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Abstract

Coarse geometry is the study of the large-scale structure of geometric spaces, in contrast

to the better known field of topology, which is the study of small-scale structures.

Coarse geometry has been around for about twenty-five years and has significant

applications in geometric topology and in the study of curvature.

The Novikov conjecture concerns homotopy invariance of higher signatures and

has generated a huge quantity of research in fields ranging from algebraic K-theory

to geometric functional analysis. One way of obtaining a positive solution to this

conjecture is to prove the coarse Baum–Connes conjecture using coarse geometric

methods and then to apply the notion of descent.

The coarse Baum–Connes conjecture is true for a wide variety of spaces, and in

particular, spaces of finite asymptotic dimension. Mitchener formulated a version of

the coarse Baum–Connes conjecture for a general class of coarse invariants, not just the

K-theory of the Roe C∗-algebra. This generalisation has applications to geometry and

algebra beyond those of the original conjecture and these generalisations are explored

in this thesis.

The underlying idea is that Wright’s proof of the coarse Baum–Connes conjecture

for finite asymptotic dimension does not rely on the precise definition of the Roe

C∗-algebra, and depends only on the coarse geometry.

In this thesis, we construct a generalised coarse assembly map from a coarsely

excisive functor. To show that this map is an isomorphism for spaces of finite asymptotic

dimension, we begin by constructing a sequence of coarsening spaces which approximate

the original space of finite asymptotic dimension. We then relate each side of the

assembly map to the direct limit of homology groups of these coarsening spaces, equipped

with the C0 coarse structure for the domain and the bounded coarse structure for the

codomain. It is then shown that these direct limits agree under certain conditions,

allowing us to conclude the main result. This result is then applied to C∗-category and

algebraic K-theory, as well as equivariant versions of these theories.
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Introduction

The concern of traditional topology is with the small-scale structure of spaces. The

significance of a metric for a topologist lies in the collection of open sets that it

generates. But a great deal of information is lost in the passage from the metric

to its topology and only the very small-scale structure of the metric is reflected in

the topology. Coarse geometry (introduced in [Roe96]) is the study of spaces from

a large-scale point of view and can be seen as the dual to the idea of topology. This

approach to geometry is fruitful as the coarse properties of a metric space are of interest

in various contexts. The idea of coarse geometry is to view a space through successively

blurred lenses and studying the geometry that remains at the end of this coarsening

process. Large-scale properties of a space, such as boundedness, do not depend on the

small-scale features of the space.

The coarse geometry of a space can be visualised by viewing the space from a

further and further distance. The fundamental example of this are the spaces R and

Z. If you zoom further and further away from Z, all of the points look as if they are

getting closer and closer together until eventually in the limit blur to look like R. These

are considered to be equivalent from a coarse point of view as they “behave the same

way at infinity” and share the same similarities when viewed from a great distance.

Similarly, every space which is finite in size is equivalent to a single point as far as

coarse geometry is concerned. All that matters is the large-scale geometry of spaces

that are infinitely large.

In topology the importance of the metric is not in its numerical values but in the

open sets that it defines, so we can abstract from metric spaces to topological spaces

by defining the concept of continuity using open sets rather than using a metric. The

passage from metric spaces to coarse spaces is a large-scale analogue of this process

but instead we focus on abstraction with respect to the large-scale structure and form

a collection of controlled sets satisfying certain large-scale conditions. Any topological

property of a space can be defined entirely in terms of open sets, and analogously any

coarse property can be defined entirely in terms of controlled sets.

For any metric space there is a naturally associated coarse structure called the

metric coarse structure. In [Wri05], Wright introduces a refinement of this structure

called the C0 coarse structure, which is more delicate at infinity but is easier to study.

For the metric coarse structure a coarse equivalence is a coarse map which is invertible

up to some bounded error, but for the C0 coarse structure a coarse equivalence is

required to be invertible up to an error which tends to zero at infinity.

The coarse geometry of a space X is often studied via its Roe C∗-algebra C∗(X)

as introduced by Roe in [Roe96] to study index theory on open manifolds. There is a
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C∗-algebra D∗(X) containing C∗(X) as an ideal and a short exact sequence

0 // C∗(X) // D∗(X) // D∗(X)/C∗(X) // 0

By Bott periodicity and exactness of K-theory there is a six-term exact sequence of

K-theory groups

K0(C∗(X)) // K0(D∗(X)) // K0(D∗(X)/C∗(X))

A
��

K1(D∗(X)/C∗(X))

A

OO

K1(D∗(X))oo K1(C∗(X))oo

Kasparov showed in [Kas75] that K∗(X) (the locally finite K-homology groups of

X) and K∗+1(D∗(X)/C∗(X)) are isomorphic. The boundary maps

A : K∗(X)→ K∗(C
∗(X))

are called the assembly maps and connect the locally finite K-homology of X to the

K-theory of the Roe C∗-algebra of X. We can ask for which metric spaces the assembly

map is an isomorphism.

The functor K∗(C
∗(X)) is a coarse geometric object in the sense that it is functorial

for coarse maps and invariant under coarse homotopy, and the functor K∗(X) is a

topological object in the sense that it is functorial for proper maps and invariant under

proper homotopy. For these reasons, we can not expect this assembly map to be an

isomorphism for cases other than for spaces whose large-scale geometry and small-scale

geometry are the same (such spaces are known as uniformly contractible spaces). The

assembly map A can be modified via a process of coarsening of the left hand side to

obtain coarse K-homology, and another assembly map

A∞ : Kcoarse
∗ (X)→ K∗(C

∗(X))

It is now a much more reasonable question to ask under what conditions the assembly

map A∞ is an isomorphism. This question is known as the coarse Baum–Connes

conjecture (see [Roe93]). There are multiple reasons for wanting to prove such a

conjecture. Firstly, the K-theory of the Roe C∗-algebra contains coarse geometric

information but is very difficult to compute and analyse. The locally finite K-homology

of a space is much easier to compute, and the coarse K-homology is also significantly

easier to compute than the K-theory of the Roe C∗-algebra. Therefore an isomorphism

serves as an explanation of the right hand side of A∞. The second (and perhaps

most important) reason is that the coarse Baum–Connes conjecture has significant

applications in areas of geometric topology, such as surgery theory, allowing us to make

many geometric deductions.
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The notion of descent in coarse geometry (see Chapter 8 of [Roe96]) asserts that if

G is a group which is classified by a finite complex such that the coarse Baum–Connes

assembly map is an isomorphism for the underlying metric space |G| (the group G

equipped with the word length metric) then the Baum–Connes assembly map

KG
∗ (EG)→ K∗(C

∗
r (G))

is injective. The injectivity of an equivariant assembly map usually gives implications in

topology and the surjectivity gives implications in analysis. The coarse Baum–Connes

conjecture also directly implies the analytic Novikov conjecture. Explicitly, if G is

a group which is classified by a finite complex such that the coarse Baum–Connes

assembly map is an isomorphism for the metric space |G| then the map

K∗(BG)→ K∗(C
∗
r (G))

is injective. In the case where G is a torsion free group, injectivity of the Baum–Connes

conjecture is equivalent to the analytic Novikov conjecture.

It is well known that the analytic Novikov conjecture implies the topological Novikov

conjecture. The topological Novikov conjecture concerns homotopy invariance of higher

signatures and has stimulated a vast amount of research in many fields ranging from

algebraic K-theory to geometric functional analysis. The validity of the topological

Novikov conjecture has been established, by a variety of techniques, for many groups.

In [Yu98], Yu proves that the coarse Baum–Connes conjecture holds for proper

metric spaces of finite asymptotic dimension using methods that are analytic in flavour

and therefore uses coarse geometric techniques to provide a proof of the topological

Novikov conjecture for groups with finite asymptotic dimension admitting a finite

classifying space. In [Wri05], Wright shows that the coarse Baum–Connes conjecture

can be interpreted as the relation between the K-theory for the C0 and the metric

coarse structures and gives a new proof of Yu’s result using a more geometric method.

The concept of an assembly map has been generalised beyond the K-theory of

the Roe C∗-algebra and there are many other important assembly maps arising from

the fields of algebraic K-theory, algebraic L-theory and topological K-theory. For

example, it is well known that the topological Novikov conjecture is equivalent to

rational injectivity of the assembly map

H∗(BG; L(Z))→ L∗(ZG)

in algebraic L-theory. In analogy to the coarse Baum–Connes conjecture we can ask

under which assumptions are these assembly maps isomorphisms. In [Bar03], Bartels

gives a proof that the assembly map in algebraic K-theory is split injective for groups

of finite asymptotic dimension admitting a finite classifying space.
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In [Mit10], Mitchener introduces the concept of a coarsely excisive functor E from

the coarse category to the category of spectra (such a functor has the properties so that

its homotopy groups form a coarse homology theory) and defines a coarse assembly map

ΩE(OX)→ E(X)

for any coarsely excisive functor E. The continuously controlled coarse structure on

the open cone OX is the unique coarse structure such that if f : X → Y is continuous

then the induced map f∗ : OX → OY is coarse, allowing us to form a pathway between

topology and coarse geometry. The functor X 7→ E(OX) is properly excisive functor.

By taking homotopy groups, we can form an assembly map

h∗(OX)→ h∗−1(X)

where the left hand side is a locally finite homology theory and the right hand side is

a coarse homology theory.

By the same process of coarsening as with going between locally finite K-homology

and coarse K-homology, we have a coarsened assembly map

kcoarse
∗ (X)→ h∗−1(X)

where k∗(X) = h∗(OX).

As with the case of the coarse Baum–Connes conjecture there is a notion of descent

for any coarse assembly map, implying results about an equivariant version of the coarse

assembly map such as a generalised version of the analytic Novikov conjecture.

In this thesis, we tackle the assembly maps in algebraic and topological K-theory in

a universal way by giving a proof that the coarsened assembly map is an isomorphism

for spaces of finite asymptotic dimension for any coarsely excisive functor E. To do

this, we prove that this result holds for N0 and then build on this by using the fact

that all infinitely uniformly discrete proper metric spaces are C0 coarsely equivalent to

N0. We prove analogues of results from [Wri05] using geometric methods. Specifically,

using the coarsening space, we show that the left and right hand sides of the coarsened

assembly map are the direct limits of the coarse homology of partial coarsening spaces

equipped with the C0 coarse structure and fusion coarse structure respectively. A

category theoretic argument is given to allow us to determine that these direct limits

are isomorphic. We then show that the functors representing algebraic and C∗-category

K-theory are coarsely excisive, which shows that the Baum–Connes assembly map and

the Farrell–Jones assembly map fit into this generalised theory.
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Thesis outline

In Chapter 1 we outline the basic material used in this thesis, looking in particular at

the notions of coarse spaces and coarse maps needed to describe large-scale equivalence,

firstly for metric spaces and then more generally for coarse structures. We introduce

two coarse structures of interest to us; the C0 coarse structure and the hybrid coarse

structure, establishing some basic results about the relationship between them.

Chapter 2 details the theory of a coarse invariant playing a crucial role in this

thesis known as asymptotic dimension, an analogue of Lebesgue covering dimension

in topology. We define asymptotic dimension in three different ways and show them

to be equivalent. We compute some examples of asymptotic dimension and discuss

finitely generated groups coming from geometric group theory, looking in particular at

hyperbolic groups, a large class of groups whose asymptotic dimension is finite.

In Chapter 3 we explain the ideas of coarse homotopy and coarse homology. These

require the concept of a generalised ray, the space [0,∞) equipped with a coarse

structure with desirable properties. We state a theorem relating the homotopy groups

of a space with the coarse homotopy groups of its open cone. We present an axiomatic

definition of a locally finite homology theory and we show that it is possible to use

a process of coarsening to define a coarse homology theory for every locally finite

homology theory. This chapter also features some background material on the coarse

Baum-Connes conjecture.

The focus of Chapter 4 is on almost flasque spaces, a generalisation of flasque spaces.

We give many examples of almost flasque spaces and show that being almost flasque is a

coarse invariant. The idea of the number of ends of a space is discussed and we present

a new result at the end of this chapter by showing that an almost flasque geodesic

metric space must have one end.

Chapter 5 is a survey of the theory of assembly as developed by Weiss and Williams,

Davis and Lück, and Mitchener. To do this, we introduce the idea of spectra and define

and give background theory on properly excisive and coarsely excisive functors. Both

the assembly map and the coarse assembly map are defined and isomorphism conjecture

of these maps are discussed. We define the open cone of a topological space and show

that the continuously controlled coarse structure is the coarse structure such that a

proper continuous map between spaces induces a coarse map between their open cones,

allowing us to move from a coarsely excisive functor to a properly excisive functor by

taking open cones. This theory is then developed in an equivariant setting and the

notion of descent is applied.
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Chapter 6 contains a proof that the coarse assembly map is an isomorphism for

spaces of finite asymptotic dimension. The proof follows the same structure as Wright’s

geometric proof of the coarse Baum–Connes conjecture for finite asymptotic dimension.

Namely; we firstly prove the conjecture for uniformly discrete metric spaces with the C0

coarse structure, by using an argument of building the C0 coarse structure on N via an

increasing limit of smaller coarse structures. The coarsening space is introduced and it

is shown that it is almost flasque when equipped with both the C0 and the hybrid coarse

structures. We also show that both sides of the assembly map are direct limits of the

coarse homology of the partial coarsening spaces with each of these coarse structures.

Using a technical category theoretic result, we show that the partial coarsening spaces

with the C0 and fusion coarse structures eventually agree in the case of discrete spaces.

This allows us to conclude with our main result, by using an induction argument on

the decomposition of the coarsening space.

The aim of Chapter 7 is to apply the main result in the previous chapter to functors

that are of interest in algebraic K-theory and the K-theory of C∗-categories. An

introduction to Waldhausen K-theory is given, and in particular, we explicitly construct

the spectrum KA of a Waldhausen category A. We show that any additive category

can be considered as a Waldhausen category and we define an additive category A(X)

capturing coarse properties of X using ideas from controlled topology. Similarly we

give some background material on C∗-categories and their K-theory, and define an

additive C∗-category A∗(X). The functors X 7→ KA(X) and X 7→ KA∗(X) are shown

to be coarsely excisive. We then discuss the implications of this using descent and end

by showing how the original coarse Baum–Connes and Baum–Connes conjectures for

finite asymptotic dimension drop out as a corollary of the main result.
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Chapter 1

Coarse geometry

Coarse geometry is the study of large-scale properties of spaces, and is considered in

many ways as the “opposite” to topology, where the idea is to study the small-scale

properties of spaces. To see this, note that the metric d′(x, x′) = min{d(x, x′), 1} defines

the same topology as d but that d′ erases all information about distances greater than

1, and so loses the large-scale information of the space and focuses on the small-scale

properties. Coarse geometry concentrates on the dual procedure, the metric d′ defined

by d′(x, x′) = dd(x, x′)e defines the same coarse structure as d but d′ loses the small-scale

information of the space. The metric d′ does not worry about the fine details of the

space.

Coarse geometry has a geometrical interpretation; the coarse geometry of a space

can be visualised by viewing the space from a further and further distance. The

fundamental example of this are the spaces R and Z. If you zoom further and further

away from Z, all of the points look as if they are getting closer and closer together until

eventually in the limit blur to look like R. These are considered to be equivalent from

a coarse point of view as they “behave the same way at infinity” and share the same

similarity when viewed from a great distance. This approach is fruitful as the coarse

geometry of a metric space usually determines its relevant geometric properties.

1.1 Coarse geometry for metric spaces

Definition 1.1 (Coarse map). A map f : X → Y between metric spaces is said to

be:

• coarsely proper if the inverse image f−1(B) ⊆ X is bounded whenever B ⊆ Y is

bounded;

• bornologous if for each R > 0 there exists an SR > 0 such that d(x, x′) < R

implies that d(f(x), f(x′)) < SR;

1
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• coarse if it is both coarsely proper and bornologous.

Remark 1.2. If f : X → Y is a coarse map and A ⊆ X is unbounded then f(A) ⊆ Y
is also unbounded (since if f(A) was bounded, A ⊆ f−1(f(A)) would also be bounded).

In other words, for all sequences (an) in A with an → ∞, it follows that f(an) → ∞
also.

Examples 1.3. The following maps are coarse maps:

• j : R+ → R+ defined by j(x) =
√
x;

• k : R→ Z defined by k(x) = bxc, the map in which each x ∈ R is mapped to the

greatest integer less than or equal to x;

• m : R→ R+ defined by m(x) = |x|;
• n : R→ R defined by n(x) = ax+ b for any a 6= 0.

Non-Examples 1.4. • The map g : N → N defined by g(x) = n for any natural

number n is not a coarse map, since the inverse image of the bounded set {n} is

unbounded.

• The map h : N→ N defined by h(x) = x2 is not a coarse map, since we have

d(x, x+ 1) < 2

for each x, but

d(h(x), h(x+ 1)) = 2x+ 1,

which cannot be bounded for all x.

Definition 1.5 (Close maps). Let X and Y be metric spaces. Two coarse maps

f, g : X → Y are said to be close if there exists a C > 0 such that

d(f(x), g(x)) ≤ C

for all x ∈ X.

Definition 1.6 (Coarsely equivalent). Let X and Y be metric spaces, and let

f : X → Y be a coarse map. The spaces X and Y are said to be coarsely equivalent

(and f is said to be a coarse equivalence) if there exists a coarse map g : Y → X such

that fg is close to idY and gf is close to idX .

Remark 1.7. The composition of two coarse maps is again a coarse map, and metric

spaces being coarsely equivalent is an equivalence relation.

Examples 1.8. • The spaces Z and R are coarsely equivalent. We can see this

geometrically by drawing Z on a number line and then zooming back further and

further to see that in the limit the points of Z have blurred together and now look

like R. To satisfy the definition, define f : Z ↪→ R by the inclusion, and g : R→ Z
by g(x) = bxc.
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• If B is a bounded set then B is coarsely equivalent to a point. We can see this

geometrically by drawing B, zooming back further and further away, and in the

limit it shall look like a point. The coarse maps satisfying the definition are the

inclusion {pt} ↪→ B and constant map B → {pt}.

The following proposition shows that for coarsely equivalent metric spaces, the

coarsely proper condition comes for free.

Proposition 1.9. If X and Y are metric spaces then X and Y are coarsely equivalent

if and only if there exist bornologous maps f : X → Y and g : Y → X such that fg is

close to idY and gf is close to idX .

Proof. The ‘if’ direction is clear since all coarse maps are bornologous maps. If B ⊆
Y is bounded and x, x′ ∈ f−1(B) then there exists a constant D > 0 such that

d(f(x), f(x′)) ≤ D for all x, x′ ∈ f−1(B). As g is bornologous there exists a constant

D′ > 0 such that d(gf(x), gf(x′)) ≤ D′. Now it follows that

d(x, x′) ≤ d(x, gf(x)) + d(gf(x), gf(x′)) + d(gf(x′), x′)

≤ C +D′ + C,

as gf is close to the identity. It follows that f−1(B) is bounded. The case for g is

identical so it follows that X and Y are coarsely equivalent.

1.2 Coarse structures

In topology the importance of the metric is not in its numerical values but in the

open sets that it defines, so we can abstract from metric spaces to topological spaces

by defining continuity by using open sets rather than using a metric. The passage

from metric spaces to coarse spaces is a coarse analogue of this process in topology,

but instead we focus on abstraction with respect to the large-scale structure, with the

behaviour being modelled on the theory for metric spaces.

Definition 1.10 (Coarse structure). A coarse structure E on a set X is a collection

of subsets of X ×X which satisfy the following axioms:

• if M ∈ E and N ∈ E then M ∪N ∈ E ;

• if M ∈ E and N ⊆M then N ∈ E ;

• if M ∈ E then MT ∈ E , where

MT = {(x′, x) : (x, x′) ∈M}

is the transpose of M ;
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• if M ∈ E and N ∈ E then M ◦N ∈ E , where

M ◦N = {(x, x′′) ∈ X ×X : (x, x′) ∈M, (x′, x′′) ∈ N for some x′ ∈ X}

is the product of M and N .

Elements of E are called controlled sets.

Definition 1.11 (Unital weakly connected coarse structure). A coarse structure

E on X is said to be unital if ∆X ∈ E , where ∆X = {(x, x) : x ∈ X} is the diagonal of

X ×X, and weakly connected if {(x, x′)} ∈ E for all x, x′ ∈ X.

All coarse structures mentioned in this thesis will be assumed to be unital and

weakly connected unless stated otherwise. A coarse structure which is not weakly

connected is called a disconnected coarse structure.

Definition 1.12 (Coarse space). A coarse space (X, E) is a set X equipped with a

coarse structure E .

The coarse space (X, E) will be abbreviated to X when it is clear from the context

what the coarse structure E is.

Examples 1.13. • The metric coarse structure Ed on a metric space X is the

collection of all subsets M ⊆ X×X such that sup{d(x, x′) : (x, x′) ∈M} is finite.

That is, each controlled set is a subset of an R-neighbourhood of the diagonal

NR = {(x, x′) ∈ X ×X : d(x, x′) ≤ R}

for some R.

An example of a set for the metric coarse structure on R.

• The discrete coarse structure Ediscrete on X is the collection of all subsets M ⊆
X×X such that x = x′ for all but finitely many (x, x′) ∈M . In other words, the

controlled sets are those which contain only finitely many points off the diagonal.
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• The minimal coarse structure (or trivial coarse structure) Emin on X is the

collection of all subsets of the diagonal on X.

• The maximal coarse structure Emax on X is the collection of all subsets of X×X.

Two other important examples of a coarse structure, the C0 coarse structure and

the hybrid coarse structure, are defined in Section 1.2.1 and 1.2.2 respectively. The

continuously controlled coarse structure will be introduced in Chapter 3.

Definition 1.14. If E and E ′ are coarse structures with E ⊆ E ′ then it is said that E ′

coarsens E .

Examples 1.15. The metric coarse structure Ed coarsens the discrete coarse structure

Ediscrete. The coarse structure Emin is least coarse of all coarse structure, and Emax is

the most coarse of all coarse structures.

Remark 1.16. If (X, E) is a coarse space and Y ⊆ X then (Y, E|Y ) is also a coarse

space, where E|Y = {M ⊆ Y × Y : M ∈ E}.

Remark 1.17. If (X, EX) and (Y, EY ) are coarse spaces, then (X × Y, EX×Y ) is also a

coarse space, where EX×Y is the coarse structure generated by the collection

{MX ×MY : MX ∈ EX ,MY ∈ EY }, known as the product coarse structure.

Let (X, E) be a coarse space, M ∈ E and S ⊆ X. Define

M(S) = {x ∈ X : (x, x′) ∈M for some x′ ∈ S}.

If S has only one element, say S = {x} then we write Mx or M(x) instead of M({x}).

It is easy to show that for the metric coarse structure, sets of the form M(x) are

subsets of open balls, and so the following definition of a bounded set is a reasonable

one.

Definition 1.18 (Bounded set). If X is a coarse space then a subset B ⊆ X is

bounded if it is a subset of M(x) for some controlled set M and for some x ∈ X.

It can be easily shown that a subset of a bounded set is bounded and (for a connected

coarse structure) the union of two bounded sets is also bounded, and that in the metric

coarse structure case the bounded sets are precisely those which are metrically bounded.

Proposition 1.19 (Proposition 2.16 of [Roe03]). If X is a coarse space and B ⊆ X
then the following conditions are equivalent:

• B is bounded;

• B ×B is controlled;

• B × {p} is controlled for some p ∈ X;

• the inclusion map B ↪→ X is close to a constant map. �
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Examples 1.20. It is easy to check the following:

• the bounded sets for (X, Ed) are the metrically bounded subsets of X;

• the bounded sets for (X, Ediscrete) are the finite subsets of X;

• for (X, Emin), the only sets which are bounded are the singletons of X;

• for (X, Emax), every subset of X is bounded.

Definition 1.21 (Coarse map). A map f : X → Y between coarse spaces is said to

be:

• coarsely proper if f−1(B) ⊆ X is bounded whenever B ⊆ Y is bounded;

• controlled if (f × f)(M) is controlled whenever M is controlled;

• coarse if it is both coarsely proper and controlled.

Remark 1.22. If X is a coarse space and B ⊆ X is bounded then B×B is controlled

by Proposition 1.19. If f : X → Y is a controlled map then the set (f × f)(B × B) =

f(B) × f(B) is controlled, so again by Proposition 1.19, f(B) is bounded. Thus a

controlled map sends bounded sets to bounded sets.

Example 1.23. The identity map id: (R, Emin) → (R, Ed) is a controlled map (but is

not coarse) as Emin coarsens Ed, but the identity map id′ : (R, Ed) → (R, Emin) is not a

controlled map since (id′× id′)(M) 6∈ Emin for most M ∈ Ed.

Example 1.24. It can be easily seen that a map h : (X, Ediscrete) → (Y, Ediscrete) is

coarse if and only if it is coarsely proper. In other words, a map h : (X, Ediscrete) →
(Y, Ediscrete) is always controlled.

Non-Example 1.25. If (X, E) is a coarse space where X is unbounded then the

projection map π : X × X → X (where X × X is equipped with the product coarse

structure) defined by π(x, x′) = x is not a coarse map as for each bounded B ⊆ X, the

inverse image π−1(B) = B ×X is unbounded.

Definition 1.26 (Close maps). Let X be a coarse space, and let S be a set. The

maps f, g : S → X are close if the set

{(f(s), g(s)) : s ∈ S}

is a controlled set.

Proposition 1.27. If f : X → Y is a coarse map and g is close to f then g is also a

coarse map.

Proof. The assumption of closeness means that the set C = {(f(x), g(x)) : x ∈ X} is

controlled. The set (f × f)(M) is controlled whenever M is controlled as f is a coarse

map. It can be easily checked that (g × g)(M) ⊆ CT ◦ (f × f)(M) ◦ C, and also that

g−1(B) ⊆ f−1(C(B)) and so it follows that g is coarse.
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Definition 1.28 (Coarse equivalence). Let X and Y be coarse spaces, and let

f : X → Y be a coarse map. The spaces X and Y are said to be coarsely equivalent

(and f is said to be a coarse equivalence) if there exists a map g : Y → X such that fg

is close to idY and gf is close to idX .

Example 1.29. Let X be a coarse space, B ⊆ X be bounded and {pt} ⊆ B. Define

a map f : B → {pt} and a map g : {pt} ↪→ B by the inclusion map. The set {((f ◦
g)(pt),pt)} = {(pt,pt)} is controlled and the set {((g ◦ f)(b), b) : b ∈ B} = {(pt, b) : b ∈
B} is controlled by Proposition 1.19. It follows that for any coarse structure, any

bounded set is coarsely equivalent to a point.

Example 1.30. Let (X, Emin) and (Y, Emin) be coarse spaces. It is easy to check that

X and Y are coarsely equivalent if and only if there is a bijection f : X → Y . For

example, R and Z are not coarsely equivalent for this coarse structure. The spaces

R and (−π/2, π/2) are coarsely equivalent because there exists a bijection given by

x 7→ arctanx.

Sometimes it is useful to consider a slightly different type of map between coarse

spaces, known as a coarse embedding.

Definition 1.31 (Coarse embedding). A map f : X → Y between coarse spaces is

said to be a coarse embedding (or rough map) if it is controlled and if (f × f)−1(M) is

controlled whenever M is controlled.

It can be shown that every coarse equivalence is a coarse embedding, and that any

surjective coarse embedding is a coarse equivalence. For a proof, see Proposition 1.4.4

of [Moh13]. It is also easy to see that any coarse embedding is also a coarse map.

It is useful to be able to define a coarse structure on a disjoint union of coarse

spaces.

Definition 1.32 (Disjoint union I). If {(Xi, Ei) : i ∈ I} is a collection of coarse spaces

then the disjoint union (
⊔
i∈I Xi, E) can be considered a coarse space when equipped

with the coarse structure E defined by E = {
⊔
i∈IMi : Mi ∈ Ei}.

Definition 1.33 (Disjoint union II). If {(Xi, Ei) : i ∈ I} is a collection of coarse

spaces and Bi is the collection of bounded subsets of (Xi, Ei) then the disjoint union

(
⊔
i∈I Xi, E) can be considered a coarse space when equipped with the coarse structure

E defined by E =
⋃
i∈I Ei ∪

⋃
i,i′∈I{B ×B′ : B ∈ Bi, B′ ∈ Bi′}.

The first definition is simpler than the second definition, but has the disadvantage

that the disjoint union of spaces Xi is not a weakly connected coarse structure. The

second definition fixes this issue. The first one will be denoted by
⊔
∞Xi and the

second one simply by
⊔
Xi.
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1.2.1 The C0 coarse structure

The C0 coarse structure was first introduced in [Wri02]. It is a generalisation of the

discrete coarse structure and is a refinement of the metric coarse structure in the sense

that the metric coarse structure coarsens the C0 coarse structure. The C0 coarse

structure provides easier methods of computing certain coarse invariants, and hence

makes it easier to study the large-scale properties of the space.

Definition 1.34. Let X be a metric space. A sequence (xn) ∈ X tends to infinity,

written (xn) → ∞, if for every metrically bounded set B ⊆ X there exists an N such

that xn 6∈ B if n ≥ N .

Definition 1.35 (C0 coarse structure). The C0 coarse structure E0 on a metric

space X is the collection of all subsets M ⊆ X×X (equipped with the product metric)

such that if whenever we have a sequence (xn, x
′
n) ∈ M with (xn, x

′
n) → ∞ then we

also have d(xn, x
′
n)→ 0.

Elements of E0 are called C0 controlled sets. The coarse space (X, E0) will be

abbreviated to X0.

An example of a set for the C0 coarse structure on R.

The picture above shows that the ends at infinity pinch down to zero. It is clear

from the picture that each C0 controlled set is also controlled for the metric coarse

structure. In other words, the identity map X0 → X is a coarse map.

The following result is well known by coarse geometry experts but the proof cannot

be found in the current literature.

Proposition 1.36. Let X be a metric space. A set M ⊆ X × X is C0 controlled if

and only if for all ε > 0, we can write M = B ∪ Aε where B ⊆ X × X is metrically

bounded and d(x, x′) < ε for all (x, x′) ∈ Aε.
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Proof. Suppose M is C0 controlled, and choose ε > 0. Define the sets B = {(x, x′) ∈
M : d(x, x′) ≥ ε} and Aε = {(x, x′) ∈ M : d(x, x′) < ε}. Suppose B is not metrically

bounded and choose a sequence Bn of bounded increasing subsets of B such that

B =
⋃∞
n=1Bn. If C ⊆ B is bounded then C ⊆ Bm for some m. Define a sequence

(xn, x
′
n) ∈ B where (xi, x

′
i) ∈ Bi for each i. For N ≥ m, (xN , x

′
N ) 6∈ C, and hence

(xn, x
′
n)→∞. Thus as B is a C0 controlled set, d(xn, x

′
n)→ 0, which is a contradiction

as (xn, x
′
n) ∈ B.

For the reverse argument, let (xn, x
′
n) be a sequence in M such that (xn, x

′
n)→∞.

Let ε > 0, and write M = B∪Aε where B is metrically bounded and d(x, x′) < ε for all

(x, x′) ∈ Aε. Since B is metrically bounded there exists an N such that (xn, x
′
n) 6∈ B

for n ≥ N . Therefore (xn, x
′
n) ∈ Aε for n ≥ N , and so d(xn, x

′
n) < ε for n ≥ N , and

since ε is arbitrary, it follows that d(xn, x
′
n)→ 0 and thus that M is C0 controlled.

1.2.2 The hybrid coarse structure

The hybrid coarse structure was also first introduced in [Wri02]. It is a also a refinement

of the metric coarse structure as the metric coarse structure coarsens the hybrid coarse

structure, but not as refined, as the hybrid structure coarsens the C0 coarse structure.

Definition 1.37 (Hybrid coarse structure). Let X be a metric space equipped

with a function π : X → R+ and define Xi = π−1([0, i]). The hybrid coarse structure

for π on X is the collection Eh,π of all subsets M ⊆ X ×X satisfying the following:

• M is controlled for the metric coarse structure;

• sup{d(x, x′) : (x, x′) ∈M\(Xi ×Xi)} → 0 as i→∞.

Elements of Eh,π are called π-hybrid controlled sets (or simply hybrid controlled sets

if the map π is clear from context). The coarse space (X, Eh,π) will be abbreviated to

Xh,π (or Xh if the map π is clear from context).

