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Abstract

Proteins are large biological molecules and the building blocks of all cells in living

organisms. Modelling their structure supports the understanding of their role in key

biological processes, including the onset, evolution and cure of diseases. Nevertheless,

protein model building is extremely challenging. Although the computational tools for

protein model building (e.g., from crystallographic data sets) have improved signifi-

cantly in recent years, they still perform poorly for protein structures for which only

data sets with low resolution and affected by poor phase distributions are available.

This thesis introduces new methods that support and improve model building for

such protein structures. We start with a systematic evaluation of all major automated

crystallographic model-building pipelines using 1211 protein structures (202 at origi-

nal resolution and 1009 at truncated resolutions). Using the results of this study as a

baseline, we then propose and show the effectiveness of using pairwise pipeline com-

binations to build better protein models for many crystallographic data sets.

As the performance of individual pipelines and pipeline combinations depends on

the input data set, we introduce a predictive machine learning model that recommends

pipelines or pipeline combinations suitable for a given data set, helping researchers

avoid the time-consuming running of pipelines likely to perform poorly. The model

bases its predictions on statistical features calculated from the electron-density map,

and is available as a freely accessible web application.

Finally, we introduce a neural network trained to recognise incorrect parts of a

protein model during the building process. Developed using large training data sets

newly created for this purpose, and integrated into the protein model building software

Buccaneer, the neural networks enables Buccaneer to avoid these incorrect parts and to

produce protein models with significantly improved completeness and fitting measures

to crystallography data.
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Chapter 1

Introduction

1.1 Motivation

In the 1950s, the first protein structures were determined and, since then, more than

154,000 protein structures have been solved and deposited in the Protein Data Bank

(PDB) [1, 2]. However, the number of solved protein structures is only a small fraction

of protein structures that have not been solved yet. A frequently used method for

determining a protein structure starts with crystallising the structure and then applying

a determination technique, such as X-ray crystallography, to obtain an electron-density

map, which is then used to interpret the coordinates of the protein structure atoms. A

similar method to X-ray crystallography is cryogenic electron microscopy (cryo-EM),

which is useful for the protein structures that are difficult to crystallize as the method

is based on freezing the sample rather than the crystallization[3]. The folding of the

protein structure can result in a complicated electron-density map that makes building

the protein model manually very time-consuming.

The challenges faced during the building of protein structures include the phase

problem; the reconstruction of the electron-density map needs intensities of waves

(which can be measured from the experiment), the amplitudes (square root of the inten-

sities) and the phase (which can not be measured from the experiment and describes the

shift between the waves) [4, 5]. The phase problem may be solved by either molecular

replacement or experimental phasing methods [6, 7]. These methods lead to electron-

density maps with rather different properties: in the case of experimental phasing, the

maps usually contain noise due to ambiguity in the experimental phasing, whereas in

the molecular replacement case, the errors in the map can arise from bias towards the

molecular replacement model. The resolution of the experimental observations, the
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quality of experimental phasing or the similarity of the molecular replacement model,

and many other features such as ice rings, which arise because the water to freeze to

ice in macromolecular crystals as the X-ray crystallography is data collected at cryo-

genic temperatures [8, 9], may also affect the quality of the data. Each of these factors

impacts the building of the protein structure in different ways [10, 11, 12].

To automate the building of the protein structure, several automated pipelines

have been developed. These pipelines include ARP/wARP [13, 14, 15, 16, 17], Bucca-

neer [18, 19], PHENIX AutoBuild [20], SHELXE [21, 22, 23, 24]. Protein structures

built using these pipelines can differ in the evaluation measures, and sometimes, the

difference can be significant.

Since the early releases of these pipelines, major improvements have been made to

enable them to build more complete models. However, they still cannot build complete

models in difficult cases, for example, for electron-density maps with low resolutions

or poor phases.

Recent advances in machine learning (ML) have enabled the use of ML tech-

niques to further progress protein model building [25]. Machine learning is used at

different stages of the process to solve protein structures, including serial crystallog-

raphy and model building. In an example of the use of machine learning in model

building, a neural network was trained to identify incorrect residues in a final model

[26]. Moreover, machine learning was used to improve the tracing of the protein struc-

ture backbone by finding “good” fragments [27]. However, as many challenges remain

to obtain a complete protein structure that requires minimum manual building, further

machine learning techniques are required to make the built protein structure models

sufficiently accurate.

1.2 Contributions and thesis structure

In this thesis, we first determine a baseline for the current model-building pipelines

through systematically evaluating their performance for a large number of crystallog-

raphy data sets. Moreover, we examine the improvements achieved by running these

pipelines in pairwise combinations in order to gain the most from the complementarity

of their algorithms. However, the pairwise running method leads to a large number of
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pipeline combinations, each with different levels of performance across the data sets.

To avoid the need to run all these pipeline combinations and the individual pipelines on

each data set, we introduce a machine learning model capable of predicting the perfor-

mance of the pipelines and their combinations for a given data set. Finally, to alleviate

the problem of placing incorrect fragments into protein models, we introduce a neural

network trained to identify and remove such fragments during the model building pro-

cess. The use of this neural network within a new version of the protein model building

software tool Buccaneer [18, 19, 28] can significantly improve the protein models built

by the tool.

These contributions and structure of the thesis are summarised below.

• Chapter 2: Background

The chapter provides background information about the techniques used to ob-

tain models of three-dimensional protein structures, and about the existing pro-

tein model-building pipelines. Additionally, the chapter introduces machine

learning and neural network concepts and techniques used in later chapters of

the thesis.

• Chapter 3: A performance baseline for protein model-building pipelines

(contribution).

The chapter presents an extensive comparison of protein-model building pipelines

ARP/wARP, Buccaneer, Phenix AutoBuild and SHELXE. The four widely used

pipelines were run on large number of crystallography data sets that range from

easy to challenging and compared based on the structure completeness and R-

work/R-free of the protein models they generated for these data sets.

• Chapter 4: Pairwise running of the protein model-building pipelines (con-

tribution).

We propose and examine the usefulness of combining these pipelines to improve

the built protein structures by running them in pairwise combinations. The chap-

ter presents an evaluation of combining these pipelines based on the structure

completeness and R-free.
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• Chapter 5: Predicting the performance of the protein model-building pipelines

(contribution).

Identifying the best pipeline or pipeline combination to use for a protein struc-

ture is difficult, as the pipeline performance differs significantly from one protein

structure to another. The chapter presents a machine learning model trained to

predict the performance of the protein-model building pipelines. We start by

analysing the uses of these pipelines and then explain how we trained a ma-

chine learning model to predict structure completeness, R-free and R-work they

can each achieve for a give crystallography data set. We evaluated the machine

learning model based on RMSE, MAE and through comparing its accuracy to

that of a zero-R predictive model. The predictive model is freely available as an

online tool.

• Chapter 6: Avoiding the use of incorrect fragments in the protein model

(contribution).

Placing incorrect fragments during the building process leads to wrong residues

being sequenced, and therefore to a poor protein model. We introduce a neu-

ral network trained to identify incorrect fragments, and show how its use within

Buccaneer can help remove such fragments in order to improve backbone trac-

ing. Buccaneer augmented with the neural network produces protein models

with significantly improved structure completeness for experimental phasing

data sets. The chapter presents the method used to label the data samples used to

train the network, the evaluation of the trained neural network, and its use within

Buccaneer.

• Chapter 7: Conclusion

The chapter summarises the achievements and limitations of the research pre-

sented in the thesis, and proposes directions for future work.

Figure 1.1 shows the data sets and the model building pipelines used in each

research-contributions chapter, and indicates where the results from a chapter are used

in other contributions chapters.
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Chapter 3 JCSG

ARP/wARP Phenix AutoBuild Buccaneer(i1)

SHELXE

Chapter 4 JCSG

ARP/wARP Phenix AutoBuild Buccaneer(i1)

SHELXE Pipeline combinations

Chapter 5 JCSG MR Recently PDB-deposited

ARP/wARP Phenix AutoBuild Buccaneer(i1)

SHELXE Pipeline combinations

Chapter 6 JCSG MR Recently PDB-deposited

Buccaneer(i1) ModelCraft

Data sets

Data sets

Data sets

Data sets

Pipelines

Pipelines

Pipelines

Pipelines

Figure 1.1: Model-building pipelines and data sets (PDB=Protein Data Bank,
JCSG=Joint Center for Structural Genomics, MR=molecular replacement) used in
each contributions chapter. The dashed arrows indicate where the results from a chap-
ter are used in other chapters.

22



Chapter 2

Background

2.1 Protein structure building

2.1.1 Protein geometry

Proteins are macromolecules that perform essential biological functions which depend

on their three-dimensional structure. A protein is a chain of amino acids, which are

chemical compounds that contain nitrogen, carbon, hydrogen, oxygen and a unique

side chain. The next sections introduce key concepts and terminology about amino

acids, torsion angles of the amino acids, and the electron-density map.

2.1.1.1 Amino acids

More than 300 amino acids have been identified in nature; however, only twenty types

of amino acids are needed to produce common human proteins and most of other pro-

teins [29]. All amino acids contain a carbon atom called Cα (C alpha) located in the

centre of the amino acid, NH2 and COOH. However, these amino acids have different

chemical properties:

1. An amino acid has a unique side-chain R with a different number of atoms

bonded to the Cα atom (Figure 2.1). However, some amino acids may have

the same number of atoms.

2. Hydrophobicity and hydrophilicity of an amino acid, which means the amino

acid interacts to water (hydrophilic) and those repel water (hydrophobic) [30].

3. Chemical bonds of atoms in an amino acid affect its chemical properties even if

two amino acids have the same atomic composition, for example, Isoleucine and

Leucine (Figure 2.1).
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4. An amino acid is either positively, neutral or negatively charged. The attraction

between amino acids is affected by their charges as the amino acids with the

same charge interact and those with opposite charges repel each other [31].

Each one of these amino acids contains a different number of atoms, giving it a

unique shape.

Each amino acid has a unique side-chain R with a different number of atoms

bonded to the Cα atom (Figure 2.1). Two amino acids are bonded together by the

N-terminus side connected to the C-terminus in other amino acids [32]. We refer to

amino acids as residues in the rest of this thesis.

2.1.1.2 Torsion angles

The geometrical structure of the main chain can be described using angles, known as

torsion angles. The torsion angles describe the rotations between N – Cα , called Phi

Φ, and between Cα – C, called Psi Ψ (Figure 2.2). Ramachandran is the physicist who

described these angles and designed a plot for exhibiting the angles’ correctness [33].

The plot of Ramachandran shows Ψ on the horizontal axis and Φ on the vertical axis,

with both scales varying from −180 to +180. The plot uses dots for representing each

torsion angle of the amino acids on the axes for the angles’ distribution. Figure 2.3

shows an example of a Ramachandran plot with three regions; favoured, allowed and

disallowed regions. Residues in disallowed regions were results of steric hindrance,

which is the non-bonded atoms that come close to each other and cause a rise in the

energy and repulsions [34].

2.1.1.3 Electron-density map

The atoms of the residues are surrounded by electrons moving in orbital motion and

creating a “cloud” called electron-density around these atoms. As a protein contains

a number of these residues and each has its electrons, this results in a map of electron

density being created. In the absence of the residues’ coordinates, this density map can

be used to interpret the residues positions. However, obtaining the density map needs

special techniques to determine its 3D shape.
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Alanine Arginine Asparagine Aspartate

Cysteine Glutamine Glutamate Glycine

Histidine Isoleucine Leucine Lysine

Methionine Phenylalanine Proline Serine

Threonine Tryptophan Tyrosine Valine

Figure 2.1: The twenty types of amino acids that have been identified in protein struc-
tures. The main chain is identical in all of them but they have different side chains,
which determine the unique shape of each amino acid.
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PsiPhi

(a)

(b)

Figure 2.2: (a) The angles between N – Cα (Phi Φ) and between Cα – C (Psi Ψ). (b)
Torsion angles for bonded residues.

Figure 2.3: An example of Ramachandran’s plot. Area in salmon colour shows
favoured, allowed in light yellow and white for disallowed regions. Glycine and Pro-
line are shown as triangles and squares, respectively, and other residues are shown as
circles. Residues were in disallowed regions shown in red colour.

2.1.2 Techniques of obtaining three-dimensional structure

X-ray crystallography [35], nuclear magnetic resonance (NMR) [36], and electron

microscopy (cryo-EM)[37, 38, 39] are the most used techniques to solve the protein

structures, with the highest use for X-ray crystallography (Figure 2.4). To determine

the structure of a protein using X-ray crystallography, a series of steps need to be

conducted, starting by crystallizing the relevant molecule, collecting the molecule’s

diffraction, solving the phase problem, and then fitting the model into the density map.

Crystallisation is a process of organizing atoms or molecules into a regular solid

structure. In X-ray crystallography, the crystal obtained from the crystallisation pro-

cess is centred in the path of X-rays. When X-rays (electromagnetic waves) pass
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through the crystal, the electrons scatter the wave with the same wavelength as the

incident wave, and the scattered waves register on a photographic plate (Figure 2.5)

[35]. The relation between the X-ray wavelength and its reflection is described by

Bragg’s law:

2dsinθ = nλ , (2.1)

where d is the distance between the crystal planes, λ is the wavelength, and n is the

diffraction order [40]. Bragg’s law is used in X-ray crystallography to identify the

crystal lattice, which can be described as an ordered array of points.

Once the diffraction spots are registered, they are indexed using Miller indices

because each wave diffracted from a plane gives information about the structure of the

molecules within the analysed crystal. The next step is to solve the phase problem and

calculate the density map for use in fitting the model. The next sections describe each

of these steps.

Figure 2.4: Number of solved structures per publication year by determination method
as in 2021.

2.1.3 Processing data collected by X-ray crystallography

The data collected through X-ray crystallography is used to calculate the electron-

density map

ρ(x,y,z) =
1
V ∑

h
∑
k

∑
l
|F(hkl)|.e−2πi[hx+ky+lz−φ(hkl)], (2.2)

where ρ(x,y,z) is the map coordinate, V is the volume of the unit cell, h,k, l represent

the Miller indices, |F(hkl)| structure factor, and φ(hkl) gives the phases; however,
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Crystallised molecule

Photographic

plate

X-ray beam Diffra
cted X-ray

Reflections on

photographic plate

Figure 2.5: X-ray crystallography experiment showing a crystallised molecule and an
X-ray passing through the crystal. The diffracted X-ray reaches a photographic plate,
and the resulting image is used to calculate an electron-density map that is then used
to build a protein model.

these phases cannot be obtained from the X-ray crystallography experiment—an issue

known as the phase problem. [41].

2.1.3.1 Asymmetric unit

The molecule is repeated over the crystal space and solving the structure of one molecule

leads to determining the whole crystal structure. The crystal is divided into small parts

called unit cells; the smallest volume that can be repeated to make the entire crystal

[42]. An asymmetric unit is a part of the cell unit that has the identical parts of one

molecule or more with no relations in symmetry between them [43]. After solving the

molecule structure and finding the coordinates of the atoms from the asymmetric unit,

symmetry operations are used to generate the other units’ cell contents, which leads

to predicting the whole crystal structure. Figure 2.6 shows a crystal and a unit cell

represented as mini cubes, as well as an asymmetric unit.

2.1.3.2 Miller indices

Miller indices are a group of three numbers used to represent a plane in the crystal:

h,k, l. The crystal is divided into imaginary planes, and those planes are identified by

three points recorded on the photographic plate [43]. For example, given a building

block with six faces, the position of the top face in Miller indices is (0,0,1); however,

the last number in the position is 1 because the plate is located on the z axis and at 0 on
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Crystal

Unit cell

Asymmetric unit

Figure 2.6: A crystal can be represented as mini building blocks where one building
block represents a unit cell that may contain multiple copies of the molecule. The
asymmetric unit has the identical parts of the molecule.

the x and y axis. Figure 2.7 shows different planes and their Miller indices. The Miller

indices of a reflection depend on the plane which the X-ray diffracts from. Figure 2.8

shows Miller indices for the reflection on a photographic plate.

y

z

x (0,0,1)

y

z

x (0,1,0)

y

z

x (0,1,0)

y

z

x (1,0,0)

y

z

x (1,1,1)

y

z

x (2,1,1)

Figure 2.7: Each plane in the cube can be represented by three points, h, k, l. In the
leftmost cube, the top face of the cube position is (0,0,1), with the first two indices
corresponding to x and y, and 1 being the value of z. When the points of the plane are
located in the middle of an axis such as in the last cube, the value of the axis is divided
by 2 or is dependent on the exact value of the axis.

2.1.3.3 The phase problem

Phases are required to calculate the electron-density map; however, the phases cannot

be determined during the X-ray crystallography experiment. Current equipment is

limited in its ability to determine the intensities of the rays from the photographic plate

for use in the electron-density map equation. Figure 2.9 shows the missing information,

i.e., the phase angle of the diffraction in the crystal. [4, 44]. Two methods are used to

solve the phase problem: experimental phasing is when the phases are determined from
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y

z

x
Photographic Plate

(0,0,1)

Xray

hkl (0,0,1)

Figure 2.8: The diffraction of the X-ray and Miller indices. The reflection of the X-ray
is recorded by Miller indices, which represent a plane in the crystal.

the observed data using features of special atoms, such as those with a large number

of electrons, e.g. Dauter and Dauter [45] , and molecular replacement (MR) obtains

initial phases from a known protein structure that is similar to the protein structure that

we want to build, e.g. Evans and McCoy [6].

x

y
Fhkl

φ

Figure 2.9: Phases φ of Fhkl are the missing information from X-ray crystallography
experiment.

2.1.3.4 Representation of electron-density maps

The 3D electron-density map visualisation is represented as a mesh in visualisation

tools such as, Coot [46] and CCP4MG [47]. This supports the assessment and identi-

fication of possible errors in the density map or even in fitting the protein model into

the electron-density map (Figure 2.10).

2.1.3.5 Resolution of electron-density maps

The X-ray diffraction spots on the detector correspond to the molecular structure in

the crystal, and these diffraction spots are affected by several factors, including the

complexity of the molecular structure. The effects of these factors can be negative,

leading to poor diffraction and low-quality density maps. The details of the analysed
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Figure 2.10: A part of electron-density map. The figure was produced by CCP4MG
[47] for a part of PDB id 1o6a.

protein are easy to identify in high-resolution electron-density maps, and much harder

in the case of low resolution such as in 3 Å and lower [48]. Figure 2.11 shows the

increase in the level of difficulty of finding the atoms’ positions in a protein model

from an easier case when the resolution is high, 0.6 Å or higher, to a challenging case

with low resolution, 4Å.

2.1.3.6 Electron-density map modification

As described in Section 2.1.3.3, the phases are required to construct the electron-

density maps, however, the phase set obtained from the methods of initial phases cal-

culations such as multiple anomalous dispersion (MAD), may not sufficient for protein

model building due to the introduction of heavy atoms in the crystal which affect on

its order. Therefore, the introduction of heavy atoms might affect the quality of phases

and lead to an uninterpretable electron-density map. However, the phases can be im-

proved by knowing the chemical properties about the protein structure that we want to

solve and the information obtained from the initial phases. This method is known as

Density Modification (DM). It is used to generate improved phases and combine them

with initial phases, reducing the noise in the electron-density map and making it more

interpretable. The following three approaches are used in DM [49]:

(i) Solvent flattening is based on determining the regions of solvent (e.g. waters)

in the protein structure and creating a mask (e.g., 0 for the solvent parts and 1

for the protein parts) to eliminate the noise from the electron-density map. The
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(a) 0.6 Å. (b) 1 Å.

(c) 2 Å.

(d) 3 Å.

(e) 4 Å.

Figure 2.11: Interpretation of electron-density map becomes difficult as its resolution
gets worse. (a) A very high resolution electron-density map for which fitting the atoms
in their density is simple due to lack of overlaps between the atoms density. (b) and (c)
Reduced resolutions where the overlaps between the atoms’ densities leads to difficulty
in placing the atoms in their densities. (d) and (e) Very low resolution maps; such
density maps might be misleading for building the correct protein model as they are
unhelpful in interpretation of the electron-density.

phases can be calculated modified phases and combined with experimental data,

and an improvement should be obtained compared to the initial phases.
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(a) (b)

Figure 2.12: Density modification: (a) An electron-density map calculated using ini-
tial phases (before density modification). (b) The electron-density map after density
modification using Parrot [50].

(ii) Histogram matching is taken from image processing when two images at grayscale,

for example, one image is darker than the other and modify the darker image’s

histogram to match the brighter image’s histogram. Therefore, the darker image

might be improved. In electron-density map modification, the histogram of the

initial density map is modified to match the histogram of the ideal density map.

(iii) Noncrystallographic symmetry (NCS) exploits the similarities of electron den-

sity between the different regions in the density map for improving the regions

with low quality. NCS occurs when the asymmetric unit has multiple copies of a

molecular structure with no crystallographic symmetry between them. Discov-

ering NCS in the density map is possible through methods such as the use of

heavy atoms (hancs), model building, and molecular replacement (mrncs).

Figure 2.12 shows an electron-density map before DM and after. The density of

the side chain is significantly improved after DM, allowing the identification of the

positions of the atoms. However, not all electron-density maps can be improved to

the level that shows the details of the electron-density map with sufficient clarity for

protein model building.
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2.2 Machine learning

Machine learning has been used to accelerate the protein model building, e.g. using

ML to correct the protein model or trace the backbone and, more recently, to build the

protein model from its sequence [25, 51]. However, machine learning is an area of

artificial intelligence that focuses on the development of methods to learn from past

information collected in digital format in order to make predictions from new data

[52]. There are many of these learning methods, primarily grouped into two classes:

supervised algorithms when the training data is labelled, usually by a domain expert,

and unsupervised algorithms when the training data is unlabeled and the learning al-

gorithms discover the relationships between the data set’s instances [53].

2.2.1 Decision trees

A decision tree is a predictor that takes instance x, which can be a vector of features,

and gives a label y [54]. The features are the characteristics of the past information that

is used by machine learning algorithms to learn relationships between the instance x

and the label y. Creating decision trees starts by finding a root node and then splitting

the tree into branches to add leaf nodes. Selecting the root node is based on splitting

measures, such as the Gini Index, which measures uncertainty if a feature is classified

incorrectly. The feature with lowest Gini Index is used as root and the process is

repeated to split the tree further. Deep decision trees may lead to overfitting when the

decision tree performs better on the training data set and worse on the testing data set.

However, this problem may be prevented by reducing the number of iterations, and,

therefore, the tree size; or by using ensemble methods [54]; however, this may reduce

the performance of the decision tree. Figure 2.13 shows a decision tree that we trained

to predict the type of an amino acid using its numbers of carbon, oxygen and hydrogen

in both the main and side chain as features.

2.2.2 Random forests

As described in Section 2.2.1, the over-fitting of decision trees can be reduced by us-

ing ensemble methods, which involves training multiple machine learning models to

produce more accurate predictions [55]. Random forests were introduced by Breiman
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[56] to address the overfitting problem of decision trees through creating multiple de-

cision trees and picking the prediction with the most “votes” from these decision trees.

To create a training data set for each decision tree in the random forest, we select a ran-

dom sample from the training data set to generate a subset of the whole training data

set and repeat the process to create multiple subsets (whose sizes may differ). Then,

the splitting of the tree is conducted as described in Section 2.2.1[54].

2.2.3 Neural networks

A neural network is a type of machine learning inspired by the way in which certain

functions are carried out by the human brain [59]. A neural network comprises pro-

cessing nodes called neurons. Each neuron computes a weighted sum of one or several

numerical inputs. The result of this computation is fed into an activation function (Fig-

ure 2.14) that computes the neuron output by mapping the weighted sum to a value

within a fixed range. Two examples of activation functions are shown in Figure 2.15.

The training of a neural network is an optimisation problem in which the neuron

weights are adjusted over a sequence of iterations in which a loss function that mea-

sures the neural network’s prediction error for a training set of labelled data samples

is reduced [60]. Therefore, optimisation methods such as the Adam optimizer [61] are

used with neural networks to optimize the parameters of the model.

A simple neural network contains three layers; input, hidden and output layer. The

layers can have a different number of neurons. In the following sections, we summarise

several important types of neural network.

2.2.3.1 Feedforward neural networks

The feedforward model is an essential neural network architecture type where the data

are fed from a higher layer to a lower layer with no feedback shared between the layers

[62]. Each layer contains a number of neurons and is linked to each neuron in the next

layer. Figure 2.16 shows an example of a feedforward neural network with the three

layers and different numbers of neurons in each layer.
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Amino acid Number of atoms in amino acid
Carbon Hydrogen Oxygen

Alanine 3 7 2
Cysteine 3 7 2
Aspartic Acid 4 7 4
Glutamic Acid 5 9 4
Phenylalanine 9 11 2
Glycine 2 5 2
Histidine 6 9 2
Isoleucine 6 13 2
Lysine 6 14 2
Leucine 6 13 2

Amino acid Number of atoms in amino acid
Carbon Hydrogen Oxygen

Methionine 5 11 2
Asparagine 4 8 3
Proline 5 9 2
Glutamine 5 10 3
Arginine 6 14 2
Serine 3 7 3
Threonine 4 9 3
Valine 5 11 2
Tryptophan 11 12 2
Tyrosine 9 11 3

(a)

Number of car-
bon atoms in

amino acid ≤ 2.5

Isoleucine Number of car-
bon atoms in

amino acid ≤ 3.5

Number of oxy-
gen atoms in

amino acid ≤ 2.5

Alanine Serine

Number of oxy-
gen atoms in

amino acid ≤ 2.5

Number of car-
bon atoms in

amino acid ≤ 5.5

Number of hydrogen
atoms in amino acid

zwitterion ≤ 10.0

Arginine Proline

Number of car-
bon atoms in

amino acid ≤ 7.5

Number of hydrogen
atoms in amino acid

zwitterion ≤ 11.0

Lysine Number of hydrogen
atoms in amino acid

zwitterion ≤ 13.5

Leucine Cysteine

Number of hydrogen
atoms in amino acid

zwitterion ≤ 11.5

Glu-
tamine

Valine

Number of hydrogen
atoms in amino acid

zwitterion ≤ 7.5

Glu-
tamic
Acid

Number of oxy-
gen atoms in

amino acid ≤ 3.5

Number of car-
bon atoms in

amino acid ≤ 4.5
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Aspartic
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Number of hydrogen
atoms in amino acid

zwitterion ≤ 10.5

Histi-
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Glycine

True False

(b)
Amino acid Predicted

Alanine Alanine
Cysteine Alanine
Aspartic Acid Aspartic Acid
Glutamic Acid Glutamic Acid
Phenylalanine Phenylalanine

Amino acid Predicted

Glycine Glycine
Histidine Histidine
Isoleucine Isoleucine
Lysine Arginine
Leucine Isoleucine

Amino acid Predicted

Methionine Methionine
Asparagine Asparagine
Proline Proline
Glutamine Glutamine
Arginine Arginine

Amino acid Predicted

Serine Serine
Threonine Threonine
Valine Methionine
Tryptophan Tryptophan
Tyrosine Tyrosine

(c)

Figure 2.13: An example of decision tree for predicting the type of an amino acid
using its numbers of carbon, oxygen and hydrogen atoms. (a) The training data sets
obtained from [57]. (b) The decision tree was trained using scikit-learn [58]. (c) The
performance of the decision tree was tested on the same training data sets however, the
test data should not be the same as the training data sets for valid machine learning
testing. Here, we do not test the decision tree on independent data sets, as this example
shows the creation of a decision tree rather than producing a valid machine learning
model.
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Figure 2.14: Example of simple neural network. Each input neuron x connected to the
next neuron and a weight w assigned to each connection. The neuron sum the inputs
and the weights and add a bias b to the summation. An activation function decides
whether the neuron will be activated or not.
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Figure 2.15: Left: Sigmoid shape ranging from 0 to 1. Right: tanh shape ranging from
-1 to 1. z is the output of the neuron.

2.2.3.2 Recurrent neural networks

A recurrent neural network (RNN) is an extension of a traditional neural network that

is able to process sequential data with different lengths [63]. A feedforward neural net-

work only processes the current input, meaning that it does not remember the previous

input because the training data set moves in one direction. Unlike Feedforward neural

networka, an RNN considers the current input with the previous one when adjust-

ing the RNN network weight. Classic RNNs have a long-term dependencies learning

problem. This occurs when the input is a long sequence of data with dependencies,

and the classic RNNs cannot remember the status of the data that was received earlier

[64, 65, 66, 67]. In 1995, long short-term memory (LSTM) was introduced by [68] to

address this problem. A LSTM layer has a memory that remembers the data shown

earlier. In 2015, the attention mechanism was introduced in deep learning which a
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Figure 2.16: An example of feedforward neural network.

neural network gives more importance to some data instances in a sequence, unlike

LSTM, which gave the same importance to the data instances [69].
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Chapter 3

Comparison of automated

crystallographic model-building

pipelines

In this chapter, we present a comparison between automated crystallographic model-

building pipelines. We ran the pipelines on large data sets and evaluated them based

on the structure completeness, R-work/R-free of the protein models they generated and

the correlation between generated models and final deposited models. The aim of the

work in this chapter was to determine a performance baseline for use in the evaluation

of the methods proposed in later chapters of the thesis.

3.1 Abstract

A comparison between four protein-building pipelines (ARP/wARP, Buccaneer, PHENIX

AutoBuild and SHELXE) was performed using data sets from 202 experimentally

phased cases, both with the data as observed and truncated to simulate lower reso-

lutions. All pipelines were run using default parameters. Additionally, an ARP/wARP

run was completed using models from Buccaneer. All pipelines achieved nearly com-

plete protein structures and low R-work/R-free at resolutions between 1.2 Å and 1.9 Å,

with PHENIX Autobuild and ARP/wARP producing slightly lower R-work. At lower

resolutions, Buccaneer leads to significantly more complete models.
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3.2 Introduction

The automation of protein model building began with the release of ARP/wARP in

the late 1990s [13, 14, 15, 17], and has rapidly advanced through the development

of additional protein-building pipelines. These pipelines include Buccaneer [18, 19],

PHENIX AutoBuild [20], SHELXE [21, 22, 23, 24], and a major new version of

ARP/wARP [16]. Judging by the numbers of Web of Science citations across 2017

and 2018, ARP/wARP (286 citations), Buccaneer (304 citations) and PHENIX Auto-

Build (217 citations) are all widely used; SHELXE was cited 9548 times within the

same time period (with all citation counts being based on the papers listed above).

Complex optimization problems like building protein structures can be tackled

using multiple approaches. As such, different protein-building pipelines employ dif-

ferent steps and algorithms, may refine their intermediate structures using difference

refinement programs such as REFMAC [70] or phenix.refine [71], and yield differ-

ent results for the same data. The comparison detailed here sheds light on some of

these differences by examining the completeness of protein structures, the R-work/R-

free values, and the execution times of ARP/wARP, Buccaneer, PHENIX AutoBuild

and SHELXE. Performed for data sets with resolutions ranging from 1.2 Å to 4.0 Å,

this comparison provides insights into the strengths and weaknesses of the different

pipelines, which may be of use when addressing specific problem data sets, as well as

to developers seeking to improve their own algorithms or to build new meta-pipelines

which exploit the complementary strengths of the different algorithms.

As scientists are inevitably affected by cognitive biases, including self-serving

biases, this study would ideally have been conducted by an independent party, similar

to the study of van den Bedem et al. [72]. However, independent researchers often lack

the motivation to perform detailed tool comparisons. For us, further development of

the Buccaneer methods required a better understanding of their limitations, and thus,

we conducted our own comparison. We acknowledge that its results may have been

impacted by biases in our study, and we make those sources of bias that we are aware

of explicit in the discussion.
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3.3 Pipelines and methods

3.3.1 ARP/wARP

ARP/wARP was the first fully-automated pipeline for building protein models from

electron-density maps. Initially limited to high resolutions of better than 2.3 Å [14],

ARP/wARP was subsequently extended to 2.7 Å or 2.8 Å [16]. More recent versions

have further enlarged the useful range of resolutions [73]. ARP/wARP is integrated

with CCP4, and therefore can be used from the CCP4 GUIs. Additionally, ARP/wARP

has a web service interface for remote running, which enables access to resources

beyond those available on the users’ local machines.

The ARP/wARP approach starts by placing free atoms in the electron-density

map. Free atoms are atoms that do not have a chemical identity, but are likely to de-

velop one during the model building and refinement. The approach then traces the

main protein chain via an algorithm [74] that uses modified depth-first search tech-

niques. Next, ARP/wARP uses a rotamer library and a downhill simplex algorithm to

fit the side chains into the map density. Finally, the missing parts of the protein model

are completed by matching Cα segments from known models, and choosing those that

best fit the density of the working model. Following the building stage, the model is

refined with REFMAC, and the calculated map is used for further ARP/wARP building

cycles.

3.3.2 Buccaneer

Buccaneer is a command-line protein model building tool developed by Cowtan [18].

Its subsequent integration with the Collaborative Computational Project Number 4’s

CCP4 software suite [75] provided Buccaneer with a graphical user interface through

the CCP4i [76] and CCP4i2 [77] GUIs.

The Buccaneer algorithm is built around a likelihood target function for the iden-

tification of likely Cα positions. This function is used to find a small set of ‘seed’

residues, and then to grow these seeds into chain fragments using Ramachandran re-

straints. Overlapping chain fragments are merged, and docked into the sequence on

the basis of a further application of the likelihood target function to the identification
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of the side chain type [18, 19]. Model building is iterated with refinement in REFMAC

[78].

3.3.3 PHENIX AutoBuild

PHENIX AutoBuild is a part of the PHENIX software suite for the automated mod-

elling of molecular structures. Using a graphical user interface (GUI) based on the

main PHENIX GUI, AutoBuild facilitates the interactive specification of protein-building

parameters, with default values automatically provided for most parameters. Addition-

ally, command-line access is available to enable the integration of AutoBuild with other

tools.

PHENIX AutoBuild accepts several types of input—experimental phases, an ex-

isting model, and a model whose sequence differs by less than 5% from that of the

target model—and performs different procedures for each input type. The steps of

its fully automated pipeline include density modification, model building and refine-

ment [79, 80, 81]. These AutoBuild steps are not executed sequentially, as the density

modification is repeated after refinement, to exploit information from the built model.

Early in the structure determination procedure, AutoBuild scores models using

a metric based on their number of residues built, number of residues that match the

protein sequence, and number of chains [20]. Later, when their R-work drops below a

pre-set value, the models are scored mainly using R-work. The refinement of the built

structures is performed using phenix.refine [71], a refinement tool from the PHENIX

suite.

3.3.4 SHELXE

SHELXE is a program for main chain tracing and density modification from experi-

mental phases and molecular replacement [22, 23]. Backbone tracing begins by finding

seven residue α-helices and extending them in both directions whenever possible. The

latest version of SHELXE was extended to find up to 14 residues. [24]. Traced chains

are then cut at their closest points of contact, and the N-termini and C-termini are

joined together. Finally, new estimated phases are calculated from traced residues and

combined with the initial phases for use in the next cycle of density modification and

tracing [22].
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SHELXE scores a built structure using a correlation coefficient (CC) calculated

from structure factors from the trace against native data. A CC above 25% for resolu-

tion 2.5 Å indicates that SHELXE may have found a correct solution [24].

3.4 Data sets

We used 202 real data sets [72] with resolutions between 1.2 Å and 3.2 Å (Figure 3.1),

as well as synthetic data sets obtained through simulating each of the original data sets

at resolutions of 3.2 Å, 3.4 Å, 3.6 Å, 3.8 Å and 4.0 Å. The 202 data sets used are a sub-

set of the 770 data sets from van den Bedem et al. [72]. A total of 230 structures were

available to the authors, of which 229 had one or more data sets from experimental

phasing. A single data set, with the highest RMSD of local map RMSD, was chosen

for each structure. There is no guarantee that the chosen data set is the same one used

for the final deposited structure, but in order to check this, the deposited coordinates

were refined against the chosen data set using REFMAC v.5.8.0158 in CCP4 v.7.0.045

[78]. Eleven structures failed due to large differences between cell definitions in the

reflection file and deposited model and one structure failed due to a serine residue

being labelled as UNK. A further 15 structures were removed as they had very high R-

work/R-free after refinement. Five of the deposited structures (2a9v, 2ash, 2awa, 2o5r

and 2pnk) have their structural determination method listed as a combination of MAD

and molecular replacement and one (2fcl) has only molecular replacement. In these

cases the deposited structure may contain some model bias from the original author’s

search model. This simulation involved inflating the B-factors of the structure factor

amplitudes and removing the reflections with resolutions higher than the target resolu-

tion. Inflation of B-factors was carried out by first downloading a list of all structures

in the PDB, each with a resolution and average B-factor. A linear fit was then per-

formed, which gave a gradient of 32.8Å used to inflate the B-factors by the difference

in resolution. This modification resulted in the reduction of the electron-density map

resolution to that of the simulated resolution. This process produced 1009 synthetic

data sets—five synthetic data sets at the lower resolutions mentioned above for each

original data set, except for a single data set in which the original resolution was al-

ready 3.2Å. This gave us 1211 data sets in total. The 52 data sets that had previously
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been used in the development of Buccaneer1 were excluded, along with the synthetic

data sets obtained from them.

The density of both the original and synthetic data sets was then modified using

Parrot [50] for three density modification types: heavy-atom NCS (HA-NCS) deter-

mined using S or Se atom positions from the deposited model, molecular replacement

NCS (MR-NCS) determined using all atoms of the deposited model, and no NCS (NO-

NCS). The three groups of 1211 data sets (i.e. 3633 data sets in total) created in this

way were used in the comparison. The PDB codes used in the comparison (provided

as supplementary material in Appendix A.6)

Figure 3.1: Resolutions of the 202 original data sets.

3.5 Method of the comparison

A comparison was conducted between the following versions of the four protein-

building pipelines described in Sections 3.3.1–3.3.4: PHENIX Autobuild version 1.14,

Buccaneer in CCP4i, ARP/wARP 8 and SHELXE version 2019/1. All binary files were

obtained from CCP4 7.0.066, and run with the default parameters set by the develop-

ers of each pipeline ARP/wARP was run without the R-free flag, in line with the tool’s

documentation, and automatically includes a secondary structure building step in cases

1These 52 data sets were analysed for a secondary study in which we assessed the efficiency of choosing
training data sets for pipeline development (Appendix B.1 and B.2)
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where resolution is worse than 2.7Å. PHENIX Autobuild by default builds three mod-

els at each step leading to improved results at the cost of computing time. Additionally,

the comparison considered several pipeline variants with non-default parameters:

• ARP/wARP with the R-free flag set, and using as initial models the models built

by Buccaneer in CCP4i, as one known Buccaneer limitation is its use of fewer

model finalization techniques;

• PHENIX AutoBuild with density-modified phases (using Parrot [50]);

• SHELXE with density-modified phases (using Parrot [50]);

• SHELXE (with and without density-modified phases) variants have set -t flag to

20 as higher value is recommended in the tool’s documentation;

Table 3.1 shows the short names used for these pipeline variants in the rest of the paper.

Each execution of a pipeline received two inputs: a reflection data file comprising

the result of an experimental phasing calculation; and the sequence file of the rele-

vant protein. SHELXE did not receive the sequence file because it is not required.

The model building task was then submitted as a job to a 173-node high-performance

cluster with 7024 Intel Xeon Gold/Platinum cores, a total memory of 42TB. Each job

involved building one protein model, and was stopped if it did not complete within 48

hours. There was no resource sharing between jobs.

Following model building, a ‘zero cycle’ REFMAC run was used to calculate R-

work/R-free (which measure the fit of the protein structure against the observed data,

with R-free using only observations which are not used in the refinement calculation

– typically 5% of the data [82]), to avoid the confounding effects of different scaling

and solvent parameterizations in different refinement programs. REFMAC was run

with default parameters. The quality of the starting phases was assessed using on the

weighted F-map correlation between the initial map and the phases from the refined

deposited model. A structure completeness measure was obtained for the final model,

by calculating the percentage of residues in the processed deposited model from the

Protein Data Bank (PDB) whose Cα atoms have the same residue type as, and co-

ordinates within 1.0 Å of, the corresponding residue in the built model. SHELXE

completeness was calculated from only Cα in correct positions within 1.0 Å because
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SHELXE only builds the main chain. The correlation between generated and final de-

posited models was obtained by calculating the F-map correlation using a map from a

built model and a map from a final deposited model (we will refer to this measure as

structure correlation in the rest of the thesis).

A tool was developed to automate the execution of the pipelines and the anal-

ysis of their results. To ensure the reproducibility of the study, the execution of all

pipeline variants was repeated for a sample of 30 structures. The results (provided as

supplementary material in Appendix A) did not vary significantly when the pipelines

were rerun with the same inputs. Additionally, a series of tests searching for errors

that might have occurred during the running or analysing stages were performed; for

example, the running parameters from log files were verified for possible errors in the

parameter settings.

Four measures were used to compare the protein models built by different pipelines:

structure completeness, R-work/R-free, structure correlation and pipeline execution

time. R-work/R-free values were rounded to two decimal places, and completeness

was rounded to the nearest whole number.

For both completeness and R-work/R-free, and for each pair of pipelines, we

report the percentage of data sets for which one pipeline yields better models than

the other; and the percentage of data sets for which one pipeline yields models which

are at least 5% better than the models produced by the other pipeline. (Cases where

results are equivalent or better by between 1% and 4% are reported in the appendix).

The results obtained for the real data sets used in the comparison and for the data sets

truncated to simulate lower resolutions are reported separately. For execution time,

we report the mean pipeline execution times partitioned into classes based on their

structure sizes.

3.6 Results

3.6.1 Overview

The results described here were obtained by comparing the protein structures success-

fully built by each of the pipeline variants from Table 3.1. For the first 4 pipeline

variants from the table, we used all 3633 data sets obtained as described in the previ-
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Table 3.1: Pipeline variants used in the comparison.

Short name Long name

ARP ARP/wARP.
ARP(B 5I) ARP/wARP after Buccaneer in CCP4i using the default five it-

erations.
i1(5I) Buccaneer in CCP4i using 5 iterations (as set by the pipeline

developers).
PHENIX PHENIX AutoBuild fed by density-unmodified phases.
SHELXE SHELXE fed by density-unmodified phases.
PHENIX/Parrot PHENIX AutoBuild runs after Parrot (density-modified

phases).
SHELXE/Parrot SHELXE runs after Parrot (density-modified phases).

ous section. For the PHENIX AutoBuild and SHELXE after Parrot no prior density

modification was run and the results were compared to the NO-NCS results from the

other pipelines. SHELXE variants were not run on synthetic data sets because this is

not recommended, and therefore SHELXE is omitted from synthetic data sets compar-

ison.

All pipeline variants successfully completed the analysis of over 99% of both the

original and synthetic data sets. The remaining runs did not complete within 48 hours

(a time limit that we set in our experiments), failed due to insufficient memory, or

crashed. In all these cases, the pipeline variant was rerun with its memory quota and

time limit increased until it either succeeded or a limit of 20GB of allocated memory

and 48 hours were reached. As shown in Tables 3.2 and 3.3, only very few runs did not

complete (even after this memory increase), and most of these produced intermediate

protein models that we used in our comparison. The data sets marked ‘Failed’ in the

tables were excluded from the comparison (for all pipeline variants). The numbers

of different types of ‘complete’ and ‘intermediate’ models used in the comparison are

reported at the bottom of each table.

Including non crystallographic averaging improves the starting phases for struc-

tures where NCS is present, but it does not significantly affect the conclusions of this

work because the completeness is not significantly affected. Given that the differences

between NCS and NO-NCS cases are small, the poorer-phased NO-NCS data sets will

be considered for the remainder of the comparison.

Using the correct solvent fraction in SHELXE improves its results, but it does

not significantly affect the results when compared to other pipeline variants (results of
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using the correct solvent fraction are reported in the Appendix A.7). A default fraction

solvent, which is 0.45, is used in the comparison.

Table 3.2: Complete and intermediate models produced by the 7 pipeline variants for
the original data sets, where ‘(T)’ and ‘(C)’ denote intermediate models produced by
pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 201 1(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

ARP(B 5I) 202 0(T) 0(C) 0 201 1(T) 0(C) 0 202 0(T) 0(C) 0

i1(5I) 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

PHENIX/Parrot 198 2(T) 1(C) 1 200 0(T) 1(C) 1 199 1(T) 1(C) 1

SHELXE/Parrot 202 0(T) 0(C) 0 201 1(T) 0(C) 0 200 2(T) 0(C) 0

PHENIX - - - - - - 199 1(T) 0(C) 2

SHELXE - - - - - - 200 2(T) 0(C) 0

Models used in the comparison: 149 HA-NCS, 149 MR-NCS and 148 NO-NCS.

Table 3.3: Complete and intermediate models produced by the 5 pipeline variants for
the synthetic-resolution data sets, where ‘(T)’ and ’(C)’ denote intermediate models
produced by pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 1008 1(T) 0(C) 0 1007 2(T) 0(C) 0 1008 1(T) 0(C) 0

ARP(B 5I) 1005 4(T) 0(C) 0 1006 3(T) 0(C) 0 1003 6(T) 0(C) 0

i1(5I) 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0

PHENIX/Parrot 1002 7(T) 0(C) 0 1004 5(T) 0(C) 0 1001 8(T) 0(C) 0

PHENIX - - - - - - 1001 7(T) 0(C) 1

Models used in the comparison: 750 HA-NCS, 750 MR-NCS and 750 NO-NCS.

3.6.2 Structure completeness

Tables 3.4 and 3.5 report the percentages of models for which each pipeline variant

achieved a structure completeness that is higher and at least 5% higher, respectively,

than the other pipeline variants. Note that the two figures associated with a pair of

pipeline variants in Table 3.4 do not always add up to 100% because some of the mod-

els are generated with the same structure completeness (rounded to the next integer)

by the two pipeline variants. For example, the structure completeness of 23% of the

ARP models was higher than that of the corresponding ARP(B 5I) models, and 45% of

the ARP(B 5I) models had higher structure completeness than that of the ARP models;

thus, the remainder 32% of the models built by ARP and ARP(B 5I) had the same

structure completeness, after rounding.

As shown in the first of these tables, ARP/wARP built 37% of the data sets better

than PHENIX Autobuild, while PHENIX Autobuild did better in 48% of the data sets,
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Table 3.4: Structure completeness comparison for the models generated from the orig-
inal NO-NCS data sets. Each row corresponds to a pipeline variant, and shows the
percentage (rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 23 33 39 37 68 61

ARP(B 5I) 45 0 40 43 43 76 73

i1(5I) 57 45 0 46 49 77 72

PHENIX/Parrot 49 44 45 0 46 80 77

PHENIX 48 39 41 32 0 78 72

SHELXE 26 15 20 16 16 0 34

SHELXE/Parrot 32 22 24 17 22 57 0

800

Table 3.5: Structure completeness comparison for the models generated from the orig-
inal NO-NCS data sets. Each row corresponds to a pipeline variant, and shows the
percentage (rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 6 15 11 14 45 40

ARP(B 5I) 24 0 20 16 16 53 53

i1(5I) 28 17 0 16 16 56 48

PHENIX/Parrot 28 20 26 0 14 61 55

PHENIX 28 18 23 7 0 57 51

SHELXE 17 7 11 7 7 0 9

SHELXE/Parrot 21 12 17 5 10 32 0

610

which means that 15% of the data sets are equal in their completeness. Buccaneer

in CCP4i built more than half of the data sets with higher completeness compared

to ARP/wARP. The default 5 cycle Buccaneer runs typically produce less complete

models than PHENIX AutoBuild.

Table 3.5 shows the number of cases where one pipeline variant achieved 5%

or higher structural completeness than another. By this measure for every pipeline

variant there are at least 3% of cases where that pipeline produces a significantly more

complete model than another pipeline, however show a similar general pattern to the

previous comparison.

Running ARP/wARP after Buccaneer can impact the results. Comparing ARP/wARP

after Buccaneer in CCP4i (5 iterations) with ARP/wARP alone showed a 5% improve-
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ment in completeness in a quarter of cases, with only a few cases of a comparable

decrease in completeness. Using PHENIX AutoBuild after Parrot showed a small ben-

efits of the additional density-modification step; 14% of the data sets were built better,

compared with 7% worse.

The comparison of SHELXE with the other pipeline variants shows that over half

of the data sets are typically built better by other pipeline variants even when the 5%

improvement comparison level is considered. SHELXE built 16% of the data sets bet-

ter than PHENIX Autobuild, but this number decreased to 7% for the 5% improvement

comparison level. SHELXE after Parrot showed some improvements when compared

to the other pipeline variants; however, for the 5% improvement comparison level,

these variants built over 40% of the data sets better than SHELXE after Parrot.

Figure 3.2 shows the mean structure completeness for different ranges of data

set resolutions, across both the original and the synthetic data sets. Expectedly, the

pipeline variants achieved the best results at 1.2Å-1.9Å, and the completeness of the

models was significantly poorer at 4.0 Å. ARP/wARP dropped rapidly at 3.2 Å (syn-

thetic data sets) and decreased to nearly zero completeness at 4.0 Å. In contrast, for

Buccaneer in CCP4i, completeness degrades only slowly as resolution drops below

3.1 Å. PHENIX Autobuild produces the most complete models when using the orig-

inal data resolution; however, its completeness falls between those of Buccaneer and

ARP/wARP for the resolution-truncated data sets. The pipelines were affected by F-

map correlation, with lower completeness at an F-map correlation of 0.53 or lower

(Figure 3.4).

Figure 3.3 shows the mean number of residues which were built incorrectly,

grouped into bins based on the data set resolutions. Achieving high structure com-

pleteness leads to the generation of a large number of incorrect residues. For example,

Buccaneer in CCP4i built more residues incorrectly than other pipeline variants, e.g. a

fraction of 0.50 of the residues were incorrect at 4.0 Å, while PHENIX Autobuild only

reached a fraction of 0.20 incorrect residues at the same resolution. ARP/wARP and

PHENIX Autobuild built nearly no incorrect residues between 1.2Å-1.9Å.
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Figure 3.2: Mean completeness for the protein models built for all NO-NCS data sets.
The data sets are grouped into bins based on their resolution, with the number of data
sets in each bin shown in brackets under the graph.

Figure 3.3: Mean residues incorrectly built for the protein models built for all NO-
NCS data sets. The data sets are grouped into bins based on their resolution, with the
number of data sets in each bin shown in brackets under the graph. The number of
residues incorrectly built was normalized by dividing on the number of residues in the
deposited model.

