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 I 

 

Abstract 

 

  

Recent developments in computer science have led machine learning to become 

one of the most used tools in artificial intelligence in modern times. It is applied in many 

areas of practical life and not limited to academia or engineering. This is due to machine 

learning’s flexibility that makes it applied easily in a variety of problems areas, which 

can be solved if the data is properly managed. 

 

This thesis focuses on using a machine learning approach to a problem that has been 

addressed in publications many times using model predictive control. 

 

The similarities that will allow mathematical modelling to be replaced with a machine 

learning approach will be analysed and evaluated and ultimately two approaches will be 

implemented. 

 

The problem to be solved is to predict a table tennis ball while uncertainties arise in the 

sensing process in an average game of table tennis. 

 

The results of this research are compared with current different approaches to solve the 

prediction of the ball. The focus and novelty lie in the improved accuracy of the 

predictions using suitable neural networks architectures. 
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Nomenclature 

 

Mathematical notation 

 

𝑚  Mass 

𝐶𝐷  Coefficient of air resistance 

𝑝  Air density 

𝑉  Velocity vector 

𝐹  Force vector 

𝐴  Cross-section of the area of the ball 

𝜔  Ball spin acceleration 

𝐶𝑀  Magnus force coefficient 

𝑟  Ball radius 

𝑔  Gravity 

 

Neural Networks 

 

𝑥  Neuron inputs 

𝜔  Weights 

𝑦  Neuron activation 

𝜃  Neuron threshold 

𝑃k  Perceptron weights 

𝑛  Kernel value 

𝑚  Feature map 

𝑤𝑖𝑗  Convolution filter 

𝐼  Image 

𝑈  Pixels 

𝑐  Colours 

𝐼𝐹𝑔  Background frame 

𝐼𝑔  Greyscale 

𝑇  Tolerance
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Chapter 1 

Introduction 
 

Table tennis robots are currently used in control science as tools to prove the 

capability of modern predictive techniques to control the trajectory of the ball within 

the limits of table tennis rules [5], [10], [14], [16], [41], [51], [81]. In order to control 

the ball, it is necessary to predict the ball trajectory to ensure contact between the 

bat and the ball. 

 

In most of the related research publications [12], [21], [63], [86], the principles 

of computational steps that are needed to control the ball are presented similarly, 

but the methods used to accomplish the steps vary greatly. Due to this variation in 

methods, the most basic and common approaches are reviewed and explained to 

reflect the most current research, in order to have a better idea of the reasoning that 

led to the particular methodology employed in this thesis. 

 

1.1  Problem statement 

Current robots capable of playing table tennis are not able to play 

competitively against a human player due to their very limited control over the ball 

[33], [62]. This limited control is not due to hardware issues. This is justified on the 

grounds that the robots can be observed to be capable of achieving suitably fast 

speeds and degrees of precision [14], [15], [16].  Due however to the 

inconsistencies in the design of the prediction step, the ball is predicted with errors 

that cause miscalculation in the angle of the bat for controlling the ball. This can 

even cause the ball to bounce out of bounds with large errors in the returns [24]. 
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In this research, some of the most regularly observed errors, which cause 

this problem, will be investigated and a solution will be proposed alongside the 

reasoning that led to this solution. 

 

1.2  Justification 

 The ability of a robot to predict and control a moving object is of great 

importance in several areas of research. While some of the current activities and 

tasks that robots are able to accomplish in industry are being performed with an 

ample frame of time [39], [60], some of the most challenging and important 

problems are limited not only in time but also in resources, such as the physical 

space available. 

 

 These time constraints alongside the physical limits are present in the sport 

of table tennis. Robots capable of performing correctly in this problem may provide 

viable solutions to other similar problems [47]. 

1.3  Objectives 
 

 As stated previously, in order to control the table tennis ball, there are several 

tasks that need to be observed; consequently several objectives need to be 

achieved. 

1.3.1 General objective 
 

 Successfully predict the trajectory of a table tennis ball through a machine 

learning approach which considers the nonlinearity of the ball. 
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1.3.1 Supporting objectives 
 

● Track the table tennis ball and generate a usable database for a machine 

learning approach. 

● Predict the trajectory of the ball without spin through machine learning. 

 

1.4  Scope 
 

 This research aims to prove that a machine learning approach is capable of 

replacing a traditional prediction of the ball, while retaining a similar degree of 

accuracy and precision. 

1.5  Contributions 
 

 The result of this research is a novel method which applies machine learning 

to solve a very particular problem, which provides an example for future researchers 

wanting to solve similar problems.  

 

 A potential impact of this research could lead to a commercial robot that can 

carry out training alongside other robots or with humans at a basic and intermediate  

level of table tennis and steadily improves its play.  
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1.6 Thesis outline 
 

● Chapter 1: The first chapter contains the basic information regarding the 

structure of the thesis, the objectives and the hypothesis. 

 

 Chapter 2: The second chapter review the literature that sustains the current 

research and details the general research approach that has been done 

regarding the specific problem established in the previous chapter. 

 

 Chapter 3: The third chapter focus on the technical preliminaries of the 

research, explains in detail how the machine learning tools work and their 

general implementation. 

 

 Chapter 4: In this chapter the novel methodology is introduced and justified. 

The reasoning on how to properly address the problem to have a viable 

solution is argued. 

 

 Chapter 5: The experiments and results are explained in detail. Following the 

previous chapter’s theory, the results are now presented in empirical detail.  

 

 Chapter 6: This chapter summarizes  the contributions of this research. 

Conclusions are drawn and future work is outlined. Some potential future  

applications of this research are also listed. 
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Chapter 2 

Literature review 
 

 This chapter provides a summary of the current state of research regarding 

table tennis robots and some topics of table tennis. These topics are relevant for the 

control of the ball and will be reviewed in detail. 

 

2.1 Current table tennis robots 

 

 The majority of table tennis robots are designed to solve a particular 

challenge in terms of the table tennis methodology, so the robots are designed, 

constructed and tested in specific controlled settings. This does not mean that all 

the current table tennis robots are used exclusively in laboratories [65] [67] [69], 

there are a handful of robots that are constantly shown to the public and used in 

more general settings to test a more realistic approach. An example of this case is 

the robot FORPHEUS [90], from the OMRON corporation. 

 

While some of the reviewed robots are demonstrated in real scenarios, they 

still fail to tackle efficiently the problem of predicting the ball when it is spinning. 
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Figure 2.1 FORPHEUS at the CES 2018 [90]. 

 

2.2 Nonlinear modelling approach 

 

The ball spin has been a matter of “debate” for the last few years in terms of 

table tennis prediction. Some researchers consider it an essential part of the game 

[1], [2], [3], [4], while other researchers argue that the spin of the ball could be 

ignored due to the relatively small effect it might have on fast moving balls [5], [6], 

[7]. This inconsistency on how to properly manage the spin of the ball has caused 

several researchers to come up with different methods to simplify the spin to keep 

using the previous mathematical models [2]. 
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Apart from ball aerodynamics, the spin of the ball is the main factor that 

causes the system to be considered nonlinear. As such, the approach to properly 

deal with this problem has been the subject of research for the last few years and 

some researchers attempted to find ways to calculate the spin of the ball in novel 

ways and realise how exactly this spin is influencing the trajectory of the ball in the 

air and when it bounces on the table [21], [22], [24], [25], [26], [27], [28], [29], [34]. 

 

Most of the research regarding the spin use a similar approach in terms of 

the mathematical model and varies mostly on how to properly quantify the spin of 

the ball itself. By analysing one such research in detail, it is possible to understand 

the importance of quantifying the spin of the ball. 

 

According to the results in the papers [3], [4] and [8], the equation that 

represents the flight of the table tennis ball is represented as follows: 

 

�̇� =
𝐹

𝑚
= −

1

2𝑚
𝐶𝐷 𝑝 𝐴 ‖𝑉‖𝑉 + 

1

2𝑚
𝐶𝑀 𝑝 𝐴 𝑟 𝜔 ×  𝑉 + 𝑔  (2.1) 

 

Where F is the total force on the ball, m is the mass of the ball, 𝐶𝐷 is the 

coefficient of air resistance, 𝑝 is the air density, A is the cross-sectional area of the 

ball, V is the velocity vector 𝑉 = [𝑉𝑥𝑉𝑦𝑉𝑧 ]
𝑇, 𝐶𝑀 represents the coefficient of Magnus 

force, 𝑟 is the radius of the ball, 𝜔 = [𝜔𝑥𝜔𝑦𝜔𝑧 ]
𝑇 is the angular velocity vector, g is 

the gravity and ‖𝑉‖denotes the length of vector V. 

 

The above relationship between the  spin velocity vector and the lateral  

velocity vector can be converted to a discretised motion model, which makes the 

assumption that the sample period is very short [57], the discretised relationship 

with a sampling period 𝑇𝑠 is expressed as follows: 
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[

𝑉𝑥(𝑘 + 1) + 𝑘𝑣𝑣𝑥(𝑘)

𝑉𝑦(𝑘 + 1) + 𝑘𝑣𝑣𝑦(𝑘)

𝑉𝑧(𝑘 + 1) + 𝑘𝑣𝑣𝑧(𝑘) + 𝑔𝑇𝑠

] = [

0 𝑘𝑚𝑣𝑧(𝑘)𝑇𝑠 −𝑘𝑚𝑣𝑦(𝑘)𝑇𝑠
−𝑘𝑚𝑣𝑧(𝑘)𝑇𝑠 0 𝑘𝑚𝑣𝑥(𝑘)𝑇𝑠
𝑘𝑚𝑣𝑦(𝑘)𝑇𝑠 −𝑘𝑚𝑣𝑥(𝑘)𝑇𝑠 0

] [

𝜔𝑥
𝜔𝑦
𝜔𝑧
](2.2) 

 

𝑘𝑣 = (𝑘𝑑||𝑉(𝑘)||𝑇𝑠 − 1)                                      (2.3) 

 

And due to the spin velocity being perpendicular to the Magnus force: 

 

[

𝑉𝑥(𝑘 + 1) + 𝑘𝑣𝑣𝑥(𝑘)

𝑉𝑦(𝑘 + 1) + 𝑘𝑣𝑣𝑦(𝑘)

𝑉𝑧(𝑘 + 1) + 𝑘𝑣𝑣𝑧(𝑘) + 𝑔𝑇𝑠

] × [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = 0        (2.4) 

 

It is clear that the spin of the ball could potentially play a major role in 

defining the trajectory of the ball. The main issue is how can the spin be detected 

and quantified. 