An example of a set for the hybrid coarse structure on R.
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Proposition 1.38. Let X be a metric space equipped with a map π : X → R+. A set

M ⊆ X ×X is hybrid controlled if and only if for all ε > 0, we can write M = B ∪Aε
where B ⊆ Xi×Xi for some i and B ⊆ NR for sufficiently large R and d(x, x′) < ε for

all (x, x′) ∈ Aε.

Proof. Suppose that M is hybrid controlled, and choose ε > 0. Define B = {(x, x′) ∈
M : d(x, x′) ≥ ε} and Aε = {(x, x′) ∈ M : d(x, x′) < ε}. By assumption of metric

control, M ⊆ NR for sufficiently large R, and therefore B ⊆ NR. Suppose that for all

i, B 6⊆ Xi×Xi, and choose a sequence (xn, x
′
n) ∈ B with (xi, x

′
i) ∈ A\(Xi ×Xi). Since

sup{d(x, x′) : (x, x′) ∈ A\(Xi ×Xi)} → 0 as i→∞, we must have d(xi, x
′
i)→ 0 and so

(xi, x
′
i) 6∈ B, which is a contradiction. Thus B ⊆ Xi ×Xi for some i.

Conversely, suppose that for all ε > 0, we can write M = B∪Aε where B ⊆ Xi×Xi

for some i and B ⊆ NR for sufficiently large R. As Aε is an ε-neighbourhood of the

diagonal, M = B ∪ Aε ⊆ NR and so M is controlled for the metric coarse structure.

As B ⊆ Xi × Xi, it follows that M\(Xi ×Xi) ⊆ M\B = Aε. And hence if (x, x′) ∈
M\(Xi ×Xi) then d(x, x′) < ε. It follows that sup{d(x, x′) : (x, x′) ∈ A\(Xi×Xi)} → 0

as i→∞, and so M is hybrid controlled.

Proposition 1.39. Let X be a metric space equipped with a controlled map π : X →
R+. If M ⊆ X ×X is C0 controlled then M is hybrid controlled.

Proof. If M is C0 controlled then by Proposition 1.36, for all ε > 0, we can write

M = B ∪Aε with B metrically bounded and d(x, x′) < ε for all (x, x′) ∈ Aε.

As B is metrically bounded, there exists Q and a basepoint (y0, y
′
0) ∈ B such that

d((y, y′), (y0, y
′
0)) ≤ Q for all (y, y′) ∈ B. As π is controlled, there exists an S such that

d((π(y), π(y′)), (π(y0), π(y′0))) ≤ S. Thus d(π(y), π(y0)) ≤ S and d(π(y′), π(y′0)) ≤ S.

Thus there exists an i such that π(y), π(y′) ≤ i for all (y, y′) ∈ B and it follows that

B ⊆ Xi ×Xi for some i.

Suppose that B is metrically bounded, but that for all R > 0 there is a sequence

(xn, x
′
n) ∈ B with (xR, x

′
R) 6∈ NR for each R. Then (xn, x

′
n) ∈ B with (xn, x

′
n) →

∞. This contradicts the fact that B is metrically bounded, and hence B ⊆ NR for

sufficiently large R. It follows from Proposition 1.38 that M is hybrid controlled.

It is easy to see why the converse to Proposition 1.39 is not true. The following is

a concrete example of this.

Example 1.40. Let X = R with the usual metric and π : R → R+ be the controlled

map

π(x) =

ln(x) if x > 1

0 if x ≤ 1.
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It is easy to see that π is controlled, using the facts that ln(R + 1) ≤ R for R ≥ 0

and | ln(x)− ln(y)| ≤ |x− y| for x, y ∈ R.

Define Xi = π−1([0, i]) = (−∞, ei]. Fix k and let

MR = {(x, x′) : d(x, x′) ≤ R and x, x′ ≤ ek} ∪ {(x, x) : x > ek}.

It follows that sup{d(x, x′) : (x, x′) ∈MR\(Xi×Xi)} → 0 as i→∞ sinceMR\(Xi ×Xi) =

{(x, x) : x > ei} for i > k, and hence MR is hybrid controlled. But (x, x+R) ∈MR for

all x ≤ 0 and d(x, x+R) = R 6→ 0 as x→ −∞. It follows that MR is not C0 controlled.

Note that if M ⊆ R × R is hybrid controlled with π defined instead by π(x) = |x|
then M is also C0 controlled. The reason for this comes out in the following result.

Proposition 1.41. Let X be a metric space equipped with a coarse map π : X → R+.

Then M ⊆ X ×X is C0 controlled if and only if it is hybrid controlled.

Proof. By Proposition 1.39, any C0 controlled set M is hybrid controlled. Since π is

coarse, each Xi is bounded (and so Xi ×Xi is bounded). If (xn, x
′
n) ∈ M → ∞ then

for each i there exists an N such that (xn, x
′
n) ∈ M\(Xi ×Xi) for n ≥ N . As M

is hybrid controlled, sup{d(xn, x
′
n) : (xn, x

′
n) ∈ A\(Xi ×Xi)} → 0 as i → ∞, and so

d(xn, x
′
n)→ 0. It follows that M is C0 controlled.

1.3 Uniformly discrete and bounded geometry

Definition 1.42 (Uniformly discrete). A metric space X is said to be uniformly

discrete (or δ-discrete) if there exists a δ > 0 such that d(x, x′) ≥ δ whenever x 6= x′.

For example, Z is uniformly discrete but R is not. Every group equipped with the

word length metric (see Chapter 2) is uniformly discrete.

The following definition comes from page 13 of [Roe96].

Definition 1.43 (Bounded geometry). A uniformly discrete metric space X is said

to have bounded geometry if for every R > 0 there exists a k such that |B(x,R)| ≤ k for

all x ∈ X. A metric (not neccessarily uniformly discrete) space is said to have bounded

geometry if every uniformly discrete subset has bounded geometry.

Examples 1.44. • Every subset of a metric space with bounded geometry also has

bounded geometry.

• The space Rn has bounded geometry.

• The free group on 2 generators |F2| (see Chapter 2) with generating set S = {a, b}
has bounded geometry.
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To see this, let M ⊆ |F2| × |F2| be a controlled set. Choose x ∈ |F2| and recall

that M(x) = {x′ ∈ F2 : |x′x−1|S < R}. If |x′x−1|S ≤ R then x′ = xe11 x
e2
2 . . .x

en
n x

where xj = a or b, ej = ±1 for each j and n ≤ R. There are 4 possible choices

for xe11 . There are then 3 choices for each subsequent x
ej
j (so that there are no

subwords of the form aa−1). Thus for each x ∈ |F2|, |M(x)| ≤
∑R

n=1 4(3)n−1 and

|F2| has bounded geometry.

Non-Example 1.45. If H is an infinite dimensional Hilbert space then H has an

orthonormal basis S = {en : n ∈ N}. A metric can be given on H, induced by the

inner product. It follows that d(en, em) =
√

2 for n 6= m, and thus that S is uniformly

discrete. However, S does not have bounded geometry as the ball {em : d(en, em) ≤ R}
is infinite for R ≥

√
2 and therefore H also does not have bounded geometry.



Chapter 2

Asymptotic dimension

Asymptotic dimension was first introduced by Gromov in [Gro93]. This is the coarse

analogue of Lebesgue covering dimension, which plays a crucial role in the theory of

topological spaces. Three equivalent definitions of asymptotic dimension will be given

here, along with some basic examples. We shall show that asymptotic dimension is

invariant under coarse equivalence, and state some useful results about asymptotic

dimension.

Some basic definitions of geometric group theory are given here so that asymptotic

dimension for finitely generated groups can be discussed. In particular, hyperbolic

spaces and groups are introduced as these are a class of examples which have finite

asymptotic dimension.

Finite asymptotic dimension is an important geometric property, and is a condition

used to show that certain isomorphism conjectures in K-theory hold.

For more on the theory of asymptotic dimension, see [BD07], [Gra05] and [Gro93].

2.1 Geometric group theory

Geometric group theory is the study of groups by regarding them as metric spaces.

This powerful way of looking at groups enables us to deduce results about groups

which satisfy certain geometric conditions.

The word length metric is a way of measuring the distance between two elements

of a group, and thus when equipped with this metric we are able to think about these

group as metric spaces.

Definition 2.1 (Lipschitz). A map f : X → Y between metric spaces is Lipschitz (or

A-Lipschitz ) if there is an A > 0 such that d(f(x), f(x′)) ≤ Ad(x, x′) for all x, x′ ∈ X.

13
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It is easy to see that any Lipschitz map is controlled, and that if X and Y are

proper and f : X → Y is proper and Lipschitz then f is coarse.

Definition 2.2 (Quasi-isometry). A map f : X → Y between metric spaces is a

quasi-isometry if there exist constants A ≥ 1 and B,C ≥ 0 such that

1

A
d(x, x′)−B ≤ d(f(x), f(x′)) ≤ Ad(x, x′) +B

for all x, x′ ∈ X and for every y ∈ Y , there is an x ∈ X with d(f(x), y) ≤ C.

A quasi-isometry is the geometric group theory version of a coarse equivalence.

The following theorem is well known, the proof is straightforward but is technical (see

[BD07]).

Theorem 2.3. Let X and Y be metric spaces, and let f : X → Y be a map. If f is

a quasi-isometry then it is a coarse equivalence. Moreover, if X and Y are geodesic,

then f is a quasi-isometry if and only if it is a coarse equivalence. �

Definition 2.4 (Words). Let S be a set. A word (of length n) with alphabet S is a

finite sequence aε11 a
ε2
2 . . .a

εn
n where a1, a2, . . . , an ∈ S and ε1, ε2, . . . , εn = ±1.

The concatenation of two words w1 = aε11 a
ε2
2 . . .a

εm
m and w2 = b

ε′1
1 b

ε′2
2 . . .b

ε′n
n is given by

w1w2 = aε11 a
ε2
2 . . .a

εm
m b

ε′1
1 b

ε′2
2 . . .b

ε′n
n .

Two words are said to be equivalent if one can be obtained from the other by adding

and deleting subwords of the form aja
−1
j . A word containing no strings of the form

aja
−1
j is called a reduced word. Each equivalence class contains a unique reduced word.

Definition 2.5 (Finitely generated group). A set S is said to be a generating set

for a group G if every element of G can be written as a word with alphabet S. A group

is said to be finitely generated if it has a finite generating set.

Definition 2.6 (Word length). The word length |g|S of g ∈ G with alphabet S is

defined to be the smallest n such that g is a word of length n with alphabet S. The

word length of the identity element (the empty word) is defined to be 0.

The following proposition is straightforward to prove.

Proposition 2.7. A group G with generating set S can be equipped with a metric

(called the word length metric) defined by the formula

d(g, g′) = |g−1g′|S .

�
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A group G with generating set S equipped with the word length metric shall be

denoted by |G|S .

If S = G, the word length metric in this case is simply the discrete metric. This

metric contains no interesting geometric information about G so our attention will

be restricted to finite generating sets, and all groups mentioned from now on will be

assumed to be finitely generated.

It is clear that the word length metric depends on the choice of S. However, the

following result tells us that from a coarse point of view, the geometric properties of a

group are independent of the choice of generating set.

Proposition 2.8. If G is a finitely generated group and S and S′ are two choices of

generating set then the identity map |G|S → |G|S′ is a quasi-isometry.

Proof. Define SL = {|s|S′ : s ∈ S} and S′L = {|s′|S : s′ ∈ S′}. That is, SL is the

set of lengths of words in S written using alphabet S′ and S′L is the set of lengths

of words in S′ written using alphabet S. If λ = max(SL ∪ S′L) then it follows that

λ−1dS(g, g′) ≤ dS′(g, g′) ≤ λdS(g, g′), and so the identity map is a quasi-isometry.

Definition 2.9 (Cayley graph). Let G be a finitely generated group with generating

set S. The Cayley graph Cay(G,S) is constructed combinatorially as follows:

• for each element g ∈ G, assign a vertex;

• for any g ∈ G and s ∈ S, connect the vertices corresponding to the elements g

and gs by an edge.

Observe that g, g′ ∈ G are adjacent in Cay(G,S) (connected by an edge) if and only

if d(g, g′) = 1. Thus the metric distance between any two vertices is the length of the

shortest geodesic path between them. This can be extended further to all elements of

Cay(G,S) by defining a metric dC on Cay(G,S) by

dC(x, y) = inf{Length(α) : α is a path from x to y}.

Proposition 2.10. If G is a finitely generated group with generating set S then the

inclusion map |G|S ↪→ Cay(G,S) is a quasi-isometry. �

Proposition 2.11. If G is a finitely generated group and S and S′ are two choices of

generating set then there is a quasi-isometry Cay(G,S)→ Cay(G,S′).

Proof. Choose a map ϕ : Cay(G,S) → |G|S defined by ϕ(x) = g where g is such that

dC(x, g) ≤ 1/2. This can always be done since any vertex is of distance 1 away from

some other vertex. It is clear that d(ϕ(x), ϕ(y)) ≤ dC(ϕ(x), x)+d(x, y)+dC(y, ϕ(y)) ≤
d(x, y) + 1. Similarly, one can check that d(ϕ(x), ϕ(y)) ≥ dC(x, y)− 1.
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The identity map |G|S → |G|S′ is also a quasi-isometry, as is the inclusion map

|G|S′ ↪→ Cay(G,S′). Composition of these with the map ϕ gives us a map Cay(G,S)→
Cay(G,S′), which is a quasi-isometry as it is a composition of quasi-isometries.

As our interest is in coarse properties, we can therefore write |G| instead of |G|S and

Cay(G) instead of Cay(G,S) as the generating set does not affect the coarse structure.

The metric space |G| is not a geodesic space since the values of the word length

metric are natural numbers. Being geodesic is a nice property to have, and the result

above tells us that |G| and Cay(G) can be considered the same geometrically. Therefore,

as a geodesic space, Cay(G) is a natural (and useful) way of viewing |G|.

2.2 Asymptotic dimension for metric spaces

Definition 2.12. Let X be a metric space, and let U be a cover of X.

• A refinement of U is a cover V of X such that for each V ∈ V there exists a U ∈ U
such that V ⊆ U .

• The multiplicity µ(U) of U is defined to be the maximum number of sets in U
with a non-empty intersection.

• The mesh of U is defined to be the supremum of the diameter of sets from U .

The cover U is uniformly bounded if it has finite mesh.

• The Lebesgue number L(U) of U is the largest positive L such that for each x ∈ X,

there exists a U ∈ U such that B(x, L) ⊆ U .

Definition 2.13 (Asymptotic dimension I). A metric space X has asymptotic

dimension less than or equal to n if for every uniformly bounded open cover V, there

is a uniformly bounded open cover U with µ(U) ≤ n+ 1 such that V is a refinement of

U .

Definition 2.14 (Asymptotic dimension II). A metric space X has asymptotic

dimension less than or equal to n if for all L > 0 there exists a uniformly bounded

open cover U of X such that µ(U) ≤ n+ 1 and L(U) ≥ L.

In each of the definitions of asymptotic dimension, asdim(X) = n if asdim(X) ≤ n
and asdim(X) � n−1, and asdim(X) =∞ if there exists no n such that asdim(X) ≤ n.

Both definitions of asymptotic dimension are equivalent (see Section 3 of [BD07]).

As the arguments are straightforward, we give them here. Suppose that asdim(X) ≤ n
by Definition 2.13. Let L > 0 and set V = {B(x, L) : x ∈ X}. It is easy to see that V
is a uniformly bounded open cover of X. Thus there exists a uniformly bounded open

cover U with µ(U) ≤ n+ 1 such that V is a refinement of U . Thus for each V ∈ V there
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exists a U ∈ U such that V ⊆ U . That is, for every x ∈ X there is a U ∈ U such that

B(x, L) ⊆ U , so L(U) ≥ L.

For the reverse claim, suppose asdim(X) ≤ n by Definition 2.14. Let V be a

uniformly bounded open cover, with mesh(V) ≤ C. There exists a uniformly bounded

open cover U such that µ(U) ≤ n+1 and L(U) ≥ C. Since Diam(V ) ≤ C for all V ∈ V,

we have V ⊆ B(x,C) for some x ∈ X. Since L(U) ≥ C, this means B(x,C) ⊆ U for

some U ∈ U . It follows that V is a refinement of U .

The following is another equivalent definition of asymptotic dimension (Section 3

of [BD07]). It is often the easiest definition to use for checking whether or not a space

has finite asymptotic dimension.

Definition 2.15 (Asymptotic dimension III). A metric space X has asymptotic

dimension less than or equal to n if for all L > 0 there exists a uniformly bounded

open cover U of X such that the cover U consists of n + 1 families U1, . . . ,Un+1 and

each family is L-disjoint (the distance between two sets in the family is always bigger

than L).

Some properties of asymptotic dimension are given below.

Proposition 2.16 (Section 9.2 of [Roe03]). If X and Y are metric spaces and

A,B ⊆ X with X = A ∪B then:

• asdim(A) ≤ asdim(X);

• asdim(X) = max{asdim(A), asdim(B)};
• asdim(X × Y ) ≤ asdim(X) + asdim(Y ). �

Proposition 2.17. If X and Y are metric spaces and f : X → Y is a coarse embedding

then

asdim(X) ≤ asdim(Y ).

Proof. It is shown in Theorem 1 of [BD05] that the definition of asymptotic dimension

is equivalent if the requirement for the uniformly bounded cover to be open is dropped.

Suppose that asdim(Y ) ≤ n. For each L > 0, let SL be the constant such that if

d(x, y) < L then d(f(x), f(y)) < SL. By assumption there is a uniformly bounded

cover USL
of Y with µ(USL

) ≤ n + 1 and L(USL
) ≥ SL. The assumption that f is a

coarse embedding means that for all R > 0 there exists an SR > 0 such that d(y, y′) < R

implies d(f−1(y), f−1(y′)) < SR.

There exists an R such that for each U ∈ USL
there is a y0 with U ⊆ B(y0, R) as

USL
is uniformly bounded. Therefore there is an S such that f−1(U) ⊆ B(f−1(y0), S)

for each f−1(U) ∈ f−1(USL
) and it follows that f−1(USL

) is a uniformly bounded cover

of X.
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It is also easy to verify that µ(f−1(USL
)) ≤ n+ 1. Let x ∈ X. Then there exists a

U ∈ USL
such that B(f(x), SL) ⊆ U . Thus

B(x, L) ⊆ f−1(B(f(x), SL))

⊆ f−1(U),

and so it follows that L(f−1(USL
)) ≥ L, and hence that asdim(X) ≤ asdim(Y ).

Remark 2.18. It follows from Proposition 2.17 that asymptotic dimension is invariant

under coarse equivalence. Even more generally it implies that if f : X → Y is a coarse

embedding and there exists a coarse embedding g : Y → X then asdim(X) = asdim(Y ).

Example 2.19. asdim(R) = 1. To see that asdim(R) ≤ 1, choose L > 0 and define

U0 = {(4Lz − 2L, 4Lz + 2L) : z ∈ Z}

and

U1 = {(4Lz, 4Lz + 4L) : z ∈ Z}.

Then the set U = U0 ∪ U1 is a cover of R which satisfies µ(U) = 2. Choose x ∈ R, and

use I to denote an open interval containing x. The point x is no more than 2L away

from an end of this interval. If x is more than L away from this end, then (x−L, x+L)

is a subset of I, so also of U . If x is less than L away then (x−L, x+L) is a subset of

J , where J is the ‘next interval’ in U . This shows that L(U) = L and proves the claim

that asdim(R) ≤ 1.

Now we need to show that asdim(R) � 0. If asdim(R) ≤ 0 then for all L > 0 there

exists a uniformly bounded open cover U of X satisfying µ(U) ≤ 1. This is impossible

as R is connected. Hence asdim(R) = 1.

Examples 2.20. • asdim(B) = 0 for every bounded set B. This follows as given

any cover V of B, there is a one element cover U of B such that V refines U .

• asdim({n2 : n ∈ N}) = 0 as given any cover V of {n2 : n ∈ N}, we can construct a

disjoint cover U of {n2 : n ∈ N} such that V refines U by blending sets together

and getting rid of any unnecessary overlaps.

• asdim(Z) = 1 by Example 2.19 and Proposition 2.17.

• asdim(Rn) = n by a higher dimensional version of Example 2.19 (see Corollary

3.6 of [Gra05]).

Asymptotic dimension and topological dimension have some striking differences.

For example, the asymptotic dimension of a unit square and a unit cube is 0 (as they

are bounded) but they have topological dimensions 2 and 3 respectively.

Example 2.21 (Proposition 9.8 of [Roe03]). If T is a tree then asdim(T ) ≤ 1.
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Example 2.22. Let G be a finitely generated free group. By Proposition 2.10, |G|
and Cay(G) are coarsely equivalent, so asdim(|G|) = asdim(Cay(G)). Since the Cayley

graph of a free group is a tree, it follows from Example 2.21 that asdim(|G|) ≤ 1.

Example 2.23 (Proposition 8.1 of [Yu98]). Let X =
⊔∞
n=1 S

2n where S2n is the

2n-sphere of radius 1. Equip each S2n with the standard Riemannian metric d2n and

then equip X with a metric d such that d|S2n = nd2n (so that the radii of the spheres

grow infinitely large) and that the Hausdorff distance d(S2n, S2n′) > max{n, n′} if

n 6= n′ (so that the distance between the spheres grow infinitely large). Then X has

infinite asymptotic dimension.

The following proposition is useful because it implies finite asymptotic dimension

for groups with certain properties.

Proposition 2.24 (Lemma 9.16 of [Roe03]). If X and Y are metric spaces where

Y has finite asymptotic dimension and f : X → Y is a Lipschitz map where for each

R > 0, the inverse images f−1(B(y,R)) have finite asymptotic dimension uniformly in

y then X also has finite asymptotic dimension. �

Corollary 2.25 (Corollary 9.19 of [Roe03]). Let

0 // K // G // H // 0

be an exact sequence of finitely generated groups. If K and H have finite asymptotic

dimension, then so does G. �

2.2.1 Hyperbolic spaces and groups

Hyperbolic spaces, such as the Poincaré half-plane model H = {(x, y) : y > 0, x, y ∈ R}
equipped with the Poincaré metric, are spaces with constant negative curvature, which

is the main difference from Euclidean spaces, which have zero curvature. Hyperbolic

groups are groups which share many geometric properties of hyperbolic spaces, and

these are well studied objects in geometric group theory. Hyperbolic groups are of

interest to us as they are a large class of examples which have finite asymptotic

dimension. To be able to define a hyperbolic group, firstly we need to define a hyperbolic

space. Hyperbolic spaces are straightforward to define by a simple and easy to visualise

property of triangles.

Definition 2.26 (Geodesic triangle). A geodesic triangle [x, y] ∪ [x, z] ∪ [z, y] in a

metric space X is the union of three geodesic segments [x, y], [x, z], [z, y] joined together

to form a triangle in X.

Definition 2.27 (δ-thin). A geodesic triangle is said to be δ-thin if each side is

contained in the δ-neighbourhoods of each of the other two sides.
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Definition 2.28 (δ-hyperbolic space). A geodesic spaceX is said to be a δ-hyperbolic

space if every geodesic triangle is δ-thin.

Definition 2.29 (Hyperbolic space). A geodesic space is said to be a hyperbolic

space if it is δ-hyperbolic for some δ ≥ 0.

Large-scale invariance of hyperbolic space is well known.

Proposition 2.30 (Theorem 1.9, Chapter III of [BH99]). If X and Y are coarsely

equivalent geodesic spaces then X is hyperbolic if and only if Y is hyperbolic. �

Examples 2.31. • Bounded geodesic spaces are hyperbolic. If the distance between

any two points is at most B then any side of a triangle is in a B-neighbourhood

of the union of the other two sides.

• A tree is a 0-hyperbolic metric space. Any two points are connected by a shortest

path, so the tree is geodesic. Any side of a triangle is automatically contained

inside the union of the other two sides.

Non-Example 2.32. The Euclidean plane R2 is not a hyperbolic space, as equilateral

triangles can grow as large as they wish, meaning that no such δ exists so that all

geodesic triangles are δ-thin (so Euclidean space does not satisfy the thin triangles

property).

Definition 2.33 (Hyperbolic group). A finitely generated group G is said to be a

hyperbolic group if Cay(G) is a hyperbolic space.

Examples 2.34. • Finite groups are hyperbolic as their Cayley graphs are bounded.

• Finitely generated free groups are hyperbolic as their Cayley graphs are trees.

Non-Example 2.35. The group Z2 is not a hyperbolic group. This follows from

Proposition 2.30 as Cay(Z2) is coarsely equivalent to R2, which is not a hyperbolic

space by Non-Example 2.32.

Proposition 2.36 (Theorem 9.25 of [Roe03]). If G is a hyperbolic group then G

has finite asymptotic dimension. �

2.3 Asymptotic dimension for coarse spaces

Asymptotic dimension can be easy generalised from metric spaces to coarse spaces.

Metric balls can simply be replaced with controlled balls. Asymptotic dimension for

coarse spaces is reviewed here, but is not used in this thesis as the focus is always on

metric spaces.

The following definition comes from Chapter 9 of [Roe03].
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Definition 2.37. Let X be a coarse space, L ⊆ X ×X be a controlled set and U be a

cover of X.

• A cover U is said to have appetite L if for all x ∈ X, there exists a U ∈ U such

that L(x) ⊆ U .

• A cover U is said to be uniformly bounded if
⋃
U∈U U × U is a controlled set.

Definition 2.38 (Asymptotic dimension for coarse spaces). A coarse space has

asymptotic dimension less than or equal to n if for every controlled set L ⊆ X × X,

there is a uniformly bounded cover U of X such that µ(U) ≤ n+ 1 and U has appetite

L.

This agrees with our previous definitions if the coarse structure used is the metric

coarse structure. There are various other equivalent definitions of asymptotic dimension

for coarse structures, see [Gra05]. All of the properties stated for the metric case (such

as coarse invariance) also hold in the general case.





Chapter 3

Coarse homotopy and coarse

homology

The main definitions and results of coarse homotopy theory are contained within this

chapter. Coarse homotopy is the coarse analogue of homotopy in topology. A homotopy

between continuous maps is required to take place over the interval [0, 1] (so in a finite

time). A coarse homotopy requires that the restriction of coarse maps to bounded

sets also takes places over a finite time, but coarse homotopy for the coarse maps

themselves are allowed to take an infinite time. We describe a coarse version of the

cylinder X × [0, 1] used in ordinary homotopy theory which is best suited for our

setup. References for more information about coarse homotopy theory include [Nor09],

[Moh13] and [MNS18].

The concept of a coarse homology theory is also introduced here, and it will be

shown how to define a coarse homology theory on the coarse category for each locally

finite homology theory, using a process of coarsening via a coarsening family or (more

intuitively for the metric coarse structure) the Rips complex. The coarse Baum–Connes

conjecture is of great interest in coarse geometry as there are interesting geometrical

and topological consequences for many areas of mathematics. This conjecture concerns

a map (known as an assembly map) which is defined between the coarse K-homology

of a space and the K-theory of the Roe C∗-algebra of a space. The conjecture asks

whether or not this map is an isomorphism under certain conditions. Examples of

spaces for which this conjecture holds and does not hold will be given.

An axiomatic definition of a locally finite homology theory (and a relative version)

will be introduced in this chapter, allowing us to expand on the process of coarsening,

creating a pathway between topological homology and coarse homology.

23
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3.1 Coarse homotopy theory

Definition 3.1 (Coarse topological space). A coarse topological space X is a coarse

space X equipped with a Hausdorff topology such that every controlled set is contained

in an open set, and the closure of every bounded set is compact. The topology and

coarse structure of a coarse space X equipped with a topology are said to be compatible

if this condition holds.

Remark 3.2. Coarse topological spaces have to be locally compact since for each

x ∈ X the singleton set (x, x) is controlled, so is contained in an open set U . It follows

that U(x) is an open neighbourhood of x, but is bounded, so x is contained in the

compact neighbourhood closure U(x).

Remark 3.3. If X ⊆ Rn then every compact subset of X is closed and metrically

bounded, so it follows that if B is bounded with respect to the coarse structure of

a coarse topological space then B is metrically bounded because the closure of every

bounded set B is compact, so B itself is also metrically bounded.

Definition 3.4 (Generalised ray). Consider the coarse topological space [0,∞),

which we will denote by R+. The space R+ is called a generalised ray if the following

conditions are satisfied:

• the set

M +M ′ = {(u+ u′, v + v′) : (u, v) ∈M, (u′, v′) ∈M ′}

is controlled if M,M ′ ⊆ R+ × R+ are controlled;

• the set

M s = {(u, v) ∈ R+ × R+ : x ≤ u ≤ y and x ≤ v ≤ y, (x, y) ∈M}

is controlled if M ⊆ R+ × R+ is controlled;

• for each a ∈ R+, the set

a+M = {(a+ u, a+ v) : (u, v) ∈M}

is controlled if M ⊆ R+ × R+ is controlled.

Example 3.5. The coarse space (R+, Ed) is a generalised ray. The notation R+ will

be reserved only for this specific ray.

Definition 3.6 (Continuously controlled coarse structure). Let (X, E) be a

coarse topological space, and suppose that X is a topologically dense subset of a

Hausdorff space Y (so that Y is a compactification of X). Define the boundary ∂X of

X by Y \X. An open subset M ⊆ X ×X is said to be strongly controlled if M ∈ E and

if the closure M of M in Y × Y satisfies

M ∩ ((Y × ∂X) ∪ (∂X × Y )) ⊆ ∆∂X .
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The continuously controlled coarse structure Ecc with respect to Y is the collection of

subsets M ⊆ X ×X such that M is a composite of subsets of strongly controlled open

sets.

It can be shown that (X, Ecc) is also a coarse topological space (see Proposition

2.4 of [Mit10]), and that M ⊆ X × X is continuously controlled if and only if for all

sequences (xn, x
′
n) ∈M then xn → x ∈ ∂X if and only if x′n → x and M ∈ E .

Proposition 3.7. The coarse space (R+, Ecc) is a generalised ray.

Proof. The space R+ is a topologically dense subset of the one-point compactification

[0,∞] = R+ ∪ {∞}. Since ∂R+ = {∞}, the condition for M ⊆ R+ × R+ is be

continuously controlled is that

M ∩ ([0,∞]× {∞} ∪ {∞} × [0,∞]) ⊆ {(∞,∞)}

Let M,N ⊆ R+ × R+ be continuously controlled. If (x, y) ∈ M +N ∩ ([0,∞] ×
{∞}∪{∞}× [0,∞]) then x = u+u′ and y = v+v′ for (u, v) ∈M and (u′, v′) ∈ N . By

assumption, x = ∞ or y = ∞. Without loss of generality, suppose that x = ∞. Then

u = ∞ or u′ = ∞, and if u = ∞ then v = ∞ as (u, v) ∈ M and M is continuously

controlled, so x = y = ∞. The other cases are the same. It follows that M + N is

continuously controlled.

If (u, v) ∈ M s ∩ ([0,∞] × {∞} ∪ {∞} × [0,∞]) then x ≤ u ≤ y and x ≤ v ≤ y for

(x, y) ∈M . As u =∞ or v =∞, it follows that y =∞ so x =∞ as M is continuously

controlled. Thus u = v =∞.

If a ∈ R+ and (x, y) ∈ a+M ∩ ([0,∞]× {∞} ∪ {∞} × [0,∞]) then x = a+ u and

y = a + v where (u, v) ∈ M . By assumption, x = ∞ or y = ∞. Then u = ∞ or

v =∞. Then u = v =∞ as M is continuously controlled, so x = y =∞ and a+M is

continuously controlled.

It follows that (R+, Ecc) is a generalised ray.

Non-Example 3.8. The coarse space R+ with the C0 coarse structure is not a generalised

ray. To see this, note that the set ∆R+ ∪ {(0, R), (R, 0)} is controlled for any R > 0

as each singleton set is controlled. The first and second conditions for R+ with the C0

coarse structure to be a generalised ray would imply that the set

∆R = {(x, y) ∈ R+ × R+ : d(x, y) ≤ R}

is also controlled, which is not true for the C0 coarse structure.

