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Abstract

Cavity coupled solid-state systems have shown great promise for the physical

realisation of scalable, on-chip optical quantum technologies. Using ultra-fast

optical pulses the states of such systems can be manipulated on extremely short

timescales. However, while these quantum systems have demonstrated atomic-

like properties, strong interactions with the solid-state environment introduce

additional processes not found in purely atomic systems. This thesis considers

the control of open quantum systems (namely Quantum Dots (QDs)) through

pulsed optical driving, and the impact of coupling to the environment.

While the effects of this environmental coupling on the emission proper-

ties (g(1)(t) and g(2)(t)) of QDs are well-known under Continuous-Wave (CW)

driving, there has been relatively little work studying these properties in the

pulsed driving regime. Using the polaron formalism we show the asymmetry

in the emission spectra under CW driving is enhanced under pulsed optical

driving, in addition to the Mollow satellite peaks that appear in the spec-

trum in this limit. Furthermore, by extending the variational polaron model

to include pulsed optical driving, we present a formalism describing the QD-

phonon coupling that remains valid in the limits of long pulse duration and

strong driving, where the traditional weak-coupling and polaron formalisms

respectively break down.

Additionally, by performing full Cavity Quantum Electrodynamics (cQED)

calculations, we consider how the configuration of optical cavity structures may

be optimised to improve the fidelity of the initialisation and readout of single

charge-carrier spins confined to semiconductor QD in a single Voigt geometry

magnetic field. We show an optical cavity with a single, linearly polarised cav-

ity mode is able to support both high-fidelity spin initialisation and readout,

and always out-performs bi-modal cavities in realistic driving regimes. More-

over, we experimentally characterise a potential cavity candidate, demonstrat-

ing a flexible design with the ability to form single- or bi-modal cavities with

directional cavity emission.
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Chapter 1

Introduction

1.1 Quantum Information Processing

The field of Quantum Information Processing (QIP) encompasses three main

areas, namely Quantum Cryptography, Quantum Computing, and Quantum

Teleportation. Here we shall give a brief overview of the former two as part of

the motivation for the work presented in the later chapters of the thesis.

1.1.1 Quantum Computing

We are currently living through an exciting time in the development of quan-

tum technologies. In the realm of quantum computing, a number of publica-

tions have claimed to have reached a so-called quantum computational advan-

tage1, and there have also been claims of reaching quantum primacy2, using

few Quantum Bit (qubit) quantum computers [1–3].

The principles of quantum computing were first proposed by Richard Feyn-

man as a potential method for simulating complex quantum mechanical sys-

tems in an efficient manner [4], with the universal quantum computer first

being proposed by David Deutsch in 1985 [5]. Quantum computers are based

on the properties of so-called qubits. Qubits, the quantum analogue of the

classical bit, are quantum systems consisting of two quantised eigenstates that

may be used to encode information. Using the principles of quantum superpo-

sition, and quantum entanglement allows a quantum computer to perform a

number of classes of problems exponentially faster than a classical computer.

1Quantum computational advantage is the point at which quantum computers surpass
their classical counterparts in performing a given task.

2Quantum primacy is the point at which quantum computers perform tasks that would
be infeasible for a classical computer to perform.

1
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This makes quantum computing particularly attractive in sectors such as fi-

nance [6], research and medicine [4, 7–9], and cryptography [10].

To understand how quantum computers are able to perform given tasks

faster than their classical counterparts, let us consider the example of two

classical bits (that may take value 0 or 1) versus two quantum bits (with basis

states {|0⟩ , |1⟩}). Although the two classical bits can exist in four different

combinations (00, 01, 10, 11), a full description of the information held by

these classical bits only requires knowledge of two values, the value of the

first bit and the value of the second bit. However, a single qubit can exist

in a superposition of both eigenstates simultaneously. Hence, according to

the superposition principle, an arbitrary state of two entangled qubits is given

by |ψ⟩ = α |00⟩ + β |01⟩ + δ |10⟩ + γ |11⟩. From this we see that a complete

description of two entangled qubits requires four values, α, β, δ, and γ, known

as amplitudes [11]. This scales exponentially with the number of qubits. To

contain the same information as N qubits would require 2N classical bits3.

Therefore the performance advantage of a quantum computer is not derived

from the speed of each individual step in a given calculation, but from the

requirement for an exponentially reduced number of steps to perform such

calculations by using this increase in held information to run parallel processes.

While the amplitudes in the entangled qubit state may contain a large

amount of information, when a measurement of the system is performed the

state must collapse to one of the basis states (e.g. |01⟩), and thus most of

this information is lost upon measurement [11]. To take advantage of the

improvement in computing performance, numerous quantum algorithms have

been developed that use the parallelism provided by the superposition state,

while maximising the probability of returning the basis state representing the

desired outcome. For example, Shor’s algorithm for factorising large prime

numbers, and Grover’s algorithm for searching through unsorted databases,

are two quantum algorithms that have already been developed [12–14].

The implementation of a quantum computer may be achieved with only two

types of gate; a single-qubit gate, and a two-qubit gate e.g. CNOT gate [15–

17], or controlled phase gate [18]. It is possible to realise a single-qubit phase

shift gate using only classical linear optics [19], while two-qubit gates require

non-linear behaviour at the single-phonon level [18]. Charged Quantum Dots

(QDs) (discussed further in Chapter 3) are one potential system for realising

3In a physical quantum computer this ratio is not quite accurate as some qubits are
required solely for error correction, but it is not far off.
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Figure 1.1: A diagram of the BB84 protocol, including the effects of poten-
tial interception of the exchanged key. The sender encodes their key into the
polarisation of single photons using a random selection of polarisation bases.
The receiver then measures polarisation of the received photons using another
random selection of orthogonal polarisation bases. The values where the two
bases were aligned are kept, while wherever orthogonal bases were employed
by the sender and receiver the values are discarded. Here, in the absence of in-
terception, there are no errors in the exchanged values which can be confirmed
by publicly exchanging a small subset of the key’s digits. However, when the
exchanged key is intercepted, the error rate in the remaining values increases
which can be used to detect the presence of the eavesdropper.

such single- and two-qubit gates [20–22].

1.1.2 Quantum Communication: Quantum Key Distri-

bution

Quantum systems can also be used in the encryption and secure transmission of

confidential information, a task which has become essential in our society. The

field of quantum cryptography covers a range of different cryptographic tasks,

but in this short introduction we shall focus on Quantum Key Distribution

(QKD). The most secure method of communication known to date is the One-

Time Pad (OTP), providing, theoretically at least, a completely secure method

of transmitting data. This method relies on the ability to securely exchange

a randomly generated ‘secret key’ between the sender and receiver that has

the same length as the message, and as the name suggests is used only once.

Using classical methods, the main hurdle in ensuring this technique is indeed

100% secure is the exchange of the secret key. The rapid advancement of

classical technology is gradually eroding the security of existing protocols for

secure key exchange, and with the dawn of quantum computing even the most

secure existing classical methods of communication could be rendered entirely
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ineffective. However, by utilising the fundamental laws of quantum mechanics

QKD provides a solution to this.

The first QKD protocol was proposed in the early 1980s, and is known

as the BB84 protocol [10, 11, 23]. Utilising the polarisation state of single

photons, the BB84 protocol provides a method for detecting attempted inter-

ception of the secret key when transmitted via public communication channels.

The BB84 protocol is outlined in Figure 1.1. Firstly information is encoded in

the polarisation of the transmitted photons using a random selection of non-

commuting bases (e.g. rectilinear and diagonal). The receiver then measures

the photons in another random sequence of the bases, and the lists of bases

used are shared via a public communication channel. A process called key-

sifting is then applied whereby the sender and receiver only retain the results

of the measurements where the same basis was applied by both parties, cru-

cially without communicating the actual measurement result in these cases.

Using a subset of these results any attempted interception of the transmitted

key can be detected, as each attempted interception perturbs the quantum

state, owing to the no-cloning theorem, introducing detectable errors. When

an attempted interception of the key is detected through an increase in the

error rate, either a smaller subset of the data may be used as the key or re-

peated transmission attempts can be made (via different channels if required)

until there is certainty that the key has remained secure.

Since the development of the BB84 protocol, numerous other techniques

for encrypting data using quantum mechanical properties have been developed.

For example variations of BB84 protocol using two states [24] or six states [25]

have been developed, and cryptography using entangled states in the Ekert

protocol has been demonstrated [26]. These schemes can be realised using

optimised QD single-photon sources. In Chapters 4 and 5 we explore the

properties of QDs, a candidate single-photon source, when coupled to their

solid-state environment, and in Chapter 6 we discuss how one can optically

control the states of these quantum systems.

1.2 Quantum Metrology

In addition to information processing, quantum systems have potential appli-

cations in metrology, the science of measurement. That is, quantum systems

may be employed to perform measurements with a higher statistical preci-

sion than is achievable using classical techniques. Such improved precision has
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potential benefits in many applications including, but not limited to: grav-

itational wave detection, measurements on biological systems, spectroscopy,

microscopy, navigation, thermometry, and magnetometry [27–29]. For more

detailed discussions of quantum metrology than given here see [27, 30, 31].

In general, metrology can be broken down into three stages: probe prepa-

ration, interaction between the probe and the system of interest, and readout

of the probe state after the interaction [27, 30, 31]. The aim of metrology is to

maximise the amount of information determined about a system by optimis-

ing both the readout method and choice of probe to maximise the information

that can be encoded on, and determined from, the state of the probe. For

a given parameter, θ, of interest, when performing a measurement using N

non-entangled particles, it can be shown the best achievable precision is the

shot-noise limit [30]

∆θ ≈ N− 1
2 . (1.1)

However, with the same number of entangled particles it can be shown that it

is theoretically possible to reach [30]

∆θ ≈ N−1, (1.2)

known as Heisenberg scaling.

One example of a quantum metrology scheme is the use of N00N states

as an input in a Mach-Zender interferometer [27, 30, 32]. The N00N state

(|ψ⟩ = (|N, 0⟩+ |0, N⟩)/
√
2) describes the situation in which N single photons

enter one input port of the interferometer while the input at the second inter-

ferometer port is the vacuum state. Such states are optimised for phase (ϕ)

measurements, yielding output states (e−iφN/2 |N, 0⟩+ eiφN/2 |0, N⟩)/
√
2 where

the phase is functionally multiplied by N [27, 30]. A number of experiments

have demonstrated precision beyond the shot-noise limit using N00N states in

optical systems [33–36], including the generation of a 2002 state using a QD

single-photon source [37]. While N00N states are sensitive to loss mechanisms,

they should be able to tolerate a certain level of loss and still return quantum

features [38] with small N .

1.3 Overview and Scope of the Thesis

The main focus of this thesis is to study the effect of pulsed optical driving on

open quantum systems, i.e. quantum systems that experience some coupling to
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their environment. This is considered in two contexts: the effects of coupling

to a phonon-bath on the properties of a QD driven in the ultra-fast pulsed

excitation regime, and the application of optical pulses in the preparation,

control, and readout of single cavity-coupled charge-carrier spin states.

The thesis is structured as follows. Chapter 2 introduces the background

theory required in later chapters. This includes an introduction to the den-

sity matrix formalism, and a derivation of the second-order Born-Markov and

Lindblad master equations. In Chapter 3 the properties of QDs are introduced,

including the effects of situating QDs in external fields. The Lindblad master

equation approach is then used to study the optical properties of a classically

driven Two-Level System (2LS), approximating a QD, under Continuous-Wave

(CW) and pulsed excitation. Chapter 3 also contains an introduction to Cavity

Quantum Electrodynamics (cQED) that is used in later chapters.

In Chapter 4 the effects of coupling to a phonon bath on the emission

properties of a QD when driven by an optical pulse are studied. Given the

solid-state nature of QDs, they naturally couple strongly to the quantised

lattice vibrations (phonons) of the host material which impacts both the QD

system dynamics and emission properties. Using a time-dependent Markovian

polaron master equation, we calculate the time-dependent and time-integrated

emission spectra of a QD coupled to a phonon bath. Using this master equation

approach, we demonstrate an asymmetry in these emission spectra that is not

accounted for by a simple pure dephasing model. Additionally, in Chapter 5 we

explore the limits of the (non-Markovian) polaron and weak-coupling models

under pulsed excitation. For given driving parameters, under pulsed excitation

it is possible for the states of the system to evolve on time-scales approximately

equal to, or faster than, the evolution of the bath. In this limit the polaron

model breaks down. Conversely, the weak-coupling model is inadequate for

capturing phonon effects when the coupling to the phonon bath is strong.

To describe the system dynamics accurately in these limits, we derive a non-

Markovian time-dependent variational polaron model that remains valid over

a wide range of driving parameters.

The focus of Chapter 6 is the optical preparation, control, and readout of

single charge-carrier spins confined to QDs coupled to an optical cavity in a

single applied magnetic field geometry. The ability to initialise, control, and

readout the state of a single charge-carrier spin confined to a QD using all-

optical methods is an attractive proposition as this would be compatible with

the development of scalable on-chip optical circuits for QIP and Quantum
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Communication (QC) applications. Such circuits could then use optical pulses

to control the stationary (spin) qubits, while simultaneously using single pho-

tons as flying qubits propagating through the same on-chip optical components.

In the chapter we consider the impact the cavity configuration (single-mode or

bi-modal) has on the spin initialisation and readout fidelities, along with the

ability to coherently control the spin state after the initialisation stage.

Chapter 7 introduces the theoretical and experimental methods used to de-

sign, and characterise the optical cavity structures studied in Chapter 8. This

begins with an overview of Maxwell’s equations, and their application in the

Finite-Difference Time-Domain (FDTD) simulations of electromagnetic waves

propagating through a medium. The chapter then concludes with an overview

of the principles behind diodes, and the fabrication of photonic structures as

well as diode structures. Chapter 8 then presents the measurements charac-

terising optical cavity structures. We show the potential suitability of these

cavity structures for testing the theory set out in Chapter 6, and also demon-

strate additional properties of the cavities that could make them suitable for

applications in on-chip quantum technologies.

Chapter 9 presents a summary of the work presented in the thesis, along

with potential further work that could be performed to build upon the results

presented.
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Chapter 2

Open Quantum Systems

In this chapter we shall explore the foundational theoretical concepts used in

later chapters. We will begin with an introduction to the density matrix for-

malism, before moving on to discuss the time evolution of composite systems.

We shall then use these concepts to derive a method for studying the dynamics

of open quantum systems coupled to an environment with a large number of

degrees of freedom. In Chapter 3 we shall apply these concepts to the simplest

example of a quantum system, and cavity coupled quantum systems.

2.1 The Density Matrix Formalism

2.1.1 Introduction to the Density Matrix Formalism

The mathematical framework of quantum mechanics is founded on a number

of postulates that allow one to map physical systems and their properties to

mathematical structures. One of these postulates states that any physical

system may be described by a state in a given Hilbert space, H , where the

state of the system is a ray1, |ψ⟩, with norm ∥|ψ⟩∥ =
√

⟨ψ|ψ⟩ = 1 in H .

A further postulate states that the time evolution (dynamics) of quantum

systems is governed by unitary transformations such that

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (2.1)

where U(t, t0) is a unitary operator (UU † = U †U = I) that evolves the state

of the quantum system, |ψ⟩, from time t0 to time t. For a time-dependent

1The difference between a vector and a ray is that while the former has a direction and
magnitude, the latter extends indefinitely in a given direction from a given starting point.

9
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Hamiltonian, H(t), this unitary operator is given by

U(t, t0) = TTT exp

{

−i
∫ t

t0

dt′H(t′)

}

, (2.2)

where TTT is the time-ordering operator that orders the products of operators

with a time-dependence such that the earliest times appear at the right. This

unitary operator simplifies to U(t, t0) = exp{−iH(t− t0)} if the Hamiltonian

is time-independent. Taking the derivative of Eq. 2.1 with respect to time

produces the Schrödinger equation

∂

∂t
|ψ(t)⟩ = −iH(t) |ψ(t)⟩ , (2.3)

where we have set ℏ = 1 as will be standard practice throughout the thesis.

This description of quantum mechanics is known as the state-vector formalism.

The state vector formalism provides a complete description of the dynamics of

closed quantum systems, i.e. quantum systems isolated from their environment.

However, physical quantum systems will often have some form of coupling

to the environment around them. Such systems are known as open quantum

systems, and cannot be adequately described by the state vector formalism [39].

The system-environment interaction introduces classical uncertainties to the

reduced state of the system (tracing out the environment) which the state

vector formalism is not suited to accurately accounting for. Instead, to fully

describe open quantum systems we must move to the density matrix formalism.

The density matrix describing the state of a quantum system with a set of

N basis states {|ψi⟩} is defined as

ρ =
N
∑

i=1

pi |ψi⟩⟨ψi| , (2.4)

where pi is the classical probability of the system being in state |ψi⟩. The state
described by Eq. 2.4 is known as a mixed state. However, in the case where

pi=j = 1 and pi ̸=j = 0 Eq. 2.4 reduces to a pure state, ρ = |ψj⟩⟨ψj|. From

Eq. 2.4 we see a valid density matrix has a number of properties [40].

1. The density matrix is Hermitian, i.e. ρ† = ρ.

2. The density matrix is normalised, i.e. Tr{ρ} =
∑N

i pi = 1.

3. The density matrix is positive semi-definite, i.e. ρ ≥ 0, as its eigenvalues

are probabilities and are thus either positive or zero.
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There are two other important properties of the density matrix that we shall

use in later chapters [40].

1. The expectation value of an operator A can be calculated using ⟨A⟩ =
Tr{ρA} =

∑

i pi ⟨ψi|A |ψi⟩.

2. The purity of a state described by a density matrix is given by P (ρ) =

Tr{ρ2} where P (ρ) = 1 for a pure state and P (ρ) < 1 for a mixed state.

In general the diagonal elements of the density matrix (ρi,i) are referred to as

populations as they give the probability of the system existing in that given

state. The off-diagonal elements (ρi,j ̸=i) on the other hand are known as co-

herences as they quantify the relative phases between different components of

the superposition.

2.1.2 Time Evolution of the Density Matrix

The Schrödinger Picture

Just as in the state vector formalism, the temporal evolution of the density

matrix describing a quantum state is determined by unitary transformations.

The time-evolution of a density matrix describing a system starting in a state

|ψ(t0)⟩ is given by

ρ(t) = U(t, t0) |ψ(t0)⟩⟨ψ(t0)|U †(t, t0). (2.5)

Differentiating Eq. 2.5 with respect to time we obtain the density matrix for-

malism equivalent of the Schrödinger equation, known as the Liouville-von

Neumann equation or simply the von Neumann equation [39, 40]

∂

∂t
ρ(t) = −i

[

H(t), ρ(t)
]

. (2.6)

The more general form is given by

∂

∂t
ρ(t) = Lρ(t), (2.7)

where L is a Liouvillian super-operator, an epithet indicating that L is an

operator that acts on another operator [39].

This formulation of quantum mechanics, where the time-dependence of the

system is included in the density matrix while leaving the operators represent-

ing physical observables time-independent, is known as the Schrödinger pic-
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ture. However, this is not the only manner in which time-dependence may be

accounted for in quantum mechanics. There are two other formalisms known as

the Heisenberg, and Interaction pictures that also do this. In the Heisenberg

picture the time-dependence is moved from the density matrix to the oper-

ators (O) representing observables such that ⟨O(t)⟩ = Tr{O(t)ρ(t0)} where

O(t) = U †(t, t0)OU(t, t0) [39–41]. This picture is not overly relevant to the

work done in this thesis, and thus will not be discussed in further detail here.

For a good discussion of the Heisenberg picture see [39–41].

The Interaction Picture

The interaction picture, also referred to as the Dirac picture, lies in-between

the Schrödinger and Heisenberg pictures, with time-dependence in both the

density matrix and operators [39]. In many cases using either the Schrödinger

picture or Heisenberg picture makes developing perturbative methods chal-

lenging. Moving to the interaction picture provides a solution to this. To

perform this transformation from the Schrödinger picture to the interaction

picture one must first spilt the Hamiltonian into two components

H(t) = H0(t) +HI(t), (2.8)

where H0(t) is trivial to solve while HI(t) is non-trivial. Splitting the Hamil-

tonian in such a way allows the contribution from H0 to be moved to the

time-evolution of the operators by performing the appropriate unitary trans-

formation

⟨O(t)⟩ = Tr{Oρ(t)} = Tr
{

OU(t, t0)ρ(t0)U
†(t, t0)

}

, (2.9)

where ⟨O⟩ is the expectation value of some observable O, which is assumed to

have no intrinsic time dependence. Using this transformation guarantees the

invariance of the expectation values between the different pictures as required

[41]. This unitary operator, U(t, t0), can then be decomposed into two parts

U(t, t0) = U0(t, t0)UI(t, t0), (2.10)

where U0(t, t0) = TTT exp
{

−i
∫ t

t0
dt′H0(t

′)
}

. Making the substitution back into

Eq. 2.9 yields

⟨O(t)⟩ = Tr{Oρ(t)} = Tr
{

OU0(t, t0)UI(t, t0)ρ(t0)U
†
I (t, t0)U

†
0(t, t0)

}

. (2.11)
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We can now make use of the cyclic nature of the trace (Tr(ABC) = Tr(CAB) =

Tr(BCA)) to rewrite Eq. 2.11 as

⟨O(t)⟩ = Tr{OI(t)ρI(t)}, (2.12)

where the operator in the interaction picture, OI(t), is defined as

OI(t) =U
†
0(t, t0)OU0(t, t0)

= exp{iH0(t− t0)}O exp{−iH0(t− t0)},
(2.13)

and

ρI(t) = UI(t, t0)ρ(t0)U
†
I (t, t0) = U †

I (t, t0)ρ(t)UI(t, t0). (2.14)

is the density matrix in the interaction picture. Accordingly we see the time

evolution of operators in the interaction picture is indeed determined by H0,

while the density matrix evolves according to HI . Differentiating equation

2.14 with respect to time, and making use of Eq. 2.6, reveals that the time

evolution of the density matrix in the interaction picture is still determined by

a von Neumann equation

∂

∂t
ρI(t) = −i

[

HI(t), ρI(t)
]

. (2.15)

The only difference here is HI(t) = U0(t, t0)HIU0(t, t0) appears in the commu-

tator on the right-hand side of the equation, rather than the total Hamiltonian

as in Eq. 2.6. From Eq. 2.15 it can also be seen that UI(t, t0) takes the same

form as the unitary operator in Eq. 2.2.

2.1.3 Composite Systems

In addition to the properties of single quantum systems, we are often interested

in the effects resulting from interactions between multiple quantum systems.

For this reason, now that we have a description of an individual isolated quan-

tum system, it will be useful to consider how one mathematically describes

two distinguishable interacting quantum systems. If the first quantum system

is described by Hilbert space H1, and the second by a Hilbert space H2, then

the total Hilbert space describing the full composite system, H , is given by

the tensor product of the two sub-spaces

H = H1 ⊗ H2. (2.16)
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The states of a composite system generally fall into two categories: separable,

and inseparable. Assuming the individual quantum systems have basis states

{|ψ⟩i} and {|ϕ⟩j} in their respective Hilbert sub-spaces, and assuming the

two systems do not interact, a state is defined as separable when it can be

written as the sum of the tensor product of the pure states of the individual

sub-systems, i.e.

|Ψ⟩ =
∑

ij

aij |ψ⟩i ⊗ |ϕ⟩j (2.17)

which can naturally be extended to the density matrix formalism as

ρ = |Ψ⟩⟨Ψ| =
∑

ij

cij |ψ⟩⟨ψ|i ⊗ |ϕ⟩⟨ϕ|j =
∑

ij

cijρi ⊗ ρj. (2.18)

The classical correlations found in mixed states (described by Eq. 2.4) fall

into the separable category. We can retrieve the state of a single sub-system

(known as the reduced state of the system) by tracing over all others. For

example, if we wish to know the reduced state of the first quantum system in

Eq. 2.18 (|ψ⟩) we can take the partial trace over the second sub-system (|ϕ⟩).
If the sub-systems are in a separable state this will result in a pure state

ρ1 = Tr2
(

ρ1 ⊗ ρ2
)

= Tr2
(

|ψ⟩⟨ψ| ⊗ |ϕ⟩⟨ϕ|
)

= |ψ⟩⟨ψ|Tr
(

|ϕ⟩⟨ϕ|
)

= |ψ⟩⟨ψ| .
(2.19)

However, if there is an interaction between the two sub-systems then the total

state is entangled and thus we can no longer write the total state as the tensor

product of two pure states. Instead the state may be decomposed as

|Ψ⟩ =
∑

ij

aij |ψ, ϕ⟩ij or ρ =
∑

ijkl

cijkl |ψ, ϕ⟩⟨ψ, ϕ|ijkl . (2.20)

In this case taking the partial trace over the degrees of freedom of one of the

sub-systems will not lead to a pure state, but a mixed state instead. We can see

this by considering two qubits that are initially prepared in a pure entangled

state

|Ψ⟩ = α |0, 1⟩+ β |1, 0⟩ , (2.21)

where |α|2+ |β|2 = 1. From the superposition principle we know |Ψ⟩ is a valid

quantum state since both |0, 1⟩ and |1, 0⟩ are also valid quantum states. The
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density matrix describing this state is then given by

ρ = α2 |0, 1⟩⟨0, 1|+ β2 |1, 0⟩⟨1, 0|+ αβ
(

|0, 1⟩⟨1, 0|+ |1, 0⟩⟨0, 1|
)

. (2.22)

We can again take the partial trace over the second qubit to give the reduced

state of the first qubit

ρ1 = Tr2(ρ) = α2 |0⟩⟨0|+ β2 |1⟩⟨1| , (2.23)

as Tr{|1⟩⟨0|} = Tr{|0⟩⟨1|} = 0. It turns out that even though the composite

system was in a pure state, the reduced states of the individual qubits are

mixed. If α = β = 1√
2
we actually find the states of the sub-systems (qubits)

are maximally mixed with a purity P (ρ1) = 1
2
. In taking the partial trace

we have lost some information from the composite state that is not found in

the states of the individual sub-systems. As discussed in Chapter 1, it is this

property of the entangled system to hold more information than the individual

sub-systems that makes quantum entanglement useful in quantum information

processing applications.

2.2 Second-Order Master Equations

Using the density matrix formalism it is possible to derive a microscopic de-

scription of the interaction between two distinct quantum systems. However,

an open quantum system will typically be coupled to an environment with a

large number of degrees of freedom. This makes a complete description of an

open quantum system too complex to perform exactly using the von Neumann

equation. We must therefore find a simpler method of calculating the dynamics

of the reduced state of the quantum system that we are interested in that does

not explicitly track the degrees of freedom of the environment. To do this we

will derive a second-order master equation that treats the interaction between

the quantum system, S, and the environment, E, as a perturbation. This will

allow us to evolve the state of the composite system, which we assume to be a

closed quantum system, and then take the partial trace over the environment

degrees of freedom to find the temporal evolution of the reduced density matrix

of the open system of interest. In addition to this, utilising a master equation

approach will then allow us to calculate experimentally important quantities

such as correlation functions and emission spectra as will be discussed later.

There are a number of different methods that have been used to derive such
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Figure 2.1: A schematic representation of an open quantum system described
by the Hamiltonian HS coupled to its environment, HE. The interaction be-
tween the open system and the environment is governed by the Hamiltonian
HI . The composite system formed by the open system and environment is
itself a closed system referred to as the total system.

an approximate master equation, including mathematically rigorous deriva-

tions based on the projection operator method, first introduced by Nakajima

and Zwanzwig [42, 43]. However, in this thesis we shall use a less mathe-

matically rigorous derivation that highlights the physical nature of the various

assumptions that must be made on the way to deriving a master equation

second-order in the interaction Hamiltonian [44].

A schematic of the system we wish to derive a master equation for is shown

in Figure 2.1. We shall again begin with a general Hamiltonian of the form

H = H0 +HI . (2.24)

While the Hamiltonian given here has no explicit time-dependence, this deriva-

tion does hold in the time-dependent case. We shall now go a step further

than we did studying the interaction picture by expanding the first term on

the right-hand-side of the equation to H0 = HS +HE to give the total Hamil-

tonian

H = HS +HE +HI . (2.25)

Here HS describes the open quantum system degrees of freedom S, HE gener-

ates the environment degrees of freedom E, and HI characterises the interac-

tion between the two. We can also assume HI is the only term involving both

S and E. Moving to the interaction picture with respect to H0, HI becomes

H̃I(t) = U †
0(t)HIU0(t) = exp

{

i(HS +HE)t
}

HI exp
{

−i(HS +HE)t
}

, (2.26)
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following the form of Eq. 2.13 with t0 = 0 for simplicity. Here the tilde

represents an operator in the interaction picture. As we have assumed the total

system is itself a closed system, the density operator describing the composite

system will evolve according to the von Neumann equation in the interaction

picture
∂

∂t
ρ̃(t) = −i

[

H̃I(t), ρ̃(t)
]

. (2.27)

Integrating Eq. 2.27 produces the formal solution

ρ̃(t) = ρ̃(0)− i

∫ t

0

dt′
[

H̃I(t
′), ρ̃(t′)

]

, (2.28)

and substituting this solution back into Eq. 2.27 returns

∂

∂t
ρ̃(t) = −i

[

H̃I(t), ρ̃(0)
]

−
∫ t

0

dt′
[

H̃I(t),
[

H̃I(t
′), ρ̃(t′)

]

]

. (2.29)

2.2.1 The Born-Markov Master Equation

At first glance it would seem that we have not improved our situation much.

Eq. 2.29 is still exact, and thus still as challenging to solve as the von Neumann

equation we started with. However, we are now in a position to make a number

of useful approximations. Before we do this, as we are only interested in the

evolution of S, we can take the partial trace over the environment degrees of

freedom to find the reduced density operator for S

∂

∂t
ρ̃S(t) = −iTrE

[

H̃I(t), ρ̃(0)
]

−
∫ t

0

dt′ TrE

[

H̃I(t),
[

H̃I(t
′), ρ̃(t′)

]

]

. (2.30)

From here we can introduce the first of our assumptions, starting by set-

ting −iTrE
[

H̃I(t), ρ̃(0)
]

= 0. This condition can be ensured by moving a

term TrE[H̃I(t), ρ̃(0)] from the interaction Hamiltonian to the system Hamil-

tonian [44]. Next we may assume there are no correlations between the sub-

systems S and E before a given starting time t0, which we set to t0 = 0 for

simplicity. This allows the initial density matrix of the composite system to be

factorised as ρ(0) = ρS(0)⊗ ρE(0). From here we can make a further approx-

imation, known as the Born approximation, and assume the density matrix

factorises at all times such that ρ̃(t) ≈ ρ̃S(t)⊗ ρE
2. In other words we assume

the environment density matrix is time-independent. This approximation re-

lies on the interaction between the two sub-systems (S and E) being weak, and

2We assume the environment density matrix is in a Gibbs state.
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E being sufficiently large that the effect of the coupling to S on the state of the

environment is negligible. Assuming a weak interaction between E and S also

allows us to ignore higher order terms that could be found by repeating the

process used to derive Eq. 2.30. Applying all these approximations to Eq. 2.30

yields
∂

∂t
ρ̃S(t) = −

∫ t

0

dt′ TrE

[

H̃I(t),
[

H̃I(t
′), ρ̃S(t

′)⊗ ρE
]

]

. (2.31)

This form of the master equation can be shown to be a perturbative expansion

in the interaction Hamiltonian. We must now make a further approximation

known as the Markov approximation. Although we are now closer to the final

form of our master equation, the time evolution of the reduced density matrix is

still dependent on its history via the ρ̃S(t
′) term. We can make the substitution

ρ̃S(t
′) → ρ̃S(t) on the right-hand side of our equation if the memory time of E

is exceedingly short relative to the memory time of S. This is consistent with

the Born approximation we made earlier which assumed E was large enough

to remain unaffected by its interaction with S. The master equation in the

Born-Markov approximation then becomes

∂

∂t
ρ̃S(t) = −

∫ t

0

dt′ TrE

[

H̃I(t),
[

H̃I(t
′), ρ̃S(t)⊗ ρE

]

]

. (2.32)

To make this master equation truly Markovian 3, we need to make one more

approximation. In its present form, this master equation still contains a refer-

ence to a starting time, t0 = 0, in the lower limit of the integral. Making the

substitution t′ → t−τ we can extend the limit of the integral to infinity, taking

the starting time to minus infinity, again using the justification of separation

of time scales between the system and environment. Making this substitution

yields

∂

∂t
ρ̃S(t) = −

∫ ∞

0

dτ TrE

[

H̃I(t),
[

H̃I(t− τ), ρ̃S(t)⊗ ρE
]

]

. (2.33)

This is the full form of the weak-coupling Born-Markov master equation that

approximately describes the evolution of an open system in the interaction

picture. It can be shown that this master equation is second-order in the

interaction Hamiltonian, HI .

3A Markovian process is one where the future state of the system is only dependent on
its present state and not it’s previous states.
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2.2.2 The Lindblad Master Equation and the Secular

Approximation

Unfortunately we cannot guarantee the density matrix produced by Eq. 2.33

will always be physical. That is, the density operator given by the Born-

Markov master equation can have negative eigenvalues and Tr(ρS) ̸= 1. We

shall now continue from the weak-coupling Born-Markov master equation in

Eq. 2.33 to derive the Lindblad master equation. To do this we now decompose

the interaction Hamiltonian into system (Sj) and environment (Ej) operators

such that

H̃I(t) =
∑

j

Sj(t)⊗ Ej(t), (2.34)

and substitute this into the Born-Markov master equation. Expanding the

commutators we find

∂

∂t
ρ̃S(t) = −

∑

ij

∫ ∞

0

dτ
(

[

S̃i(t), S̃j(t− τ)ρ̃s(t)
]

⟨Ẽi(t)Ẽj(t− τ)⟩

−
[

S̃i(t), ρ̃s(t)S̃j(t− τ)
]

⟨Ẽj(t− τ)Ẽi(t)⟩
)

, (2.35)

where we have defined the environment two-time correlation functions as

⟨Ẽi(t)Ẽj(t− τ)⟩ = TrE
(

Ei(t)Ej(t− τ)ρE
)

,

⟨Ẽj(t− τ)Ẽi(t)⟩ = TrE
(

Ej(t− τ)Ei(t)ρE
)

,
(2.36)

and again made use of the cyclic nature of the trace. If we decompose the

system Hamiltonian as HS =
∑

i λi |λi⟩⟨λi| where λi is an eigenvalue of HS

given by the eigenvalue equation HS |λi⟩ = λi |λi⟩, then the system operator

can also be written in this basis as

Sk(t) =
∑

ij

⟨λi|Sk(t) |λj⟩ |λi⟩⟨λj| . (2.37)

In the interaction picture this is given by

Sk(t) = eiHStSke
−iHSt, (2.38)

in accordance with Eq. 2.13. Making the substitution we find

Sk(t) =
∑

i,j

ei(λi−λj)t ⟨λi|Sk |λj⟩ |λi⟩⟨λj| =
∑

ω

eiωtSk(ω), (2.39)
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with

Sk =
∑

ω

Sk(ω) =
∑

ω

S†
k(ω), (2.40)

where ω = λi − λj and the operators Si(ω) and S
†
i (ω) obey the commutation

relations

[

HS, Sk(ω)
]

= −ωSk(ω) and
[

HS, S
†
k(ω)

]

= ωS†
k(ω). (2.41)

Substituting this into Eq. 2.35 yields

∂

∂t
ρ̃S(t) =−

∑

ω,ω′

∑

ij

∫ ∞

0

dτ
(

eiω
′te−iω(t−τ)

[

S̃i(ω
′), S̃j(ω)ρ̃s(t)

]

⟨Ẽi(t)Ẽj(t− τ)⟩

− e−iω
′teiω(t−τ)

[

S̃i(ω
′), ρ̃s(t)S̃j(ω)

]

⟨Ẽj(t− τ)Ẽi(t)⟩
)

=−
∑

ω,ω′

∑

ij

(

ei(ω−ω
′)tΓij(ω)

[

S̃i(ω
′), S̃j(ω)ρ̃s(t)

]

− e−i(ω−ω
′)tΓ∗

ji(ω)
[

S̃i(ω
′), ρ̃s(t)S̃j(ω)

]

)

,

(2.42)

with Γij(ω) =
∫∞
0
dτeiωτ ⟨Ẽi(t)Ẽj(t − τ)⟩ when [HE, ρE] = 0. Assuming the

total system evolves on much shorter time scales than the reduced state of the

open quantum system we can use the secular approximation. This allows us to

only consider the resonant terms (ω = ω′) in Eq. 2.42 as the non-resonant terms

lead to rapid oscillations which average out on the open system timescales.

From here we can divide the dynamics of the system into real and imaginary

components by defining Γij(ω) =
1
2
γij(ω) + iπij(ω) such that

γij = Γij(ω) + Γ∗
ji(ω) and πij =

1

2i

(

Γij(ω)− Γ∗
ji(ω)

)

. (2.43)

Using these definitions we can re-write Eq. 2.42 as [44]

∂

∂t
ρ̃S = −i

[

HLS, ρS(t)
]

+
∑

ω

∑

ij

γij(ω)
(

Sj(ω)ρS(t)S
†
i (ω)−

1

2

{

S†
i (ω)Sj(ω), ρS(t)

}

)

, (2.44)

where HLS =
∑

ω

∑

ij πij(ω)S
†
i (ω)Sj(ω) is the Lamb shift Hamiltonian, arising

from Im[Γij(ω)], that results in a renormalisation of the system energy levels

due to the interaction with the environment [44]. Transforming back to the
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Schrödinger picture using

∂

∂t
ρS(t) = −i[HS, ρS(t)] + e−iHSt

( ∂

∂t
ρ̃S(t)

)

eiHSt, (2.45)

yields [44]

∂

∂t
ρ̃S = −i

[

HS +HLS, ρS(t)
]

+
∑

ω

∑

ij

γij(ω)
(

Sj(ω)ρS(t)S
†
i (ω)−

1

2

{

S†
i (ω)Sj(ω), ρs(t)

}

)

. (2.46)

Re-writing the master equation in the diagonal form gives [39, 44]

∂

∂t
ρS(t) = −i

[

HS +HLS, ρS(t)
]

+
1

2

∑

ω,k

(

2Lk(ω)ρ(t)L
†
k(ω)−

{

L†
k(ω)Lk(ω), ρS(t)

}

)

≡ L ρS(t), (2.47)

which reduces to

∂

∂t
ρS(t) = −i

[

HS +HLS, ρS(t)
]

+
1

2

∑

k

(

2Lkρ(t)L
†
k − {L†

kLk, ρS(t)}
)

≡ L ρS(t), (2.48)

when there is only a single relevant frequency. This is the final form of the

Lindblad Master equation. The coherent lossless dynamics of the quantum

system are described by the commutator [HS+HLS, ρS(t)], while the incoherent

dynamics are incorporated by the collapse operators, Lk =
√
γkSk, with rates

γk derived from the real component of Γij(ω). To reach this point we have

assumed the system and environment have no interactions before the given

starting time, the interaction between the system and environment is weak

and the environment is large enough to remain unaffected by the quantum

system (Born approximation), the state of the open quantum system evolves

rapidly relative to the state of the S (Secular approximation), and the memory

time of the environment is very short (Markov approximation).
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Chapter 3

Quantum Dots and The

Classically Driven Two-Level

System

3.1 Introduction

There are numerous examples of different simple quantum systems whose evo-

lution may be described by the Lindblad master equation we derived in Chap-

ter 2. The simplest of these examples is the Two-Level System (2LS)1 which

consists of a ground state |g⟩ and an excited state |e⟩ separated by an en-

ergy ℏωe. While the 2LS may be a simple example of a quantum system, it

can prove to be an extremely useful approximation when studying physical

quantum systems.

