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Abstract

Pressure ulcer (PU) prevention trials are challenging due to low incidence leading to

large sample size requirements. Longitudinal data at multiple skin sites per patient

are collected, but commonly aggregated to a single endpoint. Multi-state models

(MSM) have potential to improve efficiency of trials but there is little published on

MSM as the primary analysis method.

The aim was to understand PU development natural history and better use

longitudinal data for PU research design and analysis.

After fitting a 4-state progression MSM to existing trial datasets, a simulation

study explored impact on power of using MSM instead of methods based on a single

endpoint. This required a hypothesis test definition for multiple effect estimates in

the MSM setting. State misclassification was explored using Hidden Markov Models

(HMM) applied to trial data, with impact on power and bias of misclassified states

assessed through simulations. Candidate state definitions in the presence of missing

data were proposed and analysed using a selection model.

MSM led to increased power in some situations. When the intervention was

effective in reducing onset and development across all states, follow-up could be

halved from 60 to 30 days and assessments reduced from daily to every 2 − 3 days

compared to the base case. State misclassification, when analysed appropriately, led

to little loss of power and unbiased effect estimates, but there were convergence and

identifiability concerns. Selection models were shown to be a special case of HMM

and can be implemented using readily available software. Descriptive summaries

of trial data suggested non-ignorable missing data, however analysis results were

insensitive to different state definitions.

For disease prevention trials where participants pass through a series of health

states, MSM may lead to efficient trial designs. Missing data is easily accommodated.

Further work is required to develop robust modelling strategies for misclassified data.
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Chapter 1

Introduction

The aim of this PhD is to improve the design and analysis of disease prevention

clinical trials with discrete longitudinal assessments, informed by re-analysis of two

clinical trial datasets of pressure ulcer prevention interventions.

The National Institute for Health Research (NIHR) operational priorities, pub-

lished in June 2021, state that as part of their work to reduce research waste, their

priority is to ensure that the research they fund is well-designed, efficiently delivered,

unbiased, published in full, widely disseminated, and usable [2].

The trial forge initiative was set up in 2014 to provide a systematic approach

for improving clinical trial efficiency [3]. They identified 17 areas of trials for which

efficiencies could be made including; choosing the right research question, choosing

the right design, feasibility and pilot work, obtaining funding, logistical planning for

trial delivery, data management, writing and publishing the trial protocol, training

trial staff, motivating trial staff, identifying trial sites, managing and monitoring

trial sites, recruitment, data collection, retention, analysis, dissemination of findings

and close down. Some important areas are discussed briefly here before introducing

the motivating problem.

First, it is important to optimise processes for recruiting patients from the tar-

get population. The Prioritising Recruitment in Randomised Trials (PRioRiTy)

study used a priority setting partnership based on the methods of the James Lind

Alliance to establish research priorities for improving recruitment to clinical tri-

als [4]. Recruitment is a well-known challenge for clinical trials with approximately



2

55% of trials funded by the NIHR Health Technology Assessment (HTA) achiev-

ing their recruitment target [5]. Feasibility and pilot work may include using a

smaller clinical trial to establish the feasibility of running a larger definitive trial,

with recruitment being the most common measure of feasibility [6]. The use of a

pilot study may be more efficient if conducted within the main trial (internal pilot)

rather than before the main trial (external pilot) because centres can remain open

and recruitment can continue without interruption if the internal pilot is considered

successful [7]. Success is commonly assessed using pre-specified trial progression

criteria [8]. Progression based on recruitment could be defined using a stop/go rule

or using a traffic light system where green represents no recruitment problems and

to continue as planned, red represents infeasible recruitment for the main trial, and

amber represents recruitment challenges for which methods to improve recruitment

should be explored [7]. A qualitative approach can be taken to understand clinical

trial specific recruitment processes and develop a plan of action to address any iden-

tified challenges [9]. Such pilot studies can increase the ultimate success of the full

trial, or prevent further resources being invested in a trial that is unlikely to provide

a definitive answer to the research question.

Second, efficiencies in trial conduct can be made when important trial outcomes

are collected routinely as part of clinical practice, a situation that has been explored

by McCord et al [10]. The authors provided an overview of the potential benefits,

challenges, and potential barriers for using routinely collected data in clinical trials.

The main conclusion was that routinely collected data have considerable potential

to make clinical trials more efficient through streamlining data collection. However,

there may be challenges depending on the availability, completeness and accuracy

of routine data sources for the specific research question. Careful consideration is

therefore required before adopting a routine data source to replace more traditional

data collection methods [10]. The Core Outcome Measures in Effectiveness Trials

(COMET) Initiative was set up so that researchers of specific conditions can agree a

set of standardised outcomes to be collected and reported as a minimum in order for

the trial findings to be relevant to key stakeholders, including patients and healthcare
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decision makers. [11]. Findings from COMET studies may be used to inform relevant

routine data sources, which could further lead to efficiency gains for clinical trials.

An example of utilising both routine data sources and a core outcome set is the

WHITE cohort study of patients who present with a fractured hip [12]. The cohort

was designed to collect data on patients whose data are also recorded on the National

Hip Fracture Database, complimented by additional data collection according to a

core outcome set for hip fractures [13]. Furthermore, trials of interventions for this

patient population may be evaluated by running a trial within the WHITE cohort,

which provides efficiency gains through utilising an existing infrastructure [12,14,15].

Third, efficiencies can be made through trial designs particularly when there are

multiple potential treatments to be assessed for the same patient population, or

there are several populations that may benefit from the same treatment. The most

common trial design is a parallel group design where the trial is designed based on a

fixed number of (typically 2) comparator interventions, data are collected on a pre-

planned number of participants and the data are analysed at one fixed time point at

the end of the trial [16]. Adaptive trials, including group sequential designs, are an

alternative to this fixed trial structure [17]. Pallman et al [16] published a guide for

adaptive clinical trials, describing their use and providing advice on their conduct

and reporting. The guide describes an adaptive design such that there can be

reviews of the data and subsequent adaptations to the trial conduct prior to the final

analysis. These adaptations may include re-estimating the sample size, dropping

intervention arms if there are multiple comparators, or stopping the trial early due to

evidence of efficacy or futility. They outline how trials with adaptive designs can be

more efficient for many reasons, including that they may require fewer participants,

futile treatment groups may be dropped early and a definitive conclusion may be

obtained earlier compared to a traditional fixed design. For example, where new

treatment options arise during a trial, or a treatment is very unlikely to show a

positive effect, a Multi-Arm Multi-Stage (MAMS) trial design can be used. These

designs, also described as platform trials, evaluate several interventions against a

common control group and have pre-specified adaptation rules to allow dropping of
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ineffective intervention(s) and the flexibility of adding new intervention(s) during

the trial. Alternatively, umbrella trials can be used to assess multiple interventions

for a single disease where the patients can be stratified into clinical subgroups, or

basket trials can be used to investigate a common intervention for use in multiple

disease types [18]. Umbrella, basket and platform trials often have a master protocol

with multiple sub studies depending on the research question, which means there

may be standardized trial operational structures, patient recruitment and selection,

and data collection, which lead to efficiency gains in trial delivery.

Fourth, efficiencies could be made through trial analysis. Trials should be de-

signed so that the number of participants recruited in the trial sample is sufficient

to correctly conclude a target treatment difference with an acceptable probability

(power), whilst minimising the probability of incorrectly concluding a treatment

difference if one does not exist (type I error). Researchers often design a clinical

trial based on detecting this difference at a single time point and conduct the anal-

ysis accordingly. For example, if the trial was designed to compare differences in a

continuous or binary outcome at 3 months post randomisation a generalised linear

model may be used. If the data are collected at baseline (randomisation), and lon-

gitudinally for a pre-specified length of time a generalised linear mixed model could

be used to explicitly model the longitudinal data. Contrasts can be used to estimate

the treatment effect at the time point of interest so that the estimand of interest

does not change but the use of a generalised linear mixed model may increase the

power compared to analysing the outcome at a single timepoint. The use of a gen-

eralised linear mixed model has been shown to lead to an increase in power by up

to 25% compared to a t-test for continuous outcomes [19] or up to 42.7% compared

to Pearson’s Chi-Squared test for binary outcomes [20] in the presence of missing

data.

Motivating Clinical Problem

This thesis is motivated by trials of pressure ulcer (PU) prevention interventions

conducted in the Leeds Clinical Trials Research Unit (CTRU). PUs are a significant
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problem in populations with impaired mobility and are categorised on a scale of

0 (no changes in skin) to 4 (deep ulceration - see Chapter 2 for further details).

Two trials funded by the NIHR HTA used development of a Category 2+ PU as the

primary endpoint [21,22]. The first trial published in 2006 was the PRESSURE trial

and compared two interventions (alternating overlay and replacement mattresses),

with the primary outcome being incidence of PUs. The primary statistical analysis

used Pearson’s Chi-square test for proportions [21]. The required sample size was

2, 100 participants to have 80% power to detect a 50% reduction in the proportion

of patients who developed a new PU, using a 2-sided 5% significance level and

anticipated 5% loss to follow-up. The trial under-recruited with an Intention To

Treat (ITT) population sample size of 1, 971, where the ITT population consisted

all randomised participants in their randomly allocated group, regardless of the

treatment they actually received. Despite patients at high risk of PU development

being recruited, the proportion of patients developing new Category 2+ PUs was

lower than assumed in the original sample size calculation at 10.5% (95% Confidence

Interval (CI) (9.2%, 11.4%)).

The second trial published in 2019 was the PRESSURE2 trial, which was de-

signed to compare two mattresses (Alternating Pressure Mattress (APM) and High

Specification Foam (HSF)) in terms of the difference in time to development of a

new PU [22]. In order to maximise the incidence of new PUs, and therefore min-

imise the sample size, the trial team adapted the patient eligibility criteria from

the PRESSURE trial by excluding patients who were admitted to hospital for elec-

tive surgery, and only including patients who were acutely ill. Based on incidence

of PUs in acutely ill patients in the PRESSURE trial, the incidence of new PUs

for PRESSURE2 was assumed to be 23% in the control group (HSF). The trial

was powered at 90% according to a log-rank test to detect a hazard ratio of 0.759

(assuming an incidence of 18% in the intervention group (APM)). Under a tradi-

tional fixed design, the required sample size would have been 2, 914 assuming a

6% loss to follow-up rate. However, informed by the design of an earlier trial of

PU prevention interventions [23], an adaptive design was used due to large sample
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Figure 1.1: PRESSURE2 trial design, reproduced with permission from Brown et
al [1]

size requirements and anticipated recruitment challenges. Specifically, a double-

triangular group-sequential design [24] was adopted where a maximum of 2 formal

interim analyses were planned with stopping boundaries corresponding to safety,

futility or efficacy (Figure 1.1). The maximum sample size in a group sequential

trial of 2, 954 was larger compared to the sample size required for a traditional fixed

design but the chance of stopping early appealed to patients, the trial team and the

funder.

Unfortunately, recruitment was far slower than originally anticipated (Figure

1.2), and the proportion of participants who developed a PU was also lower than

anticipated with an overall incidence at the end of the trial of 7.9% (95% CI

(6.7%, 9.1%)). Due to the recruitment rate being lower than expected, the trial had

a no cost extension approved and stopped recruitment 6 months after the original

planned recruitment end date with a final total of 2, 029 participants randomised.

PUs are a key quality indicator for the National Health Service (NHS) [25] and

the top 5 priority questions from the James Lind Alliance for PUs are focused on
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Figure 1.2: PRESSURE2 trial recruitment

PU prevention [26]. Therefore, trials of PU prevention interventions are important,

but despite the efforts to improve efficiency via patient recruitment and sequential

monitoring of results, the challenges faced by the PRESSURE and PRESSURE2

trials suggests that further improvements in efficiency need to be made. Without

solutions, the challenges make trials of PU prevention interventions prohibitive for

funders.

Whilst the PRESSURE2 trial was ongoing, the use of routinely collected data

was explored. PU data are recorded in multiple sources including the Safety Ther-

mometer [27], and National Reporting and Learning System (NRLS) [28], which are

in place to monitor prevalence and incidence of PUs across NHS England Trusts.

However, an audit conducted by investigators in Leeds demonstrated that there was

a high level of under-reporting of PUs, which was considered unacceptable for re-

search use [29, 30]. Therefore, routinely collected PU data are not an option for

making PU prevention trial delivery more efficient.

One area that could be explored further is the planned primary analysis. The

PRESSURE and PRESSURE2 trials focused on a single event (or time to event)

analysis. However, investigators assessed multiple skin sites at multiple time points,
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recording whether skin was healthy or not and the classification if there was pressure

damage. During analysis repeated assessments of skin sites were combined for each

patient to identify whether they developed at least one PU during trial participation,

which means that considerable data were not utilised. Greater use of these data

could lead to further efficiency gains in the trial design.

Multi-state models

Multi-state models (MSM) represent different disease categories (states) and move-

ment of patients between these disease categories (transitions). They are convenient

representations of diseases that can be classified into distinct categories, with clear

definitions, and where onset, progression and regression of the disease correspond

to transitions between states in the model. MSM have the potential to utilise more

of the data collected in disease prevention clinical trials and could lead to increased

power by analysing the longitudinal data structure. Note that the treatment effect

is defined as the set of hazard ratios estimated for each transition of interest.

In the PU research setting, assessment is based on clinical appearance of the skin,

which can lead to potential misclassification of skin status especially if the assessor

does not have specialist training [31]. Expert assessors may be more expensive and

therefore a trade-off must be made between the frequency of assessments and the

accuracy of assessments must be made. In addition to misclassification, missing data

are common for trials with outcomes measured longitudinally. It is particularly an

issue in the populations at high risk of PU because they are typically elderly and

have problems with mobility, which may prevent high risk skin sites being assessed.

Additionally, they may have bandages and dressings covering areas that are at risk

of PU, or they may have had amputations resulting from their underlying health

conditions (e.g. diabetes). Overall, the issues of aggregation, misclassification and

missing data can lead to both bias and imprecision of estimated treatment effects

and so should be addressed in design and analysis of trials. Thus, this thesis will

provide insight into the use of MSM for the design and analysis in disease settings

with discrete states measured longitudinally, taking into account the challenges of
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misclassification and missing data in the PU setting.

1.1 Aim and objectives

The aim of this PhD is to understand the natural history of PU development and

to improve the design and analysis of PU research by making better use of all data

collected during repeated assessments at multiple skin sites.

Objectives

The objectives of this thesis are to:

1. Conduct a targeted literature review of existing PU prevention trial research

to understand current methods of design and analysis.

2. Develop a better understanding of PU onset and development through sta-

tistical models that make full use of longitudinal assessment of skin site level

data.

3. Assess the impact on power and sample size for disease prevention trials de-

signed using multi-state models compared to commonly used methods of anal-

ysis.

4. Assess the impact of misclassified outcomes on power, bias and coverage for a

trial designed using multi-state models.

5. Assess the missing data mechanism in the PU setting and apply a selection

model to jointly model the disease process and the missing data mechanism.

The aim and objectives are addressed throughout the chapters of this thesis;

Chapter 2 describes the motivating problem in more detail and presents a targeted

review of the PU literature conducted to understand the common methods and their

limitations for the design and analysis of PU prevention clinical trials. The common

methods of analysis are applied to two case studies in Chapter 3. This is followed

by an introduction to MSM including notation and an application to motivating

datasets in Chapter 4. A simulation study to assess the potential impact on power
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and sample size for disease prevention trials is presented in Chapter 5. Chapter

6 explores how misclassification of outcomes can be incorporated in the analysis

of a case study dataset. The impact of misclassification of outcomes in MSM in

terms of power, bias and coverage is assessed in Chapter 7. An assessment of

missing data mechanisms in a motivating dataset and implementation of a selection

model is presented in Chapter 8 and a final discussion including recommendations

for practice is provided in Chapter 9. Whilst motivated by clinical trials of PU

prevention measures, the findings are relevant to any disease where discrete outcome

data are collected longitudinally, the disease status cannot improve and interest lies

in prevention of disease progression.



Chapter 2

Literature review

2.1 Introduction

Pressure ulcers (PUs) are defined as localized injury to the skin and/or underlying

tissue usually over a bony prominence, as a result of pressure, or pressure in combi-

nation with shear (lateral pressure) [32]. Skin sites susceptible to pressure injury and

ulcer formation are those exposed to pressure and which are not able to tolerate pres-

sure, such as buttocks and heels in patients with very limited activity and mobility.

PUs are commonly categorised using the International NPUAP/EPUAP/PPPIA PU

Classification System [32]; classification consists of an ordered scale from ‘Category

1:Non-blanchable Erythema’, ‘Category 2:Partial Thickness Skin Loss’, ‘Category

3:Full Thickness Skin Loss’ and ‘Category 4:Full Thickness Tissue Loss’. Some PUs

are classified as ‘Unstageable:Depth Unknown’ until enough slough and/or eschar

is removed to expose the wound base [32]. Also, rarely, some PUs present as ‘Deep

Tissue Injury’, and the category of PU may not be determined until the epidermis

sloughs off [32].

A systematic review of prevalence studies reported point estimates of PU preva-

lence in ’at risk’ populations in the UK to range from 5.1% to 32.1% for hospitals,

4.4% to 6.8% for community settings and 4.6% to 7.5% for nursing homes [33]. In line

with these results, a 2013 study suggested 14.8% (95% CI 13.6%−16.0%) of hospital

patients (excluding paediatrics, obstetrics and psychiatric care settings) in the UK

have a Category 1 or more severe PU [34]. Corresponding prevalence in community

11
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settings has been reported as 0.74 (95% CI 0.6 − 0.8) per 1, 000 adult population

according to the results of a wound care survey conducted to assess prevalence of

PUs within the population receiving health care in Bradford, UK [35]. Similarly,

a cross-sectional observational study of two community NHS sites (including; com-

munity nursing services, residential homes, rehabilitation units, specialist palliative

care units, nursing homes and General Practitioners) in the North of England re-

ported PU prevalence of 0.58 (95% CI 0.56− 0.60) per 1, 000 [36] adult population.

PUs represent a significant cost burden to UK healthcare providers with a Cat-

egory 1 PU estimated to cost £1, 214 and the most severe PU estimated to cost

£14, 108 with increasing costs due to longer healing times and increased number

of complications as PUs increase in severity [37]. Furthermore, PUs cause major

problems to affected patients, impacting on physical, social and psychological qual-

ity of life domains through increased risk of hospital admission, physical restrictions

and lifestyle changes required for the treatment and prevention of PUs. Distressing

symptoms include pain, inflammation, exudate and wound odour [38]. PUs are a key

quality indicator for the Department of Health [25] and measures, including Safety

Thermometer [27], and National Reporting and Learning System (NRLS) [28] are

in place to monitor prevalence and incidence of PUs across NHS England Trusts.

Despite the scale of the problem there are few high quality randomised controlled

trials (RCTs) assessing effectiveness of preventative strategies [39].

Methodological issues

Several methodological issues arise in research on PU prevention, the main statistical

ones addressed in this thesis are: inefficiency due to aggregation of longitudinal

measurements, misclassification of the true PU category and failure to capture all

scheduled measurements (missing data). I identified these issues through conducting

the analysis of an RCT [22] and observational cohort study [40]. In research studies

(2 RCTs and an observational cohort) led by Leeds CTRU, investigators assessed

multiple high-risk pressure-area skin sites at multiple time points for each patient

(including sacrum, buttocks, heels), recording whether skin was healthy or not and
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the PU classification [21,22,40]. The populations varied within each study according

to the objective: in the PRESSURE trial, acutely ill or elective surgery patients were

recruited in hospital and followed up for up to 60 days [21]; in the PRESSURE2 trial,

acutely ill patients were recruited from an inpatient setting and followed for up to

90 days [22] and in the observational cohort study acutely ill patients were recruited

from a hospital or community setting and followed for up to 30 days [40]. In each

case, longitudinal assessments were conducted twice weekly for the first few weeks

after recruitment with a reduction to once weekly until study completion (defined as

no longer at high risk of PU development, transferred to non-participating centre,

death or the end of the study follow-up period) providing repeated measures for

each skin site assessed. For the purposes of analysis, repeated assessments of skin

sites were reviewed to identify whether a PU developed at any skin site at any point

during follow up; these data were then combined for each patient to identify whether

patients developed at least one Category 2 or more severe PU during their study

participation. Thus, a large amount of potentially useful data was aggregated to a

single binary outcome to indicate whether a patient developed a (Category 2+) PU.

Although recommended assessment times were specified in the protocol, in prac-

tice assessments were conducted when it was appropriate to approach the patient

and when there was research nurse capacity. Therefore, assessments were not nec-

essarily conducted at the same time points for all patients, and the time interval

between assessments were variable. Follow-up visits were not conducted for a num-

ber of reasons including the patients being too unwell or, the research nurse being

unavailable. Some patients had partial skin assessments at some time points due to

bandages or dressings being in situ or being unable to move, for example. Therefore,

missing data may be at a patient or skin site level and may not be missing at random.

Furthermore, even if assessments were conducted as per protocol, skin changes can

occur very quickly [41] and may resolve or deteriorate between assessments, which

can mean part of the disease process is not recorded (interval censored).

The current method of skin assessment is based on clinical appearance, which

inherently means there is an element of subjectivity in the assessment. This leads
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to potential misclassification of skin status even when staff are specifically trained

and is of particular concern for the assessment of Category 1 pressure injury [31].

A systematic review of risk factors for PU development identified two large studies

that reported that, if a patient has a Category 1 PU, the odds of developing a

Category 2+ PU were 2 − 3 times that of a patient with healthy, intact skin [42]

(published odds ratios (95% CI) of 3.1 (2.4 − 4.1) [43] and 2.0 (1.3 − 2.9) [21].

Due to misclassification of Category 1 PUs, NIHR Health Technology Assessment

(HTA) funded trials of PU prevention strategies run by the Leeds CTRU have used

development of a Category 2+ PU as the primary endpoint [21,22]. However, despite

patients at high risk of PU development being recruited, the proportion of patients

developing new Category 2+ PUs are much lower than for Category 1+ PUs and

lead to large sample size requirements [21,22,40]. This issue makes conducting both

early and late phase trials problematic as this outcome requires large samples before

being confident of taking, say, a phase II trial to phase III or in powering phase III

trials. These issues of aggregation, misclassification and missing data can lead to

both bias and imprecision of estimated treatment effects and so should be addressed

in design and analysis of trials.

2.2 Aim

To establish whether these issues are common for other researchers of PU prevention

strategies outside of Leeds, a structured literature review was conducted with the

aim of identifying common themes for:

1. Recruitment setting, sample size and patient risk of PU development

2. Skin sites assessed

3. Assessment intervals and maximum length of follow-up

4. Assessor expertise

5. PU classification system and endpoints

6. Analysis methods
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2.3 Methods

In order to understand the design and analysis approaches used in published RCTs of

PU prevention strategies, a structured review of the existing PU prevention literature

was conducted using a pearl growing approach to search for literature [44]. The

justification for using a pearl growing approach rather than a “systematic review”

is that the aim was to identify common methods of design and analysis rather

than, for example, identifying every paper to draw conclusions about particular

treatment effects. This method is considered effective in identifying high quality

literature in more obscure locations that wouldn’t necessarily be identified in a

traditional systematic review [45]. This method of review uses initial literature,

through which additional references are identified and this process continues until

no further relevant references are identified. The initial literature used in this review

were literature A and B detailed below, with further literature identified as described

under literature C:

• Literature A: Published Cochrane reviews The Cochrane library for

systematic reviews was searched for the term “PRESSURE ULCERS” and

reviews found in this search were screened for relevance to prevention of PUs.

The articles identified in each of these reviews were screened and duplicate

articles were deleted. This search of Cochrane reviews was expected to include

all key trials in pressure ulcer prevention.

• Literature B: Published systematic review Based on advice from super-

visors, a systematic review of risk factors for PU development published by

Coleman et al [42] was recommended as a pearl that might identify additional

RCTs not included in a published Cochrane review. The articles identified in

this review were screened and duplicate articles were deleted.

• Literature C: Other published literature In addition to the Cochrane re-

views and the systematic review, advice was sought from Professor Jane Nixon

(Clinical supervisor), and clinical members of the external advisory group to

identify any key trials in PU prevention that may not have been included in
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the reviews. Additional relevant articles were also identified through review of

the articles identified in Literature A and B.

Articles identified through Literature A and B were screened for relevance against

the following criteria:

Inclusion criteria

• Adult study populations in any setting

• Randomised controlled trial

• English language

• Full text available

Exclusion criteria

• Duplicate or reviewed as part of another reference

• Did not report PU incidence or skin deterioration

• Conference abstract

• Incomplete study report

Data extraction

The review of each paper was conducted by Isabelle Smith and the following data

items were extracted. No checking was conducted.

• Maximum length of follow-up

• Number of patients recruited

• Recruitment setting

• Key eligibility criteria for patients (particularly whether there were any eligi-

bility criteria relating to skin status)

• Skin sites assessed
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• Assessment schedule

• Assessor expertise

• PU classification scale

• Endpoints relating to skin status

• Analysis methods

• Other information deemed relevant

2.4 Results

The first search was conducted 31/10/2016 and identified 7 Cochrane reviews [46–

52]. A second search conducted 22/06/2021 led to a total of 16 Cochrane reviews

[47, 49, 50, 52–63]. This final 16 included 9 new reviews, 5 of the reviews identified

in the first search and 2 updated Cochrane reviews from the initial search [53, 57].

In addition to the references included in the Cochrane reviews, RCTs referenced in

the systematic review of risk factors [42] were obtained. A total of 362 references

were included in the Cochrane and systematic reviews, and a further 4 references

were identified as part of literature search C [64–67]. In total, 260 references were

excluded providing a final total of 106 references for the review (Figure 2.1). The

main reason for exclusion was duplication (129 (49.6%)) and a third were not relevant

to the review if the focus was on healing rather than prevention or if PUs were

not reported (76 (29.2%)). Note that the systematic review of risk factors for PU

development identified just 2 additional RCTs [68, 69] compared to the Cochrane

reviews suggesting that although the search was not exhaustive, there were unlikely

to be many additional “key” trials that had been omitted from the review. The full

table of reviewed references and data extracted is provided in Appendix A.
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Figure 2.1: Summary of literature review paper identification

2.4.1 Recruitment setting, sample size and patient risk of

PU development

Of the 106 papers included in the review, 65 (61.3%) were conducted in the acute or

hospital setting, 31 (29.2%) were in the community or long term care settings, with

6 (5.7%) conducted in both settings and 4 (3.8%) where the setting was unclear.

Patients were commonly eligible if they were at risk of developing a PU with 50% of

the references using a risk assessment score to define high risk. The Braden scale [70]

was used in 34 (32.1%) cases, and the Norton [71] and Waterlow [72] were used in

10 (9.4%) and 7 (6.6%) references respectively. Pre-existing skin condition was

commonly used to assess eligibility with 71 (67.0%) specifying at least one criterion.

Of these, 38 (53.5%) studies only included patients who were PU free or had intact

skin at baseline, 11 (15.5%) accepted patients with a Category 1 PU or less, and 4

(5.6%) accepted patients with a Category 2 PU or less severe. The remaining 18

(25.4%) studies were more study specific, for example, Bliss [73] recruited patients

with Grade 2 or 3 PUs and excluded patients with sores > 5cm or patients with
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discoloured areas > 2cm.

The number of patients recruited in the studies ranged from 10 to 4, 023, with a

median (Inter Quartile Range (IQR)) number recruited of 114 (62, 380) and mean

of 337.

2.4.2 Skin sites assessed

The skin sites assessed were commonly not pre-specified according to the study

methods, however many did report the locations where PUs were observed. Typ-

ically, these included the sacral area, buttocks and heels among others. In some

cases, the skin sites were restricted to include specific sites such as the heels for

the evaluation of, say, offloading devices or cushions [74]. Note that the absence of

pre-specified skin sites in the included studies does not necessarily mean that skin

sites were not pre-specified in the protocol.

Assessment intervals and maximum length of follow-up

The frequency of skin assessments varied, with 40 (37.7%) studies specifying at most,

daily skin assessments, 18 (17.0%) specified less frequent assessments than daily but

more frequent than weekly, and 16 (15.1%) were weekly. There were 9 (8.5%) studies

that assessed the skin multiple times per day but these were typically around surgery

or for short observation periods in intensive care units. There were also 5 (4.7%)

studies for which skin status was assessed less frequently than monthly but these were

for studies in long term care settings. In 2 cases, the frequency of assessments were

directed by the patient’s condition where the frequency might increase for patients

with deteriorating health, increasingly limited mobility or changes in skin. [75,76].

The minimum length of follow-up was 1 day, for example for studies assessing

PU prevention during surgery [23, 77], and the maximum length of follow-up was 2

years for a trial where a complex intervention was delivered at a centre level in the

community setting and included, for example, feedback to those providing direct

care on how to prevent skin breakdown [78]. Of those where data were available,

the median (IQR) length of follow-up was 28 (14, 90) days.
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It is clear from the literature, that there is no consensus on the length of follow-

up or the assessment intervals, but a trade-off is required between observing timely

changes in the disease process and the cost of employing specialist researchers to

assess patients.

2.4.3 Assessor expertise

A total of 57 (53.8%) studies reported the use of trained staff or researchers, 22

(20.8%) utilised attending health care professionals with no specialist training, whilst

33 (31.1%) did not specify who conducted the trial outcome assessments. There is

a common concern within the literature that assessors might lack the experience

or expertise required for accurate PU classification within a research context. For

example, Beeckman et al developed the PUCLAS tool to standardise the training

offered to healthcare professionals in the identification and classification of PUs in

their RCT [79]. A total of 64 (60.4%) studies incorporated some form of verification

of PU classification using additional assessors to check the skin status, or assessed

the inter-rater reliability.

2.4.4 PU classification and skin site endpoints

The most common PU classification scale could be categorised as the National

Pressure Ulcer Advisory Panel (NPUAP), European Pressure Ulcer Advisory Panel

(EPUAP) or Pan Pacific Pressure Injury Alliance (PPPIA) guidelines, which were

consolidated to the joint NPUAP/EPUAP/PPPIA guidelines in 2009 and were up-

dated in 2014 [32]. A total of 50 (47.2%) studies specified a variation of this classifica-

tion, with the Torrance [80], Exton-Smith [81], Shea [82], and Agency for Healthcare

Policy and Research (AHCPR) [83] being used in more historical studies. Whilst

there are differences in terminology, for example describing PU severity in terms

of “Category”, “Stage” or “Grade”, the common PU classification scales can be

mapped onto the NPUAP/EPUAP/PPPIA classification scale. The PU classifica-

tion scale was unclear or not specified in 24 (22.6%) studies, and 18 (17.0%) studies

used a bespoke method of classifying pressure damage.
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In 54 (50.9%) studies, the equivalent of a Category 1 PU was an endpoint of

interest (primary or secondary), whilst in 26 (24.5%) studies the equivalent of a

Category 2 PU was an endpoint of interest. There were 16 (15.1%) instances where

the definition was bespoke, such as the deterioration of skin status [23, 65, 73, 76,

84–86]. These were not always clearly defined in the methods, but there were some

examples where skin deterioration was defined according to a change in reference

to baseline skin status, for example Kathirvel et al defined a PU event as a patient

who moved from PU free to the equivalent of a Category 1+ PU or from Category

1 PU to Category 2+ PU [65]. There were 19 (17.9%) studies where the PU grade

of interest could not be ascertained.

Throughout the literature there were concerns about the accuracy of assessing

a Category 1 PU, with some studies using verification of the endpoint by another

assessor, including some that used a transparent disc method to assess blanching

[87–89] and there was one example where a Category 1 PU was confirmed if observed

two days in a row [90]. Some studies use the equivalent of a Category 2+ PU as the

primary endpoint due to concerns about the reliability of diagnosis with two studies

explicitly stating that they did not analyse the incidence of Category 1 PUs due to

these concerns [91,92]. A further issue with using a Category 1 PU as an endpoint,

was that some studies [23, 66, 67, 93, 94] excluded patients with darkly pigmented

skin due to the challenges in identifying early pressure damage. However, exclusion

of patients based on the colour of their skin will lead to ungeneralisable trial results

and exclusion of already under-represented groups from research [95,96].

2.4.5 Analysis methods

In statistical analysis, PU incidence at any skin site (binary response) or the time

to incidence of a PU at any skin site were the most frequently used outcomes of

interest. In 64 (60.4%) studies identified in the literature, the incidence of PUs were

compared using univariate analysis techniques such as Fisher’s exact test and tests

for contingency tables for example Pearson’s Chi-Squared test for proportions [97].

These methods can be generalised to the situation in which the response has m
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levels, for example PU categories or trials with more than 2 arms, and related tests

can also accommodate the ordinal nature of PU classification [97]. Such simple

comparisons are limited as they do not provide an estimate of the treatment effect,

are not adjusted for important clinical factors and ignore the timing of PU onset.

When applied at a skin site level, rather than for a patient level summary, they

did not account for within patient correlation. That is, the effect of intervention

was assessed for individual skin sites [79,87,98,99]. There was one exception with a

study that compared a dressing applied to one trochanter to no dressing on the other

trochanter within the same patient; generalised estimating equations were used to

account for the within patient correlation to estimate the relative risk [100].

A commonly used model-based analysis for the incidence of a PU as a binary out-

come was the logistic model, which was used in 23 (21.7%) studies in the literature

review. This is a generalised linear model that conditions on treatment and other

independent variables. Although this approach provides an estimate of the effect

size point estimate and associated precision, and allows adjustment for other inde-

pendent variables, it ignores how treatments influence the timing of new PU onset,

the total time at risk for an individual and the sampling times for assessment.

Time to event (TTE) methods were identified in the literature to take time at

risk and timing of PU onset into account. A total of 24 (22.6%) studies described

outcomes using Kaplan-Meier (product-limit) methods. The log-rank test was used

by 17 (16.0%) studies to formally compare the survivor functions of two treatment

groups. The log-rank test can be generalised to compare more than 2 survival

functions under the null hypothesis that they are all equal. Limitations of these

univariate methods are that they assume that the endpoint is observed at the time it

occurs, so they ignore interval censoring, do not provide an estimate of the treatment

effect and are not adjusted for independent variables.

The most common model-based analysis used for time to event outcomes in

the PU literature was the Cox proportional hazards (PH) model [101] used by 14

(13.2%) studies. This multivariate method can provide an estimate of the effect

size and its precision, and allows adjustment for other independent variables. As
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Figure 2.2: Summary of findings from literature review of PU prevention intervention
RCTs

with the binary outcome, TTE analyses are limited since there is no information

on the stage at which treatments influence the onset of a new PU. Furthermore,

the sampling scheme is ignored, the censoring mechanism is often assumed to be

ignorable and PH regression models may be used without checking the assumption

of PH.

2.5 Discussion

The literature review of 106 RCTs of PU prevention interventions assessed the re-

porting of recruitment setting, patient eligibility, skin site assessments, assessor ex-

pertise, skin status endpoints and analysis methods (Figure 2.2). The recruitment

setting and patient eligibility were generally well reported, and whilst multiple clas-

sification scales were reported, the EPUAP/NPUAP/PPPIA guidelines are widely

used as the international classification [32].

The endpoints and corresponding analysis methods described in the literature

review were almost invariably applied to patients as the unit of analysis. This means

that longitudinal data for each skin site collected from each patient were aggregated

to provide a patient level outcome of PU onset. Potentially important informa-

tion therefore was not taken into account in the analysis; for example intermediate

changes in skin condition between baseline and PU development, and the number

and location of new PUs subsequent to the first one for each patient are often ig-
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nored. This aggregated analysis is not only inefficient but also precludes assessment

of the correlation between related skin sites within a patient. Aggregating repeated

measures data for each skin site to provide a patient level outcome of PU develop-

ment therefore means that potentially important information fails to be taken into

account in the analysis. Multiple PU classifications were reported as endpoints of

interest, including the incidence (or time to occurrence) of a Category 1 PU, Cate-

gory 2 PU or some form of deterioration of skin status. Therefore, the transitions

through skin states (Healthy, Categories 1 − 4) are clinically important. The haz-

ard rate for each transition may be related to skin site as some may have a higher

propensity to develop clinical symptoms for pressure damage than others.

The literature review identified various assessment frequencies, such as once daily,

multiple times weekly or once weekly. The frequency of assessments should be

optimised to minimise the data collection burden for both patients and research staff

whilst providing high quality data for PU research. Despite pre-specified assessment

frequencies it is unlikely that assessments were conducted at the same time point

for all participants in a particular trial; time intervals between assessments may be

variable for patient-related factors (e.g. more or less frequent assessments due to

patient condition) or missed assessments due to logistical issues unrelated to the

patient. Data of this type whereby only snapshots of the process are obtained are

called panel data [102]. Panel data are common in observational studies or routine

data sources with less structured follow up regimes, but the focus of this thesis is

on panel data in RCTs.

A further issue was that the subjective nature of PU classification means that

potential misclassification should be considered when analysing and interpreting re-

sults. It was clear from the literature that misclassification was of concern to PU

researchers with many studies conducting inter-rater reliability studies and quality

control checks for skin assessments (Section 2.4.3). However, these inter-rater relia-

bility studies often served as a discussion point or reassurance in the accuracy or lack

of bias in the endpoint assessments rather than being incorporated into the analy-

sis. More than half of the studies reported the use of trained staff or researchers,
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which is in line with recommendations that specialist staff should be used for PU

assessment due to expected levels of misclassification when non-specialist ward staff

collect data [31, 103]. The PUCLAS tool [79] was developed to standardise the

training offered to healthcare professionals in the identification and classification

of PUs. However, the assessment of PUs remains subjective and misclassification

will therefore continue to be an issue in trials of PU prevention interventions. Fail-

ure to accommodate this additional measurement error in the analysis may lead

to less precise or biased treatment effect estimates and/or reduced precision in the

estimates [104]. Although inter-rater reliability studies were frequently conducted,

the sensitivity of analysis results to the additional misclassification when using non-

specialist staff was rarely considered.

There were concerns that high levels of misclassification occur in the assessment

of Category 1 PUs, however these skin changes are more common and have been

shown to have a prognostic relationship with the development of Category ≥ 2

PUs [42,105]. Reliance on development of Category ≥ 2 PUs as an endpoint means

that PU prevention trials face a challenge in terms of delivery due to low incidence

requiring large sample sizes to detect a treatment difference.

Overall, the methods highlight limitations which could be addressed at least in

part by using longitudinal data. There is a need to establish recommendations for

the length of assessment intervals and length of follow-up, and to understand how

experience of assessors impacts on the reliability of skin assessments and subsequent

analyses.

MSM have the potential to address some of these problems and their potential

impact on the design and analysis of clinical trials are explored throughout this

thesis. In order to understand their impact, two illustrative datasets are available

to be re-analysed and used as case studies for this research. In order to assess the use

of MSM compared to the common methods of analysis used in the PU prevention

literature, these datasets will first be re-analysed using binary and TTE methods in

the next chapter.



Chapter 3

Analysis of existing datasets

3.1 Introduction

The most common methods of analysis identified in the literature review were for

binary and TTE endpoints. Binary endpoints were typically the incidence of a

new PU and analysed using Pearson’s Chi-squared test or binary logistic regression,

whilst TTE endpoints were typically the time to onset of a new PU and were anal-

ysed using a log-rank test, Kaplan-Meier methods or the Cox proportional hazards

model.

Within the Leeds Clinical Trials Research Unit, the PRESSURE and PRES-

SURE2 trials contain longitudinal outcome data for the purposes of measuring PU

development and form case studies for this research [21, 106]. Ethical approval was

received by the sponsor (University of Leeds) to re-analyse these datasets for the

purposes of this thesis, confirming that additional approval was not required because

research forms for the datasets included consent for secondary analyses of the data.

The characteristics of the studies are summarised in Table 3.1, with detail provided

here:

• PRESSURE [21]: An RCT comparing two types of mattress: alternating pres-

sure mattress (APM) overlay and APM replacement, in acute and elective

hospital patients. The trial consisted of 1, 971 patients randomised using a 1:1

allocation ratio and followed up for a maximum of 60 days post randomisation.

Research nurses assessed 7 skin sites per patient at up to 13 time points.

26
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Table 3.1: Characteristics of illustrative datasets

PRESSURE PRESSURE2

Patient population Aged ≥ 55 years, admitted in the previous 24 hours to vascular,
orthopaedic, medical, or care of elderly people wards, acute or elective
admissions. Expected stay ≥ 7 days. Braden scale activity and
mobility scores of 1 or 2, or an existing Grade 2 PU. Elective surgical
patients without limitation of activity and mobility or an existing PU
were eligible if the average length of hospital stay for their surgical
procedure was ≥ 7 days or they were expected to have Braden scale
activity and mobility scores of 1 or 2 for ≥ 3 days postoperatively

Aged ≥ 18 years, in-patient with evidence
of acute illness recruited from adult
secondary care and community in-patient
acute admission facilities. Expected stay
≥ 5 days. Braden Activity and Mobility
scores of 1 or 2, or an existing Category 1
PU or localised skin pain on a Category
≤ 1 pressure area

Intervention Alternating pressure mattress overlay Alternating pressure mattress

Control Alternating pressure mattress replacement High specification foam mattress

Primary outcome Incidence of new Grade 2+ PU Time to onset of new Category 2+ PU

Number of patients 1, 971 2, 029

Maximum length of
follow-up

60 days 90 days

Assessment frequency Twice weekly Twice weekly for 30 days, once weekly
until 60 days (defined as the treatment
phase), 1 visit 30 days post discharge or
post end of treatment phase, which ever
occurred soonest

Number of skin sites per
patient per assessment

7 14
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• PRESSURE2 [106]: An RCT comparing APM and high specification foam

(HSF) mattresses in acutely ill inpatients. A total of 2, 029 patients were

randomised using a 1:1 allocation ratio and followed up for a maximum of 60

days as an inpatient (defined as the treatment phase), and had a final visit

30 days after discharge or after the end of their treatment phase, whichever

occurred soonest. Patients were assessed twice weekly for the first 4 weeks

as inpatients, and once weekly until discharge, providing a maximum of 14

assessments including baseline and the final post discharge visit. At each

assessment, there were 14 pre-specified skin sites which had the PU status

recorded.