Definition 3.9 (p-cylinder). Let X be a coarse space equipped with a controlled
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map p : X → R+. The p-cylinder of X is defined to be the space

IpX = {(x, t) ∈ X × R+ : t ≤ p(x) + 1}.

Note that a different choice of p will produce a different p-cylinder.

Definition 3.10 (Coarse homotopy). Two coarse maps f, g : X → Y are coarsely

homotopic if there exists a controlled map p : X → R+ and a coarse map H : IpX → Y

such that f(x) = H(x, 0) and g(x) = H(x, p(x) + 1). The coarse map H is called a

coarse homotopy.

Proposition 3.11 (Theorem 2.4 of [MNS18]). The notion of maps being coarsely

homotopic is an equivalence relation. �

An outline of the proof is given here. It is easy to verify that a coarse map f : X → Y

is coarsely homotopic to itself. Choose any controlled map p : X → R+ and define

H(x, t) = f(x) for all t.

Let g : X → Y be a coarse map and suppose that f is coarsely homotopic to

g : X → Y by F : IpX → Y . Define G : IpX → Y by G(x, t) = F (x, p(x) + 1 − t). It

follows that g is coarsely homotopic to to f .

Let h : X → Y be a coarse map and suppose f is coarsely homotopic to g (by

H : IpX → Y ) and g is coarsely homotopic to h (by H ′ : IqX → Y ). Note that the map

p+ q is controlled. Define J : Ip+q+1X → Y by

J(x, t) =

H(x, t) 0 ≤ t ≤ p(x) + 1

H ′(x, t− (p(x) + 1)) p(x) + 1 ≤ t ≤ p(x) + q(x) + 2.

It follows that f is coarsely homotopic to h.

Definition 3.12 (Coarse homotopy equivalence). Let f : X → Y be a coarse map.

Then f is said to be a coarse homotopy equivalence if there is a coarse map g : Y → X

such that g ◦ f is coarsely homotopic to idX and f ◦ g is coarsely homotopic to idY .

Example 3.13. Let f, g : X → Y be close coarse maps, and choose a controlled map

p : X → R+. Then f and g are coarsely homotopic via the map H : IpX → Y defined

by

H(x, t) =

f(x) t < 1

g(x) t ≥ 1.

In particular, this shows that every coarse equivalence is a coarse homotopy equivalence.

Example 3.14. The map i : X ↪→ IpX defined by i(x) = (x, 0) is a coarse homotopy

equivalence, with coarse homotopy inverse given by the projection map π : IpX → X
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defined by π(x, t) = x. Define a coarse map H : Ip◦π(IpX)→ IpX by

H((x, t), s) =

(x, s+ t) s ≤ (p ◦ π)(x, t)

(x, 0) s > (p ◦ π)(x, t).

Note that H((x, t), 0) = idIpX(x, t) and H((x, t), (p ◦ π)(x, t) + 1) = (i ◦ π)(x, t). Thus

we have a coarse homotopy between i◦π and idIpX . The other direction is clear because

π ◦ i = idX .

3.1.1 Coarse homotopy groups

Definition 3.15 (Pointed coarse space). Let X be a coarse space and let R+ be

a generalised ray. A basepoint for X is a coarse map iX : R+ → X such that pX ◦ iX
is close to idR+ where pX : X → R+ is a controlled map. A pointed coarse space is a

coarse space with a basepoint.

Definition 3.16 (Base-point preserving). A coarse map f : X → Y between pointed

coarse spaces is said to be base-point preserving if f ◦ iX = iY .

Definition 3.17 (Coarse π0). Let X be a pointed coarse space. The coarse homotopy

set of 0th degree is defined by

πcoarse
0 (X; R+) = [R+;X]coarse

where [R+;X]coarse is the set of coarse homotopy classes of coarse maps R+ → X.

The coarse homotopy class of a map f will be denoted by [f ].

Example 3.18. If B is a bounded coarse space then there are no coarse maps from

R+ to B, so it follows that πcoarse
0 (B; R+) = ∅.

The following example shows us that a coarse space does not have to be bounded

to have empty coarse homotopy.

Proposition 3.19. If X = {n2 : n ∈ N} then πcoarse0 (X;R+) = ∅.

Proof. There are no coarse maps f : R+ → {n2 : n ∈ N}. To see this, note that there

are infinitely many pairs (x, y) ∈ R+×R+ with d(x, y) ≤ 1. If f was coarse, there must

be some S > 0 such that for all (x, y) with d(x, y) ≤ 1, we have d(f(x), f(y)) < S. But

only finitely many pairs f(x), f(y) are of distance less than S apart. Thus f cannot be

bornologous, so cannot be coarse.

Proposition 3.20. If Ai = {ni : n ∈ N} then the spaces Ai and Aj are coarsely

equivalent for i, j ≥ 2.
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Proof. There is a bijection φi,j : Ai → Aj defined by φi,j(n
i) = nj . It is clear that

φ−1
i,j = φj,i. To show that φi,j is a coarse equivalence, it suffices to show that the map

φi,j is coarse. Fix R > 0 and note that Ai = Ai,R t {ni : n ≥ nR} where Ai,R =

{ni : n ≤ nR} and nR = min{n : d(ni, (n + 1)i) > R}. As φi,j(Ai,R) is finite and Aj is

totally ordered, there is a largest element, say mj . Now let S = d(mj , (m− 1)j). Then

d(mj , (m + 1)j) > S and φi,j(Ai,R) = Aj,S . It follows that φi,j is bornologous, so is

coarse. The result follows.

It will follow from Proposition 3.19 and invariance under coarse equivalence (see

Proposition 3.25) that πcoarse
0 ({ni : n ∈ N};R+) = ∅ for i ≥ 2.

The following examples can be found in [Moh13]. A sketch of the proofs are given

here.

Example 3.21 (Proposition 2.3.3 of [Moh13]). πcoarse
0 (R+;R+) = {0}.

To prove this, it can be shown that any coarse map f : R+ → R+ is coarsely

homotopic to the identity map on R+. The easiest way to do this is to show that f and

f+idR+ are coarsely homotopic, and that f+idR+ and idR+ are also coarsely homotopic.

The result then follows by the transitivity property of being coarsely homotopic.

Example 3.22 (Proposition 2.3.5 of [Moh13]). Let f+, f− : R+ → R be defined

by f+(x) = x and f−(x) = −x. Then πcoarse
0 (R;R+) = {[f+], [f−]}.

To prove this, it can be shown that any coarse map f : R+ → R is close to a Lipschitz

coarse map g : R+ → R, which allows the intermediate value theorem to be applied to

show that g is either eventually always positive or always negative. It is then shown

that g is coarsely homotopic to either f+ or f− respectively.

Example 3.23 (Proposition 2.3.8 of [Moh13]). πcoarse
0 (R2;R+) = {0}.

To prove this, it can shown that any coarse map f : R+ → R2 is coarsely homotopic

to the map i : R+ → R2 defined by i(s) = (s, 0), using the fact that f can be written

in polar coordinates as f(x) = (r(x), θ(x)) with θ bounded.

Definition 3.24 (Coarse homotopy groups). Let X be a pointed coarse space and

let R+ be a generalised ray. For n ≥ 1, the coarse homotopy groups of nth degree are

defined by

πcoarse
n (X; R+) = [(R+ t R+)n+1;X]coarse

+

where [(R+ t R+)n+1;X]coarse
+ is the set of coarse homotopy classes of base-point

preserving maps (R+ t R+)n+1 → X.

It can be shown that πcoarse
n (X; R+) is a group for n ≥ 1, and is an abelian group

for n ≥ 2. For a proof, see Proposition 3.8 of [MNS18].
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Note that R+tR+ is coarsely equivalent to the set R where both [0,∞) and (−∞, 0]

have the same coarse structure as R+. In R+tR+ we write t with t ≥ 0 for a coordinate

in the first copy of R+ and −t with t ≥ 0 for a coordinate in the second copy of R+.

This is used when defining the group operation below.

The group operation is given by is [f ].[g] = [f ? g] where f ? g : (R+ tR+)n+1 → X

defined by

(f ? g)(x0, x1, . . . , xn) =

f(x0 − x1
2 ,

x1
2 , x2, . . . , xn) x1 ≤ x0

g(x02 , x1 − x0
2 , x2, . . . , xn) x0 ≤ x1

Given a coarse map f : X → Y , there is an induced map f∗ : πcoarse
n (X; R+) →

πcoarse
n (Y ; R+) defined by f∗([h]) = [f ◦ h]. It is easy to see that this map is a group

homomorphism as f ◦ (h ? h′) = (f ◦ h) ? (f ◦ h′) for h, h′ : (R+ t R+)n+1 → X.

Proposition 3.25. If f, g : X → Y are coarsely homotopic then the induced maps

f∗, g∗ : πcoarsen (X; R+)→ πcoarsen (Y ; R+) are equal.

Proof. As f and g are coarsely homotopic, there is a coarse map H : IpR+ → Y for

some controlled map p : R+ → Y such that H(x, 0) = f(x) and H(x, p(x) + 1) = g(x).

Define a map H ′ : Ip◦hR+ → Y by H ′(x, t) = H(h(x), t). Then H ′ is coarse and

H ′(x, 0) = (f ◦ h)(x) and H ′(x, p(x) + 1) = (g ◦ h)(x). It follows that f ◦ h and g ◦ h
are coarsely homotopic, so [f ◦ h] = [g ◦ h]. Thus f∗ = g∗.

3.1.2 Coarse homotopy of the open cone

Let X be a subset of the unit sphere of some Hilbert space H and define the metric

cone of X by

OHX = {tx : t ≥ 0, x ∈ X}.

The following result from [MNS18] provides us with a pathway between the topological

homotopy of a space and the coarse homotopy of its open cone.

Theorem 3.26 (Theorem 5.6 of [MNS18]). If X is a finite dimensional simplicial

complex realised as a subset of the unit sphere of a Hilbert space H then there is an

isomorphism between the groups πn(X) and πcoarsen (OHX;R+) for each n. �

As the metric cone of the k-sphere Sk is Rk+1 (where H is also Rk+1) we obtain

the following:

Corollary 3.27. For each n, there is an isomorphism

πn(Sk) ∼= πcoarsen (Rk+1;R+).
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A sketch of the proof of Theorem 3.26 is given here. Let X be a subset of the unit

sphere of some real Hilbert space H. For a continuous map f : X → Y , the authors in

[MNS18] define a map fO : OHX → OHY by fO(tx) = tf(x), known as a radial map.

This map is not a coarse map in general, but it is if f is Lipschitz. They then define

a map Ψ: πn(X)→ πcoarse
n (OHX;R+) by Ψ([f ]) = [fO], and show that this map is an

isomorphism. They show that if f : Rk → OHX is a coarse map, then f is coarsely

homotopic to a radial proper Lipshitz map (of the form fO). Using these facts, an

inverse map to Ψ is constructed.

Examples 3.28. By results in ordinary homotopy theory, we can quickly compute

some coarse homotopy groups:

πcoarse
j (Rj+1;R+) ∼= πj(S

j) = Z

for j ≥ 1,

πcoarse
j (R2;R+) ∼= πj(S

1) = {0}

for j ≥ 2 and

πcoarse
1 (Rj+1;R+) ∼= π1(Sj) = {0}

for j ≥ 2.

3.2 Coarse homology and locally finite homology theories

3.2.1 Coarse homology theories

Definition 3.29 (Coarsely excisive decomposition). A decomposition X = A∪B
of a coarse space X is called coarsely excisive if for all controlled sets m ⊆ X×X there

exists a controlled set M ⊆ X ×X such that

m(A) ∩m(B) ⊆M(A ∩B).

Roughly speaking, a decomposition being coarsely excisive means that intersections

of neighbourhoods are neighbourhoods of intersections.

Example 3.30. The decomposition R = (−∞, 0]∪ [0,∞) is coarsely excisive (with the

metric coarse structure). To see this, choose R > 0 and let NR(S) = {x ∈ R : d(x, S) ≤
R}. It is easy to see that

NR((−∞, 0]) ∩NR([0,∞)) = [−R,R] = NR({0})

and so it follows that R = (−∞, 0] ∪ [0,∞) is a coarsely excisive decomposition.

In the same way, it can be shown that R = (−∞, c1) ∪ (c2,∞) for any c1 > c2 is
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coarsely excisive.

Non-Example 3.31. The decomposition R = (−∞, 0]∪(0,∞) is not a coarsely excisive

decomposition. The intersection of (−∞, 0] and (0,∞) is empty, so to be coarsely

excisive, for all R > 0, the intersection NR((−∞, 0]) ∩ NR((0,∞)) would have to be

empty. This clearly does not hold for any R > 0.

Non-Example 3.32 (Section 1, Example 2 of [HRY93]). If

M = {(x, y) ∈ R2 : x > 0, y ∈ {0, 1} or x = 0 and 0 ≤ y ≤ 1}

then M = A ∪ B where A = {(x, y) ∈ M : y ≤ 1/2} and B = {(x, y) ∈ M : y ≥ 1/2}.
Since A ∩ B = {(0, 1/2)} is a single point, but N1(A) and N1(B) are equal to M , it

follows that M = A ∪B is not a coarsely excisive decomposition.

Definition 3.33 (Path metric). A path in a metric space X is a continuous map

γ : [a, b]→ X. The length of a path γ : [a, b]→ X is defined by writing

Length(γ) = sup

{
N∑
i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < . . . < tN = b

}
,

where N can vary depending on the partitioning of [a, b]. A metric d on X is called a

path metric if for any two points x, x′ ∈ X we have

d(x, x′) = inf{Length(γ) : γ is a path from x to x′}.

Lemma 3.34. If X is a path metric space and X = A ∪ B where A and B are both

closed then X = A ∪B is a coarsely excisive decomposition.

Proof. Fix R > 0 and note that as X is a path metric space, the intersection A ∩B is

non-empty. The R-neighbourhood of A in the case of a path metric space is the set

NR(A) = {x ∈ X : there is a path γA : x→ a ∈ A such that Length(γa) < R}.

If x ∈ NR(A) ∩ NR(B) then there is a path γA : x → a for some a ∈ A with

Length(γA) < R and a path γB : x→ b for some b ∈ B with Length(γB) < R.

Suppose x ∈ A and let γ : x → b be a path from x to b ∈ B with Length(γ) < R,

that is, a continuous map γ : [0, 1]→ X with γ(0) = x and γ(1) = b. It can be assumed

that x 6∈ B as otherwise x ∈ A ∩B and the result follows.

Define S = sup{T ∈ [0, 1] : γ(t) 6∈ B for all 0 ≤ t ≤ T} so that for 0 ≤ t < S,

γ(t) ∈ A. The sequence γ(S − 1/n) converges to γ(S), so as A is closed, γ(S) ∈ A.

There is a sequence εn such that 0 < εn ≤ 1/n and γ(S + εn) ∈ B since if γ(S + ε) 6∈ B
for all 0 < ε ≤ 1/n then sup{T ∈ [0, 1] : γ(t) 6∈ B for all 0 ≤ t ≤ T} ≥ S + 1/n. The

sequence γ(S + εn) converges to γ(S), and as B is closed, γ(S) ∈ B.
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So γ(S) ∈ A ∩ B and d(γ(S), x) ≤ Length(γ) < R. So x ∈ NR(A ∩ B) and

hence NR(A) ∩ NR(B) ⊆ NR(A ∩ B) and thus X = A ∪ B is a coarsely excisive

decomposition.

Definition 3.35 (Coarse homology theory). A coarse homology theory is a sequence

of covariant functors hcoarse
∗ : Coarse→ Groups such that:

• if f, g : X → Y are coarsely homotopic maps then the induced maps

f∗, g∗ : hcoarse
∗ (X)→ hcoarse

∗ (Y ) are equal;

• if X = A∪B is a coarsely excisive decomposition where i : A∩B ↪→ A, j : A∩B ↪→
B, k : A ↪→ X and l : B ↪→ X are the inclusion maps then there is a natural map

d : hcoarse
∗ (X)→ hcoarse

∗−1 (A ∩B)

and a long exact sequence

. . . // hcoarse
∗ (A ∩B)

α // hcoarse
∗ (A)⊕ hcoarse

∗ (B)
β
// hcoarse
∗ (X)

d
��

. . . hcoarse
∗−1 (A ∩B)oo

called the coarse Mayer–Vietoris sequence.

The maps α and β are defined by α = (i∗,−j∗) and β = k∗ + l∗.

The notation hc∗(X) may sometimes be used instead of hcoarse
∗ (X).

Just as in ordinary homology theory where the study is often of pairs of topological

spaces using the Eilenberg-Steenrod axioms, it is also possible to form a version of

coarse homology for pairs of coarse spaces.

Definition 3.36 (Category of coarse pairs). A pair of coarse spaces (X,A) is a

coarse space X and a subspace A ⊆ X. A coarse map of pairs f : (X,A) → (X ′, A′)

is a coarse map f : X → X ′ such that f(A) ⊆ A′. The category of coarse pairs is the

category where the objects are pairs of coarse spaces and the morphisms are the coarse

maps of pairs.

Definition 3.37 (Relative coarse homotopy). A relative coarse homotopy F :

Ip(X,A) → (X ′, A′) is a coarse homotopy F : IpX → X ′ such that F (a, t) ∈ A′ for

a ∈ A and t ∈ R.

Definition 3.38 (Relative coarse homology theory). A relative coarse homology

theory is a sequence of covariant functors hcoarse
∗ : CoarsePairs→ Groups such that:

• if f, g : (X,A)→ (Y,B) are relatively coarsely homotopic maps then the induced

maps f∗, g∗ : hcoarse
∗ (X,A)→ hcoarse

∗ (Y,B) are equal;
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• the inclusions i : (A, ∅) ↪→ (X, ∅) and j : (X, ∅) ↪→ (X,A) induce a long exact

sequence

. . .→ hcoarse
∗ (A, ∅)→ hcoarse

∗ (X, ∅)→ hcoarse
∗ (X,A)→ hcoarse

∗−1 (A, ∅)→ . . .

• if X = A∪B is coarsely excisive then the inclusion (A,A∩B) ↪→ (X,B) induces

an isomorphism hcoarse
∗ (A,A ∩B)→ hcoarse

∗ (X,B).

It can be shown that the assignment hcoarse
∗ (X) := hcoarse

∗ (X, ∅) is a (non-relative)

coarse homology theory. This follows from the long exact sequences from the pairs

(A,A ∩B) and (X,B) and excision.

Definition 3.39 (X-module). Let X be a coarse topological space. A Hilbert space

H is an X-module if there exists a ∗-homomorphism ρ : C0(X)→ B(H).

Example 3.40. The Hilbert space l2(N) is an N-module. To see this, note that f ∈
C0(N) is a sequence (an) in N such that there exists an N with an = 0 for n ≥ N . Define

ρ((an))(bn) = (anbn) for (bn) ∈ l2(N). We know that |an| ≤ M for all n ∈ N, so that∑∞
n=1 |anbn|2 ≤ M2

∑∞
n=1 |bn|2 (so that (anbn) ∈ l2(N)) and ||(anbn)||l2 ≤ M ||(bn)||l2

and therefore the map ρ : C0(N)→ B(l2(N)) is the required ∗-homomorphism.

Definition 3.41 (Compact and locally compact). An operator T on an X-module

H is compact if the image T [B] is compact whenever B is bounded and locally compact

if ρ(ϕ)T and Tρ(ϕ) are compact for all ϕ ∈ C0(X).

We usually suppress mention of the ∗-homomorphism ρ, and write ρ(ϕ)T and Tρ(ϕ)

simply as ϕT and Tϕ.

Definition 3.42 (Finite propagation). The support of an operator T on anX-module

H is defined to be the set of unions of open subsets U × V such that there exists

ϕ ∈ C0(U) and ψ ∈ C0(V ) so that ϕTψ = 0.

Definition 3.43 (Roe C∗-algebra). If X is a coarse topological space and H is an

X-module then the Roe C∗-algebra C∗(X;H) is defined to be the norm closure of the

locally compact, finite propagation operators.

Example 3.44. The K-theory of the Roe C∗-algebra is the fundamental example of

a coarse homology theory. See Lemma 3.5 of [Roe96] for proof of invariance under

coarse homotopy and Section 4 of [HRY93] for proof of the existence of the coarse

Mayer–Vietoris sequence.
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3.2.2 Locally finite homology theories

The aim of this section is to give a concrete definition of a locally finite homology

theory. Although the concept of a locally finite homology theory is used and referred

to in the area of coarse geometry, a formal definition has not been presented in the

current literature.

Definition 3.45 (Proper map). Let X,Y be topological spaces. A map f : X → Y

is said to be proper if f−1(K) ⊆ X is compact whenever K ⊆ Y is compact.

Definition 3.46 (Proper homotopy). Let f, g : X → Y be proper continuous maps.

Then f and g are said to be proper homotopic if there exists a proper continuous map

H : X × [0, 1]→ Y such that H(x, 0) = f(x) and H(x, 1) = g(x).

The category where the objects are topological spaces and the morphisms are proper

continuous maps is denoted ProperTop.

Definition 3.47 (Locally finite homology theory). A locally finite homology theory

is a sequence of covariant functors hlf
∗ : ProperTop→ Groups such that:

• if f, g : X → Y are properly homotopic then the induced maps f∗, g∗ : hlf
∗(X) →

hlf
∗(Y ) are equal;

• for an open inclusion i : U ↪→ X with U ⊆ X open, there is an induced map

i∗ : hlf
∗(X) → hlf

∗(U) such that if j : U ′ ↪→ U is an open inclusion then (i ◦ j)∗ =

j∗ ◦ i∗ and (id)∗ = id. Furthermore, if f : X → Y is proper, V ⊆ Y open and

U = f−1(V ) then the diagram

hlf
∗(X) //

��

hlf
∗(U)

��

hlf
∗(Y ) // hlf

∗(V )

commutes;

• the sequence

. . .→ hlf
∗({pt})→ hlf

∗(V
+)→ hlf

∗(V )→ hlf
∗−1({pt})→ . . .

is a long exact sequence for V ⊂ V + open;

• if there exist U, V such that X is covered by U ∪ V then there is a long exact

sequence

. . . // hlf
∗
(
U ∩ V

)
// hlf
∗
(
U
)
⊕ hlf

∗
(
V
)

// hlf
∗(X)

��

. . . hlf
∗−1

(
U ∩ V

)
oo
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induced by the proper inclusions U ∩ V ↪→ U,U ∩ V ↪→ V ,U ↪→ X and V ↪→ X.

Remark 3.48. Applying the second axiom of a locally finite homology theory to the

proper map {pt} → X+ and X ⊂ X+ open gives us a commutative diagram

hlf
∗({pt}) //

��

0

��

hlf
∗(X

+) // hlf
∗(X)

It follows that the composition hlf
∗({pt}) → hlf

∗(X
+) → hlf

∗(X) is zero and the map

hlf
∗({pt}) → hlf

∗(X
+) is split injective. In the case where X = R+, as {pt} is proper

homotopy equivalent to the one-point compactification of the ray R+, the long exact

sequence condition of a locally finite homology theory implies that hlf
∗(R+) = 0.

Remark 3.49. Consider the commutative ladder

. . . // hlf
∗({pt}) //

��

hlf
∗(X

+)
αX //

γX+

��

hlf
∗(X)

βX
oo //

γX

��

hlf
∗−1({pt}) //

��

. . .

. . . // hlf
∗({pt}) // hlf

∗(U
+)

αU // hlf
∗(U) // hlf

∗−1({pt}) // . . .

coming from the long exact sequence axiom for a locally finite homology theory.

If i : U ↪→ X is an open inclusion, one can define a wrong way map ic : X+ → U+

between the one-point compactifications of X and U by

ic(x) =

i−1(x) if x ∈ U

{∞} if x ∈ X+\U.

This map is a proper continuous map, which allows us to form a map (ic)∗ : hlf
∗(X

+)→
hlf
∗(U

+).

Since γX ◦ αX = αU ◦ γX+ we can define γX : hlf
∗(X)→ hlf

∗(U) by the composition

αU ◦ γX+ ◦ βX where βX is a right inverse to αX , which exists because of surjectivity

coming from the short exact sequence hlf
∗({pt})→ hlf

∗(X
+)→ hlf

∗(X) from Remark 3.48.

Thus it is sufficient to require the wrong way maps for an open inclusion X ↪→ X+.

Example 3.50. Locally finite K-homology (also known as analytic K-homology or

Kasparov’s K-homology) is the fundamental example of a locally finite homology

theory. This is introduced in Section 5.2 of [HR00]. Locally finite K-homology of

a space X can be defined via K-theory of C∗-algebras by defining

K∗(X) = K∗+1(D∗(X)/C∗(X))

as shown in Corollary 5.9 of [Roe96].
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Definition 3.51 (Uniformly contractible). A metric space X is called uniformly

contractible if for every R > 0 there is S > 0 such that for every x ∈ X, the inclusion

B(x,R) ↪→ B(x, S) is homotopic to a constant map.

Definition 3.52 (Metric simplicial complex). A metric space X is called a metric

simplicial complex if it is a simplicial complex equipped with a path metric which

coincides on each simplex with the standard metric.

Definition 3.53 (Coarsening). A coarsening of a bounded geometry metric space

X is a uniformly contractible metric simplicial complex EX equipped with a coarse

equivalence X → EX.

Example 3.54. Rn is a coarsening of Zn. This follows as Zn has bounded geometry and

is coarsely equivalent to Rn which is uniformly contractible and is a metric simplicial

complex, when uniformly tesselated by triangles.

If the functors X 7→ hlf
∗(X) define a locally finite homology theory and a metric

space X has a coarsening EX then the coarse homology of X can be defined by

hcoarse
∗ (X) = hlf

∗(EX).

As coarsenings do not always exist (for example, {n2 : n ∈ N} does not have a

coarsening), a more general way to define the coarse homology of a space is needed.

Recall from Definition 2.12 that the Lebesgue number L(U) of a cover U is the largest

positive L such that for each x ∈ X, there exists a U ∈ U such that B(x, L) ⊆ U .

Definition 3.55 (Anti-Čech sequence). An anti-Čech sequence U∗ for a metric

space X is a family {Un}n∈N of open covers of X with the properties that the Lebesgue

number L(Un)→∞ as n→∞ and diam(Un) ≤ L(Un+1).

Definition 3.56 (Nerve of a cover). The nerve of a cover U , denoted by |U| or NU ,

is the simplical complex defined abstractly to have the elements of U as vertices, and

the sets [U1, U2, . . . , Uk] span a simplex if and only if U1 ∩ U2 ∩ . . . ∩ Uk 6= ∅.

If U∗ is an anti-C̆ech sequence then for each V ∈ Ui there exists a U ∈ Ui+1 with

V ⊆ U . A simplicial connecting map is a map φi : NUi → NUi+1 which sends a vertex

[V ] of NUi to a vertex [U ] of NUi+1 where V ⊆ U . We make the convention that an

anti-C̆ech sequence comes equipped with a particular choice of connecting maps for

each i.

The following definitions come from [Mit01].

Definition 3.57 (Good cover). A good cover of a coarse space X is a cover {Bi : i ∈
I} such that each Bi is bounded and every x ∈ X lies in at most finitely many of the

sets Bi.
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Definition 3.58 (Coarsening). A coarsening of a good cover U is a good cover V
such that there is a map φ : U → V (known as the coarsening map) with U ⊆ φ[U ] for

all U ∈ U .

Definition 3.59 (Coarsening family). A coarsening family (Ui, φij) is a directed

family of good covers of X such that there is a family of controlled sets (Mi) satisfying

the following conditions:

• for all U ∈ Ui there is a point x ∈ X such that U ⊆Mi(x);

• if x ∈ X and i < j then there is a set U ∈ Uj such that Mi(x) ⊆ U ;

• if M ⊆ X ×X is a controlled set then M ⊆Mi for some i ∈ I.

It is shown in Proposition 3.4 of [Mit01] that every unital coarse topological space

has a coarsening family.

It can be checked that an anti-C̆ech sequence for a metric space X is a coarsening

family for X.

Theorem 3.60 (Theorem 3.10 of [Mit01]). If the functors X 7→ hlf∗(X) define

a locally finite homology theory on the category of CW-complexes then the functors

X 7→ hcoarse∗ (X) defined by

hcoarse∗ (X) = lim−→
n→∞

hlf∗(|Un|)

form a coarse homology theory on the coarse category, where U∗ is a coarsening family

for X. �

The Rips complex provides us with another way to coarsen and obtain a coarse

homology theory.

Definition 3.61 (Rips complex). If X is a uniformly discrete metric space then the

Rips complex Rd(X) is a simplicial complex where each element of X is a vertex of

Rd(X) and a set of points {x1, . . . , xn} spans an n-simplex if and only if d(xi, xj) ≤ d

for every i, j.

The proof of the following proposition is the same as that of Theorem 3.60.

Proposition 3.62. If the functors X 7→ hlf∗(X) define a locally finite homology theory

on the category of CW-complexes then the functors X 7→ hcoarse∗ (X) defined by

hcoarse∗ (X) = lim−→
d→∞

hlf∗(Rd(X))

form a coarse homology theory on the category of uniformly discrete metric spaces and

coarse maps. �
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Let X be a coarse paracompact topological space equipped with an open coarsening

family Ui. Let {ϕU : U ∈ Ui} be a partition of unity with SuppϕU ⊆ U for each U ∈ Ui.
For each x ∈ X, there are only finitely many sets U ∈ Ui such that x ∈ U . The sum∑

U∈Ui ϕU (x)U represents a point in the simplex spanning the vertices represented by

these sets. Therefore it is possible to define a proper continuous map κi : X → |Ui| by

κi(x) =
∑

U∈Ui ϕU (x)U . A map c : hlf
∗(X)→ hcoarse

∗ (X) is obtained by applying locally

finite homology and taking direct limits. The map c is called the coarsening map.

The following proposition tells us that the small-scale and large-scale topology of

uniformly contractible spaces are the same.

Proposition 3.63 (Proposition 3.8 of [HR95]). If functors X 7→ hlf∗(X) and X 7→
hcoarse∗ (X) define a locally finite homology theory and the associated coarse homology

theory respectively then the coarsening map c : hlf∗(X) → hcoarse∗ (X) is an isomorphism

if X is a uniformly contractible bounded geometry metric simplicial complex. �

Definition 3.64 (Relative locally finite homology theory). A relative locally

finite homology theory is a sequence of covariant functors hlf
∗ : PPairs→ Groups where

PPairs is the category of pairs of topological spaces (X,A) where A ⊆ X and the

inclusion map A ↪→ X is proper, and the morphisms are proper maps f : (X,A) →
(Y,B) such that:

• if f, g : (X,A) → (Y,B) are properly homotopic then the induced maps f∗, g∗ :

hlf
∗(X,A)→ hlf

∗(Y,B) are equal;

• for an open inclusion i : (U, V ) → (X,A) with U ⊆ X,V ⊆ A open, there is

an induced map i∗ : hlf
∗(X,A) → hlf

∗(U, V ) such that if j : (U ′, V ′) ↪→ (U, V )

is an open inclusion then (i ◦ j)∗ = j∗ ◦ i∗ and (id)∗ = id. Furthermore, if

f : (X,A) → (Y,B) is proper, C is an open subset of Y , D is an open subset of

B and U = f−1(C), V = f−1(D) then there is a commutative diagram

hlf
∗(X,A) //

��

hlf
∗(U, V )

��

hlf
∗(Y,B) // hlf

∗(C,D)

• there is an isomorphism

hlf
∗(V

+, {pt})→ hlf
∗(V, ∅);

• if (X,A) is a pair then there is a natural long exact sequence

. . .→ hlf
∗(A, ∅)→ hlf

∗(X, ∅)→ hlf
∗(X,A)→ hlf

∗−1(A, ∅)→ . . .

• (Excision) if Z ⊆ A ⊆ X where Z is open and Z ⊆ A◦ then the inclusion of

pairs i : (X \ Z,A \ Z) ↪→ (X,A) induces an isomorphism i∗ : hlf
∗(X,A) →

hlf
∗(X \ Z,A \ Z).
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Remark 3.65. Just as in ordinary homology theory, by taking B = X\Z so that

A∩B = A\Z, the excision axiom is equivalent to the condition that if there exist A,B

such that X is covered by A◦ ∪B◦ then the inclusion i : (B,A ∩B) ↪→ (X,A) induces

an isomorphism i∗ : hlf
∗(B,A ∩B)→ hlf

∗(X,A).