The semiconductor QD is one example of a physical quantum system that

is often approximated as a 2LS. In Chapters 4 and 5 we shall consider the

effects of pulsed driving on a QD coupled to a large bath of quantum harmonic

oscillators, approximating the QD as a 2LS. Furthermore, in Chapter 6 we shall

extend the classically driven 2LS model to a Four-Level System (4LS) picture

with pulsed excitation. It will therefore be useful to explore the electronic

properties of QDs, and examine the properties of a classically driven 2LS under

Continuous-Wave (CW) and pulsed optical driving in the absence of coupling

to a thermal bath using the Lindblad master equation. Additionally we shall

explore the impact of pure dephasing mechanisms, and coupling to an optical

cavity on the properties of the 2LS.

1The two-level system may also be referred to as a two-level atom or two-level emitter.

23
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Figure 3.1: A simple representation of the edges of the conduction and valence
bands of a semiconductor. The bands are separated by a band gap of energy
EG in which lies the Fermi level at energy EF . At T = 0 K the valence band
is fully occupied while the conduction band is empty.

3.2 The Properties of Semiconductor Quan-

tum Dots

In this section we shall give a brief overview of the properties of QDs, and

the effects resulting from the application of external fields. For more in-depth

discussions see [11, 45, 46].

3.2.1 Band Structure of Bulk Semiconductors

Within the crystal lattice of a bulk solid the constituent atoms are situated

in close proximity to one another. Because of this, the outer valence orbitals

of the atoms forming the crystal have a significant overlap, and thus strongly

interact [45, 46]. To preserve the Pauli exclusion principle that states no

two Fermions may simultaneously possess the same quantum state within a

quantum system, the interacting orbitals must broaden into electronic bands 2.

Each band maintains some characteristics of the atomic orbitals from which it

originated, and the energy width of each band is determined by the magnitude

of the overlap between these orbitals [46]. Depending on the material and band

configuration, this finite width can result in the emergence of gaps between

the bands in which there are no allowed electronic energy levels.

Of the bands that form the band structure of a crystal lattice, it is those

lying closest to the Fermi level that are of the most interest. The Fermi

level defines the highest energy an electron may possess in the material at a

temperature of zero Kelvin. That is, at zero Kelvin electronic states below

2Each band actually consists of a series of discrete energy levels. However, the large
number of these discrete levels (proportional to the number of atoms in the lattice) means
their energy separation is small enough for each band to be considered as continuous.
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the Fermi level will be occupied whereas the states above the Fermi level will

remain unoccupied [46]. In a semiconductor, the material type most relevant

to the work presented in this thesis, the Fermi level lies within a band gap.

The lowest energy unoccupied band above the Fermi level is referred to as the

conduction band, and the highest energy fully occupied band below the Fermi

level is known as the valence band [45] as shown in Figure 3.1. Electrons may

be promoted across the band gap from the valence band to the conduction

band by absorbing a quanta with energy greater than the band gap energy,

EG [45]. This process of inter-band absorption leaves behind a hole, a spin-3/2

quasi-particle3 with an effective positive charge and mass resulting from the

absence of an electron, in the valence band [46].

3.2.2 Quantum Confinement

The band structure of a material may be engineered to confine charge carriers

(electrons and holes) to a desired spatial region. By surrounding one type

of semiconductor material (e.g. InAs) with another possessing a larger band

gap (e.g. GaAs), discontinuities appear in the valence and conduction bands

forming a potential well as shown in Figure 3.2. If along a given axis the spatial

dimension of the potential well is smaller than the de Broglie wavelength of a

charge carrier, the charge carrier will no longer be free to move along that given

confinement axis [11, 46]. Specifically, on these scales the confinement of the

charge carrier will begin to exhibit quantum properties, and the charge carriers

will occupy discrete energy levels defined along the confinement axes while

remaining free to move along any unconfined axes. We can therefore classify

quantum confined structures according to the number of spatial dimensions

along which any trapped charge carriers remain free to move. Quantum wells

are formed by confining the motion of electrons and holes along a single spatial

dimension, while allowing free motion along the other two dimensions, and are

thus referred to as two dimensional structures. On the other hand, quantum

wires confine charge carriers in all but one of the spatial dimensions. Because

of this they are referred to as 1D structures. In a QD charge carriers are

spatially confined along all three axes 4, and thus have zero dimensions along

which any confined charge carriers may freely move. As QDs are the most

relevant quantum confined structure to this thesis we shall neglect the other

3Holes with spin-3/2 are known as heavy-holes. Holes can also have spin-1/2, known as
light-holes, but these are not extensively considered in the thesis as the quantum confinement
in the QD lifts the degeneracy of the light- and heavy-hole valence bands.

4The growth process of Self-Assembled Quantum Dots (SAQDs) is discussed in Chapter 7.
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Figure 3.2: A simple band diagram of a quantum confined structure (e.g. a
Quantum Dot (QD)) formed from InAs surrounded by GaAs. The band gap
of InAs (EG) is smaller than that of GaAs resulting in the confinement of the
charge carriers to the InAs region. This confinement shifts the discrete energy
levels of the charge carriers away from the band edges of the bulk material by
δe(h).

types of quantum confined structures in our discussions from here on. The

energy of charge carriers confined to a QD is fully quantised giving rise to

atom-like properties. Each further dimension of confinement has the additional

effect of shifting the band edge in the structure away from the band edge of

the material by the confinement energy [46] as can be seen in Fig 3.2.

3.2.3 Neutral States: Excitons and Biexcitons

When discussing the band structure of solid materials we briefly mentioned

that promoting an electron to the conduction band leaves a quasi-particle

referred to as a hole in the valence band. Under the right conditions these two

oppositely charged particles can be bound together by their mutual Coulomb

interaction to form a further quasi-particle known as an exciton [45, 46].

As the exciton is formed from a negatively charged electron and positively

charged hole it has no overall net charge. However, excitons do possess a net

spin derived from the spin of their component particles. Excitons can be split

into two categories based on the magnitude of their spin. Bright excitons have

a spin magnitude of one, i.e. the spins of the electron and hole are anti-parallel

(|↑⇓⟩ , |↓⇑⟩). These excitons are referred to as bright as they are able to be

created by the absorption of, and recombine via the emission of, a single photon

with angular momentum ±1. In dark excitons the electron and hole spins are

parallel resulting in an exciton spin of ±2. As a result the recombination of a

dark exciton is optically forbidden.
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Figure 3.3: The energy level structure of the biexciton cascade written in the
linear basis. Here |X±⟩ = 1√

2

(

|↓⇑⟩ ± |↑⇓⟩
)

, and |XX⟩ = |↑⇓↓⇑⟩. The exciton

eigenstates |X±⟩ are split by the fine structure splitting, ∆, caused by an
asymmetry in the Quantum Dot (QD) coupling the bright excitonic states via
the electron-hole exchange interaction [47].

Excitons can be further categorised based on the strength of the interaction

between the electron and hole. Frenkel excitons are usually formed in materials

with small dielectric constants, and thus have a large binding energy and small

spatial extent on the order of the lattice constant of the bulk material [46].

Wannier-Mott excitons, on the other hand, are typically formed in materials

with a large dielectric constant such as semiconductors [46], and are therefore

the more relevant type of exciton to this thesis. The large dielectric constant

reduces the binding energy between the electron and hole resulting in a large

exciton radius extending over multiple lattice periods. When excited in a bulk

material the binding energy of Wannier-Mott excitons is so small that above

cryogenic temperatures the thermal vibrations of the crystal lattice provide

enough energy to overcome the binding energy and dissociate the electron and

hole. However, exciting an electron-hole pair within a QD increases the exciton

binding energy. This is due to the spatial confinement of the charge carriers

increasing the overlap of their wave functions resulting in a stronger Coulomb

interaction and smaller spatial extent.

Just as it is possible to excite a single exciton, the nature of the electronic

bands allows for two excitons with opposite spin configurations to be simulta-

neously excited. The Coulomb interaction between the components of the two

neutral states can then also bind them to form an exciton molecule known as

a biexciton. The biexciton energy is then given by

EXX = 2EX − Eb, (3.1)
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where EX is the exciton energy, and Eb is the biexciton binding energy. It is

this difference in energy between the exciton and biexciton transitions (i.e. Eb)

that allows us to approximate neutral QDs as 2LSs assuming that any optical

driving is also far enough detuned from the biexciton energy. The formation of

a biexciton results in an energy structure referred to as the biexciton cascade

shown in the linear basis in Figure 3.3. This can be employed as a source

of entangled photon pairs, emitted when the biexciton relaxes to the ground

state via the intermediate exciton states [48–52].

3.2.4 Charged States: Trions

In addition to neutral exciton states, it is also possible to confine single charge

carriers (electrons or holes) inside QDs. This is considerably more challenging

to achieve than confining excitonic states, as it is not possible to photo-excite

a single charge carrier as it is with single excitons. There are a number of

methods for isolating single charge carriers in QDs including ionising an exci-

ton, deterministically charging the confined structure with an applied electric

field, or including a dopant whose concentration is controlled to give a unity

mean charge carrier occupancy 5. These methods often require the use of diode

structures, which will be discussed in the next section.

It is also possible to excite an exciton in a charged QD. Although the exciton

possesses no overall charge, the Coulomb interaction between the constituent

charge carriers of the exciton and the single charge carrier, combined with

the wave function overlap resulting from the quantum confinement, results in

the formation of a charged quasi-particle known as a trion, often labelled as

X+ or X− (or equivalently T+ or T−) depending on the charge. The overall

charge of the trion depends on the charge of the single charge carrier initially

occupying the QD, with a single hole producing a positively charged trion

(|⇑⇓↑⟩ or |⇓⇑↓⟩) and a single electron resulting in a negatively charged trion

(|↑⇑↓⟩ or |↓⇓↑⟩). These charged exciton states will form an important part of

the work presented in Chapter 6.

3.2.5 The Quantum Confined Stark Effect

Now we have discussed the electronic properties of QDs in the absence of any

external fields, we can extend our discussion to explore the effect of situating

a QD in an external field. We shall begin by considering the application of

5The epitaxial growth of semiconductor QDs is discussed in Chapter 7.
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(a) (b)

Figure 3.4: The conduction and valence bands of a quantum confined structure
with (a) no applied electric field, and (b) a non-zero applied electric field.
Applying an electric field tilts the bands altering the potential in which the
charge carriers are confined. This shifts the position of the electron and hole
wave functions to opposite sides of the confinement well reducing the wave
function overlap and thus also reducing the exciton binding energy (E ′

X < EX).

an external electric field to a QD, the result of which is described by the

Quantum-Confined Stark Effect (QCSE) [45, 46].

One may apply an external direct-current electric field to a QD by situating

it within a diode structure (for more information on diodes see Chapter 7).

When an electric field is applied to a QD containing an exciton, the constituent

electron and hole are forced to move in opposite directions owing to their op-

posing charges. In the absence of any quantum confinement the exciton would

be torn apart by this field. However, in a QD the quantum confinement of

the charge carriers prevents the exciton from being dissociated. Instead the

applied field moves the two charge carriers to opposing sides of the potential

well as the band structure is modified (see Figure 3.4), reducing their wave

function overlap and the strength of their mutual Coulomb interaction. This

results in a red-shift of the photons emitted when the exciton eventually re-

combines (see spectra in Section 8.3.3). For a QD, the magnitude of this shift

is given by [53, 54]

∆EQCSE = pF + βF 2, (3.2)

where in this instance F is the applied electric field strength, p is the electric

dipole moment of the QD, and β is the polarisability [53, 54]. From this we

can see that the largest shift occurs when the electric field is aligned with

the electric dipole of the QD. The principle application of the QCSE is the
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tuning of the exciton energy, and, by extension, the emission energy. This

can be done, for example, to bring two QDs situated in independent electric

fields into resonance, or (as shall be demonstrated in Chapter 8) to bring a

QD into resonance with an optical cavity mode. However, if the applied field

is large enough, and the band structure is suitable, the QD can be ionised or

completely depleted by the application of an electric field as one or both of the

charge carriers tunnel out of the structure.

3.2.6 The Zeeman Effect

One may also apply an external magnetic field to a QD, in addition to the

external electric fields we have discussed. The results of applying a weak

magnetic field to a QD, and any atomic system in general, are described by

the Zeeman effect [45]. This effect plays a central role in the work performed

in Chapter 6. Depending on the origin, the Zeeman effect may be split into

two categories. The normal Zeeman effect describes the results of applying

an external magnetic field to a system with no net spin [45]. On the other

hand, the anomalous Zeeman effect originates from systems with a non-zero

net spin and is thus a purely quantum effect [45]. As we are mainly interested

in charge-carriers confined to QDs it is the latter effect that is most relevant

since the charge carriers do possess a net spin as we have previously discussed.

When an external magnetic field is applied to a charge carrier spin system,

the spin will begin to precess about the magnetic field. The interaction between

the spin-system and the magnetic field is characterised by the energy [45]

Ez = gµBB, (3.3)

where g is the g-factor quantifying the strength of the interaction, µB is the

Bohr magneton, and B is the applied magnetic field strength. The orientation

of the magnetic field also impacts the resulting behaviour of the system as

discussed further in Chapter 6. The application of a weak magnetic field to a

neutral exciton will also produce a quadratic diamagnetic shift [46, 55]. This

diamagnetic shift is characterised by the diamagnetic coefficient γ2 leading to

the total energy shift of an exciton in the presence of an applied magnetic field

to be [55]

∆E = γ1B + γ2B
2, (3.4)

where γ1 characterises the Zeeman energy shift.
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3.3 The Dipole Approximation

Before we move on to apply the Lindblad master equation to the example of an

optically driven 2LS, we first must discuss how one includes classical driving

in the system Hamiltonian. In this thesis we consider optically driven atomic-

like systems whose spatial extent is much smaller than the wavelengths of the

light with which they interact 6. In this case we may make an approximation,

known as the dipole approximation, that allows us to simplify the semi-classical

Hamiltonian describing the optical driving of a quantum system by a classical

source. To make this approximation we can consider a charged particle situated

in an external electromagnetic field. The electric and magnetic components

of an electromagnetic field may be derived from both a scalar (Φ) and vector

(A) potential (E = −∇Φ − ∂tA, B = ∇ × A). Using this notation the

Hamiltonian of a charged particle in an electromagnetic field may be written

as [56]

H(r, t) =
1

2m

(

p− qA(r, t)
)2 − qΦ(r, t), (3.5)

where q, m, p are the charge, mass, and momentum of the charged particle

respectively. As the size of the quantum systems we are interested in is much

smaller than the wavelengths with which they interact, we may approximate

the vector potential as being position independent, i.e. A(r, t) → A(t). From

here we can perform a gauge transformation. This will allow us to simplify

the potentials (Φ,A) without changing the fields derived from them. As B =

∇×A we may add the gradient of a scalar field (∇Λ) to the vector potential

without changing the magnetic field as ∇× (∇Λ) = 0. However, to maintain

the invariance of the electric field under this gauge transformation we must

add the time-derivative of Λ to the scalar field Φ. Our transformed potentials

are then given by [57, 58]

Φ(r, t) → Φ′(r, t) =Φ(r, t)− ∂tΛ(r, t),

A(r, t) → A′(r, t) =A(r, t) +∇Λ(r, t).
(3.6)

Choosing the gauge Λ(r, t) = −A(t) · r our new scalar and vector fields may

be written as

Φ′(r, t) =Φ(r, t)− ∂tA(t)r = Φ(r, t) + r ·
(

E +∇Φ(r, t)
)

,

A′(r, t) =A(r, t)−∇(A(t) · r) = 0.
(3.7)

6In the case of QDs a few nanometres compared to wavelengths on the order of 103 nm.
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Figure 3.5: A depiction of a 2LS consisting of a ground state |g⟩ and excited
state |e⟩ separated by an energy ℏωe. Here the system is driven on resonance
with a continuous wave source with Rabi frequency Ω.

Taking the Coulomb gauge, where Φ = 0 [57, 58], and making the substitution

into the Hamiltonian yields

H(r, t) =
1

2m

(

p
)2 − qr ·E(t) =

1

2m
(p)2 − d ·E(t), (3.8)

where d = −qr is the dipole operator, and the final term of the Hamiltonian

describes the coupling between a classical electric field and an electric dipole.

While the dipole approximation is generally applicable to QDs under a vast

majority of circumstances, there are regimes where it breaks down [59, 60].

3.4 Driven Two-Level System Hamiltonian

Using the dipole approximation, and choosing the ground state to have zero

energy, the Hamiltonian describing a classically driven 2LS depicted in Fig-

ure 3.5 may be written as

H = ωe |e⟩⟨e| − d̂ ·E(t), (3.9)

where d̂ is the transition dipole operator, and E(t) is the time-dependent elec-

tric field vector. This field vector may be re-written as E(t) = E0(t) cosωlt

where E0 = E0(t)ϵ is the vector electric field strength which incorporates the

polarisation vector ϵ, and ωl is the laser frequency. One can write the spec-

tral decomposition of the dipole operator in the basis states of the 2LS as

d̂ = ⟨g| d̂ |e⟩ (|g⟩⟨e| + |e⟩⟨g|).7 The diagonal matrix elements are not present

as the parity transition selection rules tell us these elements are zero (see

7Ordinarily d̂ =
∑

i,j=e,g ⟨i| d̂ |j⟩ |i⟩⟨j|. The parity transition rules show ⟨i| d̂ |j = i⟩ = 0

and thus d̂ =
∑

i,j ̸=i=e,g ⟨i| d̂ |j⟩ |i⟩⟨j|.
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Appendix A). Making these substitutions, the Hamiltonian describing the co-

herent dynamics of a classically driven 2LS can be written as

H = ωe |e⟩⟨e|+
Ω(t)

2

(

eiωlt + e−iωlt
)(

|e⟩⟨g|+ |g⟩⟨e|
)

. (3.10)

Here we have defined Ω(t) = −⟨g| d̂ · E0(t) |e⟩ as the Rabi frequency that

quantifies the strength of the coupling between the 2LS and coherent driving

field modulated by some time-dependent envelope function. The CW limit can

then be recovered by choosing Ω(t) = Ω ∀ t. In the time-dependent driving

limit the choice of pulse envelope is arbitrary8, but here we shall assume the

2LS is driven by a Gaussian optical pulse of the form

Ω(t) =
Θ√
2πw2

exp
{

−(t− t0)
2

2w2

}

, (3.11)

where Θ =
∫∞
0

Ω(t) is the pulse area, w is the Gaussian width, and t0 is the

time at which the peak of the pulse, i.e. the peak Rabi frequency, occurs.

The Gaussian width is related to the electric field Full-Width Half Maximum

(FWHM) of the pulse, ∆τE, by

w =
∆τE

2
√
2 ln 2

, (3.12)

which in turn is related to the intensity FWHM that is measured in experiment

by ∆τE = ∆τI
√
2.

3.4.1 Unitary Transformations to a Rotating Frame of

Reference

While the Hamiltonian in Eq. 3.10 does describe the dynamics of a 2LS driven

by a classical source, the time-dependence in the exponential terms makes the

theoretical treatment challenging and computationally expensive. It is possi-

ble to remove this time dependence by performing a transformation from the

so-called lab-frame to a reference frame rotating at an arbitrary frequency of

our choice, ωR. We have already encountered a transformation changing the

frame of reference moving from the Schrödinger picture to the Interaction pic-

ture. However, we now need to derive a more general transformation that will

allow us to find the relationship between an arbitrary Hamiltonian describing

8In later chapters we shall make use of different envelope functions.
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a quantum system in the lab frame (H(t)) and the Hamiltonian describing the

same system in an arbitrary rotating frame (H̃(t)).

The state vector of the system in the rotating frame can be found by

applying a unitary operator to the lab-frame state vector such that

|ψ̃(t)⟩ = U(t) |ψ⟩ . (3.13)

Here |ψ⟩ is the state vector describing the system in the lab-frame, |ψ̃(t)⟩ is

the state of the system in the rotating frame, and U(t) is a unitary operator

whose form is chosen for convenience. The Schrödinger equation must apply

in the rotating frame just as it does in the lab-frame, i.e. we may write the

Schrödinger equation in the rotating frame as

∂

∂t
|ψ̃(t)⟩ = −iH̃(t) |ψ̃(t)⟩ . (3.14)

Substituting Eq. 3.13 into Eq. 3.14, and using the product rule, yields

∂

∂t
|ψ̃(t)⟩ =

( ∂

∂t
U(t)

)

|ψ⟩+ U(t)
( ∂

∂t
|ψ⟩

)

= −iH̃(t) |ψ̃(t)⟩ . (3.15)

From this we see the second term in the centre is the left-hand side of the

Schrödinger equation in the lab-frame pre-multiplied by U(t). We can therefore

substitute in the Schrödinger equation to find

( ∂

∂t
U(t)

)

|ψ⟩ − iU(t)H(t) |ψ⟩ = −iH̃(t) |ψ̃(t)⟩ . (3.16)

Using |ψ⟩ = U †(t) |ψ̃(t)⟩ we can re-write this equation to find the final rela-

tionship between the Hamiltonians describing a given quantum system in two

different frames of reference

H̃(t) = U(t)H(t)U †(t) + i
( ∂

∂t
U(t)

)

U †(t). (3.17)

One can show this agrees with the results found when transforming between

the Schrödinger and Interaction pictures by substituting in the Hamiltonian

H = H0 +HI from Eq. 2.8, and choosing U(t) = exp{iH0t}. This yields

H̃(t) = U(t)
(

H0 +HI

)

U † − i
(

−iH0

)

= U(t)HIU
†(t) = H̃I(t), (3.18)

which agrees with our definition of H̃I(t) in Eq. 2.15.
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3.4.2 The Rotating Wave Approximation

Utilising Eq. 3.17 the Hamiltonian describing a classically driven 2LS can be

transformed into a reference frame rotating at an arbitrary frequency ωR using

the unitary operator

U(t) = exp{iωRt |e⟩⟨e|}. (3.19)

Applying this unitary transformation to our lab-frame Hamiltonian we find

the Hamiltonian in the rotating frame is given by

H̃(t) =
(

ωe−ωR
)

|e⟩⟨e|+Ω(t)

2

(

eiωRt |e⟩⟨g|+e−iωRt |g⟩⟨e|
)(

eiωlt+e−iωlt
)

. (3.20)

This form of the rotating frame Hamiltonian still contains time-dependent

exponential terms which are the computationally challenging terms we are

trying to remove by performing this unitary transformation. However, we can

now apply the Rotating Wave Approximation (RWA). In doing so we assume

|ωR − ωl| ≪ ωR + ωl which allows us to replace the counter-rotating terms

(ωR + ωl) with their zero time averages. This is a reasonable approximation

to make for optical frequencies as the counter-rotating terms would not be

experimentally resolvable on the relevant timescales. Transforming to a frame

rotating at the laser frequency, that is setting ωR = ωl, removes the remaining

time-dependent exponential terms from the rotating frame Hamiltonian

H̃(t) =
(

ωe − ωl
)

|e⟩⟨e|+ Ω(t)

2

(

|e⟩⟨g|+ |g⟩⟨e|
)

. (3.21)

As a result of transforming to a reference frame rotating at the driving laser

frequency and applying the RWA, we now have a semi-classical Hamiltonian

describing the coherent dynamics of 2LS driven by a classical field whose only

time-dependence arises from the envelope function of the pulse, and therefore

vastly reduces the computational resources required to perform calculations. In

the CW limit Ω(t) → Ω returns a completely time-independent Hamiltonian.

3.5 The Quantum Optical Master Equation

To model the emission properties of the 2LS we need to account for the interac-

tions with the quantised electromagnetic field. Hence we must derive a master

equation that, much like the Lindblad master equation, tracks the degrees of

freedom of the 2LS while tracing out the electromagnetic environment. To

do this we shall model the electromagnetic field as a continuum of quantum
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harmonic oscillators [39]

HE =
∑

k

ωkϵ
†
kϵk, (3.22)

with frequencies ωk and creation (annihilation) operators ϵ†k(ϵk). The interac-

tion between the field and 2LS is then given by the Hamiltonian

HI =
∑

k

(

gkϵkσ
† + g∗kϵ

†
kσ

)

, (3.23)

where the coupling strength between the 2LS and kth electromagnetic mode is

quantified by gk, and we have introduced the notation σ = |g⟩⟨e|. Transforming

the interaction Hamiltonian to the rotating frame into which we transformed

the system Hamiltonian yields

H̃I(t) =
∑

k

(

gkϵkσ
†eiωlt + g∗kϵ

†
kσe

−iωlt
)

. (3.24)

Assuming the electromagnetic spectral density does not vary significantly over

the energy scales relevant to the 2LS, we may take the electromagnetic spectral

density to be flat, i.e. J(ω) = J ∀ ω [61]. This allows us to transform into

the interaction picture using the simple unitary transform

U(t) ≈ exp

{

i
(

(ωe − ωl)σ
†σ +

∑

k

ωkϵ
†
kϵk

)

t

}

, (3.25)

where we have redefined H0 as H0 = (ωe − ωl)σ
†σ +

∑

k ωkϵ
†
kϵk. This choice

of unitary transformation cancels out the exp{±iωlt} terms in Eq. 3.24, and

thus the interaction picture Hamiltonian is given by

H̃I(t) =
∑

k

(

gkϵkσ
†eiωete−iωkt + g∗kϵ

†
kσe

−iωeteiωkt
)

. (3.26)

From here we may explicitly write the components of the decomposition of the

interaction Hamiltonian in Eq. 2.34 as

S1(t) =σ
†eiωet and E1(t) =

∑

k

g∗kϵke
−iωkt,

S2(t) =σe
−iωet and E2(t) =

∑

k

gkϵ
†
ke
iωkt.

(3.27)

Deriving the full form of our master equation is then a question of substitut-

ing these system and environment operators into the master equation given
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in Eq. 2.35. Performing the substitutions, and transforming back to the ro-

tating frame of reference in the Schrödinger picture, automatically yields a

master equation, known as the quantum optical master equation, in the Lind-

blad form [39]

∂

∂t
ρS(t) = −i

[

H̃(t), ρS(t)
]

+
γ

2

(

2σρS(t)σ
† −

{

σ†σ, ρS(t)
})

. (3.28)

Here H̃(t) is given by Eq. 3.21, and the spontaneous emission Lindblad opera-

tor is given by L =
√
γσ, where γ = πJ/2 is the decay rate of the exited state

of the 2LS given by the inverse of the state lifetime γ = T−1
1 .

As the quantum optical master equation is derived directly from Eq. 2.35,

and is in the Lindblad form, it makes the same approximations as the Lind-

blad master equation. That is, the quantum optical master equation is also a

second-order master equation, and uses the Born and Markov approximations

assuming the interaction between the system and optical environment is weak

such that the two evolve on disparate timescales. Finally, the secular approx-

imation is also used in the derivation of the quantum optical master equation

allowing us to only consider resonant terms.

3.6 Coherent Dynamics: Rabi Oscillations

With our simplified rotating frame Hamiltonian we may now use the quan-

tum optical master equation to calculate the temporal dynamics of the 2LS

state populations under both CW and pulsed excitation. For the systems

described in this chapter, the dynamics (and correlation functions) may be

calculated using the Python package QuTiP [62] to computationally solve the

master equation at discretised time intervals. Figure 3.6 shows that under

CW excitation the population of the 2LS coherently oscillates between the

two system eigenstates at frequency Ω when Ω ≫ γ. The oscillations in the

populations under optical excitation are the well-known Rabi oscillations, and

have been experimentally observed numerous times [63–67]. In the absence

of any decoherence mechanisms these oscillations would continue indefinitely

(see the grey-dotted line in Figure 3.6a). However, the presence of decoherence

in Figure 3.6a, in the form of spontaneous emission, ultimately dampens the

oscillations until they are completely suppressed in the long-time limit.

Under pulsed excitation a similar behaviour is observed. During the pulse

the state population of the 2LS coherently oscillates between the two system
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(a) (b)

(c)

Figure 3.6: The calculated dynamics of the state populations of a Two-Level
System (2LS) under (a) Continuous-Wave (CW), and (b,c) pulsed excitation.
(c) Under pulsed resonant excitation Rabi rotations are also observed in the
state populations sweeping the area of the pulse. The oscillations in (c) do not
reach zero due to the use of the time-integrated exciton population rather than
the steady-state without spontaneous emission. Parameters used: (blue-solid)
γ−1 = 23 ps, (grey-dot) γ = 0 ps−1, (a) Ω = 10γ, (b) Θ = 10π, (b,c) ∆τ = 2
ps.

eigenstates, again damped by spontaneous emission. The number of oscilla-

tions in the state populations during the pulse is proportional to Θ/π where

Θ =
∫∞
0
dtΩ(t) is the pulse area. If we instead plot the time-integrated ex-

cited state population as a function of the area of the driving pulse, as shown

in Figure 3.6c, we observe Rabi rotations. It is important to note that the

Rabi rotations in the time-integrated exciton population with varying pulse

area are not equivalent to the time-resolved Rabi oscillations plotted in Fig-

ures 3.6a and 3.6b. Rather these Rabi rotations are the result of a phase

accumulated during the driving pulse. However, from this we see that, by

changing the duration and or peak Rabi frequency to fine-tune the area of the

driving pulse, one can adjust the state of the system after the pulse.
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3.7 The First-Order Correlation Function and

Emission Spectra

Experimentally, information about a classically driven 2LS may be derived

from the properties of the light it emits. Thus to make predictions about the

properties of a 2LS that can be experimentally tested, we need to relate the

system degrees of freedom explicitly tracked by our master equation to the

properties of the electric fields measured by detectors in experiments.

One can define the electric field operator measured experimentally as

E(t) = E+(t) + E−(t). We may then define the positive component of the

electric field operator as E+(t) =
∑

k Ekekϵk where ϵk is again the annihilation

operator of the kth photonic mode, Ek is the electric field strength, and ek is

the electric field unit vector. The negative field component is then given by

E−(t) = (E+(t))
†
. The Wiener-Khinchin theorem tells us that the intensity

spectrum is related to the electric field operators by [68]

I(ω) =

∫ ∞

−∞
dτ

〈

E−(t)E+(t+ τ)
〉

e−iωτ . (3.29)

To relate the intensity spectrum to the 2LS creation and annihilation operators

we shall consider the Heisenberg equation of motion for one of the quantised

field operators which is given by

∂tϵ̃k(t) = i
[

H̃(t), ϵ̃k(t)
]

= −i (ωk ϵ̃k(t) + gkσ̃(t)) . (3.30)

Here the tilde now indicates an operator is in the Heisenberg picture such

that Õ(t) = U †(t)OU(t) where U(t) is an arbitrary unitary operator chosen

to transform. The terms on the right hand side of Eq. 3.30 originate from

the commutators of the environment and interaction Hamiltonians with the

photonic annihilation operator respectively. Using

∂t
(

eiωktϵ̃k(t)
)

= iωke
iωktϵ̃k(t) + eiωkt∂tϵ̃k(t) = −igkσ̃(t)eiωkt (3.31)

we can formally integrate Eq. 3.30 giving

ϵ̃k(t) = e−iωktϵ̃k(0)− i

∫ t

0

dt′gkσ̃(t
′)eiωkt

′

. (3.32)

Substituting this into the positive frequency component of the electric field
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operator yields

E+(t) =
∑

k

Ek

(

e−iωktϵ̃k(0)− i

∫ t

0

dt′gkσ̃(t
′)eiωkt

′

)

. (3.33)

The first term on the right hand side is the free fields contribution which we

take to be the vacuum state, and thus neglect. Taking the continuum limit we

can then write

E+(t) = −i
∫ ∞

−∞
dω

∫ t

0

dt′g(ω)E(ω)σ̃(t′)eiωt
′

. (3.34)

Just as when we derived the quantum optical master equation, we shall assume

the 2LS-environment coupling strength g(ω) does not vary appreciably over the

frequencies of the 2LS. This then allows us to simplify Eq. 3.34 to

E+(t) = −igE
∫ ∞

−∞
dω

∫ t

0

dt′σ̃(t′)eiωt
′

. (3.35)

which, using the relation
∫ t

0
dτg(τ)

∫∞
−∞ dωe−iωτ = 2π

∫ t

0
dτg(τ)δ(τ), allows us

to write the final form of the positive electric field component as

E+(t) = Cσ̃(t), (3.36)

where C = −iE
√

πγ/2 is a constant. Taking the steady-state limit, the

intensity spectrum is given by I(ω) ∝ S(ω) where

S(ω) =

∫ ∞

−∞
dτg(1)(τ) exp{−i(ω − ωl)τ}, (3.37)

and where in terms of the 2LS raising and lowering operators

g(1)(τ) = lim
t→∞

⟨σ†(t)σ(t+ τ)⟩, (3.38)

is the steady-state first-order correlation function quantifying the temporal

coherence of the electric fields of the emitted light9, σ = |g⟩⟨e| is the atomic

lowering operator, and ωl is again the laser frequency.

The emission spectrum has contributions from two distinct components,

known as the coherent and incoherent spectra. These arise from the steady-

9The first-order correlation function can be measured directly using an optical inter-
ferometer such as the Mach-Zehnder or Michelson interferometers. The absolute value of
g(1)(τ) is then given by the visibility of the interference fringes, v =

∣

∣g(1)(τ)
∣

∣.
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(a) (b)

Figure 3.7: A depiction of coherent (elastic) (a) and incoherent (in-elastic) (b)
scattering of incident photons off a Two-Level System (2LS). The excited state
of the 2LS is not populated during coherent scattering preserving the first-order
coherence of the incident light. Conversely, during incoherent scattering events
incident photons are absorbed creating a non-zero excited state population that
decays via photon emission after a time period t [69].

state of the correlation function and oscillations in the correlation function

respectively. The two spectral components can be written as

Scoh(ω) =

∫ ∞

−∞
dτg

(1)
coh exp{−i(ω − ωl)τ},

Sinc(ω) =

∫ ∞

−∞
dτg

(1)
inc(τ) exp{−i(ω − ωl)τ}

=

∫ ∞

−∞
dτ(g(1)(τ)− g

(1)
coh) exp{−i(ω − ωl)τ}.

(3.39)

Here S(ω) = Scoh(ω) + Sinc(ω), Scoh(ω) is the coherent contribution to S(ω),

Sinc(ω) is the incoherent contribution to S(ω), and g
(1)
coh = limτ→∞⟨σ†(t)σ(t +

τ)⟩ = |⟨σss⟩|2 where ⟨σss⟩ is the steady-state expectation value of σ. As g
(1)
coh is

a (non-zero) constant, assuming the laser coherence time is much greater than

the QD coherence time, taking the Fourier transform into the frequency domain

yields a delta function at the laser frequency. This corresponds to elastic

scattering of the incident laser photons off the 2LS as shown in Figure 3.7a,

and as such the scattered light remains first order coherent with the incident

laser. Conversely, the incoherent spectrum arises from the inelastic scattering

of photons off the 2LS whereby a photon is absorbed and then re-emitted via

spontaneous or stimulated emission (see Figure 3.7b). This process results in

a change of both the frequency and phase of the photons, and accordingly

the incoherent spectrum extends over a range of frequencies with the emitted

photons no longer being first-order coherent with the incident light. That is,

the incident and emitted light no longer share a constant relative phase.
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3.7.1 The Quantum Regression Theorem

As the coherent spectrum reflects the properties of the driving laser [70], we

shall consider only the incoherent part of the spectrum in trying to deduce

information about the 2LS. However, to do this we must still calculate the two-

time correlation function ⟨σ†(t)σ(t + τ)⟩. This can be achieved by employing

the Quantum Regression Theorem (QRT) which allows one to calculate such

correlation functions using the master equation approach.

In our derivation of the Lindblad master equation we saw that one may

write the two-time correlation function as

C(t, τ) = ⟨A(t)B(t+ τ)⟩ = Tr{A(t)B(t+ τ)ρ}. (3.40)

From here the explicit time-dependence can be moved from our operators to

unitary operators such that

C(t, τ) = Tr
{

U †(t, 0)AU(t, 0)U †(t+ τ, 0)BU(t+ τ, 0)ρ
}

. (3.41)

Making use of the cyclic nature of the trace and the properties of the unitary

operator (U(t1, t2)U(t2, t3) = U(t1, t3) and U
†(t1, t2) = U(t2, t1)) yields

C(t, τ) = Tr
{

AU †(t+ τ, t)BU(t+ τ, t)U(t, 0)ρU †(t, 0)
}

= TrS{BU(t+ τ, t)ρ(t)AU †(t+ τ, t)}.
(3.42)

Defining a new operator Λ(t+ τ, t) = TrE{U(t+ τ, t)ρ(t)AU †(t+ τ, t)}, we see
the two-time correlation function has a similar form to Eq. 2.11 and accordingly

Λ follows a similar equation of motion to ρ(t)

∂

∂τ
Λ(t+ τ, t) = LΛ(t+ τ, t). (3.43)

The long time limit yields C(τ) = limt→∞C(t, τ) = TrS{BΛ̃(τ)} and therefore

∂

∂τ
Λ̃(τ) = L Λ̃(τ). (3.44)

Hence the two-time correlation function C(t, τ) can be solved using the master

equation as Λ follows the same equations of motion as the density operator

used in deriving the master equation. However, the QRT is only valid when

the system of interest undergoes strictly Markovian evolution as it requires the

complete system-environment density matrix to factorise at all times [71].
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3.7.2 CW Driving: The Mollow Triplet

We can now solve Eq. 3.38 using the QRT and our Markovian quantum optical

master equation to calculate the incoherent emission spectrum from a 2LS

resonantly driven in the CW limit. In the weak-excitation regime (Ω ≪ γ) one

would find this spectrum consists of a single peak centred at the 2LS transition

frequency. In the limit of Ω ≪ γ light is primarily coherently scattered from

the 2LS, and thus the total spectrum is dominated by the single delta function

of the coherent spectrum (not calculated here) at the resonance frequency,

with an additional smaller and broader incoherent component also centred

about this frequency. However, as the excitation strength is increased, Rabi

oscillations between the two states of the 2LS begin to occur (see Figure 3.8a).

These oscillations are also observed in the first-order correlation function with

increasing excitation strength, as shown in Figure 3.8b, with the frequency of

these oscillations increasing with the excitation strength.

Taking the Fourier transform of the first-order correlation function yields

the emission spectrum. The oscillations in the first-order correlation function

result in the emergence of two satellite peaks in the incoherent spectrum. These

satellite peaks are separated from the single central peak seen at low excitation

strengths by the Rabi frequency (see Figure 3.8c and Figure 3.8d), appearing

at ω0 ±Ω. This is the well-known Mollow triplet or Mollow spectrum [72]. At

first glance, the mechanism behind the Mollow triplet is not explicitly apparent.