The most common approaches to analysis in the PU literature have been on a

patient basis (Chapter 2.3). From a clinical perspective it is sensible to consider

this for a number of reasons; firstly, UK NHS quality indicator criteria are often

based on the number of patients who have a PU [25, 27, 28]. Second, there may be

measurement error in recording of the skin sites. For example, consider an individual

with 4 assessments who has a PU on the left heel observed at time 2, such that

the observed PU classification are YLH = {1, 3, 3, 4} but has a healthy right heel

(YRH = {1, 1, 1, 1}). If the heel skin site classifications are interchanged at the

second assessment, that is the right heel skin state is recorded for the left heel and

vice versa, then the observed data would be Y ∗LH = {1, 1, 3, 4} and Y ∗RH = {1, 3, 1, 1}

incorrectly recording PU damage at the right heel. Combining the component level

data at each timepoint to derive the patient’s most severe PU classification avoids

this potential error. However, aggregating skin site level data to provide a patient

level outcome may mean that potentially important information, such as multiple

PUs, fails to be taken into account in the analysis. In order to assess differences

in patient and skin site level analyses, this chapter applies the common methods

of analysis identified in the literature to patient level endpoints, and illustrates

extensions to the common methods to analyse skin site level data accounting for the

correlation of outcomes within patients.
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3.2 Aim

The aim of this chapter is to re-analyse the PRESSURE and PRESSURE2 datasets

using binary and time to event methods of analysis.

Objectives

1. Define binary and time to event outcomes at the patient and skin site level

2. Test for a difference in patient level outcomes using the Pearson’s Chi-Squared

test and log-rank test

3. Use binary logistic regression and Cox proportional hazards regression to anal-

yse patient level outcomes

4. Use binary logistic regression and Cox proportional hazards regression with

and without patient random effects to analyse skin site level outcomes

3.3 Methods

In each of the trial datasets the outcome classification was according to the rel-

evant international guidelines at that time, which have since been assimilated to

the current EPUAP/NPUAP/PPPIA guidelines [32]. In both trials an additional

“1a” grade or “altered” category was added to the classification scale to denote

pressure-related skin changes that were present but did not yet meet the criteria of

a Category 1 PU (Table 3.2). In each dataset, individual skin sites were assessed

and a PU classification was assigned. These were aggregated to analyse the data at

the patient level.

Due to the long interval between the last hospital assessment and the final visit

30 days later in the PRESSURE2 trial, the analysis dataset was restricted to that

collected during hospital stay for the first 60 days. There were concerns that factors

outwith the trial protocol, such as discharge plans, could have affected PU devel-

opment during the 30 day interval between discharge and the final visit and may

therefore confound the assessment of interventions on the development of PUs [106].
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Table 3.2: Definitions of PU classes used in the original PRESSURE and PRES-
SURE2 trials

PRESSURE PRESSURE2

Grade 0 - No skin
changes

Category 0 - Healthy intact skin

Grade 1a - redness to
skin (blanching)

Category A - Alterations to intact skin

Grade 1b - redness to
skin (non-blanching)

Category 1 - Non-blanchable erythema of intact
skin. Intact skin with non-blanchable erythema of
a localised area usually over a bony prominence.
Discolouration of the skin, warmth, oedema,
hardness or pain may also be present. Darkly
pigmented skin may not have visible blanching.

Grade 2 - partial
thickness wound
involving epidermis or
dermis only

Category 2 - Partial-thickness skin loss or
blister. Partial-thickness loss of dermis presenting
as a shallow open ulcer with a red-pink wound
bed, without slough. May also present as an
intact or open/ruptured serum or
serosanguinous-filled blister

Grade 3 - full thickness
wound involving
subcutaneous tissue

Category 3 - Full-thickness skin loss.
Full-thickness tissue loss. Subcutaneous fat may
be visible but bone, tendon or muscle are not
exposed. Some slough may be present. May
include undermining and tunnelling.

Grade 4 - full thickness
wound through
subcutaneous tissue to
muscle or bone

Category 4 - Full-thickness tissue loss.
Full-thickness tissue loss with exposed bone,
tendon or muscle. Slough or eschar may be
present. Often includes undermining or
tunnelling..

Grade 5 - black eschar Unstageable - Full-thickness skin loss in which
actual depth of the ulcer is completely obscured by
slough (yellow, tan, grey, green or brown) and/or
eschar (tan, brown or black) in the wound bed.
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Furthermore, the clinical opinion of the PRESSURE2 trial management group was

that restricting the analysis to the first 60 days may have been more clinically mean-

ingful [106].

For consistency with later analysis using MSM, patients were excluded from the

analysis dataset in both trials for the following reasons:

1. Category 2+ on any skin site at baseline (randomisation)

2. No follow-up assessments

Note that in both trials, baseline skin status was a randomisation factor with

the presence of a pre-existing Category 2+ PU as a specific level. Therefore the

exclusion of patients with pre-existing Category 2+ on any skin site at baseline is

unlikely to lead to an imbalance of patients across the arms of each trial.

3.3.1 Endpoint definition

In this section, we define the binary endpoint observed for patients and for each skin

site in the two illustrative datasets. Let k denote the index for the kth skin site,

where k = 1, ..., K. Note that K = 7 for the PRESSURE trial, and K = 14 for the

PRESSURE2 trial. Let w index the assessment number w = 1, ...,W . Then Xk(tiw)

denotes the PU classification for skin site k for patient i at the wth assessment time,

tiw. Let Zik denote the binary response variable for skin site k for patient i such

that

Zik =


1, if Xk(tiw) ∈ {2, 3, 4, 5} for anyw ∈ {1, ...W}

0, otherwise

(3.1a)

The skin site level endpoint, Zik can be used to define the patient level binary

endpoint, Yi such that

Yi =


1, if Zik = 1 for any k ∈ {1, ...K}

0, if Zik = 0∀ k ∈ {1, ...K}
(3.2a)
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3.3.2 Methods to analyse binary response

First, consider the case where patients have been assigned using a random process

to one of two groups. In an RCT, these would be intervention and control arms.

In the review of published PU prevention trials, a commonly used model-based

analysis for the incidence of a PU as a binary outcome was the logistic model. This

is a generalised linear model that conditions on treatment and other independent

variables. Let πi denote the conditional probability of patient i having the event of

interest, i.e. πi = P (Yi = 1 | xi). Assuming a logit link function, the logistic model

is then given by

logit(πi) = log

(
πi

1− πi

)
= α0 + βTxi i = 1, ..., n (3.3)

where xi is a p-vector of independent variables (x1i, ..., xpi) for patient i, with co-

efficients β = (β1, ..., βp) and α0 denotes the log odds of developing a PU when all

covariates take the value zero. Without loss of generality, we take x1i to be the

treatment allocation for patient i, with value 1 for the intervention and 0 for the

control. Therefore, β1 is the log-odds ratio of a PU in the intervention group relative

to the control, all else being equal. The treatment effect is assessed using the null

hypothesis H0 : β1 = 0.

3.3.3 Methods to analyse time to event outcome

In order to take time at risk and timing of PU onset into account, let t denote

the time since randomisation at which a patient is observed to develop a PU. The

observation t is a realisation of the random variable T . We define the survivor

function, S(t), as the probability that the time without a new PU is greater than

or equal to t, i.e.

S(t) = P (T ≥ t), t ≥ 0 (3.4)
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The hazard function, h(t), is a rate defined as the instantaneous probability of PU

onset in continuous time and is given by:

h(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
(3.5)

The cumulative hazard function, H(t) is defined as:

H(t) =

∫ t

0

h(u)du = − logS(t) (3.6)

Note that the specifications in equations 3.4 to 3.6 are interchangeable in the sense

that specification of one will permit specification of others.

During an assessment period, not all subjects will be observed to develop a PU,

this could be due to patient death, the end of a follow up schedule (administrative

reasons) or because the patient is lost to follow-up, for example. The survival time

for a patient is only known up until the point of their last observation, therefore

the survival status is said to be right censored at the last time point at which

the patient was known to be alive. Formally we define ci, the censoring time for

individual i, such that we observe t∗i = min(ti, ci). Right censoring, when the

observed survival time (t∗i ) is less than the true survival time (ti), is common in

survival analysis. Less commonly, left censoring can occur when the actual survival

time occurs before the observation period. Since this thesis is primarily concerned

with RCTs, for which time zero is the point of randomisation, left truncation will

not be discussed further. A third type of censoring (interval censoring) occurs when

a patient is not under observation between 2 time points. For example, at follow up

time t1 the patient may not have any new PUs but at follow up time t2 the patient

has a new PU, the time of onset is known to be between t1 and t2 but the exact

time is unknown. Data arising in this way is also known as panel data.

For many survival analysis methods the censoring mechanism is assumed to be

independent of the survival time of an individual. That is, a patient whose survival
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time is censored at time ci is representative of the patients who remain in the risk

set at time ci. Note that in trials the observation schedule is specified in advance

and therefore it is usually clear when a measurement has been missed and the

reason for missing data may be known, however in purely observational data it may

not be possible to know when or why measurements have been missed. Methods

for handling missing (censored) data that are not independent of the disease status

are discussed in Chapter 8.

The most common model-based analysis used for time to event outcomes in

the PU literature was the Cox proportional hazards (PH) model [101]. In this

model, let h1(t) and h2(t) denote the hazard functions for two otherwise identical

patients in treatment groups 1 and 2 respectively. The PH assumption is such that

h1(t) = φh2(t) for some non-negative constant, φ. If the PH assumption holds

S1(t) = S2(t)φ and it follows that, S1(t) ≤ S2(t) if 0 ≤ φ ≤ 1, else S1(t) > S2(t) if

φ > 1. The general PH model can be written as:

hi(t) = h0(t) exp(βTxi) i = 1, ..., n (3.7)

Where hi(t) denotes the hazard of individual i developing a new PU at time t. Cox

showed that the PH coefficients βT can be estimated using maximum partial likeli-

hood estimation and from these, hazard ratios and corresponding 95% confidence

intervals can be obtained [101, 107]. Taking x1i to be the treatment allocation as

before, then h0(t) is the baseline hazard in the control group when all covariates

take the value zero and does not have a parametric form in the Cox model.

The hazard ratio of treatment versus control is given by exp(β1) all else being

equal. The partial likelihood ratio test (LRT) can be used to test the null hypothe-

sis that β1 = 0. Note that in this analysis, some elements of xi may be time varying.

3.3.4 Extensions to common methods of analysis

So far, the methods described have focused on patient level data, but detailed skin

site level data were collected in the PRESSURE and PRESSURE2 datasets. Meth-
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ods to analyse skin site level data with a binary response or TTE outcome are

outlined here.

Binary response

The simplest model for the skin site level data would be a logistic fixed effects

regression model in line with 3.3. Let ηik denote the conditional probability that

skin site k, within patient i develops a PU, i.e. ηik = P (Zik = 1 | xi, νik). Ignoring

the hierarchical structure, the logistic model is given by:

logit(ηik) = log

(
ηik

1− ηik

)
=

K∑
j=1

αjIj=k +βTxi+ψ
Tνik, i = 1, ..., n, k = 1, ..., K

(3.8)

where αk, k = 1, ..., K denotes the log odds of a PU developing at skin site k when

all covariates are equal to zero. Note that Ij=k is the indicator function such that

Ij=k =


1, if j = k

0, otherwise

(3.9a)

The vectors β and xi are as defined in equation 3.2a, with β1 denoting the log-odds

ratio for intervention relative to control, all else being equal. Equation 3.8 includes

a q-vector of skin site specific covariates, νik, with coefficients ψ for completeness,

but these are not considered in this thesis.

The limitation of this model is that it assumes the observations are independent

and therefore fails to take into account the correlation between skin sites in the same

patient. This may lead to underestimated standard errors and biased parameter

estimates [104]. Alternatively, the logistic mixed model can explicitly account for

this correlation by incorporating patient random effects as follows:

logit(ηik) = log(
ξik

1− ξik
) =

K∑
j=1

αjIj=k+βTxi+ψ
Tνik+ui, i = 1, ..., n, k = 1, ..., K

(3.10)
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where ui ∼ N(0, σ2
u) denotes the patient level random effects, or equivalently, the

variability in outcome that is due to patient differences. In most cases, as here,

the random effects are assumed to follow a normal distribution, although this is not

strictly necessary. However, normal random effects models can be estimated easily

in most widely used statistical packages. The variance partition coefficient (VPC)

is a measure of the proportion of the total variance due to patient variability and

can be calculated as [108]:

V PC =
σ2
u

σ2
u + π2

3

(3.11)

where π2

3
is the variance of a standard logistic distribution and represents the

variance of the level 1 residuals in 3.11 [108].

Time to event outcome

Skin site level data can be analysed using TTE methods through fixed and random

effects. The PH model including skin site as a fixed effect can be written as:

hik(t) = h0(t) exp(
K∑
j=2

αjIj=k + βTxi +ψTνik), i = 1, ..., n, k = 1, ..., K (3.12)

Where hik(t) denotes the hazard of developing a new PU at time t for skin site k

within individual i. Note that in this model, h0(t) is the baseline hazard for skin

site 1 (sacrum) when all covariates take the value zero and proportional hazards are

assumed for the other skin sites. The parameter vectors β and xi are as defined

in equation 3.7, with β1 denoting the log-hazard ratio for intervention relative to

control, all else being equal. As with the logistic regression with random effects,

Equation 3.12 includes a q-vector of skin site specific covariates, νik, with coefficients

ψ for completeness.

For TTE data, clustering of skin sites within patients can be accounted for

through the use of a shared frailty term. The hazard function can be extended to
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hik(t) = h0(t) exp(
K∑
j=2

αjIj=k + βTxi +ψTνik + ui), i = 1, ..., n, k = 1, ..., K

(3.13)

where ui = log(vi), such that vi is a realisation of the frailty random variable

Vi ∼ Γ(θ, θ). Alternative distributions can be used as appropriate but the gamma

distribution is considered the simplest and most well understood frailty model [109].

Alternatively, the log-Normal frailty model is also considered one of the more simple

methods and it may be useful to assess the sensitivity of results to different frailty

distributions. Note that the baseline hazard will remain non-parametric in the mod-

els fitted to the case study datasets, although alternative parametric approaches can

be considered.

3.3.5 Independent variables and hypothesis testing

Multiple independent variables could have been included in the analysis such as

variables used to inform the treatment allocation, and variables collected at baseline

with a prognostic relationship to the outcome. However, for simplicity, only the

treatment variable was assessed in the re-analysis of the patient level case study

datasets: Overlay vs replacement for the PRESSURE trial, and APM vs HSF for

the PRESSURE2 trial. In the analysis of the skin site level data, both the treatment

variable and skin site level variables will be assessed. To understand how beneficial

it is to conduct a skin site level analysis compared to a patient level analysis, the

VPC will be examined for binary response data, and for both binary and TTE

methods, the treatment effect estimates will be examined. If the effect of treatment

is similar for both the patient level and skin site level analyses, and if the proportion

of the total variance due to patient variability suggests that skin site data do not

contribute much additional information to the analysis, then it may be reasonable

to conduct analyses of PU data at the patient level rather than at the skin site level.

Statistical significance of independent variables in the logistic regression and

Cox PH models were assessed at the 5% level. To test the overall significance of

categorical variables, LRT were used. Formal tests could be conducted to assess
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contrasts between individual skin sites and the average of other skin sites but a

multiple testing correction would be required. The primary purpose of the analysis

in this section is to assess the value of conducting the analysis using skin site level

or patient level data to estimate the effect of treatment. Therefore, the comparison

of specific levels of independent variables was examined using point estimates of the

relevant estimand (Odds ratio (OR) or hazard ratio (HR)) and corresponding Wald

type 95% confidence intervals.

All analyses were conducted in R including use of the “glm”, “glmer” and

“coxph” functions.

3.4 Results

3.4.1 Patient level analysis

Of 1971 patients in the PRESSURE trial, a total of 1, 659 (84.2%) patients were in

the analysis dataset of which 153 (9.2%) developed a new PU; with 73 (8.8%) in the

intervention (overlay) group and 80 (9.6%) in the control (replacement) group (Ta-

bles 3.3 and 3.4). Of 2029 patients in the PRESSURE2 trial, a total of 1, 729(85.2%)

were in the PRESSURE2 analysis dataset of which 127 (7.3%) developed a new PU;

with 47 (5.4%) in the intervention (APM) group and 80 (9.2%) in the control (HSF)

group (Tables 3.3 and 3.4). Analysis results are shown in Table 3.4 for a Chi-squared

test for proportions and the estimated odds ratio obtained from a logistic regres-

sion model where the outcome is regressed on the treatment allocation only. There

was no evidence of a treatment effect on the incidence of a Category 2+ PU in

the PRESSURE dataset, where the odds of developing a Category 2+ PU in the

intervention group was was 0.91 (95% CI 0.65, 1.27) times the odds in the control

group. Meanwhile, a statistically significant treatment effect was observed for the

PRESSURE2 dataset with the intervention resulting in a decrease in the probability

of developing a Category 2+ PU compared to the control group (OR (95% CI)=

0.57 (0.39, 0.82)).

TTE analyses were also applied to these datasets, with KM plots presented in
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Table 3.3: PU incidence (patient level) in illustrative datasets for patients who do
not have a Category 2+ PU at baseline

Dataset Number of patients Incidence of Category 2+ PU

PRESSURE 1, 659 153 (9.2%)

PRESSURE2 1, 729 127 (7.3%)

Table 3.4: Analysis of patient level binary outcomes in illustrative datasets

Dataset Variable
Incidence of new PU Analysis results

Yes No χ2 test
p-value

OR (95%
CI)

PRESSURE
Overlay 73

(8.8%)
754

(91.2%)
0.6384 0.91

(0.65, 1.27)

Replacement 80
(9.6%)

752
(90.4%)

PRESSURE2
APM 47

(5.4%)
816

(94.6%)
0.0034 0.57

(0.39, 0.82)

HSF 80
(9.2%)

786
(90.8%)

Figure 3.1. Inspection of the KM-plots suggests that the treatment effect does not

appear until after the first week at risk. That is, there is a delayed treatment effect

which is common in trials of prevention interventions where the treatment can take

time to work [110]. Results of the of the log-rank test are presented in Table 3.5

alongside hazard ratios estimated from the Cox regression model. Although the

endpoints and analysis method differ, there are similar conclusions to the analysis

of the binary endpoints. That is, there is no evidence of a treatment effect in the

PRESSURE dataset in terms of time to development of a new Category 2+ PU, with

the hazard of developing a Category 2+ PU in the intervention group equal to 0.84

(95% CI 0.61, 1.15)) times the odds in the control group. Whereas a statistically

significant treatment effect was observed for the PRESSURE2 dataset with the

intervention resulting in an estimated hazard of developing a Category 2+ PU 0.61

(95% CI 0.43, 0.88) times the control. That is, in the PRESSURE2 dataset there
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was evidence that the intervention provided a benefit to patients. Note however

that inspection of the KM-plots suggests that the proportional hazards assumption

is not valid for either dataset due to the delayed treatment effect (Figure 3.1).

Table 3.5: Analysis of patient level TTE outcomes

Dataset Variable
Analysis results

log-rank test
p-value

HR (95%
CI)

PRESSURE
Overlay 0.27 0.84

(0.61, 1.15)
Replacement

PRESSURE2
APM 0.0071 0.61

(0.43, 0.88)
HSF

3.4.2 Skin site level analysis

The incidence of a new Category 2+ PU for individual skin sites in the two trial

datasets are presented in Table 3.6. In the PRESSURE trial there were a total of

10, 241 skin site assessments, of which 205 (2.0%) were observed to develop a new

Category 2+ PU, and in the PRESSURE2 trial there were a total of 24, 742 skin

sites of which 183 (0.7%) were observed to develop a new Category 2+ PU. Note

that the incidence was expected to be higher in the PRESSURE trial because there

were half as many skin sites per patient and the skin sites were selected because they

were considered at highest risk of PU development. The observed PU incidence for

individual skin sites indicate that there were different probabilities of PU incidence

for different skin sites with similar patterns for both datasets. For example, in the

PRESSURE2 trial the incidence of Category 2+ PUs at the sacrum, buttocks and

heels accounted for the majority of new PUs with 146 (79.8%) observed at these

skin sites.

Results are shown in Table 3.7 for the estimated odds ratio obtained through a

logistic regression model where the outcome is regressed on the variable of interest

(treatment allocation) and skin site as a fixed effect. Including skin site as a 7 level
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Table 3.6: Incidence of Category 2+ PUs at skin site level for the PRESSURE and
PRESSURE2 trials

Variable
PRESSURE PRESSURE2

Yes No Yes No

Intervention

Intervention 96 (1.9%) 5, 045 (98.1%) 67 (0.5%) 12, 285 (99.5%)

Control 109 (2.1%) 4, 991 (97.9%) 116 (0.9%) 12, 274 (99.1%)

Skin sites

Sacrum 51 (3.5%) 1, 415 (96.5%) 36 (2.1%) 1, 699 (97.9%)

Back - - 6 (0.3%) 1, 787 (99.7%)

Left buttock 51 (3.4%) 1, 446 (96.6%) 38 (2.2%) 1, 693 (97.8%)

Right buttock 59 (3.9%) 1, 446 (96.1%) 34 (2.0%) 1, 705 (98.0%)

Left ischial - - 4 (0.2%) 1, 811 (99.8%)

Right ischial - - 4 (0.2%) 1, 812 (99.8%)

Left hip 2 (0.2%) 1, 274 (99.8%) 2 (0.1%) 1, 776 (99.9%)

Right hip 2 (0.2%) 1, 268 (99.8%) 1 (0.06%) 1, 781 (99.94%)

Left heel 22 (1.4%) 1, 592 (98.6%) 20 (1.1%) 1, 727 (98.9%)

Right heel 18 (1.1%) 1, 595 (98.9%) 18 (1.0%) 1, 708 (99.0%)

Left ankle - - 5 (0.3%) 1, 734 (99.7%)

Right ankle - - 4 (0.2%) 1, 717 (99.8%)

Left elbow - - 2 (0.1%) 1, 805 (99.9%)

Right elbow - - 9 (0.5%) 1, 804 (99.5%)
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(a) PRESSURE

(b) PRESSURE2

Figure 3.1: Kaplan-Meier Plots for the time to development of a Category 2+ PU by
randomised treatment for the PRESSURE and PRESSURE2 trials (patient level)
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fixed effect in the analysis of the PRESSURE data, the odds of developing a Cat-

egory 2+ PU at any site in the intervention group were 0.87 (0.66, 1.15) times the

odds in the control group, all else being equal. Augmenting this model to include a

random intercept for patients results in a similar (common) treatment effect, with

an OR of 0.90 (0.41, 1.96). Note that there was a slight change in the treatment

effect and wider confidence intervals due to the between-patient variation. Mean-

while, including skin site as a 14 level fixed effect in the analysis of the PRESSURE2

data, the odds of developing a Category 2+ PU at any site in the intervention group

were 0.58 (0.42, 0.78) times the odds in the control group, all else being equal. Af-

ter incorporating patient random effect, the OR was estimated as 0.64 (0.30, 1.37)

suggesting that there was no evidence of a treatment effect on the incidence of a Cat-

egory 2+ PU. Again note that there was an increase in variance due to the variation

between patients around the treatment effect. For both datasets, the inclusion of

skin site as a categorical fixed effect was statistically significant (LRT, p < 0.0001).

The point estimate for each level of the skin site variable was relative to the sacrum,

which was one of the skin sites considered at high risk of PU development. The

estimates were in line with clinical expectations, with the buttocks having a similar

odds of developing a PU to the sacrum. The heels were less likely to develop a PU

compared to the sacrum, but more likely than any of the other observed skin sites

(ischial tuberosities, back, hips, ankles and elbows) when they were compared to the

sacrum. These conclusions were consistent across both the fixed and random effects

models.

As discussed in Section 3.3.4, the limitation of the fixed effects model is that it

does not account for the correlation of outcomes within patients. A logistic model

incorporating patient as a random effect was fitted to the trial datasets with re-

sults shown in Table 3.7. The point estimates and confidence intervals were similar

across both fixed and random effects models. The between patient variance was

estimated as σ̂2
u = 41.9 and σ̂2

u = 36.4 on the logistic scale for the PRESSURE

and PRESSURE2 datasets respectively, which means that, according to the VPC,

approximately 90.7% and 91.7% of the total variance was due to differences between
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patients rather than between skin sites. This suggests that skin site data do not con-

tribute much additional information to the analysis in the PU setting and therefore,

patient level analysis may be sufficient in the PU setting.

For completeness, skin site level analyses were also conducted for TTE outcomes

using both fixed effects and random effects models. The parameter estimates for

these models are shown in Table 3.8. As with the logistic regression applied to these

data, the point estimates and confidence intervals were similar for the fixed and

random effects models. Including skin site as a 7 level fixed effect in the analysis

of the PRESSURE data, the hazard of developing a Category 2+ PU at any site in

the intervention group was 0.79 (0.60, 1.04) times the hazard in the control group,

all else being equal. Including a shared Gamma frailty for patients led to a similar

(common) treatment effect, with a HR of 0.78 (0.55, 1.10). For the PRESSURE2

trial, including skin site as a 14 level fixed effect in the TTE analysis showed that

the hazard of developing a Category 2+ PU at any site in the intervention group

was 0.60 (0.45, 0.82) times the hazard in the control group, all else being equal,

with a similar estimate of treatment effect after incorporating a shared Gamma

frailty for patient, with a HR of 0.54 (0.37, 0.81). Note, as with the analysis of the

binary outcome, that for both datasets there were wider confidence intervals due

to the between-patient variation. For both datasets, the inclusion of skin site as a

categorical fixed effect was statistically significant (LRT, p < 0.0001). The point

estimate for each level of the skin site variable was relative to the sacrum, which

was one of the skin sites considered at high risk of PU development. The point

estimates for each skin site relative to the sacrum led to similar conclusions as the

logistic regression models with the buttocks having a similar hazard for developing

a PU compared to the sacrum. The heels were observed to have a lower hazard for

developing a PU compared to the sacrum, but the estimated hazard ratio was higher

than any of the other observed skin sites (ischial tuberosities, back, hips, ankles and

elbows) when they were compared to the sacrum. These conclusions were consistent

across both the fixed and random effects models.
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Table 3.7: Logistic regression applied to the skin site level binary outcome for the
PRESSURE and PRESSURE2 trials (Fixed effects and random intercept accounting
for patient)

Variable
PRESSURE PRESSURE2

OR (95% CI) OR (95% CI)

Fixed effects Random effects Fixed effects Random effects

Intervention

Intervention 0.87 (0.66, 1.15) 0.90 (0.41, 1.96) 0.58 (0.42, 0.78) 0.64 (0.30, 1.37)

Control (reference) - - - -

Skin sites

Sacrum (reference) - - - -

Back - - 0.16 (0.06, 0.35) 0.10 (0.04, 0.25)

Left buttock 0.98 (0.66, 1.46) 0.95 (0.55, 1.64) 1.06 (0.67, 1.68) 1.05 (0.59, 1.86)

Right buttock 1.13 (0.77, 1.66) 1.27 (0.75, 2.17) 0.94 (0.58, 1.51) 0.87 (0.49, 1.56)

Left ischial - - 0.10 (0.03, 0.26) 0.06 (0.02, 0.19)

Right ischial - - 0.10 (0.03, 0.26) 0.06 (0.02, 0.19)

Left hip 0.04 (0.01, 0.14) 0.01 (0.003, 0.06) 0.05 (0.01, 0.17) 0.03 (0.01, 0.13)

Right hip 0.04 (0.01, 0.14) 0.01 (0.003, 0.06) 0.03 (0.001, 0.12) 0.01 (0.002, 0.11)

Left heel 0.38 (0.23, 0.63) 0.25 (0.13, 0.49) 0.55 (0.31, 0.94) 0.42 (0.21, 0.80)

Right heel 0.31 (0.18, 0.53) 0.19 (0.10, 0.38) 0.50 (0.27, 0.87) 0.36 (0.18, 0.71)

Left ankle - - 0.14 (0.04, 0.32) 0.09 (0.03, 0.24)

Right ankle - - 0.11 (0.03, 0.28) 0.07 (0.02, 0.20)

Left elbow - - 0.05 (0.01, 0.17) 0.03 (0.01, 0.13)

Right elbow - - 0.24 (0.11, 0.47) 0.15 (0.07, 0.34)

σ̂2
u = 41.9 σ̂2

u = 36.4
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Table 3.8: Cox regression applied to the skin site level TTE outcome for the PRES-
SURE and PRESSURE2 trials (Fixed effects and frailty accounting for patient)

Variable
PRESSURE PRESSURE2

HR (95% CI)

Fixed effects Random effects Fixed effects Random effects

Intervention

Intervention 0.79 (0.60, 1.04) 0.78 (0.55, 1.10) 0.60 (0.45, 0.82) 0.54 (0.37, 0.81)

Control (reference) - - - -

Skin sites

Sacrum (reference) - - - -

Back - - 0.16 (0.07, 0.37) 0.15 (0.06, 0.34)

Left buttock 0.99 (0.67, 1.46) 1.04 (0.70, 1.54) 1.05 (0.67, 1.66) 1.09 (0.69, 1.73)

Right buttock 1.13 (0.78, 1.64) 1.16 (0.79, 1.69) 0.93 (0.58, 1.49) 0.94 (0.58, 1.50)

Left ischial - - 0.10 (0.04, 0.29) 0.10 (0.03, 0.27)

Right ischial - - 0.10 (0.04, 0.29) 0.10 (0.03, 0.27)

Left hip 0.04 (0.01, 0.17) 0.04 (0.01, 0.15) 0.05 (0.01, 0.22) 0.05 (0.01, 0.20)

Right hip 0.04 (0.01, 0.17) 0.04 (0.01, 0.15) 0.03 (0.004, 0.19) 0.02 (0.003, 0.18)

Left heel 0.41 (0.25, 0.68) 0.41 (0.25, 0.67) 0.55 (0.32, 0.94) 0.53 (0.31, 0.93)

Right heel 0.33 (0.20, 0.57) 0.33 (0.19, 0.57) 0.49 (0.28, 0.87) 0.48 (0.27, 0.85)

Left ankle - - 0.14 (0.05, 0.35) 0.13 (0.05, 0.33)

Right ankle - - 0.11 (0.04, 0.31) 0.10 (0.04, 0.29)

Left elbow - - 0.05 (0.01, 0.22) 0.05 (0.01, 0.20)

Right elbow - - 0.23 (0.11, 0.48) 0.21 (0.10, 0.45)
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3.5 Discussion

This chapter re-analysed two existing datasets using common binary and TTE meth-

ods identified in the literature. Firstly, the methods were applied to patient level

data and the results from both the binary and TTE analyses were shown to be

consistent within each dataset. The estimands in the model based analyses were the

odds ratio for incidence of, and the hazard ratio for time to onset of severe disease

respectively. However, there are limitations of each, as highlighted in Chapter 2.

The binary outcome does not take into account the length of time a patient is in

the trial before discharge and there is evidence from the Kaplan-Meier curves in

Figure 3.1 that the proportional hazards assumption is not valid for either dataset.

In the PRESSURE2 example, both the binary and TTE analyses concluded a sta-

tistically significant treatment effect suggesting that the intervention does provide

a benefit to patients in terms of the onset of Category 2+ PU. However, inspection

of the KM-plot suggests that the treatment effect does not appear until after the

first week at risk; such a delayed effect might be expected in a PU prevention trial,

in which Category 2+ ulcers take some time to develop, with a corresponding delay

in evidence of prevention.

After applying methods to the patient level dataset, methods were used to anal-

yse skin site level data. The findings from the analysis of the binary skin site level

data suggested that at least 90% of the total variance is due to between patient

variability and the small incidence of Category 2+ PU at most skin sites suggests

that patient level analysis is likely to be adequate for estimating the effect of PU

prevention interventions. Therefore, analyses will predominantly be conducted on a

patient level for the remainder of this thesis.

Analysing PU trial data using methods for longitudinal data may help to under-

stand the natural history of the disease and to identify where treatment may have

most benefit.



Chapter 4

Multi-state models

4.1 Introduction

This thesis is motivated by trials of PU prevention strategies, where the endpoint of

interest in published trial reports is typically the incidence of a PU or time to new

PU. These endpoints are often calculated from longitudinal measurements of PU

category using an ordinal classification scale. Such discrete longitudinal outcomes

have been used in many other disease areas such as psoriatic arthritis [111,112] and

in cancer settings where both overall survival and progression-free survival are of

interest [113]. The methods used in this thesis will therefore be relevant to settings

beyond PU prevention.

When designing a trial where the incidence of an event (or time to event) is the

primary endpoint, the length of follow-up needs to be considered. Follow-up should

be long enough that a sufficient number of clinically relevant events are observed,

but not so long that the follow-up burden is excessive for both participants and

trial resources, particularly when the rate of new events decreases. The frequency

of assessments may coincide with standard clinic visits, or may be set such that

changes in disease status can be observed.

MSM have been used to explore the natural history of diseases in a range of

conditions and settings, including applications to data arising through cohort studies

or registries, and secondary or exploratory analysis of RCT data. Such analyses have

been used in some cases to inform trial design features such as the patient population

48
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Figure 4.1: Illness-death model, progression only

or assessment schedules, or to determine future research questions. In addition to

informing design features, MSM may be useful for redefining endpoints for trials of

disease prevention, where a discrete outcome is collected longitudinally and where

more than one level is of interest to researchers.

In this chapter, some examples of MSM are discussed to demonstrate how they

have been used in medical research to provide deeper insights into natural history

of disease or treatment effects and overcome some of the limitations of traditional

analysis methods discussed in Chapter 2.3. In addition, some of the key decisions

about the model structure and assumptions that must be made are discussed. This

is followed by Section 4.3.1 which outlines notation for MSM and state definition for

the motivating datasets. The results when applied to the trial datasets are presented

in Section 4.4. A final discussion and plan for further investigation of MSM for the

design and analysis of trials with a discrete longitudinal outcome is presented in

Section 4.5.

4.1.1 Model structure

There are a many considerations to be made before fitting a MSM. In the first

instance, the number of disease states and the number of transitions should be

determined [114]. The simplest MSM is a standard survival model which has 2

states; Alive and Dead with a single transition from Alive to Dead. The Alive state
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Figure 4.2: Illness-death model with regression

is the initial state and the Dead state is an absorbing state because patients cannot

exit this state once they have entered it. For the case studies presented in Chapter

3, these two states were “Free of Category 2+ PU” and “Category 2+ PU”. In

some cases, there may be events that prevent the Dead state from being observed,

for example if a patient dies before the event of interest is observed. Here, there is

a single Alive state and multiple absorbing states of which one is usually of primary

interest. In this case, a competing risks model can be used to estimate covariate

effects on an event of interest in the presence of competing events [115].

The focus of this thesis is MSM where the initial (Alive) state is split into one

or more intermediate or transient states, and a single absorbing state. One of the

most common and simplest examples of such a MSM is the illness-death model with

uni-directional transitions. A simple example of such a model, shown in Figure 4.1,

has 3 states to represent Healthy, Illness and Death and patients can move from

Healthy to Illness, Healthy to Death and Illness to Death [115]. This model has

been used in a range of disease areas including bladder cancer [116], lung trans-

plantation [117, 118] and has led to greater understanding of the natural history of

disease. The illness-death model with uni-directional transitions has been widely

used, however the number of states and transitions may not be appropriate for all

disease settings. Firstly, the number of transitions in the illness-death MSM could

be decreased to give a 3-state progressive model where transitions can only occur
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Figure 4.3: 3-progressive model

in order of disease severity in line with Figure 4.3 [119]. The illness-death model

can be extended to form a more general disease progression model if there is more

than one level of disease severity for example, by adding additional states. Transi-

tions between these transient states may be uni-directional, particularly if disease

prevention trials are of interest, or bi-directional if the natural history of disease

more generally is of interest. For example, the COACH trial was an RCT compar-

ing standard care to basic or intensive additional support for patients hospitalised

with a primary diagnosis of heart failure. The trial was designed to detect dif-

ferences in the number of hospitalisations due to heart failure or death from any

cause [120]. This composite endpoint is common for heart failure research. Postmus

et al recognised limitations with using a composite endpoint and re-analysed the

COACH trial data using a 3 state MSM where the states represented 1: discharged

from hospital, 2: hospitalisation because of heart failure and 3 death. There were

4 possible transitions; 1 → 2, 1 → 3, 2 → 1, and 2 → 3 [121]. The aim of the

model was to predict overall survival and recurrent hospitalisation due to heart fail-

ure. The model was externally validated using a prospective cohort study and was

shown to perform well in terms of prediction [121]. This is an example of how MSM

can be a useful method for analysing data where multiple endpoints are of interest

and is flexible to the number and direction of transitions. Whilst the COACH trial

utilised an illness-death model with bi-directional transitions to accommodate re-
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current hospitalisation due to heart failure [121], an alternative approach taken by

Ieva et al was to include an additional state for each additional hospitalisation and

discharge experienced by an individual, and one absorbing state to represent death

with uni-directional transitions [122]. This was possible through the use of a large

administrative dataset with a total of 35, 224 records from 15, 298 patients.

Compared to a traditional survival analysis, the number of parameters to be

estimated in a MSM can increase rapidly according to the number of states, number

of transitions and any covariate effects. Whilst the model structure should primarily

be determined based on the clinical problem, the availability of data is critical to

ensuring model fit and certain decisions or assumptions may be required. Firstly, if

there is a small number of transitions observed between a particular pair of states, a

decision could be made to not model those data. For example Ieva et al, did not in-

clude events for patients who experienced 6 or more hospital admissions due to lack

of data [122]. This is similar to grouping disease states together but decisions of this

type should be made jointly with clinical experts. Secondly, it may be reasonable

to impose constraints on covariate effects for particular transitions so that those

transitions with a small number of observations can be estimated using data from

other observed transitions. As with grouping states together, this decision should be

made jointly with clinical experts to ensure the assumption of equal covariate effects

is clinically plausible. Alternatively, it may be appropriate to estimate covariate ef-

fects on a subset of transitions as agreed with clinical experts. For example, the

FOGT -2 trial was re-analysed using a MSM. The FOGT-2 trial consisted 796 par-

ticipants with rectal cancer allocated to 1 of 3 treatment groups after their primary

surgery; the primary endpoint of the trial was overall survival [123]. With improving

prognosis for patients with rectal cancer, Manzini et al proposed using an MSM to

assess covariate effects on different stages of the disease process in order to obtain

more accurate predictions of long-term survival. The MSM had 8 states denoting

different stages of the chemotherapy schedule, local recurrence, distant metastasis

and death, with a total of 21 transitions [124]. However, covariate effects were not

modelled for 11 transitions where there were 20 or fewer observations because of
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the quantity of available data and these transitions were considered less clinically

relevant.

Due to the size of their dataset, Ieva et al explored a variety of such model fea-

tures including both semi-parametric and fully parametric TTE models, inclusion

of factors thought to affect outcomes, and differences in the time scale (patient age,

time since study entry and time since entry to the previous state). Patient specific

random effects (frailties) in the semi-parametric models were also explored to ac-

count for patients who may have a higher propensity for re-admissions, although the

inclusion of random effects did not change the conclusions of the analysis, suggesting

that a model with fixed effects only was adequate. The authors acknowledged that

due to the size of the available dataset, they were able to explore the effect of a

range of covariates on outcomes which might not have been possible with a smaller

dataset. They also highlighted the need to fully understand the model assump-

tions made and to evaluate whether they are appropriate for the dataset, through

sensitivity analyses and assessment of model fit.

Random effects can be incorporated into MSM if appropriate for the clinical

problem and data structure such as that explored above by Ieva et al. In some

settings such as the PU case studies, multiple measurements may be recorded for an

individual at any one time leading to potential correlations between measurements

on the same individuals. An example of this is the data collected on psoriatic arthri-

tis (PSA) by the University of Toronto PsA clinic which have been analysed using

MSM [111]. The dataset included data from 510 participants who had no damage

in the joints of their hands at entry to the clinic. As part of the data collection,

each patient had 14 joints on each hand for which damage may be reported. These

data were combined to determine which of 4 states each joint was in: State 1 -

Damage in neither joint, State 2 - Damage in the left hand joint only, State 3 -

Damage in the right hand joint only, State 4 - Damage in both the left and right

joints. A 4 state MSM, with 4 permitted transitions, was fitted for each joint with

a patient-specific random effect to account for correlation of joint outcomes within

each patient. A further use of random effects was also considered by this research
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group to account for patients who did not develop any joint damage, described as

’stayers’ and patients who would develop joint damage ’movers’. This mover-stayer

model was appropriate because a large proportion of patients, 71%, did not develop

any damage in any of their hand joints throughout the data collection period. As

with the approach taken by Ieva et al [122] the aim and subsequent recommenda-

tions from the PsA study was to explore a variety of different models to determine

the most appropriate statistical model alongside clinical plausibility.

A recognised benefit of MSM, when there are sufficient data, is the ability to

provide a deeper understanding of the primary analysis results for RCTs demon-

strated through published secondary analyses of trial data. Le Rademacher et al

compared an illness-death model with a time-dependent Cox model in cancer clinical

trials using simulation [125]. The simulation study was informed by a re-analysis of

an existing dataset and 4 different combinations of treatment effects were explored.

One of the combinations specified a treatment effect on the transition from Illness

state to death but no treatment effect on the other transitions. The results of the

simulation study demonstrated that in this scenario the MSM was unbiased, how-

ever the treatment effect for overall survival estimated by the time dependent Cox

model was biased towards the null until an interaction of treatment with entering

the Illness state was included in the model. The authors demonstrated that correct

model specification is critical and explained that the choice of model is dependent on

the research question of interest. For example, MSM were able to estimate the effect

of treatment on the transition from the Healthy to Illness state, but were unable

to estimate the effect of illness on survival, whereas the time dependent Cox model

was able to quantify the impact of illness on overall survival beyond the treatment

effect [125]. In addition to deciding the MSM model structure (states and possi-

ble transitions), it is important to ensure the most appropriate statistical model is

fitted.
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4.1.2 Statistical model choices

A common assumption in MSM is the Markov property, where the transition inten-

sities are assumed to depend on the history of the disease process only through the

current disease state and the time since the origin. This assumption can be restric-

tive but is common for panel data to enable the likelihood to be computed [102,126].

If the model fit is poor, it is possible that the Markov assumption has been violated.

Note that even if the model fits well, it is still possible that the Markov assumption

may not hold, and the plausibility of the Markov assumption should be consid-

ered within the clinical context. An alternative assumption is that the transition

intensities depend on the current disease state and the length of time spent there

(semi-Markov model), however these models are challenging to fit to panel data be-

cause there is uncertainty on time of entry to each state, and therefore the duration

spent in that state. Furthermore, in a semi-Markov model the time scale is usually

set to zero (clock-reset) on entry to each state, rather than modelling the time since

study entry (clock-forward) which may not be appropriate for randomised clinical

trials where time from randomisation should be accounted for. There is little advice

on which time-scale to use but should be informed by the clinical context [115].

