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A detailed investigation was made to study the shear transfer between 

precast prestressed beams and in-situ concrete in a relatively new method of 

construction of continuous bridge decks where the ends of precast beams are 

connected to an integral in-situ crosshead away from the supports. 
Two series of tests were carried out. In the first series 1/3 scale models 

of the M. o. T, C&CA M-8 sections were used, and these were modified in the 

second series to study the effect of the beam's top flanges within the connection. 
One of the most important mechanismSof shear transfer proved to be the top 
flanges of the precast beam. 

For the precast beams with top flanges (first series), and with a 300mm 

beam embedment length, it was discovered that: 

a) The shear force is transferred from a small length at the end of the 
beam. 

b) The in-situ concrete nibs (concrete surrounding the web) can take 

this shear force without stirrups. 

c) There is no need either to project all the bars from the precast into the 
in-situ concrete or to prestress the connection transvers; "iy as a means of 
improving shear transfer. 

d) It was possible to transfer the whole shear force at the connection with 

a reduced embedment length of 100mm with nib stirrups. 
For the precast beam without top flanges, the transfer of the shear force 

at the connection required other improving details. In this respect transverse 

prestressing and web shear connectors were utilized effectively. The effect of 

projecting bars was also examined. 
In the general behaviour of composite continuous beams subjected to 

shear a detailed comparison was made between different Code predictions for the 

web cracking shear and web crushing strength. A mathematical model is also 

proposed to predict the stirrup stress according to shear span, effective depth 

and stirrup ratio when failure is controlled by web crushing. Stirrup stress 

measurement in the vicinity of continuous support made it possible to predict 
the enhanced shear strength and a design method is proposed for the continuous 
beams. A comparion is also made between different Code predictions in this 

respect. 
To obtain more information about the strength of web shear connectors 

used in the secod series, a separate dowel shear specimen was designed. 
Different interface conditions including bond, dowel bar size and strength and 
the effect of shrinkage were examined. A design method is proposed together 
with a comparison with different Code predictions. 



Title Page 

Acknowledgments 
Abstract 

Table of Contents 

Principal Notation 

List of Tables 

List of Plates 

Chapter One 

Introduction Pages 

1.1 Continuous Precast Prestressed Bridges 1 

1.1.1 Advantages 1 

1.1.2 Disadvantages 2 

1.2 Continuity Connections for Precast Elements 2 

1.2.1 Cap Cables 2 

1.2.2 Post-Tensioned Cables in Deck Slab 3 

1.2.3 Post-Tensioned Bolts 3 

1.2.4 Transverse Prestressing 3 

1.2.5 Precast Prestressed Rods 4 

1.2.6 Conventional Bar Reinforcement (Live Load Continuity) 4 
1.2.7 Unconventional Full Continuous Bridges ( Under Investigation 5 
1.3 Scope of Proposed Research 6 

Chapter Two 

Literature Review 
2.1 Shear Resistance in Monolithic Beams 12 
2.2 Shear Transfer in Cracked Section 13 

2.2.1 Shear Transfer by Concrete Compresive Zone 13 

2.2.2 Interface Shear (Aggregate Interlock) 14 

2.2.3 Dowel Shear Transfer 14 

2.2.4 Shear Transfer by Arch Action 15 

2.3 Modes of Shear Failure 16 

2.3.1 Diagonal Tension 17 

2.3.2 Shear Compression 17 

2.3.3 Web Crushing 17 
2.4 Shear Resistance in Composite Beams 18 

2.4.1 Continuous Composite Beams (Conventional) 18 

2.4.2 Unconventional (New) Continuous Composite Beams 22 



Chapter Three 

Design and Preparation of Test Beams and Experimental Measurements 

3.1 Test Program 28 
3.2 Test Beam 28 
3.2.1 Prototype Beam 28 
3.2.2 Model Beam 28 
3.3 Manufacture of Pretensioned Beam 29 
3.3.1 Reinforcement Cage 29 
3.3.2 Prestressing Strands 29 
3.3.3 Pretensioning Operation 29 
3.3.4 Deflected Strands 30 
3.3.5 Concrete Mix for Precast Beam 30 
3.3.6 Release of Prestressing 31 
3.3.7 Curing 31 
3.4 Manufacture of In-situ Crosshead and Connection to Precast beam 31 
3.4.1 Formwork 31 
3.4.2 Reinforcement 32 
3.4.3 Concrete Mix and Curing 32 
3.5 Horizontal Shear Connectors 33 
3.6 Experimental Measurements 33 
3.6.1 Deflection Measurement 33 
3.6.2 Stirrup Strain Measurement 34 
3.6.3 Surface Strain Measurement 35 
3.6.4 Interface Strain Measurement 35 
3.6.5 Arrangement of the Gauges 36 
3.6.6 Vertical Separation Between Precast and In-situ Beam 36 
3.7 Detection and Measurement of Crack Widths 36 
3.8 Measurement of the Prestressing Force 37 
3.9 Data Logging System 37 
3.10 Testing of the Beam 38 
3.10.1 Loading Arrangement 38 
3.10.2 Shear Span to Effective Depth Ratio 38 
3.11 Range of Variables Investigated in the Test Program 39 
3.12.1 Designation of the Beams 42 
3.13 Complementary Dowel Shear Tests 42 
3.13.1 Test Specimen 42 
3.13.2 Range of Variables 43 
3.14 Control Tests 43 
3.14.1 Compressive Strength Test 44 
3.14.2 Modulus of Elasticity Test 44 



Chapter Four 

General Behaviour of Composite Beams Subjected to Shear 

4.1 Inclined Cracking 65 

4.1.1 Different Codes Prediction of Web Cracking Shear 67 

4.1.1.1 British Codes, BS8110, BS5400 and CP110 67 

4.1.1.2 CEB-FIP Model Code 67 

4.1.1.3 Building Code Requirements for Reinforced Concrete 

ACI 318-77 and 83 68 

4.1.1.4 Standard Specification For Highway Bridges (AASHTO) 69 

4.1.1.5 Australian Standards , SAA, Prestressed Concrete Code 70 

4.1.2 Inclination of the Prestressing Strands 70 

4.1.3 Effect of Percentage of Shear Reinforcement on Web Cracking Shear 71 

4.1.4 Effect of Shear Span to Effective Depth Ratio on Web Cracking Shear7l 

4.2 Principal Stresses and Strains 72 

4.2.1 Theoretical Values 72 

4.2.2 Experimental Principal Strains and Stresses 72 

4.2.2.1 Measured Tensile Strains and Stresses 74 

4.2.2.2 Principal Compressive Strains and Stresses 76 

4.3 Post Cracking Behaviour 76 

4.3.1 Truss Analogy 76 

4.4 Stress in Stirrups 77 

4.4.1 Importance of Stirrup Strain Measurement 77 

4.4.2 Experimental Results of Strain in Stirrups 79 

4.4.3 Stirrup Stress Behaviour under Load Removal and Reloading 

of the Beam 81 

4.4.3.1 Calculation of Stirrup Stress 82 

4.5 Failure Mode in Precast Prestressed M-Beam 83 

4.5.1 Web Crushing 83 

4.5.2 Code Provisions for Web Crushing 85 

4.5.2.1 BS8110 , BS5400 and CP110 85 

4.5.2.2 ACI 3.18-83 85 

4.5.2.3 CEB-FIP Model Code, 1978 86 

4.5.2.4 Australian Standards : SAA : Prestressed Concrete Code , 1978 87 

4.5.2.5 Standard Specification for Highway Bridges (AASHTO), 1977 87 

4.5.2.6 Danish Standards , 1986 88 

4.5.3 Comparison of Code Predictions with Observed Web 
Compression Strength 88 

4.5.4 Proposed Mathematical Equation for Web Crushing Strength 90 

4.5.4.1 Condition at Failure 91 
4.5.4.2 Effect of Concrete Strength 92 



4.6 Enhanced Shear Strength Near the Support 93 

4.6.1 Code Recommendations for Enhanced Shear Strength 93 

4.6.1.1 British Code BS8110 : 1985 93 

4.6.1.2 British Code BS5400 : Part 4: 1978 94 

4.6.1.3 CEB-FIP Model Code : 1978 94 

4.6.1.4 Australian Standards, SAA : Prestressed Concrete Code : 1978 95 

4.6.1.5 Danish Standards : Structural use of Concrete : 1986 95 

4.6.2 Experimental Results of Enhanced Shear Strength and 
Proposed Method 95 

4.6.3 Comparison of Experimental Results with Code Predictions 97 

Chapter Five 

Shear Transfer Mechanism for Beams with Top Flanges 

5.1 General 130 

5.2 Description of the Connection 130 

5.3 Parameters Investigated 131 

5.3.1 Change of Shear Reinforcement 131 

5.3.2 Change of Dimensions 131 

5.3.3 Change of Moment/Shear Combination 132 

5.4 Mechanism of Shear Transfer at the Connection 132 

5.5 Test Details 133 

5.6 General Procedure for Evaluation of the Shear Transfer 

Capacity of the Connection 134 

5.7 Experimental Results 134 

5.7.1 Stirrup Stress 135 

5.7.2 Variation of Stirrup Stress within the Connection 135 

5.7.3 Distribution of Forces Between the Two Parts of Connection 136 

5.7.4 The Shear Force Carried by the In-situ Nibs and the Stirrup Stress 137 

5.8 Shear Transfer by the Projecting Bars from the Precast 

Beam into the In-situ Concrete 138 

5.8.1 Ultimate Strength and Failure Mode 138 

5.8.2 Stirrup Stress 138 

5.8.3 Inclined Tensile Strain in the Concrete within the Connection 139 

5.9 Elimination of Projecting Bars and Stirrups in the Nibs 140 

5.9.1 Ultimate Strength and Mode of Failure 141 

5.9.2 Stirrup Stress 141 

5.9.3 Concrete Diagonal Tensile Strain at 450 Inclination 142 

5.10 Change in the Magnitude of Bending Moment at the Connection 142 

5.10.1 Ultimate Strength and Mode of Failure 143 

5.10.2 Stirrup Stress in the Connection 143 



5.11 Change of Embedment Length 144 

5.11.1.1 Experimental Results for the Test with no Stirrups in the Nib 144 

5.11.1.2 Rotation at the Connection 146 

5.11.1.3 Stirrup Stress in the Connection 146 

5.11.2.1 Experimental Results of Connection with Stirrups in the Nib 147 

5.11.2.2 Stirrup Stress 148 

5.12 Deflections 149 

5.13 Vertical Separation between the Precast Beam and In-situ Nib 150 

5.13.1 Significance of Vertical Separation 151 

5.14 Design Recommendations 151 

5.14.1 Design of Precast Beams for Shear 152 

5.14.2 Design of In-situ Nibs for Shear 152 

5.14.3 Embedment Length 153 

5.15.4 Distance of Connection from the Support 153 

5.14.5 Projecting Bars from the Precast Beam 153 

Chapter Six 

Mechanism of Shear Transfer In Precast Beams without Top Flanges 

6.1 General 180 

6.2 Description of the Connection 180 

6.3 Change of Variables 180 

6.3.1 Control Reference 181 

6.3.2 Transverse Prestressing 181 

6.3.3 Web Shear Connectors 181 

6.3.4 Projecting Bars from the end of Precast Beam 181 

6.4 Mechanisms of Shear Transfer 181 

6.4.1 Vertical Bond between In-situ Nibs and Beam's Web 182 

6.4.2 Top Slab over the Precast Beam 182 

6.5 Loading Arrangement and General Details 182 

6.6 Evaluation of the Shear Transfer Capacity 183 

6.7 Experimental Results of the Control Reference Test 183 

6.7.1 Stirrup Stress 184 

6.7.2 Vertical Separation 185 

6.8 Transverse Prestressing 185 

6.8.1 Experimental Results of the Test with Transverse Prestressing 188 

6.8.1.1 Ultimate Strength and Failure Mode 188 

6.8.1.2 Stirrup Stress 188 

6.8.1.3 Vertical Separation 190 

6.9 Shear Transfer by Web Shear Connectors 190 

6.9.1 Ultimate Strength and Failure Mode 191 

6.9.2 Stirrup Stress 191 



6.9.3 Vertical Separation 192 

6.10 Shear Transfer by Projecting Bars from the Precast Beam 192 

6.10.1 Ultimate Strength of the Connection 193 

6.10.2 Distribution of Stress in the Stirrups 193 

6.10.3 Vertical Separation 194 

6.11 Deflections 194 

6.12 Comparison of Different Types of Connection 195 

6.13 Design Recommendations 196 

6.13.1 Choice of Connection Detail 196 

6.13.2 Shear design of Precast beam and In-situ Nibs 198 

Chapter Seven 

Complementary Dowel Shear Tests 

7.1 General 217 

7.2 Historical Background 218 

7.2.1 Dowel Shear Strength 218 

7.2.2 Combined Behaviour of Dowel and Interface Shear 221 

7.3 Test Details and Change of Variables 224 

7.4 Experimental Results 225 

7.4.1 Observed Mode of Failure 225 

7.4.2 Ultimate Shear Strength in Smooth-Bonded Connection 225 

7.5 Shear Capacity of Smooth-Unbonded Connection 227 

7.5.1 Ultimate Resistance and Failure Mode 227 

7.6 Shrinkage Effect 228 

7.7 Application of the Results to Design of Web Shear Connectors 228 

Chapter Eight 

Conclusions and Suggestions for Further Research 

8.1.1 Shear in Composite Precast- Prestressed Beams 235 

8.1.1.1 Web Shear Cracking Load 235 

8.1.1.2 Stirrup Stress 235 

8.1.1.3 Web Crushing 235 

8.1.2 Enhanced Shear Strength near the Continuous Support 236 

8.1.3 Shear Transfer Between Precast- Prestressed M-Beam and Insitu 

Crosshead 236 

8.1.3.1 Mechanisms of Shear Transfer 237 

8.1.3.2 Distribution of Shear Force Within the Embedment Length 237 

8.1.3.3 Effect of Projecting Bars 238 

8.1.3.4 Effect of Bending Moment 238 

8.1.3.5 The Embedment Length Effect 238 

8.1-3.6 Transverse Prestressing 239 



8.1.4 Shear Transfer in Beams Without Top Flanges 239 

8.1.4.1 Transverse Prestressing 239 

8.1.4.2 Web Shear Connectors 239 

8.1.4.3 Projecting Bars 240 

8.1.5 Dowel Shear Tests 240 

8.2 Suggestions for Further Research 240 

8.2.1 Connections with Top Flange Effect 240 

8.2.2 Connections without Top Flange Effect 241 

References 242 



As Total Cross-Sectional Area of the Flexural Reinforcement 

Asv Cross-Sectional Area of a Single Stirrup 

a ShearSpan 

b Breadth of the Beam 

d Effective Depth of the Section 

Ec Concrete Modulus of Elasticity 

fy Yield Stress of Flexural Reinforcement 

fyv Yield Stress of Shear Reinforcement 

fCu Compressive Strength of Concrete Cube 

ff C Compressive Strength of Concrete Cylinder 

ft Concrete Tensile Strength 

fcp Average Prestress (Prestress at the Centroid) 

Mo Decompression Moment at Transfer 

Msdu Maximum Moment in the Shear Region under Consideration 

r Stirrup Ratio (r=Asv/bSv) 

Sv Stirrup Spacings 

VCO Web Cracking Shear 

vu Ultimate Shear Resistance of the Section 

VC Shear Carried by Concrete 

VS Shear Carried by Stirrups 

Vp Vertical Component of the Prestressing Force 

V1 Shear Force Transferred by the Top Flanges at the Connection 

V2 Shear Force Transferred by the Bond between Web and the Nibs 

V3 Shear Force Transferred by the Top Slab 

Z Lever Arm (z=jd) 

a Stirrup Angle with Horizontal 

0 Angle of Inclination of the Line joining the Loading Point and the Support 

0 Angle of Inclination of the Shear Cracks 

0 Strength Reduction Factor in ACI Code 

P Flexural Reinforcement Ratio (p=As/bd) 

Poisson's Ratio 



ex Horizontal Normal Strain 

Vertical Normal Strain 

CFX Horizontal Normal Stress 

G Vertical Normal Stress 

-fx y 
Shear Strain 

'rRD Basic Concrete Shear Strength in the CEB Code 



Table 3.1 General Information of the Connection detail 

Table 3.2 Details and Conditions for Dowel Shear Tests 

Table 3.3 Concrete Control Test Results 

Table 4.1 Experimental and Calculated Cracking Shear of Section Uncracked in 

Flexure (Web Cracking Shear) 

Table 4.2 Ratio of Observed to Calculated Values of Web Cracking Shear (Vertical 

Component of Prestress Included) 

Table 4.3 Ratio of Observed to Calculated Values of Web Cracking Shear (Vertical 

Component of Prestress not Included) 

Table 4.4a Predicted Web Crushing Strength by Different Codes 

Table 4.4b Ratio of Observed to Calculated Values of Web Crushing Shear (Observed 

Safety Factor) 

Table 5.1 Beam Details, Calculated and Experimental Results of the first Series of 
Tests (Connections with Top Flange Effect) 

Table 6.1 Beam Details, Calculated and Experimental Results of the second Series 

of Tests (Connections without Top Flange Effect) 

Table 7.1 Dowel Shear Test Results 



Plate 3.1 Gauged Precast Beam Before Casting In-situ Concrete 

Plate 3.2 The Connection Prior to Casting of In-situ Concrete 

Plate 3.3 Transverse Prestressing at the Connection 

Plate 3.4 General View of the Test Rig 

Plate 5.1 Longitudinal Elevation of Beam E30AA2 After Failure 

Plate 5.2 Longitudinal Elevation of Beam E30AB3 After Failure 

Plate 5.3 Longitudinal Elevation of Beam E30BC4 After Failure 

Plate 5.4 Longitudinal Elevation of Beam ElOCC5 After Failure 

Plate 5.5 Longitudinal Elevation of Beam E1OCD7 After Failure 

Plate 5.6 Test Similar to Prototype ( With Nib Stirrups &All Bars 

Projected), Condition in The Connection After Failure 

Plate 5.7 Elimination of Dowel action by Sleeving the Bars( With Nib Stirrups) 

Condition in The Connection After Failure 

Plate 5.8 Elimination of Stirrups in the Nib, Condition in The Connection After 

Failure 
Plate 5.9 Increased Bending Moment at the Connection (without Nib Stirr. ), 

Condition in The Connection After Failure 

Plate 5.10 100mm Embedment Length (without Nib Stirrups) 

Failure of the Connection with Large Rotation 

Plate 5.11 100mm Embedment Length (with Nib Stirrups), Condition in The 

Connection After Failure 

Plate 6.1 Longitudinal Elevation of Beam VVTFCC6 After Failure 

Plate 6.2 Longitudinal Elevation of Beam WTFPCC8 After Failure 

Plate 6.3 Longitudinal Elevation of Beam WTFSCC9 After Failure 

Plate 6.4 Longitudinal Elevation of Beam WTFDCC10 After Failure 

Plate 6.5 Elimination of Top Flanges (The Connection Failure) 

Plate 6.6 Provision of Transverse Prestressing (No Top Flange) Condition in The 

Connection After Failure 

Plate 6.6a Provision of Transverse Prestressing (No Top Flange), Condition in The 

Connection After Failure 

Plate 6.7 Conection with Web Shear Connectors (No Top Flange) Condition in The 

Connection After Failure 

Plate 6.7a Shear Connectors in the Precast Beam Web 

Plate 6.8 Projecting of All Bars into In-situ Part (No Top Flange) Condition in 

The Connection After Failure 



CHAPTER ONE 

INTRODUCTION 

1.1 Continuous Precast Prestressed Bridges 

Continuity of bridge superstructure over supports has been well 

recognised as a more efficient and cost effective solution than the simply 

supported spans alternative, where substructure conditions facilitate. 

1.1.1. Advantages 

A continuous multi-span bridge may be superior to a series of simple 

spans in several respects: 

a) With the establishment of continuity moments and deflections at 

midspan sections are less, permitting reductions in sectional dimensions, 

positive moment reinforcement and prestressing levels. This significant saving 

in span material cost is, however, partially offset by continuity material 

costs, although an overall reduction in material should result. 

b) The loadcarrying capacity of simply supported beams is governed by 

the capacity of a single section. In a continuous beam, however, formation of 

plastic hinges and redistribution of moments will increase the overall capacity 

of the structure. 

c) In continuous bridge construction, joints between adjacent spans at 

the support are eliminated. This is desirable for the following reasons : (i) It 

provides an improved riding surface, (ii) It prevents the penetration of water 

and de-icing salts into piers and deck ends thus increasing durability, and 

(iii) It eliminates the initial and subsequent maintenance cost of joints . 
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1.1.2 Disadvantages 

There are equally some disadvantages with continuous structures. The 

most important ones are being : 

a) Secondary stresses due to creep, shrinkage, temperature changes 

and differential support settlement can be significant for continuous 

structures unless they are controlled and allowed for in the design. 

b) Reversal of moments could be significant when live loads are much 

heavier than dead load and partial load 

Ing on the spans are considered. 

c) Difficulty in achieving continuity for precast elements. For in-situ 

construction continuity is easily obtained but In the case of precast 

elements it may require additional construction stages. 

1.2 Continuity Connections for Precast Elements 

Various methods have been developed to achieve continuity in the 

connection between precast beams. 

1.2.1 Cap Cables 

In this method precast beams are connected by 'cap cables' as In Fig. 1.1 

and post-tensioned after erection of beams. The cap cables establish 

continuity across the support, but large friction loss is associated with this 

method due to the sharp curvature of the tendons. It is also difficult to 

thread tendons through the duct unless the profile is made into a circular 

curve and if bars are used they must be prebent to a definite curvature. 

This method has been used in France. 
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1.2.2 Post-tensioned Cables In Deck Slab 

This solution is in fact a modification of the cap cable method. Short 

lengths of cables are positioned in the deck slab between the longitudinal 

precast beams and post-tensioned after the construction of in-situ deck as 

in fig. 1.2. This method was suggested by Leonhardt. 

1.2.3 Post-tensioned Bolts 

Precast elements are post-tensioned together with short bolts either 

diagonally or horizontally as in fig. 1.3a and 1.3b. The main disadvantage of 

this method is its uneven surface over the\ support specially In type b. 

Several bridges, gantries and harbour structures have been constructed 

in the Netherlands using this method. 

1.2.4 Transverse PrestressIng 

In this method instead of longitudinal tightening as described in previous 

methods, the beams' end are stressed transversly to use the frictional 

effect as a mean of longitudinal continuity (see Figs. 1.4a and 1.4b). In 

1954 Christian! & Nielsen of London built a prestressed concrete bridge at 

Northam, which has been a crossing point for the river between 

Southampton and Portsmouth through recorded history. The bridge is 

made up of longitudinal precast prestressed 7' beams assembled side by 

side. For a distance from the end of the beam the 7' head is left out and the 

rectangular area thus formed above the pier is filled in with a precast 

junction slab. 

After assembly on the piers cables are threaded through transverse 
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sleeves cast into the beam's and junction slabs and the cables are stressed to 

form the required continuity over the support. 

This method has also been used by overlapping the longitudinal elements 

over the support, casting an in-situ concrete diaphragm and finally transversly 

post-tensioning as in Fig. 1.4b. 

1.2.5 Precast Prestressed Rods 

In composite construction precast prestressed (pretensioned) concrete 

rods are placed over the support and then an in-situ concrete deck slab is cast 

as in Fig. 1.5. The use of these rods gives some of the advantages of prestressing 

whilst avoiding a post-tensioning operation on site. The concrete rods are 

prestressed and when they are bonded to surrounding concrete It results in a 

stiffer performance, cracking is delayed and cracks are closed on removal of 

loads within the service load. 

1.2.6 Conventional Bar Reinforcement (Live Load Continuity) 

This is the most common and simplest method of achieving continuity in 

bridge construction. Precast beams are positioned simply on the piers leaving 

small gaps between the beams' end (Fig. 1.6 stage 1). Steel reinforcement is 

placed oNier the support and finally an in-situ concrete is cast over the whole 

deck and between the units(see Fig. 1.6 stage 11). The complete system is thus 

continuous for live loads only and for long spans where dead load is significant 

in comparison with live loads, the full benefit of continuity can not be 

obtained. 
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1.2.7 Unconventional Full Continuous System 

Recently the use of precast beams in superstructures where they are 

supported away from the substructure has enabled larger spans to be 

developed without excessive increase In the lengths of precast units, whilst 

it gives full continuity for some dead and all live loads, together with a 

number of other advantages. 

Few bridges have been constructed in the U. K. using this new method 

(three examples being M11 Woodford Interchange, Barnes Meadow 

Interchange, Northampton and York Ring Road, North Yorkshlre, built 

in 1970,1983 and 1986 respectively) and at present there is little 

evidence of this method being widely used in other countries. 

The method of construction is as follows: 

1) Precast elements are temporarily supported on scaffolding on each 

side of previously constructed piers or columns at a distance of more than 

the support thickness (see Fig. 1.7 stages 1,11). 

11) Continuity steel is fixed over the support into each span (see Fig. 1.7 

stages 1,11). 

111) An in-situ concrete crosshead is cast together with the deck slab 

(see Fig. 1.7 stages IIIJV). 

IV) Temporarily scaffolding Is removed after concrete has reached the 

required strength (Fig. 1.7 stages IIIJV). 

There are a number of useful advantages with this new system: 

a) Achieving full continuity for some dead and all live loads. 

b) To use smaller precast beam lengths than the pier distances for the 

reason of overall standardization, Transportation restrictions, etc. 

c) Where piers are located radially, the deck plan curvature requires 

longer spanning elements on the outside than inside of the curve. This could 
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be easily overcome by slight variation of the width of in-situ crosshead. 

d) In the case of individual columns in the substructure, the use of 

conventional method previously described implies the need for a rather deep 

transverse beam over the columns which reduces the available headroom 

under the bridge. By employing this new system a constant construction 

depth can be obtained along the bridge. 

1.3 Scope of proposed Research 

The main problem associated with the above mentioned new method of 

continuous bridge construction was previously considered to be the transfer 

of shear force from the precast beams to the in-situ crosshead. 

This proposed study is to investigate the whole nature of shear transfer 

in this region where precast beams and in-situ concrete crosshead meet 

and to compare different conditions and parameters affecting the structural 

efficiency. 

These parameters can be listed as follows: 

a) The effect of shear reinforcement in the nibs(in-situ concrete 

between the beams in the embedded part) upon the shear transfer capacity 

of the connection. 

b) The effect of precast beam sectional geometry on the shear capacity 

of the joint. 

c) To observe the effect of bending moment magnitude upon the shear 

transfer capacity. 

d) To examine the overlapping length effect on the shear capacity of 

the connection. 

e) To observe the effect of transverse prestressing upon the 

longitudinal shear strength of the joint. 
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f) The effect of shear connectors between the web and in-situ nibs on 

the shear transfer behaviour. 

g) The contribution of projecting bars from the precast beam's end as 

dowels to shear transfer capacity. 
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FIG. 1.3 Bolt Post-tensioning 
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2.1 Shear Resistance In Monolithic Beams 

Extensive experimental works particularly in recent years have been 

undertaken to identify several aspects of shear transfer mechanisms. A useful 

historical review was produced by Bresler and McGregor2l and by Hognestad22' 

The background of the ACI code23,81 widely used since 1963, was 

reported by ACI-ASCE Committee 32624 in 1962. A similar report on the 

state of the art by ACI-ASCE Joint Committee 426 was published25 in 1973. 

In the U. K. in 1969 The Shear Study Group published a report26 for 

the design of reinforced concrete for shear which formed the basis of the 

current code of practice BS8110: "Structural use of Concreteo27 . 