Using a classical dipole model one would only ever expect a single Lorentzian

line in the emission spectrum regardless of the excitation strength. However,

under strong excitation the eigenstates of the 2LS are not the eigenstates of

the coupled emitter-drive system. As the semi-classical driving term in our

Hamiltonian (Eq. 3.10) is periodic, we may use Floquet’s theorem to find

the eigenstates and eigenenergies of the coupled laser-2LS system from our

semi-classical Hamiltonian [39, 73, 74]. This approach allows us to define

a so-called Floquet Hamiltonian, recasting our time-dependent Hamiltonian

into an infinite time-independent matrix that can be used in an eigenvalue

problem [74]. In the case of zero or small detuning (ωe ≈ ωl), it can be shown

that this approach returns a series of energy levels with eigenenergies λ± =

nωe ± Ω/2 where n in an integer (see Figure 3.8e). The Floquet eigenvectors

are then |±⟩ = 1√
2
(|g, n+ 1⟩ ± |e, n⟩) corresponding to the dressed states from

the eigenvalue problem for Eq. 3.21 [75] combined with the Fourier index n.

This gives rise to transitions with three unique frequencies. An equivalent

picture can be derived by instead considering the drive as a quantised field.
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Figure 3.8: The dynamics of the (a) state populations and (b) first-order cor-
relation function of a Two-Level System (2LS) driven by a Continuous-Wave
(CW) laser with (a) Rabi frequency Ω = 10γ and (b) three different Rabi
frequencies Ω. (c) The normalised incoherent resonance fluorescence spec-
trum resulting from CW driving of a 2LS for four different Rabi frequencies.
(d) A contour plot of the incoherent Mollow spectrum as a function of the
Rabi frequency. (e) A depiction of the dressed states picture of the Mollow
triplet. The solid black double arrows indicate the transitions at the original
frequency ωe. The dashed orange and dash-dot blue double arrows indicate
the transitions with frequencies ωe − Ω and ωe + Ω respectively. Parameters
used: γ−1 = 971 ps.
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3.7.3 Pulsed Emission Spectrum

Under pulsed excitation the emission spectrum gains a time-dependence and

thus has a more complex form given by [76]

S(ω, t,Υ) = 2ΥRe
{

∫ t

0

dt2 exp
{(

−Υ(t− t2)
)}

∫ t−t2

0

dτ exp

{

(Υ

2
− i(ω − ωl)τ

)

}

⟨σ†(t2 + τ)σ(t2)⟩
}

, (3.45)

where Υ is the detection bandwidth included to account for time-energy un-

certainty [77]. Taking the limit t ≫ t0 + ∆τ recovers the time-independent

integrated spectrum. Just as in the CW case one must still solve the first-order

correlation function using the QRT to calculate the pulsed emission spectrum.

Figure 3.9 shows the resulting TIS and TDS when driving a 2LS with a

Gaussian pulse. Driving the system with a single pulse area Θ = 7π reveals

the pulsed integrated emission spectrum contains additional Mollow peaks rel-

ative to the three peaks found in the Mollow spectrum in the CW limit (see

Figure 3.9a). Furthermore, calculating the power dependence of the pulsed

TIS by varying Θ reveals the number of Mollow peaks in the pulse spectrum

is proportional to the area of the driving pulse as shown in Figure 3.9b. The

mechanism behind this is uncovered by the TDS. Figure 3.9c shows the satellite

peaks in the TIS evolve from the central spectral peak, with the outer-most

Mollow peaks being the first satellite peaks to materialise in the incoherent

spectrum. This behaviour is the result of interference between the tempo-

ral components of the pulse with corresponding Rabi frequency, i.e. where

Ω(t2) = Ω(t1 < t2) [78]. The components that constructively interfere produce

a Mollow peak in the emission spectrum, while components that destructively

interfere have a reduced, or zero, contribution to the spectrum. The effect of

coupling to a bath of quantum harmonic oscillators on the dynamics, and TDS

and TIS of a 2LS driven by a Gaussian pulse is discussed in Chapters 4 and 5.

3.8 Photon Antibunching: Second-Order Cor-

relation Function

Another important property of the emitted light to consider is the statistical

nature of the photons being emitted by the 2LS. When driving the 2LS with
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(a)

(b) (c)

Figure 3.9: (a,b) The Time-Integrated Spectra (TIS) produced when driving
a Two-Level System (2LS) with a Gaussian pulse (a) with a single pulse area
and width, and (b) sweeping the pulse area for a fixed pulse width. (c) The
Time-Dependent Spectra (TDS) produced when driving a 2LS with a Gaussian
pulse. Parameters used: (a, c) Θ = 7π, (a,b,c) ∆τ = 12 ps, γ−1 = 23 ps.
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(a)

(b)

(c)

Figure 3.10: An illustration of the emission of photons for different sources.
(a) Coherent emission of photons at random time intervals e.g. laser. Coherent
light is quantified by g(2)(τ) = 1 for all values of τ (b) Anti-bunched emission of
photons. Photons are emitted at regular time intervals quantified by g(2)(0) <
1. If the emitter is a single photon source g(2)(0) = 0. (c) Bunched emission
of photons where photons are emitted in groups or bunches e.g. thermal light.
Bunched emission is identified by g(2)(0) > 1 and g(2)(0) > g(2)(τ → ∞).
Adapted from [11].

a CW source, the normalised second-order correlation function is given by

g(2)(τ) = lim
t→∞

G(2)(t, τ)

|⟨σ†σ⟩|2
, (3.46)

where

G(2)(t, τ) = ⟨σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)⟩, (3.47)

is the un-normalised second-order correlation function that may also be cal-

culated using the QRT. This correlation function quantifies the temporal co-

herence of intensity fluctuations in a beam of light. Since the intensity of a

beam of light is proportional to the number of constituent photons, G(2)(t, τ)

indicates the probability of detecting photons at time t + τ after a detection

event at time t.

Light can be broadly separated into three categories, depicted in Fig-

ure 3.10, based on the value of the integrated second-order correlation function

at τ = 0, g(2)(0). When g(2)(0) = 1 the emitted light is said to be coherent,

indicating that single photons are being emitted at random time intervals as

shown in Figure 3.10a. If g(2)(0) < 1 photons are being emitted from the

source at regular intervals (see Figure 3.10b). In this case the light is said to

be anti-bunched. When g(2)(0) < 0.5 the emitted photon number per given

time window is unlikely to be larger than n = 1 indicating the emitter is a

single-photon emitter. Finally, when g(2)(0) > 1 the emitted light is said to
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be bunched as in this case photons are more likely to be emitted as groups or

bunches than as single photons as shown in Figure 3.10c.

Experimentally, the second-order correlation function is determined by per-

forming a Hanbury-Brown Twiss measurement. A schematic of the experi-

mental set-up is shown in Figure 3.11a. A perfect experiment measuring the

second-order correlation function of a perfect single-photon source would find

g(2)(0) = 0 as shown in Figure 3.11b 10. A value of g(2)(0) = 0 is indicative of a

single-photon source as this shows that there is a zero probability of simultane-

ously detecting two photons from the same source. When driving a 2LS with a

small Rabi frequency (and/or spontaneous emission rate) the resulting second-

order correlation function appears as a single, broad dip centred around τ = 0

whose width is determined by T1. The small Rabi frequency results in a slow

emission rate from the 2LS, and thus a long delay between successive photons,

broadening the g(2)(τ) dip. Increasing the Rabi frequency (or spontaneous

emission rate) increases the rate of photon emission from the 2LS, reducing

this delay and resulting in a narrower dip around τ = 0. Larger Rabi fre-

quencies also result in the appearance of Rabi oscillations in the second-order

correlation function as shown in Figure 3.11b.

3.9 Pure Dephasing

So far in our examination of a classically driven 2LS, we have assumed the

stochastic decay of the excited state population via spontaneous emission is the

only dephasing mechanism experienced by the 2LS. However, it is also possible

for quantum systems to undergo elastic interactions that do not alter the state

populations, but still break the phase of the individual states. Such dephasing

mechanisms are referred to as pure dephasing mechanisms to distinguish them

from the inelastic dephasing caused by population decay. Pure dephasing can

be caused by a number of different physical mechanisms depending on the exact

details of the quantum system in question, for example charge fluctuations [79],

or phonon-induced dephasing of the Zero Phonon Line (ZPL) [80]. However,

all pure dephasing processes can be characterised by a pure dephasing rate

Γ and pure dephasing time T ∗
2 = Γ−1. From this we can define the total

10In reality the detectors used in experiments will have some finite time resolution and thus
the measured second-order correlation function will be g(2)(τ) convolved with the instrument
response function.
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Figure 3.11: (a) A schematic of a typical Hanbury-Brown Twiss (HBT) ex-
periment used to measure the second-order coherence of light. Light from
an emitter is directed onto a 50:50 Beam Splitter (BS). Two Single-Photon
Avalanche Diodes (SPADs) located at the outputs of the BS detect photons
from the emitter with a time delay between the two BS output paths. A Single
Photon Counting (SPC) module counts the photon detection events. (b) An
example of the second-order correlation function (calculated using the Lind-
blad master equation and quantum regression theorem) of light emitted by a
2LS resonantly driven by a Continuous-Wave (CW) laser at different powers.

dephasing rate experienced by the quantum system as [11]

1

T2
=

1

2T1
+

1

T ∗
2

, (3.48)

where T2 is the total dephasing time, and T1 is the excited state lifetime. To

study the effects of pure dephasing on the light emitted by a 2LS we can include

an additional Lindblad operator, L =
√
Γσ†σ, in the quantum optical master

equation in Eq. 3.28. Figure 3.12 shows the effects of pure dephasing on the

population dynamics, emission spectra, and second-order correlation function

for a number of different pure dephasing rates under CW driving. We shall

not consider the effects of pure dephasing under pulsed resonant excitation

here as this is addressed in Chapter 4. Comparing Figures 3.12a and 3.12b,

it can be seen that the addition of pure dephasing further dampens the Rabi

oscillations between the states of the 2LS. In the coherent emission spectrum

the effects of pure dephasing can be seen as a broadening of the three Mollow

peaks (Figure 3.12c). As pure dephasing does not affect the emission rate of

the system, the dip in the second-order correlation function is not broadened,

although a suppression of the Rabi oscillations can be seen with increasing

pure dephasing rates as shown in Figure 3.12d.
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Figure 3.12: Top: The effects of pure dephasing on the population dynamics
of a Two-Level System (2LS) driven with a Rabi frequency Ω = 10γ for pure
dephasing rates (a) Γ = 0 and, (b) Γ = γ calculated using the Lindbald
master equation. Bottom: The effects of pure dephasing on the emission
properties, namely (c) the incoherent emission spectrum and (d) the second-
order correlation function g(2)(τ), of a 2LS driven with a Rabi frequency Ω =
2γ. Parameters used: γ−1 = 971 ps.
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3.10 Cavity Quantum Electrodynamics

Now that we have studied the properties of a single 2LS we can add an addi-

tional layer of complexity. Thus far in applying our mathematical constructs

to physical systems we have discussed only the example of solitary 2LS in free-

space. However, it is both possible and frequently useful to modify the optical

environment around the 2LS by employing an optical cavity. Indeed the work

discussed in later chapters focuses on quantum systems coupled to optical

cavities. Therefore we shall now briefly discuss the topic of Cavity Quantum

Electrodynamics (cQED), taking the example of a 2LS coupled to an optical

cavity with a single quantised bosonic mode, and driven by a classical CW

field.

To include the full effects of an optical cavity, we need to make an addition

to our 2LS Hamiltonian. We shall now split the lab-frame Hamiltonian into

four components such that H = H0 +HI +H2LS
D +HCav

D . Here H0 is given by

H0 = ωeσ
†σ + ωca

†a, (3.49)

where ωe is the frequency of the optical transition of the 2LS as before, ωc is the

frequency of the cavity mode, and a† and a are the bosonic cavity creation and

annihilation operators respectively. The 2LS and cavity couple via a dipole

interaction, and therefore one can write the interaction term HI as

HI = g
(

σ + σ†)(a† + a
)

. (3.50)

Here g quantifies the strength of the interaction between the 2LS and cav-

ity. With a cavity coupled 2LS it is possible to drive either the 2LS or cavity

separately or simultaneously. Therefore we can further split the driving Hamil-

tonian into two terms, one for driving the 2LS and one for driving the cavity

given by Eq. 3.51 and Eq. 3.52 respectively.

H2LS
D =

Ω

2

(

eiωlt + e−iωlt
)(

σ + σ†). (3.51)

HCav
D =

ϵ

2

(

eiωlt + e−iωlt
)(

a† + a
)

. (3.52)

Here Ω is the Rabi frequency as previously defined, and ϵ quantifies the cou-

pling strength between the driving field and cavity mode.

To account for incoherent emission from the cavity mode through the cavity

mirrors we require an additional Lindblad operator. This brings the full list
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Figure 3.13: The decay of the excited state of a Two-Level System (2LS)
weakly coupled on resonance to a single-mode cavity for three different cavity
coupling strengths, g. Increasing g increases the rate at which the excited state
population decays. Parameters: κ/2π = 10 GHz, and γ−1 = 1 ns.

of Lindblad operators for this total system (not including pure dephasing) to

L ∈ {√γσ,
√
κa}, (3.53)

where κ is the loss rate from the cavity mode, and γ is again given by the

inverse of the excited state lifetime.

3.10.1 Weak-Coupling

There are two coupling regimes relevant to the work done for this thesis. The

first is the weak coupling regime where the incoherent decay processes included

in the Lindblad collapse operators dominate. Hence this regime is characterised

by g ≪ γ, κ. In the weak coupling regime the spontaneous emission rate, γ, is

enhanced by the Purcell factor [81–83]

FP =
4g2

κγ

κ2

4(ωe − ωc)2 + κ2
|µ ·E(r0)|2
|µ|2|Emax|2

, (3.54)

where on the right the central term accounts for detuning between the cavity

mode and emitter, and the final term accounts for the spatial overlap between

the cavity field E(r) and the emitter dipole µ. With ωe = ωc and perfect

dipole positioning and orientation, the Purcell factor is related to the cavity

cooperativity C, i.e. the ratio of coupling to loss, by FP = 2C [82]. The

effects of weak cavity-coupling can be clearly seen in Figure 3.13. Initialising

a cavity-coupled 2LS in its excited state, it can be seen that increasing the

coupling strength g, and thus also the Purcell factor FP , increases the rate at
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(a) (b)

Figure 3.14: (a) Vacuum Rabi oscillations in the excited state population of
a Two-Level System (2LS) strongly coupled to a resonant single-mode cavity.
(b)The spectrum of a 2LS coupled to a single-mode cavity as a function of
the cavity-2LS coupling strength, g, calculated using the quantum regression
theorem. As the 2LS-cavity system moves into the strong coupling regime the
spectrum splits into two polaritonic peaks separated by ΩR = 2g. Parameters
used: (a) γ−1 = 1 ns, κ/2π = 10 GHz. (b) κ = 0.063 ps−1, γ−1 = 971 ps.

which the excited state population decays by FP .

3.10.2 Strong-Coupling

The second relevant coupling regime is the strong-coupling regime. Here the

coherent cavity-2LS coupling dominates indicated by g ≫ γ, κ.

Vacuum Rabi Splitting

The strong coupling regime is characterised by the appearance of vacuum

Rabi oscillations [84], damped by losses from the cavity, as can be seen in

Figure 3.14a. When the 2LS is initialised in the excited state, it cyclically emits

photons into, and then re-absorbs photons from, the cavity mode. This results

in the formation of polaritons, quasi-particles formed by strongly interacting

light and matter. In the case of a 2LS strongly coupled to a single-mode

cavity, the ensuing emission spectrum consists of two peaks, corresponding to

the polariton states, separated by ΩR = 2g [85] (see Figure 3.14b).

Similarly one may also calculate the emission spectrum of the cavity mode

from the cavity raising and lowering operators. Following the definition in

Eq. 3.38, we can define the first-order coherence of the cavity mode as

G(1)
a (t, τ) = ⟨a†(t)a(t+ τ)⟩, (3.55)
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from which the cavity spectrum may be calculated using Eq. 3.37. In this case

the cavity and 2LS spectra are (near) identical, and thus only the latter is

plotted.

3.11 Summary

In this chapter we have discussed the electronic and optical properties of QDs.

Approximating the QD as a 2LS, we have studied the effects of different optical

driving regimes on the emission properties of the 2LS. Under strong CW driv-

ing we have seen the states of the 2LS become dressed by the interaction with

the electromagnetic environment resulting in coherent oscillations between the

undressed states, and the emergence satellite peaks in the emission spectrum

forming the Mollow triplet. We have also seen the impact of pure dephasing

mechanisms under CW driving. Furthermore, under pulsed excitation we have

shown additional Mollow satellite peaks are present in the emission spectrum

for large pulse areas. Lastly, we have seen how coupling a QD to an optical

cavity with a single bosonic mode impacts the system dynamics.

In Chapter 4 we shall extend the 2LS model presented here under pulsed

optical excitation to study the effects of coupling to a thermal bath on the

time-dependent and time-integrated emission spectra. Chapter 5 then extends

this work to present a formalism describing the dynamics of a QD that is valid

across wide range of parameter regimes. In Chapter 6 we shall utilise concepts

in cQED introduced here to optimise the control of quantum systems using

optical pulses.



Chapter 4

Pulsed Resonance Fluorescence

from Phonon-Coupled Quantum

Dots

4.1 Introduction

In Chapter 3 we briefly discussed some of the properties of semiconductor QDs.

The fully quantised, atomic-like, nature of their energy level structure, along

with the potential for integration in on-chip semiconductor structures [86]

makes QDs exciting candidates for the development of scalable quantum tech-

nologies. As such there has been a huge effort to study the optical properties

of these structures. To date a number of important phenomena have been

experimentally demonstrated using QDs including Mollow triplet spectra [87–

90], photon anti-bunching [91–93], and Rabi oscillations [63–67, 84, 94], all

of which were discussed in Chapter 3. The experimental observation of these

atomic-like properties has demonstrated the potential suitability of QDs for

use in quantum technologies. However, despite this, the solid-state nature of

QDs provides a fundamental distinction from purely atomic quantum systems.

Namely, the strong interaction between the solid-state QD and the quantised

lattice vibrations (phonons) of the host semiconductor material introduces

decoherence mechanisms that are not experienced in purely atomic systems.

While these interactions provide the potential to study system-environment

interactions in the solid-state, they must also be mitigated for applications

in quantum technologies, making a meaningful understanding of QD-phonon

interactions invaluable.

55
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A number of studies (both theoretical and experimental) have already in-

vestigated the consequences of this strong coupling between a QD and its en-

vironment. For example, an asymmetry in the absorption/emission spectrum

of QDs, referred to as the phonon sideband, has been predicted and demon-

strated to result from this phonon-coupling [95, 96], persisting regardless of

the excitation regime [97–99]. Additionally, the continuation of these phonon

effects across different driving conditions has also been experimentally demon-

strated to impact the fraction of coherent to incoherent emission from QDs,

deviating from the predictions of atomic physics [97–99]. Furthermore, while

phonon-coupling has been predicted and demonstrated to lead to a decay of

the coherent Rabi oscillations in the system populations when driven with a

coherent optical field [100–103], it has been predicted that in the strong driving

regime a revival of the coherent scattering processes should occur [104, 105].

Pulsed optical excitation is key to a number of processes useful for the

realisation of optical quantum technologies, such as the manipulation of QD

spin states as discussed in Chapter 6. A number of studies have moved beyond

the CW excitation regime to consider the impact of coupling to Longitudinal

Acoustic (LA) phonons on the pulsed excitation dynamics of a QD [106, 107].

Indeed in the limit of ultra-short pulses (i.e.Ω(t) = δ(t)) exact analytical so-

lutions have been found [108–110]. However, as we are interested in studying

the effects of phonon coupling on the emission spectra of a QD coherently

driven by resonant excitation pulses of a finite duration, we shall instead use

a polaron model approach following the work presented in [106].

4.2 The Polaron Model

While it may be tempting to model the dephasing effects resulting from the

QD-phonon coupling using a simple pure dephasing model, such as that dis-

cussed in Chapter 3, it has been shown that this approach is inadequate for

capturing the full consequences of the QD-phonon coupling [97]. Hence we

shall now derive the so-called polaron model to describe these interactions,

following the work presented in [106]. The result will be an approximate mas-

ter equation that treats the QD-phonon interaction as a perturbation, and

remains valid outside of the weak exciton-phonon coupling regime. We shall

then use this master equation to study the effect of the QD-phonon coupling on

the pulsed emission spectra, both time-dependent and time-integrated, later

in this chapter.
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4.2.1 The Polaron Transformed Exciton-Phonon Hamil-

tonian

To model the effects of exciton-phonon coupling on the optical properties of a

QD, we can consider the case of a 2LS linearly coupled to a bath of quantum

harmonic oscillators [80, 111–114] neglecting any virtual transitions occurring

between states within the phonon-dressed excited state manifold [80, 113, 114].

Here we again define the ground state (|0⟩) of the QD (i.e. the empty QD

state) as having zero energy, while the excited exciton state (|X⟩) of the QD

has energy ℏωX . We may then describe the modes of the phonon bath in

our model with an infinite series of bosonic creation (annihilation) operators

b†k (bk). Lastly we shall also assign an explicit time-dependence to the Rabi

frequency in the driving term of the Hamiltonian as we are primarily interested

in pulsed optical driving. In the laboratory frame of reference, the Hamiltonian

describing the coherent dynamics of this total system is given by [106]

H(t) = ωX |X⟩⟨X|+ Ω(t) cos(ωlt)
(

|X⟩⟨0|+ |0⟩⟨X|
)

+ |X⟩⟨X|
∑

k

gk(b
†
k + bk) +

∑

k

ωkb
†
kbk. (4.1)

Here Ω(t) is the Rabi frequency characterising the laser-QD coupling strength

modulated by a time-dependent envelope function, ωl is the central laser fre-

quency, and gk characterises the coupling between the bath modes with fre-

quency ωk and the QD. Following the procedure used in Section 3.4.1, we shall

now apply a unitary transformation to the laboratory frame Hamiltonian, and

also make use of the RWA, to remove the time-dependent exponential factors

originating from the coherent driving term. This transformation yields the

RWA Hamiltonian in a reference frame rotating at the laser frequency

HR(t) = (ωX − ωl) |X⟩⟨X|+ Ω(t)

2
(|X⟩⟨0|+ |0⟩⟨X|)

+ |X⟩⟨X|
∑

k

gk(b
†
k + bk) +

∑

k

ωkb
†
kbk. (4.2)

To fully capture the impact of the phonon coupling on the QD we shall now

perform a second unitary transformation to move to the polaron frame [106].

This unitary polaron transformation displaces the phonon bath when the QD

is in the excited state |X⟩ as depicted in Figure 4.1. Furthermore, performing

this transformation also moves us to a basis that will allow us to to derive a
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(a) (b)

Figure 4.1: The displacement of a crystal lattice when a Quantum Dot (QD) is
excited from the ground (a) to the excited state (b). Figure adapted from [115].

master equation that is non-perturbative in the system-environment coupling

strength, and thus is valid even when this coupling strength is large [106]. The

polaron-transformed Hamiltonian is given by HP (t) = UpolHR(t)U
†
pol, where

Upol = exp

{

(

|X⟩⟨X|
∑

k

αk(b
†
k − bk)

)

}

= |0⟩⟨0|+ |X⟩⟨X|
∏

k

D(αk). (4.3)

Here
∏

kD(αk) is the product of displacement operators D(αk) that act on the

phonon creation and annihilation operators of the kth bath mode such that

D†(αk)bkD(αk) = (bk + αk) and D(αk)bkD
†(αk) = (bk − αk). (4.4)

Applying this transformation to Eq. 4.2, and defining σx = σ† + σ and σy =

i(σ − σ†) where σ = |0⟩⟨X|, yields the polaron Hamiltonian

HP (t) = δrσ
†σ +

Ωr(t)

2
σx +

Ω(t)

2

(

σxBx + σyBy

)

+
∑

k

ωkb
†
kbk + σ†σBz. (4.5)

From this polaron Hamiltonian we can already begin to understand some of

the effects resulting from the QD-phonon coupling. Eq. 4.5 shows the coupling

to the bath modes gives rise to a time-independent renormalisation of both

the Rabi frequency (Ωr(t) = Ω(t)B) and QD-laser detuning (δr = ωX − ωl −
∑

k αk(2gk − ωkαk)). In Eq. 4.5 we have also defined three bath operators to

describe bath-induced fluctuations

Bx =
1

2

(

B+ +B− − 2B
)

,

By =
1

2i

(

B− − B+

)

,

Bz =
∑

k

(gk − ωkαk)(b
†
k + bk).

(4.6)
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Figure 4.2: The super-Ohmic spectral density function characterising the cou-
pling between the excitonic state of a Quantum Dot (QD) and Longitudinal
Acoustic (LA) phonons. Parameters: ωc = 2.2 ps−1, and α = 0.027 ps2.

In this instance B = ⟨B±⟩ = exp{−(1/2)
∑

k |αk|2 coth (βωk/2)} is the average

displacement of the phonon bath relative to a thermal state, B+ =
∏

kD(αk),

and B− =
∏

kD
†(αk) =

∏

kD(−αk).
From here we may further simplify the polaron Hamiltonian by setting

αk = gk/ωk [106], which encapsulates the physical displacement of the phonon

modes in this model. This also removes the linear coupling term leaving the

final form of the polaron transformed Hamiltonian as

HP (t) = δrσ
†σ +

Ωr(t)

2
σx +

Ω(t)

2

(

σxBx + σyBy

)

+
∑

k

ωkb
†
kbk. (4.7)

In this case the phonon-shifted detuning reduces to δr =
(

δ−
∑

k ωkα
2
k

)

where

δ = ωX − ωl is the detuning in the absence of any phonon effects.

The coupling between a QD and bulk phonons is completely characterised

by a spectral density function. In the case of coupling to bulk LA-phonons,

which has been demonstrated to be the dominant phonon coupling component

in QDs [116], the spectral density has the phenomenological form [116, 117]

J(ω) = αω3e−(ω/ωc)2 , (4.8)

where α is the coupling constant defining the strength of the bath-system in-

teraction, and ωc is the phonon cut-off frequency that determines the peak

in the spectral density. An example of the spectral density function is plot-

ted in Figure 4.21. Using this spectral density we can redefine the average

1The spectral density plotted here is referred to as super-Ohmic as it has the form
J(ω) ∝ ωk where k > 1. Ohmic and sub-Ohmic spectral densities have k = 1 and k < 1
respectively.
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displacement of the phonon bath in the continuum limit as

B = exp

{

−1

2

∫ ∞

0

dω
J(ω)

ω2
coth (βω/2)

}

, (4.9)

where β = (1/kBT ) is the thermodynamic beta factor given by the inverse of

the product of the Boltzmann constant (kB) and temperature (T ).

4.2.2 Non-Markovian Polaron Master Equation

From the polaron-transformed Hamiltonian we can now derive a master equa-

tion describing the complete dynamics of a driven QD coupled to a phonon

bath. The first step in this derivation is to separate the total polaron-

transformed Hamiltonian into three components

HP,S(t) = δrσ
†σ +

Ωr(t)

2
σx

≡ δr
2
σz +

δr
2
I+

Ωr(t)

2
σx,

HP,I(t) =
Ω(t)

2
(σxBx + σyBy),

HP,B =
∑

k

ωkb
†
kbk,

(4.10)

describing the QD and driving, the QD-bath interaction (that shall be treated

as a perturbation), and the phonon bath respectively. From here we may

move into the interaction picture with respect to HP,0 = HP,S + HP,B which

then allows us to write an interaction picture Hamiltonian in the polaron-

transformed interaction picture such that

H̃P,I(t) = U †
P,0(t)HP,I(t)UP,0(t) = U †

P,S(t)e
iHP,BtHP,IUP,S(t)e

−iHP,Bt, (4.11)

where UP,S = TTT exp
{

−i
∫ t

0
dνHP,S(ν)

}

. In this polaron-transformed interac-

tion picture the interaction Hamiltonian can be written as

H̃P,I(t) =
Ω(t)

2

(

σ̃x(t)B̃x(t) + σ̃y(t)B̃y(t)
)

. (4.12)

Here σ̃x(y)(t) = U †
P,S(t)σx(y)UP,S(t) and B̃x(y)(t) = eiHP,BtBx(y)e

−iHP,Bt. From

here we can substitute this interaction Hamiltonian into the Born-Markov mas-

ter equation that we derived in Chapter 2 (Eq. 2.32). Making this substitution
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yields

∂

∂t
ρ̃S(t) = −Ω(t)

4

∫ t

0

dt′Ω(t′)
∑

i=x,y

(

[

σ̃i(t), σ̃i(t
′)ρ̃S(t)

]

Λii(t, t
′)

−
[

σ̃i(t), ρ̃S(t)σ̃i(t
′)
]

Λ†
ii(t, t

′)
)

, (4.13)

where Λij(t, t
′) = ⟨B̃(t)B̃(t′)⟩ = ⟨B̃i(τ)B̃j(0)⟩ = TrB

(

B̃i(τ)B̃j(0)ρB
)

for i =

j and Λi,j ̸=i = 0 with i, j ∈ {x, y}, Λ†(τ) = Λ(−τ), and we have defined

τ = t − t′. Using the LA-phonon spectral density, J(ω), the polaron bath

correlation functions may be written in the continuum limit as

Λxx(τ) =
B2

2

(

eφ(τ) + e−φ(τ) − 2
)

,

Λyy(τ) =
B2

2

(

eφ(τ) − e−φ(τ)
)

,

(4.14)

where the phonon propagator is given by

ϕ(τ) =

∫ ∞

0

J(ω)

ω2

(

cos(ωτ) coth
(βω

2

)

− i sin(ωτ)
)

dω. (4.15)

A full derivation of the polaron bath correlation functions and average dis-

placement of the bath can be found in Appendix B. Transforming back to the

Schrödinger picture, the polaron master equation is given by

∂

∂t
ρS(t) =− i

[

δrσ
†σ +

Ωr(t)

2
σx, ρS(t)

]

− Ω(t)

4

∑

i=x,y

(

[σi, χi(τ)ρS(t)]− [σi, ρS(t)χ
†
i (τ)]

)

,
(4.16)

where we have now defined the system rate operators as

χi=x,y(τ) =

∫ t

0

dτΩ(t− τ)σi(t− τ, t)Λii(τ), (4.17)

and where we have also defined σi(t − τ, t) = UP,S(t)U
†
P,S(t − τ)σiUP,S(t −

τ)U †
P,S(t).

On timescales relevant to the QD, assuming the electromagnetic spectral

density does not vary appreciably over the energy scales of the QD, the sponta-

neous emission rate remains unaffected by the QD-phonon coupling [104]. Ac-

cordingly we may incorporate spontaneous emission from the QD with rate γ in

the master equation with the usual Lindblad collapse term Lk ∈ {√γσ} [104].
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The final form of the non-Markovian polaron master equation incorporating

spontaneous emission is then

∂

∂t
ρS(t) =− i[δrσ

†σ +
Ωr(t)

2
σx, ρS(t)] +

γ

2

(

2σρSσ
† −

{

σ†σ, ρS(t)
}

)

− Ω(t)

4

∑

i=x,y

(

[σi, χi(t)ρS(t)]− [σi, ρS(t)χ
†
i (t)]

)

= L(t)ρ(t).

(4.18)

4.2.3 Markovian Polaron Master Equation

Just as in the derivation of the weak-coupling Born-Markov master equation,

we may once again make use of the Markov approximation to simplify the

polaron master equation. Assuming the decay of the bath correlation functions

is much faster than the dynamics of the 2LS, we can take the upper limits of

the integrals in the rate operators to infinity. Doing so removes the time-

dependence of the bath rate operators reducing the polaron master equation

to

∂

∂t
ρS(t) =− i

[

δrσ
†σ +

Ωr(t)

2
σx, ρS(t)

]

+
γ

2

(

2σρSσ
† −

{

σ†σ, ρS(t)
})

−
(Ω(t)

2

)2 ∑

i=x,y

(

[

σi, χiρS(t)
]

−
[

σi, ρS(t)χ
†
i

]

)

= L(t)ρ(t),
(4.19)

where we have made the further substitution Ω(t − τ) → Ω(t) and moved

this factor of the Rabi frequency out of the rate operators. As we have as-

sumed the QD states and bath evolve on disparate timescales, to calculate

the rate operators we can make an adiabatic approximation U(t)U(t − τ) ≈
exp{−iHS(t)τ} [106], and thus σi(t − τ, t) → σi(τ). This allows us to per-

form a simplified expansion of the system operator in the basis of the system

Hamiltonian where |ψk(τ)⟩ are the eigenvectors of Hs(t) = δrσ
†σ + Ωr(t)

2
σx,

and λij = ψi−ψj are the difference in the system eigenvalues. Performing this

expansion yields

σ̃(τ) = U †
0(τ)σU0(τ) = U †

0(τ)IσIU0(τ) =
∑

lm

U †
0(τ) |ψl⟩⟨ψl| σ |ψm⟩⟨ψm|U0(τ)

=
∑

lm

⟨ψl| σ |ψm⟩U †
0(τ) |ψl⟩⟨ψm|U0(τ) =

∑

lm

⟨ψl| σ |ψm⟩ eiψl(τ) |ψl⟩⟨ψm| e−iψm(τ)

=
∑

lm

eiψlm(τ) ⟨ψl| σ |ψm⟩ |ψl⟩⟨ψm| .

(4.20)
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This expansion allows one to account for the full eigenstructure of the polaron

transformed system, resulting in rate operators given by

χi=x,y =
∑

jk

⟨ψj| σi |ψk⟩
∫ ∞

0

e−iλjkτΛii(τ)dτ |ψj⟩⟨ψk| , (4.21)

that are computationally simpler to calculate than Eq. 4.17.

4.3 Pulsed Emission Spectra

As we discussed in Chapter 3, one may experimentally determine the proper-

ties of quantum systems by measuring the properties of the light they emit.

Hence, we wish to understand the impact of the QD-phonon coupling on the

properties of the light emitted by the QD under pulsed excitation. As we need

to calculate correlation functions to obtain the desired emission spectra, and

the QRT is only valid for systems undergoing Markovian dynamics, we shall

use the Markovian polaron master equation in Eq. 4.19 rather than the non-

Markovian polaron master equation given by Eq. 4.18. Due to the limitations

of the polaron formalism, discussed further in Chapter 5, we shall restrict our

discussion of the pulsed emission spectra to the long pulse limit to restrict the

Rabi frequency at the peak of the pulse.

The two-time first-order correlation function written in terms of the QD

operators is given by

G(1)(t, τ) = ⟨σ†(t+ τ)σ(t)⟩ = Tr
(

σ†eLτσρS(t)
)

, (4.22)

where ρS(t) is the density matrix of the QD at time t, and L is the system

Liouvillian. To calculate the two-time first-order correlation function, we must

first propagate the state of the system along the t axis. To do this we use a

standard initial value problem approach with discretised time steps. Starting

from an initial state ρ(t = 0), this allows us to calculate the system density

matrix ρ(t′) at a given time time t′ in this range of discretised time intervals

using a time-dependent Liouvillian L(t). Using the QRT we can then propagate

the density matrix along the τ axis for each discrete time step in t using

σρS(t) as the initial states such that Λ(t, τ) = eLτσρ(t) to find G(1)(t, τ).

The propagation of the states along the τ axis is performed with the same

Liouvillian used to initially propagate the state of the system along the t axis,

only with a temporally displaced form of the time-dependent Rabi frequency
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given by

Ω(t, τ) =
Θ√
2πw2

exp

{

−
(

τ − (τ0 − t)
)2

2w2

}

, (4.23)

where Θ is the pulse area, t0 is the time at the peak of the pulse, and w is the

Gaussian width of the pulse electric field which is related to the electric field

Full-Width Half Maximum (FWHM), ∆τE, by

w =
∆τE

2
√
2 ln 2

. (4.24)

The electric field FWHM is then related to the intensity FWHM, ∆τI , by

∆τE = ∆τI
√
2. As discussed in Chapter 3, we may calculate the TDS from

the first-order correlation function using [76]

S(ω, t,Υ) = 2ΥRe
{

∫ t

0

dt2 exp
{(

−Υ(t− t2)
)}

∫ t−t2

0

dτ exp

{

(

(Υ

2
− i(ω − ωl))τ

)

)

}

⟨σ†(t2 + τ)σ(t2)⟩
}

, (4.25)

where Υ is the measurement bandwidth accounting for time-energy uncer-

tainty [77]. The TIS is then found in the limit t≫ t0 +∆τE.

4.3.1 Time-Dependent Pulsed Emission Spectra

To calculate the emission spectra we shall assume the QD possesses the same

excited state lifetime as presented in [82], but we shall take the bad cavity limit

such that γ → FPγ where FP is the Purcell factor (see Chapter 3). Addition-

ally, we choose a laser frequency such that δr = 0. Figure 4.3 shows the impact

of the QD-phonon coupling on the full time-dependent first-order correlation

function, G(1)(t, τ), as a function of temperature. We find increasing the tem-

perature of the system increases the damping of the Rabi oscillations along

the t-axis. Using Eq. 4.25 to calculate the TDS at different temperatures (see

Figure 4.4) we find the phonon-coupling results in a broadening of the satel-

lite Mollow peaks of the pulsed emission spectrum (see Section 3.7.3 for more

details regarding the pulsed emission spectrum), while the central ZPL and

temporal evolution of the satellite peaks remains unaffected. Furthermore, we

find the broadening of the satellite peaks increases with increasing tempera-

ture until the individual Mollow peaks can no longer be distinguished. The

broadening of the satellite peaks results from the pure-dephasing component
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of the phonon-coupling [78], while the lack of broadening of the ZPL results

from the assumption of a purely linear QD-phonon coupling bath [80].

In addition to the broadening of the satellite Mollow peaks, we find an

asymmetry is also induced in the emission spectra that was not observed when

using a simple pure dephasing model in either Section 3.9 or [78]. Furthermore,

from Figure 4.4 we observe this phonon-induced asymmetry actually decreases

with increasing temperature in contrast to the other phonon effects we have

seen. This is the result of an imbalance in phonon-mediated photon emission

processes. In the limit of low temperature, the number of phonons present

in the bath is low. Hence, the probability of the QD emitting a photon with

energy ℏωγ > ℏωX via the absorption of a phonon carrying energy ℏ(ωγ −ωX)

is small, suppressing this mechanism. However, the QD may also emit lower

energy photons (ℏωγ < ℏωX) by simultaneously emitting a phonon with energy

ℏ(ωX − ωγ). Since this latter process does not rely on phonon absorption

and thus the existing phonon number, it can occur more readily at lower

temperatures. This results in the asymmetry that emerges in the multi-peak

QD pulsed emission spectrum when accounting for the full effects of the QD-

phonon coupling. When the temperature of the system is increased, the phonon

occupation of the bath also increases which in turn increases the rate of phonon

scattering balancing the rates of the two phonon-mediated emission processes,

and accordingly the asymmetry in the emission spectrum is diminished.