Methods also exist when the Markov assumption does not hold, however these are

less researched [119].

For some of the examples discussed here all transition times were observed ex-

actly. However, in RCTs generally where the outcome requires detection of disease

onset or a particular stage of disease, there is often a period of sub-clinical dis-

ease, before symptoms and signs are overt and the data are therefore interval cen-

sored [102]. For example, cancer trials may be designed based on assessing the effect

of treatment on progression-free survival. Progression may be assessed via imaging

or other tests and is assessed intermittently which means the exact time of progres-

sion is unknown. Among others, Zeng et al have researched the impact of ignoring

this interval censoring on the design and analysis of cancer clinical trials [127, 128].

They showed that a Cox model used to analyse the ‘true’ progression time and an

MSM accounting for interval censored data both led to unbiased treatment effect
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estimates. However, it was noted that it is unrealistic to be able to model the

true progression time. The authors proposed sample size criteria for cancer trials

assessing progression-free survival taking into account interval censoring by using

an illness-death model. A simulation study showed that ignoring interval censoring

and designing the trial based on a Cox model of the ‘true’ progression times led to

sample size estimates up to 16.5% lower than required for the stated power under

an MSM design [128]. Therefore, the appropriate analysis for a trial should consider

interval censoring, and be determined at the trial design stage so that the sample

size estimation will provide adequate power for the final analysis.

The frequency of assessments for a clinical trial must be pre-specified as part

of the protocol. In addition to exploring the impact of ignoring interval censoring

Zeng et al [128] conducted a simulation study to explore potential efficiency gains of

increasing the frequency of patient assessments. Using a 3 state illness-death model,

they concluded that, in their context, the gain in power from increasing frequency of

measurements was small in comparison to increasing the sample size. For example,

doubling the frequency of assessments from 4 to 8 within the same length of follow-

up led to approximately 5% increased power, whereas increasing the sample size by

33% led to approximately 10% increase. Therefore, for patient populations that are

small or difficult to reach, increasing frequency of measurements may be appropriate,

otherwise it may be more efficient to increase the sample size. The assessment of

power was based on constraining the treatment effect on the 2 transitions out of

healthy state to be equal, with time exiting the well state taken to be the estimand

of interest. However, choice of the frequency of assessments in the design of a trial

should take into account the intended analysis model, cost and available resources,

all of which will be informed by the clinical setting.

Grüger [129] described four observation schedules and examined whether they

were informative or not in a simulation study as follows:

1. Examination at regular intervals: This is common for RCTs where the ob-

servation scheme is set up in advance according to a protocol. Even if there

is departure from the visit schedule this scheme can remain non-informative
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because it was specified in advance. Note this scenario is the case for most

RCTs, however reasons for delayed or missed assessments, or dropout from

the observation scheme should be examined to assess the likely missing data

mechanism. If the data are thought to be missing not at random (MNAR) the

sensitivity of results to different assumptions about the missing data mecha-

nism needs to be assessed.

2. Random sampling: This situation is less common to RCTs and is more appli-

cable to observational studies. This observation schedule is non-informative

providing selection of patients is independent of their disease history.

3. “Doctor’s care”: This may be present in some trials, particularly if the end of

follow-up is based on the patient’s health state. Provided that an observation

does not depend on the health status at the time of the observation (although

it may depend on the health status at previous observations), the sampling

scheme is not informative.

4. Patient self-selection: In this observation scheme patients may direct whether

or not they are assessed informed by their clinical condition. This observation

scheme is informative and therefore bias may be present and needs to be

accounted for in the analysis [129]. In this case it would be necessary to

analyse the sampling and disease process simultaneously

.

If data are missing not at random, methods to jointly model the observation

scheme and MSM can be used; these are discussed in more detail in Chapter 8.

The models discussed so far have been continuous-time MSM but discrete-time

MSM may be appropriate in some settings. In this case, transitions are timed on

a uniform grid where the time between one grid point and the next corresponds

to a fixed time interval within which only one transition can occur [130]. This

might be reasonable in an RCT where there is a protocol schedule for assessments,

however, assessments are unlikely to be conducted at the same time point for all

participants, for logistical reasons, or patient factors. Furthermore, if the time be-
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tween pre-specified assessments is too long, changes in disease status may be missed.

Continuous-time MSM can estimate unbiased transition rates and treatment effects

when assessment time intervals vary, provided that the measurements themselves are

independent of the fact that a measurement was taken. Williams et al compared

the use of a discrete time MSM to a continuous time MSM for a cost effectiveness

analysis and demonstrated that the results were sensitive to the choice of model

highlighting the importance of checking that the assumptions for both clinical and

cost-effectiveness analyses are reasonable [131].

4.1.3 Implementation

The distributions of the transition times may be semi-parametric where the baseline

hazard for each individual transition intensities may be unspecified or fully paramet-

ric. Maximum likelihood estimation of transition rates and covariates is commonly

used and is available in a range of software, the choice of which depends on the

features of the MSM. Examples of readily available software packages include: the

msm package in R which can be used to fit continuous-time Markov models and Hid-

den Markov models for panel data, the flexsurv and mstate packages in R can be

used to fit non-parametric and semi-parametric MSM to data with exactly observed

transition times, the multistate package in Stata can be used to fit parametric MSM

to data with exactly observed transition times. Bayesian methods can also be used

to estimate model parameters [132, 133] however the currently available software is

limited and a Bayesian model may be more computationally intensive to fit com-

pared to Frequentist methods because they require simulation methods to estimate

model parameters which can take a longer time to converge [134].

4.1.4 Inference

Although MSM is a recognised method to provide a deeper insight into disease natu-

ral history and corresponding covariate effects, the interpretation of their results can

be difficult [125]. An example was encountered in an application of MSM to predict

disease recurrence and progression patterns in chronic myeloid leukaemia [135]. The
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authors used an illness-death model with transitions from initial state to remission,

initial state to progression and remission to progression. The results showed that

one treatment had a benefit in terms of progression when participants were in remis-

sion, however it was harmful in terms of progression from the initial state. This was

an exploratory analysis and therefore underpowered, with few participants entering

the progression state. In addition to low power for at least some transitions, mul-

tiple testing concerns have also been highlighted when covariate effects are tested

on multiple transitions [124]. Cassarly et al conducted a simulation study to assess

type I error and power, using a LRT to assess the overall effect of treatment on the

disease process modelled using a MSM structure [136]. In this example, the authors

used data from trials in the stroke setting and considered MSM with 4, 5, 6 and

7 states compared to repeated logistic regression. When the treatment effect was

the same for all transitions bar one, MSM provided increased power compared to

repeated logistic regression. However, when the treatment effects differed across all

transitions, repeated logistic regression models were more powerful. Le Raderma-

cher et al calculated power and type I error in their simulation study comparing the

illness-death model to time dependent Cox models [125]. They concluded that type I

errors were close to 0.05 for the MSM, however type I error and power were reported

for individual transitions rather than the overall model. Therefore, a gap remains

in understanding the impact on the overall type I error and power in concluding

treatment effects when tested at the transition specific level.

In addition to interpretation challenges, caution should be exercised in making

causal conclusions using MSM. The focus of this thesis is on the design of clinical

trials where interest lies in designing trials according to hypothesis tests and ensur-

ing that the type I and type II errors overall are of a specific size. If all patients start

in a particular state at time zero, the time of randomisation in trials, then causal

inference can be made for transitions from the starting state. Otherwise the risk

set from other states will have altered because it will include patients who started

in the later state and patients who have transitioned to that state after randomi-

sation. If the treatment has an effect on early transitions then the remaining risk
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sets in treatment and control arms will no longer be consistent with the original

randomisation. Therefore we cannot make causal claims for treatment effect esti-

mates from states which are not the starting state. Causal inference methods such

as those described by Gran et al should be considered if interest lies in determining

the effect of intervening at specific stages of the multi-state disease process [137].

These approaches included artificially changing specific transition intensities, inverse

probability of treatment weighting and G-computation. Causal inference methods

will not be explored further in this thesis, but results of any MSM analyses should

bear these considerations in mind.

4.1.5 Summary

Overall, general statistical methods and software to fit models to observed data

[102,138,139], accessible resources including books [130,140] and tutorials [115] are

available to support those using MSM. However, challenges may be encountered in

determining the number of states based on the clinical problem, and the availability

of data [114]. A lack of data may lead to challenges in the interpretation of results

and the appropriate hypothesis test(s). The next sections illustrate an application

of MSM to motivating data to determine whether it is an appropriate method for

the data and to inform a later simulation study evaluating the impact on power and

sample size of using MSM compared to common binary or TTE methods. Note that

because the thesis is focused on trials of prevention interventions, the models will

be assumed to be progressive throughout.

4.2 Aim

The aim of this chapter is to re-analyse the PRESSURE and PRESSURE2 datasets

using multi-state models.

Objectives

1. Define disease states at the patient and skin site level



61

2. Develop multi-state models to analyse patient level outcomes

3. Apply multi-state models to analysis skin site level outcomes without patient

random effects

4.3 Methods

4.3.1 Notation

Let Y denote the disease process, which is defined by a stochastic process consisting

of multiple random variables Yt such that Y = {Yt|t ∈ (0,∞)}, Yt ∈ S = {1, 2, ...D}.

S is the state space for Yt and consists of all D possible values, or states, that could

be occupied. Note that t ∈ (0,∞) denotes a process in continuous time, but discrete

time could also be specified.

The stochastic process, Y, can be represented through probabilities for transi-

tions between state r to state s between time u and time u+ t. That is,

P (Yu+t = s | Yu = r,Ht) (4.1)

where r, s ∈ S, t, u ≥ 0 and the history of the process up to time t is denoted by

Ht.

Throughout this thesis the process is assumed to be time homogeneous. That is,

P (Yu+t = s | Yu = r,Ht) = P (Yt = s | Y0 = r,Ht) = prs(t). (4.2)

Note that the assumption of time homogeneity can be assessed through model

checks and if inappropriate, piecewise constant intensity models or non-parametric

models can be considered [119].

These probabilities representing the stochastic process, also called transition

probabilities, correspond to the (r, s) entry of a D×D transition probability matrix,

P(t) such that
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P =



p11 p12 ... p1D

p21 p22 ... p2D

... ... ... ...

pD1 pD2 ... pDD


, (4.3)

where each row sums to 1, and the dependence on t has been suppressed. The

stochastic process, Y, is Markov if the probability of moving from state r to state s

between time u and time u+ t does not depend on the history of the process, only

the current state and the time interval. That is,

P (Yu+t = s | Yu = r,Ht) = P (Yu+t = s | Yu = r). (4.4)

Transition intensities for a Markov process are given by

qrs = lim
δ→0

P (Yt+δ = s | Yt = r)

δ
, (4.5)

where r, s ∈ S, r 6= s and t ≥ 0. These transition intensities correspond to the

(r, s) entry of a D ×D transition intensity matrix, Q such that

Q =



−
∑
s 6=1q1s q12 ... q1D

q21 −
∑
s 6=2q2s ... q2D

... ... ... ...

qD1 qD2 ... −
∑
s 6=DqDs


, (4.6)

where each row sums to 0.

The transition probabilities can be obtained from the transition intensities using

results from matrix algebra, with

P(t) = exp(tQ). (4.7)

Eigenvalue decomposition may be used to derive P(t). To illustrate this, a

simple 3-state MSM with only forward transitions will be used (see Figure 4.1). In

this case, the transition intensity matrix, assumed to have constant transition inten-
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sities, is a 3 x 3 matrix with 3 distinct eigenvalues λ1, λ2 and λ3, which satisfy the

determinant equation |Q−λI| = 0 where I denotes the 3 x 3 identity matrix. There

is an eigenvector, ci, corresponding to each eigenvalue such that (Q−λiI)ci = 0 for

i = 1, 2, 3. The probability matrix is derived as P (t) = U exp(Dt)U−1, where U is

the matrix of eigenvectors, and D is the diagonal matrix containing the eigenvalues.

In the illness-death model, the eigenvalues are λ1 = −(q12 + q13), λ2 = −q23, λ3 = 0,

with corresponding eigenvectors cT1 = (1, 0, 0), cT2 = (κ, 1, 0), cT3 = (1, 1, 1), where

κ = q12
q12+q13−q23 . Therefore, the probability matrix for the progressive illness-death

model is given by

P (t) =


exp(−(q12 + q13)t) p12 p13

0 exp(−q23t) 1− exp(−q23t)

0 0 1

 , (4.8)

where

p12 = κ[exp(−q23t)− exp(−(q12 + q13)t)]

p13 = 1− (1− κ) exp(−(q12 + q13)t)− κ exp(−q23t).

However, when the models become more complicated, either through additional

states, transitions or time dependent transition intensities, although eigenvalue de-

composition can still be used, the transition probabilities cannot be expressed in

closed form.

Covariates may be incorporated into transition-specific regression models as

qrs(t) = qrs((t|x(t)) = qrs.0(t) exp(βTrsx(t)), (4.9)

where qrs.0(t) denotes the baseline hazard, βrs is a parameter vector of length p

corresponding to the covariate vector x(t) also of length p. A common assumption

is that transition intensities are constant through time although piecewise constant

hazards are useful for exploring whether this assumption is valid. As discussed in

the MSM literature, there are situations where there are sparse data on specific

transitions and solutions to this problem have been to combine states, but an al-
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ternative approach could be to constrain particular parameters to be equal to each

other [141].

Suppose that individual i is observed at W timepoints, dropping the i for sim-

plicity, the observed disease states are y = (y1, y2, ...yW ). Under the Markov as-

sumption, the contribution of individual i to the likelihood function conditional on

the first state is given by

Li(θ | y,x) = P (Y2 = y2, ..., YW = yW | Y1 = y1,θ,x)

= (
W−1∏
w=2

P (Yw = yw | Yw−1 = yw−1,θ,x))C(yW | yW−1,θ,x)

Where the definition of C(yW | yW−1,θ,x) depends on what state is observed at

the W th time point and whether censoring needs to be accounted for [130].

If the state is known at the W th time point then

C(yW | yW−1,θ,x) = P (Yw = yw | Yw−1 = yw−1,θ,x) (4.10)

If the exact time of entry to the absorbing state, D, is observed at tW then

C(yW | yW−1,θ,x) =
D−1∑
s=1

P (Yw = s | Yw−1 = yw−1,θ,x)qsD(tW−1 | θ,x) (4.11)

Finally, if the state is right-censored at tW then

C(yW | yW−1,θ,x) =
∑
s∈C

P (Yw = s | Yw−1 = yw−1,θ,x) (4.12)

where C denotes the set of possible states [102,130].

The full likelihood function is given by

L =
N∏
i=1

Li(θ | y, x)

where θ is a vector of all model parameters. These transition specific regres-

sion models may be estimated by maximising the log likelihood. Specifically, Jack-
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son developed the msm package within R, which uses eigenvalue decomposition, as

described previously, to maximise the likelihood in terms of log(qrs) (to enhance

convergence of the log-likelihood) to obtain estimates of the parameters that define

qrs [102].

4.3.2 State definition for the pressure ulcer data in PRES-

SURE and PRESSURE2

Outcome assessment

In each of these datasets the outcome assessment scales may be mapped onto a

common set of states. Category 2+ PUs were a common endpoint of interest in the

literature and will be defined as the absorbing state (Severe disease). Note that it is

clinically appropriate to group Category 2+ PUs because development of a Category

2 PU will often prompt intensive therapy and further development is less common.

Based on the international classification scale, Healthy, Altered and Category 1 PU

will be represented by 3 transient PU states (Healthy, Pre-clinical, Mild disease).

These are defined in Table 4.1 according to the classification used in each study.

Each skin site is assessed and a PU classification is assigned. These are combined

for the patient level analysis.

State definition

In this section, we define the empirical states observed for patients and for each

skin site in the two illustrative datasets, including treatment of missing data. We

start by defining multiple component outcomes for the case of PU data. For each

patient we define a composite outcome with the kth component representing the

PU classification for the kth skin site, k = 1, ..., K. Let w index the assessment

number w = 1, ...,W . As in Section 3.3.1, Xk(tiw) denotes the observed value for

component k for patient i at the wth assessment time, tiw. Note that for simplicity of

notation, we assume that all patients have the same number of assessments, although

this is easily generalised to different numbers of assessments for each patient. The

observed state for participant i at time tiw, denoted by Y (tiw) is then defined through
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Table 4.1: States used in MSM and their associated PU classes used in the original
PRESSURE and PRESSURE2 trials

State PRESSURE PRESSURE2

1 Healthy Grade 0 Category 0

2 Pre-clinical Grade 1a Category A

3 Mild disease Grade 1b Category 1

4 Severe disease

Grade 2 Category 2

Grade 3 Category 3

Grade 4 Category 4

Grade 5 Unstageable

a function, g, of the K components.

Y (tiw) = g(Xk(tiw)) (4.13)

For PU prevention trials, each participant has a maximum of K = 14 possible

skin site assessments at each assessment time. The state space for Xk(tiw) is Sk =

{1, 2, 3, 4} and the overall state for participant i at time tiw is defined by taking the

most severe state of observed skin sites

Y (tiw) = max
k

(Xk(tiw)). (4.14)

However, not all patients have complete data for all skin sites. The number

of components that are observed at time tiw for participant i can be denoted by

diw, diw ≤ K. There are several options for dealing with missing data depending on

the assumptions we are prepared to make and we discuss these in detail in Chapter

8. At this stage we make the simplifying assumption that skin sites were healthy
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unless an assessment was recorded. That is,

Y (tiw) =


missing, if diw = 0

maxk (Xk(tiw)), otherwise

(4.15a)

Since the focus of this thesis is in trials of prevention interventions, the disease

process is assumed to be strictly progressive in line with Figure 4.4. Therefore,

Y (tiw) takes the most severe category observed up to time tiw. This results in a 4

state progressive model with a single absorbing state (Severe disease). Patients start

in the Healthy or Pre-clinical skin states at time zero (date of randomisation) and a

Markov model is assumed so that transitions depend only on current disease stage,

time since randomisation and covariates. This is a simplifying assumption that

will be assessed by inspecting model fit. Note that in these case studies treatment

started immediately and early skin changes could occur quickly, therefore the delayed

treatment effect observed in the analyses of TTE outcomes (Chapter 3) are modelled

explicitly by analysing the earlier skin changes through a multi-state model. This

adds to the confidence in the assumption of time homogeneity for each transition.

Patients were followed up for a fixed length of time or until discharge, death or onset

of Severe disease.

Note that although not detailed here, methods are available for incorporating

random effects into MSM. For example in the PsA setting a multi-level MSM was

used to analyse the states hand joint locations with patient-specific random effects

to account for the clustering of joints within patients [111]. Whilst these methods

have been researched, readily available general software packages are not currently

available. Given the findings from the analysis of the binary skin site level data,

which suggested that at least 90% of the total variance was due to between patient

variability and the small incidence of the Severe disease state at most skin sites,

multi-level MSM has not been explored in this thesis.
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Figure 4.4: 4-state model

4.3.3 Independent variables and hypothesis testing

A 4-state progression MSM (Figure 4.4) was applied to the PRESSURE and PRES-

SURE2 patient level datasets adjusting for treatment (intervention vs control) as

an independent variable on each transition. Similarly, a 4-state MSM was applied

to both trial skin site level datasets. For both the patient and skin site level anal-

ysis, treatment was included as a patient level independent variable. For the skin

site level analysis, skin sites were included as fixed effects; these were categorical

variables with 7 levels in PRESSURE, and 14 in PRESSURE2.

The MSM analyses of the trial datasets was exploratory in order to establish

whether MSM are a sensible method of analysis for these types of data. For the

purposes of this chapter, statistical significance of independent variables were as-

sessed at the 5% level. To test the overall significance of categorical variables, LRTs

were used, whilst the effect of specific levels of independent variables on individual

transitions was examined using point estimates of hazard ratios and corresponding

Wald type 95% confidence intervals. Note that for confirmatory analysis multiple

testing should be considered when assessing the effect of a variable on individual

transitions, particularly for the primary analysis of a trial. An approach to multiple

testing for MSM is described in Chapter 5.
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4.4 Results

4.4.1 Patient level analysis

The number of observed state occupancies are presented in Table 4.2. Note that

there are no backwards transitions observed by definition of the disease state where

the most severe observation is carried forwards. The results from fitting a MSM

to these data are presented in Table 4.3. The results are consistent with those

observed in the analyses of the single binary or TTE endpoints, however the MSM

provides further insight into the effect of treatment on PU development. In the

PRESSURE trial, for the control group there was a relatively high transition rate

from Healthy skin to Pre-clinical changes of 0.15 (0.13, 0.16) per day, with only a

very slight increase in transition rates in the intervention group (HR (95% CI)=

1.05 (0.85, 1.30)). Transition rates to more severe skin states were lower and, as

a result, the HRs for the treatment effects had wide confidence intervals and were

not significantly different from one (no difference) at the 5% level. There were

more events observed in the PRESSURE2 trial, providing greater power to assess

treatment effects, especially those affecting later transitions. In this trial, transition

rates in the control group were generally lower than in the original PRESSURE

trial from Healthy to Pre-clinical changes AT 0.06 (0.05, 0.07) per day (Table 4.3).

There was a non-significant decrease in transition rates for the intervention group

between Pre-clinical and Mild PU in PRESSURE2, but a significant decrease in

Severe PU onset conditional on prior development of a Mild PU (HR (95% CI)= 0.5

(0.35, 0.71)). Inspection of the expected versus observed prevalence for each state

in Figure 4.5 suggests that the model fit is adequate for both datasets.

4.4.2 Skin site level

The observed state occupancies for all skin sites in the PRESSURE and

PRESSURE2 trial are presented in Table B.2 and by individual skin sites in Ap-

pendix B. There were a total of 115, 574 transitions compared to 4, 843 in the patient

level dataset. The observed state occupancies by individual skin site indicate that
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Table 4.2: Observed state occupancies in illustrative datasets (patient level)

Dataset From state
↓

To state →

PRESSURE

1 2 3 4

1 684 320 23 8

2 0 2, 237 195 56

3 0 0 1234 89

4 0 0 0 0

PRESSURE2

1 2 3 4

1 595 138 11 7

2 0 5, 365 152 78

3 0 0 1, 195 42

4 0 0 0 0

Table 4.3: MSM applied to patient level data from the PRESSURE and PRES-
SURE2 trials

Dataset Transition Baseline transition
intensity (95% CI)

HR (95% CI)
(Intervention

vs control)

PRESSURE

1→ 2 0.15 (0.13, 0.16) 1.05 (0.85, 1.30)

2→ 3 0.04 (0.03, 0.04) 0.94 (0.75, 1.19)

3→ 4 0.03 (0.03, 0.04) 0.76 (0.55, 1.05)

PRESSURE2

1→ 2 0.06 (0.05, 0.07) 1.09 (0.79, 1.50)

2→ 3 0.01 (0.01, 0.01) 0.85 (0.66, 1.09)

3→ 4 0.02 (0.02, 0.03) 0.50 (0.35, 0.71)
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(a) PRESSURE

Figure 4.5: Expected vs observed prevalence for fitted MSM
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(b) PRESSURE2

Figure 4.5: Expected vs observed prevalence for fitted MSM
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Table 4.4: Observed state occupancies for all skin sites in the PRESSURE and
PRESSURE2 datasets

Dataset From state
↓

To state →

PRESSURE

1 2 3 4

1 16, 261 1, 465 117 22

2 0 9, 517 476 71

3 0 0 3, 749 112

4 0 0 0 0

PRESSURE2

1 2 3 4

1 62, 776 3, 874 96 40

1 0 42, 078 260 93

3 0 0 2, 305 50

4 0 0 0 0

there were different patterns of disease progression for different skin sites. For exam-

ple, the back, ischial tuberosities and hips were more likely to remain in the Healthy

state compared to the other skin sites, whilst the sacrum, buttocks and heels were

more likely to develop a Category 2+ PU with 146 (79.8%) observed at these skin

sites.

The results of a MSM for the skin site level data are reported in Table 4.5 and

Table 4.6. Including skin site as a categorical fixed effect in the analysis of the

skin site level trial datasets led to similar hazard ratios (intervention compared to

control) for all transitions when compared to the analysis of the patient level data,

but with narrower confidence intervals due to the increased sample size. For example,

including skin site as a 14 level fixed effect in the analysis of the PRESSURE2 data,

there was a significant reduction in the transition from Mild to Severe disease (HR

(95% CI)= 0.54 (0.40, 0.74)), all else being equal.

For both datasets, the sacrum is the reference category against which other skin

sites are compared. Transition rates for the buttocks were not significantly different

from the sacrum across all transitions. For the PRESSURE dataset, in the heels
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there was a higher rate of transition from the Healthy to Pre-clinical state than the

sacrum (HR (95% CI)= 1.55 (1.32, 1.82)), but this reduces for the later transitions

to Mild and Severe disease states. The results for the heels are similar for the

PRESSURE2 dataset. All other skin sites were observed to have lower transition

rates between the Healthy, Pre-clinical and Mild disease states when compared to

the sacrum. However, the point estimates and precision of the skin site fixed effects

for the transition from the Mild state to the Severe state highlight the lack of data

available, with wide confidence intervals observed (see the left hip for example). All

of the confidence intervals straddled 1 indicating a lack of evidence to conclude a

difference in the probability of moving out of state 3 for any skin site compared to

the sacrum, apart from the left ankle.

4.5 Discussion

Summary of results

A 4-state MSM was fitted to longitudinal datasets for both trials and indicated that,

for PRESSURE2, the treatment effect was not statistically significant on transitions

between Healthy and Pre-clinical disease, and between Pre-clinical and Mild disease,

but there was a substantial and significant treatment effect for the transition between

Mild and Severe disease. This finding is consistent with the Kaplan-Meier estimates

in Figure 3.1 that suggested there was a delayed treatment effect, as it shows that

the treatment effect was mainly on the later transition and was only evident when

patients passed through the intermediate states. Note that the confidence intervals

were derived using asymptotically unbiased standard errors, however the estimated

variance is downwardly biased for small samples and therefore alternative methods

such as bootstrapping could be used to check the results of an important analysis

such as the primary analysis of a trial dataset [102]. The plots of the observed

and model-fitted prevalence in each of the four states in the illustrative datasets

demonstrate reassuring agreement for the patient level analysis, suggesting that the

Markov assumption (transitions depend only on current disease stage, time since
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Table 4.5: MSM analysis of skin site level data in PRESSURE (fixed effects only)

Variable

Analysis results

HR (95% CI)

1→ 2 2→ 3 3→ 4

Intervention

Intervention 1.01 (0.91, 1.11) 0.95 (0.82, 1.11) 0.78 (0.59, 1.03)

Control
(reference)

- - -

Skin sites

Sacrum
(reference)

- - -

Left buttock 1.03 (0.87, 1.22) 1.03 (0.82, 1.30) 1.06 (0.72, 1.57)

Right buttock 1.04 (0.88, 1.23) 0.94 (0.74, 1.19) 1.26 (0.87, 1.84)

Left hip 0.05 (0.03, 0.07) 0.34 (0.14, 0.82) 2.46
(0.59, 10.21)

Right hip 0.06 (0.04, 0.09) 0.44 (0.22, 0.90) 1.08 (0.26, 4.44)

Left heel 1.55 (1.32, 1.82) 0.77 (0.61, 0.98) 0.32 (0.20, 0.53)

Right heel 1.55 (1.32, 1.82) 0.68 (0.53, 0.87) 0.28 (0.16, 0.47)
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Table 4.6: MSM analysis of skin site level data in PRESSURE2 (fixed effects only)

Variable

Analysis results

HR (95% CI)

1→ 2 2→ 3 3→ 4

Intervention

APM 1.07 (1.01, 1.14) 0.77 (0.65, 0.92) 0.54 (0.40, 0.74)

HSF
(reference)

- - -

Skin sites

Sacrum
(reference)

- - -

Back 0.20 (0.17, 0.24) 0.28 (0.15, 0.51) 2.25 (0.94, 5.37)

Left buttock 0.89 (0.77, 1.04) 0.90 (0.68, 1.19) 1.27 (0.80, 2.00)

Right buttock 0.89 (0.77, 1.03) 0.85 (0.64, 1.12) 1.21 (0.76, 1.93)

Left ischial 0.37 (0.32, 0.43) 0.19 (0.10, 0.37) 1.44 (0.51, 4.06)

Right ischial 0.35 (0.30, 0.41) 0.18 (0.09, 0.35) 1.11 (0.39, 3.13)

Left hip 0.10 (0.08, 0.12) 0.12 (0.04, 0.37) 3.78
(0.90, 15.86)

Right hip 0.12 (0.09, 0.14) 0.14 (0.05, 0.38) 0.80 (0.11, 5.83)

Left heel 1.43 (1.24, 1.65) 0.43 (0.31, 0.59) 1.13 (0.66, 1.96)

Right heel 1.43 (1.23, 1.65) 0.33 (0.23, 0.46) 1.02 (0.58, 1.81)

Left ankle 0.67 (0.58, 0.78) 0.10 (0.05, 0.19) 2.64 (1.03, 6.77)

Right ankle 0.66 (0.57, 0.77) 0.17 (0.10, 0.29) 0.78 (0.28, 2.19)

Left elbow 0.69 (0.59, 0.79) 0.11 (0.06, 0.21) 0.47 (0.11, 1.94)

Right elbow 0.69 (0.60, 0.80) 0.21 (0.13, 0.34) 1.81 (0.87, 3.76)
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randomisation and covariates) holds over the duration of each study. This may not

be the case for studies with a longer period of study, in which case semi-Markov

models could be considered where transition out of disease states depends on the

length of time spent in the state itself [130]. However, there are challenges in fitting

semi-Markov models to interval censored data because the length of time spent in

the state is unknown (because the time of entry and exist is unknown), and a number

of assumptions may be required to simplify the model [130].

After applying methods to the patient level dataset, an MSM was used to analyse

skin site level data. This model did not account for patient random effects but

demonstrated that the effect of treatment was estimated to be similar in magnitude

and the treatment effect obtained from the patient level analysis. Furthermore, the

transitions through the disease process were largely consistent for individual skin

sites, with the exception of the heels, which may have a higher propensity to move

from the Healthy to Pre-clinical disease states. As noted in Chapter 3, the analyses

for the remainder of the thesis are at the patient level, but information provided for

individual skin sites is considered further in the context of missing data in Chapter

8.

The results from these analyses indicate that there is merit in using the longi-

tudinal data to understand the natural history of the disease and to identify where

treatment may have most benefit. There are differences in the estimated treatment

effect for different transitions, which are obscured by the use of a model with a single

outcome, such as TTE. It is of interest to understand how a MSM, which is able to

estimate treatment effects at different stages of the disease process, could be used

to inform the design and analysis of a future RCT.

Design of RCTs

Despite potential improved trial efficiency and greater understanding of treatment

mechanisms for MSM, possible barriers to their use for primary analysis of RCTs

have been raised [125]. For instance, MSM have a more complicated structure

than simple regression models, so that a number of estimands may be of interest.



78

Although MSM can be used to calculate traditional endpoints, such as incidence of

a particular event or disease category, choice of the specific structure of the model

is not necessarily clear-cut. Further, Manzini et al [124] highlighted the need for

sufficient numbers of observed state occupancies throughout the MSM structure and

difficulties in dealing with missing data in this context.

Previous applications of MSM have generated research questions or helped to

refine the patient population to be studied [116]. Applying MSM to the PU trial

datasets suggested that the benefit of intervention was starting to emerge for the

transition from Pre-Clinical to Mild disease with a stronger treatment effect on the

transition from Mild to Severe disease. The results of the MSM could therefore

suggest that clinical trials of PU prevention interventions should be conducted in

patients who are already in the Mild disease state. This would lead to a higher

proportion of patients entering the severe disease state, but with only 15% of patients

recruited in the Mild disease state, the trial would take a longer time to recruit

compared to a trial recruiting high risk patients in the Healthy and Pre-Clinical

disease states. Therefore, the benefit of a smaller sample size may be outweighed

by the length of time it would take to identify eligible patients. Whilst it may

not be sensible to restrict the patient population to those who are in the Mild

disease state, it may be sensible to recruit those who are at least in the Pre-clinical

disease state. However, whilst the results have indicated where there is an effect

of treatment, the effects on individual transitions are conditional on reaching each

state and cannot be interpreted as a causal relationship [140]. Thus, before refining

the patient population, additional analysis to explore the direct treatment effect

on individual transitions should be conducted such as those proposed by Gran et

al [137].

Incidence of death or severe disease may be easier to define and is often the

estimand of choice in RCTs, but such endpoints may occur rarely, resulting in the

need for very large trials. Assessing treatment effects on intermediate health states

by using MSM may result in smaller trials, however the impact of using MSM to in-

form treatment effects and increase power of a RCT is unclear. Furthermore, health
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technology assessment often requires economic evaluation in addition to clinical ef-

fectiveness in order to guide decision making [142]. Aligning the primary analysis

model with models used in the health economics analyses may aid the interpretation

of the two analyses together [143].

Chapter 2 identified various decisions for characteristics of PU prevention trials

including: overall size of the trial, the length of patient follow up and the intervals

between patient assessments. MSM may provide insight into how to specify these

characteristics for future research, but also how they might be incorporated into the

analysis using MSM. These are explored through a simulation study in Chapter 5.



Chapter 5

Power and sample size

requirements

5.1 Introduction

The application of MSM to the illustrative PU datasets in Chapter 4 demonstrated

that MSM are an appropriate analysis method for ordinal outcome data collected

longitudinally at pre-specified time points. The analyses were shown to provide a

deeper insight into the effectiveness of treatment on disease progression and utilised

more of the data collected during the trial compared to methods based on models

for binary or TTE outcomes. It is therefore of interest to explore the potential use

of MSM as the primary analysis method at the design stage of the trial.

In order to design a clinical trial the estimands and corresponding treatment

effects must be defined in advance. The International Consortium for Harmonisation

published an addendum to the existing E9 statistical principles for clinical trials,

which included the importance of estimands and sensitivity analysis in clinical trials

[144]. An estimand is defined as a precise description of the treatment effect reflecting

the clinical question posed by a given clinical trial objective and is defined through

the following components [144] described within the context of PU prevention trials.

• The treatments to be assessed, which form the ’arms’ of the clinical trial.

In PU prevention trials the treatments may be devices that relieve pressure

80
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either for the whole body, such as mattress provision or, for specific skin sites

such as offloading devices for the heels.

• The population of patients for which the clinical question is relevant, and

therefore the population who will benefit from the treatments being imple-

mented in practice if recommended based on the results of the trial. In PU

prevention trials this is commonly defined as those patients who are at high

risk of developing a PU based on criteria such as a PU specific risk assessment

tool identified in the literature review in Chapter 2.

• The variable (or endpoint) collected for each patient in order to answer

the clinical question. It is critical for the research team to consider how often

endpoints should be collected, and the length of follow-up. In Phase III trials,

it may be appropriate for the frequency of assessments to coincide with usual

clinical practice for pragmatic reasons and to minimise burden for participants.

Similarly, the length of follow-up should be justified based on the clinical

problem. However, the assessment schedule should also be such that clinically

relevant changes in the endpoint are observed. The literature review showed

that for PU prevention trials, the endpoint is commonly the occurrence of a

new PU with the variable (PU classification) collected longitudinally for each

patient at each skin site.

• Intercurrent events must be considered in the description of the clinical

question to provide context for the treatment effect to be estimated. Examples

of such events are treatment switching or discontinuation, which is a risk in

the motivating PU prevention trials because the interventions may both be

in routine use [22]. Treatment switching may lead to bias in the estimated

treatment effect and should be considered in either the analysis method or

at least the interpretation of the treatment effects supported by sensitivity

analyses [145]. Compliance with the interventions is outwith the scope of this

thesis and was therefore not assessed in the re-analysis of the case studies but

an understanding of any likely non-adherence is critical to the design of the
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trial and interpretation of trial results.

• A population-level summary that estimates the treatment effect based

on the endpoint is also pre-specified. This will be informed by the selected

analysis method. For methods based on models for binary or TTE outcomes

the population level summary is the odds ratio and hazard ratio respectively.

For MSM the population-level summary consists of multiple ratios of transition

intensities or transition hazards [130]. For the purposes of this thesis, the

treatment effect obtained from MSM is defined as the set of hazard ratios for

each of the transitions of interest.

Once an estimand has been defined, the required sample size for the trial can

be determined. For the binary and TTE analysis methods described in Chapter

3, there are readily available formulae to calculate the required sample size for

a clinical trial [97, 107]. For MSM there are relatively few examples of sample size

calculations for multi-dimensional treatment effects. Wu and Cook proposed sample

size formulae for the design of trials using a continuous time MSM to assess the effect

of treatment on recurrent and terminal events [146]. The state space was given by

S = {0, 1, ..., D} where states 0, 1, 2, ... denoted the number of recurrent events and

D denoted the absorbing terminal event (death). There were two parameters on

which the sample size calculations were based; the log hazard of a recurrent event,

and the log hazard of a terminal event denoted by β and θ respectively. Note that

β was assumed to be the same for each recurrent event. A partial score statistic

was used to derive formulae for the sample size required for each comparison and

the sample size required for the trial was the maximum of the two calculations.

They demonstrated an example trial design to evaluate the effectiveness of a new

treatment for the prevention of skeletal complications in breast cancer patients with

skeletal metastases. The hypothetical trial was designed to detect whether a new

treatment was superior in terms of the skeletal complication occurrence and/or

whether it was superior in terms of mortality. They assumed an overall type I error

rate of 5% but due to multiplicity concerns arising from having two comparisons,

they made a Bonferroni adjustment so that the type I error rate for each comparison
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was 2.5%. The sample size calculations yielded sample sizes of 700 and 707 to

detect log hazard ratios of β = −0.22 and θ = −0.11 respectively with 90% power,

therefore concluding that 707 was the minimum required sample size for the trial.

The proposed methods assumed that all patients started in state 0 at the point

of randomisation, which would not be appropriate for the PU trial case studies.

Furthermore, their methods were based on the assumption that all event times were

observed and they recommended that further work be conducted for the design of

trials with panel data.

Zeng et al proposed sample size criteria for cancer trials assessing progression-free

survival taking into account that the assessment of progression is subject interval

censoring [127, 128]. Illness-death models were used with a constraint on the treat-

ment effect on the 2 transitions out of healthy state to be equal, with time exiting

the well state taken to be the estimand of interest. A simulation study showed that

ignoring interval censoring and designing the trial based on a Cox model of the ‘true’

progression times led to sample size estimates up to 16.5% lower than required for

the stated power under an MSM design [128]. They also showed that the gain in

power from increasing frequency of measurements was small in comparison to in-

creasing the sample size. For example, doubling the frequency of assessments from

4 to 8 led to approximately 5% increased power, whereas increasing the sample size

by 33% led to approximately 10% increase. However, choice of the frequency of

assessments in the design of a trial should take into account the intended analysis

model, cost and available resources, all of which will be informed by the clinical

setting.

To date, there is no analytical solution to calculate the sample size for a clinical

trial where a k state progression MSM for panel data is the intended primary analysis

method. In the absence of a formula to determine the required sample size for such

trials, simulations can be used to explore sample size estimates [147]. Some examples

have been considered in the MSM literature such as those published by Cassarly et

al [136] and Le Radermacher et al [125] described in Chapter 4, but a gap remains

in understanding the impact on the overall type I error and power in concluding
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treatment effects when tested at the transition specific level for MSM applied to

panel data.

5.2 Aim

The aim of this chapter is to conduct a simulation study to assess the impact on bias,

coverage, power and sample size requirements of using different statistical models

and methods to analyse data collected in disease prevention trials.

Objectives

The objectives of the simulation study are to compare logistic regression, Cox PH

regression and 4 state progression multi-state Markov models in terms of power,

bias and coverage for the following components:

1. Length of follow-up.

2. Assessment intervals.

3. Baseline transition intensities.

4. Treatment effects.

5.3 Methods

The ADEMP general framework for the design of simulation studies has been pro-

posed by Morris et al and is widely used by statisticians and clinical trialists [148].

The framework comprises an Aim , Data generating mechanism, Estimand and tar-

get, Methods to be evaluated and Performance measures (ADEMP). The aim is

described in Section 5.2 and the remaining components are described in Sections

5.3.1 to 5.3.5. It is first important to define the hypothesis testing procedure for the

MSM, which follows in the next section.
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5.3.1 Hypothesis testing procedure

The conclusion of a statistically significant treatment effect is based on a hypothesis

test. For binary and TTE methods, the hypothesis test is based on a single measure

of the treatment effect. However, for MSM the testing procedure needs to encompass

multiple testing considerations due to the multiple population level summaries.

In a two arm trial with a single treatment effect such as an odds ratio or hazard

ratio, denoted by ∆, the null hypothesis is defined as

Ho : ∆ = 1 (5.1)

The alternative hypothesis is given by

HA : ∆ 6= 1 (5.2)

The appropriate hypothesis test is conducted by calculating the relevant test

statistic and the probability that the value of the test statistic, or one more extreme,

would have been observed under the null hypothesis. If the probability is less than

a nominal significance level, often 5% then the treatment effect is described as

statistically significant.

For PU prevention trials where a progression model has been proposed, interest

lies in detecting an improvement for any transition. Suppose there are d transitions

for which a treatment effect is of clinical interest. There will then be a global null

hypothesis with d comparisons such that

H0 : ∆i = 1,∀ i ∈ {1, 2, ..., d} (5.3)

where ∆i denotes the treatment effect (hazard ratio) for the ith transition. The

alternative hypothesis is then

HA : ∆i 6= 1, for at least one i ∈ {1, 2, ..., d} (5.4)

If d comparisons were conducted it would present a multiple testing problem.
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Multiple testing would lead to an inflated type I error if not accounted for, because

there are more opportunities to incorrectly conclude a significant treatment effect.

There are various adjustments that could be made depending on the multiplicity

concerns [149]. The Bonferroni adjustment is considered the simplest, where each

comparison is tested against the overall significance level (e.g. 0.05) divided by the

total number of comparisons. This is the approach taken by by Wu and Cook [146]

who had 2 comparisons and assessed each according to a 2.5% significance level [146].

