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Abstract

Proteins are large biological molecules and the building blocks of all cells in living
organisms. Modelling their structure supports the understanding of their role in key
biological processes, including the onset, evolution and cure of diseases. Nevertheless,
protein model building is extremely challenging. Although the computational tools for
protein model building (e.g., from crystallographic data sets) have improved signifi-
cantly in recent years, they still perform poorly for protein structures for which only
data sets with low resolution and affected by poor phase distributions are available.

This thesis introduces new methods that support and improve model building for
such protein structures. We start with a systematic evaluation of all major automated
crystallographic model-building pipelines using 1211 protein structures (202 at origi-
nal resolution and 1009 at truncated resolutions). Using the results of this study as a
baseline, we then propose and show the effectiveness of using pairwise pipeline com-
binations to build better protein models for many crystallographic data sets.

As the performance of individual pipelines and pipeline combinations depends on
the input data set, we introduce a predictive machine learning model that recommends
pipelines or pipeline combinations suitable for a given data set, helping researchers
avoid the time-consuming running of pipelines likely to perform poorly. The model
bases its predictions on statistical features calculated from the electron-density map,
and is available as a freely accessible web application.

Finally, we introduce a neural network trained to recognise incorrect parts of a
protein model during the building process. Developed using large training data sets
newly created for this purpose, and integrated into the protein model building software
Buccaneer, the neural networks enables Buccaneer to avoid these incorrect parts and to
produce protein models with significantly improved completeness and fitting measures

to crystallography data.
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Introduction

1.1 Motivation

In the 1950s, the first protein structures were determined and, since then, more than
154,000 protein structures have been solved and deposited in the Protein Data Bank
(PDB) [1, 2]. However, the number of solved protein structures is only a small fraction
of protein structures that have not been solved yet. A frequently used method for
determining a protein structure starts with crystallising the structure and then applying
a determination technique, such as X-ray crystallography, to obtain an electron-density
map, which is then used to interpret the coordinates of the protein structure atoms. A
similar method to X-ray crystallography is cryogenic electron microscopy (cryo-EM),
which is useful for the protein structures that are difficult to crystallize as the method
is based on freezing the sample rather than the crystallization[3]. The folding of the
protein structure can result in a complicated electron-density map that makes building
the protein model manually very time-consuming.

The challenges faced during the building of protein structures include the phase
problem; the reconstruction of the electron-density map needs intensities of waves
(which can be measured from the experiment), the amplitudes (square root of the inten-
sities) and the phase (which can not be measured from the experiment and describes the
shift between the waves) [4, 5]. The phase problem may be solved by either molecular
replacement or experimental phasing methods [6, 7]. These methods lead to electron-
density maps with rather different properties: in the case of experimental phasing, the
maps usually contain noise due to ambiguity in the experimental phasing, whereas in
the molecular replacement case, the errors in the map can arise from bias towards the

molecular replacement model. The resolution of the experimental observations, the

18



CHAPTER 1. INTRODUCTION

quality of experimental phasing or the similarity of the molecular replacement model,
and many other features such as ice rings, which arise because the water to freeze to
ice in macromolecular crystals as the X-ray crystallography is data collected at cryo-
genic temperatures [8, 9], may also affect the quality of the data. Each of these factors
impacts the building of the protein structure in different ways [10, 11, 12].

To automate the building of the protein structure, several automated pipelines
have been developed. These pipelines include ARP/wARP [13, 14, 15, 16, 17], Bucca-
neer [18, 19], PHENIX AutoBuild [20], SHELXE [21, 22, 23, 24]. Protein structures
built using these pipelines can differ in the evaluation measures, and sometimes, the
difference can be significant.

Since the early releases of these pipelines, major improvements have been made to
enable them to build more complete models. However, they still cannot build complete
models in difficult cases, for example, for electron-density maps with low resolutions
or poor phases.

Recent advances in machine learning (ML) have enabled the use of ML tech-
niques to further progress protein model building [25]. Machine learning is used at
different stages of the process to solve protein structures, including serial crystallog-
raphy and model building. In an example of the use of machine learning in model
building, a neural network was trained to identify incorrect residues in a final model
[26]. Moreover, machine learning was used to improve the tracing of the protein struc-
ture backbone by finding “good” fragments [27]. However, as many challenges remain
to obtain a complete protein structure that requires minimum manual building, further
machine learning techniques are required to make the built protein structure models

sufficiently accurate.

1.2 Contributions and thesis structure

In this thesis, we first determine a baseline for the current model-building pipelines
through systematically evaluating their performance for a large number of crystallog-
raphy data sets. Moreover, we examine the improvements achieved by running these
pipelines in pairwise combinations in order to gain the most from the complementarity

of their algorithms. However, the pairwise running method leads to a large number of
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pipeline combinations, each with different levels of performance across the data sets.
To avoid the need to run all these pipeline combinations and the individual pipelines on
each data set, we introduce a machine learning model capable of predicting the perfor-
mance of the pipelines and their combinations for a given data set. Finally, to alleviate
the problem of placing incorrect fragments into protein models, we introduce a neural
network trained to identify and remove such fragments during the model building pro-
cess. The use of this neural network within a new version of the protein model building
software tool Buccaneer [18, 19, 28] can significantly improve the protein models built
by the tool.

These contributions and structure of the thesis are summarised below.

* Chapter 2: Background

The chapter provides background information about the techniques used to ob-
tain models of three-dimensional protein structures, and about the existing pro-
tein model-building pipelines. Additionally, the chapter introduces machine
learning and neural network concepts and techniques used in later chapters of

the thesis.

* Chapter 3: A performance baseline for protein model-building pipelines

(contribution).

The chapter presents an extensive comparison of protein-model building pipelines
ARP/wARP, Buccaneer, Phenix AutoBuild and SHELXE. The four widely used
pipelines were run on large number of crystallography data sets that range from
easy to challenging and compared based on the structure completeness and R-

work/R-free of the protein models they generated for these data sets.

* Chapter 4: Pairwise running of the protein model-building pipelines (con-

tribution).

We propose and examine the usefulness of combining these pipelines to improve
the built protein structures by running them in pairwise combinations. The chap-
ter presents an evaluation of combining these pipelines based on the structure

completeness and R-free.
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* Chapter S: Predicting the performance of the protein model-building pipelines

(contribution).

Identifying the best pipeline or pipeline combination to use for a protein struc-
ture is difficult, as the pipeline performance differs significantly from one protein
structure to another. The chapter presents a machine learning model trained to
predict the performance of the protein-model building pipelines. We start by
analysing the uses of these pipelines and then explain how we trained a ma-
chine learning model to predict structure completeness, R-free and R-work they
can each achieve for a give crystallography data set. We evaluated the machine
learning model based on RMSE, MAE and through comparing its accuracy to
that of a zero-R predictive model. The predictive model is freely available as an

online tool.

» Chapter 6: Avoiding the use of incorrect fragments in the protein model

(contribution).

Placing incorrect fragments during the building process leads to wrong residues
being sequenced, and therefore to a poor protein model. We introduce a neu-
ral network trained to identify incorrect fragments, and show how its use within
Buccaneer can help remove such fragments in order to improve backbone trac-
ing. Buccaneer augmented with the neural network produces protein models
with significantly improved structure completeness for experimental phasing
data sets. The chapter presents the method used to label the data samples used to
train the network, the evaluation of the trained neural network, and its use within

Buccaneer.

* Chapter 7: Conclusion

The chapter summarises the achievements and limitations of the research pre-

sented in the thesis, and proposes directions for future work.

Figure 1.1 shows the data sets and the model building pipelines used in each
research-contributions chapter, and indicates where the results from a chapter are used

in other contributions chapters.
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each contributions chapter. The dashed arrows indicate where the results from a chap-
ter are used in other chapters.
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Background

2.1 Protein structure building

2.1.1 Protein geometry

Proteins are macromolecules that perform essential biological functions which depend
on their three-dimensional structure. A protein is a chain of amino acids, which are
chemical compounds that contain nitrogen, carbon, hydrogen, oxygen and a unique
side chain. The next sections introduce key concepts and terminology about amino

acids, torsion angles of the amino acids, and the electron-density map.

2.1.1.1 Amino acids

More than 300 amino acids have been identified in nature; however, only twenty types
of amino acids are needed to produce common human proteins and most of other pro-
teins [29]. All amino acids contain a carbon atom called C* (C alpha) located in the
centre of the amino acid, NH, and COOH . However, these amino acids have different

chemical properties:

1. An amino acid has a unique side-chain R with a different number of atoms
bonded to the C* atom (Figure 2.1). However, some amino acids may have

the same number of atoms.

2. Hydrophobicity and hydrophilicity of an amino acid, which means the amino

acid interacts to water (hydrophilic) and those repel water (hydrophobic) [30].

3. Chemical bonds of atoms in an amino acid affect its chemical properties even if
two amino acids have the same atomic composition, for example, Isoleucine and

Leucine (Figure 2.1).
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4. An amino acid is either positively, neutral or negatively charged. The attraction
between amino acids is affected by their charges as the amino acids with the

same charge interact and those with opposite charges repel each other [31].

Each one of these amino acids contains a different number of atoms, giving it a
unique shape.

Each amino acid has a unique side-chain R with a different number of atoms
bonded to the C* atom (Figure 2.1). Two amino acids are bonded together by the
N-terminus side connected to the C-terminus in other amino acids [32]. We refer to

amino acids as residues in the rest of this thesis.