Additional phonon effects can also be observed by considering the power

dependence of the TDS and G(1)(t, τ) in addition to the temperature depen-

dences shown in Figures 4.3 and 4.4. Figure 4.5 shows that increasing the area

of the driving pulse simultaneously increases the number of Rabi oscillations

in the first-order correlation function G(1)(t, τ), while also decreasing the mag-

nitude of these oscillations. Moreover, from Figure 4.6 we find increasing the

area of the driving pulse, Θ, also increases the number of Mollow side-peaks

in the emission spectrum as predicted in [78]. However, it can also be seen

that the magnitude of the asymmetry in the spectrum at low temperature also

increases with increasing pulse area. In the limit of large pulse area the phonon

spectral density, J(ω), is sampled closer to its peak at ωc as the peak Rabi fre-

quency Ωr(t0) approaches and exceeds ωc. This has the effect of increasing the

effective phonon coupling strength, and thus magnifies the phonon-coupling

effects. Additionally, at larger pulse areas a difference in the evolution of the

satellite peaks at ω < ωl and ω > ωl is observed.
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(a) (b)

(c) (d)

Figure 4.3: The two-time first-order correlation function, G(1)(t, τ), of the light
emitted by a QD coherently driven by a Gaussian optical pulse with (a) no
phonon coupling (i.e. α = 0 ps2), and with phonon coupling (α = 0.027 ps2,
ωc = 2.2 ps−1) at temperatures (b) T = 5 K, (c) T = 10 K, and (d) T = 50 K.
G(1)(t, τ) was calculated using the master equation and Quantum Regression
Theorem (QRT). Parameters used: Θ = 7π, ∆τI = 12 ps, and t0 = 4∆τI .



4.3. Pulsed Emission Spectra 67

-1.5 -1 -0.5 0 0.5 1 1.5
40

60

80

100

120

ωl - ω (ps-1)

t 
(p

s)

-4.6

-4.2

-3.8

-3.4

-3

-2.6

-2.2

-1.8

-1.4

-1

-0.6

log10(S(ω,t))

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
40

60

80

100

120

ωl - ω (ps-1)

t 
(p

s)

-4.6

-4.2

-3.8

-3.4

-3

-2.6

-2.2

-1.8

-1.4

-1

-0.6

log10(S(ω,t))

(b)

-1.5 -1 -0.5 0 0.5 1 1.5
40

60

80

100

120

ωl - ω (ps-1)

t 
(p

s)

-4.6

-4.2

-3.8

-3.4

-3

-2.6

-2.2

-1.8

-1.4

-1

-0.6

log10(S(ω,t))

(c)

-1.5 -1 -0.5 0 0.5 1 1.5
40

60

80

100

120

ωl - ω (ps-1)

t 
(p

s)

-4.6

-4.2

-3.8

-3.4

-3

-2.6

-2.2

-1.8

-1.4

-1

-0.6

log10(S(ω,t))

(d)

Figure 4.4: The Time-Dependent Spectra (TDS) of the light emitted by a
Quantum Dot (QD) coherently driven by a Gaussian optical pulse with (a)
no phonon coupling (α = 0 ps2), and with phonon coupling (α = 0.027 ps2,
ωc = 2.2 ps−1) at temperatures (b) T = 5 K, (c) T = 10 K, and (d) T = 50 K.
Parameters used: Θ = 7π, ∆τI = 12 ps, t0 = 4∆τI .
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(a) (b)

(c) (d)

Figure 4.5: The two-time first-order correlation function, G(1)(t, τ), of the light
emitted from a Quantum Dot (QD) coupled to a phonon bath and coherently
driven by a Gaussian optical pulse with pulse area (a) Θ = 5π, (b)Θ = 7π, (c)
Θ = 9π, and (d) Θ = 11π. G(1)(t, τ) was calculated using the master equation
and Quantum Regression Theorem (QRT). Parameters used: T = 5 K, ∆τI =
12 ps, t0 = 4∆τI , α = 0.027 ps2, ωc = 2.2 ps−1.
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Figure 4.6: The Time-Dependent Spectra (TDS) of the light emitted by a
Quantum Dot (QD) coupled to a phonon bath and coherently driven by a
Gaussian optical pulse with pulse area (a) Θ = 5π, (b) Θ = 7π, (c) Θ = 9π,
and (d) Θ = 11π. Parameters used: T = 5 K, ∆τI = 12 ps, t0 = 4∆τI ,
α = 0.027 ps2, ωc = 2.2 ps−1.
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Figure 4.7: (Top) The temperature dependence of the (a) first-order correlation
function and (b) Time-Integrated Spectra (TIS) of the light emitted by a
Quantum Dot (QD) driven by a Gaussian optical pulse. Phonon effects are
included using the Markovian polaron model with parameters: Θ = 7π, ∆τI =
12 ps, t0 = 4∆τI , α = 0.027 ps−2, ωc = 2.2 ps−1. The expected values
in the absence of phonon coupling are also included. (Bottom) The power
dependence of the (c) first-order correlation function and (d) TIS from a QD
coupled to a phonon bath and driven by a Gaussian optical pulse for a number
of different pulse areas. Phonon coupling is included via the Markovian polaron
model with parameters: T = 5 K, ∆τI = 12 ps, t0 = 4∆τI , α = 0.027 ps2,
ωc = 2.2 ps−1
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4.3.2 Time-Integrated Pulsed Emission Spectra

The effects on the emission properties of the QD resulting from the phonon

coupling can be more clearly seen in the time-integrated first-order correlation

function, G(1)(t) =
∫

dτG(1)(t, τ), and the TIS shown in Figure 4.7. Fig-

ures 4.7a and 4.7b show the time-integrated forms of Figures 4.3 and 4.4, that

is they show the temperature dependence of G(1)(t) and the TIS. From Fig-

ure 4.7a the damping of the oscillations in the first-order correlation function

can be clearly seen with increasing temperature. At T = 50 K the Rabi oscilla-

tions are almost completely damped. In agreement with our findings from the

TDS, at low temperatures the QD-phonon coupling results in an asymmetry in

the TIS. Increasing the temperature decreases this asymmetry in the TIS, but

increases the broadening of the satellite peaks until at T = 50 K none of the

satellite peaks are individually resolvable. Taking the power dependence we

again find an increase in the number of Rabi oscillations and Mollow satellite

peaks of the time-integrated first-order correlation function (Figure 4.7c) and

TIS (Figure 4.7d) respectively with increasing pulse area. From the TIS shown

in Figure 4.7d the increase in the asymmetry of the spectrum with increasing

pulse area is clearly visible further to the increased number of satellite peaks.

4.4 Pulsed Second-Order Correlation Func-

tion

From the Markovian standard polaron model we may also study the behaviour

of the second-order correlation function under pulsed optical driving and the

influence of phonon coupling. The second order-correlation function, G(2)(t, τ)

takes a similar form to the first-order correlation function used to calculate

the emission spectra

G(2)(t, τ) = ⟨σ†(t)σ†(t+ τ)σ(t+ τ)σ(t)⟩ = Tr
(

σ†σeLτσρS(t)σ
†), (4.26)

where again L is the Liouvillian, and σ is the QD lowering operator. Calculat-

ing G(2)(t, τ) follows the same procedure as calculating G(1)(t, τ), only σρS(t)σ
†

are used as the initial states to propagate along the τ axis. Figure 4.8 shows

phonon coupling has a minimal impact on the central minimum of the pulsed

G(2)(τ) =
∫

dtG(2)(t, τ). As the lifetime of the excited state of the QD is not

influenced by the presence of the phonon bath, the widths of the peaks and

dips remain unaffected by the QD-phonon coupling. However, as we observed
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Figure 4.8: The central peak of the pulsed second-order correlation function
when driving a Quantum Dot (QD) with a single Gaussian pulse calculated
using the quantum regression theorem. G(2)(τ) is plotted without phonon cou-
pling, and at three different temperatures with phonon coupling. Parameters
used: Θ = 7π, ∆τI = 12 ps, α = 0.027 ps2, and ωc = 2.2 ps−1.

with the system dynamics and G(1)(t, τ), the Rabi oscillations in G(2)(τ) are

increasingly damped as the temperature of the bath is increased.

4.5 Summary

Taking the Markovian limit of the standard polaron model, we have studied the

effects of phonon coupling on the emission properties of a QD when driven by a

Gaussian optical pulse. We have shown the effects of the QD-phonon coupling

manifest themselves in two manners in the emission spectrum. When coupled

to a phonon bath the satellite Mollow peaks of the pulsed emission spectrum

become broadened, in agreement with a pure dephasing model [78] previously

studied. However, an imbalance in phonon-mediated emission processes leads

to an asymmetry in the emission spectrum at low temperatures, decreasing

in magnitude with increasing temperature, that is not observed when using a

pure-dephasing approach alone. Furthermore, we have also shown the phonon-

coupling has a minimal impact on the second-order correlation function. This

further proves that such models are unable to fully account for the effects of

coupling to a phonon bath.



Chapter 5

Time-Dependent Variational

Polaron Theory

5.1 Introduction

In deriving the polaron master equation in Chapter 4, we made a number

of approximations that naturally limit the regimes in which it is valid. The

derivation of the master equation in the polaron transformed frame of reference

instantaneously displaces the phonon bath when the QD is driven into its

excited state. Therefore we expect the polaron formalism to be valid only when

the bath is able to react on timescales shorter than the characteristic timescales

of the QD dynamics. In fact, it can be shown that the polaron master equation

treats the QD-phonon coupling as a perturbation in the ratio of Ω/ωc [106],

and thus we should only expect the polaron model to be valid in the weak-

driving regime where Ω/ωc ≪ 1 [106]. Additionally, the Markovian limit

further restricts the regimes of validity to timescales greater than the inverse

of the cutoff frequency [106]. Hence, when driving the system with a Gaussian

optical pulse, we expect the polaron model to breakdown in the limits of short

pulse duration and/or large pulse area (see Figure 5.1), where the peak Rabi

frequency of the pulse approaches and surpasses the phonon cut-off frequency.

Therefore, to make accurate predictions of phonon-induced effects in these

limits, we must derive a theory that minimises the interaction Hamiltonian

even when the ratio Ω/ωc is large, and is also able to account for the finite

reaction time of the bath. To this end we shall now extend the variational

polaron model [100, 118] to develop a time-dependent variational polaron model

including pulsed optical driving. While this model still displaces the bath

modes according to the charge state of the QD as in the standard polaron

73
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(a) (b)

Figure 5.1: The peak Rabi frequency, Ω(t0), of a Gaussian pulse (a) sweeping
the pulse area (Θ) for a given Full-Width Half Maximum (FWHM) (∆τI), and
(b) sweeping ∆τI for a given Θ. The phonon cut-off frequency, ωc = 2.2 ps−2,
is also plotted. The polaron model is only valid when Ω(t0) ≪ ωc [106].

model, it leaves the magnitude of the displacement of each bath mode as a

variational parameter chosen to minimise the free-energy of the system [118]

at each discretised time step considered. This approach shall allow us to

derive a master equation that returns reliable results inside and outside of the

optical driving regimes accessible by the weak-coupling and polaron models,

and remains valid with environmental interactions that are not governed by

super-ohmic spectral densities [118].

5.2 The Variational-Polaron-Transformed Ex-

citon Phonon Hamiltonian

To derive our time-dependent variational polaron master equation we begin

with the same rotating frame Hamiltonian1 that we used to derive the polaron

master equation in Chapter 4

HR(t) = (ωX − ωl) |X⟩⟨X|+ Ω(t)

2
(|X⟩⟨0|+ |0⟩⟨X|)

+ |X⟩⟨X|
∑

k

gk(b
†
k + bk) +

∑

k

ωkb
†
kbk. (5.1)

Here Ω(t) is the Rabi frequency characterising the laser-QD coupling strength

modulated by a time-dependent envelope function, ωl is the central laser fre-

1See Chapter 3 for more information on transforming to rotating frames of reference and
the Rotating Wave Approximation (RWA).
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quency, and gk characterises the coupling between the bath modes with fre-

quency ωk and the QD. However, unlike in our derivation of the polaron master

equation, we shall now allow the polaron displacement to have some explicit

time-dependence i.e. αk → αk(t). Our unitary polaron operator is thus modi-

fied from the polaron formalism to

Uvp(t) = exp
{

|X⟩⟨X|
∑

αk(t)
(

b†k−bk
)

}

= |0⟩⟨0|+ |X⟩⟨X|
∏

k

D(αk(t)). (5.2)

This modification results in an additional term in the transformed Hamil-

tonian from the non-zero time derivative of the unitary operator, HV (t) =

Uvp(t)HR(t)U
†
vp(t) + i

(

∂tUvp(t)
)

U †
vp(t), modifying the Bz bath operator from

the polaron limit such that the bath operators in the time-dependent varia-

tional polaron formalism are given by

Bx(t) =
1

2

(

B+(t) + B−(t)− 2B(t)
)

,

By(t) =
1

2i

(

B−(t)− B+(t)
)

,

Bz(t) =
∑

k

hk(t)b
†
k + h.c.,

(5.3)

where hk(t) =
∑

k

(

gk − ωkαk(t) + i∂tαk(t)
)

. Comparing these bath operators

with those derived in the standard polaron model (Eq. 4.6) we see that the first

two maintain the same form as in the polaron limit only now with an additional

time dependence. It is also clear that in the variational polaron formalism

Bz(t) is an extended version of the Bz operator in the polaron limit, with

the first two terms of hk(t) originating from the polaron model, and the final

term arising from the non-zero time derivative of the unitary time-dependent

variational polaron operator. Rather than setting the polaron displacement,

αk, to eliminate the linear coupling terms as done in Chapter 4, we now allow

it to a be a variational parameter such that αk(t) = fk(t)/ωk where fk(t) is the

time-dependent variational function [119, 120]. This leaves our time-dependent

variational polaron Hamiltonian as HV (t) = HV,S(t) +HV,B +HV,I(t) where

HV,S(t) = δr(t)σ
†σ +

Ωr(t)

2
σx,

HV,I(t) =
Ω(t)

2

(

σxBx(t) + σyBy(t)
)

+ σ†σBz(t),

HV,B =
∑

k

ωkb
†
kbk.

(5.4)
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Here δr(t) = δ −
∑

k ω
−1
k fk(t)

(

2gk − fk(t)
)

, σ = |0⟩⟨X|, and σx, σy, and σz =
2(σ†σ − 1) are the standard Pauli matrices. For each bath mode we choose

fk(t) to minimise the free energy, F , of the system. This ensures that the

state of the system relaxes to the true thermal state of the combined system

and environment. However, rather than taking the challenging route of explic-

itly calculating the free energy of the system, we shall instead minimise the

Feynman-Bogoliubov upper bound [119, 120] which satisfies AB(t) ≥ F , and

has the form [111]

AB(t) =
−1

β
ln (Tr

{

(e−βH0(t))
}

) + ⟨HI(t)⟩H0(t) +O(⟨H2
I ⟩H0(t)). (5.5)

Minimising AB(t) with respect to fk(t) yields

∂AB(t)

∂fk(t)
=

1

Tr{(e−βH0(t))}
(∂H0(t)

∂fk(t)

)

= 0, (5.6)

which gives fk(t) = F (ωk, t)gk where

F (ωk, t) =
ηr(t)− δr(t) tanh

(

βηr(t)
2

)

ηr(t)− tanh
(

βηr(t)
2

)(

δr(t)− Ωr(t)2

2ωk
coth

(

βωk(t)
2

)) . (5.7)

Here ηr(t) =
√

δr(t)2 + Ωr(t)2 is the time-dependent renormalised generalised

Rabi frequency. We perform this minimisation for each time-step by self-

consistently solving the equations

Ωr(t) = Ω(t) exp
(

−1

2

∫ ∞

0

dω
J(ω)F (ω, t)2

ω2
coth

(βω

2

))

, (5.8)

δr(t) = δ +

∫ ∞

0

dω
J(ω)F (ω, t)

ω

(

2− F (ω, t)
)

, (5.9)

for the renormalised Rabi frequency and detuning respectively.

5.3 Non-Markovian Variational Polaron Mas-

ter Equation

From here we follow a similar procedure to the one we used to derive the

polaron master equation, once again transforming our Hamiltonian into the

interaction picture, now with respect to HV,0(t) = HV,S(t) + HV,B, using the

unitary operator
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UV,0(t) = TTT exp

(

−i
∫ t

0

dsHV,0(s)

)

, (5.10)

to obtain the interaction Hamiltonian

H̃V,I(t) =
Ω(t)

2

(

σ̃x(t)B̃x(t) + σ̃y(t)B̃y(t)
)

+ σ̃†σ̃(t)B̃z(t), (5.11)

where operators in the interaction picture are denoted by a tilde and given by

S̃(t) = U †
V,S(t)SUV,S(t) with UV,S(t) = TTT exp

(

−i
∫ t

0
dsHV,S(s)

)

. Substituting

Eq. 5.11 into Eq. 2.32 yields

∂tρ̃S(t) =

−
∫ t

0

dt′
{

∑

i,j=x,y

(

[σ̃i(t), σ̃j(t
′)ρ̃S(t)]Λij(t, t

′)− [σ̃i(t), ρ̃S(t)σ̃j(t
′)]Λ†

ij(t, t
′)
)

+
∑

i=x,y

(

[σ̃†σ̃(t), σ̃i(
′t)ρ̃S(t)]Λzi(t, t

′)− [σ̃†σ̃(t), ρ̃S(t)σ̃i(t
′)]Λ†

zi(t, t
′)
)

+
∑

i=x,y

(

[σ̃i(t), σ̃
†σ̃(t′)ρ̃S(t)]Λiz(t, t

′)− [σ̃i(t), ρ̃S(t)σ̃
†σ̃(t′)]Λ†

iz(t, t
′)
)

+
(

[σ̃†σ̃(t), σ̃†σ̃(t′)ρ̃S(t)]Λzz(t, t
′)− [σ̃†σ̃(t), ρ̃S(t)σ̃

†σ̃(t′)]Λ†
zz(t, t

′)
)}

,

(5.12)

where Λij(t, t
′) = TrB

(

B̃i(t)B̃j(t
′)ρB

)

and Λ†
ij(t, t

′) = TrB
(

B̃i(t
′)B̃j(t)ρB

)

are

the correlation functions for i, j ∈ {x, y, z} into which we have now absorbed

the time-dependent Rabi frequency terms. The additional bath operator in

the variational polaron limit results in a further two correlation functions in

addition to the two polaron type correlation functions, a weak-coupling type

correlation function Λzz(t, t
′) and a cross-correlation type function Λyz(t, t

′).

The four unique non-zero variational polaron correlation functions are

Λxx(t, t
′) =

Ωr(t)Ωr(t
′)

8

(

eφ(t,t
′) + e−φ(t,t

′) − 2
)

, (5.13)

Λyy(t, t
′) =

Ωr(t)Ωr(t
′)

8

(

eφ(t,t
′) − e−φ(t,t

′)
)

, (5.14)

Λyz(t, t
′) =

Ωr(t)

2

∫ ∞

0

dω
J(ω)F (ω, t)

ω

{

(

F (ω, t′)− 1
)

(

coth
(βω

2

)

sin
(

ω(t− t′)
)

+ i cos
(

ω(t− t′)
)

)

+
∂t′F (ω, t

′)

ω

(

i sin
(

ω(t− t′)
)

− coth
(βω

2

)

cos
(

ω(t− t′)
)

)}

,

(5.15)
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Λzz(t, t
′) =

∫ ∞

0

dωJ(ω)u(ω, t)u∗(ω, t′)
{

coth
(βω

2

)

cos
(

ω(t− t′)
)

− i sin
(

ω(t− t′)
)

}

. (5.16)

Here we define u(ω, t) = 1−F (ω, t)+iω−1∂tF (ω, t), J(ω) = αω3 exp{−(ω/ωc)
2},

and the phonon propagator in the non-Markovian limit of our time-dependent

variational polaron formalism is given by

ϕ(t, t′) =

∫ ∞

0

dω
J(ω)F (ω, t)F (ω, t′)

ω2

(

cos(ω(t− t′)) coth
(βω

2

)

− i sin
(

ω(t− t′)
)

)

. (5.17)

To maintain the relationship Λ∗(t, t′) = Λ(t′, t) to give Λzy(t, t
′) = Λ∗

yz(t
′, t) we

define Λ′
yz(t, t

′) = iΛyz(t, t
′). A full derivation of the correlation functions can

be found in Appendix C. From here we absorb the correlation functions and

integrals into the commutators of the master equation allowing us to define

the non-Markovian interaction picture variational bath rate operators as

χ̃j=x,y(t) =

∫ t

0

dsσ̃j(s)Λjj(t, s),

θ̃z(t) =

∫ t

0

dsσ̃†σ̃(s)Λzz(t, s),

Ξ̃y(t) =

∫ t

0

dsσy(s)Λ
′
zy(t, s),

Ξ̃z(t) =

∫ t

0

dsσ̃†σ̃(s)Λ′
yz(t, s),

(5.18)

This yields an interaction picture master equation of the form

∂

∂t
ρ̃S(t) =−

(

[σ̃†σ̃(t), θ̃z(t)ρ̃S(t)]− [ρ̃S(t)θ̃
†
z(t), σ̃

†σ̃(t)]
)

−
{

∑

i=x,y

(

[σ̃i(t), χ̃i(t)ρ̃S(t)] + [σ̃i(t), ρ̃S(t)χ̃
†
i (t)]

)}

− i
(

[σ̃y(t), Ξ̃z(t)ρ̃S(t)]− [ρ̃S(t)Ξ̃
†
z(t), σ̃y(t)]

)

+ i
(

[σ̃†σ̃(t), Ξ̃y(t)ρ̃S(t)]− [ρ̃S(t)Ξ̃
†
y(t), σ̃

†σ̃(t)]
)

.

(5.19)

The time-ordering operator included in Eq. 5.10 makes analytical solutions

extremely difficult if not impossible. Equivalently, we may instead solve the

differential equation

∂tU(t) = −iH0(t)U(t), (5.20)
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to calculate the unitary operators while also accounting for time ordering.

Additionally, solving this differential equation allows us to perform a unitary

transformation back to the Schrödinger picture, naturally simplifying the ex-

pectation values we wish to calculate. Our time-dependent variational polaron

master equation in the Schrödinger picture is then given by

∂

∂t
ρS(t) =− i

[

H0(t), ρS(t)
]

−
{

∑

i=x,y

(

[σi, χi(t)ρS(t)] + [σi, ρS(t)χ
†
i (t)]

)}

−
(

[σ†σ, θz(t)ρs(t)]− [ρS(t)θ
†
z(t), σ

†σ]
)

− i
(

[σy,Ξz(t)ρS(t)]− [ρS(t)Ξ
†
z(t), σy]

)

+ i
(

[σ†σ,Ξy(t)ρS(t)]− [ρS(t)Ξ
†
y(t), σ

†σ]
)

,

(5.21)

where, defining ϱ(t′, t) = U(t)U †(t′)ϱU(t′)U †(t) for ϱ ∈ {σx, σy, σ†σ}, the

Schrödinger picture rate operators are given by

χj=x,y(t) =

∫ t

0

dsσj(t
′, t)Λjj(t, t

′),

θz(t) =

∫ t

0

dsσ†σ(t′, t)Λzz(t, t
′),

Ξy(t) =

∫ t

0

dsσy(t
′, t)Λ′

zy(t, t
′),

Ξz(t) =

∫ t

0

dsσ†σ(t′, t)Λ′
yz(t, t

′).

(5.22)

5.3.1 Recovering the Weak-Coupling and Polaron Mod-

els

We can recover both the non-Markovian polaron and weak-coupling models

from our time-dependent variational polaron master equation. If we take the

limit of F (ω, t) = 1 ∀ ω, t (i.e. the limit where the bath is always fully dis-

placed) we find that both the weak-coupling type correlation function and

cross-correlation functions go to zero. Thus the only remaining non-zero cor-

relation functions are the polaron type correlation functions (Λxx(t, t
′) and

Λyy(t, t
′)). The full time-dependent variational polaron master equation then

reduces to the non-Markovian polaron master equation, given by Eq. 4.16, in

this limit.

Taking the limit of F (ω, t) = 0 ∀ ω, t such that the bath is not dis-
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placed by the variational polaron transformation, we can recover the non-

Markovian weak-coupling model, the non-Markovian form of the master equa-

tion in [117, 121]. In this limit only a single correlation function, Λzz(t, t
′),

remains non-zero, and thus the non-Markovian master equation reduces to the

weak-coupling master equation in the Schrödinger picture given by

∂

∂t
ρS(t) =− i

[

H0(t), ρS(t)
]

−
(

[σ†σ, θz(t)ρS(t)]− [ρS(t)θ
†
z(t), σ

†σ]
)

, (5.23)

where the weak-coupling rate operator is given by

θz(t) =

∫ t

0

dsσ†σ(t′, t)Λzz(t, t
′). (5.24)

5.4 The Variational Function and Renormali-

sation of the Rabi Frequency

Before investigating the full dynamics of the system, we can gain an initial

understanding of the effects captured in the time-dependent variational polaron

model by considering the behaviour of both the variational function, F (ω, t),

and the renormalisation of the Rabi frequency. To this end we plot both F (ω, t)

and the time-integrated ratio of the renormalised Rabi frequency to bare Rabi

frequency (
∫∞
0
dt Ωr(t)/Ω(t)) for a range of driving pulse parameters.

To calculate the variational function, renormalisation, and dynamics, we

shall assume the system is driven by an optical pulse with a Gaussian envelope

such that the time-dependent Rabi frequency of the pulse is given by

Ω(t) =
Θ√
2πw2

exp

{

−(t− t0)
2

2w2

}

. (5.25)

Here Θ is the pulse area, t0 is the arrival time of the pulse, and w is the

Gaussian width of the pulse electric field. The latter quantity is related to the

electric field Full-Width Half Maximum (FWHM) by

w =
∆τE

2
√
2 ln 2

, (5.26)

where ∆τE is the electric field FWHM. This is in turn related to the intensity

FWHM, ∆τI , measured in experiment, by ∆τE = ∆τI
√
2. It is this latter

quantity that we shall refer to in this chapter when quoting pulse widths.
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(a) Θ = 2π, ∆τI = 1 ps (b) Θ = 2π, ∆τI = 5 ps (c) Θ = 2π, ∆τI = 10 ps

(d) Θ = 6π, ∆τI = 1 ps (e) Θ = 6π, ∆τI = 5 ps (f) Θ = 6π, ∆τI = 10 ps

Figure 5.2: The variational function, F (ω, t), plotted as a function of time t
and the bath mode frequencies as a factor of the cut-off frequency ωc when
driving a QD with a Gaussian. The area (Θ) and Full-Width Half Maximum
(FWHM) (∆τI) of the driving pulse is indicated under each figure. Parameters
used: ωc = 2.2 ps−1, t0 = 5∆τI , and T = 5 K.

Figure 5.2 shows the time-dependent variational function, F (ω, t), plot-

ted as a function of both time and the frequencies of the bath modes, for

two different Gaussian pulse areas (Θ ∈ {2π, 6π}) and three different pulse

widths (∆τI ∈ {1 ps, 5 ps, 10 ps}). For all of the pulse parameters shown

in Figure 5.2, we find F (ω, t) = 1 ∀ ω before and after the driving pulse.

Thus we expect the system to evolve purely according to the standard po-

laron model with vanishing Rabi frequency. However, during the pulse we find

F (ω, t) → 0 for the lower frequency bath modes, indicating a weak-coupling

type interaction between the QD and these phonon modes. Figure 5.2 shows

that the range of bath modes that experience this weak-coupling-type interac-

tion during the pulse increases with increasing pulse area, and decreasing pulse

duration. Hence, from the form of the variational function, we find that when

driving the system with pulses of short duration and large area the QD states

primarily evolve according to the weak-coupling model during the pulse. This

indicates that the bath modes that evolve on longer characteristic timescales

than the QD states are not displaced as in the polaron model.
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0 5 10 15 20

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
en

o
rm

al
is

at
io

n
, 
∫� 0

d
t 
Ω

r(
t)

/Ω
(t

)

Θ(π)

(c) T = 15 K

0 5 10 15 20

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
en

o
rm

al
is

at
io

n
, 
∫� 0

d
t 
Ω

r(
t)

/Ω
(t

)

Θ(π)

(d) T = 20 K

Figure 5.3: The renormalisation predicted by the polaron (blue squares) and
variational polaron models as a function of pulse area for temperatures (a)
T = 5 K, (b) T = 10 K, (c) T = 15 K, and (d) T = 20 K. The renormalisation
calculated using the variational polaron model is also plotted for a number
of driving pulse Full-Width Half Maximum (FWHM), namely ∆τI = 1.2 ps
(orange circles), ∆τI = 6 ps (green triangles), and ∆τI = 12 ps (burgundy
diamonds). Parameters used: α = 0.027 ps2, and ωc = 2.2 ps−1.
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While the variational function does have a temperature dependence

through the presence of β in the hyperbolic functions, the effect of increas-

ing temperature on F (ω, t) is subtle. The effects of varying temperature are

more clearly demonstrated through the renormalisation of the Rabi frequency.

Figure 5.3 shows the renormalisation, calculated as the time-integrated ratio

of the renormalised and bare Rabi frequencies. As expected from Eq. 4.9,

the renormalisation of the Rabi frequency predicted by the polaron model is

independent of the parameters of the driving pulse, and only changes as a func-

tion of temperature. In contrast, the renormalisation of the Rabi frequency

returned by the time-dependent variational polaron model shows a strong

dependence on both the pulse area and FWHM, in addition to exhibiting a

temperature dependence. From Figure 5.3 we expect there to be a reasonable

agreement between the polaron and variational polaron models in the limit of

small pulse area and large FWHM. However, with increasing pulse area and/or

decreasing FWHM the renormalisation of the Rabi frequency predicted by the

time-dependent variational polaron model diverges away from the polaron

model and towards the weak-coupling regime, returning unity renormalisa-

tion. In other words, our time-dependent variational polaron model predicts

that the Rabi frequency is not renormalised by the phonon coupling in the

limit of large pulse area, i.e. Ωr(t) → Ω(t) as Θ → ∞. This further indicates

the polaron model breaks down in the limit of large peak Rabi frequency in

agreement with the variational function.

5.5 Dynamics Under Resonant Pulsed Excita-

tion

Neglecting spontaneous emission (i.e. setting γ = 0), we shall now compare the

system dynamics predicted by the standard polaron and weak-coupling models

under pulsed resonant excitation to those predicted by our time-dependent

variational polaron model. The relevant expectation values can be calculated

from the time-dependent density matrices produced by each model using

⟨O(t)⟩ = Tr{OρS(t)}, (5.27)

where O is the Schrödinger picture operator for which we wish to calculate

the expectation value. Just as with the polaron model in Chapter 4, we cal-

culate ρ(t) using an initial value problem approach, only now using the time-
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dependent variational polaron Liouvillian in the master equation. This allows

us to evolve the state of the system over a number of discrete time steps start-

ing from an arbitrary initial state ρ(t = 0).

5.5.1 Time-Resolved Dynamics

To gain an initial understanding of the response of the system dynamics, we

first calculate the temporal evolution of the exciton population and coherences,

which we plot as the real component of σx = σ†+σ, for fixed pulse parameters.

Figure 5.4 shows the resulting time-resolved dynamics assuming the bath is

held at T = 5 K, and the system is driven by a Gaussian pulse with central

frequency ωl = ωX −
∫∞
0
dω J(ω)F (ω,t=0)

ω
(2 − F (ω, t = 0)), area Θ = 10π, and

FWHM ∆τI ∈ {1.2, 6, 12} ps. Our predictions from the behaviours of the

variational function, and renormalisation of the Rabi frequency, are borne out

in these dynamics. In the limit of short pulse duration, the exciton dynamics

in Figure 5.4a show a close agreement between our time-dependent variational

polaron model and the weak-coupling model. On the other hand, in this regime

the polaron model overestimates the magnitude of the effects resulting from

the QD-phonon coupling. From the coherences calculated with ∆τI = 1.2 ps

(Figure 5.4b) we see a closer agreement between our time-dependent variational

polaron model and the weak-coupling model than between the former and

standard polaron model during the pulse. However, the coherence also clearly

demonstrates that the time-dependent variational polaron model predicts the

system evolves according to the standard polaron model before and after the

pulse. At intermediate pulse widths all three models show a relatively close

agreement for the parameters used as can be seen in Figures 5.4c and 5.4d.

However, it is again the weak-coupling model that returns the exciton dynamics

that most closely agree with those from our time-dependent variational polaron

model for the pulse parameters used. On the other hand, it is the two polaron

models that show the greater concurrence when considering the coherences.

When driving the system with the longest pulse duration studied the reverse is

true. In this regime it is now the polaron model that shows greater concurrence

with the time-dependent variational polaron model (see Figures 5.4e and 5.4f).

We can further our understanding of this behaviour by considering the bath

correlation functions shown in Figures 5.5, 5.6, and 5.7. As we predicted from

the variational function, for all pulse widths it is the polaron-type correlation

functions that dominate the evolution of the state of the system before the

pulse (t≪ t0), with the other correlation functions at or near zero. For pulses
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(a) ∆τI = 1.2 ps (b) ∆τI = 1.2 ps

(c) ∆τI = 6 ps (d) ∆τI = 6 ps

(e) ∆τI = 12 ps (f) ∆τI = 12 ps

Figure 5.4: The temporal dynamics of the (left) exciton populations, and
(right) coherences plotted as the real component of σx, centred about the
pulse maxima and calculated using the weak-coupling (green dots), full polaron
(orange dashed), and time-dependent variational polaron (blue solid) models.
The dynamics are calculated for three pulse widths indicated under each sub-
figure. Parameters used: α = 0.027 ps2, ωc = 2.2 ps−1, Θ = 10π, T = 5 K,
and ωl = ωX −

∫∞
0
dω J(ω)F (ω,t=0)

ω
(2− F (ω, t = 0)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: The (left) real and (right) imaginary components of the time-
dependent variational polaron bath correlation functions calculated when driv-
ing a Quantum Dot (QD) with a Gaussian pulse of Full-Width Half Maximum
(FWHM) ∆τI = 1.2 ps, and pulse area Θ = 10π. Parameters used: ωc = 2.2
ps−1, α = 0.027 ps2, and T = 5 K.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: The real and imaginary components of the time-dependent vari-
ational polaron bath correlation functions calculated when driving a Quan-
tum Dot (QD) with a Gaussian pulse of Full-Width Half Maximum (FWHM)
∆τI = 6 ps, and pulse area Θ = 10π. Parameters used: ωc = 2.2 ps−1,
α = 0.027 ps2, and T = 5 K.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: The real and imaginary components of the time-dependent vari-
ational polaron bath correlation functions calculated when driving a Quan-
tum Dot (QD) with a Gaussian pulse of Full-Width Half Maximum (FWHM)
∆τI = 12 ps, and pulse area Θ = 10π. Parameters used: ωc = 2.2 ps−1,
α = 0.027 ps2, and T = 5 K.
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of short duration, we find the weak-coupling correlation function governs the

evolution of the system during the pulse as can be seen in Figure 5.5. During

the pulse the polaron-type correlation functions tend to zero, and while there

is a non-zero contribution from the cross-correlation function this is an order

of magnitude smaller than the weak-coupling correlation function. Figure 5.6

shows that at intermediate pulse widths all of the correlation functions con-

tribute to the system evolution during the pulse. Moving towards the peak of

the pulse, the polaron-type correlation functions tend towards zero just as in

the short pulse limit, but even at the peak of the pulse a non-zero polaron-

type contribution remains. Conversely, the weak-coupling correlation function

no longer dominates in this regime as there is a near equal contribution to

the dynamics from the cross-correlation function. Finally, in the limit of long

pulse duration we find the polaron-type correlation functions overall provide

the dominant contribution to the system dynamics as can be seen in Fig-

ure 5.7. However, even in this long pulse regime, at the peak of the pulse we

find there is still a strong contribution from the weak-coupling correlation and

cross-correlation functions for the pulse parameters used. At the FWHM the

weak-coupling correlation functions return to (near) zero.

5.5.2 Rabi Rotations

After studying the time-resolved dynamics of the exciton population returned

by our time-dependent variational polaron model when driving with a Gaussian

pulse with fixed parameters at a fixed temperature, we can move on to study

the effects of varying the driving strength and system temperature. To do this

we calculate the steady-state exciton population (still assuming γ = 0 ps−1)

sweeping the area of the driving pulse for a range of temperatures and pulse

FWHM. Figure 5.8 shows the resulting Rabi rotations for 0π ≤ Θ ≤ 20π,

5 K ≤ T ≤ 50 K, and ∆τI ∈ {1.2, 6, 12} ps.

From the time-dependent variational function and renormalisation of the

Rabi frequency, we expect our time-dependent variational polaron model to

show a close agreement with the weak-coupling model in the limit of short

pulse duration across the range of pulse areas studied. Figures 5.8a and 5.9a

show that in the low temperature limit this is indeed true across the range

of pulse areas studied with both models returning (nearly) undamped Rabi

rotations. On the other hand, we find the polaron model increasingly over-

estimates the magnitude of the dissipative effects of the QD-phonon coupling

with increasing pulse area. When the states of the QD evolve on timescales
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(a) ∆τI = 1.2 ps

(b) ∆τI = 6 ps

(c) ∆τI = 12 ps

Figure 5.8: The steady-state exciton populations calculated using the weak-
coupling (green dot), polaron (orange dash), and time-dependent variational
polaron (solid blue) models after driving a Quantum Dot (QD) with a Gaussian
pulse, and neglecting spontaneous emission. The final exciton population is
plotted as a function of the pulse area for four temperatures, T ∈ {5, 10, 15, 20}
K, off-set for clarity. Parameters used: ωc = 2.2 ps−1, α = 0.027 ps2. Ω(t0) =
ωc at (a) Θ = 1.27π, (b) Θ = 6.33π, and (c) Θ = 12.65π.
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shorter than the characteristic timescales of the phonon bath, polarons, quasi-

particles formed when a charge carrier displaces the charged atoms of a crystal

lattice [46], are unable to form. That is, under such conditions, the exciton

recombines before the bath is able to react. Hence the polaron model, which

over-estimates the coupling strength to the low-frequency bath modes in this

regime and thus assumes a polaron is always formed, increasingly overestimates

the phonon effects with increasing pulse area under excitation by short optical

pulses. As such, when combined with the fact that the polaron model only

remains valid for pulse areas Θ ≤ 1.27π in this regime, the polaron model

clearly has extremely limited utility at such short pulse durations. At the

lower temperatures studied, our Rabi rotation results in the short pulse regime

agree with those presented in [122], where the accuracy of the weak-coupling

model under excitation with short Gaussian optical pulses (∆τI ≈ 1.7 ps) is

experimentally verified at T = 12.5 K.

Increasing the system temperature when driving with a short optical pulse

we find the standard polaron model increasingly over-estimates the impact

of the coupling to the phonon bath (see Figures 5.8a and 5.9b). This over-

estimation occurs despite the polaron model increasingly under-estimating the

frequency at which the spectral density is sampled compared to our time-

dependent variational polaron model as can be seen in Figure 5.3. This

under-estimation should return a subsequent under-estimation of the phonon-

coupling effects. However, at higher temperatures the number of phonon modes

our time-dependent variational polaron modes predicts to weakly-couple to the

QD during the pulse increases for this pulse duration. Hence the polaron model

actually increasingly over-estimates the phonon effects at higher temperatures.

Conversely, the weak-coupling model under-estimates the phonon-coupling ef-

fects at high temperatures as shown in Figure 5.9b. From our time-dependent

variational polaron model we expect the system to evolve increasingly accord-

ing to the polaron model as the pulse decays to vanishing Rabi frequency. It is

this shift in behaviour from the weak-coupling to polaron models at the end of

the pulse that results in the weak-coupling model under-estimating the results

of the phonon-coupling at high temperatures.