 

2.3 Ball detection and prediction 

 

The most common method to track the ball is through optical computer 

vision. This method involves a setup of cameras that record the ball while it is 

moving in the air, process the images obtained from the cameras and find the ball in 

the current frame. The exact method to track the ball varies, as in [13], [17], [24], 

[35], but due to the nature of the ball, detecting the spin stays to be a challenge 

since the texture of the ball is homogenous and that makes it harder to sense 

whether  the ball is spinning. 
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The main issue of ball tracking by cameras is that the ball is moving at a 

considerable speed and hence  the frame rate is increased while the image 

resolution is lowered. If the ball spin needs to be carefully measured  then the 

resolution should take priority while the frame rate is to be lowered [21]. 

 

Due to these issues, several research has been done specifically to find an 

efficient way to detect and quantify the spin of the ball [24], [27], [34], some of the 

methods propose to add a marker to the ball to make it easier to notice the spin [1]. 

While this approach proves to work, in a real-life situation it might not be entirely 

possible to implement due to game rules and the specific details needed for it to 

work properly. 

 

However, the above reference in [1] is of some significance due to reaching  

an important conclusion that would lead in part to the basis of the solution 

presented in this thesis. 

 

(

𝑉�̇�
�̇�𝑦

𝑉�̇�

) = [

−𝑘𝑑||𝑉||𝑉𝑥 + 𝑘𝑚(𝜔𝑦𝑉𝑧 − 𝜔𝑧𝑉𝑦)

−𝑘𝑑||𝑉||𝑉𝑦 + 𝑘𝑚(𝜔𝑧𝑉𝑥 − 𝜔𝑥𝑉𝑧)

−𝑘𝑑||𝑉||𝑉𝑧 + 𝑘𝑚(𝜔𝑥𝑉𝑦 − 𝜔𝑦𝑉𝑥) − 𝑔

]         (2.5) 

 

 The kinematic model of the ball in mid-flight (2.5) can be obtained from the 

previous equations (2.4) and (2.3), as explained in the paper [1]. Since this model is 

only describing the interaction between the ball and the air, it needs to be 

complemented with another set of equations describing the behaviour when the ball 

hits the table, the derive process is fully explained in paper [2]. 
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{
 
 
 

 
 
 
𝑉𝑥𝑜𝑢𝑡 = [𝑉𝑥𝑖𝑛𝜔𝑦𝑖𝑛]𝑏1

𝑉𝑦𝑜𝑢𝑡 = [𝑉𝑦𝑖𝑛𝜔𝑥𝑖𝑛]𝑏2
𝑉𝑧𝑜𝑢𝑡 = 𝑉𝑧𝑖𝑛 𝑏3

𝜔𝑥𝑜𝑢𝑡 = [𝑉𝑦𝑖𝑛𝜔𝑥𝑖𝑛]𝑏4

𝜔𝑦𝑜𝑢𝑡 = [𝑉𝑥𝑖𝑛𝜔𝑦𝑖𝑛]𝑏5
𝜔𝑧𝑜𝑢𝑡 = 𝜔𝑧𝑖𝑛 𝑏6

                       (2.6) 

 

Where 𝑏1, 𝑏2, 𝑏4, 𝑏5∈𝑅
2 and 𝑏3, 𝑏6∈𝑅. This indicates that the spin of the ball, 

𝜔, is directly correlated to the speed in all its axis when flying and bouncing on the 

table, if we analyse the effect of the spin after it hits the table, it can be realised that 

the equation to calculate the spin, 𝜔𝑜𝑢𝑡, is very similar to the equation to obtain the 

velocity [30]. Since there are no extra factors to take into account (such as an 

external force like the air resistance affecting both the velocity and the spin when 

they hit the table), it can be proven that the first few moments after the hit are 

crucial in order to predict the trajectory and the bouncing of the ball on the table 

[72], [73]. To get a decent prediction it is sufficient to take camera measurements 

shortly after the ball hits the table as per some research have demonstrated 

previously [23], [18].   

 

2.4 Control of the ball 

 

After being able to predict the trajectory of the ball, the next step is to interact 

with it through the bat. This interaction will be the one controlling the ball and giving 

it a new trajectory that we should be able to define through the positioning of the 

bat. 
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Most current table tennis robots follow the same approach in order to 

accomplish this control over the ball [50]. The  analysis of past  research, for 

example [9], explaining a methodology to design and control the landing points for a 

competitive table tennis robot, it is possible to understand the basic methodology 

necessary to control the ball. There is no need to go into the details of the 

intricacies of the ball control as the focus here is  in the broader methodology. 

Figure [2.4.1] outlines the principles of the methodology in [9] as built on well-

established techniques. 

 

 

Figure 2.4.1 Example of a typical control method for a table tennis robot [9]. 

 

It can be noted that the novelty of the research presented relies on the 

learning algorithm being implemented as a complement to the current system rather 

than replacing any step of the method. The approach taken to control the ball is 

proposed to be the same as in [9]. In essence one should  first sense  the ball 

trajectory in the past, until shortly after the bounce, and predict its future trajectory 
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before the controlled hit. This is in essence “visual perception and prediction“ to 

create a model to predict the trajectory once it hits the bat, followed by known 

methods of bat control.  

 

Every researcher might have a different methodology to achieve the control 

of the ball but, in a general situation, the approach previously explained is the one 

used in most research [4], [8], [14], [16], [18], [24], [25], [31], [43], [64], to control the 

ball. 

 

2.5 Machine learning in table tennis 

 

Machine learning is a set of algorithms in control sciences that has been 

used in the last few years in many applications with varying degrees of success. 

These algorithms are capable of performing different types of tasks and most of 

them are flexible in their approach when solving a problem.  

 

Machine learning has been applied to some extent to table tennis [32], [37], 

[53] and the results so far have been promising. However, if we analyse the results 

obtained in some of these papers [86], [87], while they were able to accomplish their 

objective, the problem was proposed as linear in nature and thus the results can 

only apply if the problem remains limited to that linearity. It has been established 

through equation (2.6) that the spin of the ball has a direct correlation to the velocity 

of the ball so when the spin is present, which is an average occurrence in non-basic 

nor entry level table tennis game, the problem needs to be defined as nonlinear. 

This nonlinearity of the problem is still pending to be properly addressed in a 

machine learning approach and is causing a potential problem yet to be properly 

examined. 
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2.5.1 Machine learning applied to predicting the ball trajectory 
 

One of the main areas where a machine learning approach is being applied 

is in the prediction of the ball. This is due to the prediction of the ball being the first 

stage to control it. 

 

 An example of this research can be appreciated in the paper that managed to 

control the ball through a regression neural network [86].  

 

The results in this research [86] manage to successfully confirm that machine 

learning is a viable tool to generate a prediction of the trajectory of the ball. 

However, it can be appreciated that the tool is only used to predict the final ball 

position, which is the main objective in a prediction problem, but for classic control 

purposes it would need more information in order to build up a system capable of 

handling the ball, such as speed and acceleration. Thus, this approach, while 

useful, confirms that it would need a new control system compatible with machine 

learning in order to work as intended. 

 

The main issue with this research is that a neural network is being used to 

propose the mathematical equation for a classic predictive control approach, which 

is still bounded by certain limitations such as having to compute the equation as a 

sum of serialised finite number of equations, which for a machine learning based 

approach it might not be a necessary step.  

2.5.2 Machine learning applied to controlling the ball trajectory 
 

In recent years, research has accomplished the first steps towards controlling 

the ball trajectory using a machine learning approach. One of the most important 

research projects that managed to do so, used a reinforcement learning 

methodology [88]. 
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Most of these new approaches [61], [66], [68] are focusing exclusively on the 

control of the ball, which yields good results but in some of the tests, the robot was 

not able to properly hit the ball back as expected due to it not positioning itself 

correctly, which happened due to an incorrect prediction of the ball. 

 

 It is important to emphasise that the control of the ball should be a priority 

only if the prediction of the ball position is already accurate enough and therefore 

this research will focus entirely on the prediction of the ball. 
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Chapter 3 

Technical preliminaries 
 

 In this chapter, the theories, and tools necessary to carry out the experiments 

will be discussed and explained, and they will emphasise how they will be applied in 

the next chapter. 

 

3.1 Machine learning 
 

 Within control sciences, and within that in artificial intelligence, machine 

learning is a set of algorithms to improve performance of feedback control systems. 

This is achieved through algorithms capable of adapting themselves  and improving 

their  own performance based on data they collect. 

 

 Machine learning algorithms are also capable of finding patterns in a 

database, which then are processed to obtain a decision and a prediction of the 

solution, as part of the feedback control processes. The method these algorithms 

operate varies from  algorithm to algorithm but they can be roughly divided into two 

groups of techniques.  
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3.1.1 Unsupervised learning 
 

This technique is applied when the data needs to be explored, the objective is 

not particularly set and the pertinent information in order to achieve the objective 

has not been properly extracted. This method is mostly used in order to reduce the 

amount of data and find probable patterns. 

 

Since this problem have a defined objective and the data is already fit for 

purpose, as evidenced in previous research [19], [36], [58], [89], this technique is 

not suitable for this research. 

 

3.1.2 Supervised learning 
 

These algorithms require an established set of input and output data, which 

then it uses to train a model to generate predictions to be able accommodate a new 

set of data. 

 

The main difference with unsupervised learning is that in this case the 

algorithms will perform as a method of classification, a tool capable of predicting 

discrete responses, and regression, prediction of continuous responses. 

