580.20 483.95 421.66 366.86
200 650.42 648.57 604.89 493.29 426.47 368.74
300 650.42 648.57 611.01 500.24 429.02 369.82
400 650.42 648.57 618.12 501.53 429.02 369.72
500 650.42 648.57 619.50 502.51 430.32 370.94

5.4 Conclusion

In this chapter, the BESS and the PV are introduced with both being able

to significantly increase the average increasing SoC of EVs. Through a sensi-

tivity analysis we find that compared with BESS size, the power feeder limit

has more impact on the PV energy utilization for the SECP. The PV en-

ergy utilization for SECP only includes the charging energy for EVs and the

BESS, and does not include the energy exported to the grid. It is shown that

the PV energy utilization for SECP can be as low as 55%. This is because

a larger power feeder limit can provide the higher charging rates required

for the EVs, hence the EVs could be fully charged over a shorter duration.

This reduces the time window for PV power to charge the EVs and reduces

the energy requirement from the BESS leaving it a higher SoC and therefore

limited capacity left for storing PV energy, the surplus energy from the PV

is then exported to the grid. Increasing the BESS size can improve the PV

energy utilization for the SECP as the BESS can store more energy from

the PV to prevent the PV energy from being exported to the grid. Hence,

improving the PV energy utilization for the SECP and reducing the power

demand from the grid could be done by choosing a suitable power limit and

capacity of the BESS.
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Chapter 6

SECP for providing ancillary

grid services

6.1 Introduction

The previous chapters have proposed solutions to manage the power require-

ments for EV charging in a SECP through power management methods and

the integration of PV and BESS. In this chapter, the investigation focuses

on exploring ancillary grid services which the PV-BESS based SECP can

provide to gain additional revenue and support the grid.

The grid frequency is not stable, it is determined and controlled by total

demand and generation; when demand is higher than the generation, the

frequency falls and vice versa. National Grid Electricity System Operator

(NGESO), the ESO for GB, has the responsibility of maintaining the fre-

quency of the National Electricity Transmission System within 1% of 50Hz

(49.5 to 50.5Hz). Dynamic Fast Frequency Response (DFFR) and Dynamic

Containment (DC) services are two grid balancing services offered to gen-

erators by NGESO, aiming to overcome the unbalanced grid frequency [78].

The NGESO pays for the DFFR/DC service based on the working period and

the available power for frequency response, for example, in March 2021, an

average price of £11.2/MW of DFFR/h was paid to service providers based

on the post-tender report from [77].
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Future car parks will require significant power to support EV charging

as there will be both an increase in the penetration of EVs and a higher

demand for charging power as battery packs increase in capacity. Effective

management of the charging and local battery storage can be installed to help

avoid excessive increases in electrical feeder capacity, however, it is inevitable

that car parks will attain significant power capability in the future. There

is an opportunity therefore for car park owners to utilise this and generate

additional revenue by providing frequency response services to the electrical

grid. This chapter describes the modelling of a SECP that utilises PV power

generation, BESS and EV charging management strategies to provide a grid

frequency response service.

Research about EV charging parks and grid frequency response do not

consider ancillary service specifications and restrictions enforced by the na-

tional ESO. In contrast to other works in this field, a PV-BESS based SECP is

introduced in this chapter to provide SEC and the DFFR/DC service. Mean-

while, a novel bi-directional electricity transfer method among EV, Grid, PV,

and BESS are presented to construct an SEC system. In the DFFR/DC

service, grid frequency is categorized into high-frequency zone (HFZ), dead-

band, and Low-frequency zone (LFZ), for each of them, the SECP has the

corresponding energy flow strategies. The advantage of the SECP is not only

reducing the impact of the increasing penetration of EV chargers on the grid,

but also helping the SECP owners to profit from providing the grid service

in addition to collecting EV charging fees.

6.2 DFFR and DC modelling

Any storage system that provides DFFR must provide a power response as

frequency deviates from 50±0.015 Hz. Figure. 6.1 shows the envelope of this

response, from the figure, 49.985Hz and 50.015Hz are two trigger points that

divide the grid frequency into three zones. The HFZ represents the grid fre-

quency when it is higher than 50.015Hz where the storage system imports

electricity from the grid, DFFR power is defined as negative. The LFZ oc-

curs when grid frequency is lower than 49.985Hz, the storage system exports
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Figure 6.1: DFFR droop curve for a provider (blue line)

Figure 6.2: DC droop curve for a provider (blue line)

electricity to the grid, DFFR power is defined as positive. The deadband is

when the grid frequency is between the 49.985Hz and the 50.015Hz, DFFR

power remains at zero. DFFR requires the provider to deliver a minimum of

1MW response power and must sell in 1MW increments for maintaining the

grid frequency within 49.5Hz to 50.5Hz, the response power that the provider

has tendered is called contracted power (Pc). The actual power required by

DFFR based on the grid frequency (PAFR) is given as:

PAFR = − Pc

50.5− 50
∗ (F (t)− 50)

50.5 > F (t) > 50.015 or 49.5 < F (t) < 49.985 (6.1)
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PAFR = 0 50.015 <= F (t) <= 49.985 (6.2)

PAFR = −Pc F (t) >= 50.5 (6.3)

PAFR = Pc F (t) <= 49.5 (6.4)

where F (t) is the real-time grid frequency. Positive/Negative PAFR means

providers export/import electricity to/from the grid. The deadband is de-

fined as where the provider must not import or export any power.