2.1.1.2 Torsion angles

The geometrical structure of the main chain can be described using angles, known as
torsion angles. The torsion angles describe the rotations between N — C%, called Phi
®, and between C* — C, called Psi W (Figure 2.2). Ramachandran is the physicist who
described these angles and designed a plot for exhibiting the angles’ correctness [33].
The plot of Ramachandran shows W on the horizontal axis and ® on the vertical axis,
with both scales varying from —180 to +180. The plot uses dots for representing each
torsion angle of the amino acids on the axes for the angles’ distribution. Figure 2.3
shows an example of a Ramachandran plot with three regions; favoured, allowed and
disallowed regions. Residues in disallowed regions were results of steric hindrance,
which is the non-bonded atoms that come close to each other and cause a rise in the

energy and repulsions [34].

2.1.1.3 Electron-density map

The atoms of the residues are surrounded by electrons moving in orbital motion and
creating a “cloud” called electron-density around these atoms. As a protein contains
a number of these residues and each has its electrons, this results in a map of electron
density being created. In the absence of the residues’ coordinates, this density map can
be used to interpret the residues positions. However, obtaining the density map needs

special techniques to determine its 3D shape.
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Threonine Tryptophan Tyrosine Valine

Figure 2.1: The twenty types of amino acids that have been identified in protein struc-
tures. The main chain is identical in all of them but they have different side chains,
which determine the unique shape of each amino acid.
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(a)

(b)

Figure 2.2: (a) The angles between N — C* (Phi ®) and between C* — C (Psi ). (b)
Torsion angles for bonded residues.
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Figure 2.3: An example of Ramachandran’s plot. Area in salmon colour shows
favoured, allowed in light yellow and white for disallowed regions. Glycine and Pro-
line are shown as triangles and squares, respectively, and other residues are shown as
circles. Residues were in disallowed regions shown in red colour.

2.1.2 Techniques of obtaining three-dimensional structure

X-ray crystallography [35], nuclear magnetic resonance (NMR) [36], and electron
microscopy (cryo-EM)[37, 38, 39] are the most used techniques to solve the protein
structures, with the highest use for X-ray crystallography (Figure 2.4). To determine
the structure of a protein using X-ray crystallography, a series of steps need to be
conducted, starting by crystallizing the relevant molecule, collecting the molecule’s
diffraction, solving the phase problem, and then fitting the model into the density map.

Crystallisation is a process of organizing atoms or molecules into a regular solid
structure. In X-ray crystallography, the crystal obtained from the crystallisation pro-

cess is centred in the path of X-rays. When X-rays (electromagnetic waves) pass
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through the crystal, the electrons scatter the wave with the same wavelength as the
incident wave, and the scattered waves register on a photographic plate (Figure 2.5)
[35]. The relation between the X-ray wavelength and its reflection is described by
Bragg’s law:

2dsin® = nA, 2.1

where d is the distance between the crystal planes, A is the wavelength, and 7 is the
diffraction order [40]. Bragg’s law is used in X-ray crystallography to identify the
crystal lattice, which can be described as an ordered array of points.

Once the diffraction spots are registered, they are indexed using Miller indices
because each wave diffracted from a plane gives information about the structure of the
molecules within the analysed crystal. The next step is to solve the phase problem and
calculate the density map for use in fitting the model. The next sections describe each

of these steps.

11000
10000 EM

9000 Il NMR

000 Il X-ray Crystallography
7000

= J,,,JmuJJJJH“”......

L
© 40 4 4O o N L D bk O O A DD D D of PN DD O NG D SO © PO H 1P W 100 B O
R S SR R I RIS N IR S qca@ca S QQ S Qo S @ QQQ R AR

Number of structures

Year

Figure 2.4: Number of solved structures per publication year by determination method
as in 2021.

2.1.3 Processing data collected by X-ray crystallography

The data collected through X-ray crystallography is used to calculate the electron-

density map

p(x,y.2) = IZZZ|F hkl)| —2ﬂi[hx+ky+lZ*¢(hkl)], 2.2)
h k 1

where p(x,y,z) is the map coordinate, V is the volume of the unit cell, &, k, represent

the Miller indices,

(hkl)| structure factor, and ¢ (hkl) gives the phases; however,
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Figure 2.5: X-ray crystallography experiment showing a crystallised molecule and an
X-ray passing through the crystal. The diffracted X-ray reaches a photographic plate,
and the resulting image is used to calculate an electron-density map that is then used
to build a protein model.

these phases cannot be obtained from the X-ray crystallography experiment—an issue

known as the phase problem. [41].

2.1.3.1 Asymmetric unit

The molecule is repeated over the crystal space and solving the structure of one molecule
leads to determining the whole crystal structure. The crystal is divided into small parts
called unit cells; the smallest volume that can be repeated to make the entire crystal
[42]. An asymmetric unit is a part of the cell unit that has the identical parts of one
molecule or more with no relations in symmetry between them [43]. After solving the
molecule structure and finding the coordinates of the atoms from the asymmetric unit,
symmetry operations are used to generate the other units’ cell contents, which leads
to predicting the whole crystal structure. Figure 2.6 shows a crystal and a unit cell

represented as mini cubes, as well as an asymmetric unit.

2.1.3.2 Miller indices

Miller indices are a group of three numbers used to represent a plane in the crystal:
h,k,l. The crystal is divided into imaginary planes, and those planes are identified by
three points recorded on the photographic plate [43]. For example, given a building
block with six faces, the position of the top face in Miller indices is (0,0, 1); however,

the last number in the position is 1 because the plate is located on the z axis and at O on
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Figure 2.6: A crystal can be represented as mini building blocks where one building
block represents a unit cell that may contain multiple copies of the molecule. The
asymmetric unit has the identical parts of the molecule.

the x and y axis. Figure 2.7 shows different planes and their Miller indices. The Miller
indices of a reflection depend on the plane which the X-ray diffracts from. Figure 2.8

shows Miller indices for the reflection on a photographic plate.

z z z z z z
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X X X X X

Figure 2.7: Each plane in the cube can be represented by three points, 4, k, [. In the
leftmost cube, the top face of the cube position is (0,0,1), with the first two indices
corresponding to x and y, and 1 being the value of z. When the points of the plane are
located in the middle of an axis such as in the last cube, the value of the axis is divided
by 2 or is dependent on the exact value of the axis.

2.1.3.3 The phase problem

Phases are required to calculate the electron-density map; however, the phases cannot
be determined during the X-ray crystallography experiment. Current equipment is
limited in its ability to determine the intensities of the rays from the photographic plate
for use in the electron-density map equation. Figure 2.9 shows the missing information,
1.e., the phase angle of the diffraction in the crystal. [4, 44]. Two methods are used to

solve the phase problem: experimental phasing is when the phases are determined from
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Figure 2.8: The diffraction of the X-ray and Miller indices. The reflection of the X-ray
is recorded by Miller indices, which represent a plane in the crystal.

the observed data using features of special atoms, such as those with a large number
of electrons, e.g. Dauter and Dauter [45] , and molecular replacement (MR) obtains
initial phases from a known protein structure that is similar to the protein structure that

we want to build, e.g. Evans and McCoy [6].

Figure 2.9: Phases ¢ of Fyy; are the missing information from X-ray crystallography
experiment.

2.1.3.4 Representation of electron-density maps

The 3D electron-density map visualisation is represented as a mesh in visualisation
tools such as, Coot [46] and CCPAMG [47]. This supports the assessment and identi-
fication of possible errors in the density map or even in fitting the protein model into

the electron-density map (Figure 2.10).

2.1.3.5 Resolution of electron-density maps

The X-ray diffraction spots on the detector correspond to the molecular structure in
the crystal, and these diffraction spots are affected by several factors, including the
complexity of the molecular structure. The effects of these factors can be negative,

leading to poor diffraction and low-quality density maps. The details of the analysed
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Figure 2.10: A part of electron-density map. The figure was produced by CCPAMG
[47] for a part of PDB id 1o6a.

protein are easy to identify in high-resolution electron-density maps, and much harder
in the case of low resolution such as in 3 A and lower [48]. Figure 2.11 shows the
increase in the level of difficulty of finding the atoms’ positions in a protein model
from an easier case when the resolution is high, 0.6 Aor higher, to a challenging case

with low resolution, 4A.

2.1.3.6 Electron-density map modification

As described in Section 2.1.3.3, the phases are required to construct the electron-
density maps, however, the phase set obtained from the methods of initial phases cal-
culations such as multiple anomalous dispersion (MAD), may not sufficient for protein
model building due to the introduction of heavy atoms in the crystal which affect on
its order. Therefore, the introduction of heavy atoms might affect the quality of phases
and lead to an uninterpretable electron-density map. However, the phases can be im-
proved by knowing the chemical properties about the protein structure that we want to
solve and the information obtained from the initial phases. This method is known as
Density Modification (DM). It is used to generate improved phases and combine them
with initial phases, reducing the noise in the electron-density map and making it more

interpretable. The following three approaches are used in DM [49]:

(1) Solvent flattening is based on determining the regions of solvent (e.g. waters)
in the protein structure and creating a mask (e.g., O for the solvent parts and 1

for the protein parts) to eliminate the noise from the electron-density map. The
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Figure 2.11: Interpretation of electron-density map becomes difficult as its resolution
gets worse. (a) A very high resolution electron-density map for which fitting the atoms
in their density is simple due to lack of overlaps between the atoms density. (b) and (c¢)
Reduced resolutions where the overlaps between the atoms’ densities leads to difficulty
in placing the atoms in their densities. (d) and (e) Very low resolution maps; such
density maps might be misleading for building the correct protein model as they are
unhelpful in interpretation of the electron-density.

phases can be calculated modified phases and combined with experimental data,

and an improvement should be obtained compared to the initial phases.
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(@) (b)

Figure 2.12: Density modification: (a) An electron-density map calculated using ini-
tial phases (before density modification). (b) The electron-density map after density
modification using Parrot [50].