 

Within the classification algorithms some of the most common tools are 

logistic regression, k-nearest neighbour, super vector machine, neural network, 

naïve Bayes, genetic programming, discriminant analysis, decision tree and bagged 

and boosted decision trees, the details for each tool can be find in specialised 

books and research on neural networks [74], [78].  
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The most common examples of regression algorithms are linear regression, 

nonlinear regression, Gaussian process regression model, support vector machine 

regression, generalised linear model and regression tree. 

 

For this research, only two of the most common and suitable algorithms will 

be selected to make an analysis of both methods and discover the weaknesses and 

potential strengths of the approaches once applied to the problem. 

 

3.1.3 Genetic programming 
 

 The heuristic method chosen to replace the mathematical model in the 

prediction of the ball trajectory was genetic programming. This tool was chosen over 

other algorithms because in other research [44], [83] with similar elements, its 

effectiveness has already been proven to be able to optimize functions, however it 

had not been used to propose an approach of this magnitude. 

 

The idea on which genetic programming operates is basically the genetic 

evolution of living organisms, which dictates that a living being will evolve to better 

suit its environment and any organism that fails to do so is destined to perish. This 

simple natural rule is then transferred to a computational field and in the case of this 

research it can be understood that the proposed replacement of the mathematical 

model must be "evolved" until it can be considered suitable, which means that it is 

applicable to our system and that it performs its function with an acceptable degree 

of precision. 

 

Since genetic programming performs similarly to how genes in real life act, 

the methodology of its function can be explained as the following: 
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1. Generate an initial population. 

2. While the termination criteria is not met, which I will detail later: 

a) Select individuals, which in this case are functions, for reproduction and 

elimination, considering their quality. 

b) Combine and / or vary new individuals. 

c) Add and remove individuals to generate a new population. 

 

In this particular case, the functions, or individuals, are represented as trees 

which are made up of 2 elements: 

 

 Terminals: Elements composed of the possible inputs to the individual, that 

is, the number of variables that the function will consist of. 

 

 Parity functions: It is composed of the operators and functions that can 

compose an individual. For example: Boolean functions: and, or, not, xor. 

Arithmetic functions: addition, subtraction, multiplication. Conditional 

statements: if, then, else, case, switch, etc. 

 

For this research, I used arithmetic functions and I tried to make them simple 

functions so as not to complicate the equation that will replace the mathematical 

model and that it was computationally easy to calculate, besides that it is not 

convenient to use a large number of functions, because this increases the size of 

the search space and could encourage more complicated processing. Once the 

terminals and the parity functions have been assigned, the following steps should 

be met in order to apply genetic programming: 

 

Initialization: It consists of forming the initial population of individuals. One of 

the main parameters is the maximum size of the resulting tree. This limit can be 
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imposed on the number of nodes or on the depth of the tree, usually, two methods 

are used to generate this population, the growth method and the complete one. 

 

 The growth method: Let T be the set of terminals and F the set of functions. 

An element of F is randomly chosen to form the root of the tree. The content 

of the child nodes of the root is chosen from F ∪ T. If the chosen value is a 

function, this procedure is repeated with the children but if the chosen value 

is a constant, that branch of the tree is terminated. 

 

 The complete method: The full method grows the tree similarly to the grow 

method, but elements are always chosen from the set of functions, unless 

the node is at maximum depth, in which case only elements of T are chosen. 

The method results in balanced trees of maximum depth. 

 

If the number of nodes is used as a size limit, growth is terminated when the tree 

size has reached the limit. Once the populations are initialized and the method to 

grow the population is defines, the next step is to design the genetic operators, 

which are the ones that will begin to vary the individuals. The most common 

operators are: 

 

 Reproduction: It is the simplest operator of all. An individual is selected and 

duplicated, leaving two copies within the population. 

 

 Crossover: The crossover operator combines the genetic material of two 

individuals by exchanging pieces among the parents in order to produce two 

descendants, a node is then randomly chosen from each tree and then the 

subtrees under these nodes are exchanged. 
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 Mutation: It is applied on a single individual and acts with a probability, in 

general, very low and that is a parameter that can be calibrated. There are 

many types of mutation, for example: 

 

• Point mutation: A single node is exchanged for another of the same class. 

• Permutation: The arguments of a node are permuted. 

• Survey: New individual is generated from a subtree. 

• Expansion: A terminal is exchanged for a randomly generated tree. 

• Collapse: Subtree is exchanged for a terminal. 

• Subtree Mutation: Subtree is replaced by another randomly generated one. 

• Gene Duplication: Subtree is replaced by a random terminal. 

 

Quality function: Quality is the measure used by genetic programming, 

during simulated evolution, to measure how good a solution is. In this case, 

checking if the final equation meets the requirements to be suitable replacement for 

the mathematical model. In order to achieve this objective, a selection process 

needs to take place. 

 

Selection: It is the process by which individuals are adopted from one 

generation to another, there are different types of selection, the first of them is 

based on genetic algorithms: 

 

For a population of "N" individuals: 

1. Choose two parent individuals, favouring those with the best quality. 

2. Apply crossover 

3. Apply mutation  

4. Reproduce 

5. Repeat until a new generation of "N" individuals is completed 

 



  

 

  

 21 

 

Another technique is to run tournaments: 

1. Choose two groups of n individuals randomly from the population. 

2. Select the best element from the first group, and the best element from the 

second. 

3. Apply crossover 

4. Apply mutation. 

5. The two new individuals replace the worst of each of the groups. 

 

This latter technique is generally preferred for reasons of efficiency. The 

quality function may be inspired by the current mathematical model and use a very 

similar equation, this way it is ensured that the result is similar to this function but 

with some variations. It is only needed to assign one function as a quality function in 

order to check that the resulting new equation from the subtree process is 

effectively convergent and the same will be applied to each function in order to 

compare the results and check which one gives a better convergence. 

 

The stop condition is when the best individual in the population has an 

acceptable quality, where quality is determined by how close the equation is to 

converging in comparison to the original mathematical model equation. 

3.1.4 Neural networks 
 

 A neural network is an interconnected set of simple processing 

elements, units or nodes, whose functionality has some similarity on the animal 

neuron. The processing ability of the network is stored in the connections between 

units, called weights. These are obtained through an adaptation or learning process 

from a training set. 
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Neural networks are a massively parallel distributed processor constructed of 

simple processing units that is naturally prone to storing experimental knowledge 

and making it available for use. 

 

An artificial equivalent of the biological neuron is the threshold logical unit, 

while the synapses are modelled as scalar weights. Each weight multiplies by one 

input before being sent to the equivalent of the cell body. In consequence, all the 

products are added arithmetically to give as a result the activation of the node. 

 

The activation is compared to a threshold, if the activation exceeds this 

threshold, the threshold logical unit produces a 1, otherwise it returns a 0. There are 

other types of activation methods but the one described earlier is among the most 

linear. Each entry is multiplied by a weight before being sent to the equivalent of the 

cell body through the neuron. 

 

The term "network" will be used to designate any system of artificial neurons, 

from a simple node to an entire arrangement of nodes interconnected in some way 

between them. One typical architecture is the layered arrangement, where nodes in 

one layer connect forward with neurons in the next layer. This type of arrangement 

is just one of diverse approaches in which the nodes in a network can be 

interconnected. 

 

In the case of real neurons, their synaptic forces can be modified according 

to the input stimuli as needed, in the case of an artificial neuron this is manifested in 

the modification of the values of the weights. 

 

In terms of information processing, the system starts from a default state 

stored in weights, which can change through an adaptation process based on 

stimulations obtained from a pattern set. 
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One mechanism of adaptation of the weights is through what is known as 

supervised learning, which means that an input pattern is presented at the input of 

the neural array and the response of the network is compared to a specific target 

output. The difference between the network output and the target output determines 

how the network weights are modified. 

 

Each method intended to modify the weights constitutes a learning rule, 

which work under the approach that after adjusting the weights, another new input 

pattern is presented to the network and the new changes to the weights are made. 

This sequence is repeated in an iterative manner until the behaviour of the network 

converges. This whole process of adjusting weights is known as a learning 

algorithm. 

 

If the network has learned the structure of the problem in question, the 

network should correctly classify the new input pattern. This characteristic is known 

as the generalizability of the network. 

3.1.5 Threshold Logic Unit 
 

The threshold logic unit may have a finite number of inputs,𝑥1, 𝑥2, . . . 𝑥𝑛 , and 

the effect of each synapse is modelled by a number or weights, 𝜔1, 𝜔2, . . . 𝜔𝑛, these 

weights will amplify the input of each neuron, 𝑥n , separately. Resulting in the 

following: 

𝑇𝐿𝑈 = [𝜔1𝑥1, 𝜔2𝑥2, . . . 𝜔𝑛𝑥𝑛]                 (3.1) 
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Figure 3.1.5.1 Graphical example of a typical Threshold Logic Unit. 

 

The excitation and inhibition actions are modelled, respectively by positive or 

negative values. Each of these products can be positive or negative depending on 

the sign of the weight. 

 

These products are combined trying to emulate the process that occurs in the 

axon, in the case of threshold logic unit, 𝑎 , this is done simply by adding the 

products, resulting in the activation of the corresponding neuron: 

 

𝑎 = 𝜔1𝑥1 + 𝜔2𝑥2, + . . . + 𝜔𝑛𝑥𝑛              (3.2) 

 

The result of the neuron activation, 𝑦, can then be understood to have two 

main types of responses, one of them is the step response, in which a threshold, 𝜃, 

needs to be defined and when this threshold is reached through the summation of 

the inputs, the response will be immediate. 

𝑎 = ∑ 𝜔𝑖𝑥𝑖
𝑛
𝑖=1        𝑦 = {

1 𝑖𝑓 𝑎 ≥  𝜃
0 𝑖𝑓 𝑎 <  𝜃

           (3.3) 
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Figure 3.1.5.2 Graphical example of a step-up response. 