Similar to DFFR, but DC further divides the HFZ and LFZ into two

parts by knee points (49.8Hz and 50.2Hz) as shown in Figure. 6.2. The

actual power required by DC based on the grid frequency (PADC) is given as:

PADC = (
19

6
∗ (50− F (t))− 7

12
) ∗ Pc 49.8 > F (t) > 49.5 (6.5)

PADC = (
19

6
∗ (50− F (t)) +

7

12
) ∗ Pc 50.5 > F (t) > 50.2 (6.6)

PADC = (
10

37
∗ (50− F (t))− 3

740
) ∗ Pc 49.985 > F (t) >= 49.8 (6.7)

PADC = (
10

37
∗ (50− F (t)) +

3

740
) ∗ Pc 50.2 >= F (t) > 50.015 (6.8)

PADC = 0 50.015 <= F (t) <= 49.985 (6.9)

PADC = −Pc F (t) >= 50.5 (6.10)

PADC = Pc F (t) <= 49.5 (6.11)

Compared with DFFR, DC significantly reduces the response power for

the same Pc between the two knee points, and the response power increases/decreases

dramatically from the knee points to Pc, DFFR curve maintains steady in-

creases/decreases from the trigger points to Pc. According to the historical

grid frequency data provided by NGESO, the grid frequency remains in be-

tween the two knees points in most situations, which means DC is less de-

manding on the capacity of storage facilities for the same Pc as the response

power is less.

SECP can be considered a complex energy storage system that includes

many energy storage units represented by the EV batteries and a BESS.

These can be used to export/import electricity from the grid and provide
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frequency response services. Once SECPs get certification from NGESO,

SECPs can generate additional revenue through the provision of frequency

response services in addition to the parking and charging revenue.

In a SECP, exporting electricity from EVs to provide grid services may

lead to a lower SoC on departure than the SoC expected by the EV owner.

The average daily energy consumption of all annual mileage of EVs is calcu-

lated as 6.72kWh based on Table 3.1, In order to ensure EVs have enough

energy to support costumers’ daily driving, the minimum SoC of EV battery

(SoCmin) can be calculated by:

SoCmin =
6.72

Ecev

(6.12)

For a Nissan Leaf 24kWh, Nissan Leaf 30kWh, BMWi3 33kWh, and

Volkswagen Golf 26kWh, the minimum SoC is calculated as 28%, 22.4%,

20.4%, 25.9% respectively. This means if the SoC of an EV is lower than

the minimum SoC, the EV will not be discharged for grid service or other

activities in the SECP.

The power from the SECP might not always meet PAFR, failure happens

when the PV, EVs, and BESS cannot absorb/support the contracted power

for DFFR/DC. DFFR/DC availability (AV A) is used to evaluate the quality

of the delivered DFFR/DC service:

AV A =
TZ − TF

TZ

∗ 100% (6.13)

TF is the period when failure occurs, and TZ is the period of DFFR/DC.

Taking an example of 100 minutes charging, with three minutes of failed

service, the availability is calculated as 97%.
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Figure 6.3: The energy flow in the LFZ
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6.3 Energy flow between the system compo-

nents

The energy flow in this section is considered for two grid-service scenarios, the

DFFR/DC period and the Non-DFFR/DC period. The SECP provides the

DFFR/DC service in the DFFR/DC period and non-delivery of the service

in the Non-DFFR/DC period. It is possible in the GB electricity market to

bid to deliver the DFFR/DC service in timed windows.

In the HFZ, the SECP must import power to support the grid, the energy

flow with respect to power from the grid (GP), EVs (EVP) and PV (PVP)

is detailed in Figure. 5.6 and has been explained in Chapter 5. The PV

is still taken as a priority to charge EVs and the BESS. However, unlike

the PV introduced in Chapter 5 where the PV is always on since the PV

energy is allowed to be exported back to grid anytime, the PV might be

switched off when SECP is in the HFZ of the DFFR/DC service, and EVs

and the BESS can not fully store all the energy generated by the PV. This is

because providers are strictly required to follow the contracted import/export

power envelope. For example, even if there is excess PV power available

to be exported, if the service envelope dictates that the ‘asset’ should be

importing (HFZ) then no PV power can be exported to grid. The export of

PV to the grid, therefore, has to be managed during service provision and

cannot simply be equal to the surplus energy in the system. Whilst there

may be opportunity to install additional physical metering for surplus PV the

regulatory requirements for this scenario, considering the system described

in this thesis, are not well defined and is therefore not considered here.

In the LFZ, SECP must export power, in this case, the PV is prioritised

to export power to the grid, then the remaining will power the EVs, any

further excess power will charge the BESS. As with the HFZ case, any further

PV surplus is not considered as it is not possible to export more than the

contracted envelope to the grid. EVs are the second priority power source

for exporting power when PVP is less than GP. If there is still not enough

power, BESS is the last priority power source for LFZ. The service is failed

when the total exported power capability cannot meet the contracted power
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demand. Figure. 6.3 shows the details of how the system operates for LFZ.