This method guarantees that the family wise error rate is less than the overall signif-

icance level, but may be overly conservative as the number of comparisons increases

and as the correlation between test statistics increases [149]. Holm developed a pro-

cedure based on the Bonferroni correction where the p-values from each comparison

are assessed based on a closed testing principle [150]. Place the p-values in order of

smallest to largest

p1 ≤ p2 ≤ ... ≤ pd (5.5)

Statistical significance is concluded by examining the p-values in order compared

to a reference value such that

pi ≤
α

d− i+ 1
(5.6)

Therefore if p1 ≤ 0.05/d statistical significance will be concluded, and the p-

values are assessed sequentially until the first i such that pi >
α

d−i+1
at which

point no further comparisons under the null hypothesis are rejected. Hochberg later

developed a further testing procedure based on Bonferroni correction also based on

sequential ordering of the p-values from each comparison that is considered more

powerful than both the Bonferroni and Holm procedures [151]. In this procedure,

the p-values are assessed in descending order of magnitude such that

pd ≥ ... ≥ p2 ≥ p1 (5.7)

Statistical significance is concluded by examining the p-values compared to a
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reference value in line with 5.6.

Therefore, if all d p-values are less than 0.05, statistical significance is concluded,

but if pd > 0.05 then statistical significance will only be concluded if pd−1 ≤ 0.05/2

and so on. The Hochberg procedure will be adopted throughout the simulation

study because it is considered more powerful and the family wise error rate will be

assessed to ensure that it is equal to approximately 0.05. The Hochberg procedure

only maintains the desired family wise error rate (FWER) if the comparisons are

independent or conditionally independent [152].

Note that a LRT comparing the model with and without treatment effects could

be considered, which was the approach taken by Cassarly et al [136], however this

is less intuitive when designing a RCT where a minimally clinically important dif-

ference should be specified for each transition, or for a subset of transitions that are

of clinical interest.

5.3.2 Data Generating Mechanism

The data were generated from a 4-state progression model as shown in Figure 4.4

at the patient level rather than the skin site level for simplicity but the simulations

could be extended to skin site level in future work.

Exponential survival times were randomly generated using baseline transition

intensities informed by the illustrative datasets, and varying treatment effects. Ex-

ponential censoring times were randomly generated at a rate of 5% per unit time

(day) from each disease state to reflect loss to follow-up, independent of treatment

allocation. In addition to the baseline transition intensities, and treatment effects,

length of follow-up and assessment frequency were also varied with each factor as-

sessed for the following total sample sizes for a 2 arm trial with equal allocation

ratio: N = 100, 200, 500, 1000, 2000. There was a total of 115 scenarios considered

as presented in Table 5.1.

The base case scenario assumed that: patients were followed up for a maximum

of 60 days, with a moderate treatment effect on each transition (eβ12 = eβ23 = eβ34 =

0.67). The baseline transition intensities were informed by the analysis of the case
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study datasets so that there was a high risk of transitions 1 → 2 and 2 → 3 and

a moderate risk of transition 3 → 4 (q12.0 = q23.0 = 0.05, q34.0 = 0.03). The base

case assumed daily assessments rather than every 2 or 3 days as this is expected to

provide more power, and will therefore be a useful scenario to compare alternative

assessment schedules with. In all scenarios, the proportions of patients in states

1 (Healthy), 2 (Pre-clinical) and 3 (Mild disease) at baseline (t = 0) were 15%,

70% and 15% respectively to reflect starting states observed in PRESSURE2. In

each scenario, patients were allocated in a 1:1 ratio to one of two treatment groups

(intervention and control). The null model where eβ12 = eβ23 = eβ34 = 1 was assessed

to check that the type I error was equal to 5% and to serve as confirmation that the

simulation code was working as expected.

5.3.3 Estimand and target

The estimand is defined as the estimated coefficients for treatment. For logistic

regression it is the odds ratio, for the Cox PH model it is the hazard ratio, and for

MSM it is the set of hazard ratios for each of the transitions.

5.3.4 Methods to be evaluated

The methods evaluated under each scenario were the logistic regression model, Cox

PH model, and 4 state MSM whereby the treatment effects were either,

• Model A: unconstrained, i.e. β12 6= β23 6= β34,

• Model B: completely constrained, i.e. β12 = β23 = β34,

• Model C: partially constrained for early transitions, i.e. β12 = β23 6= β34,or

• Model D: partially constrained for later transitions, i.e. β12 6= β23 = β34.

Models B to D use constraints, which can simplify models, and may lead to in-

creased power and precision if they are correct. Model B may be clinically plausible

if the treatment is expected to have a uniform effect across all transitions, for exam-

ple if PU onset and progression were part of a smooth progressive process. Model
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C represents a similar treatment effect on early transitions, which changes once a

Mild PU develops. One example might be a treatment that delays onset of a PU,

but has little benefit once a Mild PU has developed. Model D represents a different

effect during initial skin changes but once a Mild PU has developed the treatment

affects later transitions to the same extent. For example, a treatment with a strong

preventative effect but little value for intervention might fit this model.

5.3.5 Performance

Treatment effects in the logistic regression and Cox PH model were assessed us-

ing the Wald statistic and significance concluded at the 5% level. Similarly, for

the completely constrained MSM, which has a single common treatment effect, the

Wald statistic from the maximum likelihood estimation was calculated. The un-

constrained and partially constrained MSM had three and two treatment effects

respectively, so that Hochberg’s multiple testing procedure based on Bonferroni cor-

rections was adopted in order to maintain the overall 5% type I error as described in

Section 5.3.1. The comparisons were assumed to be independent given the Markov

assumption, however the FWER was tested under the null hypothesis. In this

case, empirical power was reported overall by examining the Wald statistic for the

treatment effect on each transition; for example, for the unconstrained model 5%

significance was concluded if either (i) all three transitions were significant at the

5% level, or (ii) at least two treatment effects were significant at the 2.5% level,

or (iii) at least one treatment effect was statistically significant at the 1.67% level.

Empirical power was calculated as the proportion of times a statistically significant

treatment effect was concluded. Bias of the estimates was examined by comparing

the distribution of point estimates to the true value. Coverage was also assessed by

assessing the proportion of times the 95% CI contained the true parameter value;

adequate coverage was concluded if the CI included the true value 95% of the time.

The Monte Carlo standard error was calculated for each performance measure in

line with recommendations for simulation studies [148].

A formal sample size calculation for the number of simulations was not con-
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Table 5.1: Factors varied in simulation study with base case settings indicated by
an asterisk

N Follow-
up
length

Assessment
frequency

Baseline
transition
intensities, q0

Treatment
effects (hazard
ratios), exp(β)

100 60 days∗ Daily∗ (0.05, 0.05, 0.03)∗ (1.00, 1.00, 1.00)

200 30 days Every 2 days (0.01, 0.01, 0.01) (0.67, 0.67, 0.67)∗

500 14 days Every 3 days (0.01, 0.01, 0.05) (0.50, 0.50, 0.67)

1, 000 7 days Every 7 days (0.01, 0.05, 0.01) (0.67, 0.67, 0.50)

2, 000 Every 14 days (0.05, 0.01, 0.01) (0.90, 0.90, 0.67)

(0.01, 0.05, 0.05) (0.67, 0.67, 0.90)

(0.05, 0.01, 0.05)

(0.05, 0.05, 0.01)

(0.05, 0.05, 0.05)

N=Total sample size, q0 = (q12.0, q23.0, q34.0), exp(β) = (eβ12 , eβ23 , eβ34)
∗ denotes the base case

ducted, but a total of 1, 000 simulations were run for each scenario. The same

datasets were used to compare statistical methods but different datasets were gen-

erated for each scenario being considered.

The code to generate the datasets and apply the methods to be evaluated is

presented in Appendix C.1.

5.4 Results

5.4.1 Power and Type I error

For the null case, datasets were generated according to the base case, with the

exception of the treatment effect exp(β) = (1, 1, 1). Results for the 6 models (4

MSM, logistic and Cox PH regression) applied to the null data are overlaid in Figure

5.1 and indicate that the type I error was close to 5%, as expected, provided the
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sample size is at least 100.

For the base case, where the treatment effect was equal to 0.67 on each transition,

all MSM had greater power compared to the binary logistic regression model and

the Cox PH model. For example, with 500 patients the binary and Cox models

provide power of 57.5% and 68% respectively, the MSM with no constraint on the

treatment effect provides power of 72.5% and MSM with some constraint(s) applied

to the treatment effect provide a minimum of 80% power in this case (Figure 5.1).

Note that throughout the results in this chapter, the Monte Carlo Standard Error

for the estimates of power were considered sufficiently small at < 0.016 and are

provided in Appendix C.3.

Figure 5.1: Power of detecting a significant treatment effect overall accord-
ing to sample size for the base case (Maximum follow-up=60 days, Assessment
frequency=daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)) and Fam-
ily Wiser Error Rate (FWER) under the Null (exp(β) = (1, 1, 1), Model A:
β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model
D: β12 6= β23 = β34)

Length of follow-up

The simulation study explored maximum lengths of follow-up of 7 days, 14 days,

30 days and 60 days (the base case) with all other parameters remaining as in the

base case. For all proposed trial durations, the MSM had greater power than the

corresponding Cox and logistic regression analyses when applied to data with the
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same follow up periods. Figure 5.2 shows results for the unconstrained MSM with

various durations of follow up compared to logistic and Cox models with 60 days

follow-up. The results indicated that, when fitting an unconstrained MSM, a follow-

up period of 60 days provided some additional efficiency compared to a follow-up

period of 30 days, whilst a follow-up period of 7 or 14 days led to substantially

reduced power, largely due to the low number of transitions to the absorbing state.

Notably, the unconstrained MSM with 30 day follow up had similar power to a Cox

model with data collected for 60 days (Figure 5.2).

In Appendix C.2.1 plots for all types of MSM explored in addition to the Cox

and logistic regression models for 30 days, 14 days and 7 days are presented. In

each case, the Cox and logistic regression models consistently led to lower power

than all of the MSM models, and demonstrated that shorter follow-up periods can

lead to substantial impacts on power and sample size requirements. For example,

for this simulation study, at least 80% power was observed for both the Cox and

logistic regression models with a sample size of 1, 000 when the follow-up period was

a maximum of 30 days. In comparison, a follow-up period of 14 days reduced the

power to less than 60% for these models, or 1, 750 participants would be required to

ensure approximately 80% power. Meanwhile, the results suggested that an MSM

would require approximately 1, 000 to provide 80% power using data collected for

14 days.

Assessment intervals

Assessment intervals of daily, every 2 days, every 3 days, every 7 days and every

14 days were considered with all other parameters remaining as in the base case

including planned follow-up of 60 days. The results indicated that MSM fitted to

assessments taken daily, every 2 days or every 3 days, performed at least as well

as Cox models applied to data collected daily. There was a large improvement

in efficiency from using a MSM compared to a logistic regression model in these

scenarios. For example, to achieve 80% power, Model A would require around 650
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Figure 5.2: Power of detecting a significant treatment effect overall according to
sample size for different lengths of follow-up (Assessment frequency=daily, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03), Model A: β12 6= β23 6= β34)

patients with data collected daily or every 2 to 3 days, whereas data would need to

be collected daily for an additional 200 (approximately) patients to provide similar

levels of power using logistic regression (Figure 5.3).

Plots for all types of MSM explored in addition to the Cox and logistic re-

gression models for each level of assessment frequency are presented in Appendix

C.2.2. When assessments were conducted every 2, 3, or 7 days, the unconstrained

MSM performed similarly to the Cox model in terms of power. However, when the

assessment frequency reduced to 14 days, the unconstrained MSM was the worst

performing model in terms of power, whilst the Cox model provided a substantial

improvement. Specifically, the Cox model would require approximately 250 fewer

participants to achieve 80% power. The models with constraints imposed on the

final transition (i.e. Model B: β12 = β23 = β34, or Model C: β12 6= β23 = β34)

were the only two models in the scenario with length of follow-up of 14 days that

led to improved power over the Cox model. This may be because the length of the

intervals mean that intermediate transitions are missed, which reduces the size of

the dataset available to estimate the model parameters for each of the 3 transitions.
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Figure 5.3: Power of detecting a significant treatment effect overall according to
sample size for different assessment intervals (Maximum length of follow-up= 60
days, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03), Model A: β12 6= β23 6= β34)

Baseline transition intensities

MSM led to substantially increased power compared to the logistic and Cox PH

regression models when the baseline intensity for the transition from state 3 to

state 4 was low (q34.0 = 0.01). A consistent increase in power was observed in all

scenarios where q34.0 = 0.01, whereas there were similar levels of power observed

for each model under scenarios where the baseline transition intensity from state

3 to state 4 was high (Mild to Severe disease, q34.0 = 0.05) (Figure 5.4). In some

cases (e.g N = 500, exp(q0) = (0.01, 0.01, 0.05)) lower power was observed for the

MSM compared to the logistic regression and Cox PH models. Note, for example,

that the Cox PH model estimated the treatment effect on the transition from any

of the states 1, 2 or 3 to state 4 and significance testing was conducted at the 5%

level. In contrast, the MSM estimated the treatment effect on individual transitions

(i.e. 1 → 2, 2 → 3, and 3 → 4) and significance testing was conducted according

to Hochberg’s method for multiple testing. Therefore, it is expected that the Cox

PH model would perform at least as well as the overall MSM in situations when the

baseline transition intensity to the absorbing state was high and may therefore be

the preferred method for primary analysis as it requires less computing power, and

is widely understood.
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(a) exp(q0) = (0.05, 0.05, 0.05)

(b) exp(q0) = (0.05, 0.05, 0.01)

Figure 5.4: Power of detecting a significant treatment effect overall according to
sample size for different baseline transition intensities (Maximum length of follow-
up= 60 days, Assessment intervals = Daily, exp(β) = (0.67, 0.67, 0.67), Model A:
β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)

Treatment effects

When the treatment effect was high for the early transitions, and moderate for the fi-

nal transition, that is, exp(β) = (0.5, 0.5, 0.67), all of the MSM’s provided increased

power compared to the Cox and logistic regression models (Figure 5.5). This is

expected given the high treatment effects observed on the earlier transitions were

ignored in the models of a single endpoint. Further, MSM provided a greater advan-

tage in terms of power when the treatment effects were moderate on the early transi-

tions and low on the transition to the absorbing state, i.e. exp(β) = (0.67, 0.67, 0.9).

In this situation, the MSM provided approximately 90% power with 1, 000 partici-

pants, compared to the Cox model, which had 50% power, and the logistic regression

model with 40% power.
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(c) exp(q0) = (0.05, 0.01, 0.05)

(d) exp(q0) = (0.01, 0.05, 0.05)

(e) exp(q0) = (0.05, 0.01, 0.01)

Figure 5.4: Power of detecting a significant treatment effect overall according to
sample size for different baseline transition intensities (Maximum length of follow-
up= 60 days, Assessment intervals = Daily, exp(β) = (0.67, 0.67, 0.67), Model A:
β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)
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(f) exp(q0) = (0.01, 0.05, 0.01)

(g) exp(q0) = (0.01, 0.01, 0.05)

(h) exp(q0) = (0.01, 0.01, 0.01)

Figure 5.4: Power of detecting a significant treatment effect overall according to
sample size for different baseline transition intensities (Maximum length of follow-
up= 60 days, Assessment intervals = Daily, exp(β) = (0.67, 0.67, 0.67), Model A:
β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)
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In situations where the treatment effect on the early transitions was smaller

compared to the final transition, there was little gain in power using an MSM. In

the scenario where exp(β) = (0.67, 0.67, 0.5), the completely constrained model per-

formed best in terms of power, however this model would be inappropriate to use in

this scenario because the treatment effects did in fact differ and issues of bias and

poor coverage may arise (see Sections 5.4.2 and 5.4.3 for further details). The uncon-

strained MSM in this scenario actually provided slightly reduced power compared to

a Cox model. Furthermore, as with low intensities and low treatment effects on early

transitions, the Cox PH model would be expected to perform as well as the over-

all MSM and may therefore be the preferred method for primary analysis in these

scenarios. In this case the advantage of an MSM would be in providing additional

insight into the treatment effects on different stages of the disease pathway, and

may be an appropriate alternative if the assumption of non-proportional hazards

over the whole follow-up period is violated. A further example of this was the sce-

nario where exp(β) = (0.9, 0.9, 0.67). Here, the Cox model provided an advantage

in efficiency compared to the MSM with approximately 1, 200 participants required

for 80% power with the Cox model compared to 1, 600 for MSM. This scenario most

reflects the results of the motivating example where a treatment effect was observed

on the final transition but not on the first two. Despite the reduction in power,

the illustrative example demonstrated that MSM may be more appropriate due to

a violation of the PH assumption in the Cox model.

5.4.2 Bias

Point estimates of the treatment effect (hazard ratio) estimated from the MSM

models have been examined and were shown to be unbiased for the unconstrained

model in all scenarios, and for all models when the treatment effects were equal.

Figure 5.6 illustrates the base case, where all treatment effects were equal to 0.67; the

point estimates were centered around 0.67 as expected. There was more variability

in the estimate of eβ12 for models A (no constraints) and D (later transition hazard

ratios constrained to be equal), compared to those obtained from models B and
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(a) exp(β) = (0.5, 0.5, 0.67)

(b) exp(β) = (0.67, 0.67, 0.5)

(c) exp(β) = (0.9, 0.9, 0.67)

Figure 5.5: Power of detecting a significant treatment effect overall according to
sample size for different magnitudes of treatment effect (Maximum length of follow-
up= 60 days, Assessment frequency=Daily, q0 = (0.05, 0.05, 0.03), Model A: β12 6=
β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)

C. This is due to the amount of available data on early transitions when β12 was

estimated individually, compared to modelsB and C where constraints were imposed

on early transitions.

When there were unequal treatment effects, bias in the estimated treatment ef-
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(d) exp(β) = (0.67, 0.67, 0.9)

Figure 5.5: Power of detecting a significant treatment effect overall according to
sample size for different magnitudes of treatment effect (Maximum length of follow-
up= 60 days, Assessment frequency=Daily, q0 = (0.05, 0.05, 0.03), Model A: β12 6=
β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)

fects may occur if the model is mis-specified. An example is shown in Figure 5.6 when

there were high treatment effects on the early transitions, and a moderate treatment

effect on the final transition, i.e. exp(β) = (0.5, 0.5, 0.67). The unconstrained model

A demonstrated unbiased treatment effect estimates on all transitions. Model C also

led to unbiased treatment effects because appropriate constraints were imposed, with

β12 = β23 6= β34. Bias occurred, as expected, in models B and D where β34 is con-

strained to be equal to one or more of the earlier treatment effects. Specifically,

in the fully constrained model, where β12 = β23 = β34, the early treatment effect

estimates, eβ12 and eβ23 were attenuated towards the null, whereas eβ34 is estimated

to be larger in magnitude than its true value. In Model D where β12 6= β23 = β34,

the estimated treatment effect on the first transition, eβ12 was unbiased as expected

because there were no constraints imposed, and similar variability in the estimates

were observed compared to model A. However, the treatment effects eβ23 and eβ34

had similar bias as model B, with eβ23 attenuated towards the null, and eβ34 larger

in magnitude. Note that whilst conclusions about any bias in the estimated treat-

ment effects can be made by examining plots of the estimates, it may be more useful

in future to examine the bias itself particularly when there are different treatment

effects on each transition.
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(a) Base Case, exp(β) = (0.67, 0.67, 0.67)

Figure 5.6: Distribution of point estimates of the treatment effect (hazard ratio)
when N = 2000

(b) exp(β) = (0.5, 0.5, 0.67)

Figure 5.6: Distribution of point estimates of the treatment effect (hazard ra-
tio) when N = 2000 (Maximum length of follow-up= 60 days, Assessment
frequency=Daily, Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model
C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)

5.4.3 Coverage

Coverage of the 95% confidence intervals for each treatment effect on each transi-

tion have been examined and were adequate in all scenarios, except those where

treatment effects differed, and in some cases when the baseline transition intensity

differed (Appendix C.5). Figure 5.7 illustrates the base case, where all treatment

effects were equal to 0.67; the estimated coverage was broadly consistent with 95%
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for all sample sizes and all MSM models.

Poor coverage occurred when there were unequal treatment effects, illustrated in

Figure 5.7 using the same example of high treatment effects on the early transitions,

and a moderate treatment effect on the final transition. The unconstrained model

A, and model C, which used appropriate constraints on the treatment effects for

the early transitions led to adequate coverage for all sample sizes. Fitting model

B, where the treatment effects were all constrained to be equal, to data generated

under model C led to decreased coverage to around 75% for eβ12 and eβ23 , and to

less than 10% for eβ34 . Similarly, fitting model D demonstrated poor coverage for

treatment effects eβ23 at approximately 75% and 15% for eβ34 , whereas the coverage

for eβ12 was adequate. This was because the treatment effect was unconstrained on

the transition from State 1 to State 2, but the treatment effect on the transitions

from State 2 to State 3 was constrained to be equal to the treatment effect on the

transition from State 3 to State 4. When poor coverage occurred, the problem was

exacerbated as the sample size increased, which is expected because the confidence

intervals are more precise. The confidence intervals are therefore less likely to include

the true treatment effect when the point estimate of the treatment effect is biased.

Appendix C.5 includes plots for the coverage of the estimated treatment ef-

fects under different baseline transition intensities. On the whole, 95% coverage

was achieved, however there were some cases for small sample sizes where this

was not the case, which is due to models not converging. In particular, when

q0 = (0.05, 0.01, 0.01) and the sample size was equal to 100, Model A and Model C

had low coverage for eβ34 , which could be due to a smaller number of entries to the

third state combined with a low number of transitions between state 3 and state 4.

Low coverage was also observed for models A and D when q0 = (0.01, 0.05, 0.01)

and the sample size was smaller than 500, which could be due to a low number of

transitions between state 1 and state 2. However the coverage was adequate for

later transitions in all models because there were more data available from the 70%

and 15% participants who started in states 2 and 3 respectively. When the baseline

transition intensities were q0 = (0.05, 0.01, 0.01) and the sample size was equal to
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100 or 200, coverage was low for eβ12 under models A and D where the treatment

effects are estimated individually (i.e. without a constraint on β12). Similarly, cover-

age was lower for eβ34 under models A and C where there was no constraint imposed

on β34.

(a) Base Case

Figure 5.7: Coverage for nominal 95% confidence intervals

(b) exp(β) = (0.5, 0.5, 0.67)

Figure 5.7: Coverage for nominal 95% confidence intervals
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5.5 Discussion

Summary of results

RCTs of strategies for prevention of diseases and medical conditions often involve

repeated assessments of the severity of disease at multiple time-points. The potential

estimands from different models that could be applied to data of this structure

include odds ratios for a binary endpoint, hazard ratios for a TTE endpoint, and

transition-specific hazard ratios obtained from MSM. It has been demonstrated in

the literature and through secondary analysis of two PU trial datasets in Chapter

4 that MSM can provide a deeper understanding of the natural history of a disease

and how treatment acts at each stage of the disease pathway [116,124,125].

In this chapter, a comprehensive simulation study was conducted and showed

that, depending on the estimand of interest and underlying natural history of the

disease, analysis using MSM has the potential to have a substantial impact on power,

or equivalently a reduction in sample size compared to logistic regression for a binary

endpoint or a Cox PH regression model for a TTE endpoint. Greatest improvements

in efficiency were observed when early changes could be observed due to frequent

assessments, high early transition rates or larger effects on early transitions. Where

the design featured long intervals between assessments, slow transition through early

states relative to later states or low treatment effect on early states relative to the

treatment effect on later states, there was little to be be gained from MSM in terms

of trial efficiency, although estimation of the disease development over time may be

of interest.

Whilst greatest efficiencies were shown to arise when treatment effects for differ-

ent transitions were equal, fitting constrained models when the true process has a

different form could result in substantial bias and poor coverage.

Implications on clinical settings

The results of the simulation study suggest that in the motivating example for a

PU prevention trial, the length of follow-up could be halved from 60 to 30 days
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or assessments conducted every 2 or 3 days (in line with current practice) to pro-

vide similar levels of power as would be obtained by Cox or binary logistic regression

models applied to daily measurements for 60 days provided that the treatment effect

acts across the disease progression pathway. This has the potential to reduce trial

resource use by using fewer patients, with savings in assessor time and data man-

agement. In many scenarios, fewer patients need to be recruited overall and fewer

are unnecessarily exposed to inferior treatments. Moreover, evidence of treatment

effectiveness (or not) will emerge more quickly leading to quicker changes in practice

for subsequent patients. However, this should be considered in conjunction with the

relevant clinical research question (estimand) since the overall significance level for

MSM reflects treatment effects across all transitions. For example if primary interest

lies in preventing Severe disease then the commonly used methods may be sufficient,

and have the advantage that the resulting significance level is directly related to a

single treatment effect. If, however interest lies in assessing whether the treatment

can reduce transitions at any stage along the pathway, then MSM may lead to more

efficient designs at lower cost.

This simulation study provides a comprehensive set of results under a range of

scenarios and compared MSM with simpler models (logistic regression and the Cox

PH model), in addition to reviewing the impact of applying constraints to treat-

ment effects within MSM. Constraining treatment effects to be equivalent within

the MSM did provide additional power but should be used with caution as they

may not be a realistic representation if the true treatment effects differ between

disease stages, as demonstrated through the observed bias of the treatment effect

estimates. The decision over whether to apply constraints should be informed by

analysis of pre-existing datasets in conjunction with discussion with clinical experts

to inform clinical plausibility of such constraints. Sensitivity analyses should be

conducted to assess the robustness of the models to different constraints.

If researchers or funders have a preference for the simpler models, the results also

show important implications of the length of follow-up for these models, with a 30

day follow-up period being optimal under the parameters of the simulation study.
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Furthermore, if the baseline risk of developing a Category 2+ PU is low, then the

binary and Cox regression models lead to a substantial loss of power. However, if

a Category 1 PU is chosen as the endpoint of interest to increase power or reduce

sample sizes, this could be at risk of misclassification (see Chapter 6 for further

details of misclassification).

Some statistical considerations

It is important to try to understand how the additional power from MSM arises,

given that the number of Category 2+ PUs observed was the same for all analyses.

More data on early skin changes is included in MSM and this, together with the

structure of the model, which links the different transitions together, is the source of

the additional information. If the MSM is not consistent with the observed natural

history of the disease of interest, then either the predicted increase in power will not

manifest, or spurious increases in power will result. Therefore, it is imperative that

a good model is adopted and (in line with good statistical practice) the fit of the

model is checked carefully.

This simulation study makes a number of assumptions, including that censoring

patterns are independent of skin status or patient condition, and that the MSM

allows progression only. In another setting it may be important to allow transitions

between states in both directions and this should be considered for further research

but is beyond the scope of this thesis. Furthermore, this simulation study was

conducted assuming that the disease state was at a patient level, specifically, the

“worst observed skin state”, however in practice the underlying data are available

for multiple skin sites. As demonstrated in Section 4.4.1, there was no evidence that

accounting for individual skin sites within patients led to a more adequate model,

but this may differ for other disease areas. As previously described, MSM methods

exist for correlated disease processes such as psoriatic arthritis [111], but the models

are more complex and software is limited when there is interval censoring. As such,

conducting a simulation study that is as comprehensive as this would be computa-

tionally intensive, and the estimand of interest would need careful consideration by
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the clinical team.

A further assumption in this simulation study was that the states observed were

always correct, however as identified in the literature, the state may be at risk of mis-

classification. In PU prevention trials, skin assessment is based on the appearance

of the skin, which requires expert knowledge particularly for the earlier stages of

PU development. Category 2+ PU is often used as the endpoint of interest because

it is considered to be less prone to error [31]. Although classification may be less

reliable, some researchers analyse Category 1 PUs because it is clinically important,

and is a strong prognostic marker for Category 2+ PU [42]. The higher incidence

of Category 1 PUs may also influence the decision to use it as a primary endpoint

because a smaller sample size may be required compared to using a Category 2 PU.

Nonetheless, the impact of misclassified states in the estimation of treatment effects

and power of a trial is explored in Chapter 6.

Overall summary

In summary, this simulation study demonstrated that logistic regression and Cox PH

regression may be inefficient in terms of sample size and frequency of assessments

compared to MSM for analysing trials where panel data collected for a progressive

disease with an ordinal outcome are available. This first simulation study has also

demonstrated that MSM have the potential to improve trial design through increased

power subject to further investigation of dataset characteristics that may arise in a

realistic setting. However, any gains may disappear, and bias and/or poor coverage

will result if models are misclassified.



Chapter 6

Misclassification

6.1 Introduction

Up to this point the observed state in a MSM has been assumed to be true and not

subject to misclassification. However, given the subjective nature of PU classifica-

tion identified in the literature review, misclassification is entirely possible. This is

particularly the case if assessors are not subject experts.

When designing clinical trials an important decision is the choice of assessment

process, including measurement instrument, mode of administration and assessor.

For PUs the gold standard measurement instrument is the NPUAP/EPUAP/PP-

PIA guidelines [32]. The literature review in Chapter 2.3 identified that there are

concerns of misclassified PU assessments and therefore the gold standard could be

considered the use of expert dermatologists for assessment at regular intervals. One

question of interest in the design of trials is whether less expert assessors could be

used for assessment. For example, in PU research, routine care staff could assess

skin sites more frequently than experts, but each measurement may be subject to

some error, which is a major concern highlighted in the literature review. In order

to investigate this issue, it is important to understand the potential effect of mis-

classification on accuracy and precision of treatment effects. This is the subject of

this chapter.

Throughout the chapter, measurement error is used to describe deviations from

the latent data for continuous outcomes, misclassification is used for dichotomous

108
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or categorical outcomes and under-ascertainment/over-ascertainment is used for

events.

6.1.1 Measurement error of continuous outcomes

Mis-measurement can occur for different types of variables and it is important to

have an understanding of the potential implications. Therefore, for completeness,

the impact of mis-measured continuous variables is briefly discussed here. Mea-

surement error of continuous variables can be classified as classical error where the

observed data is equal to the latent data plus a random component with zero mean

and constant variance, systematic error where the observed data is systematically

different from the latent data, or differential where the error is dependent on the

outcome, conditional on the true value of the covariate. A fourth type of measure-

ment error described is the Berkson error, which is the opposite of the classical error,

whereby the latent data is equal to the observed data plus a random component with

zero mean and constant variance [153].

Nab et al [154] presented an illustrative example for the measurement of

haemoglobin where the equipment used in the trial appeared to give lower values

of haemoglobin compared to certified measurements with mean (standard devia-

tion (sd)) values reported as 135 (0.96)g/L compared to 137 (3.2)g/L respectively.

The authors conducted a simulation study to explore the potential impact on the

trial results under different types of measurement error. In the first instance they

explored classical measurement error whereby the measurement introduces an addi-

tional component of variation in the outcome, independent of treatment allocation

and true level of haemoglobin. The result, also demonstrated algebraically, is that

the treatment effect estimate is unbiased, however there will be an increased type

II error (reduced power) due to a larger variance in the observed data compared to

the latent (true) values.

Nab et al [154] also consider systematic measurement error in which the values

obtained from one method are systematically different from those obtained from

another method (i.e. there is a location shift). This could be additive, whereby
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the observed data are always a constant, c, further away from the latent data,

independent of their values. In this case, the arithmetic difference between treatment

groups is unbiased because the constant value will be cancelled out in the calculation.

However, when one method provides values that are multiplicatively different to the

latent values, for example, the observed values may be c times higher than the latent

value, then the arithmetic difference observed is also increased multiplicatively by c,

thus leading to a biased result, unless the true difference is 0. It may be appropriate

to use the log transformation on the measurements, which will lead to an unbiased

estimate of the treatment effect but Nab et al reported that there will be an increase

or decrease in type II error depending on the value of c in the case of multiplicative

measurement error, because the variance will be affected, however type I error will

be unaffected [154].

So far, measurement error is assumed to be similar across treatment groups.

When the measurement error differs according to treatment groups (differential

mismeasurement), the estimate of the treatment difference will be biased with the

direction and magnitude of bias dependent on the nature of the measurement error.

For example, if the endpoint is subjective in some way and the patient or assessor

knows the treatment allocation, there may be a tendency to over or under value

the outcome in one group. In line with the assessment of systematic measurement

error, Nab et al [154] reported that there will be an increase or decrease in type

II error depending on the nature of the differential measurement error, because the

variance will be affected. Nab et al proposed alternative estimators for models with

mismeasured continuous outcomes.

The Cochrane Risk of Bias (RoB) guidance notes that measurement error of

continuous outcomes is often assumed to be additive, therefore whilst it is important

to consider the accuracy in the choice of a continuous outcome measures, there will

usually be a low risk of bias in measurement of the treatment effect providing the

error is not multiplicative, or differential between treatment groups.
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6.1.2 Misclassification of dichotomous or categorical out-

comes

Misclassification of a dichotomous or categorical outcome may occur if the method

of outcome measurement is not the gold standard, or if the assessment requires some

level of judgement. For diagnostic tests with a dichotomous outcome, misclassifica-

tion is usually quantified in terms of sensitivity and specificity. Sensitivity is defined

as the proportion of true positives that are correctly identified, and specificity is the

proportion of true negatives that are correctly identified by the test [155].

Some trials use methods to adjudicate outcomes that may be subject to observer

bias. This is dependent on the trial context and logistical considerations but could be

done at the site or through central review. For example, Godolphin et al conducted

a simulation study to investigate the role of central adjudication in stroke RCTs

at risk of misclassification of binary or ordinal outcomes [156]. The results showed

that if as little as 2.1% of participants were misclassified differentially this led to a

different trial result when the outcome was binary. They also found that, in trials

with an ordinal outcome, misclassification between 1.9% and 27.8% could affect the

trial result, with larger trials being more sensitive to misclassification. The authors

suggest this could be due to larger trials being able to detect smaller differences and

with greater precision. In comparison, in the assessment of non-differential misclas-

sification, the authors found that the level of misclassification that could affect trial

results increased with the event rate and the trial sample size. The recommendation

from this paper was that central adjudication is important for stroke trials with-

out sufficient blinding for outcome assessment but that it may not be necessary for

trials with adequate blinded outcome assessment. Kahan et al compared different

approaches for adjudication of outcomes in clinical trials and conducted a simulation

study to investigate the number of assessors required, whether on site or central as-

sessment should be conducted, whether all outcomes should be adjudicated or only

the events of interest, and finally whether central assessment with multiple assessors

should be conducted independently or via consensus [157]. The conclusions of the

simulation study were that whilst outcome adjudication is important for trials with
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misclassified outcomes, the decision of which approach to take should be made in

the context of each clinical trial. Overall, the effect of misclassification of outcomes

is dependent on multiple factors including expected incidence of the event and ex-

tent of misclassification, and should therefore be considered at the design stage of a

trial [156,157].

6.1.3 Over-ascertainment or Under-ascertainment of events

In addition to measurement error of continuous outcomes, and misclassification of

dichotomous or categorical outcomes, analyses of TTE outcomes may also be affected

by misclassification through over-ascertainment or under-ascertainment of events.

For example, the diagnosis of progression of disease in some cancer clinical trials

is assessed using RECIST [158] criteria based on a radiological scan of the patient.

Diagnostic scans are rarely perfectly sensitive and specific, which means there may

be differences in the diagnosis of progression. Hróbjartsson et al [159] conducted

a systematic review to quantify the effect of observer bias in RCTs with binary

outcomes. The trials included in the review utilised both blind and unblind assessors

and the review observed that the estimated treatment effects (hazard ratios) from

the analysis of the unblinded outcome assessors data were, on average, 36% larger

than that of the analysis of data recorded by their blinded counterpart.

Simulation studies have been conducted to assess the impact of measurement er-

ror in trials with a TTE endpoint in terms of bias [160,161]. A consistent conclusion

was that non-differential measurement error led to attenuated treatment effects. On

the other hand, differential measurement error did lead to bias in the treatment ef-

fect with a likely increase in it’s magnitude [161]. There was less attenuation in the

treatment effect for scenarios with longer assessment intervals with a possible expla-

nation that the event was less likely to be diagnosed early if there was a tendency

to over-report [160].
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6.1.4 Measurement error of covariates

So far, the measurement error described has focused on outcomes, but it may also

occur in the assessment of covariates. Brakenhoff et al conducted a systematic

review to investigate the reporting of measurement error in exposure and confounder

variables, and any methods used to account for it in the analyses [153]. The review

was of research published in high-impact medical and epidemiological journals in

2016. The key findings from this review were that, of the 565 reviewed texts, 247

mentioned measurement error and of these, only 18 investigated or corrected for

the error, leading to the conclusion that the potential impact was often ignored and

misunderstood.

The review outlined that for classical error, even if the exposure variable is

measured without error, any error in one or more of the confounders may lead to

bias in the estimated relation between exposure and outcome, although the direction

and extent of this bias is unpredictable. For systematic and differential error in

models estimating the effect of a covariate on outcome, the potential bias can occur

in either direction. Berkson error on the other hand, rarely leads to bias in the

estimates of the effect of a covariate, but may reduce the precision. Similarly, for

categorical variables, the direction and magnitude of bias in the estimated effect on

outcome is difficult to predict and will be context specific.

For the remainder of this chapter, the focus is on the potential mismeasurement

of outcomes with acknowledgement that it is critical for trials to ensure that as-

sessment of bias through measurement error of both outcomes and covariates are

considered prior to analysis. For RCTs the covariates are often measured at base-

line and, for the primary analysis, are likely to be the allocated treatment and any

randomisation factors, which could be chosen such that they are at very low risk of

measurement error. Differential measurement error of baseline variables is unlikely

to be an issue in RCTs because the baseline assessments are usually conducted prior

to randomisation.
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6.1.5 Misclassification of outcomes in multi-state models

Misclassification has been incorporated into MSM analysis in various clinical set-

tings. Cook and Lawless considered the reasons for unexpected improvements in

a chronic disease [162]. Depending on the context, they suggested that it may be

due to random fluctuations in the condition, misclassification of the discrete disease

states, or errors in the measurement of an underlying continuous score. They high-

lighted that in some settings it is common to confirm movement to a different state

through repeated observations of that state, which was an approach adopted for the

confirmation of a Category 1 PU in some of the papers identified in the literature

review (Chapter 2.3).

Alternatively, the probability of misclassification may be modelled jointly with

the MSM called a Hidden Markov Model (HMM) which was the approach taken by

Van den Hout and Matthews when they analysed cognitive ability data [163]. In

this example a 3-state illness-death model was used whereby the first 2 transient

states (“not cognitively impaired” and “cognitively impaired”) were at risk of mis-

classification, but the final absorbing state of death was measured without error.

The authors used a piecewise constant hazards model to analyse the data and noted

that the methods could allow regression from state 2 but not the absorbing state.

A further example of a HMM was given by Jackson et al who analysed data to

assess disease progression and prognosis for patients from 6 months after either a

single lung, double lung or heart-lung transplantation [118]. These patients were

considered at risk of a chronic condition characterised by declining lung function

called Bronchiolitis obliterans syndrome (BOS), which is diagnosed using the forced

expiratory volume in 1 second (FEV1) every 3 to 6 months [118]. The assessment

of BOS may be subject to misclassification because the assessment of FEV1 is sen-

sitive to factors such as infection affecting lung function and resulting in short term

fluctuation. One approach was to use central assessment to classify the patient’s

BOS status, but Jackson et al proposed a hidden Markov model to simultaneously

estimate the transition rates of an illness-death model and the probability of state

misclassification [118]. This method was extended to analyse screening data for ab-
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dominal aortic aneurysms where patients could be in 1 of 4 disease states according

to their risk status, which was best predicted by aortic diameter [164]. The method

published by Jackson et al allowed for any number of transitions, and misclassifi-

cation between any pair of states, whilst allowing for different sets of independent

variables for the transition rates and misclassification probabilities [164].

The methods proposed by Jackson were illustrated for progression models with

misclassification where observed regression was assumed to be an artefact of mis-

classification however in some situations there both regression and misclassification

is clinically plausible. HMM are at risk of identifiability issues when different mis-

classification and transition matrix combinations lead to the same likelihood value

(see Section 6.4.1). This may be more likely to occur as the models increase in com-

plexity such as when regression is modelled as well as progression, or when fewer

data are available for model estimation. However, an example of when a HMM

for a process with regression has led to useful insights is a publication by Gangnon

et al [165]. The authors investigated the impact of misclassification of age-related

macular degeneration (AMD) on the baseline intensity and covariate effects on the

disease process, which consisted of 5 AMD states, and death as the absorbing state.

The process included 12 transitions, with progression and regression permitted be-

tween adjacent AMD states (with the exception that regression from the final AMD

state was not permitted), and progression to the absorbing state, from each of the

AMD states. The authors utilised MSM with misclassification in continuous time

and identified that ignoring misclassification tended to lead to attenuated covari-

ate effects on some transitions, and that regression of AMD disease was largely

explained by misclassified states. Furthermore, the authors concluded that in the

AMD setting there is a need for ongoing assessment of the data, which are collected

as part of a 20 year cohort, to attempt to reduce the extent of misclassification in

the dataset. The authors did not discuss the risk of identifiability or strategies to

overcome this, but may have benefited from a large dataset of 4, 379 patients with

a total of 12, 640 assessments.

HMM benefit from informative initial values of the misclassification probabilities
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to reduce the risk of non-identifiability, and the reliability of the results can be as-

sessed through sensitivity analyses with different initial values of the misclassification

probabilities. One example of this is for a discrete time MSM accounting for misclas-

sification when the Markov assumption was not considered appropriate [166–168].

In this example by Bacchetti et al 5 state MSM was used to analyse biopsy mea-

sured liver fibrosis data where where there was interest in whether patient prognosis

was dependent on their disease history [166–168]. The models incorporated a time-

dependent covariate for the MSM to denote the length of time spent in the current

state. In addition, the models estimated the probability of misclassifying the tran-

sient states and the absorbing state, including both over and under-reporting. A

sensitivity analysis provided reassurance that the model was insensitive to the initial

misclassification matrix specification but the authors recommend obtaining more re-

liable estimates of the misclassification relevant to the study, or using a measure with

lower levels or no misclassification, which will also help with computation burden.

The method used by Bacchetti et al was implemented using the R package mspath.

Overall, HMM are a possible approach to analysing misclassified data in the

MSM setting, but careful consideration must be given to the MSM structure, likely

misclassification patterns and initial misclassification probabilities. The remainder

of this chapter will explore the extent of misclassification in the PU setting with an

application of HMM to the PRESSURE dataset.