 

The second type of response is the sigmoid type. This type of response is 

capable of obtaining a smoother signal by using the following equation: 

 

𝑦 = 𝜎(𝑎) ≡
1

1+𝑒
−
𝑎−𝜃
𝑝

                     (3.4) 

 

 

Figure 3.1.5.3 Graphical example of a sigmoid response. 

 

Where 𝑝 determine the form of the sigmoid, meaning that higher values will 

flatten the sigmoid response, while smaller values will make it resemblance a step 

response. 
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3.1.6 Perceptron 
 

 

Figure 3.1.6.1 Graphical example of a perceptron. 

 

The perceptron is an enhancement of the TLU, it works very similar, but the 

main difference is that it consists of sensing units, S, association units, A, and a 

processing and response unit, 𝑟.An Stype unit emits a 1 if energized. A randomly 

selected set of S units are connected to type A units. Each unit A accepts a certain 

number of m inputs and calculates a weighted sum, the weights can take the values 

+1 or -1, and are assigned randomly. The sum is compared with a threshold 

𝜃resulting in an output of 0 or 1. 

𝑆𝑗 = {
1 𝑖𝑓 ∑ 𝑃𝑘𝑥𝑘

𝑛
𝑘=1  ≥  𝑢

0 𝑖𝑓 ∑ 𝑃𝑘𝑥𝑘
𝑛
𝑘=1 <  𝑢

                   (3.5) 

 

The threshold 𝜃 for all A units is always the same one, the output of the k-th 

unit A is multiplied by a weight p, and a sum of all m weighted outputs is formed into 

a unit sum, where each weight p can be -1, 0, or 1.The output of this sum unit is 1 

or 0, depending on the threshold𝜃.The design of the perceptron involves adjusting 
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the weights 𝑃k, as well as the threshold 𝜃. It can be appreciated that the TLU is 

basically a special case of the perceptron with A units with only one input. In order 

to adjust the weight, it is advisable to use the delta rule. The delta rule can be 

explained as following. 

 

With 𝑥kas the input, it is possible to obtain: 

𝛿𝑒𝑝

𝛿𝑤𝑖
                                 (3.6) 

 

Where ep represents the error found in gradient descent and is expressed as: 

𝑒𝑝 =
(𝑡𝑝−𝑎𝑝)2

2
                           (3.7) 

 

Where tp is a desired class, or result from our neuron. With this, it’s possible 

to estimate the error, 𝛿E, on the weights, 𝛿wi, by proving: 

 

𝛿𝑒𝑝

𝛿𝑤𝑖
= −(𝑡𝑝 − 𝑎𝑝)𝑥𝑖

𝑝
                    (3.8) 

By substituting: 

 

𝛥𝑤𝑖 = −𝛼
𝛿𝐸

𝛿𝑤𝑖
  ,   𝛥𝑤𝑖 = 𝛼(𝑡

𝑝 − 𝑎𝑝)𝑥𝑖
𝑝
        (3.9) 

 

For smaller values in, 𝛼 , the result will converge, this means the weight 

vector will be closer to the one we require and the error will be minimum. 
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3.1.7 Networks with multiple layers 

 
 

 

Figure 3.1.7.1 Graphical example of a multilayer network. 

 

The input layer is a distribution point for the input signals, the hidden and 

output layers are made up of semi-linear nodes. The nodes of the hidden layer are 

so called, due to the fact that there is no direct access to the information of their 

outputs for the purposes of their training, its main function is to collectively form its 

own representation of the set of input vectors. The idea of the training is to use the 

descent of the error gradient as a function of the weights. 

 

The error for networks with semi-linear nodes is given as: 

𝑒𝑝 =
1

2
∑ (𝑡𝑝 − 𝑎𝑝)2𝑀
𝑗=1                  (3.10) 

The calculation of the increments in the weights of the nodes of the output 

layer is similar to the case of a single-layer network, using the delta rule as per 

equation (3.9): 
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𝛥𝑤𝑖 = 𝛼𝜎(𝑎𝑗)(𝑡
𝑝 − 𝑎𝑝)𝑥𝑖

𝑝
               (3.11) 

 

The index j refers to any of the output nodes in the output layer. 

 

Since the nodes of the hidden layer are also semi-linear, then in the equation 

for the increase of the weights, the following terms must be incorporated: 

 

𝛼  𝜎  (𝑎𝑗)𝑥𝑖
𝑝
                          (3.12) 

 

The term that should change is: 

(𝑡𝑝 − 𝑎𝑝)                            (3.13) 

 

This is due to the expression referring to the comparison of the output of the 

output layer nodes and the membership values 𝑡𝑝  of the input vectors 𝑥p . The 

following equation is then proposed: 

 

𝛥𝑤𝑘𝑖 = 𝛼𝜎(𝑎𝑘)𝛿
𝑝𝑥𝑖

𝑝
                    (3.14) 

 

The expression 𝛿𝑝 is the one that needs to be defined. Since we are now 

working with a hidden layer, the nodes will also need to be expressed differently in 

order to understand how they affect each other, it is proposed to assign 𝑘 as the 

nodes from the hidden layer and 𝑗 as the nodes from the output layer, which means 

we now have 𝑤𝑘𝑗representing the weight of the hidden layer. 
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The effect that node 𝑘has on the error will depend on two factors: 

 

1)  How much node 𝑘 influences the output of node 𝑗. 

2)  How much node 𝑗 affects the error. 

 

The more 𝑘 affects 𝑗, the greater the effect on the error and, 𝑗error will also 

be in its own difference expressed as 𝛿𝑗. It is important to mention that the effect of 

𝑘 on 𝑗 depends on 𝑤𝑘𝑗 and the interaction between these two factors is given by 

their product𝛿𝑗𝑤𝑘𝑗 

 

Since 𝑘 is affecting several other nodes on the output layer, then 𝛿𝑘 can be 

represented as the sum of all its products. 

 

𝛿𝑘 = ∑ 𝛿𝑗𝑗∈𝐼𝑘 𝑤𝑗𝑘                        (3.15) 

 

Where Ikis the set of nodes in the output layer that receive output from node 

𝑘. These are then the equations needed to calculate the weights for the hidden 

layer nodes: 

𝛥𝑤𝑘𝑖 = 𝛼𝛿
𝑘𝑥𝑖

𝑝
                         (3.16) 

 

For the hidden layer nodes:  

 

𝛿𝑘 = 𝜎(𝑎𝑘)∑ 𝛿𝑗𝑗∈𝐼𝑘 𝑤𝑗𝑘                  (3.17) 
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For the output layer nodes: 

 

𝛿𝑘 = 𝜎(𝑎𝑗)(𝑡𝑘
𝑝
− 𝑦𝑘

𝑝
)                    (3.18) 

 

In order to obtain the error in these networks, it is required to use a back 

propagation algorithm. The algorithm is very similar to the delta rule and can be 

explained as following: 

 

Back propagation 

Step 
forward 

Present the pattern to the input layer. 

Evaluate the outputs of the hidden layer nodes using the input 
patterns. 

Evaluate the outputs of the output layer nodes using the results 
obtained in the previous step. 

Step 
back 

Apply the desired patterns to the output layer nodes. 

Calculate 𝛿k for the output layer nodes. 

Train each output layer node. 

Calculate 𝛿k for the hidden layer nodes. 

Train each hidden layer node with𝛥𝑤k𝑖 

Table 3.1.7.1 Table representing the steps to apply the back propagation method on a 
hidden layer network. 

 

It can be observed that the first three steps require to make the calculation of 

the weights in a feed forward method, while in the rest of the steps it is necessary to 

do it backwards. In the last two steps, it can be appreciated that 𝛿k is propagating 
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from the output layer nodes to all of the hidden layer nodes, this is the reason why 

this algorithm is called back propagation. 

 

3.1.8 Convolutional neural network 
 

The convolutional neural networks are a multilayer artificial neural networks 

or deep neural network. The architecture of a convolutional neural network is 

composed of multiple types of layers that fulfil different types of functions; these 

types of layers are: 

 

Convolutional layer 

 

The convolutional layer is the layer which receives the input image and 

perform the convolution operation. This operation can be explained as a convolution 

filter, also known as kernel, which is applied to the input image and consists of the 

following: 

 

𝐶𝑥𝑦 = ∑ ∑ 𝑤𝑖𝑗  𝐼 (𝑥 + 𝑖 − 1, 𝑦 + 𝑗 − 1)
𝑛
𝑗=1

𝑛
𝑖=1  , ∀𝑥, 𝑦 ∈ {𝑚}  (3.19) 

 

Where𝑛 is the value of the kernel to be applied, 𝑚 is the value of the feature 

map, 𝑤𝑖𝑗 is the component of the convolution filter and 𝐼 (𝑥, 𝑦)is the intensity value 

of the pixel (𝑥, 𝑦) in the image 𝐼. 

 

In general, in each convolution layer it is possible to apply any number of 

filters and obtaining a feature map for each one. In addition, it is possible to use 

multiple input images, which must be processed by three-dimensional convolution 

filters, where the depth of these filters must match the number of images in the 
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input. The activation functions commonly used in these layers consist of linear 

functions, such as the rectifier linear uniform function defined as: 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                        (3.20) 

 

Since the architecture of convolutional networks is usually composed of 

multiple convolution layers, during the back propagation algorithm, the derivative of 

the function with respect to the weights of the layers closest to the input of the 

network depends on the product of the derivatives of the following layers. This is 

because the derivatives are calculated by the chain rule, so the output layer 

depends solely on its derivative, the hidden layer that precedes it depends on its 

derivative and the output layer. By using functions such as the sigmoidal and 

hyperbolic tangent, the derivative is bounded in the range of 0 and 1, which results 

in the derivatives getting flattened on the most superficial layers of the network. 

Using a linear function allows to mitigate this problem in deep neural networks, 

since its derivative is constant by intervals. 