3.6.3 R-work and R-free

Tables 3.6 and 3.7 show the R-work/R-free results for the pipeline variants at the two

levels of comparison (i.e. better and at least 5% better). If R-free was not used, no
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Figure 3.4: Mean completeness for the models built for the original NO-NCS data
sets, grouped into bins based on their initial map correlation (F-map correlation); the
number of data sets in each bin is reported in brackets under the graph.

results are reported. ARP/wARP and PHENIX AutoBuild obtained results which bet-

ter explain the X-ray observations than Buccaneer. Buccaneer in CCP4i built less

than 10% of the data sets with lower R-work/R-free compared to PHENIX Auto-

Build, which built 93% models with lower R-work/R-free than the Buccaneer pipeline.

The performance of ARP/wARP and SHELXE can only be compared with the others

pipelines in terms of R-work due to not using of R-free, and the results of ARP/wARP

were closer to those achieved by PHENIX AutoBuild than to Buccaneer. ARP/wARP

built 94% of the models with lower R-work, while Buccaneer only built 5% of the mod-

els lower in R-work (Table 3.6). When considering only cases where R-work or R-free

change by more than 5% (Table 3.7), there are comparatively few differences between

ARP/wARP and PHENIX autobuild, but both outperform the Buccaneer pipeline in a

significant proportion of cases. All pipeline variants built at least 97% of the models

with lower R-work/R-free compared to SHELXE variants, which built 3% of the mod-

els with lower R-work in the best scenario. These results remain almost the same when

the 5% improvement comparison level is considered. Using SHELXE after Parrot im-

proved R-work, but it did not significantly improve the results when compared to other

pipeline variants.

Figures 3.5 and 3.6 show the R-work and R-free obtained for different resolution
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Table 3.6: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the original NO-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 18 94 34 37 100 100

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 47 0 99 47 47 100 100

ARP(B 5I) R− f ree - 0 76 13 16 - -
i1(5I) R−work 5 0 0 3 3 97 97

i1(5I) R− f ree - 16 0 3 5 - -
PHENIX/Parrot R−work 47 30 95 0 27 99 99

PHENIX/Parrot R− f ree - 74 93 0 31 - -
PHENIX R−work 43 30 93 22 0 99 99

PHENIX R− f ree - 75 93 31 0 - -
SHELXE R−work 0 0 3 1 1 0 19

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 3 1 1 42 0

SHELXE/Parrot R− f ree - - - - - - -

1000

Table 3.7: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the original NO-NCS data sets. Each row shows the percentage of
models that a pipeline variant built with R-work or R-free at least 5% lower than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 3 52 5 7 100 100

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 5 0 62 6 7 100 100

ARP(B 5I) R− f ree - 0 28 1 1 - -
i1(5I) R−work 0 0 0 0 1 95 94

i1(5I) R− f ree - 1 0 0 1 - -
PHENIX/Parrot R−work 5 3 54 0 2 99 99

PHENIX/Parrot R− f ree - 17 57 0 2 - -
PHENIX R−work 4 2 55 1 0 99 98

PHENIX R− f ree - 16 57 1 0 - -
SHELXE R−work 0 0 1 1 1 0 0

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 1 0 1 1 0

SHELXE/Parrot R− f ree - - - - - - -

1000

ranges. As shown in the tables, PHENIX AutoBuild achieved the best values at 1.2

Å-1.9 Å with the results degrading significantly over at 3.2Å. The results of Bucca-

neer degrade more gradually to 4.0Å. R-free increased in the same manner as R-work.

53



CHAPTER 3. COMPARISON OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING PIPELINES

ARP/wARP produces very good R-work at all resolutions, although the authors cau-

tion that overfitting is a problem in the dummy atom model, however, overfitting is

likely to happen with other pipelines . Nonetheless, R-free (for the hybrid Bucca-

neer+ARP/wARP runs, where it is available) is also better than for the other pipelines

at lower resolutions, in contrast to the completeness results. This suggests that the

dummy atom model has significant predictive power in explaining the X-ray observa-

tions, even when it cannot be interpreted in terms of sequenced protein chain.

Figure 3.5: Mean protein model R-work for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is indicated in
brackets under the graph.

3.6.4 Structure correlation

Figure 3.7 shows mean correlation between built protein model and final deposited pro-

tein model for NO-NCS data sets calculated as described in Section 3.5. At resolution

better than 3.2Å, both PHENIX AutoBuild with and without Parrot showed F-map cor-

relation higher than 0.9, however, PHENIX AutoBuild variants achieved close F-map

correlation to Buccaneer at worse resolutions, but they did not fell below 0.8. Struc-

ture correlation of the protein structures built by ARP/wARP showed a slightly higher

F-map correlation than those built by Buccaneer at resolution better than 2.0 Å and the

F-map correlation dropped below 0.6 at resolution worse than 3.1 Å; ARP/wARP on
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Figure 3.6: Mean protein model R-free for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is indicated in
brackets under the graph.

its own is better at resolution worse than 3.2 Å compared to running ARP/wARP after

Buccaneer.

Figure 3.7: Mean correlation between built protein model and final deposited protein
model for NO-NCS data sets partitioned into classes based on their resolution. The
number of data sets in each class is indicated in brackets under the graph.
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3.6.5 Pipeline execution time

Figure 3.8 shows mean execution times that the pipeline variants required to build the

protein models for the original NO-NCS data sets from our comparison. Buccaneer

in CCP4i was the fastest pipelines over all structures sizes. ARP/wARP averaged

less than 50 min to build small structure, making it the second fastest pipeline after

Buccaneer. Using Buccaneer in CCP4i models as an initial model for ARP/wARP

slowed the building of the models compared to the normal run of ARP/wARP, with

averages slightly higher than normal ARP/wARP. PHENIX AutoBuild, after Parrot and

without Parrot, was the slowest pipeline with averages of around 200 min to build small

structures and more than 1600 min for large structures. SHELXE required execution

times between those of ARP/wARP and PHENIX AutoBuild, achieving the smallest

average when building small structures, but with execution times increased to over 200

min when building large structures.

Figure 3.8: Mean pipeline execution times for the original NO-NCS data sets parti-
tioned into classes based on their structure sizes. The number of data sets in each class
is indicated in brackets under the graph.

3.7 Discussion

Comparisons of the different model building pipelines against a range of observed data

sets, both at the original resolution and after simulated resolution reduction, highlight
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different strengths and weaknesses of the different software. These may be used to

guide users in choosing the most appropriate software for their problem, and develop-

ers in the improvement of their software or the construction of hybrid pipelines using

multiple tools.

Comparison of the model completeness, as assessed by the fraction of the model

alpha carbons built to within 1.0 Å of the correct location and assigned the correct

residue type, suggests that at better than 3.1 Å resolution PHENIX Autobuild achieves

the most complete models, with Buccaneer and ARP/wARP producing successively

less complete models. PHENIX Autobuild was developed mainly against data at better

than 3.0 Å resolution [83]. However, the comparison of structure correlation showed

that PHENIX Autobuild built models with high correlation to final deposited models at

worse resolutions which might be considered to be used as an initial model for further

building iterations.

At worse than 3.1 Å resolution, Buccaneer substantially outperforms the other

pipelines, with PHENIX Autobuild giving intermediate performance and ARP/wARP

only building a small proportion of residues when averaged across many structures.

This is consistent with expectations given that the original design criterion for Bucca-

neer was that it should be more robust against reduced resolution. Running ARP/wARP

after Buccaneer leads to results which are worse than Buccaneer, suggesting that the

residues successfully sequenced by Buccaneer are not being retained by ARP/wARP.

When comparing model completeness against initial map quality for the original

resolution data sets, all the pipelines perform well when the initial phases are good

(correlation > 0.64). Best results are obtained using PHENIX Autobuild, especially if

after initial phase improvement using Parrot [50]. This suggests that phase improve-

ment in Parrot is in some way complementary to the statistical phase improvement

which is incorporated in the PHENIX Autobuild pipeline [20]. SHELXE also showed

improved model building when starting from phases improved by Parrot.

When comparing R-work, the conclusions are somewhat different. ARP/wARP

produces the lowest R-work across all resolution ranges, and produces dramatically

lower R-work at worse than 3.1 Å resolution. PHENIX Autobuild comes close to

ARP/wARP at better than 3.2 Å resolution. SHELXE produced the highest R-work

because it only built the main chain. Sequence assignment and side chain modelling
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are likely to significantly reduce the R-work as long as the chains built by SHELXE do

not contain too many tracing errors.

When comparing R-free, a similar pattern emerges, although at worse than 3.1 Å

resolution the R-free from the Buccaneer+ARP/wARP pipelines show a more modest

gain over the other pipelines. (On the basis of developer recommendations and our

tests which provided as supplementary material in Appendix A.8, no free set is used

when running ARP/wARP on its own [84]).

The differing conclusions concerning the effectiveness of ARP/wARP from the

three metrics are connected with the methodology. The use of dummy atoms in the

ARP/wARP calculation allows the observations to be fit very well - and potentially

overfit [85], however the portion of the model represented by dummy atoms does not

contribute to the completeness score used here. The good R-free values obtained from

ARP/wARP show that the dummy atom model has significant explanatory power at

lower resolutions even when the dummy atoms cannot be explained in terms of se-

quenced main chain. This suggests that improved results may be possible either by

using ARP/wARP as a preliminary step for another method, or by further development

of the methods for interpreting the dummy atom model.

The performance of a model building algorithm is determined by multiple factors

- the ability of the method to interpret an initial map, the ability of the pipeline to im-

prove that map in the light of the model build so far, and the amount of finalization

(e.g. waters, cis peptides and so on) which is performed by the pipeline. The results

presented here suggest that Buccaneer may be the most effective tool for classifying

features in the initial map especially at lower resolution, but lacks the finalization tools

which are present in ARP/wARP and PHENIX Autobuild, and therefore leads to higher

R-work. This suggested the use of ARP/wARP to finalize the Buccaneer model, how-

ever the model sequence tends to be lost at lower resolutions, limiting the benefit of

this approach. PHENIX Autobuild has however successfully implemented Buccaneer

as an optional preliminary step (not tested here).

The model building pipelines show considerable variability in performance from

structure to structure, making a-priori recommendation of a single method for a given

data set difficult. The speed and ease of use of the model building pipelines mean

that users seldom need to try and anticipate which software will be most suitable -
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instead most users are likely to use whichever software is most convenient for them.

The results presented here may be of use in deciding which pipeline to try next in the

case where the first option is unsuccessful. ARP/wARP and PHENIX Autobuild are

likely to be better options at better than 3.1 Å resolution, where their advanced model

finalization tools lead to lower R-work. As resolution drops below 3.1 Å, Buccaneer is

more likely to produce the most complete model, however manual editing to remove

wrongly built structure is also required.

Given that the software pipelines perform differently on different problem types,

the results of any test will inevitably be biased by the choice of test data. In this

case, data sets from the JCSG [72] were used - other JCSG data were also used in

the development of Buccaneer, although those data sets were excluded from the re-

sults presented here. It is possible that this has lead to some element of ‘tuning’ of

Buccaneer to work on JCSG-sourced data, although the use of different programs for

different structures within the JCSG pipeline may mitigate this. Similarly, the resolu-

tion truncation protocol used in for low resolution tests may lead to different results

compared to genuine low resolution data sets. In our case, the resolution truncation

procedure leads to better phases at low resolution than from a real low resolution data

set. Finally, the evaluation criteria also dictate the results; in particular the counting of

correctly placed and sequenced alpha carbons appear to penalize ARP/wARP at lower

resolutions compared to the results of R-work/R-free comparisons. Which model is

more desirable will depend on the needs of the downstream user.

3.8 Data and methods

The comparison tool code, the structures built by the pipelines and logs files and

the data used are available at https://www.doi.org/10.15124/d4cb35df-a42d-

4365-b539-9868730d165f.
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Chapter 4

Pairwise running of automated

crystallographic model-building

pipelines

In this chapter, we examine the usefulness of combining the existing protein model

building pipelines to improve the built protein structures by running them in pairwise

combinations. To this end, the chapter presents the use of pairwise pipeline combina-

tions to build protein models for the same crystallography data sets as in Chapter 3,

and uses structure completeness and R-free to assess the evaluate the resulting protein

models.

4.1 Abstract

For the last two decades, researchers have worked independently to automate protein

model-building, and four widely used software pipelines have been developed for this

purpose: ARP/wARP, Buccaneer, PHENIX AutoBuild, and SHELXE. Here, we exam-

ine the usefulness of combining these pipelines to improve the built protein structures

by running them in pairwise combinations. Our results show that integrating these

pipelines can lead to significant improvements in structure completeness and R-free.

In particular, running PHENIX Autobuild after Buccaneer improved structure com-

pleteness for 29% and 75% of the data sets we examined at original resolution and

simulated lower resolution, respectively, compared to running PHENIX Autobuild on

its own. In contrast, PHENIX AutoBuild alone produced better structure completeness

than the two pipelines combined for only 7% and 3% of these data sets.
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4.2 Introduction

X-ray crystallography has been used for several decades for the determination of pro-

tein structures with RNA/DNA, accounting for 90% of the deposited protein structures

in the Protein Data Bank as of 2020 [1, 2]. Multiple steps are required to obtain a pro-

tein structure, starting with the crystallization process, obtaining an electron-density

map from the diffraction pattern, and building the protein structure. Researchers have

investigated ways to automate the building step, and four widely used pipelines have

been developed: ARP/wARP [13, 14, 15, 16, 17], Buccaneer [18, 19], PHENIX Auto-

Build [20, 86], and SHELXE [21, 22, 23, 24]. RNA/DNA can also be built automati-

cally by PHENIX AutoBuild and other tools. The performances of these pipelines vary

depending on electron-density map quality indicators such as resolution and phases. In

Chapter 3, we conducted a comparison between these pipelines, and we found that the

performance of the pipelines differs from one structure to another, which suggests that

there is no best pipeline for all protein structures, although there is often a best pipeline

for each protein structure [11].

Researchers have focused on different aspects of the protein-building problem

and have developed appropriate methods depending on the coverage of their test data

sets. As a result, pipelines tend to perform well when they are run using data sets with

similar features to those that were used in developing the pipeline. Having data sets

with different features generally makes the pipelines perform poorly. We addressed

this matter here by running the pipelines in pairwise combinations, where the first

pipeline from the combination built a protein structure as an initial structure for the

second pipeline. Using these pairwise pipeline combinations often improved the final

protein structure compared to using only one pipeline.

4.3 Data sets

We used the original data sets from [72], which have resolutions between 1.9 Å and

3.2 Å, and synthetic data sets obtained by truncating the original data sets to 3.2 Å, 3.4

Å, 3.6 Å, 3.8 Å and 4.0 Å (synthetic-resolutions) as described in Chapter 3. As in our

comparison paper, 52 original data sets used in the development of Buccaneer and their
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truncated resolutions were omitted from the main results (and are only presented in the

supplementary material). This gave us 202 original and 1009 synthetic-resolution data

sets initially, and 150 original and 750 synthetic-resolution data sets after omitting the

Buccaneer development data sets.

Similarly large data sets of over 1000 structures have recently been used to im-

prove ARP/wARP [87]. However, we were unable to use these data sets because this

Chapter builds on Chapter 3, which used the original and synthetic data sets described

above.

The density modification was done by Parrot [50]. Phase improvement was per-

formed on the experimental phasing data, but NCS averaging was not used for those

structures where NCS was present, with the aim of providing starting data with poorer

phases both to test the limits of the model-building algorithms and to better simulate

the poorer phases typically associated with lower resolution data sets.

4.4 Method of the pairwise running

We ran the same versions of pipelines as in Chapter 3 to compare individual pipelines

with combined pipelines and the same high-performance cluster. As in Chapter 3, we

allowed a maximum of 48 hours for the building of each structure because that was the

highest time limit that the majority of our cluster nodes allowed.

Unlike in Chapter 3, here we tried to achieve the best performance of the pipelines,

and to do that we changed the default parameters as necessary. “Rebuild in place” is a

feature of PHENIX AutoBuild to improve input structure without adding or removing

residues, it is based on removing and rebuilding a small segment of the main chain at a

time with maintaining residues type, and it is used by default when the input structure

is close to the correct structure [20]. PHENIX AutoBuild is unable to use “rebuild

in place” when the initial structure contains unknown residues that cause a mismatch

between the input model chains and the model sequence as matching is required to use

this feature. This occurred in 13.7% and 3.5% of the structures built by Buccaneer and

ARP/wARP, respectively. We forced PHENIX AutoBuild not to use this feature if it

failed in the first attempt. An alternative workaround for this scenario is to remove the

unknown residues before using the initial structure in Phenix AutoBuild.
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SHELXE was not run after other pipelines because it only builds the main chain,

while other pipelines build complete structures. However, SHELXE structures were

used as input for other pipelines as the initial structure. Additionally, SHELXE struc-

tures were only built for the original-resolution data sets, as the synthetic structures

fall outside the resolution range recommended for SHELXE.

We considered the same evaluation measures as in Chapter 3 except R-work. The

different model parameterizations used by different model building programs lead to

overfitting and underestimation of R-work in some cases, so we focus on R-free in this

comparison. While the use of a free set is not normally recommended for ARP/wARP,

in this experiment we are not primarily interested in individual pipeline performance,

so we used a free set for analysis purposes [87]. ARP/wARP does not necessarily

set aside the same free reflections as the other pipelines, so the REFMAC evaluation

step was changed to use the same free set as that chosen by ARP/wARP when run

immediately after ARP/wARP. Dummy atoms were not removed unless ARP/wARP

removed them, as they did not significantly affect R-free.

In the next section, we deemed one pipeline or pipeline combination better than

another when it produced an improvement of at least 5% in the relevant measure (com-

pleteness or R-free); other improvement thresholds are reported in Appendix B. Execu-

tion time was not considered here, as this was compared before for individual pipelines

in Chapter 3.

4.5 Results

4.5.1 Overview

We present the results of our comparison using the pipeline and pipeline combination

identifiers defined in Table 4.1. Table 4.2 shows the number of “complete”, “inter-

mediate” and “failed” data sets for each of the pipeline variants (i.e., pipelines and

pipeline combinations) that we used in our experiments. The data sets were marked as

“intermediate” either when the 48-hour time limit was reached while the pipeline was

still executing, or when the pipeline stopped/crashed before building the final structure.

Data sets for which no structure was built were marked as “failed” and this occurred

when the time limit was reached before the pipeline built an intermediate model.
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Table 4.1: Pipeline and pipeline combination identifiers (IDs) used to present the re-
sults.

ID Description

A ARP/wARP
B Buccaneer in CCP4i using 5 iterations
P PHENIX AutoBuild
P∗ PHENIX AutoBuild with Parrot
S SHELXE
S∗ SHELXE with Parrot
x → y Pairwise pipeline combination, with pipeline y executed after pipeline x, e.g., A→P∗ denotes

the pairwise combination in which PHENIX AutoBuild with Parrot is run after ARP/wARP

As shown in Table 4.2, structures were successfully built for most of the data sets;

the pipelines only failed to build six data sets (original and synthetic data sets) out

of 1211 data sets. After omitting the 52 data sets (used in Buccaneer development,

cf. Section 4.3) and the failed data sets, 148 (original) and 746 (synthetic) data sets

were used in the analysis, representing 74% of the original and synthetic data sets.

Table 4.3 shows the mean and standard deviation (SD) for the structure complete-

ness and R-free achieved for these data sets by each pipeline variant. The pipelines

built structures with high completeness from the original data sets, the majority of

which are better than 2.5 Å. The highest mean completeness was 94% with 11% SD

(for PHENIX AutoBuild followed by Buccaneer), compared to the lowest mean com-

pleteness of 78%, with 33% SD (for SHELXE followed by ARP/wARP). The highest

mean completeness dropped to 50% with 30% SD for the synthetic data sets, whose

resolution ranges from 3.2 Å to 4.0 Å. From the original data sets, the pipelines built

the structures with a mean R-free between 0.26-0.33 and a SD between 0.04-0.10.

When building the structures from synthetic data sets, the mean R-free increased to

between 0.38-0.52 with SD between 0.05-0.08.

4.5.2 Structure completeness

Figure 4.1 shows the structure-completeness results for the original-resolution data

sets. Running the pipelines in pairwise combinations shows significant improvements

compared to running a single pipeline. For example, both PHENIX AutoBuild post

ARP/wARP and Buccaneer post ARP/wARP achieved at least 5% higher structure

completeness than ARP/wARP alone for 28% or more of the data sets; in contrast
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Table 4.2: Complete and intermediate models produced by the 23 pipeline variants for
the original and synthetic-resolution data sets, where ‘(T)’ and ‘(C)’ denote intermedi-
ate models produced by pipeline executions that timed out and crashed, respectively.

Pipeline variant original synthetic

Complete Intermediate Failed Complete Intermediate Failed

A 202 0(T) 0(C) 0 1008 1(T) 0(C) 0

A → P∗ 201 1(T) 0(C) 0 1007 2(T) 0(C) 0

A→B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0

B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0

B → P∗ 197 4(T) 0(C) 1 1005 0(T) 0(C) 4

P∗ 199 1(T) 1(C) 1 1001 8(T) 0(C) 0

P∗ → A 200 1(T) 0(C) 1 1008 1(T) 0(C) 0

P∗→B 201 0(T) 0(C) 1 1009 0(T) 0(C) 0

S∗ 200 2(T) 0(C) 0 - - -
S∗→A 202 0(T) 0(C) 0 - - -
S∗→B 202 0(T) 0(C) 0 - - -
S∗→P∗ 196 4(T) 0(C) 2 - - -
A→P 199 2(T) 0(C) 1 1009 0(T) 0(C) 0

B→P 200 0(T) 0(C) 2 1003 2(T) 0(C) 4

P 199 1(T) 0(C) 2 1001 7(T) 0(C) 1

P→A 200 0(T) 0(C) 2 1002 6(T) 0(C) 1

P→B 200 0(T) 0(C) 2 1008 0(T) 0(C) 1

S 200 2(T) 0(C) 0 - - -
S→A 202 0(T) 0(C) 0 - - -
S→B 202 0(T) 0(C) 0 - - -
S∗ → P 197 3(T) 0(C) 2 - - -
S→P∗ 198 2(T) 0(C) 2 - - -
S→P 197 3(T) 0(C) 2 - - -
Models used in the comparison: 148 original and 746 synthetic .

ARP/wARP on its own was better than the two pipeline combinations for only 6%

and 7%, respectively, of the data sets. Similarly, running PHENIX AutoBuild after

Buccaneer increased the completeness for 30% of the data sets compared to running

Buccaneer on its own, while Buccaneer alone was only better than this pipeline com-

bination for 7% of the data sets.

Running PHENIX AutoBuild in combination with Buccaneer led to higher com-

pleteness than using ARP/wARP after or before PHENIX AutoBuild. Using Buc-

caneer to build an initial structure for PHENIX AutoBuild resulted in completeness

improvements (of at least 5%) for 24% of the data sets, compared to only 10% when
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Table 4.3: Mean and standard deviation (SD) for the structure completeness and R-free
for the original and synthetic data sets. The tables are sorted by structure completeness.

Original data sets

Pipeline Completeness R-free

mean SD mean SD

P∗→B 94 11 0.30 0.04

B→P∗ 93 8 0.26 0.04

B→P 93 10 0.26 0.04

S→P∗ 92 7 0.26 0.04

S∗→P∗ 92 9 0.26 0.04

S∗→P 92 9 0.26 0.04

S→P 92 9 0.26 0.04

P∗→A 92 11 0.28 0.04

P→B 92 14 0.31 0.05

P∗ 91 10 0.26 0.04

P 90 15 0.27 0.05

A→P 90 16 0.27 0.06

A→P∗ 90 17 0.27 0.06

P→A 89 17 0.28 0.06

S→B 89 18 0.32 0.06

S∗→B 89 18 0.32 0.06

A→B 88 22 0.32 0.06

B 85 23 0.33 0.07

S∗ 82 18 - -

S∗→A 81 31 0.30 0.09

A 80 30 - -

S 79 21 - -

S→A 78 33 0.31 0.10

Synthetic data sets

Pipeline Completeness R-free

mean SD mean SD

P∗→B 50 30 0.43 0.08

B→P 49 29 0.38 0.07

P→B 49 30 0.43 0.08

B→P∗ 48 29 0.38 0.07

B 42 31 0.45 0.08

A→B 40 32 0.45 0.09

P∗ 25 16 0.42 0.05

P 25 16 0.42 0.05

A→P 21 18 0.41 0.08

A→P∗ 20 18 0.41 0.08

A 3 9 - -

P∗→A 2 8 0.51 0.06

P→A 2 8 0.52 0.06

ARP/wARP was used to build an initial model. These results dropped slightly to 20%

and 9%, respectively, when Parrot was used before PHENIX AutoBuild.

It is interesting to consider to what extent the pairwise combination of pipelines

produces a better model compared to running both of the component pipelines and

picking the best result; this allows us to distinguish between the case where the sec-

ond pipeline simply conserves the good features of the first and where the pipelines

have complementary features which can augment one another. Table 4.4 shows the

percentage of the original and synthetic data sets that are built at least 5% higher in

structure-completeness by the combined pipelines or either of the two pipelines alone.

Running PHENIX AutoBuild alone built the structures with higher completeness com-

pared when ARP/wARP ran before it, 11% and 49% of the original and synthetic
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Figure 4.1: Structure completeness comparison for the models generated from the orig-
inal data sets. Each plot corresponds to a pipeline variant, and shows the percentage
(rounded to the nearest integer) of structures that the pipeline variant built with at least
5% higher structure completeness than each of the other pipeline variants.

data sets, respectively, built with higher completeness by PHENIX AutoBuild alone

compared to 8% and 10% of the original and synthetic data sets, respectively when

ARP/wARP ran in combination with PHENIX AutoBuild. However, Buccaneer with

PHENIX AutoBuild showed greater benefits; only 2% and 11% of Buccaneer mod-

els built from the original and synthetic data sets respectively are better in terms of

structure-completeness, compared to 14% and 41% of both data sets built with higher
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completeness when PHENIX AutoBuild ran after Buccaneer.

Table 4.4: Structure completeness and R-free comparison for the original and syn-
thetic data sets, indicating how often pairwise running outperforms either of the com-
ponent pipelines. Each row corresponds to a pipeline variant, and shows the percentage
(rounded to the nearest integer) of the models that either the combined pipeline (x → y)
or the individual pipelines alone (x or y) built at least 5% higher structure completeness
and lower R-free.

Pipeline variant Original Synthetic

Completeness R-free Completeness R-free

x → y x y x→ y x y x→ y x y x→ y x y

A→B 14 3 8 - - - 27 0 33 - - -

A→P∗ 6 3 11 - - - 12 1 50 - - -

A→P 8 4 11 - - - 10 0 49 - - -

B→P∗ 9 3 5 3 0 2 40 14 4 30 1 4

B→P 14 2 2 4 0 3 41 11 2 29 1 4

P∗ → A 6 11 1 - - - 1 91 1 - - -

P∗ → B 14 3 2 0 29 0 47 7 17 9 23 4

P→A 6 12 3 - - - 0 91 1 - - -

P→B 17 7 3 0 36 0 42 7 18 8 24 5

S→A 6 11 16 - - - - - - - - -

S→B 22 4 11 - - - - - - - - -

S → P∗ 9 4 8 - - - - - - - - -

S→P 13 4 7 - - - - - - - - -

S∗ → A 7 13 9 - - - - - - - - -

S∗ → B 21 6 11 - - - - - - - - -

S∗ → P∗ 5 3 7 - - - - - - - - -

S∗ → P 12 5 7 - - - - - - - - -

Figure 4.2 shows the mean completeness for both original and synthetic data sets.

Combined pipelines outperformed individual pipelines at resolution 1.0Å-2.0Å, and

Buccaneer post PHENIX AutoBuild with Parrot outperformed the other pipeline vari-

ants at resolutions worse than 3.1 Å. PHENIX AutoBuild after Buccaneer obtained

close results at resolutions worse than 3.1 Å, and ARP/wARP combined with PHENIX

AutoBuild performed poorly at these resolutions.

Figure 4.3 shows how the mean completeness varied with the mean initial map

correlation (F-map) for the original data sets. ARP/wARP running after PHENIX

AutoBuild with Parrot at an initial map correlation lower than 0.5 led to above 90%

completeness compared to running ARP/wARP on its own, which achieved lower than

60% completeness. When initial phases are better, the majority of the pipeline results
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Figure 4.2: Mean completeness for the protein models built for all data sets. The data
sets are grouped into bins based on their resolution, with the number of data sets in
each bin shown in brackets under the graph.The insets figure indicated the pipelines
that achieved the highest, middle and lowest mean completeness across the data sets
bins.

reach higher than 90% completeness between 0.7-0.9.

Figure 4.3: Mean completeness for the models built for the original data sets, grouped
into bins based on their initial map correlation (F-map correlation); the number of data
sets in each bin is reported in brackets under the graph. The insets figure indicated the
pipelines that achieved the highest, middle and lowest mean completeness across the
data sets bins.
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Figure 4.4: Mean residues incorrectly built for the protein models built for all data sets.
The data sets are grouped into bins based on their resolution, with the number of data
sets in each bin shown in brackets under the graph. The number of residues incorrectly
built was normalized through dividing it by the number of residues in the deposited
model. The insets figure indicated the pipelines that achieved the highest and lowest
mean residues incorrectly built across the data sets bins.

Figure 4.4 shows the fraction of incorrect residues built for both original and

synthetic data sets. Compared to other pipelines, a known problem of using Buccaneer

is that Buccaneer may build a large number of incorrect residues, which can be 50%

of the structure at 4.0 Å. PHENIX AutoBuild outperformed Buccaneer in lowering the

number of incorrect residues, and using PHENIX AutoBuild post Buccaneer reduced

junk residues to around 30% of the structure at 4.0 Å.

Figure 4.5 provides an illustration of a case for which pairwise running of two

pipelines gave substantially better results than either pipeline alone, in this case, the

structure 2AWA. The Buccaneer model is substantially incomplete, which some cor-

rectly traced fragments but only 8% of the sequence correctly docked. The PHENIX

AutoBuild model is more complete, but still only 59% of the sequence is correctly

docked. When both pipelines are used, a largely complete model is obtained and cor-

rectly sequenced. Running PHENIX AutoBuild with Parrot after Buccaneer built a

structure with higher completeness that is 91%.
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Buccaneer PHENIX AutoBuild(Parrot)

Buccaneer after PHENIX AutoBuild(Parrot) PHENIX AutoBuild(Parrot) after Buccaneer

Figure 4.5: Four structures built by Buccaneer, PHENIX AutoBuild(Parrot) and their
combinations, and compared to the deposited structures. The chains of deposited struc-
tures are coloured in red and black bonds. The PDB ID is 2AWA, and its resolution is
2.7 Å.

4.5.3 R-free

Figure 4.6 shows the R-free results for the original-resolution data sets. Similar to the

completeness comparison from Section 4.5.2, individual pipelines performed worse

than when we used them in combination with other pipelines. Comparing Buccaneer

on its own to the combination in which it was followed by PHENIX AutoBuild shows

significant improvement by including AutoBuild, as the structures produced for 65%

of the data sets decreased (by at least 5%) in R-free when PHENIX AutoBuild ran after
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Buccaneer. None of the structures built by Buccaneer on its own was better in R-free

than those built by PHENIX AutoBuild after Buccaneer.

Figure 4.6: Comparison of R-free (rounded to two decimal places) for the structures
generated from the original data sets. Each plot shows the percentage of models that a
pipeline variant built with R-free at least 5% lower than each other pipeline variant.

Finalising the structures with Buccaneer as the second pipeline of a pipeline com-

bination caused high R-free, while starting with a Buccaneer structure as an initial

model for other pipelines was more effective. As shown in Table 4.4, Buccaneer after

PHENIX AutoBuild did not improve R-free compared to PHENIX AutoBuild alone
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Figure 4.7: Mean protein model R-free for the data sets partitioned into classes based
on their resolution. The number of data sets in each class is indicated in brackets under
the graph. The insets figure indicated the pipelines that achieved the highest, middle
and lowest mean R-free across the data sets bins.

as 36% of the original data sets have lower R-free. Running PHENIX AutoBuild after

Buccaneer improved 4% of the original data sets in terms of R-free and no Buccaneer

models have lower R-free than the combination. Following PHENIX AutoBuild by

ARP/wARP generated better results than using Buccaneer after PHENIX AutoBuild.

ARP/wARP built 17% of the data sets with better R-free than Buccaneer, while only

3% were built better by Buccaneer compared to ARP/wARP.

Figure 4.7 shows the mean R-free for the data sets grouped into classes based

on their resolution. Running PHENIX AutoBuild with Parrot after ARP/wARP or

Buccaneer led to lower R-free at resolutions better than 1.9 Å compared to Buccaneer

or ARP/wARP run after PHENIX AutoBuild. The combination of Buccaneer and

PHENIX AutoBuild achieved the lowest R-free across all pipeline combinations at

resolutions worse than 3.1Å, while ARP/wARP after PHENIX AutoBuild achieved

the highest R-free for the same resolution range.

4.5.4 Structure correlation

Figure 4.8 shows mean correlation between built protein models and final deposited

protein models grouped into classes based on their resolution. At resolution better than
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3.2 Å, all the pipeline variants achieved structure correlation higher than 0.8, however,

only PHENIX AutoBuild with and without Parrot after Buccaneer still achieved the

same figure at 4.0 Å. Structure correlation for ARP/wARP after PHENIX AutoBuild

variants dropped significantly at 3.2 Å to below 0.6 and below 0.5 at worse than 3.6 Å.

Figure 4.8: Mean correlation between built protein model and final deposited pro-
tein model partitioned into classes based on their resolution. The number of data sets
in each class is indicated in brackets under the graph. The insets figure indicated
the pipelines that achieved the highest, middle and lowest mean structure correlation
across the data sets bins.

4.6 Discussion

We presented pairwise running of widely used model-building pipelines using original

and lower resolution simulation data sets, and we focused on the successful combina-

tions. We have focused on the results of running pipelines in sequence with at most

minor adjustments to the pipeline options, however in future it may be possible to pro-

duce further improvements by deeper integration of methods from different pipelines.

Combining the pipelines improved the structure built by the first pipeline in most

of the data sets. The significance of the improvement depended on the limitations of

the first pipeline and the ability of the second pipeline to address these limitations.

Running Buccaneer after PHENIX AutoBuild improved the structure completeness at

resolutions worse than 3.1 Å, as it is known that PHENIX AutoBuild is more effec-
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tive at resolutions better than 3.0 Å. Running the same two pipelines in reverse order

yielded better results than either pipeline because PHENIX AutoBuild was able to ad-

dress poor finalization of the model by Buccaneer, leading to improved R-free.

When we compared the structure completeness on the basis of the initial map

correlation, few pipeline combinations performed well when the initial phases were

poor. ARP/wARP after PHENIX AutoBuild obtained the best results when PHENIX

AutoBuild ran after Parrot. Also, PHENIX AutoBuild after SHELXE, and Buccaneer

after PHENIX AutoBuild with Parrot obtained close results. We notice from these

combinations that the pipelines that do density modification internally during model-

building produced a good structure for others to use as an initial structure. For example,

Buccaneer after SHELXE showed better results than Buccaneer alone as SHELXE

contributes substantially to phase quality and Buccaneer performance is affected by

the quality of the phases.

When comparing R-free, most of the pipeline variants achieved close R-free at

resolutions better than 3.1 Å, and PHENIX AutoBuild ran after Buccaneer outper-

formed the others at resolutions worse than 3.1Å. ARP/wARP run after PHENIX Au-

toBuild, and Buccaneer run after ARP/wARP were the worst combinations at resolu-

tions worse than 3.1Å, as they produced structures with the highest mean R-free values.

In line with R-free results, PHENIX AutoBuild ran after Buccaneer built the protein

structures close to the deposited structures based on the structure correlation.

The results of our comparison show the usefulness of pipeline combinations in-

stead of running them individually. Pairwise pipeline combinations have the ability

to fix errors caused by the first pipeline in the combination. For instance, Buccaneer

alone often produced a highly complete structure but with a large number of incorrect

residues due to its building method. In contrast, when Buccaneer was followed by

PHENIX AutoBuild, the number of incorrect residues significantly reduced because

of the ability of PHENIX AutoBuild to fix the structure without adding new residues.

The pipelines that do not perform density modification as a part of model-building

(e.g., ARP/wARP and Buccaneer) showed the worst results against the initial map cor-

relation (correlation < 0.5). Therefore, combining ARP/wARP and Buccaneer with

PHENIX AutoBuild produced a more complete structure than that generated by either

ARP/wARP or Buccaneer alone, both when PHENIX AutoBuild was used on its own
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or with Parrot. The performance of the pipelines might be biased due to our approach

in truncating the data sets to lower resolution, as genuinely low-resolution results from

the crystalline disorder as increasing of the disorder drop off the scattering as well as

increased phase errors due to lower signal to noise going into the phasing calculation,

which these not simulated in the truncation approach , however this was necessary due

to the difficulty of obtaining large real data sets.

The decision of which pipeline to start with depends on the quality of the electron-

density map. When the initial phases are not good, starting with a pipeline that includes

density modification is the most effective approach. However, the decision can change

from one structure to another, even if the structure features are very similar. Running

all these pipelines variants can be time-consuming, and there is not one individual

or combined pipeline that is the best across all resolution ranges. Developers are in-

evitably influenced by their own interests and by the coverage of their test data sets.

Combining features from different model building pipelines improves model building

results because in many cases the complementary features of models from different

pipelines are preserved. Further efforts to understand the strengths and weaknesses of

different tools may allow further improvements through a more systematic approach

to combining components from different pipeline. Moreover, further research is re-

quired to provide users with clear guidelines for which individual pipeline or com-

bined pipeline is the best depending on their model features, for example, the quality

of initial phases, as shown in this chapter and Chapter 3 affect the model compilation.

.

4.7 Data and methods

The structures built by the pairwise pipeline combinations and the associated logs files

are available at https://doi.org/10.15124/4b7c880a-d6b0-471a-a379-d52c4ee947fe.
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Chapter 5

Predicting the performance of

automated crystallographic

model-building pipelines

In this chapter, we present a machine learning model for predicting the performance

of crystallographic model-building pipelines. We used the data sets from Chapter 3

in addition to two other data sets to train an ML model that accurately predicts the

R-free, R-work and structure completeness of the protein model that each pipeline and

pairwise pipeline combination can build from a given crystallography data set.

5.1 Abstract

Proteins are macromolecules that perform essential biological functions which depend

on their three-dimensional structure. Determining this structure involves complex

laboratory and computational work. For the computational work, multiple software

pipelines have been developed to build models of the protein structure from crystal-

lography data. Each of these pipelines performs differently depending on the charac-

teristics of the electron-density map received as input. Identifying the best pipeline to

use for a protein structure is difficult, as the pipeline performance differs significantly

from one protein structure to another. As such, researchers often select pipelines that

do not produce the best possible protein models from the available data.

Here, we introduce a software tool which predicts key quality measures of the

protein structures that a range of pipelines would generate if supplied with a given

crystallography data set. These measures are crystallographic quality-of-fit indicators
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based on included and withheld observations, and structure completeness. Extensive

experiments carried out using over 2500 data sets show that our tool yields accurate

predictions for both experimental phasing data sets (at resolutions between 1.2Å and

4.0Å) and molecular replacement data sets (at resolutions between 1.0Å and 3.5Å).

The tool can therefore provide a recommendation to the user concerning the pipelines

that should be run in order to proceed most efficiently to a depositable model.

5.2 Introduction

The first protein structures were determined in the 1950s using X-ray crystallography

[88]. By 2020, the number of solved protein structures deposited in the Protein Data

Bank (PDB) exceeded 154,000 [1, 2]. To enable this progress, researchers have auto-

mated the computational work of determining the protein structure from X-ray crys-

tallography data sets. Multiple protein model-building pipelines have been developed

within the last three decades: ARP/wARP [13, 14, 15, 17, 16] Buccaneer [18, 19]

PHENIX AutoBuild [20, 86] and SHELXE [21, 22, 23, 24]. In recent studies, we

showed that the performance of these pipelines differs significantly from one protein

structure to another in Chapter 3—which makes selecting a particular pipeline difficult;

and that using a pair of pipelines is sometimes the best option [89]—which greatly in-

creases the number of options that crystallographers can choose from.

An important step in building the protein structure involves solving the phase

problem. The phase problem may be solved by either molecular replacement or exper-

imental phasing methods, e.g. McCoy and Read [7] and Evans and McCoy [6]. These

methods lead to electron-density maps with rather different properties: in the case of

experimental phasing, the maps usually contain noise due to ambiguity in the experi-

mental phasing, whereas in the molecular replacement case the errors in the map can

arise from possible bias towards the molecular replacement model. The resolution of

the experimental observations, the quality of experimental phasing or the similarity of

the molecular replacement model, and many other features such as ice rings may also

affect the quality of the data. Each of these factors impact the performance of different

model-building algorithms in different ways [10, 11, 12].

The model building process also contains stochastic elements. The placement of
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a first atom or residue in a chain will in turn influence the placement of all subse-

quent elements, and so substantially different model building results may be obtained

from very slight perturbations of the initial conditions. This is addressed in one model

building pipeline by building multiple models at each stage of the process [20].

We examined a selection of 3273 research papers cited in PDB to evaluate how

crystallographers currently choose which model-building software pipeline to use, by

searching for occurrences of the pipeline names in the text of each paper, and exclud-

ing papers where the search results were ambiguous or multiple tools were mentioned.

The results are plotted against year, journal, and the country of the first author in Fig-

ure 5.1. The most striking feature of this analysis is the correlation between the first

author’s country and the country where each pipeline has been developed, with US

researchers more likely to use PHENIX Autobuild, UK researchers more likely to use

Buccaneer, and German researchers more likely to use ARP/wARP. While there are

practical reasons which might explain this correlation (e.g. access to developers and

workshops), it would be surprising if cognitive biases such as the affinity bias [90], to

which we are all subject, did not play a role.

To help eliminate this bias, we have developed a software tool that uses a machine

learning (ML) model to predict the performance of a wide range of model-building

pipelines and pipeline combinations for a given crystallography data set. Our predic-

tion tool serves three purposes:

• To provide users with a more efficient route to a higher-quality depositable struc-

ture for their specific data set.

• To challenge users to try different pipelines, and multiple combinations of pipelines,

on the basis of likely performance rather than on the basis of familiarity or affin-

ity to the pipeline developers. Given that all pipelines provide very convenient

user interfaces, the overhead of trying a new pipeline will cost less than the effort

of model completion from a suboptimal starting point.

• To assist future developers in the development of meta-tools which make use of

multiple pipelines to further automate the process of structure solution and to

obtain more complete models.

To the best of our knowledge, this is the first ML solution that guides the user
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in the selection of the model-building pipelines best suited for a given crystallography

data set. While a predictive model that employs similar ML techniques was recently

proposed in Vollmar et al. [12], that model addresses the complementary problem of

predicting the usefulness of collected crystallography data sets.

(a)

(c)

(b)

Figure 5.1: Analysis of the crystallographic model-building pipelines used in 3273
PDB protein-structure research papers published between 2010 and 2020. The papers
were identified using either their PubMed Identifier or DOI obtained from PDB. We
omitted the research papers that used multiple pipelines. We compared the number
of uses of each pipeline in its base country, depending on the home country of the
first author’s organization. (a) The number of research papers across the publication
years for each pipeline. (b) The journals where the research papers were published,
where the journals with under 50 research papers are combined into one group. (c)
The number of uses for each pipeline in its base country, and across the rest of the
world; the pipeline names are shown in bold in their base-country plot.

5.3 Predictive model

5.3.1 Data sets

We used data sets from three sources to train and evaluate our ML predictive model:

1203 experimental phasing data sets from the Joint Center for Structural Genomics

(JCSG) [72, 11] (same as the data sets used in Chapter 3), 32 newer experimental phas-
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ing data sets deposited between 2015–2021 and taken from PDB, and 1332 molecular

replacement (MR) data sets from [26]. These data sets correspond to two techniques

that can be used to build a protein structure; experimental phasing and MR (as ex-

plained in Chapter 2).

The resolution of JCSG experimental phasing data sets ranges from 1.2 Å to 4.0

Å, with the low resolution data sets augmented by simulation as in Chapter 3;the phases

were solved using SAD/MAD techniques[72]; the resolution of the PDB experimen-

tal phasing data sets ranges from 1.1 Å to 5.8 Å; and the resolution of the MR data

sets ranges from 1.0 Å to 3.5 Å. Lower resolution data sets have fewer experimental

observations, which decreases the performance of the protein-building pipelines.

The way in which we partitioned these data sets into data for the training and data

for the evaluation of our ML model is described in Section 5.3.5.

5.3.2 Crystallographic model-building pipelines

The four pipeline versions used in our work are PHENIX AutoBuild v.1.14, Buccaneer

in CCP4i v.7.0.066, ARP/wARP v.8 and SHELXE v.2019/1. These pipelines were run

using the default parameters, both individually and in pairwise combinations where the

protein model produced by a first pipeline x was supplied as input to a second pipeline

y.

5.3.3 Protein structure evaluation

We focused on predicting three protein-structure evaluation measures, namely R-free/R-

work and structure completeness (as described in Chapter 3).

5.3.4 Electron-density map features

We trained our ML prediction model using as input features (i) the resolution of the

crystallography data set; and (ii) the following measures of the quality of the electron-

density map:

• RMSD—the root-mean-square deviation of the electron-density from the mean

of the map;
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• Skew—the third moment of the electron-density about the mean, which mea-

sures the asymmetry of the electron density histogram [91];

• Maximum density—the highest density of the electron-density map;

• Minimum density—the lowest density of the electron-density map;

• Sequence identity—the sequence identity calculated through superposition of

the homologue chain onto the target chain using GESAMT [92, 26].

5.3.5 Predictive model training

The individual pipelines were run on all data sets from Section 5.3.1. The pipeline

combinations were only run on the experimental phasing data sets, as building pro-

tein models from such “raw data” can often be improved by using pipeline combina-

tions [89]. The results of these runs are described in detail in in Chapters 3 and 4. The

data sets and the protein structures obtained from these runs were used to train and

evaluate the predictive ML model as follows:

• 80% of the JCSG experimental phasing data sets, and 80% of the MR data sets

were used to train the predictive model;

• the remaining 20% of the JCSG experimental phasing and MR data sets, and all

32 PDB experimental phasing data sets were used to evaluate the trained model.

We used random forests [56] as implemented in Weka framework [93, 94] for the

predictive model, as this approach showed the lowest error rate across the ML algo-

rithms that we tested, and that included support vector machine [95] and the RepTree

decision tree algorithm. We varied the number of trees in the random forest from 1 to

5000 in geometric sequence, and 1024 was chosen for the final training, as this showed

the lowest error rate. The depth of the trees was set to unlimited and bagging [96] was

used to reduce the variance. We trained the predictive model using a 173-node high-

performance cluster with 7024 Intel Xeon Gold/Platinum cores and a total memory of

42 TB.

A separate regression ML model (random forests model) was trained for each

of the 24 pipeline variants (i.e., individual pipelines or pipeline combinations) from
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Table 5.1 and for each of the three structure-evaluation measures from Section 5.3.3

relevant to the considered pipeline variant. For instance, R-free is not relevant for

ARP/wARP and SHELXE with and without Parrot used on their own, so no ML model

was built for these individual pipelines and R-free. We obtained 69 and 10 regression

ML models in total for experimental phasing and for MR, respectively. Our predictive

model consists of these regression ML models taken together.

We used the root-mean-square error (RMSE) and mean absolute error (MAE)

measures to compare the accuracy of our predictive model to that of a “baseline” pre-

dictive model. In line with the standard practice for the evaluation of regression mod-

els, we used zero-R algorithm as a baseline predictive model [97]. Given a pipeline

variant and any evaluation data set, the zero-R algorithm predicts that the R-free/R-

work and structure completeness for the structure built by the pipeline would be the

same as the median R-free/R-work and structure completeness for the training data

sets, respectively.

To evaluate the accuracy of the predictive model for data sets of different reso-

lutions, we partitioned the evaluation data sets into classes based on their resolutions,

and we examined the prediction errors for each such class. Finally, to show the time

saved by running only the pipeline variant predicted to build the best protein structure

for a data set, we compared the execution time of this pipeline to the time required to

run all the pipeline variants for that data set.

To quantify the uncertainty of the ML prediction, we calculate prediction intervals

using the kernel estimator method from [98]. The width of these intervals reflects

the prediction uncertainty. As such, we sort and report the pipelines in increasing

prediction interval width order, with the pipelines of similar prediction uncertainty

(i.e., with no more than 5% difference in prediction interval width) grouped together.

Finally, we generate a script for each pipeline and pipeline combination, ensuring

that the users of our tool can run the individual pipelines and pipeline combinations in

the manner used to obtain the training data sets for our ML prediction model. Further-

more, these ready-to-run scripts are customized based on the data provided by the tool

users.
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5.4 Predictive model evaluation

5.4.1 Evaluation of crystallography data set features used for

model training

We evaluated the importance of the features used to train our predictive model by re-

moving one feature at a time and comparing the accuracy of the model trained without

that feature to the accuracy of the predictive model when trained on all the features.

Figure 5.2 shows the difference in MAE and RMSE when one feature is removed com-

pared to when all the features are used in the training, for each of the four individual

pipelines, with separate MAE and RMSE presented for the JCSG experimental phasing

and the MR data sets.

Figure 5.2: Ablation studies showing the difference in mean absolute error (MAE) and
root mean squared error (RMSE) between when ML model trained on all features and
when one feature is removed at a time. Higher values indicate more important features.

This analysis indicates that Phenix AutoBuild and ARP/wARP are more depen-

dant on the data set resolution than Buccaneer, in line with previous results in Chapter

3. However, Phenix AutoBuild and ARP/wARP are less sensitive to the resolution for
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MR data sets compared to experimental phasing data sets. RMSD and skew have dif-

ferent effects on the performance of the pipelines. For example, Buccaneer is affected

by these two features more than Phenix AutoBuild for the experimental phasing data

set, indicating a greater dependence on the noise level in the starting map. For MR data

sets, the sequence identity affected the performance of all pipelines, with the highest

effect for Buccaneer.

5.4.2 Evaluation of predictive model performance

Table 5.1 shows the MAE and RMSE for both types of data sets (experimental phasing

and MR), for each of the three protein structure evaluation measures. For the JCSG

experimental phasing data sets, both the MAE (0.04–0.19) and RMSE (0.08–0.26) of

predicting the protein structure completeness are higher than the MAE and RMSE

for the other measures. These values decreased when predicting R-free/R-work for

MAE (0.02–0.06) and RMSE (0.02-0.08). For MR data sets, the MAE of structure

completeness increased to 0.15–0.21 and RMSE to 0.20–0.29. The MAE of R-free/R-

work was between 0.02–0.07, compared to RMSE, which is between 0.04–0.09.