Proposition 3.66. The assignment X 7→ hlf∗(X) := hlf∗(X, ∅) forms a (non-relative)

locally finite homology theory.

Proof. Suppose there exist U, V such that X is covered by U◦ ∪ V ◦. As U ⊆ U and

therefore U◦ ⊆
(
U
)◦

it follows that X is also covered by
(
U
)◦ ∪ (V )◦. Excision (in

Remark 3.65) implies that there is an isomorphism c : hlf
∗
(
U,U ∩ V

)
→ hlf

∗
(
X,V

)
. The

diagram

. . . // hlf
∗
(
U ∩ V

)
j∗
��

i∗ // hlf
∗
(
U
)

l∗
��

// hlf
∗
(
U,U ∩ V

)
c

��

i2 // hlf
∗−1

(
U ∩ V

)
��

// . . .

. . . // hlf
∗
(
V
) k∗ // hlf

∗(X)
i1 // hlf

∗
(
X,V

)
// hlf
∗−1

(
V
)

// . . .

implies that there is a long exact sequence

. . . // hlf
∗
(
U ∩ V

) α // hlf
∗
(
U
)
⊕ hlf

∗
(
V
) β

// hlf
∗(X)

γ
// hlf
∗−1

(
U ∩ V

)
// . . .

where α = (i∗,−j∗), β = k∗ − l∗ and γ = i2 ◦ c−1 ◦ i1.

It is also possible to coarsen a relative locally finite homology theory.

Lemma 3.67. If the functors (X,A) 7→ hlf∗(X,A) define a relative locally finite homology

theory then the functors X 7→ hcoarse∗ (X) defined by

hcoarse∗ (X,A) := lim−→
i

hlf∗
(
|UXi |, |UAi |

)
form a relative coarse homology theory where UXi is a coarsening family for X and UAi
is the coarsening family for A defined by UAi = {U ∩A : U ∈ UXi }.

Proof. If X and X ′ are coarse spaces with coarsening families UX∗ and UX′∗ respectively,

then a coarse map f : (X,A)→ (X ′, A′) induces a map f̃ : (|UXi |, |UAi |)→ (|UX′j |, |UA
′

j |)
of simplicial sets. It can be shown that the map f̃ is proper as the map f is coarse.

By functoriality of hlf
∗ under proper continuous maps, the map f∗ : hlf

∗(|UXi |, |UAi |) →
hlf
∗(|UX

′
j |, |UA

′
j |) is a homomorphism of abelian groups, and this is also preserved by

taking direct limits, so hcoarse
∗ is functorial under coarse maps.

If f, g : (X,A)→ (X ′, A′) are relatively coarsely homotopic, then the coarse homotopy

F : Ip(X,A)→ X ′ induces a proper continuous map F∗ between the nerves of Ip(X,A)
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and X ′. It can be checked that F∗ is a proper homotopy between f∗ and g∗. Thus

hlf
∗(f∗) = hlf

∗(g∗) and by taking the direct limit it follows that hcoarse
∗ (f) = hcoarse

∗ (g).

Existence of a long exact sequence

. . .→ hcoarse
∗ (A, ∅)→ hcoarse

∗ (X, ∅)→ hcoarse
∗ (X,A)→ hcoarse

∗−1 (A, ∅)→ . . .

follows immediately from the existence of a long exact sequence

. . .→ hlf
∗(|UAi |, ∅)→ hlf

∗(|UXi |, ∅)→ hlf
∗(|UXi |, |UAi |)→ hlf

∗−1(|UAi |, ∅)→ . . .

for each i and the fact that a direct limit of a long exact sequence is again a long exact

sequence.

If X = A ∪ B is coarsely excisive then as for each i the nerve |UXi | is covered by

|UAi |
◦ ∪ |UBi |

◦
it follows from excision that we have isomorphisms hlf

∗(|UBi |, |UA∩Bi |) →
hlf
∗(|UXi |, |UAi |) as |UAi | ∩ |UBi | = |UA∩Bi |. It follows by taking the direct limit that the

map hcoarse
∗ (B,A ∩B)→ hcoarse

∗ (X,A) is an isomorphism.

3.3 The coarse Baum–Connes conjecture

The coarse Baum–Connes conjecture is of interest for many reasons. This conjecture

asks whether or not the assembly mapA∞ : Kcoarse
∗ (X)→ K∗(C

∗(X)) (defined below) is

an isomorphism, and this has many implications in other areas of mathematics (usually

of a topological nature from the injectivity side, and of a analytic nature from the

surjectivity side). The descent principle states that if G is a group which is classified

by a finite complex and the coarse Baum–Connes conjecture is true for |G|, then the

analytic Novikov conjecture is true for G. There are also certain conditions on the

group G for which satisfying the coarse Baum–Connes conjecture implies the injectivity

of the Baum–Connes assembly map, leading us to results on positive scalar curvature,

for example. The coarse K-homology of a space is usually easier to compute than the

K-theory of the Roe C∗-algebra, so this conjecture also serves as being an explanation

of the right hand side of A∞.

For any coarse topological space X, there is a short exact sequence

0 // C∗(X) // D∗(X) // D∗(X)/C∗(X) // 0.
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By Example 3.50 (and Bott periodicity), the diagram

K1(C∗(X)) // K1(D∗(X)) // K0(X)

A
��

K1(X)

A

OO

K0(D∗(X))oo K0(C∗(X))oo

is an exact cyclic sequence.

The maps labelled as A are the called assembly maps.

Conjecture 3.68 (Coarse Baum–Connes conjecture). If X is a metric space of

bounded geometry then the assembly map

A : K∗(X)→ K∗(C
∗(X))

is an isomorphism.

The conjecture has been shown to be false in general, see [HLS02]. The right hand

side of A is functorial for coarse maps, but the left hand side is functorial for proper

continuous maps. Thus the only spaces that the conjecture could be expected to hold

for are those which are uniformly contractible. The bounded geometry condition is

required here as shown in [DFW03]. The authors construct a uniformly contractible

metric on R8 which does not have bounded geometry and such that the assembly map

fails to be injective.

One way to overcome this obstacle is to coarsen the K-homology on the left hand

side of the assembly map. This gives us functoriality for coarse maps on both sides,

and thus it can be expected that this conjecture might hold for a much larger class.

By taking the direct limit of the assembly maps for each |Ui|, we obtain a map

A∞ : Kcoarse
∗ (X)→ K∗(C

∗(X)) such that the diagram

K∗(X)

c

��

A

''

Kcoarse
∗ (X)

A∞
// K∗(C

∗(X))

commutes.

Conjecture 3.69 (Coarse Baum–Connes conjecture II). If X is a metric space

of bounded geometry then the assembly map

A∞ : Kcoarse
∗ (X)→ K∗(C

∗(X))

is an isomorphism.
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Theorem 3.70 (Coarse Baum–Connes for finite asymptotic dimension). Let

X be a proper metric space of bounded geometry and finite asymptotic dimension. The

assembly map

A∞ : Kcoarse
∗ (X)→ K∗(C

∗(X))

is an isomorphism. �

This theorem was first proved by Yu in [Yu98] using methods of an analytic flavour.

Another proof was provided by Wright in [Wri02] using methods of a more geometric

nature (to be more specific, using the C0 and hybrid coarse structures). The space

of infinite asymptotic dimension given in Example 2.23 does not satisfy the coarse

Baum–Connes conjecture.



Chapter 4

Almost flasque spaces

In this chapter, the concept of an almost flasque space is introduced. These are a

generalisation of flasque spaces (introduced by Roe in [Roe96]). We will give some

concrete examples of both flasque and almost flasque spaces. The conditions for a

space to be flasque are conditions which cause the K-theory of the Roe C∗-algebra

to be trivial, a useful result for computation when combined with coarsely excisive

decompositions and the coarse Mayer–Vietoris sequence. Flasque spaces can be thought

of as a coarse version of the notion of “trivial spaces” such as contractible sets in

topology. For example, if X is a contractible space then one can show that the open

cone of X is coarsely homotopic to the space R+, our fundamental example of a flasque

space.

Many of the results and examples in this chapter are well known and the proofs

have been given for completeness. The proofs of Propositions 4.4, 4.14 and 4.16 are

straightforward but are not in the current literature. Proposition 4.18 and Theorem

4.27 are new results.

4.1 Flasque spaces

Definition 4.1 (Flasque space). A coarse space X is said to be flasque if there exists

a map α : X → X such that the following conditions are satisfied:

• for all bounded sets B ⊆ X, B ∩ αk(X) = ∅ for sufficiently large k;

• if M ⊆ X ×X is controlled, then
∞⋃
k=1

(α× α)k(M) is controlled;

• the map α is close to the identity map.

Remark 4.2. By Proposition 1.27, the map α is a coarse map since it is close to the

identity map (which is coarse).

43
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Example 4.3. The spaces N and R+ (with the metric coarse structures) are flasque.

The map α which shifts everything to the right by 1 satisfies the above properties for

both cases.

It is possible to generalise the flasqueness of R+ slightly further.

Proposition 4.4. If R+ is a generalised ray then R+ is flasque.

Proof. Let α : R+ → R+ be the map defined by α(x) = x+ 1.

If B ⊆ R+ is bounded then the closure of B is compact, and therefore is metrically

bounded, so B is metrically bounded. Thus B ∩ αk(R+) = ∅ for sufficiently large k.

If M ⊆ R+ × R+ is controlled then the set

∞⋃
k=1

(α× α)k(M) =
{

(αk(x), αk(y)) : (x, y) ∈M,k ∈ N
}

= {(x+ k, y + k) : (x, y) ∈M,k ∈ N}

= M + ∆N

is also controlled.

By the weakly connected axiom of a coarse structure, the singleton set {(0, 1)} is

controlled. For each x ∈ R+, the set

{(x, α(x)) : x ∈ R+} = {(x, x+ 1): x ∈ R+}

= ∆R+ + {(0, 1)}

is therefore also controlled. It follows that R+ is flasque.

Example 4.5. The space R+ with the C0 coarse structure is not a generalised ray (see

Non-Example 3.8), but is flasque. In [Wri03], it is shown that the map α : R+ → [1,∞)

defined by α(t) = t + 1
t+1 satisfies the required properties of flasqueness. It is shown

that if A is C0 controlled then (α×α)(A) is contained in A, so is C0 controlled too. It

follows that
⋃∞
k=1(α × α)k(A) is C0 controlled. It is easy to see that it is C0 close to

the identity.

Non-Example 4.6. The space R is not flasque. Intuitively, shifting points off to the

infinity direction will introduce new points coming from the negative infinity direction.

To prove this rigourously, suppose for a contradiction that R is flasque. Then there

exists a map α : R → R such that if d(x, x′) < R then there exists an S > 0 such that

d(αk(x), αk(x′)) < S for all k and such that there is a C > 0 such that d(α(x), x) ≤ C
for all x ∈ R.
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Choose x ≥ 0 and let B be the interval (−r, r) for some r > max{S,C, x} (i.e.

so that x ∈ B). By assumption, there exists an N such that (−r, r) ∩ αk(R) = ∅ for

k ≥ N . i.e. for all x′ ∈ R, either αk(x′) ≥ r or αk(x′) ≤ −r for all k ≥ N .

Choose a fixed M ≥ N and let B′ be the interval (−T, T ) for T > MC. Now choose

y ≥ T (i.e. outside B′). Since d(αM (y), y) ≤MC, it follows that αM (y) ≥ r.

Choose anR-path x, x1, . . . , xj , y. Then d(αM (xi), α
M (xi+1)) < S. Suppose without

loss of generality that αM (xi) ≥ r and αM (xi+1) ≤ −r. Then

d(αM (xi), α
M (xi+1)) ≥ 2r > S,

which is a contradiction. Hence if αM (xi) ≥ r then αM (xi+1) ≥ r. As αM (y) ≥ r then

it follows that αM (x) ≥ r. The same argument shows that if x ≤ 0 then αM (x) ≤ −r.

Recall d(αk(−1), αk(1)) < S for all k. Since αk(−1) ≤ −r and αk(1) ≥ r for k ≥M ,

they lie within a bounded set A. It follows that A ∩ αk(R) 6= ∅ for k ≥ M , which is a

contradiction.

Non-Example 4.7. The space X = {n2 : n ∈ N} (with the metric coarse structure)

is not flasque. To see this, suppose that there exists a C such that d(α(n2), n2) ≤ C.

Observe there exists an m such that d((n− 1)2, n2) > C and d(n2, (n+ 1)2) > C for all

n ≥ m. Thus we must have α(m2) = m2. But then {m2} ∩ αk(X) 6= ∅ for all k.

Proposition 4.8. If X is a coarse space and Y is a flasque space then the space X×Y
is flasque.

Proof. Let β : Y → Y be the flasque map for Y . Define α : X × Y → X × Y by

α(x, y) = (x, β(y)).

If B ⊆ X×Y is bounded then B ⊆ {(x′, y′) : (x0, x
′) ∈MX , (y0, y

′) ∈MY } for some

(x0, y0) ∈ X × Y and some controlled sets MX ⊆ X × X and MY ⊆ Y × Y . Hence

B = BX ×BY , where BX is bounded for the coarse structure on X and BY is bounded

for the coarse structure on Y . Therefore

B ∩ αk(X × Y ) = (BX ×BY ) ∩ (X × βk(Y ))

= (BX ∩X)× (BY ∩ βk(Y ))

= ∅

for sufficiently large k as β is the flasque map for Y .

If M ⊆ (X × Y ) × (X × Y ) is a controlled set then M ⊆ {(u, v, x, y) : (u, x) ∈
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MX , (v, y) ∈MY } for some controlled MX ⊆ X ×X and MY ⊆ Y × Y . The set

∞⋃
k=1

(α× α)k(M) = {(u, βk(v), x, βk(y)) : (u, v, x, y) ∈M,k ∈ N}

is controlled as (u, x) ∈ MX and (βk(v), βk(y)) is contained in some controlled set for

each k by flasqueness of Y .

Similarly, the set {((x, t), α(x, t)) : (x, t) ∈ X × Y } is controlled as ∆X is controlled

and {(t, β(t)) : t ∈ Y } is controlled as Y is flasque. It follows that X×Y is flasque.

Remark 4.9. Observe that in Proposition 4.8, X itself does not have to be flasque.

For example, the space {n2 : n ∈ N} × R+ is flasque.

We have the following result for flasque spaces in K-theory, by using an Eilenberg

swindle.

Proposition 4.10 (Proposition 9.4 of [Roe96]). If X is a flasque space then

K∗(C
∗(X)) = 0. �

It immediately follows that K∗(C
∗(R+)) = 0 for any generalised ray R+.

Example 4.11. Flasque spaces can be useful in computations, and as an example we

compute K∗(C
∗(R)). The decomposition R = R− ∪ R+ is coarsely excisive (Example

3.30). It follows from the coarse Mayer–Vietoris sequence that we have a long exact

sequence

. . . // K∗(C
∗({0})) // K∗(C

∗(R−))⊕K∗(C∗(R+)) // K∗(C
∗(R))

��

. . . K∗−1(C∗(R−))⊕K∗−(C∗(R+))oo K∗−1(C∗({0}))oo

By Proposition 4.10, both R+ and R− are flasque and so there is an isomorphism

K∗(C
∗(R))→ K∗−1(C∗({0})). It can be shown that C∗({0}) is the algebra of compact

operators, and it is well known that this has K-theory groups Z for even degree and

trivial for odd degree, and hence that K∗(C
∗(R)) is Z for odd degree, and trivial for

even degree (and so it follows that R is not flasque (in confirmation with Non-Example

4.6)).

Remark 4.12. It can also be shown that if X is flasque then K∗(D
∗(X)) = 0. It

follows from six-term exact sequence in K-theory that Kcoarse
∗ (X) = 0, and so also

follows that the coarse Baum–Connes conjecture is true for X.
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4.2 Almost flasque spaces

The following definition of an almost flasque space comes from Definition 3.1 of [Wri02].

Definition 4.13 (Almost flasque space). A coarse space X is said to be almost

flasque if there exists a sequence of maps αk : X → X (with α0 = idX) such that the

following conditions are satisfied:

• (Properly supported) for all bounded sets B ⊆ X, B ∩ αk(X) = ∅ for all but

finitely many k;

• (Uniformly supported) if M ⊆ X ×X is controlled, then there exists a controlled

set BM ⊆ X ×X such that

(x, x′) ∈M implies (αk(x), αk(x
′)) ∈ BM

for all k;

• (Uniformly close steps) there exists a controlled set C ⊆ X ×X such that

(αk(x), αk+1(x)) ∈ C,

for all k and for all x ∈ X.

Proposition 4.14. If X is a flasque space then X is almost flasque.

Proof. Let α : X → X be the flasque map for X and define a family of maps αk by

αk = αk. It is easy to see that the first conditions of flasque and almost flasque are

equivalent.

Let M ⊆ X ×X be controlled. If (x, x′) ∈ M then for each m, (αm(x), αm(x′)) ∈⋃∞
k=1(α× α)k(M), and this set is controlled by flasqueness of X.

It can easily be seen that

{(αk(x), αk+1(x)) : x ∈ X} ⊆ {(α0(x), α1(x)) : x ∈ X}

for all k, which is controlled as X is flasque.

Remark 4.15. It is unknown if the converse to this result is true. To date, there are

no known examples of almost flasque spaces which are not flasque.

Proposition 4.16. If X is a coarse space and Y is an almost flasque space then the

space X × Y is almost flasque.

Proof. Let βk : Y → Y be the family of maps for the almost flasqueness. Define αk : X×
Y → X × Y by αk(x, y) = (x, βk(y)).
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If B ⊆ X×Y is bounded then B ⊆ {(x′, y′) : (x0, x
′) ∈MX , (y0, y

′) ∈MY } for some

controlled sets MX ⊆ X ×X and MY ⊆ Y × Y .

It can be seen that B = BX ×BY where BX and BY are bounded since {x0}×BX
and {y0} ×BY are controlled.

Then

B ∩ αk(X × Y ) = (BX ×BY ) ∩ (X × βk(Y ))

= (BX ∩X)× (BY ∩ βk(Y ))

= ∅

for all but finitely many k.

Let M ⊆ (X × Y )× (X × Y ), and suppose (x, y, x′, y′) ∈ M , so that (x, x′) ∈ MX

and (y, y′) ∈MY for some controlled MX ⊆ X ×X and MY ⊆ Y × Y . Then

(αk(x, y), αk(x
′, y′)) = (x, βk(y), x′, βk(y

′)).

Reordering the factors, we get (x, x′, βk(y), βk(y
′)) which is contained inside a

controlled set for all k as Y is almost flasque.

To verify the final condition, note that

(αk(x, y), αk+1(x, y)) = (x, βk(y), x, βk+1(y)),

Reordering the factors again, we get (x, x, βk(y), βk+1(y)) ∈ ∆X ×CY for all k and

(x, y) ∈ X × Y , which is controlled as Y is almost flasque.

It follows that X × Y is almost flasque.

Proposition 4.17 (Lemma 3.11 of [Wri05]). If X is an almost flasque space then

K∗(C
∗(X)) = 0. �

Proposition 4.18. If X and Y are coarsely equivalent spaces then X is almost flasque

if and only if Y is almost flasque.

Proof. Let X be an almost flasque space with family of maps αk : X → X and suppose

that Y is coarsely equivalent toX, where the coarse equivalences are given by f : X → Y

and g : Y → X. Define βk : Y → Y by βk = f ◦αk ◦g. To show that Y is almost flasque,

assume for a contradiction that the first condition for almost flasqueness fails. Then

there exists some B ⊆ Y bounded such that

βk(Y ) ∩B 6= ∅
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for infinitely many k. Then for each k,

αk(X) ∩ f−1(B) ⊇ αk(g(Y )) ∩ f−1(B)

= f−1(βk(Y )) ∩ f−1(B)

= f−1(βk(Y ) ∩B)

6= ∅.

as βk(Y )∩B 6= ∅ and the inverse image of a non empty set is again non empty. Hence

αk(X) ∩ f−1(B) 6= ∅ for infinitely many k, a contradiction that X is almost flasque.

For the second condition of almost flasqueness, let M ⊆ Y × Y be a controlled set.

There exists a controlled set Bg(M) ⊆ X ×X such that (αk × αk)(g(M)) ⊆ Bg(M) for

all k. By applying f ,

(βk × βk)(M) = (f ◦ αk × f ◦ αk)(g(M)) ⊆ f(Bg(M))

for all k.

For the final condition of almost flasqueness, we know that there exists a controlled

C ∈ X × X such that for all k and x ∈ X, (αk × αk+1)(∆X) ⊆ C. And hence that

(αk × αk+1)(g(∆Y )) ⊆ C as g(∆Y ) ⊆ ∆X . By applying f , we have that

(βk × βk+1)(∆Y ) = f(αk × αk+1)(g(∆Y )) ⊆ f(C),

for all k and y ∈ Y . It follows that Y is almost flasque, and that being almost flasque

is a coarse invariant. The result also shows the other direction, and hence if X and Y

are coarsely equivalent, then either both are almost flasque or neither are.

4.3 Ends of space

Definition 4.19 (Ray). Let X be a proper geodesic space. A ray in X is a proper

continuous map r : [0,∞) → X. We say that two rays r1, r2 : [0,∞) → X converge to

the same end if for every compact subset K ⊆ X there exists C ≥ 0 such that the

images r1[C,∞) and r2[C,∞) lie in the same path-component of the space X\K.

We can see that the notion of two rays converging to the same end is an equivalence

relation. We define the set of ends of X by

Ends(X) = {end(r) | r is a ray},

where end(r) (or sometimes [r]) denotes the equivalence class of a ray r. We say that

|Ends(X)| is the number of ends of X.

Example 4.20. We shall show that R has two ends. We have two rays r1, r2 in R



Chapter 4. Almost flasque spaces 50

defined by r1(t) = t and r2(t) = −t. We can see that end(r1) 6= end(r2) by definition,

since there is no C ≥ 1 such that [C,∞) and (−∞,−C] lie in the same path component

of R\[−1, 1]. It follows that there are atleast two equivalence classes in Ends(X).

Let r3 be a ray in R, we need to show that end(r3) = end(r1) or end(r3) = end(r2).

Since r3 is proper, we know that r−1
3 [{0}] is compact. Thus r−1

3 [{0}] is bounded and

so there is a b ≥ 0 such that if r3(t) = 0 then t < b.

Hence there exists an R > 0 such that 0 6∈ r3[R,∞). By the intermediate value

theorem, r3[R,∞) ⊆ (0,∞) or r3[R,∞) ⊆ (−∞, 0).

Suppose without loss of generality that r3[R,∞) ⊆ (0,∞). Then end(r3) = end(r1),

since for every [c, d] ⊆ R, the images [C,∞) and r3[R,∞) lie in the same path

component of

R\[c, d] = (−∞, c) ∪ (d,∞),

providing that C = min{d+ 1, inf r3[R,∞)}.

It follows that end(r3) = end(r1), so that R has two ends.

Examples 4.21. It is also an easy exercise to verify that a geodesic space X has 0

ends if and only if it is bounded, and that the space R+ has one end. For a proof, see

Theorem 8.32 of [BH99].

The following definition and lemmas are technical results needed for the proof of

our main theorem.

Definition 4.22 (r-path). Let X be a metric space, and let r > 0. An r-path from x

to y is a sequence of points x = x0, x1, x2, . . . , xn = y such that d(xi, xi−1) ≤ r for all i.

Lemma 4.23 (Lemma 8.28(1) of [BH99]). Let X be a proper geodesic space, and

let r1, r2 : [0,∞)→ X be rays. Let r > 0, and x0 ∈ X. Then end(r1) = end(r2) if and

only if for every R > 0 there exists S > 0 such that there is an r-path from r1(t) to

r2(t) in X\B(x0, R) whenever t > S. �

Lemma 4.24 (Lemma 8.28(2) of [BH99]). If X is a proper geodesic space and

r : [0,∞) → X is a ray then there exists a geodesic ray γ : [0,∞) → X with end(r) =

end(γ). �

Theorem 4.25 (Proposition 8.29 of [BH99]). If X and Y are proper geodesic

spaces and f : X → Y is a coarse map then there exists a functorially induced map

f∗ : Ends(X)→ Ends(Y ) defined by

f∗(end(r)) = end(f(r)).

If we have coarse maps f, g : X → Y which are close, then f∗ = g∗. �
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Corollary 4.26. If f : X → Y is a coarse equivalence then the induced map

f∗ : Ends(X)→ Ends(Y )

is a bijection. Therefore, the number of ends of a space is a coarse invariant. �

Theorem 4.27. If X is an almost flasque geodesic metric space then X has one end.

Proof. Suppose that X is a geodesic metric space with more than one end. We will

show that X is not almost flasque. By assumption, there are proper continuous maps

r1, r2 : [0,∞)→ X such that there exists a compact K ⊆ X with the property that for

sufficiently large C, the images r1[C,∞) and r2[C,∞) lie in different path components

of X\K.

We assume that X is almost flasque and derive a contradiction. Suppose that

αk : X → X are the almost flasque maps, so that if d(x, x′) < R then d(αk(x), αk(x
′)) <

S for all k. We will show that there exists an M such that for each c ≥ C, αk(r1(c))

and r1(c) lie in the same path component for k ≥M .

Choose x ∈ r1[C,∞) and x′ ∈ r2[C,∞) and choose an R with d(x, x′) < R, so that

for all k, d(αk(x), αk(x
′)) < S. Since αk(x) and αk(x

′) lie in different path components

for k ≥ M , the set A = {(αk(x), αk(x
′)) : k ≥ M} is bounded. It follows that A ∩

αk(X) 6= ∅ for k ≥M , which is a contradiction.

To prove the claim, fix R > 0. Then there exists an S > 0 such that d(x, x′) < R

implies

d(αk(x), αk(x
′)) < S

for all k.

Let B be a ball containing K, of radius greater than max(D,S), where D is the

constant such that d(αk(x), αk+1(x)) ≤ D for each k and all x. Since B is bounded and

r1, r2 are proper, then there exists a γ ∈ [0,∞) such that r1(γ′) and r2(γ′) are outside

B for γ′ ≥ γ.

If B′ is a ball with the same centre of larger radius, containing r1(γ), then we have

an N such that αk(r1(γ)) ∩B′ = ∅ for k ≥ N .

If αM (r1(γ)) and r1(γ) are in different path components, for a fixed M ≥ N choose

a ball B′′ of radius greater than MD. Choose d ∈ [0,∞) such that r1(d) lies outside

B′′. It follows that αM (r1(d)) and r1(d) must lie in the same path component as

d(αM (r1(d)), r1(d)) ≤MD

by the triangle inequality.
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Choose an R-path between r1(γ) and r1(d) (choosing points along the geodesic

segment if necessary). Call this R-path r1(c0), r1(c1), . . . , r1(cj−1), r1(cj) with c0 = γ

and cj = d.

So

d(αM (r1(ci)), αM (r1(ci+1))) < S.

If αM (r1(ci)) and αM (r1(ci+1)) were in different path components, then we would

have

d(αM (r1(ci)), αM (r1(ci+1))) > 2r(B) > S

(by assumption and the first property of almost flasqueness). Hence they do lie in the

same path component, so αM (r1(γ)) and r1(γ) do too.



Chapter 5

Assembly maps and descent

Assembly maps were first introduced by Quinn in [Qui95] and play a central role in

the area of surgery theory. An excisive functor is a functor from the category of spaces

to the category of spectra which is homotopy invariant, preserves homotopy pushout

squares and preserves coproducts up to homotopy equivalence. These properties imply

that if F is an excisive functor then π∗(F) is a generalised homology theory.

The goal of assembly is to approximate homotopy invariant functors from spaces

to spectra by excisive functors from spaces to spectra. Weiss and Williams prove in

[WW95] that there exists a best approximation, characterized by a universal property.

Specifically, if F : Spaces → Spectra is a homotopy invariant functor then there exists

an excisive functor F% : Spaces → Spectra and a natural transformation αF : F% →
F depending functorially on F, such that αF : F%({pt}) → F({pt}) is a homotopy

equivalence. The map αF is called the assembly map. Thus there is an induced map

(αF)∗ : π∗(F
%(X))→ π∗(F(X))

where the functors X 7→ π∗(F
%(X)) form a generalised homology theory. Weiss and

Williams show that this map is the unique in the sense that if there is another such

map β : h∗ → π∗(F) for some generalised homology theory h∗ then β = αF ◦ T where

T : h∗ → π∗(F
%) is an isomorphism of homology theories. Homotopy invariant functors

of interest in algebraic K-theory and L-theory have been well studied via their assembly

maps.

In [DL98], Davis and Lück introduce a new viewpoint on assembly and generalise

the construction of Weiss and Williams to an equivariant setting to be able to study the

Baum–Connes conjecture in topological K-theory and the Farrell–Jones conjectures in

algebraic K- and L-theory.

In [Mit10], Mitchener introduces the concept of a coarse assembly map via a coarse

decomposition of the open cone for any coarsely excisive functor, a coarse analogue of an

53
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excisive functor. By taking open cones, a coarsely excisive functor produces an excisive

functor and the coarse assembly map links this excisive functor to the coarsely excisive

functor. An equivariant version is also developed and it is shown that the Novikov

conjecture, the Baum–Connes conjecture and the Farrell–Jones conjecture also fit into

this picture.

The aim of this chapter is to explore the known results of isomorphism conjectures

for assembly maps and coarse assembly maps. An important result is the notion of

descent, which says that a coarsely assembly map being an isomorphism implies that

the corresponding equivariant coarse assembly map is injective. Some of the theory

in this chapter, particularly in the construction of the generalised assembly map and

the decomposition of the open cone, differ from that in [Mit10]. This modified theory

removes some of the limitations that were present in [Mit10], allowing us to create a

more robust framework for assembly maps.

5.1 Spectra

A spectrum is a construction in algebraic topology which generalises the idea of the

homotopy groups of spaces. An important concept for spectra is that they are designed

so that suspension of spectrum is invertible up to homotopy. Spectra are important

for stable homotopy theory, and in particular the study of stable homotopy groups of

spheres, which are well known for being very difficult to calculate. The Freudenthal

suspension theorem makes it easier to calculate these homotopy groups. Specifically this

states that the groups πn+k(S
n) stabilize for n ≥ k + 2. Our interest in spectra comes

from Brown’s representability theorem, which states that every generalised homology

theory can be represented by a spectrum. Specifically, if h∗ is a generalised homology

theory then there is a spectrum H such that h∗(X) = π∗(H(X)) where H(X) = H∧X.

Definition 5.1 (Suspension). The suspension of a topological space X is the quotient

space ΣX = (X × [0, 1])/ ∼ where ∼ is the equivalence relation (x, 0) ∼ (x′, 0) and

(x, 1) ∼ (x′, 1) for all x, x′ ∈ X.

If X is a pointed space, it can be shown that ΣX is homeomorphic to the smash

product S1 ∧X of the unit circle and X.

Definition 5.2 (Spectra). A spectrum E = {En}∞n=0 is a sequence of pointed spaces

equipped with pointed continuous maps σn : ΣEn → En+1 for n ≥ 0 (or equivalently,

maps σn : En → ΩEn+1).

Definition 5.3 (Function between spectra). A function f : E→ F between spectra
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is a sequence {fn : En → Fn} of maps such that the square

ΣEn

σn
��

Σfn
// ΣFn

σ′n
��

En+1
fn+1

// Fn+1

commutes.

Definition 5.4 (Homotopy groups). The homotopy groups of a spectrum E are

defined by the direct limit

πk(E) = lim−→
n

πn+k(En)

for each k via the induced maps (σn)k : πk(ΣEn)→ πk(En+1).

Using the suspension functor it is possible to produce a spectrum from any pointed

space.

Examples 5.5. The suspension spectrum Σ∞X of a pointed space X is the spectrum

given by (Σ∞X)n = ΣnX. The homotopy groups in this case are the stable homotopy

groups πSn (X).

The sphere spectrum S = {Sn} is defined to be the suspension spectrum of the zero

dimensional sphere S0.

It is possible to define the suspension ΣE of a spectrum E by setting (ΣE)n = En+1.

This process of suspension has a one-sided inverse Σ−1E defined by (Σ−1E)n = En−1

for n ≥ 1 and (Σ−1E)0 = {pt}.