6.2 Pressure ulcer misclassification

As identified in the literature review of PU prevention trials in Chapter 2.3, inter-

rater reliability of skin status is a common concern because the assessment is made

based on the appearance of the skin. There are 2 illustrative datasets available to

assess the inter-rater reliability of PU assessments. These datasets are described

here and summarised in Table 6.1. Note that the number of paired skin site level

assessments are more than the number of participants because each participant had

multiple skin sites assessed by each rater.
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Table 6.1: Summary of PU inter-rater reliability datasets

Dataset Gold
standard

Comparator Timing Number
of paired
skin site
assess-
ments

Number
of
patients

PRESSURE

CRN
Co-ordinator

CRN
Pre-trial 107 16

New CRNs 233 35

Repeat
(CRNs in
trial ≥ 1
year)

134 20

CRN
WN

Pre-trial 2, 396 109

During
trial

2, 606 331

PURAF TVN WN During
study

2, 262 230

CRN (Clinical Research Nurse); WN (Ward Nurse); TVN (Tissue Viability Nurse)

1. PRESSURE: Recall from Chapter 4 that this is an RCT comparing 2 types

of mattresses in acute and elective hospital patients for PU prevention. The

trial originally planned to use data collected by non-specialist ward nurses

(WN) but also collected data from clinical research nurses (CRNs) to assess

the reliability of the WN assessments. To ensure the CRN assessments were

reliable, an inter-rater reliability study was conducted comparing assessments

between the CRN co-ordinator (gold standard) and the individual CRN; data

were collected before the trial started, when new CRNs were appointed and

when the trial was first in place at each centre and when the CRNs had been

in post for at least a year. Inter-rater reliability data between CRNs and

WNs, who are expected to be less experienced than the CRN in terms of skin

assessments, were also collected before and during the trial. Assessment of PU

classification reliability has been published previously using the PRESSURE

dataset [31].
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2. PURAF: As part of the development of a new PU Risk Assessment Instru-

ment, the PURPOSE-T, a clinical evaluation was conducted whereby 230 par-

ticipants with 2262 paired skin sites were assessed by a WN and a member of

the tissue viability team (equivalent to the gold standard) independently at a

single time point. This assessment included a detailed skin assessment.

PRESSURE

Overall, there was a total of 474 paired skin site assessments between the CRN-

co-ordinator and CRNs across the duration of the trial, of which there was perfect

agreement in 449 (94.7%). The detail of these is presented in Table 6.2; it is note-

worthy that discrepancies were only by 1 category on the PU assessment scale. The

Table 6.2: Cross tabulation of PRESSURE trial skin assessments by CRN co-
ordinator and CRN

CRN assessment (pre-trial)

State 1 2 3 4 Total

CRN co-ordinator
(Gold standard)

1 47 (100%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 47 (100%)

2 1 (3.2%) 30 (96.8%) 0 (0.0%) 0 (0.0%) 31 (100%)

3 0 (0.0%) 1 (5.3%) 18 (94.7%) 0 (0.0%) 19 (100%)

4 0 (0.0%) 0 (0.0%) 0 (0.0%) 10 (100%) 10 (100%)

Total 48 31 18 10 107

New CRN assessment

State 1 2 3 4 Total

CRN co-ordinator
(Gold standard)

1 129 (97.7%) 3 (2.3%) 0 (0.0%) 0 (0.0%) 132 (100%)

2 2 (3.1%) 59 (92.2%) 3 (4.7%) 0 (0.0%) 64 (100%)

3 0 (0.0%) 5 (18.5%) 22 (81.5%) 0 (0.0%) 27 (100%)

4 0 (0.0%) 0 (0.0%) 0 (0.0%) 10 (100%) 10 (100%)

Total 131 67 25 10 233

CRN assessment (repeated)

State 1 2 3 4 Total

CRN co-ordinator
(Gold standard)

1 73 (92.4%) 6 (7.6%) 0 (0.0%) 0 (0.0%) 79 (100%)

2 3 (7.0%) 40 (93.0%) 0 (0.0%) 0 (0.0%) 43 (100%)

3 0 (0.0%) 1 (14.3%) 6 (85.7%) 0 (0.0%) 7 (100%)

4 0 (0.0%) 0 (0.0%) 0 (0.0%) 5 (100%) 5 (100%)

Total 76 47 6 5 134
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identification of a Category 2+ PU was always observed without error, however only

25 were observed in the comparison between CRN co-ordinator and CRNs across

the trial. Despite this small sample, it is reasonable to assume in this setting that

the roles of CRN co-ordinator and CRN can both be considered the gold standard,

which allows assessment of the reliability of WN assessments. The results across the

trial are displayed in Table 6.3 with a total of 5, 002 complete paired skin site assess-

ments. Misclassification is clearly present with a total of 3, 924 (78.4%) in perfect

agreement. Disagreements were more extreme than in the comparison between CRN

and the CRN co-ordinator, with the assessment of a Category 2 being both under

and over reported by the WN. A total of 35 (15.1%) of the 232 Category 2+ PUs

observed by the CRN were under-reported as Altered skin by the WN. Conversely,

29 (13.1%) of the Category 2+ PUs reported by the WN were actually Altered skin

according to the gold standard CRN assessment. There were differences between

the pre-trial and mid-trial assessments, with for example, 26.1% of the true Altered

skin assessed as healthy by the WN pre-trial, compared to 63.2% mid-trial. It is

important to note that the data reported mid-trial in Table 6.3 are complete data

only; there were an additional 1, 144 skin site assessments that were not completed

by the WN, 163 unavailable from the CRN and 175 unavailable from both. The

dataset provided pre-trial in Table 6.3 was not affected by missing data and there-

fore may be a more reliable reflection of the misclassification by the WN compared

to the CRN.

PURAF

The second dataset from the PURAF study shows similar patterns of misclassifica-

tion to that of the CRN and WN comparisons in PRESSURE (Table 6.4). That

is, there was perfect agreement in 1, 766 (78.1%) paired skin site observations be-

tween the TVN and WN. Both under and over-reporting of Category 2+ PUs were

observed, with 19 (29.2%) Category 2+ PUs reported as Altered skin by the WN

and 7 (11.7%) of the Category 2+ PUs reported by WN were actually Altered skin

according to the gold standard assessment [40].



120

Table 6.3: Cross tabulation of PRESSURE skin assessments between the CRN co-
ordinator and WN

WN assessment (pre-trial)

State 1 2 3 4 Total

CRN co-ordinator
(Gold standard)

1 1, 239 (91.9%) 92 (6.8%) 10 (0.7%) 7 (0.5%) 1, 348 (100%)

2 187 (26.1%) 442 (61.7%) 65 (9.1%) 22 (3.1%) 716 (100%)

3 11 (7.5%) 47 (32.2%) 82 (56.2%) 6 (4.1%) 146 (100%)

4 7 (3.8%) 27 (14.5%) 8 (4.3%) 144 (77.4%) 186 (100%)

Total 1, 444 608 165 179 2, 396

WN assessment (mid-trial)

State 1 2 3 4 Total

CRN co-ordinator
(Gold standard)

1 1, 770 (93.7%) 107 (5.7%) 13 (0.7%) 0 (0.0%) 1, 890 (100%)

2 343 (63.2%) 177 (32.6%) 16 (2.9%) 7 (1.3%) 543 (100%)

3 42 (33.1%) 41 (32.3%) 39 (30.7%) 5 (3.9%) 127 (100%)

4 6 (13.0%) 8 (17.4%) 1 (2.2%) 31 (67.4%) 46 (100%)

Total 2, 161 333 69 43 2, 606

Table 6.4: Cross tabulation of PURAF Skin assessments between the TVN and WN

WN assessment

State 1 2 3 4 Total

TVN (Gold
standard)

1 1, 358 (88.0%) 180 (11.7%) 2 (0.1%) 4 (0.3%) 1, 544 (100%)

2 261 (41.1%) 356 (56.1%) 11 (1.7%) 7 (1.1%) 635 (100%)

3 4 (22.2%) 3 (16.7%) 7 (38.9%) 4 (22.2%) 18 (100%)

4 0 (0.0%) 19 (29.2%) 1 (1.5%) 45 (69.2%) 65 (100%)

Total 1, 623 558 21 60 2, 262

Summary

For both the PRESSURE and PURAF datasets, misclassification by the WN exists;

the disagreements differed by more than one category and there was some uncer-

tainty around the diagnosis of a Category 2+ PU. The results are consistent with

the concerns identified in the literature review and may be applicable to other clin-

ical settings where researchers may be reliant on less experienced staff, or a less

reliable outcome measure, for example due to costs or availability of resources. It is

therefore important to understand the impact of potential misclassification in terms

of bias and loss of power and to use methods to account for misclassification in a



121

MSM setting.

It is clear that misclassification has been incorporated into MSM analysis in a

variety of settings, but a comprehensive assessment of the impact on power and

sample size of a trial designed using an MSM where the outcomes are at risk of

misclassification is required as an extension to the simulation study conducted in

Chapter 5.

6.3 Aim

The aim of this chapter is to explore how misclassification can be incorporated

into the analysis of PU trial data in the MSM setting using hidden Markov models

(HMM).

Objectives

1. Apply 4 state progression HMM to PRESSURE WN assessments.

2. Assess the sensitivity of analysis to different starting values of misclassification

probabilities.

3. Apply 4 state progression MSM to PRESSURE WN assessments

6.4 Methods

6.4.1 Notation

This section introduces the notation for HMM using the methods described by Jack-

son et al [164]. Let Y denote the true disease process as introduced in Section 4.3.1.

Misclassification of a state occurs when the latent (true) state r is incorrectly ob-

served as state s where r 6= s. Let Y ∗ denote the observed process such that

Y ∗ = {Y ∗t | t ∈ (0,∞)}, Y ∗t ∈ S∗ = {1, 2, ...D}. Note that the state space for the

observed process is assumed to be the same as the state space for the latent process,

that is S∗ = S. This reflects that there may be errors in correctly classifying the

true disease state. The probability of misclassification needs to be modelled jointly
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with the underlying disease process for unbiased estimation of the model parameters

including treatment effects. The probability of misclassification at time t is defined

as

ers = P (Y ∗t = s|Yt = r) (6.1)

These misclassification probabilities correspond to the rsth entry of a D × D

misclassification matrix, E given by

E =



e11 e12 ... e1D

e21 e22 ... e2D

... ... ... ...

eD1 eD2 ... eDD


, (6.2)

where each row sums to 1, and err = 1 if there is no misclassification of state r.

Suppose that individual i is observed at W time points. Dropping the i for simplicity,

the observed disease states are recorded as y∗ = (y∗1, ..., y
∗
w). The contribution of

individual i to the likelihood function is given by

Li(θ|y∗,x) = p(Y ∗1 = y∗1, ...Y
∗
W = y∗W )

=
∑

y∈ΩW

p(Y ∗1 = y∗1, ..., Y
∗
W = y∗W |Y1 = y1, ..., YW = yW )p(Y1 = y1, ..., YW = yW )

(6.3)

where θ is the vector of model parameters, x is the vector of p covariates and ΩW

is the set of possible paths of latent states at times t1, ..., tw. Note that θ and x have

been suppressed on the right hand side. It is assumed that for every pair of observed

states, Y ∗v and Y ∗w , v 6= w, the misclassification at time tw is independent of both

the misclassification and the latent states at other times. This can be expressed in
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notation through

P (Y ∗v = y∗v , Y
∗
w = y∗w|Yv = yv, Yw = yw) = P (Y ∗v = y∗v |Yv = yv)P (Y ∗w = y∗w|Yw = yw)

(6.4)

Assuming the Markov property, the individual’s contribution to the likelihood func-

tion can therefore be written as

Li(θ|y∗,x) =
∑
y1

P(Y∗1|Y1)P(Y1)
∑
y2

P(Y∗2|Y2)P(Y2|Y1)...
∑
yW

P(Y∗W|YW)P(YW|YW−1)

(6.5)

where P (Y ∗t |Yt) is the misclassification probability, and P (Yt|Yt−1) is the transition

probability of the latent disease process. The full likelihood function is then given

as described in Section 4.3.1 by

L =
N∏
i=1

Li(θ | y,x) (6.6)

This model may be estimated by maximising the log-likelihood function using

the msm package in R. The misclassification probabilities are often modelled using

the logit link function, and a dependence on time or covariates may be incorporated.

For example, Bhatt et al incorporated age as a time-dependent covariate for esti-

mating the misclassification probability of a cancer screening program [169]. The

incorporation of covariates in the estimation of the misclassification probabilities

may also go some way to accounting for differential bias in a trial if suspected. The

distribution of the latent first state may be modelled through multinomial logistic

regression if it is unknown, however, it is unlikely that the first state is unknown

in a clinical trial because disease status would be assessed as part of the eligibility

criteria. In this instance, a vector of known probabilities for each state may be

specified, or an indicator variable could be used, which allows the specification of

assessments, which have been measured with no error. If none of these options are

specified, the msm package in R will assume that all participants start in the same

state.
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Identifiability

HMM are at risk of identifiability issues when different misclassification and tran-

sition matrix combinations lead to the same likelihood value, so that the model

parameters are not estimated correctly or the maximum likelihood estimation pro-

cedure does not converge. This may be more likely to occur as the models increase

in complexity or when fewer data are available for model estimation. Therefore it

is important to specify any known features of the data in the model, such as which

misclassifications are not possible. Alternatively, the misclassification probabilities

can be set to pre-specified values [102] informed by previous research such as an

inter-rater reliability study or through some form of elicitation from experts in the

clinical application area.

6.4.2 Analysis of PRESSURE trial dataset

To illustrate the application of a HMM the PRESSURE trial dataset was re-analysed

using the WN data collected daily.

E =



0.9 0.1 0 0

0.3 0.6 0.1 0

0.1 0.3 0.6 0

0 0.1 0.1 0.8


. (6.7)

In the first instance, the starting values of the misclassification matrix were according

to (6.7), which was informed by the data reported in Table 6.3.

E =



0.8 0.1 0.1 0

0.3 0.6 0.1 0

0.1 0.3 0.6 0

0.1 0.1 0.1 0.7


. (6.8)

Second, a HMM will be fitted using a more flexible misclassification matrix according

to (6.8). Note that these starting values allow flexibility to estimate where the true

misclassifications occurred, and may me useful in situations where there is greater
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Table 6.5: Observed state transitions for the PRESSURE trial WN daily assessments

From state ↓ To state →

1 2 3 4

1 3570 378 36 32

2 777 1755 75 72

3 88 163 256 29

uncertainty about the true misclassification.

Note that throughout the reanalysis of these datasets the observation of the

Severe disease state by the WN is assumed to be accurate but the Severe disease

state may be reported as Mild or Pre-Clinical disease as informed by Table 6.3.

That is, the assessment of the severe disease state is assumed to be 100% specific,

but sensitivity is < 100%. Furthermore, the first observation for each patient is

assumed to be correct because accurate assessment of the skin was required to

determine eligibility.

To assess the sensitivity of results to using misclassified data, a MSM was applied

to the WN data assuming they were correct.

6.5 Results

The observed state transitions for the PRESSURE trial WN daily assessments are

presented in Table 6.5. Note that there was both forward and backward move-

ment between the Healthy, Mild and Pre-clinical disease states, which is not in line

with the assumed disease process where backwards transitions are not permitted.

However, in reality it may be reasonable for earlier skin changes to be observed to

improve.

In the first instance, the HMM applied to the PRESSURE trial WN data did not

converge because the structure of the misclassification matrix were not compatible

with the observed data. To enable the model to fit, the starting values for the

misclassification matrix were relaxed as in 6.8 in order to allow any combination of
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Table 6.6: Observed state transitions for the PRESSURE trial WN daily assess-
ments: most severe state carried forwards

From state ↓ To state →

1 2 3 4

1 1472 150 11 15

2 0 3699 68 63

3 0 0 1698 55

observed and true states. However, whilst the model converged, the Hessian was

not positive definite. Various solutions were attempted such as applying a scaling

factor to normalise the likelihood as guided by associated documentation for the

msm package [102], and a range of different starting values of the misclassification

matrix were used, but the the Hessian continued to not be positive definite. This

could be due to the relatively small number of observed state occupancies from Mild

disease, which accounted for just 7.4% (536/7231) of all observed state occupancies.

When the observed data were assumed to be correct, and the most severe state

was carried forward, the observed state occupancies were as presented in Table 6.6.

The estimates of the transition intensities in the MSM applied to observed WN data

(where the most severe state was assumed to be true) led to different conclusions

of the treatment effect compared to the analysis conducted in Chapter 4(Table

6.7). For the transitions 1 → 2 and 2 → 3, the treatment effects were similar in

magnitude with slightly wider confidence intervals. However, for the transition from

3 to 4, the treatment effect was attenuated towards a HR of 1 with an estimate of

1.10 (0.78, 1.55) compared to 0.76 (0.55, 1.05) estimated from the MSM applied to

the gold standard data in Chapter 4. This attenuation is in line with expectations

if there was non-differential measurement error [160, 161]. In this situation there

would be a higher number of category 2+ PUs reported by the ward nurses. If there

was non-differential measurement error, then the relative difference would be diluted

by the additional observations of the absorbing state.
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Table 6.7: Results of MSM applied to observed PRESSURE trial data (ward nurse
assessments)

Transition Baseline transition
intensity (95% CI)

HR ((95% CI)

1→ 2 0.055 (0.047, 0.064) 1.16 (0.86, 1.56)

2→ 3 0.017 (0.015, 0.020) 0.99 (0.72, 1.35)

3→ 4 0.031 (0.026, 0.036) 1.10 (0.78, 1.55)

6.6 Discussion

In the PU setting, inter-rater reliability studies have helped to provide reassurance

that misclassification is independent of treatment allocation (Chapter 2.3). In this

chapter, the cross tabulations of PU assessment suggest misclassification is likely in

the trial datasets, however there were challenges with fitting HMM to the data.

If the analysis model is for a binary or TTE endpoint, literature on misclassified

dichotomous or categorical outcomes and over or under ascertained events shows that

analysis results could be biased. Therefore it would be wise to continue assessing

misclassification even when the outcome is binary or TTE, and carefully consider

the impact of findings in the analysis. If the analysis is a MSM, the findings of an

inter-rater reliability study can be used to inform both whether a HMM is required,

and if so, the initial values, possible covariates and structure of the misclassification

matrix.

HMM were applied to the PRESSURE trial dataset of WN assessments with

starting values of the misclassification parameters initially informed by skin site level

summaries in Section 6.2. Note that these starting values were likely to be a worst

case scenario for the PU setting because discrepancies due to incorrectly swapping

left and right sides will have been absorbed when data were aggregated to patient

level. However, the application of HMM to the case study dataset demonstrated

difficulties in fitting the model for a range of starting values for the misclassification

probabilities.
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In dermatology there is heterogeneity between patients in skin types, pigmenta-

tion and morphology, which makes accurate assessment more difficult [23,66,67,93,

94]. Allowing misclassification probabilities to be conditional on skin type, modelled

using logistic or multinomial regression, could accommodate this heterogeneity in

the appearance of skin. However, this results in a much more complicated model

with many more parameters, so that such analyses may only be feasible in very large

studies. Furthermore, whilst the motivating datasets arose from the acute hospital

setting, community care is moving towards remote clinical assessments for both rou-

tine care and research, partly in response to the COVID-19 pandemic [170]. Virtual

assessments of conditions requiring a visual assessment may lead to increasingly

misclassified disease states either due to subjective assessments being more difficult

if image quality is not adequate, or because of technology availability.

Applying an MSM to the misclassified data showed that the treatment effects

on the later transition were attenuated towards the null as expected. Therefore,

if misclassified outcomes are likely, a modelling strategy needs to encompass the

misclassification so that unbiased treatment effects can be estimated. Therefore,

despite the challenges encountered with the example dataset in this chapter, it is

of interest to understand when and how misclassification can be accounted for in

a MSM analysis. For example, whether less experienced staff could be used to

conduct more frequent assessments for longer to provide a similar level of power

that would be obtained by using a gold standard assessor. It is therefore important

to understand the impact on power, bias and coverage of using HMM compared to

MSM in the design of trials when there are misclassified outcomes, under different

assessment schedule and patterns of misclassification.



Chapter 7

Impact of misclassification on

power, bias and coverage

7.1 Introduction

The previous chapter described the use of HMM to analyse data subject to misclas-

sification. The application of HMM to existing data was problematic with issues of

non-convergence and non-identifiability. The inter-rater reliability for the illustrative

datasets in Chapter 6 showed that there were different patterns of misclassification

of PU disease state depending on the expertise of the assessor. More experienced

assessors tended to accurately assess the absorbing state with only minor misclas-

sification of transient states with adjacent states. Less experienced assessors were

less accurate in their assessments with misclassification of the absorbing state also

observed. The summaries of inter-rater reliability in the PRESSURE and PURAF

studies were used to inform the design of the simulation study, described in this

chapter, to assess the impact of misclassification on power, bias and coverage in the

MSM setting. The simulation study builds on the results from Chapter 5, encom-

passing recommendations from the use of MSM under the gold standard method of

assessments to explore the potential impact of misclassification. That is, maximum

lengths of follow-up of 30 or 60 days with assessments conducted every 1, 2, or 3

days.

129
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7.2 Aim

The aim of the simulation study is to assess bias and coverage of estimated hazard

ratios and power of hypothesis tests for a given sample size when; 1) misclassification

is ignored in the analysis of data arising in trials designed using MSM as the primary

analysis method, and 2) when misclassification is incorporated into the primary

analysis through the use of hidden Markov models (HMM).

Objectives

1. Define scenarios to be evaluated.

2. Apply 4 state progression MSM to simulated latent and misclassified datasets

and apply 4 state progression HMM to simulated misclassified datasets.

3. Report the power, bias and coverage for each method.

4. Provide advice on the implication for trials in terms of, for example, relative

efficiency of choice of assessor and frequency of assessment.

7.3 Methods

7.3.1 Simulation study plan

The ADEMP general framework is used to outline the plan of the simulation study

[148]. The aim is described in Section 7.2.

Data Generating Mechanism

The following were fixed for each scenario and are in line with the Base Case from

the previous simulation study: number of patients, N = 1, 000 (chosen because it

achieved over 90% power with the unconstrained model in the base case, compared

to 500 participants for which approximately 70% power was achieved); number of

simulations = 1, 000; control group transition intensities, q0(t) = (0.05, 0.05, 0.03);



131

moderate treatment effect on each transition, exp(β) = (0.67, 0.67, 0.67). The pa-

rameters that vary are based on the results of the first simulation study. In par-

ticular, there are 2 options for length of follow-up (30 and 60 days) and 3 options

for the assessment interval (1 day, 2 days and 3 days). Each of these were were

shown to provide adequate power in Chapter 5, but it is of interest to compare say,

misclassified daily outcomes with gold standard outcomes collected less frequently.

In all scenarios, the proportions of patients in states 1 (Healthy), 2 (Pre-clinical)

and 3 (Mild disease) at baseline (t = 0) were 15%, 70% and 15% respectively and

patients were allocated in a 1:1 ratio to one of two treatment groups (intervention

and control).

The latent process was simulated using the same method as described in Chapter

5, with an additional transition from the time of entry into the absorbing state to

the end of the follow up period. This was included to allow the misclassification

of the latent absorbing state beyond the time that the latent absorbing state is

truly entered. Throughout patients were censored at a rate of 5% per day. The

observed process was generated by applying misclassification probabilities to the

latent process, informed by the illustrative data in Section 6.2. There were 4 patterns

of misclassification for transitions to the absorbing state

1. The sensitivity and specificity for observing the absorbing state are both equal

to 1, so that e44 = P (Y ∗t = 4|Yt = 4) = 1 and P (Y ∗t 6= 4|Yt 6= 4) = 1. This

means that all absorbing states were correctly observed and no transient states

are incorrectly recorded as an absorbing state.

2. The sensitivity for observing the absorbing state is not equal to 1, e44 =

P (Y ∗t = 4|Yt = 4) 6= 1, but the specificity remains equal to 1, P (Y ∗t 6= 4|Yt 6=

4) = 1. This means that some absorbing states were incorrectly observed as

a transient state but that no transient states were recorded as an absorbing

state.

3. The sensitivity for observing the absorbing state is equal to 1, e44 = P (Y ∗t =

4|Yt = 4) = 1, but the specificity is not equal to 1, P (Y ∗t 6= 4|Yt 6= 4) 6= 1.
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This means that all absorbing states were correctly observed but that some

transient states were incorrectly recorded as an absorbing state.

4. The sensitivity for observing the absorbing state is not equal to 1, P (Y ∗t =

4|Yt = 4) 6= 1 and, the specificity is not equal to 1, P (Y ∗t 6= 4|Yt 6= 4) 6= 1.

Here some absorbing states were incorrectly observed as a transient state and

some transient states were incorrectly recorded as an absorbing state.

Therefore, with 4 scenarios for the misclassification of the absorbing state, 3

assessment frequencies, and 2 follow-up lengths, there were 4x3x2 = 24 scenarios for

Part I of the simulation study (see Table 7.1 for a summary).

The simulation study was developed in 3 parts related to the possible misclassi-

fication patterns;

• Part I consisted of misclassification between all transient states, but any mis-

classification of the absorbing state was only with the adjacent state.

• Part II consisted of misclassification only with adjacent states for all states.

• Part III consisted of misclassification between transient states and allowed

misclassification of the absorbing state with a non-adjacent state in addition

to the adjacent state.

Part III most closely reflects the misclassification observed in the WN assess-

ments in the PU case studies (Chapter 6), whereas Part II reflects scenarios where

the misclassification is less extreme. This situation is closer to the misclassification

levels observed for CRN relative to the CRN coordinator in the PRESSURE trial,

where the maximum difference was one state apart. Part I is a general case where

there may be greater uncertainty in the transient states, but the absorbing state is

either measured without error or may be misclassified as the adjacent state only.

Note that for Part II and Part III, the assessment interval and length of follow-up

remain fixed at 1 day and 60 days respectively, which means there are just 4 scenar-

ios within each of these parts of the simulation study. Full details of the simulation

parameters for each scenario are provided in Tables 7.1, 7.2 and 7.3 corresponding

to Part I, Part II, and Part III respectively.
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Throughout these scenarios, the misclassification is assumed to be the same for

each treatment group for simplicity, although the programs could be updated to

explore the impact of imbalanced misclassification between treatment groups.

7.3.2 Estimand and target

In order for the simulation study to evaluate efficiency of the analysis models, the

estimand is defined as the estimated coefficients for treatment. To assess power and

type 1 error rate, the target is the null hypothesis as outlined in 5.3.1.

7.3.3 Methods to be evaluated

The analysis methods evaluated for each scenario are;

• Model A - MSM applied to the latent process.

• Model B - HMM fitted to the observed data.

• Model C - MSM fitted to the misclassified observed data.

7.3.4 Performance

Mean coverage and power were compared between analyses with Hochberg’s method

for multiple hypothesis tests [151] used to assess statistical significance of treatment

effects on each transition, in line with the testing procedure used in Chapter 5. Bias

was reported graphically through box plots of estimated hazard ratios.

A formal sample size calculation for the number of simulations was not con-

ducted, but a total of 1, 000 simulations were completed for each scenario. The

same datasets were used to compare statistical methods but different datasets were

generated for each scenario being considered.



134

Table 7.1: Misclassification simulation parameters, Part I (Misclassification of all
transient states, misclassification of the absorbing state with the adjacent state at
most)

Scenario Assessment
frequency

Length of
follow-up

Misclassification
probabilities

Description

1∗ Daily

60 days 
0.8 0.1 0.1 0
0.3 0.6 0.1 0
0.1 0.3 0.6 0
0 0 0 1


No misclassi-
fication of
absorbing
state

2 Every 2 days

3 Every 3 days

4 Daily

30 days5 Every 2 days

6 Every 3 days

7 Daily

60 days 
0.8 0.1 0.1 0
0.3 0.6 0.1 0
0.1 0.3 0.6 0
0 0 0.2 0.8

 Under-
reporting of
absorbing
state

8 Every 2 days

9 Every 3 days

10 Daily

30 days11 Every 2 days

12 Every 3 days

13 Daily

60 days 
0.8 0.1 0.1 0
0.3 0.6 0.1 0
0.1 0.3 0.5 0.1
0 0 0 1

 Over-
reporting of
absorbing
state

14 Every 2 days

15 Every 3 days

16 Daily

30 days17 Every 2 days

18 Every 3 days

19 Daily

60 days 
0.8 0.1 0.1 0
0.3 0.6 0.1 0
0.1 0.3 0.5 0.1
0 0 0.2 0.8


Both under-
and over-
reporting of
absorbing
state

20 Every 2 days

21 Every 3 days

22 Daily

30 days23 Every 2 days

24 Every 3 days

∗ denotes the base case
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Table 7.2: Misclassification simulation parameters, Part II (Misclassification of all
states with the adjacent state at most)

Scenario Assessment
frequency

Length of
follow-up

Misclassification
probabilities

Description

25

Daily 60 days


0.9 0.1 0 0
0.3 0.6 0.1 0
0 0.3 0.7 0
0 0 0 1


No misclassi-
fication of
absorbing
state

26


0.9 0.1 0 0
0.3 0.6 0.1 0
0 0.3 0.7 0
0 0 0.2 0.8


Under-
reporting of
absorbing
state

27


0.9 0.1 0 0
0.3 0.6 0.1 0
0 0.3 0.6 0.1
0 0 0 1


Over-
reporting of
absorbing
state

28


0.9 0.1 0 0
0.3 0.6 0.1 0
0 0.3 0.6 0.1
0 0 0.2 0.8


Both
under-and
over-
reporting of
absorbing
state
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Table 7.3: Misclassification simulation parameters, Part III (similar to PU case
studies)

Scenario Assessment
frequency

Length of
follow-up

Misclassification
probabilities

Description

29

Daily 60 days


0.8 0.1 0.1 0
0.3 0.6 0.1 0
0.1 0.3 0.6 0
0 0.1 0.1 0.8


Under-
reporting of
absorbing
state

30


0.8 0.1 0.1 0
0.3 0.5 0.1 0.1
0.1 0.3 0.5 0.1
0 0 0 1


Over-
reporting of
absorbing
state

31


0.8 0.1 0 0
0.3 0.5 0.1 0.1
0.1 0.3 0.5 0.1
0 0.1 0.1 0.8


Both
under-and
over-
reporting of
absorbing
state

7.4 Results

Part I: Misclassification of transient states only (Scenarios 1 to 6)

The power and coverage observed for Part I are presented in Table 7.4. Note that

throughout the results in this chapter, the Monte Carlo Standard Error for the es-

timates of power were considered sufficiently small at < 0.016 and are provided in

Appendix D.1. Examination of the base case demonstrates that estimated treatment

effects (hazard ratios) were unbiased when obtained from the appropriate HMM,

Model B (Figure 7.1). In contrast, the model ignoring misclassification, Model C,

which was applied to data whereby the most severe assessment observed was car-

ried forward, led to attenuated treatment effects on the earlier transitions, but a

slightly larger treatment effect on the transition to the absorbing state. Further-

more, under the latent process, where the data were observed without error and

analysed appropriately (Model A), the power was 97.7%, which reduced to 92.2%
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when misclassification was present and appropriately analysed (Model B), and re-

duced further to 85.2% under Model C. For comparison, the power obtained from

Model B and Model C is 94.4% and 87.2% respectively, relative to the power achieved

under Model A. The coverage of the 95% confidence intervals for each hazard ratio

ranged from 95.4% to 96.0% for Model A and Model B, apart from the transition

from state 1 to state 2 in model B, which had slightly higher coverage at 97.8%.

Model C resulted in inadequate coverage, with 49.9% for eβ12 ; 3.3% for eβ23 and

89.5% for eβ34 . These results were generally consistent throughout this pattern of

misclassification for scenarios 1 to 6, under different lengths of follow-up and as-

sessment frequencies. For example, in scenario 5 where patients were assessed every

2 days for up to 30 days, the estimated treatment effects were unbiased for Model

A and Model B (Figure 7.2), however there was increased variability in the point

estimates obtained for eβ12 from Model B. Model C led to biased treatment effect

estimates in the same directions as for the base case. The power for Model A was

estimated as 93.4%, compared to 82.0% for model B and 75.1% for model C. The

coverage ranged from 94.4% to 96.4% for Model A and Model B, apart from the

transition from state 1 to state 2 in model B, which had slightly higher coverage at

98.5%. Model C continues to be inadequate in terms of coverage, however there are

slight improvements with 68.0% for eβ12 ; 18.4% for eβ23 and 90.6% for eβ34 . These

improvements in coverage for model C may be because the longer intervals between

assessments led to a simpler likelihood function because the set of possible paths

for the latent process is smaller. Within scenarios 1 to 6, the misclassification prob-

abilities were estimated without bias indicating that this level of misclassification

did not lead to identifiability issues, Figure 7.3 is an example with the estimated

misclassification probabilities under the base case, and the remaining scenarios are

available in Appendix 7.3.1.
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Table 7.4: Part I (Misclassification of all transient states, misclassification of the
absorbing state with the adjacent state at most): Power and coverage

Scenario

Power (%) Coverage (95% CI)

Model A Model B Model C
Model A Model B Model C

eβ12 eβ23 eβ34 eβ12 eβ23 eβ34 eβ12 eβ23 eβ34

No misclassification of absorbing state

1 97.7% 92.2% 85.2% 95.8% 95.4% 95.5% 97.8% 95.9% 96.0% 49.9% 3.3% 89.5%

2 95.8% 88.2% 84.0% 93.1% 95.0% 95.5% 97.4% 95.1% 95.2% 64.4% 16.1% 90.0%

3 96.1% 84.7% 83.8% 94.8% 95.5% 95.5% 99.3% 96.7% 95.0% 73.5% 34.2% 90.3%

4 94.2% 86.9% 74.0% 96.6% 95.0% 95.4% 97.3% 94.8% 95.5% 54.9% 3.6% 89.9%

5 93.4% 82.0% 75.1% 96.3% 94.4% 94.5% 98.5% 96.4% 95.0% 68.0% 18.4% 90.6%

6 93.7% 78.1% 75.0% 95.0% 95.7% 95.3% 99.7% 94.8% 95.1% 70.1% 32.9% 90.8%

Under-reporting of absorbing state

7 96.0% 91.6% 75.6% 95.6% 95.9% 95.7% 97.6% 96.4% 95.6% 53.1% 4.0% 91.1%

8 95.6% 86.3% 75.7% 95.4% 96.3% 95.7% 98.8% 95.6% 95.5% 61.3% 17.5% 90.9%

9 95.9% 85.7% 75.2% 94.3% 96.3% 94.0% 99.4% 96.2% 94.8% 75.7% 33.9% 90.6%

10 94.3% 87.6% 66.1% 93.8% 95.1% 94.6% 96.8% 94.8% 94.2% 52.8% 2.6% 90.3%

11 94.1% 81.9% 64.9% 93.9% 95.3% 94.4% 98.8% 96.4% 94.7% 67.9% 18.8% 90.6%

12 93.3% 72.9% 61.8% 95.2% 95.2% 95.7% 99.4% 94.5% 96.2% 75.3% 33.4% 93.5%

Over-reporting of absorbing state

13 96.5% 90.2% 76.1% 96.2% 94.6% 95.1% 96.9% 93.0% 93.4% 52.0% 4.2% 86.2%

14 95.8% 76.6% 69.7% 95.5% 94.7% 94.7% 95.7% 86.9% 91.9% 62.1% 17.4% 86.5%

15 96.5% 93.4% 69.3% 94.1% 93.5% 96.0% 97.0% 56.9% 75.6% 71.5% 31.4% 89.2%

16 94.4% 81.0% 68.2% 94.0% 95.0% 95.6% 98.5% 92.9% 95.8% 50.7% 3.9% 82.2%

17 94.8% 80.2% 61.8% 94.3% 94.2% 95.2% 93.7% 85.8% 89.2% 66.7% 19.9% 85.9%

18 93.2% 89.8% 64.1% 94.2% 95.2% 94.9% 95.6% 55.5% 73.0% 74.2% 36.8% 88.1%

Both under- and over-reporting of absorbing state

19 96.6% 88.8% 72.0% 95.3% 95.0% 95.2% 95.3% 92.9% 94.8% 50.5% 3.3% 83.7%

20 96.8% 91.6% 65.5% 96.0% 95.5% 95.2% 93.1% 70.3% 9.7% 65.3% 18.9% 83.7%

21 96.3% 55.1% 64.0% 95.4% 95.8% 96.0% 98.7% 43.9% 81.9% 73.8% 33.3% 86.9%

22 94.9% 84.0% 60.5% 94.2% 95.2% 95.4% 97.5% 93.5% 94.9% 52.9% 3.9% 82.4%

23 92.2% 84.3% 54.3% 95.1% 94.0% 94.1% 96.5% 77.5% 82.9% 63.5% 17.8% 79.7%

24 92.8% 35.3% 54.0% 96.2% 94.8% 95.8% 99.7% 72.3% 91.4% 71.8% 33.9% 85.1%

Part I: Misclassification of transient states and under-reporting of the

absorbing state (Scenarios 7 to 12)

Under the scenario where the assessments were conducted daily for up to 60 days

(Scenario 7), the estimated treatment effect estimates followed a similar pattern to

that observed where there was no misclassification of the absorbing state, across all

models (Figure 7.4). The power obtained from model A and model B was 96.0%

and 91.6% respectively. This is similar to the reduction observed when there was no

misclassification of the absorbing state. In contrast, the power under model C, which
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Figure 7.1: Scenario 1, Base Case: Box plot of point estimates for hazard ratios (No
misclassification of absorbing state, Assessment frequency=daily, length of follow-
up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

Figure 7.2: Scenario 5: Box plot of point estimates for hazard ratios (No misclas-
sification of absorbing state, Assessment frequency=every 2 days, length of follow-
up=30 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

ignored misclassification, was 75.6%. Thus whilst under-reporting of the absorbing

state did not have an effect on power when the appropriate HMM was used, ignoring

misclassification could lead to a substantial loss of power. The coverage of the 95%

confidence intervals for each transition hazard ratio was adequate for Model A and

Model B with the exception of the transition between state 1 and state 2 (Table

7.4), which was equal to 97.6%. The coverage for Model C was also similar to that

reported for the scenario with no misclassification of the absorbing state, with 53.1%

for eβ12 ; 4.0% for eβ23 and 91.1% for eβ34 . These results are overall consistent with the

scenarios where there was no misclassification of the absorbing state across different

lengths of follow-up and assessment frequency. The main difference between results
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Figure 7.3: Scenario 1, Base Case: Box plot of misclassification probability estimates
obtained from model B (No misclassification of absorbing state, Assessment fre-
quency=daily, length of follow-up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03))
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Figure 7.4: Scenario 7: Box plot of point estimates for hazard ratios (Under-
reporting of absorbing state, Assessment frequency=daily, length of follow-up=60
days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

from models A and B for scenarios 7 to 12, is that whilst the misclassification

probabilities were estimated without bias, there was increased variability in the

estimated misclassification probabilities for the absorbing state (for an example, see

figure 7.5, although this did not appear to impact on the bias of the estimated

treatment effects or the power. However, for smaller datasets, the models may

encounter identifiability issues when estimating misclassification probabilities.

Part I: Misclassification of transient states and over-reporting of the ab-

sorbing state (Scenarios 13 to 18)

Under the scenario, where the assessments were conducted daily for up to 60 days

(Scenario 13), the estimated treatment effect estimates were similar in terms of bias

to the previous scenarios (Figure 7.6). The power obtained from model A remained

high, at 96.5% whereas model B achieved 90.2% power and the power under model C

was 76.1%, which were all in line with the reduction in power observed when there

was under-reporting of the absorbing state. The coverage of the 95% confidence

intervals for each transition was adequate for Model A as expected, but under Model

B coverage was slightly reduced coverage for the transitions between state 2 and state

3, and between state 3 and state 4 at 93.0% and 93.0% respectively. The coverage

for Model C was similar to that reported for the previous scenarios, with 52.0% for

eβ12 ; 4.2% for eβ23 and 86.2% for eβ34 .
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Figure 7.5: Scenario 7: Box plot of misclassification probability estimates obtained
from model B (Under-reporting of absorbing state, Assessment frequency=daily,
length of follow-up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03))

The mean power for model B was affected by changes in the assessment frequency.

When the length of follow-up was 60 days, daily assessments led to mean power of

90.2% in line with previous scenarios. Assessments conducted every 2 days led to

a reduction in power to 76.6%, however assessments every 3 days led to increased

power of 93.4%. When the length of follow-up was 30 days the mean power under

a HMM was approximately 80% when the assessments were daily or every 2 days,

but when the assessments were every 3 days the power increased to 89.8%.

In this set of scenarios, the distribution of the estimated treatment effects on

each transition from model B were also affected as the assessment interval increased

and/or the length of follow-up decreased. The increased power when observations

were every 3 days was likely to be an artefact of biased treatment effects. For

example, in scenario 15 when the assessments were conducted every 3 days for 60

days, the estimates of eβ12 were attenuated towards the null, whereas the estimates
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of eβ23 and eβ34 were biased away from the null (Figure 7.7). Meanwhile, in scenarios

where assessments were conducted daily or every 2 days, the estimates of eβ23 and

eβ34 were unbiased in all scenarios. Similarly eβ12 was estimated without bias with the

exception of scenario 16 (daily assessments for 30 days) which showed attenuation

towards the null.

Throughout scenarios 13 to 18 the mean coverage was inadequate for both eβ23

and eβ34 when assessments were conducted less frequently than daily. There was

some loss of coverage for eβ23 when assessments were conducted daily, and there was

increased coverage for eβ12 when assessments were conducted daily for 30 days. The

misclassification probabilities were, on average, estimated without bias throughout

scenarios 13 to 18, which suggests that identifiability was not a concern for Model

B.

Overall, over-reporting of the absorbing state had the potential to lead to bi-

ased treatment effects with inadequate coverage if the assessment interval was less

frequent than daily or if the length of follow-up was shorter than 60 days.

Figure 7.6: Scenario 13: Box plot of point estimates for hazard ratios (Over-
reporting of absorbing state, Assessment frequency=daily, length of follow-up=60
days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

Part I: Misclassification of transient states and both under- and over-

reporting of the absorbing state (Scenarios 19 to 24)

When assessments were conducted daily for up to 60 days (Scenario 19), the power

obtained from model A remained consistent, at 96.6%, model B achieved 88.8%
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Figure 7.7: Scenario 15: Box plot of point estimates for hazard ratios (Over-
reporting of absorbing state, Assessment frequency=every 3 days, length of follow-
up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

power and Model C had 72.0% power (Table 7.4). For Scenario 19, the coverage

of the 95% confidence intervals for each transition hazard ratio was adequate for

Model A, but under Model B the coverage was observed to be 95.3%, 92.9% and

94.8% for eβ12 , eβ23 and eβ34 respectively. The coverage for Model C was similar to

previous scenarios.