Different levels of predictability were achieved for different pipeline variants.

For the experimental phasing data sets and ARP/wARP after PHENIX AutoBuild, the

predictive model achieved the lowest structure completeness MAE (0.04) with close

RMSE, which indicates a small number of large error predictions. On the other hand,

for MR data sets, the MAE of structure completeness for ARP/wARP and PHENIX

AutoBuild ran individually increased to 0.20 and 0.21, respectively. Buccaneer ran in-

dividually and after ARP/wARP or PHENIX AutoBuild showed the lowest predictabil-

ity, with MAE and RMSE values above 0.17.

R-free/R-work are more predictable across all pipeline variants and for both types

of data sets, with MAE and RMSE values lower than those achieved for the struc-

ture completeness. For the JCSG experimental phasing data sets, the predictive model

achieved a low MAE for R-work (0.02–0.03) and only slightly larger MAE for R-free

(0.03–0.05) for all the individual pipelines. The MAE obtained for pipeline combi-

nations and R-work ranged between 0.02–0.05, and that for R-free varied between

0.04–0.06. RMSE is slightly higher than MAE for both the individual and the combi-

nation pipelines. For the MR data sets, the MAE of R-work is between 0.02–0.06, with
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Table 5.1: Mean absolute error (MAE) and root mean squared error (RMSE) of struc-
ture completeness and R-free/R-work for two experimental phasing data sets and
molecular replacement (MR) data sets. ARP/wARP and SHELXE are not used R-
free. For MR data sets, only individual pipelines were run. MAE and RMSE were
calculated for the ML predictive model (P), and median predictor (M) used as a base-
line (zero-R) model. The values are highlighted in light red, where the ML predictive
model has higher MAE or RMSE than the median predictor; otherwise, the values are
highlighted in light green.

Pipeline variant

Experimental phasing (JCSG) Experimental phasing (recently deposited data sets)
MAE RMSE MAE RMSE

Completeness R-free R-work Completeness R-free R-work Completeness R-free R-work Completeness R-free R-work
P M P M P M P M P M P M P M P M P M P M P M P M

ARP/wARP 0.06 0.15 - - 0.03 0.03 0.14 0.34 - - 0.05 0.05 0.27 0.57 - - 0.04 0.05 0.38 0.72 - - 0.06 0.07
ARP/wARP → Buccaneer 0.19 0.3 0.05 0.08 0.05 0.07 0.25 0.34 0.07 0.1 0.06 0.08 0.26 0.42 0.08 0.12 0.07 0.1 0.32 0.44 0.09 0.13 0.09 0.11
ARP/wARP → Phenix AutoBuild(Parrot) 0.11 0.24 0.06 0.07 0.02 0.03 0.15 0.34 0.08 0.09 0.03 0.03 0.16 0.61 0.05 0.1 0.03 0.05 0.21 0.65 0.07 0.12 0.04 0.06
ARP/wARP → Phenix AutoBuild 0.1 0.23 0.06 0.07 0.02 0.03 0.15 0.33 0.07 0.09 0.03 0.03 0.23 0.6 0.07 0.1 0.04 0.05 0.32 0.64 0.09 0.12 0.05 0.05
Buccaneer 0.18 0.3 0.05 0.08 0.05 0.07 0.23 0.33 0.07 0.09 0.06 0.08 0.24 0.4 0.07 0.12 0.07 0.1 0.31 0.42 0.09 0.13 0.09 0.1
Buccaneer → ARP/wARP 0.06 0.17 0.05 0.08 0.02 0.03 0.15 0.37 0.07 0.11 0.03 0.03 0.27 0.62 0.09 0.19 0.04 0.05 0.38 0.75 0.12 0.21 0.05 0.06
Buccaneer → Phenix AutoBuild(Parrot) 0.16 0.28 0.05 0.07 0.03 0.05 0.21 0.32 0.06 0.08 0.04 0.06 0.1 0.33 0.04 0.1 0.04 0.07 0.14 0.35 0.06 0.11 0.05 0.08
Buccaneer → Phenix AutoBuild 0.15 0.28 0.05 0.07 0.04 0.05 0.2 0.31 0.06 0.08 0.05 0.06 0.2 0.33 0.06 0.1 0.05 0.07 0.28 0.35 0.07 0.11 0.07 0.08
Phenix AutoBuild(Parrot) 0.09 0.21 0.03 0.06 0.02 0.04 0.12 0.3 0.05 0.08 0.03 0.06 0.11 0.56 0.04 0.12 0.03 0.09 0.13 0.59 0.05 0.13 0.04 0.1
Phenix AutoBuild(Parrot) → ARP/wARP 0.04 0.16 0.04 0.08 0.02 0.02 0.09 0.37 0.06 0.11 0.03 0.03 0.18 0.71 0.07 0.2 0.03 0.04 0.29 0.79 0.1 0.22 0.05 0.05
Phenix AutoBuild(Parrot) → Buccaneer 0.17 0.27 0.05 0.07 0.05 0.06 0.22 0.32 0.07 0.09 0.06 0.07 0.13 0.31 0.05 0.1 0.04 0.07 0.17 0.33 0.07 0.11 0.06 0.08
Phenix AutoBuild → ARP/wARP 0.04 0.16 0.04 0.07 0.02 0.02 0.08 0.37 0.06 0.11 0.03 0.03 0.21 0.68 0.08 0.19 0.04 0.05 0.31 0.78 0.1 0.21 0.07 0.08
Phenix AutoBuild → Buccaneer 0.18 0.26 0.05 0.07 0.05 0.06 0.23 0.31 0.07 0.09 0.06 0.07 0.15 0.29 0.05 0.1 0.04 0.07 0.19 0.32 0.07 0.11 0.06 0.08
Phenix AutoBuild 0.09 0.21 0.03 0.05 0.03 0.04 0.12 0.3 0.04 0.08 0.03 0.05 0.16 0.55 0.05 0.12 0.05 0.09 0.26 0.58 0.08 0.14 0.09 0.1
SHELXE 0.14 0.18 - - 0.02 0.03 0.2 0.26 - - 0.03 0.03 0.18 0.28 - - 0.03 0.04 0.23 0.4 - - 0.03 0.06
SHELXE → ARP/wARP 0.17 0.23 0.06 0.08 0.03 0.03 0.26 0.41 0.08 0.11 0.04 0.04 0.22 0.37 0.08 0.12 0.05 0.06 0.32 0.55 0.11 0.17 0.06 0.07
SHELXE → Buccaneer 0.12 0.1 0.04 0.05 0.04 0.04 0.19 0.2 0.06 0.06 0.05 0.06 0.27 0.26 0.07 0.09 0.07 0.08 0.35 0.43 0.1 0.13 0.09 0.11
SHELXE → Phenix AutoBuild(Parrot) 0.06 0.06 0.03 0.03 0.02 0.03 0.08 0.09 0.03 0.04 0.03 0.03 0.13 0.15 0.05 0.06 0.04 0.05 0.19 0.28 0.06 0.08 0.06 0.07
SHELXE → Phenix AutoBuild 0.07 0.07 0.03 0.04 0.02 0.03 0.11 0.12 0.03 0.04 0.03 0.04 0.22 0.18 0.06 0.07 0.06 0.06 0.32 0.34 0.09 0.11 0.09 0.09
SHELXE(Parrot) → ARP/wARP 0.17 0.2 0.06 0.07 0.03 0.03 0.26 0.38 0.07 0.1 0.03 0.03 0.23 0.33 0.08 0.12 0.04 0.05 0.32 0.51 0.11 0.17 0.06 0.07
SHELXE(Parrot) → Buccaneer 0.11 0.11 0.04 0.05 0.03 0.04 0.17 0.21 0.05 0.07 0.05 0.06 0.21 0.26 0.06 0.09 0.05 0.08 0.3 0.42 0.08 0.13 0.07 0.11
SHELXE(Parrot) → Phenix AutoBuild(Parrot) 0.06 0.06 0.03 0.03 0.02 0.03 0.09 0.1 0.03 0.04 0.03 0.03 0.11 0.14 0.05 0.06 0.04 0.04 0.17 0.27 0.07 0.09 0.06 0.07
SHELXE(Parrot) → Phenix AutoBuild 0.06 0.07 0.02 0.03 0.02 0.03 0.11 0.12 0.03 0.04 0.03 0.04 0.21 0.13 0.06 0.05 0.06 0.04 0.29 0.26 0.08 0.08 0.08 0.07
SHELXE(Parrot) 0.11 0.14 - - 0.02 0.02 0.16 0.21 - - 0.02 0.03 0.17 0.25 - - 0.03 0.04 0.22 0.37 - - 0.03 0.05

Pipeline variant

MR
MAE RMSE

Completeness R-free R-work Completeness R-free R-work
P M P M P M P M P M P M

ARP/wARP 0.2 0.39 - - 0.04 0.06 0.29 0.58 - - 0.05 0.07
Buccaneer 0.15 0.29 0.04 0.07 0.04 0.07 0.2 0.37 0.06 0.11 0.05 0.09
Phenix AutoBuild 0.21 0.28 0.07 0.09 0.06 0.08 0.27 0.35 0.09 0.11 0.08 0.1
SHELXE 0.17 0.36 - - 0.02 0.04 0.23 0.39 - - 0.04 0.05

the lowest obtained for SHELXE; and the MAE for R-free is between 0.04-0.07. Fi-

nally, the RMSE of R-free/R-work are between 0.06–0.09 and 0.04–0.08, respectively.

Compared to the baseline zero-R predictive model (see Section 5.3.5), our pre-

dictive model achieved lower or much lower MAE and RMSE prediction errors for

almost all the pipeline variants, types of data sets and protein structure evaluation mea-

sures, i.e., for 288 out of the 296 entries from Table 5.1. Notably, the predictions for

recently PDB deposited experimental phasing data sets (which we did not use for the

training of the predictive model) also have a much lower error for our predictive model

than for the zero-R predictive model (Figure 5.3), with the exception of the predictions

for SHELXE before Buccaneer and Phenix AutoBuild, for which the zero-R baseline

model predictions achieve similar of marginally lower errors.

To evaluate the fitting of our predictive model, Figure 5.4 shows the difference

of MAE and RMSE between training and testing for the JCSG experimental phasing
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Figure 5.3: Prediction error for the ML predictive model and the median predictor for
recently deposited and JCSG experimental phasing data sets.

and the MR data sets. The difference in MAE and RMSE between training and testing

data sets for structure completeness is higher than in R-work/R-free for the JCSG ex-

perimental phasing and the MR data sets. When comparing the pipelines by structure

completeness, Phenix AutoBuild and Buccaneer have the lowest error difference for

the JCSG experimental phasing and the MR data sets, respectively. For R-work/R-

free, the pipelines have a smaller difference in MAE and RMSE between the training

and testing data sets compared to the structure completeness.

To further evaluate the accuracy of our predictive model, we analysed the mean

and standard deviation (SD) of the predicted and actual protein structure evaluation

measures for the crystallography data sets grouped based on their resolutions. Ta-

bles 5.2 and 5.3 show the result of this analysis for JCSG experimental phasing data
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Figure 5.4: Mean absolute error (MAE) and root mean squared error (RMSE) of struc-
ture completeness and R-free/R-work for training and testing for the JCSG experi-
mental phasing data sets and the MR data sets. The entries are shaded based on the
magnitude of the difference in MAE and RMSE between the training and testing data
sets.

sets for the pipeline variants without SHELXE and with SHELXE, respectively. For

resolutions between 1.2 Å and 3.1 Å, the predicted and actual mean and SD values are

very close for most pipeline variants. The spread of the predicted structure complete-

ness for ARP/wARP run alone, and run after SHELXE has a higher SD compared to

the completeness achieved when the pipelines were run in reality. At worse than 3.2 Å,

the predicted R-free/R-work have mean and SD values close to the real results, while

the predicted structure completeness has a larger difference in the SD and a smaller

difference in the mean than the actual results.

Table 5.4 shows the results of the same analysis as above for the MR data sets.

The mean of all the predicted structure evaluation measures as well as the SD values

for the predicted R-free/R-work are close to the actual results. However, at resolutions

better than 3.0 Å, the difference between the SD for the predicted and actual structure

completeness is larger than that for R-free/R-work. At resolutions of 3.1 Å or worse,

this difference decreased significantly.
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Table 5.2: Mean and standard deviation (SD) of the real and predicted structure eval-
uation measures for the JCSG experimental phasing data sets grouped based on reso-
lution, with the number of data sets in each group shown in brackets. The entries from
the table are shaded based on the magnitude of the difference between the real (R) and
predicted (P) results.

Pipeline variant Structure evaluation Resolution
1.2 - 3.1(39) 3.2(45) 3.4(41) 3.6(31) 3.8(43) 4.0+(42)

mean SD mean SD mean SD mean SD mean SD mean SD
P R P R P R P R P R P R P R P R P R P R P R P R

ARP/wARP →Buccaneer
Completeness 0.87 0.89 0.15 0.19 0.64 0.6 0.17 0.34 0.56 0.54 0.17 0.29 0.46 0.49 0.14 0.29 0.28 0.34 0.12 0.24 0.15 0.16 0.08 0.18

R-free 0.32 0.31 0.04 0.07 0.40 0.41 0.05 0.09 0.42 0.42 0.04 0.07 0.44 0.43 0.04 0.08 0.48 0.47 0.03 0.07 0.50 0.50 0.03 0.06
R-work 0.29 0.28 0.04 0.06 0.33 0.34 0.05 0.09 0.35 0.35 0.04 0.07 0.37 0.35 0.04 0.07 0.40 0.39 0.03 0.07 0.42 0.42 0.02 0.05

ARP/wARP → PHENIX AutoBuild(Parrot)
Completeness 0.9 0.91 0.11 0.11 0.35 0.36 0.08 0.22 0.28 0.29 0.06 0.18 0.19 0.17 0.06 0.16 0.11 0.12 0.04 0.1 0.07 0.07 0.03 0.06

R-free 0.27 0.26 0.04 0.05 0.39 0.39 0.02 0.07 0.39 0.38 0.03 0.06 0.42 0.42 0.02 0.08 0.43 0.43 0.03 0.09 0.44 0.43 0.03 0.08
R-work 0.23 0.22 0.02 0.03 0.25 0.25 0.01 0.02 0.25 0.24 0.01 0.02 0.27 0.28 0.01 0.02 0.27 0.27 0.01 0.03 0.27 0.28 0.01 0.03

ARP/wARP → PHENIX AutoBuild
Completeness 0.91 0.91 0.09 0.12 0.38 0.35 0.06 0.22 0.28 0.29 0.08 0.16 0.19 0.2 0.06 0.15 0.14 0.14 0.05 0.11 0.09 0.1 0.03 0.07

R-free 0.26 0.26 0.04 0.06 0.38 0.39 0.02 0.07 0.39 0.38 0.03 0.06 0.42 0.42 0.03 0.07 0.43 0.44 0.02 0.10 0.43 0.43 0.03 0.07
R-work 0.22 0.22 0.02 0.03 0.25 0.25 0.01 0.02 0.25 0.24 0.01 0.02 0.27 0.28 0.01 0.03 0.27 0.26 0.01 0.03 0.26 0.27 0.01 0.03

ARP/wARP
Completeness 0.83 0.77 0.21 0.32 0.08 0.09 0.07 0.16 0.03 0.03 0.03 0.05 0.01 0.01 0.01 0.03 0.01 0 0.01 0 0 0 0 0

R-work 0.23 0.23 0.02 0.03 0.22 0.23 0.01 0.05 0.22 0.22 0.02 0.04 0.22 0.21 0.02 0.04 0.21 0.21 0.02 0.05 0.21 0.22 0.02 0.05

Buccaneer → ARP/wARP
Completeness 0.86 0.83 0.2 0.26 0.12 0.14 0.08 0.21 0.04 0.04 0.05 0.08 0.01 0.01 0.01 0.04 0 0 0 0 0 0 0 0

R-free 0.29 0.29 0.06 0.08 0.49 0.49 0.03 0.08 0.51 0.50 0.03 0.06 0.52 0.51 0.02 0.06 0.54 0.54 0.02 0.07 0.55 0.55 0.02 0.04
R-work 0.23 0.23 0.01 0.03 0.20 0.20 0.01 0.03 0.20 0.20 0.01 0.02 0.19 0.19 0.02 0.03 0.19 0.19 0.02 0.04 0.19 0.20 0.02 0.04

Buccaneer → PHENIX AutoBuild(Parrot)
Completeness 0.91 0.93 0.07 0.09 0.69 0.67 0.12 0.28 0.61 0.62 0.12 0.24 0.52 0.56 0.11 0.27 0.4 0.41 0.13 0.25 0.23 0.2 0.08 0.16

R-free 0.26 0.25 0.03 0.04 0.34 0.35 0.03 0.08 0.36 0.35 0.03 0.07 0.38 0.36 0.03 0.06 0.40 0.40 0.03 0.06 0.43 0.43 0.02 0.05
R-work 0.23 0.23 0.02 0.03 0.27 0.27 0.02 0.06 0.28 0.27 0.02 0.04 0.31 0.29 0.02 0.05 0.32 0.32 0.02 0.05 0.34 0.34 0.02 0.03

Buccaneer → PHENIX AutoBuild
Completeness 0.91 0.93 0.07 0.08 0.72 0.67 0.11 0.27 0.6 0.62 0.14 0.23 0.54 0.56 0.14 0.28 0.41 0.43 0.14 0.25 0.23 0.22 0.08 0.16

R-free 0.26 0.25 0.03 0.04 0.34 0.34 0.02 0.08 0.37 0.35 0.04 0.06 0.38 0.36 0.03 0.07 0.40 0.40 0.03 0.06 0.43 0.44 0.02 0.04
R-work 0.23 0.23 0.02 0.03 0.27 0.27 0.02 0.06 0.28 0.28 0.03 0.05 0.31 0.29 0.02 0.05 0.32 0.32 0.02 0.05 0.34 0.35 0.01 0.03

Buccaneer
Completeness 0.83 0.86 0.15 0.19 0.63 0.61 0.16 0.32 0.56 0.53 0.15 0.28 0.47 0.48 0.11 0.28 0.33 0.37 0.12 0.26 0.19 0.17 0.08 0.17

R-free 0.33 0.32 0.05 0.07 0.40 0.41 0.04 0.09 0.42 0.43 0.04 0.08 0.45 0.43 0.02 0.07 0.47 0.46 0.03 0.08 0.50 0.50 0.03 0.05
R-work 0.30 0.29 0.04 0.06 0.34 0.34 0.04 0.09 0.35 0.36 0.04 0.07 0.37 0.36 0.03 0.07 0.39 0.38 0.03 0.07 0.41 0.42 0.02 0.05

PHENIX AutoBuild(Parrot) → ARP/wARP
Completeness 0.9 0.89 0.15 0.15 0.05 0.08 0.05 0.16 0.03 0.02 0.03 0.04 0.01 0.01 0.01 0.03 0 0 0 0 0 0 0 0

R-free 0.28 0.28 0.04 0.05 0.50 0.49 0.03 0.07 0.50 0.50 0.03 0.05 0.52 0.51 0.02 0.07 0.53 0.53 0.02 0.07 0.53 0.53 0.03 0.06
R-work 0.22 0.22 0.01 0.03 0.21 0.21 0.01 0.02 0.21 0.20 0.01 0.02 0.19 0.20 0.02 0.02 0.19 0.19 0.01 0.04 0.19 0.21 0.02 0.03

PHENIX AutoBuild(Parrot) →Buccaneer
Completeness 0.92 0.94 0.09 0.09 0.7 0.66 0.13 0.28 0.63 0.61 0.13 0.23 0.54 0.53 0.12 0.28 0.42 0.44 0.13 0.28 0.28 0.29 0.1 0.22

R-free 0.31 0.30 0.03 0.04 0.38 0.40 0.04 0.08 0.40 0.41 0.03 0.07 0.42 0.42 0.03 0.09 0.45 0.46 0.03 0.08 0.48 0.48 0.03 0.05
R-work 0.28 0.27 0.03 0.04 0.32 0.33 0.04 0.08 0.33 0.34 0.03 0.06 0.35 0.35 0.03 0.08 0.37 0.36 0.03 0.08 0.39 0.39 0.03 0.05

PHENIX AutoBuild(Parrot)
Completeness 0.91 0.92 0.08 0.07 0.37 0.38 0.06 0.15 0.32 0.32 0.06 0.13 0.26 0.26 0.06 0.13 0.18 0.18 0.04 0.12 0.12 0.12 0.03 0.07

R-free 0.27 0.26 0.04 0.04 0.41 0.41 0.01 0.04 0.41 0.41 0.01 0.04 0.42 0.42 0.01 0.05 0.43 0.44 0.01 0.06 0.44 0.44 0.02 0.04
R-work 0.23 0.23 0.02 0.03 0.33 0.33 0.01 0.03 0.33 0.33 0.01 0.03 0.34 0.34 0.01 0.03 0.35 0.35 0.01 0.04 0.36 0.35 0.01 0.03

PHENIX AutoBuild → ARP/wARP
Completeness 0.87 0.89 0.14 0.14 0.07 0.07 0.05 0.15 0.02 0.02 0.02 0.04 0.01 0.01 0.01 0.02 0 0 0 0.01 0 0 0 0

R-free 0.29 0.28 0.04 0.06 0.50 0.50 0.03 0.07 0.51 0.51 0.03 0.04 0.52 0.50 0.03 0.06 0.53 0.53 0.02 0.06 0.52 0.53 0.03 0.06
R-work 0.23 0.22 0.02 0.03 0.21 0.21 0.01 0.03 0.21 0.20 0.01 0.02 0.19 0.19 0.02 0.03 0.19 0.19 0.01 0.04 0.19 0.20 0.02 0.03

PHENIX AutoBuild →Buccaneer
Completeness 0.9 0.93 0.09 0.09 0.7 0.69 0.13 0.26 0.59 0.61 0.13 0.27 0.54 0.56 0.13 0.25 0.42 0.45 0.14 0.27 0.29 0.29 0.11 0.24

R-free 0.31 0.30 0.03 0.05 0.39 0.39 0.04 0.08 0.41 0.40 0.03 0.07 0.43 0.42 0.03 0.07 0.45 0.46 0.03 0.08 0.48 0.48 0.03 0.06
R-work 0.29 0.27 0.03 0.04 0.32 0.32 0.03 0.07 0.34 0.34 0.03 0.07 0.35 0.34 0.03 0.07 0.37 0.36 0.03 0.07 0.39 0.39 0.03 0.05

PHENIX AutoBuild
Completeness 0.9 0.91 0.07 0.09 0.38 0.39 0.05 0.15 0.32 0.32 0.07 0.12 0.26 0.25 0.06 0.12 0.19 0.19 0.05 0.12 0.12 0.12 0.04 0.07

R-free 0.27 0.26 0.03 0.04 0.41 0.41 0.01 0.05 0.41 0.41 0.02 0.03 0.42 0.41 0.02 0.05 0.43 0.43 0.01 0.05 0.44 0.44 0.02 0.03
R-work 0.24 0.23 0.02 0.03 0.33 0.33 0.01 0.03 0.33 0.33 0.01 0.02 0.35 0.34 0.01 0.04 0.35 0.35 0.01 0.03 0.36 0.36 0.01 0.02

0.20.0 0.060.0

Table 5.3: Mean and standard deviation (SD) of the real and predicted structure evalu-
ation measures for the JCSG experimental phasing data sets for SHELXE and its com-
binations. The resolutions of the data sets are between 1.2 Å and 3.1 Å. The results are
shaded based on the difference between the real (R) and predicted (P) results.

Pipeline variant Completeness R-free R-work
mean SD mean SD mean SD

P R P R P R P R P R P R
SHLEXE→ ARP/wARP 0.77 0.73 0.25 0.36 0.32 0.32 0.09 0.11 0.24 0.24 0.03 0.04
SHLEXE→Buccaneer 0.88 0.88 0.16 0.19 0.32 0.31 0.05 0.06 0.29 0.29 0.04 0.06
SHLEXE→PHENIX AutoBuild(Parrot) 0.92 0.91 0.05 0.09 0.26 0.26 0.03 0.04 0.23 0.23 0.02 0.03
SHLEXE→PHENIX AutoBuild 0.91 0.9 0.07 0.12 0.26 0.26 0.03 0.05 0.23 0.23 0.02 0.04
SHLEXE 0.78 0.78 0.17 0.26 - - - - 0.46 0.46 0.02 0.03
SHLEXE(Parrot)→ARP/wARP 0.77 0.78 0.25 0.35 0.32 0.31 0.08 0.10 0.24 0.23 0.03 0.03
SHLEXE(Parrot)→Buccaneer 0.88 0.88 0.16 0.2 0.32 0.31 0.05 0.07 0.29 0.28 0.04 0.06
SHLEXE(Parrot)→PHENIX AutoBuild(Parrot) 0.92 0.91 0.04 0.1 0.26 0.26 0.03 0.04 0.23 0.23 0.02 0.03
SHLEXE(Parrot)→PHENIX AutoBuild 0.92 0.91 0.05 0.12 0.26 0.26 0.03 0.04 0.23 0.23 0.02 0.04
SHLEXE(Parrot) 0.79 0.81 0.17 0.21 - - - - 0.46 0.45 0.02 0.03

0.20.0 0.060.0

To evaluate the predictive model uncertainty, we grouped the pipelines accord-

ing to prediction error. We evaluated that by checking if the pipeline with the lowest
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Table 5.4: Mean and standard deviation (SD) of the real and predicted structure evalu-
ation measures for the MR data sets grouped based on resolution, with the number of
data sets in each group shown in brackets. The table entries are shaded based on the
difference between the real (R) and predicted (P) results.

Pipeline variant Structure evaluation Resolution
1.0 - 1.5 (65) 1.6 - 2.0 (65) 2.1 - 2.5 (50) 2.6 - 3.0 (55) 3.1+ (31)

mean SD mean SD mean SD mean SD mean SD
P R P R P R P R P R P R P R P R P R P R

ARP/wARP
Completeness 0.65 0.63 0.31 0.46 0.47 0.51 0.31 0.46 0.32 0.37 0.28 0.43 0.16 0.18 0.18 0.34 0.04 0.02 0.03 0.04

R-work 0.25 0.25 0.03 0.05 0.27 0.27 0.03 0.06 0.30 0.29 0.05 0.08 0.29 0.29 0.04 0.07 0.31 0.31 0.05 0.08

Buccaneer
Completeness 0.46 0.47 0.26 0.38 0.43 0.45 0.26 0.37 0.33 0.35 0.25 0.32 0.27 0.3 0.19 0.29 0.18 0.15 0.13 0.16

R-free 0.45 0.44 0.08 0.11 0.46 0.46 0.07 0.10 0.50 0.49 0.06 0.08 0.51 0.51 0.04 0.06 0.53 0.53 0.02 0.04
R-work 0.42 0.41 0.08 0.10 0.42 0.41 0.07 0.10 0.43 0.43 0.06 0.08 0.43 0.42 0.04 0.06 0.44 0.44 0.02 0.04

PHENIX AutoBuild
Completeness 0.72 0.72 0.13 0.3 0.71 0.74 0.14 0.29 0.58 0.56 0.19 0.38 0.52 0.55 0.18 0.33 0.38 0.42 0.17 0.27

R-free 0.29 0.29 0.04 0.10 0.32 0.31 0.05 0.10 0.38 0.38 0.06 0.12 0.39 0.39 0.05 0.09 0.43 0.42 0.05 0.08
R-work 0.27 0.27 0.03 0.09 0.28 0.28 0.05 0.09 0.33 0.33 0.06 0.10 0.32 0.32 0.04 0.08 0.36 0.35 0.05 0.06

SHLEXE
Completeness 0.84 0.85 0.11 0.25 0.71 0.67 0.15 0.35 0.38 0.34 0.19 0.31 0.2 0.2 0.09 0.18 0.12 0.13 0.07 0.13

R-work 0.46 0.45 0.01 0.03 0.47 0.48 0.02 0.04 0.51 0.52 0.02 0.06 0.53 0.52 0.01 0.03 0.53 0.52 0.01 0.02

0.20.0 0.060.0

prediction error was classified in the first group for each protein structure in our test-

ing data set. For the JCSG experimental phasing data set, 85%, 94% and 91% of the

pipelines with the lowest prediction error were classified in the first group for structure

completeness, R-free and R-work, respectively. For the MR data set the percentages

were 60%, 69% and 87% respectively.

Figure 5.5 shows the inference time of the predictive model for individual pipelines

and pipeline combinations for the JCSG experimental phasing and the MR data sets.

The inference time is the total of time to predict the structure completeness and R-

free/R-work. The SHELXE variants for the JCSG experimental phasing data set and

ARP/wARP and Buccaneer for the MR data set have the lowest inference time.

5.4.3 Evaluation of recommended pipeline variant

To further evaluate our predictive model, we analysed the potential benefits of using

the pipeline variant recommended by the model, i.e., the pipeline variant predicted to

achieve the best completeness or R-free/R-work for each of the data sets.

To this end, we first analysed the time savings that can be achieved by using the

recommended pipeline variant instead of running all the pipeline variants in order to

obtain the best possible structure. Figure 5.6 shows the total execution time when

running all the pipeline variants and when only the pipeline recommended by our pre-

dictive model was run. The time saved (on the powerful high-performance cluster

mentioned in Section 5.3.5) was up to 20 hours for a small protein structure, and up

to 60 hours for large structures. When these pipeline variants were ran in parallel
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(a)

(b)

Figure 5.5: Inference time for the predictive model for individual pipelines and
pipeline combinations. For each data set of the JCSG experimental phasing and the
MR data sets, the inference time is the total time of predicting the structure complete-
ness, R-free, and R-work. (a) Inference time for the JCSG experimental phasing. (b)
Inference time for the MR data sets.

on our high-performance cluster, this time saving was reduced; however, running the

recommended pipeline still saved up to 30 hours when building large structures.

Next, we analysed how close the completeness and R-free/R-work of the protein

structure built by the recommended pipeline variant was to the best completeness and

R-free/R-work value achievable by running all the pipeline variants. Figures 5.7 and

5.8 present the results of this analysis for the JCSG experimental phasing and MR

data sets, respectively. These results show that the recommended pipeline variant built
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Figure 5.6: Execution time required to run all the pipeline variants (in parallel, and in
sequence) versus the execution time required to run the pipeline recommended by the
predictive model (for best completeness, best R-free, and best R-work), for the JCSG
experimental phasing data sets.

protein structures with completeness, R-free and R-work within only 1% of those of

the best pipeline for 32%, 50% and 59% of the JCSG experimental phasing data sets;

and 70%, 99% and 71% of the MR data sets, respectively; and within only 5% of the

best pipeline for 52%, 78% and 93% of the JCSG experimental phasing data sets; and

83%, 100% and 87% of the MR data sets, respectively.

Finally, for each of the 15 research papers that we could find for our testing MR

data sets and that mentioned the pipeline used to build the protein structure, we com-

pared the pipeline used in the paper to the pipeline variant recommended by our pre-

dictive model. To ensure a fair comparison, we ran the pipeline used in the paper and

the pipeline recommended by our predictive model using the same search model to

obtain initial phases for each structure. This search model could not be the same as the

one used for the PDB deposited structure, which is unavailable.

Table 5.5 presents the structure completeness achieved by the pipeline that was

chosen to solve the protein structure when deposited in the PDB compared to the

completeness achieved by our recommended pipeline for each of these MR data sets.

As shown in this table, our recommended pipeline achieved better completeness than

the other pipeline for 10 out of the 15 protein structures, and identical complete-

ness for three additional structures for which the predictive model recommended the
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Figure 5.7: Difference between the best completeness, R-free and R-work achieved
by running all the pipeline variants and running the recommended pipeline variant for
the JCSG experimental phasing data sets. The percentage of the data sets for each
difference group is shown on the left side and the cumulative percentage on the right
side.

Figure 5.8: Difference between the best completeness, R-free and R-work achieved by
running all the pipeline variants and running the recommended pipeline variant for the
MR data sets. The percentage of the data sets for each difference group is shown on
the left side and the cumulative percentage on the right side.
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Table 5.5: Real structure completeness achieved by the pipeline that was used to solve
the protein structure when deposited in the PDB and by the pipeline recommended by
the predictive model, for the MR data sets.

PDB ID
Used Recommended

Pipeline variant Real completeness Pipeline variant Real completeness Predicted completeness
4YVO ARP/wARP 98.32 SHELXE 97.48 91.45

3MOK ARP/wARP 97.8 ARP/wARP 97.8 93.75
2VMH ARP/wARP 97.28 SHELXE 97.96 91.57
5N13 ARP/wARP 97.22 SHELXE 100.0 90.07

5WRT PHENIX AutoBuild 93.58 PHENIX AutoBuild 93.58 60.62
5Y3D PHENIX AutoBuild 83.03 PHENIX AutoBuild 83.03 70.88
6GP5 ARP/wARP 64.8 PHENIX AutoBuild 88.48 84.55
3TZE Buccaneer 57.63 PHENIX AutoBuild 85.16 75.43
4D70 Buccaneer 40.62 PHENIX AutoBuild 80.31 83.62
5IXG PHENIX AutoBuild 33.63 SHELXE 76.59 79.82
2XSJ Buccaneer 10.22 PHENIX AutoBuild 0.11 44.58
6FDH ARP/wARP 0.45 SHELXE 91.82 56.39
2CQT ARP/wARP 0.06 PHENIX AutoBuild 81.2 34.73
5ZWP ARP/wARP 0 SHELXE 94.69 76.69
3P7Y ARP/wARP 0 SHELXE 94.21 81.96

same pipeline as the one used to build the PDB structure. The recommended pipeline

achieved worse completeness for only two of the 15 proteins structures (with a drop in

completeness of under 1% for one of these).

5.5 Discussion

We have presented a predictive model of the performance of four widely used pro-

tein model-building pipelines and of their pairwise combinations. We have separately

trained this predictive model for both experimental phasing and molecular replacement

data sets, and for three commonly used structure evaluation measures. With this pre-

dictive model, we aim to help users choose the best pipeline for solving their protein

structure based on the features of their starting data, to encourage them to use pipelines

which may be less familiar to them, and to increase the joint use of multiple pipelines,

as doing so is likely to yield a more complete and more refined structure.

The features were calculated in scale dependent measures (the scaling of the data

is contingent on the output of the data reduction program used); however, the scale

independent measures are more natural in crystallographic contexts. The scale depen-

dent measures were implemented first, yielding almost indistinguishable results. We

assume that this is due to the machine learning model effectively factoring out scale

internally.
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The MAE and RMSE analysis showed that R-free and R-work are more pre-

dictable than structure completeness in both experimental phasing and MR data sets.

This unpredictability differs between the pipeline variants, suggesting that the electron-

density map features have different effects on the pipelines’ performance. The pre-

dictability of pipelines involving PHENIX Autobuild tends to be higher, which is likely

due to the use of multiple models to offset stochastic effects. Both MAE and RMSE for

our predictive model are significantly lower than the MAE and RMSE for the training

data sets median used by the baseline, zero-R predictive model.

When comparing the individual data sets by using the mean and SD for the real

and predicted structure evaluation measures, at a high resolution, which is considered

an easier case, the performance of the pipelines is more predictable than at a low res-

olution. When the data sets become worse in terms of resolution (which typically

also means that the phases become worse), the difference in SD between the real and

predicted results becomes larger.

The pipeline variant predicted to build the best protein structure frequently pro-

duced structures with the same or similar completeness and/or R-free/R-work to the

best pipeline variant. Moreover, using the pipeline variant recommended by our pre-

dictive model save days of pipeline execution time on high-spec computers, and the

time saved increases when the protein structure is larger. Finally, the predictive model

can be used to try massive search models in MR cases, enabling the selection of good

initial phases [99, 100].

Future work will consider a multi-task method for predicting structure complete-

ness, R-free and R-work, and will combine the ML models into a single model. We

envisage that this could lead to more accurate predictions and to better pipeline rank-

ing. Moreover, we will explore additional ML algorithms, e.g. XGBoost [101], as this

may improve our predictive model.

5.6 Availability

We implemented the predictive model described in the paper as a web application

that is publicly available and free to use at http://www.robin-predictor.org.

The source code for the application is available at https://doi.org/10.15124/
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Chapter 6

Identifying incorrect fragments to

improve backbone chain tracing using

neural network in Buccaneer

In this chapter, we introduce a neural network trained to identify incorrect fragments

during the protein model building process. We start with a presentation of the method

used to label the training data sets, and of the neural network training process. We then

describe how the neural network can be integrated into the protein model building pro-

cess of the Buccaneer software. Finally, we systematically evaluate the performance

of the Buccaneer variant that uses our neural network to avoid the use of incorrect

fragments in the protein structures it builds.

6.1 Abstract

Tracing the backbone in protein model-building is a critical step, as incorrect tracing

leads to poor protein models. Here, we present a neural network trained to identify

incorrect fragments and remove them from the model building process in order to

improve backbone tracing. Our neural network was tested on experimental phasing

data sets from the Joint Center for Structural Genomics (JCSG), recently deposited ex-

perimental phasing data sets (from 2015–2021), and molecular replacement data sets.

Our experimental results show that using the neural network in the Buccaneer protein

model building software can produce significantly more complete protein models than

those built using Buccaneer alone. In particular, Buccaneer with the neural network

built protein models with completeness at least 5% higher for 25% and 47% of the
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original and truncated resolution JCSG experimental phasing data sets, respectively,

for 26% of the recently collected experimental phasing data sets, and for 16% of the

molecular replacement data sets.

6.2 Introduction

A key step in building a protein model is tracing the backbone (i.e., its longest chain).

Model-building pipelines such as ARP/wARP [14, 16] and Buccaneer [18] start their

model building by finding the protein structure backbone. The procedure used to find

the longest chain can yield wrong tracing because of choosing residues that are in-

correctly placed. We examined this problem by modifying the growing step of the

Buccaneer model building process so that at the long fragments obtained at the end

of the stage were each split into their constituent small fragments (i.e., into fragments

with three residues) and then removing one small fragment at a time before the next

(i.e., tracing) step of the model building. The protein structure built without each of

these small fragments was evaluated against the deposited structure. Identifying and

removing incorrect small fragments improves the protein structure, because such frag-

ments break up some paths and force the tracing algorithm to change its direction away

from the correct trace.

A protein structure may have hundreds or even thousands of small fragments. As

such, removing one small fragment at a time to assess its correctness requires a huge

amount of computation even for one building cycle. All widely used protein model-

building pipelines (ARP/wARP [14, 16], Buccaneer [18, 19, 28], PHENIX AutoBuild

[20, 86] and SHELXE [21, 22, 23, 24]) are iterative, which makes using this simple

method unfeasible.

To address this problem, we developed a neural network model that identifies

incorrect small fragments and can be used to efficiently eliminate them from the pro-

tein model building before the backbone tracing step. The neural network predicts the

probabilities that these small fragments are incorrect based on fragment features cal-

culated from the electron-density map and the protein model geometry. We show that

backbone tracing is significantly improved by eliminating the small fragments whose

probabilities are below a certain threshold as those classified as incorrect small frag-

98



CHAPTER 6. IDENTIFYING INCORRECT FRAGMENTS TO IMPROVE BACKBONE CHAIN TRACING
USING NEURAL NETWORK IN BUCCANEER

F1 F2 F3

Cα

Cα

Cα

Cα

Cα

Figure 6.1: An example of splitting a fragment into small fragments. The fragment
split into three small fragments.

ments.

6.3 Method

6.3.1 Creating the training data sets

We used molecular replacement (MR) data sets containing 1351 protein structures [26]

to create the training data sets for the neural network. These MR data sets have reso-

lution ranges from 1.0 Å to 3.5 Å. For each protein structure, we ran the finding and

growing steps in Buccaneer [18]. The output of the growing step is a set of overlapped

fragments that have different lengths. Each fragment was split into three-residues frag-

ments, which we called small fragments (Figure 6.1). All these small fragments were

saved into a CIF file. The procedure for labelling each of the small fragments as either

“correct” or “incorrect” is as follows:

1. Run Buccaneer for one building cycle starting from the joining step, in order

to build a protein structure from all the small fragments, and compare the built

structure to the deposited structure to compute the structure completeness ((as

described in Chapter 3) ). This structure and its completeness provide a baseline

for the later steps of our solution.

2. Omit one small fragment at a time and build the protein structure as in step 1.

3. Compare the completeness of the protein structure obtained in step 2 to that of

the baseline structure from step 1.

4. If the structure from step 2 has higher structure completeness, label the omitted

small fragment as “incorrect”.
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5. Repeat steps 2, 3 and 4 for the rest of the small fragments, removing from the

model building process all the small fragments identified as “incorrect” in step

4.

As an additional step, we examine whether the small fragments not removed by

the procedure above were actually included in the protein structure. There are two rea-

sons why a small fragment may not be included in the structure, and thus its removal

would have no impact on the structure completeness. Thus, Buccaneer is not using

small fragments that cannot be combined into chains of at least six residues (which is

the minimum length set in Buccaneer for tracing) nor appended as a small branch to a

long fragment. These small fragments are also labelled as “incorrect”. Finally, we la-

belled as “correct” all the small fragments not labelled “incorrect” after this additional

step.

Using the procedure above, we labelled the small fragments in 1132 protein struc-

tures of the MR data sets, producing 822,366 correct and 299,577 incorrect small frag-

ments. A number of protein structures were not used for the following reasons, with

the number of omitted protein structures reported in parentheses:

1. Protein structures with more than 2856 small fragments, as this is the highest

number of chains that can be saved in a CIF file with a unique ID of two charac-

ters (172 protein structures).

2. Protein structures for which no incorrect small fragments were found using our

procedure (22 protein structures).

3. Protein structures that had a very large number of small fragments, and the iden-

tification of the incorrect small fragments could not be completed within 48

hours, which is the maximum time we allocated for processing each protein

structure (25 protein structures).

6.3.2 Features of small fragments

Table 6.1 shows the features used in training the neural network in addition to the

electron-density map resolution. The following sections describe each of these fea-

tures.
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Table 6.1: Features used in training the neural network in addition to the electron-
density map resolution. Mean, SD, highest and lowest were calculated for the features
when applicable, and each was used as a separate feature.

Feature Mean SD Highest Lowest Categorical values (0 or 1) Single value

Ramachandran angles in favoured regions 3

Ramachandran angles in allowed regions 3

Local likelihood score (LLK) 3 3 3 3

Density score 3 3 3

Root mean square deviation (RMSD) 3

Is a small fragment in the start of a chain? 3

Is a small fragment in the middle of a chain? 3

Is a small fragment in the end of a chain? 3

6.3.2.1 Ramachandran angles

A residue is classified in either favoured or allowed regions based on the probability

densities of Phi (φ ) and Psi (ψ) [33]. When the probability densities of (φ ) and (ψ) is

greater than 0.01 rad −2 or 0.0005 rad −2, the residue is classified either in favoured or

allowed regions, respectively [102, 18].

6.3.2.2 Log likelihood score

The log likelihood score (LLK), also known as the density-likelihood function, is a

score of possible C-alpha group positions that reflects the reproducibility of the den-

sity features of real C-alpha groups in a simulated electron-density map for a known

structure and it can be calculated as follow:

logP(F | ρ) = ∑
x

logP[F | ρ(x)] = ∑
x
−
{
[ρ(x)−ρ ′′(x′)2]

2σ ′′(x′)2

}
+ c (6.1)

where F represent the electron density of correct C-alpha group position and ori-

entation, and x is the coordinate in the observed density map while x’ is the coordinate

in the search fragment map rotated and translated to a give position and orientation in

the observed map[103, 18].

6.3.2.3 Density score

The mean of electron-density for each residue in the small fragment, and the electron-

density here is calculated for the only main residue’s chain.
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Figure 6.2: An example of four small fragments (F) and the distance between them.
The matrix shows when two small fragments can be joined when the distance between
them less than 4Å.

6.3.2.4 Root mean square deviation

We use the root mean square deviation (RMSD) between the small fragment and best

matching fragment from the Top 500 well-refined protein structure database [104].

6.3.2.5 Small fragment position

Another feature used by the neural network is a categorical measure that distinguishes

between small fragments located at the start, middle or end of a chain. We determine

the value for this feature for a small fragment by measuring the distance between the

fragment and the surrounding small fragments within a 4Å radius. Figure 6.2 shows

an example of four small fragments and their associated joining matrix. The matrix

element in row i and column j 6= i of this matrix is 1 if the distance between fragments

Fi and F j is less than 4Å, and fragment F j is to the right of Fi (meaning that Fi can be

followed by F j in a chain); otherwise, this matrix element is zero. The small fragments

that have zeros in their corresponding columns can only be at the start of a chain, and

those with only zeros in their corresponding rows can only be at the end of a chain. All

other small fragments are middle fragments.

6.3.3 Neural network architecture and training

6.3.3.1 Data set preparation

The sets of correct and incorrect small fragments from Section 6.3.1 were split into a

training data set (containing 78.97% of the correct, and 79.26% of the incorrect frag-

ments) and a validation data set (containing the remaining fragments). We normalised

both the training data set and the validation data set by using z-score normalisation,
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which is a standard practice in machine learning. This normalisation ensures that the

features used to train and validate the neural network have zero mean and unit standard

deviation. To this end, the mean and standard deviation of every feature is calculated

for the data set undergoing normalisation, and the value of each data sample feature

is adjusted by subtracting from it the mean and dividing the result by the standard

deviation.

6.3.3.2 Neural network architecture

The input of the neural network model is a 2849× 14 array. The 2849 rows corre-

spond to the largest number of small fragments across all the protein structures from

the training and validation data sets, and the 14 columns correspond to the 14 small-

fragment features that we used. The output of the neural network model is a probability

of the small fragment being correct, and ranges from 0 to 1. The neural network was

implemented using the Keras framework version 2.3.1 [105].

Because the number of small fragments differ between protein structures, the first

layer in the neural network model is a masking layer. This layer uses a mask value

of -1 for the rows from the input array for which no corresponding small fragment

is available for a protein structures, ensuring that the neural network disregards these

rows.

The hidden layers contained five long short-term memory (LSTM) layers with

512 neurons in the first hidden layer and reduced in geometric sequence to 32 neurons

in the last hidden layer [68]. A sigmoid function was used in the output layer, and

binary cross-entropy was used for the loss function [106].

6.3.3.3 Neural network training

The training of the neural network was carried out using an NVIDIA Tesla V100 32GB

SXM2 GPU server. The maximum number of epochs was set to 1000, with early

stopping when the Area Under the Curve (AUC) did not increasing for ten successive

epochs. The Adam optimizer [61] was used, and the learning rate was set to 0.005.

To evaluate the performance of the neural network model, we used the AUC and loss

function.

To evaluate feature importance, we used permutation feature importance [56],
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which involves shuffling the values of each feature, evaluating the neural network

model obtained for the shuffled feature values, and comparing it to the baseline model

(the model where the values of the features are not shuffled). As shuffling the values

of the features disconnected the association with the true label, the change from the

baseline model in the evaluation metrics showed the feature importance.

6.3.4 Using the neural network in Buccaneer

The neural network model weights and biases from Section 6.3.3 were extracted and

saved into a CSV file, and C code was then generated for the neural network model

by using the Keras2c library [107]. The C code was converted to C++ code for use

in Buccaneer. As part of this work, the Keras2c library was extended to support the

masking layer. The results from the Keras2c library were validated against the Keras

Python framework.

As shown in Figure 6.3, the neural network model is used in the joining step

of Buccaneer, after the fragments built by Buccaneer in earlier steps are split into

small fragments, and before Buccaneer performs its tracing substep. The role of the

neural network is to partition the set of small fragments into a subset of “correct”

fragments for use in the tracing substep, and a subset of “incorrect” fragments that are

disregarded (i.e., not used for this tracing). To that end, a threshold is applied to the

outputs of the neural network, such that small fragments are deemed “correct” if their

associated neural-network outputs (i.e., estimate probabilities of being “correct”) are

above this threshold. To improve the likelihood of producing a good protein model,

multiple thresholds are used to generate a small set of such models, and a decision tree

developed by our project is employed to select the best of these models at the end of

the Buccaneer model building cycle.

Two mechanisms for determining the thresholds were developed; the first mecha-

nism is to set a fixed number of thresholds (e.g. ten thresholds) to divide the probabil-

ities range into equal intervals. The second mechanism is to use Freedman–Diaconis

rule to determine the number of the thresholds based on the probability distribution

[108]. A model will be built for each threshold by eliminating the small fragments that

have probabilities lower than this threshold. Moreover, we run either one or two Buc-

caneer confirmation building cycles to estimate how this protein structure will evolve

104



CHAPTER 6. IDENTIFYING INCORRECT FRAGMENTS TO IMPROVE BACKBONE CHAIN TRACING
USING NEURAL NETWORK IN BUCCANEER

+
Split

All fragments

All fragments

except one

Set thresholds

Buccaneer

Finding and growing

steps

Buccaneer

Build a model

Buccaneer

Build a model

Evaluation

Against the deposited

structure

Evaluation

Against the deposited

structure

x

All the rest of the fragments

except one

M
as

ki
ng

L
ST

M

L
ST

M

L
ST

M

L
ST

M

L
ST

M

Si
gm

oi
d

P1
P2
P3
...

Pn

P1 P2 P3 . . . Pn

Fragment Feature

F1
Fe1 . . . Fey

F2
Fe1 . . . Fey

..
.

..
.

Fn
Fe1 . . . Fey

Small fragment features Input

layer
Hidden layers Output layer

Neural network

..
.Decision tree to pick

best model

C
re

at
in

g
th

e
tr

ai
ni

ng
da

ta
se

ts
N

eu
ra

ln
et

w
or

k
U

si
ng

th
e

ne
ur

al
ne

tw
or

k
in

B
uc

ca
ne

er

...

n

3

2

1

Models for

the thresholds

Build

a model

Build

a model

Build

a model

...

Figure 6.3: Creating the training data sets, the neural network architecture and using
the neural network in Buccaneer.

in the next building cycles, and then pick the best model.

A decision tree (RTree) was trained to predict the best indicators to use in picking

the best model (from the models built at different thresholds) using Weka framework

version 3.8.5 [94]. The training data set for the decision tree was obtained by running

Buccaneer using two different seeds with no neural network as using non-default seed
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Table 6.2: Protein structure evaluation indicators; Buccaneer indicators, R-work and
R-free. Indicated whether the indicator is better when has a higher or lower value.

Indicator Higher or lower is better

Longest fragment higher
Number of residues built lower
Number of fragment lower
Number of sequenced residues higher
Number of residues uniquely allocated chain higher
Completeness by residues higher
Completeness by chain higher
R-work lower
R-free lower

led to changes in the model. The difference between Buccaneer evaluation indicators,

R-work and R-free, were calculated between models built from the same data set (Table

6.2). We deemed that the model is better when the structure completeness is at least

5% higher. The actual difference between the evaluation indicators was replaced by

binary labels; “Y” when the indicator is better based on Table 6.2, otherwise “N”.