Definition 5.6 (Weak homotopy equivalence). A map f : E→ F between spectra

is said to be a weak homotopy equivalence if the functorially induced maps

f∗ : πn(E)→ πn(F)

are isomorphisms.

Definition 5.7 (Homotopy lifting property). A map π : A→ B between topological

spaces is said to have the homotopy lifting property for X if for any homotopy f : X ×
[0, 1]→ B and for any map f̃0 : X → A lifting f0 = f |X×{0} (so that f0 = π(f̃0)), there

exists a homotopy f̃ : X × [0, 1]→ A lifting f (so that f = π(f̃)) with f̃0 = f̃ |X×{0}.

Definition 5.8 (Weak fibration). A map p : E → X between pointed topological

spaces is called a Serre fibration if p has the homotopy lifting property for all cubes.

Pick basepoints e0 ∈ E, b0 ∈ B such that b0 = p(e0). The inverse image F = p−1({b0})
is called the fibre of p. The sequence F �

�
// E

p
// X is called a weak fibration of

spaces. A weak fibration of spectra is a sequence F �
�

// E // X of spectra such

that each sequence of maps of spaces Fn
� � // En // Xn is a weak fibration.
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5.2 Coarsely excisive and properly excisive functors

The following definition is based on the definition of a coarsely excisive functor in

[Mit10].

Definition 5.9 (Coarsely excisive functor). A functor E from the category of

coarse spaces to the category of spectra is coarsely excisive if the following conditions

are satisfied:

• the spectrum E(X) is weakly contractible whenever the coarse space X is almost

flasque;

• the functor E takes coarse homotopy equivalences to weak homotopy equivalences;

• if X = A ∪ B is a coarsely excisive decomposition then there is a homotopy

pushout diagram

E(A ∩B)

��

// E(A)

��

E(B) // E(X);

• if (X, En) is a coarse space for each n and (X, E) = (X,
⋃∞
n=1 En) then π∗(E(X, E))

and lim−→π∗(E(X, En)) are isomorphic.

Examples of coarsely excisive functors are given in Chapter 7.

Remark 5.10. The definition of coarsely excisive functor given here differs slightly

from the one in [Mit10]. In the definition here, it is required that E(X) is weakly

contractible for almost flasque spaces, not just for flasque spaces. Additionally, the last

property is new here. The reasons for including this will be explained in Chapter 6.

Definition 5.11 (Relative coarsely excisive functor). A functor E from the

category of pairs of coarse spaces to the category of spectra is relatively coarsely excisive

if the following conditions are satisfied:

• the spectrum E(X, ∅) is weakly contractible whenever the coarse spaceX is almost

flasque;

• the functor E takes relative coarse homotopy equivalences to weak homotopy

equivalences;

• for the pair (X,A) there exists a weak fibration

E(A, ∅)→ E(X, ∅)→ E(X,A);

• for every coarsely excisive decomposition X = A∪B, the inclusion (A,A∩B) ↪→
(X,B) induces a weak homotopy equivalence

E(A,A ∩B)→ E(X,B);
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• if (X, En) is a coarse space for each n and A ⊆ X with (X, E) = (X,
⋃∞
n=1 En)

and (A, E|A) = (A,
⋃∞
n=1 En|A) then there is an isomorphism between the groups

π∗(E((X, E), (A, E|A))) and lim−→π∗(E((X, En), (A, En|A))).

These axioms are such that if E is a coarsely excisive functor then the functors

X 7→ π∗(E(X)) form a coarse homology theory, and if E is a relative coarsely excisive

functor then the functors X 7→ π∗(E(X,A)) form a relative coarse homology theory.

Remark 5.12. If E is a relative coarsely excisive functor, the assigment X 7→ E(X) :=

E(X, ∅) is a coarsely excisive functor because if X = A ∪ B is coarsely excisive then

there exists weak fibrations

E(A ∩B, ∅)→ E(A, ∅)→ E(A,A ∩B)

and

E(B, ∅)→ E(X, ∅)→ E(X,B)

By definition, the map E(A,A ∩B)→ E(X,B) is a weak homotopy equivalence. The

homotopy pushout diagram

E(A ∩B)

��

// E(A)

��

E(B) // E(X)

immediately follows.

The following two definitions are new and are based on the axioms for a locally

finite homology theory and a relative locally finite homology theory respectively.

Definition 5.13 (Properly excisive functor). A functor E from the category

ProperTop to the category of spectra is properly excisive if the following conditions

are satisfied:

• the functor E takes proper homotopy equivalences to weak homotopy equivalences;

• for an open inclusion i : U ↪→ X with U ⊆ X open, there is an induced map

i∗ : E(X)→ E(U) such that if j : U ′ ↪→ U is an open inclusion then (i◦j)∗ = j∗◦i∗

and (id)∗ = id. Furthermore, if f : X → Y is proper, V is an open subset of Y

and U = f−1(V ) then the diagram

E(X) //

��

E(U)

��

E(Y ) // E(V )

commutes;
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• the sequence E({pt})→ E(V +)→ E(V ) is a weak fibration for V ⊂ V + open;

• if there exist U, V such that X is covered by U ∪ V then there is a homotopy

pushout diagram

E
(
U ∩ V

)
��

// E
(
U
)
��

E
(
V
)

// E(X).

Definition 5.14 (Relative properly excisive functor). A functor E from the

category PPairs to the category of spectra is relative properly excisive if the following

conditions are satisfied:

• the functor E takes proper homotopy equivalences to weak homotopy equivalences;

• for an open inclusion i : (U, V ) → (X,A) with U ⊆ X,V ⊆ A open, there is

an induced map i∗ : E(X,A) → E(U, V ) such that if j : (U ′, V ′) ↪→ (U, V )

is an open inclusion then (i ◦ j)∗ = j∗ ◦ i∗ and (id)∗ = id. Furthermore, if

f : (X,A) → (Y,B) is proper, C is an open subset of Y , D is an open subset of

B and U = f−1(C), V = f−1(D) then there is a commutative diagram

E(X,A) //

��

E(U, V )

��

E(Y,B) // E(C,D);

• there is a weak homotopy equivalence

E(V +, {pt})→ E(V, ∅);

• if (X,A) is a pair then there is a weak fibration

E(A, ∅)→ E(X, ∅)→ E(X,A);

• (Excision) if Z ⊆ A ⊆ X where Z is open and Z ⊆ A◦ then the inclusion of pairs

i : (X \Z,A \Z) ↪→ (X,A) induces a weak homotopy equivalence i∗ : E(X,A)→
E(X \ Z,A \ Z).

These axioms are such that if E is a properly excisive functor then the functors

X 7→ π∗(E(X)) is a locally finite homology theory, and if E is a relative properly

excisive functor then the functors X 7→ π∗(E(X,A)) is a relative locally finite homology

theory.
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5.3 Coarse cones

In this section, let X be a coarse topological space.

Definition 5.15 (Pointed cone). The pointed cone on X is defined to be the pointed

cone on the one-point compactification X+ with basepoint ∞. That is,

CX = X+ × [0, 1]/ ∼

where (x, 0) ∼ (∞, 0) ∼ (∞, t) for each x ∈ X and 0 ≤ t ≤ 1.

Definition 5.16 (Open cone). The open cone on X is the coarse space

OX = X × (0, 1)

with continuously controlled coarse structure arising from the compactification CX.

Note that this depends only on the topology of X, and not on the coarse structure.

Definition 5.17 (Coarse annulus). The coarse annulus on X is the space

AX = X × [0, 1)

equipped with the continuously controlled coarse structure arising from the given coarse

structure on X, the maximal proper coarse structure on [0, 1) and the compactification

X+ × [0, 1]/ ∼ where (∞, 0) ∼ (∞, t) for all 0 ≤ t ≤ 1.

Definition 5.18 (Coarse cusp). The coarse cusp on X is the space

CX = X × (0, 1]

equipped with the continuously controlled structure arising from the given coarse

structure onX, the maximal coarse structure on (0, 1] and the one-point compactification

(X × (0, 1])+.

Remark 5.19. If X has a proper coarse structure then the continuously controlled

coarse structure on the one-point compactification X+ recovers the original coarse

structure.

In the situation of the continuously controlled coarse structure on OX with respect

to CX observe that ∂OX = CX\OX = X × {0, 1}.

Recall that a subset M ⊆ OX ×OX is strongly controlled if M is controlled with

respect to the ambient coarse structure on OX and if M is the closure of the set M in

the space CX ×CX then

M ∩ ((CX ×X × {0, 1}) ∪ (X × {0, 1} ×CX)) ⊆ ∆X×{0,1}.
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The following is a technical result providing an equivalent definition of the continuously

controlled coarse structure on OX. The proof cannot be found in any current literature.

Lemma 5.20. A subset M ⊆ OX ×OX is strongly controlled if and only if for every

convergent sequence ([xn, sn], [yn, tn]) in M with either of sn or tn converging to 0 or

1, it follows that sn and tn both converge to 0 or 1, and limn→∞ xn = limn→∞ yn.

Proof. Let ([xn, sn], [yn, tn]) be a sequence in M ⊆ OX×OX converging to ([x, s], [y, t])

in M ⊆ CX ×CX with either s = 0 or 1 or t = 0 or 1, and suppose that

M ∩ ((CX ×X × {0, 1}) ∪ (X × {0, 1} ×CX)) ⊆ ∆X×{0,1}

Since either s = 0 or 1 or t = 0 or 1, it follows that ([x, s], [y, t]) ∈ (CX ×X ×{0, 1})∪
(X × {0, 1} × CX). By the above condition, ([x, s], [y, t]) ∈ ∆X×{0,1}, so x = y and

s = t = 0 or 1.

Conversely suppose that for every sequence ([xn, sn], [yn, tn]) in M ⊆ OX × OX
converging to ([x, s], [y, t]) in M ⊆ CX ×CX with either s = 0 or 1 or t = 0 or 1, we

have x = y and s = t = 0 or 1.

Let ([x, s], [y, t]) be the limit of a convergent sequence in M with s = 0 or 1 or t = 0

or 1. It follows that ([x, s], [y, t]) is also in (CX ×X ×{0, 1})∪ (X ×{0, 1}×CX). By

assumption, s = t = 0 or 1 and x = y, so

M ∩ ((CX ×X × {0, 1}) ∪ (X × {0, 1} ×CX)) ⊆ ∆X×{0,1}

as required.

Suppose that X is a subset of the unit sphere of some Hilbert space H and let

ϕ : [0, 1) → [0,∞) be a homeomorphism. There is an induced map ϕ∗ : OX → H

defined by ϕ∗([x, t]) = ϕ(t)x. The coarse space OϕX is defined to be Im(ϕ∗) equipped

with the metric coarse structure coming from the metric of the Hilbert space H.

Proposition 5.21 (Proposition 6.2.1 of [HR00]). Let X be a compact subset of

the unit sphere of a Hilbert space H. If ϕ : [0, 1) → [0,∞) is a homeomorphism then

any controlled set for OϕX is also controlled for OX. If M is a controlled set for OX
then there is a homeomorphism ϕ : [0, 1)→ [0,∞) such that the set M is controlled for

the space OϕX. �

The following result is known, but the proof cannot be found in the current literature.

Proposition 5.22. If f : X → Y is a proper continuous map then the induced map

f∗ : OX → OY defined by f∗([x, t]) = [f(x), t] is coarse.
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Proof. Let M ⊆ OX ×OX be a strongly controlled set, and let ([xn, sn], [yn, tn]) be a

sequence in M converging to ([x, s], [y, t]) with either s = 0 or 1 or t = 0 or 1. By Lemma

5.20, we know that x = y and s = t = 0 or 1. By definition (f∗×f∗)([xn, sn], [yn, tn]) =

([f(xn), sn], [f(yn), tn]) and as f is continuous, limn→∞ f(xn) = limn→∞ f(yn). By

Lemma 5.20, (f∗ × f∗)(M) is strongly controlled.

If K ⊆ OY is compact then K ⊆ KY × K(0,1) with KY and K(0,1) compact.

f−1
∗ (K) ⊆ f−1

∗ (KY × K(0,1)) = f−1(KY ) × K(0,1) is compact as f is proper and

f−1
∗ (x, t) = (f−1(x), t). As OX is a coarse topological space, B ⊆ OY is bounded if

and only if B ⊆ CY is compact. As f∗ is proper, f−1
∗ (B) is compact, so f−1

∗ (B) ⊆ CX

is compact (as a closed subset), which is if and only if f−1
∗ (B) ⊆ OX is bounded. It

follows that if B is bounded then f−1
∗ (B) is bounded, and so f∗ is a coarse map.

Proposition 5.23. Every inclusion X ↪→ X+ induces a map h∗(OX+)→ h∗(OX).

Proof. Using reparametrisation, write OX = X× (−∞,∞) and AX = X× [0,∞). Let

X+ be the one-point compactification of X with the point at infinity denoted by {∞}.
It is clear that OX+ is coarsely equivalent to AX+ ∪ {∞} × (−∞,∞). It is also true

that OX and AX+ are coarsely equivalent. To see this, choose a basepoint x0 ∈ X
and define f : OX → AX+ by

f(x, t) =

(x, t) if t ≥ d(x, x0)

(∞, |t|+ d(x, x0)) if t < d(x, x0)

Note that x→∞ if and only if t→∞. The map f is a coarse equivalence.

The decomposition OX+ = AX+ ∪ {∞}× (−∞,∞) is coarsely excisive so there is

a coarse Mayer-Vietoris sequence

. . . // h∗({∞} × [0,∞)) // h∗(AX+)⊕ h∗({∞} × (−∞,∞)) // h∗(OX+) // . . .

which reduces to

. . . // {0} // h∗(OX)⊕ h∗(O{∞})
∼= // h∗(OX+) // {0} // . . .

as {∞} × [0,∞) is flasque and the map f : OX → AX+ is a coarse equivalence.

This gives us an isomorphism h∗(OX)⊕h∗(O{∞})→ h∗(OX+) and hence the inverse

isomorphism gives us a map h∗(OX+)→ h∗(OX).

The following proof is based on Theorem 4.9 in [Mit10].

Theorem 5.24. If E is a relative coarsely excisive functor then the mapping (X,A) 7→
E(OX,OA) is a relative properly excisive functor.
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Proof. The spaces [0, 1) and [0,∞) are homeomorphic via the homeomorphism ϕ : [0, 1)→
[0,∞) defined by ϕ(t) = t/(1− t). The space R+ = [0,∞) is a generalised ray equipped

with the continuously controlled structure with respect to the compactification R+ =

[0,∞) ∪ {∞}. The map p : OX → R+ defined by p([x, t]) = ϕ(t) is a controlled map.

If f : X → Y is a proper homotopy equivalence then there exists a proper continuous

map g : Y → X and a proper continuous map H : X × [0, 1] → Y such that H(x, 0) =

gf(x) andH(x, 1) = idX(x). By Lemma 5.22, the induced mapH∗ : O(X×[0, 1])→ OY
defined by H∗([(x, s), t]) = [H(x, s), t] is coarse. The map i : IpOX → O(X × [0, 1])

defined by i([x, t], s) = [(x, (1− t)s), t] is a coarse equivalence, with inverse given by j :

O(X× [0, 1])→ : IpOX defined by j([x, t], s) = [(x, s), t/(1− s)]. By composition there

is a coarse map H ′ : IpOX → OY defined by H ′ = H∗ ◦ i such that that H ′([x, t], 0) =

[gf(x), t] = (gf)∗([x, t]) and H ′([x, t], p([x, t]) + 1) = [x, t] = (idX)∗([x, t]). It follows

that f∗ is a coarse homotopy equivalence.

Proposition 5.23 provides us with a map i∗ : E(X+)→ E(X) for any open inclusion

i : X ↪→ X+.

To show that the map E(OV +,O{pt})→ E(OV, ∅) is a weak homotopy equivalence,

note that OV + = OV ∪ O{pt} is a coarsely excisive decomposition and OV ∩ O{pt}
is empty. The result now follows from coarse excision.

Suppose Z ⊆ A ⊆ X with Z open and Z ⊆ A◦. Decompose OX as O(X\Z) ∪
OA. Observe that O(X\Z) ∩ OA = O(A\Z) as O(A\Z) = OA\OZ. To prove this

is a coarsely excisive decomposition, note that the condition Z ⊆ A◦ implies that

X = X\Z ∪ A◦. Observe that X\Z and A◦ are both open, so OX = O(X\Z) ∪
OA◦ is a coarsely excisive decompostion. It follows that the map E(OX,OA) →
E(O(X\Z),O(A\Z)) is a weak homotopy equivalence, asO(X\Z) is coarsely equivalent

to O(X\Z) and OA◦ is coarsely equivalent to OA.

It therefore follows that if E is a coarsely excisive functor then the functors X 7→
π∗(E(OX)) form a locally finite homology theory.

5.4 Generalised assembly

From now on, the notation h∗(X) will be used to denote π∗(E(X)) for a coarsely

excisive functor E. It follows from Proposition 3.60 that there is a coarse homology

theory defined by

kcoarse
∗ (X) = lim−→

i

k∗(|Ui|)

where k∗(X) = h∗(OX).
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We now show how the properly excisive functor X 7→ E(OX) for a coarsely excisive

functor X 7→ E(X) fits into the picture of generalised assembly.

Note that CX and AX are reparametrisations of the subspaces X × (0, 1/2] in OX
and X × [1/2, 1) in OX respectively. The decomposition OX = CX ∪AX is therefore

coarsely excisive.

Lemma 5.25. The space CX is flasque.

Proof. By Remark 5.19, the coarse space CX is X×(0, 1] with its given coarse structure

on X. As (0, 1] is flasque, it follows that CX is flasque.

Remark 5.26. As the decomposition OX = CX ∪ AX is coarsely excisive, there is a

homotopy pushout diagram

E(X)

��

// E(AX)

��

E(CX) // E(OX)

As the space CX is flasque, it follows that there exists a weak fibration

E(X)→ E(AX)→ E(OX)

and therefore a long exact sequence

. . .→ h∗(X)→ h∗(AX)→ h∗(OX)→ h∗−1(X)→ . . .

where h∗(X) := π∗(E(X)).

The coarse assembly map associated to the functor E is the boundary map

δ : ΩE(OX)→ E(X)

of this long exact sequence.

It is not known whether or not the coarse assembly map is unique.

The coarse isomorphism conjecture associated to the functor E asserts that the

coarse assembly map is a weak homotopy equivalence for X where X has some desired

properties.

Remark 5.27. It is easy to check that the coarse isomorphism conjecture holds for X

if and only if AX is weakly contractible.

It is straightforward to prove the following (using the map α : A{pt} → A{pt}
defined by α([pt, t]) = [pt, 1/(2− t)]).
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Proposition 5.28. The space A{pt} is almost flasque.

It follows that the coarse isomorphism conjecture holds for a point, or equivalently,

any bounded set. This theory has an advantage over the theory described in [Mit10],

where it not clear whether or not the coarse isomorphism conjecture holds for a point

in general.

The following theorem shows that the coarse isomorphism conjecture is true for a

large number of spaces.

Theorem 5.29 (Theorem 5.9 of [Mit10]). If E is a coarsely excisive functor then

the coarse isomorphism conjecture holds for finite coarse CW-complexes. �

5.5 Equivariant assembly

The Baum–Connes and Farrell–Jones conjectures are the main reason for studying

equivariant assembly. The Baum–Connes conjecture states that if G is a discrete group

then the map KG
∗ (EG)→ K∗(C

∗
r (G)) is an isomorphism. In the case where G is torsion

free (there are no non-trivial elements of finite order) then this reduces to asking if the

map K∗(BG) → K∗(C
∗
r (G)) is an isomorphism. The Farrell–Jones conjecture states

that the map HG
∗ (EG; K(R)) → K∗(RG) is an isomorphism, where HG

∗ (−; K(R)) is

an appropriate G-homology theory. In the case where G is torsion free and R is a

regular ring then this reduces to asking if the map H∗(BG; K(R)) → K∗(RG) is an

isomorphism where H∗(−; K(R)) is the homology theory associated to the algebraic

K-theory spectrum of R satisfying H∗(pt; K(R)) = π∗(K(R)) = K∗(R) and RG is the

group ring with R associative with unit.

There are no known groups for which either of these conjectures is false. The

Farrell–Jones conjecture was originally of interest by topologists for the case where

R = Z in the L-theory variant as this implies several famous conjectures such as the

Novikov conjecture and the Borel conjecture regarding topological rigidity in surgery

theory.

5.5.1 The Davis–Lück assembly map

In [DL98], Davis and Lück give an equivariant analogue of the theorem of Weiss and

Williams and show that that there exists a best approximation of G-homotopy invariant

functors by G-excisive functors, characterized by a universal property. Specifically,

if F : G-Spaces → Spectra is a G-homotopy invariant functor then there exists an

G-excisive functor F% : G-Spaces→ Spectra and a natural transformation αF : F% → F

such that αF : F%(G/H) → F(G/H) is a stable equivalence for every finite subgroup

H of G. It is also shown that the pair (F%, αF) is unique up to weak equivalence.
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Definition 5.30 (Topological group). A topological group G is a group that is also

a topological space with the condition that the group operations

G×G→ G : (g, g′) 7→ gg′

and

G→ G : g 7→ g−1

are continuous.

Definition 5.31 (Discrete group). A discrete group is a topological groupG equipped

with the discrete topology, that is, every subset of G is open.

Observe that any group can be considered as a discrete group. All groups in this

section will be assumed to be discrete.

Definition 5.32 (Group action). If G is a group and X is a set then a group action

of G on X (also known as a G-action) is a map ϕ : G×X → X defined by ϕ(g, x) = g.x

such that the conditions e.x = x for all x ∈ X and (gg′).x = g.(g′.x) for all g, g′ ∈ G
and all x ∈ X are satisfied. The set X in this situation is called a G-set.

For a G-set, the orbit of x ∈ X is the set G.x = {g.x : g ∈ G}. There is an

equivalence relation on X by saying x ∼ y if and only if there exists a g ∈ G with

g.x = y (equivalent to x ∼ y if and only if G.x = G.y). The orbits are therefore the

equivalence classes under this relation and the set of all orbits of X under the action

of G is known as the quotient of the action and is denoted by X/G.

Definition 5.33 (Equivariant map). An equivariant map f : X → Y between G-sets

is a map such that f(g.x) = g.f(x) for all g ∈ G and all x ∈ X.

Definition 5.34 (G-CW-complex). A G-CW-complex X is the union of G-spaces

Xn such that X0 is a disjoint union of orbits of the form G/H for some subgroup H and

Xn+1 is obtained from Xn by attaching G-cells G/H ×Dn+1 along attaching G-maps

G/H × Sn → Xn. The attaching map is determined by its restriction Sn → (Xn)H .

Definition 5.35 (G-properly excisive functor). A functor EG from the category of

topological spaces with a G-action that are homotopy equivalent to G-CW-complexes

to the category of spectra is called G-properly excisive if the following conditions are

satisfied:

• the functor EG takesG-proper homotopy equivalences of spaces to weak homotopy

equivalences of spectra;

• for an open inclusion i : U ↪→ X with open G-invariant U ⊆ X (that is, G.U = U),

there is an induced map i∗ : EG(X)→ EG(U) such that if j : U ′ ↪→ U is an open

inclusion then (i ◦ j)∗ = j∗ ◦ i∗ and (id)∗ = id. Furthermore, if f : X → Y
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is G-proper, V is an open G-invariant subset of Y and U = f−1(V ) then the

diagram

EG(X) //

��

EG(U)

��

EG(Y ) // EG(V )

commutes;

• the sequence EG({pt})→ EG(V +)→ EG(V ) is a weak fibration for openG-invariant

V ⊂ V +;

• if there exist G-invariant U, V such that X is covered by U ∪ V then there is a

homotopy pushout diagram

EG

(
U ∩ V

)
��

// EG

(
U
)

��

EG

(
V
)

// EG(X).

Definition 5.36 (Davis-Lück assembly map). If G is a discrete group and EG is

a G-excisive functor then the Davis-Lück assembly map is the map

αX : EG(X)→ EG({pt})

induced by the projection map X → {pt}.

The EG-assembly map is the induced map (αX)∗ : π∗(EG(X))→ π∗(EG({pt})).

A G-space X is free if for each x ∈ X, g.x = x implies that g = e. The space EG

is defined to be a weakly contractible free G-CW-complex. This space is unique up to

G-homotopy equivalence (see [DL98]) and the quotient space EG/G is the classifying

spaceBG (i.e. the fundamental group ofBG is isomorphic toG and all higher homotopy

groups are trivial). A choice of BG is called a model, e.g. S1 is a model for BZ.

A family F of subgroups of a groupG is a collection which is closed under conjugation

and finite intersections. Important examples of this are F = FIN , the family of finite

subgroups of G, and F = VA, the family of all virtually cyclic subgroups (that is, has

a cyclic subgroup of finite index).

Definition 5.37 (Classifying space for F). A classifying space for F is a space

EF (G) with the property that the fixed point set EF (G)H = {x ∈ EF (G) : h.x =

x for all h ∈ H} is G-contractible if H ∈ F and empty if H 6∈ F .

As a special case, if F is the family consisting of only the trivial subgroup of G then

EF (G) = EG, and if F consists of all finite subgroups then this is the classifying space

EG. It can be shown that EF (G) is unique up to G-homotopy and that there is always

a choice of a uniformly contractible EF (G).
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It is shown in [DL98] that both of the Baum–Connes and the Farrell–Jones assembly

maps fit into this framework. Specifically, the Baum–Connes assembly map is the

Davis–Lück assembly map

KG
∗ (EFIN (G))→ K∗(C

∗
r (G))

where EG = Ktop and X = EFIN (G).

The Farrell–Jones assembly map in algebraic K-theory is the Davis–Lück assembly

map

HG
∗ (EVA(G); K(R))→ K∗(RG)

where EG = Kalg and X = EVA(G).

Lemma 2.4 of [DL98] shows that π∗(K
top({pt})) = K∗(C

∗
r (G)) and π∗(K

alg({pt})) =

K∗(RG).

5.5.2 Equivariant coarse assembly

We now give the required definitions and results in order to discuss the coarse version

of equivariant assembly.

Definition 5.38 (Coarse G-space). A coarse G-space is a coarse space X equipped

with a G-action ϕ : G×X → X such that for each g ∈ G, the map x 7→ ϕ(g, x) = g.x

is coarse.

Definition 5.39 (Cobounded). A subset A of a coarse G-space X is said to be

cobounded if there is a bounded subset B of X such that A ⊆ G.B.

Definition 5.40 (Coarse G-category). The coarse G-category is the category of

coarse G-spaces and controlled equivariant maps with the condition that the inverse

image of each cobounded set is cobounded (known as coarse G-maps).

If X is a coarse G-space and p : X → R+ is coarse G-map, the group G acts on the

cylinder IpX by writing g.(x, t) = (g.x, t). The inclusion maps i0, i1 : X → IpX defined

by i0(x) = (x, 0) and i1(x) = (x, p(x) + 1) can easily be verified to be coarse G-maps.

Definition 5.41 (Coarse G-homotopy). Let f, g : X → Y be coarse G-maps. A

coarse G-homotopy between f and g is a coarseG-mapH : IpX → Y for some controlled

G-map p : X → R such that H ◦ i0 = f and H ◦ i1 = g.

Definition 5.42 (Coarse G-homotopy equivalence). A coarse G-map f : X → Y

is a coarse G-homotopy equivalence if there exists a coarse G-map g : Y → X such that

g ◦ f is coarsely G-homotopic to idX and f ◦ g is coarsely G-homotopic to idY .
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Definition 5.43 (G-almost flasque space). A G-coarse space X is called G-almost

flasque if there exists a sequence of equivariant maps αk : X → X (with α0 = idX)

satisfying the following conditions:

• for all bounded sets B ⊆ X, B ∩ αk(X) = ∅ for all but finitely many k;

• if M ⊆ X ×X is controlled, then there exists a controlled set BM ⊆ X ×X such

that

(x, x′) ∈M implies (αk(x), αk(x
′)) ∈ BM

for all k;

• there exists a controlled set C ⊆ X ×X such that

(αk(x), αk+1(x)) ∈ C,

for all k and for all x ∈ X.

Definition 5.44 (Coarsely G-excisive decomposition). A coarsely G-excisive

decomposition X = A ∪ B of a coarse G-space X is a coarsely excisive decomposition

where A and B are both coarse G-spaces.

Definition 5.45 (Coarsely G-excisive functor). A functor EG from the coarse

G-category to the category of spectra is called coarsely G-excisive if the following

conditions are satisfied:

• the spectrum EG(X) is weakly contractible whenever X is G-almost flasque;

• the functor EG takes all coarse G-homotopy equivalences to weak homotopy

equivalences;

• if X = A ∪ B is a coarsely G-excisive decomposition then there is a homotopy

pushout diagram

EG(A ∩B)

��

// EG(A)

��

EG(B) // EG(X);

• if X is a cobounded coarse G-space then the constant map c : X → {pt} induces

a stable equivalence c∗ : EG(X)→ EG({pt}).

The last condition of a coarsely G-excisive functor is an equivariant version of

requiring a bounded set to be coarsely equivalent to a point.

Definition 5.46 (Cocompact). A G-space X is cocompact if there is a compact

subset K ⊆ X such that X = G.K.

The following is proved similarly to Theorem 5.24.

Theorem 5.47. If EG is a coarsely G-excisive functor then the mapping X 7→ EG(OX)

defines a G-properly excisive functor on the category of cocompact Hausdorff G-spaces.

�
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It is immediate that if EG is a coarsely G-excisive functor then the functors X 7→
π∗(EG(X)) form a G-locally finite homology theory.

The following is proved similarly to Remark 5.26.

Lemma 5.48. If X is a coarse Hausdorff G-space and EG is a coarsely G-excisive

functor then the sequence of spectra

EG(X)→ EG(AX)→ EG(OX)

is a weak fibration. �

As in the non-equivariant case, there is an associated boundary map

δG : ΩEG(OX)→ EG(X)

called the equivariant coarse assembly map.

Definition 5.49. The Novikov conjecture associated to the functor EG asserts that

the equivariant coarse assembly map δG : ΩEG(OEG) → EG(EG) is injective at the

level of stable homotopy groups for some coarse structure on EG compatible with the

topology.

It is possible to significantly generalise the Novikov conjecture.

Definition 5.50. The (EG,F)-isomorphism conjecture asserts that the equivariant

coarse assembly map δG : ΩEG(OEF (G)) → EG(EF (G)) is a stable equivalence for

some coarse structure on EF (G) compatible with the topology.

The following result is known as the notion of descent.

Theorem 5.51 (Theorem 9.5 of [Mit10]). Let EG be a coarsely G-excisive functor.

Let X be a free coarse G-space, that is, as a topological space, G-homotopy equivalent to

a finite G-CW-complex. If the coarse isomorphism conjecture holds for E and the space

X then the map δG : ΩEG(OX) → EG(X) is injective at the level of stable homotopy

groups. �

Recall that Proposition 3.63 states that the coarsening map

c : kcoarse
∗ (X)→ h∗(OX)

is an isomorphism for X uniformly contractible, where k∗(X) = h∗(OX).

Corollary 5.52. Let EG be a coarsely G-excisive functor. Let X be a free coarse

G-space, that is, as a topological space, G-homotopy equivalent to a finite G-CW-complex

and additionally suppose that X is uniformly contractible. If the map kcoarse
∗ (X) →

h∗−1(X) is an isomorphism then the map (δG)∗ : kG∗ (X)→ hG∗−1(X) is injective. �
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The Baum–Connes conjecture and Farrell–Jones conjecture also fit into this picture

in the following sense:

Theorem 6.17 of [Mit04] says that if G acts cocompactly on a space X then the

Baum–Connes assembly map is stably equivalent to the equivariant coarse assembly

map δG : ΩKV∗G(OX) → KV∗G(X) where the coarsely excisive functor X 7→ KV∗G(X)

will also be defined in Chapter 7.

Theorem 8.7 of [Mit10] says that if G acts cocompactly on a space X then the

Farrell–Jones assembly map is stably equivalent to the equivariant coarse assembly

map δG : ΩKAG(OX)→ KAG(X) where the coarsely excisive functor X 7→ KAG(X)

will be defined in Chapter 7.
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An isomorphism for finite

asymptotic dimension

The following notation will be used throughout this chapter. For a coarsely excisive

functor E the notation h∗(X) will be used to denote the coarse homology theory

π∗(E(X)), the notation k∗(X) to denote the locally finite homology theory h∗(OX)

and thus kcoarse
∗ (X) to denote the coarse homology theory obtained by coarsening.