ACI-ASCE Committee 326 suggested that the reinforcement can develop 

its yield stress at the ultimate shear and used the superposition rule to 

introduce this equation: 

vu=vc+krfyv 

where: 

vu= Ultimate shear stress in the section with stirrups., 

vc= Ultimate shear stress in the section without stirrups., 

k=sina(Sina+cosa), Stirrups' effectiveness., 

r=Asv/(b Sv sina) 

a=Stirrups' angle of inclination with horizontal., 

fyv= Stirrups' yield strength., 

bS= Width of section and stirrups' spacings respectively., 
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2.2 Shear Transfer In Cracked Section 

When a section subjected to shear force cracks, the mechanism of shear 

transfer changes to a complicated statically Indeterminate internal structure 

which necessitates experimental verification to recognize and evaluate different 

modes of shear transfer. 

A large amount of research work has been carried out by the 

investigators and finally it was stated that the most important mechanisms 

of shear transfer in reinforced concrete are the following25 (see Fig. 2.1a). 

1) Compression zone of concrete beam. 

11) Cracked surfaces(Interface shear) 

111) Dowel action of longitudinal reinforcement. 

IV) Arch action. 

V) Stirrups (in beams with stirrups) 

At the beginning it was thought that the compressive zone of the beam 

provided the most significant contribution to shear transfer. This was due to 

the belief that the cracked portion of the beam could not carry vertical loads. 

This concept was later challenged by other researchers who concluded that the 

concrete between cracks (so called cantilevers or teeth) would fall at very low 

loads if there was no interface interaction 29,30 and the importance of 

Interface shear strength (described by some as aggregate Interlock, surface 

roughness, interface friction, etc. ) came into account. 

2.2.1 Shear Transfer by Concrete Compressive Zone 

Acharyar and KeMp31 estimated that at failure the concrete compressive 

zone can carry up to 40% of the total shear force in a beam without shear 

reinforcement. 

Taylor32,33 developed a method to determine the shear stresses In the 
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compressive zone by measuring the longitudinal strains and using the 

mathematical relationship between normal and shear stress. He found that this 

part of the beam transfers 20% to 40% of the shear force In a beam without 

shear reinforcement. 

2.2.2 Interface Shear (Aggregate Interlock) 

Interface shear Is a more recently recognized viable mechanism. 

Taylor34 observed that it is a function of the cracked surface roughness, and In 

high strength concrete where there is a relatively smooth fracture surface as 

a result of aggregate cracking, the shear transfer by aggregate interlock was 

reduced. Paulay and Loeber35 observed that the largest single factor affecting 

shear displacement is crack width. They also concluded that the size and shape 

of aggregate does not effect the ultimate shear. 

Taylor36 also observed that longitudinal steel percentage, concrete 

strength, shear span to effective depth ratio, beam size(depth) and aggregate 

type have a significant effect on the aggregate interlock shear transfer and 

this mechanism generally carries 33% to 50% of the shear force in a beam 

without shear reinforcement. 

In recent investigations Bazant and Gambarova5l and also Sandro, 

Gambarova and KarakOC52 formulated constitutive stress-displacement 

relationships for aggregate interlock with a so called 'rough crack' method. 

They concluded that diagonal cracks in thin-webbed sections give substantial 

contribution to the ultimate shear, which is larger In sections having Inclined 

shear cracks rather than flexural-shear cracks. 

2.2.3 Dowel Shear Transfer 

Dowel shear force is the transverse component of the force in the 
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longitudinal reinforcement. It is a combination of shear stress in the 

reinforcement and the behaviour of reinforcement in the concrete as a beam 

on an elastic foundation as described by JoneS37. To evaluate the magnitude 

and factors affecting the dowel force, a number of investigators including 

Krefeld and Thurston39, Fenwick4O Lorentsen4l, and Taylor" developed 

experimental methods to illustrate dowel action. They concluded that the dowel 

strength is dependent on a number of variables such as concrete strength, cover 

to the bars, stirrups' spacing, main reinforcement size and layout. It was 

concluded from their investigations that this mechanism is less dominant in 

beams although it is more important in some other structures such as 

connections between precast elements. The shear force carried by dowel action 

was suggested by Taylor to be 15% to 25%. 

2.2.4 Shear Transfer by Arch Action 

Arch action is the beam's resistance to shear by Inclined compression. It 

has been Investigated by a number of researchers including Neville42, 

Kan143,44 and FenwIck3O that after Inclined cracking and Internal 

redistribution of forces, the shear transfer mechanism will be transformed to 

a tied arch system in which a rather high compressive force is transferred to 

the support which has to be taken by the main reinforcement bond, thus 

imposing a heavy demand on the anchorage, as described by Park and PaulaY45. 

Evidence of arch action can be seen from the tensile cracks on the top of the 

beam near the supports, as in Fig. 2.1b. This mechanism is not only outside the 

outermost cracks but also it occurs between all cracks acting with stirrups 

close to the base of cracks as supports to the archeS44. Fenwick and 

Paulay3O observed that arch action can only occur at the expense of slip (Le 

complete loss of bond transfer) and Mlingwa60 pointed out that beams with 

unbonded prestressing tendons would invariably have a higher resistance to 
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shear and a lower strength in flexure due to arch action than the corresponding 

prestressed beams with bonded tendons. 

2.3 Modes of Shear Failure 

Investigations by Fenwick30, Taylor32, Kani43 and Regan53 have shown 

that the cause of diagonal failure Is linked with the stress condition in the region 

of "Concrete Cantilevers" which form between flexural cracks. 

Warner46 observed that the shear failure mode depends on a number of 

variables Including the geometry of the section (slenderness), loading 

arrangement and amount of shear reinforcement. It is also suggested47 that in 

prestressed beams the prestressing level could influence the mode of shear 

failure. Fenwick3O and Kani54 found experimentally that the shear failure 

mode depends on shear span to effective depth ratio. 

In recent years KotsovoS55 and Kotsovos et a156 suggested a new concept 

of shear failure mechanism In which diagonal failure is very closely related to 

the shape of the path along which the compressive force is transferred to the 

support rather than the stress conditions existing in the region of 'concrete 

cantilevers'. 

They also showed that in '17' beams with a shear span to effective depth 

ratio greater than 2.5, the shear span is provided by the flange and not as was 

widely considered, by the web. The most acceptable modes of shear failure have 

been suggested to be: 

i) Diagonal tension 

ii) Shear compression 

Iii) Web crushing 
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2.3.1 Diagonal Tension 

This shear failure mode occurs In relatively thick-webbed sections with 

high a/d ratio (a/d>3.0) and low stirrup percentage, as described by 

Seth u narayanan47 , 
Mathey48 and EvanS49 

. Failure occurs shortly after the 

application of diagonal cracking load and the subsequent arch action is not 

capable of taking the cracking load. When stirrups exist In the section they 

yield immediately after the load has caused cracks to develope rapidly into the 

compressive zone, whereupon the failure is sudden47,48,49,50 

2.3.2 Shear Compression 

This is a common mode of shear failure for thick-webbed and rectangular 

sectionS57 with a moderate shear span to effective depth ratio (2.5<a/d<4.0) 

and with low or medium levels of prestressing in prestressed beams. After 

the failure of the beam action, the propagation of an inclined crack reduces the 

compressive zone excessively. A point Is reached when the available area of 

concrete In the vicinity of the applied load becomes too small to resist the 

compression force, and the concrete crushes. This is usually a failure of arch 

action45,57,58 . 

Leonhardt5g observed that the position of failure is where the value of 

MN. d attains its maximum, causing crushing of the concrete due to a 

combination of compressive and shear stresses. 

2.3.3 Web Crushing 

This mode of shear failure is produced by the high diagonal compressive 

stress resulting from shear stresss. It can be seen simply from the truss 

analogy hypothesis that the Inclined members of truss (concrete struts) are 
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7 under axial compressionl 5 or a combined bending and axial load . 

Web crushing could be described as gradual rather than catastrophic and 

is more likely to occur In thin-webbed sections (d /b >5.0) having a rather 

low shear span to effective depth ratio (1.5<a/d<3.0) and with relatively stiff 

top and bottom flangeS7,15,16,17 . 

The upper limit for shear capacity of a section can be assumed to be its 

web crushing strength and It cannot be Increased even by Increasing the 

18 stirrup percentage . This limit is defined as a maximum nominal shear 

stress in codes. Web crushing is very variable and current codes give its lower 

lImIt18 . 

2.4 Shear Resistance In Composite Beams 

As explained In chapter one, composite concrete structures are those 

consisting of precast beams and a top concrete slab with suitable horizontal 

connections to ensure composite action. This type of construction has the 

advantage of speed and simplicity In practice producing a monolithic system 

after hardening of the top slab. 

In spite of considerable research work on shear resistance of monolithic 

concrete sections, there is a relatively small amount relating to shear of 

composite beams. 

2.4.1 Conventional Continuous Composite Beams 

Conventional continuous bridges are made up of precast units, as 

described previously, which are continuous for live loads only. An extensive 

experimental work was undertaken In Portland Cement Association (PCA) 

concerning this type of structure7,8,9,1 0,11. 

Mattock and Kaar8 investigated the behaviour of this type of structure 
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subjected to shear, and details of their tests and results are as follows: 

The test program was designed to observe the influence of the following 

two variables on shear strength: 

a) Amount of stirrups (varying from 0.38% to 1.14% ) 

b) Position of external loads (shear span effect), 

The test beams consisted of a 33' precast prestressed 1/2 scale model 

connected to a 9' length beam, having the same cross-section, with a top 

slab. 

Supports and loading arrangements were as shown In Fig. 2.2 to simulate 

the condition at a support section of a continuous beam. The shear span 

(measured from the first load) to effective depth ratio was between 1.0 and 

4.5. Strain measurements showed that the stirrup strain was very small 

before the formation of diagonal cracks but it increased suddenly afterwards. 

Similar conclusions were reached by Bennett12,13, with stirrups in the region 

of diagonal cracking yielding almost immediately after cracking. 

Most of the beams failed In a web shear crushing mode. The crushing zone 

was located In the lower part of the web where the compressive stresses were 

high, and flexural cracks due to the negative support bending moments were too 

steeply inclined to lead to a shear failure. 

The initial inclined crack widths were found to be between 0.08mm and 

O. Imm. As far as ductility is concerned, from the deflection measurements, it 

was shown that the ductility Increases with an increase In the shear 

reinforcement. 

The inclined cracking load and ultimate shearing strength were also shown 

to be higher in beams with a smaller shear span to effective depth ratio . 
Mattock and Kaar interpreted shear strength in terms of the observed 

mode of failure of their test beams. In order to explain this mode they 

hypothesized that the inclined cracks divide the shear span Into a series of strut 

members which fail under the action of combined axial load and bending. 
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For the web crushing mode of failure a free diagram and equilibrium 

condition for a single strut can be drawn as in Fig. 2.3. This strut can fall at its 

lower end as a result of the combined axial force C In the strut and the bending 

produced by the shearing force acting at the upper end of the strut. 

When the amount of shear reinforcement increases the shear force in the 

strut decreases and strut can fall In direct compression. Any further 

increase in the reinforcement can not increase the web crushing strength of 

the section. 

The direction of inclined cracks was thus felt to be controlled by the 

loading position and depth of the beam 

It was also concluded that the contribution of stirrups to the shearing 

strength continued to decrease with an Increase in the shear span to effective 

depth ratio. 

This Is in disagreement with McGregor'Sl4results in simply supported 

beams, where an Increase In the shear span to effective depth ratio beyond 3.5 

did not affect the effectiveness of the web reinforcement. To explain this 

discrepancy Mattock and Kaar8 suggested that the diagonal cracks developed 

from flexural cracks were usually restricted to that part of the shear span near 

the loading point and did not extended over the whole length of the shear span in 

the case in which the cracks were caused by excessive principal tensile stresses 

in the web. Hence the reduced shear strength was the result of excessive 

cracking over the entire length of the shear span associated with shear in the 

uncracked section. 

For shear strength analysis the strength is divided into two parts: a) the 

shear required to cause inclined cracking and b) the increase in strength 

beyond inclined cracking resulting from the stirrups. 

For a given concrete strength it was suggested that the effect of stirrups 

to the shear strength can be expressed as: 
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(V Vc)/bdSinp-6.24(r fyv)-0.44(rfy)2 /. ýrr- U- c (PSI) ............... (2.2) 

A rather conservative linear equation was proposed: 

Asv=Sv(Vu-Vc)/3.5 d fyv Sino 

Where: 

............... (2.3) 

p is the angle of inclination of the line drawn between the loading point and 

support. 

According to their suggestions, a rather ductile failure could exist if the 

shear failure load is at least 80% of the load required to cause a flexural 

failure. It was also suggested that in a continuous composite beam such as their 

test beam, the first interior support could be investigated for the shear. 

Bennettl2,13 carried out two series of shear tests on different types 

of fullsized composite bridge beams to study the adequacy of the current British 

code, CP110, and M. o. Tmethods in an initial series, and examined the efficiency 

of different types of stirrups in a second series. It was found that both design 

methods were very conservative. 

Clarke and Evans6l investigated the adequacy of the CPI 10 and BS5400 

methods for shear design of composite beams. Tests on two sizes of composite 

beams consisting of a precast post-tensioned section and a cast-in-place top 

flange have shown that both methods (CPI 10 and BS5400) for shear design of 

monolithic prestressed beams can be used for composite sections giving an 

adequate safety margin. 

Tay62 in an experimental study on full-sized 'M5' precast prestressed 

composite beams compared different methods of shear design in current codes 

of practice for both static and repeated loadings. 

It was found that CP110 and D. Tp (Department of Transport) design 

methods for ultimate shear resistance were conservative for beams with a high 

level of prestressing but they slightly overestimated shear strength of beams 

with low levels of prestressing. 
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He concluded that the D. Tp method of superposition gives the best 

prediction of ultimate web shear and CEB-FIP method is the most conservative 

of all methods. 

2.4.2 Unconventional (New) Continuous Composite Structure 

The method of construction for this type of bridge structures was 

explained in chapter one (section 1.2.7) where it was mentioned that there 

have been very few bridges constructed using this method. The only published 

research works on this type of structure are those of Sturrock3 and 

Pritchard4,5, in which a test program was conducted by the Cement and 

Concrete Association to examine the soundness of the previously designed M11 

Woodford Interchange prior to its construction. 

The test beams were not true models of the prototype but they were 

similar in many respects (see Fig. 2.4a). 

It is worth noting that In the initial design of the bridge the designer had 

proposed constructing a tapered end block at the end of the beam (Fig. 2.4b) 

although this was never utillsed for reasons of economy. However, the Author 

(present investigation)observed that by leaving this end block out the original 

beam section is in fact stronger In the shear transfer region of the embedded 

length. This is discussed in greater detail later in the thesis. 

The shear capacity of the joint was not determined since the flexural 

strength of either precast or insitu concrete were the controlling factors. Since 

no tests were carried out in which a tapered end block was included, it was 

decided to omit this feature from the prototype design, for economical reasons, 

provided sufficient lateral restraint (transverse prestress) was utilized to 

ensure composite action. 

Sturrock'S3 tests were carried out in two phases. Phasel consisted of tests 

on five single 1/5 scale precast prestressed beams of an inverted T' beam 
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section connected to a rectangular insitu beam which is then cast simultaneously 

with the top flange of the precast beam to form a composite section. 

The loading was arranged so that first a positive bending moment was 

produced in the connection by applying a span load , then a cantilever load was 

applied to increase the shear force In the connection which has some cracks 

from the first loading stage. This was to simulate the effect of support 

settlements. The major variable in this phase was the magnitude of bending 

moment at the connection. Four specimens were tested to failure In shear at the 

joint to support region although in the fourth one the concrete nibs showed a 

tendency to splay outwards In the overlapping part and it failed at a lower 

load. 

The fifth specimen was tested to improve the bearing between insitu and 

precast beam by transverse clamping of the joint with an average applied 

compressive stress of about 0.3 N/mM2 in the overlapping part. The effect of 

this modification was that it could carry slightly more shear force but the mode 

of failure was different. It failed In a "shear compression" mode under the span 

point load and the increased shear capacity permitted full hinging over the 

support to occur with considerable rotation at the support. 

Phase 2 considered the behaviour of the actual bridge subjected to a 

combination of longitudinal and transverse bending and shear stresses. The test 

specimen consisted of three longitudinal elements similar to those in phase I 

connected to an insitu crosshead together with the top slab. 

Transverse prestressing was applied by 28mm Macalloy stressing bars, and 

the loading arrangement produced a transverse bending moment over the 

support with an eight points spreader beam. The beam failed in a shear 

compression mode similar to the fifth specimen in the first phase. 
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DESIGN AND FABRICATION OF TEST BEAMS AND EXPERIMENTAL 

3.1 Test Program 

The test program was designed to observe the behaviour of the connection 

between a precast-pretensioned M-beam and an insitu concrete cros-shead support 

when subject to shearing forces. Different construction details at the joint were 

also examined to determine the efficiency and practicality of including physical 

connections between precast and insitu concretes. 

3.2 Test Beam 

3.2.1 Prototype Beam 

M-beams are standard beam sections which are widely used in medium span 

bridges throughout the U. K. Although initially developed to be installed at one 

metre centres they have since been used at centres up to nearly twice this figure 

in standard beam and slab bridge decks, and the range of sectionS63 from 720mm 

to1360mrn (M2 to MIO) enables single spans of up to almost 30 metres to be 

achieved. 

When consideration was given to utillsing design data from an existing 

bridge, the scheme chosen namely Barnes Meadow Interchange, Northampton had 

incorporated M8 beams, and it was for this reason that the research project 

adopted this particular size for the model. 

3.2.2 Model Beam 

The model M8 beam has a cross-sectional scale factor of 1/3 to give a 

height of 400mm (see also Figs. 3.1 a and 3.1b ). As far as the longitudinal scale 
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factor is concerned, it is not of great importance to have the same scale factor 

provided that deflection is not a subject of major importance. The maximum span 

for an M8 section is about 27 metres and the longitudinal scale factor of 1/9 

adopted here gave a 3.0 metres span. 

3.3 Manufacture of Pretensloned Beam 

3.3.1 Reinforcement Cage 

The reinforcement cage was fabricated in the laboratory and placed in the 

model prior to the pretensioning operation (see Fig. 3.6 for'size and number 

bars). 

Transverse horizontal web holes for those beams with either transverse 

post-tensioning or web shear connectors were formed by placing 10mm plain 

bars covered with polythene at the required locations in the web in the end 

overlapping zone. These bars were thus effectively restrained from any movement 

during casting and vibration, and were later withdrawn soon after demoulding. 

Unk reinforcement was made as a one piece web and flange type (see Fig. 3.2a). 

3.3.2 Prestressing Strands 

Bridon 8mm low relaxation 7-wire (Supa-7L-R) prestressing strands 

with an actual steel cross-section of 38. OMM2 and a minimum breaking load of 

70kN were used. Test specimens of prestressing strands and high yield bars were 

load tested in an Instron machine and typical stress-strain curves for strands and 

high yield bars are shown in Figs. 3.3a to 3.3d. 

3.3.3 Pretensloning Operation 

Having decided to use pretensioned prestressed beams it was necessary to 
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have the strands stressed inside the mould prior to the concreting. The 

prestressing bed used comprised a set of heavy steel channels, which are capable 

of transmitting the total prestressing force, against which the prestressing 

strands were anchored in transverse end steel plates. (see Fig. 3.4) . 

The whole end plate with the strands was pulled with two 200kN jacks 

placed between the steel bed and a short beam holding the end plate via two thick 

bolts (see Fig. 3.4). Before final stressing , strands were stressed Individually to 

5kN each with a CCL jack to take up any slack and then all the strands were 

stressed together as described above, to 70% of their breaking load. 

3.3.4 Deflected Strands 

Since the beam is to be used in a continuous structure it was decided to 

deflect some of the strands to have the required strength in the negative bending 

moment zone. Sets of rollers were mounted in the steel side moulds and contact 

surfaces between the rollers and side moulds and also between rollers and strands 

were lubricated to minimize the frictional losses. 

3.3.5 Concrete Mix for Precast Beam 

Aggregate: The Maximum size of coarse aggregate was 10mm to give 

approximately the same scale factor as the test beams and fine 

aggregate grading was according to zone three of BS882. 

Cement: Ordinary portland cement with no additives was used all the 

beams. 

Mix proportion: 

Aggregate cement ratio: 4.8 

Water cement ratio: 0.5 
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Percentage fine Agg. : 34.5% 

Because of the relatively small dimensions of beam (e. g. 56mm web 

thickness) and the high amount of shear reinforcement in the connection zone, 

there was a potential congestion problem for concreting. Consequently a very 

workable concrete having a slump of 80mm to 120mm was used. Compacting was 

assisted by two mounted vibrators on the top of the moulds along the beam 

length. The concrete strength for the precast beams was between 62 to 72 

N/mm2. 

3.3.6 Release of Prestressing Force 

Usually 7 days after casting the beam, compressive and tensile strengths of 

concrete were obtained from control specimens and the prestressing force was 

released subject to sufficient concrete strength having been achieved. 

3.3.7 Curing 

Normally beams were cured In the curing room in 100% humidity for 

about 3 to 7 days and then transported to the main laboratory to be prepared for 

the insitu concrete casting. 

3.4 Manufacture of In-situ Crosshead and Its Connection 

to Precast Beam 

3.4.1 Formwork 

The insitu concrete comprised a full depth rectangular section which 

overlapped the M-beam by 300mm (or 100mm in some later tests) and 

continued along the top of the M-bearn with a depth of 60mrn as a composite top 

flange. The M-beam was placed on a smooth bed, two deep side channels were 
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employed to form the sides of the rectangular section and also to hold two angle 

sections forming the top flange of the M-beam (see Fig. 3.5 ). 

3.4.2 Reinforcement 

A reinforcement cage for the solid box and top flange was fabricated and 

placed into the mould and over the top flange of the M-beam. Longitudinal 

deformed bars at the top of the solid box were extended along the top flange to take 

the negative bending stress produced in the support section and at the joint (see 

Plate 3.2). 

Link reinforcement in the nibs (in-situ concrete overlapping the M-beam) 

was installed as in Fig. 3.2a. 

In two tests all of the longitudinal bars and strands from the precast beam 

were extended into the in-situ section but in the rest only a nominal amount (3 

No. T8 bars) at the bottom of M-bearn extend into the in-situ concrete. This 

allowed for possible positive bending moment at the joint during the lifting. It is 

worth mentioning here that In practice this reinforcement Is required for 

possible positive bending moment as a result of shrinkage and support settlement. 

Each test beam had specific connection details to represent different ways of 

achieving shear transfer and Figs. 3.6a, b,... show details of the M-beams , in-situ 

concrete and connections. These details will also be discussed in the 'experimental 

results' section later in the thesis. 

3.4.3 Concrete Mix and Curing of the Insitu Concrete 

The cement and aggregates used for the M-beam were also adopted for the 

insitu concrete in the beam. The mix proportions were as follows 

Aggregate cement ratio 6.35 

Water cement ratio 0.6 
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Percentage fine Agg. : 35.6% 

The compressive strength of the insitu concrete at the time of testing varied 

between 50 to 55N/mm2. 

As there was no congestion problem for this part the allowable slump was 

between 30mm to 50mm. 

Generally the formwork was stripped after ten days and the beam was cured 

in the laboratory under hesslen and polythene sheeting before testing. 

3.5 Horizontal Shear Connectors 

The contact surface between the precast and Insitu concrete should be 

capable of resisting horizontal shear forces produced by the vertical shear force. 

The connection was designed according to BS81 1027 which uses a different method 

from the previous code Cp11064 which was very conservative. The CP110 

service method is based on the bond failure between precast and insitu concrete so 

the contribution of steel connectors are not additive. It is also debatable whether 

horizontal shear is a serviceability problem. 

BS8110 considers this as an ultimate limit state problem and a less 

conservative method taking Into account the effect of steel strength is 

recommended. In the design of the test beams it was necessary to provide extra 

shear connectors, in addition to the stirrups particularly in the region of high 

shear (between span load and continuous support). 

The contact surface skin and laitence were removed by the use of a needle 

gun prior to casting the insitu concrete. 

3.6 Experimental Measurement 

3.6.1 Deflection 

Mechanical dial gauges with an accuracy of 0.01mm/Div. were used to 
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measure the deflections. These were mounted at the top of the bottom flange at 

midspan and cantilever, making it possible to measure the deflections up to 

failure without damaging the gauges. 

3.6.2 Stirrup Strain Measurement 

The following methods were considered for the measurement of strain in the 

stirrups: 

a) The use of electrical strain gauges 

b) Mechanical method 

In the first method strains are measured by mounting electrical resistance 

strain gauges on the reinforcement and using a data logger. In the second method 

strain can be measured by means of two DEMEC discs located on steel studs which 

are soldered to the leg of the stirrup and project to the surface of beam through 

sleeves comprising greased PVC tubes, to prevent them adhering to the concrete. 

It has been reported62 that there are problems associated with this method 

involving movement of the studs during the casting and also breaking of the 

connection between studs and stirrup when Inclined cracks widen, which results 

in the effective loss of the gauge. In addition to this mechanical measurement of 

stirrup strain is practically more difficult and less accurate than the electrical 

method. 

In view of these problems, it was decided to adopt the electrical method 

Surface preparation prior to installation of gauges was carried out in the 

following way: 

a) Removing the deformed bar ribs, over a length of 35mm of the stirrup's 

leg. 

b) Cleaning the smooth surface with the application of acetone, an acid 

solution (conditioner) and finally an alkali solution (neutralizer). 

T6 stirrups were used together with 5mm strain gauge (TML-PL5) with a 
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nominal resistance of 120.0 Ohms and a gauge factor of 2.0. The adhesive used 

was a P-2 two parts epoxy resin type . As this Is not a fast curing adhesive it was 

necessary to cure the joint for about ten hours under a uniform pressure applied 

with a spring clamp while covering the gauge with a piece of silicon rubber. 

Since the gauged stirrups are eventually totally inside the concrete, they 

must be covered carefully to resist against mechanical shocks and water 

penetration. Coating agents used are as follows : 

1) M-coat V for the electrical Insulation. 

2) M-coat 'G' or Bostil: which are two parts materials and become like 

rubber after curing. This coating is to absorb the mechanical shocks 

during the fixing and concreting. 

3) An oil paint to prevent water penetration 

4) Bituminous paint coating for extra waterproofing. 

'PTFE' wires were soldered to the gauge prior to coating. These are 

waterproof wires with a high tensile strength to prevent breaking during the 

casting. 

3.6.3 Surface Strain Measurement 

Surface strains were measured either mechanically by the use of DEMEC 

gauges or electrically by TML-PL60 gauges. In the former case metal DEMEC 

discs were glued to the surface of the concrete. For electrical strain gauges the 

surface was cleaned and covered with fast setting Araldite epoxy resin, curing for 

about 10 hrs. and finally rubbed with a fine sand paper. The surface was cleaned 

and the gauge fixed with Cyanoacrylate super glue adhesive. 

3.6.4 Interface Strain Measurement 

In the overlapping zone it was decided to measure the surface strain of the 
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precast web embedded in the concrete as well as the external surface strain at the 

same level on the insitu nib, for comparison. For this purpose PL60 electrical 

gauges were fixed to the surface of the precast beam in the region which would be 

embedded in the insitu concrete (see plate 3.1). The coating was as described in 

3.6.2, to prevent damage and water penetration. 

3.6.5 Arrangement of the Gauges 

The mechanical or electrical gauges fixed on the surface were either 

longitudinal (individual) or rosette (set of three ). The former determine the 

strain distribution vertically while the latter may be used to determine the 

principal strains. A rosette consists of at least three gauges in different directions 

at one point (normally horizontal, vertical and inclined directions). 

For electrical PL60 rosette formation, the gauges were fixed so that their 

central marks passed through one point rather than fixing them separately. This 

was to get a more accurate result. 

3.6.6 Vertical' Separation Between Precast and Insitu Beam 

When the connection is under a shearing force, the precast beam and Insitu 

concrete have a tendency to separate from each other. The best place to measure 

this separation was along the overlapping zone between the bottom flange of the 

precast beam and lower part of the insitu nib as in Fig. 3.7. The DEMEC gauge used 

had a length of 2" with an accuracy of 24 micro strain per division. 