SECP working in the deadband region results in that the only power

sources for EV charging are the BESS and PV, and the PV is the priority

power source. The excess PV power will be used to charge the BESS, any

further excess power will sell to the grid through an addition meter and

cables. If both sources cannot supply the required EV charging power, then

the EV charging power will be reduced through power management Method

2.

Based on an analysis of past tenders, 11pm to 7am the next day, and

7am to 11pm are commonly tendered periods for DFFR/DC delivery. As

there are almost no EVs parking during the overnight period (based on the

collected car park data) an SECP is not advantageous overnight (compared

to a standalone battery) as EVs cannot support the DFFR service as energy

storage units. Therefore the DFFR/DC delivery period is set between 7 am

to 11 pm, at other times, the grid connection can be used without restriction

as it is not delivering the DFFR/DC service. This is therefore used to manage

the SoC of the BESS in preparation for the next day (initial SoC of BESS)

since it could help to reduce the BESS size and improve the DFFR/DC

service quality. The details about the importance of controlling the SoC of

the BESS overnight is discussed below.

In the non-DFFR/DC service period the PV is on all the time and pri-

marily transfers energy to EVs, with a second priority to charge the BESS for

the next day (initial SoC of BESS). If the PV cannot provide enough power

to the EVs, the GP will support the rest, if there is surplus power generated

by PV, this power is export back to the grid as the SECP is not following a

contracted power envelope. This non-DFFR/DC period happens from 11pm

to 7am the next day, therefore, with PVP being close to zero and most EVs

having exited or fully charged, the charge power curve is likely to remain

flat, meanwhile, BESS will be charged or discharged to a defined initial SoC

of BESS.
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Table 6.1: The main parameters of the simulation

Parameters Details

Traffic Flow Hainault Station (London)
EV brands 4
Cm 80
Simulation date 01/01/2019

Capacity of PV panel 175Wp/m2

Capacity of BESS 2MWh
Initial SoC of BESS 60%
Pc 1MW
Simulation time 1 day
TZ 7am to 11pm

6.4 DFFR results

This section first tests the SECP aggregated with PV-BESS providing DFFR

services to see if the SECP can provide DFFR whilst maintaining the charging

of EVs. A real-time charging scenario is provided, Table 6.1 shows the main

parameters of the simulation. Here we simulate the model with the lowest

tenderable power unit of 1MW; The battery’s capacity is set as 2MWh and

the simulation period is one day.

The results are shown in Figure. 6.4, the first of five figures show the grid

frequency (fG), then the grid power (PGrid), negative corresponds to SECP

importing energy from the feeder, positive is exporting, the third represents

the generated PV power (Ppv). The last two figures are EVs power demand

(PEV ) and BESS power demand (PBESS) respectively, a positive value repre-

sents EVs or the BESS charging, and discharging for a negative value. The

two red lines represent the trigger points (49.985Hz and 50.015Hz) in the grid

frequency graph; four time-points are chosen to refer to the four charging pe-

riods (grey lines) with the data shown in Table 6.2. At the first charging

point (333 minutes), the system is operating in the non-DFFR period, PEV

is 142kW, and 0kW is from the PV, the rest is from the grid, the BESS is

not charging at this period. The second charging point (555 minutes) is in

the HFZ, the grid at 50.13Hz demands imported power of 253kW to SECP
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Figure 6.4: System response for DFFR - one day simulation

Table 6.2: Data points as shown in Figure. 6.4

Time (Min) fG(Hz) PGrid(kW ) Ppv(kW ) PEV (kW ) PBESS(kW )

333 49.97 -142 0 142 0
555 50.13 -253 3.398 134.6 121.8
713 50 0 28.39 528.4 -500
898 49.89 203.7 8.701 -195 0

based on Equation. 6.1, and 3.398kW is generated by the PV, however, at

this moment the maximum charging power of all EVs is 134.6kW, so Ppv

and 131.2kW of PGrid is used to support the EV charging, the rest of PGrid
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Figure 6.5: Key DFFR operating behaviours during a day
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Figure 6.6: The SoC of the BESS for one day DFFR simulation

is allocated to the BESS. The third charging point is during the deadband

zone, the system providing the DFFR cannot import or export power from

the grid, the demand power from the grid is 0kW, Ppv (28.39kW) and PBESS

(-500kW) is used for EV charging. At the last point, the system is working

in the LFZ, depending on Equation. 6.1, PGrid is 203.7kW, which is from

the PV (8.701kW) and the EVs (-195kW). Figure. 6.5a is the DFFR power

response, Figure. 6.5b represents the value of increasing SoC referring to the

number of EVs, AV A is 100%. The SoC of BESS is shown in Figure. 6.6.

The above results show the PV-BESS integrated SECP can provide a good

DFFR service with 100% AV A and an acceptable EV charging service.

The capacity of the BESS and initial SoC of BESS are variables in the

model which can be subjected to a sensitivity analysis. Here are the results

based on the traffic flow at Hainault Station (London) to understand the

impact of different BESS capacities and the initial SoC of BESS, Table 6.3

shows the main parameters of the simulation. The capacity of BESS are

varied in increments of 300kWh starting from 500kWh to 2000kWh.