(i) Histogram matching is taken from image processing when two images at grayscale,
for example, one image is darker than the other and modify the darker image’s
histogram to match the brighter image’s histogram. Therefore, the darker image
might be improved. In electron-density map modification, the histogram of the

initial density map is modified to match the histogram of the ideal density map.

(iii) Noncrystallographic symmetry (NCS) exploits the similarities of electron den-
sity between the different regions in the density map for improving the regions
with low quality. NCS occurs when the asymmetric unit has multiple copies of a
molecular structure with no crystallographic symmetry between them. Discov-
ering NCS in the density map is possible through methods such as the use of

heavy atoms (hancs), model building, and molecular replacement (mrncs).

Figure 2.12 shows an electron-density map before DM and after. The density of
the side chain is significantly improved after DM, allowing the identification of the
positions of the atoms. However, not all electron-density maps can be improved to
the level that shows the details of the electron-density map with sufficient clarity for

protein model building.
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2.2 Machine learning

Machine learning has been used to accelerate the protein model building, e.g. using
ML to correct the protein model or trace the backbone and, more recently, to build the
protein model from its sequence [25, 51]. However, machine learning is an area of
artificial intelligence that focuses on the development of methods to learn from past
information collected in digital format in order to make predictions from new data
[52]. There are many of these learning methods, primarily grouped into two classes:
supervised algorithms when the training data is labelled, usually by a domain expert,
and unsupervised algorithms when the training data is unlabeled and the learning al-

gorithms discover the relationships between the data set’s instances [53].

2.2.1 Decision trees

A decision tree is a predictor that takes instance x, which can be a vector of features,
and gives a label y [54]. The features are the characteristics of the past information that
is used by machine learning algorithms to learn relationships between the instance x
and the label y. Creating decision trees starts by finding a root node and then splitting
the tree into branches to add leaf nodes. Selecting the root node is based on splitting
measures, such as the Gini Index, which measures uncertainty if a feature is classified
incorrectly. The feature with lowest Gini Index is used as root and the process is
repeated to split the tree further. Deep decision trees may lead to overfitting when the
decision tree performs better on the training data set and worse on the testing data set.
However, this problem may be prevented by reducing the number of iterations, and,
therefore, the tree size; or by using ensemble methods [54]; however, this may reduce
the performance of the decision tree. Figure 2.13 shows a decision tree that we trained
to predict the type of an amino acid using its numbers of carbon, oxygen and hydrogen

in both the main and side chain as features.

2.2.2 Random forests

As described in Section 2.2.1, the over-fitting of decision trees can be reduced by us-
ing ensemble methods, which involves training multiple machine learning models to

produce more accurate predictions [55]. Random forests were introduced by Breiman
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[56] to address the overfitting problem of decision trees through creating multiple de-
cision trees and picking the prediction with the most “votes” from these decision trees.
To create a training data set for each decision tree in the random forest, we select a ran-
dom sample from the training data set to generate a subset of the whole training data
set and repeat the process to create multiple subsets (whose sizes may differ). Then,

the splitting of the tree is conducted as described in Section 2.2.1[54].

2.2.3 Neural networks

A neural network is a type of machine learning inspired by the way in which certain
functions are carried out by the human brain [59]. A neural network comprises pro-
cessing nodes called neurons. Each neuron computes a weighted sum of one or several
numerical inputs. The result of this computation is fed into an activation function (Fig-
ure 2.14) that computes the neuron output by mapping the weighted sum to a value
within a fixed range. Two examples of activation functions are shown in Figure 2.15.

The training of a neural network is an optimisation problem in which the neuron
weights are adjusted over a sequence of iterations in which a loss function that mea-
sures the neural network’s prediction error for a training set of labelled data samples
is reduced [60]. Therefore, optimisation methods such as the Adam optimizer [61] are
used with neural networks to optimize the parameters of the model.

A simple neural network contains three layers; input, hidden and output layer. The
layers can have a different number of neurons. In the following sections, we summarise

several important types of neural network.

2.2.3.1 Feedforward neural networks

The feedforward model is an essential neural network architecture type where the data
are fed from a higher layer to a lower layer with no feedback shared between the layers
[62]. Each layer contains a number of neurons and is linked to each neuron in the next
layer. Figure 2.16 shows an example of a feedforward neural network with the three

layers and different numbers of neurons in each layer.
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Amino acid Number of atoms in amino acid Amino acid Number of atoms in amino acid
Carbon Hydrogen  Oxygen Carbon Hydrogen  Oxygen
Alanine 3 7 2 Methionine 5 11 2
Cysteine 3 7 2 Asparagine 4 8 3
Aspartic Acid 4 7 4 Proline 5 9 2
Glutamic Acid 5 9 4 Glutamine 5 10 3
Phenylalanine 9 11 2 Arginine 6 14 2
Glycine 2 5 2 Serine 3 7 3
Histidine 6 9 2 Threonine 4 9 3
Isoleucine 6 13 2 Valine 5 11 2
Lysine 6 14 2 Tryptophan 11 12 2
Leucine 6 13 2 Tyrosine 9 11 3
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Phenylalanine Phenylalanine Leucine Isoleucine Arginine Arginine Tyrosine Tyrosine

(c)

Figure 2.13: An example of decision tree for predicting the type of an amino acid
using its numbers of carbon, oxygen and hydrogen atoms. (a) The training data sets
obtained from [57]. (b) The decision tree was trained using scikit-learn [58]. (c¢) The
performance of the decision tree was tested on the same training data sets however, the
test data should not be the same as the training data sets for valid machine learning
testing. Here, we do not test the decision tree on independent data sets, as this example
shows the creation of a decision tree rather than producing a valid machine learning
model.
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Figure 2.14: Example of simple neural network. Each input neuron x connected to the
next neuron and a weight w assigned to each connection. The neuron sum the inputs
and the weights and add a bias b to the summation. An activation function decides
whether the neuron will be activated or not.
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Figure 2.15: Left: Sigmoid shape ranging from O to 1. Right: tanh shape ranging from
-1 to 1. z is the output of the neuron.

2.2.3.2 Recurrent neural networks

A recurrent neural network (RNN) is an extension of a traditional neural network that
is able to process sequential data with different lengths [63]. A feedforward neural net-
work only processes the current input, meaning that it does not remember the previous
input because the training data set moves in one direction. Unlike Feedforward neural
networka, an RNN considers the current input with the previous one when adjust-
ing the RNN network weight. Classic RNNs have a long-term dependencies learning
problem. This occurs when the input is a long sequence of data with dependencies,
and the classic RNNs cannot remember the status of the data that was received earlier
[64, 65, 66, 67]. In 1995, long short-term memory (LSTM) was introduced by [68] to
address this problem. A LSTM layer has a memory that remembers the data shown

earlier. In 2015, the attention mechanism was introduced in deep learning which a
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Input Hidden Ouput
layer layer layer

Figure 2.16: An example of feedforward neural network.

neural network gives more importance to some data instances in a sequence, unlike

LSTM, which gave the same importance to the data instances [69].
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Comparison of automated
crystallographic model-building

pipelines

In this chapter, we present a comparison between automated crystallographic model-
building pipelines. We ran the pipelines on large data sets and evaluated them based
on the structure completeness, R-work/R-free of the protein models they generated and
the correlation between generated models and final deposited models. The aim of the
work in this chapter was to determine a performance baseline for use in the evaluation

of the methods proposed in later chapters of the thesis.

3.1 Abstract

A comparison between four protein-building pipelines (ARP/wARP, Buccaneer, PHENIX
AutoBuild and SHELXE) was performed using data sets from 202 experimentally
phased cases, both with the data as observed and truncated to simulate lower reso-
lutions. All pipelines were run using default parameters. Additionally, an ARP/wARP
run was completed using models from Buccaneer. All pipelines achieved nearly com-
plete protein structures and low R-work/R-free at resolutions between 1.2 A and 1.9 A,
with PHENIX Autobuild and ARP/wARP producing slightly lower R-work. At lower

resolutions, Buccaneer leads to significantly more complete models.
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3.2 Introduction

The automation of protein model building began with the release of ARP/wWARP in
the late 1990s [13, 14, 15, 17], and has rapidly advanced through the development
of additional protein-building pipelines. These pipelines include Buccaneer [18, 19],
PHENIX AutoBuild [20], SHELXE [21, 22, 23, 24], and a major new version of
ARP/wWARP [16]. Judging by the numbers of Web of Science citations across 2017
and 2018, ARP/wWARP (286 citations), Buccaneer (304 citations) and PHENIX Auto-
Build (217 citations) are all widely used; SHELXE was cited 9548 times within the
same time period (with all citation counts being based on the papers listed above).