3.7 Detection and Measurement of Crack Widths 

A hand lamp and a magnifying glass were used to detect the first cracks. The 

cracking load was noted and all inclined and flexural cracks were marked up to 
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failure. For the measurement of the inclined crack width a hand microscope with 

an accuracy of 0.02mm per division was used. 

3.8 Measurement of the Prestressing Force during Manufactur 

of the Beam 

For each strand a cylindrical load cell was placed between the end plate and 

the anchor barrel to measure individual forces in the strands. (A further check 

was made by the jack pressure dial gauge which gives the total force ). The load 

cells were designed to withstand the maximum prestressing force (70% of the 

breaking load) within their elastic capacity. Four PL5 electrical resistance 

strain gauges were fixed (horizontally and vertically) and connected to form an 

electrical Wheatstone bridge (see Fig. 3.8). The same type of load cell was also at a 

later stage used to measure the post-tensioning force in the beam with transverse 

prestressing. 

3.9 Data Logging System 

An Intercole Compulog datalogging system was used to read the strain gauges 

and load cells. The Compulog has a maximum capacity of 99 channels and a reading 

speed of 33 channels per second. The system can accept either a quarter bridge or 

a full bridge connection and for these tests Plessy 23-Pin plugs were used for 

quarter bridge connections (10 channels per plug). In addition two dummy gauges 

were fixed on a 100mm by 100mm cube, one of which comprised a PI-5 gauge 

fixed on a piece of T6 bar inside the concrete and the other a PL60 gauge fixed on 

the cube surface, both similar to actual gauges in the beam. Dummy gauges were 

common to all channels. 

The logging system was programmed to give the actual strain in the gauge 

with an accuracy of one micro strain. For load cell readings Plessy 7-Pin plugs 
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were used. The connection Is shown In Fig. 3.8. The computer output storage was 

available on a floppy disk and also gave a printed copy. 

3.10 Testing of the Bearn 

3.10.1 Loading Arrangement 

Since the connection behaviour to be investigated represents a continuous 

beam, and the longitudinal scale factor is smaller than the cross-sectional scale 

factor, a loading arrangement consisting of one span (precast beam) and a 

cantilever extension (in-situ solid box) was adopted (see Fig. 3.9) . This 

arrangement has the advantage that any combination of shear and bending moment 

in the connection can be obtained by changing the position and magnitude of both 

the span load P and the cantilever load 0. 

This arrangement is also useful when a high shear force is required in the 

connection while avoiding a premature flexural failure In either the support or 

midspan sections. Loading was applied with a 300kN jack through a 610mm(24") 

deep steel 'r section spreader beam to distribute the total load into span and 

cantilever loads. The total load was applied in 25kN Increments. For each load 

strain readings (mechanical and electrical) and deflections were taken and also 

inclined cracking load and crack width were noted where appropriate up to final 

failure of the beam. Plate 3.3 and Fig. 3.10 show a photograph and a 

diagrammatic view of the testing rig together with two types of loadings including 

their bending moment and shear force diagrams. 

3.10.2 Shear Span to Effective Depth Ratio 

The connection was investigated for its capacity to transfer the maximum 

possible shear force in the precast beam allowed by the code (nearly all codes of 
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practice limit the maximum shear force In a concrete section by that required for 

a web crushing failure). 

Each side of the connection (precast or in-situ beam) was designed 

separately to resist the maximum shear force and the connection was tested to see 

whether it was capable of producing this shear resistance in either part. This 

rather , high shear force necessitated a shear span to effective depth of 

between 2.8 to 3.7 for the test rig and loading arrangement. The effect of shear 

span to effective depth ratio upon the shear strength of monolithic reinforced or 

prestressed concrete beam is found44,59 to be insignificant when its value is 

greater than 3.0 . 

3.11 Range of Variables Investigated In the Test Program 

Differences in the test beams were mainly in the connection details which 

can be summarised as follows: 

a) The first detail considered was a connection with a 300mm overlapping 

length in which the in-situ concrete nibs contained shear reinforcement and all 

reinforcing bars and prestressing strands in the precast beam were projected to a 

length of 1.00 metre into the In-situ concrete . This detail is similar to those used 

recently in some U. K. motorway bridges as mentioned in section 1.2.7 (see also 

Fig. 3.2b. 

b) To examine the effect of dowel action of the projecting bars from the 

precast beam into the in-situ concrete. In previously constructed bridges (see 

section 1.2.7) the bars from the M-beams were continued by means of couplers 

into the in-situ concrete. In this test the dowel action of these projecting bars, 

from the M-beam itself and also the continuity bars in the top flange, was 

eliminated by sleeving them at the interface. This sleeving was 50mm long and 

was 15mm thick around each bar as shown in Fig. 3.11. All other details were 

exactly as in case (a). 
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c) To evaluate the effectiveness of the in-situ nib shear reinforcement, in 

this test no shear reinforcement was installed in the overlapping in-situ 

concrete. In addition to that , the stirrups in the end of the precast beam had the 

same spacing as the stirrups in the rectangular section adjacent to the end of 

prestressed beam. The reason for this was to see the effect upon the shear transfer 

capacity of the joint if the overlapping zone (consisting of precast and in-situ 

concrete) was designed for shear as a monolithic rectangular section (similar to 

the crosshead in practice). 

d) In practice, the distance between the end of the M-bearn and the support 

may vary, making the negative bending moment at the connection high when it is 

near the support or low when it is near the point of contraflexure, while the 

shear force is more or less the same (specially for point loading). In this test the 

connection was subjected to a higher bending moment whilst the same shear force 

remained as before. Other details were as in case (c) Le. no stirrups provided in 

the in-situ concrete nibs. 

e) The embedment length Is an economical consideration. If we can reduce 

its length some material will be saved. It was decided to try only 100mm 

embedment in this test instead of the 300mm used before. The in-situ concrete 

nibs had two T6 stirrups in this test. Since the same mould (for 300mm 

embedment) was used it was decided to leave 200mm of the precast beam unused 

from the other end to allow 100mm embedment. 

0 This test was also performed with 100mm embedment length but the 

difference from case (e) was the absence of stirrups in the in-situ nib to 

investigate the necessity of the stirrups for small embedment lengths. 

g) It was felt during the test program that the top flanges of the M-beam, in 

spite of their small width, may have considerable effect upon the shear transfer 

capacity of the connection. In addition to that a simulation of the initially suggested 

tapered end block3,4,5 was needed. 

That end block (although not used in practice because of economy and its 

40 



unproven behaviour) is formed by a gradual widening of the web and eliminating 

the top flange to form a simple inverted rr beam section. This section was to be 

continued along the connection (see Fig. 3.12 and also Fig. 2.4b). To avoid making 

a new mould, an easy simulation was achieved by placing two small pieces of 

polystyrene underneath the top flanges of the M-beam along the whole of the 

embedded length prior to casting in-situ concrete (see Fig. 3.13). These pieces 

were taken out before testing the beam. In this test the in-situ nib was reinforced 

with nominal shear reinforcement. 

h) It was observed from the test on the connection having the feature 

explained in (g) above that in fact the shear transfer capacity of the connection 

reduces substantially. It was thus decided to improve the strength of such 

connection (i. e. for inverted T sections without top flanges) by different means. 

In this test the connection was stressed transversely with four 9.8mm 7-wire 

strands. Ducts of 10mm diameter were accordingly made in the web of the precast 

M-bearn and its overlapping in-situ concrete nibs. 15mm steel bearing plates 

were used on each side to distribute transverse loads uniformly (see plate 3.4). 

Cylindrical load cells were used to measure the post-tensioning force in each 

strand and the ducts were left ungrouted for the testing. 

I) Instead of transverse prestressing (as in (h) above) it was decided to use 

horizontal bars passing through the M-beam's web and into the in-situ concrete 

nibs. These web shear connectors comprised 10mm Dia. mild steel bars (i. e. 

approximately the same diameter as the strands in the transverse post-tensioning 

test). 

Four ducts were made in the web of the M-beam by placing pieces of 1 Omm 

dia. mild steel bars covered with polythene tape inside the mould. These bars were 

taken out after demoulding (see Fig. 3.14a). Before casting the in-situ concrete, 

10mm mild steel connectors were threaded into the web and the ducts were 

grouted in order to be able to develop the full dowel action. Both sides of the bars 

were bent to avoid possible bond failure during the test. It should also be 
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mentioned that the top flange effect was eliminated as in tests explained in (g) and 

(h) above to represent a simple inverted T beam. 

In the tests without the top flange effect (Le cases g, h, i above), from all 

existing bars in the precast beam (a total of 13) only 4T8 projected into the 

in-situ concrete for possible positive bending moment during the lifting in the 

test and also provided for shrinkage and support settlement in practice. 

In this final test it was decided to leave all 13 bars projecting 1.0 metre 

into the in-situ concrete. This was to observe the contribution of dowel forces to 

the shear transfer capacity where there is no other means of shear transfer 

capacity acting. 

3.12.1 Designation of the Beams 

A coding system was used for the beams which can be seen in the beam test 

photographs. At the right hand side of each designation the serial numbers from 1 

to 10 can be seen. Other letters have the following meanings: 

E30 : Embedment length Is 300mrn (30cm) 

E10 : Embedment length is 100mrn (10cm) 

WTF : Connection without top flange 

Other letters refer to reinforcement detail in the connection, loading 

arrangement, special features such as transverse prestressing, web shear 

connectors etc. . Table 3.1 shows a summary of the different connection details 

used throughout the investigation. 

3.13 Complementary Dowel Shear Tests 

3.13.1 Test Specimen 

As explained in 3.11 (i) test No. 9 (see table 3.1) consisted of web shear 

connectors with the top flange effect eliminated. To obtain more information about 

42 



the effectiveness of this type of connection, especially the effect of bar size and 

strength, bond between precast beam web and in-situ concrete and different 

curing conditions, it was decided to design a dowel-interface shear test specimen. 

This specimen comprises a 100xlOOxIOOmm cube representing the 

precast beam web. A bar was fixed inside the cube horizontally before casting 

leaving a projected length of about 70mm from each side (see Fig. 3.15a). 

A 300x3OOxlOOmm mould was made for the concrete representing the 

in-situ part. A 1OOxIOOx3Omm piece of polystyrene was placed at the middle of 

this mould, and the concrete cube was fixed over that and the mould was filled with 

concrete (see Fig. 3.15b). Specimens made in this manner can be tested for shear 

in a simple compressive test machine (see Fig. 3.15c). 

3.13.2 Range of Varlables 

In general the following variables were investigated: 

1) Bar size , changing from 10mm to 16mm 

2) Bar strength, mild or high yield steel 

3) Curing in wet conditions 

4) Curing in dry conditions 

5) Natural bond between cube and surrounding concrete 

6) Eliminating the bond by covering the cube with polythene sheet. 

For each bar size or strength, all the above conditions (3,4,5,6) were 

examined. The concrete mixes were similar to those used in the main beams for 

both precast and in-situ parts. Table 3.2 shows a summary of details and 

conditions for the 28 specimens tested In this part of the investigation. 

3.14 Control Tests 

Control specimens were made from the concrete used for each precast and 
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in-situ beam. These included cubes and prisms for the determination of 

compressive strength and modulus of elasticity respectively. They were cured in 

the same conditions as the test beams. 

The control specimens were tested soon after the main tests. These tests 

were carried out in accordance with BS1881 : 197065 . Table 3.3 shows the 

average test results . The following tests were carried out: 

3.14.1 Compressive Strength Test 

For each precast beam six 100xlOOxlOOmm concrete cubes were tested, 

three at the time of prestressing transfer and the others shortly after the main 

beam test. Nine concrete cubes were taken from the in-situ beam concrete (three 

from each batch) and were tested after the main test. 

3.14.2 Modulus of Elasticity 

The modulus of elasticity tests were carried out on 1OOxIOOx5OOmm 

prisms taken from precast and in-situ beam concrete. Strain measurement was 

by an 8" DEMEC gauge fixed on two sides of the column. 
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Plate 3.1 Gauged Precast Beam Before Casting In-situ Concrete 

Plate 3.2 The Connection Prior to Casting of In-situ Concrete 
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Plate 3.3 Transverse Prestressing at the Connection 
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Plate 3.4 General View of the Test Rig 



L- 

0 
(2 

E 
cö C) (D (1) 

(D 

> 
(1) 

0 

(D 

(D 

LL) 

0 

(D 

0 
ci 
(D 

:3 
: t-_ 
(n 

(D 

-0 

0 
-Z7 u 
r_ 0 

-0 

(D 

u5 

-0 

Co 
(D 
E 
0 
2 

-0 

(D 
m 
cm 

C» 
ce 

LL 
CL 
0 

c 
.2 cö 
. 
£-: 

E 
LU 

(D 

ii; 

(D 
w L- (1) > 

m 

0 

C. ) 
ce 

_O 

- 0 

r_ 0 

0 

0 

L) 

-24 0 

(n 
cu 

< f- CL 

(D 
ciö CL 
9 >, 

k- < < < CO 

cq 't "e 

cm 

N A vý 
0 

chö O_ U) 
cs 
Z0 -0 

Co 
h- 

c: 
Co 

Co 

r- 

Co 
1-- 

W -0 
c 
m 

(n 
r- 

Co CO 
1- 

to Co 
F- 

Co 
F- 

Co 00 

Co 
F- 

'0 
c 
cu 
CO 
r- 

c, 
m 0 

(D 

W 

'0 
a) 

x w 

-0 
a) 

x w 

(D 

< w 

-0 
(D 

w 

(D 

-cn x w 

(1) 

x w 

IM 
E 

- Co 

E 
w 

- m 

E 
w 

lý5 
E 
w 

E 
E 

E 
«a m C) C) CD (D C: ) C: ) CD C: ) 0 C: ) (D ýa 

E (D 
w 

CD 
CY) 

C: ) 
CY) 

C: ) 
CY3 

C) 
CY) 

C) 
v- 

C: ) 
1- 

C) 
m 

C> 
CY) 

C) 
ce) 

c> 
CY) 

(1) 
-0 

0 ci 

E 
< 
C: ) 
C*l 

CM 
< 
< 
C) 
CO 

cr) 
m 
< 
C: ) 
CY) 

c2) 
CI) 

tr) 

C: ) C: ) LL 

Co 

U- LL 

C) 

LL 

w w w w w 
CO 

a) 
Z cm ce 

le tn r- (0 Co 0) 

(n 
cu 

C 
0 

C. ) 
C) 

14- 
0 

a 

, 7u 

a 

CY2 

cu F- 

47 



I Natural Bond Debonded 

Wet Curing Dry Curing Wet Curing Dry Curing 

R10 RIO R10 R10 

R12 R12 R12 R12 

R16 R16 R16 R16 

T10 T10 TIO T10 

T12 T12 T12 T12 

T16 T16 T16 T16 

PLAIN PLAIN PLAIN PLAIN 

Table 3.2 Different Dowel Bars Tested at Various 

Bond and Curing Conditions 
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a) 'M8' Prototype 
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b) 'M8' 1/3 Scale Model 

FIG. 3.1 Prototype and Model Dimensions 

a) Stirrup in the M-Beam Stirrup M ihe insitu NiDs 

FIG. 3.2 Details of Stirrups for M-Bearn and Insitu Nibs 
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f-ig. 3.6c Z: itirrup Arrangement in tne Lmoeciment Part ot Precast E3eam 
Beams: E30AB3, E30BC4. WTFCC6, WTFPCC8, WTFCC9 

(For WTFDCCIO All the bars Projected into In-situ concrete) 

Fig 3.6a, b, c Stirrup Arrangement In the Precast Beam at the Connection 
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Fig. 3.6a Stirrup Arrangement in the Embedment Part of Precast Beam E30AAl 

, ElOCC5 and ElOCD7 (but no Projected Bars into In-situ Concrete for Tests 5,7) 

ý-ig. 3. u) btirrup Arrangement in tne Embedment Part ot Precast E3earn E30AA2 
Sleeving of the Projecting Bars 
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k- 

Fig. 3.6e Stirrup Spacings in the In-situ Beam , Tests E30AI33 and E30BC4 
(Without Stirrups in the Nibs) 

Figs. 3.6 d, e, f Stirrup Spacings In the In-situ Beam and Nibs 
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I-W ...... 
Fig. 3.6d Stirrup Spacings in the In-situ Nibs and In-situ beam 

Tests E30AAl and E30AA2 

Fig. 3.6f Stirrup Spacings in the In-situ Beam , Tests El OCC5 
(Without Stirrups in the Nibs) 
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Fig. 3.6h Stirrup Spacings in the In-situ Beam and Nibs 
Tests WTFCC6, WTFPCC8, WTFCC9 and WTFDCC1 0 

(All without Top Flange Effect in the Connection) 

Figs. 6.3 g, h Stirrup Spacings In the In-situ Beam and Nibs 
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Fig. 3.6g Stirrup Spacings in the In-situ Beam , Tests E10CD7 
(With Stirrups in the Nibs) 

(100mm Overlap) 
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FIG. 3.8 Load Cell Connection to 7-Pin Plug 

60 



E 
a) tm C 

ca 
CY) 
C 

U) 

0 

C 0 

E 
U) 
(7) 
Cý 
C) 
LL 

61 



Hydraulic Jack 

---------- --------- 00 

1500 

267 M 

62 M 

Bending Moment 
(Loading Type A) 

Shear Force 
(Loading Type A) 

142 M 

Bending Moment 
(Loading Type B) 

4d 
1000 41 

"M 

255 M 
Shear Force 
(Loading Type B) 

230 M 

FIG. 3.10 Typical Loading Arrangement 
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FIG. 3.11 Elimination of Dowel Effect by Sleeving 
the Projecting Bars at the Interface 

Vold 

FIG. 3.12 Initially Proposed 
End Block (Ref. 3) 

FIG. 3.13 Simulation of End Block 
or Top Flange Elimination 
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b) Connectors 

FIG. 3.14 Position of the Web Shear Connectors 
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Dowel Bar Inside the Cube 
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FIG. 3.15 Details of the Dowel Shear Test Specimen 
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CHAPTER FOUR 

GENERAL BEHAVIOUR OF COMPOSITE BEAMS SUBJECTED TO SHEAR 

In the present investigation while different types of new (unconventional) 

connections were under observation, it was also decided to look at the general 

behaviour of composite p recast-pre stressed thin-webbed sections subjected to 

shear. This chapter examines various aspects of composite beam behaviour and 

the way that different codes present design values for such members subject to 

shearing forces. 

4.1 Inclined Cracking In the Web 

After the occurrence of inclined cracks, the prestressed beam ceases to 

behave elastically and transforms to a complex statically indeterminate system. 

This implies several permanent deformations such as crack width, deflection , 

steel strain, etc. have occured which affect the serviceability of the beam. 

Inclined cracking is therefore an Important stage In the beam behaviour. 

Inclined cracks form in two different ways: 

a) As a result of excessive principal tensile stress in the region of high 

shear stress and low bending moment, especially in thin-webbed sections. 

Flexural cracks are not present in the vicinity of these cracks and they are thus 

normally referred to as "web shear cracks" or "shear cracks in sections 

uncracked in flexure". 

b) As a result of an inclined crack joining a flexural crack in which 

either type of crack can develope first and join the other. These types of cracks 

are known as "flexural shear cracks" or "shear cracks in sections cracked In 

flexure". These cracks are common in regions with high bending moment and 

shear force. In the present investigation web shear cracks developed in the web 

of the precast section between the loading point and the continuous support 
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whereas flexure-shear cracks developed mainly near the continuous support in 

the in-situ section where high bending moment and shear force were present. 

The web shear cracking load can be determined from the principal tensile 

stress caused by the combination of normal and shear stresses in the section. 

These include vertical shear stress, flexural stress, longitudinal and vertical 

prestress. The principal tensile stress can be calculated from basic elastic 

theory: 

ft=0.5(fx+fy)+ .......... 

in which fx is the prestress fcp and fy is the vertical prestress. Assuming fy=O 

and knowing that for a rectangular section at the centroid v-l. 5Wbh : 

VCO, 0.67bh V ft2+ftfc 
,p ........... (4.2) 

In British Codes a reduction factor of 0.8 (BS8110) or 0.87 (BS5400) Is 

applied to prestress. 

-it 
+0.8ft fcp (BS81 10) .............. (4.3) VCO-0.67bh 4 fTO-8f. L- 

This equation applies to the centroid axis of the section where shear stress 

is maximum and normal stress is minimum. For other points shear stresses are 

smaller while normal stresses are larger and thus these two effects tend to 

compensate each other and the equation is generally taken as the critical 

condition. However, for a flanged section the top of the web may be a more 

critical location. In all test beams web shear cracks developed in the 

prestressed beam web half way between the top and bottom flange. The reason 

for this is that because of the loading arrangement, the bending moment is very 

small In that region (near the contraflexure point), and the critical point for 

principal tensile stress is at the centroid of the section. It has been suggested 

by Tay62 that at the mid-span of long simply supported beams where the 

bending moment is maximum, shear stress at the base of web is still 

considerable while prestress diminishes, so the highest principal tensile 
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stress occurs at the base of web. Near the support, however, this maximum 

principal tensile stress occurs at the junction of the web and the top flange. 

4.1.1 Different Codes Prediction of Web Cracking Shear 

4.1.1.1 British Codes, BS811027, BS540068 and CpjjO64 

All These British Codes give similar expressions for web shear cracking 

load. The beams tested all had inclined pretensioned strands and the above Codes 

allow the vertical component of prestressing force (Vp) to be added to the web 

cracking load. It should be noted here that all the Codes allow these expressions 

to be used similarly for either monolithic or composite beams. In BS81 10 and 

CP1 10: 

Vcr=0.67bh NFf -2 
t +0.8ft fcp +V p .............. (4.4) 

where ft is the concrete tensile strength, ft=0.24 4fcu 
. In BS5400 a 

reduction factor of 0.87 is applied to prestress instead of O. B. 

Experimental values (obtained from the present investigation) and the British 

Code predictions can be seen in tables 4.1 and 4.2. 

4.1.1.2 CEB-FlP Model Code72 

The European Code predicts the web shear cracking load as : 

Vcrw0l'CRD k(1+50p)bd+V p ................. (4.5) 

where k=1.6-d>1.00 metre (Depth effect), 'rRD=-basic shear strength 

Olm' +MdMsdu<2.0 .......... (Prestress or axial compression effect) 

where MO is the decompression moment at transfer and Msdu is the 
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maximum design moment in the shear regiori under consideration. p is the 

stirrups ratio: p-Asv/bd: 90.02 

Correspondingly web shear cracking loads for all beams have been 

obtained for the above code formulae and tabulated In table 4.1 . All safety 

factors have been kept in the calculations and these values have been compared 

to the observed web shear cracking loads in table 4.2, expressed as the ratio of 

experimental to calculated values. The observed mean safety factor for CEB-FIP 

is 1.5 while for the British Code it is 1.21 in comparison with their adopted 

strength safety factor of 1.25 for concrete in shear. 

4.1.1.3 Building Code Requirements for Reinforced Concrete 

ACI 318-7771 and ACI 318-8381 

The ACI Code prediction for web shear cracking load Is based on a simple 

expression: 

Vcrýbdo(O. 294fc +0.3fcp)+Vp 

Assuming that fc=0.8fcu 

Vcr=b#(0.274fcu +0.3fcp)+Vp 

....................... (4.6) 

....................... (4.7) 

0=0.85 ............... ACI strength reduction factor 

This expression is actually a simplification of the formula obtained from 

equating the principal tensile stress at the centroid to the tensile strength of 

concrete. 

cr 
Nrf Tit fcDp =ft 

Vcr is the maximum shear stress at the centroid which is theoretically 

1.5 times the average shear stress (in the elastic range). British Codes allow 
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for this by using the factor 0.67 in the Eqn. 4.4. The ACI assumes that the 

tensile strength of concrete is : 

ft= 0.3 34»f-C-= 0.2 9 5Vf-cu .......................... (4.9) 

This value (0.295Tf-c 
, u) is smaller than (0.36; f-cu) suggested by the 

British Codes. To include the factor of 0.67 (ratio of average to maximum 

shear), ACI has reduced the value of ft from 0.334-fc (or 0.295; f-cu) to 

0.294f'c (or 0.264fcu) which, with a ratio of 0.29/0.33=0.87, is about 30% 

greater than 0.67. 

Vcrýft'rl +fcp/ft-0.294f c4 I +fcp/0.2 (S. 1) ............... (4.10) 

-0.29Nrf-c+0.3fcp (S. 1) 

ACI thus gives larger values for the web shear cracking loads resulting 

from the above mentioned reasons. 

For the beams tested here, ACI predictions are almost unsafe (see tables 

4.1 and 4.2) . These are on average 26% larger than the values predicted by the 

British Codes and the mean observed safety factor is 0.96 as shown in table 4.2. 

It is concluded and confirmed by the test results here that the British code 

approach is more reasonable and gives a more acceptable margin of safety. 

4.1.1.4 Standard Specification for Highway Bridges 

(AASHTO)73 

AASHTO suggests that the shear force carried by concrete in prestressed 

beams is as follows: 

Vc=0.06f'cbjd: 5 180bid 

or: 

VC=0.0481 fcubjd5l. 266bid 

where b is the web width and jd is the lever arm. 

(PSI) ...................... 

(SO ......................... (4.12) 
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It can be seen from the above expressions that the magnitude of prestress 

is not considered in the calculation, and the limiting maximum shear carried by 

concrete and based a concrete strength of fcu-1.266/0.0481-26 N/mM2 is 

expected to give conservative results. The experimental web cracking shear has 

been compared to AASHTO values in table 4.1 and 4.2. A mean safety factor of 

2.06 is observed when using this code. 

4.1.1.5 Australian Standards: SAA Prestressed Concrete 

Code70 

The Australian code limits the principal tensile stress in the beam to the 

tensile strength of concrete taken as: 

(SI) .................. (4.13) ft=0.330Nffc-0.29504FCU- 

where ý is as in 4.1.1.3 

which is similar to the ACI assumption in this respect. It does not explain which 

location in the beam web Is to be examined for the principal tensile stress and 

so the exact theoretical equation for the principal tensile stress at the centroid 

was used (Eqn. 4.4 but without applying the factor 0.8). Calculated values have 

been compared with observed web cracking shear (see tables 4.1 and 4.2) 

indicating an observed safety factor of 1.05 . It is not clear in this code whether 

the vertical component of prestressing force should be added to the web cracking 

shear and if it is ignored a safety factor of 1.3 would be obtained as in table 4.3. 

4.1.2 Inclination of the Prestressing Strands 

Most of the Codes allow the increasing effect of the vertical component of 

prestressing force on the shear resistance though this is not well clear in 

CEB-FIP and Australian Codes. The effect of the vertical component of 

prestressing has been ignored In all Codes approach and compared with the 
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experimental values. Results have been tabulated in table 4.3 showing that all 

Codes have sufficient margin of safety if this effect is i3nored. 

4.1.3 Effect of Percentage of Shear Reinforcement on Web 

Cracking Shear 

Some investigators including Olesen et a174 and Balsoorlya66 have 

suggested that web reinforcement percentage only has a slight effect on the web 

cracking shear. The web reinforcement percentage was not a variable for the 

present investigation but since a rather high amount of stirrups (2.0%) was 

used and no significant change in web cracking shear was seen in comparison 

with other investigators, it may be concluded that this variable has no 

appreciable effect. 

4.1.4 Effect of Shear Span to Effective Depth Ratio on the 

Web Cracking Shear 

The shear span to effective depth ratio was not considered as a major 

variable in this investigation but was changed from 3.72 in beams El OCC5 and 

E1OCD7 to 2.8 in all other beams. In general it has been accepted that this 

factor can affect the ultimate shear strength of concrete beams but its effect on 

the Inclined cracking load has not been given the same attention. Arthur75 

concluded that in pretensioned I-beams without web reinforcement, the inclined 

cracking shear decreases rapidly with an increase in av/d when this ratio is 

less than 3.0. For av/d ratios greater than 3.0 This change is less significant. 

Olesen et a174 and Balasooriya66 suggested that the shear span to effective depth 

ratio had no effect on the inclined cracking strength. 