Table 6.4, Table 6.5, and Table 6.6 are the results of 25%, 50%, and 75%

initial SoC of BESS, along with the increasing capacity of BESS, the avail-

ability of DFFR, and average increasing SoC of EVs increase with capacity

as expected. Compared with the summer season, the average increasing SoC
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Table 6.3: The main parameters of the sensitivity analysis for simulating
DFFR and DC

Parameters Details

Traffic Flow Hainault Station (London)
EV brands 4
Cm 80
Simulation date Summer season (01/07/2019-07/07/2019)

Winter season (01/01/2019-07/01/2019)

Capacity of PV panel 175Wp/m2

Capacity of BESS 2MWh
Pc 1MW
Simulation time 7 days
TZ 7am to 11pm

is always lower in winter regardless of how the capacity of BESS changes.

The higher initial SoC of BESS causes lower availability in the summer. The

availability is 100% when the capacity of the BESS is 2000kWh with 25%

initial SoC in summer, and 99.48% when the capacity of BESS is 2000kWh

with 50% initial SoC in winter, both of them achieve the acceptable average

increasing SoC (29.54% and 28.65% in order).

Combined with the energy flow from Figure. 5.6 and Figure. 6.3, the

lower average increasing SoC in winter can be explained with the following

reasons:

• In the summer season, PV in this season can provide high amounts of

energy to support EVs.

• In the winter season, without too much PV power, the total EV energy

demand is mainly supplied by the grid and the BESS, but the BESS

might store very limited energy from the PV.

• EVs must supply energy to the grid to provide a high availability of

service.

The same is observed in winter, the BESS with a 75% initial SoC can

provide more energy to EVs than at 25%, hence the average increasing SoC
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Table 6.4: Analysis with 25% initial SoC of BESS for DFFR

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 93.03 12.90 88.90 27.60
800 96.14 15.20 94.17 28.86
1100 97.40 17.24 96.77 29.37
1400 97.50 19.30 97.96 29.48
1700 97.55 21.34 99.32 29.52
2000 97.98 23.12 100 29.54

Table 6.5: Analysis with 50% initial SoC of BESS for DFFR

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 92.48 16.39 86.75 29.06
800 94.93 20.64 91.38 29.40
1100 97.16 23.97 94.32 29.47
1400 99.05 25.81 96.18 29.51
1700 99.38 27.25 97.10 29.52
2000 99.48 28.65 97.83 29.53

Table 6.6: Analysis with 75% initial SoC of BESS for DFFR

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 90.99 19.76 84.39 29.13
800 95.26 24.51 87.66 29.40
1100 96.41 26.88 89.46 29.47
1400 97.49 28.58 91.13 29.51
1700 97.89 28.67 92.09 29.52
2000 98.31 28.72 93.49 29.53
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of EVs at 75% is higher. The average increasing SoC in summer is very

close with different initial SoC values of the BESS since EVs have been fully

charged with the available PV power.

The reason the availability decreases in the summer with a higher initial

SoC is that sufficient PV power has almost fully charged the BESS and

supported the EV charging every day, there is no capacity left in the system

to import energy from the grid in the HFZ. This result is based on 100% PV

utilisation whereas it would be possible to curtail this power if required.

The results reveal that for different seasons, adjusting suitable initial SoC

of battery helps reduce the capacity of the BESS, hence reducing the initial

cost associated with the capacity of the BESS. A 2MWh BESS, with a 50%

initial SoC in winter and 25% initial SoC in summer is a good choice for the

parameters of this SECP providing DFFR service, this conclusion is based

on the condition that the SECP manages the SoC of BESS every day.

6.5 DC results

The same parameters of the DFFR simulation are used to analyse the DC

service. The results are shown in Figure. 6.7, the two red lines still represent

the trigger points (49.985Hz and 50.015Hz), the two green lines represent

the knee points of DC, the working principle are the same with DFFR, only

two time-points are chosen, one is outside the knee points (454 minutes),

and the other is between the knee points (649 minutes). The data is listed

in Table 6.7, At the first charging point (454 minutes), the grid frequency is

50.24Hz, the imported power is 185.6kW based on Equation. 6.6, the power

from the grid and the BESS (170kW) are both used to support EV charging

(355.6kW). The second charging point (649 minutes) is still in the HFZ, the

imported power is 30.92kW based on Equation. 6.8. The power from the grid

and the PV are used to charge the BESS since there is no power demand

from the EVs.

Figure. 6.8a shows the DC power response, frequency is not outside the

two knee points in LFZ for the simulation period, AV A is 100%., Figure. 6.8b

represents the value of increasing SoC of the EVs. The SoC of the BESS is
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Figure 6.7: System response for DC - one day simulation

Table 6.7: Data points as shown in Figure. 6.7

Time (Min) fG(Hz) PGrid(kW ) Ppv(kW ) PEV (kW ) PBESS(kW )

454 50.24 -185.6 0 355.6 -170
649 50.13 -30.92 18.92 0 49.84

shown in Figure. 6.9, DC reduces the response power compared with DFFR

in the frequency range between the two knee points, hence, the system might

require more energy from the BESS to charge the EVs. The above results
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(a) DC result showing power vs frequency

(b) Distribution of increase in SoC for EVs

Figure 6.8: Key DC operating behaviours during a day
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Figure 6.9: The SoC of BESS for one day DC simulation

Table 6.8: Analysis with 25% initial SoC of BESS for DC

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 99.12 16.19 96.34 31.91
800 99.12 19.78 99.73 32.18
1100 99.15 23.27 100 32.37
1400 99.34 26.33 100 32.40
1700 99.36 28.35 100 32.41
2000 99.93 29.59 100 32.41

show the PV-BESS integrated SECP can provide a good DC service with

100% AV A and an acceptable EV charging service.