Under optical driving with Gaussian pulses of intermediate width, we find

neither the weak-coupling nor the standard polaron model shows consistent

concurrence with the dynamics returned by our time-dependent variational

polaron model at T = 5 K (see Figure 5.8b and 5.9c). In the limit of small

pulse area there is a closer agreement between the standard polaron and
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time-dependent polaron models than between the weak-coupling and time-

dependent variational polaron models. However, at Θ = 6.33π the peak Rabi

frequency, Ω(t0), reaches the phonon cut-off frequency and thus the standard

polaron model is not valid beyond this pulse area. At these larger pulse areas

the standard polaron model overestimates the dissipative effects resulting from

coupling to the phonon bath. Conversely, the weak-coupling model begins to

show a good agreement with our time-dependent variational polaron model in

this regime. While there is no consistent close agreement between the mod-

els, all three models studied show a clear revival of the amplitude of the Rabi

rotations (qualitatively in agreement with [105]) as the pulse area increases

beyond Θ ≈ 10π. This revival occurs when the period of the time-resolved

Rabi oscillations become comparable to, or shorter than, ω−1
c [105].

The inconsistent agreement between the three models under resonant ex-

citation with optical pulses of intermediate width continues at higher tem-

peratures. We find the concurrence between the polaron and time-dependent

variational polaron models observed at lower temperatures and pulse areas

decreases with increasing temperature. At the highest temperatures studied,

neither the weak-coupling nor the polaron model adequately agrees with the

dynamics returned by our time-dependent variational polaron model across all

pulse areas studied. This can be more clearly seen in Figure 5.9d where there

is a clear deviation between the weak-coupling (standard polaron) and time-

dependent variational polaron models in the limit of small (large) pulse areas.

At higher temperatures the average displacement of the bath, and thus also

the renormalisation of the Rabi frequency, is increased (i.e. B(t) is increasingly

smaller than unity with increasing temperature) at small pulse areas. Hence at

small pulse areas the weak-coupling model increasingly over-estimates the fre-

quency at which the spectral density is sampled with increasing temperatures

(i.e. Ω(t) > Ωr(t)) [106]. This has the effect of increasing the effective coupling

between the QD and phonon bath [106] resulting in this difference between the

weak-coupling and time-dependent variational polaron models at small pulse

areas. At larger pulse areas the Rabi frequency moves out of the regime in

which polaron model is valid, and thus the propensity of the polaron model

to over-estimate phonon-coupling effects at large pulse areas continues at high

temperatures. We also find that the magnitude of the revival of the Rabi ro-

tations predicted with ∆τI = 6 ps is reduced with increasing temperature for

all three models within the pulse area limits studied. While the weak-coupling

and time-dependent variational polaron models do both still predict some re-
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(a) ∆τI = 1.2 ps, T = 5 K (b) ∆τI = 1.2 ps, T = 50 K

(c) ∆τI = 6 ps, T = 5 K (d) ∆τI = 6 ps, T = 50 K

(e) ∆τI = 12 ps, T = 5 K (f) ∆τI = 12 ps, T = 50 K

Figure 5.9: The steady-state exciton populations calculated using the weak-
coupling (green dot), polaron (orange dash), and time-dependent variational
polaron (solid blue) models after driving a Quantum Dot (QD) with a Gaussian
pulse. The final exciton population is plotted as a function of the pulse area
at (left) T = 5 K and (right) T = 50 K. Parameters used: γ = 0 ps−1,
ωc = 2.2 ps−1, α = 0.027 ps2.
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vival at larger pulse areas for T = 50 K, the polaron model shows no such

behaviour in the same regimes.

The long pulse duration limit returns the opposite results of the short pulse

limit at low temperatures. From Figures 5.8c and 5.9e we again find that (up to

the validity limit of Θ = 12.65π) it is the polaron model, rather than the weak-

coupling model, that shows a closer concurrence with the time-dependent vari-

ational model in agreement with our predictions from the variational function

and renormalisation. In this driving regime the QD states evolve on timescales

longer than ω−1
c , and thus the phonon bath is able to react to the formation of

the exciton, and polarons are able to form. Naturally at the largest pulse areas

where the peak Rabi frequency exceeds the phonon cut-off frequency there is

a discrepancy between the standard polaron model and our time-dependent

variational polaron model, with the former again over-estimating the effects of

coupling to the phonon bath. However, as this driving regime lies beyond, but

close to, the limit of the regime of validity of the standard polaron model, the

magnitude of the discrepancy is not as large as under excitation by short optical

pulses. Meanwhile, Figure 5.9e shows the weak-coupling model overestimates

the damping of the Rabi rotations in this limit for all pulse areas studied in

agreement with [106]. Just as we found in the high temperature and small

pulse area limits when driving with a Gaussian pulse of intermediate width,

as Ω(t) > Ωr(t) the weak-coupling model samples the phonon spectral density

closer to its peak than the two polaron models across the range of pulse areas

in this driving width regime [106]. This again results in an increase in the ef-

fective coupling strength between the phonon bath and QD states magnifying

the phonon-coupling effects returned by the weak-coupling model [106].

With a Gaussian pulse of width ∆τI = 12 ps, studying the dynamics re-

turned by our time-dependent variational polaron model we find the both

the standard polaron and weak-coupling models increasingly over-estimate the

phonon damping effects with increasing temperature. This can be seen in Fig-

ures 5.8c and 5.9f. Just as we found in the intermediate pulse duration regime,

we find a significant discrepancy between the dynamics returned by the weak-

coupling and time-dependent variational polaron models for high temperatures

and small pulse areas as the weak-coupling model continues to under-estimate

the renormalisation of the Rabi frequency across all temperatures. Conversely,

for the larger pulse areas studied we do find a closer agreement between the

two polaron models at T = 50 K, although again the polaron model is invalid

beyond Θ = 12.65π.
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Figure 5.10: The integrated excited state population of a Quantum Dot (QD)
coupled to a phonon bath as a function of the driving pulse area for a range of
temperatures between 5 K and 50 K calculated using the polaron model. The
dynamics are plotted for two different coupling strengths, α = 0.027 ps−2 (solid
blue), and α = 0.27 ps2 (dashed orange). Parameters used: ωc = 2.2 ps−1,
∆τI = 10 ps, and γ−1 = 0.971 ns.

Through our derivation of the master equation we found the polaron model,

and by extension the variational polaron model in the appropriate limits, pre-

dicts a renormalisation of the Rabi frequency of the driving pulse that we

plotted in Figure 5.3. However, setting F (ω, t) = 0 to recover the weak-

coupling model returns Ωr(t) = Ω(t) and as such there is no renormalisation

predicted in the weak-coupling limit. While the effects of the renormalisation

do manifest in Figure 5.8, they are difficult to observe. Figure 5.10 shows a

clearer demonstration of these effects in the polaron limit when sweeping the

area of the driving pulse by increasing α. When increasing the temperature of

the bath it can be seen that the peaks in the Rabi oscillations shift to larger

pulse areas in addition to becoming more heavily damped due to increasing

dissipative phonon effects. Note for simplicity we have taken the Markovian

limit of the full polaron model, and having reintroduced spontaneous emission

calculate the time-integrated (rather than steady-state) exciton population.

5.6 Comparison with Numerically Exact Path-

Integral Methods

While our time-dependent variational polaron model shows a clear improve-

ment over the weak-coupling and standard polaron models, the results are
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(a) ∆τI = 1 ps (b) ∆τI = 5 ps

(c) ∆τI = 10 ps

Figure 5.11: The steady-state exciton populations calculated using the time-
dependent variational polaron model after driving a Quantum Dot (QD) with
a Gaussian pulse at temperatures (blue dot) T = 10 K, (orange dash) T =
50 K, and (solid green) T = 100 K. The final exciton population is plotted
as a function of the pulse area for three pulse widths, ∆τI ∈ {1, 5, 10} ps.
Parameters used: ωc = 0.725 ps−1, α = 0.036 ps2.

still approximate due to the treatment of the QD-phonon interaction as a

perturbation to second-order. However, there are a number of numerically

exact techniques that may be used to calculate the dynamics of a quantum

system coupled to a bath of quantum harmonic oscillators. Thus, using the

same system parameters, we may compare the dynamics returned by our time-

dependent variational polaron model to the dynamics returned by numerically

exact methods to determine the accuracy of the behaviours predicted by our

model.

Using path-integral methods, numerically exact QD exciton dynamics un-

der pulsed resonant excitation have been calculated [105, 123]. The exciton

dynamics presented in [105] assume the system is driven by a square optical
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pulse. Owing to the derivative of F (ω, t) in the correlation functions, our time-

dependent variational polaron model is not suited to driving conditions that

include discontinuities such as those found in perfectly square pulses. Thus we

can only make a qualitative comparison of the dynamics returned by our time-

dependent variational polaron model with Gaussian pulses to those presented

in [105]. From the deformation potentials and material properties listed in the

literature [105, 109], and assuming a spherical QD of radius r = 5 nm [105],

we calculate the phonon parameters used in our time-dependent variational

polaron model to be α = 0.036 ps2 and ωc = 0.725 ps−1. Figure 5.11 shows the

resulting Rabi rotations predicted by our time-dependent variational polaron

model for ∆τI ∈ {1, 5, 10} ps and T ∈ {10, 50, 100} K.

In agreement with [105], we find that when driving a QD with pulses of

short duration (Figure 5.11a) there is a minimal damping of the Rabi rota-

tions that, while increasing with increasing temperature, remains small even at

higher temperatures. Regardless of pulse duration, our time-dependent varia-

tional polaron model predicts a revival of the amplitude of the Rabi rotations

with increasing pulse area again agreeing with the results presented in [105].

However, the magnitudes of the damping and revival of these dynamics is not

of the same magnitude as the results in [105], which is likely a consequence of

using different pulse envelopes [123]. As observed in the literature, we find the

revival of the magnitude of the Rabi rotations returned by our time-dependent

variational polaron model occurs after a larger number of periods for longer

pulse durations.

5.7 Summary

In summary, we have extended the CW variational polaron model to derive a

non-Markovian time-dependent variational polaron master equation that ac-

counts for optical driving with (short) pulses. When optically driving a QD

in the short pulse regime, we have demonstrated a good agreement between

our time-dependent variational polaron model, and the non-Markovian weak-

coupling model at low temperatures. In this regime we have shown that the

standard polaron model over-estimates the coupling strength to the lower-

frequency bath modes resulting in an over-estimation of the phonon induced

damping of the Rabi oscillations. Conversely, in the long optical pulse regime

our results show it is the standard polaron model that shows a greater con-

currence with our time-dependent polaron model at low temperatures. As
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the weak-coupling model does not predict a renormalisation of the Rabi fre-

quency, it samples the phonon spectral density closer to its peak which in-

creases the effective coupling to the phonon bath. At high temperatures we

have seen that neither the weak-coupling model nor standard polaron model

consistently agrees with our time-dependent variational polaron model. Thus

we show that our time-dependent variational polaron model remains valid be-

yond the regimes of validity of both the weak-coupling, and standard polaron

models in the pulsed excitation regime. In the short and intermediate pulse

width regimes our results also predict a revival of the Rabi oscillations in the

exciton population with increasing pulse area. Finally, we have made qual-

itative comparisons between our time-dependent variational polaron model

and the numerically exact dynamics returned by path-integral methods which

demonstrate the two approaches return commensurable behaviours. All of

these predictions could be tested using experimental Rabi rotation techniques

similar to those presented in [121, 122].



Chapter 6

Optical Control and Readout of

Single Quantum Dot Spins

In Chapter 3 we discussed the properties of semiconductor QDs, in particular

some of the different possible charge states that can be confined to a QD.

In this chapter we shall discuss an approach to realising scalable quantum

devices by employing charged QDs in on-chip optical structures. Specifically,

we shall consider the impact of cavity configuration on the initialisation and

readout fidelity of a negatively charged QD by performing full Cavity Quantum

Electrodynamics (cQED) calculations. Furthermore, we shall find the optimal

cavity parameters to maximise the initialisation and readout fidelities, and

demonstrate that coherent optical control is possible with a QD coupled to an

optical cavity.

6.1 Introduction

In the absence of any external magnetic field, a single charge carrier confined

to a QD possesses a spin degree of freedom with two degenerate basis states

{|↑⟩z |↓⟩z} defined along the QD growth axis. As discussed in Chapter 3, opti-

cally exciting the QD introduces an exciton resulting in the formation of a trion

which also possesses two degenerate basis states {|↑↓,⇑⟩z , |↓↑,⇓⟩z}. When an

external magnetic field is applied, the degeneracy of the ground and excited

basis states is lifted by the Zeeman interaction. The geometry of the applied

field also has an effect on the optical transition selection rules between the

ground and excited states as shown in Figure 6.1. In the absence of an applied

field, or when a magnetic field is applied in the Faraday geometry along the

QD growth axis, only the transitions between the ground and excited states

99
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with the same spin configuration are optically allowed with opposite circular

polarisation selection rules [124] (see Figures 6.1a and 6.1b). However, when a

magnetic field is applied perpendicularly to the QD growth axis in the Voigt ge-

ometry, all four possible transitions become optically allowed with equal decay

rates [124]. The optical polarisation transition rules also change from circu-

lar to linear with the two outer vertical transitions possessing the orthogonal

linear polarisation to the two diagonal transitions [124] (see Figure 6.1c).

Such a spin system has many potential applications in the physical reali-

sation of quantum technologies. Single charge carriers confined to QDs show

strong light-matter interactions making them a promising candidate for the

implementation of an interface between stationary qubits and flying (single

photon) qubits [125]. With experimentally demonstrated lifetimes on the or-

der of milliseconds to seconds [126, 127] and coherence times on the order of

microseconds [128, 129], the ability to control the spin state of a charged QD

on picosecond timescales [128] provides the potential to perform multiple gate

operations within the lifetime of the spin state. This leads to the possibility

of developing single-photon transistors [130–132] or generating entangled pho-

tonic cluster states [133–136]. Furthermore, situating these QDs in photonic

structure can further enhance the strength of the light-matter interactions, and

provides the potential for integration into scalable on-chip photonic circuits

[86]. This gives rise to the potential for an all optical approach to Quantum

Information Processing (QIP) using optical pulses to manipulate stationary

qubits, and single photons to act as flying qubits all guided on-chip by optical

nanostructures.

The successful implementation of a spin-based device requires the capabil-

ity to first prepare the system in a simple starting spin-state (a process known

as initialisation), and to read out the final state of each individual qubit after

any gate operations have been performed. In an all-optical scheme, this would

ordinarily require the use of both Voigt and Faraday geometry magnetic fields

for control and readout respectively. Spin control using optical pulses requires

the presence of optically allowed diagonal transitions between the two excited

eigenstates and ground spin eigenstates of opposite spin configuration present

when a Voigt geometry magnetic field is applied to the system [137]. The al-

lowed diagonal transitions result in the formation of Λ-systems that provide an

effective coupling between the qubit (ground spin) states. The spin state can

then be manipulated via a Raman transition using two equally detuned optical

pulses driving the two transitions that form the Λ-system [138]. Conversely,
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(a) (b) (c)

Figure 6.1: The energy levels and transition selection rules of a single nega-
tively charged Quantum Dot (QD) in: (a) the absence of an applied magnetic
field, (b) an applied Faraday geometry magnetic field, and (c) an applied Voigt
geometry magnetic field. The spin states are written in the basis parallel to
the applied field.

optical readout of the final spin state requires the presence of cycling transi-

tions [139], transitions through which the excited state of the system always

decays back to the initial ground state. These cycling transitions are required

to produce a detectable readout signal by allowing the system to be probed

multiple times without changing the spin state, and are only present when

the diagonal transitions are optically forbidden. Optical spin readout thus

typically necessitates the application of a Faraday geometry magnetic field as

in such a geometry only the outer vertical transitions are optically allowed 1.

Furthermore, while optical spin initialisation has been demonstrated in either

field geometry [142–144], they both present significant drawbacks. Optical ini-

tialisation performed in the Faraday geometry results in a high initialisation

fidelity as the prepared state is completely protected from the driving field

by both the optical polarisation selection rules and laser detuning. However,

initialisation in this field geometry is slow as the process relies on the diagonal

transitions being weakly allowed by light-hole heavy-hole mixing [137, 140,

141]. In the orthogonal Voigt field geometry the spin initialisation process is

relatively fast owing to the optically allowed diagonal transitions [140]. The re-

sulting initialisation fidelity, in contrast, is reduced as the prepared state loses

the polarisation protection found in the Faraday geometry, and thus must rely

on only laser detuning to preserve the prepared state while there is a non-zero

1Light-hole heavy-hole mixing experienced in real systems means the diagonal transitions
are weakly allowed in a Faraday geometry magnetic field [140, 141].
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driving field [140].

However, recent proposals have paved the way for an all-optical implemen-

tation of quantum devices using single QD spins situated in a single magnetic

field geometry. One such proposal uses higher-order trion states to introduce

optically allowed cross-transitions in a Faraday geometry field [145]. Other

proposals use optical structures to selectively Purcell enhance the diagonal

transitions that are optically allowed in a Voigt geometry magnetic field [146–

148]. Selectively Purcell enhancing the diagonal transitions provides a quasi-

cycling transition enabling optical spin readout within a Voigt geometry mag-

netic field. Furthermore, this selective Purcell enhancement also improves the

initialisation rate by ensuring a unidirectional flow of the spin population dur-

ing the initialisation process.

The simplest method of achieving this relative enhancement of the diag-

onal transitions is through coupling to a photonic structure with a single,

linearly polarised mode such as: a slow-light PhC waveguide [149], line-defect

PhCCs [150], and single nanobeam cavities [151]. When the cavity mode

polarisation is the same as that of the diagonal transitions, the polarisation

selection rules ensure the orthogonally polarised vertical transitions are decou-

pled from the optical mode and therefore not enhanced. However, a number of

commonly used photonic cavities naturally possess more than one mode either

by design [152–155] or though imperfections in the fabrication process [156,

157]. This bi-modal quality can prove useful when, for example, attempting

to suppress any resonant laser background in QD single-photon sources [158,

159]. However, there are still open questions regarding the impact of the cavity

configuration on optical spin initialisation and readout of single spins confined

to QDs. In this chapter we perform cQED calculations to identify optimal

cavity configurations and parameter regimes for maximising spin initialisation

and readout fidelities when driving the system with optical pulses.

6.2 Four-Level System Hamiltonian

To answer these open questions, we wish to describe a negatively charged QD

coupled to a bi-modal cavity with two orthogonal, linearly polarised cavity

modes in the presence of a Voigt geometry magnetic field. First we shall

rewrite the spin eigenstates in the basis parallel to the magnetic field (x) axis

such that the ground states become {|1⟩ = |↑⟩x , |2⟩ = |↓⟩x} and the excited

trion basis states become {|3⟩ = |↑↓,⇓⟩x , |4⟩ = |↑↓,⇑⟩x}. To describe this
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(a) (b)

Figure 6.2: A (a) single-mode and (b) bi-modal cavity coupled to a charged
Quantum Dot (QD) in a Voigt geometry magnetic field.

system we can extend the Hamiltonian used in Chapter 3 describing a 2LS

coupled to a single-mode cavity to include the additional atomic states and

extra cavity mode. In the laboratory frame of reference, the QD and cavity

degrees of freedom are generated by the system Hamiltonian

H0 =
∆e

B

2
(σ22−σ11)+

(

ω0 −
∆h

B

2

)

σ33+

(

ω0 +
∆h

B

2

)

σ44+
∑

λ=X,Y

νλa
†
λaλ, (6.1)

where σij = |i⟩⟨j| are the spin operators, ω0 is the transition frequency in the

absence of an applied magnetic field, and aλ is the operator of the λ = X, Y po-

larised cavity mode with frequency νλ. We choose to set the Y−polarised cavity

mode resonant with the |2⟩ → |4⟩ transition while leaving the X−polarised

cavity mode detuned from the vertical transitions such that νX = ω0 as this has

been shown to maximise the initialisation fidelity with the bi-modal cavity con-

figuration [160]. The Zeeman splitting of the ground (excited) states is given

by ∆
e(h)
B = ge(h)µBB where ge(h) is the effective electron (hole) g-factor, µB is

the Bohr magneton, and B is the applied magnetic field strength. Throughout

this chapter we shall assume ge(h) = 0.5(0.3) [140] and B = 5 T unless stated

otherwise. The interaction between the QD transitions and cavity mode of the

same polarisation is characterised by

HI =
∑

λ=X,Y

gλ(aλ + a†λ)(σλ + σ†
λ), (6.2)
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where gλ quantifies the cavity-QD coupling strength, and we have defined the

collective transition operators σX = (σ14 + σ23) and σY = (σ13 + σ24).

Optical spin initialisation and control require direct coherent driving of the

QD transitions, while optical spin readout is achieved by coherently probing

the cavity modes. These two coherent driving processes are included under

the dipole approximation in the driving Hamiltonians

HQD
D (t) = −

∑

λ=X,Y

Ωλ(t) cos (ωlt)σλ + h.c., (6.3)

HC
D(t) = −

∑

λ=X,Y

ϵλ(t) cos (ωlt)(aλ + a†λ), (6.4)

respectively. Here Ω(t) and ϵ(t) are the Rabi frequencies and cavity driving

rates of the linearly polarised (X or Y polarised) laser pulses modulated by a

time-dependent pulse envelope, and ωl is the central frequency of each driving

laser. The total Hamiltonian describing the coherent dynamics of the cavity-

QD system is then given by HT (t) = H0 +HI +HQD
D (t) +HC

D(t).

The incoherent dynamics of the system, namely spontaneous emission from

the QD and loss of photons from the cavity modes, are incorporated in the

model via the standard Lindblad master equation approach described in Chap-

ter 2. The collapse operators of the system are thus Lk ∈ {√κλaλ,
√
γλσλ} for

λ = X, Y where κλ are the decay rates of the orthogonally polarised cavity

modes and γλ are the decay rates of the trion states via the linearly polarised

optical transitions. We assume both cavity modes have the same decay rate

(κλ=X,Y = κ) and both transition polarisations have the same lifetime such

that γ−1
λ=X,Y = γ−1 = 1 ns.

To recover the single-mode cavity configuration from our model we can set

gX = κX = νX = 0 leaving only a single Y−polarised cavity mode. We shall

not consider the case of a single X-polarised cavity mode. The reason for this

will become evident when we move on to discuss the spin initialisation process.

6.2.1 Rotating Frame Transformation for a Cavity-

Coupled Four-Level System Hamiltonian

As was the case in Chapter 3, our Hamiltonian contains time-dependent ex-

ponential terms originating from the coherent driving of the system. These

terms make computations time and resource expensive, and so they need to be

removed. To do this we again apply a unitary transform to move to a rotating



6.3. Optical Spin Initialisation 105

frame of reference such that the Hamiltonian in the rotating frame is given by

H̃T(t) = U(t)HT(t)U
†(t) + i

( ∂

∂t
U(t)

)

U †(t), (6.5)

where a tilde represents the Hamiltonian in the rotating frame, and U(t) is the

time-dependent unitary operator transforming to a reference frame rotating

at frequency ωR as in Chapter 3. Here the unitary operator is also expanded

from that given in Chapter 3 to

U(t) = UX
C (t)⊗ UY

C (t)⊗ UQD(t)

= eiωRt(a†XaX) ⊗ eiωRt(a†Y aY ) ⊗ eiωRt(σ33+σ44).
(6.6)

Moving to a frame of reference rotating at the laser frequency (i.e. ωR = ωl),

and applying the RWA, cancels the time-dependent exponential terms arising

from the coherent laser field. The total RWA Hamiltonian in the rotating

frame of reference can again be separated into four components, H̃T(t) =

H̃0 + H̃I + H̃QD
D (t) + H̃C

D(t), where

H̃0 =
∆e
B

2
(σ22 − σ11) +

(

ω0 − ωl −
∆h
B

2

)

σ33

+
(

ω0 − ωl +
∆h
B

2

)

σ44 +
∑

λ=X,Y

(νλ − ωl)a
†
λaλ,

(6.7)

H̃I =
∑

λ=X,Y

gλa
†
λσλ + g∗λaλσ

†
λ, (6.8)

H̃QD
D (t) = −

∑

λ=X,Y

Ωλ(t)

2
σλ + h.c., (6.9)

H̃C
D(t) = −

∑

λ=X,Y

ϵλ(t)aλ + ϵ∗λ(t)a
†
λ. (6.10)

In this frame of reference the only remaining time-dependence is that of the

pulse envelope. For a full derivation of Eqs. 6.7-6.10 see Appendix D.

6.3 Optical Spin Initialisation

Now we have a suitable Hamiltonian to use in the Lindblad master equation, we

first wish to prepare the state of the system in one of the ground basis states

with the highest achievable fidelity. To do this we shall drive the vertical,

rather than diagonal, transitions with a coherent laser (i.e. ΩX > 0, ΩY = 0)
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Figure 6.3: A diagram of the initialisation process. The |1⟩ → |4⟩ transition is
driven with a coherent laser. The decay of the |4⟩ trion state by spontaneous
emission via the |2⟩ → |4⟩ transition populates the target |2⟩ state. Off-
resonant re-pumping of the |2⟩ state through the |2⟩ → |3⟩ transition and
subsequent decay via the |1⟩ → |3⟩ transition limits the initialisation fidelity.

following the protocol presented by [160, 161] and shown in Figure 6.3 . We

choose to drive the vertical |1⟩ → |4⟩ transition with a resonant X−polarised

laser such that ωl = ω0+(∆e
B +∆h

B)/2. Resonantly driving one of the vertical

transitions rather than one of the diagonal transitions naturally provides a

greater frequency protection to the target state during the initialisation process

as the detuning between the vertical transitions is greater than that between

the diagonal transitions. In the initialisation process the state of the system

is then shelved in the |2⟩ state by the decay of the |4⟩ trion state via the

Y−polarised diagonal |4⟩ → |2⟩ transition.
Previous work studying spin initialisation with a bi-modal cavity assumed

the QD was addressed via the cavity mode during the initialisation pro-

cess [160]. However, to enable a direct, consistent comparison between the two

cavity configurations we assume the QD transitions are always directly driven

during initialisation. Furthermore, these two driving regimes qualitatively

produce the same behaviour, and are unitarily equivalent in the CW driving

limit.

Trace Distance

To evaluate the fidelity of the initialisation process we shall use the trace

distance [162]

T (ρ, ϱ) =
1

2
Tr

{

√

(ρ− ϱ)2
}

, (6.11)

between the prepared (ρ) and target (ϱ) states. The trace distance between

the target and prepared states gives a measure of the indisinguishability of the
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two using the entirety of the density matrix. Using this metric, T (ρ = ϱ, ϱ) = 0

indicates the prepared and target states are completely indistinguishable from

one another (i.e. unity initialisation fidelity). However, T (ρ, ϱ) = 1 indicates

the prepared and target states are orthogonal (i.e. Tr(ρϱ) = 0), and thus

completely distinguishable. We can show that this is true by considering the

spectral decomposition of the two density matrices in a complete orthonormal

basis {|ψi⟩} such that

ρ =
∑

i

αi |ψi⟩⟨ψi| and ϱ =
∑

i

βi |ψi⟩⟨ψi| . (6.12)

From this we may then write

√

(ρ− ϱ)2 =
∑

i

|αi − βi| |ψi⟩⟨ψi| . (6.13)

The lower bound is therefore trivial to prove when the two density matrices are

identical. In this case αi = βi and thus
√

(ρ− ϱ)2 = 0. In this same basis only

different pure states may be described as orthogonal. That is, for two density

matrices to describe orthogonal states it must be true that αi=j = βi=k ̸=j = 1

and αi ̸=j = βi ̸=k = 0. This condition can also be seen from Tr(ρϱ) = 0

when ρ and ϱ describe orthogonal states. As
∑

i αi =
∑

i βi = 1, when these

conditions are met Tr
{

√

(ρ− ϱ)2
}

= 2 and thus T (ρ, ϱ) = 1. Hence a unity

trace distance does indeed indicate the two states are orthogonal.

A number of previous works have used the relative population between the

spin ground states as a measure of the initialisation fidelity [160, 163–165].

This approach suffers from the disadvantage of not being able to differentiate

between coherent spin superposition states and mixed spin states, something

that the trace distance is able to distinguish. Other studies have used the

Fidelity , defined as F (σ, ρ) = Tr
(

√√
σρ

√
σ
)2

, to provide a measure of the

closeness between the prepared state and target state [140, 148, 166]. While in

the case of a pure target state, such as we have defined, this definition of fidelity

is equivalent to using the trace distance, it may not always be the case that

a pure state is the desired outcome. Hence rather than using F (σ, ρ), which

is not a true metric2 on the density matrix space and can be complicated to

calculate, we use a more generally applicable metric, namely the trace distance,

instead.

2A metric, M(a, b), is symmetric M(a, b) = M(b, a) and obeys the triangle inequality
M(a, c) ≤ M(a, b) +M(b, c) [167].
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6.3.1 Steady-State Limit

Using the Lindblad master equation and the trace distance from the |2⟩ ground
state we shall begin by considering spin initialisation in the steady state limit

with a CW driving term, i.e. ΩX(t) = ΩX ∀ t. While this set-up is not

representative of a practical experimental realisation of the spin initialisation

process, it will provide a useful insight into the overall behaviour of the system.

Figure 6.4 shows the calculated trace distances as a function of g/κ for a

range of cavity linewidths. Just as in Chapter 3, the system dynamics were

calculated by solving the master equation at discrete time intervals using the

Python package QuTiP [62]. In the limit of small κ both cavity configura-

tions (i.e. single-mode and bi-modal) show the same behaviour. For either

cavity configuration, in the narrow cavity linewidth limit, only the |4⟩ → |2⟩
transition remains within a cavity mode, and thus (independent of cavity con-

figuration) is the only transition that experiences any Purcell enhancement at

such narrow cavity linewidths. In the CW limit it appears that the inclusion

of cavity effects negatively impacts the spin initialisation process. In the limit

of small g this can be explained as a result of the cavity modifying the lifetime

of the trion states. This changes the ratio Ω/γ, and thus as the cavity cou-

pling strength is increased, the fixed driving strength is no longer optimised

to achieve the smallest trace distance. As g increases and the system enters

the strong coupling regime the QD become hybridised by the cavity-coupling,

changing the fundamental eigenstructure of the cavity-QD system.

Figure 6.4a shows that the system evolves to a maximally mixed state with

T (ρ, σ11) = T (ρ, σ22) = 0.5, when strongly coupled to a single-mode cavity.

However, as shown in Figure 6.4b, when coupled to a bi-modal cavity we in-

stead find the system evolves to 0.1 ≤ T (ρ, σ22) ≤ 0.5 depending on the cavity

linewidth, with narrower cavity linewidths returning smaller trace distances,

thus outperforming the single-mode cavity. At first this behaviour may be

unexpected. A Purcell enhancement of the |4⟩ → |1⟩ transition hinders the

spin initialisation process which relies on the flow of spin population via the

|1⟩ → |4⟩ → |2⟩ Λ-system. However, the effect of enhancing the |4⟩ → |1⟩ tran-
sition only acts to reduce the speed of the initialisation process by increasing

the fraction of the |4⟩ state that decays back to the unwanted |1⟩ state. In the

CW limit this reduction in speed is less important due to the infinite driving

time. Under CW driving, the protection afforded to the prepared state against

re-pumping by the Purcell enhancement of the |3⟩ → |2⟩ transition outweighs

the hindrance caused by the |4⟩ → |1⟩ enhancement. This mechanism is ev-
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(a) (b)

Figure 6.4: The steady-state spin initialisation fidelity driving a Four-Level
System (4LS) coupled to a (a) single-mode or (b) bi-modal cavity. Fidelity
is quoted as the trace distance, T (ρ, σ), between the prepared spin state, ρ,
and the steady-state spin-down ground state, σ22, as a function of ratio of the
cavity linewidth, κ, and coupling strength, g. Parameters used: B = 5 T,
ge(h) = 0.5(0.3), γ−1 = 1 ns, Ω/2π = 0.001 GHz.

idenced by the decrease in the trace distance shown in Figure 6.4b between

20 ≤ κ/2π ≤ 100 GHz. In a bi-modal cavity with the widest linewidth both

the |3⟩ → |1⟩ transition and |3⟩ → |2⟩ transitions experience equal Purcell en-
hancement. As the cavity linewidth decreases, the greater detuning between

the |3⟩ → |1⟩ and Y−polarised cavity mode compared to the detuning of the

|3⟩ → |2⟩ transition and X−polarised cavity mode causes an imbalance in the

decay rates of the two transitions. This imbalance favours decay back to the

|2⟩ state, decreasing the trace distance.

6.3.2 Driving with Finite Optical Pulses

Now that we have a good understanding of the response of the system in the

steady-state limit, we can move on to study a more physically realistic ap-

proach to spin initialisation, i.e. driving with a finite duration optical pulse.

Moving into a more experimentally realistic regime we also choose more ex-

perimentally measurable cavity parameters, namely switching to the Purcell

enhancement factor (FP = 4g2/κγ [81–83]) of the |4⟩ → |2⟩ transition rather

than the cavity-QD coupling strength. We opt to limit the Purcell factor and

cavity linewidths to 1 ≤ FP ≤ 40 and 1 ≤ κ/2π ≤ 100 GHz respectively.

These limits maintain the enhancement of the optical transitions within lim-
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(a) (b)

Figure 6.5: The trace distance between the prepared state and target state
minimised with respect to the Rabi frequency after the initialisation process as
a function of the duration of the square optical driving pulse when coupled to a
(a) single-mode cavity, and (b) a bi-modal cavity. The cavity parameters used
are indicated in the legends above the plots. The trace distance was minimised
with respect to the Rabi frequency sweeping between 0 ≤ Ω ≤ 10γ. The
shaded region indicates trace distances larger than achievable in the absence
of any cavity effects.

its demonstrated experimentally [82] while simultaneously avoiding Purcell

suppression (FP < 1), and maintains experimentally accessible [84, 168, 169]

cavity quality factors3. Assuming the system begins in the maximally mixed

ground state (i.e. ρjj(t = 0) = 0.5 for j ∈ 1, 2 with all other elements zero),

we again initialise the state of the system by resonantly driving the |1⟩ → |4⟩
transition only now using a finite square or Gaussian pulse envelope.

Square Pulse

We begin by studying spin initialisation with a square pulse of finite duration.

This pulse takes the form ΩX(t) = ΩX(H(t−t0+∆τX/2)−H(t−t0−∆τX/2)),

where H(x) is the Heaviside function, t0 is the centre of the pulse, ∆τX is the

pulse duration, and ΩX is the peak Rabi frequency of the pulse. For a selection

of cavity parameters and a range of pulse durations, we calculate the minimum

trace distance sweeping the Rabi frequency between 0 ≤ ΩX ≤ 10γ, leaving

an adequate period of time after the pulse for any remaining excited state

3On the order of 103 − 105 in the Near Infrared and telecommunications wavelengths.
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populations to decay. The results are shown in Figure 6.5.

Overall we see a general trend of decreasing trace distance with increas-

ing pulse duration regardless of cavity configuration. There are a number of

reasons for this. The longer pulse duration increases the probability that the

entire population of the undesirable ground state is eventually excited by the

driving laser. Furthermore, longer duration pulses are also able to re-excite any

excited state population that decays back to the undesirable ground state over

a number of excited state lifetimes, further increasing the target state popula-

tion. Increasing the pulse duration has the additional affect of decreasing the

bandwidth of the driving laser. This in turn reduces the overlap in frequency

between the drive and |2⟩ → |3⟩ transition that acts to move the system away

from the target state which has the effect of decreasing the distance to the

target state.

From Figure 6.5a we see that when the QD is coupled to a single-mode

cavity and driven by a square optical pulse the Purcell enhancement of the

resonant diagonal transition is the dominant factor in determining the trace

distance. From the cavity parameter combinations studied, for all but the

narrowest cavity linewidth, the cavity linewidth only appears to have an ap-

preciable effect at longer pulse durations with the pulse duration at which the

cavity linewidth has an appreciable effect increasing with decreasing Purcell

factor. For FP = 10, 40, outside of the strong coupling regime (i.e. neglecting

κ/2π = 1 GHz) we find increasing the cavity linewidth increases the trace dis-

tance between the prepared and target states, decreasing the spin initialisation

fidelity. On the other hand, for the smaller Purcell factors studied (FP = 2, 5)

we find the trace distance is minimised with κ/2π = 40 GHz, increasing for

the smaller or larger cavity linewidths studied. Overall we find the smallest

trace distance coupled to a single-mode cavity is achieved with κ/2π = 20 GHz

and FP = 10 for pulse durations shorter than 4 ns, and κ/2π = 40 GHz and

FP = 5 for pulse durations greater than 4 ns. Initially one may expect the

largest Purcell factor to produce the smallest trace distance as larger Purcell

factors maximise the cyclicity of the Λ−system. However, the finite duration

of the optical pulse increases the bandwidth of the driving field which in turn

also increases the strength with which the off-resonant X-polarised vertical

transition is driven. Thus, to reduce the probability of a spin-flip away from

the prepared state occurring, the Purcell enhancement of the |3⟩ → |1⟩ must

be reduced by reducing the overall coupling strength between the Y -polarised

cavity mode and diagonal transitions.
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A similar outcome is found when the QD is coupled to a bi-modal cavity.

Figure 6.5b again shows that the Purcell enhancement of the diagonal tran-

sition resonantly coupled to the Y−polarised cavity mode is the predominant

factor in determining the minimum trace distance. However, in general the

calculated trace distances are slightly larger than those achieved with a single-

mode cavity. Depending on the cavity linewidth, the second cavity mode can

Purcell enhance the X-polarised transitions. This increases the probability of

the |4⟩ population decaying back to the |1⟩ state rather than to the target |2⟩
state relative to the single-mode case, increasing the trace distance from the

target state. Furthermore, when compared to the results from the single-mode

cavity configuration, we find the cavity linewidth has a more significant im-

pact at shorter pulse durations, and the calculated trace distances are larger for

each given pulse duration reversing the trend seen under CW driving. In the

bi-modal configuration we determined increasing the cavity linewidth (again

neglecting the narrowest cavity linewidths) increases the calculated trace dis-

tance for all Purcell factors studied. However, we find a large overlap of the

trace distances for FP = 5 and FP = 10, as well as FP = 2 and FP = 40, with

FP = 40 producing the largest trace distances overall. Just as in the single-

mode case, we find a combination of κ/2π = 20 GHz and FP = 10 produces

the smallest trace distance over the pulse durations studied, but now for all

but the smallest pulse durations where κ/2π = 1 GHz achieves this.

For both cavity configurations we find the narrowest cavity linewidth stud-

ied (κ/2π) tends to be detrimental to the spin initialisation fidelity. At such

narrow cavity linewidths the system quickly enters the strong-coupling regime

with increasing Purcell factor. In this regime Rabi oscillations occur as the

cavity mode re-excites the system back to the exciton states. In the exciton

states there is a finite probability that the system will decay away from the

target state thus reducing the initialisation fidelity.

Figure 6.5 shows plateaus in the calculated trace distance. These are the

result of small coherent oscillations in the trace distance induced by the co-

herent driving of the system. Setting an upper bound on the Rabi frequency

also limits the number of these coherent oscillations. The edges of the plateaus

occur when the pulse duration becomes long enough to encompass the next

oscillation in the trace distance that has a smaller local minimum than the

previous oscillation. The plateaus disappear at longer pulse durations as the

global minimum of these oscillations usually occurs after two or three periods.
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(a) (b)

Figure 6.6: The calculated trace distance between the prepared state and
target state minimised with respect to the pulse area after the initialisation
process as a function of the duration of the Gaussian optical driving pulse
when coupled to a (a) single-mode cavity, and (b) a bi-modal cavity. The
cavity parameters used are indicated in the legends above the plots. The pulse
area was swept between 0.01 ≤ Θ ≤ 5π. The shaded region indicates trace
distances larger than achievable in the absence of any cavity effects.