Complex optimization problems like building protein structures can be tackled
using multiple approaches. As such, different protein-building pipelines employ dif-
ferent steps and algorithms, may refine their intermediate structures using difference
refinement programs such as REFMAC [70] or phenix.refine [71], and yield differ-
ent results for the same data. The comparison detailed here sheds light on some of
these differences by examining the completeness of protein structures, the R-work/R-
free values, and the execution times of ARP/WARP, Buccaneer, PHENIX AutoBuild
and SHELXE. Performed for data sets with resolutions ranging from 1.2 A to 4.0 A,
this comparison provides insights into the strengths and weaknesses of the different
pipelines, which may be of use when addressing specific problem data sets, as well as
to developers seeking to improve their own algorithms or to build new meta-pipelines
which exploit the complementary strengths of the different algorithms.

As scientists are inevitably affected by cognitive biases, including self-serving
biases, this study would ideally have been conducted by an independent party, similar
to the study of van den Bedem et al. [72]. However, independent researchers often lack
the motivation to perform detailed tool comparisons. For us, further development of
the Buccaneer methods required a better understanding of their limitations, and thus,
we conducted our own comparison. We acknowledge that its results may have been
impacted by biases in our study, and we make those sources of bias that we are aware

of explicit in the discussion.
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3.3 Pipelines and methods

3.3.1 ARP/wARP

ARP/wWARP was the first fully-automated pipeline for building protein models from
electron-density maps. Initially limited to high resolutions of better than 2.3 A [14],
ARP/wARP was subsequently extended to 2.7 A or 2.8 A [16]. More recent versions
have further enlarged the useful range of resolutions [73]. ARP/wARP is integrated
with CCP4, and therefore can be used from the CCP4 GUIs. Additionally, ARP/wARP
has a web service interface for remote running, which enables access to resources
beyond those available on the users’ local machines.

The ARP/wWARP approach starts by placing free atoms in the electron-density
map. Free atoms are atoms that do not have a chemical identity, but are likely to de-
velop one during the model building and refinement. The approach then traces the
main protein chain via an algorithm [74] that uses modified depth-first search tech-
niques. Next, ARP/WARP uses a rotamer library and a downhill simplex algorithm to
fit the side chains into the map density. Finally, the missing parts of the protein model
are completed by matching C% segments from known models, and choosing those that
best fit the density of the working model. Following the building stage, the model is
refined with REFMAC, and the calculated map is used for further ARP/wWARP building

cycles.

3.3.2 Buccaneer

Buccaneer is a command-line protein model building tool developed by Cowtan [18].
Its subsequent integration with the Collaborative Computational Project Number 4’s
CCP4 software suite [75] provided Buccaneer with a graphical user interface through
the CCP4i [76] and CCP4i2 [77] GUIs.

The Buccaneer algorithm is built around a likelihood target function for the iden-
tification of likely C* positions. This function is used to find a small set of ‘seed’
residues, and then to grow these seeds into chain fragments using Ramachandran re-
straints. Overlapping chain fragments are merged, and docked into the sequence on

the basis of a further application of the likelihood target function to the identification
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of the side chain type [18, 19]. Model building is iterated with refinement in REFMAC
[78].

3.3.3 PHENIX AutoBuild

PHENIX AutoBuild is a part of the PHENIX software suite for the automated mod-
elling of molecular structures. Using a graphical user interface (GUI) based on the
main PHENIX GUI, AutoBuild facilitates the interactive specification of protein-building
parameters, with default values automatically provided for most parameters. Addition-
ally, command-line access is available to enable the integration of AutoBuild with other
tools.

PHENIX AutoBuild accepts several types of input—experimental phases, an ex-
isting model, and a model whose sequence differs by less than 5% from that of the
target model—and performs different procedures for each input type. The steps of
its fully automated pipeline include density modification, model building and refine-
ment [79, 80, 81]. These AutoBuild steps are not executed sequentially, as the density
modification is repeated after refinement, to exploit information from the built model.

Early in the structure determination procedure, AutoBuild scores models using
a metric based on their number of residues built, number of residues that match the
protein sequence, and number of chains [20]. Later, when their R-work drops below a
pre-set value, the models are scored mainly using R-work. The refinement of the built
structures is performed using phenix.refine [71], a refinement tool from the PHENIX

suite.

3.3.4 SHELXE

SHELXE is a program for main chain tracing and density modification from experi-
mental phases and molecular replacement [22, 23]. Backbone tracing begins by finding
seven residue a-helices and extending them in both directions whenever possible. The
latest version of SHELXE was extended to find up to 14 residues. [24]. Traced chains
are then cut at their closest points of contact, and the N-termini and C-termini are
joined together. Finally, new estimated phases are calculated from traced residues and
combined with the initial phases for use in the next cycle of density modification and

tracing [22].
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SHELXE scores a built structure using a correlation coefficient (CC) calculated
from structure factors from the trace against native data. A CC above 25% for resolu-

tion 2.5 A indicates that SHELXE may have found a correct solution [24].

3.4 Data sets

We used 202 real data sets [72] with resolutions between 1.2 Aand32 A (Figure 3.1),
as well as synthetic data sets obtained through simulating each of the original data sets
at resolutions of 3.2 A, 3.4 10\, 3.6 10\, 3.8 A and 4.0 A. The 202 data sets used are a sub-
set of the 770 data sets from van den Bedem et al. [72]. A total of 230 structures were
available to the authors, of which 229 had one or more data sets from experimental
phasing. A single data set, with the highest RMSD of local map RMSD, was chosen
for each structure. There is no guarantee that the chosen data set is the same one used
for the final deposited structure, but in order to check this, the deposited coordinates
were refined against the chosen data set using REFMAC v.5.8.0158 in CCP4 v.7.0.045
[78]. Eleven structures failed due to large differences between cell definitions in the
reflection file and deposited model and one structure failed due to a serine residue
being labelled as UNK. A further 15 structures were removed as they had very high R-
work/R-free after refinement. Five of the deposited structures (2a9v, 2ash, 2awa, 205r
and 2pnk) have their structural determination method listed as a combination of MAD
and molecular replacement and one (2fcl) has only molecular replacement. In these
cases the deposited structure may contain some model bias from the original author’s
search model. This simulation involved inflating the B-factors of the structure factor
amplitudes and removing the reflections with resolutions higher than the target resolu-
tion. Inflation of B-factors was carried out by first downloading a list of all structures
in the PDB, each with a resolution and average B-factor. A linear fit was then per-
formed, which gave a gradient of 32.8A used to inflate the B-factors by the difference
in resolution. This modification resulted in the reduction of the electron-density map
resolution to that of the simulated resolution. This process produced 1009 synthetic
data sets—five synthetic data sets at the lower resolutions mentioned above for each
original data set, except for a single data set in which the original resolution was al-

ready 3.2A. This gave us 1211 data sets in total. The 52 data sets that had previously
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been used in the development of Buccaneer!

were excluded, along with the synthetic
data sets obtained from them.

The density of both the original and synthetic data sets was then modified using
Parrot [50] for three density modification types: heavy-atom NCS (HA-NCS) deter-
mined using S or Se atom positions from the deposited model, molecular replacement
NCS (MR-NCS) determined using all atoms of the deposited model, and no NCS (NO-
NCS). The three groups of 1211 data sets (i.e. 3633 data sets in total) created in this

way were used in the comparison. The PDB codes used in the comparison (provided

as supplementary material in Appendix A.6)
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Figure 3.1: Resolutions of the 202 original data sets.

3.5 Method of the comparison

A comparison was conducted between the following versions of the four protein-
building pipelines described in Sections 3.3.1-3.3.4: PHENIX Autobuild version 1.14,
Buccaneer in CCP4i, ARP/WARP 8 and SHELXE version 2019/1. All binary files were
obtained from CCP4 7.0.066, and run with the default parameters set by the develop-
ers of each pipeline ARP/wARP was run without the R-free flag, in line with the tool’s

documentation, and automatically includes a secondary structure building step in cases

IThese 52 data sets were analysed for a secondary study in which we assessed the efficiency of choosing
training data sets for pipeline development (Appendix B.1 and B.2)
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where resolution is worse than 2.7A. PHENIX Autobuild by default builds three mod-
els at each step leading to improved results at the cost of computing time. Additionally,

the comparison considered several pipeline variants with non-default parameters:

* ARP/wWARP with the R-free flag set, and using as initial models the models built
by Buccaneer in CCP4i, as one known Buccaneer limitation is its use of fewer

model finalization techniques;
* PHENIX AutoBuild with density-modified phases (using Parrot [50]);
» SHELXE with density-modified phases (using Parrot [50]);

* SHELXE (with and without density-modified phases) variants have set -t flag to

20 as higher value is recommended in the tool’s documentation;

Table 3.1 shows the short names used for these pipeline variants in the rest of the paper.

Each execution of a pipeline received two inputs: a reflection data file comprising
the result of an experimental phasing calculation; and the sequence file of the rele-
vant protein. SHELXE did not receive the sequence file because it is not required.
The model building task was then submitted as a job to a 173-node high-performance
cluster with 7024 Intel Xeon Gold/Platinum cores, a total memory of 42TB. Each job
involved building one protein model, and was stopped if it did not complete within 48
hours. There was no resource sharing between jobs.

Following model building, a ‘zero cycle’ REFMAC run was used to calculate R-
work/R-free (which measure the fit of the protein structure against the observed data,
with R-free using only observations which are not used in the refinement calculation
— typically 5% of the data [82]), to avoid the confounding effects of different scaling
and solvent parameterizations in different refinement programs. REFMAC was run
with default parameters. The quality of the starting phases was assessed using on the
weighted F-map correlation between the initial map and the phases from the refined
deposited model. A structure completeness measure was obtained for the final model,
by calculating the percentage of residues in the processed deposited model from the
Protein Data Bank (PDB) whose Ca atoms have the same residue type as, and co-
ordinates within 1.0 A of, the corresponding residue in the built model. SHELXE

completeness was calculated from only C in correct positions within 1.0 A because
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SHELXE only builds the main chain. The correlation between generated and final de-
posited models was obtained by calculating the F-map correlation using a map from a
built model and a map from a final deposited model (we will refer to this measure as
structure correlation in the rest of the thesis).