To analyse the impact of the capacity of the BESS and initial SoC of

the BESS, a sensitivity analysis for DC is carried out using the same pa-

rameters as the DFFR analysis. Table 6.8, Table 6.9, and Table 6.10 shows

the analysis results, overall, the trends are the same as with the DFFR ser-

vice, where, as the capacity of the BESS and initial SoC of the BESS rises,

the average increasing SoC increases; and the availability gradually increases

proportionally with the capacity of the BESS. Compared with DFFR, DC

can acheive 100% availability with only a 1100 kWh BESS and 25% initial
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Table 6.9: Analysis with 50% initial SoC of BESS for DC

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 99.15 20.97 93.91 32.33
800 99.27 26.67 97.01 32.38
1100 99.38 29.66 99.20 32.39
1400 99.93 30.74 100 32.40
1700 99.93 31.33 100 32.41
2000 100 32.02 100 32.41

Table 6.10: Analysis with 75% initial SoC of BESS for DC

Capacity
of BESS
(kWh)

Winter (01/01-07/01) Summer (01/07-07/07)

Availability (%)
Average
increasing
SoC of EVs (%)

Availability (%)
Average
increasing
SoC of EVs (%)

500 99.14 25.86 90.26 32.33
800 99.38 30.01 92.82 32.38
1100 99.93 31.33 94.43 32.39
1400 100 31.99 96.08 32.40
1700 100 32.01 97.41 32.41
2000 100 32.02 98.83 32.41
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SoC in summer, and 1400 kWh with 75% target SoC of BESS in winter,

meanwhile DC also achieves good average increasing SoC in the two condi-

tions with 32.37% and 31.99% respectively. This can be explained in that

DC has less requirement for response power between the two knee points and

the frequency tends to remains in that range.

6.6 The Pareto front of availability vs aver-

age increasing SoC of EVs based on GA

optimisation

Most DFFR/DC tenders are made up of an availability fee (£/h). The terms

of service impose a penalty of non-payment should the performance not meet

a threshold for a given 30 minute period. The penalty is not only applied to

the failed period but the entire tendered time-window. SECP owners should

therefore aim to keep the system working at 100% availability during the

entire operation. It has been shown already in this chapter that the capacity

of the BESS and the initial SoC of BESS are important factors to achieve

100% availability, meanwhile SECP owners will also want to minismise the

capacity of the BESS to reduce their capital investment. For example, both

1500kWh with 50% SoC and 1200kWh with 30% SoC could achieve 100%

availability of DFFR, therefore considering investment costs, the SECP owner

may choose a 1200kWh BESS. There is therefore a need to optimize the initial

SoC of the BESS and its capacity. This section uses a GA to minimise the

capacity of the BESS that could provide 100% availability whilst delivering

the DFFR/DC services based on the ABM of a PV-BESS based SECP.

GAs are an excellent mathematical tool for searching for an optimal, or at

least a suitable, solution among the space of all possible solutions. It is based

on the process of biological evolution and mimics the Darwinian theory of

survival of the fittest in nature. It is a population-based search method that

employs the survival of the fittest principle. New populations are created

by the repeated application of genetic operators to existing individuals in a

population. The fundamental parts of a GA include population size, selec-
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Table 6.11: GA settings for 100% availability

Parameter Value
Generation 50
Population 20
Fitness Function ABM of SECP
Input Initial SoC of BESS & Capacity of BESS
Output Availability & Capacity of BESS
Input Bounds [0 100]-[0 2000]
Selection Tournament (default)
Reproduction 0.8 (default)
Mutation Constraint dependent (default)
Crossover function Intermediate 1.0 (default)

Table 6.12: GA results for 100% availability

Service Season CmBESS (kWh) SoCBESSi (%)
DFFR Summer 1879.3 25.6

Winter 1938.4 66.7
DC Summer 644.9 1.7

Winter 1041.6 88.9

tion, crossover, mutation, and fitness function [129, 130]. In this work, the

capacity of the BESS and the initial SoC of BESS are selected by a GA using

gamultiobj which is a Matlab optimization tool (the detail of gamultiobj is

illustrated in [131]). The GA settings are presented in Table. 6.11. Note

that the values of the generation and population are not unique and they are

selected by the author’s experience based on computation time and trial and

error.