Gaussian Pulse

We shall now move on to investigate initialisation with a Gaussian pulse. We

define the Gaussian pulse with polarisation λ = X, Y as

Ωλ(t) =
Θλ

√

2πw2
λ

exp
{

−(t− t0)
2

2w2
λ

}

, (6.14)

where Θλ is the pulse area defined such that a pulse with Θλ = π would invert

the populations of a 2LS, wλ is the Gaussian width of the pulse related to the

intensity FWHM, ∆τX , by

wλ =
∆τλ

2
√
ln 2

, (6.15)

and once again t0 defined the central position of the pulse in time.

To calculate the minimum trace distance we follow the same procedure used

when driving the system with a square pulse, only here we sweep the pulse area

in the range 0.01π ≤ ΘX ≤ 5π for each ∆τX . Just as we found when driving

with a square pulse, when driving with a Gaussian pulse we find it is the Purcell
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factor and not the cavity linewidth4 that has the most significant impact on the

trace distance. Again, we find the narrowest cavity linewidth is detrimental to

the initialisation fidelity in the single-mode configuration, producing the largest

trace distances for each Purcell factor studied. We also find that increasing

the cavity linewidth above κ/2π = 20 GHz also increases the trace distance

between the prepared and target states. However, unlike when driving with a

square pulse, with a Gaussian pulse we find the trace distance decreases with

increasing Purcell factor for all cavity linewidths. This is a result of the single-

shot nature of initialisation with a Gaussian pulse requiring the maximum Λ-

system cyclicity to maximise the initialisation fidelity. As the pulse duration

is much shorter than the excited state lifetime (i.e. ∆τX ≪ γ−1), there is no

significant decay of the trion population during the pulse. Consequently, any

notable increase in the unwanted ground state population is likely to occur after

the driving pulse. Thus a Gaussian pulse is unable to re-excite any non-zero |1⟩
population resulting from the decay of the trion states away from the target

state. Accordingly, when driving the system with a pulse of short duration

the final trace distance is predominantly determined by the ratio of the rates

of the decay paths away from the |4⟩ state. This Purcell factor requirement

presents a significant drawback in the physical realisation of spin initialisation

as it has often proved challenging to realise large Purcell factors in on-chip,

in-plane photonic structures such as Photonic Crystal Cavities (PhCCs).

From the outset it is clear that the Gaussian pulse envelope provides a

significant time advantage over the square pulse. Figures 6.6a and 6.6b show

that the optimum trace distance for either cavity configuration is achieved

in tens of picoseconds rather than the few nanoseconds required when driving

with a square pulse. Furthermore, the trace distances achieved by the Gaussian

pulse are smaller than those that can be achieved with the shortest (∆τX < 1

ns) square pulses studied that are unlikely to be experimentally accessible.

However, comparing the smallest trace distances achieved by both pulses, it

is clear that the square pulse is able to produce trace distances orders of

magnitudes smaller than the smallest trace distance achieved when driving

with a Gaussian pulse. For Gaussian pulses with ∆τ ⪅ 15 ps this a result of the

finite bandwidth of the pulse. At these short pulse widths there is a significant

spectral overlap with the off-resonant vertical transition which in turn increases

the rate at which the system is driven away from the desired ground state.

4While the Purcell factor and cavity linewidth are related, the position of the emitter in
the cavity field, for example, also impacts the Purcell factor (see Eq. 3.54) and thus we can
independently vary the two parameters independently.
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However, at longer pulse durations this spectral overlap is minimised, and

thus it is the pulse duration limiting the re-excitation of the undesirable ground

state after the initial excitation that limits the trace distance in this limit.

Similarly to the square pulse case, we find coupling the QD to a bi-modal

cavity significantly increases the trace distances achieved by the initialisation

process. Again we find the two cavity configurations produce identical results

for the narrowest cavity linewidth studied. However, Figure 6.6b shows that

when driving with a Gaussian pulse a number of the cavity parameter combi-

nations may actually provide little benefit when compared to driving the QD

in the absence of any cavity effects.

6.3.3 Spin Initialisation Including Pure Dephasing

As we discussed in Chapter 2, the stochastic decay of the populations of the

quantum states via spontaneous emission is not the only dephasing mech-

anism experienced by physical quantum systems. Therefore we now con-

sider the impact of pure dephasing on optical spin initialisation when driv-

ing with finite duration optical pulses to determine the resilience of the ini-

tialisation process against incoherent processes resulting from elastic interac-

tions with the environment. Assuming both excited trion states experience

the same pure dephasing rate, we introduce the additional Lindblad terms

L ∈ {
√
ΓPDσ33,

√
ΓPDσ44} to account for these pure dephasing processes. Here

we shall follow the same procedures used in the absence of pure dephasing,

sweeping the duration of the optical pulse and minimising the trace distance

with respect the either the Rabi frequency or area of the driving pulse. How-

ever, we now perform these sweeps for a number of different pure dephasing

rates using the single set of cavity parameters that produced the smallest trace

distance between the prepared and target states for both pulse shapes when

neglecting pure dephasing.

Figure 6.7 shows the resulting trace distances with pure dephasing rates

ΓPD ∈
{

0, 0.1γ, 0.5γ, γ, 10γ
}

. We find pure dephasing has a minimal

impact on the initialisation process when the pure dephasing rate is less than

γ. When driving with a square pulse with either cavity configuration, we find

the influence of the pure dephasing processes increases with increasing pulse

duration, with the largest differences between the calculate trace distances with

and without pure dephasing effects occurring at the longest pulse duration (see

Figures 6.7a and 6.7b). Even in this limit we find only a minimal increase in

the trace distance. When coupled to a single-mode cavity the trace distance
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(a) (b)

(c) (d)

Figure 6.7: The calculated trace distance between the state prepared by the
spin initialisation process in the presence of pure dephasing when driving with
a QD coupled to a (left: a,c) single-mode or (right: b,d) bi-modal cavity with
(top: a,b) square pulse or (bottom: c,d) Gaussian pulse. Parameters used:
(a,b) κ/2π = 20 GHz, FP = 10, (c,d) κ/2π = GHz, FP =, γ−1 = 1000 ps, and
ΓPD ∈ {0, 0.1, 0.5, 1.0, 10.0}γ.
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increases from T (ρ, σ22) = 1.03 × 10−4 in the absence of pure dephasing to

T (ρ, σ22) = 1.36× 10−4 (8.25× 10−4) at ΓPD = γ (ΓPD = 10γ). When coupled

to a bi-modal cavity the trace distance increases from T (ρ, σ22) = 1.08× 10−4

when ΓPD = 0 to T (ρ, σ22) = 1.54× 10−4(8.09× 10−4) with ΓPD = γ (γPD =

10γ). We observe a similar behaviour when driving the system with a Gaussian

optical pulse shown in Figures 6.7c and 6.7d. Increasing the pure dephasing

rate when coupled to a single-mode cavity results in an increase in the trace

distance from T (ρ, σ22) = 5.6 × 10−3 at ΓPD = 0 to T (ρ, σ22) = 7.6 × 10−3

(T (ρ, σ22) = 2.5× 10−2) at ΓPD = γ (ΓPD = 10γ). However, we find coupling

the 4LS to a bi-modal cavity and driving with a Gaussian pulse results in the

greatest resilience to pure dephasing. In the absence of pure dephasing the

smallest trace distance achieved is T (ρ, σ22) = 4.8× 10−2. Increasing the pure

dephasing rate to ΓPD = γ (ΓPD = 10γ) returns a trace distance of T (ρ, σ22) =

5.1×10−2 (T (ρ, σ22) = 7.7×10−2). The robustness of the initialisation process

with this cavity configuration and pulse envelope has two origins. The reduced

lifetime of the trion states through the Purcell enhancement of all four optical

transitions reduces the relative importance of the pure dephasing mechanisms.

Additionally, the short duration of the driving pulse further reduces the impact

of pure dephasing on the initialisation process.

6.4 Optical Spin Readout

While we now have a selection of cavity parameters that result in high-fidelity

optical spin initialisation for either cavity configuration, it is crucial that these

cavity parameters are also conducive to high-fidelity optical spin readout for

such systems to be used in spin-based optical quantum devices. We shall

therefore now study the impact of cavity configuration on spin readout using

the method first proposed in [146]. This method, experimentally realised in

[147], relies on the spin-dependent cavity transmissivity or reflectivity of the

cavity mode resonantly coupled to the QD to determine the spin state of the

system. We shall again assume one cavity mode is always resonantly coupled

to the |4⟩ → |2⟩ transition, conversely to the set-up studied in [146]. To

readout the state of the system we weakly probe this transition via the cavity

mode using a square pulse turned on at time zero and with some duration τ .

If the system is in the |1⟩ ground state the photons will be transmitted. On

the other hand, if the system in the |2⟩ spin state it will interact with the

driving field and the photons will be reflected. Therefore, by comparing the
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number of photons reflected or transmitted with a calculated threshold photon

number (k) [146], the ground state occupied by the QD may be determined.

If the collected photon number is less than k then the state of the system is

|2⟩, otherwise it is |1⟩. This then allows one to write the maximum probability

of successfully determining the correct state as R = maxk(q1p1(k) + q2p2(k))

where qi is the probability of finding the system in state |i⟩, and pi is the

probability of getting a correct result using the threshold photon number k

[146]. As described in [146], if the dead time of the detectors is shorter than

the interval between detection events, and the system is driven in the weak

driving limit, the probabilities pi(k) may be described by Poissonian statistics.

This then allows the readout fidelity R to be defined as [146]

R(τ) =
1

2
− 1

2

M
∑

k=0

1

k!

(

[N1(τ)]
k e−N1(τ) − [N2(τ)]

k e−N2(τ)
)

, (6.16)

where M is the optimal threshold value given by [146]

M =
⌊ N2(τ)−N1(τ)

ln [N2(τ)]− ln [N1(τ)]

⌋

, (6.17)

with ⌊x⌋ denoting the largest integer smaller than x, and Ni is the number

of photons emitted from the cavity mode when the initial state of the QD is

|i = 1, 2⟩. This number can be calculated by integrating the output flux of the

cavity mode collected over the duration of the driving pulse [146]

Ni,λ(τ) = η

∫ τ

0

dt |Tr [√κλaλρi(t)]|2 , (6.18)

where η is the photon collection efficiency, and ρλ are the system density

matrices at time t when the QD starts in the |i = 1, 2⟩ ground state.

This readout method has been demonstrated to work experimentally. A

readout fidelity of R = 0.61 was achieved in [147] a with a 75 ns long optical

pulse for a QD coupled to a cavity with a cavity linewidth κ/2π = 67 GHz,

and enhancement factor FP = 62, and with an optical collection efficiency of

η = 4.1× 10−3.

We shall now consider a shorter pulse duration of 35 ns, but still set the

cavity driving strength as in [146] at ϵY (t) =
√

(0.01× 2g2Y ) for t ∈ [0, 35] ns

to maintain the weak driving regime. The results are shown in Figure 6.8.

Assuming η = 1, we calculate the spin readout fidelity for a range of cav-

ity parameters. When the QD is coupled to a single-mode cavity we find
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(a) (b)

Figure 6.8: The calculated readout fidelity as a function of cavity linewidth
and Purcell enhancement of the 2 → 4 transition driving the Y−polarised
cavity mode of a (a) single-mode and (b) bi-modal cavity with a 35 ns square
pulse. A fully optimised readout process returns R = 1, while an un-optimised
readout protocol returns R = 0.5.

the most important factor for determining the readout fidelity is the Purcell

enhancement of the |4⟩ → |2⟩ transition, varying little with respect to κY

(see Figure 6.8a). This is the result of the Purcell enhancement increasing

the strength of the quasi-cycling transition introduced by the cavity that is

required to produce a detectable readout signal. Figure 6.8a shows that an

enhancement factor of FP = 7 (FP = 19) gives R > 90%(R > 99%).

On the other hand, when coupled to a bi-modal cavity both the Purcell

enhancement and cavity linewidth have an appreciable impact on the spin

readout fidelity. Using this cavity configuration the highest readout fidelities

are produced when the cavity modes have a narrow linewidth and the resonant

diagonal transition experiences a large Purcell enhancement. The narrow cav-

ity linewidths ensure the vertical transitions are far enough detuned from the

cavity mode of the same polarisation that they are not enhanced and thus do

not reduce the cyclicity of the Λ-system being probed. To achieve R > 99%

when coupled to a bi-modal cavity requires κ/2π ≤ 9.4 GHz, and FP ≥ 19.

While we have so far assumed a 100% collection efficiency, it is important

to note that we find η ≥ 48% returns R ≥ 99% when the cavity parameters are

optimised for either cavity configuration. Collection efficiencies in this range

have already been demonstrated in a number of cavity systems including open-

access microcavities [159]. Additionally, for planar cavity systems even higher

collection efficiencies could be achieved by direct fibre coupling [170, 171].
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(a) (b)

(c) (d)

Figure 6.9: The calculated spin readout fidelity as a function of cavity linewidth
and the Purcell enhancement of the 2 → 4 transition for a Four-Level System
(4LS) coupled to a Y−polarised single-mode cavity for four different pure
dephasing rates. (a) ΓPD = 0.1γ, (b) ΓPD = 0.5γ, (c) ΓPD = γ, and (d) ΓPD =
10γ. Parameters: B = 5 T, ge(h) = 0.5(0.3), γ−1 = 1 ns, ϵ =

√

0.01× 2g2.
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(a) (b)

(c) (d)

Figure 6.10: The calculated spin readout fidelity as a function of cavity
linewidth and the Purcell enhancement of the 2 → 4 transition for a Four-Level
System (4LS) coupled to a bi-modal cavity for four different pure dephasing
rates. (a) ΓPD = 0.1γ, (b) ΓPD = 0.5γ, (c) ΓPD = γ, and (d) ΓPD = 10γ.
Parameters used: B = 5 T, ge(h) = 0.5(0.3), γ−1 = 1 ns, ϵ =

√

0.01× 2g2.



122 Chapter 6. Optical Control and Readout of Single Quantum Dot Spins

6.4.1 Spin Readout Including Pure Dephasing

Just as when studying spin initialisation with a finite pulse, we can once again

introduce pure dephasing to the system to examine its effect on the spin read-

out fidelity. Given the long duration of the readout pulse, it is important that

the process is robust against pure dephasing as on these timescales spin de-

coherence mechanisms become relevant [172]. Figures 6.9 and 6.10 show the

results for a single-mode and bi-modal cavity respectively. When coupled to

a single-mode cavity we find the inclusion of pure dephasing has a minimal

impact on the readout fidelity for all but the largest pure dephasing rate. The

addition of pure dephasing increases the threshold Purcell factor for achieving

a given readout fidelity. However, with the cavity parameters studied it re-

mains possible to achieve R ≥ 99% regardless of the pure dephasing rate. For

ΓPD = 10γ, R = 99% can be achieved with FP = 26 compared to FP = 16 with

ΓPD = 0.1γ. A similar behaviour is found in the bi-modal configuration. The

readout process remains robust against pure dephasing for ΓPD ≤ γ. However,

at the largest pure dephasing, ΓPD = 10γ, rate studied, R > 99% is no longer

achievable with the cavity parameter combinations studied.

6.5 Optical Spin Control

Now we have identified the optimal cavity configurations for enhancing op-

tical spin initialisation and readout, we now must confirm that we maintain

the ability to manipulate the spin-state of the system using optical pulses

when the QD is coupled to these cavities. Optical control of the spin-state

of singly charged QD is achieved by directly driving the two transitions of

one of the Λ−systems with two orthogonally polarised optical laser pulses (see

Figure 6.11). This creates a Raman transition between the two ground states

transferring the spin population [138]. We choose to again drive the |1⟩ → |4⟩
transition with an X−polarised laser, and therefore we must also drive the

|2⟩ → |4⟩ transition with a Y−polarised laser to achieved the required Raman

transition. We also include a common detuning (δ) between the laser pulses

and the frequencies of their respective transitions such that the frequencies of

the X− and Y−polarised laser pulses are given by ω
(X)
l = ω0−δ+(∆e

B+∆h
B)/2

and ω
(Y )
l = ω0 − δ + (∆h

B −∆e
B)/2 respectively. As we shall see, this detuning

is critical to the control process as, in addition to allowing us to neglect cavity

driving, it ensures the transitions are virtual, preventing any real population

in the excited states which would introduce decoherence to the process.
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Figure 6.11: A depiction of the spin control process. The two transitions of
one of the Λ−systems are simultaneously driven by two orthogonal linearly
polarised Gaussian pulses with equal detuning (δ) from their respective tran-
sitions.

The difference in frequency between the two driving fields will inevitably

result in the return of time-dependent exponential terms to the driving Hamil-

tonian. For simplicity, rather than transforming to a frame of reference rotating

at one of the laser frequencies, as we did for initialisation and readout, we shall

instead now move to a reference frame rotating at the QD transition frequency

in the absence of an applied magnetic field, ω0. In this reference frame the

Hamiltonian is given by

H̃0 =
∆e
B

2
(σ22 − σ11) +

∆h
B

2
(σ44 − σ33) +

∑

λ=X,Y

(νλ − ω0)a
†
λaλ,

H̃I =
∑

λ=X,Y

gλa
†
λσλ + g∗λaλσ

†
λ,

H̃QD
D (t) = −

∑

λ=X,Y

Ωλ(t)

2

(

σ†
λe

−i(ω(λ)
l

−ω0)t + σλe
i(ω

(λ)
l

−ω0)t),

(6.19)

where we have neglected the cavity driving Hamiltonian as we are only inter-

esting in direct QD driving.

Starting in the |1⟩ ground state, we calculate the trace distance from

the |2⟩ ground state, along with the purity of the ground state manifold

(P (ρ12) = Tr(ρ212)), at a time much greater than the pulse widths (t ≫ ∆τ).

We choose these metrics as an optimised control process should provide ac-

cess to all possible combinations of the qubit (|↑⟩ , |↓⟩) states (indicated by

0 ≤ T (ρ, ϱ) ≤ 1), and should also be coherent returning a high ground-state

purity after the driving pulse. Figures 6.12 and 6.13 show the results for a QD

coupled to a single-mode, and bi-modal cavity respectively.
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(a) δ = 5κ (b) δ = 5κ

(c) δ = 20κ (d) δ = 20κ

Figure 6.12: The calculated trace distances (left) and state purities (right)
after the control pulses have directly driven the transitions of a Four-Level
System (4LS) (initialised in the |1⟩ ground state) coupled to a single-mode
cavity as a function of pulse Full-Width Half Maximum (FWHM) and pulse
area for a number of different laser detunings (δ). Parameters used: Fp = 10,
κ/2π = 21 GHz.
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(a) δ = 5κ (b) δ = 5κ

(c) δ = 20κ (d) δ = 20κ

Figure 6.13: The calculated trace distances (left) and state purities (right)
after the control pulses have directly driven the transitions of a Four-Level
System (4LS) (initialised in the |1⟩ ground state) coupled to a bi-modal cavity
as a function of pulse Full-Width Half Maximum (FWHM) and pulse area
for a number of different laser detunings (δ). Parameters used: Fp = 10,
κ/2π = 21 GHz.
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When coupled to a single-mode cavity, we find the control process is opti-

mised for larger pulse detunings (δ). Figures 6.12a and 6.12b show the results

for δ = 5κ. We find that, when δ = 5κ, the control process only returns states

with P (ρ12) ≈ 1 when driving the system with pulses of long duration, or when

the areas of the control pulses are integer multiples of π. Additionally, we find

the control process is unable to simultaneously access a wide range of possi-

ble ground states, and return a pure state, when the detuning is small. On

the other hand, Figures 6.12c and 6.12d show that when δ = 20κ the control

process is able to access a wide range of qubit states, and also return a state

with approximately unity purity (i.e. P (ρ12) ≈ 1). In fact, at the larger pulse

detuning, we find there is a wide driving parameter regime where states with

P (ρ12) ≈ 1 are returned by the control process. The larger detuning of the

excitation pulses from the optical transitions of the 4LS minimises the excited

state populations during the control process [173]. As a result, the trion states

are predominantly virtually excited by the control pulses, ensuring the coher-

ence of the control process by removing decoherence resulting from the fast

decay of the trion states [173]. Even at the largest detuning studied, we find

the P (ρ12) < 1 for the shortest pulse durations. When ∆τ < 2 ps, even for

δ = 20κ, the spectral width of the pulses is large enough to excite a significant

population in the trion states, and thus decoherence from the decay of these

states becomes significant.

We find a near identical behaviour when the 4LS is coupled to a bi-modal

cavity. Figure 6.13 shows that, much like in the single-mode case, the larger

detuning studied returns states with a high purity for a greater range of driving

pulse parameters due to the protection offered against decoherence resulting

from the decay of the excited states. Similarly, we also find the large detuning

enables access to a large range of qubit states while ensuring the control process

remains coherent.

6.6 Summary

In this chapter we have studied the impact of cavity configuration on the op-

tical initialisation, control, and readout of single spins in semiconductor QDs.

We found that while the enhancement of undesired transitions resulting from

coupling to a bi-modal cavity may be mitigated against in the optical spin

initialisation and control stages, these enhanced transitions significantly limit

optical spin readout with a QD coupled to a bi-modal cavity. Likewise, we
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have shown that the range of cavity parameters that optimises spin initialisa-

tion with a bi-modal cavity does not overlap with the cavity parameters that

optimise optical spin readout in this cavity configuration meaning there is no

single set of bi-modal cavity parameters that can simultaneously optimise both

the spin initialisation and spin readout fidelities.

On the other hand, our results show that optical spin initialisation and

optical spin readout may be performed with near unity fidelity over a large

range of cavity parameters when driving a QD coupled to a single, linearly

polarised cavity mode with a square pulse. We find a spin readout fidelity of

R ≥ 99% may be achieved across a broad range of cavity linewidths. Achiev-

ing R > 99%, assuming a pure dephasing rate ΓPD ≤ γ, requires a Purcell

enhancement of FP > 19, while of the parameters studied a cavity width

κ/2π = 20 GHz returned the best initialisation fidelity. Moreover, when cou-

pled to a single-mode cavity we find the spin initialisation, and readout stages

are robust against pure dephasing, maintaining the potential to achieve fideli-

ties ≥ 99% at even the largest pure dephasing rates studied.

Furthermore, we have also shown that in the limit of short pulse duration

a Gaussian pulse produces a smaller trace distance in the initialisation stage

than a square pulse of comparable duration. However, while this does provide

a significant time advantage, the best trace distances achieved using Gaussian

pulses are orders of magnitude larger than those achieved with longer square

pulses.

By performing driving pulse parameter sweeps, we have also shown both

single-mode and bi-modal cavities allow optical spin control when directly

driving the QD with two orthogonally polarised detuned Gaussian pulses. For

either cavity configuration, we find this process is optimised when the control

pulses are far detuned from the optical transitions of the 4LS. This detuning

ensures decoherence resulting from the decay of excited state populations does

not degrade the coherence of the optical control process.
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Chapter 7

Crossed Nanobeam Photonic

Crystal Cavities: Part I

In Chapter 6 we explored how an optical cavity may be employed to improve

the fidelity with which a QD spin state may be prepared and read out using

optical pulses. In this chapter we shall discuss the methods for designing,

and fabricating physical structures that can be used to test the ideas set out

in Chapter 6. This includes a discussion of the methods for simulating op-

tical structures, the growth of QDs, and the optical characterisation of the

resulting phononic samples. We shall begin with a brief overview of Maxwell’s

equations in matter, and how they are used in the Finite-Difference Time-

Domain (FDTD) method for simulating the propagation of electromagnetic

waves. The principles behind guiding and confining light, and the operation of

diode structures is then presented. Finally the chapter closes with an overview

of the growth of QDs and diodes, and the experimental methods used in the

characterisation of the samples studied in Chapter 8.

7.1 Maxwell’s Equations

Maxwell’s equations unified the previously separate fields of electricity, mag-

netism, and light; bringing together Gauss’ law, Gauss’ law of magnetism,

Faraday’s law, and the Maxwell-Ampere law to form a set of four coupled dif-

ferential equations. It is in this differential form that Maxwell’s equations are

useful for computationally simulating the propagation of light through optical

media. This section shall provide a brief overview of Maxwell’s equations in a

material in their differential form as applies to the FDTD method. For a more

in-depth discussion see [174, 175].

129
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The first of Maxwell’s equations, Gauss’ law, states the divergence1 of the

displacement field, D, in a medium is directly proportional to the free electric

charge density, ρf

∇ ·D = ρf , (7.1)

where D is related to the electric field by D = ϵ0ϵrE. Here ϵ0 and ϵr are the

permittivity of free space, and the relative permittivity of the material respec-

tively. Physically we can interpret this law as stating that electric charges are

the source of electric fields. The electric fields diverge from positive charges,

and converge on negative charges. The next of Maxwell’s equations, known as

Gauss’ law of magnetism, states that the divergence of the magnetic induction,

B, is equal to zero

∇ ·B = 0, (7.2)

which indicates that, unlike electric monopoles, magnetic monopoles do not

exist. The third of Maxwell’s equations is the Faraday-Lenz law which is given

by

∇×E = −∂B
∂t

. (7.3)

This states the curl2 of the electric field is directly proportional to the time

derivative of the magnetic induction. The Faraday-Lenz law tells us that a

time varying magnetic induction will generate vortices in the electric field.

The final equation, known as the Maxwell-Ampere law, relates the curl of the

magnetic field, H , to the time derivative of the displacement field, and current

density, J , through

∇×H − ∂D

∂t
= J . (7.4)

The magnetic field vector, H , is related to the magnetic induction by H =

µ0µrB, where µ0 and µr are the permeability of free space and relative per-

meability of the material respectively. The Maxwell-Ampere equation tells us

that magnetic field loops are generated by electric currents and time varying

electric fields.

1The divergence of a vector field produces a scalar field indicating the rate at which the
density of the vector source enters or exits a region of space.

2The curl of a vector field produces another vector field indicating the magnitude and
axis of circulation of the initial vector field.
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(a) (b)

Figure 7.1: A 2D depiction of a segment of a 1D Photonic Crystal (PhC) (a)
approximated on a coarse mesh Yee lattice (b).

7.2 Finite-Difference Time-Domain

The work performed in Chapter 8 will require us to simulate the proper-

ties of optical nanostructures. One approach for computationally modelling

the evolution of electric and magnetic fields in such optical structures is the

Finite-Difference Time-Domain (FDTD) method3. This method uses the time-

dependent Maxwell’s equations in their differential form (Eqs. 7.1-7.4) to prop-

agate electromagnetic waves through a given structure. Since the FDTD

method works in the time-domain, it has the benefit of the ability to include

a wide range of frequencies in a single simulation, and animate the simulated

fields easily to show explicitly their temporal evolution. However, for large

regions of interest, or systems with small feature sizes, the FDTD approach

can be computationally expensive, requiring large amounts of memory and

long simulation times. Therefore, for systems that are sufficiently small along

one spatial dimension, it is usually more efficient to use either a 2.5D, 2D, or

eigenmode expansion approach rather than the full 3D FDTD approach used

in this thesis.

To calculate the dynamics of the electric and magnetic fields using the

FDTD method we must first define a region of interest which is then approx-

imated by a lattice, known as a Yee lattice, consisting of an array of uniform

Yee cells. Structures within the simulation region are approximated on the

Yee lattice as a position dependent dielectric map as shown in Figure 7.1. The

FDTD method then uses Faraday’s law (Eq. 7.3) with a fictitious magnetic

charge current density term, JB, subtracted from the right hand side, and the

Maxwell-Ampere law (Eq. 7.4) to propagate the time-dependent electric and

magnetic fields. The temporal and spatial derivatives of these equations are

approximated by finite differences in space (i.e. the dimensions of the Yee cell)

3For a more detailed discussion of the FDTD method see [176, 177].
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and time (using a time step ∆t). The simulation proceeds from time zero,

when any sources we have included are switched on, using a so-called ‘leap

frog’ approach. The electric field components are calculated along the vertices

of the Yee cells at time t using the electric fields at time t−∆t, the magnetic

fields at time t − (∆t/2), and any sources. On the other hand, the magnetic

fields are calculated at the faces of the Yee cell at time t + (∆t/2) using the

magnetic fields at time t−(∆t/2), the electric fields at time t, and any sources.

The simulation is then halted by either reaching a pre-determined time limit

or by a threshold for the total energy within the simulation region (either low

or high) [176].

7.2.1 Boundary Conditions

In the FDTD simulations our region of interest does not extend indefinitely, but

is instead enclosed by user-defined boundaries. Choosing the correct bound-

ary conditions is critical to ensuring the results of the simulation are accurate.

The different boundary conditions may be separated into three broad cate-

gories: absorbing, metallic, and periodic. Absorbing boundaries are the most

commonly implemented boundary condition, and typically use the Perfectly

Matched Layer (PML) approach. This method uses a number of absorbing

layers in the boundary region to absorb all incident electromagnetic waves

ensuring there are no back reflections at the boundary to simulate free-space

[178]. As the name suggests, periodic boundary conditions are used in the

simulation of periodic structures enabling one to consider only a single unit

cell of a potentially extremely large structure [179] and thus reducing the com-

putational resources required to simulate the structure. The periodicity of the

photonic structure of interest, and thus also the dimensions of a single unit

cell, is then determined by the dimensions of the applied boundaries [176]. It

is important to note that the electromagnetic field with which the periodic

structure interacts must also be periodic for the simulation to be valid [176].

The final boundary condition, metallic, is essentially the opposite of the ab-

sorbing boundary condition. When a boundary is set to metallic any incident

fields are perfectly reflected back into the simulation region, i.e. the boundary

behaves as a perfect electrical conductor. This boundary type requires the

least computational resources of the three boundary condition categories.
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7.2.2 Symmetry

One method for reducing the memory requirements of a simulation is to take

advantage of any symmetries in the structure of interest. Introducing symme-

try to the simulations reduces the overall volume that needs to be simulated.

It is important to note that the correct symmetry must be chosen to account

not only for the structure being simulated, but also the electromagnetic waves

that are also present in the simulation. The simulations of the structures we

shall consider in Chapter 8 make extensive use of different symmetry conditions

along all three spatial dimensions.

7.3 Guiding and Confining Light

The ability to guide light on-chip is one of the essential components for de-

veloping optical-based quantum technologies. There are two main approaches

typically used to confine and guide light on-chip that are relevant here, namely

Total Internal Reflection (TIR) and the engineering of photonic bands through

the modulation of dielectric constants. The cavities studied in Chapter 8 make

use of a combination of these approaches.

7.3.1 Total Internal Reflection

TIR refers to the phenomenon whereby light travelling in a medium may be

reflected back at the interface with another medium of lower optical density.

It is therefore one of the simplest methods for confining light in a dielectric

medium [180]. While possibly the most well known application of TIR is in

the optical fibres used extensively to carry information across the globe, TIR

can also be critical for confinement of light on much smaller scales. Micro-

scale structures such as those using 1D or 2D photonic crystals (discussed in

section 7.3.2), as well as suspended nanobeam waveguides, all rely on TIR to

confine light along one or two axes.

It is important to note that TIR will only occur when light is incident on

the interface between the two media at an angle, measured from the normal

of the interface, greater than the so-called critical angle θc. This critical angle

defines the angle of incidence where the refracted light will propagate along

the boundary, and is determined by the ratio of the refractive indices of the

two media at the boundary such that θc = sin−1
(

n2/n1

)

where n1(2) are the

optical densities of the two media [180]. The larger the difference in refractive
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indices between the two media, the smaller the critical angle and the greater

the confinement. At 4K, and in the wavelength range of typical InAs QD

emission, GaAs is transparent with a low dispersion and a refractive index

nGaAs ≈ 3.4. When clad with air (nair = 1), this gives a critical angle θc ≈ 17◦.

In a physical system, even beyond the critical angle there will be a non-zero

evanescent component of the fields that couples into the second medium.

7.3.2 Photonic Crystals

In contrast to TIR, a PhC use a periodic modulation of the dielectric constant

of a medium to guide and confine light [181]. Analogous to the electronic

band structure of semiconductors discussed in Sec. 3.2.1, this periodic spatial

variation of the dielectric constant results in the formation of optical bands. If

the modulation of the dielectric constant is great enough, and any absorption

is low enough, complete band gaps will open up in the photonic band structure

where no photonic states exist as a result of destructive interference caused by

the periodic variation in the refractive index. Subsequently in the PhC region

light in a given wavelength range will couple evanescently, with the intensity

decaying rapidly within the PhC. Therefore, by engineering the periodicity and

refractive index contrast, we may prevent light from propagating in a given

direction using a PhC. Depending on the number of directions in which the

PhC extends we may classify them as 1D, 2D, or 3D, although the latter is

extremely difficult to realise experimentally. For further details about PhCs

see [181].

To guide or confine light using PhCs, we may introduce defects into their

periodic structure. As PhCs typically consist of an array of air holes etched into

a planar semiconductor material, defects may be introduced through the omis-

sion of one or a series of these holes4 Removing a singe period or small number

of periods from a 1D or 2D PhC confines light to a small spatial region through

the introduction of a defect state to the photonic band gap, creating a cav-

ity5. Examples of such Photonic Crystal Cavities (PhCCs) include: H1 cavites,

where a single period is removed from a 2D hexagonal PhC lattice [152, 183–

187]; L3 cavities, where three periods in a line are remove from a 2D hexago-

nal PhC lattice [188–191]; Photonic Crystal Waveguide Cavities (PhCWGCs),

combining a waveguide and cavity mode [192, 193]; and nanobeam cavities,

4Defects may also be introduced through the displacement, rather than omission, of the
PhC holes as in, for example, the H0 cavity [182].

5In 1D and 2D PhCs TIR is responsible for confinement along the axes into which the
PhC region does not extend.
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where a single period is removed from a linear 1D PhC [155, 194–196]. As the

period of a PhC is on the order of the wavelength of interest, PhCCs have the

potential to give rise to large Purcell enhancements with even modest cavity

quality factors [97] given the tight confinement of light to the defect region.

One may also introduce a linear defect into a PhC to form a PhC waveguide.

Omitting a single row of holes in a 2D PhC creates a defect mode within the

photonic band gap of the PhC. Assuming this mode remains confined out-

of-plane through TIR, light may propagate along this defect mode forming a

so-called W1 waveguide [197–200].

7.4 Diodes: Principle of Operation

In Chapter 3 we discussed the effects resulting from applying an external DC

electric field across a QD, and how this is often achieved by situating the QD

in a diode structure. However, we did not discuss the details of these diodes,

the principle of their operation, or how one includes QD in such structures.

This section presents an overview of the structure of semiconductor diodes and

their principle of operation, while the next section (7.5) outlines the growth of

diodes, and epitaxial QD.

As we discussed previously, a standard approach to applying an electric

field across a QD is to situate the QDs in the optically active intrinsic region

of a semiconductor P-I-N diode, although other diode configurations may also

be used [201, 202]. This approach not only allows an electric field to be applied

across the QDs, but also gives control over the injection of charge carriers into

the depletion region of the diode. A schematic of the band structure of a

P-I-N diode is shown in Figure 7.2. A P-I-N diode is formed when three

semiconductor layers with different dopants (or no dopants in the case of the

intrinsic I region) are grown successively. In the P-type region impurities are

added during the growth process with one fewer valence electrons than the

bulk intrinsic semiconductor material [46]. As the energy level of this type

of dopant lies just above the edge of the valence band owing to a different

binding energy, the dopant is able to easily accept electrons from the valence

band (or equivalently donate holes to the valance band) and thus this type

of dopant is commonly known as an acceptor. Including an acceptor in the

intrinsic semiconductor has the effect of increasing the density of holes in the

valence band, and also shifts the Fermi level to the acceptor energy level. In

the N-type region the intrinsic semiconductor is doped with electron donors,
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Figure 7.2: A diagram of the band structure in a P-I-N diode showing the
conduction and valence bands. The built-in voltage (Vbi) occurs as a result of
the build-up of space charge in the P-type and N-type regions, and has the
effect of ensuring a uniform Fermi-level across the structure.

impurities with one additional valence electron compared to the atoms of the

intrinsic semiconductor [46]. In this case the dopant level lies just below the

conduction band edge, and as a result is able to increase the density electron

density in the conduction band of the N-type semiconductor. Again this has

the effect of shifting the Fermi level, only now up to the donor level.

When a P-type and N-type semiconductor are brought together, with an

intrinsic region between them to form a P-I-N diode, there is initially a discon-

tinuity in the Fermi level. To ensure a uniform Fermi level across the entire

device, the charge carriers introduced by the doping begin to diffuse across the

intrinsic region of the diode. The donors in the N-type region lose electrons

to the P-type region, and the P-type region loses holes to the N-type region,

until the Fermi level is equalised. This leaves a fixed space charge in the two

doped regions creating a built-in electric potential across the intrinsic deple-

tion region. The energy related to this built-in electric field is approximately

equal to the band-gap energy of the intrinsic semiconductor (i.e. EG ≈ qVbi).

In addition to the built-in voltage, we can apply an external electric bias

to the diode to alter the strength of the electric field in the intrinsic region.

Applying a forward bias reduces the potential difference between the P-type

and N-type semiconductor regions (i.e. Vfb = Vbi−V ). Alternatively, applying

a reverse bias increases the potential difference between the doped regions (i.e.

Vrb = Vbi + V ). Hence by applying an external bias to the P-I-N diode one is

able to control the magnitude of the electric field across the intrinsic region

of the diode where QDs are typically situated. In Chapter 8 a reverse bias is

used to study QD emission.
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Figure 7.3: The Stranski-Krastanov (SK) growth process for Self-Assembled
Quantum Dots (SAQDs). A GaAs layer is deposited on a sacrificial AlGaAs
layer. An InAs Quantum Dot (QD) layer is then deposited on the GaAs layer.
The difference in lattice constants between these two layers, GaAs and InAs,
results in the spontaneous formation of inverted lens shaped islands on the
surface of the InAs. Capping with a further GaAs layer forms the optically
active QDs.

7.5 Wafer Growth

7.5.1 Stranski-Krastanov Growth

QDs embedded in bulk semiconductor layer structures are commonly grown

using the Stranski-Krastanov (SK) growth mode, also known as self-assembly.

The prevalence of SK growth is a result of the high optical quality of the formed

Self-Assembled Quantum Dots (SAQDs). The best SAQDs have transform

limited linewidths (T2 = 2T1, see Section 3.9) on the order of 1 µeV [203].

Self-assembly relies on the presence of strain in a semiconductor to form

SAQDs. This strain is introduced by the consecutive deposition of semiconduc-

tor layers with differing composition and lattice constants. Thus SK growth

requires the ability to control the composition of individual semiconductor

monolayers throughout the growth process. Such accuracy can be achieved

using now well-known crystal growth techniques such as Molecular Beam Epi-

taxy (MBE) or Metal-Organic Chemical Vapour Deposition (MOCVD)6.

Figure 7.3 shows an illustration of the SK growth process for InAs SAQDs.