Throughout Scenarios 19 to 24, the estimated treatment effects were similar to

that observed when there was only over-reporting of the absorbing state with the

exception of scenarios 21 and 24 when assessments were conducted every 3 days for

60 an 30 days respectively. In both scenarios there was greater attenuation towards

the null for eβ12 (Figures 7.8 and 7.9). For eβ23 and eβ34 there was greater variability

in the point estimates and, compared to scenarios 15 and 18 they were not biased

away from the null, but there was in fact evidence of attenuation towards the null

particularly for scenario 24. The power was adversely affected in these two scenarios

at 55.1% for scenario 21 and 35.3% for scenario 24. The coverage was also poor,

particularly for eβ23 at 43.9% for scenario 21 and 72.3% for scenario 24.

The misclassification probabilities were, on average, estimated without bias

throughout scenarios 19 to 24, which suggests that identifiability was not a con-

cern for Model B. Therefore, the impact of both under- and over-reporting of the

absorbing state was similar to that observed when there was only over-reporting of

the absorbing state. That is, the treatment effects are at risk of bias with inadequate
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coverage if the assessment interval was less frequent than daily or if the length of

follow-up was shorter than 60 days.

Figure 7.8: Scenario 21: Box plot of point estimates for hazard ratios (Under-and
over-reporting of absorbing state, Assessment frequency=every 3 days, length of
follow-up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

Figure 7.9: Scenario 24: Box plot of point estimates for hazard ratios (Over-
reporting of absorbing state, Assessment frequency=every 3 days, length of follow-
up=30 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))

Part II: Misclassification of adjacent states only (Scenarios 25 to 28)

Scenarios 25 to 28 explored the case where misclassification only occurred between

adjacent states. The results of this part of the simulation study were, on the whole,

consistent with Part I. The behaviour of the values of the estimated treatment

effects drew similar conclusions and the effects on power and coverage were similar

as shown in Table 7.5. It is important to note that in scenario 26 where there was

only under-reporting of the absorbing state, there was increased variability in the
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estimated misclassification probability e43 (Figure 7.10) which may be an indication

that identifiability was an issue in some of the simulated datasets.

Figure 7.10: Scenario 26: Box plot of misclassification probability estimates obtained
from model B (Under-reporting of absorbing state, Assessment frequency=daily,
length of follow-up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03))

Table 7.5: Part II (Misclassification of all states with the adjacent state at most):
Power and coverage

Scenario

Power (%) Coverage (95% CI)

Model A Model B Model C
Model A Model B Model C

eβ12 eβ23 eβ34 eβ12 eβ23 eβ34 eβ12 eβ23 eβ34

No misclassification of absorbing state

25 96.7% 92.7% 86.5% 95.1% 95.0% 95.3% 96.8% 95.5% 95.3% 69.8% 16.7% 91.7%

Under-reporting of absorbing state

26 96.5% 92.6% 78.3% 94.9% 95.6% 95.1% 97.3% 96.1% 95.5% 66.3% 16.8% 91.1%

Over-reporting of absorbing state

27 97.3% 91.7% 77.2% 95.1% 96.2% 95.4% 96.6% 93.9% 94.4% 68.2% 16.7% 83.7%

Both under- and over-reporting of absorbing state

28 96.8% 86.3% 71.3% 95.3% 94.3% 94.7% 96.4% 92.5% 94.2% 68.0% 16.0% 79.5%
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Part III: Pressure ulcer setting (Scenarios 29 to 31)

Scenarios 29 to 31 were for the case where misclassification of the absorbing state

could have been to more than one state apart. The results of this part of the

simulation study were similar the results in Part I and Part II. There was some

loss of coverage for the HMM (Model B) when the absorbing state could be over-

reported. The mean power ranged from 88.6% to 91.4% (Table 7.6). Furthermore,

the treatment effect estimates obtained from Model B remained unbiased in each

of these scenarios, with scenario 31 demonstrated as an example in Figure 7.11.

Similarly, the misclassification probabilities were, on average, estimated without

bias throughout scenarios 29 to 31, which suggests that identifiability was not a

concern for Model B in these cases.

Table 7.6: Part III (similar to PU case studies): Power and coverage

Scenario

Power (%) Coverage (95% CI)

Model A Model B Model C
Model A Model B Model C

eβ12 eβ23 eβ34 eβ12 eβ23 eβ34 eβ12 eβ23 eβ34

Under-reporting of absorbing state

29 96.8% 91.4% 77.9% 95.1% 96.0% 95.4% 97.7% 94.4% 94.7% 63.8% 14.6% 92.0%

Over-reporting of absorbing state

30 97.2% 90.3% 35.1% 95.6% 95.5% 96.1% 94.3% 93.8% 92.3% 67.5% 11.7% 6.6%

Both under- and over-reporting of absorbing state

31 96.5% 88.6% 33.7% 94.7% 93.9% 95.5% 93.3% 91.5% 92.9% 65.9% 10.7% 5.2%

Figure 7.11: Scenario 31: Box plot of point estimates for hazard ratios (Under- and
over-reporting of absorbing state, Assessment frequency=daily, length of follow-
up=60 days, N = 1000, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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7.5 Discussion

The impact of misclassified outcomes on power, bias and coverage was evaluated

in a simulation study comparing both HMM and MSM applied to observed data

with MSM applied to latent data. The assessment interval and length of follow-up

affected both the power, coverage and bias of the treatment effect estimates, with

reduced length of follow-up and longer assessment intervals leading to less reliable

model conclusions when data were misclassified. The motivating problem for this

simulation study was informed by data provided by experts and non-experts in the

PU setting discussed in Chapter 6. However, the findings of this chapter are relevant

to any setting where the disease process may be measured with error.

Overall, the simulation study showed that when there was only under-reporting

or no misclassification of the absorbing state, the power obtained from using a

HMM was at least 70% of that achieved from an MSM fitted to data from the latent

process, irrespective of varied follow-up length and assessment frequency. At least

90% power was achieved from applying MSM to the true data of 1000 participants

when the maximum length of follow-up ranged from 30 to 60 days, and when the

assessment intervals were up to 3 days long. Meanwhile, to achieve 90% power with

1000 patients and misclassified data, assessments should be conducted daily with a

maximum follow-up of 60 days.

When there was over-reporting of the absorbing state, the power, bias and cov-

erage were adequate when assessments were conducted daily for up to 60 days.

However when the length of follow-up was reduced to 30 days, or when the assess-

ment intervals was increased to every 2 or 3 days, there was a more substantial

impact on power with HMM providing as low as 38.0% of the power available from

using a MSM applied to the true data. Coverage was also worse for the HMM when

there was over-reporting of the absorbing state. In almost all scenarios Model C led

to reduced power compared to HMM, and poor coverage.

The results of the simulation study indicated that the use of a HMM will reduce

the power compared to a MSM fitted to the latent disease process (i.e. the case
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where states are observed without error), and the decision on whether to conduct

a trial using an outcome measure at risk of misclassification should be based on a

variety of factors including: the extent of misclassification, availability of accurate

measures of disease (e.g. by expert assessors), and the financial cost of using an

accurate measure of the disease compared to a less reliable method.

Whilst HMM have the potential to account for misclassified states, it is always

preferable to consider the quality of the outcome assessment at the planning stage

of the trial. If the absorbing state was only at risk of being under-reported, then the

simulation study indicated that HMM were adequate to account for this misclassifi-

cation. However, if there was any over-reporting of the absorbing state, the results

of the simulation study suggest that the HMM may lead to unreliable estimates of

the treatment effects and low power and potential identifiability issues. Therefore, it

may be appropriate to consider adjudication of the absorbing state, if it is observed,

to provide confidence that it is recorded without error, which is in line with recom-

mendations for binary and TTE endpoints [156, 157, 160, 161]. In future simulation

studies it may be useful to examine the estimated misclassification probabilities on

a logistic scale, rather than a log-logistic scale so that any skewness of estimates can

be assessed more easily.

In the context of PU prevention trials gold standard assessments should con-

tinue to be used. Despite the simulation study showing that in the PU example,

the relative power of applying a HMM to misclassified data was at least 90% of the

relative power achieved from using an MSM on the true data, the absorbing state in

PU prevention trials may be misclassified which increases the risk of bias and poor

coverage. Throughout the simulation study, there were some situations where the

HMM converged but the Hessian was not positive definite, although the majority of

models could be fitted with no problems. However, there were challenges in fitting

the models to daily data provided by ward nurses in the re-analysis of the PRES-

SURE trial (Chapter 6) which suggests that further work is required to examine

when HMM may run into model convergence issues.

Given that identifiability of HMMs is an acknowledged problem in the literature,
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it is important to assess the sensitivity of the results to different starting values for

the optimisation algorithms. If problems with convergence arise then they may be

addressed by using initial values that are informed by inter-rater reliability studies

or by constraining parameters to plausible ranges. Yi et al [171] propose alternative

inference methods for situations, which may be at risk of model misspecification or

when model estimation becomes computationally intensive due to complex models

or large samples. The methods proposed are based on pairwise likelihood function

formulation where a composite likelihood was derived from marginal log-likelihoods

[172]. They also utilise an Expectation Maximisation (EM) algorithm, which Cook

and Lawless advise is beneficial when the number of processes or assessment times

is large [140].

The models examined in the simulation study were based on the Markov as-

sumption, however as discussed in Chapter 5 this may not be valid for studies with

prolonged follow-up. If the Markov assumption is not valid, a semi-Markov model

can be used if the exact transition times are known. However, these models are not

appropriate for panel data because the length of time is unknown. Kang and La-

gakos developed methods for a semi-Markov process and misclassification for panel

data in continuous time by specifying a minimum length of time spent in each state

to limit the number of possible pathways [173].

Another limitation of the simulation study was the assumption of a common

misclassification matrix for each treatment group and in some situations it may be

important to assess the impact of differential misclassification. In the PU setting,

inter-rater reliability studies have been used to provide reassurance that misclas-

sification is independent of treatment allocation [106]. Utilising assessors who are

blind to treatment allocation would help to overcome the possibility of differential

misclassification, however in some settings blinded assessments are not possible. For

example, the interventions in both the PRESSURE and PRESSURE2 trials were

mattresses with different modes of action. To conduct a blinded assessment, the

participants would need to be moved off the mattress, which is extremely burden-

some to both the participant and ward staff. Therefore, inter-rater reliability studies
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or validation of the outcome are a pragmatic solution to check for differential mis-

classification. The findings can be used to inform both whether a HMM is required,

and if so, the initial values, possible covariates and structure of the misclassification

matrix.

One of the reasons for considering the use of less experienced staff in the as-

sessment of PU prevention trials was that they are involved in the patients’ day to

day care, which means they can record data more frequently, thereby reducing the

potential for missing data and reducing the burden on trial patients by only requir-

ing a single assessment as part of their routine care. Furthermore, if research staff

are used, they may record that a skin site has not been assessed because a bandage

or dressing is in situ, but this may be indicative of an existing PU and would be

observed by those changing the dressings. Therefore, with the recommendation that

gold standard assessors should be used in PU prevention trials, it is important to

recognise the composite nature of the state definition in the motivating example,

and how missing data may arise and consequently affect the analysis.

The definition of disease state in the PU trial case studies ignored missing data

at both the patient and skin site level. Missing data may occur at a patient level,

perhaps because of patient related reasons such as being too unwell to be assessed

or for logistical reasons such as there being no assessor available. Missing data may

also occur at a component or skin site level, perhaps because the patient cannot

be turned over, or because a dressing is in situ. Therefore skin classifications that

are not recorded may be associated with the PU stage itself. The method of state

definition defined in Section 4.4.1 ignored missing data and used all available skin

sites to obtain the patient level state; this fails to account for reasons for missing

data and the quantity of missing data. Failure to explicitly model this missing

data mechanism may result in biased estimates of the rate of PU onset and change.

Therefore the potential impact of missing data will be examined in the next chapter.



Chapter 8

Missing data

8.1 Introduction

The simulation studies in Chapters 5 and 6 both assumed that data were observed

according to some pre-specified visit schedule; in Chapter 5 data were assumed to

be accurate and complete up to the point of censoring, and in Chapter 6 data were

complete up to the point of censoring, but were subject to misclassification. There

were substantial levels of missing outcome data in the motivating datasets, which

are discussed later in Section 8.3.1, however missing outcomes were ignored in the

original application of MSM to these data in Chapter 4.

Missing outcomes are ubiquitous in medical research, and depending on the data

collection schedule may occur in different patterns. For example, in longitudinal data

missing outcomes may occur in a monotonic pattern such that if one observation

is missing for an individual then all subsequent observations for that individual are

missing. This may occur in a trial if an individual withdraws from further data

collection, or is lost to follow-up. Alternatively, data may be missing in a sporadic

pattern including intermittently missing. Longitudinal data are susceptible to both

sporadic and monotonic missing data patterns, particularly if the follow-up period

is long and the visit schedule is burdensome to patients [174].

Approaches to handling missing outcome data in medical research have evolved

over time and the choice of method should depend on the analysis model and the

missing data mechanism itself. Rubin [175] defined the missing data mechanisms

152
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described below, which have been widely adopted and are used throughout this

Chapter.

First, some additional notation to be used in this chapter is introduced. Let R

be a vector of indicator variables that takes the value 1 if the outcome is observed for

an individual and 0 otherwise. Let Yobs and Ymis denote the observed and missing

data respectively. Then the probability of observing the outcome is given by

P (R|Yobs,Ymis) (8.1)

Missing completely at random (MCAR)

Using the framework of Rubin [175], a planned measurement is defined to be “miss-

ing completely” at random (MCAR) if the reasons for the data being missing are

unrelated both to the outcome itself, and to any patient characteristics or other data

that are observed in the dataset. In the PU trial setting, data would be MCAR if

the assessment did not take place because the researcher was unwell. Formally, this

means that

P (R|Yobs,Ymis) = P (R) (8.2)

Missing at random (MAR)

Planned measurements are “missing at random” (MAR) if the probability of the

outcome being missing is dependent on other observed variable(s). An example of

this in the PU setting could be that patients who are completely immobile may be

more likely to have missing data if more than one researcher is required to turn

the patient for assessment. In this case, it could be reasonable to assume that the

missing data are a random subset of the data for all patients with a similar mobility.

Formally, this means that

P (R|Yobs,Ymis) = P (R|Yobs) (8.3)

Note that this is a conditional statement, so that if the missing data mechanism
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is MAR conditional on mobility status, resulting analyses will only be unbiased if

mobility status is adjusted for in the analysis.

Missing not at random (MNAR)

Data are “missing not at random” (MNAR) if the probability of the outcome data

being missing is dependent on unobserved data, that is if the missing outcome is

dependent on its value independently of other data, for example if the unobserved

outcomes are systematically different to the observed outcomes. In PU trials this

might occur if people with dressings that cannot be removed are more likely to have

PUs. Formally, this means that

P (R|Yobs,Ymis) = P (R|Yobs,Ymis) (8.4)

Recall from Section 4 that Grüger et al [129] defined four observation schedules

and examined whether they were informative or not in a simulation study. For RCTs

it is common for observation schemes to be fixed in advance, however any deviation

from the pre-specified schedule is only ignorable if the deviation independent of the

current disease state itself.

The method of handling missing data largely depends on the missing data mech-

anism. If we can assume assessments are MCAR, then we can continue to use

continuous time MSM for panel data as described so far in the thesis [130].

Farewell and Tom [176] described multiple methods for analysing longitudinal

data with an informative observation scheme in the context of MSM. The first

example was motivated by a study where the outcome was the occurrence of a serious

coronary heart disease event, which could be fatal or non-fatal. The fatal event is

recorded for the full cohort through the use of registry data, but incidence of non-

fatal events may be missing if the subject was lost to follow-up. The MSM structure

included a specific state for subjects who are lost to follow-up, and an unobservable

state for a non-fatal event that occurs after they have been lost to follow-up. In

order for the model to be fitted, the authors made assumptions about the transition

rates from the unobservable state that were consistent with the observable states.
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These were that the risk of the fatal event was the same for patients who remain in

follow up, and those who were lost to follow up after a non-fatal event (i.e. MAR).

A further assumption was that the hazard ratio for a fatal event relative to a non

fatal event for patients who were lost to follow up was proportional to the hazard

ratio for patients who were not lost to follow-up. This particular approach would be

worth considering for settings where the entry to the fatal state is always observed.

The second example described by Farewell and Tom [176] is for analysis of PsA

clinic data where subjects were assessed as part of their disease monitoring protocol

every 6 months but the health assessment questionnaire (HAQ), which quantifies

physical functional disability was collected annually. The analysis assessed the rela-

tionship between the outcome, physical functional disability, and other independent

variables including rapidly changeable time-dependent variables such as the number

of permanently damaged joints at the 6 monthly assessments. One approach could

have been to analyse the HAQ as assessed annually, however this would ignore the

changing values of the time-dependent variables in between assessments. Similarly,

analysing the data at 6 monthly intervals led to a missing data problem for the

annual HAQ score. A MSM for the outcome and the time-dependent variable was

proposed, which increased the number of states from 3 to 9, where each state repre-

sented the combination of the last known state based on the HAQ and the level of

disease activity. A detailed explanation of this approach is provided in [141], how-

ever, this example is only relevant to studies that have different assessment schedules

for outcome and time-dependent covariates.

The third example described by Farewell and Tom [176] introduced the idea of

a HMM structure to allow fitting of an MSM with missing or partially observed

states. This example was in the PsA disease setting again, but modelled the disease

activity to identify variables associated with remission. Within a three transient

state MSM, the authors used a HMM to account for partial data on the joints

in each hand in the state definition. That is, the observed states were based on

available data only and were at risk of misclassification if data were incomplete

for some of the joints on the hand. The use of a HMM enabled the authors to
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jointly model the MSM and diagnostic uncertainty caused by missing component

data of a composite outcome. The authors also compared the estimates to different

definitions of remission concluding that a variety of models could be used to assess

the sensitivity of results to missing data.

The final example in Farewell and Tom [176] extended the PsA example to

a multi-level analysis where the states of 14 joint locations were modelled, with

patient-specific random effects to account for the clustering of joints within patients.

In this example, explicitly analysing the states of the individual joint locations avoids

the need to consider how partial data in a composite outcome are handled. However,

the coding of the maximum likelihood estimation algorithm is more complex and

readily available software packages do not accommodate both random effects and

data that are interval censored.

Efthimiou et al [134] used an MSM for missing data in a trial where data were

collected longitudinally and the patients could be in one of two states (non-response

or response). The analysis dataset had no missing intermittent values but there

were monotonic missing data once a patient was lost to follow-up. Because interest

centred on inferences about treatment effects for patients who were lost to follow up,

two additional states were added to the original two state model, “unobserved non-

response” and “unobserved response”. A variety of models with different permitted

transitions were explored to assess sensitivity of the treatment effect estimates under

different missingness mechanism assumptions including MCAR, MAR, MNAR, and

using single imputation strategies such as Last Observation Carried Forward, and,

all missing data were non-responders. The models were fitted within a Bayesian

framework but the authors advised that a frequentist approach is possible, through

the msm package in R for example.

Farewell, Su and Jackson [177] used a partially hidden Markov MSM to analyse

psoriatic arthritis (PsA) data, where the disease state, minimal disease activity,

is determined based on 7 components. At some assessments there were missing

components so that the overall state was unknown. The authors assumed that these

missing components were MAR because the reasons were most likely to be logistical
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due to the specific visit schedule for this disease. The likelihood was taken over all

possible state pathways between observed components. If the data were assumed

MNAR then the authors proposed inclusion of a missing data indicator for each

component of the outcome, however this could lead to a complicated model as the

number of states and components increase.

Heckman [178,179] introduced a selection model as a method for handling selec-

tion bias in the data collection and subsequent analysis. The selection model jointly

models the probability of observing the outcome and the outcome conditional on a

set of independent variables. Cole et al [180] later extended this by developing a

selection model for discrete time MSM with an application to a breast cancer trial.

In this model, the disease states represented levels of a categorised quality of life

scale, but patients with better quality of life may be more likely to provide a quality

of life assessment and therefore any missing observations could be indicative of lower

quality of life. The selection model by Cole et al explicitly modelled the MSM and

the probability of the observation being missing conditional on the latent disease

state. In 2010, van den Hout and Matthews [181] also proposed a selection model

to jointly model the disease process and the probability of observing each state,

to handle non-ignorable missing values when estimating stroke free and total life

expectancy. The method proposed by van den Hout and Matthews extends Cole et

al to continuous time models. These are relevant to this thesis and will be outlined

in more detail in the next section.

Joint models of the disease process and the observation scheme have been

widely used in the MSM setting. Chen, Yi and Cook [182, 183] published work

in this area for both discrete and continuous time processes using an EM algo-

rithm to fit their models. The authors noted that identifiability is a concern

but discussed conditions for when model parameters are identifiable for both dis-

crete and continuous time processes. Their discussion is shown for an observa-

tion scheme where data were missing in between observations of the same state.

For example, they demonstrated the general case when the true complete data for

individual i were y = (y1, ...yj−2, y, y, y, yj+2, ..., yW ) but the observed data were
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y∗ = (y1, ...yj−2, y,m, y, yj+2, ..., yW ) where m denotes a missing observation. The

authors used the fact that under a progression model, m can only take the value y

to demonstrate that the parameters of the missing data model were identifiable.

The methods used by van den Hout and Matthews [181] and Chen [182, 183]

where the probability of observing the data were modelled is relevant to settings

where patients are scheduled to attend at regular assessments such as in a clinical

trial. In other settings it might be relevant to model the observation times themselves

[183]. For example, Lange et al developed a method to jointly model informative

observation times and misclassified data [184]. The method can be implemented

in R through the cthmm package but there are acknowledged limitations including

potential for identifiability problems and possibility of model misspecification. A

further example of this type of model was published by Gasparini et al [185] who

jointly modelled the longitudinal process and observation process of a routine data

source. In this example the authors expected the observation times to be correlated

with the underlying disease severity such that patients with more severe disease

would have more assessments. The model for the observation scheme analysed the

time to each observation rather than the probability of whether an assessment took

place. This is particularly useful for observational data rather than a trial where the

assessment times are pre-specified and are expected to be the same for all patients.

The PU case studies described throughout this thesis were subject to missing

data both at a patient level and a skin site level, and the missing data mechanism

may be informative. For example, a skin site assessment may be incomplete because

a bandage or dressing was in situ, but this may be indicative of an existing PU. The

definition of patient level state first described in Chapter 4 assumed missing data

were ignorable but it is important to reconsider the state definition in including how

missing data may arise and consequently affect the analysis. Based on the discussion

of incomplete observation schemes in the MSM literature, a selection model will be

explored to jointly model the MSM and the missing data mechanism in line with

van den Hout and Matthews [181]. Misclassification of the state based on partial

data will also be considered using a HMM in line with Farewell and Tom [176].
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8.2 Aim

The aim of this chapter is to assess the sensitivity of analysis results to different

definitions of the missing data mechanism in the PRESSURE2 trial.

8.2.1 Objectives

• Examine reasons for missing data in PRESSURE2.

• Propose candidate definitions for the missing data mechanism in PRESSURE2.

• Demonstrate how a HMM can be equivalent to a selection model.

• Analyse PRESSURE2 using HMM to jointly model the disease process and

the missing data mechanism.

8.3 Methods

8.3.1 Missing data in PRESSURE2

In order to determine which methods are most appropriate, the reasons for missing

data in PRESSURE2 were explored. Recall that in the PRESSURE2 trial, the

assessment schedule consisted of twice weekly assessments for the first 30 days and

once weekly thereafter until the participant completed the treatment phase. At each

assessment 14 pre-specified skin sites should have been assessed by the research nurse

and the skin state recorded. So far, missing assessments at either the patient level

or skin site level have been ignored. The remainder of this chapter investigates the

reasons for missing data in PRESSURE2 to inform criteria for non-ignorable missing

measurements, and the sensitivity of analysis models under these criteria.

Missing data at both the skin site level and patient level were anticipated at

the start of the PRESSURE2 trial, which led to the reasons for missing data at

each level being collected. In preparation, a number of reasons for missing data

were pre-specified on the data collection forms, in addition to allowing free text

fields. The first step in establishing the most realistic missing data mechanism was
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Table 8.1: Possible reasons for not recording PU category

Probable
association with
the latent PU
state

Reasons

Very likely to be
associated with
adverse PU state

Dressing in situ, Incontinence Associated Dermatitis or
moisture lesions, device-related ulcer, blisters, scuffs,
excoriated

Possibly associated
with adverse PU state

Bandage in situ, unable to assess due to medical device
in situ, unable to assess because participant is unwell,
unable to move participant, infection control measures,
staff safety concerns

Very unlikely to be
associated with
adverse PU state

Cast in situ, other chronic wound, surgical wound or
bruising, traumatic wound or bruising, dermatological
skin condition, participant has been discharged

Unknown association Unable to assess, unable to assess because the
participant refused, missed by research nurse,
participant unavailable, participant transferred to
another inpatient facility, participant withdrawn from
trial, participant died, family member unavailable or
refused, Not appropriate to assess, lack of staff
capacity, hospital transfer, other reason, reason
unknown

to ascertain whether the reasons for missing data could be associated with the latent

PU state itself. Using subject-specific expertise, my supervisor Professor Jane Nixon

categorised each potential reason according to the probable association with the true

disease state based on clinical knowledge, blind to treatment allocation (Table 8.1).

Following these categorisations, the frequency of reasons for missing skin site

level assessments were presented by skin site in Figure 8.1. Whilst there was a large

quantity of unrecorded reasons for missing, this plot shows patterns for different

skin sites. In particular, compared to other skin sites, the sacrum and buttocks

were most likely to be missing for reasons thought to be very likely associated with

the latent PU state. The heels and ankles also have similar patterns to each other,

with reasons for missing data thought to be at least possibly associated with the

latent PU state.



161

Figure 8.1: Frequency of likely association of reasons for missing PU state data with
true PU state at skin site level

The specific reasons, where available, are summarised in Figure 8.2. From this

plot, the most common reason for the PU state not being recorded on the sacrum

and buttocks was incontinence associated dermatitis (IAD). The reasons for missing

data at the heels and ankles were either a bandage or cast being in situ. It is likely

that if the heel has a bandage or cast in situ then the ankle on the same side will also

have a bandage or cast in situ. In the original examination of association between

missing data reason and the underlying PU state it was thought that a dressing in

situ would be highly likely to be related to the underlying state. However, the skin

sites most frequently reported to have a dressing were the hips were also reported

to have surgical wound/bruising suggesting that dressings at these skin sites may

in fact have been for a surgical wound, which is very unlikely to be associated with

the latent PU state.

The total number of observed PU skin assessments for each skin site are sum-

marised in Figure 8.3. Here, similar patterns are identified; the sacrum, buttocks,

heels, ankles and elbows are all less likely than the back, ischial tuberosities and

hips to have a healthy PU state recorded. The sacrum, buttocks and heels have

the greatest frequencies of a Category 1 PU and Category 2 PU recorded (also see

Figure 8.4) compared to the other pre-specified skin sites .

Recall that the analysis of patient level binary and TTE event outcomes in Chap-
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Figure 8.2: Frequency of detailed reasons for missing PU state data at skin site level

Figure 8.3: Frequency of observed states at skin site level in the PRESSURE2 trial
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Figure 8.4: Frequency of Severe disease (Category 2+ PU) states at skin site level
in the PRESSURE2 trial

ter 3 concluded that it was appropriate to analyse aggregate patient data rather than

skin site level data because approximately 90% of the variability in outcomes was at

the patient level. However, the patterns observed in the reasons for missing data and

the non-missing skin assessments have identified 5 key skin sites/components (out

of 14), which if missing, are likely to be non-ignorable. Therefore, it is appropriate

to consider a selection model of the joint probability of the MSM and the missing

data. In the presence of partial data, these findings also inform the criteria for the

definition of patient-level missing data.

8.3.2 Defining missing data

Before using a selection model to analyse the PRESSURE2 data, the disease states

need to be defined in the presence of missing data. The patient level state definition

was described in Chapter 4. Recall that the state for participant i at time tiw,

denoted by Y (tiw) is defined by taking the most severe state of observed skin sites.

The original approach to defining Y (tiw) was to ignore missing data and define the

state based on available data. That is,

Y (tiw) =


missing, if diw = 0

maxk (Xk(tiw)), otherwise

(8.5a)
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where Xk(tiw) denotes the classification of skin site k and diw denotes the num-

ber of components that are observed at time tiw for participant i, diw ≤ K = 14.

However, this approach assumes that missing skin sites are healthy. In the PRES-

SURE2 data it is clear that missing data may be associated with an adverse PU

classification. One alternative option may be to take a zero tolerance approach to

missing data whereby if any components are missing at time tiw for participant i,

then Y (tiw) is considered missing. Formally, this is given by

Y (tiw) =


missing, if diw 6= K

maxk (Xk(tiw)), otherwise

(8.5b)

Whilst this approach does not ignore missing data, it is inefficient in that it will

exclude relevant information. For example, if there was a small number of missing

components, which do not usually contribute to the overall state, and for which the

reason for missing assessment is unlikely to be associated with the true state, then

it may be acceptable to ignore these sites when calculating the composite outcome.

One option could be to pre-specify a subset of K∗ ’key’ components, and let d∗iw

denote the number of ’key’ components that are observed for patient i at time tiw,

where d∗iw ≤ K∗. The definition of Y (tiw) can then be given by

Y (tiw) =


missing, if d∗iw 6= K∗

maxk (Xk(tiw)), otherwise

(8.5c)

The remainder of this chapter will explore the sensitivity of analyses to the three

ways of defining the composite disease state defined by 8.5a, 8.5b and 8.5c and will

be referred to as Definition A, Definition B and Definition C herein.

8.3.3 Selection model

This section describes the approach taken by van den Hout and Matthews [181]

for jointly modelling the continuous time disease process and the probability of

observing each state.
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Let Y denote the disease process where at time t, t ≥ 0, individual i is in state

Yt ∈ S = {1, 2, ..D} (note that the index for patient i is suppressed hereafter). The

process allows progression only so that participants cannot recover from transient

states. Additionally, there is an indicator variable, Rt, which takes the value 1 if

the state is observed at time t and 0 otherwise. The conditional probability that

Yt = y is observed is defined as py(t) = P (Rt = 1|Yt = y,x(t)) and x(t) is a vector

of (possibly time-varying) covariates. It is assumed that these probabilities can be

modelled using logistic regression, so that the model for the bivariate distribution

of Ytw and Rtw for an observed time interval (tw−1, tw], w ≥ 2 is given by

P{Ytw = y,Rtw = ν|Ytw−1 ,x(tw−1)} = P{Ytw = y|Ytw−1 ,x(tw−1)}py(tw)ν{1− py(tw)}1−ν

(8.6)

where ν = 1 if the state is observed, and ν = 0 if the state is missing. That is, the

joint probability of the outcome and the missing status indicator, conditional on the

previous outcome and covariates, is the product of the conditional probability of the

outcome, and the probability of the missing status. Note that, if the absorbing state

is always observed if it is entered, then if Yt = D it follows that py(t) = 1 ∀ t. In

line with the assumption made in Chapter 6 that the true state is known at baseline

to ensure eligibility for the clinical trial, it is assumed that R0 = 1.

The model parameters denoted by the vector θ, are estimated by maximising the

likelihood function. For an individual, i with W assessment times t = (t1, ..., tW ),

complete (but possibly partially observed) data yc = (y1, ..., yW ), and observation

indicators r = (ν1, ..., νW ), the contribution to the likelihood function is given by

Lci(θ|yc, r,x) = P (Yt1 = y1, Yt2 = y2, ..., YtW = yW , Rt1 = ν1, Rt2 = ν2, ..., RtW = νW )

(8.7)

where superscript c is used to denote ’complete’. Under the Markov assumption

that transitions depend on current disease stage and not the disease history of the

patient and time homogeneity, we have

Lci(θ|yc, r,x) = P (Yt1 = y1, Rt1 = ν1)
W∏
w=2

P (Ytw = yw, Rtw = νw|Ytw−1 = yw−1)

(8.8)
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If the observed state at time tw, w ∈ {2, ...,W} is equal to 1, ..., D − 1, then using

8.6

Lciw = P (Yw = yw, Rw = νw|Yw−1 = yw−1)

= P (Yw = yw|Yw−1 = yw−1)pyw(tw)νw{1− pyw(tw)}1−νw
(8.9)

Under the assumption that, if it occurs, the absorbing state is always observed and

the exact time is known, then if it is observed at time tw the contribution to the

individual’s likelihood function is given by

Lciw =
D−1∑
s=1

P (Yw = s | Yw−1 = yw−1,θ,x)qsD(tW−1 | θ,x) (8.10)

and if they are right censored at time tw then we assumed the individual is alive

but with an unknown state such that

Lciw =
∑
s∈C

P (Yw = s | Yw−1 = yw−1,θ,x) (8.11)

where C denotes the set of possible states at the time of censoring tw [102,130].

Therefore, for individual i with assessment times t = (t1, ..., tW ), complete

data yc = (y1, ..., yW ), and observation indicators r = (ν1, ..., νW ), the contribution

to the likelihood function is given by

Lci(θ|y, r,x) = P (Y1 = y1)
W∏
w=2

Lciw (8.12)

If there are missing measurements, the likelihood function contribution for individual

i is derived by summing over all possible missing states

Li(θ|y, r,x) = P (Y1 = y1)
∑

yc∈Ω(y)

Lci(y
c) (8.13)

where Ω(y) is the set with all possible paths of latent states.
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8.3.4 Hidden Markov model

In order to explore estimation of the selection model described in Section 8.3.3, I

simulated a dataset with a similar structure to that used in the original article of

van den Hout and Matthews [181]. This was a 3 state illness-death model with a

maximum of 9 daily assessments. Dr Ardo van den Hout kindly provided the R

code used to implement the proposed method and I updated it to suit my simulated

dataset. However, implementation of the ’manual’ code led to longer computational

time compared to other programs used throughout this thesis where an R pack-

age (msm) has been available. Furthermore, the available code relies on the user

manually updating the code throughout to align with their dataset. This could be-

come quite burdensome as the number of states and number of missing assessments

increase. As an alternative, I demonstrate here how the selection model can be

re-formulated as a HMM as in Chapter 6 and implemented using the msm package

in R.

For analysis of data with missing state outcomes, assume that the latent process

Y has a state space S = {1, 2, ..D}, and that the observed process, Y ∗ has a state

space S∗ = {1, 2, ..., D,m}, where m is used to denote a missing state. Recall from

Chapter 6 that the probability of misclassification at time t is defined as

ers = P (Y ∗t = s|Yt = r). (8.14)

where r 6= s. Now assume that misclassification of a state only occurs through

missing data. That is, err = 1 − erm where erm = P (Y ∗t = m|Yt = r) is the

probability that the assessment is not completed conditional on the latent state

Yt = r. It follows from Section 8.3.3 that

erm = P (Y ∗t = m|Yt = r)

= P (R(t) = 0|Yt = r)

= 1− pr(t)

(8.15)

where R(t) is the indicator of whether the state was observed at time t and pr(t)
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is the probability that the state was observed (not missing) at time t conditional

on Yt = r. Recall that in a HMM the misclassification probabilities are jointly

modelled with the MSM process, and the misclassification probabilities are most

commonly estimated using a logit link function. This is analogous to the approach

taken in the selection model, which jointly models the MSM and the probability of

observing the data.

Under the HMM, suppose individual i has W assessment times t = (t1, ..., tW )

and ’observed’ states y∗ = (y∗1, ..., y
∗
W ), then the contribution of individual i to the

likelihood function for the HMM is given by

Li(θ|y∗,x) = p(Y ∗1 = y∗1, ...Y
∗
w = y∗W )

=
∑

y∈Ω(y)

p(Y ∗1 = y∗1, ..., Y
∗
w = y∗W |Y1 = y1, ..., YW = yW )p(Y1 = y1, ..., YW = yW )

(8.16)

Where Ω(y) is the set of all possible paths of the latent states. It is assumed that the

misclassification, or missingness in this case, at time tw is independent of both the

misclassification (missingness) and the latent states at other times. This assumption

allows the following

P (Y ∗
w = y∗w, Y

∗
w+1 = y∗w+1|Yw = yw, Yw+1 = yw+1) = P (Y ∗

w = y∗w|Yw = yw)P (Y ∗
w+1 = y∗w+1|Yw+1 = yw+1)

(8.17)

Assuming the Markov property, the individual likelihood function can therefore be

written as

Li(θ|y∗,x) =
∑

y∈Ω(y)

p(Y ∗1 |Y1)...p(Y ∗W |YW )p(Y1)p(Y2|Y1)...p(YW |YW−1) (8.18)

where P (Y ∗t |Yt) is the probability that the state is ’misclassified’ as missing and

P (Yt|Yt−1) is the transition probability of the latent process. Under the assumption

that the first state is never missing, that is

P (Y ∗1 = y∗1|Y1 = y1) =


1, if y∗1 = y1, y

∗
1 6= m

0, otherwise

(8.19)
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the likelihood function can be written as

Li(θ|y∗,x) = p(Y1 = y1)
∑

y∈Ω(y)

p(Y2|Y1)p(Y ∗2 |Y2)...p(YW |YW−1)p(Y ∗W |YW ) (8.20)

Note that at time tW ,W ∈ {2, ..., w},

Liw = P (Yw|Yw−1)P (Y ∗w |Yw)

= P (Yw|Yw−1)eνywywe
(1−ν)
ywy∗w

= P (Yw|Yw−1)py(tw)ν(1− py(tw))(1−ν)

(8.21)

where ν is the indicator, which takes the value 1 if the state has been observed, and

0 if the state is missing. Therefore, the likelihood function in the HMM framework

is equivalent to the likelihood function for the selection model described in Section

8.3.3, as given in 8.13 and 8.22

Li(θ|y∗,x) = p(Y1 = y1)
∑

y∈Ω(y)

Liw. (8.22)

Therefore, a selection model could be specified in a HMM framework and esti-

mated using the msm package in R.

8.3.5 Analysis method for PRESSURE2

HMM are used throughout this section to jointly model the MSM and probability

of missing data. In order to assess the sensitivity of the analyses to the missing data

definitions, the misclassification matrix for the model will be specified in line with

8.23 where erm is defined in Section 8.3.4.
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E =



1− e1m 0 0 0 e1m

0 1− e2m 0 0 e2m

0 0 1− e3m 0 e3m

0 0 0 1− e4m e4m


(8.23)

For definitions A and C where partial data may be used to define Y (tiw), the

state may be misclassified. For example, suppose the maximum of the available

components lead to state 2 being ’observed’, but that one of the unobserved com-

ponents is classified as state 3, then the overall state has been misclassified. Only

under-reporting is possible in these cases because the state is defined by taking the

maximum from a set of components. An alternative misclassification matrix for the

selection model is therefore specified in line with 8.24 whereby the model accounts

for potential under-reporting of states based on the available data and is a similar

approach taken by Farewell and Tom [176] in their analysis of PsA data using partial

information on the number of active joints. Note that misclassification is assumed

to be not possible under definition B where the overall state is only derived if the

component data are complete.

Epartial =



1− e1m 0 0 0 e1m

e21 1−
∑

s∈{1,m}e2s 0 0 e2m

e31 e32 1−
∑

s∈{1,2,m}e3s 0 e3m

e41 e42 e43 1−
∑

s∈{1,2,3,m}e4s e4m


(8.24)

A summary of the definitions and associated misclassification mechanisms used in

the selection model have been summarised in Table 8.2. The model IDs correspond

to the definitions of the state, with A1, B and C1 corresponding to the models
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Table 8.2: Missing data definitions and corresponding misclassification matrices to
be investigated

Definition of Y (tiw) Misclassification
matrix

Model
ID

State derived using all available data, missing if no components available

Y (tiw) =

{
missing, if djl = 0

maxk (Xk(tiw)), otherwise

E A1

EPartial A2

State derived if no components are missing

Y (tiw) =

{
missing, if djl 6= K

maxk (Xk(tiw)), otherwise
E B

State derived using all available data, missing if any key components are missing

Y (tiw) =

{
missing, if d∗jl 6= K∗

maxk (Xk(tiw)), otherwise

E C1

EPartial C2

where misclassification is assumed to occur only when missing states are recorded.

Models A2 and C2 are the models for definition A and C when under-reporting of

states can also occur because the states are defined using partial component data.

Note also that no covariate has been included in the models for the misclassification

probabilities, although this is a straightforward extension of the model.

8.4 Results

In the PU example, the components considered mandatory for definition of the

overall state are based on the data exploration described in Section 8.3.1 and clin-

ical opinion. Therefore there will be 5 ‘key’ components, or skin sites, namely the

sacrum, buttocks (×2), and heels (×2). Applying the 3 proposed definitions yields

different levels of missing data, demonstrated in Table 8.3. Definition A, which

ignores missing component data and derives the state based on all available data

has the smallest number of missing observations, with 951 (11.2%) occasions where

a visit was made, but no skin site data were available. Definitions B and C have

similar levels of missing data to each other, with Definition B being the most strin-
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gent leading to 2, 764 (32.5%) missing observations, and Definition C resulting in

2, 158 (25.4%) observations. There were 2, 764 occasions when there was at least

1 component missing and of these, the majority (78.1%) included at least 1 key

component.