The minimum capacities of BESS (CmBESS) and corresponding initial

SoC of BESS (SoCBESSi) for DFFR and DC in winter and summer to achieve

100% availability are shown in Table. 6.12,

If a SECP could not provide a BESS with the minimum capacity to

achieve 100% availability, a high initial SoC of BESS could increase average

increasing SoC, but less energy storage capacity remains for importing energy
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from the grid, hence the availability will decrease. In this situation, the SECP

owner has to decide what level of the initial SoC of BESS is a good balance

for this system. There is no correct answer to the question of what the perfect

initial SoC of BESS level is. The SECP owner has to choose it based on the

availability that the local feeder could tolerate and user satisfaction for their

increasing SoC. To make a choice, the changes in the availability and the

capacity of BESS based on SoCBESSi need to be plotted, however, plotting

the whole range of solutions requires massive computational ability.

The multi-objective Pareto front is defined as a set of non-inferior solu-

tions in the objective space defining a boundary beyond which none of the

objectives can be improved without sacrificing at least one of the other ob-

jectives. Taking an example of the parameters of the SECP Figure. 6.10,

a point from Parato front represents 97.32% availability and 31.74% aver-

age increasing SoC of EVs, if the system wants to increase availability to

98.94% by adjusting the SoCBESSi, the average increasing SoC of EVs must

be 31.14%, which is lower than 31.74%.

The Pareto front can be plotted using gamultiobj from the Matlab op-

timization tool. A 500kWh BESS is employed to observe the Pareto front

since the SECP with a 500kWh BESS can never achieve 100% availability

for proving DC service. The GA parameters are shown in the Table. 6.13.

Note that these are the same as with the GA in Table. 6.11 where the values

of the generation and population are not unique and selected by the author’s

experience based on the computation time and trial and error. Figure. 6.10

and Figure. 6.11 show the Pareto fronts of SECP with a 500kWh BESS in

summer and winter, respectively. The results are all negative since gamul-

tiobj could only calculate the minimum value, hence we transfer the output

functions to negative to get the maximum value. The points of them are

shown in Table. 6.14 for summer and Table. 6.15 for winter.

6.7 Conclusion

In this chapter, the SECP is demonstrated to provide the DFFR and the DC

grid frequency response services. The energy flow strategies for the different
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Table 6.13: GA parameters for the Pareto front of a 500kW BESS for pro-
viding DC service

Parameter Value
Generation 30
Population 10
Fitness Function ABM of SECP
Input Initial SoC of BESS
Output Availability & Capacity of BESS
Input Bounds 0-100
Selection Tournament (default)
Reproduction 0.8 (default)
Mutation Constraint dependent (default)
Crossover function Intermediate 1.0 (default)

Figure 6.10: The Pareto fronts of SECP with a 500kW BESS in summer

frequency zones are developed and results show that 100% availability is

achievable. By optimising the initial SoC of the BESS and the capacity of

the BESS, it is possible to reduce the capital investment and achieve improved

performance for both the average increasing SoC of EVs and the availability

of the frequency response service.
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Figure 6.11: The Pareto fronts of SECP with a 500kW BESS in winter

Table 6.14: The points from Pareto fronts from summer simulation

SoCBESSi Availability (%) Average Increasing SoC (%)
0.25 -98.94 -31.14
52.30 -93.59 -32.33
15.91 -97.32 -31.74
45.24 -94.41 -32.29
24.97 -96.34 -31.90
34.81 -95.48 -32.15

Table 6.15: The points from Pareto fronts from winter simulation

SoCBESSi Availability (%) Average Increasing SoC (%)
80.99 -99.30 -26.73
87.44 -98.39 -27.58
93.50 -96.88 -28.11
90.13 -97.96 -27.81
97.44 -95.36 -28.33
81.99 -99.20 -26.88

122



Chapter 7

Conclusions & Further Work

7.1 Conclusions

This thesis presents the work carried out to analyse, design and evaluate

the EV charging park. The results generated by this process have extended

the existing state of knowledge in this area and have prompted proposals

for methods by which some of these issues may be overcome. In addition,

some work has considered how the different charging management methods

and different power flows can be applied to EV car parks to provide ancillary

grid services. Furthermore, the preliminary investigation of the BESS and its

SoC in the SECP is introduced to improve the EV charging park behaviour

for both EV charging and providing grid ancillary services.

The chapter 2 undertook a detailed review of the literature surrounding

EVs, EV charging, and EV charging parks. The literature review highlighted

that as more attention has focused on EVs by people and countries, EV

sales and the number of EV charging facilities have increased significantly.

With the improvement of EV batteries and EV charging infrastructure, EV

charging power demand will definitely be a burden on the grid in the future

and therefore smart EV charging is required and has recently been introduced

in UK government policy.

In order to achieve smart EV charging for an EV charging park, which

is also the aim of this thesis, the literature review investigates the previous
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work on the EV charging load modelling, and the optimizations of EV car

parks. Existing EV charging load modelling research includes queuing the-

ory, Poisson process application, neural network and deep learning, Markov

Chain and ABM. Most of the work is concentrated on estimating EV load by

analysing the holistic data of the whole EV station, ignoring the load changes

in a single EV, which makes further research on EV charging behaviour very

difficult to carry out, hence ABM is the method for the load modelling in

this thesis.

For the optimization of EV charging parks, EV charging is managed

through the decentralized and centralized methods. The two methods mainly

concentrate on the Valley filled by shifting EV charging to off peak period,

thus reducing the EV load impact on the grid. However, shifting EV charging

may affect customer satisfaction, since the SoC of some EVs can not meet the

customer requirement. The PV and BESS based EV parks are introduced to

achieve better charging satisfaction for customers and also reduce the power

feeder requirement from the grid.