 

Pooling layer 

 

The pooling layer, also known as the sub sampling layer, is an optional layer 

that is applied to the feature maps obtained from the convolutional layer. This layer 

applies, through a sliding window, a function that subtract the most important 

information of the feature maps. Examples of commonly used functions in this layer 

are max pooling, which consists of taking the largest element of the window, and 

the average of the window elements. Applying this layer brings multiple advantages, 

among which are: 
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 Reduction of the dimensionality of the feature maps, which results in a 

reduction of the parameters to be trained in the network, in addition to 

helping to control over fitting. 

 

 Increases the invariance over small alterations, such as translation and 

rotation, when representing multiple local patches under an average or 

maximum value. 

 

Dropout layer  

 

The dropout layer is an optional layer that can be applied after most layers in 

the network. Given a parameter 𝑚 , the dropout layer will be deactivating, with 

probability 𝑚 of success, each of the neurons of the previous layer. This results in 

that, on average, only a fraction 𝑚 of the neurons are used during each training 

stage. Although this is sometimes referred to as an additional layer in the literature 

[70], [75], [76], [84], [79], strictly speaking it is not, since the regularization of 

parameters occurs at the level of the connections between layers. 

 

The main objective of this layer is to reduce the over fitting of the model by 

using fewer parameters than the total of the network during the training stage, which 

also results in shorter training times. 

 

Dense layer 

 

Since the output delivered by the convolution and pooling layers consists of a 

features map, which can be interpreted as the application of one or multiple filters to 

the input image, these maps are often used as input for other neural networks. A 
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dense layer consists of a feed forward network, whose vector of inputs corresponds 

to the vectorization of the features map obtained in the previous layers. 

 

These networks are trained over multiple epochs. During each epoch, the 

network receives the input data and applies the training algorithm to adjust its 

weights. At the end of each epoch, the performance of the network is evaluated and 

the learning process stops if the convergence condition is reached. In general, the 

training stop condition consist of observing negligible changes in the network 

prediction error for the training data or setting a maximum number of iterations. 

 

3.2 Machine learning approach comparison 
 

Each machine learning tool has different advantages, disadvantages, and 

requirements to solve a particular problem. While some problems allow to try a 

different approach, some others are more complicated or limited. 

 

In terms of table tennis, the approach to solve a particular problem depends 

entirely on the researcher itself, there are plenty of examples in regard to predicting 

the ball trajectory alone [3], [4], [16], [21], but for this particular research, two tools 

are selected due to previous successful attempts at solving similar problems like the 

one presented in this thesis. 

 

The first one is genetic programming. The main reason to use genetic 

programming is due to its ability to propose equations and diverse numerical 

methods to fit an area under a curve or simply emulate the behaviour of an observer 

pattern. Perhaps the main disadvantage is that it can take a very long time to find 

the solution and it does not always manage to find a global or convergent solution, 

but instead just a local one. Another disadvantage is that in order to work efficiently, 
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a fitness function need to be proposed, which in some cases might defeat the 

purpose of allowing the machine learning technique to come up with a real self-

adjusting methodology [71], [77], [81]. 

 

The second tool selected is neural networks. Neural networks have the main 

advantage of being simple to apply to a wide range of problems and the 

documentation regarding each of these attempts is, for the most part, extensive in 

comparison to other machine learning tools [46], [48], [52], [54], [55], [59]. Another 

advantage it presents, relies on being able to work directly with images that are 

already similar to the ones obtained through the cameras used in the current 

prediction approaches.  

 

3.3 Object tracking 
 

There are several approaches to track an object through computer vision 

[11], [20], [49], [88], most of these methods depend entirely on the specific objective 

required. While some tracking methods make emphasis on the accuracy of the 

recognition of the object [12], others might focus on the speed of the tracking [89]. 

 

For this research, the objective must focus on tracking the object as fast as 

possible due to the time constraints present in the problem itself. It is then proposed 

that a meta heuristic approach should be considered due to the nature of the 

specific parameters needed to work in this particular setting. 

 

Another issue to take into account is the probability of needing to obtain a 

usable database for the machine learning approach directly from the tracking 

system itself, which can only be realised through a specific meta heuristic approach 

based on a similar system also focused on speed. 
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Chapter 4 

Methodology 
 

 In this chapter, it is determined the approach in which the novel approach is 

applied, detailing why a particular method was preferred over different ones and 

performing several tests, in order to justify the reliability of the method to be 

employed. 

 

4.1  Table tennis ball recording setup 

The setup for this experiment is based on previous research tests with similar 

objectives regarding the prediction of the ball [3], [4], [6], [7], [8]. A setup with at 

least two or more cameras is used due to simplifying the problem of working in a 3D 

environment through segmentation of its hyper planes, which results in two or more 

linear systems that are easier to manage. 
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Figure 4.1.1 Proposed setup consisting of two cameras, A and B, distributed above and on 
one side of the table respectively. 

 

To simplify the parameterization of the 3D coordinates, both cameras are 

located on the same y axis. The position of the lateral camera, B, may be switched 

to the opposite side if required, as long as the distances in relation to the y and z 

axis are kept unchanged. 

 

The same model of camera was used in the setup to avoid further difficulties 

when processing the images. The reasoning behind different cameras in this 

approach is that each camera can work as an individual module running its own 

machine learning approach and it would only need to be properly synchronised 

when proposing a specific solution to the prediction of the ball in its hyper plane. 

 

The tracking of the ball on the camera A is going to be different from the 

tracking approach on the camera B, this is due to the background elements being 

more challenging on one camera in comparison to the other. Camera A is going to 

be able to capture most of the table, which is solidly painted with an even layer of 

colour, resulting on a background which is easier to process. However, camera B is 
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going to capture more movement and background elements that might interfere with 

the tracking of the ball while on flight. To avoid discrepancy and high latency in just 

one of the cameras, a backdrop was implemented to reduce the number of 

resources required to track the ball properly. 

4.1.1 Raspberry Pi 
 

A Raspberry Pi 4 B with a camera was used to act as a module for recording. 

The decision of using this particular hardware is due to the capacity of the board to 

process a decent number of calculations. 

 

The camera used is an Arducam OV5647. The camera has an input clock 

frequency between 6 and 27 MHz with an adjustable transfer rate ranging from 

QSXGA, resolution of 2592x1944 pixels at 15 frames per second, to QVGA, 

resolution of 320x240 pixels at 120 frames per second. Since the background of the 

recorded image is proposed to be as even as possible in order to make the 

processing more efficient, the QVGA transfer rate with the highest frames per 

second has been selected for the remaining of the research. 

 

The Raspberry Pi 4 B has a Quad core Cortex-A72 ARM 64bit processor with 

a speed up to 1.5Ghz, the boards used in this research have an 8Gb LPDDR4-3200 

SDRAM memory. The operating system is a customised version of Raspbian is, this 

modified version is available through the Matlab website for free and the only 

noticeable modification is the addition of libraries and configuration of ports in order 

to allow Matlab to write and read data from the Raspberry Pi Ethernet port. 

 

The flexibility to program on the Rasperry Pi board alongside its current 

processing capability, allows it to be a viable method to implement simple machine 

learning algorithms and the onboard camera decrease the time and necessity to 
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transfer the video stream and instead it can be processed directly on the board. 

This is the main reason why this approach was deemed the most viable for this 

research. 

 

The connectivity between the Raspberry Pi board and a computer is 

achieved through the Ethernet port due to its speed and low probability of failure to 

connect. This method of connectivity is used for the remainder of the experiments to 

reduce the probability of stuttering, delay or communication failure between the 

modules. 

4.1.2 Matlab 
 

Matlab is a widely recognised software intended for numeric computing, one 

of its main features is the ability to download, create and customise toolboxes for 

specific type of problems. In the last few months, Matlab released a toolbox capable 

of controlling a Raspberry Pi board through the Ethernet port. The capability of 

being able to communicate directly to a Raspberry Pi board from Matlab makes it 

easier to apply the machine learning tools that currently exist in the Matlab 

community.  

 

As stated previously, the probability of having a low latency is a main priority 

in this research due to the time constrains that the system is going to be operating 

on. It is due to this fact that several options were explored when testing the 

capability of handling two Raspberry Pi boards in synchrony and independently. The 

software that would be used to program the machine learning algorithm was also 

explored and three main options proved to be desirable, each of them had different 

advantages and disadvantages which are explored in the table below. 
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  Using each board separately 
Synchronising each board to 

work as a group 

OpenCV * Fastest to run the required algorithms 

* Multiple connection errors 
when connecting each module + 

Python 

* Multiple connection errors when attempting   
to transfer result of the machine learning 

algorithm 

ROS 
* Delay on the camera when acquiring real time 

images 

* Severe delay when obtaining 
the current camera frames 

* Multiple connection errors 
when requesting camera feed 

Matlab 

* Delay on transferring data from the machine 
learning algorithm 

* Occasional delay on data 
transferring * Due to customised OS, not enough resources 

available to run proper machine learning 
algorithms 

Table 4.1.2.1 Table comparing the main disadvantages observed when implementing 
different approaches with a simple machine learning exercise on the Raspberry Pi. 

 

While OpenCV and Python might have been the fastest to successfully run 

the machine learning example on the board, its inability to export the data properly 

and reliably to the computer that would control the robot arm is the main reason why 

this approach was not chosen. Instead, the second most reliable approach is using 

the third option which would be Matlab. 

 

Another advantage of Matlab is the availability of customised tools for 

specific robots, which can be applied directly in the function or the programming 

section that is already running the machine learning algorithm. The control of the 

robot will then be linked directly to the output of the machine learning toolbox, 

allowing it to respond as fast as possible but retaining the flexibility to modify any 

parameter needed within the specified Matlab customised tool for the robot. 
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4.2  Database for machine learning 

The database will be developed through a set of stringed data with very 

specific characteristics which the machine learning tool is able to exploit in order to 

discern a particular pattern and create an algorithm capable of describing the 

database. 

 

For this research, the database is obtained from real life data, it will be 

compromised of recordings of a table tennis ball being used in different settings. 