Under-sampling was applied and cross-validation was used to train the decision tree.

The first model of these multiple models will be built from all the fragments, as

the first threshold used to partition small fragments into “correct” and “incorrect” is

always zero. The number of confirmation building cycles are the remaining of the

initial number of the building cycles. For example, if Buccaneer runs on three building

cycles, we run two and one confirmation building cycles in the first and second building

cycles, respectively; no confirmation building cycle is run in the third building cycle.

As our neural network model is limited to 2849 small fragments, Buccaneer will not

use the neural network model when the number of fragments exceeds this limit.

6.4 Results

6.4.1 Evaluation of neural network training

As is common in machine learning, we have tried a wide range of neural network

architectures and training hyperparameters in order to obtain a suitable neural network

for our framework. For instance, we trained alternative neural networks with six layers

and between 1024 and 32 neurons, and we used multiple learning rate for the training

process (e.g. 0.001 and 0.005). From all the candidate neural networks we obtained,
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Figure 6.4: Difference in loss score and AUC between training and validation data sets
(the data sets used during the model training for frequent evaluation and tuning of the
model’s parameters) across the epochs. The best model was obtained from epoch 28
as this has the highest AUC on the validation data sets.

we selected the one that had five layers (the neural network detailed in Section 6.3.3.2).

The training of this neural network was stopped after epoch 38, as the AUC

stopped improving at epoch 28. Figure 6.4 shows the AUC and loss score of the train-

ing and validation data sets across the 38 epoch. The AUC and loss score improved

until epoch 28. Then the neural network model started to be overfitted, as the differ-

ence of the loss score between the training and validation data sets became larger. The

neural network model from epoch 28 was used as the final model.

6.4.2 Feature importance

Figure 6.5 shows the importance of features based on the change in AUC in train-

ing and validation data sets. The application of permutation feature importance as

described in Section 6.3.3.3 affected the AUC negatively for each of the features, de-

creasing it with between 0.001 and 0.11; the mean of the LLk score has the highest

impact on the model. The positions of the residues dropped the performance of the

model by more than 0.03 of AUC. Other features have less impact on the model per-
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Figure 6.5: Difference between the baseline model ( where the values of the features
are not shuffled in training and validation) and the model where the feature values are
shuffled to find out the features importance.

formance; the SD of density score has the lowest impact.

Overall, the features using mean have a higher level of importance compared to

the SD features for the same characteristics. For example, the mean LLK score and

density score have a higher importance than the SD of the same scores. Comparing the

regions of Ramachandran angles showed that the model relied on the allowed regions

feature rather than the favoured regions.

6.4.3 Evaluation of using the neural network in Buccaneer

We assessed the effect of using the neural network in Buccaneer for three data sets:

1. 900 experimental phasing from the Joint Center for Structural Genomics (JCSG)

as original and truncated resolutions [72, 11];

2. 205 newer experimental phasing data sets deposited between 2015–2021 and

taken from PDB;

3. 219 MR data sets (the remaining of the 1351 MR data sets from Section 6.3.1)

that were not used in either the training or validation of the neural network.
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The resolution of the JCSG experimental phasing data sets was between 1.2 Å and 4Å,

corresponding to 150 and 750 data sets at original and truncated resolution, respec-

tively. Structure completeness, R-work and R-free were considered in this evaluation;

we deemed the Buccaneer version augmented with the neural network better when the

improvement was at least 5% in the relevant measure.

We ran Buccaneer twice to evaluate the two methods of selecting the threshold for

including small fragments in the Buccaneer tracing, as described in Section 6.3.4. We

set the maximum number of models to ten by selecting 10 equidistant thresholds and

only building a model for those thresholds whose use increased the number of small

fragments deemed “correct” compared to the previous threshold.

All the experiments used the Buccaneer v.1.6.11 and i1 pipeline, as implemented

in CCP4 v.7.0.045. We will refer to the Buccaneer variant that uses the neural network

as ‘Buccaneer(NN)’ in the rest of the chapter.

6.4.3.1 Evaluation of the decision tree

The decision tree was trained using data obtained through running Buccaneer on JCSG

experimental phasing data sets; 562 protein structures were used in training and testing

after under-sampling. The trained decision tree predicted the best model has lower

R-work and higher uniquely residues allocated to a chain. The precision, recall and

F-Measure were 0.781, 0.778 and 0.777, respectively.

6.4.3.2 Experimental phasing

We summarise below the results obtained for the Buccaneer(NN) variants with small-

fragment selection based on both equidistant and Freedman–Diaconis thresholds.

This Buccaneer(NN) variant with equidistant thresholds built 22% and 38% of the

protein structures with at least 5% higher completeness than Buccaneer for the JCSG

original and truncated resolution data sets, respectively, compared to 1% and 10% of

the data sets were built better by Buccaneer without the NN.

For the original resolution, Buccaneer(NN) improved the R-work and R-free of

4% and 5% of the data sets, respectively, and no structure was better built by Buc-

caneer. At truncated resolutions, 9% and 13% of the protein models were built by

Buccaneer(NN) with better R-work and R-free. By comparison, only 4% of the pro-
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tein structures were built with better R-free, and none of the structures were built with

better R-work by Buccaneer.

Using the Freedman–Diaconis rule to select the threshold led to Buccaneer(NN)

building 25% and 47% of the protein models with (at least 5%) higher structures com-

pleteness, and 2% and 7% with (at least 5%) lower structures completeness compared

to Buccaneer, for the JCSG original and truncated resolution data sets, respectively.

R-work and R-free improved as when a fixed number of thresholds was used for the

JCSG original resolution. However, for the JCSG truncated resolution data sets, 17%

and 20% of the protein structures were built with lower R-work and lower R-free,

respectively, and 5% of the structures were built with higher R-free compared to Buc-

caneer; none of these structures was built with higher R-work.

For experimental phasing data sets recently deposited, 25% and 26% of the pro-

tein models were build with higher structure completeness by Buccaneer(NN) using

the fixed number of thresholds and the Freedman–Diaconis rule, respectively, and

3% were built with lower structure completeness (by both Buccaneer(NN) variants)

compared to Buccaneer. R-work improved in 6% of the data sets for both threshold-

selection methods, and R-free in 8% and 6% of the data sets for the fixed number of

thresholds and the Freedman–Diaconis rule, respectively; no protein structure built by

Buccaneer had better R-work or R-free.

Figures 6.6 and 6.7 show the results of JCSG experimental phasing for structure

completeness, R-work, R-free and structure correlation, and the structure complete-

ness for the recently deposited data sets. The R-work, R-free and structure correlation

results for the recently deposited data sets are reported in the Appendix C.

For the JCSG experimental phasing data sets, the results show multiple data sets

for which the completeness significantly increased from around 20% when no neu-

ral network was used to around 70% for Buccaneer(NN) with fixed threshold, and

improved even further when the Freedman–Diaconis rule was used. While Bucca-

neer(NN) did not produce better protein models for a number of data sets, it did im-

prove the majority of the structures by different degrees. These improvements were

less significant when Buccaneer(NN) used the Freedman–Diaconis rule.

R-work and R-free show less improvement than completeness, but Buccaneer(NN)

did still achieve remarkable improvements in R-free and R-work for several data sets.
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For example, Buccaneer(NN) lowered R-free for a number of data sets from over 0.37

to approximately 0.27 (when using the fixed number of thresholds), and from over 0.52

to under 0.32 (when using the Freedman–Diaconis rule).

Structure correlation shows that Buccaneer(NN) built the protein structures slightly

closer to the deposited structures and closer when using the Freedman–Diaconis rule.

However, fewer protein structures got worse than those when compared based on struc-

ture completeness, R-work or R-free.

For the recently deposited data sets, Buccaneer(NN) only produced slight im-

provements for the protein structures that were already built by Buccaneer with high

completeness. However, the structures built with medium completeness by Buccaneer

were improved when built by Buccaneer(NN). Only a few protein structures were built

with slightly lower completeness by Buccaneer(NN) compared to Buccaneer.

We illustrate the use of Buccaneer(NN) in Figures 6.8 and 6.9, which depict two

protein structures built by Buccaneer and by our two Buccaneer(NN) variants. To

provide an impartial view, we present both a protein structure whose modelling is im-

proved by Buccaneer(NN) (PDB id 6HCZ, Figure 6.8) and a protein structure that Buc-

caneer builds with better results (PDB id 2GNR, Figure 6.9). Thus, for PDB id 6HCZ,

Buccaneer(NN) using the Freedman–Diaconis rule increased the structure complete-

ness by 42%, while for PDB id 2GNR, the structure completeness decreased by 17%

when Buccaneer(NN) was used.

6.4.3.3 MR

For the MR data sets, Buccaneer(NN) with a fixed number of thresholds produced pro-

tein models with (at least 5%) better completeness, R-work and R-free than Buccaneer

for 15%, 4% and 5% of the data sets, respectively. By comparison, Buccaneer built

protein structures with better completeness and R-free for only 2% and 1% of the data

sets, respectively; no protein structure built by Buccaneer had better R-work than the

corresponding structure built by Buccaneer(NN). Using the Freedman–Diaconis rule

to select the threshold, 16%, 2% and 3% of the MR data sets were built with better

completeness, R-work and R-free, respectively, by Buccaneer(NN), compared to only

2% of the MR data sets built with higher structure completeness by Buccaneer; no

structure was built with (at least 5%) worse R-work or R-free by Buccaneer(NN).
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Figure 6.10 shows the same result analysis for the MR data sets as in Figure

6.6. The results obtained for individual data sets show multiple significant improve-

ments achieved by Buccaneer(NN); for example, Buccaneer(NN) with a fixed number

of thresholds improved the completeness of one protein structure from around 40% to

more than 70%, and decreased the R-free of another protein structure from around 0.41

to approximately 0.31. Moreover, structure correlation is improved for some protein

structures from around 0.50 to close to 0.70.

6.4.4 Evaluation of execution times

Figure 6.11 shows the mean Buccaneer and Buccaneer(NN) execution times for JCSG

original data sets. We ran both Buccaneer variants using a 173-node high-performance

cluster with 7024 Intel Xeon Gold/Platinum cores and a total memory of 42 TB. For

small structures, both Buccaneer and Buccaneer(NN) built the structures in less than

50 minutes. However, this execution time increased to around 450 minutes when large

structures were built using Buccaneer(NN) with the Freedman–Diaconis rule and to

under 150 minutes using the Buccaneer(NN) variant with fixed thresholds. In contrast,

the Buccaneer completed the building of the large structures in under 50 minutes.

6.4.5 Evaluation of using the neural network in Buccaneer

running from ModelCraft

ModelCraft [109] is a newly released pipeline using Buccaneer to build a model and

perform other steps between the iterative building, such as it improves phases using

Sheetbend [110, 111] and Parrot [50], adding water using coot before running Bucca-

neer [112, 46], pruning chains [26], and build nucleic acids using Nautilus [113].

We ran ModelCraft v.1.0 with Buccaneer(NN) instead of the standard Buccaneer

for the JCSG experimental phasing data sets from Section 6.4.3. Figure 6.12 compares

the ModelCraft and i1 pipelines ran with and without the neural network, in terms of

mean structure completeness, R-work and R-free achieved for these data sets. The

i1 and ModelCraft variants that used the neural network (regardless of the threshold

selection methods) outperformed the pipelines without the neural network for all three

evaluation measures.
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6.5 Discussion

A new method to improve the backbone tracing step of protein model building software

by using a neural network was presented. As no training data sets were available, we

created our training data sets and used them in neural network training and validation.

Moreover, two experimental phasing data sets were used in the evaluation.

The evaluation of the feature importance in determining correct and incorrect

small fragments yielded unexpected results. In particular, the RMSD of the data sets

has lower importance than the residue position type. In contrast, the LLK score (used

in Buccaneer to decide when fragments stop growing) has the highest importance in

discriminating between correct and incorrect small fragments among all the other fea-

tures in the model building. A comparison between the impact of the mean and SD of

the features shows that the mean of a feature has higher importance than its SD.

Optimizing the threshold used to select the small fragments used in the tracing

step of the model building is key to achieving good neural network performance. The

imbalance of the feature data makes this particularly challenging. In this paper, we

addressed the threshold-tuning problem by trying several thresholds obtained both by

using a fixed number of equidistant thresholds and the Freedman–Diaconis rule. The

evaluation of the two threshold methods shows that the Freedman–Diaconis rule is

more effective at worse crystallography data set resolutions as the truncated resolutions

data sets; which all of their resolutions are worse than 3.1 Å, improved in their structure

completeness more than the original resolutions data sets .

Training a decision tree to predict the best indicators for selecting the best model

from a set of models showed that R-work and the residues uniquely allocated to a

chain are best at reflecting the improvement in the structure completeness. Running

Buccaneer on different seeds than the default one led to changes in the fragments, and

therefore to change in the structure completeness. However, 205 newer experimental

phasing data sets were used in the evaluation in order to eliminate the potential bias

due to using JCSG experimental phasing data sets in the training of the decision tree.

The systematic evaluation shows that completeness, R-work/R-free and structure

correlation are significantly improved by Buccaneer(NN). For MR data sets, we no-

ticed that Buccaneer(NN) significantly improved the structures that Buccaneer built
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with R-work lower than 0.43. This may suggest that the structures with high R-work

(above 0.43) have no or few correct fragments, and therefore the use of the neural

network cannot improve them. The problem needs to be addressed by extending the

neural network to build correct fragments itself instead of only using those built by

Buccaneer. Moreover, our neural network has an input size that can accommodate up

to 2849 small fragments. Buccaneer built a larger number of small fragments for some

of the MR data sets, which led to the neural network not being used in all or some of

the building cycles of these data sets.

Buccaneer(NN) achieved higher levels of improvement in structure completeness

than in R-work, R-free and structure correlation. This may be due to our use of struc-

ture completeness as an improvement measure when the training data sets for the neural

network were created. In future work, this will be addressed by creating training data

sets based on the structure completeness, R-work, R-free and structure correlation, and

training a new version of the neural network.
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Figure 6.6: Comparison of structure completeness, R-work and R-free between Buc-
caneer and the Buccaneer with neural network (Buccaneer(NN)) variants using ten
thresholds and the Freedman–Diaconis rule, for the JCSG experimental phasing data
sets with original and truncated resolutions. The regions where Buccaneer(NN) is bet-
ter than Buccaneer (either below or above the diagonal) are indicated in the diagrams.
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(a)

(b)

Figure 6.7: Comparison of structure completeness between Buccaneer and the Bucca-
neer(NN) variants for the recently deposited experimental phasing data sets. (a) The
Buccaneer(NN) using 10 thresholds. (b) The Buccaneer(NN) using the Freedman–
Diaconis rule. The regions where Buccaneer(NN) is better than Buccaneer are indi-
cated in the diagrams.
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(a)

(c)

(b)

(d)

Figure 6.8: A protein structure built by Buccaneer and Buccaneer(NN) compared to
the deposited structure, with the chains of the deposited structure depicted in dashed
bonds. a The structure built by Buccaneer. b and c. The protein structure built by
Buccaneer(NN) using ten thresholds and Freedman–Diaconis rule, respectively; d The
structure completeness, Rwork and R f ree achieved by Buccaneer and the two Bucca-
neer(NN) variants. The structure PDB ID is 6HCZ and its resolution is 2.3 Å.
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(a)
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Figure 6.9: A protein structure built by Buccaneer and Buccaneer(NN) compared to
the deposited structures. The chains of the deposited structure are in dashed bonds. a
The structure built by Buccaneer. b and c The protein structure built by Buccaneer(NN)
using ten thresholds and Freedman–Diaconis rule, respectively. d The structure com-
pleteness, Rwork and R f ree of the Buccaneer variant. The structure PDB ID is 2GNR
and its truncated resolution is 3.2 Å.
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Figure 6.10: Comparison of structure completeness,R-work and R-free between Buc-
caneer and Buccaneer with neural network (Buccaneer(NN)) using ten thresholds and
Freedman–Diaconis rule for the MR data sets. The results where Buccaneer(NN) is
better than Buccaneer either below or above the diagonal is indicated in the figures.
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Figure 6.11: Mean execution time of Buccaneer and Buccaneer(NN) for the JCSG
original data sets. The structure sizes are grouped into classes, and the number of data
sets in each class is reported under the graph.
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Figure 6.12: Comparison of the mean structure completeness, R-work and R-free
achieved by ModelCraft and i1 with and without neural network at different data set
resolutions. The number of the data sets at each resolution is reported under the plots.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we introduced methods that improve protein model building from crys-

tallography data sets both by using existing software pipelines and by enhancing one

of these pipelines with a machine learning component. To evaluate the improvement

of our methods, we first conducted a comparison of established protein model building

pipelines in order to find a baseline for protein model building pipelines. This compar-

ison provided insights into where these pipelines perform well on the data sets, which

led to running the pipelines in pairwise combinations. However, as no single pipeline

or pipeline combination can perform well on all crystallography data sets, we intro-

duced a predictive machine learning model that addresses the problem of choosing the

“best” pipeline for each data set.

In Chapter 3, we compared the protein model pipelines using JCSG experimen-

tal phasing data sets. We started with 202 data sets, and we obtained additional data

sets by truncating each JCSG data set to lower resolution, resulting in a total of 1211

data sets (both as original and truncated resolution). For a fair comparison, we ran

the pipelines using their default parameters and the same computational resources. We

used four measures to evaluate the performance of these pipelines; structure complete-

ness, R-work, R-free and structure correlation. We run REFMAC for zero cycles to

obtain comparable refinement statistics across all pipelines to avoid the effect of the

different parameterizations used by the pipelines (REFMAC can be run for zero cycles

to calculate R-work and R-free using the REFMAC keyword “NCYCLES 0”). We

chose these measures for our comparison because R-work and R-free are widely used,

and the structure completeness enabled the evaluation of the build model against the
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deposited model, and structure correlation to identify the bias of structure complete-

ness . As an additional evaluation, we assessed the execution times of these pipelines

for different structure sizes. Our findings suggest that no single pipeline is best across

all the data sets. This insight led us to use pairs of pipelines in combination to produce

better protein structures.

In Chapter 4, we run the pipelines in pairwise combinations by using the structure

built by the first pipeline as an initial structure (i.e., as input) for the second pipeline.

We used the same data sets as in Chapter 3; however, as here we were not interested in

comparing the pipelines run on their own, we used R-free when running ARP/wARP

in combination of with one of the other pipelines.1 The same evaluation measures as

in Chapter 3 were used, except R-work, which was not used because different model-

building programs use different model parameterizations, and that may lead to overfit-

ting and the underestimation of R-work. We showed experimentally that the pairwise

pipeline combinations can yield a significant improvement over the individual pipeline

performance. However, the challenge of finding the best pipeline or pipeline combi-

nation for a given crystallography data set is amplified since the number of options is

considerably increased by the opportunity to use pipeline combinations in addition to

individual pipelines.

In Chapter 5, we address the problem of choosing the best pipeline based for a

given crystallography data set. We began by analyzing the research community’s use

of the pipelines in order to identify the criteria underpinning the researchers’ choice

of pipelines. This analysis suggests that the researchers were to a great extent influ-

enced by factors relating to their geographical location. This finding led us to train a

predictive machine learning model for recommending a pipeline for a data set based

on features calculated from the density map. We evaluated the resulting predictive

model based on machine learning performance metrics (RMSE and MAE). Moreover,

we picked MR data sets and ran all pipelines on these data sets, and then compared the

pipeline used by the research team who published the data set to the pipeline recom-

mended by our predictive model; we based this comparison on structure completeness

achieved by the two pipelines. Also, we showed the significant time saving achieved

by using our recommended pipeline instead of running all the pipelines on the given

1R-free is not applicable to ARP/wARP alone.
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data set. To help researchers build protein models for their data sets using the pipeline

or pairwise pipeline combination recommended by our predictive model, we devel-

oped software that automatically generates ready-to-run scripts for the processing of

the given data set by the recommended individual pipeline or pipeline combination.

Finally, we implemented the predictive model as a web application which is deployed

on EGI Foundation cloud infrastructure2 at http://www.robin-predictor.org and

is free to use.

Last but not least, in Chapter 6 we improved Buccaneer by identifying incor-

rect fragments using a neural network we specifically developed for this purpose, and

removing them to improve backbone tracing. To train the neural network, we first

labelled small fragments from training data sets as “correct” and “incorrect” by re-

moving a small fragment at a time and building a protein model, and then comparing

that model with the baseline model. The training data sets were used to train a neural

network comprising five LSTM layers. This neural network can be used in the joining

step of Buccaneer to identify and discard “incorrect” small fragments. Using the de-

fault threshold for making this decision is insufficient, as the fragments probabilities

produced by the neural network can be skewed. To address the problem of selecting

an optimal threshold, we introduced two methods—one involving the use of a fixed

number of thresholds, and the other using the Freedman–Diaconis rule. The Bucca-

neer variant augmented with our neural network built a more complete models for

most JCSG data sets. The improvement achieved for MR data sets was less significant,

primarily because many of the models generated for these data sets had more small

fragments than could be handled by the neural network, meaning that Buccaneer had

to bypass the neural network and to employ its standard process for protein building.

7.2 Limitations and future work

This thesis presented methods to improve the building of protein models from crys-

tallography data sets. Notwithstanding the benefits of the research contributions sum-

marised in the previous section, they also have limitations that need to be addressed

in future research. We examined the usefulness of combining the pipelines; however,

2https://www.egi.eu
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the pipelines were run using default parameters. Optimizing the pipelines’ parameters,

e.g., by using search algorithms, may lead to a more complete model being built for a

given data set. This optimization of the pipelines’ parameters could be carried out with

beneficial outcomes on both individual pipelines and pipelines combinations.

To predict the performance of the protein building pipelines for a crystallogra-

phy data set, we trained an ML model for each pipeline. These ML models could be

combined into a single ML model, as this may improve the predictive model’s perfor-

mance. Moreover, additional ML algorithms could be tested, e.g. XGBoost [101] and

neural networks. In particular, using density maps features as an input for the neural

network may give better estimations of the quality of the phases and, therefore, bet-

ter predictions for those pipelines that are more dependent on the phases than other

features.

For the improvement of protein model building using the neural network, multi-

ple aspects of the research presented in the thesis can be improved further. Firstly, the

creation of the training data sets was based on the improvement of the structure com-

pleteness, which led to a lower level of improvement for R-work and R-free when the

neural network was used in Buccaneer. The training data sets could be improved by

evaluating the structures based on the four evaluation measures. Moreover, the train-

ing data sets were obtained from one building cycle in Buccaneer, with the fragments

labelled based on their correctness in the first cycle. Those fragments may not get the

same “correctness” in further cycles. We envisage that running more cycles to label

the correctness of the fragments could lead to more accurate labelling.

Removing fragments from the model has a different effect on the structure com-

pleteness, as not all the fragments affect the model in the same manner. In this thesis,

we coarsely partitioned the fragments into two groups regardless of the degree of their

impact on the structure completeness. The fragments could be labelled based on the

actual impact on the structure completeness. This could help identify and discard only

those fragments with a highly negative impact on the structure building.

The training data sets used in training the neural network are imbalanced, leading

to skewed predictions, which makes the default threshold ineffective. We addressed

this problem by building multiple models and picking the best. However, this solution

could be time-consuming in large structures. An optimal threshold can be found by
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running Buccaneer using different thresholds on the training data sets and then setting

the threshold that is found effective in the majority of the data sets as a default thresh-

old. This would decrease the number of models to be built and, therefore, speed up the

model building.

The data sets that Buccaneer built with low structure completeness and Buccaneer

with neural network did not improve them may suggest that no correct fragments were

found. These data sets may have poor phases and result in wrong fragments being

placed. However, the release of AlphaFold partially solved the problem of the data

sets have poor phases, particularly when the predicted model has a high confidence

score and use as a search model to obtain good phases; therefore, this is an obvious

area for future development for those data sets where AlphaFold models predicted

with low confidence [51]. Current density modification algorithms do not use machine

learning, and as known, obtaining good phases will lead to building a better protein

model as Buccaneer more depends on the phases than other map features.
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Appendix A

Comparison of automated

crystallographic model-building

pipelines (additional results)

A.1 Experimental results for the original data sets

used in Buccaneer development

Table A.1: Complete and intermediate models produced by the 7 pipeline variants for
the 52 original data sets, where (T) and (C) denote intermediate models produced by
pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

ARP(B 5I) 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

i1(5I) 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

PHENIX/Parrot 51 1(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

SHELXE/Parrot 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

PHENIX - - - - - - 52 0(T) 0(C) 0

SHELXE - - - - - - 52 0(T) 0(C) 0

Models used in the comparison: 52 HA-NCS, 52 MR-NCS and 52 NO-NCS.

127
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(ADDITIONAL RESULTS)

Table A.2: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 29 27 29 69

ARP(B 5I) 48 0 29 37 79

i1(5I) 60 52 0 44 90

PHENIX/Parrot 58 50 44 0 83

SHELXE/Parrot 27 19 8 10 0

900

Table A.3: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 100 23 13 13 4

ARP(B 5I) 23 100 19 13 2

i1(5I) 13 19 100 12 2

PHENIX/Parrot 13 13 12 100 8

SHELXE/Parrot 4 2 2 8 100

1002
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(ADDITIONAL RESULTS)

Table A.4: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 12 13 13 56

ARP(B 5I) 17 0 15 12 63

i1(5I) 37 29 0 21 73

PHENIX/Parrot 31 31 21 0 67

SHELXE/Parrot 17 15 2 8 0

730

Table A.5: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 17 13 15 13

ARP(B 5I) 31 0 13 25 15

i1(5I) 23 23 0 23 17

PHENIX/Parrot 27 19 23 0 15

SHELXE/Parrot 10 4 6 2 0

310
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(ADDITIONAL RESULTS)

Table A.6: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 29 96 52 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 42 0 96 62 100

ARP(B 5I) R− f ree - 0 85 46 -
i1(5I) R−work 2 4 0 0 100

i1(5I) R− f ree - 12 0 6 -
PHENIX/Parrot R−work 35 29 98 0 100

PHENIX/Parrot R− f ree - 44 90 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.7: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 100 29 2 13 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 29 100 0 10 0

ARP(B 5I) R− f ree - 100 4 10 -
i1(5I) R−work 2 0 100 2 0

i1(5I) R− f ree - 4 100 4 -
PHENIX/Parrot R−work 13 10 2 100 0

PHENIX/Parrot R− f ree - 10 4 100 -
SHELXE/Parrot R−work 0 0 0 0 100

SHELXE/Parrot R− f ree - - - - -

1000
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Table A.8: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 2 60 12 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 6 0 71 13 100

ARP(B 5I) R− f ree - 0 60 21 -
i1(5I) R−work 0 0 0 0 96

i1(5I) R− f ree - 6 0 0 -
PHENIX/Parrot R−work 4 0 48 0 100

PHENIX/Parrot R− f ree - 13 50 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.9: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 27 37 40 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 37 0 25 48 0

ARP(B 5I) R− f ree - 0 25 25 -
i1(5I) R−work 2 4 0 0 4

i1(5I) R− f ree - 6 0 6 -
PHENIX/Parrot R−work 31 29 50 0 0

PHENIX/Parrot R− f ree - 31 40 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

500
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Table A.10: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 31 25 37 71

ARP(B 5I) 38 0 23 31 77

i1(5I) 60 60 0 50 94

PHENIX/Parrot 50 54 37 0 87

SHELXE/Parrot 23 21 6 8 0

940

Table A.11: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 100 31 15 13 6

ARP(B 5I) 31 100 17 15 2

i1(5I) 15 17 100 13 0

PHENIX/Parrot 13 15 13 100 6

SHELXE/Parrot 6 2 0 6 100

1000
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Table A.12: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 10 10 10 60

ARP(B 5I) 15 0 12 12 62

i1(5I) 37 35 0 21 75

PHENIX/Parrot 33 37 19 0 75

SHELXE/Parrot 12 10 2 4 0

750

Table A.13: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 21 15 27 12

ARP(B 5I) 23 0 12 19 15

i1(5I) 23 25 0 29 19

PHENIX/Parrot 17 17 17 0 12

SHELXE/Parrot 12 12 4 4 0

290
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Table A.14: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 27 92 58 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 42 0 94 54 100

ARP(B 5I) R− f ree - 0 79 44 -
i1(5I) R−work 4 2 0 2 100

i1(5I) R− f ree - 13 0 6 -
PHENIX/Parrot R−work 27 31 92 0 100

PHENIX/Parrot R− f ree - 48 87 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.15: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 100 31 4 15 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 31 100 4 15 0

ARP(B 5I) R− f ree - 100 8 8 -
i1(5I) R−work 4 4 100 6 0

i1(5I) R− f ree - 8 100 8 -
PHENIX/Parrot R−work 15 15 6 100 0

PHENIX/Parrot R− f ree - 8 8 100 -
SHELXE/Parrot R−work 0 0 0 0 100

SHELXE/Parrot R− f ree - - - - -

1000
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Table A.16: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 2 54 10 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 6 0 52 12 100

ARP(B 5I) R− f ree - 0 52 15 -
i1(5I) R−work 0 0 0 0 98

i1(5I) R− f ree - 8 0 0 -
PHENIX/Parrot R−work 2 2 38 0 100

PHENIX/Parrot R− f ree - 10 40 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.17: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 25 38 48 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 37 0 42 42 0

ARP(B 5I) R− f ree - 0 27 29 -
i1(5I) R−work 4 2 0 2 2

i1(5I) R− f ree - 6 0 6 -
PHENIX/Parrot R−work 25 29 54 0 0

PHENIX/Parrot R− f ree - 38 46 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

540
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Table A.18: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 23 27 35 40 75 73

ARP(B 5I) 50 0 31 33 38 83 81

i1(5I) 62 56 0 40 46 88 90

PHENIX/Parrot 54 46 50 0 38 79 85

PHENIX 50 42 40 29 0 81 85

SHELXE 21 17 6 10 12 0 37

SHELXE/Parrot 23 15 6 8 10 54 0

900

Table A.19: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 100 27 12 12 10 4 4

ARP(B 5I) 27 100 13 21 19 0 4

i1(5I) 12 13 100 10 13 6 4

PHENIX/Parrot 12 21 10 100 33 12 8

PHENIX 10 19 13 33 100 8 6

SHELXE 4 0 6 12 8 100 10

SHELXE/Parrot 4 4 4 8 6 10 100

1000
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Table A.20: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 2 13 12 13 56 60

ARP(B 5I) 21 0 13 12 19 65 69

i1(5I) 33 27 0 21 27 67 77

PHENIX/Parrot 35 31 27 0 13 67 69

PHENIX 35 27 31 8 0 67 71

SHELXE 13 6 0 6 8 0 10

SHELXE/Parrot 13 8 0 4 8 21 0

770

Table A.21: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 21 13 23 27 19 13

ARP(B 5I) 29 0 17 21 19 17 12

i1(5I) 29 29 0 19 19 21 13

PHENIX/Parrot 19 15 23 0 25 12 15

PHENIX 15 15 10 21 0 13 13

SHELXE 8 12 6 4 4 0 27

SHELXE/Parrot 10 8 6 4 2 33 0

330
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Table A.22: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 13 98 56 50 100 100

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 50 0 100 63 62 100 100

ARP(B 5I) R− f ree - 0 81 10 19 - -
i1(5I) R−work 0 0 0 0 0 100 100

i1(5I) R− f ree - 13 0 2 4 - -
PHENIX/Parrot R−work 35 23 98 0 33 100 100

PHENIX/Parrot R− f ree - 71 94 0 40 - -
PHENIX R−work 35 27 100 29 0 100 100

PHENIX R− f ree - 67 94 25 0 - -
SHELXE R−work 0 0 0 0 0 0 21

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 0 0 0 33 0

SHELXE/Parrot R− f ree - - - - - - -

1000

Table A.23: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 100 37 2 10 15 0 0

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 37 100 0 13 12 0 0

ARP(B 5I) R− f ree - 100 6 19 13 - -
i1(5I) R−work 2 0 100 2 0 0 0

i1(5I) R− f ree - 6 100 4 2 - -
PHENIX/Parrot R−work 10 13 2 100 38 0 0

PHENIX/Parrot R− f ree - 19 4 100 35 - -
PHENIX R−work 15 12 0 38 100 0 0

PHENIX R− f ree - 13 2 35 100 - -
SHELXE R−work 0 0 0 0 0 100 46

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 0 0 0 46 100

SHELXE/Parrot R− f ree - - - - - - -

1000
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Table A.24: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 4 62 10 12 100 100

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 4 0 67 15 13 100 100

ARP(B 5I) R− f ree - 0 33 2 4 - -
i1(5I) R−work 0 0 0 0 0 96 96

i1(5I) R− f ree - 8 0 0 0 - -
PHENIX/Parrot R−work 6 4 56 0 0 100 100

PHENIX/Parrot R− f ree - 23 62 0 2 - -
PHENIX R−work 6 4 56 0 0 100 100

PHENIX R− f ree - 19 56 2 0 - -
SHELXE R−work 0 0 0 0 0 0 0

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - - - -

1000

Table A.25: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 10 37 46 38 0 0

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 46 0 33 48 48 0 0

ARP(B 5I) R− f ree - 0 48 8 15 - -
i1(5I) R−work 0 0 0 0 0 4 4

i1(5I) R− f ree - 6 0 2 4 - -
PHENIX/Parrot R−work 29 19 42 0 33 0 0

PHENIX/Parrot R− f ree - 48 33 0 38 - -
PHENIX R−work 29 23 44 29 0 0 0

PHENIX R− f ree - 48 38 23 0 - -
SHELXE R−work 0 0 0 0 0 0 21

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 0 0 0 33 0

SHELXE/Parrot R− f ree - - - - - - -

480
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A.2 Experimental results for synthetic data sets for the

original data sets used in Buccaneer development

Table A.26: Complete and intermediate models produced by the 5 pipeline variants for
the 52 synthetic data sets, where (T) and (C) denote intermediate models produced by
pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

ARP 258 1(T) 0(C) 0 258 1(T) 0(C) 0 258 1(T) 0(C) 0

ARP(B 5I) 256 3(T) 0(C) 0 258 1(T) 0(C) 0 257 2(T) 0(C) 0

i1(5I) 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

PHENIX/Parrot 259 0(T) 0(C) 0 259 0(T) 0(C) 0 257 2(T) 0(C) 0

PHENIX - - - - - - 256 2(T) 0(C) 1

Models used in the comparison: 259 HA-NCS, 259 MR-NCS and 258 NO-NCS.

Table A.27: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 25 1 4

ARP(B 5I) 25 0 0 4

i1(5I) 97 97 0 88

PHENIX/Parrot 95 95 10 0

970
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Table A.28: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 100 50 3 1

ARP(B 5I) 50 100 3 1

i1(5I) 3 3 100 1

PHENIX/Parrot 1 1 1 100

1001

Table A.29: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 5 0 3

ARP(B 5I) 8 0 0 4

i1(5I) 93 93 0 86

PHENIX/Parrot 93 92 5 0

930
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Table A.30: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 20 1 1

ARP(B 5I) 17 0 0 0

i1(5I) 3 3 0 3

PHENIX/Parrot 2 2 5 0

200

Table A.31: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 24 95 97

ARP R− f ree - - - -
ARP(B 5I) R−work 60 0 100 100

ARP(B 5I) R− f ree - 0 40 39

i1(5I) R−work 4 0 0 45

i1(5I) R− f ree - 58 0 48

PHENIX/Parrot R−work 2 0 49 0

PHENIX/Parrot R− f ree - 60 48 0

1000
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Table A.32: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 100 16 1 0

ARP R− f ree - - - -
ARP(B 5I) R−work 16 100 0 0

ARP(B 5I) R− f ree - 100 2 0

i1(5I) R−work 1 0 100 7

i1(5I) R− f ree - 2 100 4

PHENIX/Parrot R−work 0 0 7 100

PHENIX/Parrot R− f ree - 0 4 100

1000

Table A.33: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 2 89 96

ARP R− f ree - - - -
ARP(B 5I) R−work 22 0 97 100

ARP(B 5I) R− f ree - 0 35 37

i1(5I) R−work 2 0 0 22

i1(5I) R− f ree - 47 0 20

PHENIX/Parrot R−work 1 0 28 0

PHENIX/Parrot R− f ree - 53 23 0

1000
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Table A.34: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 22 6 2

ARP R− f ree - - - -
ARP(B 5I) R−work 38 0 3 0

ARP(B 5I) R− f ree - 0 5 2

i1(5I) R−work 2 0 0 22

i1(5I) R− f ree - 11 0 28

PHENIX/Parrot R−work 1 0 20 0

PHENIX/Parrot R− f ree - 7 25 0

380

Table A.35: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 27 1 4

ARP(B 5I) 25 0 0 3

i1(5I) 97 97 0 88

PHENIX/Parrot 95 96 10 0

970
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Table A.36: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 100 49 3 1

ARP(B 5I) 49 100 3 1

i1(5I) 3 3 100 1

PHENIX/Parrot 1 1 1 100

1001

Table A.37: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 6 0 3

ARP(B 5I) 8 0 0 3

i1(5I) 93 93 0 85

PHENIX/Parrot 92 92 4 0

930
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Table A.38: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 20 1 1

ARP(B 5I) 16 0 0 0

i1(5I) 4 3 0 4

PHENIX/Parrot 3 4 6 0

200

Table A.39: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 23 95 98

ARP R− f ree - - - -
ARP(B 5I) R−work 63 0 100 100

ARP(B 5I) R− f ree - 0 39 38

i1(5I) R−work 4 0 0 46

i1(5I) R− f ree - 59 0 48

PHENIX/Parrot R−work 2 0 49 0

PHENIX/Parrot R− f ree - 61 45 0

1000
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Table A.40: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 100 14 1 0

ARP R− f ree - - - -
ARP(B 5I) R−work 14 100 0 0

ARP(B 5I) R− f ree - 100 2 1

i1(5I) R−work 1 0 100 4

i1(5I) R− f ree - 2 100 7

PHENIX/Parrot R−work 0 0 4 100

PHENIX/Parrot R− f ree - 1 7 100

1000

Table A.41: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 3 90 96

ARP R− f ree - - - -
ARP(B 5I) R−work 18 0 96 100

ARP(B 5I) R− f ree - 0 35 37

i1(5I) R−work 2 0 0 18

i1(5I) R− f ree - 48 0 19

PHENIX/Parrot R−work 1 0 27 0

PHENIX/Parrot R− f ree - 54 23 0

1000
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Table A.42: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 20 5 2

ARP R− f ree - - - -
ARP(B 5I) R−work 45 0 3 0

ARP(B 5I) R− f ree - 0 4 1

i1(5I) R−work 2 0 0 28

i1(5I) R− f ree - 10 0 30

PHENIX/Parrot R−work 1 0 23 0

PHENIX/Parrot R− f ree - 7 22 0

450

Table A.43: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 23 1 4 3

ARP(B 5I) 22 0 0 3 3

i1(5I) 95 96 0 81 82

PHENIX/Parrot 96 96 17 0 45

PHENIX 97 97 16 42 0

970
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Table A.44: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 100 55 3 0 0

ARP(B 5I) 55 100 4 1 0

i1(5I) 3 4 100 2 2

PHENIX/Parrot 0 1 2 100 13

PHENIX 0 0 2 13 100

1000

Table A.45: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 4 0 3 3

ARP(B 5I) 8 0 0 3 3

i1(5I) 90 90 0 77 76

PHENIX/Parrot 94 93 9 0 12

PHENIX 93 93 10 14 0

940
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Table A.46: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 19 1 1 0

ARP(B 5I) 14 0 0 0 0

i1(5I) 6 6 0 4 7

PHENIX/Parrot 2 2 8 0 34

PHENIX 4 4 6 28 0

340

Table A.47: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 19 95 97 97

ARP R− f ree - - - - -
ARP(B 5I) R−work 67 0 100 100 100

ARP(B 5I) R− f ree - 0 8 6 5

i1(5I) R−work 4 0 0 37 37

i1(5I) R− f ree - 91 0 36 34

PHENIX/Parrot R−work 2 0 57 0 33

PHENIX/Parrot R− f ree - 94 60 0 38

PHENIX R−work 2 0 57 31 0

PHENIX R− f ree - 95 61 44 0

1000
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Table A.48: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 100 14 2 0 1

ARP R− f ree - - - - -
ARP(B 5I) R−work 14 100 0 0 0

ARP(B 5I) R− f ree - 100 2 0 0

i1(5I) R−work 2 0 100 6 6

i1(5I) R− f ree - 2 100 4 5

PHENIX/Parrot R−work 0 0 6 100 36

PHENIX/Parrot R− f ree - 0 4 100 19

PHENIX R−work 1 0 6 36 100

PHENIX R− f ree - 0 5 19 100

1000

Table A.49: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 2 89 96 95

ARP R− f ree - - - - -
ARP(B 5I) R−work 21 0 97 100 100

ARP(B 5I) R− f ree - 0 2 3 3

i1(5I) R−work 2 0 0 18 17

i1(5I) R− f ree - 68 0 16 17

PHENIX/Parrot R−work 1 0 43 0 0

PHENIX/Parrot R− f ree - 85 34 0 2

PHENIX R−work 1 0 40 0 0

PHENIX R− f ree - 89 39 5 0

1000
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Table A.50: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 17 6 2 2

ARP R− f ree - - - - -
ARP(B 5I) R−work 46 0 2 0 0

ARP(B 5I) R− f ree - 0 5 2 2

i1(5I) R−work 2 0 0 19 20

i1(5I) R− f ree - 23 0 20 17

PHENIX/Parrot R−work 1 0 14 0 33

PHENIX/Parrot R− f ree - 9 25 0 36

PHENIX R−work 1 0 17 31 0

PHENIX R− f ree - 5 22 39 0

460
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A.3 Original resolutions without the Buccaneer

development data sets

Table A.51: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 27 28 41 64

ARP(B 5I) 47 0 34 41 75

i1(5I) 64 54 0 50 74

PHENIX/Parrot 48 44 40 0 74

SHELXE/Parrot 30 21 20 20 0

750

Table A.52: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 100 26 8 11 5

ARP(B 5I) 26 100 12 15 3

i1(5I) 8 12 100 9 6

PHENIX/Parrot 11 15 9 100 5

SHELXE/Parrot 5 3 6 5 100

1003
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Table A.53: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 5 13 13 40

ARP(B 5I) 21 0 17 16 47

i1(5I) 28 20 0 21 52

PHENIX/Parrot 27 20 23 0 49

SHELXE/Parrot 18 11 11 8 0

520

Table A.54: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 21 15 28 24

ARP(B 5I) 26 0 16 25 28

i1(5I) 36 34 0 29 22

PHENIX/Parrot 21 24 17 0 26

SHELXE/Parrot 12 10 9 12 0

360
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Table A.55: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 21 93 32 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 43 0 95 42 100

ARP(B 5I) R− f ree - 0 86 50 -
i1(5I) R−work 5 1 0 3 99

i1(5I) R− f ree - 10 0 3 -
PHENIX/Parrot R−work 45 36 95 0 99

PHENIX/Parrot R− f ree - 44 95 0 -
SHELXE/Parrot R−work 0 0 1 1 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.56: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 100 36 2 23 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 36 100 4 22 0

ARP(B 5I) R− f ree - 100 4 7 -
i1(5I) R−work 2 4 100 1 0

i1(5I) R− f ree - 4 100 3 -
PHENIX/Parrot R−work 23 22 1 100 0

PHENIX/Parrot R− f ree - 7 3 100 -
SHELXE/Parrot R−work 0 0 0 0 100

SHELXE/Parrot R− f ree - - - - -

1000
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Table A.57: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 5 47 4 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 4 0 49 6 100

ARP(B 5I) R− f ree - 0 56 9 -
i1(5I) R−work 0 0 0 0 95

i1(5I) R− f ree - 2 0 0 -
PHENIX/Parrot R−work 4 3 50 0 99

PHENIX/Parrot R− f ree - 13 50 0 -
SHELXE/Parrot R−work 0 0 1 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.58: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 17 46 28 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 39 0 46 36 0

ARP(B 5I) R− f ree - 0 30 40 -
i1(5I) R−work 5 1 0 3 4

i1(5I) R− f ree - 8 0 3 -
PHENIX/Parrot R−work 41 33 45 0 0

PHENIX/Parrot R− f ree - 31 44 0 -
SHELXE/Parrot R−work 0 0 0 1 0

SHELXE/Parrot R− f ree - - - - -

460
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Table A.59: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 32 33 40 71

ARP(B 5I) 38 0 33 40 76

i1(5I) 57 53 0 46 78

PHENIX/Parrot 44 43 40 0 75

SHELXE/Parrot 24 17 16 17 0

780

Table A.60: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 100 31 10 16 5

ARP(B 5I) 31 100 14 17 7

i1(5I) 10 14 100 14 6

PHENIX/Parrot 16 17 14 100 8

SHELXE/Parrot 5 7 6 8 100

1005
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Table A.61: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 5 15 16 42

ARP(B 5I) 16 0 15 15 50

i1(5I) 26 19 0 19 54

PHENIX/Parrot 26 19 23 0 52

SHELXE/Parrot 16 8 8 5 0

540

Table A.62: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP 0 27 17 24 29

ARP(B 5I) 21 0 18 25 26

i1(5I) 32 34 0 26 23

PHENIX/Parrot 17 23 17 0 23

SHELXE/Parrot 8 9 8 11 0

340
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Table A.63: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 16 91 34 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 40 0 95 47 100

ARP(B 5I) R− f ree - 0 88 47 -
i1(5I) R−work 6 1 0 3 99

i1(5I) R− f ree - 10 0 4 -
PHENIX/Parrot R−work 46 34 93 0 100

PHENIX/Parrot R− f ree - 41 93 0 -
SHELXE/Parrot R−work 0 0 1 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.64: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 100 44 3 20 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 44 100 3 19 0

ARP(B 5I) R− f ree - 100 2 12 -
i1(5I) R−work 3 3 100 3 0

i1(5I) R− f ree - 2 100 3 -
PHENIX/Parrot R−work 20 19 3 100 0

PHENIX/Parrot R− f ree - 12 3 100 -
SHELXE/Parrot R−work 0 0 0 0 100

SHELXE/Parrot R− f ree - - - - -

1000
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Table A.65: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 3 47 3 100

ARP R− f ree - - - - -
ARP(B 5I) R−work 4 0 54 5 100

ARP(B 5I) R− f ree - 0 54 11 -
i1(5I) R−work 1 0 0 0 97

i1(5I) R− f ree - 2 0 0 -
PHENIX/Parrot R−work 3 3 47 0 100

PHENIX/Parrot R− f ree - 10 49 0 -
SHELXE/Parrot R−work 0 0 1 0 0

SHELXE/Parrot R− f ree - - - - -

1000

Table A.66: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot SHELXE/Parrot

ARP R−work 0 13 44 31 0

ARP R− f ree - - - - -
ARP(B 5I) R−work 36 0 42 42 0

ARP(B 5I) R− f ree - 0 34 36 -
i1(5I) R−work 5 1 0 3 1

i1(5I) R− f ree - 8 0 4 -
PHENIX/Parrot R−work 42 30 46 0 0

PHENIX/Parrot R− f ree - 31 44 0 -
SHELXE/Parrot R−work 0 0 0 0 0

SHELXE/Parrot R− f ree - - - - -

460
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Table A.67: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 100 32 9 12 15 5 7

ARP(B 5I) 32 100 16 13 19 9 5

i1(5I) 9 16 100 9 11 3 4

PHENIX/Parrot 12 13 9 100 22 4 6

PHENIX 15 19 11 22 100 6 7

SHELXE 5 9 3 4 6 100 8

SHELXE/Parrot 7 5 4 6 7 8 100

1003

Table A.68: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 17 18 27 23 24 21

ARP(B 5I) 21 0 20 28 27 22 20

i1(5I) 30 28 0 30 32 21 24

PHENIX/Parrot 21 24 19 0 32 20 22

PHENIX 20 21 18 25 0 21 21

SHELXE 9 7 9 9 9 0 25

SHELXE/Parrot 11 10 7 11 11 26 0

320

161



APPENDIX A. COMPARISON OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING PIPELINES
(ADDITIONAL RESULTS)

Table A.69: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 100 35 1 20 20 0 0

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 35 100 1 24 22 0 0

ARP(B 5I) R− f ree - 100 8 14 9 - -
i1(5I) R−work 1 1 100 3 4 0 0

i1(5I) R− f ree - 8 100 4 3 - -
PHENIX/Parrot R−work 20 24 3 100 51 0 0

PHENIX/Parrot R− f ree - 14 4 100 38 - -
PHENIX R−work 20 22 4 51 100 0 0

PHENIX R− f ree - 9 3 38 100 - -
SHELXE R−work 0 0 0 0 0 100 39

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 0 0 0 39 100

SHELXE/Parrot R− f ree - - - - - - -

1000

Table A.70: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP R−work 0 15 42 29 30 0 0

ARP R− f ree - - - - - - -
ARP(B 5I) R−work 41 0 36 41 41 0 0

ARP(B 5I) R− f ree - 0 48 12 15 - -
i1(5I) R−work 5 0 0 3 2 2 3

i1(5I) R− f ree - 14 0 3 4 - -
PHENIX/Parrot R−work 42 27 41 0 25 0 0

PHENIX/Parrot R− f ree - 57 36 0 29 - -
PHENIX R−work 39 28 39 21 0 0 1

PHENIX R− f ree - 59 35 30 0 - -
SHELXE R−work 0 0 1 0 1 0 19

SHELXE R− f ree - - - - - - -
SHELXE/Parrot R−work 0 0 1 1 1 41 0

SHELXE/Parrot R− f ree - - - - - - -

590
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A.4 Synthetic resolutions without Buccaneer

development data sets

Table A.71: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 21 1 2

ARP(B 5I) 21 0 1 3

i1(5I) 93 94 0 75

PHENIX/Parrot 97 96 23 0

970

Table A.72: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 100 58 5 1

ARP(B 5I) 58 100 5 1

i1(5I) 5 5 100 2

PHENIX/Parrot 1 1 2 100

1001
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Table A.73: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 4 1 2

ARP(B 5I) 7 0 0 3

i1(5I) 84 84 0 70

PHENIX/Parrot 92 91 16 0

920

Table A.74: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 17 1 0

ARP(B 5I) 14 0 0 0

i1(5I) 9 10 0 5

PHENIX/Parrot 5 5 7 0

170
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Table A.75: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 27 93 97

ARP R− f ree - - - -
ARP(B 5I) R−work 60 0 99 100

ARP(B 5I) R− f ree - 0 48 45

i1(5I) R−work 6 1 0 37

i1(5I) R− f ree - 50 0 38

PHENIX/Parrot R−work 2 0 59 0

PHENIX/Parrot R− f ree - 54 56 0

1000

Table A.76: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 100 13 1 0

ARP R− f ree - - - -
ARP(B 5I) R−work 13 100 1 0

ARP(B 5I) R− f ree - 100 2 2

i1(5I) R−work 1 1 100 4

i1(5I) R− f ree - 2 100 6

PHENIX/Parrot R−work 0 0 4 100

PHENIX/Parrot R− f ree - 2 6 100

1000
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Table A.77: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 5 86 93

ARP R− f ree - - - -
ARP(B 5I) R−work 20 0 92 99

ARP(B 5I) R− f ree - 0 43 43

i1(5I) R−work 2 0 0 20

i1(5I) R− f ree - 42 0 19

PHENIX/Parrot R−work 0 0 38 0

PHENIX/Parrot R− f ree - 48 34 0

990

Table A.78: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 22 8 4

ARP R− f ree - - - -
ARP(B 5I) R−work 41 0 7 1

ARP(B 5I) R− f ree - 0 4 2

i1(5I) R−work 4 1 0 18

i1(5I) R− f ree - 9 0 19

PHENIX/Parrot R−work 2 0 21 0

PHENIX/Parrot R− f ree - 6 22 0

410
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Table A.79: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 21 1 2

ARP(B 5I) 25 0 0 3

i1(5I) 95 95 0 76

PHENIX/Parrot 97 95 22 0

970

Table A.80: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 100 54 5 1

ARP(B 5I) 54 100 4 1

i1(5I) 5 4 100 2

PHENIX/Parrot 1 1 2 100

1001
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Table A.81: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 3 0 2

ARP(B 5I) 9 0 0 3

i1(5I) 86 86 0 72

PHENIX/Parrot 92 91 15 0

920

Table A.82: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP 0 19 0 0

ARP(B 5I) 16 0 0 0

i1(5I) 9 9 0 4

PHENIX/Parrot 5 5 7 0

190
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Table A.83: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 28 93 98

ARP R− f ree - - - -
ARP(B 5I) R−work 59 0 99 100

ARP(B 5I) R− f ree - 0 48 46

i1(5I) R−work 5 1 0 40

i1(5I) R− f ree - 51 0 41

PHENIX/Parrot R−work 2 0 56 0

PHENIX/Parrot R− f ree - 53 54 0

1000

Table A.84: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 100 13 2 0

ARP R− f ree - - - -
ARP(B 5I) R−work 13 100 0 0

ARP(B 5I) R− f ree - 100 1 1

i1(5I) R−work 2 0 100 4

i1(5I) R− f ree - 1 100 5

PHENIX/Parrot R−work 0 0 4 100

PHENIX/Parrot R− f ree - 1 5 100

1000
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Table A.85: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 5 86 93

ARP R− f ree - - - -
ARP(B 5I) R−work 19 0 93 99

ARP(B 5I) R− f ree - 0 43 43

i1(5I) R−work 2 0 0 21

i1(5I) R− f ree - 42 0 21

PHENIX/Parrot R−work 0 0 37 0

PHENIX/Parrot R− f ree - 47 33 0

990

Table A.86: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot

ARP R−work 0 23 7 4

ARP R− f ree - - - -
ARP(B 5I) R−work 40 0 6 1

ARP(B 5I) R− f ree - 0 5 3

i1(5I) R−work 4 1 0 18

i1(5I) R− f ree - 9 0 20

PHENIX/Parrot R−work 2 0 19 0

PHENIX/Parrot R− f ree - 6 21 0

400
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Table A.87: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 20 1 2 2

ARP(B 5I) 20 0 0 3 3

i1(5I) 94 95 0 68 69

PHENIX/Parrot 97 96 29 0 43

PHENIX 97 96 28 45 0

970

Table A.88: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 100 60 5 1 1

ARP(B 5I) 60 100 5 1 1

i1(5I) 5 5 100 3 3

PHENIX/Parrot 1 1 3 100 12

PHENIX 1 1 3 12 100

1001

171



APPENDIX A. COMPARISON OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING PIPELINES
(ADDITIONAL RESULTS)

Table A.89: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 4 1 2 2

ARP(B 5I) 8 0 0 3 3

i1(5I) 82 82 0 63 63

PHENIX/Parrot 92 92 21 0 15

PHENIX 92 90 21 16 0

920

Table A.90: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP 0 16 1 0 0

ARP(B 5I) 12 0 0 0 1

i1(5I) 12 12 0 5 6

PHENIX/Parrot 5 4 8 0 28

PHENIX 5 6 7 29 0

290

172



APPENDIX A. COMPARISON OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING PIPELINES
(ADDITIONAL RESULTS)

Table A.91: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 19 95 97 97

ARP R− f ree - - - - -
ARP(B 5I) R−work 67 0 99 100 100

ARP(B 5I) R− f ree - 0 13 5 6

i1(5I) R−work 4 0 0 32 31

i1(5I) R− f ree - 84 0 34 33

PHENIX/Parrot R−work 3 0 64 0 33

PHENIX/Parrot R− f ree - 94 62 0 41

PHENIX R−work 2 0 64 36 0

PHENIX R− f ree - 93 63 43 0

1000

Table A.92: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 100 13 1 0 1

ARP R− f ree - - - - -
ARP(B 5I) R−work 13 100 1 0 0

ARP(B 5I) R− f ree - 100 3 1 1

i1(5I) R−work 1 1 100 4 5

i1(5I) R− f ree - 3 100 4 4

PHENIX/Parrot R−work 0 0 4 100 31

PHENIX/Parrot R− f ree - 1 4 100 17

PHENIX R−work 1 0 5 31 100

PHENIX R− f ree - 1 4 17 100

1000
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Table A.93: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 3 88 93 93

ARP R− f ree - - - - -
ARP(B 5I) R−work 25 0 94 99 100

ARP(B 5I) R− f ree - 0 4 2 2

i1(5I) R−work 2 0 0 16 16

i1(5I) R− f ree - 66 0 16 15

PHENIX/Parrot R−work 0 0 47 0 1

PHENIX/Parrot R− f ree - 84 43 0 6

PHENIX R−work 1 0 47 1 0

PHENIX R− f ree - 84 43 7 0

1000

Table A.94: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX

ARP R−work 0 17 7 4 5

ARP R− f ree - - - - -
ARP(B 5I) R−work 42 0 5 0 0

ARP(B 5I) R− f ree - 0 10 3 3

i1(5I) R−work 3 0 0 16 16

i1(5I) R− f ree - 18 0 18 18

PHENIX/Parrot R−work 2 0 17 0 32

PHENIX/Parrot R− f ree - 10 19 0 34

PHENIX R−work 1 0 17 35 0

PHENIX R− f ree - 9 20 36 0

420
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A.5 Reproducibility of the comparison experiment

The results of this comparison are reproducible, excluding the execution times that

the pipeline variants required to build the protein models, which might be affected by

certain factors and differ in each run. Tables A.95, A.96, A.97 and A.98 compare

the mean of completeness, R-work/R-free and the execution times for original and

synthetic. It is clear from these tables that completeness and R-work/R-free can be

reproduced, while execution times can vary across different runs, as happens in Phenix

Autobuild.