At the end of the literature review, we explore V2G services and use EV

charging parks to provide frequency regulation services to the grid. We find

that the current research does not well consider the frequency regulation from

both grid perspective and EV owners perspective.

Together, this gives a clear direction to strands of the research: firstly,

to build an EV load model of EV charging parks which allows us to analyse

results from a single EV perspective as agents, secondly, to optimize the EV

charging park with power management method by integrating PV and BESS

in to this model, and further to explore the use of EV car parks to provide

grid frequency response services.

The chapter 3 presents the modelling methodology and describes a de-

tailed investigation into the parameters that determine the total EV power

load of an SECP. The ABM approach is introduced with the agents such

as the EVs, PV and BESS, having independent decisions based on a set

of rules. The parameters and behaviours of the agents are described and

source data introduced such as EV model parameters, methods to calculate

the arrival initial SoC and charging power rates. EV charging periods are
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also introduced and are based on the real-world traffic flow of a car park

located in London by using PDFs and CDFs. With the model, the EV load

can be calculated by summing the power demand of all EVs, where each

EV power demand is independent and calculated by using the rules acquired

by analyzing historical data. A sensitivity analysis using different penetra-

tions of slow and fast charging is presented, where each simulation period is

a week. The results reveal that the maximum total EV power load in the

EV charging park can reach very high levels without a power management

method, and that whilst increasing penetration of fast charging leads to high

average increasing of SoC, this requires increasingly significant power feeder

capacities.

The chapter 4 focuses on charging optimization to constrain the peak

power requirements. First, three power management methods based on the

different EV power demands and EV SoC are introduced. Different from

methods introduced in the literature review, which directly stop the charg-

ing of EVs and coordinate new time slots to continue charging, the three

methods presented here allocate the available power to all EVs using a shar-

ing methodology. These methods extend the charging time, but each EV

is always charging and whenever they leave, the SoC of that EV is always

higher than on arrival. The first method allocates a power limit based on the

power demand of each EV, the second and third allocate the power based on

the SoC of the EV battery.

The evaluation parameter, average SoC variance, is employed to analyse if

all the charging EVs are to charge to the same SoC. A smaller SoC variance

means load sharing between EVs is more equal, and the system allocates

more power to low SoC EVs. As the number of low SoC EVs decreases, if

EVs are providing V2G service, more EVs are available to provide higher

instantaneous power. Based on the evaluation parameter, a fourth method

is introduced that can further reduce the SoC variance.

A sensitive analysis based on the model presented in Chapter 3 is under-

taken to evaluate the four methods’ behaviours on charging EVs. The input

is the power limit from the local power feeder, the output is the average

increasing SoC, and the result reveals that Method 1, 3 and 4 have higher
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average increasing SoC for lower power limits, whereas Method 2 has better

behaviour with higher power limits.

The methods presented in the chapter 4 are shown to successfully con-

strain the power requirements for the SECP, however, this results in undesir-

able small increases in SoC for some EVs. In chapter 5, the SECP is improved

by integrating BESS and PV into the system to increase the available EV

charging power and hence improve the charging behaviour.

The newly integrated BESS in the system stores energy and supplies it

back when required, the aggregator collects information from all the system

elements and controls the power flow based on the processed information.

Based on the new structure, a cases study based on the provided ABM of

SECP is analysed, and shows that a BESS could improve the utilization rate

of a limited power feeder to increase peak powers available for EV charging.

A sensitive analysis on the impact of different capacities of BESS and power

feeder limits is carried out for the four proposed power management methods

with a conclusion that for most methods, the increasing capacity of BESS

could significantly increase the EVs SoC when the power feeder for the SECP

is constrained.

PV is then introduced to the BESS based SECP to further improve the

charging behaviour with a new PV and BESS based SECP structure. A

PV model is integrated based on the UK PV historical data. A case study is

presented based on the new structure of the ABM of SECP, results shows that

PV power can be efficiently utilised for the SECP most of period. Compared

with a BESS based SECP where the power feeder is always under full-power

operation, a PV and BESS based SECP allows power feeder utilisation to

be reduced offering the possibility to avoid costly on-peak periods. In order

to observe the impact of the BESS, PV and the power feeder a sensitivity

analysis is carried out. The results reveal that improving the PV energy

utilization for the SECP and reducing the power demand from the grid could

be done by choosing a suitable power limit and capacity of the BESS.

The previous chapters have already achieved a well-constructed EV charg-

ing system for a SECP. In the chapter 6, the research focuses on utilizing

this SECP to provide ancillary grid services for additional revenue generation
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and to support the grid. The EVs in the SECP can be considered as energy

storage units which store energy from the grid and export it when the grid

requires, this is also known as V2G technology. Different energy flow strate-

gies are presented to enable a reliable service to be provided where both an

availability of 100% is achieved whilst providing an acceptable EV charging

service. Case studies are used to demonstrate the service delivery for both

DFFR and DC with the impacts under different conditions being analysed.

The results of the case studies show that the SECP can provide long-term

stable and continuous DFFR and DC service by managing the power flows

between the BESS and the PV, and using the charging power management

methods presented previously.