The settings will range from two human players playing against each other, a table 

tennis robot throwing balls at a defined landing point and at a particular area within 

a perpendicular wall from the table. 

 

The setup for the recordings should be as close as possible between settings 

in order to avoid discrepancy errors that might arise due to an inconsistent data 

gathering and processing. The only exception to this particular suggestion is if the 

database will only be used for control purposes rather than prediction, in which case 

the database can differ from the setup as needed. 
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Figure 4.2.1 Proposed methodology to train the neural network. 

  

This database is created through a novel method which involves a 

customised image processing and object tracking methodology which its main 

feature relies on obtaining an image as efficient and suitable as possible to make 

the machine learning process as optimised, in terms of speed, as possible. 

4.2.1 Area of interest 
 

 Using the setup described in the Figure [4.1.1] and having the light 

source and the background defined, the area of interest for the machine learning 

tool is proposed. This area of interest can be defined as, the minimum area within a 

picture representing the limits where the object of interest is capable of movement. 
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This area of interest was defined manually before making any recording by 

taking a screenshot with the same resolution intended to use in the rest of the 

experiments and then crop the area accordingly.  

 

 

Figure 4.2.1.1 Example on defining an area of interest on a screenshot. 

 

The database required for the machine learning approach is a set of images 

with only the ball trajectory represented in each image. This means that each image 

should represent the ball trajectory from the moment it is being hit by the opponent, 

until it reaches a position where it is expected to meet the robot holding the bat. 

This final position may be defined depending on the type of robot used. For this 

particular research, the edge of the table is considered as the optimal point of 

contact between the ball and the bat. 
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4.2.2 Camera frames processing 
 

A frame may be understood as an image taken directly from a camera, which 

can be represented as a function: 

 

𝐼: 𝑈 → {0,1, . . . , 255}𝑐  
𝑈 = [[0;𝑚 − 1]] × [[0; 𝑛 − 1]]                (4.1) 

𝑐 𝜖 {1,3} 
 

Where U represents the pixels, m and n are the row and columns 

respectively, c is the number of colours. 𝐼(𝑖) is the ith pixel value in the image and 

where 𝑖 ϵ 𝑈 

 

𝑐 = 3 , 𝑚 = 240, 𝑛 = 320 

 
 

A subtraction of background elements is needed, to accomplish it, the current 

frames are transformed into greyscale, this is due to being preferable to work with a 

hyper plane representing a 2D matrix rather than a 3D set with vectors. To convert 

rgb to greyscale the NTSC formula was implemented: 

 

𝐼𝑔 = {(0.299 × 𝐼1) + (0.587 × 𝐼2) + (0.114 × 𝐼3)}
𝑐(4.2) 

 

Where 𝐼𝑔 is the grayscale equivalent of 𝐼 and 𝐼1 is the red set, 𝐼2 is the green 

set, 𝐼3 is the blue set and 𝑐 = 1 

 

The background frame is stored as a function, 𝐼𝐹𝑔 , which will contain all the 

information of the background noise that needs to be subtracted from the next set of 
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frames where the ball is going to be present. A tolerance, T, is used to amplify the 

subtraction of the background elements and get rid of the background noise. 

 

𝐼𝐹𝑖 = 𝐼𝐹𝑔 − (𝐼𝑔 + 𝑇)                      (4.3) 

𝑇 ϵ 𝑈 

𝑇 = {0,1, . . . , 255} 

 

This tolerance enables the tracking algorithm to work under subtle changes of 

lighting which may occur when recording in settings that do not have a constant 

light source. The tolerance was defined through a metaheuristic approach inspired 

on maxima and minima. A tolerance of 15% of the background frame is chosen for 

the rest of the experiments. 

 
Since the background is being subtracted, the majority of noise is minimal 

and the only objects present in the frame is the ball.  

 

Figure 4.2.2.1 Graphical example of the results of different thresholds. 
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The ball itself has a round shape which can be represented in different ways 

when processing the current frame. In this research the ball is represented by a 

single particle which is calculated as the centroid of the ball.  

 

𝑐 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                              (4.4) 

 

Where 𝑛 is the distinct points of 𝑥. For this research, it is proposed to use an 

approach similar to the single particle method, but with an important addition, 

instead of tracking the ball through the whole area of the frame, the frame will be 

divided into subsections and each subsection represent a smaller area of interest.  

 

The purpose of segmenting the table is to standardize the distances between 

both cameras and simplify the process of 3D modelling. There are several methods 

to calculate the distance between the object and the cameras [38], [45], [56], [82], 

while these methods prove useful and give a precise and accurate distance 

approximation from the objects, in this research the accuracy and precision are 

lowered in favour of speed in order to move the robot arm as fast as possible. If the 

segmentation of the whole table, in all its axis, is realised in equal amounts on both 

cameras to form a grid on each hyper plane, the distance and the proportions of 

each segment will remain the same no matter the position of the camera. This 

particular method proves efficient when the camera setup tends to vary its position 

by small degrees of accuracy [40]. 
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Figure 4.2.2.2 Table segmentation and ball contact area examples. 

 

In the Figure [4.2.2.2] it can be appreciated a table divided in ten sections 

alongside three examples of an incoming ball and its contact area on the bat. In 

example A, the ball moves directly at the centre of one of the segments, in this case 

the bat positioned in the assigned section should have no problem having contact 

with the ball. Example B demonstrates the problem of an incoming ball between the 

limits of each segment, if the segments are not properly assigned, the contact area 

between the ball and the bat in any case of each segment is limited and can cause 

an error when trying to control its trajectory. Example C demonstrates that by 

adding an extra segment on the previous example is the most efficient approach to 

avoid uncertainties when the ball is incoming between segment limits. It is also 

important to mention that the number of segments should be carefully considered 

due to assigning too many segments might cause the system to slow down, the 

more segments available the more time it will take to track the ball trajectory in real 

life and the less time the machine learning method will have to properly classify the 

ball and assign the proper segment for the ball prediction. 

 

For this research, the number of segments assigned to the table tennis are 

twenty segments per axis on all hyper planes. 
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Since the ball is currently represented as a single particle, due to the 

previous calculation of the centroid and now that the segments are defined, it is 

necessary to keep track of the segment where the ball is currently present. To do 

this, a flag is implemented so that every time the ball is spotted in one of the 

segments, this segment will retain the memory of the ball until the end of the 

tracking. As soon as the flag on a segment is activated, two actions take place. 

 

1. The segment where the ball has been spotted should now be considered as 

the centre of a new area to crop the current frame, that is, using a similar 

approach to a k-neighbours approach, the inactive segments surrounding the 

current active one should now be the only ones considered in the next 

tracking iteration. This step is recommended to save time and computing 

resources. 

 

2. If the segment being flagged is the last one in the grid, which means the ball 

is not going to be visible on the next iteration of the tracking, then the 

tracking algorithm end and the final image is sent as an output. 

 



  

 

  

 50 

 

 

4.2.3 Image output 
 

When the tracking algorithm has finished due to the ball no longer being 

present in the grid, the resulting image now represent the trajectory that the ball had 

in regard to the segments of the grid. This trajectory is unique and is the one sent to 

the neural network either to train it or to classify it. 

 

 

Figure 4.2.3.1 Graphical representation of the ball trajectory. Result of adding all the 
frames when the ball was being detected (left), applying the grid to the frame (middle) 
and flagging the segments where the ball was detected (right).  

Figure 4.2.2.3 Graphical representation of the ball being detected on a frame with the 
grid in red. The yellow segments represent the segments activated due to the ball 
position in the grid. The red segments represent the segments where the ball has been 
detected previously. 
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4.2.4 Convolutional neural network class 
 

In case of training the neural network, the last segment flagged is considered 

the final position of the ball. When obtaining this trajectory, it is necessary to keep 

track of the full sequence of segments flagged and the last one because that 

information is the one that is going to be used to observe the patterns and define 

the outputs of the neural network.  

 

The last segment flagged is always present in just one axis of the grid, this is 

the reason why the maximum number of classes, or labels, that the neural network 

will have, is twenty. It is not necessary to obtain examples of every single class 

when training the neural network, this is due to the nature of the game of table 

tennis itself, not every incoming ball will be possible to reply to either because it is 

going to land outside the area of the table or simply because the ball will end up in 

an unreachable location such as the lowest corner of the table. 

 

4.3 Suitable machine learning tools 

As detailed in the previous chapter, a supervised approach is chosen due to 

the problem having a defined objective and discernible pattern. From the supervised 

approach tools, genetic programming and a convolutional neural network were 

picked for the experiments due to different reasons. 

 

Convolutional neural networks have been previously used in the literature for 

different sorts of image classification, which for this research proves to be a basic 

starting point due to the current research in table tennis using cameras systems to 

track the ball and perform most of the initial data gathering. 



  

 

  

 52 

 

 

Genetic programming was chosen due to its ability to propose equations and 

fit areas under a curve, using an image as a base for the function that will be 

consequently applied in the algorithm. Due to the lack of literature in regard to this 

specific approach, this is a good reason to apply this tool as a novelty and to bring a 

point of comparison between other machine learning approaches. 

4.3.1 Testing of the selected machine learning tools 
 

 Both tools were tested using a simulation of a table tennis ball with controlled 

variables. This control consisted in making sure the ball remained without spin, 

knowing the exact location, speed and acceleration at defined times and making 

sure the tools were able to solve the simple linear problem. 

 

 It is important to mention that the simulated table tennis ball will not take part 

any further in this research. This is due to the contradiction it would generate in the 

hypothesis which states that the current mathematical models in which the table 

tennis ball simulation is based on, is not entirely fit for purpose due to variables 

present in the real-life version of the game, like the spin of the ball, are not being 

properly implemented in the model. 