The aim of this chapter is to show that the coarsened assembly map associated to a

coarsely excisive functor is an isomorphism under the assumption of finite asymptotic

dimension, that is, if W is a proper metric space with bounded geometry and finite

asymptotic dimension then the map

λ : kcoarse
∗ (W )→ h∗−1(W )

is an isomorphism.

The coarsening space X(W,U∗) of a space W and an anti-C̆ech sequence U∗ is a

simplicial complex equipped with the spherical metric which gets rid of the small-scale

topology of W . Spherical simplices are a modification of the standard simplices which

allow for more curvature and provide the Lipschitz constants necessary to show that the

coarsening space with the hybrid coarse structure is almost flasque. The assumption of

finite asymptotic dimension implies that the coarsening space is finite dimensional, a

key requirement for our proof. The coarse isomorphism conjecture will be verified for

infinite uniformly discrete proper metric spaces with the C0 coarse structure, and this

will be used to form an inductive proof for any finite dimensional simplicial complex

with the C0 coarse structure. It will be shown that the left hand side of the coarse

assembly map is the direct limit of partial coarsening spaces with the C0 coarse structure

and that the right hand side of the assembly map is the direct limit of partial coarsening

spaces with the hybrid coarse structure, and we shall use these results to show that

71
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this map is an isomorphism. Using a new category theoretic result, we show that the

partial coarsening spaces with the C0 and fusion coarse structures eventually agree in

the case of discrete spaces, and then use an induction argument on the decomposition

of the coarsening space to prove the main result more generally.

Many proofs in this chapter are based on those in [Wri02] and [Wri05] and their

geometric arguments are included here for completeness, showing that the theory can

be generalised.

6.1 Spherical metrics for simplicial complexes

Definition 6.1 (Spherical simplex). The spherical m-simplex is the simplex ∆m

defined by

∆m = {(t0, . . . , tm) ∈ Rm+1 :

m∑
i=0

t2i = 1 and ti ≥ 0 for all i}.

Thus it is the intersection of the m-sphere in Rm+1 and the positive quadrant of

Rm+1. A spherical 0-simplex is therefore a point, a spherical 1-simplex is the arc of a

quarter circle of radius 1 and a spherical 2-simplex is the surface of the 2-sphere where

all coordinates are positive, and so on.

Lemma 6.2 (Lemma A.3. of [Wri05]). If σf is the standard m-simplex in Rm+1

equipped with the Euclidean metric inherited from Rm+1 and σs is the spherical m-simplex

then the radial projection from σs to σf is a (m + 1)1/2-Lipschitz map with a (m +

1)−1/2-Lipschitz inverse. �

We outline the proof for the case where m = 1. The argument for the higher

dimensions is very similar.

Consider the following diagram

x

y

θ

Let a, b be the distances between the origin and the points x, y, respectively and let s
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be the distance between x and y. The angle between these two lines is denoted by θ.

It is easy to see that 1/
√

2 ≤ a, b ≤ 1, and that the area of the triangle with corners

x, y and the origin is 1
2ab sin θ and is also equal to s/2

√
2. Here 1/4 sin θ ≤ 1

2ab sin θ

so 1/2 sin θ ≤ s/
√

2 ≤ sin θ. As 0 ≤ θ ≤ π/2 and sin θ ≤ θ then s ≤
√

2θ and so

sin θ ≤
√

2s, thus θ ≤
√

2.

A simplicial complex is said to be locally finite if each vertex belongs to only finitely

many simplices.

Definition 6.3 (Uniform spherical metric). A uniform spherical metric on a locally

finite simplicial complex is a metric such that the following conditions hold:

• each m-simplex is isometric to the spherical m-simplex;

• the restriction of the metric to each component is a path metric;

• for all R > 0 there exists a finite subcomplex K such that if x and y lie in different

components and x 6∈ K or y 6∈ K then d(x, y) > R.

A uniform spherical metric always exists and is unique up to coarse equivalence for

both the metric and the C0 coarse structures, see [Wri05].

Lemma 6.4 (Lemma A.5 of [Wri05]). If X is a locally finite simplicial complex

with a uniform spherical metric then for any vertex v0 and any simplex σ in the same

component of X there is a sequence of adjacent vertices v0, v1, . . . , vk with vk ∈ σ and

d(v0, σ) = kπ/2. �

The anti-C̆ech property (Definition 3.55) of U∗ implies that for each V ∈ Ui there

exists a U ∈ Ui+1 with V ⊆ U . The simplicial connecting maps are the maps φi : |Ui| →
|Ui+1| which map a vertex [V ] of |Ui| to a vertex [U ] of |Ui+1| where V ⊆ U .

Lemma 6.5 (Lemma 5.13 of [Wri02]). If U∗ is an anti-C̆ech sequence of covers of

a countable discrete metric space then there exists a subsequence Ui∗ and a sequence of

connecting maps φik : |Uik | → |Uik+1
| such that for each k and for each finite subcomplex

K of |Uik | there is a j such that φik+j
◦ . . . ◦ φik(K) is a vertex. �

Anti-C̆ech sequences will always be assumed to have this property since we can

always pass to this subsequence if necessary.

6.2 Infinite uniformly discrete proper metric spaces

To show that the coarse isomorphism conjecture holds for finite dimensional simplicial

complexes with the C0 coarse structure, it suffices to show that it holds for uniformly

discrete proper metric spaces. It will be shown that up to C0 coarse equivalence, these
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spaces are either a point or N. In [Wri05], the coarse Baum–Connes conjecture for

uniformly discrete proper metric spaces is achieved by using C∗-algebra and K-theory

techniques that are not available to us here. For the general case, we’ll need to approach

this more geometrically. It will be shown that an infinite uniformly discrete proper

metric space W with the C0 coarse structure is the direct limit of W with coarse

structures which “build up” the C0 coarse structure.

Lemma 6.6. If W is an infinite uniformly discrete proper metric space then W0 is

coarsely equivalent to N0.

Proof. For each w ∈W , the set W can be written as the union
⋃∞
n=1B(w, n) of closed

balls. Since W is proper each B(w, n) is compact, and by uniform discreteness, each

B(w, n) is finite. It follows that W is countable so there is a bijection ϕ : W → N. We

will show that ϕ is a C0 coarse equivalence.

By uniform discreteness if M ⊆W ×W is C0 controlled then M can be written as

K t A where K is a metrically bounded set and A is a subset of the diagonal of W .

Thus

(ϕ× ϕ)(M) = (ϕ× ϕ)(K tA) = (ϕ× ϕ)(K) tN

where N ⊆ ∆N and (ϕ×ϕ)(K) is metrically bounded. It follows (ϕ×ϕ)(M) is also C0

controlled. The inverse image of a bounded set is again bounded since cardinality is

preserved by a bijection. The same argument applies to the inverse of ϕ, showing that

ϕ−1 is coarse, and thus that ϕ is a coarse equivalence.

Definition 6.7. For each n ∈ N, define En to be the coarse structure on N where the

controlled sets are all the subsets of the diagonal and all the subsets of {1, 2, . . . , n} ×
{1, 2, . . . , n}.

Remark 6.8. Each of the coarse structures En is a disconnected coarse structure as the

singleton sets {(m,m′)} are not controlled in En if m,m′ > n and m 6= m′. Recall that

this also means that the union of two bounded sets is not necessarily again bounded

set. The disconnectedness does not cause any problems, and allows us to coarsely

decompose the coarse space (N, Emin) into singleton sets.

Proposition 6.9. For each n, the coarse spaces (N, En) and (N, En+1) are coarsely

equivalent.

Proof. Define α : (N, En)→ (N, En+1) by α(k) = k + 1 and β : (N, En+1)→ (N, En) by

β(k) =

k − 1 for k > 1

1 for k = 1

It is easy to see that α and β send controlled sets to controlled sets. A bounded set for En
is either a subset of {1, 2, . . . , n} or a singleton set {k} for any k ∈ N. The inverse image
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of a singleton set under α is again a singleton set and α−1({1, . . . , n}) = {1, . . . , n− 1}
which is bounded in En−1. The inverse image of a singleton set under β is again a

singleton set except for β−1({1}) = {1, 2}, and β−1({1, . . . , n}) = {1, . . . , n + 1}. It is

easy to see that {(α ◦ β(k), k) : k ∈ N} = {(k, k) : k > 1} ∪ {(2, 1)} which is controlled

in En+1 and that β ◦ α is the identity on (N, En).

Proposition 6.10. If W is an infinite uniformly discrete proper metric space then

kcoarse∗ (W0) ∼= lim−→
n

kcoarse∗ (W, En).

Proof. Define Ui to be the cover of N consisting of all subsets of {1, . . . , i} and all

singletons. Let U∗ = U1,U2,U3, . . . be the sequence of covers of N. It will be shown

that U∗ is a coarsening family for N0 with family of controlled sets defined by Mi =

{1, . . . , i} × {1, . . . , i} ∪∆N.

Each Ui is a good cover as all subsets of {1, . . . , i} and all singletons of N are

bounded with respect to the C0 coarse structure and each natural number is only in

finitely many sets of each Ui. If U ∈ Ui then U is either a subset of {1, . . . , i} or U is a

singleton set. For the former, U ⊆ Mi(n) for any n ≤ i and for the latter, U ⊆ Mi(n)

when U = {n}. Choose n ∈ N and suppose that i < j. If n ≤ i then Mi(n) ⊆ {1, . . . , i}
and if n > i then Mi(n) = {n} and both of these sets are in Uk for any k ≥ i. It is

clear that if M is C0 controlled then M ⊆ Mi for some i and it therefore follows that

U∗ is a coarsening family for N0.

It is also easy to check that the collection Uk∗ = Uk,Uk,Uk, . . . is a coarsening family

for (N, Ek) where Mk
i = Mk for each i. If U ∈ Uk then U ⊆ Mk(x) as before, for all

n ∈ N we have Mk(n) ⊆ {1, . . . , k} if n ≤ k or {n} if n > k, and if M is Ek controlled

then M ⊆Mk.

By definition kcoarse
∗ (N0) = lim−→i

k∗(|Ui|) and kcoarse
∗ (N, Ek) = lim−→i

k∗(|Uki |) ∼= k∗(|Uk|).
It immediately follows that kcoarse

∗ (N0) ∼= lim−→k
kcoarse
∗ (N, Ek).

Remark 6.11. It follows from the coarse Mayer–Vietoris sequence that kcoarse
∗ (X tY )

and kcoarse
∗ (X)⊕kcoarse

∗ (Y ) are isomorphic if X tY is a coarsely excisive decomposition

(that is, if X and Y are “infinitely” far apart, so that the every M -ball around X does

not touch the M -ball around Y ). Every decomposition X tY with the minimal coarse

structure is a coarsely excisive decomposition as with this structure m(X) = X for

each controlled set m and therefore m(X) ∩m(Y ) = ∅.

Recall that a coarsely excisive functor has the property that if (X, E) = (X,
⋃∞
n=1 En)

then

h∗(X, E) ∼= lim−→
n

h∗(X, En).
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Lemma 6.12. If W is an infinite uniformly discrete proper metric space then the

coarse isomorphism conjecture holds for W0, that is, the coarse assembly map induces

an isomorphism kcoarse∗ (W0)→ h∗(W0).

Proof. We can write

N = B ∪ {n+ 1} ∪ {n+ 2} ∪ . . .

where each set is bounded with respect to the En coarse structure, and the union is

coarsely disconnected. Thus

h∗(N, En) = h∗(B)⊕ h∗({n+ 1})⊕ . . .

and therefore lim−→n
h∗(N, En) = lim−→n

(h∗(B)⊕ h∗({n+ 1})⊕ . . .).

By the property of a coarsely excisive functor,

h∗(N0) ∼= lim−→
n

h∗(N, En) ∼=
∞∏
k=1

h∗({k})/
∞⊕
k=1

h∗({k})

and by Proposition 6.10, kcoarse
∗ (N0) ∼= lim−→n

kcoarse
∗ (N, En) and

lim−→
n

kcoarse
∗ (N, En) ∼=

∞∏
k=1

kcoarse
∗ ({k})/

∞⊕
k=1

kcoarse
∗ ({k}).

By Proposition 5.28, the coarse assembly isomorphism holds for a singleton set, and

the result follows.

The following proposition is based on Theorem 3.17 of [Wri05].

Proposition 6.13. If W is an infinite uniformly discrete proper metric space then

kcoarse∗ (W0) ∼= lim−→
Ki⊆W
compact

k∗(W/Ki).

Proof. Let U be a cover of N where the only sets which include elements of N greater

than i are singletons, i.e. U = Ki∪S where Ki is the finite union of non-singletons and

S is a union of singleton sets. Clearly this cover is a good cover for N0.

Then the cover U can be coarsened to Ui = P(Ki) ∪ W\Ki where P(Ki) is the

power set of Ki. It has already been shown in Proposition 6.10 that this is a coarsening

family for N0.

The nerve |Ui| is the union of a simplicial star (corresponding to the set Ki) and the

discrete space W\Ki. The simplicial star of a vertex is contractible so |Ui| and W/Ki
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are homotopy equivalent. It follows that

kcoarse
∗ (W0) = lim−→

i

k∗(|Ui|) ∼= lim−→
Ki⊆W

compact

k∗(W/Ki).

Definition 6.14 (Relatively connected). A subspace Y of a topological space X is

said to be relatively connected if each connected component of X contains at most one

connected component of Y .

Lemma 6.15 (Lemma A.8 of [Wri05]). Let X be a finite-dimensional simplicial

complex equipped with the uniform spherical metric. Let Y be a subcomplex of X(n)

(the nth barycentric subdivision of X) and let Yσ = Y ∩ σ for each simplex σ of X.

If for each simplex σ of X, the subcomplex Yσ of X(n) is connected and each edge of

X has non-empty intersection with Y then if Y is relatively connected in X then the

inherited metric on Y is coarsely equivalent and C0 coarsely equivalent to any uniform

spherical metric on Y , and this coarse equivalence is bi-Lipschitz on components. �

Proposition 6.16 (Theorem 3.18 of [Wri05]). If W is a finite dimensional simplicial

complex equipped with a uniform spherical metric then the map kcoarse∗ (W0)→ h∗−1(W0)

is an isomorphism.

Proof. If W (2) is the second barycentric subdivision of W and Yk is the union of

simplicial stars in W (2) about the barycentres of the k-simplices of W then

W = Y0 ∪ . . . ∪ Ym

where m is the dimension of W and each space Yk is a disjoint union of uniformly

seperated stars.

Define Ỹk to be the union Yk ∪ skel(W (2)) (the 1-skeleton of W (2)). These sets are

now relatively connected, allowing us to apply Lemma 6.15.

Let Gk be the graph consisting of edges of W (2) which are not contained in Yk. It

can then be seen that Ỹk = Yk ∪Gk, and by subdividing Gk again, that Gk = Vk ∪ Ek
where Vk is the union of uniformly seperated stars about the vertices of Gk and Ek is

the union of uniformly seperated stars about the edges of Gk.

Let Z0 = Ỹ0 and define Zk = Zk−1 ∪ Ỹk inductively so that Zm = W . Observe that

each of Zk, Ỹk and Gk are relatively connected in W . Lemma 6.15 tells us that the

metrics they inherit as subsets of W are C0 coarsely equivalent to uniformly spherical

metrics.

Each of the spaces Yk, Vk and Ek are either compact (if they consists of finitely

many stars) or are coarsely homotopy equivalent to the infinite uniformly discrete set



Chapter 6. An isomorphism for finite asymptotic dimension 78

consisting of the k-barycentres of W . The homotopy is continuous and is contractive on

each star so is a C0 coarse homotopy as the stars are uniformly seperated. By Lemma

6.12 it follows that the maps

kcoarse
∗ ((Yk)0)→ h∗−1((Yk)0)

kcoarse
∗ ((Vk)0)→ h∗−1((Vk)0)

and

kcoarse
∗ ((Ek)0)→ h∗−1((Ek)0)

are isomorphisms.

Observe also that each Yk ∩Gk and Vk ∩ Ek are uniformly discrete so the maps

kcoarse
∗ ((Yk ∩Gk)0)→ h∗−1((Yk ∩Gk)0)

and

kcoarse
∗ ((Vk ∩ Ek)0)→ h∗−1((Vk ∩ Ek)0)

are also isomorphisms by Lemma 6.12.

Applying the 5-Lemma to the diagram

. . . // kcoarse
∗ ((Vk ∩ Ek)0) //

��

kcoarse
∗ ((Vk)0)⊕ kcoarse

∗ ((Ek)0) //

��

kcoarse
∗ ((Gk)0) //

��

. . .

. . . // h∗−1((Vk ∩ Ek)0) // h∗−1((Vk)0)⊕ h∗−1((Ek)0) // h∗−1((Gk)0) // . . .

tells us that the map kcoarse
∗ ((Gk)0) → h∗−1((Gk)0) is an isomorphism and therefore

also applying the 5-Lemma to the diagram

. . . // kcoarse
∗ ((Yk ∩Gk)0) //

��

kcoarse
∗ ((Yk)0)⊕ kcoarse

∗ ((Gk)0) //

��

kcoarse
∗ ((Ỹk)0) //

��

. . .

. . . // h∗−1((Yk ∩Gk)0) // h∗−1((Yk)0)⊕ h∗−1((Gk)0) // h∗−1((Ỹk)0) // . . .

tells us that the map kcoarse
∗ ((Ỹk)0)→ h∗−1((Ỹk)0) is an isomorphism.

The isomorphism holds for Z0 = Ỹk and by repeating the above argument m times

we get an isomorphism for Z1, Z2 and so on until Zm = W .
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6.3 The coarsening space

Definition 6.17. Let W be a proper metric space, and let U∗ be an anti-C̆ech sequence

for W . The coarsening space of (W,U∗) is the telescope

X = X(W,U∗) = |U1| × [1, 2] ∪φ1 |U2| × [2, 3] ∪φ2 . . .

Recall that

|Ui−1| × [i− 1, i] ∪φi |Ui| × [i, i+ 1] =
(|Ui−1| × [i− 1, i]) t (|Ui| × [i, i+ 1])

∼

where (x, i) ∼ (φi(x), i) for each i ∈ N.

Each |Ui| × [i, i+ 1] is equipped with the product metric, where each simplex σ of

|Ui| is given the spherical metric and [i, i+ 1] is given the metric it inherits from being

a subset of Euclidean space. The coarsening space X is then equipped with the largest

metric bounded above by the product metric on each σ × [i, i+ 1].

Denote the projection map |Ui| × [i, i+ 1]→ [i, i+ 1] by π.

Definition 6.18. The partial coarsening spaces of (W,U∗) are the spaces

Xi = π−1([1, i]) = |U1| × [1, 2] ∪φ1 |U2| × [2, 3] ∪φ2 . . . ∪φi−1
|Ui| × [i, i+ 1]

equipped with the metric inherited from the coarsening space.

Definition 6.19. The collapsing map from X to π−1([t,∞)) is the map (defined for

t > 1) by

Φt(x, s) =


(φi′−1 ◦ . . . ◦ φi(x), t) if s ≤ t,

(x, s) ∈ |Ui| × [i, i+ 1) and t ∈ [i′, i′ + 1)

(x, s) if s ≥ t.

The idea of the collapsing map is to collapse part of the coarsening space down to

a point.

In the following proof, we shall use the fact that Φt is 1-Lipschitz and has the

properties Φt′ ◦ Φt = Φt′ for t′ ≥ t and d(Φt(x, s),Φt′(x, s)) ≤ |t− t′|.

Lemma 6.20 (Theorem 4.5 of [Wri05]). If W is a uniformly discrete bounded

geometry metric space and U∗ is an anti-C̆ech sequence for W then the coarsening

space X(W,U∗) equipped with the C0 coarse structure is almost flasque.

Proof. Firstly, choose a basepoint (x0, s0) in X and then for k ≥ 1, define maps
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αk : X → X by αk(x, s) = Φrk(x,s)(x, s), where

rk(x, s) =

log k − d((x, s), (x0, s0)) if d((x, s), (x0, s0)) ≤ log k

0 otherwise

If K is a bounded subset of X then K must lie within some Xi. It then follows that

Φi(K) is also bounded. As Φi is a coarse map, it then follows that K ′ = Φ−1
i Φi(K) is

also bounded.

It can be shown that K ′ has the property that if Φt(x, s) ∈ K ′ for some t, then

(x, s) ∈ K ′, using the fact that Φt ◦Φt = Φt; to see this note that if Φt(x, s) ∈ K ′ then

Φt(x, s) ∈ Φ−1
t Φt(K). So Φt(x, s) = Φt ◦ Φt(x, s) ∈ ΦtΦ

−1
t Φt(K) ⊆ Φt(K) and hence

(x, s) ∈ Φ−1
t Φt(K) = K ′.

As K ⊆ K ′, to show that αk(X) ∩K = ∅ for sufficiently large k, it suffices to show

that αk(K
′)∩K = ∅ for sufficiently large k. For see this; suppose that αk(X)∩K 6= ∅

and take (x, s) ∈ αk(X) ∩ K. Then (x, s) = αk(y, s
′) for some (y, s′). Since (x, s) ∈

K ⊆ K ′ then αk(y, s
′) ∈ K ′ then αk(y, s

′) ∈ α−1
k αk(K). So αk(y, s

′) = αk ◦ αk(y, s′) ∈
αkα

−1
k αk(K) ⊆ αk(K). Hence (y, s′) ∈ α−1

k αk(K) = K ′. So (x, s) ∈ αk(K ′) also, and

so αk(K
′) ∩K 6= ∅.

To show that αk(K
′) ∩ K = ∅ for sufficiently large k, observe that the set K ′ ⊆

B((x0, s0), R) in X for some R. So for (x, s) ∈ K ′, we have d((x0, s0), (x, s)) ≤ R so

that rk(x, s) ≥ log k − R. Thus if log k > R + i then the set αk(K
′) does not meet Xi

and therefore does not meet K.

If M is a C0 controlled subset of X×X then for each ε > 0 there exists a metrically

bounded Kε and a set Aε with d((x, s), (x′, s′)) < ε/2 for all ((x, s), (x′, s′)) ∈ Aε such

that M = Kε ∪Aε. The inequality

d(αk(x, s), αk(x
′, s′)) ≤ d(Φrk(x,s)(x, s),Φrk(x′,s′)(x, s)) +

d(Φrk(x′,s′)(x, s),Φrk(x′,s′)(x
′, s′))

≤ d(rk(x, s), rk(x
′, s′)) + d((x, s), (x′, s′))

≤ 2d((x, s), (x′, s′)).

shows that αk expand distances by at most a factor of 2 and therefore

d(αk(x, s), αk(x
′, s′)) < ε for ((x, s), (x′, s′)) ∈ Aε

for each k. Also, Kε is metrically bounded so the coarsening map eventually collapses

Kε down to a point so that for k sufficiently large we have αk(x, s) = αk(x
′, s′) for all

((x, s), (x′, s′)) ∈ Kε. Then (αk ×αk)(Kε) lies inside the union of a bounded set B and

the diagonal.
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The set (αk×αk)(M) is a subset of the union of B and a set on which the distance

between any two coordinates is less than ε for each k, and is therefore C0 controlled.

It is easy to see that α1 is close to the identity; α1 is the identity outside of a

bounded set.

Observe that

d(αk(x, s), αk+1(x, s)) ≤ rk+1(x, s)− rk(x, s)

≤ log(k + 1)− log k

< 1/k.

For a fixed k′ there exists a bounded set outside of which αk is the identity for

k ≤ k′. Then for k < k′, the set C = {(αk(x, s), αk+1(x, s)) : k ∈ N} lies in the union

of a bounded set and the diagonal. If k ≥ k′ then d(αk(x, s), αk+1(x, s)) < 1/k′ and

hence C is the union of a bounded set and the diagonal, and a set which the distance

is bounded by 1/k′. By choosing k′ to be sufficiently large, C is a controlled set so the

proof is complete.

Recall that π is the map on X to [1,∞) arising from the projection maps |Ui| ×
[i, i+ 1]→ [i, i+ 1]. In the proof, X0 denotes the space X equipped with the C0 coarse

structure, and not to be confused with Xi which denotes π−1([1, i]) for i > 1.

Theorem 6.21 (Theorem 4.7 of [Wri05]). If W is a uniformly discrete bounded

geometry metric space then

kcoarse∗ (W ) ∼= lim−→
i

h∗−1(Xi(W,U∗)0).

Proof. Observe that

kcoarse
∗ (W ) = lim−→

i

k∗(|Ui|) ∼= lim−→
i

lim−→
K⊆|Ui|
compact

k∗(|Ui|/K)

as for any compact K of |Ui| and for j sufficiently large, φi+j◦. . .◦φi(K) is a contractible

subset of |Ui+j+1| and therefore

kcoarse
∗ (W ) ∼= lim−→

i

kcoarse
∗ (|Ui|0) ∼= lim−→

i

h∗−1(|Ui|0)

where the first isomorphism is by Proposition 6.13 and the second isomorphism is by

Proposition 6.16.

It will be shown that h∗(Xi(W,U∗)0) and h∗(|Ui|0) are isomorphic. Observe that

π−1{i} = |Ui|×{i} so that the spaces π−1{i} and |Ui| are C0 coarsely equivalence as they
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are identical as simplicial complexes and carry C0 coarsely equivalent metrics. To see

this, firstly note that |Ui| is equipped with the uniform spherical metric dS , and π−1{i}
is equipped with the metric dX inherited from X(W,U∗). If M ⊆ π−1{i} × π−1{i}
is C0 controlled then we can write M = B ∪ A1 where B is metrically bounded and

dX(x, x′) ≤ 1 for (x, x′) ∈ A1. If (x, x′) ∈ A1 then dX(x, x′) = dS(x, x′) so A1 is C0

controlled for dS . The set B is also bounded for dS , so it follows that A is C0 controlled

for dS . For the converse, if |Ui| is connected, we can simply reverse the above argument.

If |Ui| is not connected, write M = B ∪ A1 with dS(x, x′) ≤ min{1, ε} for (x, x′) ∈ A1

where ε is smaller than the least distance between any two components of |Ui|, and

again apply the above argument.

The decomposition X0 = (Xi)0∪π−1[i,∞)0 is coarsely excisive, so there is a coarse

Mayer–Vietoris sequence

. . .→ h∗+1(X0)→ h∗(π
−1{i}0)→ h∗((Xi)0)⊕ h∗(π−1[i,∞)0)→ h∗(X0)→ . . .

Lemma 6.20 implies that that h∗(X0) = 0 and also implies that h∗(π
−1[i,∞)0) = 0 by

choosing the anti-C̆ech sequence starting at Ui. It follows that the map h∗(π
−1{i}0)→

h∗((Xi)0) is an isomorphism and therefore that

kcoarse
∗ (W ) ∼= lim−→

i

h∗−1(Xi(W,U∗)0).

Definition 6.22 (Degree of a cover). The degree of a cover U of X is defined to be

sup
x∈X
|{U ∈ U : x ∈ U}|.

Lemma 6.23. If X is a uniformly discrete space with bounded geometry and U is a

cover of X with finite mesh then U has finite degree and |U| is finite dimensional with

degree(U) = dim(|U|) + 1.

Additionally, |U| is locally finite with a uniform bound on the number of simplices

meeting at a point.

Proof. If U has finite mesh then every U ⊆ U is finite by uniform discreteness of X. If

X is finite then it is clear that U has finite degree. If X is infinite and some x ∈ X
belongs to an infinite number of sets of U then this would contradict the finite mesh

of the cover, and so U has finite degree. If degree(U) = m then each x ∈ X belongs to

at most m sets of the cover, and there is an x which belongs to exactly m sets. These

m sets form an m − 1 simplex so |U| is finite dimensional with dimension m − 1 and

therefore degree(U) = dim(|U|) + 1.
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Proposition 6.24 (Theorem 9.9(c) of [Roe03]). If W is a uniformly discrete metric

space with asymptotic dimension at most m then there exists an anti-C̆ech sequence U∗
for W with degree(Ui) ≤ m+1 for all i. Correspondingly there is an anti-C̆ech sequence

such that dim(|Ui|) ≤ m for all i.

The following constructions show us the existence of maps required to show that

X(W,U∗) with the hybrid coarse structure is almost flasque.

Lemma 6.25 (Lemma 5.7 of [Wri05]). Let W be a uniformly discrete bounded

geometry metric space of asymptotic dimension at most m and let U∗ be an anti-C̆ech

sequence for W with degrees bounded by m+ 1. For each i and each ε > 0, there is an

i′ > i, and a partition of unity {hU} of |Ui| indexed by sets U ∈ U ′i such that:

• all the maps hU are ε-Lipschitz;

• for x in the interior of a simplex σ of |Ui|, if [V1], . . . , [Vj ] are the vertices of σ

and U ∈ Ui′ with hU (x) 6= 0 then U contains the intersection V1 ∩ . . . ∩ Vj.

�

Proposition 6.26 (Proposition 5.8 of [Wri05]). Let W be a uniformly discrete

bounded geometry metric space of asymptotic dimension at most m, and let U∗ be an

anti-C̆ech sequence for W with finite degrees.

Then there is a sequence ij with i1 = 1 such that there exists maps βj : π−1([ij ,∞))→
π−1([ij+1,∞)) such that:

• d(βj(x, s), βj(x
′, s′)) ≤ 1

j d((x, s), (x′, s′)) for x, x′ ∈ |Uij | with d(x, x′) < j;

• βj is 4-Lipschitz;

• βj(x, s) = (x, s) for x ∈ X with s ≥ ij+1;

• If x ∈ X with ij ≤ s ≤ ij+1 then βj(x, s) ∈ |Uij+1 | and there is a simplex σ of

|Uij+1 | containing both Φij+1(x, s) and βj(x, s), hence Φij+1 is linearly homotopic

to βj as a map from π−1([ij ,∞))→ π−1([ij+1,∞)).

�

Remark 6.27. Observe that for (x, s) ∈ X we have βj ◦ βj−1 ◦ . . . ◦ β1(x, s) ∈ |Uij+1 |.

Lemma 6.28 (Lemma A.9 of [Wri05]). Let X be a path metric space, and let Y

be a simplicial complex with uniform spherical metric. Let η0, η1 : X → Y be Lipschitz

maps with Lipschitz constant λ ≥ 1/2, and suppose that for all x the images η0(x) and

η1(x) lie in a common simplex. Let ηt denote the linear homotopy from η0 to η1. Then

for each x ∈ X the map t 7→ ηt(x) is Lipschitz with constant at most 2, and the map

η : X × [0, 1]→ Y is Lipschitz with constant at most 4λ. �
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Theorem 6.29 (Theorem 5.9 of [Wri05]). If W is a uniformly discrete bounded

geometry metric space with finite asymptotic dimension and U∗ is an anti-C̆ech sequence

for W then the coarse space X(W,U∗)h is almost flasque.

Proof. By Proposition 6.26 there is a sequence ij with i1 = 1 and a sequence of maps

βj : π−1([ij ,∞))→ π−1([ij+1,∞))

for each j with the property that

d(βj(x, s), βj(x
′, s′)) ≤ 1

j
d((x, s), (x′, s′)) (6.1)

for (x, s), (x′, s′) ∈ |Uij | with d((x, s), (x′, s′)) < j.

Now we can define a map αij : X → π−1([ij ,∞)) (for each ij) by

αij = Φij ◦ βj−2 ◦ . . . ◦ β1.

By Proposition 6.26, Φij is linearly homotopic to βj−1 via a homotopy γj,t for

ij ≤ t ≤ ij+1 and such that γj,ij = Φij and γj,ij+1 = βj−1.

Now we can define a map αt : X → π−1([t,∞)) for t ∈ [1,∞) by

αt = Φt ◦ γj,t ◦ βj−2 ◦ . . . ◦ β1.

For ease of notation, we now write ρj for the map βj ◦ βj−1 ◦ . . . ◦ β1.

Let tk be an increasing sequence tending to infinity with t0 = 1 and tk+1 − tk → 0

as k → ∞, and with the integers ij a subsequence of tk. If B ⊆ X is bounded then

B ⊆ Xi for some i. If tk > i, then αtk(X) ∩B = ∅, so it follows that the maps αtk are

properly supported.