In the present investigation, no significant change was observed in the 

inclined cracking load of beams with different av/d ratios which is in agreement 
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with Ofesen74 and Balasoorlya66 results. Tay62 compared some investigators' 

results for this effect and concluded that in general a, /d ratio has no significant 

influence on the web cracking shear for av/d ratios ranging between 1.5 to 4.0. 

4.2 Principal Strains and Stresses 

4.2.1 Theoretical Values 

At any point of cross-section, the state of stresses can be defined knowing 

the magnitude of longitudinal stresses, (including bending stress, axial stress 

or prestress), vertical normal stress (e. g vertical prestress ) and shear 

stress. The magnitude of principal stresses and strains can be obtained using the 

classical elastic theory provided the elastic modulus and Poisson's Ratio are 

known. 

'CýPaTý0-5(ax+ay)± 
40.25(crx-ay)2+V2 

e, =oj/E-va2tE-I/E(a, -V(12) ................ (4.15) 

F'2=cr2/E-val/E=l /E(cr2-Vcrl) .................. 
(4.16) 

In this elastic analysis it has been assumed that the concrete Is an 

homogeneuous material, behaving elastically and having the same modulus of 

elasticity in compression and tension. These assumptions are reliable when 

obtaining principal strains or stresses before inclined cracking, which is 

normally associated with relatively small strains or stresses, but after inclined 

cracking this analysis may not be reasonable. 

4.2.2 Experimental Principal Strains and Stresses 

Strains were measured at specific points on the web, in three directions 

72 



(horizontal, vertical and 450 directions). These measurements were either with 

a mechanical or electrical rosette gauge arrangement. With the mechanical 

gauge, a 100mm DEMEC extensiometer was used (see Fig. 4.1a) and with the 

electrical gauges three 60mm (TML-PL60) gauges were fixed on the web so 

that the centre point of each gauge located at the required point (see Fig. 4.1b). 

The actual stresses in an element parallel to the longitudinal axis can be seen in 

Fig. 4.1c. To define the complete stress field in any point of the web, in addition 

to horizontal and vertical strain measurement an arbitrary direction for the 

strain measurement can be chosen, which was -451, as in Figs. 4.1 a and 4.1 b. 

In any direction 0, : 

CO=0.5(CX+C y 
)+O. S(cx-c y 

)Cos20+O. 5yxySin2O ........ (4.17) 

and the principal strains : 

ei =0.5(EX+EY)+0.5ý(Fý. ey) - xy .............. (4.18a) 

e2=0.5(CX+Ey)-0.54(ex-c y 
)2+,? Xy ............... (4.18b) 

Directions for the strain measurements were: 00 , 900 , -450 so: 

C "=ro 'eY2ýe9O ' 'v-e, 
-45 , 0-450 ............... (4.19a) X 

From Eqn. 4.17 the only unknown value Le. yxy will be obtained and hence 

from Eqn. 4.18a and 4.18b principal strains can be calculated: 

'y =-2[ -0.5( eo + ego & eo + ego -2 e, 
_45 .......... 

(4.19b) 
xy e, 

-45 

el -0.5(CO + Eg() )+0.5ý (po _Fgo)2+( 90 + ego-2 F-45 )2 
.......... (4.20a) 

E2=0.5(CO + %0 )-0.5ý (P-0 -Egoý2+( Co + F. 90-2 e ý-45 )2 * ......... (4.20b) 

Having determined the principal strains ( F'VE2), the values of principal 
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stresses (al, cr2) relating to these strains can be calculated using the fundamental 

elastic deformation equation: 

cy, =EC(P-I+VP-2y('-V 
2)........... (4.21) 

cr, ýE c (F2 +VF' 1)/(, _V2) ........... (4.22) 

It should be mentioned that in Eqn. 4.20, F,, is the sum of apparent 

longitudinal strain measured and the amount of prestrain caused by the 

prestressing force which is: 

F-Cpx=fcp/Ec ............ (4.23) 

In the vertical direction , the effect of horizontal prestrain will be : 

ecpy, "Vfcp/Ec .............. (4.24) 

The values of Ec for the tested beams were obtained using BS188165 

method for concrete prisms and the value of Poisson's ratio found by 

determining the ratio of transverse strain to longitudinal strain. 

All the above calculations were produced by a specially written computer 

programme and the principal strains or stresses were plotted against the shear 

force in the section considered and have been shown in Figs. 4.2 through 4.9. 

Each page of graphs includes principal strains (upper half) and principal 

stresses (lower half) for both tensile (positive ) and compressive (negative) 

cases. The inclined cracking shear has been marked in each curve. 

4.2.2.1 Measured Tensile Strains and Stresses 

Tensile strains are relatively small and change linearly with the applied 

shearing force (see fig. 4.2 for example). There is always a small tensile 

principal prestrain (resulting from the compressive prestrain) amounting 
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about 40 micro strains . The departure from linearity of principal tensile 

strains or stresses appears at a load slightly bigger than the inclined cracking 

load. The reason for this Is that the position of the first detected inclined crack 

has not been within the rosette gauge measurement area. It can be seen that after 

inclined cracking, strain or stress increases sharply and elastic equations are 

not valid after this point. The amount of strain under which the Inclined crack 

has occurred, excluding prestrain, was about 80 to 120 micro strain. 

Assuming that concrete behaves linearly in tension up to the tensile cracking 

with same modulus of elasticity as in compression and using British code values 

of tensile strength and modulus of elasticity: 

, U)0.5 
ft=0.36(fc 

Ec=91 00(fcu)0.33 

(tensile strength) (SI) ......... (4.25) 

(modulus of elasticity) (SI) ......... (4.26) 

Cracking strain of concrete will be : 

e 2, -fýEc=39.5xlo, 
6(fcu)0-17 

cr 
(SI) ............ (4.27) 

For the tested beams this equation gives a strain of about 80 micro strain 

which is comparable with the measured values (80 to 120) although those are 

generally larger than the calculated values. One reason for this could be that the 

concrete stress-strain curve may not be linear near the tensile strength of 

concrete . It has been suggested by Domone76 that only up to about 60% of the 

tensile strength the relationship Is linear and this seems to be In agreement 

with the present test results. 

Principal tensile stress changes with principal tensile strains and at the 

time of inclined cracking experimental stresses (calculated by using the 

measured strains In three different directions) ranged from 2.2 to 4.5N/mm2. 

The well-known tensile strength equation ft=0.364-f-cu gives a comparable 

value of about 3. ON/mM2 for the type of concrete used in the tests. 
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4.2.2.2 Principal Compressive Strains and Stresses 

In compression, up to between one third and half the compressive 

strength, concrete behaviour is elastic and nearly linear. This means that even 

when some parts of the concrete are cracked in tension, other parts which are 

in compression may well still be within their elastic range. It can be seen from 

the graphs of principal strains or stresses (Figs. 4.2 to 4.9) that generally the 

compression curves of stress or strain remain linear for a larger range of 

loading than for the tensile cases. However, since the calculation of principal 

compressive strain and stress are also dependent on the tensile strain 

measurements, the compression curves depart from linearity before reaching 

their linear limits in pure compression alone. 

The effect that prestressing has on the principal stress or strain has 

already been considered by assuming its equivalent prestrain in equations 4.17 

to 4.22. Note that in Figs. 4.2 to 4.9 for zero load, there'salways a small 

principal tensile strain due to the Poisson's Ratio effect. 

4.3 Post Cracking Behaviour 

After inclined cracking a substantial redistribution of forces takes place 

in the section causing a change in its behaviour. The most important mechanism 

which has been proposed to analyse reinforced concrete sections Is the truss 

analogy. 

4.3.1 Truss Analogy 

The behaviour of thin-webbed beams with stirrups, having a regular 

pattern of inclined cracks, may be considered as a truss in which the concrete 

compression zone Is the top cord, the main longitudinal bars act as the tensile 
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bottom cord, and concrete struts between the cracks act as diagonal compressive 

elements with stirrups as the vertical tension members. 

This analogy was first proposed by Ritterl 9 in 1899 and then deveoped by 

Morsch20 in 1903. He assumed that the total shear was carried by stirrups 

with no contribution from the concrete in a shear carrying capacity. The shear 

capacity can then be expressed as a function of web reinforcement: 

Vs=kbdrfyv (classical truss analogy) .............. (4.28) 

k is a value relating to the directions of Inclined cracks (0) and stirrups(a) 

k=(Cota+cotO) Sin2a 

r=Asv/bSv 

*, *****, *******(4.29) 

(4.30) 

It was found by other investigators 21,44 that concrete does contribute to 

the shear capacity and can be added to the ultimate shear carried by the stirrups 

thus forming the modified truss analogy: 

VU=VC+VS (modified truss analogy) ................ (4.31) 

4.4 Stress In Stirrups 

4.4.1 Importance of Stirrup Strain Measurement 

Detailed knowledge of actual steel stress can provide a better 

understanding of the internal behaviour of reinforced concrete structures. In 

the case of shear, strain (stress) measurement in the stirrups is helpful with 

regard to (a) design criteria for web reinforcement, (b) inclined crack width 

and (c) fatigue strength of stirrups. 

a) Most of the shear tests have been undertaken to observed failure 

behaviour. If web reinforcement is provided, stress measurements are 

desirable to verify a rational theory of shear strength. 

b) Thin-webbed sections such as T or 'T' sections which are used widely 

in precast concrete construction, may show inclined cracking under service load 
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and these cracks can sometimes be wider than flexural cracks. Stirrup strain 

measurement is of great importance to study and predict these inclined crack 

widths. 

c) Stress in the stirrups can substantially increase under the fatigue 

loading. More detailed knowledge of stress developernent can be obtained by 

observation of stress behaviour of stirrups. 

It was discussed with reference to the modified truss analogy that the total 

shear stress carried by the section is: 

V=V c +rf sv 

or fsv=(v-vc)/r 

........... (4.32a) 

............ (4.32b) 

where vc is the shear stress at the inclined cracking limit, and several 

investigators including Leonhardt5g have confirmed this. In accordance with 

these test results, nearly all Codes of practice propose formulae for the design 

of web reinforcement. These are of the basic form: 

VS=VU-VC ............. (4.33) 

Le the ultimate shear VU considered in the classical truss analogy can be reduced 

by Vc which corresponds to the shear cracking load and it means that the stress 

in the stirrup depends on the concrete iýeare strength. 

4.4.2 Experimental Results of Strain In Stirrups 

Stirrup strain was measured at a point positioned approximately at the 

level of the centrold of the section in order to obtain the maximum tensile strain 

in the stirrups. The gauged stirrups were located in the overlapping part of the 

connection as well as in the adjacent In-situ or precast sections. 

The behaviour of the stirrups in the overlapping region was influenced 

substantially by the detailing and modifications at the connection. These will be 

78 



discussed fully in the next two chapters relating to different types of 

connections. In this chapter the behaviour of stirrups located either In the 

precast or in-situ sections only will be considered. 

Tensile stresses in the stirrups were obtained using measured strain and 

calculating the appropriate stress from the experimental stress-strain 

relationship explained previously. 

Figs. 4.10 to 4.19 show the relationship between experimental stirrup 

stress and applied shear force in the section for either the precast (Figs. 

marked a) or the in-situ part (Figs. marked b) of the specimen. 

These figures consist of several curves corresponding to different 

longitudinal positions of stirrups. These positions have been marked 

numerically both on the curve and on the beam. The experimental Inclined 

cracking shear has also been marked on each set of curves. 

It can be seen from these curves that in general up to the Inclined 

cracking shear, the stress in the stirrup Is very small and almost zero. When 

the concrete web cracks, the stirrups begin to take the shear and the tensile 

stress in the stirrups continue to Increase nearly linearly until failure. 

It should be noted that the limiting shear force carried by the concrete in 

prestressed beams depends on the tensile strength of the concrete and the level 

of prestress. Several experimental expressions have been proposed for the 

shear carried by the concrete and generally this depends upon the 

a) Concrete strength 

b) Percentage of main reinforcement 

c) Effective depth 

d) Level of prestress 

It has been observed experimentally that after the occurrence of inclined 

cracking, the limiting concrete shear strength (Vc) can still be maintained 

until the failure. The reason for this is that this value may be equal to the sum 

of other effects which carry the shear force (i, e concrete compression zone, 
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aggregate interlock and dowel action) after Inclined cracking . In other words 

the shear carried by the uncracked concrete is transferred to other effects after 

the inclined cracking. 

The stress In the stirrups has been compared with Eqn. 4.28 (classical 

truss analogy) and Eqn. 4.31 (modified truss analogy) and the results plotted In 

Figs. 4.20 and 4.21 for both the precast and in-situ parts of the beam. It should 

be mentioned that a 45c, crack inclination has been assumed for Eqns. 4.28 and 

4.31 and plotted in those figures. This assumption is true for reinforced beams 

but for prestressed beams this angle can be slightly less than 4511 which Is not 

normally considered in design and hence a slightly higher stirrup stress may be 

obtained. 

It can be seen from these graphs (Figs. 4.20 and 4.21) that the modified 

truss analogy (Eqn. 4.31) gives an accurate or slightly conservative result up 

to half the failure shear load but for larger loads it seems to be slightly unsafe. 

The reason for this can be explained by the way that in concrete beams without 

web reinforcement, shear mechanisms (especially aggregate interlock) can 

function as long as the crack width Is not excessive. Hence In the presence of 

stirrups, this action will exist provided the the stirrup strain Is small. This 

means that near failure the assumed concrete shear strength (vc) can actually 

reduce, resulting in an increase in the stirrup's stress. Such behaviour is more 

significant in beams with a relatively high ratio of web reinforcement auch as 

those tested in the present investigation. 

The loading and support arrangement as discussed in a previous chapter 

represent a continuous beam. It has been previously suggested by Leonhardt77 

that shear carried by concrete (vc) at the inner supports of continuous beams 

is smaller than that for simply supported beams and values of vc=f'c/22 and 

vC=fIc/16 have been proposed for continuous and simple span structures 
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respectively. The straight lines Indicating the modified truss analogy on Figs. 

4.20 and 4.21 are based on the BS8110 prediction method for concrete shear 

strength. If the above mentioned decrease In concrete shear strength in 

continuous beams is accepted, the experimental stirrup stress would be closer 

to the modified truss analogy. 

In current Codes of practice, for design of shear reinforcement there Is no 

difference between simple span and continuous beams and It Is proposed here 

that in continuous beams for the failure condition, the classical truss analogy 

could be used conservatively. 

4.4.3 Stirrup Stress Behaviour under Load Removal and 

Reloading of the Beam 

All beams, except one (0013N), were tested in a static loading 

condition. In test E30BC4 however, the load was applied up to the design service 

limit and then it was reduced to zero. In the second cycle the load was gradually 

increased up to failure. The stirrup strain (stress) was measured In both 

cycles and plotted against the applied shear as shown In Figs. 4.13a, b and 

4.22a, b. 

Generally, no significant stress was developed by the stirrup In the first 

cycle until inclined cracking of the web had occurred, whereupon the stress 

increased from zero to about 120 N/mm2. 

On load removal after inclined cracking the stirrup stress did not fall 

below a certain residual stress. In the second cycle, the stirrup stress remained 

unchanged up to approximately half the Inclined cracking load and then 

increased nearly linearly up to failure. 

In contrast to laboratory specimens, actual structures (especially 

bridges) are mainly subjected to load repetitions or changing load positions. in 

order to simulate real conditions, it Is desirable in a shear test to measure the 

81 



stirrup stress not only during a single loading but to study also the Influence of 

subsequent load cycles. 

The residual stress in the stirrup seems to be due to inelastic behaviour 

and unrecoverable deformation in concrete and hence in the stirrup, although 

the actual stress in the stirrup at the time of load removal may be well below 

its elastic limit. 

Several investigators including RuhnaU78 have observed the influence of 

repeated loading on the stirrup stress. Ruhnau tested five reinforced concrete 

beams of rectangular and T sections . Four beams were subjected to several load 

repetition cycles and the fifth beam loaded only twice (similar to one tested 

here) . Test results revealed that a substantial residual stress (15% to 30% of 

the yield stress) existed and it was suggested that the stirrup stress Increased 

under repeated loading. A comparison of the test results with both the 

theoretical truss and modified truss analogies Indicated that neither of these 

equations was acceptable for predicting stirrup stress under repeated loading 

and he therefore proposed the alternative equation: 

fsv=kl+k2V'Pv (PSI) ................ (4.34) 

where k, and k2 were empirical coefficients, pv=Asv/bSv and v-V/bz. 

The values of k, and k2 were thought to depend mainly on the previous loading 

and it was suggested that k, should range from 4000 Psi to 28000 Psi and k2 

from 0.45 to 0.6 . 

4.4.3.1 Calculation of Stirrup Stress 

It can be seen from Fig. 4.22a that In the second cycle neither classical 

nor modified truss analogies are capable of predicting the actual value of stress 

in the stirrup. The experimental results represents a bilinear curve starting 

82 



from a residual stress at zero load and continuing approximately evenly up to 

about half the initial inclined cracking load and then increasing at a higher rate. 

This part of the curve is located between curves for the two above mentioned 

truss analogies. 

Using classical truss analogy the stirrup stress is: 

fsv=VSV/(dAsv) 

But by the modified truss analogy: 

fsv=(V-VC)Sv/(dAsv) 

................... (4.35) 

................... (4.36) 

The equation 4.34 proposed by RuhnaU78 predicts a residual stress of kj. 

It also takes into account the change in the slope of the curve by inserting the 

term k2 but it doesn't consider the billnear shape of the curve. This effect has 

been considered in a mathematical model proposed by Tay et al7g. 

Since in most cases the ultimate shear resistance of structures subjected 

to cyclic loading is required, it is proposed that the classical truss analogy may 

be used with a sufficient margin of safety. It can be seen In Fig. 4.22b that In 

the rectangular section of the in-situ beam, after the second cycle of loading, 

there is no residual stress in the stirrup and the modified truss analogy can 

thus give a safe prediction of the stirrup stress. The reason is that in the first 

loading cycle the maximum shear was the service shear of the precast section 

which is smaller than that for the in-situ part. Thus the stirrup stress has 

recovered to some extent and the shear resisted by the concrete is maintained in 

the second cycle. 

4.5 Failure Mode In Precast Prestressed M-Bearn 

4.5.1 Web Crushing 

Seven beams failed in a web crushing mode which is sometimes referred 

to as web compression, web distress or inclined compression. This failure 
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occured in the web of the precast M-bearn between the loading point and the 

continuous support (see plate 5.6 for example). This mode of failure may be 

described by considering the previously mentioned truss analogy with the 

concrete struts acting between successive Inclined cracks as compressive 

members of the truss. Obviously these concrete struts have limited compressive 

strength and the shear strength of a section is thus not solely controlled by the 

amount of shear reinforcement as it is possible for the concrete struts to fail 

under the compression forces before the stirrups can develop their full tensile 

strength. 

Considering the above mentioned reasons for web crushing, it can be seen 

that this mode of failure occurs mostly in thin-webbed - sections under 

high shear force in which a high amount of shear reinforcement has been 

provided, and it is in fact an upper limit to the shear carrying capacity of a 

section. The shear strength of a beam will not be increased beyond that upper 

limit even by increasing the shear reinforcement. 

In prestressed concrete, thin-webbed T or 'T' sections are commonly 

used. The prestressing itself will increase the compressive stress In the struts 

and thus the importance of the web crushing mode of failure in prestressed 

concrete is quite clear. The web crushing problem has received comparatively 

little attention in reinforced concrete, since the width of webs is usually 

sufficient to produce web crushing failure. 

In Codes of practice, therefore, the web crushing limit is defined as a 

maximum nominal shear stress that the beam can carry. In the following section 

different code limits and their comparisons with the present experimental 

results will be discussed. 

84 



4.5.2 Code Provisions for Web Crushing 

4.5.2.1 BS8110 : 198527 9 BS5400 : 197868 , CP110 : 

197264 

The current British code BS8110 limits the maximum shear stress in a 

concrete section as: 

2 vmax=0ZFfcu<5.0 N/mm (SI) .................. (4.37) 

which includes a safety factor of 1.25. 

These values are slightly larger than those suggested by the previous code 

CPI 10 : 1972 and current bridge code BS5400 : Part 4 in which the following 

limits are recommended : 

vmax". 75NRfcu<4.75 N/mM2 (SI) .................. (4.38) 

which includes the same safety factor. 

The corresponding maximum shear force, V, Is obtained by multiplying 

Vmax by bd (effective cross-section area for shear). For the case of web voids 

such as in post-tensioned members, grouted or ungrouted, there Is no 

recommendation to allow for the reduction In web width. Guidance on the 

application of the CP110 code in the C&CA handbook8o, suggests that for 

ungrouted ducts, the actual width of concrete Is used and for grouted ducts the 

actual concrete width plus one third of duct width should be considered in 

calculating the maximum shear strength. 

In BS5400, it is recommended that the web width should be reduced by 

the duct diameter or two-thirds of the duct diameter for ungrouted and grouted 

members respectively. 

4.5.2.2 ACI 318-8381 

The current American code gives a maximum limit for the shear force 
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carried by the shear reinforcement equal to : (8qýfc)bd .............. in (Psi) 

or: (0.674f-, ) .............................. in ( Sl ) units c)bd=(0.6Nrf-cu)bd 

so the maximum total allowable shear stress in a concrete section will be: 

Vmaxývc+ 84fc (Psi) .......................... (4.38a) 

or: v x=v + 0.674-Fýv + 0.64fcu (SI) ............................ (4.38b) ma ccc 

where vc is the shear stress carried by the concrete section and prestressing 

effect obtained in accordance with the section 11.4 of this code. There Is no 

recommendation on the reduction of section width in the case of web holes in 

post-tensioned members. 

4.5.2.3 CEB-FlP Model Code : 197872 

There are two (standard and accurate) methods to determine the 

maximum allowable shear force In the section to prevent web crushing. The 

standard method limits the shear force In sections with vertical stirrups to : 

VR2`0.3fcbd ....................... (4.39) 

in which b is the web width and in case of bars or tendons passing through the 

web, b should be replaced by a reduced value bred if the bar diameter is 

greater than b/8 . 

bred=b-0.51ý 
....................... (4.40) 

where ý is the bar diameter and 1ý is the total web width engaged by the bars 

(which is not necessarily equal to the sum of the diameters In case of grouped 

bars). The bred should be obtained for the most unfavourable level. 

Using the CEB-FIP accurate method, the maximum shear force will be : 
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VR2=0.3f'cbdSin2O 
............................ (4.41) 

where b is determined as in the standard method and 0 is the direction of 

inclined cracks or concrete struts but: 3/5: 5cotO: 55/3 

4.5.2.4 Australian Standards , SAA Prestressed Concrete Code 

: 197870 

Protection against web crushing failure in the Australian code Is provided 

by limiting the maximum shear carried by the stirrups to : Vs=(0.584fc)bd 

Adding the shear carried by the concrete Vc, the maximum total allowable shear 

carried by the section : 

VmaxýVc+(0.58'ýFc)bd Vc+(0.524fic-u)bd (SI) .............. (4.42) 

in which b has been defined as the effective width of the web though there Is no 

definition for effective width to see whether the duct width should be deducted or 

not. 

4.5.2.5 Standard Specification for Highway Bridges 

(AASHTO)73 : 1977 

The American bridge code limits the maximum shear carrying capacity of 

a concrete section to: 

Vu=(4.75Nrf-c)bd (Psi) ...................... (4.43a) 

or: Vu = (0.3 9 7Nrf-c) bd= (0.3 5 5Nrf-cu)bd (SI) ......................... (4.43b) 

Again there is no inclusion for the effect of possible ducts in the web. This 

code gives a much more conservative result than ACI in this respect. 
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4.5.2.6 Danish Standards "Structural Use of Concrete,, 69 : 

1986 

Two different limits are given in the Danish Code for different types of 

stirrup arrangements: 

a) For vertical stirrups: 

vmaxýý0.25fcd! 56 N/mM2 ................ (4.43c) 

b) For 451, inclined stirrups: 

: 57 N/mM2 max'O. 35fcd ................. (4.43d) 

where fcd is the characteristic design compressive strength of concrete. 

4.5.3 Comparison of Code Predictions With Observed Web 

Compression Strength 

Table 4.4a, b shows a comparison between calculated web compression 

strengths as discussed in previous sections and the experimental values. The 

experimental values have been divided by the calculated values to obtain the 

actual observed safety factors . The mean values have also been calculated for all 

code predictions. 

It can be seen from this table that all British Codes (BS8110, BS5400 

and CP1 10 ) and the Danish Code underestimate the web crushing strength for 

the type of beams tested in this investigation and their observed safety factors 

lie between 2.0 and 2.66 in comparison with typical material or strength safety 

factors of 1.5 , 1.25 , and 1/0.85=1.17 suggested by different Codes. The 

American , Australian and European (CEB_FIP) Codes give closer predictions in 

which these mean values are 1.47 , 1.69 , and 1.60 respectively. 

It should be noted that the web crushing strength is partly affected by the 

shear span to effective depth ratio. It has been observed by Bennett67 and 

Balasoorlya66 that a reduction in shear span to effective depth ratio will lead to 
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an increase in the web crushing strength. The shear span to effective depth ratio 

in this investigation was relatively low, varying from 2.8 to 3.72. It can also 

be seen that generally for smaller shear spans, larger web crushing strengths 

were apparent. 

In the Codes there is no inclusion of shear span In predicting the web 

crushing strength and it is likely that their suggestions are based on the worst 

cases Le. for larger shear spans. It was observed by Tay62 that in some cases, 

with larger shear spans than those tested here, CEB-FIP and ACI were severely 

unsafe while CP110 gave closer predictions. It can thus be concluded that 

British and Danish Codes give closer predictions for high shear span to effective 

depth ratios while ACI, CEB and Australian Codes are more suitable for smaller 

ratios. 

It has been suggested in some Codes e. g CEB, that the web holes such as 

post-tensioning ducts either grouted or ungrouted should be deducted completely 

or partly from the web width. This has been investigated and confirmed by 

Clarke and Taylor18 in a series of tests on concrete prisms with different type 

of holes in respect of size, direction, bars and grouting. In tables 4.4a, b for 

calculation of web crushing shear, the effect of prestressing strands passing 

through the web has been considered only when using CEB method. It Is notable 

that where Codes allow for the effect of ducts they only refer to grouted or 

ungrouted ducts in post-tensioned members and it is disputable whether this 

could be considered for pretensloned members. If British Codes considered this 

effect, more conservative results would be produced. 

It is probable that when a bar, or group of bars, passes through the web 

of a beam which is subjected to Inclined compression, these bars can transmit 

the entire compressive force provided there is natural bond between bars and 

concrete, as with pretensioned bars bonded with concrete. 
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4.5.4 Proposed Mathematical Equation for Web Crushing 

Strength 

The truss analogy implies that the amount of required shear 

reinforcement depends on the shear stress carried by the concrete and the steel 

tensile strength: 

V-Vc=(dAsvfsv)/Sv , r=Asv/bSv ................... (4.44a) 

v-vc=( Vu-Vc)/bd=rfsv ................... (4.44b) 

For the case of relatively small shear spans, where the failure is 

controlled by crushing of the web, the above equations can not predict the actual 

shear at failure. The reason is that in this case the following factors will apply, 

as has been observed in this investigation and also by otherS8,66. 

a) The ratio of shear span to effective depth will itself influence the web 

crushing strength. 

b) The shear reinforcement may not be fully utilized in this type of 

failure and thus the stirrup ratio can not be increased Indefinitely. 

The shear span effect can be inserted in the left hand side of equation 

4.44b . The right hand side then may be a function of rfsv rather than rfsv 

itself. 

(a/d)(V-Vc)/bd=f (rfsv) .................... (4.45) 

and at failure V=Vu: 

(a/d)(VU-Vc)/bd= f(rfyv) ..................... (4.46) 

It can be seen from equations 4.45 and 4.46 that the shear span is 

inversely proportional to the shear force V or VU . For small shear spans, the 

direction of compressive struts Le inclined crack direction, is controlled by 

the position of the nearest point load to the support. This direction is the line 

joining loading point to the support. Mattock and Kaar8 related the shear 
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strength to the sine of the angle between that line and the horizontal. They 

introduced a mathematical model which was discussed in chapter two. 