 

4.4 Mathematical model replaced with genetic programming 

For genetic programming, the chosen functions to be added as nodes are 

plus, minus, times, cos, and sin. The number of branches per node is maxed out to 

2. The terminals are set to 40 and the operators will be crossover and mutation. The 

equation to be replaced in this instance will be just the aerodynamic model (2.1) 

such as the rest of the predictive methodology involving the bouncing model, robot 

motion and defining a landing point will remain intact. 
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4.4.1 Mathematical model replaced with convolutional neural network 
 

For neural network, a convolutional neural network with a scaled conjugate 

gradient training method was chosen. The number of hidden layers and neurons will 

vary in order to compare the results and discuss the efficiency of the approach.  

 

To replace the mathematical model with the novel approach, an evaluation of 

the weakness and fortitudes of the current methodology used to predict the ball 

trajectory and of a neural network is necessary.  

 

 Weakness Fortitude 

Current prediction 
methodology 

 Not flexible 

 Functionality depends 
entirely on researcher 
experience 

 

 Highly accurate 

 Easy to modify values 
separately and 
evaluate results 

 

Neural network 

 Requires very specific 
database 

 Can take long to train 

 Not as accurate as MPC 

 Flexible 

 Fast to compute 

Table 4.4.1.1 Comparison of weakness and fortitudes of the current methodology to 
predict the ball final position against the proposed neural network approach. 

 

A neural network excels at being a flexible approach with fast results, but to 

be able to compute as fast as it does, it needs to sacrifice accuracy. Current 

prediction methodologies, which are based on model predictive control, are more 

orthodox in their approach and while highly accurate [42], if the model proposed can 

perform efficiently, the dependency on the model might be the main issue. 
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To solve this potential problem, a novel approach was used, which consider 

the basics of model predictive control but exploit the main features of a neural 

network. 

 

The current model to predict the ball trajectory is dependent on the 

serialisation of one equation, this means that if the basic equation changes, it will 

cause a chain reaction which could probably be the cause as to why an equation 

proposed by a neural network, is incapable of performing correctly. Neural network 

is probably not capable of understanding the nonlinearity variable if it does not have 

enough examples of it. 

 

In a nonlinear model, the nonlinear function is usually regarded as an 

independent variable which interact with the rest of the linear model, while they 

cannot be separated, it can be understood that the nonlinearity element is always 

present in all equations but in different capacities that affect the linearity in different 

scales. 

 

With this statement in mind, it was observed that based on model predictive 

control: To obtain the final position, 𝑃𝑓, of an object, it is necessary to consider all 

the translations that the object will do in a certain period of time. The number of 

translations needed to obtain the final position are of continuous nature, this means 

that the number of translations needed will depend entirely on the model we choose 

and it will not affect the result as long as the trajectories are being represented in a 

continuous manner. 

 

∑ 𝑃𝑓
𝑛
𝑖=1 = (𝑃𝑗 − 𝑃𝑗+1) + (𝑃𝑗+1 − 𝑃𝑗+2). . . +(𝑃𝑛−1 − 𝑃𝑛)         (4.5) 
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In case of the model predictive control for this problem in particular, the 

translations of the ball are calculated using the equation [2.1], which takes into 

account all the physical properties that affect the ball and then apply a step-in time, 

in order to predict the immediate result of the environment and the ball interaction 

and reaction to each other. 

 

𝑉0 + ∫ �̇�𝑑𝑡′
𝑡

0
= −

1

2𝑚
𝐶𝐷 𝑝 𝐴 ‖𝑉‖𝑉 + 

1

2𝑚
𝐶𝑀 𝑝 𝐴 𝑟 𝜔 ×  𝑉 + 𝑔  (4.6) 

𝑃𝑗 = 𝑃0 + ∫ 𝑉𝑑𝑡′
𝑡

0
= 𝑉0 + ∫ �̇�𝑑𝑡′

𝑡

0
                  (4.7) 

 

While the equation remains the same for each position within the translation 

of the object, 𝑃j, due to the nonlinear element, 
1

2𝑚
𝐶𝑀𝑝𝐴𝑟𝜔 ×  𝑉, of the equation, 

each translation will behave differently on each segment, meaning that every 

translation is unique on its own accord. It is this unique behaviour of the translation 

segments that can be linked to a neural network feature, which would mean that 

every translation, is a distinctive feature of a unique trajectory and can be 

understood as a pattern. 

 

Since the final position of the object, 𝑃𝑓 , is already understood to be the 

summatory of the unique features composed of translations, because of the 

commutative property, it can then be understood that no matter in which order the 

translations happen, the result of the final position will remain the same. This 

indicates that the uniqueness of each translation does not apply to the final position 

due to the ability of shifting elements and the final product is not affected. This 

property can be linked to the neural network as a class, meaning that the final 

position of each trajectory will be shared by several other summatory of trajectories. 
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Where each of the inputs of the neural network can now be understood as 

the trajectories of the ball and the activation of the neuron like the class it belongs 

to. 

𝑎 = 𝜔1𝑥1 + 𝜔2𝑥2, + . . . + 𝜔𝑛𝑥𝑛 

𝑥𝑛 = (𝑃𝑛 − 𝑃𝑛+1)                         (4.8) 

𝑎 = 𝑃𝑗  

 

4.5 Prediction of the ball and expected results 

 To start generating the prediction of the ball, a real-life scenario is defined to 

obtain new data that will serve as the database for the machine learning tools. The 

performance of the tools are analysed, and the results are compared to another 

similar research if available.  

 

Two examples of a machine learning approach can be seen in Figure [4.5.1] and 

Figure [4.5.2] 
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Figure 4.5.1 Proposed Neural Network methodology. 

 



  

 

  

 58 

 

 

Figure 4.5.2 Proposed Genetic Programming training methodology. 
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Chapter 5 

Experiments and results 
 

 This chapter details the results of applying each step of the methodology. 

Each machine learning result will be discussed and asses the validity of the 

hypothesis, alongside the novel approach to the nonlinearity within the prediction 

problem. 

 

5.1  Genetic programming 

When applying genetic programming, many examples of the trajectories of 

the ball were created. Each of these examples where different types of drops, top 

spin, back spin and bouncing of the ball. This same database is used for the neural 

network. 

 

The initial testing consisted in finding a replacement for the mathematical 

model in just the aerodynamic equation, through genetic programming. The rest of 

the current prediction approach remained unchanged. 

 

This approach has already been attempted very recently but using neural 

networks instead of genetic programming [86]. The purpose of this test is to 

compare the results and analyse the response of system when more examples with 

spin are added to the training. 

 

After proposing an initial example of the trajectory of the ball, the toolbox 

GPLab from Matlab was used with the following code: 
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p=resetparams; 
p=setoperators(p,'crossover',2,5,'mutation',1,1); 
p=setfunctions(p,'plus',2,'minus',2,'times',2,'cos',1,'sin',1); 
% p.operatorprobstype='variable'; 
% p.minprob=0; 
p=setterminals(p,'40'); 
p.initpoptype='growinit'; 
p.datafilex='quartic_x.txt'; 
p.datafiley='quartic_y.txt'; 
% p.usetestdata=1; 
% p.testdatafilex='exp_x.txt'; 
% p.testdatafiley='exp_y.txt'; 
% p.calcdiversity={'uniquegen'}; 
% p.calccomplexity=1; 
% p.depthnodes='2'; 
[v,b]=gplab(30,40,p); 
desired_obtained(v,[],1,0,[]); 
accuracy_complexity(v,[],0,[]); 
figure 
plotpareto(v); 
drawtree(b.tree); 

 

Figure 5.1.1 Graphical representation of the tree obtained through genetic programming. 
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The results obtained where the following. An equation was found to be able to fit the 

curve of the ball that results from the flight and bouncing on the table. 

 

 

 

Figure 5.1.2 Pareto front graphic comparing the fitness function to the number of nodes 
applied and their current population. 

 

The Pareto front shows the relationship between the nodes generation and 

how they performed when evaluated with the current fitness function. As the 

population increased, the nodes were able to converge and keep under the fitness 

required. 
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Figure 5.1.3 Graphic representing the gradient of the fitness function. 

 

The gradient of the fitness function was successfully lowering with each 

epoch, reaching the lowest point at epoch 21, this indicates that the equation was 

feasible in a relatively short number of generations. The number of nodes does not 

need to be increased nor the pool size. 

 

 

Figure 5.1.4 Graphic comparing the accuracy against the complexity of the fitness level.  

 

When analysing the graphic of accuracy, the level at which the equation was 

able to fulfil the fitness function always remained low, which means that the growth 

 



  

 

  

 63 

 

of nodes was not entirely necessary, but it did not affect negatively either, which 

demonstrates that the equation may be highly flexible in nature whenever required. 

 

One important statement to take into consideration is that the more complex 

the resulting equation is, the more time it will take to solve it, hence causing the 

prediction to take longer to compute. 

 

To test the accuracy of the resulting equation, several attempts with lower or 

higher generations and nodes were conducted and the results were as following. 
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Figure 5.1.5 Three graphics representing the result of fitting the curve with genetic 
programming with different number of generations available, 72 (top), 98 (middle) and 
200 (bottom). 
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While some equations were able to be solved with a low number of 

generations and nodes, like the one shown in Figure [5.1.5], some equations might 

need more than 200 generations, which might complicate the problem further. 

 

After more testing and careful consideration of the results, it was clear that 

the more examples were presented to this machine learning approach, the more 

inconsistent the resulting equation. The complexity for the behaviour of the ball with 

no spin was manageable, but when spin was introduced and the trajectory 

increased the complexity dramatically, the new equations were not short enough to 

let the prediction compute in an acceptable time frame and on some occasions, the 

accuracy was lowering due to the system believing that all the balls now behave 

with added spin, which is incorrect. 

 

This last statement is perhaps the most important discovery of this particular 

approach, when using machine learning approach to fit the curve of the 

trajectory and come up with an equation equivalent to the mathematical 

model of the aerodynamic model, the spin introduce a nonlinearity in the 

behaviour that causes the machine learning algorithm to treat it as a general 

rule for the ball instead of a non-recurring event that might or might not be 

present at random and it will end up over fitting.   