The estimated transition hazard ratios with corresponding 95% confidence inter-

vals for the effect of treatment are consistent across all definitions for all transitions

as shown in Figure 8.5. The confidence intervals all include 1 for the transition

from 1 → 2. For the transition from 2 → 3, whilst the point estimates and confi-

dence intervals for the hazard ratio are similar, under Definition A and Definition

C (Model C2) the confidence intervals include 1, whereas the confidence intervals

for the hazard ratio under Definition B and Definition C (Model C1) lie to the left

of 1 indicating that the alternating pressure mattress confers a significant reduction

in the transition to a Category 1 PU under these definitions and models. All of

the definitions led to similar results for the transition from state 3 to state 4 with

similar point estimates of the hazard ratio and all of the confidence intervals lie to

the left of 1. Under a progression only MSM with no misclassification the likelihood

function for the selection model is equivalent to the likelihood function for the MSM

if the observed states before and after the missing states are the same because the

missing state is known (i.e. there is only one possible pathway). Inspection of these

’start’ and ’end’ states for the sets of possible pathways in the selection model are

shown in Table 8.4, for example, there were 36 cases of missing data sandwiched

between two State 1 observations and 11 between State 1 and State 2. Overall a

large number of missing observations were between the same ’start’ and ’end’ states

for all definitions of the missing data mechanism; specifically under definition A,

643 (67.6%) missing observations lie between the same states, compared with 1, 151

(41.6%) under definition B and 1, 033 (47.9%) under definition C. This means that

there is more information contributing to the likelihood than originally anticipated,

and may explain why there is little difference in the width of the estimated confidence

intervals. There was a large number of missing observations for which the ’end’ state

is unknown and will be discussed later in relation to the impact on identifiability.
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Table 8.3: Missing data definitions and corresponding misclassification matrices to
be investigated

Missing
data
definition

From
state ↓

To state →

Definition A

1 2 3 4 Missing

1 561 130 10 5 54

2 0 4, 987 133 66 519

3 0 0 1, 099 38 128

4 0 0 0 0 0

Missing 34 380 105 18 250

Definition B

1 2 3 4 Missing

1 475 94 8 5 112

2 0 3, 417 82 49 1, 000

3 0 0 761 29 203

4 0 0 0 0 0

Missing 44 569 154 44 1, 449

Definition C

1 2 3 4 Missing

1 491 106 9 5 95

2 0 3, 941 98 54 855

3 0 0 844 33 192

4 0 0 0 0 0

Missing 42 533 146 35 1, 016
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Figure 8.5: Forest plot of estimated treatment effects

Table 8.4: Number of missing observations between observed states

Missing
data
definition

Start
state ↓

End state →

Definition A

1 2 3 4 Missing

1 36 11 1 2 12

2 0 491 24 23 171

3 0 0 116 5 59

Definition B

1 2 3 4 Missing

1 38 55 7 9 134

2 0 927 84 76 1, 080

3 0 0 186 12 156

Definition C

1 2 3 4 Missing

1 45 37 3 9 94

2 0 824 69 55 719

3 0 0 164 8 131
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The estimated misclassification probabilities with 95% confidence intervals are

presented in Figure 8.6. From this plot it is clear that there are some spurious

results, particularly when the latent state is State 4. This could arise due to the

small amount of data available for the final state. Appendix E includes an extended

plot of the probabilities of misclassifying a state based on partial data, i.e. e12, e13,

e23. These results indicated that the probability of misclassifying a state based on

partial data is likely to be very small (Models A2 and C2). A pragmatic decision

could therefore be that these misclassification probabilities do not need to be ex-

plicitly modelled. Figure 8.6 provides a closer look at the estimated probability of

missing measurements, conditional on the latent state for Model A1, Model B, and

Model C1. For model A1 where missing skin sites are ignored, the probabilities of

missing data given the true state are generally small, with less than 10% probability

of the transient states being missing conditional on the true state. These results are

expected given that Definition A leads to lower levels of missing data in the dataset.

In comparison, models B and C1 led to higher estimated probabilities of missing

data. In particular, for each definition, the estimated probability of the state being

missing, given that the latent state is Healthy, is approximately 15%, whereas the

probability of missing data increases to between 20% and 30% when the latent state

is 2 (Altered) or 3 (Category 1) with Definition B leading to a higher probability.

The estimated probability of missing data conditional on the latent state being ab-

sorbing is 40% for Model A and 80% for models B and C1. Table 8.4 shows the

number of missing observations between observed states. Under definition A there

were 242 missing observations for which the ’end’ state was unknown, 1, 370 such

observations under definition B and 944 under definition C. These missing obser-

vations could have occurred because there were repeatedly incomplete observations

due to say, the patient being too unwell, before they reached the end of their treat-

ment phase. If the absorbing state was always known to be observed, for example

if the absorbing state was death, then this state would never be missing, however

in the PU setting the absorbing state may be missed. In future research, as with

the conclusions from Chapter 6, an assessment of patient PU status at the end of
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Figure 8.6: Forest plot of estimated misclassification probabilities excluding Models
A2 and C2

their trial participation would be needed to confirm whether the absorbing state was

entered and therefore reduce the risk of non-identifiability.

8.5 Discussion

The available methodology for dealing with missing data in the context of MSM

was summarised in this chapter. I have shown how a selection model could be

constructed using HMM applied to the PRESSURE2 dataset and assessed the sen-

sitivity of analyses to different data mechanisms. The dataset included detailed

reasons for missing data, which led to a conclusion that the mechanism was MNAR.

The patterns of missing data and outcomes at the skinsite component level led to

three potential definitions to determine when the overall state was missing in the

dataset. These definitions were based on the available component, or skin site,

level data considering both the quantity and any specific ’key’ components that

were missing. Definition A assumed that the missing data were ignorable, i.e. that

the missing components were no worse in severity than those observed. Definition
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B assumed that any missing data were non-ignorable, and definition C assumed

that only missing ’key’ components were non-ignorable. A HMM was then used

to jointly model the MSM and the probability of data being missing under the 3

proposed definitions. These analyses demonstrated that the results in PRESSURE2

first presented in Chapter 4 were not sensitive to the missing data model used. How-

ever, this result may not be generalisable to other datasets, so careful consideration

of the definition should be given during the trial design. In some situations, such

as when the state definitions represent a composite outcome from a range of quality

of life markers, collecting the reasons for missing data would be challenging. In

these instances, a range of possible scenarios should be discussed with clinicians and

patient representatives to establish likely missing data mechanism.

One of the challenges in the analyses applied to this dataset was the identifia-

bility of misclassification probabilities associated with the absorbing state. In the

example discussed by Van den Hout and Matthews [181] the absorbing state was

always observed if it occurred whereas in the PU example, the absorbing state may

not be observed even if it occurs. This causes a major issue for convergence of the

maximum likelihood optimisation algorithm, and may well be apparent in other ap-

plications where the absorbing state can be misclassified. A solution in future trials

would be to include an exit assessment conducted by an expert to confirm whether

the absorbing state has been entered. A further issue of model fit occurred when the

model included misclassification of states when defined using partial data. Specifi-

cally, wide confidence intervals were estimated for the misclassification probabilities

associated with the absorbing state, which could be due to a small amount of data

available to estimate these parameters. In the PU setting, the results suggested that

states defined using partial data were at low risk of being misclassified and therefore

it could be ignored, however in another setting sensitivity to this should be assessed.

Although the analysis presented in Chapter 4 indicated that analysing the PU

datasets at the skin site level did not improve model fit, in some disease settings

it might be appropriate to account for correlated disease processes in the analysis.

Zhang et al [186] extended the selection model used in this chapter and published
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by Van den Hout [181] to jointly model interval censored data with within-unit

clustering and MNAR data using a Monte Carlo EM algorithm. They applied the

method to a clinical trial dataset and also conducted a simulation study, which

concluded that the proposed methods have good operating characteristics, and that

inappropriate models can lead to biased treatment effect estimates. For correlated

data within an MSM this method could be used to address missing data problems.

This chapter has focused on analysing data with missing outcomes, but we have

not attempted to accommodate missing covariates since they are rarely a major

problem for RCTs. However, time-varying covariates may be important and are

more likely to be subject to missingness. This topic has been discussed in the

context of MSM by Lou et al [187] who proposed using an EM algorithm for an MSM

with missing dichotomous covariates. Other studies have used multiple imputation

of missing data. For example, Eleuteri et al [188] used an MSM (specifically a

competing risks model) to analyse data on patients treated for uveal melanoma; in

this analysis there were missing covariates including continuous variables. Multiple

imputation using the Alternating Conditional Expectations algorithm, coupled with

an approximate Bayesian bootstrap was used to accommodate missing data during

estimation of model parameters [188].

The focus of this chapter was to summarise available methodology for dealing

with missing data in the MSM context and to analyse the PRESSURE2 dataset

in detail with respect to missing composite outcomes. Future work could include

a simulation study investigating this the impact of ignoring missing data on the

power of a trial designed to by analysed by a MSM, including different missing data

patterns, as well as the impact of both misclassification and missing data.
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Discussion

9.1 Summary of key findings

Current methods of design and analysis

This thesis included a review of the literature surrounding the motivating problem

of PU prevention trials. The findings were that longitudinal discrete outcome data

are commonly aggregated to a binary or TTE outcome, which is an inefficient use

of the data provided by participants. In Chapter 3 I applied logistic regression and

Cox PH regression to 2 published trial datasets that were used to illustrate methods

throughout the thesis and motivate methodological choices for simulation studies.

These analyses were conducted at the patient level and skin site level and demon-

strated that over 90% of the total variance was due to between patient variability.

Therefore, the analyses throughout the remaining chapters were conducted at the

patient level. In the PRESSURE case study, the effect of the intervention was not

shown to be statistically significant for the binary or time to event analyses. In the

PRESSURE2 case study, both the binary and TTE analyses concluded a statisti-

cally significant treatment effect suggesting that the intervention provided a benefit

to patients in terms of the onset of Category 2+ PU. For both case studies, inspec-

tion of the KM-plots suggested that the proportional hazards assumption was not

valid.

179
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MSM analysis of PU data

Recognising the limitations of aggregation of longitudinal measurements to a single

outcome measure, in Chapter 4 I introduced MSM and applied a 4 state progression

MSM to the 2 case study datasets demonstrating that they provide a deeper insight

into the natural history of the disease and the disease stage at which treatments may

have a greater benefit. For example, for the PRESSURE2 trial, the treatment effect

was not statistically significant for the early transitions (1 → 2 and 2 → 3), but

a treatment benefit was observed on the final transition, 3 → 4. This finding was

consistent with the Kaplan-Meier estimates from Chapter 3 that suggested a delayed

treatment effect. For both datasets the fit of the estimated 4 state progression

model was shown to be adequate upon inspection of the observed and model-fitted

prevalence plots.

Impact on power and sample size for disease prevention trials designed

using MSM

I defined a hypothesis test for multiple effect estimates in the MSM setting in Chap-

ter 5 and conducted a simulation study to assess the impact on power and sample

size of analysing longitudinal assessments of outcomes using MSM compared to lo-

gistic and Cox PH regression models of aggregated outcomes. In some scenarios

there was increased power, or reduced sample size, but the baseline transition inten-

sities and treatment effects were influential in these conclusions. That is, greatest

improvements in efficiency were observed when early changes could be observed due

to frequent assessments, high early transition rates or larger effects on early tran-

sitions. Where the design featured a short follow-up period, long intervals between

assessments, slow transition through early states relative to later states or low treat-

ment effect on early states relative to the treatment effect on later states, there was

little to be be gained from MSM in trial efficiency.
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Impact of misclassified outcomes on power, bias and coverage

Because PU categories can be misclassified, in Chapter 6 I introduced HMM and

applied them to ward nurse assessments provided in the PRESSURE dataset. From

a range of starting values, the models were found to converge but the Hessian was

not positive definite. A MSM was applied to the observed ward nurse data where

the most severe observation was carried forward, and the analysis was shown to

be sensitive to the misclassification with an attenuated treatment effect on the fi-

nal transition. To further explore the impact of misclassification on power, bias

and coverage, in Chapter 7 I designed and implemented a wide-ranging simula-

tion study. Inter-rater reliability studies conducted alongside PRESSURE and the

PURAF diagnostic accuracy study were used to inform various scenarios for the

likely misclassification patterns. The results showed that HMM could lead to unbi-

ased results with little loss of power for plausible trial scenarios, for example, when

assessments were conducted daily the power achieved by a HMM applied to misclas-

sified data was at least 90% of that achieved by a MSM on the latent data. Ignoring

misclassification or model misspecification in the analysis was shown to lead to bi-

ased results and poor coverage. When misclassification of the absorbing state was

possible there were issues with bias and poor coverage which was supported by the

reanalysis of the PRESSURE dataset. Therefore, for PU prevention trials, the gold

standard assessment should continue to be used until a more robust modelling strat-

egy has been developed to deal with situations with misclassified absorbing states.

If misclassified assessments are unavoidable in PU trials then the assessments should

be conducted daily for up to 60 days to minimise the risk of bias and to maximise

power.

Missing data in PU trials

Missing assessments are common in longitudinal data. In Chapter 8, using methods

developed by Cole [180] and van den Hout and Matthews [181], I demonstrated that

selection models can be specified within the HMM framework in order to conduct

sensitivity analyses to different MNAR assumptions. This was applied to data from
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the PRESSURE2 trial. The results demonstrated that in this particular example,

the results were not sensitive to different assumptions about the missing data mech-

anisms. A similar analysis approach could be taken in other clinical settings and

may have different conclusion depending on the amount of missing data and the

mechanisms driving its absence.

The following sections further summarise implications for practice for key stake-

holders involved in clinical trial design; patients, clinical researchers and trial statis-

ticians. This is followed by a section on the limitations of the research together with

suggestions for future research and a final conclusion.

9.2 Implications for practice

9.2.1 Patients

The results of this thesis have been communicated to the Pressure Ulcer Research

Service User Network (PURSUN). Patients were shown the additional information

that can be extracted from estimated MSM during analysis of trial results, as well

as demonstration of when treatments may be effective and that by using MSM

trials may be less burdensome for patients through reduced assessment frequency

and length of follow-up. Furthermore the members of PURSUN thought it was

important for funders to save money and for researchers to have more efficient trial

assessment schedules. The over-arching feedback was that, for patients, prevention

is always better than treatment because PUs can have a detrimental impact on

mental health as well as physical health. The group therefore particularly welcomed

methods that may help to identify interventions that prevent early stages of pressure

damage.

9.2.2 Key stakeholders

In addition to patients, the findings of this thesis have important implications for

key stakeholders such as policy makers, health economists and commissioners. In

particular, decision makers often require economic evaluations alongside clinical ef-
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fectiveness to guide their recommendations [142]. The models proposed in this thesis

have the potential to align the primary analysis model with multi-state models that

are often used in health economics analyses. Discussion of the appropriate clini-

cal effectiveness model will help ensure that an appropriate clinical model is also

used for the cost effectiveness analysis. This will consequently strengthen the the

interpretation and conclusions of the analyses together.

9.2.3 Clinical researchers

The literature review highlighted that there were two main outcomes of interest to

researchers of PU prevention interventions. These were Category 1 PUs or Cat-

egory 2 PUs. Both have their merits with Category 1 PUs being more common

and therefore leading to potentially smaller trial sample sizes, however there was a

common concern in the literature that Category 1 PUs are difficult to assess. Some

researchers may therefore use a Category 2 as the primary endpoint of a trial be-

cause it is less likely to be misclassified, accepting that it will lead to larger trial

sample sizes in order to detect a statistically significant treatment effect. The results

of this thesis demonstrated that MSM can analyse the occurrence of more than one

clinically important endpoint in addition to modelling misclassification of disease

state, which is appealing to researchers where there can be diagnostic uncertainty.

Reanalysis of the case study datasets showed that the treatment effects seemed to be

strongest in patients who already developed a category 1 PU. One conclusion might

have been to restrict future clinical trials to patients with a pre-existing category

1 PU in order to minimise the sample size required to detect a difference in the

incidence of Category 2 PUs. However there are a number of limitations here. First,

the proportion of patients presenting with a Category 1 PU is small and therefore

the recruitment rate may be slower. Second, the trial results would be relevant

only to those patients with a pre-existing Category 1 PU and are not relevant to

the whole patient population at risk of developing a PU. Clinical trials should be

designed to answer a clinical question and strategies to reduce the sample size (such

as restricting the patient population to maximise the incidence of an event) should
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ensure that the trial results remain relevant to the clinical community.

The ability to accommodate misclassification using a HMM means that re-

searchers have more flexibility in their choice of assessor, which could lead to cost

savings and more convenient assessments to align with standard care. It is important

to have an idea of the likely misclassification structure, which could be determined

through an inter-rater reliability study using gold standard assessors, or through an

elicitation exercise with clinical experts. If there is likely misclassification, in partic-

ular over-reporting, of the absorbing state, researchers should use the gold standard

assessment where possible. If this is not possible then strategies to minimise the

risk of over-reporting of the absorbing state such as endpoint adjudication should

be used.

This thesis has demonstrated that non-ignorable missing data can be accommo-

dated in the analysis, but researchers should continue to minimise levels of missing

data where possible. Missing data is almost inevitable in any clinical trial though,

particularly when outcomes are measured repeatedly through time. Where it occurs

it is important to collect the reason and assess the likely association with the latent

disease state to inform the appropriate analysis model.

9.2.4 Trial statisticians

The findings in this thesis have highlighted the importance of some of the trial

design decisions from a statistical perspective. It demonstrated that deviating from

common and widely understood methods of analysis can lead to improvements in

power or reductions in sample sizes when using a method that uses more of the

data collected and suits the underlying data structure. Regardless of the method

of analysis, the length of follow-up, assessment frequency, mitigation of assessment

bias and underlying assumptions of the model need to be carefully considered at the

design stage to ensure adequate power.

For PU trials such as those described in the case studies, if an MSM was used,

under some plausible scenarios length of follow-up could be reduced from 60 to 30

days and assessment can continue to be conducted every 2 or 3 days. However, if
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the baseline transition intensities were low on the early transitions, a Cox PH model

comparing the time to development of a Category 2+ PU may be more appropriate.

If the treatment effects were greater or similar for the early transitions relative to

the final transition then an MSM should be used. Note that the case studies were

for interventions where the outcome was a PU on any skin site, however for trials

where the intervention is for a specific skin site, more work would be required to

understand the natural history of the disease process before designing a clinical trial

using an MSM. In the absence of this evidence it may be more appropriate to design

a trial using more common methods such as a Cox PH or logistic regression with a

pre-planned MSM as a key secondary analysis.

There are potential barriers to using MSM. If statisticians are interested in ex-

ploring the potential efficiencies of using a MSM for trial analysis, simulation studies

are likely to be necessary. Sample size calculators able to accommodate the range

of models required are are not widely accessible. However, not all statisticians and

researchers are experienced in designing and conducting simulations in this context.

The code used to conduct the simulations in Chapter 5 was made available on re-

quest through publication of the results [189]. The code used in Chapter 7 will also

be made available in a similar way upon publication. In September 2021, Jackson

developed the simmulti.msm function to simulate panel data from a MSM and

HMM within the msm package in R. There are other examples of software available

to simulate data from an MSM including the simMSM package [190] which was

used by Le Rademacher et al to develop an RShiny package to illustrate the impact

on the power of using an MSM with up to 5 states in a 2 arm trial with equal

allocation assuming all participants start in State 1. This package is useful as an

introduction to exploring the design of clinical trials using MSM, however the power

is reported for individual transitions, with no adjustment for multiplicity.

Misclassification of outcomes can lead to biased estimates of model parameters

if not properly accounted for in the design or analysis. Misclassification of PU

categories is well documented in the literature, especially for early skin changes.

A number of methods for mitigating this have been suggested, such as selecting an
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outcome that is at low risk of misclassification, using adjudication of the outcomes or

incorporating the uncertainty in the model. The analysis in this thesis demonstrates

that, if misclassification is possible, HMM will give unbiased parameter estimates

with little loss of power. Ignoring misclassification was shown to lead to biased

results and poor coverage. In the situation where the absorbing state is at risk

of misclassification, adjudication of that state should be strongly recommended at

the design stage to minimise the risk of biased treatment effect estimates, ensure

adequate coverage and reduce the risk of identifiability issues.

If missing data are assumed to be MCAR then MSM can be fitted by ignoring the

missing data. If the data are assumed to be MAR then the likelihood can be taken

over all possible pathways of the disease process [177]. If the data are assumed to be

MNAR, selection models are recommended where the MSM and observation process

are jointly modelled. In Chapter 8 HMM were shown to be equivalent to selection

models with lower computational burden. Any assumptions about the missing data

mechanism should be assessed through sensitivity analyses. For PU prevention trials

where multiple skin sites are assessed, it is important to first define missingness

based on fully or partially complete assessments. In the context of PRESSURE2,

the frequency of missing cases could be substantially reduced by restricting the

definition to the 5 key skin sites where the majority (79.8%) of Category 2+ PUs

occurred, without affecting the model parameter estimates. In general, composite

outcomes should be defined based on both empirical analysis of the components and

detailed discussions with subject specialists. In the analysis of PRESSURE2, there

was little difference in results irrespective of the missing data models used. This

provided confidence in the analysis results and should be considered in any setting

where outcome data may be partially complete.

9.3 Limitations and areas for further research

The literature review examined key features of trial design and analysis but did

not extract planned power. This may be useful to extract in further research to

highlight the limitations of previous clinical trials of PU prevention interventions to
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the relevant clinical audience.

A thorough examination of continuous time MSM for the design of disease pre-

vention clinical trials has been conducted, with a comparison of MSM to models

of a single binary or TTE outcome. However, continuous time MSM were not the

only option for analysis of this data type and other methods could be explored for

this setting in further research. For example, a discrete time MSM may be appro-

priate for trials given the regular and common assessment times, or a generalised

linear mixed model of a binary or ordinal outcome could also be fitted. Note that

the analysis methods were informed by a review of pressure ulcer trials but further

research could examine methods used in other clinical areas with similar issues in

discrete longitudinal data, such as low event rates, multiple outcome states and mis-

classification. The MSM assessed in this thesis was based on a 4-state progression

only model, which may not be appropriate for other disease settings. In cases where

the disease state can improve (regression) the models become more complicated and

there are consequently additional challenges to consider. First, for clinical trials

consideration must be given a priori to whether the treatment affects both progres-

sion and regression and initial guesses must be made for the sample size calculation.

Note that, in some contexts, it may be important to use a model that allows back-

ward transitions to account appropriately for the natural history of the disease even

if the effect of treatment on backwards transitions is not of interest. The simulation

study results in Chapter 5 showed that the efficiency of MSM compared to a Cox

model were sensitive to the baseline transition intensity rates and treatment effects.

Furthermore, if an outcome at risk of misclassification is used, there is an increased

risk of non-identifiability because the observed progression and regression cannot

easily be distinguished from misclassification.

Additional work is required to further understand the place of HMM for analysis

of misclassified outcome data including exploring a range of starting values for mis-

classification probabilities to assess the risk of non-identifiability and convergence

issues. This should be designed with a clinical setting in mind. Furthermore, it is

important to investigate the impact of differential misclassification. There is evi-
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dence in the literature to suggest that differential measurement error for time to

event outcomes can lead to biased treatment effects which may lead to treatments

being incorrectly concluded as effective.

Lindsey [191] explained that in longitudinal data, if there are variables that

change over time, treatment groups can remain comparable but the time-varying

covariates are no longer randomised. This means that patient outcomes are condi-

tional on their history and the analysis should take this into account. The Markov

assumption made throughout this thesis is such that the process depends only on

the current state, and not on the history up until that point. The validity of this

assumption should be assessed for each individual trial and clinical area. Further

simulation studies could also be conducted to quantify the impact of deviations from

the Markov assumption, for example trials with a longer follow-up period, or tri-

als where important covariates have not been collected. Lindsey [191] advises that

caution should also be taken when making causal conclusions from the results of a

MSM analysis that could influence treatment recommendations. For example, in the

PRESSURE2 trial, the largest treatment effect was observed on the final transition,

and so a recommendation might have been to implement the intervention only in

participants who are in state 3. However, the treatment effect estimates are based on

an ITT analysis, and did not account for treatment compliance or other time varying

covariates. As such, the individual treatment effect estimates should not necessarily

be considered causal, but rather an estimate of the effect of an intervention policy.

To extract treatment effects for a future trial in the population of patients who de-

velop Category 1 PU, a model that includes time-dependent confounding variables

could be fitted to the existing data. The adjusted treatment effect estimate might

then be considered closer to the causal effect in the future trial. In the PU exam-

ple, participants may start in any of the transient states and treatment is allocated

on a 1:1 basis within each starting state. Therefore, exploratory analyses could be

conducted in subgroups of participants who start in each of the transient states to

estimate the effect of starting treatment in each state.

Chapter 8 examined the use of a HMM to jointly model the Markov disease pro-
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cess and the missing data mechanism. Although treatment effect estimates and anal-

ysis conclusions were consistent in the PU example, a simulation study is required

to assess the impact on sample size and power with other missing data mechanisms

and quantities of missing data.

The overall state and missing data mechanism definitions were informed by the

distribution of missing data among individual components. This was appropriate for

the motivating example, where variability in PU development was explained more so

at the participant level rather than the component level. However, there are other

clinical settings, for example in psoriatic arthritis, where change in disease state at

the component level is relevant. There is no published work on the design of clinical

trials when the data have this complex structure. The decision for the analysis

approach depends on the discussions for the appropriate estimand. However, it is

difficult to conceive an appropriate estimand for a trial based on such complex data

and it may be considered more appropriate to evaluate an intervention at a patient

level, with exploratory analyses conducted at the component level.

Throughout the simulations, it was assumed in the design that the treatment

effects on each transition were independent of each other, however further research

could examine the correlation between them and consequential impact on power.

This could involve simulating event times from a multivariate distribution, with

careful consideration of the off diagonals of the covariance matrix. For exactly

observed observation times, Wu and Cook [146] proposed formulae for trial sample

size calculations, however a greater understanding of how the correlation between

treatment effects could be incorporated might be useful. This could be extended

further to inform the design of earlier phase trials of PU prevention strategies, such as

phase II trials to increase the chance of taking forward the most beneficial treatments

to Phase III. Early phase trials commonly use surrogate endpoints for efficacy for

which operational criteria were proposed by Prentice [192]. A candidate surrogate

endpoint in a setting where an MSM might be used could be an earlier transient

state. For example, in the PU setting, altered skin or a Category 1 PU might be

sensible candidates for a surrogate endpoint for Category 2 PUs. However, Chapter
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6 reported that misclassification was higher for early skin changes, which would

lead to challenges in determining appropriate endpoints for earlier phase trials in

the PU setting. Hidden Markov models can be used to account for misclassification

of outcomes, however there were issues in model performance when the final state

was at risk of misclassification, which would need to be explored further before

recommendations could be made for a Phase II endpoint.

Whilst the code for each simulation study will be made available on request

following publication, further work could include generalising the code to k states.

This code could then be placed on a platform such as GitHub, or implemented

in an RShiny application to enable use by those who are less familiar with the R

programming language.

9.4 Conclusion

This thesis was motivated by PU prevention trials that are challenging to con-

duct due to large sample size requirements arising from low PU incidence. I have

demonstrated how MSM can be used in the PU setting, including consideration of

misclassification of outcomes by less expert assessors, and missing outcome data. A

hypothesis test based on multiple effect estimates in the MSM setting was proposed

and used in a comprehensive simulation study to explore the impact on power and

sample size of using MSM as the primary analysis method, compared to methods

based on a single endpoint. Scenarios were based on gold standard assessments for a

range of assessment schedules, baseline transition intensities, and treatment effects.

A further simulation study explored the impact on power and bias of misclassified

assessments. New candidate definitions of PU state in the presence of missing data

were proposed, and selection models were shown to be easily implemented under the

HMM framework. Overall, this thesis has demonstrated how sophisticated methods

can be used to improve the efficiency of disease prevention trials where participants

pass through a series of discrete health states. Further work is required to develop

robust modelling strategies for misclassified data, and to further explore the impact

of missing data on power and sample size requirements.
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Table B.1: Observed state occupancies for all skin sites in the PRESSURE dataset, by skinsite

Sacrum Left Buttock Right buttock Left Hip

From To From To From To From To
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1, 763 233 19 9 1 1, 862 254 29 4 1 1, 883 267 20 6 1 3, 873 28 1 1
2 0 1, 627 95 17 2 0 1, 614 92 20 2 0 1, 630 90 18 2 0 146 2 1
3 0 0 639 25 3 0 0 585 27 3 0 0 555 35 3 0 0 9 0

Right hip Left heel Right heel

From To From To From To
1 2 3 4 1 2 3 4 1 2 3 4

1 3, 921 34 3 1 1 1, 481 323 26 1 1 1, 478 326 19 0
2 0 161 3 1 2 0 2, 149 101 6 2 0 2, 190 93 8
3 0 0 20 0 3 0 0 986 15 3 0 0 955 10
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Table B.2: Observed occupancies for all skin sites in the PRESSURE2 dataset, by skinsite

Sacrum Back Left buttock Right buttock

From To From To From To From To
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 3, 044 352 16 4 1 6, 520 151 3 2 1 2, 980 309 22 7 1 3, 093 328 17 5
2 0 3, 504 63 20 2 0 1, 402 3 3 2 0 3, 701 49 17 2 0 3, 709 51 16
3 0 0 552 12 3 0 0 39 1 3 0 0 459 14 3 0 0 419 13

Left ischial Right ischial Left hip Right hip

From To From To From To From To
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 6, 088 272 2 2 1 6, 092 251 2 3 1 7, 144 79 1 2 1 6, 987 94 2 1
2 0 1, 755 5 1 2 0 1, 746 3 1 2 0 889 0 0 2 0 1, 010 1 0
3 0 0 38 1 3 0 0 53 0 3 0 0 7 0 3 0 0 15 0

Left heel Right heel Left ankle Right ankle

From To From To From To From To
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2, 097 345 11 5 1 2, 062 345 7 6 1 3, 921 315 3 0 1 3, 853 307 4 0
2 0 5, 138 34 11 2 0 5, 134 24 9 2 0 3, 620 2 0 2 0 3, 583 9 4
3 0 0 250 4 3 0 0 248 3 3 0 0 21 0 3 0 0 63 0

Left elbow Right elbow

From To From To
1 2 3 4 1 2 3 4

1 4, 381 356 4 0 1 4, 514 370 2 3
2 0 3, 513 5 2 2 0 3, 374 11 4
3 0 0 65 0 3 0 0 76 2
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## Code for first simulation study from NIHR Doctoral Research Fellowship  

 

## In this study I want to simulate data from a 4-state model with the  

## following states:  

 

## State 1 : Healthy  

## State 2 : Altered  

## State 3 : Category 1  

## State 4 : Category 2+  

 

## There is a maximum follow-up time specified in days, and patients may leave  

## the system (be censored) at anytime.  

 

## There will be 20 pre-specified inputs for each simulation scenario and  

## these will be set up in an input matrix as descibed here: 

 

## Column 1  = Seed 

## Column 2  = Maximum length of follow-up (maxfup) 

## Column 3  = Assessment frequencies e.g. 1=daily, 2=every other day (VisitFreq) 

## Column 4  = The sample size (n=nc+ne) 

## Column 5  = The number of simulations (N) 

## Column 6  = Baseline transition rate from state 1 to state 2 (lambda0) 

## Column 7  = Baseline transition rate from state 2 to state 3 (lambda0) 

## Column 8  = Baseline transition rate from state 3 to state 4 (lambda0) 

## Column 9  = hazard ratio corresponding to treatment effect on transition from  

##             state 1 to state 2 (hr0) 

## Column 10 = hazard ratio corresponding to treatment effect on transition from  

##             state 2 to state 3 (hr0)  

## Column 11 = hazard ratio corresponding to treatment effect on transition from  

##             state 3 to state 4 (hr0)  

## Column 12 = censoring rate from state 1 for control 

## Column 13 = censoring rate from state 2 for control  

## Column 14 = censoring rate from state 3 for control 

## Column 15 = censoring rate from state 1 for intervention 

## Column 16 = censoring rate from state 2 for intervention  

## Column 17 = censoring rate from state 3 for intervention 

## Column 18 = proportion of patients starting in state 1 (assumed the same for both 

groups) 

## Column 19 = proportion of patients starting in state 2 (assumed the same for both 

groups) 

## Column 20 = proportion of patients starting in state 3 (assumed the same for both 

groups) 

 

##Load required packages 

 

library(survival) 

library(plyr) 

library(dplyr) 

library(broom) 

library(msm) 

library(tictoc) 

 

################################################################################## 

##Firstly, this is a function to simulate transition times based on input matrix##                                                         

### 

################################################################################## 

 

simexp<-function(lambda0, hr0, censor0, censor1, nc, ne, maxfup,start1,start2,start3){ 

   

  #Determine starting states 

  startc_0<-runif(nc,0,1) 

  starte_0<-runif(ne,0,1) 

   

  startc<-rep(1,nc) 

  startc[startc_0<=start1]<-1   

  startc[startc_0>start1 & startc_0<=1-start3]<-2   

  startc[startc_0>1-start3]<-3   



243

   

  starte<-rep(1,ne) 

  starte[starte_0<=start1]<-1   

  starte[starte_0>start1 & starte_0<=1-start3]<-2   

  starte[starte_0>1-start3]<-3   

   

  ##lambda0 is a vector of transition rates for control arm (c) 

   

  ##lambda1 is a vector of transition rates for experimental arm (e) 

  lambda1<-lambda0*hr0 

   

  ##random generation of exponential times to transition out of no PU state 

   

  t12c<-rexp(nc, lambda0[1]) 

  t12e<-rexp(ne, lambda1[1]) 

   

  ##random generation of exponential times to censoring from no PU state 

   

  t199c<-rexp(nc, censor0[1]) 

  t199e<-rexp(ne, censor1[1]) 

   

  ##calculate observed transition times and other outcomes 

   

  exittime1c<-pmin(t12c,t199c,maxfup) 

  exittime1e<-pmin(t12e,t199e,maxfup) 

   

  ##calculate how many days it took until first transition ie at which daily assessment 

was the 1st transition 

   

  exitday1c=ceiling(exittime1c) 

  exitday1e=ceiling(exittime1e) 

  exitday1c[startc>1]<-0 

  exitday1e[starte>1]<-0 

   

  exitstate1c<-rep(1, nc); 

  exitstate1c[exittime1c==t12c]<-2 

  exitstate1c[exittime1c==t199c]<-99 

  exitstate1c[startc>1]<-9876 

  #exitstate1c[startc==2|startc==3]<-2 

  exitstate1e<-rep(1, ne);  

  exitstate1e[exittime1e==t12e]<-2 

  exitstate1e[exittime1e==t199e]<-99 

  exitstate1e[starte>1]<-9876 

  #exitstate1e[starte==2|starte==3]<-2 

   

  ##random generation of exponential times to transition out of altered state 

   

  t23c<-rexp(nc, lambda0[2]) 

  t23e<-rexp(ne, lambda1[2]) 

   

  ##random generation of exponential times to censoring from no PU state 

   

  t299c<-rexp(nc, censor0[2]) 

  t299e<-rexp(ne, censor1[2]) 

   

  ##calculate observed transition times and other outcomes 

   

  exittime2c<-pmin(t23c+exitday1c,t299c+exitday1c,maxfup) 

  exittime2e<-pmin(t23e+exitday1e,t299e+exitday1e,maxfup) 

   

  #exittime2c[t23c<exitday1c]<-maxfup #set to max follow-up as transition out of state 

2 occurred before entry to state 2 

  #exittime2e[t23e<exitday1e]<-maxfup #set to max follow-up as transition out of state 

2 occurred before entry to state 2 

   

  exittime2c[exitstate1c==1|exitstate1c==99]<-0 #set to zero as they have already 

stopped follow-up 
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  exittime2e[exitstate1e==1|exitstate1e==99]<-0 #set to zero as they have already 

stopped follow-up 

   

  ##calculate how many days it took until second transition ie at which daily 

assessment was the 2nd transition 

   

  exitday2c<-round(ceiling(exittime2c)) 

  exitday2c[startc>2]<-0 

   

  exitstate2c<-rep(2,length(exittime2c)) 

  exitstate2c[exittime2c==t23c+exitday1c]<-3 

  exitstate2c[exittime2c==t299c+exitday1c]<-99 

  exitstate2c[startc>2]<-9876 

  # exitstate1c[startc==3]<3 

  exitstate2c[exittime2c==0]<-NA 

   

  exitday2e<-round(ceiling(exittime2e)) 

  exitday2e[starte>2]<-0 

   

  exitstate2e<-rep(2,length(exittime2e)) 

  exitstate2e[exittime2e==t23e+exitday1e]<-3 

  exitstate2e[exittime2e==t299e+exitday1e]<-99 

  exitstate2e[starte>2]<-9876 

  # exitstate1e[starte==3]<-3 

  exitstate2e[exittime2e==0]<-NA 

   

  ##random generation of exponential times to transition out of Category 1 state 

   

  t34c<-rexp(nc, lambda0[3]) 

  t34e<-rexp(ne, lambda1[3]) 

   

  ##random generation of exponential times to censoring from Category 1 state 

   

  t399c<-rexp(nc, censor0[3]) 

  t399e<-rexp(ne, censor1[3]) 

   

  ##calculate observed transition times and other outcomes 

   

  exittime3c<-pmin(t34c+exitday2c,t399c+exitday2c,maxfup) 

  exittime3e<-pmin(t34e+exitday2e,t399e+exitday2e,maxfup) 

   

  #exittime3c[t34c<exitday2c|t34c<exitday1c]<-maxfup #set to max follow-up as 

transition out of state 2 occurred before entry to state 2 

  #exittime3e[t34e<exitday2e|t34e<exitday1e]<-maxfup #set to max follow-up as 

transition out of state 2 occurred before entry to state 2 

   

  exittime3c[exitstate1c==1|exitstate1c==99|exitstate2c==2|exitstate2c==99]<-0 #set to 

zero as they have already stopped follow-up 

  exittime3e[exitstate1e==1|exitstate1e==99|exitstate2e==2|exitstate2e==99]<-0 #set to 

zero as they have already stopped follow-up 

   

  ##calculate how many days it took until third transition ie at which daily assessment 

was the 3rd transition 

   

  exitday3c<-round(ceiling(exittime3c)) 

   

  exitstate3c<-rep(3,length(exittime3c)) 

  exitstate3c[exittime3c==t34c+exitday2c]<-4 

  exitstate3c[exittime3c==t399c+exitday2c]<-99 

  exitstate3c[exittime3c==0]<-NA 

   

  exitday3e<-round(ceiling(exittime3e)) 

   

  exitstate3e<-rep(3,length(exittime3e)) 

  exitstate3e[exittime3e==t34e+exitday2e]<-4 

  exitstate3e[exittime3e==t399e+exitday2e]<-99 

  exitstate3e[exittime3e==0]<-NA 



245

   

  ##create data for binary outcomes 

   

  PU2c<-rep(0,nc) 

  PU2c[exitstate3c==4]<-1 

   

  PU2e<-rep(0,ne) 

  PU2e[exitstate3e==4]<-1 

   

  ##Now create data for the TTE outcomes 

   

  PUtime2c<-pmax(exitday1c,exitday2c,exitday3c) 

  PUtime2e<-pmax(exitday1e,exitday2e,exitday3e) 

   

  groupc<-rep(0,nc) 

  groupe<-rep(1,ne) 

   

  tempc<-

cbind(groupc,startc,t12c,t23c,t34c,t199c,t299c,t399c,exittime1c,exitday1c,exitstate1c,e

xittime2c,exitday2c,exitstate2c,exittime3c,exitday3c,exitstate3c,maxfup,PU2c,PUtime2c) 

  tempe<-

cbind(groupe,starte,t12e,t23e,t34e,t199e,t299e,t399e,exittime1e,exitday1e,exitstate1e,e

xittime2e,exitday2e,exitstate2e,exittime3e,exitday3e,exitstate3e,maxfup,PU2e,PUtime2e) 

   

  array.colnames<-

sapply(strsplit(colnames(tempc),split='c',fixed=TRUE),function(x)(x[1])) 

   

  array.test<-array(cbind(tempc,tempe), 

                    dim=c(ne,ncol(tempc),2), 

                    dimnames=list(NULL,array.colnames,c("control","Experimental"))) 

   

  dataset.test<-rbind(as.data.frame(array.test[,,1]),as.data.frame(array.test[,,2])) 

   

  dataset.test<-cbind(Patnum=seq(1:(nc+ne)),dataset.test) 

   

  return(dataset.test) 

   

} 

 

################################################################################## 

## Next, we build a function that uses the simexp function and translates the   ## 

## simulated transition times into a multi-state data frame. The function then  ## 

## analyses the multi-state data and the time to event/binary data and stores   ## 

## the estimands in an output matrix.                                           ## 

################################################################################## 

 

simanalyse<-function(inputmat){ 

  modelout2=list() 

  for (k in 1:nrow(inputmat)){ 

    set.seed(inputmat[k,1]) 

     

    ##Set maximum follow-up   

    maxfup<-inputmat[k,2] 

     

    ##Set follow-up schedule 

    fup<-inputmat[k,3] 

     

    ##set total sample sizes n to be considered  

    n<-inputmat[k,4] 

     

    ##set number of simulations N 

     

    N<-inputmat[k,5] 

     

    #lambda0 

    lambda<-c(inputmat[k,6],inputmat[k,7],inputmat[k,8]) 
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    #h0 

    h<-c(inputmat[k,9],inputmat[k,10],inputmat[k,11]) 

     

    #censor0 

    censor0<-c(inputmat[k,12],inputmat[k,13],inputmat[k,14]) 

     

    #censor1 

    censor1<-c(inputmat[k,15],inputmat[k,16],inputmat[k,17]) 

     

    #start1 

    start1<-inputmat[k,18] 

    #start2 

    start2<-inputmat[k,19] 

    #start3 

    start3<-inputmat[k,20] 

     

    #Simulate dataset of transition times 

    data.simul=list() 

    for (i in 1:N){data.simul[[i]]<-simexp(lambda,h, censor0,censor1, n/2, n/2, 

maxfup,start1,start2,start3)} 

    #data.simul is a list of N datasets with each one containing n observations as 

expected 

     

    #Re-format the dataset to be structured like a multi-state model  

    data.format.fct<-function(patid,data){ 

       

      pat.1<-list() 

       

      pat.1$id<-data[patid,"Patnum"] 

      pat.1$grp<-data[patid,"group"] 

       

      ndays<-data[pat.1$id,"maxfup"] 

       

      mat<-matrix(NA,nrow=ndays+1,ncol=5) 

       

      colnames(mat)<-c("PatID","AssessDay","State","Group","delete") 

      mat[,1]<-pat.1$id 

      mat[,2]<-0:ndays 

       

      if (data[pat.1$id,"start"]==1){ 

        mat[,3]<-c(1,rep(1,data[pat.1$id,"exitday1"]-

1),rep(data[pat.1$id,"exitstate1"],ndays-data[pat.1$id,"exitday1"]+1)) 

         

        if 

(data[pat.1$id,"exittime2"]!=0){mat[c(data[pat.1$id,"exitday2"]:ndays+1),3]<-

data[pat.1$id,"exitstate2"]} 

         

        if 

(data[pat.1$id,"exittime3"]!=0){mat[c(data[pat.1$id,"exitday3"]:ndays+1),3]<-

data[pat.1$id,"exitstate3"]} 

      } else if (data[pat.1$id,"start"]==2){ 

        mat[,3]<-c(2,rep(2,data[pat.1$id,"exitday2"]-

1),rep(data[pat.1$id,"exitstate2"],ndays-data[pat.1$id,"exitday2"]+1)) 