An analysis investigating the impact of different seasons is conducted

with capacity of BESS and initial SoC of BESS considered as variables. The

results reveal that for different seasons, optimising the initial SoC of BESS

enables a reduction in capacity of the BESS, hence reducing the capital

cost of the BESS. Finally, a GA is proposed and demonstrated to show

how it can be used by owners of an SECP to minimise the capacity of a

BESS through optimising its SoC management. It is apparent from the

results that the target values for the SoC management of the BESS would

need to dynamically change throughout the year or perhaps consider weather

conditions that would affect the solar irradiance.

This thesis presents the work carried out to analyse, design and evaluate

the EV charging park. The results generated by this process have extended

the existing state of knowledge in this area and have prompted proposals

for methods by which some of these issues may be overcome. In addition,

some work has considered how the different charging management methods

and different power flows can be applied to EV car parks to provide ancillary

grid services. Furthermore, the preliminary investigation of the BESS and its

SoC in the SECP is introduced to improve the EV charging park behaviour

for both EV charging and providing grid ancillary services.

Overall, this research introduces the question of how a SECP could trans-

fer massive EVs charging power demand from a burden on the grid to the

benefits for SECP owner, EV charging customers, and the grid. The benefits
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include reducing the EV charging park investment in terms of power feed re-

inforcement, potential savings on costs passed onto EV charging customers,

minimising the EVs charging power demand on the grid, and the ability to

support the balancing of the grid through frequency response services. The

simulation results demonstrate that the ABM of an SECP can calculate the

EV load and provide a centralised command-based control structure for sys-

tem power management. The four EV charging power management methods

based on the ABM of SECP can flatten EV charging peak loads over longer

time periods to minimise grid power local feeder requirements. A methodol-

ogy of controlling the power flow and the integration with the suitable sizing

of the BESS and PV, the SECP is shown to further reduce the power de-

mand from the local feeder. Finally, the effective power flow strategies are

presented that can enable a PV-BESS based SECP to achieve 100% avail-

ability for DC/DFFR services offered by NGESO by optimizing the size of

the BESS and its SoC management strategy.

7.2 Further Work

7.2.1 Improvements of the ABM of SECP

7.2.1.1 SECP modelling

The traffic flow data in this thesis is collected from a London car park located

in a commercial area. More representative traffic flow could be collected from

other areas, such as shopping centres, train stations, residential areas. For

different areas, the results might be different. Meanwhile, more EV brands

and relevant parameters could be uploaded to make the model more closer

to real-world behaviour.

7.2.1.2 Power management method

In this thesis, the SECP did not give customers a chance to decide how

urgent their EV charging requirements are, in reality, some EV users might

want to pay more and get their EV charged with priority. By adjusting the

128



parameters in method 4 and developing relevant electricity fee strategies this

would allow customers to choose their own charging preference. Collecting

and analysing EV users preferences for this SECP can further improve fee

strategies.

7.2.1.3 Other improvements

This thesis has developed two grid frequency services, there are many grid

services that require BESS, more grid services could be explored based on the

SECP. This SECP only has a single floor, the PV canopy is over the car park

spaces, hence the area of PV equals to the parking spaces. Future work could

investigate multi-floor SECP, hence the PV power is different. This thesis

mainly focuses on the exploration of the possibility of future development

of SECP. Future work should introduce facilities cost and consider financial

optimization.

7.2.2 Research on hardware aspects

In the literature review, AC-connected system and DC-connected system are

introduced on Figure. 2.7. The AC-connected system is employed as the

power conversion system for the SECP where each EV charger and PV and

BESS are equipped with a separate AC/DC conversion system. The AC-

connected system has the the advantages of availability and maturity for a

power conversion technology, with protective devices, and well-established

standards and practices for the AC power distribution systems [50]. How-

ever, compared with DC-connected system, the AC-connected system re-

quires more conversion steps, and hence increases the system complexity,

cost and decreases the system efficiency [50]. The DC-connected system re-

duces the conversion steps with only a DC/DC between the facilities, hence

reducing the cost and the complexity, but the DC-connected system does not

have well-established standards since most state of the art EV charging sta-

tions are AC-connected system. The future work could focus on developing

a DC-connected system, it should also include the DC protection [132, 133]

and DC metering.
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7.2.3 A remote centralized management system for multi-

locations EV charging

The power management system between the PV, the BESS and EVs in this

thesis is developed for a single SECP, however, the separated chargers are

distributed everywhere, such as in residents’ homes or on the side of the road.

A remote centralized management system could be developed to control all

EV chargers, renewable energy sources and available BESSs for an area such

as a city to further reduce the impact of EV charging and improve the quality

of grid services. The management system should have more efficient and

closer communication with the grid. Meanwhile, nearby EV chargers could

be collated into a subsystem with a sub-manager such as a SECP introduced

in this thesis to create ’autonomous’ virtual SECPs and reduce the amount

of centralized communication that would otherwise be needed to process and

improve the system reliability. More comprehensive EV charging habits need

to be investigated, for example, people might prefer to charge their EVs in

a public area at work or at their home while sleeping. The high-speed data

transfer is also necessary since it might directly impact the response time of

the grid services.
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