A tool was developed to automate the execution of the pipelines and the anal-
ysis of their results. To ensure the reproducibility of the study, the execution of all
pipeline variants was repeated for a sample of 30 structures. The results (provided as
supplementary material in Appendix A) did not vary significantly when the pipelines
were rerun with the same inputs. Additionally, a series of tests searching for errors
that might have occurred during the running or analysing stages were performed; for
example, the running parameters from log files were verified for possible errors in the
parameter settings.

Four measures were used to compare the protein models built by different pipelines:
structure completeness, R-work/R-free, structure correlation and pipeline execution
time. R-work/R-free values were rounded to two decimal places, and completeness
was rounded to the nearest whole number.

For both completeness and R-work/R-free, and for each pair of pipelines, we
report the percentage of data sets for which one pipeline yields better models than
the other; and the percentage of data sets for which one pipeline yields models which
are at least 5% better than the models produced by the other pipeline. (Cases where
results are equivalent or better by between 1% and 4% are reported in the appendix).
The results obtained for the real data sets used in the comparison and for the data sets
truncated to simulate lower resolutions are reported separately. For execution time,
we report the mean pipeline execution times partitioned into classes based on their

structure sizes.

3.6 Results

3.6.1 Opverview

The results described here were obtained by comparing the protein structures success-
fully built by each of the pipeline variants from Table 3.1. For the first 4 pipeline

variants from the table, we used all 3633 data sets obtained as described in the previ-
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Table 3.1: Pipeline variants used in the comparison.

Short name Long name

ARP ARP/wARP.

ARP(B 5I) ARP/wARP after Buccaneer in CCP4i using the default five it-
erations.

i1(5I) Buccaneer in CCP4i using 5 iterations (as set by the pipeline
developers).

PHENIX PHENIX AutoBuild fed by density-unmodified phases.

SHELXE SHELXE fed by density-unmodified phases.

PHENIX/Parrot ~PHENIX AutoBuild runs after Parrot (density-modified
phases).

SHELXE/Parrot ~SHELXE runs after Parrot (density-modified phases).

ous section. For the PHENIX AutoBuild and SHELXE after Parrot no prior density
modification was run and the results were compared to the NO-NCS results from the
other pipelines. SHELXE variants were not run on synthetic data sets because this is
not recommended, and therefore SHELXE is omitted from synthetic data sets compar-
ison.

All pipeline variants successfully completed the analysis of over 99% of both the
original and synthetic data sets. The remaining runs did not complete within 48 hours
(a time limit that we set in our experiments), failed due to insufficient memory, or
crashed. In all these cases, the pipeline variant was rerun with its memory quota and
time limit increased until it either succeeded or a limit of 20GB of allocated memory
and 48 hours were reached. As shown in Tables 3.2 and 3.3, only very few runs did not
complete (even after this memory increase), and most of these produced intermediate
protein models that we used in our comparison. The data sets marked ‘Failed’ in the
tables were excluded from the comparison (for all pipeline variants). The numbers
of different types of ‘complete’ and ‘intermediate’ models used in the comparison are
reported at the bottom of each table.

Including non crystallographic averaging improves the starting phases for struc-
tures where NCS is present, but it does not significantly affect the conclusions of this
work because the completeness is not significantly affected. Given that the differences
between NCS and NO-NCS cases are small, the poorer-phased NO-NCS data sets will
be considered for the remainder of the comparison.

Using the correct solvent fraction in SHELXE improves its results, but it does

not significantly affect the results when compared to other pipeline variants (results of
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using the correct solvent fraction are reported in the Appendix A.7). A default fraction
solvent, which is 0.45, is used in the comparison.

Table 3.2: Complete and intermediate models produced by the 7 pipeline variants for
the original data sets, where ‘(T)’ and ‘(C)’ denote intermediate models produced by
pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS
Complete  Intermediate  Failed Complete Intermediate ~ Failed Complete  Intermediate  Failed

ARP 201 1(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0
ARP(B 5I) 202 0(T) 0(C) 0 201 1(T) 0(C) 0 202 0(T) 0(C) 0
il(5I) 202 0(T) 0(C) 0 202 0(T) 0(C) 0 202 0(T) 0(C) 0
PHENIX/Parrot 198 2(T) 1(C) 1 200 0(T) 1(C) 1 199 I(T) 1(C) 1
SHELXE/Parrot 202 0(T) 0(C) 0 201 1(T) 0(C) 0 200 2(T) 0(C) 0
PHENIX - - - - - - 199 1(T) 0(C) 2
SHELXE - - - - - - 200 2(T) 0(C) 0

Models used in the comparison: 149 HA-NCS, 149 MR-NCS and 148 NO-NCS.

Table 3.3: Complete and intermediate models produced by the 5 pipeline variants for
the synthetic-resolution data sets, where ‘(T)’ and ’(C)’ denote intermediate models
produced by pipeline executions that timed out and crashed, respectively.

Pipeline variant HA-NCS MR-NCS NO-NCS

Complete  Intermediate  Failed Complete Intermediate  Failed Complete  Intermediate  Failed
ARP 1008 1(T) 0(C) 0 1007 2(T) 0(C) 0 1008 I(T) 0(C) 0
ARP(B 5T) 1005 4(T) 0(C) 0 1006 3(T) 0(C) 0 1003 6(T) 0(C) 0
il(5I) 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0 1009 0(T) 0(C) 0
PHENIX/Parrot 1002 7(T) 0(C) 0 1004 5(T) 0(C) 0 1001 8(T) 0(C) 0
PHENIX - - - - - - 1001 7(T) 0(C) 1

Models used in the comparison: 750 HA-NCS, 750 MR-NCS and 750 NO-NCS.

3.6.2 Structure completeness

Tables 3.4 and 3.5 report the percentages of models for which each pipeline variant
achieved a structure completeness that is higher and at least 5% higher, respectively,
than the other pipeline variants. Note that the two figures associated with a pair of
pipeline variants in Table 3.4 do not always add up to 100% because some of the mod-
els are generated with the same structure completeness (rounded to the next integer)
by the two pipeline variants. For example, the structure completeness of 23% of the
ARP models was higher than that of the corresponding ARP(B 5I) models, and 45% of
the ARP(B 5I) models had higher structure completeness than that of the ARP models;
thus, the remainder 32% of the models built by ARP and ARP(B 5I) had the same
structure completeness, after rounding.

As shown in the first of these tables, ARP/wARP built 37% of the data sets better
than PHENIX Autobuild, while PHENIX Autobuild did better in 48% of the data sets,
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Table 3.4: Structure completeness comparison for the models generated from the orig-
inal NO-NCS data sets. Each row corresponds to a pipeline variant, and shows the
percentage (rounded to the nearest integer) of models that the pipeline variant built
with higher structure completeness than each of the other pipeline variants.

Pipeline variant ~ARP  ARP(B 5I) il1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot
ARP 0 33

ARP(B 5I)

il(5D)

PHENIX/Parrot

PHENIX

SHELXE 26 15 20 16 16
SHELXE/Parrot 32 22 24 17 22
0 - .

Table 3.5: Structure completeness comparison for the models generated from the orig-
inal NO-NCS data sets. Each row corresponds to a pipeline variant, and shows the
percentage (rounded to the nearest integer) of models that the pipeline variant built
with at least 5% higher structure completeness than each of the other pipeline variants.

Pipeline variant ~ARP  ARP(B 5I) il1(5I) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot

ARP 0 6 15 11 14

ARP(B 5I) 24 0 20 16 16

i1(5I) 28 17 0 16 16

PHENIX/Parrot 28 20 26 0 14

PHENIX 28 18 23 7 0

SHELXE 17 7 11 7

SHELXE/Parrot 21 12 17 5 10 - 0
0 - .

which means that 15% of the data sets are equal in their completeness. Buccaneer
in CCP4i built more than half of the data sets with higher completeness compared
to ARP/wWARP. The default 5 cycle Buccaneer runs typically produce less complete
models than PHENIX AutoBuild.

Table 3.5 shows the number of cases where one pipeline variant achieved 5%
or higher structural completeness than another. By this measure for every pipeline
variant there are at least 3% of cases where that pipeline produces a significantly more
complete model than another pipeline, however show a similar general pattern to the
previous comparison.

Running ARP/wARP after Buccaneer can impact the results. Comparing ARP/wARP

after Buccaneer in CCP4i (5 iterations) with ARP/wWARP alone showed a 5% improve-
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ment in completeness in a quarter of cases, with only a few cases of a comparable
decrease in completeness. Using PHENIX AutoBuild after Parrot showed a small ben-
efits of the additional density-modification step; 14% of the data sets were built better,
compared with 7% worse.

The comparison of SHELXE with the other pipeline variants shows that over half
of the data sets are typically built better by other pipeline variants even when the 5%
improvement comparison level is considered. SHELXE built 16% of the data sets bet-
ter than PHENIX Autobuild, but this number decreased to 7% for the 5% improvement
comparison level. SHELXE after Parrot showed some improvements when compared
to the other pipeline variants; however, for the 5% improvement comparison level,
these variants built over 40% of the data sets better than SHELXE after Parrot.