Table A.95: The mean of the three comparative factors, completeness(%), R-work/R-
free and the execution times in minutes for the reproducibility experiment for the orig-
inal NO-NCS data sets.

Pipeline variant Completeness R-work/R-free Execution time

ARP 94 0.24/0.24 32

ARP(B 5I) 93 0.23/0.26 32

i1(5I) 95 0.26/0.29 4

PHENIX 92 0.24/0.26 71

SHELXE 90 0.45/0.44 66

PHENIX/Parrot 93 0.24/0.26 91

SHELXE/Parrot 92 0.44/0.44 59

Table A.96: The mean of the three comparative factors, completeness(%), R-work/R-
free and the execution times in minutes for the main experiment for the original NO-
NCS data sets.

Pipeline variant Completeness R-work/R-free Execution time

ARP 94 0.24/0.24 28

ARP(B 5I) 93 0.23/0.26 40

i1(5I) 95 0.26/0.29 4

PHENIX 92 0.24/0.26 101

SHELXE 90 0.45/0.44 65

PHENIX/Parrot 93 0.24/0.26 92

SHELXE/Parrot 92 0.44/0.44 65
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Table A.97: The mean of the three comparative factors, completeness(%), R-work/R-
free and the execution times in minutes for the reproducibility experiment for the syn-
thetic NO-NCS data sets.

Pipeline variant Completeness R-work/R-free Execution time

ARP 2 0.21/0.2 30

ARP(B 5I) 1 0.19/0.4 32

i1(5I) 62 0.32/0.4 5

PHENIX 45 0.29/0.37 49

PHENIX/Parrot 43 0.29/0.38 77

Table A.98: The mean of the three comparative factors, completeness(%), R-work/R-
free and the execution times in minutes for the main experiment for the synthetic NO-
NCS data sets.

Pipeline variant Completeness R-work/R-free Execution time

ARP 2 0.21/0.2 24

ARP(B 5I) 0 0.19/0.39 45

i1(5I) 63 0.32/0.4 5

PHENIX 45 0.29/0.37 92

PHENIX/Parrot 43 0.29/0.38 95
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A.6 PDB codes used in the comparison

The following PDB codes have been used in the comparison (the omitted data sets

are marked with an asterisk): 1o6a*, 1vjf*, 1vjn*, 1vjr*, 1vjv*, 1vjx*, 1vjz*, 1vk2*,

1vk3*, 1vk4*, 1vk8*, 1vk9*, 1vkb*, 1vkd*, 1vkh*, 1vkm*, 1vkn*, 1vku*, 1vky*,

1vkz*, 1vl0*, 1vl4*, 1vl5*, 1vl6*, 1vlc*, 1vli*, 1vll*, 1vlm*, 1vlo*, 1vlu*, 1vm8,

1vme*, 1vmf*, 1vmg*, 1vmi*, 1vp4*, 1vp7*, 1vp8*, 1vpb*, 1vpm*, 1vpy*, 1vpz*,

1vqr*, 1vqs*, 1vqy*, 1vqz*, 1vr0*, 1vr3*, 1vr5*, 1vr8*, 1vra, 1vrb*, 1z82*, 1z85*,

1zbt, 1zkg, 1zko, 1ztc, 1zy9, 1zyb, 2a2m, 2a3n, 2a6a, 2a6b, 2a9v, 2aam, 2afb, 2aj6,

2aj7, 2ajr, 2aml, 2anu, 2ash, 2avn, 2awa, 2b8m, 2ess, 2etd, 2eth, 2etj, 2ets, 2f4l, 2f4p,

2fcl, 2fea, 2ffj, 2fg0, 2fg9, 2fna, 2fno, 2fqp, 2fur, 2fzt, 2g0t, 2gb5, 2gfg, 2ghr, 2ghs,

2gjg, 2glz, 2gm6, 2gno, 2gnr, 2go7, 2gpj, 2gvh, 2gvk, 2h1q, 2hag, 2hcf, 2hdo, 2hh6,

2hhz, 2hi0, 2hoe, 2hq7, 2hr2, 2hsb, 2hti, 2huh, 2huj, 2hx1, 2hxv, 2hyt, 2i51, 2i5i,

2i8d, 2i9w, 2ia7, 2ich, 2ifx, 2ig6, 2ii1, 2iiu, 2ilb, 2inb, 2isb, 2it9, 2itb, 2nlv, 2nuj,

2nwv, 2nyh, 2o08, 2o1q, 2o2g, 2o2x, 2o3l, 2o5r, 2o62, 2o7t, 2o8q, 2obn, 2obp, 2oc5,

2oc6, 2od4, 2od5, 2od6, 2ogi, 2oh1, 2oh3, 2okc, 2okf, 2ooc, 2ooj, 2op5, 2opk, 2opl,

2ord, 2osd, 2otm, 2ou6, 2ouw, 2owp, 2oyo, 2ozg, 2ozj, 2p10, 2p1a, 2p4g, 2p4o, 2p7i,

2p8j, 2p97, 2pbl, 2pc1, 2pg3, 2pg4, 2pgc, 2pim, 2pke, 2pn1, 2pn2, 2pnk, 2ppv, 2pr7,

2prr, 2prv, 2prx, 2pv4 and 2pw4.
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A.7 SHELXE results for using default and optimised

solvent fraction for the original data sets without

the Buccaneer development data sets

Table A.99: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.
SHELXE were run using the default solvent fraction, which is 0.45 and an optimised
solvent fraction (multiple protein models were built using the solvent fraction range
from 0 to 1 with an increased step of 0.01 and selected the protein model with the
highest correlation coefficient).

Pipeline variant ARP ARP(B 5I) i1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot SHELXE/Parrot (optimised) SHELXE (optimised)

ARP 0 6 15 11 14 45 40 42 60

ARP(B 5I) 24 0 20 16 16 53 53 54 74

i1(5I) 28 17 0 16 16 56 48 46 72

PHENIX/Parrot 28 20 26 0 14 61 55 55 72

PHENIX 28 18 23 7 0 57 51 53 72

SHELXE 17 7 11 7 7 0 9 20 51

SHELXE/Parrot 21 12 17 5 10 32 0 27 57

SHELXE/Parrot (optimised) 18 11 14 7 10 23 8 0 50

SHELXE (optimised) 14 6 6 4 4 9 6 0 0

740
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A.8 Comparison of ARP/wARP run with and without

R-free

(a) (b)

Figure A.1: Comparison of ARP/wARP with and without R-free flag for both original
and synthetic NO-NCS data sets. Points above the diagonal indicate that ARP/wARP
was run without R-free is better than when R-free flag is used. (a) The comparison of
structure completeness. (b) The comparison of structure correlation
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Appendix B

Pairwise running of automated

crystallographic model-building

pipelines (additional results)

B.1 Experimental results for the original data sets

used in Buccaneer development

Table B.1: Complete and intermediate models produced by the 23 pipeline variants for
the 52 original data sets, where (T) and (C) denote intermediate models produced by
pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

A 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

A→P∗ 51 1(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

A→B 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

B 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

B→P∗ 51 0(T) 0(C) 1 51 0(T) 0(C) 1 50 1(T) 0(C) 1

P∗ 51 1(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

P∗ → A 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

P∗ → B 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

S∗ 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

S∗ → A 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

S∗ → B 52 0(T) 0(C) 0 52 0(T) 0(C) 0 52 0(T) 0(C) 0

S∗ → P∗ 52 0(T) 0(C) 0 51 1(T) 0(C) 0 52 0(T) 0(C) 0

A→P - - - - - - 52 0(T) 0(C) 0

B→P - - - - - - 51 0(T) 0(C) 1

P - - - - - - 52 0(T) 0(C) 0

P→A - - - - - - 52 0(T) 0(C) 0

P→B - - - - - - 52 0(T) 0(C) 0

S - - - - - - 52 0(T) 0(C) 0

S→A - - - - - - 52 0(T) 0(C) 0

S→B - - - - - - 52 0(T) 0(C) 0

S∗ → P - - - - - - 52 0(T) 0(C) 0

S → P∗ - - - - - - 52 0(T) 0(C) 0

S→P - - - - - - 52 0(T) 0(C) 0

Models used in the comparison: 51 HA-NCS, 51 MR-NCS and 51 NO-NCS.
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Table B.2: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 18 20 27 24 29 35 14 71 53 29 35

A→B 69 0 67 57 45 69 73 31 92 80 61 71

A→P∗ 63 22 0 47 33 45 61 14 94 71 39 57

B 59 31 43 0 20 43 49 22 90 69 41 55

B→P∗ 61 41 53 67 0 63 55 29 94 75 49 75

P∗ 57 27 29 45 25 0 47 14 82 65 39 45

P∗→A 45 20 14 37 27 35 0 12 82 61 27 49

P∗→B 80 45 67 71 55 76 76 0 96 80 65 82

S∗ 25 8 2 8 2 10 14 4 0 41 6 8

S∗→A 20 14 12 18 16 29 20 12 55 0 14 29

S∗→B 59 25 45 47 31 51 51 22 94 75 0 55

S∗→P∗ 51 25 31 43 16 29 39 18 86 65 35 0

960

Table B.3: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 100 14 18 14 16 14 20 6 4 27 12 14

A→B 14 100 12 12 14 4 8 24 0 6 14 4

A→P∗ 18 12 100 10 14 25 25 20 4 18 16 12

B 14 12 10 100 14 12 14 8 2 14 12 2

B→P∗ 16 14 14 14 100 12 18 16 4 10 20 10

P∗ 14 4 25 12 12 100 18 10 8 6 10 25

P∗→A 20 8 25 14 18 18 100 12 4 20 22 12

P∗→B 6 24 20 8 16 10 12 100 0 8 14 0

S∗ 4 0 4 2 4 8 4 0 100 4 0 6

S∗→A 27 6 18 14 10 6 20 8 4 100 12 6

S∗→B 12 14 16 12 20 10 22 14 0 12 100 10

S∗→P∗ 14 4 12 2 10 25 12 0 6 6 10 100

1000
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Table B.4: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 10 0 14 10 14 12 10 57 33 6 14

A→B 29 0 18 22 16 29 29 12 75 49 24 33

A→P∗ 35 14 0 25 12 12 27 10 78 43 18 25

B 35 18 18 0 12 22 25 10 75 43 14 24

B→P∗ 41 22 25 29 0 25 31 16 75 47 25 33

P∗ 29 20 14 22 8 0 25 10 69 39 22 16

P∗→A 20 14 4 24 8 14 0 6 69 37 12 25

P∗→B 37 22 29 27 22 37 37 0 80 49 31 43

S∗ 16 4 0 2 0 8 8 4 0 35 4 4

S∗→A 10 6 0 4 6 8 6 6 41 0 4 14

S∗→B 35 10 18 16 10 20 25 12 80 43 0 31

S∗→P∗ 33 16 12 22 10 14 24 10 73 43 16 0

800

Table B.5: Structure completeness comparison for the models generated from the 52
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 8 20 14 14 16 24 4 14 20 24 22

A→B 39 0 49 35 29 39 43 20 18 31 37 37

A→P∗ 27 8 0 22 22 33 33 4 16 27 22 31

B 24 14 25 0 8 22 24 12 16 25 27 31

B→P∗ 20 20 27 37 0 37 24 14 20 27 24 41

P∗ 27 8 16 24 18 0 22 4 14 25 18 29

P∗→A 25 6 10 14 20 22 0 6 14 24 16 24

P∗→B 43 24 37 43 33 39 39 0 16 31 33 39

S∗ 10 4 2 6 2 2 6 0 0 6 2 4

S∗→A 10 8 12 14 10 22 14 6 14 0 10 16

S∗→B 24 16 27 31 22 31 25 10 14 31 0 24

S∗→P∗ 18 10 20 22 6 16 16 8 14 22 20 0

490
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Table B.6: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 92 25 96 39 51 31 86 100 49 94 47

A R− f ree - - - - - - - - - - - -
A→B R−work 4 0 2 53 2 6 4 25 98 4 53 4

A→B R− f ree - 0 12 47 4 6 24 24 - 45 53 4

A→P∗
R−work 57 98 0 98 51 73 51 92 100 71 100 76

A→P∗
R− f ree - 86 0 90 43 61 80 82 - 90 92 63

B R−work 2 22 0 0 0 0 2 12 100 2 27 2

B R− f ree - 29 8 0 2 6 14 25 - 43 37 6

B→P∗
R−work 41 86 27 98 0 45 39 90 100 57 96 57

B→P∗
R− f ree - 90 43 96 0 47 69 86 - 76 94 53

P∗
R−work 35 86 12 98 18 0 27 88 100 45 96 31

P∗
R− f ree - 92 24 90 31 0 67 84 - 82 98 35

P∗→A R−work 43 96 31 96 45 57 0 94 100 51 98 59

P∗→A R− f ree - 73 6 76 20 18 0 69 - 61 73 16

P∗→B R−work 8 37 6 61 4 8 4 0 100 18 55 6

P∗→B R− f ree - 41 12 61 8 12 24 0 - 45 55 14

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 27 94 16 92 29 41 20 80 100 0 96 35

S∗→A R− f ree - 51 4 55 8 8 18 51 - 0 53 12

S∗→B R−work 2 22 0 37 0 2 2 18 100 2 0 0

S∗→B R− f ree - 29 6 45 0 2 20 22 - 43 0 2

S∗→P∗
R−work 29 92 10 96 16 22 25 86 100 37 94 0

S∗→P∗
R− f ree - 94 22 94 22 22 65 82 - 78 94 0

1000
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Table B.7: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 100 4 18 2 20 14 25 6 0 24 4 24

A R− f ree - - - - - - - - - - - -
A→B R−work 4 100 0 25 12 8 0 37 2 2 25 4

A→B R− f ree - 100 2 24 6 2 4 35 - 4 18 2

A→P∗
R−work 18 0 100 2 22 16 18 2 0 14 0 14

A→P∗
R− f ree - 2 100 2 14 16 14 6 - 6 2 16

B R−work 2 25 2 100 2 2 2 27 0 6 35 2

B R− f ree - 24 2 100 2 4 10 14 - 2 18 0

B→P∗
R−work 20 12 22 2 100 37 16 6 0 14 4 27

B→P∗
R− f ree - 6 14 2 100 22 12 6 - 16 6 25

P∗
R−work 14 8 16 2 37 100 16 4 0 14 2 47

P∗
R− f ree - 2 16 4 22 100 16 4 - 10 0 43

P∗→A R−work 25 0 18 2 16 16 100 2 0 29 0 16

P∗→A R− f ree - 4 14 10 12 16 100 8 - 22 8 20

P∗→B R−work 6 37 2 27 6 4 2 100 0 2 27 8

P∗→B R− f ree - 35 6 14 6 4 8 100 - 4 24 4

S∗ R−work 0 2 0 0 0 0 0 0 100 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 24 2 14 6 14 14 29 2 0 100 2 27

S∗→A R− f ree - 4 6 2 16 10 22 4 - 100 4 10

S∗→B R−work 4 25 0 35 4 2 0 27 0 2 100 6

S∗→B R− f ree - 18 2 18 6 0 8 24 - 4 100 4

S∗→P∗
R−work 24 4 14 2 27 47 16 8 0 27 6 100

S∗→P∗
R− f ree - 2 16 0 25 43 20 4 - 10 4 100

1000
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Table B.8: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 53 14 59 10 12 4 41 100 22 55 14

A R− f ree - - - - - - - - - - - -
A→B R−work 0 0 0 12 0 2 0 10 96 2 6 0

A→B R− f ree - 0 2 10 0 2 8 8 - 33 4 0

A→P∗
R−work 2 57 0 67 0 6 4 49 100 16 71 4

A→P∗
R− f ree - 45 0 61 0 4 20 39 - 49 59 0

B R−work 0 6 0 0 0 0 0 6 96 2 4 0

B R− f ree - 8 2 0 0 0 6 4 - 31 4 0

B→P∗
R−work 4 51 4 61 0 4 6 45 100 16 59 2

B→P∗
R− f ree - 53 6 63 0 2 22 41 - 39 59 2

P∗
R−work 4 39 4 49 0 0 2 22 100 12 49 0

P∗
R− f ree - 39 6 51 0 0 16 27 - 43 49 2

P∗→A R−work 4 47 12 61 12 14 0 43 100 18 53 14

P∗→A R− f ree - 18 4 31 0 0 0 18 - 31 29 0

P∗→B R−work 2 16 2 22 0 0 0 0 100 6 20 0

P∗→B R− f ree - 14 6 22 0 0 10 0 - 37 18 0

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 2 35 0 51 0 4 2 29 100 0 49 4

S∗→A R− f ree - 12 0 20 0 0 0 10 - 0 16 0

S∗→B R−work 0 6 0 4 0 2 0 6 96 2 0 0

S∗→B R− f ree - 4 0 6 0 2 8 6 - 29 0 0

S∗→P∗
R−work 4 41 4 53 0 2 2 25 100 12 49 0

S∗→P∗
R− f ree - 37 8 53 0 4 14 25 - 39 43 0

1000
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Table B.9: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the 52 original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 39 12 37 29 39 27 45 0 27 39 33

A R− f ree - - - - - - - - - - - -
A→B R−work 4 0 2 41 2 4 4 16 2 2 47 4

A→B R− f ree - 0 10 37 4 4 16 16 - 12 49 4

A→P∗
R−work 55 41 0 31 51 67 47 43 0 55 29 73

A→P∗
R− f ree - 41 0 29 43 57 61 43 - 41 33 63

B R−work 2 16 0 0 0 0 2 6 4 0 24 2

B R− f ree - 22 6 0 2 6 8 22 - 12 33 6

B→P∗
R−work 37 35 24 37 0 41 33 45 0 41 37 55

B→P∗
R− f ree - 37 37 33 0 45 47 45 - 37 35 51

P∗
R−work 31 47 8 49 18 0 25 67 0 33 47 31

P∗
R− f ree - 53 18 39 31 0 51 57 - 39 49 33

P∗→A R−work 39 49 20 35 33 43 0 51 0 33 45 45

P∗→A R− f ree - 55 2 45 20 18 0 51 - 29 43 16

P∗→B R−work 6 22 4 39 4 8 4 0 0 12 35 6

P∗→B R− f ree - 27 6 39 8 12 14 0 - 8 37 14

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 25 59 16 41 29 37 18 51 0 0 47 31

S∗→A R− f ree - 39 4 35 8 8 18 41 - 0 37 12

S∗→B R−work 2 16 0 33 0 0 2 12 4 0 0 0

S∗→B R− f ree - 25 6 39 0 0 12 16 - 14 0 2

S∗→P∗
R−work 25 51 6 43 16 20 24 61 0 25 45 0

S∗→P∗
R− f ree - 57 14 41 22 18 51 57 - 39 51 0

730
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Table B.10: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 22 25 25 22 37 27 14 73 51 29 39

A→B 65 0 61 45 37 65 75 31 94 78 57 61

A→P∗ 51 31 0 41 24 37 49 16 94 67 43 45

B 59 29 47 0 25 49 55 20 94 73 41 61

B→P∗ 61 43 63 61 0 67 65 35 92 78 55 80

P∗ 49 29 37 37 25 0 47 16 86 59 39 47

P∗→A 43 18 24 25 22 35 0 8 80 55 31 43

P∗→B 78 53 65 65 51 69 82 0 96 82 67 80

S∗ 22 6 2 6 4 8 14 4 0 39 4 8

S∗→A 20 16 18 20 12 31 20 10 57 0 14 31

S∗→B 59 25 43 39 33 53 49 16 96 71 0 51

S∗→P∗ 47 29 39 35 12 31 45 14 88 59 37 0

960

Table B.11: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 100 14 24 16 18 14 29 8 6 29 12 14

A→B 14 100 8 25 20 6 8 16 0 6 18 10

A→P∗ 24 8 100 12 14 25 27 20 4 16 14 16

B 16 25 12 100 14 14 20 16 0 8 20 4

B→P∗ 18 20 14 14 100 8 14 14 4 10 12 8

P∗ 14 6 25 14 8 100 18 16 6 10 8 22

P∗→A 29 8 27 20 14 18 100 10 6 25 20 12

P∗→B 8 16 20 16 14 16 10 100 0 8 18 6

S∗ 6 0 4 0 4 6 6 0 100 4 0 4

S∗→A 29 6 16 8 10 10 25 8 4 100 16 10

S∗→B 12 18 14 20 12 8 20 18 0 16 100 12

S∗→P∗ 14 10 16 4 8 22 12 6 4 10 12 100

1000
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Table B.12: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 8 6 10 10 10 8 8 61 35 10 14

A→B 35 0 22 14 12 31 31 8 75 47 18 35

A→P∗ 31 16 0 18 12 10 27 10 82 49 24 18

B 35 16 20 0 10 22 33 10 76 45 18 27

B→P∗ 43 24 29 25 0 31 35 10 78 49 25 43

P∗ 31 16 18 20 10 0 25 12 76 43 22 20

P∗→A 16 10 8 16 10 10 0 4 65 39 12 20

P∗→B 35 18 24 25 18 29 35 0 82 49 31 39

S∗ 10 2 0 2 2 4 8 4 0 31 0 6

S∗→A 6 4 0 6 6 8 6 6 41 0 6 12

S∗→B 37 8 18 12 8 25 27 8 78 45 0 27

S∗→P∗ 31 20 12 20 10 12 24 12 75 45 20 0
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Table B.13: Structure completeness comparison for the models generated from the 52
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 14 20 16 12 27 20 6 12 16 20 25

A→B 29 0 39 31 25 33 43 24 20 31 39 25

A→P∗ 20 16 0 24 12 27 22 6 12 18 20 27

B 24 14 27 0 16 27 22 10 18 27 24 33

B→P∗ 18 20 33 35 0 35 29 25 14 29 29 37

P∗ 18 14 20 18 16 0 22 4 10 16 18 27

P∗→A 27 8 16 10 12 25 0 4 16 16 20 24

P∗→B 43 35 41 39 33 39 47 0 14 33 35 41

S∗ 12 4 2 4 2 4 6 0 0 8 4 2

S∗→A 14 12 18 14 6 24 14 4 16 0 8 20

S∗→B 22 18 25 27 25 27 22 8 18 25 0 24

S∗→P∗ 16 10 27 16 2 20 22 2 14 14 18 0
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Table B.14: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 88 25 92 39 57 22 84 100 43 90 45

A R− f ree - - - - - - - - - - - -
A→B R−work 6 0 0 39 4 4 0 27 98 8 49 4

A→B R− f ree - 0 4 37 6 4 18 24 - 43 49 8

A→P∗
R−work 59 98 0 96 55 78 47 92 100 69 100 75

A→P∗
R− f ree - 92 0 92 49 61 82 86 - 90 96 63

B R−work 4 25 0 0 2 2 0 18 100 4 33 6

B R− f ree - 33 8 0 6 6 18 25 - 49 43 8

B→P∗
R−work 49 84 31 96 0 51 39 88 100 55 92 63

B→P∗
R− f ree - 88 33 92 0 51 69 88 - 78 90 63

P∗
R−work 27 86 10 92 20 0 20 88 100 43 96 29

P∗
R− f ree - 88 16 86 24 0 65 86 - 80 98 39

P∗→A R−work 51 98 39 100 43 69 0 96 100 47 100 65

P∗→A R− f ree - 71 6 71 24 16 0 71 - 61 75 22

P∗→B R−work 8 39 6 53 6 6 2 0 100 14 55 6

P∗→B R− f ree - 43 6 55 8 8 24 0 - 45 57 12

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 35 90 16 92 24 39 12 84 100 0 94 39

S∗→A R− f ree - 49 2 49 10 8 16 49 - 0 51 14

S∗→B R−work 4 14 0 27 2 0 0 18 100 4 0 0

S∗→B R− f ree - 25 2 31 2 0 18 14 - 45 0 4

S∗→P∗
R−work 31 88 10 94 16 27 24 88 100 41 92 0

S∗→P∗
R− f ree - 92 18 92 16 27 63 80 - 78 94 0
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Table B.15: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 100 6 16 4 12 16 27 8 0 22 6 24

A R− f ree - - - - - - - - - - - -
A→B R−work 6 100 2 35 12 10 2 33 2 2 37 8

A→B R− f ree - 100 4 29 6 8 12 33 - 8 25 0

A→P∗
R−work 16 2 100 4 14 12 14 2 0 16 0 16

A→P∗
R− f ree - 4 100 0 18 24 12 8 - 8 2 20

B R−work 4 35 4 100 2 6 0 29 0 4 39 0

B R− f ree - 29 0 100 2 8 12 20 - 2 25 0

B→P∗
R−work 12 12 14 2 100 29 18 6 0 22 6 22

B→P∗
R− f ree - 6 18 2 100 25 8 4 - 12 8 22

P∗
R−work 16 10 12 6 29 100 12 6 0 18 4 43

P∗
R− f ree - 8 24 8 25 100 20 6 - 12 2 33

P∗→A R−work 27 2 14 0 18 12 100 2 0 41 0 12

P∗→A R− f ree - 12 12 12 8 20 100 6 - 24 8 16

P∗→B R−work 8 33 2 29 6 6 2 100 0 2 27 6

P∗→B R− f ree - 33 8 20 4 6 6 100 - 6 29 8

S∗ R−work 0 2 0 0 0 0 0 0 100 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 22 2 16 4 22 18 41 2 0 100 2 20

S∗→A R− f ree - 8 8 2 12 12 24 6 - 100 4 8

S∗→B R−work 6 37 0 39 6 4 0 27 0 2 100 8

S∗→B R− f ree - 25 2 25 8 2 8 29 - 4 100 2

S∗→P∗
R−work 24 8 16 0 22 43 12 6 0 20 8 100

S∗→P∗
R− f ree - 0 20 0 22 33 16 8 - 8 2 100
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Table B.16: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 47 6 53 8 10 0 43 100 18 55 8

A R− f ree - - - - - - - - - - - -
A→B R−work 0 0 0 10 0 0 0 8 96 2 6 0

A→B R− f ree - 0 2 4 2 0 4 8 - 29 4 0

A→P∗
R−work 0 61 0 61 4 4 0 55 100 12 69 4

A→P∗
R− f ree - 51 0 55 2 4 18 39 - 45 55 0

B R−work 0 4 0 0 0 0 0 8 98 2 6 0

B R− f ree - 8 2 0 2 0 4 6 - 31 10 0

B→P∗
R−work 4 49 6 53 0 4 2 47 100 18 57 2

B→P∗
R− f ree - 51 10 45 0 10 24 41 - 45 57 2

P∗
R−work 2 39 4 39 2 0 0 27 100 10 49 0

P∗
R− f ree - 35 6 41 2 0 10 31 - 39 49 2

P∗→A R−work 2 45 10 53 14 14 0 51 100 22 53 14

P∗→A R− f ree - 24 4 24 2 0 0 16 - 29 33 0

P∗→B R−work 0 16 2 18 2 0 0 0 98 6 16 0

P∗→B R− f ree - 18 4 16 2 0 8 0 - 35 16 0

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 0 37 0 41 4 0 0 33 100 0 49 4

S∗→A R− f ree - 12 0 12 0 0 0 8 - 0 18 0

S∗→B R−work 0 4 0 6 0 0 0 4 98 2 0 0

S∗→B R− f ree - 4 0 4 2 0 4 4 - 27 0 0

S∗→P∗
R−work 2 39 4 37 2 0 0 27 100 12 49 0

S∗→P∗
R− f ree - 37 4 43 2 0 12 29 - 39 51 0
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Table B.17: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 41 20 39 31 47 22 41 0 25 35 37

A R− f ree - - - - - - - - - - - -
A→B R−work 6 0 0 29 4 4 0 20 2 6 43 4

A→B R− f ree - 0 2 33 4 4 14 16 - 14 45 8

A→P∗
R−work 59 37 0 35 51 75 47 37 0 57 31 71

A→P∗
R− f ree - 41 0 37 47 57 65 47 - 45 41 63

B R−work 4 22 0 0 2 2 0 10 2 2 27 6

B R− f ree - 25 6 0 4 6 14 20 - 18 33 8

B→P∗
R−work 45 35 25 43 0 47 37 41 0 37 35 61

B→P∗
R− f ree - 37 24 47 0 41 45 47 - 33 33 61

P∗
R−work 25 47 6 53 18 0 20 61 0 33 47 29

P∗
R− f ree - 53 10 45 22 0 55 55 - 41 49 37

P∗→A R−work 49 53 29 47 29 55 0 45 0 25 47 51

P∗→A R− f ree - 47 2 47 22 16 0 55 - 31 41 22

P∗→B R−work 8 24 4 35 4 6 2 0 2 8 39 6

P∗→B R− f ree - 25 2 39 6 8 16 0 - 10 41 12

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 35 53 16 51 20 39 12 51 0 0 45 35

S∗→A R− f ree - 37 2 37 10 8 16 41 - 0 33 14

S∗→B R−work 4 10 0 22 2 0 0 14 2 2 0 0

S∗→B R− f ree - 22 2 27 0 0 14 10 - 18 0 4

S∗→P∗
R−work 29 49 6 57 14 27 24 61 0 29 43 0

S∗→P∗
R− f ree - 55 14 49 14 27 51 51 - 39 43 0
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Table B.18: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 16 22 22 27 31 27 35 31 22 41 37 14 76 71 35 75 51 29 41 37 41 41

A→B 67 0 55 55 55 45 39 61 61 24 57 61 27 84 82 49 86 76 59 59 55 61 57

A→P∗ 63 35 0 25 55 45 41 43 63 20 49 67 24 92 82 59 94 67 53 59 55 51 53

A→P 59 27 25 0 51 49 39 39 55 20 43 59 22 88 80 57 90 69 51 57 49 59 55

B 61 31 31 37 0 25 25 39 53 22 45 53 10 88 80 41 90 73 45 49 49 47 47

B→P∗ 53 41 37 43 57 0 24 53 55 31 47 53 22 88 73 57 90 69 53 57 55 57 61

B→P 53 41 45 47 55 25 0 59 57 27 53 57 24 88 73 53 90 67 51 57 59 63 65

P∗ 53 29 29 33 51 37 31 0 49 18 39 45 14 78 63 53 84 59 49 43 45 45 37

P∗→A 45 24 12 20 35 31 27 31 0 20 41 33 10 80 69 41 84 55 31 45 49 47 43

P∗→B 73 61 61 63 67 57 61 71 73 0 65 75 37 88 82 65 94 75 69 75 73 76 75

P 49 31 25 31 41 37 31 27 47 18 0 43 10 80 65 47 84 61 45 35 37 37 37

P→A 43 27 22 27 33 31 25 37 41 18 39 0 6 84 65 43 86 59 31 45 41 43 43

P→B 80 57 63 65 75 61 57 71 75 39 78 76 0 96 88 65 98 86 69 78 82 76 82

S 20 14 6 8 6 8 10 10 18 6 12 14 4 0 51 14 37 47 14 8 12 10 18

S→A 8 14 8 10 16 18 16 29 12 12 25 14 6 45 0 18 49 20 8 24 33 33 31

S→B 59 35 29 29 45 29 29 37 49 24 45 49 10 86 73 0 86 69 43 43 47 39 51

S∗ 22 12 0 2 6 6 10 8 12 6 10 12 2 53 49 12 0 43 12 6 14 12 14

S∗→A 22 14 16 16 22 22 20 31 22 18 31 22 6 51 49 24 53 0 18 33 31 33 39

S∗→B 57 27 33 33 45 41 37 45 49 22 49 55 22 82 76 47 88 69 0 43 41 43 45

S∗→P∗ 47 31 31 27 41 35 31 35 41 24 51 47 16 88 67 47 86 59 49 0 35 39 45

S∗→P 45 29 31 35 43 27 24 41 41 18 43 47 12 82 59 47 80 55 49 45 0 51 45

S→P∗ 49 31 25 24 41 35 27 35 43 14 37 51 20 82 63 53 82 57 49 27 33 0 33

S→P 49 33 24 31 41 27 24 33 45 16 39 45 14 76 57 43 76 53 47 39 37 41 0
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Table B.19: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 100 18 16 20 12 16 20 12 24 6 10 20 6 4 22 6 4 27 14 12 18 10 10

A→B 18 100 10 18 14 14 20 10 16 16 12 12 16 2 4 16 2 10 14 10 16 8 10

A→P∗ 16 10 100 49 14 18 14 27 25 20 25 12 14 2 10 12 6 18 14 10 14 24 24

A→P 20 18 49 100 12 8 14 27 25 18 25 14 14 4 10 14 8 16 16 16 16 18 14

B 12 14 14 12 100 18 20 10 12 12 14 14 16 6 4 14 4 6 10 10 8 12 12

B→P∗ 16 14 18 8 18 100 51 10 14 12 16 16 18 4 10 14 4 10 6 8 18 8 12

B→P 20 20 14 14 20 51 100 10 16 12 16 18 20 2 12 18 0 14 12 12 18 10 12

P∗ 12 10 27 27 10 10 10 100 20 12 33 18 16 12 8 10 8 10 6 22 14 20 29

P∗→A 24 16 25 25 12 14 16 20 100 8 12 25 16 2 20 10 4 24 20 14 10 10 12

P∗→B 6 16 20 18 12 12 12 12 8 100 18 8 24 6 6 12 0 8 10 2 10 10 10

P 10 12 25 25 14 16 16 33 12 18 100 18 12 8 10 8 6 8 6 14 20 25 24

P→A 20 12 12 14 14 16 18 18 25 8 18 100 18 2 22 8 2 20 14 8 12 6 12

P→B 6 16 14 14 16 18 20 16 16 24 12 18 100 0 6 25 0 8 10 6 6 4 4

S 4 2 2 4 6 4 2 12 2 6 8 2 0 100 4 0 10 2 4 4 6 8 6

S→A 22 4 10 10 4 10 12 8 20 6 10 22 6 4 100 10 2 31 16 10 8 4 12

S→B 6 16 12 14 14 14 18 10 10 12 8 8 25 0 10 100 2 8 10 10 6 8 6

S∗ 4 2 6 8 4 4 0 8 4 0 6 2 0 10 2 2 100 4 0 8 6 6 10

S∗→A 27 10 18 16 6 10 14 10 24 8 8 20 8 2 31 8 4 100 14 8 14 10 8

S∗→B 14 14 14 16 10 6 12 6 20 10 6 14 10 4 16 10 0 14 100 8 10 8 8

S∗→P∗ 12 10 10 16 10 8 12 22 14 2 14 8 6 4 10 10 8 8 8 100 20 33 16

S∗→P 18 16 14 16 8 18 18 14 10 10 20 12 6 6 8 6 6 14 10 20 100 16 18

S→P∗ 10 8 24 18 12 8 10 20 10 10 25 6 4 8 4 8 6 10 8 33 16 100 25

S→P 10 10 24 14 12 12 12 29 12 10 24 12 4 6 12 6 10 8 8 16 18 25 100
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Table B.20: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 10 0 0 14 14 12 12 8 16 14 8 4 57 43 14 61 37 10 16 18 16 16

A→B 33 0 12 10 20 22 18 25 20 8 29 27 2 63 47 27 69 47 24 24 29 31 27

A→P∗ 33 20 0 8 27 20 20 12 29 16 22 25 8 73 57 29 80 53 22 18 25 20 24

A→P 31 24 10 0 27 24 18 16 27 16 18 27 6 69 57 29 76 49 25 22 24 18 20

B 31 14 12 10 0 18 14 22 25 12 27 20 4 67 53 16 78 43 14 16 18 24 24

B→P∗ 37 25 16 22 29 0 6 22 27 12 27 27 10 67 57 31 76 51 27 31 33 29 31

B→P 33 25 20 24 33 2 0 27 27 16 31 29 8 67 57 31 75 49 27 33 31 31 33

P∗ 33 24 16 16 27 18 16 0 27 10 14 31 8 67 53 33 71 45 27 16 16 12 14

P∗→A 24 16 4 4 18 16 16 14 0 12 18 12 6 59 47 25 69 45 14 20 20 16 20

P∗→B 37 25 27 24 31 22 24 35 33 0 37 31 14 67 55 41 73 49 33 31 41 39 43

P 33 24 12 12 31 18 20 8 27 12 0 24 6 67 53 31 73 49 25 14 20 14 22

P→A 22 20 6 4 24 12 16 10 12 12 16 0 6 61 51 25 69 47 20 20 20 16 20

P→B 37 29 25 24 33 29 29 33 27 18 39 35 0 73 63 41 80 55 37 35 41 35 41

S 12 6 2 2 0 2 2 6 6 4 8 2 2 0 37 6 10 35 2 6 8 4 4

S→A 2 8 0 0 6 8 10 8 4 12 6 2 2 24 0 6 33 12 2 8 8 12 14

S→B 29 18 12 12 12 16 10 20 20 12 24 22 4 67 51 0 76 49 14 20 22 24 27

S∗ 12 6 0 0 0 4 4 4 8 4 8 4 2 20 41 6 0 37 2 4 4 2 0

S∗→A 6 6 0 0 4 10 10 10 4 10 16 2 2 35 25 8 39 0 4 12 12 14 10

S∗→B 35 16 10 8 20 18 16 20 22 18 25 24 4 65 55 18 75 47 0 16 18 20 25

S∗→P∗ 33 25 16 18 27 25 24 16 29 16 16 27 8 67 53 27 73 49 24 0 14 8 20

S∗→P 33 22 14 16 24 20 16 8 25 12 12 29 10 63 47 25 73 47 22 8 0 10 14

S→P∗ 35 24 18 14 29 18 16 6 25 10 12 25 8 61 51 33 71 47 25 12 12 0 14

S→P 31 20 12 14 22 14 14 10 25 10 14 29 6 65 47 31 69 43 24 12 12 10 0

800

Table B.21: Structure completeness comparison for the models generated from the 52
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 6 22 22 14 18 16 24 24 6 27 29 10 20 27 22 14 14 20 25 20 25 25

A→B 33 0 43 45 35 24 22 35 41 16 27 33 25 22 35 22 18 29 35 35 25 29 29

A→P∗ 29 16 0 18 27 25 22 31 33 4 27 41 16 20 25 29 14 14 31 41 29 31 29

A→P 27 4 16 0 24 25 22 24 27 4 25 31 16 20 24 27 14 20 25 35 25 41 35

B 29 18 20 27 0 8 12 18 27 10 18 33 6 22 27 25 12 29 31 33 31 24 24

B→P∗ 16 16 22 22 27 0 18 31 27 20 20 25 12 22 16 25 14 18 25 25 22 27 29

B→P 20 16 25 24 22 24 0 31 29 12 22 27 16 22 16 22 16 18 24 24 27 31 31

P∗ 20 6 14 18 24 20 16 0 22 8 25 14 6 12 10 20 14 14 22 27 29 33 24

P∗→A 22 8 8 16 18 16 12 18 0 8 24 22 4 22 22 16 16 10 18 25 29 31 24

P∗→B 35 35 33 39 35 35 37 35 39 0 27 43 24 22 27 24 22 25 35 43 31 37 31

P 16 8 14 20 10 20 12 20 20 6 0 20 4 14 12 16 12 12 20 22 18 24 16

P→A 22 8 16 24 10 20 10 27 29 6 24 0 0 24 14 18 18 12 12 25 22 27 24

P→B 43 27 37 41 41 31 27 37 47 22 39 41 0 24 25 24 18 31 31 43 41 41 41

S 8 8 4 6 6 6 8 4 12 2 4 12 2 0 14 8 27 12 12 2 4 6 14

S→A 6 6 8 10 10 10 6 22 8 0 20 12 4 22 0 12 16 8 6 16 25 22 18

S→B 29 18 18 18 33 14 20 18 29 12 22 27 6 20 22 0 10 20 29 24 25 16 24

S∗ 10 6 0 2 6 2 6 4 4 2 2 8 0 33 8 6 0 6 10 2 10 10 14

S∗→A 16 8 16 16 18 12 10 22 18 8 16 20 4 16 24 16 14 0 14 22 20 20 29

S∗→B 22 12 24 25 25 24 22 25 27 4 24 31 18 18 22 29 14 22 0 27 24 24 20

S∗→P∗ 14 6 16 10 14 10 8 20 12 8 35 20 8 22 14 20 14 10 25 0 22 31 25

S∗→P 12 8 18 20 20 8 8 33 16 6 31 18 2 20 12 22 8 8 27 37 0 41 31

S→P∗ 14 8 8 10 12 18 12 29 18 4 25 25 12 22 12 20 12 10 24 16 22 0 20

S→P 18 14 12 18 20 14 10 24 20 6 25 16 8 12 10 12 8 10 24 27 25 31 0
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Table B.22: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 0 94 27 29 98 47 47 55 22 84 49 22 94 100 51 98 100 41 96 47 51 51 45

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 2 0 0 0 49 6 6 2 2 20 4 0 16 98 16 55 98 12 53 2 4 4 4

A→B R− f ree - 0 2 0 51 8 6 2 14 25 4 14 16 - 43 53 - 49 51 4 2 2 4

A→P∗
R−work 59 100 0 18 100 61 59 71 45 94 69 49 98 100 75 100 100 69 100 73 71 65 71

A→P∗
R− f ree - 94 0 29 96 51 47 53 84 82 51 82 86 - 90 98 - 90 98 55 57 51 53

A→P R−work 57 100 24 0 100 67 61 69 47 94 73 49 98 100 78 100 100 71 100 73 73 73 71

A→P R− f ree - 92 27 0 98 51 45 51 84 82 59 84 86 - 92 96 - 94 98 57 51 51 57

B R−work 0 18 0 0 0 0 0 0 0 20 0 0 6 100 10 41 100 4 33 2 2 2 2

B R− f ree - 27 2 0 0 2 0 2 10 31 4 10 8 - 45 43 - 47 41 2 4 2 2

B→P∗
R−work 37 84 25 20 98 0 16 41 27 86 51 33 84 100 61 96 100 53 96 47 45 47 51

B→P∗
R− f ree - 88 35 37 96 0 18 31 65 86 45 71 84 - 78 96 - 73 94 43 39 43 39

B→P R−work 35 84 22 12 100 18 0 41 29 84 45 33 90 100 59 94 100 53 96 49 39 47 47

B→P R− f ree - 92 31 37 94 29 0 41 69 82 49 65 90 - 78 96 - 80 96 51 41 47 49

P∗
R−work 35 90 12 6 98 27 29 0 24 92 33 24 90 100 53 96 100 47 98 33 35 27 25

P∗
R− f ree - 96 35 29 94 39 37 0 71 90 39 78 84 - 82 98 - 86 100 39 37 35 35

P∗→A R−work 49 96 35 33 98 55 53 61 0 94 63 25 98 100 55 98 100 47 100 63 59 59 57

P∗→A R− f ree - 76 8 10 80 24 18 14 0 67 14 29 63 - 59 84 - 63 76 18 12 16 18

P∗→B R−work 10 41 4 4 57 8 10 6 2 0 6 0 25 100 22 61 100 18 55 6 10 4 6

P∗→B R− f ree - 39 10 12 59 10 10 6 20 0 6 22 27 - 49 65 - 47 55 10 8 8 8

P R−work 35 96 12 10 100 33 29 29 27 90 0 22 94 100 47 96 100 47 98 29 25 29 27

P R− f ree - 92 27 31 94 33 31 25 69 88 0 71 86 - 82 94 - 80 92 29 27 29 33

P→A R−work 45 96 29 29 100 55 49 59 25 90 51 0 96 100 53 100 100 49 100 57 59 51 51