         

        if 

(data[pat.1$id,"exittime3"]!=0){mat[c(data[pat.1$id,"exitday3"]:ndays+1),3]<-

data[pat.1$id,"exitstate3"]} 

      }else if (data[pat.1$id,"start"]==3){ 

        mat[,3]<-c(3,rep(3,data[pat.1$id,"exitday3"]-

1),rep(data[pat.1$id,"exitstate3"],ndays-data[pat.1$id,"exitday3"]+1))} 

       

      mat[,4]<-pat.1$grp 

       

      if(fup!=1){pat.1$df<-as.data.frame(mat) %>%  

        filter(row_number() %% fup==1) %>%  

        mutate(delete=lag(State), order_by=AssessDay) %>%  

        filter(State<=99 & (delete<4|is.na(delete)))} 
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      else {pat.1$df<-as.data.frame(mat) %>%  

        mutate(delete=lag(State), order_by=AssessDay) %>%  

        filter(State<=99 & (delete<4|is.na(delete)))} 

      return(pat.1$df) 

    } 

     

    datasimul.MSM=list() 

     

    for (i in 1:N){datasimul.MSM[[i]]<-

do.call("rbind",lapply(1:(max(data.simul[[i]][1])),function(x) 

      data.format.fct(x,data=data.simul[[i]])))} 

 

     

    #Re-format the dataset to obtain time to event and binary outcomes 

    datasimul.BINCOX<-list() 

     

    for(i in 1:N){datasimul.BINCOX[[i]]<-datasimul.MSM[[i]] %>%  

      mutate(delete=lead(PatID), order_by=AssessDay) %>%  

      filter(PatID!=delete|is.na(delete)) %>%  

      mutate(PU2=ifelse(State==4,1,0)) %>%  

      mutate(PUtime2=AssessDay)} 

 

    ##NOW ANALYSE DATA 

     

    modelout=list() 

    for (i in 1:N){ 

    ## Fit a logistic model for the binary outcome for each simulated dataset 

     logisticmod<-

glm(PU2~1+Group,data=datasimul.BINCOX[[i]],family=binomial(link="logit")) 

     logisticout<-as.data.frame(coef(summary(logisticmod))) 

     logisticout<-subset(logisticout, rownames(logisticout) %in% "Group", 

colnames(logisticout) %in% "Pr(>|z|)") 

     logisticout2<-as.data.frame(exp(cbind(OR = coef(logisticmod), 

confint.default(logisticmod)))) 

     logisticout2<-subset(logisticout2, rownames(logisticout2) %in% "Group") 

     logisticout$model<-"Logistic" 

     logisticout2$model<-"Logistic" 

     logistic_or<-merge(logisticout,logisticout2,by=c("model")) 

     colnames(logistic_or)[colnames(logistic_or)=="2.5 %"]<-"Lower95" 

     colnames(logistic_or)[colnames(logistic_or)=="97.5 %"]<-"Upper95" 

     colnames(logistic_or)[colnames(logistic_or)=="OR"]<-"Estimate"      

     colnames(logistic_or)[colnames(logistic_or)=="Pr(>|z|)"]<-"Pvalue"         

      

    ## Fit a Cox model for the TTE outcome for each simulated dataset 

     

    coxmod<-coxph(Surv(PUtime2,PU2)~Group, data=datasimul.BINCOX[[i]]) 

    if (is.na(coef(coxmod))){coxout$Estimate<-NA 

                             coxout$Lower95<-NA 

                             coxout$Upper95<-NA 

                             coxout$Pvalue<-NA 

                             } 

    {coxout<-coxmod %>% 

        tidy %>% 

        mutate( 

          Estimate=exp(estimate), 

          Lower95=exp(conf.low), 

          Upper95=exp(conf.high), 

          Pvalue=p.value 

        ) %>% 

        filter(term=="Group") %>% 

        select(Estimate, Lower95, Upper95, Pvalue)} 

     

    coxout$model<-"Cox" 

     

    ## Now let's look at multi-state models 

     

    #Set up Q matrix based on input matrix 
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    Q<-rbind(c(-lambda[1],lambda[1],0,0), 

             c(0,-lambda[2],lambda[2],0), 

             c(0,0,-lambda[3],lambda[3]), 

             c(0,0,0,0)) 

     

  

    msmdata<-datasimul.MSM[[i]] 

     

    #unconstrained model 

    msmmod_uncon_hr<-data.frame(model=as.character(c("msm_con")), 

                              transition=as.factor(c("State 1 - State 2","State 2 - 

State 3","State 3 - State 4")), 

                              Estimate=as.double(NA,NA,NA)) 

    tryCatch({msmmod_uncon<-msm(State~AssessDay, subject=PatID, data=msmdata, 

qmatrix=Q,   

                                covariates=~Group, censor=99, censor.states=c(1,2,3)) 

     

    msmmod_uncon_95<-as.data.frame(hazard.msm(msmmod_uncon, cl=0.95)) 

    msmmod_uncon_95$model<-"msmmod_uncon" 

    msmmod_uncon_95$transition<-as.factor(rownames(msmmod_uncon_95)) 

     

    colnames(msmmod_uncon_95)[colnames(msmmod_uncon_95)=="Group.L"]<-"Lower95" 

    colnames(msmmod_uncon_95)[colnames(msmmod_uncon_95)=="Group.U"]<-"Upper95" 

    colnames(msmmod_uncon_95)[colnames(msmmod_uncon_95)=="Group.HR"]<-"Estimate" 

     

    msmmod_uncon_975<-as.data.frame(hazard.msm(msmmod_uncon, cl=0.975)) 

    msmmod_uncon_975$model<-"msmmod_uncon" 

    msmmod_uncon_975$transition<-as.factor(rownames(msmmod_uncon_975)) 

     

    colnames(msmmod_uncon_975)[colnames(msmmod_uncon_975)=="Group.L"]<-"Lower975" 

    colnames(msmmod_uncon_975)[colnames(msmmod_uncon_975)=="Group.U"]<-"Upper975" 

    colnames(msmmod_uncon_975)[colnames(msmmod_uncon_975)=="Group.HR"]<-"Estimate" 

     

    msmmod_uncon_9833<-as.data.frame(hazard.msm(msmmod_uncon, cl=0.9833)) 

    msmmod_uncon_9833$model<-"msmmod_uncon" 

    msmmod_uncon_9833$transition<-as.factor(rownames(msmmod_uncon_9833))      

     

    colnames(msmmod_uncon_9833)[colnames(msmmod_uncon_9833)=="Group.L"]<-"Lower9833" 

    colnames(msmmod_uncon_9833)[colnames(msmmod_uncon_9833)=="Group.U"]<-"Upper9833" 

    colnames(msmmod_uncon_9833)[colnames(msmmod_uncon_9833)=="Group.HR"]<-"Estimate" 

     

    msmmod_uncon_hr_a<-

merge(msmmod_uncon_95,msmmod_uncon_975,by=c("model","transition","Estimate"))    

    msmmod_uncon_hr<-

merge(msmmod_uncon_hr_a,msmmod_uncon_9833,by=c("model","transition","Estimate")) 

    msmmod_uncon_hr$SE<-c(msmmod_uncon$QmatricesSE$Group[1,2], 

                          msmmod_uncon$QmatricesSE$Group[2,3], 

                          msmmod_uncon$QmatricesSE$Group[3,4]) 

    msmmod_uncon_hr$WaldTS<-log(msmmod_uncon_hr$Estimate)/msmmod_uncon_hr$SE 

     

    }, error=function(e){}) 

     

    #Completely constrained model 

    msmmod_con_hr<-data.frame(model=as.character(c("msm_con")), 

                            transition=as.factor(c("State 1 - State 2","State 2 - State 

3","State 3 - State 4")), 

                            Estimate=as.double(NA,NA,NA)) 

    tryCatch({msmmod_con<-msm(State~AssessDay, subject=PatID, data=msmdata, qmatrix=Q,   

                              covariates=~Group, censor=99, censor.states=c(1,2,3),  

                              constraint = list(Group=c(1,1,1))) 

     

    msmmod_con_95<-as.data.frame(hazard.msm(msmmod_con, cl=0.95)) 

    msmmod_con_95$model<-"msmmod_con" 

    msmmod_con_95$transition<-as.factor(rownames(msmmod_con_95)) 

     

    colnames(msmmod_con_95)[colnames(msmmod_con_95)=="Group.L"]<-"Lower95" 

    colnames(msmmod_con_95)[colnames(msmmod_con_95)=="Group.U"]<-"Upper95" 
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    colnames(msmmod_con_95)[colnames(msmmod_con_95)=="Group.HR"]<-"Estimate" 

     

    msmmod_con_975<-as.data.frame(hazard.msm(msmmod_con, cl=0.975)) 

    msmmod_con_975$model<-"msmmod_con" 

    msmmod_con_975$transition<-as.factor(rownames(msmmod_con_975)) 

     

     

    colnames(msmmod_con_975)[colnames(msmmod_con_975)=="Group.L"]<-"Lower975" 

    colnames(msmmod_con_975)[colnames(msmmod_con_975)=="Group.U"]<-"Upper975" 

    colnames(msmmod_con_975)[colnames(msmmod_con_975)=="Group.HR"]<-"Estimate" 

     

    msmmod_con_9833<-as.data.frame(hazard.msm(msmmod_con, cl=0.9833)) 

    msmmod_con_9833$model<-"msmmod_con" 

    msmmod_con_9833$transition<-as.factor(rownames(msmmod_con_9833))      

     

    colnames(msmmod_con_9833)[colnames(msmmod_con_9833)=="Group.L"]<-"Lower9833" 

    colnames(msmmod_con_9833)[colnames(msmmod_con_9833)=="Group.U"]<-"Upper9833" 

    colnames(msmmod_con_9833)[colnames(msmmod_con_9833)=="Group.HR"]<-"Estimate" 

     

    msmmod_con_hr_a<-

merge(msmmod_con_95,msmmod_con_975,by=c("model","transition","Estimate"))    

    msmmod_con_hr<-

merge(msmmod_con_hr_a,msmmod_con_9833,by=c("model","transition","Estimate")) 

    msmmod_con_hr$SE<-c(msmmod_con$QmatricesSE$Group[1,2], 

                       msmmod_con$QmatricesSE$Group[2,3], 

                       msmmod_con$QmatricesSE$Group[3,4]) 

    msmmod_con_hr$WaldTS<-log(msmmod_con_hr$Estimate)/msmmod_con_hr$SE 

     

    }, error=function(e){})     

     

    #Partially constrained model - beta12=beta23 

    msmmod_123con_hr<-data.frame(model=as.character(c("msm_con")), 

                              transition=as.factor(c("State 1 - State 2","State 2 - 

State 3","State 3 - State 4")), 

                              Estimate=as.double(NA,NA,NA)) 

    tryCatch({msmmod_123con<-msm(State~AssessDay, subject=PatID, data=msmdata, 

qmatrix=Q,   

                                 covariates=~Group, censor=99, censor.states=c(1,2,3),  

                                 constraint = list(Group=c(1,1,2))) 

     

    msmmod_123con_95<-as.data.frame(hazard.msm(msmmod_123con, cl=0.95)) 

    msmmod_123con_95$model<-"msmmod_123con" 

    msmmod_123con_95$transition<-as.factor(rownames(msmmod_123con_95)) 

     

    colnames(msmmod_123con_95)[colnames(msmmod_123con_95)=="Group.L"]<-"Lower95" 

    colnames(msmmod_123con_95)[colnames(msmmod_123con_95)=="Group.U"]<-"Upper95" 

    colnames(msmmod_123con_95)[colnames(msmmod_123con_95)=="Group.HR"]<-"Estimate" 

     

    msmmod_123con_975<-as.data.frame(hazard.msm(msmmod_123con, cl=0.975)) 

    msmmod_123con_975$model<-"msmmod_123con" 

    msmmod_123con_975$transition<-as.factor(rownames(msmmod_123con_975)) 

     

     

    colnames(msmmod_123con_975)[colnames(msmmod_123con_975)=="Group.L"]<-"Lower975" 

    colnames(msmmod_123con_975)[colnames(msmmod_123con_975)=="Group.U"]<-"Upper975" 

    colnames(msmmod_123con_975)[colnames(msmmod_123con_975)=="Group.HR"]<-"Estimate" 

     

    msmmod_123con_9833<-as.data.frame(hazard.msm(msmmod_123con, cl=0.9833)) 

    msmmod_123con_9833$model<-"msmmod_123con" 

    msmmod_123con_9833$transition<-as.factor(rownames(msmmod_123con_9833))      

     

    colnames(msmmod_123con_9833)[colnames(msmmod_123con_9833)=="Group.L"]<-"Lower9833" 

    colnames(msmmod_123con_9833)[colnames(msmmod_123con_9833)=="Group.U"]<-"Upper9833" 

    colnames(msmmod_123con_9833)[colnames(msmmod_123con_9833)=="Group.HR"]<-"Estimate" 

     

    msmmod_123con_hr_a<-

merge(msmmod_123con_95,msmmod_123con_975,by=c("model","transition","Estimate"))    
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    msmmod_123con_hr<-

merge(msmmod_123con_hr_a,msmmod_123con_9833,by=c("model","transition","Estimate")) 

    msmmod_123con_hr$SE<-c(msmmod_123con$QmatricesSE$Group[1,2], 

                     msmmod_123con$QmatricesSE$Group[2,3], 

                     msmmod_123con$QmatricesSE$Group[3,4]) 

    msmmod_123con_hr$WaldTS<-log(msmmod_123con_hr$Estimate)/msmmod_123con_hr$SE 

     

    }, error=function(e){})      

       

    #Partially constrained model - beta23=beta34 

    msmmod_234con_hr<-data.frame(model=as.character(c("msm_con")), 

                              transition=as.factor(c("State 1 - State 2","State 2 - 

State 3","State 3 - State 4")), 

                              Estimate=as.double(NA,NA,NA)) 

    tryCatch({msmmod_234con<-msm(State~AssessDay, subject=PatID, data=msmdata, 

qmatrix=Q,   

                                 covariates=~Group, censor=99, censor.states=c(1,2,3),  

                                 constraint = list(Group=c(1,2,2))) 

     

    msmmod_234con_95<-as.data.frame(hazard.msm(msmmod_234con, cl=0.95)) 

    msmmod_234con_95$model<-"msmmod_234con" 

    msmmod_234con_95$transition<-as.factor(rownames(msmmod_234con_95)) 

     

    colnames(msmmod_234con_95)[colnames(msmmod_234con_95)=="Group.L"]<-"Lower95" 

    colnames(msmmod_234con_95)[colnames(msmmod_234con_95)=="Group.U"]<-"Upper95" 

    colnames(msmmod_234con_95)[colnames(msmmod_234con_95)=="Group.HR"]<-"Estimate" 

     

    msmmod_234con_975<-as.data.frame(hazard.msm(msmmod_234con, cl=0.975)) 

    msmmod_234con_975$model<-"msmmod_234con" 

    msmmod_234con_975$transition<-as.factor(rownames(msmmod_234con_975)) 

     

     

    colnames(msmmod_234con_975)[colnames(msmmod_234con_975)=="Group.L"]<-"Lower975" 

    colnames(msmmod_234con_975)[colnames(msmmod_234con_975)=="Group.U"]<-"Upper975" 

    colnames(msmmod_234con_975)[colnames(msmmod_234con_975)=="Group.HR"]<-"Estimate" 

 

    msmmod_234con_9833<-as.data.frame(hazard.msm(msmmod_234con, cl=0.9833)) 

    msmmod_234con_9833$model<-"msmmod_234con" 

    msmmod_234con_9833$transition<-as.factor(rownames(msmmod_234con_9833))      

     

    colnames(msmmod_234con_9833)[colnames(msmmod_234con_9833)=="Group.L"]<-"Lower9833" 

    colnames(msmmod_234con_9833)[colnames(msmmod_234con_9833)=="Group.U"]<-"Upper9833" 

    colnames(msmmod_234con_9833)[colnames(msmmod_234con_9833)=="Group.HR"]<-"Estimate" 

 

    msmmod_234con_hr_a<-

merge(msmmod_234con_95,msmmod_234con_975,by=c("model","transition","Estimate"))    

    msmmod_234con_hr<-

merge(msmmod_234con_hr_a,msmmod_234con_9833,by=c("model","transition","Estimate")) 

    msmmod_234con_hr$SE<-c(msmmod_234con$QmatricesSE$Group[1,2], 

                     msmmod_234con$QmatricesSE$Group[2,3], 

                     msmmod_234con$QmatricesSE$Group[3,4]) 

    msmmod_234con_hr$WaldTS<-log(msmmod_234con_hr$Estimate)/msmmod_234con_hr$SE 

     

    }, error=function(e){}) 

     

    #Combine all analysis output datasets 

    overall<-join_all(list(logistic_or, coxout, msmmod_uncon_hr,msmmod_con_hr, 

msmmod_123con_hr, msmmod_234con_hr), by="model", type="full") 

    overall$msmpvalue<-2*pnorm(-abs(overall$WaldTS)) 

    modelout[[i]]<-overall 

     

    modelout[[i]]$SimNo<-i 

    modelout[[i]]$SampleSize<-n} 

     

    modelout2[[k]]<-do.call(rbind.data.frame,modelout) 

    modelout2[[k]]$Scenario<-k 

    modelout2[[k]]$seed<-inputmat[k,1] 
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    modelout2[[k]]$maxfup<-inputmat[k,2] 

    modelout2[[k]]$fupsched<-inputmat[k,3] 

    modelout2[[k]]$lambda<-toString(c(inputmat[k,6],inputmat[k,7],inputmat[k,8])) 

    modelout2[[k]]$h0<-toString(c(inputmat[k,9],inputmat[k,10],inputmat[k,11])) 

    modelout2[[k]]$censor0<-toString(c(inputmat[k,12],inputmat[k,13],inputmat[k,14])) 

    modelout2[[k]]$censor1<-toString(c(inputmat[k,15],inputmat[k,16],inputmat[k,17])) 

    modelout2[[k]]$startstateprop<-

toString(c(inputmat[k,18],inputmat[k,19],inputmat[k,20])) 

    } 

     

    return(do.call(rbind.data.frame,modelout2))} 

 

##Example inputmat for base case 

 

BC_inputmat<-matrix(NA,1,20) 

BC_inputmat[,1]<-c(25680) 

BC_inputmat[,2]<-60 #Maximum follow-up is 60 days 

BC_inputmat[,3]<-1 #Daily assessments 

BC_inputmat[,4]<-c(100) #Total sample size 

BC_inputmat[,5]<-1000 #1000 simulations 

BC_inputmat[,6:7]<-0.05 #High risk of moving from state 1 to 2, and from state 2 to 3 

BC_inputmat[,8]<-0.03 #Moderate risk of moving from state 3 to state 4 

BC_inputmat[,9:11]<-0.67 #Moderate treatment effect on all transitions 

BC_inputmat[,12:17]<-0.05 #Censoring transition rate same for all state and all groups 

BC_inputmat[,18]<-0.15 # Proportion starting in state 1 

BC_inputmat[,19]<-0.70 # Proportion starting in state 1 

BC_inputmat[,20]<-0.15 # Proportion starting in state 1 

BC_inputmat 

 

BCModel<-simanalyse(BC_inputmat) 
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C.2 Power and Type I error

C.2.1 Length of follow-up

(a) 30 days (b) 14 days

(c) 7 days

Figure C.1: Power of detecting a significant treatment effect overall according to
sample size for different lengths of follow-up (Assessment frequency=Daily, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B:
β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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C.2.2 Assessment intervals

(a) Every 2 days (b) Every 3 days

(c) Every 7 days (d) Every 14 days

Figure C.2: Power of detecting a significant treatment effect overall according to
sample size for different Assessment intervals (Maximum length of follow-up= 60
days, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34,
Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)



254

C.3 Monte Carlo Standard Errors for estimates

of power

Table C.1: MCSE for estimates of power in the Null case (Maximum length
of follow-up=60 days, Assessment frequency=Daily, exp(β) = (1, 1, 1), q0 =
(0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model
C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)

N Model A Model B Model C Model D Cox PH Logistic

100 0.006 0.007 0.006 0.006 0.006 0.006

200 0.007 0.008 0.007 0.007 0.008 0.008

500 0.007 0.006 0.007 0.006 0.007 0.007

1, 000 0.007 0.007 0.006 0.006 0.007 0.007

2, 000 0.007 0.007 0.006 0.006 0.007 0.007

Table C.2: MCSE for estimates of power in the Base case (Maximum length of
follow-up=60 days, Assessment frequency=Daily, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34)

N Model A Model B Model C Model D Cox PH Logistic

100 0.011 0.015 0.013 0.012 0.012 0.011

200 0.015 0.016 0.015 0.016 0.015 0.014

500 0.014 0.009 0.013 0.012 0.015 0.016

1, 000 0.006 0.002 0.004 0.003 0.007 0.010

2, 000 0.000 0.000 0.000 0.000 0.000 0.002
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Table C.3: MCSE for estimates of power for different lengths of follow-up (Assess-
ment frequency=Daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)), Model
A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)

Length of Follow-up N Model A Model B Model C Model D Cox PH Logistic

30 Days

100 0.010 0.014 0.011 0.012 0.010 0.010

200 0.014 0.016 0.015 0.015 0.014 0.014

500 0.015 0.010 0.014 0.013 0.016 0.016

1, 000 0.007 0.003 0.005 0.004 0.011 0.012

2, 000 0.000 0.000 0.000 0.000 0.002 0.003

14 Days

100 0.009 0.014 0.011 0.011 0.005 0.005

200 0.012 0.015 0.013 0.013 0.011 0.011

500 0.016 0.014 0.016 0.015 0.015 0.015

1, 000 0.012 0.006 0.009 0.009 0.016 0.016

2, 000 0.002 0.000 0.001 0.000 0.011 0.011

7 Days

100 0.005 0.010 0.007 0.007 0.000 0.000

200 0.010 0.014 0.011 0.012 0.003 0.004

500 0.014 0.016 0.015 0.015 0.010 0.010

1, 000 0.016 0.012 0.015 0.015 0.014 0.014

2, 000 0.009 0.004 0.006 0.006 0.016 0.016

C.4 Box plots of estimated hazard ratios

C.4.1 Null case
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Table C.4: MCSE for estimates of power for different assessment intervals
(Maximum length of follow-up= 60 Days, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model
C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)

Assessment frequency N Model A Model B Model C Model D Cox PH Logistic

Every 2 Days

100 0.011 0.015 0.012 0.013 0.011 0.011

200 0.015 0.016 0.015 0.016 0.015 0.014

500 0.014 0.009 0.013 0.012 0.014 0.015

1, 000 0.006 0.001 0.004 0.002 0.007 0.010

2, 000 0.000 0.000 0.000 0.000 0.000 0.003

Every 3 Days

100 0.011 0.015 0.013 0.013 0.011 0.011

200 0.014 0.016 0.015 0.015 0.015 0.014

500 0.014 0.010 0.013 0.012 0.015 0.016

1, 000 0.006 0.002 0.005 0.003 0.007 0.010

2, 000 0.000 0.000 0.001 0.000 0.000 0.002

Every 7 Days

100 0.010 0.015 0.012 0.012 0.011 0.011

200 0.013 0.016 0.015 0.015 0.015 0.014

500 0.015 0.010 0.014 0.013 0.015 0.016

1, 000 0.008 0.002 0.006 0.004 0.008 0.010

2, 000 0.001 0.000 0.000 0.000 0.000 0.003

Every 14 Days

100 0.009 0.014 0.011 0.011 0.012 0.011

200 0.013 0.016 0.014 0.015 0.015 0.014

500 0.016 0.012 0.015 0.014 0.015 0.016

1, 000 0.011 0.004 0.009 0.006 0.008 0.010

2, 000 0.002 0.000 0.001 0.000 0.000 0.002

C.4.2 Base case
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(a) N = 100 (b) N = 200

(c) N = 500 (d) N = 1000

(e) N = 2000

Figure C.3: Point estimates of treatment effects for the null case (Maximum
length of follow-up=60 days, Assessment frequency=Daily, exp(β) = (1, 1, 1),
q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34,
Model C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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Table C.5: MCSE for estimates of power for different baseline transition intensities
(Maximum length of follow-up= 60 Days, Assessment frequency= daily, exp(β) =
(0.67, 0.67, 0.67), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34)

q0 N Model A Model B Model C Model D Cox PH Logistic

(0.01, 0.01, 0.01)

100 0.004 0.009 0.007 0.008 0.006 0.000

200 0.007 0.012 0.010 0.010 0.004 0.005

500 0.013 0.015 0.014 0.014 0.011 0.011

1, 000 0.015 0.008 0.016 0.016 0.014 0.014

2, 000 0.014 0.007 0.012 0.011 0.016 0.016

(0.01, 0.01, 0.05)

100 0.005 0.011 0.006 0.008 0.007 0.008

200 0.009 0.014 0.011 0.012 0.011 0.011

500 0.015 0.016 0.015 0.015 0.015 0.015

1, 000 0.016 0.011 0.015 0.014 0.016 0.016

2, 000 0.009 0.003 0.007 0.005 0.011 0.012

(0.01, 0.05, 0.01)

100 0.010 0.014 0.011 0.013 0.005 0.004

200 0.013 0.016 0.014 0.015 0.010 0.010

500 0.016 0.013 0.015 0.015 0.015 0.015

1, 000 0.010 0.004 0.008 0.006 0.016 0.016

2, 000 0.001 0.000 0.001 0.000 0.011 0.012

(0.05, 0.01, 0.01)

100 0.005 0.011 0.009 0.007 0.005 0.001

200 0.009 0.014 0.011 0.011 0.004 0.004

500 0.014 0.016 0.015 0.015 0.011 0.011

1, 000 0.016 0.012 0.014 0.015 0.015 0.015

2, 000 0.010 0.005 0.007 0.008 0.016 0.016

(0.01, 0.05, 0.05)

100 0.010 0.014 0.012 0.012 0.012 0.011

200 0.014 0.016 0.015 0.016 0.015 0.015

500 0.014 0.009 0.013 0.011 0.014 0.015

1, 000 0.006 0.002 0.004 0.002 0.006 0.010

2, 000 0.000 0.000 0.000 0.000 0.000 0.002

(0.05, 0.01, 0.05)

100 0.007 0.011 0.009 0.009 0.007 0.007

200 0.011 0.015 0.013 0.013 0.011 0.011

500 0.015 0.015 0.016 0.016 0.015 0.015

1, 000 0.015 0.009 0.013 0.013 0.016 0.016

2, 000 0.006 0.001 0.004 0.003 0.010 0.011

(0.05, 0.05, 0.01)

100 0.010 0.014 0.012 0.012 0.005 0.005

200 0.014 0.016 0.015 0.015 0.011 0.010

500 0.015 0.011 0.014 0.013 0.015 0.015

1, 000 0.007 0.003 0.005 0.005 0.015 0.016

2, 000 0.000 0.000 0.000 0.000 0.010 0.011

(0.05, 0.05, 0.05)

100 0.012 0.015 0.013 0.013 0.013 0.012

200 0.015 0.016 0.015 0.016 0.016 0.015

500 0.014 0.008 0.012 0.011 0.013 0.015

1, 000 0.004 0.002 0.003 0.002 0.005 0.008

2, 000 0.000 0.000 0.000 0.000 0.000 0.001
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Table C.6: MCSE for estimates of power for different treatment effects (Maximum
length of follow-up= 60 Days, Assessment frequency= daily, q0 = (0.05, 0.05, 0.03)),
Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34,
Model D: β12 6= β23 = β34)

exp(q0) N Model A Model B Model C Model D Cox PH Logistic

(0.50.0.50, 0.67)

100 0.015 0.016 0.016 0.016 0.013 0.013

200 0.014 0.010 0.013 0.013 0.016 0.015

500 0.004 0.002 0.003 0.004 0.011 0.013

1, 000 0.000 0.000 0.000 0.000 0.003 0.005

2, 000 0.000 0.000 0.000 0.000 0.000 0.000

(0.67.0.67, 0.50)

100 0.012 0.016 0.013 0.014 0.014 0.014

200 0.016 0.015 0.016 0.016 0.016 0.016

500 0.010 0.005 0.009 0.008 0.009 0.011

1, 000 0.002 0.000 0.001 0.000 0.001 0.002

2, 000 0.000 0.000 0.000 0.000 0.000 0.000

(0.90, 0.90, 0.67)

100 0.008 0.010 0.008 0.008 0.010 0.009

200 0.011 0.012 0.010 0.010 0.013 0.012

500 0.015 0.015 0.015 0.014 0.016 0.015

1, 000 0.015 0.015 0.015 0.016 0.013 0.015

2, 000 0.009 0.010 0.009 0.012 0.007 0.010

(0.67, 0.67, 0.90)

100 0.010 0.013 0.012 0.011 0.008 0.007

200 0.014 0.016 0.015 0.014 0.011 0.010

500 0.015 0.013 0.014 0.015 0.014 0.014

1, 000 0.008 0.005 0.005 0.009 0.016 0.016

2, 000 0.001 0.000 0.001 0.001 0.012 0.014



260

(a) N = 100 (b) N = 200

(c) N = 500 (d) N = 1000

(e) N = 2000

Figure C.4: Point estimates of treatment effects for the base case (Maximum length
of follow-up=60 days, Assessment frequency=Daily, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34,
Model C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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C.4.3 Length of follow-up

(a) 30 days, N = 500 (b) 30 days, N = 1000

(c) 14 days, N = 500 (d) 14 days, N = 1000

(e) 7 days, N = 500 (f) 7 days, N = 1000

Figure C.5: Point estimates of treatment effects for different lengths of follow-up (As-
sessment interval= Daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)), Model A:
β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model D:
β12 6= β23 = β34)
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C.4.4 Assessment intervals

(a) Every 2 days, N = 500 (b) Every 2 days, N = 1000

(c) Every 3 days, N = 500 (d) Every 3 days, N = 1000

(e) Every 7 days, N = 500 (f) Every 7 days, N = 1000

(g) Every 14 days, N = 500 (h) Every 14 days, N = 1000

Figure C.6: Point estimates of treatment effects for different assessment intervals (Max-
imum length of follow-up=60 days, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)),
Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model
D: β12 6= β23 = β34)
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C.4.5 Baseline transition intensities

(a) exp(q0) = (0.05, 0.05, 0.05), N = 500 (b) exp(q0) = (0.05, 0.05, 0.05), N = 1000

(c) exp(q0) = (0.05, 0.05, 0.01), N = 500 (d) exp(q0) = (0.05, 0.05, 0.01), N = 1000

(e) exp(q0) = (0.05, 0.01, 0.05), N = 500 (f) exp(q0) = (0.05, 0.01, 0.05), N = 1000

(g) exp(q0) = (0.01, 0.05, 0.05),N = 500 (h) exp(q0) = (0.01, 0.05, 0.05),N = 1000

Figure C.7: Part 1: Point estimates of treatment effects for different baseline transi-
tion intensities (Maximum length of follow-up= 60 days, Assessment frequency=Daily,
exp(β) = (0.67, 0.67, 0.67), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model
C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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(i) exp(q0) = (0.05, 0.01, 0.01),N = 500 (j) exp(q0) = (0.05, 0.01, 0.01),N = 1000

(k) exp(q0) = (0.01, 0.05, 0.01),N = 500 (l) exp(q0) = (0.01, 0.05, 0.01),N = 1000

(m) exp(q0) = (0.01, 0.01, 0.05),N = 500 (n) exp(q0) = (0.01, 0.01, 0.05),N = 1000

(o) exp(q0) = (0.01, 0.01, 0.01),N = 500 (p) exp(q0) = (0.01, 0.01, 0.01),N = 1000

Figure C.7: Point estimates of treatment effects for different baseline transition inten-
sities (Maximum length of follow-up= 60 days, Assessment frequency=Daily, exp(β) =
(0.67, 0.67, 0.67), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34) (cont.)
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C.4.6 Treatment effects

(a) exp(β) = (0.5, 0.5, 0.67), N = 500 (b) exp(β) = (0.5, 0.5, 0.67), N = 1000

(c) exp(β) = (0.67, 0.67, 0.5), N = 500 (d) exp(β) = (0.67, 0.67, 0.5), N = 1000

(e) exp(β) = (0.9, 0.9, 0.67), N = 500 (f) exp(β) = (0.9, 0.9, 0.67), N = 1000

(g) exp(β) = (0.67, 0.67, 0.9), N = 500 (h) exp(β) = (0.67, 0.67, 0.9), N = 1000

Figure C.8: Point estimates of treatment effects for different treatment effects (Maxi-
mum length of follow-up= 60 days, Assessment frequency=Daily, q0 = (0.05, 0.05, 0.03)),
Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model
D: β12 6= β23 = β34)
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C.5 Coverage

C.5.1 Null and Base case

(a) Null exp(β) = (1, 1, 1) (b) Base case exp(β) = (0.67, 0.67, 0.67)

Figure C.9: Coverage of treatment effect estimates for the null and base case
(Assessment frequency=Daily, Maximum length of follow-up= 60 days, q0 =
(0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model
C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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C.5.2 Length of follow-up

(a) 30 days (b) 14 days

(c) 7 days

Figure C.10: Coverage of treatment effect estimates for different lengths of follow-up
(Assessment frequency=Daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03)),
Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34,
Model D: β12 6= β23 = β34)
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C.5.3 Assessment intervals

(a) Every 2 days (b) Every 3 days

(c) Every 7 days (d) Every 14 days

Figure C.11: Coverage of treatment effect estimates for different assessment in-
tervals (Maximum length of follow-up= 60 days, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34,
Model C: β12 = β23 6= β34, Model D: β12 6= β23 = β34)



269

C.5.4 Baseline transition intensities

(a) exp(q0) = (0.05, 0.05, 0.05) (b) exp(q0) = (0.05, 0.05, 0.01)

(c) exp(q0) = (0.05, 0.01, 0.05) (d) exp(q0) = (0.01, 0.05, 0.05)

(e) exp(q0) = (0.05, 0.01, 0.01) (f) exp(q0) = (0.01, 0.05, 0.01)

(g) exp(q0) = (0.01, 0.01, 0.05) (h) exp(q0) = (0.01, 0.01, 0.01)

Figure C.12: Coverage of treatment effect estimates for different baseline transition inten-
sities (Maximum length of follow-up= 60 days, Assessment frequency=Daily, exp(β) =
(0.67, 0.67, 0.67), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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C.5.5 Treatment effects

(a) exp(β) = (0.5, 0.5, 0.67) (b) exp(β) = (0.67, 0.67, 0.5)

(c) exp(β) = (0.9, 0.9, 0.67) (d) exp(β) = (0.67, 0.67, 0.9)

Figure C.13: Coverage of treatment effect estimates for different treatment effects (Maxi-
mum length of follow-up= 60 days, Assessment frequency=Daily, q0 = (0.05, 0.05, 0.03)),
Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C: β12 = β23 6= β34, Model
D: β12 6= β23 = β34)



Appendix D

Chapter 7: Impact of

Misclassification on power, bias and

coverage

D.1 Monte Carlo Standard Errors for estimates of

power
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Table D.1: MCSE for estimates of power in Part I (Misclassification of all transient states,
misclassification of the absorbing state with the adjacent state at most)

Scenario Model A Model B Model C

No misclassification of absorbing state

1 0.005 0.008 0.011

2 0.006 0.010 0.012

3 0.006 0.011 0.012

4 0.007 0.011 0.014

5 0.008 0.012 0.014

6 0.008 0.013 0.014

Under-reporting of absorbing state

7 0.006 0.009 0.014

8 0.006 0.011 0.014

9 0.006 0.011 0.014

10 0.007 0.010 0.015

11 0.007 0.012 0.015

12 0.007 0.012 0.015

Over-reporting of absorbing state

13 0.006 0.009 0.013

14 0.006 0.013 0.015

15 0.006 0.008 0.015

16 0.007 0.013 0.015

17 0.007 0.013 0.015

18 0.008 0.010 0.015

Both under- and over-reporting of absorbing state

19 0.006 0.010 0.014

20 0.006 0.009 0.015

21 0.006 0.016 0.015

22 0.007 0.012 0.015

23 0.008 0.012 0.016

24 0.008 0.015 0.016
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Table D.2: MCSE for estimates of power in Part II (Misclassification of all states with
the adjacent state at most)

Scenario Model A Model B Model C

25 0.006 0.008 0.011

26 0.006 0.008 0.013

27 0.005 0.009 0.013

28 0.006 0.011 0.014

Table D.3: MCSE for estimates of power in Part III (similar to PU case studies)

Scenario Model A Model B Model C

29 0.006 0.009 0.013

30 0.005 0.009 0.015

31 0.006 0.010 0.013
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D.2 Box plots of estimated hazard ratios

D.2.1 Part I: Misclassification of transient states only (Scenar-

ios 1 to 6)

(a) Scenario 1: Assessments daily, length
of follow-up= 60 days

(b) Scenario 2: Assessments every 2 days,
length of follow-up= 60 days

(c) Scenario 3: Assessments every 3 days,
length of follow-up= 60 days

(d) Scenario 4: Assessments daily, length
of follow-up= 30 days

Figure D.1: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34)
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(e) Scenario 5: Assessments every 2 days,
length of follow-up= 30 days

(f) Scenario 6: Assessments every 3 days,
length of follow-up= 30 days

Figure D.1: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03)), Model A: β12 6= β23 6= β34, Model B: β12 = β23 = β34, Model C:
β12 = β23 6= β34, Model D: β12 6= β23 = β34)(cont.)
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D.2.2 Part I: Misclassification of transient states and under-

reporting of the absorbing state (Scenarios 7 to 12)

(a) Scenario 7: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 8: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 9: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 10: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

(e) Scenario 11: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 12: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.2: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03))
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D.2.3 Part I: Misclassification of transient states and over-

reporting of the absorbing state (Scenarios 13 to 18)

(a) Scenario 13: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 14: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 15: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 16: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

(e) Scenario 17: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 18: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.3: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03))
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D.2.4 Part I: Misclassification of transient states and both

under- and over-reporting of the absorbing state (Sce-

narios 19 to 24)

(a) Scenario 19: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 20: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 21: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 22: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

(e) Scenario 23: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 24: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.4: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03))
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D.2.5 Part II: Misclassification of adjacent states only (Scenar-

ios 25 to 28)

(a) Scenario 25: No misclassification of
absorbing state

(b) Scenario 26: Under-reporting of
absorbing state

(c) Scenario 27: Over-reporting of
absorbing state

(d) Scenario 28: Both under- and
over-reporting of absorbing state

Figure D.5: Point estimates for hazard ratios (N = 1000, Length of follow-up= 60 days,
Assessment frequency = Daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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D.2.6 Part III: Pressure ulcer setting (Scenarios 29 to 32)

(a) Scenario 29: No misclassification of
absorbing state

(b) Scenario 30: Under-reporting of
absorbing state

(c) Scenario 31: Over-reporting of
absorbing state

(d) Scenario 32: Both under- and
over-reporting of absorbing state

Figure D.6: Point estimates for hazard ratios (N = 1000, Length of follow-up= 60 days,
Assessment frequency = Daily, exp(β) = (0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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D.3 Estimated misclassification probabilities

D.3.1 Part I: Misclassification of transient states only (Scenar-

ios 1 to 6)

(a) Scenario 1: Assessments daily, length
of follow-up= 60 days

(b) Scenario 2: Assessments every 2 days,
length of follow-up= 60 days

(c) Scenario 3: Assessments every 3 days,
length of follow-up= 60 days

(d) Scenario 4: Assessments daily, length
of follow-up= 30 days

Figure D.7: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03))
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(e) Scenario 5: Assessments every 2 days,
length of follow-up= 30 days

(f) Scenario 6: Assessments every 3 days,
length of follow-up= 30 days

Figure D.7: Point estimates for hazard ratios (N = 1000, exp(β) = (0.67, 0.67, 0.67),
q0 = (0.05, 0.05, 0.03)) (cont.)
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D.3.2 Part I: Misclassification of transient states and under-

reporting of the absorbing state (Scenarios 7 to 12)

(a) Scenario 7: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 8: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 9: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 10: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

Figure D.8: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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(e) Scenario 11: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 12: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.8: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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D.3.3 Part I: Misclassification of transient states and over-

reporting of the absorbing state (Scenarios 13 to 18)

(a) Scenario 13: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 14: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 15: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 16: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

Figure D.9: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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(e) Scenario 17: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 18: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.9: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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D.3.4 Part I: Misclassification of transient states and both

under- and over-reporting of the absorbing state (Sce-

narios 19 to 24)

(a) Scenario 19: Assessment
frequency=Daily, Maximum length of
follow-up= 60 days

(b) Scenario 20: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 60 days

(c) Scenario 21: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 60 days

(d) Scenario 22: Assessment
frequency=Daily, Maximum length of
follow-up= 30 days

Figure D.10: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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(e) Scenario 23: Assessment
frequency=Every 2 days, Maximum
length of follow-up= 30 days

(f) Scenario 24: Assessment
frequency=Every 3 days, Maximum
length of follow-up= 30 days

Figure D.10: Point estimates for misclassification probabilities (N = 1000, exp(β) =
(0.67, 0.67, 0.67), q0 = (0.05, 0.05, 0.03))
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D.3.5 Part II: Misclassification of adjacent states only (Scenar-

ios 25 to 28)

(a) Scenario 25: No misclassification of
absorbing state

(b) Scenario 26: Under-reporting of
absorbing state

(c) Scenario 27: Over-reporting of
absorbing state

(d) Scenario 28: Both under- and
over-reporting of absorbing state

Figure D.11: Point estimates for misclassification probabilities (N = 1000, Length of
follow-up= 60 days, Assessment frequency = Daily, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03))
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D.3.6 Part III: Pressure ulcer setting (Scenarios 29 to 31)

(a) Scenario 30: Under-reporting of
absorbing state

(b) Scenario 31: Over-reporting of
absorbing state

(c) Scenario 32: Both under- and
over-reporting of absorbing state

Figure D.12: Point estimates for misclassification probabilities (N = 1000, Length of
follow-up= 60 days, Assessment frequency = Daily, exp(β) = (0.67, 0.67, 0.67), q0 =
(0.05, 0.05, 0.03))



Appendix E

Chapter 8 Missing data

Figure E.1: Forest plot of estimated misclassification probabilities including Models A2
and C2
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