We know from Proposition 6.26 that βj is 4-Lipschitz for each j. We claim that ρj

is λ-Lipschitz with λ independent of j. Let j be the largest integer such that ij ≤ s, s′.
Then by Proposition 6.26 we have

(x, s) = ρ1(x, s) = ρ2(x, s) = . . . = ρj−1(x, s)

and

(x′, s′) = ρ1(x′, s′) = ρ2(x′, s′) = . . . = ρj−1(x′, s′).
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If d((x, s), (x′, s′)) < 1/4 then

d(ρj(x, s), ρj(x
′, s′)) ≤ 4d(ρj−1(x, s), ρj−1(x′, s′))

= 4d((x, s), (x′, s′))

< 1.

Both ρj(x, s) and ρj(x
′, s′) lie in |Uj+1| and are of distance at most 1 apart. Now

inductively it follows that for j′ ≥ j + 2

d(ρj′(x, s), ρj′(x
′, s′)) ≤ d(ρj′−1(x, s), ρj′−1(x′, s′))

< 4d((x, s), (x′, s′)),

as βj′ is contractive on scales less than 1 in |Uj′ |.

If d((x, s), (x′, s′)) ≥ 1/4 then as ρj(x, s) must lie in a simplex containing Φij+1(x, s)

and ρj(x
′, s′) must lie in a simplex containing Φij+1(x′, s′), it follows that

d(ρj(x, s), ρj(x
′, s′)) ≤ d(Φij+1(x, s),Φij+1(x′, s′)) + π

≤ (1 + 4π)d((x, s), (x′, s′))

for all j.

Hence

d(ρj(x, s), ρj(x
′, s′)) ≤ (1 + 4π)d((x, s), (x′, s′))

for all j, and so ρj is (1 + 4π)-Lipschitz.

As Φij and βj−1 are 1-Lipschitz and 4-Lipschitz respectively, it follows from Lemma

6.28 that γj,t is 16-Lipschitz. Hence

d(αtk(x, s), αtk(x′, s′)) ≤ d(γj,ij ◦ ρj−2(x, s), γj,ij ◦ ρj−2(x′, s′))

≤ 16d(ρj−2(x, s), ρj−2(x′, s′))

≤ 16(1 + 4π)d((x, s), (x′, s′)).

so αtk is 16(1 + 4π)-Lipschitz.

If M is a hybrid controlled set then we can write M = ∆ε ∪ Aε where ∆ε is an

ε-neighbourhood of the diagonal and Aε ⊆ Xi ×Xi lying within R of the diagonal for

some i and R sufficiently large. It is clear that d(αtk(x, s), αtk(x′, s′)) ≤ 16(1 + 4π)ε for

all k and for all ((x, s), (x′, s)) ∈ ∆ε.

On Aε,

d(αtk(x, s), αtk(x′, s′)) ≤ (1 + 4π)d((x, s), (x′, s′)) < (1 + 4π)R.
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Choose j large enough so that (1 + 4π)R < j, so that in particular we have

d(ρj−1(x, s), ρj−1(x′, s′)) < j. Since the images ρj−1(x, s) and ρj−1(x′, s′) lie in |Uij |,
we have

d(ρj(x, s), ρj(x
′, s′)) ≤ 1/jd(ρj−1(x, s), ρj−1(x′, s′))

≤ ((1 + 4π)/j) d((x, s), (x′, s′)).

For any t ≥ ij+2, the map αt is a composition of Φt◦γl,t◦βl−2◦. . .◦βj+1 with βj ◦. . .◦β1

for some l ≥ j+2. The former is 16(1+4π)-Lipschitz. Hence using the above inequality,

for t ≥ ij+2 and ((x, s), (x′, s′)) ∈ Aε we have

d(αt(x, s), αt(x
′, s′)) ≤ 16(1 + 4π)2/jd((x, s), (x′, s′)) ≤ 16(1 + 4π)2R/j.

If j is sufficiently large that ij ≥ i and (1+4π)R/j < ε then for ((x, s), (x′, s′)) ∈ ∆ε

the pairs (αtk(x, s), αtk(x′, s′)) lie in a 16(1 + 4π)ε-neighbourhood of the diagonal for

all k. This is also true for ((x, s), (x′, s′)) ∈ Aε if k is such that tk ≥ ij+2. Note that the

set of pairs with tk < ij+2 lies within Xij+2 ×Xij+2 for ((x, s), (x′, s′)) ∈ Aε and hence

(αk × αk)(M) lies in the union of Xij+2 ×Xij+2 with a 16(1 + 4π)ε-neighbourhood of

the diagonal, and so as ε is arbitrary, the set of all (αk × αk)(M) is hybrid controlled.

For all k, there is some j such that tk, tk+1 ∈ [ij , ij+1]. Then we have

d(Φtk ◦ γj,tk ◦ ρj−2(x, s),Φtk◦γj,tk+1
◦ ρj−2(x, s))

≤ d(γj,tk ◦ ρj−2(x, s), γj,tk+1
◦ ρj−2(x, s))

≤ 2|tk+1 − tk|

and

d(Φtk ◦ γj,tk+1
◦ ρj−2(x, s),Φtk+1

◦ γj,tk+1
◦ ρj−2(x, s)) ≤ |tk+1 − tk|

and therefore that d(αtk(x, s), αtk+1
(x, s)) ≤ 3|tk+1 − tk| → 0 as k →∞.

For any ε > 0, there is a fixed k′ such that for k ≥ k′ we have

d(αtk(x, s), αtk+1
(x, s)) < ε.

For k < k′, if s ≥ tk′ then s ≥ ij for some ij ≥ tk′ ≥ tk. In this case, Φtk(x, s) = (x, s)

and since k + 1 ≤ k′, Φtk+1
(x, s) = (x, s) and hence

(x, s) = αtk(x, s) = αtk+1
(x, s).

If s ≤ tk′ then (x, s) ∈ π−1([1, tk′ ]) and so Φtk(x, s) = (x, s) as tk ≤ s ≤ tk′ , so

αtk(x, s) ∈ π−1([1, tk′ ]), and similarly αtk+1
(x, s) ∈ π−1([1, tk′ ]).
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It follows that the set {(αtk(x, s), αtk+1
(x, s)) : (x, s) ∈ X} is hybrid controlled as

either pairs lie within ε of the diagonal or they lie within some Xi for some i.

Proposition 6.30 (Proposition 2.16 of [Wri05]). Let X be a proper, seperable

coarse space, and U be a locally finite uniformly bounded open cover of X. If |U| has

the uniform spherical metric (and the corresponding bounded coarse structure), and

ηU : |U| → X is any map with the property that if y ∈ Star([V ]) of |U| then ηU (y) ∈ V ,

then ηU is coarse and any two such maps are close. �

Definition 6.31 (Fusion coarse structure). LetX be a proper metric space equipped

with a map π : X → R+ and let Xi = π−1[0, i]. The fusion coarse structure on X is the

coarse structure whose controlled sets are metrically controlled subsets M of X × X
for which there exists an i such that the distance restricted to M\(Xi ×Xi) is a C0

function.

Theorem 6.32 (Theorem 4.12 of [Wri05]). If W is a uniformly discrete bounded

geometry metric space then

h∗(W ) ∼= lim−→
i

h∗(Xi(W,U∗)f ).

Proof. It shall be shown that for each i, the spaces Xi(W,U∗)f and W are coarsely

equivalent.

It will follow that

h∗(W ) ∼= lim−→
i

h∗(W ) ∼= lim−→
i

h∗(Xi(W,U∗)f ).

Let Ψ: W → π−1{i} ↪→ Xi(W,U∗) be any map taking w ∈ W to a vertex [V ] of

π−1{i} with w ∈ V .

Let η : |Ui| → W be any map such that if (x, s) lies in the star about a vertex

[V ] then η(x, s) ∈ V (which exist by Proposition 6.30). Note that Ψ ◦ η is close to

the inclusion of |Ui| in Xi(W,U∗) as required. Define ζ : Xi(W,U∗) → W to be the

composition ζ = η ◦Φi. If (x, s), (x′, s′) ∈ Xi(W,U∗) with d((x, s), (x′, s′)) < 2j then as

d(Φi+j(x, s),Φi+j(x
′, s′)) ≤ d((x, s), (x′, s′)) < 2j,

there is a path in |Ui+j | from Φi+j(x, s) to Φi+j(x
′, s′) of length at most 2j. Hence by

Lemma 6.4, there exists a sequence of open sets V0, . . . , Vk in Ui+j with the intersection

of consecutive pairs non-empty, such that ζ(x, s) ∈ V0 and ζ(x′, s′) ∈ Vk.
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Then

d([V0], [Vk]) ≤ d([V0], (x, s)) + d((x, s), (x′, s′)) + d((x′, s′), [Vk])

≤ 2j + π

so kπ/2 ≤ (2j + π) and k is no greater than 4j/π + 2. Thus if d((x, s), (x′, s′)) < 2j

then

d(ζ(x, s), ζ(x′, s′)) ≤ (4j/π + 2) Diam(Ui+j)

and ζ is also proper, so it follows that ζ is coarse.

If w,w′ ∈ W with d(w,w′) < R then let j ≥ 0 be such that Ui+j has Lebesgue

number at least R. It follows that there exists [V ] ∈ |Ui+j | with w,w′ ∈ V and hence

such that Φi+j(Ψ(w)) and Φi+j(Ψ(w′)) are vertices of |Ui+j | which are adjacent to [V ].

Thus if d(w,w′) < R then d(Ψ(w),Ψ(w′)) < 2j + π and hence Ψ is also coarse.

Let w ∈ W , so that Ψ(w) = ([V ], i), where w ∈ V . Observe that (ζ ◦ Ψ)(w) =

ζ([V ], i) = (η ◦ Φi)([V ], i) = η([V ]) ∈ V as [V ] is clearly in Star([V ]). It follows that

d((ζ ◦Ψ)(w), w) ≤ Diam(Ui). It is easy to see that d((Ψ ◦ ζ)(x, s), (x, s)) ≤ i+ π, so Ψ

is a coarse equivalence as required.

The following result is new. The proof is straightforward but cannot be found in

the current literature.

Lemma 6.33. If fi : Xi → Yi and gi : Yi → Xi+1 are morphisms for each i such that

gi ◦ fi : Xi → Xi+1 and fi+1 ◦ gi : Yi → Yi+1 are direct systems then the direct limits

lim−→Xi and lim−→Yi are isomorphic.

Proof. Write hi = gi ◦ fi : Xi → Xi+1 and ji = fi+1 ◦ gi : Yi → Yi+1. By assumption,

we have commuting diagrams

Xi
hi //

λi ""

Xi+1

λi+1{{

lim−→Xi

Yi
ji //

γi
!!

Yi+1

γi+1
{{

lim−→Yi

By the universal property there exists unique maps f : lim−→Xi → lim−→Yi and g : lim−→Yi →
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lim−→Xi such that the diagrams

Xi
hi //

fi
��

λi ""

Xi+1

fi+1

��
λi+1{{

Yi

γi
""

lim−→Xi

f

��

Yi+1

γi+1
{{

lim−→Yi

Yi
ji //

gi

��
γi

##

Yi+1

gi+1

��
γi+1

{{

Xi+1

λi+1
##

lim−→Yi

g

��

Xi+2

λi+2
{{

lim−→Xi

commute.

By the universal property, we also have a unique h : lim−→Xi → lim−→Xi such that the

diagram

Xi
hi //

fi
��

λi $$

Xi+1

fi+1

��
λi+1zz

Yi

γi

��

lim−→Xi

h

��

Yi+1

γi+1

��

lim−→Yi

g
##

lim−→Yi

g
{{

lim−→Xi

commutes.

Note that (g ◦ γi) ◦ fi = λi+1 ◦ gi ◦ fi = λi+1 ◦ hi = λi. Thus the identity map fits

into this diagram so h = id. Also note that g ◦ (f ◦ λi) = g ◦ (γi ◦ fi) and thus g ◦ f fits

into the diagram also and so g ◦ f = id.

Likewise, there is a unique j : lim−→Yi → lim−→Yi such that the diagram

Yi
ji //

gi

��
γi

$$

Yi+1

gi+1

��
γi+1

zz

Xi+1

λi+1

��

lim−→Yi

j

��

Xi+2

λi+2

��

lim−→Xi

f
##

lim−→Xi

f
{{

lim−→Yi

commutes.

Note that (f ◦λi+1)◦gi = (γi+1 ◦fi+1)◦gi = γi+1 ◦ji = γi and thus the identity map

fits into this diagram so j = id. Also note that (f ◦λi+1)◦gi = (f ◦λi+1)◦gi = f ◦g ◦γi
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and thus f ◦ g fits into the diagram also and so f ◦ g = id. It follows that f is an

isomorphism so lim−→Xi and lim−→Yi are isomorphic.

Proposition 6.34. For X = X(W,U∗), there is an isomorphism

lim−→
i

h∗(X0, (Xi)0)→ lim−→
i

h∗(Xf , (Xi)f ).

Proof. We can rewrite X as the union of π−1 (
⋃

[2i− 1, 2i]) and π−1 (
⋃

[2i, 2i+ 1]).

Using the collapsing map, these spaces coarse homotopy retract onto π−1(2N) and

π−1(2N + 1) respectively. The intersection of this decomposition is π−1(N). By the

coarse Mayer–Vietoris sequence, it is enough to prove that there is an isomorphism

lim−→
i

h∗(π
−1(I)0, (π

−1(I) ∩Xi)0)→ lim−→
i

h∗(π
−1(I)f , (π

−1(I) ∩Xi)f )

for every I ⊆ N.

We can decompose π−1(I) as the union Y0 ∪ . . . ∪ Yn where each Ym is the union

of stars around the barycentres of m-simplices in the second barycentric subdivision

of π−1(I). We can prove the result inductively for Zk where Zk = Y0 ∪ . . . ∪ Yk. As

π−1(I) is a uniform metric simplicial complex, the induction process here is similar to

that of Proposition 6.16. The final step is to prove that the result holds for the base

space, Y0. This is coarsely homotopy equivalent to a discrete space D consisting of

the 0-simplices in the second barycentric subdivision of π−1(I). The claim has been

reduced to showing that the map

lim−→
i

h∗(D0, (D ∩Xi)0)→ lim−→
i

h∗(Df , (D ∩Xi)f )

is an isomorphism.

Any fusion controlled set of D is the union of a fusion controlled set of D ∩ Xj

for some j and a C0 controlled set of π−1[j,∞). It can also be shown that any fusion

controlled set of D ∩ Xj is also C0 controlled. It follows that for sufficiently large i,

there exist coarse maps (D0, (D ∩ Xi)0) → (Df , (D ∩ Xi)f ) and (Df , (D ∩ Xi)f ) →
(D0, (D ∩Xi+1)0). Therefore by Lemma 6.33, the result holds.

Remark 6.35. Since X has a path metric, the decomposition X = Xi ∪ π−1[i,∞)

is coarsely excisive. This follows from Lemma 3.34 since if (xn, sn) is a sequence in

Xi converging to (x, s) in X then as sn ≤ i for all n it follows that s ≤ i so Xi is

closed. Similarly if (xn, sn) is a sequence in π−1[i,∞) converging to (x, s) in X then as

sn ≥ i for all n it follows that s ≥ i so π−1[i,∞) is closed. It can be shown that these

decompositions for the C0 and fusion coarse structures are also coarsely excisive.
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Therefore there are coarse Mayer–Vietoris sequences and a commutative ladder

. . . // h∗(π
−1{i}0)

��

// h∗((Xi)0)⊕ h∗(π−1[i,∞)0)

��

// h∗(X0)

��

// . . .

. . . // h∗(π
−1{i}f ) // h∗((Xi)f )⊕ h∗(π−1[i,∞)f ) // h∗(Xf ) // . . .

It is well known that the direct limit of a short exact sequence is again a short exact

sequence, so we have a commutative diagram

. . . // lim−→i
h∗(π

−1{i}0)

��

// lim−→i
h∗((Xi)0)

��

// lim−→i
h∗(X0)

��

// . . .

. . . // lim−→i
h∗(π

−1{i}f )) // lim−→i
h∗((Xi)f ) // lim−→i

h∗(Xf ) // . . .

as the spaces π−1[i,∞)0 and π−1[i,∞)f are almost flasque.

As X0 is also almost flasque, the top row of the above ladder implies that the map

lim−→i
h∗(π

−1{i}0)→ lim−→i
h∗((Xi)0) is an isomorphism. It follows from the relative exact

sequence

. . .→ h∗(X0)→ h∗(X0, (Xi)0)→ h∗−1((Xi)0)→ h∗−1(X0)→ . . .

for the pair (X0, (Xi)0) that the map h∗(X0, (Xi)0)→ h∗−1((Xi)0) is an isomorphism,

and therefore that the map lim−→i
h∗(X0, (Xi)0)→ lim−→i

h∗−1((Xi)0) is also an isomorphism.

The same exact sequence exists for the fusion case, and an argument similar to Theorem

5.10 of [Wri05] shows that h∗(Xh) and h∗(Xf ) are isomorphic, and so h∗(Xf ) vanishes

by Theorem 6.29.

Applying the above arguments to the fusion case tells us that asking for an isomorphism

lim−→i
h∗−1(π−1{i}0) → lim−→i

h∗−1(π−1{i}f ) is equivalent to asking for an isomorphism

lim−→h∗(X0, (Xi)0)→ lim−→h∗(Xf , (Xi)f ).

Consider the commuting diagram

lim−→i
h∗−1(π−1{i}0)

��

// lim−→i
h∗−1(π−1{i}f )

��

lim−→i
h∗−1((Xi)0)

��

lim−→i
h∗−1((Xi)f )

��

kcoarse
∗ (W )

λ // h∗−1(W )

The map lim−→i
h∗−1(π−1{i}0) → lim−→i

h∗−1(π−1{i}f ) is an isomorphism by Proposition

6.34 and the above remarks. The map lim−→i
h∗−1((Xi)0)→ kcoarse

∗ (W ) is an isomorphism
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by Theorem 6.21. The map lim−→i
h∗−1((Xi)f )→ h∗−1(W ) is an isomorphism by Theorem

6.32. Combining all of the above results together, we have proved the following result:

Theorem 6.36. If W is a proper metric space of bounded geometry and finite asymptotic

dimension then the coarse assembly map

λ : kcoarse∗ (W )→ h∗−1(W )

is an isomorphism.



Chapter 7

Applications

It was shown in the previous chapter that the coarse assembly map is an isomorphism for

spaces of finite asymptotic dimension. As well as the coarse Baum–Connes assembly

map there are other assembly maps of interest, in the areas of algebraic K-theory

and C∗-category K-theory. These include the Loday assembly map, the Farrell–Jones

assembly map and the Baum–Connes assembly map in topological K-theory. We

construct coarsely excisive functors for these assembly maps and give isomorphism

and descent results for these under the assumption of finite asymptotic dimension. The

new results in this chapter including showing that these functors satisfy the definition

of coarsely excisive as introduced in Chapter 5.

It will be shown that the original example of the coarse Baum–Connes conjecture for

finite asymptotic dimension is a special case of the version for additive C∗-categories.

7.1 Waldhausen K-theory

The aim is to be able to define the algebraic K-theory of an additive category A.

It is well known that algebraic K-theory groups are complicated to define in higher

dimensions, and it was observed by Quillen that the correct way to define the higher

algebraic K-theory groups would be as the homotopy groups of a certain loop space.

Furthermore, it is possible to construct a spectrum whose homotopy groups are the

algebraic K-theory groups, and there are many benefits of doing this over the loop space

construction. Waldhausen’s S•-construction provides a recipe for constructing the loop

space Ω|wS•C| and the spectrum K(C) for a Waldhausen category C (a category with a

notion of cofibrations and weak equivalences), and this is more general than the notions

of an additive category and of exact categories defined by Quillen. For more on the

Waldhausen S•-construction, see [Rog10], [Mit02] and [Car05].

Definition 7.1 (Pointed category). A pointed category C is a category with a zero

93
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object 0C . That is, for every object A ∈ C, there exists unique morphisms 0C → A and

A→ 0C in C.

Definition 7.2 (Category with cofibrations). A small pointed category C is called

a category with cofibrations if there is a subcategory co(C) of C (called the category

of cofibrations), closed under composition, whose morphisms are called cofibrations

(denoted by A� B) such that the following conditions are satisfied:

• every isomorphism A� B in C is a cofibration;

• the unique morphism 0 � A is a cofibration for all objects A ∈ C;
• if A � B is a cofibration in C and A→ C is a morphism in C then the pushout

diagram

A

��

// // B

��

C // // C ∪A B

exists in C and the canonical morphism C � C ∪A B is a cofibration.

Observe that the first and second conditions each imply that co(C) has the same

objects as C. A category with cofibrations will be denoted by (C, co(C)) or C when the

subcategory is clear from context.

Example 7.3. If A� B is a cofibration, the unique map A→ 0 can be used to form

the pushout diagram

A

��

// // B

����

0 // // B/A

in C, where the pushout B ∪A 0 is written as B/A. The induced map B � B/A is

known as a quotient map.

Definition 7.4 (Cofiber sequence). A cofiber sequence is a diagram of the form

A // // B // // B/A

where the first map is a cofibration and the second map is the associated quotient map.

Definition 7.5 (Sequence of cofibrations). A sequence of cofibrations is a diagram

of the form

A1
// // A2

// // . . . // // Aq

where each map Ai � Ai+1 is a cofibration.

Example 7.6. The unique cofibrations 0 � A and 0 � B can be used to form the
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pushout diagram

0

��

// // A

��

B // // A ∪0 B

for the coproduct A ∨B = A ∪0 B.

Example 7.7. Let Set+ be the pointed category where the objects are sets with a

distinguished base-point and the morphisms are base-point preserving functions, and

let co(Set+) be the subcategory of injective functions.

Clearly any bijection is injective, and for any A ∈ Set+ the map 0 → A is also

injective.

Consider the pushout diagram

A

g

��

//
f

// B

hB
��

C
hC // C ∪A B

where f : A → B is injective and C ∪A B is the space (C t B)/ ∼ generated by the

equivalence relation g(a) ∼ f(a) for all a ∈ A. The map hC : C → C ∪A B is the map

defined by the composition of the inclusion map i : C ↪→ C t B and the quotient map

π : C tB → C ∪AB, and the map hB is defined similarly. If hC(c) = hC(c′) and c, c′ 6∈
Im g then π(c) = π(c′) implies that c = c′. If c, c′ ∈ Im g then c = g(a) and c′ = g(a′) for

some a, a′ ∈ A and so if π(c) = π(c′) then (π◦f)(a) = (π◦g)(a) = (π◦g)(a′) = (π◦f)(a′)

by commutativity. It follows that a = a′ and so c = c′ by injectivity of f . Thus hC is

injective, and (Set+, co(Set+)) is a category with cofibrations.

Definition 7.8 (Exact functor for cofibration categories). A functor F : C → D
between categories with cofibrations is an exact functor if F (0C) = 0D, F (co(C)) =

co(D) and if for each cofibration A� B in C and morphism A→ C in C, the image

F (A)

��

// // F (B)

��

F (C) // // F (C ∪A B)

of the pushout square

A

��

// // B

��

C // // C ∪A B

in C is a pushout square in D.

It can be shown that the composition of two exact functors is again an exact functor,
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and so the category of small categories with cofibrations and exact functors can be

formed.

Definition 7.9 (Waldhausen category). A category with cofibrations C is called a

Waldhausen category if there is a subcategory w(C) of C (called the category of weak

equivalences), closed under composition, whose morphisms are called weak equivalences

(denoted by A
∼−→ B) such that:

• every isomorphism A→ B in C is a weak equivalence;

• if B � A and B � A are cofibrations and each of A
∼−→ A, B

∼−→ B and C
∼−→ C

are weak equivalences then the diagram

A

∼
��

oo oo B //

∼
��

C

∼
��

A oo oo B // C

commutes and the pushout morphism

A ∪B C // // A ∪B C

is also a weak equivalence.

Observe that the first condition implies that w(C) has the same objects as C. A

Waldhausen category will be denoted by (C, co(C),w(C)) or C when the subcategories

are clear from context.

The following example is important for defining the algebraic K-theory of rings.

Example 7.10. For a ring R, define P(R) to be the category where the objects

are finitely generated projective left R-modules and the morphisms are the R-module

homomorphisms. It is shown in Section 8.1 of [Rog10] that P(R) is a Waldhausen

category where the cofibrations are taken to be the injective R-module homomorphisms

f : P → Q such that the cokernel Q/P is finitely generated projective and the weak

equivalences are taken to be the isomorphisms.

Definition 7.11 (Exact functor for Waldhausen categories). A functor F : C →
D between Waldhausen categories is an exact functor if F (w(C)) = w(D) and if it is

an exact functor as a functor between categories with cofibrations.

As in the case of categories with cofibrations, the composition of two exact functors

is again an exact functor, so the category of small Waldhausen categories and exact

functors can be formed.

Definition 7.12 (Category [q]). For q ≥ 0, the ordered set

[q] = {0 < 1 < . . . < q}
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of integers from 0 to q can be viewed as a small category where the objects are the

integers from 0 to q and there is a unique morphism i→ j for i ≤ j and no morphism

i → j if i > j. Observe that by uniqueness, the morphism i → j factors as the

composite i→ i+ 1→ . . .→ j − 1→ j for i ≤ j.

Definition 7.13 (Arrow category). The arrow category Ar(C) of a category C is

the category where the objects are the morphisms f : A→ B in C and the morphisms

F : f → f ′ from f : A → B to f ′ : A′ → B′ are the pairs F = (FA, FB) of morphisms

FA : A→ A′ and FB : B → B′ in C such that the diagram

A
f
//

FA
��

B

FB
��

A′
f ′
// B′

commutes.

Definition 7.14 (Functor category). The functor category Fun(C,D) for small

categories C and D is the category where the objects are functors F : C → D (known

as C-shaped diagrams in D) and the morphisms are natural transformations between

them.

A functor A : [q]→ C is a diagram

A(0)→ A(1)→ . . .→ A(q)

and so it can be easily seen that Fun([0], C) = C and Fun([1], C) = Ar(C).

Definition 7.15 (Category SqC). For a Waldhausen category C, define a category SqC
as follows. Define the objects to be functors A : Ar[q] → C such that A(i → j) = Aij

with Aii = 0 for each i and for all triples i ≤ j ≤ k there is a cofiber sequence

Aij � Aik � Ajk, or equivalently, let the objects be sequences of cofibrations

{Aij} = A00
// // A01

// // . . . // // A0q

together with a choice of quotients Aij = A0j/A0i defined (by the pushout property) for

i ≤ j. Define a morphism f : {Aij} → {Bij} in SqC to be the collection of morphisms

fij : Aij → Bij in C for all i ≤ j such that the square

Aij
fij

//

��

Bij

��

Ai′j′
fi′j′

// Bi′j′

commutes for each morphism (i, j) → (i′, j′) in Ar[q], that is, for all i ≤ i′ and
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j ≤ j′ such that the square

i //

��

j

��

i′ // j′

commutes.

By the universal property of quotients, objects of SqC can be pictured as the upper

triangular commutative diagrams with zeros along the diagonal

0 = A00
// // A01

����

// // A02

����

// // . . . // // A0q

����

0 = A11
// // A12

����

// // . . . // // A1q

����

0 = A22
// // . . . // // A2q

����

. . .
...

����

0 = Aqq.

Examples 7.16 (Category SnC for n = 0, 1, 2). An object in the category S0C is

simply the diagram

0

in C with quotient defined by A00 = 0. Thus S0C is the category with single object 0

and single morphism 0→ 0.

An object in the category S1C is a diagram

0 // // A01

����

0

in C with quotients defined by A00 = A11 = 0. The diagram can be viewed as the object

A01 in C with no quotient, and hence S1C is naturally isomorphic to the category C.



Chapter 7. Applications 99

An object in S2C is a commutative diagram

0 // // A01

����

// // A02

����

0 // // A12

����

0

in C where each horizontal morphism is a cofibration and the square is a pushout square

defining the quotient A12. This category is naturally isomorphic to the category where

the objects are the cofibration sequences A � B � B/A in C and morphisms from

A� B � B/A to A� B � B/A to be the commutative diagrams

A

��

// // B // //

��

B/A

��

A // // B // // B/A

in C.

Definition 7.17 (Category coSqC). Define coSqC to be the subcategory of SqC where

the morphisms f : {Aij} → {Bij} are defined to be the collection of maps fij : Aij → Bij

in C such that fij : Aij � Bij is a cofibration in C for each 1 ≤ i ≤ j ≤ q.

Definition 7.18 (Category wSqC). Define wSqC to be the subcategory of SqC where

the morphisms f : {Aij} → {Bij} are defined to be the collection of maps fij : Aij → Bij

in C such that fij : Aij
∼−→ Bij is a weak equivalence in C for each 1 ≤ i ≤ j ≤ q.

It can be shown that (SqC, coSqC, wSqC) is again a Waldhausen category, see Lemma

8.3.16 of [Rog10].

We can consider the collection S•C = {SqC : q ∈ N} of all these categories, and it

can again be shown that S•C is a Waldhausen category (with the cofibrations of S•C
being the collection of cofibrations of each SqC and the weak equivalences of S•C being

the collection of weak equivalences of each SqC), see Proposition 8.3.20 of [Rog10].

Definition 7.19 (Waldhausen K-theory space). The Waldhausen K-theory space

is the space K(C, w) = Ω|wS•C|. The Waldhausen K-theory groups are defined to be

the homotopy groups

Kn(C) = πn(K(C, w))

for n ≥ 1.

Definition 7.20 (Algebraic K-theory of rings). Let R be a ring. The algebraic

K-theory space of R is the space K(R) = Ω|wS•P(R)|, that is, the algebraic K-theory
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space of the Waldhausen category P(R). The algebraic K-theory groups of R are

defined to be the homotopy groups

Kn(R) = πn(K(R))

for n ≥ 1.

Since S•C of a Waldhausen category C is again a Waldhausen category, this process

can be repeated to obtain a sequence of Waldhausen categories S
(n)
• C = S•S• . . . S•C

for each n, and therefore a sequence of topological spaces |wS(n)
• C| for each n. It is

therefore possible to form a Waldhausen K-theory spectrum as well as a Waldhausen

K-theory space.

Definition 7.21 (Waldhausen K-theory spectrum and groups). The Waldhausen

K-theory spectrum K(C) is the spectrum with spaces K(C)n = |wS(n)
• C| and structure

maps |wS(n)
• C| → Ω|wS(n+1)

• C|. The Waldhausen K-theory groups are defined to be

the stable homotopy groups

Kn(C) = πn(K(C))

for n ∈ Z.

There is an action of the symmetric group Σn on the Waldhausen category wS
(n)
• C

defined by permuting the order in which the S• constructions are made. There is also

an induced Σ-action on the geometric realisation |wS(n)
• C|, and therefore the spectrum

K(C) is a symmetric spectrum.

7.2 Controlled algebraic K-theory groups

Assembly maps are often studied using techniques coming from controlled topology.

An additive category A(X) with dependance on the coarse structure of X will be

introduced and we show that this is a Waldhausen category. It will be shown that the

functor X 7→ KA(X) representing the algebraic K-theory of X is coarsely excisive and

we will apply descent to obtain results about the Farrell–Jones and Loday assembly

maps in algebraic K-theory.

Definition 7.22 (R-linear category). Let R be a ring. An R-linear category is

a category A in which each morphism set MorA(A,B) is a left R-module and the

composition of morphisms is bilinear.

Definition 7.23 (Biproduct). Let A be an R-linear category. An object A ⊕ B is

called the biproduct of objects A and B if it comes equipped with morphisms iA : A→
A⊕B, iB : B → A⊕B, pA : A⊕B → A and pB : A⊕B → B satisfying pA ◦ iA = idA,

pB ◦ iB = idB, pA ◦ iB = pB ◦ iA = 0 and iA ◦ pA + iB ◦ pB = idA⊕B.
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To avoid ambiguity, the morphism iA : A → A ⊕ B will sometimes be denoted by

iA⊕BA and the morphism pA : A⊕B → A by pAA⊕B, etc.

Definition 7.24 (Additive category). An R-linear category is said to be additive if

it is equipped a zero object and each pair of objects has a biproduct.

The following result is straightforward to prove, but the proof cannot be found in

the current literature.