To find a mathematical form for the right hand side of equation 4.45, for 

every loading stage the experimental shear force (V) and stirrup stress(fsv) 

have been used to plot the left hand side of the equation against (rfsv). A mean 

curve was drawn to approximate all the points. For simplicity this was taken as 

a parabolic curve rather than higher orders. The equation of this curve Is: 

(a/d)(V-Vc)/bd=3.9(rfsv)-O. l 51 (rfsv)2 ....... (SI) ....... (4.47) 

Furthermore a conservative lower bound line was drawn to give a 

simplified relation, and the following equation represents that line (see the 

green line in Fig. 4.23). 

0.45(a/d)( V-Vc)/bd=rfsv 

or: Asv=0.45(a/d)(V-VC)SV/dfsv=p( V-Vc)Sv/dfsv ............ (4.48) 

It can be seen that Eqn. 4.48 has an extra parameter (p) in comparison 

with the conventional equation: Asv=(V-Vc)Svtdfsv 

The value of p is : 

p= 0.45(a/d): 51.0 or: a/d : 52.2 ................ (4.48a) 

This means that for the type of beams tested here, if the shear span to 

effective depth ratio is less than 2.2, the required area of shear reinforcement 

may be reduced. 

4.5.4.1 Condition at Failure 

For the failure condition experimental values of ultimate shear (Vu) and 

stirrup stress (normally fyv) have been plotted in conjunction with the 

proposed equation in Fig. 4.24. The web crushing results from some other 
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investigators have also been shown in that figure. It should be mentioned here 

that at web crushing failure, the stirrup stress is not necessarily equal to its 

yield value. 

To find the actual stirrup stress at web crushing, the web crushing shear 

force VU should be obtained experimentally or by using the maximum permitted 

shear force given in the codes and then by using the curve or simplified line of 

Fig. 4.23, the actual value of (rfsv) will be found. For a specific condition of 

web crushing, the value of (rfsv) Is a constant, so by increasing the stirrup 

ratio (r), the stress (fsv) will be reduced without affecting the strength. This 

means that shear reinforcement can not be utilized above a certain ratio. 

4.5.4.2 Effect of Concrete Strength 

It was mentioned in section 4.5.2 that the web crushing strength Is 

dependent upon the concrete strength, and some codes have assumed it to be 

related to the square root of compressive strength. The proposed equation (Eqn. 

4.47) does not include concrete strength but it is for an average cube strength 

of 67N/mm2 throughout the tests. It is then reasonable to change the web 

crushing strength by a factor (Nrfcu)/(Nr6-7)-4-fcu/8.2 N/mM2. 

(a/d)(V-Vc)/bd=(Nrfc-u/8.2)[3.9(rfsv)-O. I 51 (rfsv)2] ........ (4.49a) 

, 
)/bd=3.9(rfsv)-O. l 51 (rfsv)2 or: (8.2/NrTfc-u) (a/d) (V-Vc .......... (4.49b) 

(Both Eqns. 4.49a, b are in Sl units). The simplified lower bound line becomes: 

0.45(a/d)( V-Vd/bd- (4-fcu/8.2) rfsv (SO ........... (4.50a) 

Asv= (3.7/4-f, -,,, ) (a/d) (V-Vc) Sv/dfsv (SO ........... (4.50b) 

The reduction factor to the conventional equation will then be: 
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p= (3.7/Vic-u)(a/d):! ý1.0 

4.6 Enhanced Shear Strength near the Support 

........... (4.51) 

At the support, or loading point region of a beam, the reaction or external 

load produces a compressive bearing effect within the beam depth. The affected 

part can be obtained by drawing 450 dispersal lines from the supports or 

loading points. The affected area from each side of the support or load will be 

equal to the beam's depth. 

This bearing compressive stress is similar to vertical prestressing 

which in turn reduces the principal tensile stress and hence increases the shear 

strength, and is why shear cracks are rarely observed in these regions. 

4.6.1 Code Provisions for Enhanced Shear Strength 

Most Codes of practice allow for the increased shear strength near the 

supports by assuming a constant shear force from a certain point to the support 

or increasing the concrete shear strength, irrespective of the shear force 

diagram, near the support. These recommendations are similar for either 

simple or continuous supports. 

4.6.1.1 British Code BS8110 : 198527 

It has been explained that shear failure in the beams without stirrups 

normally occurs on a plane inclined at an angle of approximately 301, to the 

horizontal but if the angle of failure plane is forced to be inclined more steeply 

than this (because the section considered Is close to a support or for other 

reasons ), the failure shear is increased, and this enhancement of shear 

strength may be taken into account when designing sections near the support by 
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increasing the design concrete shear strength vc to vc(2d/av) [but not greater 

than the 0.0-CU or 5N/mM2 Whichdver is the lesser]. This enhancement may be 

applied to any section closer than 2d to the face of support or concentrated load. 

The total required area of shear reinforcement will be : 

ZAsvýavb(v-2dvc/av)/0.87f y ý! 0.4bav/0.87f y ............ (4.52) 

which should be provided within the middle three-quarters of av. 

In the simplified method it is recommended that the design shear stress 

may be calculated at a section at a distance of the effective depth, d, from the 

face of the support. 

4.6.1.2 British Bridge Code BS5400: Part 4 : 197868 

According to this code, enhancement of shear strength may be allowed for 

at sections within a distance av<2d from the face of a support, front edge of a 

rigid bearing or centreline of a flexible bearing. This enhancement should take 

the form of an increase In the allowable shear stress Cvc to Cvc(2d/av) but not 

greater than 0.754-fc-u or 4.75N/mm2. 

Cs=depth factor=max. [Nr(500/d) 
, 0.70)] ..... d in millimetre 

av=distance of section considered to the support 

4.6.1.3 CEB-FlP Model Code72 : 1978 

The European code adopts a less conservative and possibly unsafe design 

method for shear near supports. It suggests that shear stress within a distance 

V from the face of a direct support need not be checked. 
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4.6.1.4 Australian Standards, SAA Prestressed Concrete 

Code7o : 1978 

According to the Australian code, the calculated value of shear 

reinforcement at sections within a distance of h/2 (half the beam depth) should 

be continued to the support. 

4.6.1.5 Danlsh Standards "Structural Use of Concrete-69 

The Danish code assumes a reduced shear force within a distance of jd 

(internal lever arm) from the support and having a constant value equal to the 

shear force at that distance. This method Is similar to the simplified method of 

BS81 10. 

4.6.2 Experimental Results of Enhanced Shear Strength and 

Proposed Method 

The Increased shear strength of sections near the supports was observed 

experimentally by the measurement of stirrup stresses In the vicinity of 

continuous supports. The stirrup spacings were dictated by the shear force 

required to be transferred between the precast and In-situ concrete. Stirrup 

strains were obtained by using electrical resistance strain gauges fixed to the 

middle of all stirrups placed near the support. The stresses were then obtained 

by using the experimental stress-strain relationship for the 6mm high yield 

deformed bar. 

Experimental stirrup stresses were plotted against their distances from 

the support. Typical curves can be seen In Figs. 4.25 to 4.28 for some of the 

tests. Each figure consists of a number of curves representing a certain loading 

level Indicated by 'R' (the ratio of load to the failure load). The curve with 

R=1.0 represents the failure condition. 
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Consideration of the stirrup stress variation along the beam over the 

support reveals that in general the stirrups at or very close to the support 

remain more or less unstressed right up to the failure. For stirrups further 

from the support higher stresses were observed increasing approximately 

linearly with their distances from the support up to a certain point from which 

the stress in the stirrup stays approximately constant. For the failure load 

after that point all the stirrups read their yield stress. 

It can be seen from the curves that at a distance of about 250mm to 

350mm, the stresses in the stirrups become constant or equal to their yield 

value (for the failure load). Comparing these distances with the effective depth 

(Le 430mm) shows that the enhancing effect of the support on the shear 

strength starts from a distance of about 0.6d to 0.8d from the support. An 

average value of 0.7d may thus be selected. 

Assuming a linear relationship between stirrup stress and its distance 

from the support (as experimental results show), the proposed mathematical 

equation will be: 

fs=(f y /0.7d)x ...... for: x: 50.7d ...................... (4.52a) 

fs=fy ...... for: x>0.7d ....................... (4.52b) 

where x is the stirrup distance from the support (see also Fig. 4.29). 

The above equation is for a constant shear force acting In the support 

region and it can be seen that while stirrups located further than 0.7d from the 

support have their full yield stress, the stirrups located within 0.7d from the 

support do not develope their full tensile strength. This means that there Is a 

reserve of shear strength in this region. The unused strength of the stirrup 

(Afs) is : 

Afs =f Y, 
fs=f 

Y- 
(fy/0.7d)x=fy(I -x/0.7d) for: X! Old 

............ (4.53) 

This reserve of stirrup tensile strength is capable of Increasing the shear 
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strength of the beam as follows: 

Av=r (, &f, )=rfy(l-x/0.7d) for: x! Old ............ (4.54) 

Adding this extra shear strength to the conventional expression for shear 

strength: 

Vu= AV+(vc+rfy)=vc+(Av+rfy)=(vc+Av)+rfy ............. (4.55) 

It can be seen from the above equation (Eqn. 4.55) that the Increased 

shear strength can be expressed as an imaginary increase in the shear carried 

by stirrups or shear carried by concrete. For practical purpose the value of Av 

can be taken as its average between x=O and x=0.7d: 

X=o Av=rfy 

x=0.7d AV=O 

(Av)av. '0.5rf y ............... (4.56) 

and the ultimate increased strength: 

vu= 0.5rf y +(vc+rfy). vc+l . 5rfy. (vc+0.5rfy)+rfy .............. (4.57) 

For the beams tested here rfy-1.94 N/mM2 while the average value of vc 

is equal to 0.80 N/mM2 so the Increased concrete strength will be: 

V'C= VC+Av=0.81+1.94(1-x/0.7d) ................. (4.58) 

v'c=lncreased concrete strength 

with an average value of : NO dav. "1.78 between x=O and x-0.7d which Is 

2.2 times greater than the concrete shear strength vc. 

4.6.3 Comparison of Experimental Results with Different 

Code Predictions 

In general Codes of Practice have two different methods of predicting the 

enhanced shear strength near the supports. One approach is to increase the 
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concrete shear strength by a factor relating to the distance between the section 

considered and the support, and the enhancement is limited to a certain length 

from the support. This method is used by the British Codes BS8110 and 

BS5400. The second approach is to reduce the shear force near the support to 

the shear force at a point located at a certain distance from the support. This 

point will usually have a smaller shear force In the case of uniformly 

distributed loading. This method is used as a simplified method In BS81 10 and 

also in Australian and Danish Codes. The first method is more accurate as seen 

from the experiments while the second method Is simple and practical. 

With reference to the first method, the experimental Increased shear 

strength was attributed to an increase in the concrete shear strength vC and Eqn. 

4.58 was derived. A comparison was made between this equation and BS81 10 or 

BS5400 prediction In table 4.5. Test results show that British Codes 

overestimate the Increased shear strength of the beams tested here. This 

overestimation is for both the length of the beam from support over which the 

shear is increased (2d) and also its magnitude (see table 4.5). 

There is no explanation in the Codes whether this enhancement Is applied 

for continuous structures and has been suggested by Leonhardt77 that the 

concrete shear strength in a continuous beam Is smaller than that of simply 

supported beam with an order of 16/22=0.72. 

The present observation proves this matter to some extent but it seems 

that more research is required in this area. In a continuous beam flexural 

cracks will appear at the top of the beam and penetrate downwards. If the shear 

force is high at the support (which is usually the case), these flexural cracks 

extend steeply towards the support to form the flexural-shear cracks. In this 

case a reduction in the beam's shear strength could be expected. 

Using the second approach of the Codes, including the simplified method of 

BS81 10, Australian and Danish Codes in which a reduced shear force Is assumed 

from a distance of d, h/2 or jd respectively seems to be safer for the case of 
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continuous beams, especially the Australian code in which the assumed distance 

(h/2=-0.6d) is close to the observed value of 0.7d . 

The European Code (CEB-FIP) recommends that the shear stress should 

not be checked within a distance V from the support irrespective of the shear 

force magnitude in that region. This seems an illogical approach, at least for 

continuous beams, and could be unsafe and dangerous. 
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Table 4.1 Experimental and Calculated Values 
of Web Cracking Shear 

Predicted Values by Different Codes 
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E30AAl 68.3 6.2 17.0 87.9 76.7 60.7 96.8 44.4 88.3 

E30AA2 72.0 6.1 16.7 98.3 77.0 62.1 97.1 44.1 88.7 

E30AB3 65.0 6.1 16.7 92.7 75.1 65.3 94.8 44.1 86.5 

E30BC4 66.5 5.9 16.2 67.7 74.2 57.2 93.5 43.6 85.6 

El OCC5 67.2 5.9 16.2 94.3 74.4 64.8 93.5 43.6 85.8 

El OCD6 69.1 6.0 16.4 56.8 75.6 65.0 95.2 43.8 87.1 

WTFCC7 68.1 6.1 16.7 94.3 76.0 62.7 95.8 44.1 87.5 

WTFP= 67.5 6.0 16.4 103.2 75.2 57.2 94.6 43.8 86.6 

WTFCC9 64.2 6.1 16.7 97.6 75.0 58.9 94.5 44.1 86.3 

WTFDCC10 62.5 5.9 16.2 92.0 73.1 59.0 92.2 43.6 84.3 

Note : The Vertical Component of Prestress has been Added 
to Calculated Design Values 
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Table 4.2 Ratio of Observed to Calculated Values of Web 
Cracking Shear (Vertical Component of Prestress Included) 

v 
cr., Test 

Vcr., Cal. 
All Safety Factors Included in Calculated Values 

Test 
Code 

BS8110 
BS5400 
C13110 

CEB-FIP ACI 
318-83 

Standard Spec. for 
HighwayBridges 
(AASHTO) 

Standars Asso. 
ofAustralia 

E30AAl 1.14 1.44 0.90 1.98 0.99 

E30AA2 1.27, 1.57 1.00 2.21 1.10 

E30AB3 1.23 1.41 0.97 2.08 1.07 

E30BC4 0.90 1.16 0.71 1.52 0.79 

El OCC5 1.25 1.43 1.00 2.12 1.09 

El OCID6 0.74 0.86 0.60 1.28 0.65 

WTFCC7 1.23 1.49 0.98 2.12 1.07 

Vv7FPCC8 1.36 1.78 1.08 2.32 1.19 

WTFCC9 1.29 1.64 1.03 2.19 1.13 

Vff FDCC1 0 1.24 1.53 0.99 2.07 1.09 

MEM* 1.21 1.50 0.96 2.06 1.05 

Test WTFCC6 has not been taken into account due to 
premature failure of the connection 
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-Table- 4.3 Ratio of Observed to Calculated Values of Web Cracking 
Shear (vertical Component of Prestress Not Included) 

Vcr.. test 
Vcr., cal. 

All Safety Factors Included in Calculated Values 

Different 
Codes 

Test No. 

BS81 10 
BS5400 
C13110 

CEB-FIP 
ACI 
318-83 

Standard Spec. for 
Highway Bridges 

(AASHTO) 

Standard Asso. 
of Australia 

E30AAl 1.47 2.01 1.1 3.20 1.23 

E30AA2 1.63 2.16 1.22 3.58 1.36 

E30AB3 1.58 1.90 1.18 3.38 1.32 

E30BC4 1.16 1.65 0.87 2.47 0.97 

Ell OCC5 1.62 1.94 1.21 3.44 1.35 

E1OCD6 0.95 1.16 0.72 2.07 0.80 

WTFCC67 1.59 2.05 1.19 3.44 1.33 

WTFPCC8 1.75 2.52 1.32 3.76 1.47 

WTFCC9 1.67 2.31 1.25 3.56 1.40 

WTFDCC10 1.61 2.15 1.21 3.36 1.35 

MEAý 1.56 2.07 1.17 3.35 1.30 

Test WTFCC6 has not been taken into account due to 
premature failure of the connection 
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Table 4.4a. Predicted Web Crushing Strength 
by Different Codes 

Predicted Web Crushing Strength by the Codes (M) 
(All Safety Factors Included) 

ýD 

E (D CO C: 0 E a m -C p-6 Ul) -: t C\1 
CO r" 

rý 
G) 

(d 0 
-0 a "D 

Cd 
a, 

(1) 
U) 

- 
LLI 

ý'. 
C: 

(D 
CO 0) 

CD (3) V) 

CO C: 0 V C. ) 416 

C 

. Ui 
.0 :3Z 
0 (v 

-- 
C U) Lý- -0 

6 CO .0 CO 
a) rý Cd 

(D 43) = 
a- 

U) 
- (1) 0) z E 

0 
- 

0 
00 

0 co C. ) 
CV) , CY) r_ 

CO 
= 

CO 
CD 

E -a 40 CO (n 
U') - 

w 
L) -6 0 < (13 ý3 

OD 
0 F CY) 

d 
CD 

C: (D 
0- 

0) M :3 C13 U) (L CO (-) 0 
- V) 0 ID a 
:)"0 

M 
CO 06 U) Lu 0 

.2 
- < 0.0 a 

E30AAl 68.3 2.8 312 120.4 114.38 1 ý7.3 203.9 180.0 144.5 

E30AA2 72.0 2.8 309 120.4 114.38 198.0 207.7 183.3 144.5 

E30AB3 65.0 2.8 267 120.4 114.38 178.6 200.0 176.1 144.5 

E30BC4 66.5 3.25 255 120.4 114.38 182.6 200.0 176.8 144.5 

E1OCD7 68.1 3.72 297 120.4 114.38 186.6 203.4 179.3 144.5 

WTFPCC8 67.5 2.8 348 120.4 114.38 185.3 202.0 178.4 144.5 

WTFCC9 64.2 2.8 329 120.4 114.38 176.0 199.2 175.2 144.5 
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Table 4.4b. Ratio of Observed to Calculated Web 
Crushing Strength(Observed Safety Factor) 

Ratio of Observed to Calculated Design Web Crushing 
Strength 

a 
0 

E 
E 

CL 
(D 

a 
.0= UI) --; t 04 

co rý 
co 
f*- 
0) 

T) (D 

rd U 
-U r- 

. ti- U) t: ý 
Ld 

CC) 0) (3) 0) ce) co I 
a0 (11 

a 
V 

Z C 
(d 

- 
U) 

0- co U) -0 co C 
A 
(D M Ca. (D CY) 

2' 

E 
C) CD 

00 Cb 0 L) c) C0 (3) (d ch (n (0 

E 8C 
S 

(1) 
co 
(1) C/) a- 

w 
(-)-6 

'D 
L) 
< 

Vd - .. t; -ý; 0) - 
U) co 

. CD Eý (d 
(D 

C: (1) 
0ý 
) 

4) CL :3 
X" ( ) 

co DO (-) 0 
M 

0 a) 0 :3Z0 
< (L ( ) 

Cd 
0 

m C- C/) C/) LLJ - - 

E30AAl 68.3 2.8 312 2.59 2.72 1.66 1.53 1.73 2.15 

E30AA2 72.0 2.8 309 2.56 2.70 1.56 1.48 1.68 2.13 

E30AB3 65.0 2-8 267 2.21 2.41 1.50 1.33 1.56 1.91 

E30BC4 66.5 3.25 255 2.11 2.29 1.38 1.27 1.44 1.76 

El OCD7 68.1 3.72 297 2.46 2.59 1.57 1.46 1.65 2.05 

W`TFPCC8 67.5 2.8 348 2.89 3.04 1.86 1.72 1.95 2.40 

WTFCC9 64.2 2.8 329 2.73 2.87 1.73 1.53 1.87 2.27 

2.50 2.66 1.60 1.47 1.69 2.09 MEAN ( Safetv Factors Included 1 

2.0 2.12 1.07 1.25 1.43 1.40 

MEAN (Safetv Factors Removed) 

Table 4.5. Values of Increased Concrete Shear Strength 
(Proposed Eqn. )in Comparison with BS8110 

d-Effective Depth 

Distance of the Section 
From the Support, x 

0 0.25d 0.5d 0.7d d 1.5d 2d 

BS8110 Increased 
Shear Str. N/sq. mm 

6.25 6.25 3.23 2.32 1.61 1.07 0.81 

Increased Shear Str. 
by Proposed Eqn. 
(Eqn. 4.58), N/sq. mm 2.75 1.29 1.46 0.81 0.81 0.81 0.81 
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CHAPTER FIVE 

5.1 General 

As explained in chapter three, the complete test program was divided into 

two major series. This was because of the importance of the shape of the top 

flange and its effect upon the shear transfer between the two components. In the 

first series connections were made between precast-prestressed standard 

M-beams and rectangular in-situ beams and various parameters were changed 

throughout the tests. In this chapter several aspects of the behaviour of this 

type of connection are discussed. 

5.2 Description of the Connection 

Standard M. O. T C&CA (Ministry Of Transport, Cement & Concrete 

Association) M-beams have been widely used In the construction of motorway 

bridges in U. K. for some years either In Individual spans or continuous 

structures. The type of connection which was tested here was an unconventional 

(new) joint in continuous structures as described in the introductory chapter 

in Sec. 1.2.7 (see also Fig. 1-7). Relatively few bridges have been constructed 

using this method. The negative bending moment over the supports can easily be 

transferred by providing continuity bars in the top deck slab, but the 

mechanism of shear transfer raises many questions. 

Although the test beams were 1/3 scale M8, In this part of the 

programme no attempt was made to change the geometrical shape of the model 

M-bearn in the joint region. 
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5.3 Parameters Investigated 

Experimental variations mainly concentrated on details of the connection 

including its reinforcement and dimensions, though in one case the 

moment/shear combination was changed. 

5.3.1 Change of Shear Reinforcement 

At the connection between the two components one of the most important 

features Is the shear reinforcement in the in-situ concrete surrounding the 

M-beam. This concrete on each side of the web of the M-bearn Is referred to as 

"concrete nibsu. In previous construction work of this type, designers have 

provided a large amount of stirrups in these nibs which is a difficult job to 

undertake in practice. It was thus decided to examine the need for this 

reinforcement. The effect of reinforcing bars, or strands, projecting from the 

end of M-beam into the In-situ concrete was also examined. This is Important 

because if we can eliminate or reduce the necessity for these projected bars, 

the precast beams will be easier to make and transport, the labour work on site 

will be less and there will be no corrosion problem if the beams are stored on 

site. 

5.3.2 Change of Dimensions 

In this part of the tests the only geometrical change was the length of 

embedment of the end portion of the M-beam. If this length can be reduced 

without losing the strength, then again economy could be achieved. 
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5.3.3 Change of Moment/Shear Combinatlon 

In one case the loading arrangement enabled a higher bending moment to 

be produced at the connection in order to see the effect upon the shear transfer 

capacity. 

5.4 Mechanism of Shear Transfer at the Connection 

In the conventional method of continuous precast prestressed composite 

construction precast beams are supported permanently on the piers and in-situ 

concrete is cast over the beams and supports transmitting the shear force to the 

supports. In contrast, since the new method comprises precast elements 

supported away from the piers through the in-situ concrete crosshead, one has 

to make sure that the shear force can be transferred from the precast beams to 

the crosshead and then to the supports. Consider such a connection as in Fig. 

5.1 without any additional shear connection. The shear force acting at the right 

hand side of the connection (where the M-bearn is situated) tends to move the 

M-bearn downwards relative to the In-situ crosshead and Its nibs. This 

movement is carried (Le the shear force is transferred from the M-bearn to the 

in-situ nibs) by means of three different mechanisms: 

a) Mechanical interlock between the bottom surface of the M-beam's top 

flange and the in-situ nibs. A part of the shear force, V1, (half at each side) is 

transferred by this mechanism (see Fig. 5.1c, d). The significance of this 

mechanism will be discussed in a later chapter. 

b) The bond between the in-situ concrete nibs and the M-beams web 

provides this mechanism of shear transfer. A total value of bond force V2 (half 

at each side) is transferred by this effect. 

c) The third mechanism is provided by the top slab over the M-bearn 
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which is cast together with the nibs and crosshead. This part Is equivalent to 

the shear capacity of the top slab. The contribution of this mechanism is 

assumed to be V3 (see Fig. 5.1c, d). If the connection transmits the total shear 

force V then: 

V'Vl+V2+V3 ...................................... (5.1) 

The completion of the first and second parts of the test programme 

revealed the importance and contribution of each mechanism In the total shear 

transfer capacity of the connection. In general it was seen that the second part 

(V2) is dependent on the roughness of the M-beam's web and the shrinkage of 

the in-situ concrete nibs. Since the M-beam's web Is usually quite smooth and 

the in-situ concrete is subject to shrinkage, this part of the shear transfer 

mechanism cannot provide a reliable effect (this topic was examined In a 

complementary test program on small specimens, and is discussed In chapter 

seven). 

5.5 Test Details 

The beams tested in this part of the investigation comprise six different 

connections between precast prestressed M-beams and in-situ concrete. Two 

point loads were applied through a span-cantilever arrangement which is 

capable of producing high shear and bending moment in the connection (see Fig. 

3.10 for bending moment and shear force diagrams). 

In the first four tests the embedment length In the connection was 300mm 

which is 1/3.3 of the prototype embedment length (1000mm). Two other tests 

had 100mm embedment length at the connection representing an embedment 

length of 300mm in prototype. Other details, test specifications, calculated and 

experimental results are shown In table 5.1. 
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5.6 General Procedure for Evaluation of the Shear Transfer 

Capacity of The Connection 

The connection between precast and in-situ concrete is acceptable If its 

shear capacity is greater than the shear strength of either precast or in-situ 

beams, which means that a premature failure in the connection does not occur. 

In addition to that, the connection must be serviceable Le cracks, separation 

between components and the rotation at the joint are within accepted limits. 

5.7 Experimental Results 

The first test had exactly the same construction details in the connection 

as in the prototype. These include overlapping length and stirrups In the In-situ 

nibs. Both precast and In-situ beam stirrups were continued through the 

overlapping zone with their original spacings so the amount of stirrups in this 

zone was equal to the sum of both. 

The deck was designed with the precast section having a lower shear 

strength than the in-situ section (see table 5.1 ). This was to ensure failure 

occured in one side of the connection so that the failure mode could be seen 

clearly (Le without a simultaneous failure in the precast and in- situ beams). 

Load was increased in about 20 intervals and a web crushing failure occured In 

the precast section (see plate 5.6 ). 

The failure shear force was close to the calculated shear resistance of the 

precast beam and it can thus be concluded that the connection was able to 

transfer the whole design shear force. It can also be seen in plate 5.6 that the 

connection overlap zone has remained unaffected after the failure. 
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5.7.1 Stirrup Stress 

The stress in the stirrups in each section of the beam can be used as a 

means to evaluate the amount of shear force carried by that section. Strains 

were measured for all stirrups positioned in the overlapping zone both In the 

precast beam and in-situ nibs. These strains were then converted to stresses 

using experimental stress-strain curves for the stirrup reinforcement. 

5.7.2 Variation of the Stirrup Stress Within the Connection 

In Fig. 5.2 the experimental stirrup stresses have been plotted against 

their positions in the connection (positions are expressed as the distances from 

the support). Different colours have been used to distinguish between precast 

beam and in-situ nib stirrups. These curves have been produced for different 

loading stages expressed as the ratio of load to failure load (R). 

For the precast beam, stresses continue to decrease along the overlapping 

length as the stirrups become nearer to the precast beam's end. As an example, 

for a shear force equal to 73% of the shear force at failure, the stirrup stress 

decreases from 270N/mm2 (for stirrup outside the connection) to 210,70 and 

10 N/mM2 (for those stirrups located Inside the connection). The smallest 

stress being for the stirrup positioned at the end of precast beam. This Indicates 

that the shear force transfers gradually from the precast beam to the in-situ 

nibs. To obtain the distribution of forces from the precast section to the in-situ 

nibs it is possible to use the experimental stirrup stress (fs) In the following 

equation: 

VP. Vc+rfsbd ..................... (5.2) 

in which Vp is the amount of shear force in the precast section at the position of 
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the stirrup having a stress of f.. This equation could be used for all stirrups 

within the overlapping zone to obtain the shear force diagram of the precast 

beam along its embedment length. This has been shown for the beam E30AAl at a 

load equal to 73% of failure load (see Fig. 5.3b). 