Figure 3.2 shows the mean structure completeness for different ranges of data
set resolutions, across both the original and the synthetic data sets. Expectedly, the
pipeline variants achieved the best results at 1.2A-1.9A, and the completeness of the
models was significantly poorer at 4.0 A. ARP/wWARP dropped rapidly at 3.2 A (syn-
thetic data sets) and decreased to nearly zero completeness at 4.0 A. In contrast, for
Buccaneer in CCP4i, completeness degrades only slowly as resolution drops below
3.1 A. PHENIX Autobuild produces the most complete models when using the orig-
inal data resolution; however, its completeness falls between those of Buccaneer and
ARP/wARP for the resolution-truncated data sets. The pipelines were affected by F-
map correlation, with lower completeness at an F-map correlation of 0.53 or lower
(Figure 3.4).

Figure 3.3 shows the mean number of residues which were built incorrectly,
grouped into bins based on the data set resolutions. Achieving high structure com-
pleteness leads to the generation of a large number of incorrect residues. For example,
Buccaneer in CCP4i built more residues incorrectly than other pipeline variants, e.g. a
fraction of 0.50 of the residues were incorrect at 4.0 A, while PHENIX Autobuild only
reached a fraction of 0.20 incorrect residues at the same resolution. ARP/WARP and

PHENIX Autobuild built nearly no incorrect residues between 1.2A-1.9A.
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Figure 3.2: Mean completeness for the protein models built for all NO-NCS data sets.
The data sets are grouped into bins based on their resolution, with the number of data

sets in each bin shown in brackets under the graph.

0.5] —= ARP —— PHENIX
—— ARP(B 5l) —— PHENIX/Parrot

" i1(51)
3 0.41
3
=}
k=]
(7]
9 0.3
5
@
S
£0.21
5
c
Kl
8 0.1
[T

0.0-

1.0-1.9 2.0-3.1 3.2 3.4 3.6
(67) (81) (150)  (150)  (150)
Resolution(A)

3.8 4.0
(150)  (150)

Figure 3.3: Mean residues incorrectly built for the protein models built for all NO-
NCS data sets. The data sets are grouped into bins based on their resolution, with the
number of data sets in each bin shown in brackets under the graph. The number of
residues incorrectly built was normalized by dividing on the number of residues in the

deposited model.

3.6.3 R-work and R-free

Tables 3.6 and 3.7 show the R-work/R-free results for the pipeline variants at the two

levels of comparison (i.e. better and at least 5% better). If R-free was not used, no
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Figure 3.4: Mean completeness for the models built for the original NO-NCS data
sets, grouped into bins based on their initial map correlation (F-map correlation); the
number of data sets in each bin is reported in brackets under the graph.

results are reported. ARP/wWARP and PHENIX AutoBuild obtained results which bet-
ter explain the X-ray observations than Buccaneer. Buccaneer in CCP4i built less
than 10% of the data sets with lower R-work/R-free compared to PHENIX Auto-
Build, which built 93% models with lower R-work/R-free than the Buccaneer pipeline.
The performance of ARP/WARP and SHELXE can only be compared with the others
pipelines in terms of R-work due to not using of R-free, and the results of ARP/wARP
were closer to those achieved by PHENIX AutoBuild than to Buccaneer. ARP/wARP
built 94% of the models with lower R-work, while Buccaneer only built 5% of the mod-
els lower in R-work (Table 3.6). When considering only cases where R-work or R-free
change by more than 5% (Table 3.7), there are comparatively few differences between
ARP/wARP and PHENIX autobuild, but both outperform the Buccaneer pipeline in a
significant proportion of cases. All pipeline variants built at least 97% of the models
with lower R-work/R-free compared to SHELXE variants, which built 3% of the mod-
els with lower R-work in the best scenario. These results remain almost the same when
the 5% improvement comparison level is considered. Using SHELXE after Parrot im-
proved R-work, but it did not significantly improve the results when compared to other
pipeline variants.

Figures 3.5 and 3.6 show the R-work and R-free obtained for different resolution
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Table 3.6: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the original NO-NCS data sets. Each row shows the percentage
of models that a pipeline variant built with lower R-work or R-free than each other
pipeline variant.

Pipeline variant ARP ARP(BSI) il(S)) PHENIX/Parrot PHENIX SHELXE SHELXE/Parrot
ARP £_fyee - - - - - - -

ARP(B 51) g _wort 47 0 47 v [
ARP(B 51 &_ free - 0 . 13 16 - -

i1(5D) Rwork 5 0 3 » I
105D R free - 3 5 - -
PHENIX/Parrot g0 | 47 2 [
PHENIX/Parrot e - 0 31 - -
PHENIX ot 43 22 o T
PHENIX £_free - 31 0 - -
SHELXE g_ort 0 1 0 19
SHELXE g_ e - - - - - - -
SHELXE/Parrot g_yorx 0 0 3 1 1 42 0
SHELXE/Parrot g _ fre, - - - - - - -

0 |

Table 3.7: Comparison of R-work/R-free (rounded to two decimal places) for the mod-
els generated from the original NO-NCS data sets. Each row shows the percentage of
models that a pipeline variant built with R-work or R-free at least 5% lower than each
other pipeline variant.

Pipeline variant ARP ARP(BSI) il(5]) PHENIX/Parot PHENIX SHELXE SHELXE/Parrot
ARP _ e - - - - - - -
ARP(B 5I) g fec - 0 28 1 1 - -
115D R-work 0 0 0 0 o I
i151) R free - 1 0 0 1 - -
PHENIX/Parrot g_norx 5 3 54 0 > 9 9
PHENIX/Parrot g_fee - 17 |51 0 2 - -
PHENIX z_,ont 4 2 55 1 . @
PHENIX g_ /e - 16 | 51 | 0 - -
SHELXE g_ort 0 0 1 1 1 0 0
SHELXE g_yee - - - - - - -
SHELXE/Parrot g_,york 0 0 1 0 1 1 0
SHELXE/Parrot g _ free - - - - - - -
0 |

ranges. As shown in the tables, PHENIX AutoBuild achieved the best values at 1.2
A-1.9 A with the results degrading significantly over at 3.2A. The results of Bucca-

neer degrade more gradually to 4.0A. R-free increased in the same manner as R-work.
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ARP/wWARP produces very good R-work at all resolutions, although the authors cau-
tion that overfitting is a problem in the dummy atom model, however, overfitting is
likely to happen with other pipelines . Nonetheless, R-free (for the hybrid Bucca-
neer+ARP/WARP runs, where it is available) is also better than for the other pipelines
at lower resolutions, in contrast to the completeness results. This suggests that the
dummy atom model has significant predictive power in explaining the X-ray observa-

tions, even when it cannot be interpreted in terms of sequenced protein chain.
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Figure 3.5: Mean protein model R-work for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is indicated in
brackets under the graph.

3.6.4 Structure correlation

Figure 3.7 shows mean correlation between built protein model and final deposited pro-
tein model for NO-NCS data sets calculated as described in Section 3.5. At resolution
better than 3.2A, both PHENIX AutoBuild with and without Parrot showed F-map cor-
relation higher than 0.9, however, PHENIX AutoBuild variants achieved close F-map
correlation to Buccaneer at worse resolutions, but they did not fell below 0.8. Struc-
ture correlation of the protein structures built by ARP/wARP showed a slightly higher
F-map correlation than those built by Buccaneer at resolution better than 2.0 A and the

F-map correlation dropped below 0.6 at resolution worse than 3.1 A; ARP/wWARP on
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Figure 3.6: Mean protein model R-free for the NO-NCS data sets partitioned into
classes based on their resolution. The number of data sets in each class is indicated in
brackets under the graph.

its own is better at resolution worse than 3.2 A compared to running ARP/wARP after

Buccaneer.
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Figure 3.7: Mean correlation between built protein model and final deposited protein
model for NO-NCS data sets partitioned into classes based on their resolution. The
number of data sets in each class is indicated in brackets under the graph.
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3.6.5 Pipeline execution time

Figure 3.8 shows mean execution times that the pipeline variants required to build the
protein models for the original NO-NCS data sets from our comparison. Buccaneer
in CCP4i was the fastest pipelines over all structures sizes. ARP/WARP averaged
less than 50 min to build small structure, making it the second fastest pipeline after
Buccaneer. Using Buccaneer in CCP4i models as an initial model for ARP/wARP
slowed the building of the models compared to the normal run of ARP/wARP, with
averages slightly higher than normal ARP/wARP. PHENIX AutoBuild, after Parrot and
without Parrot, was the slowest pipeline with averages of around 200 min to build small
structures and more than 1600 min for large structures. SHELXE required execution
times between those of ARP/wWARP and PHENIX AutoBuild, achieving the smallest
average when building small structures, but with execution times increased to over 200

min when building large structures.
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Figure 3.8: Mean pipeline execution times for the original NO-NCS data sets parti-
tioned into classes based on their structure sizes. The number of data sets in each class
is indicated in brackets under the graph.

3.7 Discussion

Comparisons of the different model building pipelines against a range of observed data

sets, both at the original resolution and after simulated resolution reduction, highlight
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different strengths and weaknesses of the different software. These may be used to
guide users in choosing the most appropriate software for their problem, and develop-
ers in the improvement of their software or the construction of hybrid pipelines using
multiple tools.