The process begins with the deposition of GaAs layer onto any previously

deposited semiconductor layers. The InAs QD layer, known as the wetting

layer, is then deposited onto the substrate. There are two main reasons InAs is

used as the wetting layer material on a GaAs substrate. Firstly, as mentioned

6Metal-Organic Chemical Vapour Deposition (MOCVD) is sometimes referred to as
Organo-Metallic Vapour Phase Epitaxy (OMVPE) or Metal-Organic Vapour Phase Epi-
taxy (MOVPE).
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previously self-assembly requires a mismatch in the lattice constant of two

adjacent semiconductor layers to introduce strain. InAs and GaAs have a

7% lattice constant mismatch [204, 205] which is sufficiently large to build up

the required strain in the InAs layer to form SAQDs. Secondly, InAs has a

smaller band gap7 than GaAs ensuring confinement of charge carriers to the

InAs layer. Above the so-called critical thickness (one to two monolayers),

it becomes energetically favourable to relieve the strain in the wetting layer

through the formation of inverted lens shape islands on the surface of the 1-

2 nm thick wetting layer [204, 205]. This occurs at the expense of increased

surface energy [204, 205]. Self-assembly is an inherently stochastic process and

thus these islands form at random spatial positions with a distribution of sizes.

Deposition of a capping layer 8, a process known as overgrowth, forms optically

active SAQDs by increasing the distance to any surface defects that may cause

non-radiative relaxation processes [206]. Overgrowth also alters the shape of

the SAQDs from inverted-lens to truncated pyramid, and diffusion of gallium

from the capping layer alters the SAQD composition [206]. After overgrowth

SAQDs typically extend 2-5 nm in the growth direction (out-of-plane) and

approximately 20 nm in-plane [205].

Quantum Dot Registration

While SAQDs may have excellent optical properties, their random distribu-

tion sizes and positions becomes problematic when considering the scalability

of on-chip quantum circuits, and yield of devices. The coupling of a QD to the

mode of an optical cavity, for example, is dependent on the spatial and spectral

position of the QD relative to the cavity mode (Eq. 3.54). Using a probabilis-

tic approach to fabrication is inefficient, often resulting in optical components

containing spectrally unsuitable QDs at sub-optimal spatial positions. Addi-

tionally, the size and shape of QDs affects their optical properties. Hence a

probabalistic approach to fabrication ultimately limits the potential to develop

complex quantum circuits as these structures require multiple identical QDs.

QD registration is a category of techniques that may be used to prede-

termine the spatial location of SAQDs on a sample before the fabrication of

on-chip optical components. Combined with spectroscopic techniques, reg-

istration allows on-chip structures to be accurately fabricated around pre-

selected SAQDs with pre-determined locations and suitable optical properties.

7The band structures of semiconductors is discussed in Section 3.2.1.
8The capping layer and substrate are usually formed from the same constituent semicon-

ductor material.
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Such quantum dot registration techniques include Atomic Force Microscopy

(AFM) [207], Scanning Electron Microscopy (SEM) [208, 209] , Cathodo-

Luminescence (CL) [210], and Micro Photoluminescence (µ-PL) [211–213].

While all of these techniques are able to determine the position of a single QD

with an error below 50 nm, only CL and µ-PL are able to determine both the

spectral properties and spatial locations of the SAQDs. AFM and SEM both

require an additional µ-PL step to determine the spectral properties of any

registered SAQDs.

The most commonly used quantum dot registration technique is µ-PL. Us-

ing a so-called two colour technique, µ-PL can be used to quickly determine

the positions of SAQDs relative to a series of pre-patterned alignment markers

over a large area [211, 212] (see Figure 7.4). To achieve this two LEDs are

used simultaneously to illuminate the sample [211, 212]. The first LED off-

resonantly excites the SAQDs to produce an intensity map which can be used

to determine the spatial positions of the SAQDs by fitting 2D Gaussian point

spread function [211, 212]. The second LED is used to image the alignment

markers with their position being determined by a fitted Gaussian. The result

is simultaneous imaging of both the SAQDs and the alignment markers. Us-

ing this technique single SAQDs have been located with an average standard

deviation error of just 4.5 nm using a 1 second exposure [212]. The spectral

information of the SAQDs is obtained after registration by incorporating a

tunable laser into the system [211, 212] (see Section 7.6.2 for more detail).

Before the two colour µ-PL method, single-colour µ-PL spectroscopy was

used either in isolation with pre-patterned alignment markers on the sample

[213] or combined with photolithography to pattern alignment markers in a

photoresist when a suitable SAQD was located [214]. In single-colour µ-PL a

laser is scanned across the surface of the sample to locate and determine the

optical properties of a SAQD [213, 214]. Photolithography can then be per-

formed with the same laser to pattern alignment markers by simply increasing

the laser power [214]. However, the drawback with the single-colour µ-PL tech-

nique is that it requires more time to complete than the two-colour method.

This increase in the required time also increases the potential for misalignment

in the system. Post-registration, fabrication of on-chip structures must take

place in a separate step using conventional EBL techniques with the alignment

markers being used to determine the positions of the on-chip structures [213].

The same basic principles that apply to single-colour µ-PL also apply to

CL. However, rather than scanning a laser across the surface of the sample to
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Figure 7.4: A schematic diagram of a typical image of an area of Self-Assembled
Quantum Dots (SAQDs) and four alignment markers (crosses). The SAQDs
appear as bright spots on in the image that can can be fit with a Gaussian
function to determine their central positions. Using a filter before the camera
removes QDs emitting at undesired wavelengths from the image.

excite the QDs as done in single-colour µ-PL, an electron beam is used instead.

Therefore it is possible to combine CL with the lithographic fabrication of

on-chip components using EBL into a single technique referred to a Cathodo-

Luminescence Lithography (CLL) [210]. This removes the need for alignment

markers and additional fabrication steps making CLL a potentially simpler

and more accurate technique than µ-PL [210].

7.5.2 Site-Controlled Growth

QD registration goes some way to mitigating the disadvantages of self-

assembly. However, developing truly scalable complex optical circuits on-chip

with a high yield requires deterministic growth of QDs to control their size

(and hence optical properties) and position [215]. This deterministic growth

is known as Site-Controlled Quantum Dot (SCQD) growth and is currently a

very active area of research.

One method of SCQD growth uses a lithographically pre-patterned array

of nano-holes etched in either the bulk substrate [215–219] or on the surface of

a lithographically defined mesa9 [220–222] to act as nucleation sites when the

wetting layer is deposited as in SK growth. Adjusting the size of the mesa has

9A mesa is a flat elevated region terminated by steep edges.
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been demonstrated to enable control of the QD density at the mesa’s centre,

preventing the growth of interstitial QDs10 [220]. Furthermore, the occupation

of the nano-holes has been shown to be dependent on their depth [220], and

diameter [219].

Unfortunately the process of etching the nano-holes introduces surface ef-

fects that significantly broaden the Zero Phonon Line (ZPL) linewidth of single

SCQDs near the re-growth surface [215]. Crystal defects at the re-growth sur-

face created by the etching of the nano-holes trap charges near the SCQDs

causing spectral diffusion [215]. To overcome this the initial SCQDs may be

used as a spectrally distinct or optically inactive seed layer for further SCQD

growth in subsequent layers [215–217, 221, 222]. Using a seed layer to intro-

duce a separation between the re-growth layer and optically active QDs on the

order of 20 nm [219] has led to state-of-the-art observed ZPL linewidths of 43

µeV [222], 25 µeV [219] and 7 µeV [215] at cryogenic temperatures (≤12K)

under non-resonant excitation, although these are still much broader than the

transform limit. Narrow ZPL linewidths (18-30 µeV) [223] and single photon

emission [224] have also been achieved from SCQDs using inverted pyramidal

recesses, rather than nano-holes, without the need for a seed layer.

Despite the typically broad ZPLs of SCQDs, Purcell enhancement of the

emission from a single SCQD embedded in an L3 PhCC has been observed

[225]. Using this technique a QD has been positioned within an optical cavity

with an error of 50 nm [221, 225] matching the precision of QD registration

techniques. Furthermore, reduced absorption within the cavity due to the

presence of only a single SCQD (rather than multiple SAQDs) has been theo-

rised to lead to an increase in the measured quality factor of the cavity [221].

Coupled with this, measurements performed on SCQDs with ZPL linewidth

on the order of ≈ 10 µeV have shown the properties of the SCQD to be on-par

with those of SAQDs [215]. Thus SCQDs with narrow ZPL linewidths show

promise as triggered sources of indistinguishable single photons [215].

An alternative approach to SCQD growth that does not involve the etch-

ing of pits has also been explored. It has been shown that a buried oxide

(AlxGa1−xAs/AlOx) stressor layer can be used to alter the strain on the sur-

face of thick GaAs buffer layer [226, 227]. The larger lattice constant of InAs

compared to the GaAs buffer results in preferential formation of InAs QDs

at the points of maximum surface strain in the GaAs layer (i.e. points of

10The density of QDs can also be reduced by increasing the temperature of the substrate
thereby increasing the diffusion length of the In adatoms, but this also has the effect of
increasing the QD dimensions [219].
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Figure 7.5: A schematic of the designed layer structure of the semiconductor
wafer on which the cavity structures characterised for this thesis were fabri-
cated. The layer are differentiated as follows: blue indicates a GaAs layer,
grey a AlGaAs layer, and orange the InAs wetting layer. The layers form a
P-I-N diode with the Quantum Dots (QDs) in the intrinsic region.

minimum strain in the InAs layer) when the wetting layer is deposited [226].

The ability to include a thick buffer layer while maintaining the surface strain

field induced by the stressor layer allows the SCQDs to be formed far from the

stressor layer interface where surface effects could degrade the optical quality

of the QDs [227]. As a result resolution-limited ZPL linewidths as low as 40

µeV have been observed using µ-PL [227].

7.5.3 Wafer Structure

The QDs studied in Chapter 8 were grown using the SK growth mode, and

embedded in a P-I-N diode structure. Figure 7.5 shows the designed layer

composition and structure of the SF1520 wafer grown by the EPSRC National

Epitaxy Facility at the University of Sheffield. The InAs QD layer is embedded

between two 5 nm thick undoped GaAs spacer layers, with a further 30 (50)

nm of undoped AlGaAs grown above (below) these layers. The asymmetric

undoped AlGaAs layers act as barriers reducing the probability that a charge

carrier will tunnel out of the QD layer. This not only stabilises the charge

environment around the QDs, but also allows for large tuning of the QD emis-

sion wavelengths using the Quantum-Confined Stark Effect (QCSE). These

undoped layers form the intrinsic region of the P-I-N diode. The top contact

of the diode is formed from a 50 nm thick layer of P-doped GaAs, which in

addition to the intrinsic region of the diode and an additional 30 nm thick
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Figure 7.6: A schematic of a Continuous-Flow Cryostat with optical access.

layer of N-doped GaAs below the bottom tunnelling barrier forms the 170 nm

thick membrane into which any photonic crystal devices are etched. A sacri-

ficial layer is also included in the wafer design beneath the wafer membrane

consisting of 200 nm of N-doped AlGaAs and 800 nm of undoped AlGaAs.

This layer is selectively removed during the sample fabrication process to form

suspended free-standing photonic structures. The last layer of the wafer is the

300 nm of N-doped GaAs that forms the bottom negative contact of the diode.

7.6 Experimental Methods

7.6.1 Cryostat

The experiments presented in Chapter 8 were all performed at cryogenic tem-

peratures (approximately 4-5 K), and under vacuum. To achieve these condi-

tions the samples were mounted in a Continuous-Flow Cryostat, a schematic

of which is shown in Figure 7.6. The continuous-flow cryostat can be generally

separated into two areas, the vacuum chamber and the transfer line. The vac-

uum chamber houses the sample to be studied. The sample is mounted within

a chip carrier which is itself mounted to a copper cold-finger that extends into

the vacuum chamber. The chip carrier enables electrical control of the diodes

fabricated on the sample, and ensures the sample maintains thermal contact

with the cold finger throughout the experimental characterisation process. A

glass window in the top of the vacuum chamber allows optical access to the

sample for this characterisation. To cool the sample to cryogenic temperatures,

liquid helium is continuously pumped through the transfer line. Thermal con-

tact between the transfer line and cold finger reduces the temperature of the

cold finger, and thus also the sample mounted in the vacuum chamber. The

vacuum is necessary to prevent the build-up of condensation on the surface of,

and heat flow to, the sample when at the cryogenic temperatures used here.

The main advantage of the continuous-flow cryostat compared to a bath cryo-
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stat11 is the speed and ease with which samples may be mounted, measured

and characterised, and exchanged. However, this comes at the disadvantage of

reduced optical stability owing to vibrations originating from both the pump

required to maintain the flow of liquid helium, and the general environment.

As a result, the continuous-flow cryostat is not suited to measurements that

require long integration times or high stability.

7.6.2 Optical Characterisation

A schematic of the experimental set-up used to characterise the optical cavity

devices studied in Chapter 8 is shown in Figure 7.7. Light from the excitation

laser and/or white light lamp (introduced into the optical path by a pellicle

beamsplitter) is focused onto the sample using an objective lens mounted above

the optical window of the cryostat. This set-up allows two positioning methods

to be used to adjust the alignment of the objective lens and the sample. Coarse

positioning of the sample is achieved by adjusting the x-y micrometer stages

to which the continuous-flow cryostat is mounted. On the other hand, fine

control of the positioning and focus of the excitation and collection spots is

achieved by mounting the objective lens to an x-y-z piezo stack and adjusting

the alignment of other optical components within the set-up. The light emitted

by, and reflected and scattered from, the sample is then collected by the same

objective lens and directed to a second beamsplitter. The component reflected

by this beamsplitter is used to image the surface of the sample using a standard

camera set-up, while the transmitted component is passed to a spectrometer

via an optical fibre. To ensure that only the emission from the sample is

passed to the spectrometer, a long-pass filter is included before the optical

fibre to remove the component originating from the white light lamp. The

spectrometer is then used to measure the spectral properties of the cavity

modes and QD emission using a liquid-nitrogen-cooled Charge-Coupled Device

(CCD).

Optical Cavities

Initial characterisation of the confined modes of the cavity structures fabricated

on the sample was achieved by performing low temperature µ-PL spectroscopy

focusing an above-band-gap laser on the cavity centres. The above-band-gap

laser excites charge carriers in the semiconductor material surrounding the

11In a bath cryostat the sample is cooled by immersion in liquid helium. The sample is
held within an evacuated tube containing an exchange gas (often helium) at low density.
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Figure 7.7: A schematic of the optical Micro Photoluminescence (µ-PL) set-up
used to characterise the cavity samples. The objective lens is mounted above
the flow cryostat on x-y-z piezo stages for fine control of the focus and position
of the excitation spot. The spectrometer contains three gratings with: 600,
1200, and 1800 l/mm.

QD layer in the wafer. A bias across the sample, either applied or the built-in

potential, sweeps some of these free charge carriers into the QDs where they

decay to the energy levels closest to the InAs band edges before recombining

and emitting a photon. The QDs then act as internal light sources exciting

the cavity modes. Measuring the light scattered out-of-plane from the cavity

centres using the experimental set-up previously discussed then allows the

properties of the cavity to be determined. Fitting the observed peaks in the

cavity spectra with a Lorentzian function allows the cavity mode wavelength

to be determined as well as the cavity Q-factor, a measure of the damping due

to photon loss from the cavity. This can be calculated from the spectral peaks

using

Q =
ωc
∆ω

=
λc
∆λ

, (7.5)

where ωc (λc) is the central frequency (wavelength) of the cavity mode and

∆ω (∆λ) is the FWHM of the spectral peak in frequency (wavelength) units.

Quantum Dots

The initial characterisation of individual QDs is achieved in much the same

way that the characterisation of optical cavity modes is achieved. The main
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difference is that the excitation power used is a fraction of that used when

characterising a cavity mode (a few µW compared to hundreds of µWs). The

lower power enables individual QD emission lines to be resolved without be-

ing obscured by, for example, cavity mode lines or general background noise.

Because of this reduced excitation power a longer integration time is required

when characterising QDs.

7.6.3 Spectroscopy

As mentioned previously, the main method used in the characterisation of

the fabricated optical cavity structures was spectroscopy. These spectroscopic

measurements were performed using a grating spectrometer. Specifically, the

spectrometer used in Chapter 8 was a Princeton Instruments Acton Spec-

traPro SP750i with a Princeton Instruments Pylon CCD. The spectrometer

allows one to perform a spectral analysis of the light emitted from the sample

by spatially separating the different frequencies of light before they are focused

on to the CCD. This spectral separation is achieved by directing the collected

light towards a diffraction grating. The turret in the spectrometer used con-

tains three gratings with: 600 lmm−1, 1200 lmm−1, and 1800 lmm−1. For the

characterisation of the cavity structures the 600 lmm−1 grating was used due

to the broad nature of cavity spectral lines, and the higher efficiency of the

grating. The 1200 lmm−1 grating was used to characterise the QD emission

lines measured in Chapter 8 to improve the resolution of the measurement,

but also maintain a reasonable measurement time during which the drift of

the sample would be minimal.



Chapter 8

Crossed Nanobeam Photonic

Crystal Cavities: Part II

In Chapter 7 we outlined the methods used in the design, and characterisation

of optical nanostructures, as well as the growth of QDs. In this chapter we

shall describe the cavity structures that were fabricated to provide an avenue

for experimentally testing the theoretical work presented in Chapter 6.

8.1 Introduction

Coupling QDs to optical cavities provides a number of significant potential ben-

efits for realising quantum technologies. Decreasing the timescales on which

optical processes occur, through a Purcell enhancement of the decay rate of

the excited states of a QD, reduces the relative importance of pure dephasing

mechanisms by ensuring a disparity between the timescales on which radia-

tive and non-radiative transitions occur [82]. Furthermore, coupling QDs to

optical cavities may be employed to both suppress the laser background re-

sulting from the resonant excitation of QDs [158, 159], and ensure preferential

coherent emission into the ZPL over incoherent scattering into the phonon

side-band [97, 115, 228]. This suppression of any resonant laser background,

and the preferential coherent emission into the ZPL, are both important for

increasing the indistinguishability of the photons emitted by single-photon

sources. In Chapter 6 we also studied how cavity structures may be employed

to improve the fidelity of optical spin initialisation and readout, two processes

required for the implementation of optical quantum technologies. However,

thus far we have not discussed what the physical implementation of such a

cavity structure might look like.

147
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Figure 8.1: A diagram of a bi-modal Crossed-Nanobeam Photonic Crystal
Cavity (XNBPhCC). The cavity is formed by four ‘arms’ each consisting of a
nanobeam waveguide and two Photonic Crystal (PhC) Bragg mirrors, an inner
modulated Bragg mirror and an outer uniform Bragg mirror.

To be used in on-chip optical quantum technologies it would be advanta-

geous for any optical cavity structures to have a number of properties. The

cavity structure must be able to support solid-state, single-photon emitters.

Any cavity design must also have the potential to be integrated into scalable,

on-chip optical circuits. Additionally, it would be preferable for the under-

lying architecture of the cavity structure to be able to support single-mode

and bi-modal cavities by altering the design to allow the benefits of either

configuration to be used in different scenarios as discussed in Chapter 6. The

Crossed-Nanobeam Photonic Crystal Cavity (XNBPhCC) is a structure that

appears to have the potential to meet all of these criteria. Previous studies

of XNBPhCCs have already demonstrated that they can support two near-

independent cavity modes [155], and also demonstrated their suitability for

applications in non-linear frequency conversion [229]. In this chapter we shall

study the properties of XNBPhCCs both theoretically using FDTD, and exper-

imentally using the methods outlined in Chapter 7, to demonstrate additional

properties of the XNBPhCC structure that make them suitable for applications

in quantum technologies.

8.2 Device Design

The XNBPhCCs studied in this chapter were designed using an intuitive ap-

proach, and simulated using the three-dimensional Finite-Difference Time-

Domain (FDTD) software from Lumerical Solutions, Inc. [230] (see Section 7.2

for more information on the FDTD method). The XNBPhCC structure con-
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sists of two 1D nanobeam PhCCs orientated orthogonally to one another,

overlapping at their cavity centres where a single PhC hole is absent. This re-

sults in a single structure composed of four ‘arms’ extending in the the ±x̂ and

±ŷ directions in a + configuration with each ‘arm’ consisting of a nanobeam

waveguide containing Photonic Crystal (PhC) Bragg mirrors that may be sub-

divided into two distinct Bragg mirror classes (see Figure 8.1).

The first of these PhC mirror classes is the modulated Bragg mirror. These

modulated mirrors lie nearest to the cavity centre and consist of nt PhC holes

of increasing radius and period moving out from the cavity centre, linearly

increasing the Filling Fraction (FF) (the ratio of PhC hole area to total PhC

period area). Tapering the PhC holes reduces the mode profile mismatch

between the waveguide mode and PhC mirror Bloch mode by incrementally

adjusting the effective refractive index of the PhC mirror [231]. This reduces

scattering losses at the interface between the central cavity region and the PhC

mirror improving the quality factor (Q-factor) of the cavity [231]. The design

of the modulated Bragg mirrors is critical to obtaining a high Q-factor in the

XNBPhCC structure. Without careful consideration, we find additional low-Q

cavity modes may be introduced to the structure that are confined to the inner

modulated Bragg mirrors. As these modes are not localised to the centre of

the cavity they would not contribute to the Purcell enhancement of any QDs

located at the cavity centre, but may degrade the fundamental cavity mode.

The second distinct PhC mirror class is the uniform Bragg mirror. These

mirrors flank the inner modulated Bragg mirror with nu identical PhC holes

with a constant FF. It is these mirrors that provide a majority of the in-plane

confinement of the light within the cavity structure. An optional second modu-

lated Bragg mirror may be included after the uniform Bragg mirror identical to

the inner modulated mirror, but tapering in the opposite direction. This sec-

ond modulated mirror provides a smooth transition in the effective refractive

index for light emitted from the cavity into the optical mode of the waveguide.

From our FDTD simulations of the XNBPhCCs, we find this design sup-

ports two nearly independent, orthogonally linearly polarised cavity modes

with electric fields that decay evanescently into the modulated Bragg mirrors

with significant (minimal) penetration in the axis orthogonal (parallel) to the

dipole polarisation vector (see Figures 8.2a and 8.2b), agreeing with [155].

This design of the XNBPhCCs allows one to optimise the wavelength and Q-

factor of the cavity modes by altering (see Figure 8.2c): nt, nu, the length of

the central cavity region (Lc), the semi-minor radii of the initial hole of the
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(a) (b)

(c)

Figure 8.2: (a) and (b) The simulated electric field profiles of the two modes
of a bi-modal Crossed-Nanobeam Photonic Crystal Cavity (XNBPhCC). Ex
and Ey indicate the polarisation of the dipole source used to excite the cavity
model in Lumerical’s Finite-Difference Time-Domain (FDTD) software. The
fields show anti-nodes localised to the material in between the mirror holes.
(c) A labelled schematic of a bi-modal XNBPhCC structure indicating the
parameters used in the device design.

modulated Bragg mirror (r0) and uniform Bragg mirror holes (ru), the hole ec-

centricity (e) such that the semi-major hole radius is related to the semi-minor

radius by rmaj = ermin, and lastly the initial period of the modulated Bragg

mirror (a0) and the period of the uniform Bragg mirror (au). Maintaining the

uniform mirror parameters and hole radii, we find adjusting Lc and a0 allows

the wavelength of the cavity mode to be altered within a given wavelength

range without a large impact on the Q-factor. We also find the cross-sectional

dimensions of the nanobeam waveguides impact the properties of the cavity

modes. However, here these parameters are fixed by the requirement for sin-

gle TE-mode propagation along the waveguides while remaining suitable for

integration into diodes.



8.2. Device Design 151

0 2 4 6 8 10

0

2

4

6

8

10

 Qco

 Qcross

 λco

 λcross

nu
(-x)

Q
-f

ac
to

r 
(x

1
0

4
)

900

910

920

930

940

950

 W
av

el
en

g
th

 (
n
m

)

(a)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1  ηcross

 ηco

C
o
u
p
li

n
g
 E

ff
ic

ie
n
cy

, 
η

nu
(-x)

(b)

Figure 8.3: The simulated (a) Q-factor and wavelength, and (b) relative cou-
pling efficiencies, of the two cavity modes of a bi-modal Crossed-Nanobeam
Photonic Crystal Cavity (XNBPhCC) as a function of the number of uni-

form Bragg mirror periods in the cavity arm along the −x direction (n
(−x)
u ).

All other cavity arms have nu = 10. For all cavity arms nt = 4. The sim-
ulations were performed using the Finite-Difference Time-Domain (FDTD)
method with software from Lumerical.

8.2.1 Asymmetric Cavity Emission

In addition to supporting symmetric cavities, our design of the XNBPhCCs

also allows for asymmetric emission from the cavity modes by independently

adjusting the number of uniform Bragg mirror periods in each of the four arms

of the cavity structure. Reducing the number of uniform Bragg mirror periods

(nu) in one of the cavity arms reduces the reflectivity of that mirror relative

to the second arm along the same axis. This results in a stronger coupling

between the cavity mode and the guided modes of the nanobeam waveguide

in the direction with the smallest nu. Figure 8.3 shows the effect of altering

the number of uniform mirror periods in the −x arm of the cavity leaving all

other cavity arms with nu = 10. As one would expect, Figure 8.3a shows that

reducing the mirror strength in the −x cavity arm reduces the Q-factor of

the co-polarised cavity mode without significantly changing the wavelength of

that cavity mode. Figure 8.3a also demonstrates the near independence of the

two cavity modes as both the Q-factor and wavelength of the cross-polarised

cavity mode are unaffected by the change in mirror strength in the co-polarised

cavity axis. The effect on the relative coupling strengths between the cavity

modes and waveguide modes is shown in Figure 8.3b. We define the coupling
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Figure 8.4: A schematic of a single-mode Crossed-Nanobeam Photonic Crys-
tal Cavity (XNBPhCC). The uniform Bragg mirrors along a single axis are
removed leaving only the modulated Bragg mirrors in that axis. The orthog-
onal axis maintains both the modulated and uniform Bragg mirror regions.

efficiency between the cavity and waveguide modes as [152, 190]

ηco(cross) =
Q−1
co(cross) −Q−1

U

Q−1
tot

, (8.1)

where

Qtot =
(

Q−1
co +Q−1

cross −Q−1
U

)−1

, (8.2)

and QU is the Q-factor of the cavity when un-coupled from the waveguide

modes, i.e. when nu → ∞. Again, Figure 8.3b demonstrates the near indepen-

dence of the two cavity modes as the coupling efficiency of the cross-polarised

cavity (i.e. the unaltered cavity mode) mode remains unchanged as the cou-

pling efficiency of the co-polarised mode increases with decreasing nu in the

−x cavity arm. Such directionallity could prove useful in the construction of

on-chip optical circuits, enabling information to be reliably passed on to the

next node in the chain or allowing the structure to act as an optical switch.

8.2.2 Single-mode and Bi-modal Cavities

From Figure 8.3 we find that when the number of uniform Bragg mirror holes is

reduced to one, the Q-factor and coupling efficiency of the co-polarised cavity

mode go to zero and unity respectively, while the cross-polarised cavity mode

maintains its high Q-factor, low coupling efficiency, and wavelength. Thus

by removing the uniform Bragg mirrors from a single axis, the XNBPhCC

structure can be made to support only a single linear cavity mode while main-

taining access to the orthogonal polarisation via a waveguide mode. However,
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our FDTD simulations show that to maintain the remaining cavity mode in

the orthogonal axis, the modulated Bragg mirrors need to remain in all four

cavity arms as can be seen in Figure 8.4. This ability to support either one or

two linearly polarised cavity modes while maintaining access to both orthog-

onal linear polarisations independent of the cavity configuration makes these

structures ideal for experimentally testing the theoretical work discussed in

Chapter 6.

8.3 Optical Characterisation

8.3.1 Cavity Q-factor and Polarisation

As discussed in Chapter 7, the properties of the cavity structures were deter-

mined by performing µ-PL measurements using the set-up shown in Figure 7.7.

The samples (see Figure 8.5 for SEM images of some example structures) were

mounted in a continuous-flow cryostat, and held under vacuum at a temper-

ature of approximately 4 K. An above-band CW diode laser at λ = 808 nm,

with a measured power of 150 µW, was focused on the sample through the

optical window of the cryostat using an objective lens to a spot size on the

order of a few micrometres. To determine the mode structure and cavity Q-

factor, the excitation laser spot was aligned with the cavity centre, and the

light emitted vertically from the cavity centre1 was collected using the same

objective lens as in the excitation path. The properties of the cavity modes,

such as Q-factor, could then be determined by directing the collected cavity

emission to a spectrometer

Figure 8.6 shows a selection of emission spectra for four different cavity

structures. These spectra confirm the potential for the XNBPhCC structure

to support either a single-mode (Figure 8.6a) or bi-modal (Figure 8.6b) cavity

by excluding or including the uniform Bragg mirrors along one of the cavity

axes as demonstrated in our FDTD simulations. Furthermore, by measuring

the FWHM of the spectral peaks, the Q-factor of the cavity modes could be

determined. Of the cavity structures studied that showed cavity modes, the

highest Q-factors measured were 3600 > Q ≳ 3000.

Inserting a linear polariser into either the collection or excitation path of

the set-up allowed the linear and orthogonal nature of the cavity modes to

be verified. Figure 8.7 shows the polarisation dependence of the two cavity

1Excitation and collection of light from the cavity centre will be referred to as the C-C
alignment.
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(a)

(b) (c)

Figure 8.5: Scanning Electron Microscopy (SEM) images of the Crossed-
Nanobeam Photonic Crystal Cavity (XNBPhCC) devices fabricated by Dr.
René Dost. Images courtesy of Dr. René Dost. (a) An overview of the array of
cavity devices fabricated on a single diode. (b) A narrowed down SEM image
of a singe cavity device including Bragg grating out-couplers at the ends of the
nanobeam waveguides. (c) A magnified SEM image of the Photonic Crystal
(PhC) holes in a cavity device designed to support a single cavity mode with
directional emission. Each nanobeam waveguide is approximately 14 µm long.



8.3. Optical Characterisation 155

900 910 920 930
0

2000

4000

6000

8000

10000

C
o

u
n

ts
 (

A
rb

. 
U

n
it

s)

Wavelength (nm)

 (3,1)B10

 (1,1)C10

(a)

900 910 920 930
0

2000

4000

6000

8000

10000

C
o
u
n
ts

 (
A

rb
. 

U
n
it

s)

Wavelength (nm)

 F5

 A10

(b)

Figure 8.6: Spectra showing the modes of (a) two single-mode cavity devices
and (b) two bi-modal cavity devices. The spectra were taken at high power
(µW) with a 1 s exposure time. All cavity modes shown have Q ≳ 3000. Small
lines originating from higher order modes of the excitation laser can be seen
at λ ≈ 911 nm and λ ≈ 926 nm.

modes of a bi-modal cavity structure when the polariser was orientated to

maximise the spectral peak of each cavity mode. It can be seen that aligning

the polarisation of the linear polariser and one of the cavity modes to max-

imise its spectral peak completely extinguishes the observed emission from the

second cavity mode. Furthermore, the maximisation and minimisation of the

cavity spectra occurs at orthogonal polarisations confirming the linear and or-

thogonal nature of the polarisation of the two cavity modes in the bi-modal

configuration as expected from the FDTD simulations.

Comparing the experimentally measured Q-factors with those predicted by

the FDTD simulations there is clearly a large discrepancy in the two values.

There are a number of potential reasons for this difference in the theoretical

and measured Q-factors. Absorption of light from the cavity by, for example,

excess non-resonant QDs [221] resulting from the SK growth process or dopant

impurities [232] may account for some of the losses. Additionally, imperfections

in the fabrication of the PhCs such as: deviations from the design, random

variations in the PhC hole sizes, side-wall roughness, or angled side-walls vary-

ing the hole radius or nanobeam width vertically through the structure, may

also account for the reduced measured Q-factor. These imperfections in the

fabrication also lead to the mode splitting observed in the bi-modal cavity

spectra, as these structures were designed with degenerate cavity modes.
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Figure 8.7: The polarisation dependence of the modes of an asymmetric bi-
modal cavity structure taken with a linear polariser in the excitation/collection
path orientated at orthogonal polarisations. The measuredQ-factors of the two
modes, Qλ=932.8 nm = 3100± 20 and Qλ=935.1 nm = 1600± 30, differ due to the
asymmetric cavity design discussed in Sec. 8.3.2.

8.3.2 Directional Coupling

Having established the potential for the XNBPhCC structures to support ei-

ther a single-mode or bi-modal cavity, and the nature of the polarisation of

these cavity modes, we now wish to demonstrate directional emission from

the cavity mode as discussed in Sec. 8.2.1. Initial evidence of this directional

emission from a cavity mode can be seen in the emission spectrum of an asym-

metric bi-modal cavity shown Figure 8.7. Determining the spectral linewidths

of the cavity peaks using a Lorentzian fitting function, the Q-factors of the

two modes were determined to be Q = 3100 ± 20 for the shorter wavelength

mode, and Q = 1600 ± 30 for the longer wavelength mode. From the FDTD

simulations presented in Sec. 8.2.1, such a difference in the Q-factors of the

two cavity modes would be an expected characteristic of a bi-modal cavity

with directional emission from a one of the cavity modes. This is a result of

reducing the strength of the mirror in one of the cavity arms naturally reducing

the Q-factor of that cavity mode.

However, to confirm the directional nature of the emission from the cavity

mode we perform µ-PL measurements now exciting and collecting at different

spatial positions over the cavity structure. By exciting at the grating out-

couplers located at the end of the cavity arms as can be seen in Figure 8.5b,

and collecting above the centre of the cavity, we can compare the direction-

dependent coupling efficiency between the cavity and waveguide modes. As

the excitation laser used is above-band (λ = 808 nm), it is photoluminescence
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Figure 8.8: Cavity spectra showing directional emission from a single-mode
cavity device. The cavity modes were excited via the out-couplers at either
end of the x-axis nanobeam, and light was collected from above the centre of
the cavity. The measured Q-factor of the device is Q = 1300± 40.

emission resulting from absorption of the excitation light near the outcoupler

that propagates along the waveguide and excites the cavity mode. Figure 8.8

shows an example of such a spectrum exciting and collecting above the cavity

centre (C−C) of a single-mode cavity, and exciting either end of the nanobeam

with the cavity mode and collecting above the cavity centre (X1,2 −C). Com-

paring the X1,2 − C spectra it is clear than in the X1 direction there is no

coupling between the waveguide mode and cavity mode as the absence of the

cavity peak in the spectrum indicates no light from the excitation laser was

able to reach the centre of the structure. On the other hand, a peak in the

spectrum at the cavity mode wavelength can be seen when exciting at the X2

outcoupler, thus demonstrating the asymmetric coupling efficiency between

the cavity mode and waveguide mode.

8.3.3 Quantum Dot Coupling

To be used in on-chip optical circuits the XNBPhCCs must be able to both

support and couple to optically active QDs in addition to supporting high

quality factor cavity modes. To identify any QDs coupled to the cavity devices

we again used an above-band excitation laser exciting and collecting above

the cavity centre, only now reducing the power and extending the integration

time. Reducing the excitation power incident on the sample and increasing the

integration time allows any individual QD emissions lines to be identified in

the emission spectrum without being obscured by the cavity mode, other QD
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(a) (b)

Figure 8.9: Spectra showing Quantum Dots (QDs) tuning across the cavity
mode (approximately indicated by the dashed line) of two single-mode cavity
devices. The spectra were taken at low power (2 µW) exciting and collecting
above the centre of the cavity.

emission, emission from higher order QD states, or general background noise

as discussed in Chapter 7.

As discussed in Chapter 3, the resonance of a QD can be tuned through the

application of an electric field as described by the Quantum-Confined Stark

Effect (QCSE). Figure 8.9 shows low power bias dependent µ-PL spectra taken

by exciting and collecting above the centre of two different cavity devices. In

both bias dependent spectra two QD emission lines can be seen to tune across

the cavity mode of a single-mode structure as the potential difference applied

across the diode was varied. The QD lines were observed to tune roughly 1

nm, increasing in intensity as they moved towards the cavity mode resonance.

This increase in intensity could be due to a Purcell enhancement increasing

the rate of emission from the QD. The absence of the QD spectral lines outside

of the -1 V to 0 V bias range likely indicates a change in the charge state of

the QDs.

8.4 Discussion

Using the optimal cavity parameters found in Chapter 6 we can calculate the

Q-factor values these structures would require to be suitable for optical spin

initialisation, and readout. In Chapter 6 we observed using a single-mode

cavity the readout process was nearly independent of the cavity linewidth,

and thus it was the spin initialisation stage that placed the bounds on the

required cavity linewidths. To achieve both a spin initialisation and readout
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fidelity greater than 99% a Purcell enhancement of the |2⟩ → |4⟩ transition of

FP = 19 and a cavity linewidth in the limits 20 ≤ κ/2π ≤ 40 GHz depending on

driving conditions would be required. Converting cavity linewidth to Q-factor

assuming λc = 930 nm yields limits to the Q-factor of 16200 ≳ Q ≳ 8000.

Realising a high-fidelity spin-photon interface would therefore require a

minimum of approximately a three-fold increase in the cavity Q-factors demon-

strated in this chapter. This should be achievable as nanobeam PhCC struc-

tures in the literature have demonstrated Q-factors on the order of 104 −
105 [194, 195]. There are a number of paths that could produce such an in-

crease in the Q-factor utilising the designs outlined in this thesis. Firstly,

through multiple iterations the fabrication process could be further optimised

to produce cavity structures that more faithfully reflect the design parame-

ters. Secondly, changes to the design of the cavity structures could be made.

The cavity design could be further optimised to produce a higher theoreti-

cal Q-factor value which, assuming a similar percentage decrease in the Q-

factor resulting from fabrication imperfections, could also improve the mea-

sured Q-factors. Likewise, it may be possible to increase the resilience of the

cavity modes against fabrication imperfections through changes in the cavity

design. Finally processes such as surface passivisation may be employed to

further improve the experimentally measured Q-factor, and reduce the spread

of cavity wavelengths, through the suppression of surface recombination cen-

tres [169]. Additionally, fabricating the cavity structures around registered or

site-controlled QD (see Chater 7 for more information) would improve the yield

of devices with spectrally suitable QDs at the cavity centre, and could also lead

to an improvement of the Q-factor by reducing the number of off-resonant QDs

in the structures [221].

In addition to applications as a spin-photon interface, the XNBPhCC struc-

tures show promise for implementing on-demand single-photon sources in on-

chip in-plane optical circuits. Previous studies have demonstrated that bi-

modal cavities with two orthogonal linearly polarised cavity modes may be

used to develop high-brightness high-purity single photon sources [159, 233].

This has been achieved by using the cross-polarised nature of the cavity modes

to suppress the excitation field in the output mode by exciting and collecting

from different cavity modes, and the Purcell enhancement of the diagonal tran-

sitions present in a charged QD in a Voigt geometry magnetic field to improve

the brightness [159, 233]. However, the cavity structures in which this has been

demonstrated are not suited to integration in a scalable on-chip in-plane opti-
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cal circuits. The XNBPhCCs present a potential solution to this, maintaining

the cavity properties demonstrated in previous studies, including directional

emission from the cavity mode, only in an in-plane photonic structure. Fur-

thermore, the potential to maintain access to the orthogonal polarisation in a

single-mode XNBPhCC structure gives rise to the possibility of increasing the

brightness by improving the cyclicity of the driven Λ-system.