P→A R− f ree - 71 12 12 80 18 16 10 31 69 16 0 63 - 61 86 - 65 82 16 16 10 12

P→B R−work 4 41 2 2 57 8 6 4 2 31 4 2 0 100 25 65 100 18 57 4 8 6 8

P→B R− f ree - 47 10 12 65 12 8 2 20 45 6 22 0 - 51 67 - 55 69 6 10 4 10

S R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 16 82 8 10 88 29 27 33 18 69 27 10 73 100 0 86 100 24 84 37 31 35 33

S→A R− f ree - 47 2 2 45 12 10 6 18 47 8 18 37 - 0 47 - 31 47 6 4 10 10

S→B R−work 2 18 0 0 31 0 0 0 0 16 2 0 8 100 10 0 100 2 25 0 0 0 0

S→B R− f ree - 27 2 0 31 2 2 0 10 18 4 8 14 - 47 0 - 47 27 0 0 0 0

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 29 84 20 18 92 33 35 37 18 78 35 20 76 100 39 96 100 0 94 35 33 39 35

S∗→A R− f ree - 47 2 2 49 12 8 6 22 47 8 18 43 - 45 47 - 0 47 10 6 8 8

S∗→B R−work 2 20 0 0 31 0 0 0 0 22 2 0 6 100 14 41 100 4 0 0 0 2 4

S∗→B R− f ree - 29 2 0 41 0 0 0 12 27 2 8 14 - 49 33 - 49 0 2 2 2 4

S∗→P∗
R−work 33 92 12 8 98 33 33 29 24 86 29 22 88 100 49 98 100 43 94 0 24 27 31

S∗→P∗
R− f ree - 96 29 25 98 35 31 27 67 86 29 73 82 - 78 98 - 82 96 0 24 27 31

S∗→P R−work 35 90 10 4 96 25 24 29 22 86 31 24 88 100 47 96 100 47 96 33 0 33 31

S∗→P R− f ree - 94 24 22 96 37 29 31 71 84 37 76 88 - 82 96 - 86 94 33 0 29 31

S→P∗
R−work 37 90 12 10 96 31 33 25 16 88 31 22 92 100 49 98 100 45 94 29 22 0 25

S→P∗
R− f ree - 94 29 25 94 41 29 29 71 86 35 73 88 - 82 98 - 90 96 35 24 0 31

S→P R−work 35 90 10 10 96 24 25 25 22 88 29 20 90 100 47 98 100 43 94 29 20 27 0

S→P R− f ree - 94 27 29 96 33 27 29 73 88 37 76 88 - 86 98 - 84 96 31 33 33 0
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Table B.23: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 100 4 14 14 2 16 18 10 29 6 16 33 2 0 33 0 0 29 2 20 14 12 20

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 4 100 0 0 33 10 10 8 2 39 0 4 43 2 2 27 2 4 27 6 6 6 6

A→B R− f ree - 100 4 8 22 4 2 2 10 35 4 16 37 - 10 20 - 4 20 0 4 4 2

A→P∗
R−work 14 0 100 59 0 14 20 18 20 2 20 22 0 0 18 0 0 12 0 16 20 24 20

A→P∗
R− f ree - 4 100 43 2 14 22 12 8 8 22 6 4 - 8 0 - 8 0 16 20 20 20

A→P R−work 14 0 59 100 0 14 27 25 20 2 18 22 0 0 12 0 0 12 0 20 24 18 20

A→P R− f ree - 8 43 100 2 12 18 20 6 6 10 4 2 - 6 4 - 4 2 18 27 24 14

B R−work 2 33 0 0 100 2 0 2 2 24 0 0 37 0 2 27 0 4 35 0 2 2 2

B R− f ree - 22 2 2 100 2 6 4 10 10 2 10 27 - 10 25 - 4 18 0 0 4 2

B→P∗
R−work 16 10 14 14 2 100 67 31 18 6 16 12 8 0 10 4 0 14 4 20 29 22 25

B→P∗
R− f ree - 4 14 12 2 100 53 29 12 4 22 12 4 - 10 2 - 16 6 22 24 16 27

B→P R−work 18 10 20 27 0 67 100 29 18 6 25 18 4 0 14 6 0 12 4 18 37 20 27

B→P R− f ree - 2 22 18 6 53 100 22 14 8 20 20 2 - 12 2 - 12 4 18 29 24 24

P∗
R−work 10 8 18 25 2 31 29 100 16 2 37 18 6 0 14 4 0 16 2 37 35 47 49

P∗
R− f ree - 2 12 20 4 29 22 100 16 4 35 12 14 - 12 2 - 8 0 33 31 35 35

P∗→A R−work 29 2 20 20 2 18 18 16 100 4 10 49 0 0 27 2 0 35 0 14 20 25 22

P∗→A R− f ree - 10 8 6 10 12 14 16 100 14 18 39 18 - 24 6 - 16 12 16 18 14 10

P∗→B R−work 6 39 2 2 24 6 6 2 4 100 4 10 43 0 10 24 0 4 24 8 4 8 6

P∗→B R− f ree - 35 8 6 10 4 8 4 14 100 6 10 27 - 4 18 - 6 18 4 8 6 4

P R−work 16 0 20 18 0 16 25 37 10 4 100 27 2 0 25 2 0 18 0 41 43 39 43

P R− f ree - 4 22 10 2 22 20 35 18 6 100 14 8 - 10 2 - 12 6 41 35 35 29

P→A R−work 33 4 22 22 0 12 18 18 49 10 27 100 2 0 37 0 0 31 0 22 18 27 29

P→A R− f ree - 16 6 4 10 12 20 12 39 10 14 100 16 - 22 6 - 18 10 12 8 18 12

P→B R−work 2 43 0 0 37 8 4 6 0 43 2 2 100 0 2 27 0 6 37 8 4 2 2

P→B R− f ree - 37 4 2 27 4 2 14 18 27 8 16 100 - 12 20 - 2 18 12 2 8 2

S R−work 0 2 0 0 0 0 0 0 0 0 0 0 0 100 0 0 47 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 33 2 18 12 2 10 14 14 27 10 25 37 2 0 100 4 0 37 2 14 22 16 20

S→A R− f ree - 10 8 6 10 10 12 12 24 4 10 22 12 - 100 6 - 24 4 16 14 8 4

S→B R−work 0 27 0 0 27 4 6 4 2 24 2 0 27 0 4 100 0 2 33 2 4 2 2

S→B R− f ree - 20 0 4 25 2 2 2 6 18 2 6 20 - 6 100 - 6 39 2 4 2 2

S∗ R−work 0 2 0 0 0 0 0 0 0 0 0 0 0 47 0 0 100 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 29 4 12 12 4 14 12 16 35 4 18 31 6 0 37 2 0 100 2 22 20 16 22

S∗→A R− f ree - 4 8 4 4 16 12 8 16 6 12 18 2 - 24 6 - 100 4 8 8 2 8

S∗→B R−work 2 27 0 0 35 4 4 2 0 24 0 0 37 0 2 33 0 2 100 6 4 4 2

S∗→B R− f ree - 20 0 2 18 6 4 0 12 18 6 10 18 - 4 39 - 4 100 2 4 2 0

S∗→P∗
R−work 20 6 16 20 0 20 18 37 14 8 41 22 8 0 14 2 0 22 6 100 43 43 39

S∗→P∗
R− f ree - 0 16 18 0 22 18 33 16 4 41 12 12 - 16 2 - 8 2 100 43 37 37

S∗→P R−work 14 6 20 24 2 29 37 35 20 4 43 18 4 0 22 4 0 20 4 43 100 45 49

S∗→P R− f ree - 4 20 27 0 24 29 31 18 8 35 8 2 - 14 4 - 8 4 43 100 47 35

S→P∗
R−work 12 6 24 18 2 22 20 47 25 8 39 27 2 0 16 2 0 16 4 43 45 100 47

S→P∗
R− f ree - 4 20 24 4 16 24 35 14 6 35 18 8 - 8 2 - 2 2 37 47 100 35

S→P R−work 20 6 20 20 2 25 27 49 22 6 43 29 2 0 20 2 0 22 2 39 49 47 100

S→P R− f ree - 2 20 14 2 27 24 35 10 4 29 12 2 - 4 2 - 8 0 37 35 35 100
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Table B.24: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 0 51 10 8 61 10 12 10 2 49 12 0 39 100 24 69 100 24 61 12 14 16 16

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 0 0 0 0 8 0 0 0 0 6 0 0 2 94 6 18 94 2 10 0 0 0 0

A→B R− f ree - 0 0 0 4 0 0 0 4 8 0 0 2 - 37 16 - 33 10 0 0 0 0

A→P∗
R−work 4 61 0 2 73 8 8 2 2 53 2 0 49 100 22 78 100 20 78 2 2 2 4

A→P∗
R− f ree - 51 0 2 63 4 6 2 18 47 2 14 35 - 57 71 - 51 63 0 2 0 4

A→P R−work 4 57 2 0 71 8 8 2 2 51 4 0 43 100 20 76 100 22 75 2 2 4 6

A→P R− f ree - 49 2 0 65 6 4 0 18 45 2 14 33 - 57 67 - 49 61 0 0 0 2

B R−work 0 10 0 0 0 0 0 0 0 6 0 0 2 96 2 8 96 2 2 0 0 0 0

B R− f ree - 8 0 0 0 0 0 0 2 6 0 2 2 - 39 10 - 35 6 0 0 0 0

B→P∗
R−work 2 53 4 2 61 0 2 0 2 49 0 0 43 100 18 71 100 20 59 0 2 0 2

B→P∗
R− f ree - 53 10 10 61 0 2 4 18 45 2 14 41 - 53 67 - 45 59 0 2 0 4

B→P R−work 2 57 2 0 63 2 0 0 2 47 0 0 35 100 16 71 100 18 61 0 0 0 0

B→P R− f ree - 55 4 8 63 2 0 0 18 49 0 14 35 - 53 73 - 47 59 0 0 0 0

P∗
R−work 6 45 4 2 57 4 4 0 2 29 0 0 29 100 16 67 100 16 59 0 2 0 4

P∗
R− f ree - 43 4 4 63 4 6 0 18 35 2 14 27 - 47 57 - 47 61 0 2 0 4

P∗→A R−work 4 49 16 14 61 18 20 16 0 49 16 0 47 100 25 69 100 25 61 16 16 16 16

P∗→A R− f ree - 25 4 4 31 0 4 0 0 25 0 0 18 - 41 35 - 39 35 0 2 0 2

P∗→B R−work 2 18 2 2 20 0 2 0 0 0 0 0 6 100 10 24 100 10 25 0 2 0 2

P∗→B R− f ree - 16 4 6 24 2 4 0 10 0 0 6 6 - 43 29 - 35 25 0 2 0 2

P R−work 6 45 4 2 57 2 4 0 2 35 0 0 31 100 18 63 100 18 59 0 2 2 4

P R− f ree - 41 6 6 57 4 6 2 12 39 0 14 27 - 45 59 - 45 59 0 4 0 4

P→A R−work 6 49 16 14 61 16 18 14 0 47 14 0 41 100 25 69 100 22 63 16 16 18 18

P→A R− f ree - 25 4 4 29 0 4 0 0 20 2 0 12 - 41 33 - 39 31 0 2 0 4

P→B R−work 0 16 0 0 22 0 2 0 2 8 0 0 0 100 8 29 100 8 24 0 2 0 2

P→B R− f ree - 20 2 2 20 0 2 0 10 10 2 10 0 - 45 29 - 41 25 0 2 0 2

S R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 2 39 2 2 47 6 8 4 0 33 4 2 24 100 0 53 100 4 49 4 8 6 10

S→A R− f ree - 12 0 0 16 2 2 0 0 14 0 2 8 - 0 14 - 2 20 0 2 0 2

S→B R−work 0 10 0 0 4 0 0 0 0 4 0 0 2 96 0 0 96 2 4 0 0 0 0

S→B R− f ree - 10 0 0 4 0 0 0 2 4 0 4 2 - 41 0 - 31 6 0 0 0 0

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 0 39 2 0 57 4 6 6 0 33 4 2 27 100 8 63 100 0 51 4 8 8 10

S∗→A R− f ree - 12 0 0 16 0 2 0 0 14 2 0 10 - 10 14 - 0 20 0 0 0 2

S∗→B R−work 0 6 0 0 2 0 0 0 0 6 0 0 4 96 2 10 96 2 0 0 0 0 0

S∗→B R− f ree - 6 0 0 2 0 0 0 2 6 0 2 2 - 43 8 - 33 0 0 0 0 0

S∗→P∗
R−work 6 45 4 2 59 4 6 2 2 35 0 0 29 100 20 69 100 18 55 0 2 0 4

S∗→P∗
R− f ree - 41 8 4 57 6 10 4 12 37 2 14 24 - 45 57 - 45 55 0 4 2 4

S∗→P R−work 4 39 2 0 57 4 2 2 2 35 0 0 27 100 20 67 100 16 53 0 0 0 4

S∗→P R− f ree - 37 6 8 55 6 2 2 12 37 0 12 31 - 41 59 - 39 57 0 0 0 4

S→P∗
R−work 6 47 4 2 57 2 4 2 2 29 0 0 29 100 20 67 100 18 59 0 2 0 2

S→P∗
R− f ree - 41 6 10 61 2 4 2 14 43 2 12 29 - 43 59 - 39 57 0 2 0 4

S→P R−work 4 39 2 0 55 4 2 0 2 27 0 0 24 100 16 61 100 16 51 0 0 0 0

S→P R− f ree - 41 4 6 55 4 6 2 12 39 0 12 25 - 43 57 - 41 55 0 2 2 0
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Table B.25: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 original NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 0 43 18 22 37 37 35 45 20 35 37 22 55 0 27 29 0 18 35 35 37 35 29

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 2 0 0 0 41 6 6 2 2 14 4 0 14 4 10 37 4 10 43 2 4 4 4

A→B R− f ree - 0 2 0 47 8 6 2 10 18 4 14 14 - 6 37 - 16 41 4 2 2 4

A→P∗
R−work 55 39 0 16 27 53 51 69 43 41 67 49 49 0 53 22 0 49 22 71 69 63 67

A→P∗
R− f ree - 43 0 27 33 47 41 51 67 35 49 69 51 - 33 27 - 39 35 55 55 51 49

A→P R−work 53 43 22 0 29 59 53 67 45 43 69 49 55 0 59 24 0 49 25 71 71 69 65

A→P R− f ree - 43 25 0 33 45 41 51 67 37 57 71 53 - 35 29 - 45 37 57 51 51 55

B R−work 0 8 0 0 0 0 0 0 0 14 0 0 4 4 8 33 4 2 31 2 2 2 2

B R− f ree - 20 2 0 0 2 0 2 8 25 4 8 6 - 6 33 - 12 35 2 4 2 2

B→P∗
R−work 35 31 22 18 37 0 14 41 25 37 51 33 41 0 43 25 0 33 37 47 43 47 49

B→P∗
R− f ree - 35 25 27 35 0 16 27 47 41 43 57 43 - 25 29 - 27 35 43 37 43 35

B→P R−work 33 27 20 12 37 16 0 41 27 37 45 33 55 0 43 24 0 35 35 49 39 47 47

B→P R− f ree - 37 27 29 31 27 0 41 51 33 49 51 55 - 25 24 - 33 37 51 41 47 49

P∗
R−work 29 45 8 4 41 24 25 0 22 63 33 24 61 0 37 29 0 31 39 33 33 27 22

P∗
R− f ree - 53 31 25 31 35 31 0 53 55 37 65 57 - 35 41 - 39 39 39 35 35 31

P∗→A R−work 45 47 20 20 37 37 33 45 0 45 47 25 51 0 29 29 0 22 39 47 43 43 41

P∗→A R− f ree - 51 4 6 49 24 14 14 0 41 14 29 45 - 18 49 - 24 41 18 10 16 16

P∗→B R−work 8 24 2 2 37 8 8 6 2 0 6 0 20 0 12 37 0 8 29 6 8 4 4

P∗→B R− f ree - 24 6 6 35 8 6 6 10 0 6 16 22 - 6 35 - 12 29 10 6 8 6

P R−work 29 51 8 8 43 31 25 29 25 55 0 22 63 0 29 33 0 29 39 29 24 27 24

P R− f ree - 51 22 25 37 29 25 24 57 49 0 57 59 - 37 35 - 35 33 29 24 29 29

P→A R−work 39 47 14 16 39 39 31 45 25 43 37 0 55 0 27 31 0 27 37 41 43 33 33

P→A R− f ree - 45 8 8 51 18 12 10 31 49 14 0 51 - 20 53 - 25 51 16 14 10 8

P→B R−work 4 25 2 2 35 8 4 4 0 24 4 2 0 0 18 35 0 10 33 4 6 6 6

P→B R− f ree - 27 8 10 45 12 6 2 10 35 4 12 0 - 6 37 - 14 43 6 8 4 8

S R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 14 43 6 8 41 24 20 29 18 35 24 8 49 0 0 33 0 20 35 33 24 29 24

S→A R− f ree - 35 2 2 29 10 8 6 18 33 8 16 29 - 0 33 - 29 27 6 2 10 8

S→B R−work 2 8 0 0 27 0 0 0 0 12 2 0 6 4 10 0 4 0 22 0 0 0 0

S→B R− f ree - 18 2 0 27 2 2 0 8 14 4 4 12 - 6 0 - 16 22 0 0 0 0

S∗ R−work 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 29 45 18 18 35 29 29 31 18 45 31 18 49 0 31 33 0 0 43 31 25 31 25

S∗→A R− f ree - 35 2 2 33 12 6 6 22 33 6 18 33 - 35 33 - 0 27 10 6 8 6

S∗→B R−work 2 14 0 0 29 0 0 0 0 16 2 0 2 4 12 31 4 2 0 0 0 2 4

S∗→B R− f ree - 24 2 0 39 0 0 0 10 22 2 6 12 - 6 25 - 16 0 2 2 2 4

S∗→P∗
R−work 27 47 8 6 39 29 27 27 22 51 29 22 59 0 29 29 0 25 39 0 22 27 27

S∗→P∗
R− f ree - 55 22 22 41 29 22 24 55 49 27 59 59 - 33 41 - 37 41 0 20 25 27

S∗→P R−work 31 51 8 4 39 22 22 27 20 51 31 24 61 0 27 29 0 31 43 33 0 33 27

S∗→P R− f ree - 57 18 14 41 31 27 29 59 47 37 65 57 - 41 37 - 47 37 33 0 29 27

S→P∗
R−work 31 43 8 8 39 29 29 24 14 59 31 22 63 0 29 31 0 27 35 29 20 0 24

S→P∗
R− f ree - 53 24 16 33 39 25 27 57 43 33 61 59 - 39 39 - 51 39 35 22 0 27

S→P R−work 31 51 8 10 41 20 24 25 20 61 29 20 67 0 31 37 0 27 43 29 20 27 0

S→P R− f ree - 53 24 24 41 29 22 27 61 49 37 65 63 - 43 41 - 43 41 31 31 31 0
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B.2 Experimental results for synthetic data sets for the

original data sets used in Buccaneer development

Table B.26: Complete and intermediate models produced by the 23 pipeline variants
for the 52 synthetic data sets, where (T) and (C) denote intermediate models produced
by pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

A 258 1(T) 0(C) 0 258 1(T) 0(C) 0 258 1(T) 0(C) 0

A→P∗ 259 0(T) 0(C) 0 258 0(T) 0(C) 1 259 0(T) 0(C) 0

A→B 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

B 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

B→P∗ 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

P∗ 259 0(T) 0(C) 0 259 0(T) 0(C) 0 257 2(T) 0(C) 0

P∗ → A 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

P∗ → B 259 0(T) 0(C) 0 259 0(T) 0(C) 0 259 0(T) 0(C) 0

A→P - - - - - - 259 0(T) 0(C) 0

B→P - - - - - - 258 1(T) 0(C) 0

P - - - - - - 256 2(T) 0(C) 1

P→A - - - - - - 256 2(T) 0(C) 1

P→B - - - - - - 258 0(T) 0(C) 1

Models used in the comparison: 259 HA-NCS, 258 MR-NCS and 258 NO-NCS.

Table B.27: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 2 1 0 4 35 2

A→B 95 0 90 42 32 86 95 27

A→P∗ 96 8 0 7 1 26 98 4

B 97 53 92 0 32 88 96 34

B→P∗ 99 63 97 63 0 94 100 44

P∗ 95 13 70 10 3 0 98 7

P∗→A 15 0 2 0 0 0 0 1

P∗→B 97 66 95 62 53 92 98 0
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Table B.28: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 100 4 2 3 1 1 50 1

A→B 4 100 2 4 5 2 4 7

A→P∗ 2 2 100 2 2 4 1 1

B 3 4 2 100 6 1 3 3

B→P∗ 1 5 2 6 100 3 0 3

P∗ 1 2 4 1 3 100 2 1

P∗→A 50 4 1 3 0 2 100 1

P∗→B 1 7 1 3 3 1 1 100

1000

Table B.29: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 1 0 0 3 10 1

A→B 90 0 85 30 22 82 90 20

A→P∗ 79 2 0 1 1 14 82 1

B 93 37 89 0 19 86 93 22

B→P∗ 97 47 94 38 0 90 98 32

P∗ 93 8 41 5 1 0 94 5

P∗→A 3 0 0 0 0 0 0 0

P∗→B 93 54 90 47 42 90 94 0
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Table B.30: Structure completeness comparison for the models generated from the 52
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 1 1 0 1 25 1

A→B 5 0 5 13 10 3 5 7

A→P∗ 17 6 0 6 0 12 15 3

B 3 16 3 0 12 3 3 12

B→P∗ 2 16 3 24 0 4 2 11

P∗ 2 4 29 5 3 0 3 2

P∗→A 11 0 2 0 0 0 0 0

P∗→B 4 12 5 15 11 2 4 0
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Table B.31: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 96 86 95 92 97 29 94

A R− f ree - - - - - - - -
A→B R−work 3 0 7 41 8 41 1 30

A→B R− f ree - 0 42 44 11 44 86 33

A→P∗
R−work 9 92 0 91 67 100 2 85

A→P∗
R− f ree - 49 0 49 20 53 94 44

B R−work 4 48 6 0 3 45 1 34

B R− f ree - 45 44 0 6 48 87 33

B→P∗
R−work 7 87 23 93 0 92 2 81

B→P∗
R− f ree - 85 76 90 0 85 96 80

P∗
R−work 2 51 0 49 3 0 0 41

P∗
R− f ree - 49 45 48 10 0 93 36

P∗→A R−work 53 99 97 98 97 100 0 98

P∗→A R− f ree - 11 4 12 4 6 0 10

P∗→B R−work 6 60 11 58 13 53 2 0

P∗→B R− f ree - 59 50 57 16 54 89 0
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Table B.32: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 100 1 4 1 1 0 18 0

A R− f ree - - - - - - - -
A→B R−work 1 100 2 11 4 7 0 10

A→B R− f ree - 100 8 11 4 7 3 8

A→P∗
R−work 4 2 100 3 10 0 2 4

A→P∗
R− f ree - 8 100 7 4 2 2 6

B R−work 1 11 3 100 4 7 0 8

B R− f ree - 11 7 100 4 4 1 10

B→P∗
R−work 1 4 10 4 100 5 1 7

B→P∗
R− f ree - 4 4 4 100 4 0 4

P∗
R−work 0 7 0 7 5 100 0 6

P∗
R− f ree - 7 2 4 4 100 1 10

P∗→A R−work 18 0 2 0 1 0 100 0

P∗→A R− f ree - 3 2 1 0 1 100 2

P∗→B R−work 0 10 4 8 7 6 0 100

P∗→B R− f ree - 8 6 10 4 10 2 100

1000
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Table B.33: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 89 58 89 73 96 2 85

A R− f ree - - - - - - - -
A→B R−work 2 0 2 10 0 20 0 8

A→B R− f ree - 0 19 16 3 24 75 12

A→P∗
R−work 4 73 0 73 34 91 0 63

A→P∗
R− f ree - 28 0 31 10 33 78 22

B R−work 2 14 0 0 0 22 0 7

B R− f ree - 16 21 0 2 20 73 9

B→P∗
R−work 3 63 2 60 0 54 0 49

B→P∗
R− f ree - 56 49 58 0 55 93 47

P∗
R−work 1 29 0 28 0 0 0 20

P∗
R− f ree - 25 21 23 2 0 86 16

P∗→A R−work 15 93 67 95 82 100 0 92

P∗→A R− f ree - 5 2 6 2 3 0 4

P∗→B R−work 3 25 1 15 3 29 0 0

P∗→B R− f ree - 26 28 22 5 27 78 0

1000
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Table B.34: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic HA-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 7 29 6 18 2 27 9

A R− f ree - - - - - - - -
A→B R−work 1 0 5 31 8 21 1 22

A→B R− f ree - 0 23 28 7 21 12 21

A→P∗
R−work 5 19 0 18 33 9 2 22

A→P∗
R− f ree - 22 0 18 10 20 17 21

B R−work 2 35 6 0 2 22 1 28

B R− f ree - 29 23 0 5 28 14 24

B→P∗
R−work 4 25 20 33 0 37 2 31

B→P∗
R− f ree - 29 27 32 0 30 3 33

P∗
R−work 1 22 0 20 3 0 0 20

P∗
R− f ree - 23 24 25 8 0 7 20

P∗→A R−work 38 6 30 3 15 0 0 7

P∗→A R− f ree - 6 2 6 2 3 0 5

P∗→B R−work 3 35 10 42 10 24 2 0

P∗→B R− f ree - 33 22 34 11 27 10 0

420
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Table B.35: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 2 1 0 4 36 2

A→B 95 0 91 44 33 86 95 30

A→P∗ 96 8 0 7 1 23 98 5

B 97 52 91 0 33 88 96 35

B→P∗ 99 64 97 63 0 96 100 46

P∗ 95 13 72 10 2 0 98 7

P∗→A 13 0 2 0 0 0 0 1

P∗→B 97 64 95 61 50 93 97 0

1000

Table B.36: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 100 5 2 3 1 1 51 2

A→B 5 100 2 4 4 1 4 6

A→P∗ 2 2 100 2 2 5 1 1

B 3 4 2 100 5 1 3 3

B→P∗ 1 4 2 5 100 2 0 5

P∗ 1 1 5 1 2 100 2 1

P∗→A 51 4 1 3 0 2 100 2

P∗→B 2 6 1 3 5 1 2 100

1000
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Table B.37: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 1 0 0 3 10 1

A→B 90 0 85 32 20 84 91 22

A→P∗ 78 1 0 1 1 13 81 1

B 93 38 88 0 17 84 93 24

B→P∗ 97 47 95 46 0 91 98 37

P∗ 92 7 43 4 1 0 93 3

P∗→A 3 0 0 0 0 0 0 0

P∗→B 93 54 91 47 41 91 93 0

980

Table B.38: Structure completeness comparison for the models generated from the 52
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 1 1 0 1 26 1

A→B 5 0 5 12 12 2 5 8

A→P∗ 18 7 0 6 0 10 16 3

B 4 14 3 0 16 4 3 11

B→P∗ 2 16 2 17 0 5 2 9

P∗ 3 6 29 6 1 0 5 3

P∗→A 10 0 2 0 0 0 0 1

P∗→B 4 10 4 15 8 2 5 0

290
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Table B.39: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 96 87 95 90 98 28 94

A R− f ree - - - - - - - -
A→B R−work 3 0 8 43 9 38 1 30

A→B R− f ree - 0 42 42 10 41 86 34

A→P∗
R−work 9 91 0 91 70 100 1 87

A→P∗
R− f ree - 50 0 51 22 53 93 43

B R−work 4 44 7 0 3 46 1 34

B R− f ree - 47 45 0 5 48 86 38

B→P∗
R−work 9 86 21 95 0 92 2 81

B→P∗
R− f ree - 85 75 91 0 86 97 82

P∗
R−work 2 55 0 50 3 0 0 41

P∗
R− f ree - 51 44 45 10 0 93 36

P∗→A R−work 57 99 97 99 97 100 0 98

P∗→A R− f ree - 11 6 11 3 5 0 11

P∗→B R−work 6 59 9 55 14 51 2 0

P∗→B R− f ree - 58 51 54 13 50 88 0

1000
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Table B.40: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 100 1 5 1 1 0 16 0

A R− f ree - - - - - - - -
A→B R−work 1 100 1 13 6 7 0 11

A→B R− f ree - 100 7 10 5 8 3 8

A→P∗
R−work 5 1 100 2 9 0 2 4

A→P∗
R− f ree - 7 100 4 3 3 1 6

B R−work 1 13 2 100 2 4 0 11

B R− f ree - 10 4 100 3 7 3 8

B→P∗
R−work 1 6 9 2 100 4 1 5

B→P∗
R− f ree - 5 3 3 100 5 0 5

P∗
R−work 0 7 0 4 4 100 0 9

P∗
R− f ree - 8 3 7 5 100 1 14

P∗→A R−work 16 0 2 0 1 0 100 1

P∗→A R− f ree - 3 1 3 0 1 100 1

P∗→B R−work 0 11 4 11 5 9 1 100

P∗→B R− f ree - 8 6 8 5 14 1 100

1000
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Table B.41: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 88 58 91 72 96 3 85

A R− f ree - - - - - - - -
A→B R−work 2 0 1 13 0 19 0 10

A→B R− f ree - 0 17 14 2 20 75 10

A→P∗
R−work 4 75 0 74 32 90 0 64

A→P∗
R− f ree - 29 0 31 8 33 77 23

B R−work 2 16 0 0 0 18 0 7

B R− f ree - 18 22 0 1 18 74 8

B→P∗
R−work 3 64 4 62 0 55 0 51

B→P∗
R− f ree - 60 50 58 0 58 93 51

P∗
R−work 1 26 0 27 0 0 0 20

P∗
R− f ree - 24 22 23 2 0 86 14

P∗→A R−work 12 93 69 95 80 100 0 90

P∗→A R− f ree - 5 3 5 2 3 0 4

P∗→B R−work 3 25 2 16 2 28 0 0

P∗→B R− f ree - 26 27 23 5 24 80 0

1000
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Table B.42: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic MR-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 7 29 4 17 2 25 9

A R− f ree - - - - - - - -
A→B R−work 1 0 7 30 8 19 1 21

A→B R− f ree - 0 25 28 8 21 11 25

A→P∗
R−work 5 16 0 17 38 9 1 23

A→P∗
R− f ree - 22 0 20 14 21 16 20

B R−work 2 28 6 0 3 28 1 26

B R− f ree - 29 23 0 4 30 12 30

B→P∗
R−work 6 22 17 33 0 37 2 30

B→P∗
R− f ree - 25 25 33 0 28 4 31

P∗
R−work 1 29 0 23 3 0 0 21

P∗
R− f ree - 27 21 22 8 0 7 22

P∗→A R−work 44 6 28 3 17 0 0 7

P∗→A R− f ree - 6 3 6 2 2 0 7

P∗→B R−work 3 34 8 39 12 23 2 0

P∗→B R− f ree - 32 24 31 9 26 8 0

440
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Table B.43: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 0 2 3 1 0 0 4 33 2 3 32 0

A→B 94 0 85 84 41 28 25 77 95 22 77 95 24

A→P∗ 97 13 0 40 11 2 2 24 98 4 21 98 3

A→P 95 12 53 0 9 3 0 24 96 5 22 96 4

B 95 53 88 88 0 26 22 81 96 31 82 96 27

B→P∗ 99 68 97 97 69 0 35 93 100 44 93 100 41

B→P 99 71 98 98 72 51 0 94 100 48 95 100 42

P∗ 96 22 72 70 17 5 3 0 98 10 45 97 8

P∗→A 13 0 2 2 0 0 0 0 0 1 0 18 0

P∗→B 97 72 94 93 65 52 48 89 98 0 88 98 44

P 97 21 72 74 16 5 3 42 99 10 0 98 11

P→A 14 1 1 2 1 0 0 2 19 0 2 0 0

P→B 98 73 95 96 69 57 54 90 99 52 88 99 0

1000

Table B.44: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 100 5 2 2 3 1 0 0 54 1 0 54 2

A→B 5 100 2 3 6 4 4 1 5 5 2 4 2

A→P∗ 2 2 100 7 1 2 0 4 0 2 8 1 2

A→P 2 3 7 100 3 0 2 6 2 2 4 2 0

B 3 6 1 3 100 5 6 2 4 4 2 3 3

B→P∗ 1 4 2 0 5 100 14 3 0 3 3 0 2

B→P 0 4 0 2 6 14 100 3 0 3 2 0 4

P∗ 0 1 4 6 2 3 3 100 2 2 13 1 2

P∗→A 54 5 0 2 4 0 0 2 100 1 1 63 1

P∗→B 1 5 2 2 4 3 3 2 1 100 2 1 5

P 0 2 8 4 2 3 2 13 1 2 100 0 1

P→A 54 4 1 2 3 0 0 1 63 1 0 100 1

P→B 2 2 2 0 3 2 4 2 1 5 1 1 100

1000
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Table B.45: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 0 1 2 0 0 0 3 9 1 3 8 0

A→B 86 0 78 76 28 18 16 72 86 16 73 85 14

A→P∗ 74 4 0 17 2 1 0 14 77 1 12 78 1

A→P 86 7 24 0 3 1 0 10 86 2 11 86 2

B 90 33 83 81 0 14 9 77 90 20 76 90 15

B→P∗ 97 53 95 91 49 0 10 85 98 34 86 97 28

B→P 98 55 94 93 50 15 0 87 99 36 87 99 28

P∗ 94 14 52 41 9 1 0 0 94 5 12 95 5

P∗→A 4 0 0 2 0 0 0 0 0 0 0 2 0

P∗→B 93 57 88 88 50 40 37 86 94 0 84 93 30

P 93 15 50 43 10 2 1 14 95 5 0 94 5

P→A 4 0 1 1 0 0 0 2 4 0 2 0 0

P→B 93 59 90 91 52 44 43 86 94 37 86 93 0

990

Table B.46: Structure completeness comparison for the models generated from the 52
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 0 1 0 1 0 0 1 24 1 0 24 0

A→B 9 0 7 9 13 10 9 5 9 7 4 10 11

A→P∗ 22 9 0 22 9 1 1 10 21 3 9 20 2

A→P 9 6 29 0 5 2 0 13 10 3 11 10 2

B 6 20 5 7 0 12 13 4 5 11 7 5 12

B→P∗ 2 14 2 6 20 0 26 7 2 10 7 3 12

B→P 1 17 4 5 23 36 0 7 1 12 8 1 14

P∗ 2 9 21 29 8 4 3 0 4 4 34 2 3

P∗→A 9 0 2 0 0 0 0 0 0 0 0 16 0

P∗→B 4 15 6 5 15 12 11 3 4 0 4 5 14

P 4 6 22 31 6 3 2 28 3 5 0 4 6

P→A 9 1 0 2 1 0 0 0 15 0 0 0 0

P→B 5 14 5 5 18 13 11 3 5 15 2 6 0

360
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Table B.47: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with lower R-work or R-free than each
other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 96 87 86 95 90 90 97 30 94 97 32 94

A R− f ree - - - - - - - - - - - - -
A→B R−work 3 0 5 5 41 7 8 33 1 24 34 0 24

A→B R− f ree - 0 33 33 42 8 9 35 79 29 34 80 28

A→P∗
R−work 9 95 0 31 93 74 73 100 1 89 100 2 90

A→P∗
R− f ree - 59 0 43 57 24 28 52 94 50 51 89 48

A→P R−work 10 93 38 0 93 76 75 100 2 89 100 2 89

A→P R− f ree - 60 43 0 61 26 27 52 93 50 50 90 50

B R−work 4 45 5 5 0 2 2 37 1 30 37 1 26

B R− f ree - 43 34 35 0 5 4 36 82 31 34 82 31

B→P∗
R−work 10 90 19 16 97 0 35 86 2 82 85 3 83

B→P∗
R− f ree - 89 72 71 93 0 41 81 96 84 83 95 83

B→P R−work 9 90 19 18 97 33 0 84 2 83 83 2 83

B→P R− f ree - 88 69 70 93 43 0 78 96 82 74 95 81

P∗
R−work 2 61 0 0 57 7 9 0 0 47 33 0 48

P∗
R− f ree - 59 45 44 60 12 17 0 93 47 38 93 48

P∗→A R−work 52 99 97 97 99 96 97 100 0 98 100 34 98

P∗→A R− f ree - 16 5 6 15 4 3 6 0 10 5 43 10

P∗→B R−work 6 65 7 9 58 12 13 45 2 0 45 2 44

P∗→B R− f ree - 64 45 46 61 13 14 43 88 0 43 84 43

P R−work 2 62 0 0 57 4 9 31 0 48 0 0 48

P R− f ree - 59 45 43 61 13 19 44 95 50 0 94 50

P→A R−work 53 99 97 97 98 97 97 100 38 98 100 0 99

P→A R− f ree - 16 8 7 15 4 5 6 41 12 5 0 10

P→B R−work 5 67 8 7 63 12 11 46 1 44 45 1 0

P→B R− f ree - 63 47 45 62 12 12 48 87 50 46 88 0

1000
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Table B.48: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with equal R-work or R-free to each
other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 100 0 4 3 2 1 2 0 17 0 1 15 1

A R− f ree - - - - - - - - - - - - -
A→B R−work 0 100 0 2 14 3 3 5 0 11 3 1 9

A→B R− f ree - 100 8 8 15 3 3 7 4 7 7 4 9

A→P∗
R−work 4 0 100 31 2 7 8 0 2 4 0 1 3

A→P∗
R− f ree - 8 100 13 9 3 3 3 2 5 4 3 5

A→P R−work 3 2 31 100 2 8 7 0 2 2 0 2 4

A→P R− f ree - 8 13 100 4 3 3 3 2 4 7 2 5

B R−work 2 14 2 2 100 2 1 6 0 12 6 0 10

B R− f ree - 15 9 4 100 3 3 4 3 8 5 3 7

B→P∗
R−work 1 3 7 8 2 100 32 7 2 6 11 1 5

B→P∗
R− f ree - 3 3 3 3 100 16 7 0 2 4 1 5

B→P R−work 2 3 8 7 1 32 100 7 2 4 8 2 7

B→P R− f ree - 3 3 3 3 16 100 5 1 4 8 1 7

P∗
R−work 0 5 0 0 6 7 7 100 0 7 36 0 6

P∗
R− f ree - 7 3 3 4 7 5 100 1 9 19 1 4

P∗→A R−work 17 0 2 2 0 2 2 0 100 0 0 28 0

P∗→A R− f ree - 4 2 2 3 0 1 1 100 2 0 16 3

P∗→B R−work 0 11 4 2 12 6 4 7 0 100 7 0 12

P∗→B R− f ree - 7 5 4 8 2 4 9 2 100 7 3 7

P R−work 1 3 0 0 6 11 8 36 0 7 100 0 7

P R− f ree - 7 4 7 5 4 8 19 0 7 100 0 5

P→A R−work 15 1 1 2 0 1 2 0 28 0 0 100 0

P→A R− f ree - 4 3 2 3 1 1 1 16 3 0 100 2

P→B R−work 1 9 3 4 10 5 7 6 0 12 7 0 100

P→B R− f ree - 9 5 5 7 5 7 4 3 7 5 2 100

1000
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Table B.49: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free at least 5% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 90 60 58 89 74 74 96 3 85 95 2 86

A R− f ree - - - - - - - - - - - - -
A→B R−work 2 0 1 0 9 0 1 16 0 7 16 0 6

A→B R− f ree - 0 12 12 12 2 1 17 66 10 16 62 8

A→P∗
R−work 4 81 0 1 77 41 41 91 0 68 91 1 68

A→P∗
R− f ree - 36 0 5 37 14 12 34 75 29 31 76 28

A→P R−work 4 81 1 0 77 43 43 90 0 67 90 1 71

A→P R− f ree - 34 6 0 37 12 13 31 77 28 32 79 26

B R−work 2 13 0 1 0 0 0 18 0 5 17 0 6

B R− f ree - 16 16 14 0 1 1 16 67 9 17 63 9

B→P∗
R−work 3 69 3 4 66 0 0 45 0 53 45 0 54

B→P∗
R− f ree - 68 47 49 68 0 3 47 92 52 45 92 48

B→P R−work 2 70 2 3 66 0 0 45 0 52 48 0 52

B→P R− f ree - 69 51 50 67 2 0 45 91 52 46 91 46

P∗
R−work 1 40 0 0 43 0 1 0 0 29 0 0 26

P∗
R− f ree - 39 24 21 34 2 3 0 87 23 2 87 22

P∗→A R−work 13 95 67 69 96 83 84 100 0 92 100 3 92

P∗→A R− f ree - 5 3 3 7 2 2 3 0 4 4 8 4

P∗→B R−work 3 27 1 1 18 2 3 22 0 0 22 0 10

P∗→B R− f ree - 27 23 22 22 5 4 20 74 0 21 74 13

P R−work 1 40 0 0 40 0 0 0 0 28 0 0 26

P R− f ree - 40 25 25 39 3 4 5 89 28 0 88 24

P→A R−work 13 94 69 67 96 83 83 100 3 92 100 0 92

P→A R− f ree - 5 2 2 7 2 2 5 8 6 4 0 5

P→B R−work 3 26 1 2 25 1 2 23 0 14 22 0 0

P→B R− f ree - 29 22 22 29 2 2 22 75 14 20 74 0

1000
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Table B.50: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the 52 synthetic NO-NCS data sets. Each row shows the per-
centage of models that a pipeline variant built with R-work or R-free between 1% and
4% lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 6 27 28 6 15 15 2 28 9 2 30 8

A R− f ree - - - - - - - - - - - - -
A→B R−work 1 0 4 5 32 6 7 18 1 17 19 0 18

A→B R− f ree - 0 21 21 30 6 7 18 13 19 18 17 20

A→P∗
R−work 5 14 0 31 17 33 32 9 1 21 9 1 22

A→P∗
R− f ree - 22 0 38 20 11 16 18 19 21 20 13 20

A→P R−work 7 12 37 0 16 33 31 10 2 21 10 1 18

A→P R− f ree - 26 38 0 24 14 14 22 16 21 18 12 25

B R−work 2 31 4 4 0 1 2 19 1 25 20 1 21

B R− f ree - 28 18 21 0 3 3 20 16 21 17 19 22

B→P∗
R−work 7 22 16 12 31 0 35 41 2 29 40 2 28

B→P∗
R− f ree - 21 25 22 25 0 37 34 4 32 37 2 35

B→P R−work 6 20 17 15 30 33 0 39 1 31 35 2 31

B→P R− f ree - 20 18 20 26 41 0 32 4 30 28 4 35

P∗
R−work 1 21 0 0 14 7 8 0 0 18 33 0 22

P∗
R− f ree - 20 21 23 25 10 14 0 6 24 36 7 26

P∗→A R−work 40 4 30 28 3 13 13 0 0 6 0 31 7

P∗→A R− f ree - 12 2 3 9 2 2 2 0 6 2 35 6

P∗→B R−work 3 38 6 9 40 9 10 23 2 0 22 1 34

P∗→B R− f ree - 37 22 24 39 8 10 23 13 0 22 11 31

P R−work 1 22 0 0 17 4 9 31 0 21 0 0 22

P R− f ree - 19 20 18 22 10 15 39 5 22 0 7 26

P→A R−work 41 5 28 29 3 14 14 0 34 6 0 0 7

P→A R− f ree - 11 6 5 8 2 2 1 34 6 2 0 6

P→B R−work 2 41 7 5 38 11 9 22 1 30 22 1 0

P→B R− f ree - 33 26 23 32 10 10 26 12 36 26 14 0

410
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B.3 Experimental results for the original data sets

without the Buccaneer development data sets

Table B.51: Complete and intermediate models produced by the 23 pipeline variants
for the original data sets, where ‘(T)’ and ‘(C)’ denote intermediate models produced
by pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

A 201 1(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

A→P∗ 196 3(T) 0(C) 3 197 2(T) 0(C) 3 201 1(T) 0(C) 0

A→B 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

B 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

B→P∗ 200 0(T) 0(C) 2 197 3(T) 0(C) 2 197 4(T) 0(C) 1

P∗ 198 2(T) 1(C) 1 200 0(T) 1(C) 1 199 1(T) 1(C) 1

P∗ → A 201 0(T) 0(C) 1 201 0(T) 0(C) 1 200 1(T) 0(C) 1

P∗ → B 201 0(T) 0(C) 1 201 0(T) 0(C) 1 201 0(T) 0(C) 1

S∗ 202 0(T) 0(C) 0 201 1(T) 0(C) 0 200 2(T) 0(C) 0

S∗ → A 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

S∗ → B 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0

S∗ → P∗ 198 2(T) 0(C) 2 197 3(T) 0(C) 2 196 4(T) 0(C) 2

A→P - - - - - - 199 2(T) 0(C) 1

B→P - - - - - - 200 0(T) 0(C) 2

P - - - - - - 199 1(T) 0(C) 2

P→A - - - - - - 200 0(T) 0(C) 2

P→B - - - - - - 200 0(T) 0(C) 2

S - - - - - - 200 2(T) 0(C) 0

S→A - - - - - - 202 0(T) 0(C) 0

S→B - - - - - - 202 0(T) 0(C) 0

S∗ → P - - - - - - 197 3(T) 0(C) 2

S → P∗ - - - - - - 198 2(T) 0(C) 2

S→P - - - - - - 197 3(T) 0(C) 2

Models used in the comparison: 147 HA-NCS, 147 MR-NCS and 148 NO-NCS.
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Table B.52: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 15 25 29 18 41 28 13 65 43 20 38

A→B 78 0 63 61 41 66 68 33 81 77 53 65

A→P∗ 53 22 0 45 22 45 41 19 76 52 31 44

B 63 17 44 0 16 50 49 18 73 62 34 49

B→P∗ 71 35 61 57 0 65 67 35 87 69 48 67

P∗ 48 27 39 41 21 0 39 16 75 51 31 38

P∗→A 46 24 34 40 24 49 0 18 77 47 30 45

P∗→B 78 45 73 63 49 76 73 0 87 77 56 72

S∗ 31 16 20 20 9 20 17 10 0 33 12 20

S∗→A 32 14 24 29 19 37 23 15 62 0 23 36

S∗→B 70 27 59 47 32 60 59 23 84 67 0 59

S∗→P∗ 50 23 32 40 20 38 35 15 72 49 30 0

870

Table B.53: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 100 7 22 8 11 12 27 9 5 25 10 12

A→B 7 100 16 22 24 7 7 22 3 9 20 12

A→P∗ 22 16 100 12 17 16 24 8 5 24 10 24

B 8 22 12 100 27 9 11 19 6 9 19 11

B→P∗ 11 24 17 27 100 14 9 16 4 12 20 13

P∗ 12 7 16 9 14 100 12 8 5 12 10 24

P∗→A 27 7 24 11 9 12 100 9 6 30 11 20

P∗→B 9 22 8 19 16 8 9 100 3 8 21 13

S∗ 5 3 5 6 4 5 6 3 100 5 3 8

S∗→A 25 9 24 9 12 12 30 8 5 100 10 15

S∗→B 10 20 10 19 20 10 11 21 3 10 100 11

S∗→P∗ 12 12 24 11 13 24 20 13 8 15 11 100

1003
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Table B.54: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 8 7 13 7 14 5 7 41 24 12 13

A→B 33 0 18 25 11 25 24 8 60 35 14 30

A→P∗ 28 14 0 22 4 14 14 8 52 31 16 15

B 28 11 14 0 7 22 17 5 52 32 10 22

B→P∗ 35 20 20 27 0 29 24 10 64 37 20 24

P∗ 27 15 12 23 3 0 15 7 49 29 18 12

P∗→A 21 17 14 24 10 17 0 8 52 30 17 16

P∗→B 39 18 26 29 16 33 29 0 65 38 20 35

S∗ 18 12 6 12 3 8 5 3 0 22 9 4

S∗→A 10 10 7 14 6 14 1 6 34 0 8 13

S∗→B 33 12 19 25 10 25 22 6 59 35 0 24

S∗→P∗ 27 18 12 25 4 10 16 7 51 31 17 0

650

Table B.55: Structure completeness comparison for the models generated from the
original HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 7 18 16 12 27 22 6 24 19 8 25

A→B 45 0 44 35 30 41 44 25 21 41 39 35

A→P∗ 25 8 0 23 18 31 27 11 24 22 15 29

B 35 6 30 0 10 29 32 13 22 30 24 27

B→P∗ 35 16 41 30 0 37 44 25 23 33 28 43

P∗ 20 12 27 18 18 0 24 9 26 22 13 26

P∗→A 24 7 20 16 14 32 0 10 25 17 13 29

P∗→B 39 27 47 33 33 43 44 0 22 39 36 37

S∗ 12 4 14 9 5 12 12 7 0 11 3 16

S∗→A 22 4 16 16 13 24 22 9 28 0 15 23

S∗→B 37 14 39 22 22 35 37 17 25 32 0 35

S∗→P∗ 22 5 20 15 16 28 19 7 21 18 13 0

470
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Table B.56: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 86 24 93 24 33 20 86 100 33 91 33

A R− f ree - - - - - - - - - - - -
A→B R−work 9 0 3 51 2 2 2 26 98 5 46 3

A→B R− f ree - 0 5 52 4 1 15 31 - 28 46 4

A→P∗
R−work 64 94 0 98 34 56 54 89 100 61 95 56

A→P∗
R− f ree - 90 0 92 33 48 77 81 - 84 88 50

B R−work 5 16 1 0 1 3 1 11 99 3 27 2

B R− f ree - 22 5 0 2 3 11 18 - 25 28 3

B→P∗
R−work 62 96 35 99 0 56 54 96 100 61 97 59

B→P∗
R− f ree - 93 40 95 0 48 84 95 - 85 94 52

P∗
R−work 44 93 16 95 19 0 31 93 99 40 95 25

P∗
R− f ree - 95 31 95 24 0 73 93 - 75 95 33

P∗→A R−work 43 94 29 97 27 44 0 93 100 35 95 42

P∗→A R− f ree - 75 17 84 12 16 0 72 - 48 79 12

P∗→B R−work 10 30 5 56 3 3 3 0 99 10 45 5

P∗→B R− f ree - 39 12 58 3 2 18 0 - 29 45 6

S∗ R−work 0 2 0 1 0 1 0 1 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 34 90 23 95 19 38 16 86 100 0 93 37

S∗→A R− f ree - 63 11 68 9 12 21 63 - 0 64 10

S∗→B R−work 6 20 2 41 2 3 2 15 100 4 0 2

S∗→B R− f ree - 22 7 47 3 3 12 20 - 29 0 4

S∗→P∗
R−work 46 94 15 95 16 26 34 91 100 41 94 0

S∗→P∗
R− f ree - 90 28 93 21 31 73 91 - 79 95 0

1000
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Table B.57: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 100 5 12 2 14 23 37 3 0 33 3 20