Comparison of the model completeness, as assessed by the fraction of the model
alpha carbons built to within 1.0 A of the correct location and assigned the correct
residue type, suggests that at better than 3.1 A resolution PHENIX Autobuild achieves
the most complete models, with Buccaneer and ARP/wWARP producing successively
less complete models. PHENIX Autobuild was developed mainly against data at better
than 3.0 A resolution [83]. However, the comparison of structure correlation showed
that PHENIX Autobuild built models with high correlation to final deposited models at
worse resolutions which might be considered to be used as an initial model for further
building iterations.

At worse than 3.1 A resolution, Buccaneer substantially outperforms the other
pipelines, with PHENIX Autobuild giving intermediate performance and ARP/wARP
only building a small proportion of residues when averaged across many structures.
This is consistent with expectations given that the original design criterion for Bucca-
neer was that it should be more robust against reduced resolution. Running ARP/wARP
after Buccaneer leads to results which are worse than Buccaneer, suggesting that the
residues successfully sequenced by Buccaneer are not being retained by ARP/wARP.

When comparing model completeness against initial map quality for the original
resolution data sets, all the pipelines perform well when the initial phases are good
(correlation > 0.64). Best results are obtained using PHENIX Autobuild, especially if
after initial phase improvement using Parrot [50]. This suggests that phase improve-
ment in Parrot is in some way complementary to the statistical phase improvement
which is incorporated in the PHENIX Autobuild pipeline [20]. SHELXE also showed
improved model building when starting from phases improved by Parrot.

When comparing R-work, the conclusions are somewhat different. ARP/wARP
produces the lowest R-work across all resolution ranges, and produces dramatically
lower R-work at worse than 3.1 A resolution. PHENIX Autobuild comes close to
ARP/WARP at better than 3.2 A resolution. SHELXE produced the highest R-work

because it only built the main chain. Sequence assignment and side chain modelling
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are likely to significantly reduce the R-work as long as the chains built by SHELXE do
not contain too many tracing errors.

When comparing R-free, a similar pattern emerges, although at worse than 3.1 A
resolution the R-free from the Buccaneer+ ARP/wARP pipelines show a more modest
gain over the other pipelines. (On the basis of developer recommendations and our
tests which provided as supplementary material in Appendix A.8, no free set is used
when running ARP/wWARP on its own [84]).

The differing conclusions concerning the effectiveness of ARP/WARP from the
three metrics are connected with the methodology. The use of dummy atoms in the
ARP/wWARP calculation allows the observations to be fit very well - and potentially
overfit [85], however the portion of the model represented by dummy atoms does not
contribute to the completeness score used here. The good R-free values obtained from
ARP/wARP show that the dummy atom model has significant explanatory power at
lower resolutions even when the dummy atoms cannot be explained in terms of se-
quenced main chain. This suggests that improved results may be possible either by
using ARP/WARP as a preliminary step for another method, or by further development
of the methods for interpreting the dummy atom model.

The performance of a model building algorithm is determined by multiple factors
- the ability of the method to interpret an initial map, the ability of the pipeline to im-
prove that map in the light of the model build so far, and the amount of finalization
(e.g. waters, cis peptides and so on) which is performed by the pipeline. The results
presented here suggest that Buccaneer may be the most effective tool for classifying
features in the initial map especially at lower resolution, but lacks the finalization tools
which are present in ARP/wARP and PHENIX Autobuild, and therefore leads to higher
R-work. This suggested the use of ARP/wARP to finalize the Buccaneer model, how-
ever the model sequence tends to be lost at lower resolutions, limiting the benefit of
this approach. PHENIX Autobuild has however successfully implemented Buccaneer
as an optional preliminary step (not tested here).

The model building pipelines show considerable variability in performance from
structure to structure, making a-priori recommendation of a single method for a given
data set difficult. The speed and ease of use of the model building pipelines mean

that users seldom need to try and anticipate which software will be most suitable -
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instead most users are likely to use whichever software is most convenient for them.
The results presented here may be of use in deciding which pipeline to try next in the
case where the first option is unsuccessful. ARP/wWARP and PHENIX Autobuild are
likely to be better options at better than 3.1 A resolution, where their advanced model
finalization tools lead to lower R-work. As resolution drops below 3.1 A, Buccaneer is
more likely to produce the most complete model, however manual editing to remove
wrongly built structure is also required.

Given that the software pipelines perform differently on different problem types,
the results of any test will inevitably be biased by the choice of test data. In this
case, data sets from the JCSG [72] were used - other JCSG data were also used in
the development of Buccaneer, although those data sets were excluded from the re-
sults presented here. It is possible that this has lead to some element of ‘tuning’ of
Buccaneer to work on JCSG-sourced data, although the use of different programs for
different structures within the JCSG pipeline may mitigate this. Similarly, the resolu-
tion truncation protocol used in for low resolution tests may lead to different results
compared to genuine low resolution data sets. In our case, the resolution truncation
procedure leads to better phases at low resolution than from a real low resolution data
set. Finally, the evaluation criteria also dictate the results; in particular the counting of
correctly placed and sequenced alpha carbons appear to penalize ARP/wARP at lower
resolutions compared to the results of R-work/R-free comparisons. Which model is

more desirable will depend on the needs of the downstream user.

3.8 Data and methods

The comparison tool code, the structures built by the pipelines and logs files and
the data used are available at https://www.doi.org/10.15124/d4cb35df-a42d-
4365-b539-9868730d165f.
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Pairwise running of automated
crystallographic model-building

pipelines

In this chapter, we examine the usefulness of combining the existing protein model
building pipelines to improve the built protein structures by running them in pairwise
combinations. To this end, the chapter presents the use of pairwise pipeline combina-
tions to build protein models for the same crystallography data sets as in Chapter 3,
and uses structure completeness and R-free to assess the evaluate the resulting protein

models.

4.1 Abstract

For the last two decades, researchers have worked independently to automate protein
model-building, and four widely used software pipelines have been developed for this
purpose: ARP/wWARP, Buccaneer, PHENIX AutoBuild, and SHELXE. Here, we exam-
ine the usefulness of combining these pipelines to improve the built protein structures
by running them in pairwise combinations. Our results show that integrating these
pipelines can lead to significant improvements in structure completeness and R-free.
In particular, running PHENIX Autobuild after Buccaneer improved structure com-
pleteness for 29% and 75% of the data sets we examined at original resolution and
simulated lower resolution, respectively, compared to running PHENIX Autobuild on
its own. In contrast, PHENIX AutoBuild alone produced better structure completeness

than the two pipelines combined for only 7% and 3% of these data sets.
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4.2 Introduction

X-ray crystallography has been used for several decades for the determination of pro-
tein structures with RNA/DNA, accounting for 90% of the deposited protein structures
in the Protein Data Bank as of 2020 [1, 2]. Multiple steps are required to obtain a pro-
tein structure, starting with the crystallization process, obtaining an electron-density
map from the diffraction pattern, and building the protein structure. Researchers have
investigated ways to automate the building step, and four widely used pipelines have
been developed: ARP/wWARP [13, 14, 15, 16, 17], Buccaneer [18, 19], PHENIX Auto-
Build [20, 86], and SHELXE [21, 22, 23, 24]. RNA/DNA can also be built automati-
cally by PHENIX AutoBuild and other tools. The performances of these pipelines vary
depending on electron-density map quality indicators such as resolution and phases. In
Chapter 3, we conducted a comparison between these pipelines, and we found that the
performance of the pipelines differs from one structure to another, which suggests that
there is no best pipeline for all protein structures, although there is often a best pipeline
for each protein structure [11].

Researchers have focused on different aspects of the protein-building problem
and have developed appropriate methods depending on the coverage of their test data
sets. As a result, pipelines tend to perform well when they are run using data sets with
similar features to those that were used in developing the pipeline. Having data sets
with different features generally makes the pipelines perform poorly. We addressed
this matter here by running the pipelines in pairwise combinations, where the first
pipeline from the combination built a protein structure as an initial structure for the
second pipeline. Using these pairwise pipeline combinations often improved the final

protein structure compared to using only one pipeline.

4.3 Data sets

We used the original data sets from [72], which have resolutions between 1.9 A and
32 A, and synthetic data sets obtained by truncating the original data sets to 3.2 A, 34
A, 3.6 A, 3.8 A and 4.0 A (synthetic-resolutions) as described in Chapter 3. As in our

comparison paper, 52 original data sets used in the development of Buccaneer and their
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truncated resolutions were omitted from the main results (and are only presented in the
supplementary material). This gave us 202 original and 1009 synthetic-resolution data
sets initially, and 150 original and 750 synthetic-resolution data sets after omitting the
Buccaneer development data sets.

Similarly large data sets of over 1000 structures have recently been used to im-
prove ARP/wARP [87]. However, we were unable to use these data sets because this
Chapter builds on Chapter 3, which used the original and synthetic data sets described
above.

The density modification was done by Parrot [50]. Phase improvement was per-
formed on the experimental phasing data, but NCS averaging was not used for those
structures where NCS was present, with the aim of providing starting data with poorer
phases both to test the limits of the model-building algorithms and to better simulate

the poorer phases typically associated with lower resolution data sets.

4.4 Method of the pairwise running

We ran the same versions of pipelines as in Chapter 3 to compare individual pipelines
with combined pipelines and the same high-performance cluster. As in Chapter 3, we
allowed a maximum of 48 hours for the building of each structure because that was the
highest time limit that the majority of our cluster nodes allowed.