It should be mentioned that in obtaining the shear force diagram it has 

been assumed that the shear force carried by the precast beam at its end (inside 

the connection) is zero. At first it was thought that part of the total shear Is 

carried by the dowel action of projecting bars from the end of precast beam into 

the in-situ concrete, but as it will be discussed later, in a later test the dowel 

action was eliminated and it was revealed that in fact for this type of connection 

in which there is a top flange effect, the dowel forces do not act. In the next 

chapter the importance of the dowel action of projecting bars can be seen when 

the precast beam in the connection has no top flanges. 

5.7.3 Distribution of Forces Between the Two Parts of 

Connection 

The shear force diagram produced for the precast beam Inside the 

connection can be converted to an equivalent distributed load by differentiating 

the shear force (i. e. q=-dV/dx ). This distribution consists of two different 

uniform amounts (see Fig. 5.3c). 55% of the shear force Is transmitted 

through 250mm (83%) of the connection length. The remainder of the shear 

force (45%) is transferred through a 50mm (17%) length of the end of the 

precast beam into the in-situ nibs. 

The distribution of forces between the two parts were obtained for other 

loading stages and also for tests E30AA2 , E30AB3 and E30BC4 . They were 

similar to the results from E30AA1. 

The embedment part of the precast beam was removed from the connection 

by carefully breaking the concrete nibs and it was seen that the diagonal cracks 
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had penetrated Into the connection but these cracks reduced for smaller 

distances from the end of the precast beam. 

It is thus seen that for an embedment length of 300mm, a considerable 

proportion of the shear force is transferred through a small length of the end of 

the precast beam. This lead to the conclusion that it could be possible to use a 

smaller embedment length than 300mm. Two tests were thus undertaken in 

this manner and their results will be discussed later in this chapter. 

5.7.4 The Shear Force Carried by the In-situ Nibs and the 

Stirrup Stress 

The distributed load that was obtained from the precast beam In the 

overlapping zone (see Fig. 5.3c) will be transferred to the in-situ nibs 

surrounding the end of the precast beam. The Intensity of this distributed load 

is low for a considerable length of the nib (250mm out of 300mm). The shear 

force diagram for the nibs can be obtained using that load distribution or simply 

by subtracting the precast beam's shear force from the total shear force In the 

section as shown in the upper part of Fig. 5.3b. The concrete nibs have large 

cross-sections relative to the precast beam (about 4.5 times in this case) and 

so the shear carried by the concrete is significant. 

The shear force increases from zero (at the end of nibs) to about the 

shear strength of concrete nibs (without stirrups) within a length of 200mm 

(out of 300mm). This is confirmed by considering the observed shear force in 

the nibs obtained from strain measurement in stirrups in the nib. 

In Fig. 5.2 the red lines show the stirrup stresses in the in-situ nibs and 

beam . There are six stirrups in the nibs and for five of them (located within 

200mm from the end of the nib) the stress is almost zero. In other words in 

this distance the shear force carried by the nibs is less than or equal to the 

shear strength of concrete nibs without stirrups. This was the basis for the 
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tests in which no stirrups were used in the nibs and will be discussed later in 

this chapter. 

5.8 Shear Transfer by the Projecting Bars from the 

Precast Beam Into the In-situ Concrete 

After observing that a large amount of shear force is transferred to the 

in-situ nibs from the end of the precast beam, it was thought that possibly the 

dowel action of the projecting bars had an important contribution. It was thus 

decided in test E30AA2 to eliminate any dowel action effect with sleeving all the 

longitudinal bars with soft rubber at the end of the precast beam (and also the 

continuity bars in the top slab) before casting the in-situ concrete (see chapter 

three section 3.11 for other details). 

5.8.1 Ultimate Strength and Failure Mode 

The beam failed by web compression in the precast beam at a load very 

close to the failure load of a previous test (E30AA1) with dowel action effect 

(see plates 5.1 and 5.7). No weakness was observed in the connection itself and 

it was able to transfer the design shear strength of the precast beam (see table 

5.1). 

5.8.2 Stirrup Stresses 

Experimental stirrup stresses were plotted against their positions In the 

connection (see Fig. 5.4) and the same trend as the previous test (E30AA1) was 

observed. In the precast beam the stirrup stresses are lower for those nearer to 

its end and in the in-situ nibs no significant stress was observed in the stirrups 

up to failure. In the precast beam outside the connection the stirrup stresses 
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reduce slightly as they become nearer to the span loading point. This may be 

explained in two different ways: 

a) The increas In shear strength (and hence decrease in stirrup stress 

near the loading point , taking into account that the distance between the span 

load and starting point of the connection is approximately equal to the effective 

depth . This was discussed In chapter four as the enhanced shear strength near 

the supports and loading points. 

b) The reduction in shear strength of the precast beam within the 

transmission length (the part of the precast beam in the connection is almost 

within its transmission length) which results in lower stirrup stress remote 

from the beam's end . 

5.8.3 Inclined Tensile Strain In the Concrete within the 

Connection 

A comparison was made between the inclined tensile strain on the precast 

beam embedded In the in-situ concrete nibs and the inclined tensile strain on 

the external surface of the In-situ nibs. Three different positions (Rj, R2 and 

R3 as in Fig. 5.5 ) were selected both on the precast beam and the same level of 

in-situ nib along the connection. Tensile strains in a direction of 450 with the 

horizontal were measured and have been plotted against the total shear force in 

the connection (see Fig. 5.5). Solid lines are for the precast beam and dotted 

lines for the in-situ nib. Theoretically In a monolithic rectangular section 

there should be no change in the strains of different points located at a specific 

level of the beam's depth but since the connections tested here were not 

monolithic, strains are not similar in each level of two parts and in fact a large 

difference was observed. It can be seen from these curves that near to failure 

the precast beam can develope a very high inclined tensile strain of about 7000 
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micro strain (position R3) whilst at the same time at the same level the tensile 

strain in the same direction in in-situ nib is almost zero. For the precast 

beam itself it can be seen that although the strain at the end of beam (position 

Rj) is smaller than that for R3 it is of significant value at about 1200 micro 

strain. 

These observations again confirm the previously mentioned fact that most 

of the in-situ nibs are carrying only a small fraction of the shear force with a 

large amount of shear being transferred to the in-situ nibs near the end of 

precast beam. 

5.9 Elimination of Projecting Bars and Stirrups In the Nibs 

Since it was observed In previous tests that : 

a) The stirrups in the In-situ nibs do not develope any appreciable stress 

(i. e. they do not participate in the load carrying capacity of the 

connection). 

b) The elimination of dowel action (by sleeving with rubber) did not 

make any difference to the behaviour of connection. 

It was decided in this test (E30AB3) to use neither stirrups in the 

in-situ nibs nor projecting bars from the precast to the in-situ beam (except 

four 8mm bars at the bottom which may be needed In practice for possible 

positive bending moment resulting from support settlement). 

In this test the connection was designed such that the in-situ beam had a 

lower shear strength than the precast beam but in the embedded part of the 

precast beam the stirrups had the same spacing as in the in-situ beam, 

representing the stirrup arrangement as if assuming a monolithic beam. 
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5.9.1 Ultimate Strength and Mode of Failure 

In this test the in-situ beam failed in a diagonal tension mode with a very 

wide crack approximately joining the support and the span loading point (see 

plates 5.2 and 5.8). The failure load was slightly larger than the calculated 

shear resistance of the in-situ beam (267kN In comparison with 262kN but 

see table 5.1). It can thus be concluded that the two previously mentioned 

major modifications (see section 5.9) did not reduce the ultimate shear 

transfer capacity of the connection. 

The direction of the main crack (see plate 5.8) noticeably passes from the 

intersection of the top slab and the concrete nib. There Is also another crack 

passing through the junction between the top flange of the precast beam and the 

In-situ nib. These clarify that the mechanical Interlock between top flange of 

the precast beam and in-situ concrete has a significant contribution to the shear 

transfer capacity. 

5.9.2 Stirrup Stress 

The change of stirrup stress with respect to their position In the 

connection have been plotted In Fig. 5.6 . As previously stated stirrups In the 

connection are only placed in the precast beam (blue lines of Fig. 5.6). If the 

connection was cast as monolithic a constant stirrup stress distribution would 

be expected along the beam, but It can be seen here that In the region at the end 

of precast beam for up to 95% of failure load the stirrup stress is almost zero 

whereas in the in-situ beam stirrup stresses decrease when they are nearer to 

the connection. This condition can be explained as follows: 

At the connection, each side (precast beam or in-situ concrete) behaves 

like a support for the other and as previously discussed, in chapter four, there 
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is an increased shear strength within a specific distance from the support 

resulting in lower stresses in the stirrups. 

5.9.3 Concrete Diagonal Tensile Strain at 4511 Inclination 

Fig. 5.7 shows the experimental Inclined tensile strain within the 

overlapping zone for each part of the connection. Again a substantial difference 

was found between the inclined tensile strain In the precast beam and the same 

level of the in-situ nibs. The explanation for this has already been given In 

section 5.8.3 . 

5.10 Change In the Magnitude of Bending Moment at the 

Connection 

In a multi-span continuous beam with uniformly distributed load, the 

point of zero bending moment lies within 7% to 10% of the span length from the 

supports. Assuming a span of 27 metres for our case with M-8 beams, the 

contraflexure points are located at about 1.9 to 2.7 metres from the supports. 

For this method of construction the end of the precast beam is located 2.5 

metres from the support. This indicates that the connection is situated within a 

zone of low bending moment. 

In previous tests all the reinforcing bars over the support were continued 

along the connection but 'in this test (E30BC4) the following modifications were 

made: 

a) Some of the bars which were required to resist the negative bending 

moment at the support section were curtailed at the end of the precast beam. 

b) The loading arrangement was changed so that a higher bending moment 

was produced at the connection. 

These two changes resulted In the bending moment at the end of precast 
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beam being slightly lower than it's flexural capacity. 

5.10.1 Ultimate Strength and Mode of Failure 

The beam failed when the shear force in the section reached 255 M (in 

comparison with the calculated shear resistance of 262 kN) and the failure 

mode was diagonal tension between the span load and continuous support (see 

plates 5.3 and 5.9). 

Considering the higher applied bending moment at the connection and the 

lower flexural capacity of the member at the end section of the precast beam (in 

comparison with previous test), It was seen that flexural-shear cracks 

appeared at the sections closed to the precast beam's end well before the failure. 

However, these cracks did not appreciably reduce the shear capacity of the beam 

compared with previous tests, and it can thus be concluded that the connection Is 

capable of transferring the design shear force from either part to the other. It 

is also worth noting that when this type of construction is used it is less likely 

to have the connection very close to the support (in which case the conventional 

type of construction could be used). Nevertheless more research work Is 

required for the cases in which the end of the precast beam is located close to the 

support (say less than 300mm In the prototype). 

5.10.2 Stirrup Stress In the Connection 

No stirrups were used in the in-situ nibs but the others had the same 

spacing either in the precast beam within the connection or In the In-situ beam 

away from the connection. The experimental stirrup stresses are plotted 

against their distances from the continuous support in Fig. 5.8. The only minor 

difference in comparison with previous tests (see also Fig. 5.6) Is that slightly 

143 



higher stirrup stresses were observed for a given level of shear force (for 

example at 84% of the failure load) which Is probably due to more 

flexure-shear cracks occurring In that region. 

5.11 Change of Embedment Length 

It was seen In previous tests that a rather high percentage of shear force 

is transferred to the in-situ nibs through a small length at the end of the 

precast beam (see Fig. 5.3) . It was decided in this stage to examine the 

behaviour of connections with smaller embedment lengths. Two tests were 

carried out in this manner and the embedment length was selected to be 100mm 

(300mm in the prototype). 

In the first test (ElOCC5) no stirrups were used in the in-situ nibs 

while in the second test (ElOCD7) two 6mm high yield stirrups were used In 

the nibs. 

5.11.1.1 Experimental Results for the Test with no Stirrups 

In the Nib 

The observed ultimate shear capacity of the beam was lower than for 

either the precast or in-situ parts. The beam failed at a load equal to 83% of 

the in-situ beam shear resistance Indicating that It was a connection failure 

rather than the failure of components (precast or in-situ beam). The failure 

was sudden and brittle with a very wide crack (approx. 30mm ) passing 

through the junction between in-situ nib and the top flange of the precast beam 

(see plates 5.4 and 5.10). 

To illustrate the behaviour of this connection consider Fig. 5.9a in which 

the direction of the main crack at the time of failure has been shown. Figs. 5.9b 

and 5.9c are the idealized free body diagrams for in-situ nib and precast beam. 
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The shear force V transfers from each part to another by means of: 

i) Bearing between the bottom surface of the top flange of the precast 

beam and the in-situ nibs, which is a distributed load having a resultant 

of V1* 

ii) The shear resistance of the in-situ top slab concrete over the precast 

beam, which is monolithic with the In-situ beam. This part is called 

V3' 

The bond between In-situ nibs and precast beam web is negligible due to 

the very smooth surface of the web and inherent shrinkage existing in practice. 

It is possible to obtain an approximate value for V3 by using geometrical 

dimensions and the shear strength of top concrete and V, is obtained by 

subtracting V3 from the shear at failure. 

V3-25 M 

VI=224-25-199 M 

This high shear force Is exerted through the top flanges of the precast 

beam to the in-situ nibs each having an effective area of 40xlOO. 4OOOmm2, 

implying an average bearing stress of 24.9N/mM2 on the concrete. Taking Into 

account that this distribution is not uniform, and has a higher intensity near the 

end of the precast beam, even a higher bearing stress may exist. The effect of 

this force on the in-situ nibs or precast beam can be explained as follows: 

a) The in-situ nib has a smaller length (1 00mm ) in comparison to Its 

depth (335mm), thus having a maximum shear span to effective depth of 

100/335=0.3 . It is a very deep beam and is similar to a corbel (see Fig. 

5.9b). The high shear force tends to spall off the nib through the corner and in 

fact the observed main crack at the failure indicates this clearly (see Fig. 5.9b). 

b) For the precast beam, the high upward reaction from the nib Is applied 
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on the bottom surface of the precast beam's top flange which is located at about 

one third of its overall depth. In addition to this the first stirrup in the precast 

beam is located 50mm (half the embedment length) from its end and this high 

concentrated load could produce a high tensile stress in that stirrup (see Fig. 

5.10). 

5.11.1.2 Rotation at the Connection 

In an homogeneous beam with constant or variable cross-section 

subjected to an arbitrary loading, elastic structural analysis shows that there 

is no sudden change In the slope of the deflection curve. Consider a connection 

somewhere along the beam. If this connection Is completely fixed, Its 

components do not move relative to each other and the slopes and deflections are 

fully compatible, but if the connection is partially fixed we could expect 

relative movement and rotation at the joint. 

Plate 5.4 Indicates how the precast and In-situ beam have rotated 

sharply relative to each other. This has also been schematically shown in Fig. 

5.9d. In addition to this the excessive rotation at the connection has affected the 

deflection at the mid-span and cantilever end In comparison with previous 

beams (see Fig. 5.16). 

5.11.1.3 Stirrup Stress In the Connection 

As before there are no stirrups in the nib for this test. The distance 

between the last stirrup In the precast beam and the first stirrup in the in-situ 

beam is the same as the in-situ beam stirrup spacings (see Fig. 5.10). The 

stirrup stress in the precast beam (two stirrups are located within the 

connection) at the time of failure was well below Its yield stress because its 
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own shear capacity was about 40% greater than the shear at which the 

connection failed. 

With regard to the stirrup stress In the In-situ beam, truss analogy 

(assuming a monolithic section) would indicate a stress of about 66% of Its 

yield value at the time of connection failure but experimental stress 

measurement showed that the four stirrups In the in-situ beam had attained 

their yield stress at that time (see Fig. 5.10). The reason for this can be 

explained by the large rotation of the end of the precast beam relative to the 

in-situ concrete tending to open the Inclined crack (see plate 5.10) as much as 

possible which in return implies tensioning of the stirrups . Tensile strains up 

to 22500 micro strain (2.25%) were recorded In this test. 

At the initial loading stages, and up to about 74% of failure load, the 

previously observed trend (smaller stresses for those stirrups which are 

nearer to the connection) was also observed Indicating that for this loading 

range the in-situ nibs are supporting the precast beam from Its top flanges and 

the connection is transferring the shear without causing any abnormal stress or 

deflection. 

5.11.2.1 Experimental Results of Connection with 

Stirrups In the Nib 

In this test (ElOCD7) the precast beam had 100mm embedment In the 

in-situ concrete but in contrast to the previous test the connection also had two 

6mm stirrups In the in-situ nib. The connection was able to carry the full 

shear force and the beam failed in a web compression mode In the precast beam 

without causing excessive rotation or relative movement in the connection. The 

improving effect is attributed to the addition of stirrups in the nibs in the 

following ways: 

a) Improving the connection between In-situ nibs and in-situ top flange 
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which in turn can prevent separation between top flanges and nibs. 

b) The embedded length of the precast beam cannot easily rotate inside the 

in-situ nibs unless putting these stirrups Into tension, and so prevents the 

widening of inclined cracks. 

5.11.2.2 Stirrup Stress 

The experimental stirrup stress has been plotted for all stirrups inside 

and remote from the connection in Fig. 5.11. As far as the in-situ beam 

stirrups are concerned, up to 67% of the failure load the two stirrups located 

in the nibs have zero stress, bearing in mind that the cracking load Is 44% of 

failure load and that up to this load the in-situ nibs were uncracked. It was also 

noted that for the same load (67% of failure load) the stirrups in the precast 

beam are subject to about 30% of their yield stress. For larger loads these two 

stirrups are under considerable tensile stress and at failure they have about 

40% and 50% of their yield values for the first (nearer to the nib's end) and 

second stirrup respectively. 

To compare this connection (100mm with stirrups) with the first two 

tested connections (300mm with stirrups) consider Fig. 5.4. The nib stirrups 

had the same spacings in this test as in tests with 300mm embedment lengths. 

In the latter all the stirrups in the nibs remained unstressed up to the failure 

while in the former they had undergone 40% to 50% of their yield stress at the 

time of failure. The reason may be explained in that with longer embedment 

lengths the intensity of distributed load from the precast beam top flanges to the 

in-situ nibs is low but for shorter connection lengths the same total load 

produces a distributed load with a significantly higher intensity. 

The possibility of reducing the embedment length is beneficial from the 

economical point of view because for existing pier positions shorter precast 
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beams can be used. It was found in these tests that connections having small 

embedment lengths (100mm) can be used satisfactorily provided proper 

detailing (geometrical shape of components and stirrup reinforcement) is 

maintained at the connection. It has also to be mentioned here that in all the test 

beams precast sections were designed to be capable of carrying the maximum 

shear allowed by the code so that In practice the shear force which Is to be 

transferred by the connection Is equal to or smaller than the shear for which 

the connections were examined In the tests. More research work is required for 

connections having embedment lengths between 100mm and 300mm and even 

for those smaller than 100mm. 

5.12 Deflectlons 

For all the beams in this series deflections for mid-span and cantilever 

end were measured and plotted and can be seen in Figs. 5.12 to 5.17. 

Considering load-deflection curves for the mid-span points reveals that up to an 

appreciable load (generally about 60% of the failure load) the behaviour is 

linear, but after that non-linear behaviour occurs. The portion of the beam 

between the supports consists of a precast prestressed beam together with a 

part of in-situ reinforced concrete (which is about 1/6 of the distance between 

the supports). There is a point of contraflexure near to this connection making 

this part of the beam similar to a simply supported beam. This has a 

load-deflection curve similar to that of prestressed beams in which the 

deflection is linear up to its service load (about 60% of failure load) because 

the section is uncracked up to this stage and has Its full flexural stiffness (EI). 

For higher loads the beam starts to crack gradually, from mid-span to the 

supports, reducing the beam's stiffness and resulting In higher deflection 

producing the non-linear part of the curve. 
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The cantilever part of the beam Is reinforced concrete. The cracking load 

Is therefore much lower than for the prestressed beams and it can be seen In 

Figs. 5.12 to 5.17 that for the cantilever end (dotted lines) the initial linear 

part for the uncracked section is very small. Comparing Fig. 5.12 with Fig. 

5.13 reveals that in the former the deflections are slightly lower. This should 

be attributed to the elimination of dowel action in the second test. It Is also 

noticeable that in Figs. 5.16 and 5.17 the deflection at the cantilever end Is 

much higher than In others, which is because of considerable rotation at the 

connection when the embedment length was 100mm. 

5.13 Vertical Separation between the Precast Beam and 

In-situ Nib 

The vertical separation between the precast beam and In-situ concrete at 

the connection was measured along the junction between the top surface of the 

bottom flange of the precast beam and bottom surface of the in-situ nib. Pairs 

of DEMEC discs were fixed in a vertical direction along this region to enable this 

to be measured. 

A substantial variation was observed in the vertical separation along the 

connection. The amount of separation was plotted against the location In the 

connection (see Figs. 5.18 to 5.23). Generally speaking, vertical separation 

between the two parts is very low at the end of the precast beam and Is very 

high at the end of the in-situ nib. The reason can be attributed to the previously 

observed distribution of shear force within the connection In which a 

substantial amount of shear force Is transferred from the end part of the 

precast beam to in-situ nib so that the load on the end of the in-situ nib is very 

low and therefore it can not deflect together with the precast beam, producing 

separation as expected. Comparing the vertical separation for the different tests 

produces the following points: 
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a) It can be seen from Fig. 5.18 that the vertical separation is zero for 

the first 100mm of the in-situ concrete nib while for the beam with eliminated 

dowel action (see Fig. 5.19) the whole length of the connection showed vertical 

separation with zero at the end of the precast beam. 

b) In Fig. 5.20 (for the beam without stirrups in the nibs and also with 

minimum projecting bars at the end of precast beam) it can be seen that the end 

point of the precast beam has about 0.2mm separation. The same behaviour was 

observed in beam E30BC4 (see Fig. 5.21). 

c) With the short connections (100mm embedment length), it Is 

apparent from Figs. 5.22 and 5.23 that the two parts have been separated 

vertically through the whole length of the connection and these diagrams are in 

fact similar to those for long connections (300mm embedment length) in the 

100mm length from the end of In-situ nib. This again confirms that for a long 

embedment length a considerable length of in-situ nib is redundant. 

5.13.1 Significance of Vertical Separation 

Vertical separations up to about 0.5mm and 1.9mm were observed for the 

service and failure loads respectively. In a reinforced or prestressed concrete 

beam cracks having widths equal to those figures can be quite harmful from the 

point of view of corrosion and freezing. Fortunately the gaps produced here as a 

result of separation do not give access to exposed reinforcement . For the water 

penetration and freezing effects, since the top surface of M-beam's bottom 

flange has a slope, penetrated water should be easily expelled . 

5.14 Design Recommendations 

If the new (unconventional) method of construction is employed for a 
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continuous bridge and the precast elements are M-beams or similar sections 

having top flanges, certain design recommendations can be suggested as a result 

of this part of the present investigation. 

5.14.1 Design of Precast Beams for Shear 

It was found that a small length of precast beam at its end (about 50mm) 

transfers about 50% of the shear force. Thus the shear force in the precast 

beam decreases very slowly within about 83% of the embedment length after 

which it sharply decreases along the final 17% . It is slightly conservative but 

convenient to design the precast section for the total shear force to be 

transferred (assuming that there is no relief of shear force within the 

connection). 

5.14.2 Design of In-situ Nibs for Shear 

It was observed before that In longer connections (300mm embedment 

lengths) the stirrups in the nibs had almost zero stresses, which was the reason 

for ommitting these stirrups in subsequent tests. This modification had no 

effect on the shear transfer capacity of these connections. It is also apparent 

that nibs carry relatively small shear forces along a large fraction (83%) of 

their length. The concrete nibs have large cross-sections in comparison with 

the precast beam hence their concrete shear resistance is enough to carry the 

shear with no need for stirrups. It is recommended here that minimum 

(nominal) stirrups be provided In the in-situ nibs to control possible cracking 

due to shrinkage and temperature change. It also helps to have a ductile rather 

than a plain concrete. 

In connections with small embedment lengths (100mm) it is seen that the 

152 



high intensity of shear force acting on the nibs necessitated the need for a 

small amount of stirrups in the nib. Provision of these stirrups had an 

increasing effect of about 15% in the shear transfer capacity of the connection. 

5.14.3 Embedment Length 

Connections having embedment lengths of 300mm (900mm in prototype) 

behaved quite satisfactory even without stirrups in the nibs. In tests with 

reduced embedment (100mm) the connection was able to carry the whole shear 

resistance provided the in-situ nib was reinforced with stirrups. It is 

therefore suggested here that smaller embedment lengths can be used 

satisfactorily. 

5.14.4 Distance of Connection from the Support 

This matter is purely related to the applied bending moment at the 

connection. All the connections tested in this part were subject to the highest 

possible shear force allowed by the codes to cover any case which may arise in 

practice. With regard to the bending moment, it was seen that an increase in 

the bending moment (with the same shear force) had no significant effect on the 

shear capacity of the connection. In practice it is more desirable to have this 

type of connection well away from the support (to get the full benefit from this 

method of construction) for which the bending moment is likely to be small. 

5.14.5 Projecting Bars from the Precast Beam 

In the first test all the bars and prestressing strands projected from the 
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end of the precast beam into the in-situ concrete for about I metre. In the 

second test the same bars projected, but their dowelling effect was eliminated 

by sleeving with rubber. No significant change was observed and so it was 

decided to terminate all the bars and strands at the end of precast beam (except 

four bars at the bottom which are needed in practice to take possible positive 

bending moment due to creep, shrinkage and support settlement). This was done 

for all subsequent tests in this part of the investigation and it was seen that this 

feature did not affect the shear strength of the connection. In practice the bars 

either project from the end or they are screwed to previously fixed couplers. 

In the first method steel bars are exposed from the time of manufacture to the 

time of erection and may be subjected to corrosion, and also handling and 

transportation is difficult. The second method seems to be time consuming and 

expensive. 

It is recommended here that there Is no need to extend or couple all the 

bars in the precast beam (with top flanges) and only for the possibility of 

positive bending moment at the connection should the required bars be extended 

or coupled. 
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Table 5.1 Beam Details, Calculated and Experimental Results 
(For the connections with Top Flanges In the Beam) 

E30AAl E30AA2 E30AB3 E30BC4 El OCC5 El QCD7 

Connection 300 mm 300mm 300mm 300mm 1 00mm 1 00mm 
length (mm) 

' T6@50 T6@50 T6@85 T6@85 T6@50 T6@50 
M-beam s 
Stirrups in the 
Conn. 

T6@50 T6@50 None None None T6@50 
Nib's 
Stirrups in the 
Connection 

Total Stirrup 0.7% 0.7% 0.2% 0.2% 0.2% 0.2% 
Ratio in the Conn. 

Stirr. Ratio in the 0.35% 0.35% 0.2% 0.2% 0.2% 0.2% 
Insitu Beam Remote 
from the Connection 

No. of Projecting 13 bars 13 bars 4 bars 4 bars 4 bars 4 bars 
Bars (sleeved ) (bottomý (bottom) (bottom) (bottom) 

Moderate Moderate Moderate High Moderate Moderate 
Bending Moment 

Cal. Shear Resist. 315 315 315 315 315 315 
of M-beam (kN) 

Cal. Shear Resist. 
of Insitu Beam 
Remote from the Conn 

389, 368 262 262 265 265 

Cal. Shear Resist. 630 608 262 262 265 465 
of Conn. if assume 
Monolithic (kN) 

Observed Shear 312 309 267 255 224 297 
Resist. 