 

The only possible way to confirm this hypothesis was using a different 

machine learning algorithm and test it with a new approach. 
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5.2 Convolutional Neural Network 

 

The convolutional neural network is trained and classify the trajectory of the 

ball into twenty different classes per hyper plane. The convolutional neural network 

was programmed in Matlab, using the Deep Learning Toolbox. 

 

load CLASS.mat 
load SAMPLE.mat 
 
% Choose a Training Function 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainbr';  % Scaled conjugate gradient backpropagation. 
 
% Create a Pattern Recognition Network 
hiddenLayerSize = 5; 
net = patternnet(hiddenLayerSize, trainFcn); 
 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
 
% Train the Network 
[net,tr] = train(net,x,t); 
 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
tind = vec2ind(t); 
yind = vec2ind(y); 
percentErrors = sum(tind ~= yind)/numel(tind); 
 
% View the Network 
view(net) 
 
% Plots 
figure, plotperform(tr) 
figure, plottrainstate(tr) 
figure, ploterrhist(e) 
figure, plotconfusion(t,y) 
figure, plotroc(t,y) 
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A combination of different quantities of neurons in the hidden layer was used 

to test the efficiency of the network and the results were as following. 

 

 

Table 5.2.1 Table showing the result of using two neurons in each hidden layer. 
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Table 5.2.2 Table showing the result of using five neurons in each hidden layer. 
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Table 5.2.3 Table showing the result of using 10 neurons in each hidden layer. 
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In the Table [5.2.1], it can be appreciated that the number of neurons is 

insufficient due to a low accuracy. While in Table [5.2.2], the accuracy increased 

considerably while using a moderate number of neurons and in Table [5.2.3], the 

accuracy is the best out of the three cases but the number of neurons and the time 

needed to train the network in comparison to those of the previous test, 

demonstrate that the increase in accuracy is not worth the increase in time it takes 

to compute and the resources needed to train it. 

 

With this test in mind, the rest of the training and results reported will be 

mostly from the second case, Table [5.2.2], due to being the most cost effective of 

the three cases.  

 

 

Figure 5.2.1 Graphic representing the accuracy of the convolutional neural network. 
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The general accuracy of the system is then tested, and the results are 

appreciated in the Figure [5.2.1]. For this test, the number of iterations was 

increased to check if there was any case of over fitting, but the data shows that this 

not the case, which is one of the main issues reported in the previous machine 

learning approach using genetic programming. 

 

 

Figure 5.2.2 Graphic representing the gradient results of the convolutional neural 
network. 

 

When analysing the gradient and the general training state of the network, it 

can be appreciated that the gradient is convergent, and it reduced to a minimum 

expression with just half the number of iterations currently being used. This means 

that the network is capable of learning and classifying the trajectories in an efficient 

way, but it is important to point out the flat line near the epoch 300. This flat line 

indicates that the network was probably confusing some of the trajectories but when 

more data was analysed, it managed to create a vector to successfully separate the 
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classes as required. This could potentially mean that the network might have a 

slight weakness towards false local solutions, but it can easily be solved by 

increasing the number of epochs by a small amount while in training. 

 

 

Figure 5.2.3 Graphic representing the training performance of the network. 

 

As mentioned previously, the testing and training of this network has yielded 

positive results. Even with a high number of epochs, it demonstrated to be a robust 

approach with no real under fitting and no appreciable over fitting problems. 
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Figure 5.2.4 Graphic representing the error histogram of the network. 

 

Analysing the error histogram, it is appreciated that the error remained mostly 

constant throughout the training and the testing period, meaning that the dataset 

was robust enough to be able to deal with new trajectories without much problem 

and even when there was an error, it did not deviate too much. 
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Figure 5.2.5 Graphic representing the positive errors while classifying the inputs. 

 

Figure [5.2.5] shows the number of errors made in each class and the type of 

error. A true positive imply a trajectory of a different class wrongfully attributed to 

the class shown, while a false positive imply a trajectory from the class shown 

wrongfully attributed to another different class. Most of the errors were attributed as 

true positives for most cases, except for Class 7, the reason for this is not really 

known but the most probable cause might be a lack of proper training examples 
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which lead to an under training of that particular Class, this might also explain the 

flat line that happened in Figure [5.2.3] near the epoch 300.  
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Chapter 6 

Contributions, conclusions and future work 
 

 In this chapter the results and personal experiences obtained throughout the 

research will be contemplated. Emphasize on the successes and errors committed 

throughout the research will also be mentioned so that the reader takes into 

consideration some important points that could be used in subsequent research. 

6.1  Contributions 
 

 This research aimed to fill a gap currently present in the table tennis 

research. Defined as one of the main objectives, the contribution of this research is 

to replace the mathematical model with a machine learning approach, which is a 

problem that is not being properly handled due to the early stages of machine 

learning as a predictive tool in a nonlinear environment. 

 

 The main reason to contribute to this problem is that table tennis is a simple 

game to understand but, it is really hard to master. So, a problem of this nature is a 

good prospect to try out different control methodologies and compare the 

approaches between them. If a problem this simple can be mastered, subsequent 

problems with a higher level of complexity can now be proposed, so it is of the 

utmost importance that we are able to tackle this sort of problems first and have a 

solid basis to construct further research on it. 
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 One of the main contributions of this research was to explain and prove that 

an alternate methodology can be used not only to replace the mathematical model 

for an object with nonlinear behaviour, but also as a different approach to other 

similar machine learning systems. It is this alternate methodology that allows 

researchers in this problem to analyse, compare and mostly experiment with a 

different outside perspective their own ideas and hopefully spawn better and more 

efficient algorithms capable of solving this problem in a more capable manner.  

 

 The most important contribution of this research was the approach in terms 

of defining a new method to link the nonlinear behaviour of a particle into a machine 

learning system that treats this problem as a classification inspired problem in which 

the machine learning algorithms excel at. This flexible approach is what probably 

was needed to master this problem and hopefully inspire a better method in the 

future. 

6.2 Conclusions 
 

 Machine learning tools have been used in several areas of knowledge in the 

last few years, this is due to their flexible approach and great performance solving 

problems. One of the main advantages of using machine learning is that the 

algorithms have the ability to learn and adjust themselves in order to find a desired 

result, so in contrast to more classic approaches that are very precise but rigid in 

their usage, machine learning allows for a greater liberty in terms of using more or 

less data, as long as the objective is clear, and the examples used in the data are 

acceptable enough. The only main disadvantage of most of the tools in machine 

learning is that they still need to be handled with care because their own flexibility 

towards big databases can also cause unforeseen problems.  
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One of these problems that I encountered and probably didn’t think of until it 

happened, was the fact that every single piece of data handled by neural networks 

is treated equally. While it might sound strange, this can be a very tricky problem 

that is not easy to understand at first, but it can have a deep impact in the results if 

not handled correctly. The only way I managed to understand this phenomenon was 

until it was too late and the previous positive results I managed to obtain through 

genetic programming, were now all being negative without any visible reason. It was 

not until I repeated my procedure a couple of times that I understood that treating all 

data as equally important means that any exception in our database, as in one 

example that is extraordinary or simply not useful, can corrupt the rest of the 

training done by all the good examples. What we would naturally understand as an 

“exception to the rule”, neural networks treat it simply as another “average 

behaviour of the problem to solve”, so a big change would be needed to avoid this 

type of misconceptions. 

 

It was not until I realised the problem with the corrupted data that I had to 

make a choice, which was work on the algorithm so it can understand that some 

examples might be exceptions and ignore those to avoid the corruption of the learnt 

pattern or start from scratch and propose a new approach to treat the data 

differently. At first, I was going to just add an exclusion to the genetic programming 

algorithm, but I realised it would be complicated and would render the whole idea of 

flexibility useless since it would now be limiting the capability of the machine 

learning approach. Starting from scratch was probably a risky idea but it helped 

realise that the problem was not on the data, it was on the problem approach itself. 

While we are taught to approach most problems in one or two ways, those types of 

methodologies are only useful for classical systems, so something more modern 

that is built entirely on a different idea is not always compatible with those old 

systems and need the problem to be redefined in such a way that to avoid the 

weaknesses of the new method. Coming up with that redefinition of the problem is 
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the key to properly use machine learning and I cannot stress it enough, the problem 

is not the algorithm, and it is not always the database, it is the approach to the 

problem. 

 

After months of being stuck thinking on how to approach the problem, I 

realised that the only way to solve it was to ignore most methodologies in classic 

control and instead use those ideas as a basis to come up with a new perspective 

that is applicable to the problem. It was not easy to make the connection between a 

system that predicts an object trajectory through serialised equations and moments 

in time, and a system that is purely for classification purposes. I am convinced this 

leap of thought will be useful if it is applied to different problems, which might not be 

easy, but it is worth a try. 

  

6.3  Future work 
 

 Confirming that machine learning is capable of predicting the trajectory of a 

nonlinear object within a strict time limit is the first step towards being able to trust 

robots with more complex tasks but, in my opinion, there is still much to do in 

regards of prediction that could potentially be a breakthrough in several disciplines 

of science and engineering. 

 

One of the main objectives of this research was being able to base a new 

approach from classical systems and modernise the methodology to see the results. 

Now that the results prove it is a positive improvement, what could be done after 

this, is to keep pushing the prediction element even further. 

 

Some research has already been done regarding a machine capable to 

attempt to emulate the phenomena of instinct. In table tennis, movement is the key 
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to lower the error between the current and the desired position, which means that 

implementing some sort of instinct-based algorithm could prove useful in this 

regard. Since it has already been established that the importance of the solution 

rely mostly on how the problem is proposed, I am convinced that the next logical 

step could potentially involve a new approach to be able to predict the opponent 

movement before it hits the ball, which then will work in conjunction with the current 

methodology of predicting the ball trajectory through neural networks. This instinct 

approach could potentially involve deep learning since the dataset used to predict a 

person movement might be a bit too difficult to process, so instead of deciding 

which areas might be of interest, the computer itself will have to decide the pattern 

to follow through.  
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