Proposition 7.25. If A is an R-linear category, then an object A ⊕ B is a biproduct

of A and B if and only if it is simultaneously a product and a coproduct in A.

Proof. If A⊕B is a biproduct then the diagrams

X
fA

{{

fB

##

f
��

X

A A⊕BpAoo
pB // B A

iA //

gA

;;

A⊕B

g

OO

B
iBoo

gB

cc

where f : X → A ⊕ B and g : A ⊕ B → X are defined by f = iA ◦ fA + iB ◦ fB and

g = gA ◦ pA + gB ◦ pB are product and coproduct diagrams respectively.

To see this, observe that pA ◦ f = pA ◦ iA ◦ fA + pA ◦ iB ◦ fB = fA and that

pB ◦ f = pB ◦ iA ◦ fA + pB ◦ iB ◦ fB = fB by the biproduct identities. To show that f is

unique, if there exists an f ′ : X → A⊕B such that pA ◦ f ′ = fA and pB ◦ f ′ = fB then

f − f ′ = idA⊕B ◦(f − f ′)

= (iA ◦ pA + iB ◦ pB) ◦ (f − f ′)

= iA ◦ pA ◦ f + iB ◦ pB ◦ f − iA ◦ pA ◦ f ′ − iB ◦ pB ◦ f ′

= 0

and so f is unique. The case for g is identical.

Conversely, if the product and coproduct diagrams both exist then there are maps

iA : A→ A⊕B and iB : B → A⊕B such that for any X and morphisms fB : B → X

and fA : A→ X then there exists a unique map f : A⊕B → X such that f ◦ iA = fA

and f ◦ iB = fB. In particular, the coproduct diagrams

A B

A
iA //

idA

;;

A⊕B

pA

OO

B
iBoo

0

cc

A
iA //

0

;;

A⊕B

pB

OO

B
iBoo

idB

cc

exist, where the unique maps have been labelled as pA and pB respectively. Thus there

are maps such that pA ◦ iA = idA and pA ◦ iB = 0, pB ◦ iB = idB and pB ◦ iA = 0. The
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coproduct diagram

A⊕B

A

iA
;;

iA
// A⊕B

f

OO

B
iB
oo

iB
cc

also exists. The identity morphism idA⊕B clearly satisfies this diagram. It is easy to

check that iA ◦pA+ iB ◦pB also satifies this diagram and thus iA ◦pA+ iB ◦pB = idA⊕B

by uniqueness, and therefore A⊕B is a biproduct of A and B.

Remark 7.26. It is easy to check that an object A in an R-linear category is a

coproduct if and only if it is a product, and that in any additive category, A is the

biproduct of A and 0 and also the biproduct of 0 and A.

The following is stated in Proposition 5.1 of [Mit02] without proof. For completeness,

we give a proof here.

Proposition 7.27. If A is an additive R-linear category, then A is a Waldhausen

category where the cofibrations are defined to be morphisms isomorphic to morphisms

of the form iA : A→ A⊕B and weak equivalences are isomorphisms.

Proof. If f : C → D is an isomorphism then f is isomorphic to iC : C → C ⊕ 0 via the

diagram

C
f
// D

iC◦f−1

��

C
iC // C ⊕ 0

so is therefore also a cofibration. The unique morphism 0→ A is obviously of the form

0→ 0⊕A, so is a cofibration.

Suppose that A → A ⊕ B is a cofibration and A → C is a morphism and that the

diagram

A

��

iA // A⊕B

��

C
iC
// C ⊕B

commutes. To see that this is a pushout diagram, suppose that X is an object with

maps γA⊕B : A⊕B → X and γC : C → X such the diagram

A

g

��

iA // A⊕B
f
��

γA⊕B

��

C
iC //

γC
))

C ⊕B
θ

""

X
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commutes, where f : A⊕B → C ⊕B is defined by

f = iC⊕BC ◦ g ◦ pAA⊕B + iC⊕BB ◦ pBA⊕B.

Observe that pBC⊕B ◦ f = pBA⊕B and pCC⊕B ◦ f = g ◦ pAA⊕B.

Define a map θ : C ⊕B → X by

θ = γC ◦ pCC⊕B + γA⊕B ◦ iA⊕BB ◦ pBC⊕B.

This map makes the diagram commute as θ ◦ iC = γC and

θ ◦ f = (γC ◦ pCC⊕B + γA⊕B ◦ iA⊕BB ◦ pBC⊕B) ◦ f

= γC ◦ g ◦ pAA⊕B + γA⊕B ◦ iA⊕BB ◦ pBA⊕B
= γA⊕B ◦ iA⊕BA ◦ pAA⊕B + γA⊕B ◦ iA⊕BB ◦ pBA⊕B
= γA⊕B

To see that θ is unique, suppose there exists φ : C⊕B → X such that φ◦f = γA⊕B

and φ ◦ iC⊕BC = γC . Observe then that φ ◦ iC⊕BB = γA⊕B ◦ iA⊕BB and therefore

φ = φ ◦ iC⊕BC ◦ pCC⊕B + φ ◦ iC⊕BB ◦ pBC⊕B
= γC ◦ pCC⊕B + γA⊕B ◦ iA⊕BB ◦ pBC⊕B
= θ.

To verify the gluing property, consider the commutative diagram

A

kA
��

// // A⊕B //

kA⊕B

��

C

kC
��

A′ // // A′ ⊕B′ // C ′

where each of the maps kA, kA⊕B and kC are isomorphisms.

From the pushout diagram for C⊕B, there are unique maps ϕ and θ such that the

diagrams

A

g

��

iA // A⊕B

f
��

f ′◦kA⊕B

��

A′

g′

��

iA′ // A′ ⊕B′

f ′

�� f◦k−1
A⊕B

��

C
iC //

iC′◦kC ))

C ⊕B
ϕ

%%

C ′
iC′//

iC◦k−1
C ))

C ′ ⊕B′
θ

%%

C ′ ⊕B′ C ⊕B



Chapter 7. Applications 104

commute.

Putting these together, the diagram

A′

g′

��

iA′ // A′ ⊕B′

f ′

�� f◦k−1
A⊕B

##

f ′

&&

C ′
iC′ //

iC′

++

iC◦k−1
C

,,

C ′ ⊕B′
θ

))

C ⊕B
ϕ

))

C ′ ⊕B′

commutes as

ϕ ◦ θ ◦ f ′ = ϕ ◦ f ◦ k−1
A⊕B = f ′ ◦ kA⊕B ◦ k−1

A⊕B = f ′

and

ϕ ◦ θ ◦ iC′ = ϕ ◦ iC ◦ k−1
C = iC′ ◦ kC ◦ k−1

C = iC′ .

Therefore the map ϕ ◦ θ satisfies the diagram and is unique. It is easy to see

that idC′⊕B′ also satisfies the diagram and therefore ϕ ◦ θ = idC′⊕B′ . Similarly doing

this the other way round gives us θ ◦ ϕ = idC⊕B, so that the pushout morphism

ϕ : C ⊕B → C ′ ⊕B′ is an isomorphism as required.

The results in this subsection therefore give us a description of the spectrum whose

fundamental groups are the algebraic K-theory groups of an additive R-linear category.

Definition 7.28 (Geometric A-module). Let X be a metric space, and A be an

additive R-linear category. A functor M from the category of metrically bounded

subsets of X to the category A is said to be a geometric A-module over X if the

following conditions are satisfied:

• for each metrically bounded set B, the natural map⊕
x∈B

Mx →M(B)

induced by the inclusion maps is an isomorphism;

• the support of M

SuppM = {x ∈ X : Mx 6= 0}

is a locally finite subset of X.

Definition 7.29. A morphism φ : M → N between geometric A-modules over X is a

collection of morphisms φx,x′ : Mx′ → Nx in the category A such that:
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• for each x ∈ X, the morphism φx,x′ 6= 0 for only finitely many points x′ ∈ X;

• for each x′ ∈ X, the morphism φx,x′ 6= 0 for only finitely many points x ∈ X.

The composition of morphisms φ : M → N and ψ : N → P is defined by the formula

(ψ ◦ φ)x,y(λ) =
∑
z∈X

ψx,z ◦ φz,y(λ).

The support of a morphism φ : M → N is defined to be the set

Suppφ = {(x, y) ∈ X ×X : φx,y 6= 0}.

Definition 7.30. Let (X, E) be a coarse space and A be an additive R-linear category.

The category A(X) is defined to be the category consisting of all geometric A-modules

over X and morphisms φ between them such that Suppφ ∈ E , that is, controlled with

respect to the coarse structure.

It can be shown that A(X) is again an additive R-linear category. Thus we can form

the algebraic K-theory spectrum KA(X) of A(X) and hence the algebraic K-theory

groups K∗(A(X)).

For any coarse map f : X → Y , there is an induced additive functor f∗ : A(X) →
A(Y ) defined as follows:

• for a geometric A-module M over X, the geometric A-module f∗[M ] over Y is

defined by writing

f∗[M ](S) = M(f−1(S));

• for a morphism φ : M → N in A(X), the morphism f∗[φ] : f∗[M ] → f∗[N ] in

A(Y ) is defined by writing

f∗[φ]h1,h2 =
∑

g1∈f−1(h1)
g2∈f−1(h2)

φg1,g2 .

Using these induced maps, there is a functor X 7→ A(X), and so there is a functor

X 7→ KA(X).

The proofs of the following two results are based on that of Theorem 6.3 in [Mit10].

Proposition 7.31. If X is an almost flasque space then the spectrum KA(X) is weakly

contractible (so that K∗(A(X)) = {0}).

Proof. Let αk : X → X be the collection of maps which satisfy the almost flasqueness

condition, and let M be a geometric A-module over X. It will be shown that the direct



Chapter 7. Applications 106

sum
∞⊕
k=0

(αk)∗[M ]

is also a geometric A-module over X.

Since the map
⊕

x∈BMx → M(B) is an isomorphism for all B, it follows that by

replacing B with (αk)
−1(B), the map⊕

x∈B
(αk)∗[M ]x → (αk)∗[M ](B)

is an isomorphism for each k.

By the first condition of almost flasqueness, for each bounded set B, the intersection

B ∩αk(X) is empty for all but finitely many k. Thus (αk)
−1(B) is non-empty for only

finitely many k. Hence we can write
⊕∞

k=0(αk)∗[M ](B) =
⊕

k∈JB (αk)∗[M ](B), where

JB ⊆ N is a finite subset which depends on B. There is also a finite subset IB ⊆ N
such that ⊕∞k=0⊕x∈B (αk)∗[M ]x = ⊕k∈IB ⊕x∈B (αk)∗[M ]x. Observe that IB ⊆ JB since

x ∈ B.

The map
∞⊕
k=0

⊕
x∈B

(αk)∗[M ]x →
∞⊕
k=0

(αk)∗[M ](B)

is the map ⊕
k∈IB

⊕
x∈B

(αk)∗[M ]x →
⊕
k∈JB

(αk)∗[M ](B),

so is an isomorphism.

Hence the map ⊕
x∈B

∞⊕
k=0

(αk)∗[M ]x →
∞⊕
k=0

(αk)∗[M ](B)

is also an isomorphism, where the terms in the finite summations have been reordered.

To show that Supp(
⊕∞

k=0(αk)∗[M ]) is locally finite, observe that for each bounded

B ⊆ X, {x ∈ B : ⊕∞k=0 (αk)∗[M ]x 6= 0} = {x ∈ B : ⊕k∈KB
(αk)∗[M ]x 6= 0} for some

finite KB ⊆ N. It is easy to see that the sum of finitely many geometric A-modules is

locally finite.

For each morphism φ : M → N in the categoryA(X), because each map αk : X → X

is a coarse map, there is an induced morphism

(αk)∗[φ] : (αk)∗[M ]→ (αk)∗[N ]
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and hence an induced morphism

∞⊕
k=0

(αk)∗[φ] :

∞⊕
k=0

(αk)∗[M ]→
∞⊕
k=0

(αk)∗[N ]

in the category A(X) defined by( ∞⊕
k=0

(αk)∗[φ]

)
x,y

(λ0 ⊕ λ1 ⊕ . . .) =

∞⊕
k=0

[(αk)∗[φ]x,y(λk)] .

To verify that Supp(
⊕∞

k=0(αk)∗[φ]) is controlled, observe that

Supp

( ∞⊕
k=0

(αk)∗[φ]

)
⊆ {(αk(x), αk(y)) : (x, y) ∈ Suppφ and k ∈ N}

which is controlled by the second property of almost flasqueness.

It is stated in Remark 3.13 of [Bar03] that close maps induce the same maps on

algebraic K-theory. It then follows from the third property of almost flasqueness that

(αk)∗ = id∗ for each k. Therefore

∞⊕
k=0

(αk)∗[λ] = [λ]⊕ (α1)∗[λ]⊕ (α2)∗[λ]⊕ . . .

= [λ]⊕ [λ]⊕ . . .

= [λ]⊕ ([λ]⊕ [λ]⊕ . . .).

By an Eilenberg swindle, [λ] = 0, so that K∗(A(X)) = 0.

Proposition 7.32. If X = A ∪ B is a coarsely excisive decomposition then there is a

long exact sequence

. . . // K∗(A(A ∩B)) // K∗(A(A))⊕K∗(A(B)) // K∗(A(X))

δ∗
��

. . . K∗−1(A(A ∩B))oo

Proof. Consider the sequence

0 // A(A ∩B)
(i∗,j∗)

// A(A)⊕A(B)
k∗−l∗ // A(X) // 0 (7.1)

defined using the inclusion maps i : A ∩ B ↪→ A, j : A ∩ B ↪→ B, k : A ↪→ X and

l : B ↪→ X.

It will be shown that this sequence is exact. It is easy to see that the functor (i∗, j∗)
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is injective, and that the functor k∗ − l∗ is surjective on each morphism set as for each

φ ∈ A(X) we have (k∗ − l∗)(φ|A,−φ|B\A) = φ. It is also clear that

(k∗ − l∗) ◦ (i∗, j∗) = 0,

and so Im(i∗, j∗) ⊆ Ker(k∗ − l∗).

Let φA : MA → NA and φB : MB → NB be morphisms between geometricA-modules

over A and B respectively such that (φA, φB) ∈ Ker(k∗ − l∗). Then k∗(φA) = l∗(φB),

and since k∗ and l∗ are inclusion maps, this means that φA = φB. That is to say,

(φA)x,y = (φB)x,y for all x, y ∈ A ∩B, and φA = φB = 0 otherwise.

Define the restriction φ|A∩B : MA|A∩B → NA|A∩B by φ|A∩B = φA|A∩B = φB|A∩B.

The support of φ|A∩B is controlled since it is a subset of the support of φA. It

follows that (φA, φB) = (i∗, j∗)(φ|A∩B), so (φA, φB) ∈ Im(i∗, j∗). Hence Ker(k∗ − l∗) ⊆
Im(i∗, j∗), and (7.1) is a short exact sequence.

By the fibration theorem in algebraic K-theory (see [PW85]), there is a fibration

KA(A ∩B) // KA(A) ∨KA(B) // KA(X)

It follows that we have a long exact sequence

. . . // K∗(A(A ∩B)) // K∗(A(A))⊕K∗(A(B)) // K∗(A(X))

δ∗
��

. . . K∗−1(A(A ∩B))oo

The proof of the following result is based on that of Theorem 11.2 in [HPR97].

Proposition 7.33. If f : X → Y is a coarse homotopy equivalence then the induced

map Kf : KA(X)→ KA(Y ) is a weak homotopy equivalence.

Proof. Let f, g : X → Y be coarsely homotopic. Then there exists a coarse map

H : IpX → Y such that H ◦ i0 = f and H ◦ i1 = g, where i0, i1 : X → IpX are

defined by i0(x) = (x, 0) and i1(x) = (x, p(x) + 1) respectively. Therefore there are

induced maps

H∗ ◦ (i0)∗ = f∗ : K∗(A(X))→ K∗(A(Y ))

H∗ ◦ (i1)∗ = g∗ : K∗(A(X))→ K∗(A(Y ))

By considering two different coarsely excisive decompositions of X × R, it will be

shown that f∗ = g∗. Define A,A′, B,B′ by A = {(x, t) : t ≤ 0}, A′ = {(x, t) : t ≤ p(x)},
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and B = B′ = {(x, t) : t ≥ 0}. Then X × R = A ∪ B and X × R = A′ ∪ B′ are both

coarsely excisive decompositions. Note that A ∩B = X and A′ ∩B′ = IpX.

By Proposition 7.32, we have the following diagram

. . . // K∗(A(X))

(i0)∗
��

// K∗(A(A))⊕K∗(A(B))

β∗
��

// K∗(A(X × R)) // . . .

. . . // K∗(A(IpX)) // K∗(A(A′))⊕K∗(A(B′)) // K∗(A(X × R)) // . . .

Each of A,A′ and B can be easily seen to be flasque. The map β∗ is then an

isomorphism since it follows from Proposition 7.31 that each of K∗(A(A)), K∗(A(A′)),

K∗(A(B)), and K∗(A(B′)) are trivial.

By the 5-Lemma, the map (i0)∗ : K∗(A(X))→ K∗(A(IpX)) is an isomorphism.

By definition q∗ ◦ (i0)∗ = id (where q : IpX → X is defined by q(x, t) = x), and since

(i0)∗ is an isomorphism, q∗ = (i0)−1
∗ and so (i0)∗ ◦ q∗ = id. The same argument applies

to the map (i1)∗. Inverses are unique, so it follows that (i0)∗ = (i1)∗ and therefore that

f∗ = g∗.

It follows that if f : X → Y is a coarse homotopy equivalence then the map

f∗ : K∗(A(X))→ K∗(A(Y )) is an isomorphism.

Proposition 7.34. If (X, E) = lim−→i
(Xi, E) with Xi ⊆ Xi+1 for each i, then A(X, E) =

lim−→i
A(Xi, E).

Proof. Since (X, E) = lim−→i
(Xi, E) in the coarse category, there exist coarse maps

fij : (Xi, E) → (Xj , E) and ϕi : (Xi, E) → (X, E) for all i, j. By the partial ordering

Xi ⊆ Xi+1, each of these maps can be taken to be the inclusion maps.

By applying the functor A, there is an induced diagram

A(Xi, E)

ψi

��

fij∗ //

φi∗

&&

A(Xj , E)

ψj

��

φj∗

xx

A(X, E)

θ
��

B

in the category of additive categories and additive functors such that φj∗ ◦ fij∗ = φi∗.

Suppose there exists B and morphisms ψi : A(Xi, E) → B and ψj : A(Xj , E) → B such

that ψj ◦ fij∗ = ψi. We must show that θ : A(X, E)→ B exists and is unique.
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For M ∈ A(X, E), define Mx ∈ A(Xi, E) by

Mx(B) =

Mx x ∈ B

0 x 6∈ B

for B ⊆ Xi. Observe that M = ⊕x∈XMx so it follows that

θ(M) = θ(⊕x∈XMx) = ⊕x∈Xψi(Mx).

For φ : M → N ∈ A(X, E), define φi : M |Xi → N |Xi ∈ A(Xi, E) by

(φi)x,y =

φx,y for x ∈ Xi\Xi−1

0 otherwise

It is easy to check that φ = ⊕∞i=1φi and so follows that

θ(φ) = θ(⊕∞i=1φi) = ⊕∞i=1θ(φi) = ⊕∞i=1ψi(φi).

Thus θ exists and is unique, and so lim−→A(Xi, E) = A(X, E).

Recall from Definition 6.7 that Ei denotes the coarse structure on N where the

controlled sets are all the subsets of the diagonal and all the subsets of {1, 2, . . . , i} ×
{1, 2, . . . , i}.

The proof of the following is similar to Theorem 3.98 of [Mit00]

Proposition 7.35. If A(X, E) =

∞⋃
n=1

A(X, En) then A(X, E) = lim−→n
A(X, En).

It is straightforward to verify that A(N0) =
∞⋃
n=1

A(N, En) so it follows that A(N0) =

lim−→A(N, En).

The combination of the five results above lead us to the following result.

Theorem 7.36. The functor X 7→ KA(X) is a coarsely excisive functor.

By Theorem 6.36 we have the following.

Theorem 7.37. If X is a proper metric space of finite asymptotic dimension and

bounded geometry then the assembly map

λ : Kcoarse
∗ (A(X))→ H∗−1(A(X))
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is an isomorphism.

Applying the notion of descent (Theorem 5.51) gives us the following additional

result.

Theorem 7.38. If X is a free coarse G-space that is G-homotopy equivalent to a finite

G-CW-complex and additionally X has bounded geometry, finite asymptotic dimension

and is uniformly contractible then the Farrell–Jones assembly map

λ : K∗(AG(X))→ H∗−1(AG(X))

is injective for the space X and the group G.

In particular, if G has finite asymptotic dimension then the space EG also has

finite asymptotic dimension, has bounded geometry and is uniformly contractible so

this implies the Novikov conjecture in algebraic K-theory for proper metric spaces

of finite asymptotic dimension. Additionally, if X = EVC(G) then this implies the

injectivity side of the Farrell–Jones conjecture for G.

7.3 C∗-categories

The notion of a C∗-category was introduced in [GLR85], and K-theory of a C∗-category

in [Mit00]. A C∗-category is a closed subcategory of the category of all Hilbert spaces

and bounded linear operators. This generalised the concept of a C∗-algebra. One

main advantage of C∗-categories is that they are more natural than C∗-algebras. For

example, the Roe algebra C∗(X) of a coarse space X and corresponding C∗-algebra

D∗(X) as more naturally viewed as C∗-categories as all representations can be consided

at once, rather than by selecting a sufficiently large representation as in the C∗-algebra

case. The construction of the K-theory functors for C∗-categories and the K-theory

spectrum of a C∗-categories as constructed in [Mit00]. An overview of this is given

here.

Definition 7.39 (∗-category). An involution on an F-linear category A is a collection

of maps
∗ : Mor(A,B)→ Mor(B,A)

for each pair A,B ∈ A such that:

• (αx+ βy)∗ = αx∗ + βy∗ for all x, y ∈ Mor(A,B) and α, β ∈ F;

• (x∗)∗ = x for all x ∈ Mor(A,B);

• (xy)∗ = y∗x∗ if x ∈ Mor(B,C) and y ∈ Mor(A,B).

A ∗-category is an F-linear category equipped with an involution.



Chapter 7. Applications 112

Definition 7.40 (Banach category). A Banach category is an F-linear category such

that each set Mor(A,B) is a Banach space and ||xy|| ≤ ||x||||y|| for all x ∈ Mor(B,C)

and y ∈ Mor(A,B).

Definition 7.41 (C∗-category). A C∗-category is a Banach ∗-category such that the

C∗-identity

||x||2 = ||x∗x||

holds for all x ∈ Mor(A,B) and for every x ∈ Mor(A,B) there exists y ∈ Mor(A,A)

such that x∗x = y∗y.

Observe that each set Mor(A,A) is unital C∗-algebra, and that a unital C∗-algebra

is a C∗-category with one object.

Example 7.42. The category of all Hilbert spaces and bounded linear maps is a

C∗-category.

Definition 7.43 (C∗-functor). A functor F : A → B between C∗-categories is said

to be a C∗-functor if it is linear on Mor(A,B) for all A,B ∈ A and such that F (x∗) =

F (x)∗ for all x ∈ Mor(A,B).

The following definition is slightly weaker than the definition of an C∗-isomorphism,

but is still useful.

Definition 7.44 (Unitary transformation). A unitary transformation U : F → G

between C∗-functors F,G : A → B is a collection of unitary elements UA : F (A)→ G(A)

for each A ∈ A such that the diagram

F (A)
F (x)

//

UA

��

F (B)

UB

��

G(A)
G(x)

// G(B)

commutes for all x ∈ Mor(A,B).

Definition 7.45 (Equivalence of C∗-categories). An equivalence of C∗-categories

is a C∗-functor F : A → B such that there exists a C∗-functor G : B → A and unitary

transformations GF → 1A and FG→ 1B.

Similarly to the case with C∗-algebras and ∗-homomorphisms, it can be shown that

a C∗-functor F : A → B satisfies ||F (x)|| ≤ ||x|| for all x ∈ Mor(A,B) (Proposition 3.14

of [Mit00]) and that the norm on a C∗-category is unique (Corollary 3.16 of [Mit00]).

It is also possible to define a non-unital C∗-category to generalise C∗-algebras, and the

concept of unitisation also exists for C∗-categories, see Section 3.2 of [Mit00].
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Example 7.46. There are C∗-categories C∗max(G) and C∗r (G) for a groupoid G (a

category where all morphisms are invertible) which generalise the C∗-algebra versions

which occur as the right hand side of the assembly maps in the Baum–Connes and

Novikov conjectures.

Definition 7.47 (Grading). A grading on a C∗-category A is a C∗-functor α : A → A
such that α(A) = A for all A ∈ A and α2 = idA.

A C∗-algebra equipped with a grading is called a graded C∗-algebra (or sometimes

a C∗-superalgebra). The identity functor is a grading so any C∗-category can be

considered a graded C∗-category, and so the notion of graded C∗-categories can be

considered a generalisation of C∗-categories.

For a graded C∗-category with grading α : A → A, define

Mor(A,B)even = {x ∈ Mor(A,B) : α(x) = x}

and

Mor(A,B)odd = {x ∈ Mor(A,B) : α(x) = −x}.

It can be shown that for a graded C∗-category, Mor(A,B)even and Mor(A,B)odd are

closed subspaces of Mor(A,B) such that Mor(A,B) = Mor(A,B)even ⊕Mor(A,B)odd

and that the composition of two even morphisms or two odd morphisms is even, and the

composition of an odd and an even morphism is even, see Proposition 3.72 of [Mit00].

Conversely, if a C∗-categoryA has closed subspaces Mor(A,B)even and Mor(A,B)odd

such that Mor(A,B) = Mor(A,B)even ⊕ Mor(A,B)odd and that the composition of

two even morphisms or two odd morphisms is even, and the composition of an odd

and an even morphism is even, then there is a unique grading α : A → A defined by

α(x+ y) = x− y for all x ∈ Mor(A,B)even and y ∈ Mor(A,B)odd and Mor(A,B)even =

{x ∈ Mor(A,B) : α(x) = x} and Mor(A,B)odd = {x ∈ Mor(A,B) : α(x) = −x} for all

objects A,B ∈ A.

Definition 7.48 (Graded C∗-functor). A graded C∗-functor is a C∗-functor between

graded C∗-categories that takes odd morphisms to odd morphisms and even morphisms

to even morphisms.

Definition 7.49 (Supersymmetries). For every object A of a graded C∗-category,

the supersymmetries of A are the odd self-adjoint involutions, that is, the set

SS(A) = {x ∈ Mor(A,A)odd : x∗ = x and x2 = 1}.

The set of supersymmetries can be seen to be a topological space (as a subset of

Mor(A,A)). For x, y ∈ SS(A) we can define an equivalence relation x ∼ y if x and y

lie in the same path component.
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Definition 7.50 (Reference supersymmetry). A reference supersymmetry E in a

unital graded C∗-category A is a collection of supersymmetries EA ∈ SS(A) such that

EA ∼ −EA for each object A ∈ A. If additionally the C∗-category has a direct sum,

then it is also required that EA ⊕ EB = EA⊕B for all objects A,B ∈ A.

For x ∈ SS(A) and y ∈ SS(B) define the equivalence relation x ∼E y if x⊕ EB ⊕
EC ∼ EA ⊕ y ⊕ EC for some C ∈ A.

Definition 7.51 (K1 group). The set K
(E)
1 (A) is defined to be the collection of

equivalence classes 〈x〉E of supersymmetries x ∈ SS(A) for A ∈ A.

It can be shown that K
(E)
1 (A) is an abelian group equipped with operation defined

by 〈x〉E + 〈y〉E = 〈x⊕ y〉E . The identity element is 〈E〉E and 〈x〉−1
E = 〈−ExE〉E

for all x. It can also be shown that K
(E)
1 (A) is independent of choice of reference

supersymmetry, and will henceforth be shortened to K1(A).

It can be shown that K1 is a covariant functor from the category of small graded

unital C∗-categories (with direct sum and reference supersymmetry) to the category of

abelian groups. There is also a definition for the non-unital case. See Section 4.5 of

[Mit00].

Definition 7.52 (Suspension). The suspension of a C∗-categoryA is the C∗-category

SA = {f ∈ C([0, 1],A) : f(0) = f(1) = 0}.

Definition 7.53 (K-theory groups). The K-theory groups of A are defined by

Kn+1(A) = Kn(SA)

for n ≥ 1.

Thus by repeated application of the suspension functor, Kn(A) = K1(Sn−1A) for

n ≥ 2.

It can be shown that the K-theory functors are continuous, that is, Kn(lim−→Ai) =

lim−→Kn(Ai) (Section 4.9 of [Mit00]) and that Bott periodicity holds, i.e., if A is a

complex graded C∗-category then Kn(A) ∼= Kn+2(A) and that if A is a real graded

C∗-category then Kn(A) ∼= Kn+8(A) (Section 6.2 of [Mit00]).

Theorem 7.54 (Section 6.4 of [Mit00]). There exists a spectrum K such that the

following conditions are satisfied:

• if f, g : A → B are homotopic graded C∗-functors then the induced maps of spectra

f∗, g∗ : K(A)→ K(B) are also homotopic;
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• if

0→ A→ B → C → 0

is a short exact sequence of C∗-categories then the induced sequence

KA → KB → KC

of spectra is a fibration up to weak homotopy equivalence;

• for any small graded C∗-category A, there are natural isomorphisms

Kn(A) ∼= πn(K(A))

for all n ∈ Z.

�

Definition 7.55. Let (X, E) be a coarse space and A be an additive C∗-category. The

category Ab(X) is defined to be the category consisting of geometric A-modules over X

and morphisms φ between them such that Suppφ ∈ E (that is, controlled with respect

to the coarse structure), and such that the map

Tφ :
⊕
x∈X

Mx →
⊕
x∈X

Nx

defined by the formula

Tφ(v) =
∑
x∈X

φx,y(v)

for v ∈My is a bounded linear map.

Observe that Ab(X) has all of the properties of a C∗-category apart from the

morphism sets being complete. The category A∗(X) is defined to be the completion of

the category Ab(X).

The following is proved similarly to Theorem 7.36.

Theorem 7.56. The functor X 7→ KA∗(X) is a coarsely excisive functor. �

By Theorem 6.36 we have the following.

Theorem 7.57. If W is a proper metric space of finite asymptotic dimension and

bounded geometry then the assembly map

µ : Kcoarse
∗ (A∗(W ))→ H∗−1(A∗(W ))

is an isomorphism.

Applying the notion of descent we have the following.
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Theorem 7.58. If W is a free coarse G-space that is G-homotopy equivalent to a finite

G-CW-complex and additionally has finite asymptotic dimension and bounded geometry

then the assembly map

µ : K∗(A∗G(W ))→ H∗−1(A∗G(W ))

is injective for W and G.

The following theorem shows us how the original C∗-algebra version fits into the

C∗-category version.

Theorem 7.59 (Section 2.2 of [HP04]). Let V be the C∗-category where the objects

are the Hilbert spaces Cn and the morphisms are bounded linear maps Cn → Cn′.
If W is a seperable coarse topological space with bounded geometry then there is an

isomorphism

K∗(V∗(W )) ∼= K∗(C
∗(W )).

�

Combining Theorem 7.57 and Theorem 7.59 gives us the following result, the coarse

Baum-Connes conjecture:

Corollary 7.60 (Coarse Baum-Connes conjecture). If W is a metric space of

finite asymptotic dimension and bounded geometry then the assembly map

µ : Kcoarse
∗ (W )→ K∗(C

∗(W ))

is an isomorphism.

Combining Theorem 7.58 and Theorem 7.59 gives us the following result, the

injectivity of the Baum-Connes conjecture:

Corollary 7.61 (Injectivity of Baum-Connes conjecture). If G is a discrete

group of finite asymptotic dimension and bounded geometry then the assembly map

µ : KG
∗ (EG)→ K∗(C

∗
r (G))

is injective.

The assembly map in Corollary 7.60 is not necessarily the same map as in the

original coarse Baum–Connes conjecture (Conjecture 3.69), but this map has the same

range and domain, all of the same features of the original map and has the same

consequences. In particular, the Baum–Connes assembly map coming from descent is

unique up to stable equivalence.
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