8.5 Summary

We have demonstrated the XNBPhCC structure is capable of supporting lin-

early polarised cavity modes with Q-factors on the order of 103 in either a

single-mode or bi-modal configuration. Furthermore, we have also demon-

strated emission from the cavity mode via the cavity mirrors can be made

to be directional in either cavity configuration by individually adjusting the

number of uniform Bragg mirror periods in each cavity arm. Lastly we have

shown that these structures are also not only able to support and couple to in-

dividual optically active QDs, but also still allow optical tuning via the QCSE

by applying an external bias despite the small area of the cavity centre.



Chapter 9

Conclusion and Outlook

The work presented in this thesis addresses a variety of important areas re-

garding the behaviours of open quantum systems under pulsed optical exci-

tation, and the influence of coupling to an optical cavity or a thermal bath

in such driving regimes. From this we have developed a theory that is valid

beyond the limits of widely used phonon-coupling models, and demonstrated

the importance of cavity configuration in optical spin initialisation and read-

out processes. Additionally, we have designed and characterised a photonic

nano-cavity structure with properties that make it potentially suitable for ap-

plications in quantum technologies, including as a spin-photon interface, based

on the theoretical calculations presented in the thesis.

9.1 Phonon Effects Under Pulsed Resonant

Excitation

In Chapters 4 and 5 we studied the impact of phonon coupling on the prop-

erties of a QD under resonant pulsed excitation. Using the Markovian full

polaron model with a time-dependent drive, we demonstrated that under reso-

nant pulsed excitation coupling to a phonon-bath induces an asymmetry in the

pulsed emission spectra at low temperatures. This effect is not captured by a

simple pure dephasing model, further demonstrating that such an approach is

not adequate for capturing the full effects of phonon-coupling. Additionally, to

move beyond the limits of weak optical driving and weak system-phonon cou-

pling, we extended the variational polaron model to derive a time-dependent

variational polaron model. In doing so we provide a formalism for studying the

effects of pulsed optical driving of phonon-coupled systems that remains valid
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in parameter regimes where the weak-coupling and full polaron models break

down. When driving a QD with short optical pulses, we have demonstrated

that the QD eigenstates are only weakly coupled to the low frequency phonon

bath modes during the pulse. Thus in this limit the weak-coupling model re-

mains valid at low temperatures, while the full polaron model over-estimates

the phonon induced damping. Accordingly, when driving with short optical

pulses one can accurately predict the evolution of the states of a QD using

the weak-coupling model which, of the three models studied, is the least com-

putationally demanding model, and thus fastest to perform calculations with.

Conversely, in the limit of long pulse duration we have shown a good agree-

ment between the full polaron and time-dependent variational polaron models

at low temperatures. On the other hand, the dynamics returned by the weak-

coupling model now over-estimate the phonon-coupling effects as it samples

the phonon spectral density closer to its peak owing to predicting no renor-

malisation of the Rabi frequency. Hence, when driving in the regime where

Ω ≪ ωc, our results confirm the polaron model, the second least computation-

ally demanding of the models, is suited to accurately predicting the dynamics

of a QD under pulsed excitation at low temperatures. However, driving in

the intermediate pulse FWHM regime neither the weak-coupling nor polaron

models return consistently reliable results. We also find this is the case in the

high temperature regime regardless of the pulse duration. In these regimes

our time-dependent variational polaron model is required to provide accurate

results across the range of pulse areas studied. Due to the larger number of

correlation functions compared to the weak-coupling or polaron models, the

time-dependent variational polaron model is the most computationally expen-

sive of the phonon models used in the thesis. However, of the three models it

also has the largest range of validity.

There are a number of approaches that could be followed to extend the

work presented in Chapters 4 and 5. Taking the Markovian limits of the weak-

coupling and time-dependent variational polaron models would allow spectra

to be calculated from these models, and compared with the spectra presented

in this thesis. Using cQED, full cavity effects could be included in the weak-

coupling, full polaron, and variational polaron models to study the interplay

between the impact of coupling to a phonon-bath and cavity mode. Further-

more, this work could be extended to systems beyond the epitaxial semicon-

ductor QD with phonon-coupling defined by sub-Ohmic and Ohmic spectral

densities, regimes where the full polaron model breaks down, in addition to
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the super-Ohmic spectral density used in Chapters 4 and 5. Additionally, the

predictions made by the time-dependent variational polaron model could be

tested experimentally by measuring Rabi rotations as a function of the driving

pulse area as detailed in [121, 122], only performing these sweeps for a range

of different pulse parameters and temperatures.

9.2 Optical Spin Control with Cavity-Coupled

Quantum Dots

In Chapter 6 we explored how an optical cavity may be employed to enhance

the spin initialisation, control, and readout processes when driving a nega-

tively charged QD with finite optical pulses, and how the inclusion of cavity

effects enables all three processes to take place under a single applied mag-

netic field geometry. Comparing the effects of a single-mode, and bi-modal

cavity configuration, we found that for the spin initialisation process both

cavity configurations may be conducive to fast, high-fidelity state preparation

when driving the system with either a square or Gaussian optical pulse. Fur-

thermore, we have also shown that when directly driving the QD with two

far detuned Gaussian pulses of orthogonal polarisation, both cavity configu-

rations are compatible with complete coherent control of the prepared spin

state. However, for optical spin readout, the Purcell enhancement of the lin-

early polarised vertical transitions resulting from coupling to a bi-modal cavity

significantly limits the range of cavity parameters for which the readout suc-

cess rate may be optimised. We therefore find that, unlike the single-mode

configuration, there is no single set of bi-modal cavity parameters that may

simultaneously optimise the spin initialisation and readout processes.

This work may naturally be extended by applying the phonon theory de-

veloped in Chapters 4 and 5 to move beyond the simple pure dephasing model

presented. Applying appropriate phonon-coupling models to the optical spin

initialisation, control, and readout processes would further increase the accu-

racy with which optimal cavity parameters could be identified by more accu-

rately modelling the dephasing processes experienced by QDs. Furthermore,

the theoretical predictions outlined in Chapter 6 could be tested using the

photonic nano-cavity structures detailed in Chapter 8.
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9.3 Crossed-Nanobeam Photonic Crystal Cav-

ities

In Chapter 8 we both theoretically and experimentally studied the proper-

ties of a XNBPhCC, consisting of two orthogonal nanobeam PhCCs overlap-

ping at their centres. Our FDTD simulations showed that such cavities may

be designed support either a single linearly polarised cavity mode, or two

near-independent orthogonal linearly polarised cavity modes. Furthermore,

by altering the number of PhC mirror periods along a given axis or FDTD

simulations demonstrated that these cavity modes could be made to couple

directionally to the waveguide mode. These properties, along with the abil-

ity to support QDs at the cavity centre, were then demonstrated using low

temperature µ-PL spectroscopy.

The clear extension of this work would be to improve the Q-factor of the

fabricated XNBPhCC devices. A number of methods for achieving this were

outlined in Chapter 8 including design optimisation, and surface passivation.

The calculations performed in Chapter 6, obtaining a Q-factor on the order of

104 would enable a demonstration of spin control in these structure, potentially

using site-controlled or registered QDs discussed in Chapter 7. Additionally,

this work could be extended to demonstrating the suitability of these structures

in the implementation of single-photon sources.
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Appendix A

Parity Transition Selection

Rules

In this appendix we shall show how the parity operator excludes the diago-

nal matrix elements from the spectral decomposition of the transition dipole

operator.

The dipole operator is given by

d̂ = −qr̂, (A.1)

where q is the charge. The unitary parity operator, Π, acts to change the sign

of the position operator, r̂, such that

Πr̂Π† = −r̂. (A.2)

Multiplying the both sides of this equation to the right by Π, we see the

anticommutation relation of the parity and position operators is then

{

Π, r̂
}

= Πr + rΠ = Πr − Πr = 0. (A.3)

The matrix elements of the anti-commutator are then given by

⟨ψ|
{

Π, r̂
}

|ϕ⟩ = ⟨ψ|Πr̂ + r̂Π |ϕ⟩ =
(

πψ + πφ) ⟨ψ| r̂ |ϕ⟩ = 0, (A.4)

where πψ and πφ are the non-zero expectation values of the parity operator.

For this relationship to hold the diagonal matrix elements must be zero and

there must be a change of parity i.e. πψ = −πφ.
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Appendix B

Correlation Functions for the

Polaron Theory

In this appendix we shall derive the environment correlation functions used in

the Polaron theory derived in Chapter 4.

When the linear coupling terms between the Quantum Dot (QD) and

phonon bath are removed by setting αk = gk/ωk, the non-zero bath corre-

lation functions are

Bx =
1

2

(

B+ +B− − 2B
)

,

By =
1

2i

(

B− − B+

)

,

B = ⟨B±⟩,

(B.1)

where B+ =
∏

kD(αk), and B− =
∏

kD
†(αk), and the displacement operators

act such that

D†(αk)bD(αk) = (b+ αk),

D(αk)bD
†(αk) = (b− αk).

(B.2)

We shall begin with the derivation of the average displacement of the environ-

ment, B = ⟨B±⟩. In the coherent state representation, the thermal state of

the phonon bath may be written as

ρT =
⊗

k

∫

d2αkP (αk) |αk⟩⟨αk| . (B.3)

Using this thermal state, and the relationships: |β⟩ = D(β) |0⟩, D(a)D(b) =

eab
∗−a∗bD(b)D(a), and D†(a)D(a) = D(a)D†(a) = I [234], we find the average
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displacement of the phonon bath is given by

B = ⟨B±⟩ =
∏

k

∫

d2βkP (βk) ⟨βk|D(±αk) |βk⟩

=
∏

k

∫

d2βkP (βk) ⟨0|D†(βk)D(±αk)D(βk) |0⟩

=
∏

k

∫

d2βkP (βk)e
±αk(β

∗
k
−βk) ⟨0|D(±αk) |0⟩

=
∏

k

∫

d2βk
1

πn̄k
e
− β2

k
n̄k e±αk(β

∗
k
−βk) ⟨0|αk⟩

=
∏

k

∫

d2βk
1

πn̄k
e
− β2

k
n̄k e±αk(β

∗
k
−βk)e−αk

= exp
{

−1

2

∑

k

g2k
ω2
k

coth
(βωk

2

)

}

= exp
{

−1

2

∫ ∞

0

dω
J(ω)

ω2
coth

βω

2

}

.

(B.4)

where
∫

d2β =
∫

dα
∫

dγ for β = α+ iγ. To find expressions for the remaining

correlation functions it will be useful to find calculate the expectation values

of different combinations of B±.

⟨B±(t)B±(t
′)⟩ =

∏

⟨D(±αk)D(±αk)⟩

=
∏

⟨e−iωkα
†
k
αktD(±αk)eiωkα

†
k
αkte−iωkα

†
k
αkt

′

D(±αk)eiωkα
†
k
αkt

′⟩

=
∏

k

eiIm(|αk|2eiωk(t−t′))⟨D(±α(eiωt + eiωkt
′

))⟩

=
∏

k

ei|αk|2 sin (ωk(t−t′))⟨D(±αk(eiωt + eiωkt
′

))⟩

=
∏

k

ei|αk|2 sin (ωk(t−t′))e−
1
2
|±αke

iωkt±αke
iωkt′ |2 coth

(

βωk
2

)

=
∏

k

ei|αk|2 sin (ωk(t−t′))e−|αk|2 coth
(

βωk
2

)

e−|αk|2
(

cos(ωk(t−t′)) coth
(

βωk
2

))

=
∏

k

e
i
g2
k

ω2
k

sin (ωk(t−t′))
e
− g2

k

2ω2
k

coth
(

βωk
2

)

e
− g2

k

ω2
k

(

cos(ωk(t−t′)) coth
(

βωk
2

))

= B2e
−∑

k

g2
k

ω2
k

((

cos(ωk(t−t′)) coth
(

βωk
2

)

−i sin(ωk(t−t′))
))

= B2e−φ(t,t
′),

(B.5)

where we have used D(a)D(b) = ei(Im)(ab∗)D(a + b), e−iωa
†atD(a)eiωa

†at =
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D(aeiωt), Im(eix) = sin(x), and where in the continuum limit the phonon

propagator, ϕ(t, t′), is given by

ϕ(t, t′) =
∑

k

g2k
ω2
k

(

cos(ωk(t− t′)) coth
(βωk

2

)

− i sin(ωk(t− t′))
)

=

∫ ∞

0

dω
J(ω)

ω2

(

cos(ω(t− t′)) coth
(βω

2

)

− i sin(ω(t− t′))
)

.

(B.6)

Similarly

⟨B±(t)B∓(t
′)⟩ = B2eφ(t,t

′). (B.7)

From these definitions we find ⟨Bx(t)By(t
′)⟩ = ⟨By(t)Bx(t

′)⟩ = 0. Further-

more, as ⟨B+(t)B+(t
′)⟩ = ⟨B−(t)B−(t

′)⟩ and ⟨B+(t)B−(t
′)⟩ = ⟨B−(t)B+(t

′)⟩
we find

⟨Bx(t)Bx(t
′)⟩ =1

2

(

⟨B+(t)B+(t
′)⟩+ ⟨B+(t)B−(t

′)⟩ − 2B2
)

,

⟨By(t)By(t
′)⟩ =1

2

(

⟨B+(t)B+(t
′)⟩ − ⟨B+(t)B−(t

′)⟩
)

.
(B.8)

In the continuum limit (and with the substitution τ = t − t′) the polaron

correlation functions are thus given by

Λxx(τ) =
B2

2

(

eφ(τ) + e−φ(τ) − 2
)

,

Λyy(τ) =
B2

2

(

eφ(τ) − e−φ(τ)
)

,

Λxy(τ) = Λyx(τ) = 0,

(B.9)

where

ϕ(τ) =

∫ ∞

0

J(ω)

ω2

(

cos(ωτ) coth
(βω

2

)

− i sin(ωτ)
)

dω. (B.10)
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Appendix C

Correlation Functions for the

Variational Polaron Model

In this appendix we shall derive the correlation functions used in the time-

dependent variational polaron model. Rather than the three bath operators in

the polaron model, we now start with four non-zero bath operators as we no

longer choose the coupling strength to cancel the liner coupling terms between

the Quantum Dot (QD) and phonon bath. These four bath operators are given

by

Bx(t) =
1

2

(

B+(t) + B−(t)− 2B(t)
)

,

By(t) =
1

2i

(

B−(t)− B+(t)
)

,

Bz(t) =
∑

k

hk(t)b
†
k + h.c.,

B(t) = ⟨B±(t)⟩.

(C.1)

C.1 Polaron-Type Correlation Functions

We shall start with the polaron-type correlation functions. Making a compar-

ison with the polaron model, we see three of the bath operators maintain a

polaron form only now with the inclusion of time-dependence arising from the

variational function, F (ω, t). From this we can assume some of the variational

polaron correlation functions take a polaron form. Following the same deriva-

tion as in the polaron model only now with αk(t) = fk(t)/ω = gkF (ω, t)/ω we

can write the average displacement of the phonon bath in the in the continuum
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limit of the time-dependent variational polaron formalism as

B(t) = exp
{

−1

2

∫ ∞

0

dω
J(ω)F (ω, t)2

ω2
coth

(βω

2

)}

. (C.2)

To derive the remaining polaron-type correlation functions we can follow the

same procedure as set out in Appendix B, only with a different form of the

coupling strength αk. Doing so yields

⟨B±(t)B±(t
′)⟩ =B(t)B(t′)e−φ(t,t

′),

⟨B±(t)B∓(t
′)⟩ =B(t)B(t′)eφ(t,t

′),
(C.3)

where in the variational polaron model the phonon propagator, ϕ(t, t′), is now

given by

ϕ(t, t′) =
∑

k

g2kF (ωk, t)F (ωk, t
′)

ω2
k

(

cos(ωk(t− t′)) coth
(βωk

2

)

− i sin(ωk(t− t′))
)

=

∫ ∞

0

dω
J(ω)F (ω, t)F (ω, t′)

ω2

(

cos(ω(t− t′)) coth
(βω

2

)

− i sin(ω(t− t′))
)

.

(C.4)

The polaron-type correlation functions in the variational polaron limit are thus

given by

Λxx(t, t
′) =

B(t)B(t′)

2

(

eφ(t,t
′) + e−φ(t,t

′) − 2
)

,

Λyy(t, t
′) =

B(t)B(t′)

2

(

eφ(t,t
′) − e−φ(t,t

′)
)

,

Λxy(t, t
′) =Λyx(t, t

′) = 0.

(C.5)

In Chapter 4 we move the factors of the time-dependent Rabi frequency, Ω(t),

into the correlation functions yielding Ωr(t) = Ω(t)B(t).

C.2 Cross-Term Correlation Functions

Now we have our polaron-like correlation functions, we can move on to de-

rive the correlation functions involving both the polaronic bath operators, and

the additional weak-coupling-type bath operator (Bz(t)) we now have in the

variational polaron formalism. To do this we shall first consider only a single

bath mode, and then move on to generalise for the multi-mode case. Consid-

ering the correlation between a single bath mode and the weak-coupling bath
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operator yields

⟨D(δk)Bz(t
′)⟩ =

∫

d2βkP (βk) ⟨βk|D(δk)
(

hk(t)b
†
ke
iωkt

′

+ h∗k(t)bke
−iωkt

′) |βk⟩

=

∫

d2βkP (βk) ⟨0|D†(βk)D(δk)
(

hk(t)b
†
ke
iωkt

′

+ h∗k(t)bke
−iωkt

′)

D(βk) |0⟩

=

∫

d2βkP (βk)
(

⟨0|D†(βk)D(δk)hk(t)b
†
ke
iωkt

′

D(βk) |0⟩

+ ⟨0|D†(βk)D(δk)h
∗
k(t)bke

−iωkt
′

D(βk) |0⟩
)

=

∫

d2βkP (βk)
(

hk(t)e
iωkt

′ ⟨0|D†(βk)D(δk)b
†
kD(βk) |0⟩

+ h∗k(t)e
−iωkt

′ ⟨0|D†(βk)D(δk)bkD(βk) |0⟩
)

=

∫

d2βkP (βk)
(

hk(t)e
iωkt

′ ⟨0|D†(βk)D(δk)b
†
kD

†(δk)D(δk)D(βk) |0⟩

+ h∗k(t)e
−iωkt

′ ⟨0|D†(βk)D(δk)D(βk)D
†(βk)bkD(βk) |0⟩

)

=

∫

d2βkP (βk)
(

hk(t)e
iωkt

′ ⟨0|D†(βk)(b
†
k − δ∗k)Dk(βk)D

†
k(βk)D(δk)D(βk) |0⟩

+ h∗k(t)e
−iωkt

′ ⟨0|D†(βk)D(δk)D(βk)(b+ βk) |0⟩
)

=

∫

d2βkP (βk)
(

hk(t)e
iωkt

(

⟨0| (b†k + β∗
k))D

†(βk)D(δk)D(βk) |0⟩

− δ∗k ⟨0|D†(βk)D(δk)D(βk) |0⟩
)

+ h∗k(t)e
−iωkt

′ ⟨0|D†(βk)D(δk)D(βk)(bk + βk) |0⟩
)

=

∫

d2βkP (βk)
(

(βk − δk)
∗hk(t

′)eiωkt
′

+ βkh
∗
k(t

′)e−iωkt
′) ⟨0|D†(βk)D(δk)D(βk) |0⟩

=

∫

d2βkP (βk)
(

(βk − δk)
∗hk(t

′)eiωkt
′

+ βkh
∗
k(t

′)e−iωkt
′)

eβ
∗
k
δk−βkδ∗ke−|δk|2/2

= e
− 1

2
|δk|2 coth

(

βωk
2

)

∫

d2βk
(

(βk − δk)
∗hk(t

′)eiωkt
′

+ βkh
∗
k(t

′)e−iωkt
′)

= e
− 1

2
|δk|2 coth

(

βωk
2

)

(

δknkhk(t
′)eiωkt

′ − (1 + nk)δ
∗
kh

∗
k(t

′)e−iωkt
′)

.

(C.6)

In this derivation we have used the relationships: b |0⟩ = ⟨0| b† = 0, D†D =

DD† = I, and D†(α)aD(α) = (a + α) and D(α)aD†(α) = (a − α) [234].

From here we can move to the multi-mode case by making the substitution
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δk → αk(t)e
iωkt. This yields

⟨B±(t)Bz(t
′)⟩ = B(t)

∑

k

αk(t)
(

nkhk(t
′)eiωk(t−t′) − (1 + nk)h

∗
k(t

′)e−iωk(t−t′)
)

=± B(t)
∑

k

fk(t)

ωk

(

nkhk(t
′)eiωk(t−t′) − h∗k(t

′)e−iωk(t−t′) − nkh
∗
k(t

′)e−iωk(t−t′)
)

=± B(t)
∑

k

fk(t)

ωk

(

nkhk(t
′)eiωk(t−t′) − h∗k(t

′)e−iωk(t−t′) − nkh
∗
k(t

′)e−iωk(t−t′)

+
1

2
hk(t

′)eiωk(t−t′) − 1

2
hk(t

′)eiωk(t−t′) +
1

2
nkh

∗
k(t

′)eiωk(t−t′)

− 1

2
nkh

∗
k(t

′)eiωk(t−t′) +
1

2
nkhk(t

′)e−iωk(t−t′) − 1

2
nkhk(t

′)e−iωk(t−t′)
)

=± B(t)
∑

k

fk(t)

ωk

{(1

2
nkhk(t

′)
(

eiωk(t−t′) + e−iωk(t−t′)
)

+
1

2
nkh

∗
k(t

′)
(

eiωk(t−t′) + e−iωk(t−t′)
)

− 1

2
h∗k(t

′)
(

eiωk(t−t′) + e−iωk(t−t′)
)

)

+
(1

2
nkhk(t

′)
(

eiωk(t−t′) − e−iωk(t−t′)
)

+
1

2
nkh

∗
k(t

′)
(

eiωk(t−t′) − e−iωk(t−t′)
)

− 1

2
h∗k(t

′)
(

eiωk(t−t′) − e−iωk(t−t′)
)

)}

=± B(t)
∑

k

fk(t)

ωk

{

cos
(

ωk(t− t′)
)[

nkhk(t
′)− nkh

∗
k(t

′)− h∗k(t
′)
]

+ i sin
(

ωk(t− t′)
)[

nkhk(t
′) + nkh

∗
k(t

′) + h∗k(t
′)
]

}

.

(C.7)

Remembering that hk(t) =
∑

k

(

gk − ωkαk(t) + i∂tαk(t)
)

=
∑

k

(

gk − fk(t) +

iω−1
k ∂tfk(t)

)

and nk = (e−βωk − 1)−1 this then becomes

⟨B±(t)Bz(t
′)⟩ = ±B(t)

∑

k

fk(t)

ωk

{

cos
(

ωk(t− t′)
)

[ i

ωk
coth

(βωk
2

)

∂t′fk(t
′)

+ fk(t
′)− gk

]

+ i sin
(

ωk(t− t′)
)

[

coth
(βωk

2

)

(

gk − fk(t
′)
)

− i

ωk
∂t′fk(t

′)
]}

,

(C.8)

as 2(nk + 1/2) = coth(βωk/2). Rearranging this yields

⟨B±(t)Bz(t
′)⟩ = ±B(t)

∑

k

fk(t)
{

(

gk − fk(t
′)
)

ωk

[

i coth
(βωk

2

)

sin
(

ωk(t− t′)
)

− cos
(

ωk(t− t′)
)

]

+
i∂tfk(t

′)

ω2
k

[

coth
(βωk

2

)

cos
(

ωk(t− t′)
)

− i sin
(

ωk(t− t′)
)

]}

.

(C.9)
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From this form we see that ⟨Bx(t)Bz(t
′)⟩ = 0 and

⟨By(t)Bz(t
′)⟩ = ⟨ 1

2i

(

B−(t)− B+(t)
)

Bz(t
′)⟩

= − 1

2i

(

2⟨B+(t)Bz(t
′)⟩

)

= i⟨B+(t)Bz(t
′)⟩

= iB(t)
∑

k

fk(t
′)
(

gk − fk(t
′)
)

ωk

[

i coth
(βωk

2

)

sin
(

ωk(t− t′)
)

− cos
(

ωk(t− t′)
)

]

+ iB(t)
∑

k

ifk(t
′)∂tfk(t

′)

ω2
k

[

coth
(βωk

2

)

cos
(

ωk(t− t′)
)

− i sin
(

ωk(t− t′)
)

]

,

(C.10)

using ⟨B−(t)Bz(t
′)⟩ = −⟨B+(t)Bz(t

′)⟩. Moving to the continuum limit yields

Λyz(t, t
′) = B(t)

∫ ∞

0

dω
{

−J(ω)F (ω, t)(1− F (ω, t′))

ω

[

coth
(βω

2

)

sin
(

ω(t− t′)
)

+ i cos
(

ω(t− t′)
)

]

+
J(ω)F (ω, t)∂t′F (ω, t

′)

ω2

[

i sin
(

ω(t− t′)
)

− coth
(βω

2

)

cos
(

ω(t− t′)
)

]}

.

(C.11)

We redefine the cross-correlation function such that Λ′
yz(t, t

′) = iΛyz(t, t
′) to

ensure the useful relationship Λ∗(t′, t) = Λ(t, t′) yielding

Λ′
yz(t, t

′) = B(t)

∫ ∞

0

dω
{

−J(ω)F (ω, t)(1− F (ω, t′)

ω

[

i coth
(βω

2

)

sin
(

ω(t− t′)
)

− cos
(

ω(t− t′)
)

]

−J(ω)F (ω, t)∂t′F (ω, t
′)

ω2

[

i coth
(βω

2

)

cos
(

ω(t− t′)
)

+ sin
(

ω(t− t′)
)

]}

.

(C.12)

C.3 Weak-Coupling Correlation Function

The final correlation function to calculate is the weak-coupling-type correla-

tion function arising purely from the additional bath operator, Bz(t). To cal-

culate this correlation function we shall make use of the relationships ⟨b†kbk′⟩ =
⟨b†k⟩⟨bk′⟩ = 0, ⟨b†kb

†
k⟩ = ⟨bkbk⟩ = 0, [b†k, bk′ ] = δk,k′ . Calculating the correlation
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between the weak-coupling-type bath operators then yields

⟨Bz(t)Bz(t
′)⟩ =

∑

k

〈(

hk(t)b
†
ke
iωkt + h∗k(t)bke

−iωkt
)(

hk(t
′)b†ke

iωkt
′

+ h∗k(t
′)bke

−iωkt
′)〉

=
∑

k

〈

hk(t)hk(t
′)b†kb

†
ke
iωk(t+t

′) + hk(t)h
∗
k(t

′)b†kbke
iωk(t−t′)

+ h∗k(t)hk(t
′)bkb

†
ke

−iωk(t−t′) + h∗k(t)h
∗
k(t

′)bkbke
−iωk(t+t

′)
〉

=
∑

k

[

hk(t)hk(t
′)⟨b†b†⟩eiωk(t+t

′) + hk(t)h
∗
k(t

′)⟨b†kbk⟩eiω(t−t
′)

+ h∗k(t)hk(t
′)⟨bkb†k⟩e−iωk(t−t′) + h∗k(t)H

∗
k(t

′)⟨bkbk⟩e−iωk(t+t
′)
]

=
∑

k

[

hk(t)h
∗
k(t

′)⟨b†kbk⟩eiω(t−t
′) + h∗k(t)hk(t

′)⟨bkb†k⟩e−iωk(t−t′)
]

=
∑

k

[

hk(t)h
∗
k(t

′)⟨b†kbk⟩eiω(t−t
′) + h∗k(t)hk(t

′)(⟨b†kbk⟩+ 1)e−iωk(t−t′)
]

=
∑

k

[

hk(t)h
∗
k(t

′)nke
iωk(t−t′) + h∗k(t)hk(t

′)(nk + 1)e−iωk(t−t′)
]

=
∑

k

[

hk(t)h
∗
k(t

′)nk
(

cos(ω(t− t′)) + i sin(ω(t− t′))
)

+ h∗k(t)hk(t
′)(nk + 1)

(

cos(ωk(t− t′))− i sin(ωk(t− t′))
)

]

=
∑

k

[(

(

hk(t)h
∗
k(t

′) + h∗k(t)hk(t
′)
)

nk + h∗k(t)hk(t
′)
)

cos(ωk(t− t′))

+
(

(

hk(t)h
∗
k(t

′)− h∗k(t)hk(t
′)
)

nk − h∗k(t)hk(t
′)
)

i sin(ω(t− t′))
]

=
∑

k

[{(

(gk − fk(t))(gk − fk(t
′)) +

∂tfk(t)∂t′fk(t
′)

ω2
k

)

(2nk + 1)

+ i(gk − fk(t))
∂t′fk(t

′)

ωk
− i(gk − fk(t

′))
∂tfk(t)

ωk

}

cos(ωk(t− t′))

+
{ i

ωk

(

(gk − fk(t
′))∂tfk(t)− (gk − fk(t))∂t′fk(t

′)
)

(2nk + 1)

− (gk − fk(t))(gk − fk(t
′))− ∂tfk(t)∂t′fk(t

′)

ω2
k

}

i sin(ωk(t− t′))
]

,

(C.13)

where we have again defined hk(t) =
∑

k

(

gk − ωkαk(t) + i∂tαk(t)
)

=
∑

k

(

gk −
fk(t) + iω−1

k ∂tfk(t)
)

, and nk = (e−βωk − 1)−1 such that (2nk + 1) = coth
(

βω
2

)

.
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Rearranging correlation function becomes

⟨Bz(t)Bz(t
′)⟩ =

∑

k

{

(gk − fk(t))(gk − fk(t
′))
}(

cos(ωk(t− t′)) coth
(βωk

2

)

− i sin(ωk(t− t′))
)

+
∂tfk(t)∂t′fk(t

′)

ω2
k

(

cos(ωk(t− t′)) coth
(βωk

2

)

− i sin(ωk(t− t′))
)

+

(

(gk − fk(t
′))∂tfk(t)− (gk − fk(t))∂t′fk(t

′)
)

ωk

×
(

i cos(ωk(t− t′))− sin(ωk(t− t′)) coth
(βω

2

))

.

(C.14)

Taking the continuum limit, the weak-coupling correlation function is given by

Λzz(t, t
′) =

∫ ∞

0

dωJ(ω)u(ω, t)u∗(ω, t′)

[

coth

(

βω

2

)

cos(ω(t− t′))− i sin(ω(t− t′))

]

,

(C.15)

where u(ω, t) = 1− F (ω, t) + iω−1∂tF (ω, t).

C.4 Recovering the Polaron Model

We can recover the Polaron model from our full variational polaron model

by by setting F (ω, t) = 1∀t and ∂tfk(t) = 0. In this case the cross-terms

(Λyz = Λzy) and weak-coupling (Λzz) type correlation functions go to zero,

leaving only the polaron-type correlation functions non-zero.

C.5 Recovering the Weak-Coupling Model

By setting F (ω, t) = 0∀t and αk(t) = 0∀t we can instead recover the weak-

coupling limit from the full variational polaron model. In this case it is the

polaron-type and cross-term-type correlation functions that go to zero as well

as leaving B(t) = 1∀t (i.e. Ωr(t) = Ω(t) and δr(t) = δ). The only remaining

non-zero correlation function is the weak-coupling correlation function given

by

Λzz(t, t
′) =

∫ ∞

0

dωJ(ω)
(

coth
(βω

2

)

cos(ω(t− t′))− i sin(ω(t− t′))
)

. (C.16)
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The non-Markovian weak-coupling master equation is then

∂

∂t
ρS(t) = −i[δrσ†σ +

Ω(t)

2
σx, ρS(t)]−

(

[σ†σ, θz(t)ρs(t)] + [ρs(t)θ
†
z(t), σ

†σ]
)

,

(C.17)

where

θz(t) =

∫ t

0

σ†σ(t′, t)Λzz(t, t
′)dt′, (C.18)

is the non-Markovian rate operator. Under the Markov approximation we can

take the upper limit of the integral in the environment rate operator to infinity

to remove its time dependence.



Appendix D

Unitary Transformation of a

Four-Level System Coupled to a

Bi-modal Cavity

In this appendix we will transform the Hamiltonian describing a Four-Level

System (4LS) in a Voigt geometry magnetic field coupled to a bi-modal cavity,

and driven by a classical laser pulse from the laboratory frame to a reference

frame rotating at a frequency ωR.

D.1 Lab-Frame Hamiltonian

The lab frame Hamiltonian describing such a cavity-coupled system is given

by H = H0 +HI +HQD
D (t) +HC

D(t), where

H0 =
∆e
B

2
(σ22 − σ11) + (ω0 −

∆h
B

2
)σ33 + (ω0 +

∆h
B

2
)σ44 +

∑

λ=X,Y

νλa
†
λaλ,

HI =
∑

λ=X,Y

gλ(σλ + σ
†
λ)(aλ + a†λ),

HQD
D (t) = −

∑

λ=X,Y

Ωλ(t) cos (ωlt)σλ + h.c.,

HC
D(t) = −

∑

λ=X,Y

ϵλ(t) cos (ωlt)(aλ + a†λ).

(D.1)
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D.2 Rotating Frame Hamiltonian

To move to a rotating frame of reference we need to perform a unitary trans-

formation such that the total Hamiltonian in the rotating reference frame is

given by

H̃(t) = U(t)H(t)U †(t) + i
( ∂

∂t
U(t)

)

U †(t), (D.2)

as derived in Section 3.4.1. We perform this transformation using the unitary

operator

U(t) = eiωRt(a†XaX+a†
Y
aY +σ33+σ44), (D.3)

From here we can calculate the second term on the right hand side of Eq. D.2

by taking the derivative of Eq. D.3 with respect to time. Doing so produces

i
( ∂

∂t
U(t)

)

U †(t) = −ωR(a†XaX + a†Y aY + σ33 + σ44). (D.4)

To calculate the first term on the right hand side of Eq. D.2 we can make use

of the individual cavity modes and 4LS being described by different Hilbert

spaces. This allows the total unitary operator (Eq. D.3) to be separated into

the tensor product of three separate unitary operators, each acting on one of

the three Hilbert spaces, such that

U(t) = UX
C (t)⊗ UY

C (t)⊗ UQD(t) = eiωRt(a†XaX) ⊗ eiωRt(a†Y aY ) ⊗ eiωRt(|3⟩⟨3|+|4⟩⟨4|).

(D.5)

Starting with the unitary operators acting on the cavity modes we define

aλ(t) = Uλ
C(t)aλ(U

λ
C(t))

† where Uλ
C(t) = eiωRt(a

†
λ
aλ). Taking the derivative of

a(t) with respect to time yields

∂taλ(t) = (∂tU
λ
C(t))aλ(U

λ
C(t))

† + Uλ
C(t)aλ(∂t(U

λ
C(t))

†). (D.6)

Substituting in Uλ
C(t) yields

∂taλ(t) = iωRa
†
λaλU

λ
C(t)aλ(U

λ
C(t))

† + Uλ
C(t)aλ(−iωRa†λaλ)(Uλ

C(t))
†

= iωR(a
†
λaλU

λ
C(t)aλ(U

λ
C(t))

† − Uλ
C(t)aλa

†
λaλ(U

λ
C(t))

†).
(D.7)

The commutator between Uλ
C(t) and a

†
λaλ is

[

Uλ
C(t), a

†
λaλ

]

=
∞
∑

n=0

(iωRt)
n

n!

[(

a†λaλ

)n

, a†λaλ

]

= 0,

(D.8)
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hence we can re-write the derivative of a(t) with respect to time as

∂taλ(t) = iωRU
λ
C(t)[a

†
λaλ, aλ](U

λ
C(t))

†. (D.9)

Using the commutation relation between the cavity raising and lowering oper-

ators ([a, a†] = 1) it can be shown that [a†λaλ, aλ] = −aλ and therefore

∂taλ(t) = −iωRUλ
C(t)aλ(U

λ
C(t))

† = −iωRaλ(t), (D.10)

which has the formal solution

aλ(t) = aλe
−iωRt, (D.11)

and therefore a†λ(t) = a†λe
iωRt.

We must now also apply the unitary transformation to the 4LS degrees of

freedom. We can also calculate UQD(t)σU
†
QD(t) for each of the 4LS operators,

as we have already done for the individual cavity modes. Taking the Taylor

expansion of UQD(t) yields

UQD(t) = eiωRt(σ33+σ44) =
∑

n

(iωRt)
n

n!
(σ33 + σ44)

n

= I+ (iωRt)(σ33 + σ44) +
(iωRt)

2

2
(σ33 + σ44)

2 + ...

=
(

4
∑

j=1

σjj

)

+ (iωRt)(σ33 + σ44) +
(iωRt)

2

2!
(σ33 + σ44)

2 + ...

= σ11 + σ22 + (1 + (iωRt) +
(iωRt)

2

2!
+ ...)(σ33 + σ44)

= σ11 + σ22 + eiωRt(σ33 + σ44),

(D.12)

where I =
∑4

j=1 σjj is the identity matrix. Applying the QD unitary operator

in this form to the QD transition operators we find

UQD(t)σijU
†
QD(t) = σije

−iωRt,

UQD(t)σ
†
ijU

†
QD(t) = σ†

jie
iωRt,

(D.13)

for i ∈ {1, 2} and j ∈ {3, 4} where σij = |i⟩⟨j|. The σkk with k ∈ {1, 2, 3, 4}
operators remain unchanged by this unitary transformation. Applying all of
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these transformations to the components of the lab frame Hamiltonian yields

H̃0 =
∆e
B

2
(σ22 − σ11) + (ω0 − ωR − ∆h

B

2
)σ33

+ (ω0 − ωR +
∆h
B

2
)σ44 +

∑

λ=X,Y

(νλ − ωR)a
†
λaλ,

H̃I =
∑

λ=X,Y

gλ
(

a†λe
iωRt + aλe

−iωRt
)(

σ†
λe
iωRt + σλe

−iωRt
)

,

H̃QD
D (t) = −

∑

λ=X,Y

Ωλ(t)

2
(eiωlt + e−iωlt)

(

σ†
λe
iωRt + σλe

−iωRt),

H̃C
D(t) = −

∑

λ=X,Y

ϵλ(t)

2
(eiωlt + e−iωlt)

(

aλe
−iωRt + a†λe

iωRt
)

.

(D.14)

Using the Rotating Wave Approximation (RWA) we can replace the counter

rotating terms (i.e. terms with ωl + ωR in the exponent) with their zero time

averages to find

H̃0 =
∆e
B

2
(σ22 − σ11) + (ω0 − ωR − ∆h

B

2
)σ33

+ (ω0 − ωR +
∆h
B

2
)σ44 +

∑

λ=X,Y

(νλ − ωR)a
†
λaλ,

H̃I =
∑

λ=X,Y

gλa
†
λσλ + g∗λaλσ

†
λ,

H̃QD
D (t) =−

∑

λ=X,Y

Ωλ(t)

2

(

σ†
λe

−i(ωl−ωR)t + σλe
i(ωl−ωR)t)

H̃C
D(t) =−

∑

λ=X,Y

ϵλ(t)

2

(

a†λe
−i(ωl−ωR)t + aλe

i(ωl−ωR)t
)

.

(D.15)

Thus in the case where ωR = ωl the time dependence in the exponential terms

cancel leaving the only time-dependence originating from the pulse’s envelope

function. Setting ωR = ω0 recovers the Hamiltonian used in studying optical

spin control.
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