A R− f ree - - - - - - - - - - - -
A→B R−work 5 100 3 33 2 5 4 44 0 5 33 3

A→B R− f ree - 100 5 25 3 4 10 29 - 10 32 5

A→P∗
R−work 12 3 100 1 31 29 17 6 0 16 3 29

A→P∗
R− f ree - 5 100 3 27 21 6 7 - 5 4 22

B R−work 2 33 1 100 0 1 3 33 0 2 33 3

B R− f ree - 25 3 100 3 3 5 24 - 7 25 3

B→P∗
R−work 14 2 31 0 100 25 18 1 0 20 1 25

B→P∗
R− f ree - 3 27 3 100 28 5 3 - 6 3 27

P∗
R−work 23 5 29 1 25 100 25 4 0 22 3 49

P∗
R− f ree - 4 21 3 28 100 12 5 - 13 3 37

P∗→A R−work 37 4 17 3 18 25 100 4 0 48 3 24

P∗→A R− f ree - 10 6 5 5 12 100 10 - 31 9 14

P∗→B R−work 3 44 6 33 1 4 4 100 0 4 40 4

P∗→B R− f ree - 29 7 24 3 5 10 100 - 8 35 3

S∗ R−work 0 0 0 0 0 0 0 0 100 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 33 5 16 2 20 22 48 4 0 100 3 22

S∗→A R− f ree - 10 5 7 6 13 31 8 - 100 7 12

S∗→B R−work 3 33 3 33 1 3 3 40 0 3 100 4

S∗→B R− f ree - 32 4 25 3 3 9 35 - 7 100 1

S∗→P∗
R−work 20 3 29 3 25 49 24 4 0 22 4 100

S∗→P∗
R− f ree - 5 22 3 27 37 14 3 - 12 1 100

1000
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Table B.58: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 38 6 48 2 4 1 27 100 6 39 3

A R− f ree - - - - - - - - - - - -
A→B R−work 1 0 0 7 0 0 0 3 94 1 6 0

A→B R− f ree - 0 3 8 1 0 2 3 - 15 7 0

A→P∗
R−work 4 53 0 65 2 3 2 42 100 5 59 0

A→P∗
R− f ree - 48 0 59 2 1 10 39 - 25 52 0

B R−work 0 4 0 0 0 0 0 3 95 1 5 0

B R− f ree - 4 2 0 0 0 2 4 - 14 5 0

B→P∗
R−work 5 52 5 63 0 3 2 41 100 7 53 0

B→P∗
R− f ree - 54 8 62 0 3 12 40 - 27 55 1

P∗
R−work 4 39 3 50 1 0 0 27 99 6 41 0

P∗
R− f ree - 40 9 50 1 0 12 28 - 25 40 0

P∗→A R−work 6 39 8 53 3 5 0 32 100 7 42 5

P∗→A R− f ree - 22 7 31 1 1 0 17 - 16 26 0

P∗→B R−work 1 12 1 14 0 0 0 0 99 3 13 0

P∗→B R− f ree - 12 5 14 1 0 2 0 - 16 14 0

S∗ R−work 0 1 0 1 0 0 0 1 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 6 38 5 50 2 3 3 29 100 0 42 1

S∗→A R− f ree - 16 4 22 1 1 0 14 - 0 19 0

S∗→B R−work 1 7 1 7 0 1 0 2 99 0 0 0

S∗→B R− f ree - 7 5 9 1 1 1 2 - 12 0 0

S∗→P∗
R−work 5 41 4 52 1 1 1 28 100 7 41 0

S∗→P∗
R− f ree - 44 9 49 1 1 9 30 - 24 44 0

1000
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Table B.59: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original HA-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 48 18 45 22 29 18 60 0 27 52 30

A R− f ree - - - - - - - - - - - -
A→B R−work 8 0 3 44 2 2 2 23 4 4 40 3

A→B R− f ree - 0 3 44 3 1 13 29 - 13 39 4

A→P∗
R−work 60 41 0 33 32 53 52 47 0 56 36 56

A→P∗
R− f ree - 42 0 33 31 47 67 42 - 59 36 50

B R−work 5 12 1 0 1 3 1 7 4 3 21 2

B R− f ree - 18 3 0 2 3 9 14 - 12 23 3

B→P∗
R−work 56 44 31 36 0 53 52 55 0 54 44 59

B→P∗
R− f ree - 39 32 33 0 46 72 54 - 58 39 52

P∗
R−work 40 53 12 46 18 0 31 65 0 34 53 25

P∗
R− f ree - 54 22 45 23 0 61 65 - 50 54 33

P∗→A R−work 37 55 21 44 24 38 0 61 0 29 53 37

P∗→A R− f ree - 52 10 52 11 14 0 55 - 32 53 12

P∗→B R−work 9 18 4 42 3 3 3 0 0 7 32 5

P∗→B R− f ree - 28 6 44 2 2 16 0 - 13 31 6

S∗ R−work 0 1 0 0 0 1 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 28 52 18 45 17 35 14 58 0 0 50 35

S∗→A R− f ree - 46 7 46 8 12 21 49 - 0 45 10

S∗→B R−work 5 14 1 33 2 2 2 13 1 4 0 2

S∗→B R− f ree - 16 3 38 2 2 11 18 - 17 0 4

S∗→P∗
R−work 41 53 11 42 15 24 33 63 0 33 52 0

S∗→P∗
R− f ree - 47 19 44 20 29 65 61 - 55 50 0

720
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Table B.60: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 14 24 33 23 41 31 18 72 50 25 45

A→B 76 0 67 64 45 70 67 35 86 80 52 70

A→P∗ 48 17 0 46 24 48 38 21 79 54 34 54

B 56 21 45 0 20 46 50 21 78 61 35 55

B→P∗ 63 34 59 54 0 63 64 32 87 68 50 71

P∗ 43 21 31 40 20 0 40 19 76 50 33 43

P∗→A 43 23 31 40 24 46 0 21 80 51 32 48

P∗→B 72 41 70 59 48 76 69 0 86 74 51 78

S∗ 23 12 16 16 10 17 16 12 0 28 13 18

S∗→A 24 13 19 30 20 35 17 18 63 0 25 37

S∗→B 60 26 51 46 33 59 54 27 86 67 0 61

S∗→P∗ 41 20 29 35 17 31 33 12 73 46 29 0

870

Table B.61: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 100 11 28 10 14 16 27 10 5 26 15 14

A→B 11 100 16 15 21 9 10 24 2 7 22 10

A→P∗ 28 16 100 9 16 20 31 9 5 27 15 16

B 10 15 9 100 25 14 10 20 6 10 19 10

B→P∗ 14 21 16 25 100 17 12 20 3 12 18 12

P∗ 16 9 20 14 17 100 14 5 7 16 7 27

P∗→A 27 10 31 10 12 14 100 10 4 32 14 18

P∗→B 10 24 9 20 20 5 10 100 3 7 22 10

S∗ 5 2 5 6 3 7 4 3 100 9 1 8

S∗→A 26 7 27 10 12 16 32 7 9 100 7 16

S∗→B 15 22 15 19 18 7 14 22 1 7 100 10

S∗→P∗ 14 10 16 10 12 27 18 10 8 16 10 100

1001
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Table B.62: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 8 6 16 7 16 7 10 43 20 14 14

A→B 29 0 18 25 13 22 19 10 63 31 18 27

A→P∗ 24 12 0 19 8 13 16 12 54 29 18 14

B 26 14 15 0 8 20 19 9 55 35 12 21

B→P∗ 30 18 20 25 0 27 20 14 63 36 21 22

P∗ 26 13 12 23 5 0 15 9 52 28 19 11

P∗→A 15 13 14 21 10 17 0 11 53 24 19 16

P∗→B 30 17 23 27 15 28 22 0 60 35 20 33

S∗ 16 9 7 8 4 5 5 5 0 20 9 5

S∗→A 8 7 6 14 6 14 1 9 38 0 10 13

S∗→B 27 12 17 20 11 18 18 11 61 31 0 22

S∗→P∗ 22 14 11 22 5 7 15 10 51 24 18 0

630

Table B.63: Structure completeness comparison for the models generated from the
original MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A 0 5 18 18 16 24 23 8 29 31 11 31

A→B 47 0 49 39 32 48 48 25 24 49 35 43

A→P∗ 24 5 0 27 16 35 22 10 25 25 16 40

B 31 7 30 0 12 26 31 12 22 25 24 34

B→P∗ 33 16 39 29 0 36 44 18 24 32 29 48

P∗ 17 8 20 17 15 0 25 10 24 22 14 32

P∗→A 28 10 18 19 15 29 0 10 27 27 13 32

P∗→B 42 24 47 33 33 48 46 0 26 39 31 45

S∗ 7 3 10 8 5 12 11 6 0 8 4 14

S∗→A 16 5 13 16 14 21 16 10 25 0 15 24

S∗→B 33 14 34 25 22 41 35 16 24 36 0 39

S∗→P∗ 19 6 18 12 12 23 18 3 22 22 12 0

490
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Table B.64: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 88 21 91 27 35 18 90 100 31 93 37

A R− f ree - - - - - - - - - - - -
A→B R−work 7 0 3 52 2 2 2 32 99 5 45 3

A→B R− f ree - 0 6 54 5 3 16 35 - 30 48 5

A→P∗
R−work 64 93 0 97 37 61 56 89 100 61 93 59

A→P∗
R− f ree - 89 0 91 36 54 78 80 - 88 88 55

B R−work 6 18 3 0 1 3 1 17 99 5 25 3

B R− f ree - 22 7 0 2 4 11 24 - 24 30 4

B→P∗
R−work 59 96 31 99 0 54 52 95 100 57 97 61

B→P∗
R− f ree - 89 37 95 0 50 77 93 - 84 93 53

P∗
R−work 45 93 18 93 20 0 33 94 100 40 95 26

P∗
R− f ree - 93 23 93 29 0 70 95 - 76 96 30

P∗→A R−work 40 95 27 95 30 42 0 94 100 35 95 45

P∗→A R− f ree - 74 15 85 12 12 0 73 - 50 80 16

P∗→B R−work 6 28 6 51 3 3 4 0 100 8 39 5

P∗→B R− f ree - 31 13 54 4 2 18 0 - 27 44 6

S∗ R−work 0 1 0 1 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 33 90 21 93 24 38 16 91 100 0 92 41

S∗→A R− f ree - 65 8 68 11 9 16 67 - 0 69 13

S∗→B R−work 5 19 3 39 1 2 3 21 100 4 0 2

S∗→B R− f ree - 20 8 43 4 2 12 27 - 28 0 5

S∗→P∗
R−work 42 94 14 94 17 20 31 90 100 37 95 0

S∗→P∗
R− f ree - 90 22 93 25 32 72 90 - 78 94 0

1000
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Table B.65: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 100 5 15 3 15 20 41 3 0 36 1 20

A R− f ree - - - - - - - - - - - -
A→B R−work 5 100 4 30 2 5 3 40 0 5 36 3

A→B R− f ree - 100 5 23 5 3 10 35 - 5 32 5

A→P∗
R−work 15 4 100 1 33 22 17 5 0 18 4 28

A→P∗
R− f ree - 5 100 1 27 23 7 7 - 4 3 23

B R−work 3 30 1 100 0 3 4 32 0 3 36 3

B R− f ree - 23 1 100 3 3 4 22 - 7 27 3

B→P∗
R−work 15 2 33 0 100 27 18 2 0 19 2 22

B→P∗
R− f ree - 5 27 3 100 21 12 3 - 5 3 22

P∗
R−work 20 5 22 3 27 100 25 3 0 22 3 54

P∗
R− f ree - 3 23 3 21 100 18 3 - 15 2 38

P∗→A R−work 41 3 17 4 18 25 100 2 0 48 2 24

P∗→A R− f ree - 10 7 4 12 18 100 9 - 34 8 12

P∗→B R−work 3 40 5 32 2 3 2 100 0 1 40 5

P∗→B R− f ree - 35 7 22 3 3 9 100 - 6 29 4

S∗ R−work 0 0 0 0 0 0 0 0 100 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 36 5 18 3 19 22 48 1 0 100 4 22

S∗→A R− f ree - 5 4 7 5 15 34 6 - 100 3 9

S∗→B R−work 1 36 4 36 2 3 2 40 0 4 100 3

S∗→B R− f ree - 32 3 27 3 2 8 29 - 3 100 1

S∗→P∗
R−work 20 3 28 3 22 54 24 5 0 22 3 100

S∗→P∗
R− f ree - 5 23 3 22 38 12 4 - 9 1 100

1000
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Table B.66: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 34 6 48 3 3 2 31 100 5 41 4

A R− f ree - - - - - - - - - - - -
A→B R−work 0 0 0 10 1 0 0 6 95 1 8 0

A→B R− f ree - 0 3 12 1 0 2 6 - 16 9 0

A→P∗
R−work 2 50 0 65 2 1 2 48 100 3 56 0

A→P∗
R− f ree - 44 0 59 3 1 10 43 - 24 54 1

B R−work 1 5 1 0 0 0 1 7 97 1 5 0

B R− f ree - 5 3 0 1 0 3 6 - 14 3 0

B→P∗
R−work 5 50 5 62 0 2 2 45 100 5 56 0

B→P∗
R− f ree - 49 9 61 0 2 12 46 - 29 56 1

P∗
R−work 3 35 4 48 1 0 1 31 100 5 42 0

P∗
R− f ree - 37 9 49 1 0 10 31 - 26 44 1

P∗→A R−work 5 36 8 54 3 4 0 38 100 7 47 5

P∗→A R− f ree - 18 7 28 1 1 0 18 - 15 26 1

P∗→B R−work 1 12 1 14 0 0 0 0 98 2 12 0

P∗→B R− f ree - 11 7 14 1 0 2 0 - 15 13 0

S∗ R−work 0 0 0 1 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 5 34 4 49 1 1 3 33 100 0 42 1

S∗→A R− f ree - 10 4 20 1 0 0 17 - 0 20 0

S∗→B R−work 1 7 1 7 0 0 1 5 99 0 0 0

S∗→B R− f ree - 5 5 7 0 0 2 5 - 11 0 0

S∗→P∗
R−work 4 34 5 48 1 1 2 33 100 5 43 0

S∗→P∗
R− f ree - 38 10 48 1 1 8 34 - 24 46 0
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Table B.67: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original MR-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B S∗ S∗→A S∗→B S∗→P∗

A R−work 0 54 15 44 23 31 16 59 0 25 52 33

A R− f ree - - - - - - - - - - - -
A→B R−work 7 0 3 41 1 2 2 26 3 4 37 3

A→B R− f ree - 0 3 43 5 3 14 29 - 14 39 5

A→P∗
R−work 62 44 0 31 35 59 54 41 0 58 36 59

A→P∗
R− f ree - 46 0 32 33 53 69 37 - 64 34 54

B R−work 5 14 2 0 1 3 1 10 1 4 20 3

B R− f ree - 18 5 0 1 4 8 18 - 10 27 4

B→P∗
R−work 54 46 26 37 0 52 50 50 0 52 40 61

B→P∗
R− f ree - 40 29 34 0 48 65 46 - 54 37 52

P∗
R−work 41 57 14 46 19 0 31 63 0 35 53 26

P∗
R− f ree - 56 14 44 29 0 60 63 - 50 52 29

P∗→A R−work 35 59 19 41 27 38 0 56 0 29 48 40

P∗→A R− f ree - 56 7 57 11 12 0 56 - 35 54 15

P∗→B R−work 5 16 5 37 3 3 4 0 2 6 27 5

P∗→B R− f ree - 20 6 41 3 2 16 0 - 12 31 6

S∗ R−work 0 1 0 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - -
S∗→A R−work 29 56 17 44 23 37 13 59 0 0 50 39

S∗→A R− f ree - 55 4 48 10 9 16 50 - 0 48 13

S∗→B R−work 5 12 2 31 1 2 2 16 1 4 0 2

S∗→B R− f ree - 15 3 36 4 2 10 22 - 17 0 5

S∗→P∗
R−work 38 60 9 46 16 19 29 58 0 33 52 0

S∗→P∗
R− f ree - 52 12 45 24 31 64 56 - 54 48 0
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Table B.68: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 18 26 29 33 21 20 39 26 18 37 31 21 68 42 24 61 41 26 39 39 38 40

A→B 74 0 59 63 64 41 41 66 60 30 68 65 36 85 74 43 80 71 48 64 64 57 62

A→P∗ 52 30 0 26 51 24 24 45 37 22 49 39 28 81 57 32 78 50 39 46 50 49 47

A→P 49 28 17 0 45 25 26 43 36 20 47 39 24 78 54 30 76 50 36 43 45 44 45

B 57 22 40 45 0 20 21 46 45 18 49 51 24 77 59 28 72 57 33 51 44 47 49

B→P∗ 68 43 59 58 59 0 24 65 59 32 65 59 41 86 66 49 82 68 48 66 60 64 62

B→P 70 42 59 59 55 22 0 64 59 34 67 59 40 87 66 48 84 70 46 59 63 64 63

P∗ 49 28 37 37 45 23 26 0 36 19 46 43 25 80 48 34 77 49 35 45 41 36 41

P∗→A 49 30 35 37 44 29 30 47 0 22 50 32 27 82 54 34 78 45 36 49 49 48 54

P∗→B 76 51 70 70 68 49 49 72 67 0 76 71 47 87 76 54 85 74 57 72 72 70 75

P 48 25 34 34 41 18 19 32 37 18 0 37 20 78 47 32 72 49 29 34 30 31 34

P→A 45 27 31 30 41 24 28 43 26 22 45 0 24 81 49 31 76 45 32 48 44 46 49

P→B 72 41 67 69 61 44 44 64 61 36 74 68 0 85 76 50 82 72 50 68 67 61 68

S 26 12 11 14 20 11 10 16 10 12 16 13 13 0 32 11 34 24 9 15 15 11 16

S→A 30 18 28 28 33 22 25 33 24 12 39 30 16 64 0 21 60 25 20 36 35 32 36

S→B 68 36 55 58 55 34 35 59 56 26 61 57 34 89 74 0 84 68 43 61 57 59 59

S∗ 32 16 17 17 24 12 12 17 17 12 22 18 14 57 34 15 0 32 14 19 16 14 20

S∗→A 31 19 27 29 35 22 24 36 24 17 41 27 20 68 41 24 64 0 26 41 36 38 39

S∗→B 64 32 50 50 55 34 35 53 53 22 61 55 28 89 67 38 81 68 0 52 53 55 58

S∗→P∗ 49 28 35 36 43 24 24 34 31 17 41 38 22 80 47 32 74 48 36 0 34 37 37

S∗→P 49 28 36 36 46 26 28 35 35 18 45 42 23 82 47 35 76 49 39 34 0 33 39

S→P∗ 52 29 36 39 45 23 23 34 34 20 47 43 24 84 54 34 81 51 34 40 39 0 39

S→P 49 28 34 35 46 23 24 33 34 20 47 39 22 80 52 32 76 50 32 39 36 34 0

890

Table B.69: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 100 7 22 22 9 11 11 12 25 6 15 24 7 5 28 7 7 28 9 12 12 10 11

A→B 7 100 11 9 14 17 17 6 9 19 7 8 22 3 7 21 4 10 20 8 8 14 9

A→P∗ 22 11 100 57 9 16 17 18 28 8 18 30 5 7 15 13 5 23 11 19 14 15 20

A→P 22 9 57 100 11 17 14 20 26 11 19 31 7 7 18 11 7 21 14 21 18 18 20

B 9 14 9 11 100 21 24 9 11 14 11 9 16 3 8 17 4 7 11 7 10 9 5

B→P∗ 11 17 16 17 21 100 54 12 12 19 18 17 15 2 11 18 5 9 18 11 14 14 15

B→P 11 17 17 14 24 54 100 10 11 18 14 13 16 3 9 17 4 7 19 16 9 14 13

P∗ 12 6 18 20 9 12 10 100 17 9 22 14 11 4 19 7 6 15 11 22 24 30 26

P∗→A 25 9 28 26 11 12 11 17 100 11 13 42 12 7 22 10 5 32 11 20 16 18 12

P∗→B 6 19 8 11 14 19 18 9 11 100 7 7 17 1 11 20 3 9 21 11 9 10 5

P 15 7 18 19 11 18 14 22 13 7 100 18 7 6 15 7 7 10 10 25 26 22 18

P→A 24 8 30 31 9 17 13 14 42 7 18 100 7 6 21 12 5 28 13 14 14 11 13

P→B 7 22 5 7 16 15 16 11 12 17 7 7 100 2 8 16 4 8 22 10 10 14 10

S 5 3 7 7 3 2 3 4 7 1 6 6 2 100 3 1 8 7 1 5 3 5 4

S→A 28 7 15 18 8 11 9 19 22 11 15 21 8 3 100 5 5 34 13 17 18 14 11

S→B 7 21 13 11 17 18 17 7 10 20 7 12 16 1 5 100 1 8 20 6 7 7 9

S∗ 7 4 5 7 4 5 4 6 5 3 7 5 4 8 5 1 100 5 5 7 8 5 4

S∗→A 28 10 23 21 7 9 7 15 32 9 10 28 8 7 34 8 5 100 7 11 15 11 11

S∗→B 9 20 11 14 11 18 19 11 11 21 10 13 22 1 13 20 5 7 100 12 9 11 9

S∗→P∗ 12 8 19 21 7 11 16 22 20 11 25 14 10 5 17 6 7 11 12 100 32 23 24

S∗→P 12 8 14 18 10 14 9 24 16 9 26 14 10 3 18 7 8 15 9 32 100 28 25

S→P∗ 10 14 15 18 9 14 14 30 18 10 22 11 14 5 14 7 5 11 11 23 28 100 27

S→P 11 9 20 20 5 15 13 26 12 5 18 13 10 4 11 9 4 11 9 24 25 27 100
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Table B.70: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 7 5 6 15 7 8 11 5 10 14 4 12 45 22 13 40 20 14 14 14 14 13

A→B 30 0 13 17 30 11 14 24 16 9 28 20 11 64 34 18 57 29 18 24 24 21 25

A→P∗ 30 16 0 9 28 9 10 13 10 11 21 16 14 61 31 20 57 30 21 14 14 15 14

A→P 28 16 6 0 26 9 10 12 11 10 20 16 13 61 31 21 56 28 21 15 14 11 13

B 28 12 11 11 0 9 7 16 13 8 16 18 8 56 33 14 48 29 14 22 17 16 18

B→P∗ 36 24 20 23 32 0 4 24 16 14 30 25 17 66 35 26 63 33 24 23 21 20 21

B→P 35 24 20 24 30 5 0 21 17 14 29 24 18 64 37 26 62 34 24 22 22 22 23

P∗ 28 18 14 14 26 9 9 0 13 9 14 17 13 61 30 24 55 27 22 10 6 9 9

P∗→A 26 20 14 18 28 13 12 19 0 10 22 12 15 59 30 24 57 28 23 19 20 14 16

P∗→B 33 19 23 25 35 18 21 30 22 0 30 29 16 70 40 24 63 34 24 30 30 28 32

P 28 16 11 15 23 8 7 7 14 9 0 15 13 57 32 21 51 26 20 11 9 7 7

P→A 26 18 12 13 26 10 11 15 7 11 16 0 13 58 30 21 54 26 20 16 13 11 18

P→B 35 19 20 20 34 17 18 26 20 11 32 25 0 65 39 24 63 36 24 28 27 25 27

S 17 10 7 6 11 5 5 7 3 5 7 7 6 0 24 7 9 17 3 7 7 6 5

S→A 9 11 6 7 16 8 9 11 1 8 15 5 10 38 0 9 35 7 7 13 11 9 9

S→B 36 15 18 18 26 12 11 22 18 12 28 24 11 70 38 0 59 38 18 28 24 24 24

S∗ 21 13 7 6 17 5 5 5 6 5 10 7 7 32 27 11 0 20 9 5 6 5 5

S∗→A 12 12 7 9 20 8 9 12 2 9 16 3 11 47 16 11 40 0 9 14 13 11 10

S∗→B 31 14 16 17 28 11 12 19 12 9 23 20 11 65 35 12 60 30 0 22 20 22 20

S∗→P∗ 28 19 12 14 28 8 9 9 12 10 18 17 14 61 30 21 53 24 22 0 5 5 7

S∗→P 30 19 14 14 32 7 9 10 12 11 17 16 14 63 33 24 52 27 20 7 0 3 7

S→P∗ 30 21 14 16 30 9 10 13 15 11 16 18 14 60 29 24 53 26 23 11 10 0 11

S→P 28 18 13 13 28 9 8 9 12 10 15 18 14 59 30 22 55 25 21 9 5 5 0
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Table B.71: Structure completeness comparison for the models generated from the
original NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A 0 11 22 23 18 14 11 27 21 8 23 27 9 24 20 11 21 21 13 25 26 24 27

A→B 45 0 46 46 34 29 28 42 44 21 40 45 25 21 41 24 23 42 30 40 41 36 37

A→P∗ 22 14 0 18 23 16 14 32 27 11 28 23 14 20 26 12 21 20 18 32 36 34 33

A→P 20 12 11 0 18 16 16 31 26 9 26 24 11 18 23 9 20 22 15 28 32 32 32

B 30 10 29 33 0 11 14 30 32 10 32 33 16 21 26 14 24 28 19 29 27 30 31

B→P∗ 32 19 39 35 27 0 20 41 43 19 35 34 24 20 31 22 20 35 24 43 39 44 41

B→P 34 18 40 36 26 18 0 43 42 20 38 35 22 23 28 22 22 36 22 37 41 42 40

P∗ 21 10 23 24 19 14 17 0 24 9 32 26 12 20 18 10 22 22 13 34 34 27 32

P∗→A 22 11 21 19 16 16 18 28 0 12 28 20 12 23 24 10 20 16 13 30 29 34 38

P∗→B 43 32 47 45 33 30 28 41 45 0 46 42 31 18 36 30 22 40 33 42 43 43 43

P 20 9 22 20 18 9 12 25 24 9 0 22 7 21 15 11 21 23 9 23 21 24 28

P→A 18 9 19 17 15 14 18 28 19 10 29 0 11 23 19 10 22 19 13 32 31 34 30

P→B 36 22 47 49 26 27 26 39 41 26 41 43 0 20 36 26 20 36 26 41 40 36 41

S 9 2 5 8 9 7 5 9 7 7 9 5 7 0 8 3 25 7 6 8 7 5 11

S→A 21 7 22 22 17 14 16 22 24 4 24 25 6 26 0 11 25 18 13 23 24 23 27

S→B 32 22 36 40 30 22 24 37 39 14 32 33 22 19 36 0 26 30 25 34 34 35 34

S∗ 11 3 10 11 7 7 7 11 11 7 11 11 6 26 7 4 0 11 5 14 9 9 14

S∗→A 19 7 20 20 15 14 15 24 22 8 26 24 9 22 26 13 24 0 17 27 23 26 28

S∗→B 33 19 34 33 28 24 23 34 41 14 38 35 16 24 32 26 21 37 0 30 32 33 39

S∗→P∗ 22 9 23 22 14 16 16 25 19 7 22 21 7 20 18 11 22 24 14 0 29 32 30

S∗→P 19 9 23 22 14 18 20 25 23 7 28 26 9 19 14 11 24 22 18 27 0 30 32

S→P∗ 22 8 22 22 15 14 13 21 20 9 31 25 10 24 25 10 28 25 11 29 29 0 28

S→P 20 10 21 22 18 14 16 24 22 9 32 21 9 21 22 9 21 25 11 30 31 29 0
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Table B.72: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 0 90 24 24 94 27 26 34 16 88 37 18 88 100 32 90 100 30 93 34 31 29 32

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 6 0 2 3 58 5 3 3 2 29 3 3 32 97 5 43 97 4 45 5 4 3 3

A→B R− f ree - 0 5 7 59 5 4 2 11 32 5 14 30 - 30 41 - 25 46 5 4 3 3

A→P∗
R−work 64 95 0 12 99 32 34 56 51 91 62 57 93 100 64 93 100 62 95 55 57 54 56

A→P∗
R− f ree - 89 0 26 93 33 36 51 75 79 53 76 84 - 89 86 - 86 88 50 52 51 54

A→P R−work 64 95 14 0 99 33 33 58 50 91 64 57 93 100 63 94 100 63 95 57 59 55 57

A→P R− f ree - 89 23 0 93 35 36 52 78 83 52 77 86 - 89 86 - 85 89 51 53 53 54

B R−work 5 17 1 1 0 2 2 3 1 11 3 1 18 97 1 23 97 1 26 3 2 2 1

B R− f ree - 20 5 5 0 3 3 3 10 19 5 12 14 - 28 24 - 23 29 3 2 3 3

B→P∗
R−work 61 94 33 32 97 0 14 52 46 94 55 52 93 100 59 93 100 58 95 55 48 50 50

B→P∗
R− f ree - 93 43 39 95 0 27 50 78 94 50 81 91 - 84 92 - 80 93 51 45 46 49

B→P R−work 61 94 36 32 97 17 0 54 46 95 57 51 94 99 58 93 99 59 95 51 49 49 51

B→P R− f ree - 92 47 41 95 30 0 47 77 93 54 80 91 - 82 91 - 80 93 51 47 47 51

P∗
R−work 47 93 20 16 95 24 22 0 30 93 27 32 95 99 44 93 99 41 95 20 24 19 19

P∗
R− f ree - 95 30 28 93 28 24 0 70 93 31 70 93 - 82 93 - 78 95 26 25 24 24

P∗→A R−work 48 94 34 31 99 39 36 49 0 95 51 25 96 100 44 96 100 41 97 47 51 43 47

P∗→A R− f ree - 78 18 18 86 16 18 20 0 75 19 35 78 - 53 80 - 51 82 16 11 12 13

P∗→B R−work 8 31 7 6 61 5 4 4 1 0 5 4 32 99 12 45 99 9 47 7 4 3 3

P∗→B R− f ree - 35 16 14 64 4 4 3 14 0 7 18 34 - 30 41 - 26 49 6 3 3 3

P R−work 43 93 14 14 93 21 19 22 29 89 0 30 93 99 43 92 99 39 93 17 17 16 16

P R− f ree - 91 30 29 93 27 26 31 72 88 0 72 91 - 80 90 - 78 92 27 26 26 24

P→A R−work 47 92 27 26 96 33 32 44 21 93 47 0 94 100 42 95 100 39 97 41 46 41 45

P→A R− f ree - 74 15 14 80 15 15 13 28 72 14 0 72 - 44 74 - 47 80 14 12 11 14

P→B R−work 5 34 5 5 59 5 3 2 2 23 2 2 0 99 9 40 99 5 43 5 3 2 3

P→B R− f ree - 39 12 11 59 5 5 3 13 33 5 18 0 - 34 46 - 27 48 7 4 5 3

S R−work 0 2 0 0 3 0 1 1 0 1 1 0 1 0 0 0 19 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 32 94 21 19 98 24 25 36 16 85 41 20 85 100 0 93 100 20 95 34 34 32 31

S→A R− f ree - 61 8 7 64 11 14 9 22 64 13 22 61 - 0 59 - 26 61 9 8 9 9

S→B R−work 6 24 5 4 47 5 5 1 1 19 5 2 26 100 2 0 100 2 34 3 2 3 3

S→B R− f ree - 28 11 10 50 6 7 5 11 25 7 18 24 - 34 0 - 28 38 5 5 3 4

S∗ R−work 0 2 0 0 3 0 1 1 0 1 1 0 1 42 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 35 92 22 21 95 26 26 36 15 89 39 17 89 100 30 93 100 0 95 35 37 34 36

S∗→A R− f ree - 69 11 10 71 12 12 11 19 69 12 23 66 - 36 69 - 0 68 11 9 9 10

S∗→B R−work 4 23 2 2 45 4 3 3 2 18 4 3 20 100 1 25 100 2 0 4 2 3 2

S∗→B R− f ree - 24 7 7 52 5 5 3 10 24 5 13 24 - 30 31 - 24 0 5 4 3 3

S∗→P∗
R−work 48 93 18 14 94 24 18 24 32 91 30 34 92 100 42 94 100 42 93 0 19 18 18

S∗→P∗
R− f ree - 90 32 29 93 26 26 29 74 90 36 72 89 - 85 91 - 80 93 0 27 22 27

S∗→P R−work 47 93 20 18 95 20 18 24 32 92 28 34 93 100 43 92 100 41 93 16 0 17 16

S∗→P R− f ree - 93 32 27 94 26 26 31 69 91 34 74 93 - 81 92 - 80 93 28 0 26 25

S→P∗
R−work 48 93 22 20 96 24 20 24 31 93 34 33 93 100 45 94 100 42 95 22 27 0 20

S→P∗
R− f ree - 93 30 28 95 27 26 34 76 92 36 76 95 - 83 92 - 80 94 28 30 0 33

S→P R−work 46 93 20 18 96 26 21 25 30 93 31 35 94 100 41 93 100 42 94 20 22 16 0

S→P R− f ree - 93 31 29 95 32 27 32 70 92 38 74 93 - 84 94 - 78 95 27 24 27 0

1000

233



APPENDIX B. PAIRWISE RUNNING OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING
PIPELINES (ADDITIONAL RESULTS)

Table B.73: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 100 4 12 12 1 11 13 20 36 4 20 35 7 0 36 4 0 35 3 18 22 23 22

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 4 100 3 1 25 1 3 4 4 40 3 5 34 1 1 32 1 4 32 1 3 3 3

A→B R− f ree - 100 6 4 21 3 4 3 10 33 4 12 31 - 9 30 - 6 30 5 3 3 3

A→P∗
R−work 12 3 100 74 1 34 30 24 15 3 24 16 2 0 16 2 0 16 3 28 24 24 24

A→P∗
R− f ree - 6 100 51 2 24 18 20 7 5 18 9 4 - 3 3 - 3 5 18 16 18 15

A→P R−work 12 1 74 100 0 34 35 26 19 3 22 18 2 0 18 2 0 16 3 29 23 26 25

A→P R− f ree - 4 51 100 3 26 23 20 4 3 19 9 3 - 4 3 - 5 4 20 20 18 17

B R−work 1 25 1 0 100 1 1 3 0 28 4 3 24 0 1 30 0 3 28 3 3 2 3

B R− f ree - 21 2 3 100 3 3 4 3 18 3 8 26 - 8 26 - 6 19 3 4 2 2

B→P∗
R−work 11 1 34 34 1 100 69 24 16 1 24 15 3 0 17 2 0 16 1 22 32 26 24

B→P∗
R− f ree - 3 24 26 3 100 43 22 5 2 23 4 3 - 5 2 - 7 3 24 28 27 18

B→P R−work 13 3 30 35 1 69 100 24 18 1 24 18 3 0 17 3 0 14 1 30 33 31 28

B→P R− f ree - 4 18 23 3 43 100 29 5 3 20 5 5 - 4 2 - 7 2 22 27 27 22

P∗
R−work 20 4 24 26 3 24 24 100 21 3 51 24 3 0 20 5 0 24 3 55 53 57 56

P∗
R− f ree - 3 20 20 4 22 29 100 10 5 38 18 3 - 9 3 - 10 3 45 44 43 44

P∗→A R−work 36 4 15 19 0 16 18 21 100 4 20 54 2 0 40 3 0 45 1 20 17 26 23

P∗→A R− f ree - 10 7 4 3 5 5 10 100 11 9 37 9 - 26 8 - 30 8 10 20 11 17

P∗→B R−work 4 40 3 3 28 1 1 3 4 100 6 3 45 0 3 36 0 2 34 2 4 4 3

P∗→B R− f ree - 33 5 3 18 2 3 5 11 100 5 10 32 - 5 34 - 5 27 4 6 5 5

P R−work 20 3 24 22 4 24 24 51 20 6 100 23 5 0 16 3 0 22 3 53 55 50 53

P R− f ree - 4 18 19 3 23 20 38 9 5 100 14 4 - 7 3 - 9 3 36 40 39 38

P→A R−work 35 5 16 18 3 15 18 24 54 3 23 100 4 0 38 3 0 44 1 24 20 26 20

P→A R− f ree - 12 9 9 8 4 5 18 37 10 14 100 9 - 34 9 - 30 7 15 14 13 12

P→B R−work 7 34 2 2 24 3 3 3 2 45 5 4 100 0 5 34 0 6 38 3 5 5 3

P→B R− f ree - 31 4 3 26 3 5 3 9 32 4 9 100 - 5 30 - 7 28 3 3 0 3

S R−work 0 1 0 0 0 0 0 0 0 0 0 0 0 100 0 0 39 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 36 1 16 18 1 17 17 20 40 3 16 38 5 0 100 5 0 49 3 24 24 24 28

S→A R− f ree - 9 3 4 8 5 4 9 26 5 7 34 5 - 100 7 - 39 9 5 11 8 7

S→B R−work 4 32 2 2 30 2 3 5 3 36 3 3 34 0 5 100 0 5 41 3 6 3 4

S→B R− f ree - 30 3 3 26 2 2 3 8 34 3 9 30 - 7 100 - 3 31 3 3 5 2

S∗ R−work 0 1 0 0 0 0 0 0 0 0 0 0 0 39 0 0 100 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 35 4 16 16 3 16 14 24 45 2 22 44 6 0 49 5 0 100 3 23 22 24 22

S∗→A R− f ree - 6 3 5 6 7 7 10 30 5 9 30 7 - 39 3 - 100 7 9 11 10 12

S∗→B R−work 3 32 3 3 28 1 1 3 1 34 3 1 38 0 3 41 0 3 100 3 5 3 4

S∗→B R− f ree - 30 5 4 19 3 2 3 8 27 3 7 28 - 9 31 - 7 100 1 3 3 3

S∗→P∗
R−work 18 1 28 29 3 22 30 55 20 2 53 24 3 0 24 3 0 23 3 100 65 60 62

S∗→P∗
R− f ree - 5 18 20 3 24 22 45 10 4 36 15 3 - 5 3 - 9 1 100 45 50 46

S∗→P R−work 22 3 24 23 3 32 33 53 17 4 55 20 5 0 24 6 0 22 5 65 100 56 62

S∗→P R− f ree - 3 16 20 4 28 27 44 20 6 40 14 3 - 11 3 - 11 3 45 100 44 51

S→P∗
R−work 23 3 24 26 2 26 31 57 26 4 50 26 5 0 24 3 0 24 3 60 56 100 64

S→P∗
R− f ree - 3 18 18 2 27 27 43 11 5 39 13 0 - 8 5 - 10 3 50 44 100 40

S→P R−work 22 3 24 25 3 24 28 56 23 3 53 20 3 0 28 4 0 22 4 62 62 64 100

S→P R− f ree - 3 15 17 2 18 22 44 17 5 38 12 3 - 7 2 - 12 3 46 51 40 100
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Table B.74: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free between 1% and 4% lower
than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B S S→A S→B S∗ S∗→A S∗→B S∗→P∗ S∗→P S→P∗ S→P

A R−work 0 51 18 18 42 24 22 29 16 59 30 15 53 0 22 45 0 23 51 30 28 27 30

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→B R−work 6 0 2 3 48 5 3 3 2 24 3 3 28 3 5 33 3 3 39 5 3 3 3

A→B R− f ree - 0 3 4 47 5 4 2 9 29 4 13 26 - 13 32 - 11 39 5 3 3 3

A→P∗
R−work 58 38 0 12 32 29 30 53 48 44 59 53 39 0 54 36 0 57 35 53 55 53 54

A→P∗
R− f ree - 37 0 26 30 29 31 49 65 34 51 66 39 - 61 33 - 64 34 48 50 50 51

A→P R−work 57 36 14 0 32 30 29 55 47 44 61 53 39 0 53 37 0 56 38 55 57 54 55

A→P R− f ree - 36 22 0 32 31 32 51 70 41 49 66 42 - 59 32 - 64 36 49 51 52 52

B R−work 5 11 1 1 0 2 2 3 1 7 2 1 14 2 1 20 3 1 23 3 1 2 1

B R− f ree - 15 3 3 0 3 3 3 9 14 4 11 9 - 9 21 - 9 26 3 1 3 2

B→P∗
R−work 56 41 28 29 35 0 14 49 44 52 50 48 41 0 49 37 0 53 39 53 46 49 49

B→P∗
R− f ree - 41 31 27 30 0 26 47 66 51 47 66 42 - 57 36 - 57 36 48 44 45 48

B→P R−work 55 42 32 28 32 17 0 51 43 52 54 47 43 0 49 36 0 54 38 49 47 48 50

B→P R− f ree - 39 35 28 30 30 0 43 63 52 50 61 42 - 52 36 - 53 37 49 45 47 49

P∗
R−work 42 54 16 13 41 22 19 0 28 59 25 29 53 0 34 49 0 34 49 19 23 18 18

P∗
R− f ree - 53 19 18 36 25 20 0 61 58 29 58 51 - 56 48 - 55 49 25 24 23 23

P∗→A R−work 42 47 24 23 39 33 31 43 0 53 43 20 49 0 30 48 0 31 46 40 45 39 42

P∗→A R− f ree - 53 10 9 49 15 16 18 0 57 16 32 57 - 32 53 - 35 55 15 11 11 12

P∗→B R−work 7 17 6 5 43 5 4 4 1 0 4 3 28 1 9 28 1 7 34 6 3 3 3

P∗→B R− f ree - 21 9 7 46 4 4 3 14 0 5 16 29 - 11 26 - 10 35 6 3 3 2

P R−work 39 55 11 13 39 18 16 21 28 55 0 29 53 0 36 49 1 35 48 14 16 16 15

P R− f ree - 50 22 20 35 23 22 30 64 55 0 63 51 - 56 48 - 57 48 24 25 25 23

P→A R−work 43 47 18 18 38 28 26 39 19 56 41 0 52 0 29 48 0 30 49 34 41 37 41

P→A R− f ree - 49 7 5 45 12 12 12 27 51 12 0 55 - 24 50 - 32 54 11 11 10 14

P→B R−work 5 22 5 5 39 5 3 2 2 19 1 2 0 2 8 26 2 4 30 5 3 2 3

P→B R− f ree - 27 7 5 41 5 5 3 9 30 5 16 0 - 13 32 - 9 37 7 4 5 3

S R−work 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 19 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 27 53 16 15 47 22 22 36 14 55 39 17 50 0 0 47 0 20 53 33 32 30 30

S→A R− f ree - 47 4 3 42 9 11 9 22 49 11 20 50 - 0 43 - 26 47 9 7 8 9

S→B R−work 6 15 4 3 38 5 4 1 1 14 3 2 22 2 2 0 3 1 32 3 2 3 3

S→B R− f ree - 19 7 5 41 6 6 4 9 20 5 15 18 - 15 0 - 14 35 5 5 3 3

S∗ R−work 0 1 0 0 1 0 1 1 0 0 1 0 0 41 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗→A R−work 31 50 18 18 43 23 23 34 14 59 35 13 52 0 28 47 0 0 48 32 36 32 35

S∗→A R− f ree - 52 7 5 44 10 9 11 19 51 11 21 49 - 30 51 - 0 51 11 8 9 9

S∗→B R−work 4 15 1 1 34 4 3 2 2 15 3 3 14 1 1 18 1 2 0 4 1 3 1

S∗→B R− f ree - 16 3 3 41 5 5 2 9 22 3 10 18 - 13 25 - 12 0 5 3 3 2

S∗→P∗
R−work 43 51 13 11 39 21 15 22 30 56 27 31 47 0 33 48 0 35 44 0 18 18 18

S∗→P∗
R− f ree - 44 22 18 38 22 22 27 64 55 34 61 45 - 61 45 - 57 44 0 26 22 26

S∗→P R−work 43 53 15 14 40 18 15 22 31 57 25 32 47 0 33 46 0 35 45 16 0 17 16

S∗→P R− f ree - 45 22 16 35 22 22 29 58 55 32 63 47 - 55 43 - 55 41 28 0 26 25

S→P∗
R−work 44 53 16 16 40 21 17 22 30 59 31 30 50 0 35 48 0 36 47 20 26 0 19

S→P∗
R− f ree - 51 18 16 37 24 20 32 66 55 33 62 51 - 58 45 - 57 46 27 29 0 32

S→P R−work 42 53 14 14 43 23 18 23 29 58 28 32 51 0 32 48 0 36 47 19 22 16 0

S→P R− f ree - 47 20 17 37 30 23 30 59 57 35 64 49 - 58 45 - 55 44 26 24 27 0
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Table B.75: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the original NO-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→P∗ A→P A→B B B→P∗ B→P P∗ P∗ → A P∗ → B P P→A P→B S S→A S→B S∗ S∗ → A S∗ → B S∗ → P∗ S∗ → P S → P∗ S→P

A R−work 0 7 6 39 52 3 5 5 1 28 7 3 34 100 10 45 100 7 43 4 3 2 2

A R− f ree - - - - - - - - - - - - - - - - - - - - - - -
A→P∗

R−work 5 0 0 57 67 3 4 3 3 47 3 3 53 100 9 57 100 5 59 2 2 1 2

A→P∗
R− f ree - 0 0 51 63 4 5 1 10 45 2 10 45 - 27 53 - 23 53 2 2 1 3

A→P R−work 6 1 0 59 67 3 4 3 3 47 2 3 54 100 9 57 100 7 57 2 2 1 1

A→P R− f ree - 1 0 53 60 4 5 1 8 43 3 11 45 - 29 54 - 22 53 2 2 1 2

A→B R−work 0 0 0 0 10 0 0 0 0 5 1 0 4 95 0 10 94 1 7 0 1 0 1

A→B R− f ree - 3 3 0 11 0 0 0 2 3 1 1 4 - 17 9 - 14 7 0 1 0 1

B R−work 0 0 0 5 0 0 0 0 0 4 1 0 3 95 0 3 94 1 3 0 1 0 1

B R− f ree - 2 1 5 0 0 0 0 1 5 1 1 5 - 18 3 - 14 3 0 1 0 1

B→P∗
R−work 5 5 3 53 62 0 1 3 2 42 5 4 52 100 9 55 100 5 56 2 2 1 1

B→P∗
R− f ree - 11 11 52 64 0 1 3 13 43 3 16 49 - 28 56 - 24 57 3 1 1 1

B→P R−work 6 4 3 52 66 0 0 3 3 43 3 4 51 99 9 56 99 5 57 2 3 1 1

B→P R− f ree - 11 12 53 65 0 0 4 14 41 4 18 49 - 30 55 - 27 55 3 2 1 3

P∗
R−work 5 4 3 39 54 3 3 0 1 34 2 3 42 99 9 44 99 6 45 1 1 1 1

P∗
R− f ree - 11 10 41 57 3 4 0 9 34 2 11 43 - 26 45 - 23 46 1 1 1 1

P∗ → A R−work 6 10 8 47 59 5 5 6 0 42 8 5 47 100 14 48 100 9 51 7 5 5 5

P∗ → A R− f ree - 8 9 26 37 1 3 1 0 18 3 3 20 - 21 27 - 16 26 1 1 1 1

P∗ → B R−work 1 1 1 14 18 0 0 0 0 0 1 1 4 99 3 16 99 2 14 1 1 0 1

P∗ → B R− f ree - 6 6 14 18 0 0 0 1 0 1 3 5 - 19 16 - 16 14 0 1 0 1

P R−work 4 3 1 38 55 3 3 1 1 34 0 1 40 99 7 43 98 4 45 3 1 1 1

P R− f ree - 8 9 41 57 4 4 1 8 33 0 9 40 - 24 42 - 21 44 3 1 1 1

P→A R−work 4 9 7 45 58 5 6 5 2 36 6 0 42 100 13 47 100 9 47 7 5 3 3

P→A R− f ree - 8 9 25 34 3 3 1 1 21 2 0 17 - 20 24 - 16 26 2 1 1 1

P→B R−work 0 0 0 12 20 0 0 0 0 4 1 0 0 97 1 14 97 1 12 0 0 0 0

P→B R− f ree - 5 5 11 18 0 0 0 4 3 1 3 0 - 21 14 - 18 11 0 0 0 0

S R−work 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

S R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S→A R−work 5 5 4 41 51 3 3 1 3 30 2 3 35 100 0 46 100 1 43 1 1 1 1

S→A R− f ree - 4 5 14 22 1 2 1 0 16 1 2 11 - 0 17 - 0 14 1 1 1 1

S→B R−work 0 1 1 9 9 0 1 1 0 5 1 0 5 98 0 0 97 1 3 0 0 0 0

S→B R− f ree - 4 5 9 9 0 1 1 3 5 1 3 7 - 19 0 - 15 3 0 0 0 1

S∗ R−work 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

S∗ R− f ree - - - - - - - - - - - - - - - - - - - - - - -
S∗ → A R−work 4 4 3 42 53 3 3 2 1 30 3 4 36 100 3 45 100 0 47 3 1 1 1

S∗ → A R− f ree - 4 5 17 27 2 3 1 0 18 1 2 17 - 6 18 - 0 18 1 1 1 1

S∗ → B R−work 0 1 1 8 11 0 1 1 0 3 1 0 5 99 0 7 99 0 0 0 1 0 1

S∗ → B R− f ree - 5 5 8 11 0 1 1 1 3 1 3 6 - 17 6 - 12 0 0 1 0 1

S∗ → P∗
R−work 5 5 3 42 55 3 3 2 3 35 3 3 45 100 9 46 100 7 49 0 1 0 1

S∗ → P∗
R− f ree - 11 11 46 55 3 5 2 9 35 3 11 45 - 24 47 - 22 49 0 1 0 1

S∗ → P R−work 5 5 3 41 55 2 3 2 1 34 3 3 46 100 9 46 100 6 49 1 0 0 0

S∗ → P R− f ree - 11 11 47 59 4 5 2 11 36 3 11 46 - 26 49 - 24 51 1 0 0 0

S → P∗
R−work 4 5 4 41 56 3 3 2 1 33 3 3 43 100 9 46 100 6 48 2 1 0 1

S → P∗
R− f ree - 12 12 43 57 3 5 1 10 36 3 14 44 - 25 47 - 23 48 1 1 0 1

S→P R−work 4 6 5 41 53 3 3 2 1 35 3 3 43 100 9 45 100 6 47 1 0 0 0

S→P R− f ree - 11 12 46 58 3 4 2 11 34 3 10 44 - 26 49 - 23 51 1 1 0 0

1000

236



APPENDIX B. PAIRWISE RUNNING OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING
PIPELINES (ADDITIONAL RESULTS)

Figure B.1: Mean protein model R-work for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is indicated in
brackets under the graph.