(kN) 
- 

Type & Position Web Crush WebCrush Inclined Inclined Inclined Web crus- 
of the Failure in the M- in the M- Tension in Tension Tension in hing in th 

Beam Beam the M- in the In- the In- M-beam 
beam situ beam situ Beam 

+separat- 
ion 
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V 

a) Shear Force Direction Acting in the Connection 

b) Section A: A 

3 

0.5VI IIIP. 5V, 

0.5V2 

11 

.5 
V2 

C) Free Body Diagram for Insitu 
Nibs Showing Shear Force Components 

d) Free Body Diagram for M-Beam 
Showing Shear Force Components 

FIG. 5.1 Freebody Diagram for the Connection 
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b) Shear Force Diagram Along the Embedment Length 
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FIG. 5.3 Load Distribution Between Two Parts in Beam 
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SHEAR TRANSFER MECHANISM IN PRECAST BEAMS WITHOUT TOP 

FLANGES 

6.1 General 

In previous chapter- the shear transfer between precast beams with 

small top flanges (M-beam) and in-situ concrete in continuous bridges has 

been investigated. The following investigation aims firstly to clarify the 

importance of the top flange effect in shear transfer and secondly to observe the 

efficiency of special modifications and detailing at the connection such as 

transverse prestressing or web shear connectors. 

6.2 Description of the Connection 

The same 1/3 scale model M-8 beams were used in this series but before 

casting the in-situ beam and nibs two pieces of polystyrene, as described In 

section 3.11g, were located underneath the top flanges of the precast beam along 

the whole length of the embedment zone and which was later removed prior to 

the testing. This feature enables the contact between in-situ nibs and the top 

flanges of precast beam to be removed and in fact simulates the connection 

between in-situ concrete and inverted 'T' beams without top flanges (see Fig. 

6.1). This type of connection also represents an end block (see Figs. 2.4b and 

3.12) which was suggested in the Initial design of the first bridge designed 

using this new method of construction3.4. 

6.3 Change of Variables 

The variables in this part of the investigation were special details 

designed to improve the shear transfer capacity of the connection. These were as 
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follows: 

6.3.1 Control Reference 

In addition to top flange elimination, no attempt was made in this test to 

increase the capacity of the connection in shear transfer, making It the control 

test. 

6.3.2 Transverse Prestressing 

The in-situ nibs were stressed transversely to apply a normal force to 

the web of the precast beam and thus increase vertical friction at the Interface 

between the two components. 

6.3.3 Web Shear Connectors 

Horizontal bars were fixed in the web of the precast beam prior to casting 

the in-situ nibs. These were designed to act as dowels between the two parts and 

thus increase the shear strength of the connection. 

6.3.4 Projecting Bars from the end of the Precast Beam 

In previous tests all the bars and strands were cut off at the end of the 

precast beam. In this test all the bars and strands projected Into the In-situ 

concrete for a length of 1.00 metro in order to observe their effect upon the 

shear transfer capacity of the connection - 

6.4 Mechanism of Shear Transfer 

The mechanism of shear transfer has been discussed for the beams with 
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effective top flanges in a previous chapter (see chapter five section 5.4). It was 

seen that when the top flanges of precast beam have contact with the in-situ 

nibs three different means of shear transfer exist at the connection. For the 

present condition this shear force has to be transferred by the following 

mechanisms: 

6.4.1 Vertical Bond Between In-situ Nibs and Beam's Web 

If the bond between precast and In-situ concrete can be relied upon, a 

part of the shear force can be transmitted by this means (the efficiency of the 

bond will be discussed in the next chapter). This part of the shear force Is 

designated V2 and is shown in Fig. 6.1 c, d . 

6.4.2 Top Slab over the Precast Beam 

Since the top slab over the beam is cast monolithically with the in-situ 

beam and nibs it can increase the shear transfer capacity of the connection. The 

contribution of this part is designated V3 (shown in Fig. 6.1c, d). 

In the absence of other special details as previously described in 6.3.2 to 

6.3.4 the shear strength of the connection should be: 

V, =V2+V3 ................ 

Comparing this with Eqn. 5.1 (V 'Vl+V2+V3), term V, Le the effect of 

mechanical interlock between two parts does not exist in Eqn. 6.1. 

6.5 Loading Arrangement and General Details 

Two point loads were applied through a span-cantilever arrangement 
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which is capable of producing a high shear force at the connection (see Fig. 3.10 

for the bending moment and shear force diagrams). The embedment length 

remained at 300mm throughout this series. Shear reinforcement within the 

connection in the in-situ nibs was provided by four 6mm high yield open 

stirrups. It was shown in previous chapters that in most cases these stirrups 

did not carry any force but since new modifications were to be included In this 

series, it was thought that they could possibly change the situation, so these 

stirrups were provided in the nibs. Table 6.1 shows general details and the 

failure conditions for the tests in this series. 

6.6 Evaluation of the Shear Transfer Capacity 

The connection should be regarded as sound if either part of the connection 

(precast or in-situ beam) can develope its full shear strength at the ultimate 

stage. The serviceability of the connection is also important Le crack width, 

separation between the two parts, relative rotation of parts at the connection 

and its effect on the overall deflection. 

6.7 Experimental Results of the Control Reference Test 

The reference test comprised a connection in which there was neither a 

top flange effect nor any other means of enhancing the shear transfer capacity. 

The beam failed at a surprisingly low load as a result of connection failure, 

when the shear force in the connection was equal to about 30% of the shear 

resistance of the precast beam Itself. The high reduction In the shear transfer 

capacity of the connection in this test was clearly because no part of the shear 

force was allowed to be transmitted from the top flanges of the precast beam to 

the in-situ nibs (see plates 6.1 and 6.5). 
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As previously stated the connection detail in this test was Intended to 

represent an end block (see Figs. 2.4b and 3.12) suggested3 in the initial design 

of the first prototype bridge using this new type of construction. The original 

reason for requiring this end block was to reduce the shear stress across the end 

interface of the precast beam as it was assumed that the end surface of the 

precast beam transfers all the shear force, and that there was no relief of shear 

force along the embedded length of the connection. 

It was shown from the experimental results of the previous chapter that 

there is actually a relief of shear force within the connection and the In-situ 

concrete nibs are subject to a non-uniform distributed load with higher 

intensity near the end of precast beam. The experimental results of this test 

confirms the importance of top flanges in shear transfer and the author would 

certainly recommend against using precast beam end block In the connection 

because of its adverse effect upon the shear strength of the connection caused by 

removal of the important top flange effect. 

6.7.1 Stirrup Stress 

Stirrup stresses for both precast beam and In-situ nibs have been plotted 

in Fig. 6.2. For the precast beam, for smaller stirrup spacing from the precast 

beam end lower stresses were observed showing the same trend as the 

connections with the top flange effect. This means that the shear force is 

changing along the precast beam within the connection. The only contact between 

the two parts are through the existing bond (between the web and In-situ nibs) 

and the top concrete. It was observed in this test that when the load was equal to 

about 94% of the failure load the bond between the web of the precast beam and 

the in-situ nibs failed, resulting in a substantial vertical separation, and 

subsequently the whole shear force shifted to the junction between the precast 
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beam and the top concrete slab which are joined by the projecting parts of the 

web stirrups. 

This situation has been illustrated in Fig. 6.3. The precast beam Is 

suspended by its stirrups (Fig. 6.3b, c) producing a high tensile stress In the 

stirrups (Fig. 6.2) in comparison with the case In which the same shear force 

is applied in a normal way Le the load is applied through the beam rather than 

its stirrups. 

6.7.2 Vertical Separation 

The vertical separation between the In-situ nibs and the bottom flange of 

the precast beam was measured for all points along the embedment part and 

shown plotted in Fig. 6.4. Before failure of the bond occurred, observed figures 

for this displacement were much higher than those for connections with the top 

flange effect (discussed In the previous chapter), with an order of up to 10 

times, and the subsequent slip between the two parts led to an overall separation 

of 20mm at the ultimate stage (see also plates 6.1 and 6.5). 

6.8 Transverse Prestressing 

In the prototype bridge deck transverse prestress may be employed to 

fulfil two functions. Firstly and primarily to resist transverse bending 

moments in the deck and secondly to resist long term shrinkage and thermal 

movements. In the design of the first bridge using this new method of 

construction3,4 in this country, the provision of transverse prestressing was 

included specifically to Increase the longitudinal shear transfer capacity of the 

connection. 

For the connections in which the precast beam has a top flange it was 
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observed in chapter five that for all cases (except in beam ElOCC5 with 

100mm embedment length and no stirrups in the nibs) the connections were 

able to transfer the full ultimate shear resistance of the precast beam without 

transverse prestressing in the connection. Among these, In beam E30AB3, in 

addition to the elimination of nib stirrups and projecting bars the bond between 

in-situ nibs and the web of the precast beam was eliminated by applying a layer 

of bitumen on the web prior to casting the in-situ concrete. This was Intended 

to simulate the destruction of bond in practice as a result of shrinkage and 

temperature movements. The connection was still able to transfer the full 

shear strength of the beam. Thus when the precast beam has top flanges even In 

the weakest conditions there is no necessity to improve the longitudinal shear 

resistance of the connection by transverse prestressing. 

It is well known that all solid bodies in contact offer resistance to motion 

tangential to their contact surface and classical laws of friction indicate that the 

frictional force is : 

a) Directly proportional to the load normal to the contact surface 

b) Independent of the contact area and sliding velocity 

c) Dependent upon the nature of material in use 

The occurrence of interface resistance in concrete is essentially of two types: 

I) The shear resistance in the presence of an externally applied axial 

compression, analogous to friction behaviour. 

I! ) The shear resistance without any significant compression as in 

composite construction. The surfaces may or may not be bonded together by 

casting one against the other and there may or may not be steel reinforcement 

crossing the joint plane. 

In the case of shear associated with external compression across a joint, 

JoneS82 reports several tests in which two parts of a beam were post-tensioned 

together and the required load to shear the joint was determined for varying 
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6 amounts of prestress. Two different interface conditions were examined. In the 

first series smooth and dry surfaces were stressed together but in the second 

series a layer of 1/2" mortar was used initially to bond the units and then a 

prestressing force was applied. In the first part the proportionality constant 

(ratio of shear force to prestressing force) was observed to be between 0.45 

and 0.62 for different types of surfaces. For the bonded joints the ratio was 

0.56,0.770 and 0.714 at the start of slip which subsequently dropped to 

0.763,0.665 and 0.645. 

Gaston and KriZ83 conducted a series of tests to determine the shear 

resistance of a joint consisting of two concrete members stressed together by 

bolts. To eliminate the dowel action of the bolts, oversize holes were provided. 

Some of the specimens were assembled without interface bond while in the 

others a in layer of mortar was used between the blocks. The interface area was 

also considered as a variable. It was observed that for a constant prestressing 

force slip increased slowly with increasing shear force until the maximum 

shear force was reached, when a sudden large slip occured. In the bonded 

specimens cracks formed at a 450 angle in the mortar close to the horizontal 

edges. The following equations were proposed for the shear resistance of the 

connection: 

v=0.78p+0.297 N/mM2 (for unbonded connections) ........ (6.2) 

v=0.7p+0.76 N/mM2 (for bonded connections) ............. (6.3) 

where v is the shear stress resisted by the contact surface and p Is the normal 

compressive stress due to prestressing. 

Some further tests on this subject are reported by ReeS84 . 6" concrete 

cubes were bonded together with a mortar layer and then they were transversly 

post-tensioned. The following equation was suggested for the shear resistance of 

these types of connections: 

v=0.8p+l. l N/mM2 (for bonded connection) ................... (6.4) 
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where v and p are as in equations 6.2 and 6.3. 

6.8.1 Experimental Results of the Test with Transverse 

Prestressing 

In this test (WTFPCC8) the connection was transversly post-tensioned. 

All other details were similar to those of the control reference test (WTFCC6) 

Le no top flange effect from the precast beam, and also the minimum number of 

projecting bars into the in-situ beam. Post-tensioning of the connection was 

achieved by four 9.8mm 7-wire strands through 160x16Ox15mm bearing 

plates (see plate 6.6) to distribute a total of 180 M prestressing force over 

the web within the connection and produce an approximate prestress of about 

2.65 N/mm2. 

6.8.1.1 Ultimate Strength and Failure Mode 

The connection was able to transfer the full shear of the precast beam 

which eventually failed in a web crushing mode at a shear force which was about 

10% more than the observed web crushing strength in the first series of tests. 

The possible reason for this increase will be discussed in the next section. It 

should be mentioned here that in the similar connection but without transverse 

prestressing (the control reference test WTFCC6) the connection failed at a 

shear force equal to 27% of the shear resistance in this test. This reveals the 

significant effect of transverse prestressing in shear transfer capacity of the 

connections without the top flange effect. 

6.8.1.2 Stirrup Stress 

Stresses have been plotted for all the stirrups within the connection 
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either in the precast beam or in the In-situ concrete (see Fig. 6.5). For the 

precast beam these stresses have been measured only for those stirrups In the 

connection itself but for the in-situ concrete the measurement has been 

continued beyond the connection and up to the support. It can be seen that in the 

precast beam the stresses are significantly lower than those observed in the 

first series (e. g see Figs. 5.2 , 5.4 or 5.6) with an order of 1 to 2. On the other 

hand substantial stresses were observed in the stirrups in the in-situ nibs (see 

Fig. 6.5). These had been found to be very small and for most of them almost 

zero in the first series of tests (compare Fig. 6.5 with Fig. 5.2). The reason 

for this considerable change in the behaviour of the connection can be explained 

as follows: 

a) The in-situ nibs are transversly stressed onto the beam's web within 

the whole length of the connection resulting in a perfect composite action 

between them thus enabling monolithic behaviour. 

b) The composite action will allow the two parts to share the transferring 

of the shear force. This is why high stresses were observed in the stirrups of 

the nibs. In the connections with the top flange effect (first series) the 

situation at the connection was like a beam resting on a support (top flanges 

resting on the in-situ nibs) in which a small length of the end of the precast 

beam and its adjacent nibs were very effective while the rest of the in-situ nib 

was not fully utilized. 

c) The shear strength of the precast beam was observed to be slightly 

higher in comparison with the beams in the first series. The possible reasons 

are firstly the lower shear force carried by the precast beam within the 

connection as the stirrup stress diagram shows and secondly the provision of 

two 160x16Ox15mrn steel bearing plates for the distribution of prestressing 

force may have functioned as external stirrups and increased the shear 

strength. It is notable from plates 6.2 and 6.6 that unlike previous tests in the 
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first and second series, In this test there was an inclined crack In the In-situ 

nib indicating that the shear force In the nib is significant. This high shear 

force has substantially increased the stirrup stress in the nibs (see Fig. 6.5) in 

comparison to previous tests. 

6.8.1.3 Vertical Separation 

The vertical separation between the in-situ nib and bottom flange of the 

precast beam were measured at different positions along the embedment length. 

These measurements are shown in Fig. 6.6. The magnitude of separation was 

substantially lower than those observed before e. g for a shear force of 280kN 

the maximum separation was three times lower than that of beam E30AA1. In 

addition to this, the vertical separation was zero within a length of about 

165mm from the end of precast beam (see Fig. 6.6), which Is more than half 

the embedment length, while in the first series for all cases (except beam 

E30AA1) the vertical separation was observed for the entire length of the 

connection. 

The main cause of separation in this part is the destruction of bond 

between the web and in-situ nibs and subsequent slip at the interface. The 

transverse prestressing in this test has highly increased the interface friction 

and reduced the vertical separation. 

6.9 Shear Transfer by Web Shear Connectors 

Web shear connectors were used as an alternative to transverse 

prestressing. In this test four 10mm mild steel bars were threaded through 

previously made ducts in the precast beam web (see Fig. 3.14). The effect of 

the beam's top flanges was also eliminated In this test in order to determine the 
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effectiveness of the shear connectors. The transfer of shear force in this test 

will be by : 

(i) Monolithic top slab (V3 in Fig. 6.1). 

(ii) Bond between web and in-situ nibs (V2)' 

(iii)Additional effect resulting from the dowel action of the web 

connecting bars. 

6.9.1 Ultimate Strength and Failure Mode 

The web shear connectors were found to be fully effective and the 

connection was able to transfer the full shear strength of the precast beam 

which failed in a web crushing mode (see plates 6.3 and 6.7). The observed 

shear force at failure was 5.7% less than that observed for the connection with 

transverse prestressing. This could be attributed to the reason explained in 

section 6.8.1.2c. 

6.9.2 Stirrup Stress 

Experimental stresses have been plotted for all the stirrups In the 

connection (see Fig. 6.7). In the precast beam stresses were found to be much 

higher than those in the connection with transverse prestressing (compare with 

Fig. 6.5). On the other hand stirrup stresses In the in-situ nibs were lower as 

shown in Fig. 6.7, where the stirrup stresses in the nibs are almost zero up to 

about 80% of failure load but they increase suddenly on approach to failure. 

Stress distribution in the stirrups Is more or less similar to that 

observed in the first series indicating that In the connection with web shear 

connectors the web and In-situ nibs have not been behaving like a unique 

member as they did in the case of transverse prestressing. The sudden increase 
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in stress in the nib stirrups near failure may be attributed to bond failure 

between the in-situ nib and the web causing immediate transfer of bond force to 

web connectors. 

6.9.3 Vertical Separation 

The vertical separation was found to be much higher than before (see Fig. 

6.8). For a shear force of 306kN the maximum separation was almost four 

times greater than that observed in the case of transverse prestressing 

(compare'with Fig. 6.6). The reason for this change is again the loss of bond 

between two parts during the loading and subsequent slip at the interface. It 

should be mentioned here that in this test 10mm bars were threaded into the 

ducts on the web and the remaining voids was filled with concrete mortar. 

Vertical separation may be reduced by fixing these bars In the web prior to 

casting the precast beam. It is also possible to avoid reinforcing bars and use 

small sections of angle or channel welded to previously fixed steel plates on the 

web but more research work is required for these conditions. 

6.10 Shear Transfer by Projecting Bars from the Precast 

Beam 

In the previous tests of this series all reinforcing bars (except four 

8mm bars at the bottom) were cut off at the end of the precast beam. In this 

test it was decided to leave all 13 bars projecting into the in-situ concrete beam 

while the top flange effect was eliminated in order to examine the contribution 

of projecting bars to shear transfer. 
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6.10.1 Ultimate Strength of the Connection 

The shear force at failure was very close (about 93%) to the observed 

shear strength of precast beams in previous tests but neither the precast nor 

the in-situ beams themselves failed. Failure could thus be regarded as a 

connection failure though the connection was able to transfer 93% of the shear 

force. The failure was associated with a relatively large separation (see plates 

6.4 and 6.8) between the components and splitting of the in-situ concrete along 

the projecting bars from the bottom flange. of precast beam. It Is also noticeable 

from plate 6.8 that the in-situ top flange near the loading point has sheared 

with a relatively wide diagonal crack. This implies that near failure the loss of 

bond between web and nibs has caused large separation and slip between the two 

parts and consequently an extra force has been transferred to the remaining 

parts of the connection (Le in-situ top flange and dowel action of projecting 

bars). As a result, the in-situ top flange has sheared and the in-situ concrete 

cover to the bottom projecting bars has severely cracked. 

6.10.2 Distribution of Stress In the Stirrups 

Observed stirrup stresses have been plotted in Fig. 6.9 for both precast 

beam and in-situ nib. The trend is similar to that obtained in the first series 

Le relatively high stresses in the precast beam stirrups which decrease toward 

its end and very low (mostly zero) stresses In the In-situ nib stirrups. This 

behaviour indicates that a large part of the nib does not contribute In shear 

transfer of the connection while the precast beam carries almost the full shear 

force to its end. 

Since there is no top flange contact in the connection region the 

mechanism of shear transfer will be limited to: 
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(i) The bond between nibs and the web. 

(ii) The in-situ top slab which is connecting the two parts continuously. 

(iii) The dowel action of projecting bars from the end of precast beam 

into the in-situ concrete which has the most important contribution 

in this case. 

It was mentioned earlier that in this test connection failed when the shear 

force was about 93% of the precast beam's shear strength. This is seen clearly 

from the stirrup stresses (see Fig. 6.9) when at the failure (R-1.0) most of 

the stirrups have attained their yield stresses. 

6.10.3 Vertical Separation 

Vertical separation was observed to be high in comparison with the tests 

in the first series and also in comparison with connections with transverse 

prestressing or web shear connectors in the second series. The reasons are 

firstly the absence of the top flange effect and secondly the lack of transverse 

restraint. Fig. 6.10 shows these separations for different positions of the 

connection. Vertical separations up to 7 times greater than those In the case of 

transverse prestressing and up to 1.5 times greater than that of the web shear 

connector case were observed. The ultimate separation was found to be about 

10mm (see Plate 6.8). 

6.11 Deflections 

Deflections at the mid-span and cantilever end were measured and plotted 

for all the beams in this series. These are shown in Figs. 6.11 to 6.14. Most of 

the results discussed In section 5.12 of previous chapters were also observed 

here. For the first of this series (connection without any shear transfer 

194 



improving detail) in which the connection failed at a very low load, The 

deflections were found to be very high near the failure (see Fig. 6.11) though it 

was not possible to measure the exact deflection at the time of failure. 

6.12 Comparison of Different Types of Connection 

It was observed that in the connections without the top flange effect both 

transverse prestressing and web shear connectors can substantially Increase 

the shear transfer capacity of the connection. This Is because of the Improved 

connection between the web and in-situ nibs which results In better composite 

action and a behaviour more or less similar to monolithic concrete. The 

improved composite action is reflected in the in-situ nib stirrup stress. 

Fig. 6.15 shows the in-situ nib stirrup stresses for three different types 

of connections at the time of failure. In the case of transverse prestressing 

stresses are the highest while for the connection with web shear connectors 

these are about one third of the previous case. For other types of connections 

and also for all tests in the first series these stresses are almost zero, 

indicating that in the case of transverse prestressing excellent composite action 

exists and the in-situ nibs can efficiently share the shear force with the precast 

beam resulting in low vertical separation and rotation at the connection. In the 

case of web shear connectors although the connection was able to transfer the 

full shear strength the vertical separation Is considerable (see Fig. 6.8). For 

the connection in which the projecting bars were used to transfer the shear 

force, the connection transferred some 93% of the shear strength of the beam 

and the failure was considered to be a connection failure. It should be mentioned 

that a connection with no shear improving details (WTFCC6) could transfer 

only 30% of the shear force (see section 6-7) which is mainly by the concrete 

and continuity bars in the top slab. The approximate percentage contribution of 
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precast beam's projecting bars is therefore 93%-30%=63% . 

The projecting bars were thus regarded as forming a very helpful aid to 

shear transfer of the connections without top flange effect. The amount of 

projecting bars in beam WTFDCC9 was similar to that which might exist in 

practice (taking into account the model scale factor) but nevertheless more 

research work is required for different amounts and diameters of projecting 

bars. It would also be useful to investigate the combined effect of projecting 

bars and web shear connectors in shear transfer transfer capacity and their 

possible effect on reducing the vertical separation. 

6.13 Design Recommendations 

Where a continuous bridge deck is to be constructed using the new method 

and the longitudinal elements are inverted T or similar sections without top 

flanges, the present investigation has shown important points which should be 

considered by the designers: 

6.13.1 Choice of Connection Detail 

It was observed in this part of the Investigation that the absence of top 

flanges and the loss of bond between the precast beam and in-situ concrete 

either due to the initial smoothness of the surface or due to later shrinkage can 

significantly reduce the capacity for shear transfer, and thus one of the 

following details should be adopted in designing such connections: 

a) "Transverse Prestressing". If the crosshead itself is to be prestressed 

transversly to take transverse bending moments it will also offer a most 

efficient assistance to transfer the longitudinal shear. The average transverse 

prestressing level used in the test was about 2.65 N/mM2. In practice It is 
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likely that prestressing levels will be higher than this and hence the test result 

should cover most practical cases. The projecting bars from the precast beam 

may also be limited to the minimum required for taking the possible sagging 

moment produce by differential support settlement. 

b) "Web Shear Connectors". Where transverse prestressing is not 

included in the design of the crosshead, web shear connectors can be used to 

transfer the longitudinal shear force. These connectors may be reinforcing bars 

threaded into previously formed ducts in the web before casting the in-situ 

concrete or alternatively be cast into the web of the beam. It Is, however, 

essential to develope full dowel shear resistance to prevent the occurence of 

considerable slip and vertical separation. 

When using web connectors projecting bars can be reduced to the required 

minimum for possible positive bending moment. The required area of the steel 

connectors may be obtained by using one of the shear friction theories which 

are discussed in the next chapter. The amount of shear force to be taken by the 

connectors may be assumed conservatively equal to the full design shear force of 

the beam. Alternatively as it was found that about 30% of the shear force is 

transferred by the top slab, the connectors may be designed for only 70% of the 

shear force. 

c) "Projecting Bars". In absence of top flanges, the projecting bars from 

the precast beam into the in-situ concrete may be considered as a substitute for 

transverse prestressing or web connectors to assist transfer of the longitudinal 

shear force. It should be noted though that In the test this type of connection was 

able to transfer about 93% of precast beam's shear strength but since the 

precast beam was heavily reinforced for shear, the connection may be sufficient 

in beams with slightly lower shear force. 

The projecting bars may consist totally of prestressing strands and 

non-prestressed bars (as in the test). In practice the best way is to leave 
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sufficient spaces between the beam stop-ends in the precast yard to obtain the 

required projecting lengths of strands rather than the costly job of bar 

couplers. Since there is no connection between nibs and the web, high vertical 

separation and rotation could be expected (as it was seen in that test) although 

the connection may transfer the full shear resistance of the beam. Clearly more 

experimental investigation is required to examine the effect of cross-sectional 

area , location and tensile strength of projecting bars upon the shear transfer 

capacity of the connection. 

6.13.2 Shear Design of Precast and In-situ Nib 

For the case of transverse prestressing and web shear connectors the 

shear force is transferred from the precast beam to the in-situ nibs gradually 

and there is some relief of shear force along the embedment length. It may be 

assumed that in the precast beam the shear force decreases linearly from its 

maximum (at the beginning of the connection) to zero (at the end of precast 

beam) and similarly In the nibs it increases from zero to maximum. The 

precast beam and in-situ nibs can be designed accordingly. If the shear force is 

going to be transferred by the projecting bars, since the force is transferred at 

the end, the precast beam should be designed to take the applied shear force for 

its entire length regardless of in-situ nibs. The in-situ nibs themselves are 

not subject to considerable shear force and may be reinforced with a nominal 

amount of stirrups. 
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Plate 6.5 Elimination of Top Flanges 
(The Connection Failure) 

... 
(---- 

;. 

� 

Plate 6.6 Provision of Transverse Prestressing (No Top Flange) 
Condition in The Connection After Failure 
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Condition in The Connection After Failure 
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Plate 6.7 Conection with Web Shear Connectors (No Top Flange) 
Condition in The Connection After Failure 
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Plate 6.8 Projecting of All Bars into In-situ Part (No Top Flange) 
Condition in The Connection After Failure 



Table 6.1 Beam Details, Calculated and Experimental Results 

(For the Connections without Top Flanges in the Beam) 

WTFCC6 WTFPCC8 WTFSCC9 WTFDCCI 0 

Connection 300 mm 300mm 300mm 300mm 
Length (mm) 

M-beam's 
Stirrups in the T6@85 T6@85 T6@85 T6@85 
Connection 

Nib's Stirrups in the T6@70 T6@70 T6@70 T6@70 
Connection 

Total Stirrup 0.45% 0.45% 0.45% 0.45% 

Ratio in the Conn. 

Stirr. Ratio in the 0.2% 0.2% 0.2% 0.2% 
Insitu Beam Remote 
from the Conn. 

No. of Projecting 4 bars 4 bars 4 bars 13 bar 

Bars (bottom) (bottom) (bottom) (all) 

Special Feature in the None Transv. Web shear Projected 

Connection Prestress connectors bars 

Cal. Shear Resist. 315 315 315 315 
of M-beam (M) 

Cal. Shear Resist. 
of Insitu Beam 265 265 265 265 
Remote from Conn. 