Unlike in Chapter 3, here we tried to achieve the best performance of the pipelines,
and to do that we changed the default parameters as necessary. “Rebuild in place” is a
feature of PHENIX AutoBuild to improve input structure without adding or removing
residues, it is based on removing and rebuilding a small segment of the main chain at a
time with maintaining residues type, and it is used by default when the input structure
is close to the correct structure [20]. PHENIX AutoBuild is unable to use “rebuild
in place” when the initial structure contains unknown residues that cause a mismatch
between the input model chains and the model sequence as matching is required to use
this feature. This occurred in 13.7% and 3.5% of the structures built by Buccaneer and
ARP/wWARP, respectively. We forced PHENIX AutoBuild not to use this feature if it
failed in the first attempt. An alternative workaround for this scenario is to remove the

unknown residues before using the initial structure in Phenix AutoBuild.
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SHELXE was not run after other pipelines because it only builds the main chain,
while other pipelines build complete structures. However, SHELXE structures were
used as input for other pipelines as the initial structure. Additionally, SHELXE struc-
tures were only built for the original-resolution data sets, as the synthetic structures
fall outside the resolution range recommended for SHELXE.

We considered the same evaluation measures as in Chapter 3 except R-work. The
different model parameterizations used by different model building programs lead to
overfitting and underestimation of R-work in some cases, so we focus on R-free in this
comparison. While the use of a free set is not normally recommended for ARP/wWARP,
in this experiment we are not primarily interested in individual pipeline performance,
so we used a free set for analysis purposes [87]. ARP/wWARP does not necessarily
set aside the same free reflections as the other pipelines, so the REFMAC evaluation
step was changed to use the same free set as that chosen by ARP/wWARP when run
immediately after ARP/WARP. Dummy atoms were not removed unless ARP/wWARP
removed them, as they did not significantly affect R-free.

In the next section, we deemed one pipeline or pipeline combination better than
another when it produced an improvement of at least 5% in the relevant measure (com-
pleteness or R-free); other improvement thresholds are reported in Appendix B. Execu-
tion time was not considered here, as this was compared before for individual pipelines

in Chapter 3.

4.5 Results

4.5.1 Overview

We present the results of our comparison using the pipeline and pipeline combination
identifiers defined in Table 4.1. Table 4.2 shows the number of “complete”, “inter-
mediate” and “failed” data sets for each of the pipeline variants (i.e., pipelines and
pipeline combinations) that we used in our experiments. The data sets were marked as
“intermediate” either when the 48-hour time limit was reached while the pipeline was
still executing, or when the pipeline stopped/crashed before building the final structure.

Data sets for which no structure was built were marked as “failed” and this occurred

when the time limit was reached before the pipeline built an intermediate model.
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Table 4.1: Pipeline and pipeline combination identifiers (IDs) used to present the re-
sults.

ID Description

A ARP/WARP

B Buccaneer in CCP4i using 5 iterations
P PHENIX AutoBuild

P* PHENIX AutoBuild with Parrot

S SHELXE

S* SHELXE with Parrot

x—y Pairwise pipeline combination, with pipeline y executed after pipeline x, e.g., A — P* denotes
the pairwise combination in which PHENIX AutoBuild with Parrot is run after ARP/wARP

As shown in Table 4.2, structures were successfully built for most of the data sets;
the pipelines only failed to build six data sets (original and synthetic data sets) out
of 1211 data sets. After omitting the 52 data sets (used in Buccaneer development,
cf. Section 4.3) and the failed data sets, 148 (original) and 746 (synthetic) data sets
were used in the analysis, representing 74% of the original and synthetic data sets.

Table 4.3 shows the mean and standard deviation (SD) for the structure complete-
ness and R-free achieved for these data sets by each pipeline variant. The pipelines
built structures with high completeness from the original data sets, the majority of
which are better than 2.5 A. The highest mean completeness was 94% with 11% SD
(for PHENIX AutoBuild followed by Buccaneer), compared to the lowest mean com-
pleteness of 78%, with 33% SD (for SHELXE followed by ARP/wARP). The highest
mean completeness dropped to 50% with 30% SD for the synthetic data sets, whose
resolution ranges from 3.2 A t0 4.0 A. From the original data sets, the pipelines built
the structures with a mean R-free between 0.26-0.33 and a SD between 0.04-0.10.
When building the structures from synthetic data sets, the mean R-free increased to

between 0.38-0.52 with SD between 0.05-0.08.

4.5.2 Structure completeness

Figure 4.1 shows the structure-completeness results for the original-resolution data
sets. Running the pipelines in pairwise combinations shows significant improvements
compared to running a single pipeline. For example, both PHENIX AutoBuild post
ARP/WARP and Buccaneer post ARP/WARP achieved at least 5% higher structure

completeness than ARP/WARP alone for 28% or more of the data sets; in contrast
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Table 4.2: Complete and intermediate models produced by the 23 pipeline variants for
the original and synthetic-resolution data sets, where ‘(T)’ and ‘(C)’ denote intermedi-
ate models produced by pipeline executions that timed out and crashed, respectively.

Pipeline variant original synthetic
Complete Intermediate  Failed Complete  Intermediate  Failed

A 202 0(T) 0(C) 0 1008 I(T) 0(C) 0
A — P* 201 1(T) 0(C) 0 1007 2(T) 0(C) 0
A—B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0
B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0
B — P* 197 4(T) 0(C) 1 1005 0(T) 0(C) 4
P* 199 I(T) 1(C) 1 1001 8(T) 0(C) 0
P*— A 200 1(T) 0(C) 1 1008 1(T) 0(C) 0
P*—B 201 0(T) 0(C) 1 1009 0(T) 0(C) 0
S* 200 2(T) 0(C) 0 - - -
S*—A 202 0(T) 0(C) 0 - - -
S*—B 202 0(T) 0(C) 0 - - -
S*—P* 196 4(T) 0(C) 2 - - -
A—P 199 2(T) 0(C) 1 1009 0(T) 0(C) 0
B—P 200 0(T) 0(C) 2 1003 2(T) 0(C) 4
P 199 1(T) 0(C) 2 1001 7(T) 0(C) 1
P—A 200 0(T) 0(C) 2 1002 6(T) 0(C) 1
P—B 200 0(T) 0(C) 2 1008 0(T) 0(C) 1
S 200 2(T) 0(C) 0 - - -
S—A 202 0(T) 0(C) 0 - - -
S—B 202 0(T) 0(C) 0 - - -
S*—P 197 3(T) 0(C) 2 - - -
S—P* 198 2(T) 0(C) 2 - - -
S—P 197 3(T) 0(C) 2 - - -

Models used in the comparison: 148 original and 746 synthetic .

ARP/wWARP on its own was better than the two pipeline combinations for only 6%
and 7%, respectively, of the data sets. Similarly, running PHENIX AutoBuild after
Buccaneer increased the completeness for 30% of the data sets compared to running
Buccaneer on its own, while Buccaneer alone was only better than this pipeline com-
bination for 7% of the data sets.

Running PHENIX AutoBuild in combination with Buccaneer led to higher com-
pleteness than using ARP/WARP after or before PHENIX AutoBuild. Using Buc-
caneer to build an initial structure for PHENIX AutoBuild resulted in completeness

improvements (of at least 5%) for 24% of the data sets, compared to only 10% when
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Table 4.3: Mean and standard deviation (SD) for the structure completeness and R-free
for the original and synthetic data sets. The tables are sorted by structure completeness.

Original data sets

Pipeline  Completeness R-free

mean SD mean SD
P*—B 94 11 030 0.04
B—P* 93 8 026 0.04
B_P 93 10 026  0.04 Synthetic data sets
S—pP* 92 7 026  0.04 Pipeline  Completeness R-free
S*—=P* 92 9 026 0.04 mean SD mean SD
S*—P 92 9 026  0.04 P*—B 50 30 043  0.08
S—P 92 9 026 0.04 B—P 49 29 038  0.07
P*—A 92 11 028 0.04 P—B 49 30 043  0.08
P—B 92 14 0.31  0.05 B—P* 48 29 0.38  0.07
P* 91 10 026  0.04 B 42 31 045 0.08
P 90 15 027  0.05 A—B 40 32 045  0.09
A—P 90 16 027  0.06 P* 25 16 042  0.05
A—P* 90 17 027  0.06 P 25 16 042  0.05
P—A 89 17 0.28  0.06 A—P 21 18 041  0.08
S—B 89 18 0.32  0.06 A—P* 20 18 0.41 0.08
S*—B 89 18 032  0.06 A 3 9 - -
A—B 88 22 032  0.06 P*—A 2 8 0.51  0.06
B 85 23 033  0.07 P—A 2 8 052  0.06
S* 82 18 - -
S*—A 81 31 030  0.09
A 80 30 - -
S 79 21 - -

S—A 78 33 0.31 0.10

ARP/wARP was used to build an initial model. These results dropped slightly to 20%
and 9%, respectively, when Parrot was used before PHENIX AutoBuild.

It is interesting to consider to what extent the pairwise combination of pipelines
produces a better model compared to running both of the component pipelines and
picking the best result; this allows us to distinguish between the case where the sec-
ond pipeline simply conserves the good features of the first and where the pipelines
have complementary features which can augment one another. Table 4.4 shows the
percentage of the original and synthetic data sets that are built at least 5% higher in
structure-completeness by the combined pipelines or either of the two pipelines alone.
Running PHENIX AutoBuild alone built the structures with higher completeness com-
pared when ARP/WARP ran before it, 11% and 49% of the original and synthetic
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