B.4 Experimental results for the synthetic data sets

without the Buccaneer development data sets

Table B.76: Complete and intermediate models produced by the 23 pipeline variants
for the synthetic data sets, where ‘(T)’ and ‘(C)’ denote intermediate models produced
by pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete Intermediate Failed Complete Intermediate Failed Complete Intermediate Failed

A 1008 1(T) 0(C) 0 1007 2(T) 0(C) 0 1008 1(T) 0(C) 0

A→P∗ 1006 2(T) 0(C) 1 1006 2(T) 0(C) 1 1007 2(T) 0(C) 0

A→B 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0

B 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0

B→P∗ 1003 1(T) 0(C) 5 1004 0(T) 0(C) 5 1005 0(T) 0(C) 4

P∗ 1002 7(T) 0(C) 0 1004 5(T) 0(C) 0 1001 8(T) 0(C) 0

P∗ → A 1008 1(T) 0(C) 0 1009 0(T) 0(C) 0 1008 1(T) 0(C) 0

P∗ → B 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0

A→P - - - - - - 1009 0(T) 0(C) 0

B→P - - - - - - 1003 2(T) 0(C) 4

P - - - - - - 1001 7(T) 0(C) 1

P→A - - - - - - 1002 6(T) 0(C) 1

P→B - - - - - - 1008 0(T) 0(C) 1

Models used in the comparison: 744 HA-NCS, 745 MR-NCS and 746 NO-NCS.
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Table B.77: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 1 1 0 2 28 1

A→B 93 0 80 41 29 72 93 25

A→P∗ 95 15 0 12 3 23 96 6

B 93 50 83 0 25 75 94 30

B→P∗ 98 66 95 69 0 86 99 45

P∗ 97 26 71 23 10 0 97 13

P∗→A 15 1 1 1 0 2 0 0

P∗→B 96 70 92 63 50 84 97 0

990

Table B.78: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 100 6 4 5 1 1 57 3

A→B 6 100 5 9 5 3 6 5

A→P∗ 4 5 100 5 2 6 3 2

B 5 9 5 100 6 2 5 7

B→P∗ 1 5 2 6 100 4 1 5

P∗ 1 3 6 2 4 100 1 3

P∗→A 57 6 3 5 1 1 100 3

P∗→B 3 5 2 7 5 3 3 100

1001
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Table B.79: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 0 1 0 2 7 0

A→B 82 0 73 28 22 68 83 17

A→P∗ 77 6 0 5 1 14 78 2

B 84 36 77 0 14 69 85 20

B→P∗ 94 52 88 48 0 79 95 32

P∗ 92 18 47 16 4 0 93 7

P∗→A 2 0 0 0 0 1 0 0

P∗→B 92 55 87 50 39 79 92 0

950

Table B.80: Structure completeness comparison for the models generated from the
synthetic HA-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 1 1 0 0 21 0

A→B 11 0 7 13 8 3 10 9

A→P∗ 19 9 0 8 2 9 18 3

B 9 14 6 0 11 5 9 10

B→P∗ 4 13 6 21 0 8 4 13

P∗ 5 8 24 7 6 0 4 6

P∗→A 13 1 0 1 0 0 0 0

P∗→B 5 15 5 14 11 5 5 0
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Table B.81: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 94 83 93 86 97 28 91

A R− f ree - - - - - - - -
A→B R−work 5 0 8 36 7 34 2 22

A→B R− f ree - 0 36 42 10 36 79 29

A→P∗
R−work 13 89 0 89 71 99 3 85

A→P∗
R− f ree - 59 0 56 29 55 90 49

B R−work 6 51 9 0 4 37 1 29

B R− f ree - 48 38 0 5 38 80 34

B→P∗
R−work 11 90 23 92 0 82 4 80

B→P∗
R− f ree - 87 67 91 0 76 97 77

P∗
R−work 2 62 0 59 11 0 0 49

P∗
R− f ree - 59 40 56 18 0 94 47

P∗→A R−work 60 97 95 98 93 100 0 97

P∗→A R− f ree - 16 7 16 2 5 0 10

P∗→B R−work 8 65 12 60 14 45 2 0

P∗→B R− f ree - 63 46 58 19 47 87 0

1000
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Table B.82: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 100 1 4 1 3 0 12 1

A R− f ree - - - - - - - -
A→B R−work 1 100 3 13 3 5 1 13

A→B R− f ree - 100 5 9 4 5 4 8

A→P∗
R−work 4 3 100 2 6 0 2 3

A→P∗
R− f ree - 5 100 6 4 5 3 6

B R−work 1 13 2 100 4 4 1 11

B R− f ree - 9 6 100 4 6 4 8

B→P∗
R−work 3 3 6 4 100 7 3 6

B→P∗
R− f ree - 4 4 4 100 6 1 4

P∗
R−work 0 5 0 4 7 100 0 6

P∗
R− f ree - 5 5 6 6 100 1 7

P∗→A R−work 12 1 2 1 3 0 100 1

P∗→A R− f ree - 4 3 4 1 1 100 2

P∗→B R−work 1 13 3 11 6 6 1 100

P∗→B R− f ree - 8 6 8 4 7 2 100

1000
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Table B.83: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 85 53 85 71 93 3 82

A R− f ree - - - - - - - -
A→B R−work 2 0 1 9 1 17 0 7

A→B R− f ree - 0 17 15 2 18 63 9

A→P∗
R−work 6 75 0 72 39 85 0 67

A→P∗
R− f ree - 38 0 36 16 32 78 29

B R−work 2 13 1 0 0 20 0 8

B R− f ree - 17 19 0 1 19 66 12

B→P∗
R−work 4 70 4 67 0 45 0 51

B→P∗
R− f ree - 62 47 63 0 47 90 49

P∗
R−work 0 41 0 38 0 0 0 27

P∗
R− f ree - 37 22 34 4 0 84 24

P∗→A R−work 19 91 69 91 81 99 0 89

P∗→A R− f ree - 6 2 7 1 2 0 3

P∗→B R−work 2 26 2 23 2 25 0 0

P∗→B R− f ree - 28 26 26 5 25 73 0

990
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Table B.84: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic HA-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 9 29 8 14 4 25 9

A R− f ree - - - - - - - -
A→B R−work 3 0 7 27 6 16 2 16

A→B R− f ree - 0 19 28 7 18 17 20

A→P∗
R−work 7 14 0 17 32 14 3 19

A→P∗
R− f ree - 21 0 20 13 23 12 19

B R−work 4 37 8 0 4 17 1 21

B R− f ree - 31 19 0 4 19 14 22

B→P∗
R−work 7 20 19 25 0 37 3 30

B→P∗
R− f ree - 25 20 28 0 29 6 28

P∗
R−work 2 21 0 20 10 0 0 21

P∗
R− f ree - 22 18 22 15 0 10 23

P∗→A R−work 40 7 27 7 13 1 0 8

P∗→A R− f ree - 10 5 9 1 3 0 7

P∗→B R−work 6 39 10 38 12 20 2 0

P∗→B R− f ree - 35 20 32 14 22 14 0

400
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Table B.85: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 1 1 0 2 30 1

A→B 94 0 81 43 32 74 94 28

A→P∗ 96 15 0 12 3 24 96 6

B 95 48 85 0 24 76 95 33

B→P∗ 99 65 95 69 0 86 99 48

P∗ 97 24 69 22 10 0 97 13

P∗→A 16 1 1 0 0 2 0 1

P∗→B 97 67 91 61 48 84 97 0

990

Table B.86: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 100 6 3 5 1 1 54 2

A→B 6 100 4 9 4 2 6 5

A→P∗ 3 4 100 4 1 7 3 2

B 5 9 4 100 7 2 4 6

B→P∗ 1 4 1 7 100 4 1 4

P∗ 1 2 7 2 4 100 1 2

P∗→A 54 6 3 4 1 1 100 2

P∗→B 2 5 2 6 4 2 2 100

1001
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Table B.87: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 0 0 0 0 2 7 0

A→B 83 0 75 31 23 71 83 20

A→P∗ 78 7 0 5 1 14 79 3

B 86 34 78 0 13 72 86 22

B→P∗ 94 51 89 46 0 79 95 33

P∗ 92 17 46 15 4 0 93 8

P∗→A 3 0 0 0 0 1 0 0

P∗→B 92 52 86 48 39 81 92 0

950

Table B.88: Structure completeness comparison for the models generated from the
synthetic MR-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A 0 1 0 0 0 0 24 0

A→B 11 0 6 12 9 4 11 9

A→P∗ 18 8 0 6 2 10 17 4

B 9 14 6 0 11 4 9 11

B→P∗ 5 13 6 23 0 8 4 15

P∗ 5 7 23 7 6 0 4 5

P∗→A 13 1 0 0 0 0 0 1

P∗→B 5 15 5 13 10 4 5 0
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Table B.89: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 93 83 93 85 98 30 92

A R− f ree - - - - - - - -
A→B R−work 6 0 8 41 7 37 2 27

A→B R− f ree - 0 35 47 10 39 79 34

A→P∗
R−work 13 88 0 88 68 99 3 83

A→P∗
R− f ree - 58 0 56 28 55 90 49

B R−work 5 46 9 0 4 40 1 32

B R− f ree - 44 38 0 6 40 81 34

B→P∗
R−work 11 90 25 92 0 83 4 81

B→P∗
R− f ree - 86 68 90 0 74 96 77

P∗
R−work 2 57 0 56 11 0 0 49

P∗
R− f ree - 57 40 54 19 0 95 44

P∗→A R−work 59 97 94 97 94 100 0 97

P∗→A R− f ree - 17 7 15 3 4 0 11

P∗→B R−work 7 60 13 59 14 45 1 0

P∗→B R− f ree - 59 47 58 17 46 86 0

1000
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Table B.90: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 100 1 4 2 4 0 12 2

A R− f ree - - - - - - - -
A→B R−work 1 100 3 13 4 6 1 13

A→B R− f ree - 100 6 9 4 4 4 8

A→P∗
R−work 4 3 100 3 7 1 3 4

A→P∗
R− f ree - 6 100 6 4 5 2 5

B R−work 2 13 3 100 3 4 1 10

B R− f ree - 9 6 100 4 5 4 8

B→P∗
R−work 4 4 7 3 100 7 2 5

B→P∗
R− f ree - 4 4 4 100 7 1 5

P∗
R−work 0 6 1 4 7 100 0 6

P∗
R− f ree - 4 5 5 7 100 1 9

P∗→A R−work 12 1 3 1 2 0 100 1

P∗→A R− f ree - 4 2 4 1 1 100 3

P∗→B R−work 2 13 4 10 5 6 1 100

P∗→B R− f ree - 8 5 8 5 9 3 100

1000
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Table B.91: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 84 51 86 68 93 4 81

A R− f ree - - - - - - - -
A→B R−work 2 0 1 10 1 19 0 9

A→B R− f ree - 0 18 16 3 20 65 11

A→P∗
R−work 5 73 0 71 39 85 0 65

A→P∗
R− f ree - 36 0 36 15 32 81 28

B R−work 2 12 1 0 0 21 0 9

B R− f ree - 18 20 0 1 21 66 11

B→P∗
R−work 3 66 4 64 0 48 0 51

B→P∗
R− f ree - 59 48 60 0 47 90 46

P∗
R−work 0 38 0 37 1 0 0 26

P∗
R− f ree - 32 21 33 4 0 85 22

P∗→A R−work 19 90 68 91 79 99 0 88

P∗→A R− f ree - 7 2 6 1 1 0 3

P∗→B R−work 2 24 2 21 2 26 0 0

P∗→B R− f ree - 28 26 26 4 26 74 0

990
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Table B.92: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic MR-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ B B→P∗ P∗ P∗→A P∗→B

A R−work 0 9 32 8 17 4 26 11

A R− f ree - - - - - - - -
A→B R−work 3 0 7 31 6 18 2 18

A→B R− f ree - 0 17 31 8 19 14 23

A→P∗
R−work 8 15 0 17 29 14 3 18

A→P∗
R− f ree - 22 0 20 12 23 10 21

B R−work 4 33 8 0 4 18 1 23

B R− f ree - 26 18 0 5 19 15 23

B→P∗
R−work 8 24 21 29 0 34 4 30

B→P∗
R− f ree - 27 21 30 0 27 6 32

P∗
R−work 2 19 0 19 10 0 0 23

P∗
R− f ree - 25 18 21 15 0 10 22

P∗→A R−work 40 7 27 6 15 1 0 10

P∗→A R− f ree - 10 5 9 2 3 0 8

P∗→B R−work 4 36 11 37 11 19 1 0

P∗→B R− f ree - 31 21 32 13 21 13 0

400
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Table B.93: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 1 1 1 1 0 0 2 27 0 2 25 0

A→B 92 0 74 71 40 27 24 65 92 24 65 93 25

A→P∗ 95 20 0 40 16 3 3 22 96 6 22 96 7

A→P 96 25 50 0 20 4 4 20 96 8 21 96 8

B 94 50 79 76 0 23 20 68 94 27 69 95 29

B→P∗ 99 70 95 94 72 0 34 83 99 45 84 99 48

B→P 99 71 96 94 73 49 0 85 99 45 86 99 50

P∗ 97 32 72 73 29 12 11 0 97 16 43 98 16

P∗→A 16 1 1 0 1 0 0 2 0 0 2 19 1

P∗→B 97 71 91 88 68 51 50 81 97 0 81 98 50

P 97 33 74 74 28 11 10 46 97 16 0 97 17

P→A 14 0 1 1 1 0 0 1 18 0 1 0 0

P→B 97 69 89 88 65 47 46 81 97 45 81 97 0

990

Table B.94: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with equal structure completeness to each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 100 7 4 3 5 1 1 1 57 3 1 61 3

A→B 7 100 6 4 10 4 4 3 6 5 2 7 6

A→P∗ 4 6 100 10 5 2 2 6 4 3 4 3 4

A→P 3 4 10 100 4 2 2 7 3 4 5 3 4

B 5 10 5 4 100 6 6 3 5 6 3 5 6

B→P∗ 1 4 2 2 6 100 17 5 1 4 5 1 5

B→P 1 4 2 2 6 17 100 4 1 4 4 1 4

P∗ 1 3 6 7 3 5 4 100 1 3 12 1 3

P∗→A 57 6 4 3 5 1 1 1 100 2 1 63 2

P∗→B 3 5 3 4 6 4 4 3 2 100 3 2 5

P 1 2 4 5 3 5 4 12 1 3 100 1 2

P→A 61 7 3 3 5 1 1 1 63 2 1 100 3

P→B 3 6 4 4 6 5 4 3 2 5 2 3 100

1001
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Table B.95: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 0 1 0 1 0 0 2 6 0 2 6 0

A→B 79 0 67 65 27 18 17 61 79 16 61 80 18

A→P∗ 75 9 0 21 7 1 1 13 76 2 11 76 2

A→P 84 13 26 0 10 1 1 11 84 3 11 84 4

B 82 33 71 70 0 14 11 63 82 18 63 82 19

B→P∗ 94 55 88 85 53 0 11 74 95 31 75 94 34

B→P 94 59 88 86 55 16 0 76 94 33 75 94 36

P∗ 92 24 50 47 21 4 3 0 93 9 15 93 9

P∗→A 2 0 0 0 0 0 0 1 0 0 2 3 0

P∗→B 90 56 84 82 54 40 38 77 91 0 76 91 37

P 92 24 49 49 21 4 3 16 92 9 0 93 9

P→A 2 0 0 1 0 0 0 1 2 0 1 0 0

P→B 90 55 83 81 49 36 35 76 90 33 75 90 0
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Table B.96: Structure completeness comparison for the models generated from the
synthetic NO-NCS data sets. Each row corresponds to a pipeline variant, and shows
the percentage(rounded to the nearest integer) of models that the pipeline variant built
with between 1% and 4% higher structure completeness than each of the other pipeline
variants.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A 0 1 0 0 1 0 0 0 21 0 0 18 0

A→B 13 0 8 5 13 9 8 3 13 8 5 13 7

A→P∗ 20 11 0 19 9 2 2 9 20 4 11 20 4

A→P 12 12 24 0 9 3 3 9 12 5 10 12 5

B 12 17 8 7 0 8 9 5 12 8 6 13 10

B→P∗ 5 14 7 9 18 0 23 9 4 14 9 4 14

B→P 5 13 8 8 18 33 0 9 5 13 11 5 14

P∗ 5 8 22 26 8 8 8 0 5 8 27 4 7

P∗→A 14 1 0 0 1 0 0 0 0 0 0 16 1

P∗→B 6 15 7 6 14 11 13 4 7 0 5 7 13

P 5 9 25 25 8 7 7 29 5 7 0 5 9

P→A 12 0 1 0 1 0 0 0 16 0 0 0 0

P→B 7 14 6 7 16 11 11 5 7 12 5 7 0
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Table B.97: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 94 82 82 95 87 87 97 29 92 97 28 93

A R− f ree - - - - - - - - - - - - -
A→B R−work 5 0 7 7 40 6 6 30 1 22 29 2 26

A→B R− f ree - 0 31 30 46 8 7 32 75 31 31 78 31

A→P∗
R−work 13 89 0 34 91 73 74 99 3 86 99 4 87

A→P∗
R− f ree - 63 0 42 62 30 29 54 89 53 52 92 55

A→P R−work 14 91 39 0 91 74 75 99 5 87 99 5 87

A→P R− f ree - 64 44 0 63 31 30 55 91 55 53 92 55

B R−work 4 46 7 7 0 3 3 32 1 26 31 2 29

B R− f ree - 43 30 31 0 4 4 34 75 32 33 77 31

B→P∗
R−work 10 92 21 21 93 0 34 79 3 81 79 4 82

B→P∗
R− f ree - 88 66 64 92 0 41 73 95 80 73 97 82

B→P R−work 10 91 21 20 94 32 0 77 4 83 77 4 82

B→P R− f ree - 90 66 65 92 42 0 71 96 80 73 97 82

P∗
R−work 3 66 0 1 64 12 14 0 0 54 33 0 56

P∗
R− f ree - 65 41 41 62 21 21 0 94 53 41 95 52

P∗→A R−work 59 98 94 93 98 95 95 100 0 97 100 38 98

P∗→A R− f ree - 21 7 6 21 3 3 5 0 14 6 47 14

P∗→B R−work 6 66 11 9 65 13 13 40 2 0 39 2 48

P∗→B R− f ree - 62 42 40 62 16 15 40 83 0 40 84 49

P R−work 2 67 0 0 64 13 14 36 0 56 0 0 55

P R− f ree - 65 41 41 63 21 21 43 93 53 0 94 53

P→A R−work 59 98 94 94 98 95 95 100 38 98 100 0 97

P→A R− f ree - 18 6 6 19 2 2 4 41 12 5 0 13

P→B R−work 5 64 10 10 60 14 12 40 1 41 40 1 0

P→B R− f ree - 61 40 39 61 14 13 41 82 44 40 83 0

1000
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Table B.98: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with equal R-work or R-free to each other
pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 100 1 5 4 1 3 3 0 12 1 1 13 2

A R− f ree - - - - - - - - - - - - -
A→B R−work 1 100 3 2 14 3 3 4 1 12 4 1 10

A→B R− f ree - 100 6 6 11 3 3 3 5 7 4 4 8

A→P∗
R−work 5 3 100 27 2 5 6 0 2 3 0 2 3

A→P∗
R− f ree - 6 100 14 8 4 5 5 3 5 7 2 5

A→P R−work 4 2 27 100 2 5 5 0 2 4 0 1 3

A→P R− f ree - 6 14 100 6 5 5 4 3 5 6 1 5

B R−work 1 14 2 2 100 3 3 4 1 9 5 1 11

B R− f ree - 11 8 6 100 4 3 4 4 7 4 4 8

B→P∗
R−work 3 3 5 5 3 100 34 9 1 5 8 1 5

B→P∗
R− f ree - 3 4 5 4 100 17 7 2 4 6 1 5

B→P R−work 3 3 6 5 3 34 100 9 1 4 9 1 6

B→P R− f ree - 3 5 5 3 17 100 9 1 5 7 0 5

P∗
R−work 0 4 0 0 4 9 9 100 0 5 31 0 4

P∗
R− f ree - 3 5 4 4 7 9 100 1 7 16 1 8

P∗→A R−work 12 1 2 2 1 1 1 0 100 1 0 24 1

P∗→A R− f ree - 5 3 3 4 2 1 1 100 2 2 12 4

P∗→B R−work 1 12 3 4 9 5 4 5 1 100 5 1 11

P∗→B R− f ree - 7 5 5 7 4 5 7 2 100 7 3 7

P R−work 1 4 0 0 5 8 9 31 0 5 100 0 5

P R− f ree - 4 7 6 4 6 7 16 2 7 100 1 6

P→A R−work 13 1 2 1 1 1 1 0 24 1 0 100 1

P→A R− f ree - 4 2 1 4 1 0 1 12 3 1 100 4

P→B R−work 2 10 3 3 11 5 6 4 1 11 5 1 100

P→B R− f ree - 8 5 5 8 5 5 8 4 7 6 4 100
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Table B.99: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free between 1% and 4%
lower than each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 8 28 29 7 14 15 4 26 9 5 24 9

A R− f ree - - - - - - - - - - - - -
A→B R−work 3 0 6 6 31 5 5 14 1 16 13 1 18

A→B R− f ree - 0 17 15 32 6 5 16 16 22 16 21 20

A→P∗
R−work 8 12 0 34 14 29 29 15 3 17 16 4 16

A→P∗
R− f ree - 21 0 35 21 14 13 22 12 19 19 14 18

A→P R−work 9 14 38 0 16 27 29 11 4 17 13 4 16

A→P R− f ree - 21 34 0 21 13 14 23 12 18 20 12 18

B R−work 3 34 6 6 0 3 3 16 1 19 16 1 22

B R− f ree - 26 15 17 0 3 3 18 16 22 18 17 20

B→P∗
R−work 7 20 18 18 22 0 33 39 3 27 40 3 24

B→P∗
R− f ree - 22 21 20 23 0 36 31 7 30 31 8 30

B→P R−work 6 19 17 17 24 32 0 36 3 28 37 3 25

B→P R− f ree - 22 21 21 25 36 0 27 7 29 30 7 29

P∗
R−work 2 18 0 1 17 11 13 0 0 22 32 0 20

P∗
R− f ree - 23 17 19 19 16 15 0 10 24 34 10 19

P∗→A R−work 40 7 26 26 6 12 13 1 0 7 1 33 7

P∗→A R− f ree - 12 5 5 13 2 2 3 0 10 4 35 9

P∗→B R−work 4 41 8 8 41 10 10 18 2 0 17 1 34

P∗→B R− f ree - 33 19 18 33 11 12 18 14 0 18 14 31

P R−work 1 18 0 0 17 12 13 35 0 23 0 0 20

P R− f ree - 22 19 20 20 16 16 36 9 24 0 10 22

P→A R−work 38 7 27 26 5 13 14 1 34 8 1 0 7

P→A R− f ree - 11 3 5 13 1 2 3 32 8 4 0 8

P→B R−work 2 38 8 8 36 11 10 20 1 29 21 1 0

P→B R− f ree - 33 18 18 34 11 10 22 15 29 21 15 0
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Table B.100: Comparison of R-work/R-free (rounded to two decimal places) for the
models generated from the synthetic NO-NCS data sets. Each row shows the percent-
age of models that a pipeline variant built with R-work or R-free at least 5% lower than
each other pipeline variant.

Pipeline variant A A→B A→P∗ A→P B B→P∗ B→P P∗ P∗→A P∗→B P P→A P→B

A R−work 0 86 54 53 88 73 72 93 4 84 92 4 84

A R− f ree - - - - - - - - - - - - -
A→B R−work 2 0 1 1 9 1 1 16 0 7 16 0 8

A→B R− f ree - 0 14 15 15 2 2 15 59 9 16 57 11

A→P∗
R−work 5 77 0 0 77 44 44 85 1 69 83 1 71

A→P∗
R− f ree - 42 0 7 41 16 16 32 77 34 33 78 37

A→P R−work 5 77 1 0 76 47 45 88 1 70 86 1 71

A→P R− f ree - 43 10 0 42 18 16 33 79 36 34 80 38

B R−work 2 12 1 1 0 0 0 16 0 6 16 0 8

B R− f ree - 16 15 14 0 1 1 16 59 10 15 60 11

B→P∗
R−work 3 71 3 3 72 0 1 40 0 54 40 1 58

B→P∗
R− f ree - 67 44 44 68 0 5 42 88 50 41 89 52

B→P R−work 4 72 4 3 70 1 0 41 0 55 40 1 57

B→P R− f ree - 68 45 43 67 5 0 43 89 51 43 90 53

P∗
R−work 0 48 0 0 47 1 1 0 0 32 1 0 36

P∗
R− f ree - 42 23 22 43 4 5 0 84 29 6 84 33

P∗→A R−work 19 91 68 67 92 83 82 99 0 90 99 5 90

P∗→A R− f ree - 9 2 1 8 1 1 2 0 5 2 12 5

P∗→B R−work 2 25 2 2 24 3 3 23 0 0 22 0 14

P∗→B R− f ree - 29 23 22 29 5 4 22 69 0 22 70 18

P R−work 1 49 0 0 47 0 1 1 0 33 0 0 34

P R− f ree - 43 22 21 43 5 5 7 84 29 0 84 31

P→A R−work 21 91 67 68 92 82 81 99 5 90 99 0 91

P→A R− f ree - 7 3 2 6 1 1 1 9 4 1 0 5

P→B R−work 3 26 2 1 24 2 2 21 0 12 19 0 0

P→B R− f ree - 28 22 21 27 3 3 19 67 15 19 69 0
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B.5 The command line used to run the pipelines

B.5.1 PHENIX AutoBuild

The following command line was used to build data set ID 1O6A (resolution 1.9 Å)

and the initial model from Buccaneer.

phe n i x . a u t o b u i l d \

d a t a =PDBID . mtz \

s e q _ f i l e =PDBID . f a s t a \

i n p u t _ l a b e l s = ’ FP SIGFP PHIB FOM HLA HLB HLC HLD FreeR _f l ag ’ c l e a n _ u p =True \

( The f o l l o w i n g t h r e e p a r a m e t e r s a r e used when run PHENIX AutoBui ld a f t e r P a r r o t )

i n p u t _ m a p _ f i l e =PDBID . mtz \

m a p _ f i l e _ i s _ d e n s i t y _ m o d i f i e d =True \

i n p u t _ m a p _ l a b e l s = ’FP h l t o f o m . Phi_fom . p h i h l t o f o m . Phi_fom . fom ’ \

model= Buccanee r / PDBID . pdb

a u t o b u i l d {

d a t a = "PDBID . mtz "

model = " Buccanee r / PDBID . pdb "

s e q _ f i l e = "PDBID . f a s t a "

m a p _ f i l e = Auto

r e f i n e m e n t _ f i l e = Auto

h i r e s _ f i l e = Auto

c r y s t a l _ i n f o {

u n i t _ c e l l = None

s p a c e _ g r o u p = None

s o l v e n t _ f r a c t i o n = None

c h a i n _ t y p e = * Auto PROTEIN DNA RNA

r e s o l u t i o n = 0

dmax = 500

o v e r a l l _ r e s o l u t i o n = 0

s e q u e n c e = None

}

i n p u t _ f i l e s {

i n p u t _ l a b e l s = FP SIGFP PHIB FOM HLA HLB HLC HLD F r e e R _ f l a g

i n p u t _ h i r e s _ l a b e l s = None

i n p u t _ m a p _ l a b e l s = FP h l t o f o m . Phi_fom . p h i h l t o f o m . Phi_fom . fom

i n p u t _ r e f i n e m e n t _ l a b e l s = None

i n p u t _ h a _ f i l e = None

f o r c e _ i n p u t _ h a = F a l s e

i n c l u d e _ h a _ i n _ m o d e l = True

c i f _ d e f _ f i l e _ l i s t = None

i n p u t _ l i g _ f i l e _ l i s t = None

k e e p _ i n p u t _ l i g a n d s = True

k e e p _ i n p u t _ w a t e r s = F a l s e

keep_pdb_atoms = True
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r e m o v e _ r e s i d u e s _ o n _ s p e c i a l _ p o s i t i o n s = F a l s e

r e f i n e _ e f f _ f i l e _ l i s t = None

m a p _ f i l e _ i s _ d e n s i t y _ m o d i f i e d = True

map_f i l e_ fom = None

u s e _ c o n s t a n t _ i n p u t _ m a p = F a l s e

u s e _ m a p _ f i l e _ a s _ h k l s t a r t = None

u s e _ m a p _ i n _ r e s o l v e _ w i t h _ m o d e l = F a l s e

i d e n t i t y _ f r o m _ r e m a r k = True

i n p u t _ d a t a _ t y p e = None

}

a n i s o {

remove_an i so = True

b _ i s o = None

max_b_iso = 40

t a r g e t _ b _ r a t i o = 10

}

d e c i s i o n _ m a k i n g {

a c c e p t a b l e _ r = 0 . 2 5

r _ s w i t c h = 0 . 4

s e m i _ a c c e p t a b l e _ r = 0 . 3

r e j e c t _ w e a k = F a l s e

min_weak_z = 0 . 2

m i n _ c c _ r e s _ r e b u i l d = 0 . 4

m i n _ s e q _ i d e n t i t y _ p e r c e n t = 50

d i s t _ c l o s e = None

d i s t _ c l o s e _ o v e r l a p = 1 . 5

loop_cc_min = 0 . 4

g r o u p _ c a _ l e n g t h = 4

g r o u p _ l e n g t h = 2

i n c l u d e _ m o l p r o b i t y = F a l s e

ok_molp_score = None

s c a l e _ m o l p _ s c o r e = None

}

d e n s i t y _ m o d i f i c a t i o n {

a d d _ c l a s s i c _ d e n m o d = None

s k i p _ c l a s s i c _ i f _ w o r s e _ f o m = True

s k i p _ n c s _ i n _ a d d _ c l a s s i c = True

thorough_denmod = * Auto True F a l s e

h l = F a l s e

mask_type = * h i s t o g r a m s p r o b a b i l i t y wang c l a s s i c

mask_from_pdb = None

mask_type_extreme_dm = h i s t o g r a m s p r o b a b i l i t y *wang c l a s s i c

mask_cyc les_ex t reme_dm = 1

minor_cyc le s_ex t r eme_dm = 4

wang_rad ius_ex t reme_dm = 20

p r e c o n d i t i o n = F a l s e

minimum_ncs_cc = 0 . 3

extreme_dm = F a l s e

f o m _ f o r _ e x t r e m e _ d m _ r e b u i l d = 0 . 1
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fom_for_extreme_dm = 0 . 3 5

rad_mask_from_pdb = 2

m o d i f y _ o u t s i d e _ d e l t a _ s o l v e n t = 0 . 0 5

m o d i f y _ o u t s i d e _ m o d e l = F a l s e

t r u n c a t e _ h a _ s i t e s _ i n _ r e s o l v e = * Auto True F a l s e

rad_mask = None

s _ s t e p = None

r e s _ s t a r t = None

m a p _ d m i n _ s t a r t = None

map_dmin_incr = 0 . 2 5

u s e _ r e s o l v e _ f r a g m e n t s = True

u s e _ r e s o l v e _ p a t t e r n = True

use_hl_anom_in_denmod = F a l s e

use_hl_anom_in_denmod_wi th_model = F a l s e

mask_as_mtz = F a l s e

p r o t e i n _ o u t p u t _ m a s k _ f i l e = None

n c s _ o u t p u t _ m a s k _ f i l e = None

o m i t _ o u t p u t _ m a s k _ f i l e = None

}

maps {

maps_only = F a l s e

n _ x y z _ l i s t = None

}

m o d e l _ b u i l d i n g {

b u i l d _ t y p e = *RESOLVE RESOLVE_AND_BUCCANEER

a l l o w _ n e g a t i v e _ r e s i d u e s = F a l s e

h i g h e s t _ r e s n o = None

semet = F a l s e

u s e _ m e t _ i n _ a l i g n = * Auto True F a l s e

base_model = None

c o n s i d e r _ m a i n _ c h a i n _ l i s t = None

d i s t _ c o n n e c t _ m a x _ h e l i c e s = None

e d i t _ p d b = True

h e l i c e s _ s t r a n d s _ o n l y = F a l s e

r e s o l u t i o n _ h e l i c e s _ s t r a n d s = 3 . 1

h e l i c e s _ s t r a n d s _ s t a r t = F a l s e

c c _ h e l i x _ m i n = None

c c _ s t r a n d _ m i n = None

l o o p _ l i b = F a l s e

s t a n d a r d _ l o o p s = True

t r a c e _ l o o p s = F a l s e

r e f i n e _ t r a c e _ l o o p s = True

d e n s i t y _ o f _ p o i n t s = None

m a x _ d e n s i t y _ o f _ p o i n t s = None

c u t o u t _ m o d e l _ r a d i u s = None

m a x _ c u t o u t _ m o d e l _ r a d i u s = 20

padd ing = 1

max_span = 30

max_over lap = None
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m i n _ o v e r l a p = None

i n c l u d e _ i n p u t _ m o d e l = True

i n p u t _ c o m p a r e _ f i l e = None

merge_models = F a l s e

morph = F a l s e

morph_main = F a l s e

d i s t _ c u t _ b a s e = 3

morph_cyc l e s = 2

morph_rad = 7

n _ c a _ e n o u g h _ h e l i c e s = None

d e l t a _ p h i = 20

o f f s e t s _ l i s t = 53 7 23

a l l _ m a p s _ i n _ r e b u i l d = F a l s e

p s _ i n _ r e b u i l d = F a l s e

u s e _ n c s _ i n _ p s = F a l s e

r e m o v e _ o u t l i e r _ s e g m e n t s _ z _ c u t = 3

r e f i n e = True

r e f i n e _ f i n a l _ m o d e l _ v s _ o r i g _ d a t a = True

r e f e r e n c e _ m o d e l = None

r e s o l u t i o n _ b u i l d = None

r e s t a r t _ c y c l e _ a f t e r _ m o r p h = 5

r e t r a c e _ b e f o r e _ b u i l d = F a l s e

r e u s e _ c h a i n _ p r e v _ c y c l e = True

r i c h a r d s o n _ r o t a m e r s = * Auto True F a l s e

rms_random_frag = None

rms_random_loop = None

s t a r t _ c h a i n s _ l i s t = None

t r a c e _ a s _ l i g = F a l s e

t r a c k _ l i b s = F a l s e

t w o _ f o f c _ d e n m o d _ i n _ r e b u i l d = F a l s e

r e b u i l d _ f r o m _ f r a g m e n t s = F a l s e

t w o _ f o f c _ i n _ r e b u i l d = F a l s e

r e f i n e _ m a p _ c o e f f _ l a b e l s = "2FOFCWT PH2FOFCWT"

f i l l e d _ 2 f o f c _ m a p s = True

map_phasing = F a l s e

u s e _ a n y _ s i d e = True

t r u n c a t e _ m i s s i n g _ s i d e _ c h a i n s = None

u s e _ c c _ i n _ c o m b i n e _ e x t e n d = F a l s e

s o r t _ h e t a t m s = F a l s e

m a p _ t o _ o b j e c t = None

}

m u l t i p l e _ m o d e l s {

combine_only = F a l s e

m u l t i p l e _ m o d e l s = F a l s e

m u l t i p l e _ m o d e l s _ f i r s t = 1

m u l t i p l e _ m o d e l s _ g r o u p _ n u m b e r = 5

m u l t i p l e _ m o d e l s _ l a s t = 20

m u l t i p l e _ m o d e l s _ n u m b e r = 20

m u l t i p l e _ m o d e l s _ s t a r t i n g = True

260



APPENDIX B. PAIRWISE RUNNING OF AUTOMATED CRYSTALLOGRAPHIC MODEL-BUILDING
PIPELINES (ADDITIONAL RESULTS)

m u l t i p l e _ m o d e l s _ s t a r t i n g _ r e s o l u t i o n = 4

p l a c e _ w a t e r s _ i n _ c o m b i n e = None

}

ncs {

f i n d _ n c s = * Auto True F a l s e

i n p u t _ n c s _ f i l e = None

n c s _ c o p i e s = None

n c s _ r e f i n e _ c o o r d _ s i g m a _ f r o m _ r m s d = F a l s e

n c s _ r e f i n e _ c o o r d _ s i g m a _ f r o m _ r m s d _ r a t i o = 1

no _ me rg e _n c s_ c op i e s = F a l s e

o p t i m i z e _ n c s = True

u s e _ n c s _ i n _ b u i l d = True

n c s _ i n _ r e f i n e m e n t = * t o r s i o n c a r t e s i a n None

}

omi t {

c o m p o s i t e _ o m i t _ t y p e = *None s i m p l e _ o m i t r e f i n e _ o m i t s a _ o m i t \

i t e r a t i v e _ b u i l d _ o m i t

n _ b o x _ t a r g e t = None

n_cyc le_ image_min = 3

n _ c y c l e _ r e b u i l d _ o m i t = 10

o f f s e t _ b o u n d a r y = 2

omi t_bounda ry = 2

o m i t _ b o x _ s t a r t = 0

omi t_box_end = 0

o m i t _ b o x _ p d b _ l i s t = None

o m i t _ c h a i n _ l i s t = None

o m i t _ o f f s e t _ l i s t = 0 0 0 0 0 0

o m i t _ o n _ r e b u i l d = F a l s e

o m i t _ s e l e c t i o n = None

o m i t _ r e g i o n _ s p e c i f i c a t i o n = * c o m p o s i t e _ o m i t omi t_a round_pdb \

o m i t _ s e l e c t i o n

o m i t _ r e s _ s t a r t _ l i s t = None

o m i t _ r e s _ e n d _ l i s t = None

}

r e b u i l d _ i n _ p l a c e {

m i n _ s e q _ i d e n t i t y _ p e r c e n t _ r e b u i l d _ i n _ p l a c e = 95

n _ c y c l e _ r e b u i l d _ i n _ p l a c e = None

n _ r e b u i l d _ i n _ p l a c e = 1

r e b u i l d _ c h a i n _ l i s t = None

r e b u i l d _ i n _ p l a c e = * Auto True F a l s e

r e b u i l d _ n e a r _ c h a i n = None

r e b u i l d _ n e a r _ d i s t = 7 . 5

r e b u i l d _ n e a r _ r e s = None

r e b u i l d _ r e s _ e n d _ l i s t = None

r e b u i l d _ r e s _ s t a r t _ l i s t = None

r e b u i l d _ s i d e _ c h a i n s = F a l s e

r e d o _ s i d e _ c h a i n s = True

r e p l a c e _ e x i s t i n g = True

d e l e t e _ b a d _ r e s i d u e s _ o n l y = F a l s e
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t ouch_up = F a l s e

t o u c h _ u p _ e x t r a _ r e s i d u e s = None

w o r s t _ p e r c e n t _ r e s _ r e b u i l d = 2

smooth_range = None

smooth_minimum_length = None

}

r e f i n e m e n t {

r e f i n e _ b = True

r e f i n e _ s e _ o c c = True

s k i p _ c l a s h _ g u a r d = True

c o r r e c t _ s p e c i a l _ p o s i t i o n _ t o l e r a n c e = None

us e _ m l h l = True

g e n e r a t e _ h l _ i f _ m i s s i n g = F a l s e

p l a c e _ w a t e r s = True

r e f i n e m e n t _ r e s o l u t i o n = 0

o r d e r e d _ s o l v e n t _ l o w _ r e s o l u t i o n = None

l i n k _ d i s t a n c e _ c u t o f f = 3

r _ f r e e _ f l a g s _ f r a c t i o n = 0 . 1

r _ f r e e _ f l a g s _ m a x _ f r e e = 2000

r _ f r e e _ f l a g s _ u s e _ l a t t i c e _ s y m m e t r y = True

r _ f r e e _ f l a g s _ l a t t i c e _ s y m m e t r y _ m a x _ d e l t a = 5

a l l o w _ o v e r l a p p i n g = None

f i x _ l i g a n d _ o c c u p a n c y = None

r e m o v e _ o u t l i e r _ s e g m e n t s = True

twin_ law = None

max_occ = None

r e f i n e _ b e f o r e _ r e b u i l d = True

r e f i n e _ w i t h _ n c s = True

r e f i n e _ x y z = True

s _ a n n e a l i n g = F a l s e

s k i p _ h e x d i g e s t = F a l s e

u s e _ h l _ a n o m _ i n _ r e f i n e m e n t = F a l s e

u s e _ h l _ i f _ p r e s e n t = True

}

t h o r o u g h n e s s {

b u i l d _ o u t s i d e = True

c o n n e c t = True

e x t e n s i v e _ b u i l d = F a l s e

f i t _ l o o p s = True

i n s e r t _ h e l i c e s = True

n _ c y c l e _ b u i l d = None

n _ c y c l e _ b u i l d _ m a x = 6

n _ c y c l e _ b u i l d _ m i n = 1

n _ c y c l e _ r e b u i l d _ m a x = 15

n _ c y c l e _ r e b u i l d _ m i n = 1

n_mini = 10

n_random_frag = 0

n_random_loop = 3

n _ t r y _ r e b u i l d = 2
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n c y c l e _ r e f i n e = 3

number_of_models = None

n u m b e r _ o f _ p a r a l l e l _ m o d e l s = 0

s k i p _ c o m b i n e _ e x t e n d = F a l s e

f u l l y _ s k i p _ c o m b i n e _ e x t e n d = F a l s e

t h o r o u g h _ l o o p _ f i t = True

}

g e n e r a l {

coot_name = " c o o t "

i _ r a n _ s e e d = 72432

r a i s e _ s o r r y = F a l s e

background = True

c h e c k _ w a i t _ t i m e = 1

max_wai t_ t ime = 1

w a i t _ b e t w e e n _ s u b m i t _ t i m e = 1

c a c h e _ r e s o l v e _ l i b s = True

r e s o l v e _ s i z e = "12"

check_run_command = F a l s e

run_command = " sh "

queue_commands = None

c o n d o r _ u n i v e r s e = " v a n i l l a "

a d d _ d o u b l e _ q u o t e s _ i n _ c o n d o r = True

condor = None

l a s t _ p r o c e s s _ i s _ l o c a l = True

s k i p _ r _ f a c t o r = F a l s e

t e s t _ f l a g _ v a l u e = Auto

s k i p _ x t r i a g e = F a l s e

b a s e _ p a t h = None

t e m p _ d i r = None

c l e a n _ u p = True

p r i n t _ c i t a t i o n s = True

s o l u t i o n _ o u t p u t _ p i c k l e _ f i l e = None

j o b _ t i t l e = None

t o p _ o u t p u t _ d i r = None

w i z a r d _ d i r e c t o r y _ n u m b e r = None

v e r b o s e = F a l s e

e x t r a _ v e r b o s e = F a l s e

debug = F a l s e

r e q u i r e _ n o n z e r o = True

r e m o v e _ p a t h _ w o r d _ l i s t = None

f i l l = F a l s e

r e s _ f i l l = None

c h e c k _ o n l y = F a l s e

k e e p _ f i l e s = " o v e r a l l _ b e s t *" " Au toBu i ld_ run_ * . l o g "

a f t e r _ a u t o s o l = F a l s e

n b a t c h = 3

nproc = 1

q u i c k = F a l s e

r e s o l v e _ c o m m a n d _ l i s t = None
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r e s o l v e _ p a t t e r n _ c o m m a n d _ l i s t = None

i g n o r e _ e r r o r s _ i n _ s u b p r o c e s s = F a l s e

s e n d _ n o t i f i c a t i o n = F a l s e

n o t i f y _ e m a i l = None

}

s p e c i a l _ k e y w o r d s {

w r i t e _ r u n _ d i r e c t o r y _ t o _ f i l e = None

}

r u n _ c o n t r o l {

c o o t = None

i g n o r e _ b l a n k s = None

s t o p = None

d i s p l a y _ f a c t s = None

d i sp lay_summary = None

c a r r y _ o n = None

run = None

copy_run = None

d i s p l a y _ r u n s = None

d e l e t e _ r u n s = None

d i s p l a y _ l a b e l s = None

d r y _ r u n = F a l s e

pa rams_on ly = F a l s e

d i s p l a y _ a l l = F a l s e

}

n o n _ u s e r _ p a r a m e t e r s {

g u i _ o u t p u t _ d i r = None

background_map = None

boundary_background_map = None

e x t e n d _ t r y _ l i s t = True

f o r c e _ c o m b i n e _ e x t e n d = F a l s e

m o d e l _ l i s t = None

o a s i s _ c n o s = None

o f f s e t _ b o u n d a r y _ b a c k g r o u n d _ m a p = None

s k i p _ r e f i n e = F a l s e

sg = None

i n p u t _ d a t a _ f i l e = None

i n p u t _ m a p _ f i l e = "PDBID . mtz "

i n p u t _ r e f i n e m e n t _ f i l e = Auto

i n p u t _ p d b _ f i l e = None

i n p u t _ s e q _ f i l e = Auto

s u p e r _ q u i c k = None

r e q u i r e _ t e s t _ s e t = F a l s e

}

}
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B.5.2 ARP/wARP

The following command line was used to build data set ID 2ASH (resolution 2.1 Å)

and the initial model from PHENIX Autobuild without Parrot.

s e t a l b e = 0

s e t a r p i p c =

s e t a r p w a r p d i r = t e m p _ t r a c i n g

s e t b c u t 1 = 2 . 0

s e t b c u t 2 = 2 . 0

s e t b c u t 3 = 2 . 0

s e t CCP4I_DEFFILE = UNDEFINED

s e t c e l l = ’170 .109 99 .745 124 .866 90 .000 123 .929 90 .000 ’

s e t c g r = 1

s e t compare to =

s e t damp = ’ 1 . 0 1 . 0 ’

s e t d a t a f i l e = PDBID . mtz

s e t d i p c u t 1 = 0 .035

s e t d i p c u t 2 = 0 .010

s e t d i p v a l i = 1

s e t emmode = 0

s e t f a k e d a t a = ’0 0 0 ’

s e t f b e s t =

s e t f l a t t e n = 0

s e t fom = h l t o f o m . Phi_fom . fom

s e t fp = FP

s e t f r e e b u i l d = 0

s e t f r e e l a b i n = ’FREE= F reeR_f l ag ’

s e t f r e e l o o p s = 0

s e t f s i g = 3 . 2

s e t h e a v y i n =

s e t h m a i n p o s t f i t = 1

s e t i s _ s e m e t = 0

s e t JOB_ID = PDBID

s e t k e e p d a t a = SOFTWARE_DEVELOPERS

s e t k e e p j u n k = 0

s e t l o o p s = 1

s e t modeccp4i = WARPNTRACEMODEL

s e t mode l in = / PHENIXAutobuild / PDBID . pdb

s e t models = 1

s e t m u l t i t = 5

s e t n c s e x t e n s i o n = 1

s e t n c s r e s t r a i n t s = 1

s e t n c s r _ l o c a l = 1

s e t nnuc = 0

s e t p a r f i l e = PDBID / a r p _ w a r p _ c l a s s i c . p a r

s e t p h a s e l a b i n =

s e t p h a s e r e f =

s e t p h i b e s t = h l t o f o m . Phi_fom . p h i
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s e t PROJECT = COMMAND_LINE_SUBMISSION

s e t p r o t s i z e = 0

s e t r and1 = 0

s e t r and2 = 0

s e t r and3 = 0

s e t r a n d s h i f t 1 = 0 . 5

s e t r a n d s h i f t 2 = 0 . 5

s e t r a n d s h i f t 3 = 0 . 5

s e t r a n d t i m e s = 0

s e t refmax = MLKF

s e t remote = 0

s e t r e m o t e e m a i l =

s e t r e s o l = ’103 .605 2 . 1 0 0 ’

s e t r e s t r a i n t s = 1

s e t r e s t r c y c = 50

s e t r e s t r r e f = 5

s e t r i d g e r e s t r a i n t s = 0

s e t r r c y c = 1

s e t r s i g = 1 . 0

s e t sad = 0

s e t s a d c a r d =

s e t s c a l e o p t = ’SIMPLE LSSC ANIS ’

s e t s c a l m l = ’SCAL MLSC WORK’

s e t s e q i n = PDBID . f a s t a

s e t s i d e = 1

s e t s i d e m e t h o d = SEQQY

s e t s i g f p = SIGFP

s e t s k i p = 0

s e t s o l v e n t = 1

s e t s o l v e n t c = 1 .0000

s e t sym = 5

s e t tw in = 0

s e t upmore = 1

s e t v e r s i o n = 8 . 0

s e t warpb in = / ccp4 / 7 . 0 . 0 6 6 / arp_warp_8 . 0 / b i n / bin −x86_64 −Linux

s e t we igh tv =

s e t w i l s o n b = 44 .02

s e t wmat = AUTO

s e t WORKDIR = / PDBID

s e t xyz l im = ’0 .00000 0 .50000 0 .00000 1 .00000 0 .00000 0 .50000 ’

B.5.3 Buccaneer

The following command line was used to build data set ID 1O6A (resolution 1.9 Å)

and the initial model from PHENIX AutoBuild.

mtz in PDBID . mtz

s e q i n PDBID . f a s t a
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c o l i n − fo FP , SIGFP

c o l i n − h l p a r r o t .ABCD. A, p a r r o t .ABCD. B , p a r r o t .ABCD. C , p a r r o t .ABCD.D

c o l i n − f r e e F r e e R _ f l a g

buccanee r − a n i s o t r o p y − c o r r e c t i o n

buccanee r − f a s t

buccanee r −keyword v e r b o s e 5

c y c l e s 5

pdb in PHENIXAutoBuild / PDBID . pdb

−−−−−−−−−−−−−−−−−−−−−− DEFAULT PARAMETERS −−−−−−−−−−−−−−−−−−−−−−

t i t l e b u c c a n e e r au to − b u i l d

pdbou t b u c c a n e e r . pdb

buccanee r −new− r e s i d u e −name UNK

buccanee r − r e s o l u t i o n 2 . 0

buccanee r −1 s t − c y c l e s 3

buccanee r −1 s t − c o r r e l a t i o n −mode f a l s e

buccanee r −1 s t − sequence − r e l i a b i l i t y 0 . 9 5

buccanee r −nth − c y c l e s 2

buccanee r −nth − c o r r e l a t i o n −mode t r u e

buccanee r −nth − sequence − r e l i a b i l i t y 0 . 9 5

refmac − twin f a l s e

refmac − mlhl t r u e

p r e f i x b u c c a n e e r /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Identifying incorrect fragments to

improve backbone chain tracing using

neural network in Buccaneer

(additional results)

C.1 Comparison of R-work, R-free and structure

correlation between Buccaneer and Buccaneer

with neural network
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10 thresholds Freedman–Diaconis rule
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Figure C.1: Comparison of R-work, R-free and structure correlation between Bucca-
neer and Buccaneer with neural network (Buccaneer(NN)) using ten thresholds and
FreedmanDiaconis rule for the recently deposited experimental phasing data sets. The
results where Buccaneer(NN) is better than Buccaneer either below or above the diag-
onal is indicated in the figures.
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