Observed Shear 91 348 329 306 
Resist. 

(kN) 
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a) Shear forces acting in the connection 

olystyrene 
(Void) 

Insitu Nib 

M-Beam 

Elimination of top flanges 

c) Insitu nibs d) Precast beam without top 
flanges 

FIG. 6.1 Freebody Diagram for The Connection 
(Not to Scale) 

M-Beam 
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CHAPTER SEVEN 

COMPLEMENTARY DOWEL SHEAR TESTS 

7.1 General 

It has been seen in the previous chapter that when the precast section has 

no top flanges in the connection the web shear connectors can transfer 

longitudinal shear force by their dowel action. In this chapter the efficiency of 

these connectors with regard to bar size, steel strength, interface bond and 

concrete shrinkage (by using dry and wet curing conditions) will be examined 

with the use of small test specimens. 

Each test specimen comprised aI OOxIOOxlOOmm cube representing the 

precast beam web connected to a 300x3OOxl 00mm concrete representing the 

in-situ nib as described in chapter three section 3.13.1 and Illustrated in Fig. 

3.15. The different test conditions have also been summarised in table 3.2. 

A joint in a precast concrete structure may be required to resist some or 

all of the forces which can occur at that point such as axial compression, axial 

tension, bending, shear and torsion. Since tension in reinforced concrete Is 

taken by the reinforcement, discontinuity in the concrete at the joint does not 

affect its ultimate strength provided that the steel reinforcement is continuous. 

The transfer of axial compression is also independent of concrete discontinuity 

as long as uniform bedding of the contact surface is ensured. Hence the 

resistance to bending moment, being a combination of the above, presents no 

particular problem. The resistance to shear is usually provided by concrete 

(with support from the reinforcement) and this situation Is affected by the 

concrete discontinuity along the shear plane. 

In a monolithic reinforced concrete member the direct shear stress can 

be adequately resisted by the concrete, the problem being the principal tensile 

stress along an inclined plane. However, at a joint between the precast 

members where the plane of concrete discontinuity coincides with the shear 
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plane, the shear force must be transferred by alternative means. The most 

important parts of shear transfer in such a joint are as follows: 

a) Adhesion (bond) created by the in-situ part of the joint. 

b) Friction between the two faces in contact (provided by small surface 

asperities or by aggregate interlock). 

c) Dowel action of the reinforcement bars, Le resistance produced by 

these bars against the shear deformation (relative movement of the two parts). 

7.2 Historical Background 

In general two different cases have been considered by past researchers, 

firstly the dowel shear strength of the joint when other effects (bond and 

aggregate interlock) are eliminated and secondly the combined effect of bond, 

aggregate interlock and dowel action in the shear transfer capacity of the joint. 

7.2.1 Dowel Shear Strength 

The theoretical solution of the dowel mechanism was proposed by 

Timoshenko and LeSSeIS85 by considering its behaviour as a flexible beam on an 

elastic foundation. The stress distribution thus derived Is shown In Fig. 7.1 

indicating a high concentration of compressive stress in the concrete under the 

dowel. In applying this theory to determine the shear capacity of the dowel the 

problems are, firstly the choice of support reaction coefficient and, secondly 

the appropriate failure criterion. The early approach by Friberg86 and Lo087 

was to consider the compressibility of the concrete immediately below the dowel 

for the first and the crushing strength of the concrete for the second. Marcus88 

made an extensive experimental study of dowel strength and arrived at a 

different type of expression which agreed with his range of parameters but was 

of limited general application. 
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in general two possible modes of failure have been suggested for the dowel 

mechanism: 

a) Yielding of the dowel bar and crushing of the concrete under it. 

b) Splitting of the concrete. 

The main parameter upon which the failure mode of the dowel mechanism 

depends is the concrete cover to the bar. Tests have showngo that when the 

cover is greater than 6 to 7 times the bar diameter, the failure Is governed by 

crushing of concrete and yielding of the bar. For smaller concrete cover, 

failure is produced by the concrete splitting, where splitting cracks open either 

at the bottom or at the side faces of the section. 

For the prediction of the dowel strength in the first mode (simultaneous 

concrete crushing and bar yielding) several formulae have been proposed. 

Dulacskagi and MIIIS92 proposed the following Idealized formula obtained from 

basic theory : 

2 Vdc, kd bf CU Y .................... 

where db is the diameter, fcu and fy are concrete and steel strength, k Is a 

constant to be determined by testing and Vdc is the dowel strength. This equation 

can satisfactorily predict dowel strength when the dowel force Is applied at the 

face of the concrete (zero eccentricity). 

For the dowel strength in the case of concrete splitting, (low concrete 

cover), all the suggested formulae are empirical, and indicate that the dowel 

strength Vds depends on a number of variables such as bar diameter, bottom and 

side concrete cover, concrete strength etc. . Krefeld and Thurston93 suggested 

that for concrete beams: 

c )cA]/-ýxj/d Vd 
S7--b4f -[1.3(1+180p/4fc (psi) 

......... 
(7.2) 

or: Vdsml 0.7b4f- [1.3(1+16.8p/q-rc)c+d]/Nrx 
I /d (SI) .......... (7.3) c 

219 



where: p=percentage of dowel reinforcement 

c=concrete cover 

xj=distance of diagonal crack from beam support 

d=distance from extreme compressed fibre to centroid of dowel 

Vds=dowel strength when the failure is by concrete splitting 

Taylor38 suggested the following empirical expression for the dowel 

strength of horizontal bars in reinforced concrete beams: 

Vdsý9-1 +0-0001 ll(CS +C, )]2 fct (in kN) ..................... (7.4) 

where: fct=tensile strength of concrete (N/mM2) 

C. ý=side cover to the dowel bar(s) 

Ci=horizontal distance between adjacent bars 

In a recent investigation Soroushian et a194,95 carried out two series of 

push-off tests to investigate parameters affecting each mode of dowel failure. 

For the first mode of failure Le yielding of the bar and crushing of the concrete 

(so called dowel action against concrete core) using mathematical equations for 

the behaviour of a beam on an elastic foundation together with experimental 

results, they derived practical relationships for dowel strength and 

load-deflection. They also came to the conclusion that the bar diameter Is the 

main factor influencing the dowel behaviour in action against the concrete core. 

Other factors include steel and concrete strengths and bar inclination. 

For the second mode of failure (concrete splitting), which they94 refer to 

as dowel action against concrete cover, they concluded that the dowel behaviour 

in action against concrete cover is similar to action against the core before a 

crack separates the cover from the core. After this split cracking, behaviour 

depends on the bar size, contribution of concrete cover and stirrup locations In 

each part of specimen. An analytical expression for the prediction of dowel load 
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at split cracking was also suggested by this author. 

7.2.2 Combined Behaviour of Dowel and Interface Shear 

In general two types of tests have been undertaken in this category, first, 

the direct investigation of shear resistance by push-off tests on two blocks of 

concrete held in contact with different interface conditions (bonded, unbonded, 

rough, smooth and dowelled) to represent a connection or a joint In practice, 

and second, tests on actual composite beams from the point of view of horizontal 

shear transfer at the junction of a precast beam and in-situ concrete slab In 

composite construction. Hansong reports several tests both of push-off and 

composite beam variety where he determined load-slip characteristics as well 

as ultimate strength for various types of bonded, unbonded and keyed Interfaces. 

Saemann and Washa96 further extended Hanson's work. In their investigation 

on interface action and the recommendation on allowable shear stresses, 

primary importance was placed on the nature of the concrete surface, and the 

shear transfer mechanism was attributed mainly to bond and surface Interlock, 

the role of the steel transversing the shear plane being considered of a 

secondary nature. 

In a somewhat different approach to the mechanism of Interface shear, 

Birkeland and Birkeland97 postulated a theory supported by Mast98 where the 

shear resistance was claimed to be a direct function of the tensile strength of the 

steel bar crossing the shear plane. This theory (hypothesis) Is called "shear 

friction". According to this theory the external shear force tends to produce 

slippage along the shear plane. Considering that the interface Is rough, this 

slippage will separate the two parts in a direction normal to the Interface, 

which in turn requires a balancing tensile force in the bar crossing the shear 

plane. Since the reinforcing bar is well anchored on both sides of the Interface, 

this tension provides an external clamping force on the concrete resulting In 
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compression across the interface of equal magnitude. The interface resistance to 

shear force according to friction law is therefore: 

Vu=gAsfy ........................................... (7.5) 

where g is the coefficient of friction, depending on the nature of the surfaces 

and which should be obtained by tests. It has been also suggested by Mast98 that 

because of inherent uncalculated loads arising from fabrication, erection, creep 

shrinkage, temperature changes and differential settlement, it Is Imperative 

that such a connection possesses ductility. This ductility must normally be 

obtained through the use of reinforcing steel, rather than through reliance on 

the brittle tensile or shearing strength of the concrete. In a later Investigation 

Hofbeck, Ibrahim and Mattock" carried out a series of push-off tests on 

concrete specimens with and without pre-existing cracks along the shear plane. 

They concluded that the shear friction theory gives a conservative estimate of 

the shear transfer strength of initially uncracked concrete. 

The American Building Code8l ACI 318-83 introduces a shear friction 

design method in section 11.7 with the following equation: 

Vu=Avff 
y 
(gS! nccf+Cosaf) ....................................... (7.6) 

where Avf 
,fY and ccf are cross-section area, yield stress and the angle that 

the bar makes with the shear plane. For reinforcement normal to the shear 

plane (ccf =900) the same equation (Eqn. 7.5) will be obtained. The coefficient 

of friction (g) will change from 0.6 to 1.4 for different surfaces, the least 

being for concrete placed against hardened concrete not intentionally roughened. 

The cross-sectional area of the contact surface is not considered In the 

shear-friction theory as In the classical friction law. This means that there is 

no bond between the two concretes and only the roughness of the surface Is 
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considered by introducing different g values. In practice however, there Is 

some bond between the two concrete surfaces if one is cast against another, 

hence, the contact surface will have an increasing effect upon the shear transfer 

capacity of the joint. In fact the available data by AndersonlOO, Hanson9 and 

Hofbeck et ai99 show that: 

vu=vs+gpf ............................................................... (7.7) 

where v. is the shear stress transferred by the bond and roughness between the 

two concretes and is found to have an appreciable value of ranging from 0.65 to 

5.5 N/mM2 according to circumstances. 

Bennett and BanerjeelOl considered this bond effect and introduced the 

following equation for connections subjected to shear force: 

Vu=(ccvoAc+1.48As-ff-c-u f-Y) ........................................... (7.8) 

where, for a smooth concrete interface: 

cc=ratio of contact area to total area 

VO=constant component of shear resistance 

Since the second term in the right hand side of the above equation Is dowel 

strength against concrete crushing (similar to Eqn. 7.1), and In their test 

specimens the top dowel bars are acting against concrete cover which has a 

lower strength, they suggested that only half of the area of the top bars should 

be considered to be effective. 

The British Code BS811027 suggests in section 5.3.7d that if the shear 

force Is to be transferred by the steel reinforcement crossing the interface of 

concrete surfaces, the ultimate shear force should be: 

Vu=0.6Fb tanccf ........................................................... (7.9) 
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where Fb is 0.87Asf 
y or the anchorage value of the reinforcement, whichever 

is the lesser and af is the angle of internal friction between the faces of the 

joint and (tanctf) varies between 0.7 and 1.7 (but is best determined by test). 

However, for a smooth Interface tanaf =0.7 . Removing the steel strength 

reduction factor (0.87) from Fb : 

VU=0.6xO. 7Asf 
y =0.42Asfy ........................................... (7.10) 

Comparing with ACI equation (Eqn. 7.6) when applied to smooth surfaces, 

and with dowels normal to the interfaces, the ultimate shear will be 0.6Asf y 

Le ACI prediction Is 43% greater than BS81 10 prediction. 

7.3 Test Details and Change of Variables 

The test specimens (see Fig. 3.15) are 'double shear' connections, Le the 

total applied load is divided into two equal shear forces acting on the side 

interfaces. One dowel bar was used in each specimen passing through both 

interfaces and anchored into the surrounding block from each end. The following 

variables were examined: 

a) Dowel bar size and strength (mild and high yield steel bars) 

b) Curing, wet and dry conditions to observe the shrinkage effect 

c) Bond between blocks (concrete cast against smooth concrete surface), 

unbonded interface using polythene sheet between the two concretes. 

Concrete strengths for the central and surrounding blocks were identical 

to those used for the precast and in-situ concrete in the main test program. 
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7.4 Experimental Results 

The ultimate failure load for each specimen together with appropriate 

notation showing different test details and conditions are shown In table 7.1. 

7.4.1 Observed Mode of Failure 

The specimen detail and testing arrangement indicate that the concrete 

cover to the bar does not control the failure because the top and bottom of the 

specimen are restrained between two thick steel plates for the application of 

external load as can be seen in Fig. 3.15. In the actual connection between the 

precast beam's web and the in-situ nibs using shear connectors there Is also 

sufficient cover to the dowel bars to prevent the second mode of dowel failure 

(dowel action against concrete cover as explained in 7.2.1b). In fact all the test 

specimens exhibited the first mode of failure (dowel action against concrete 

core as explained in 7.2.1a). 

In general a crack was observed along the bar In the weaker block which 

then followed the contact interface leading either to a corner or other side of the 

bar. Crack patterns after the failure have been shown for some of the 

specimens in Fig. 7.2. 

7.4.2 Ultimate Shear Strength In Smooth-Bonded Connection 

In the light of the discussion on dowel action and Interface shear 

resistance, the following general expression may be derived for the 

quantitative assessment of joint strength. 

Vu=Vs+Vd 
................................. (7.11) 
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Vs is the constant component of the shear resistance depending upon the surface 

roughness and the bond between two parts. Vd is the shear force carried by the 

dowel action and depends on a number of variables Including As , fy and fcu . For 

the dowel area (A. ), most investigators agree that the dowel strength Is 

proportional to it but there are different opinions in the way that fY, and fcu 

have an effect. Some investigators including Dulacska9l , MiIIS92 0 Bennett and 

BanerjeelOl suggest that the dowel strength is proportional to ýfcufy. Hofbeck et 

al99 and also recommendations by the British27 and American" Codes relate the 

dowel strength to ly only. 

The observed dowel strength by the author were found to have a linear 

correlation with steel strength (f y) taking into account that a constant concrete 

strength was used throughout the investigation. Clearly more research work is 

required when the concrete strength is a variable. The experimental values of 

Vu have been plotted against A, fy in Fig. 7.3. The British and American code 

predictions for the same surface conditions (smooth & bonded) have been drawn 

on the same figure. The best line to fit the experimental results Is: 

Vu=46.0+0.52Asfy (M) ............................................... (7.12) 

where VU and Asfy are in W. The constant interface shear will thus be obtained 

by considering the total contact area, and thus providing an appropriate value 

of: V, =46000+28000-1.64 N/mM2 

The BS81 10 and ACI codes do not consider a constant shear strength for 

the interface and only introduce different factors (g) due to conditions (bond 

and roughness) to be used in Eqn. 7.5. All the safety factors have been removed 

from the code prediction lines in Fig. 7-3. The observed safety factor depends on 
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the value of Afy and for Asf Y =100 M, the observed safety factor is 1.6 for ACI 

and 2.5 for BS8110 comparing with the code values of 1/0.9=1.11 and 

1/0.87=1.15 respectively. For higher values of Asfy the code predictions are 

closer to experimental values. Some tests were performed without using dowel 

bars so the constant interface shear strength was obtained. In practice 

however, the interface bond between precast and in-situ concrete can easily be 

affected by creep, shrinkage and temperature changes and that may be the 

reason for the conservative values suggested by the codes. 

7.5 Shear Capacity of Smooth-Unbonded Connection 

In this part of the investigation the bond between in-situ and precast 

concrete was eliminated by using polythene sheet at the interface to simulate the 

practical case in which the interface shear resistance (bond and interlock) has 

been destroyed as a result of shrinkage, creep, temperature change etc. 

7.5.1 Ultimate Resistance and Failure Mode 

In general, the observed shear resistance for these connections was lower 

than those observed for bonded connections, the difference being approximately 

equal to the failure load for the bonded connection without a dowel bar (see table 

7.1). The observed values of failure load (Vu) were plotted against Asfy shown 

in Fig. 7.4 together with ACI and BS8110 predictions (where all safety factors 

have been removed). All the specimens failed in the first type of dowel failure 

(action against core) explained in section 7.4.1. 

it can be seen from Fig. 7.4 that the observed values are closer to the 

lines suggested by the codes (in comparison with bonded connections). The 

British Code is seen to give values with sufficient safety factor but the ACI 
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predictions are slightly unsafe especially for higher A. 1y values. The reason Is 

that both code predictions (Le Vu=g Asfy ) are for g values which consider some 

bond at the interface and there are no suggested g values for a completely 

smooth-unbonded connection. 

7.6 Shrinkage Effect 

For each dowel bar size two curing conditions were considered. The first 

specimen was kept in the curing room with 100% humidity and the second 

specimen was left in dry conditions to allow shrinkage to occur. The observed 

shear transfer capacity for this condition was between 22% and 35% lower 

than those for specimens cured In wet conditions. It should be noted that In no 

case had the bond been completely destroyed as a result of shrinkage. 

7.7 Application of the Results to Design of Web Shear 

Connectors 

As discussed in a previous chapter (section 6.9), with the absence of top 

flanges in an inverted T beam the shear transfer may be performed by the use 

of horizontal bars passing through the beam's web and anchored Inside the 

surrounding In-situ nibs. 

It was suggested in 6.13.1b that about 30% of the shear force Is 

transferred by the monolithic top slab over the beam and therefore the web 

connection should be designed for 70% of the design shear force. 

In practice the in-situ concrete nibs and crosshead are cast on site and 

may be subject to some shrinkage. In addition to that, the web surface is very 

smooth and even some dust and mould oil may exist on it. For these reasons It is 

recommended here that no account should be taken of the constant interface 

shear strength (discussed in 7.4.2) and only the effect of dowel bars should be 

228 



considered. 

For the design of dowel bars in a smooth-unbonded connection, the most 

suitable method was observed (see section 7.5.1) to be the BS81 10 method (see 

also Fig. 7-4). The following Eqn. therefore should be used to determine As. 

VU=0.6xO. 7xO. 87 AsfrO. 36 Asfy ........................................... 
(7.13) 

Since the connection is a 'double shear type , the required amount of 

dowel area (which passes through both interfaces) is half the value obtained for 

As from above equation i. e. : 

AS-0.5 [V 
U/0.3 

6fy] =1 .3 9VU/fy ............................................... 
(7.14) 
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Table 7.1 Dowel Shear Test Results 

No. Detailý Failure 
Load(kN) No. Details* Failure 

Load M 

1 R1OBW 70.3 17 R16BW 102.5 

2 111 OBD 57.4 18 R16BD 77.8 

3 RIOUW 40.5 19 RI 6UW 56.0 

4 RIOUD 37.2 20 R16UD 58.8 

5 TIOBW 90.0 21 T16BW 143.5 

6 T1 OBD 75.9 22 T16BD 111.2 

7 T1OUW 45.6 23 T16UW 97.0 

8 T1OUD 48.9 24 T16UD 88.0 

9 R12BW 95.1 25 PBW 48.8 
- 

10 R12BD 75.1 26 PBD 36.1 

11 R12UW 48.2 27 PUW 7.0 

12 R12UD 45.0 28 PUD 5.0 

13 TI 2BW 110.3 

14 T12BD 81.2 

15 T12UW 72.1 

16 TI 2UD 65.0 

B: Bonded R: Mild Steel 

U : Unbonded T: High Yield Steel 

W: Wet Curing P: Plain Concrete (No Dowel Bar) 

D: Dry Curing 10,12,16 , Bar Diameter (mm) 

230 



Steel Bar 

Tension 

FIG. 7.1 Deformation and reaction under dowel 
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FIG. 7.2 Crack Pattern in Some Specimens After Failure 
(Shown on Plan Views) 
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CHAPTER EIGHT 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

8.1.1 Shear In Composite Precast Prestressed Beams 

Different aspects of composite beam behaviour when subjected to shear 

were observed and comparisons were made with current Codes of practice. 

8.1.1.1 Web Shear Cracking Load 

It was observed that ail British Codes (BS81 10, BS5400, C131 10) have a 

sufficient margin of safety against web shear cracking and the observed mean 

was 1.21. The observed mean safety factors were 0.96,1.05,1.50 and 2.06 

for American", Australlan70, European72 and American Bridge (AASHTO)73 

Codes respectively, the most conservative one being the AASHTO Bridge Code. 

8.1.1.2 Stirrup Stress 

It was found in the composite beams with static loading that stirrups are 

unstressed up to the observed inclined cracking load but they experience an 

approximately linear increase afterwards and the modified truss analogy was 

found to be adequate. For the case in which the load was removed and the beam 

was loaded for the second time, the classical truss analogy gave, a safer 

prediction of the stirrup stress. 

8.1.1.3 Web Crushing ' 

Considering protection against web crushing, it was found that British 

Codes are the most conservative ones (with an observed safety factor of up to 
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2.66) while American, European, and Australian Codes indicate more 

reasonable safety factors of 1.47,1.60 and 1.69 respectively. 

The web crushing strength is dependent upon the shear span to effective 

depth ratio (a/d) and the classical or modified truss analogies cannot precisely 

predict the stirrup stress for this situation. A mathematical model was 

produced to evaluate the stirrup stress with respect to both the shear span and 

the stirrup ratio (see section 4.5.4 for the proposed equation). 

For the type of beams tested here, a limiting value was found for the a/d 

ratio in that for values smaller than this the required area of stirrups may be 

reduced (see section 4.5.4). 

8.1.2 Enhanced Shear Strength near the Continuous Support 

An increased shear resistance may be assumed for the beams near the 

support. Current Codes have different approaches but they do not distinguish 

between simple or continuous supports. In the present Investigation this 

matter was examined for the continuous supports. 

It was discovered that stirrup stress decreases linearly from a distance of 

0.7d (d=effective depth) from the continuous support, and thus the 

enhancement should be allowed for at sections within this distance. Current 

Code predictions are considerably different. The CEB method appears to be 

unsafe while the simplified method of BS8110 and also Danish Code method 

seem to be the most conservative ones. The Australian Code approach showed a 

better prediction of the shear strength enhancement near the supports of a 

continuous beam. 

8.1.3 Shear Transfer Between Precast Prestressed M. Beams 

and In-Situ Crosshead 

A detailed investigation was made to find the most Important mechanism of 

236 



shear transfer, factors affecting the shear transfer capacity, the need for 

strengthening by external means such as transverse prestressing and finally a 

practical and economical method for the design of connection. 

8.1.3.1 Mechanisms of Shear Transfer In Beams with Top 

Flanges 

The shear force is transferred from the M-beam to the In-situ nibs by: 

a) The mechanical interlock (key) produced by the M-beam's top flanges 

and the in-situ nibs. 

b) Monolithic concrete top slab joining the whole system together. 

c) The bond between the web and In-situ nibs. 

The most important mechanism proved to be the top flanges of the 

M-beam. 

8.1.3.2 Distribution of Shear Force within the Embedment 

Length 

From measurement of stirrup strain along the connection length In the 

precast beam, the variation of shear force, and hence the distribution of 

reaction forces between the two parts, were obtained. It was discovered that for 

an embedment length of 300mm (900mm in prototype) about 50% of the shear 

force is transferred within 50mm of the beam's end. 

For the in-situ nibs the measured shear force distribution suggests that 

for a relatively large length the shear force is not high, and their relatively 

large thicknesses can carry the shear force without shear reinforcement. This 

fact was also verified by stirrup strain measurement In the nibs which was 

found to almost zero within that length. As a result embedment lengths of less 

than 300mm may be used in this type of connection. 
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8.1.3.3 Effect of Projecting Bars 

For the beams with top flanges it was observed that the contribution of 

projecting bars to dowel action in shear transfer are not additive 1.0 the top 

flange mechanical interlock (key) is sufficient to transfer the design shear 

force. It is suggested that apart from those bars required for the possible 

positive moment near the supports as a result of differential settlement, there 

is no need for other bars to project from the beam. The provision of projecting 

bars or couplers is an expensive and time consuming practice and It may 

present both transportation and corrosion problems. 

As a result of 8.1.3.2 and 8.1.3.3. it is recommended that for the beams 

with top flanges (such as M-beams) the nib stirrups can be eliminated (or kept 

to a nominal amount) and projecting bars may be reduced to the required 

amount to cope with possible positive moment. 

8.1.3.4 Effect of Bending moment 

The magnitude of bending moment was increased by changing the loading 

arrangement and it was observed that the shear transfer capacity of the 

connection was not changed significantly. 

8.1.3.5 The Embedment Length Effect 

The embedment length was reduced from 300mm to 100mm and the 

connection was able to transfer the full shear force when the In-situ nibs are 

provided with stirrups. It was seen however, that there was a considerable 

rotation at the connection in comparison with higher embedment lengths. 
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8.1.3.6 Transverse Prestressing 

Since in the connections with top flange effect the weakest conditions, Le 

unreinforced nibs and elimination of projecting bars, could not reduce the shear 

capacity of the connection (for the highest possible shear force) without 

transverse prestressing, it is therefore suggested that there is no need for this 

feature to provide longitudinal shear transfer strength. 

8.1.4 Shear Transfer In Beams without Top Flanges 

The effect of top flanges was eliminated deliberately in this stage of the 

research and it was seen that the connection suffered dramatic reduction In Its 

shear transfer capacity. During this stage and in this condition other means of 

improving the shear transfer capacity were examined. They were as follows: 

8.1.4.1 Transverse Prestressing 

Transverse prestressing provided the most efficient mechanism of 

longitudinal shear transfer by increasing the interface friction In the absence of 

top flanges within the connection. In addition to that, relative rotation and 

vertical separation were greatly reduced by including this feature. 

8.1.4.2 Web Shear Connectors 

As a substitute for transverse prestressing, these connectors were 

observed to serve as a shear transfer mechanism by their dowel action. They 

could transfer the full shear force but the vertical separation at ultimate was 

considerable. 
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8.1.4.3 Projecting Bars 

In connections without transverse prestressing or web shear connectors, 

the projecting bars from the end of beam were able to transfer the full shear 

force but very large relative rotation and vertical separation was observed, 

resulting from the lack of connection between the nibs and web and also the 

absence of top flanges which produce the most efficient mechanism. 

8.1.5 Dowel Shear Tests 

To obtain more information about the strength of web shear connectors 

(explained in chapter seven) a separate dowel shear specimen was designed and 

different interface conditions (bonded, unbonded, dowel bar size and strength). 

For the design of dowel bars connecting precast to in-situ elements where the 

surface is very smooth and the bond has been destroyed as a result of shrinkage, 

the experimental results from these specimens revealed that the BSBIIO 

method provides an accurate and safe prediction of the failure load. For the case 

in which the interface shear (bond and interlock) exists, a mathematical model 

is proposed to predict the shear strength. 

8.2 Suggestions for Further Research 

8.2.1 Connections with Top Flange Effect 

For this type of connection the following subjects may be Investigated: 

a) Effect of repeated loading on the shear transfer capacity of the 

connection. 

b) Examination of the embedment lengths rather than those tested here 

e. g. 250mm, 200mm and 150mm with unreinforced nibs. 

c) Shear transfer capacity when the connection Is very close to the 
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support. 

d) Effect of transverse prestressing for small embedment lengths. 

e) The behaviour of the connection when it is in the region of large 

positive bending moment. This is useful to connect two beams at the 

mid-span or near it because of transportation restriction etc. 

8.2.2 Connections Without Top Flange Effect 

The following suggestions are made for this type of connection: 

a) Effect of repeated loading 

b) Examining different prestressing levels and finding the required 

minimum in the case of transverse prestressing. 

c) Changing the number, size, strength and position of the dowel bars In 

the case of web shear connectors. 

d) Changing the number and size of projecting bars and its effect upon the 

shear transfer capacity of the connection 

d) Examining the associated effect of web shear connectors and projecting 

bars upon the shear strength of the connection. 
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