
Development of Novel Tools for

Application of Ultrasonic Guided Waves

in Fibre-Composites

A Thesis submitted to the University of Sheffield for the degree of Doctor of

Philosophy in the Faculty of Engineering

by

Marcus Haywood-Alexander

Department of Mechanical Engineering

University of Sheffield

February 2022





Acknowledgements

The last three years, working on this project, have been an amazing experience. Not

only have I learnt so much, thanks to the guidance and help from colleagues, but

these people have become friends who I will hold dear for a long time. This work

would not have been possible without their support and friendship.

Firstly, I would like to thank my supervisor Dr. Nikolaos Dervilis, who has been

an amazing tutor, given incredible support, and was always on guard to prevent

my burn-out. I am grateful for his wisdom, belief and encouragement, which was a

primary reason for the success of the project. I would also like to thank Dr. Timothy

Rogers for his guidance in the realm of probabilistic methods, and for always being

enthusiastic whenever I needed help. Thanks also goes to Professor Keith Worden for

his inspiration and teaching, and for opportunities in projects outside of this thesis.

The lab work in this project would not have been possible without several other valued

colleagues. Firstly, Dr. Robin Mills, for sharing their fountain of knowledge in all

things experimental, and for always being on hand to help when things were inevitably

difficult. My gratitude goes to Michael Dutchman for making vital components of

the laboratory setup. Special thanks also to Dr. Ramon Fuentes for being a great

tutor at the beginning and for stoking the fire of my predilection for experimental

work.

The Dynamics Research Group has been a brilliant group to be a part of, thanks

to their high standards, wealth of knowledge, and uplifting demeanour. The DRG

i



ii

members have become more than colleagues, but friends; so, I would also like to

thank Matty, Aidan, Max, Chandy, Julian, Tina, Chris Lindley, Tim Rooker, Kartik,

and many others for making this a cherished period of time.

This project has been in close collaboration with Siemens Gamesa Renewable Energy,

and there are many other people to thank from this organisation for their reception

and help in navigating the boundary of research and industry application. My thanks

go to Purim, Mads, Nevena, and Lars from SGRE. A special thanks goes to Purim

and Mads for performing tests on my behalf when travel was restricted as a result of

the pandemic. I would like to thank the EPSRC for their grant which funded this

project (EP/R004900/1).

During the past three years, there are many others to thank for their friendship, and

for making my time outside of the PhD a joy. To Colley, Dale, Chris Fung, Alex,

Liam, thank you for being close friends, the entertaining and exciting times, and for

helping keep my mental health intact with the adventures and all things mountainous.

Thanks to Chris Smith, Lily, Elliott, Charlotte, Hamish, Jack Whittaker, Rob, and

Jack Childerstone for their continued friendship. And a marked thank you goes to

Hannah, for encouraging and supporting me, and for making the final year a lot

more pleasant than it had any right to be.

I have always had the support of my family, who continually dealt a healthy dose of

encouragement. So, a special thank you to Nicola, Ove, Mike, Byron, and Beth. And

thanks to many other extended family members for their support (and for listening

patiently after regretfully asking about my topic).



Abstract

In order to decrease risk, downtime, and costs; modern structures often employ

strategies to monitor their state and determine the existence, and characteristics, of

any damage present. Ultrasonic guided waves may offer a convenient and practical

approach to this problem. UGWs, offer a number of distinct advantages, such as; long

range, accurate sizing potential, greater sensitivity and cost effectiveness. However,

the current state-of-the-art for applications of UGWs in fibre composites is juvenile

in comparison to their application in isotropic and homogeneous materials. The

aim of this work was to develop advanced, novel tools for deeper understanding of

ultrasonic guided waves, so that they can help and enhance NDE/SHM strategies

for fibre-composite materials.

In particular, three tools have been developed, the details and results of which are

presented in this thesis. The first of these tools is a physics-informed approach to

machine learning of guided-wave feature spaces. In order to assess damage in a

structure, and implement any NDE or SHM strategy, knowledge of the behaviour

of a guided wave throughout the material/structure is important. Determining this

behaviour is extremely difficult in fibre-composites, where unique phenomena such

as continuous mode conversion takes place. This thesis introduces a novel method

for modelling the feature-space of guided waves in a fibre-composite material. This

technique is based on a data-driven model, where prior physical knowledge can be

used to create structured machine-learning tools; where constraints are applied to

provide said structure. The method makes use of a Gaussian process, a full Bayesian
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analysis tool. Experimental data of an energy-based Lamb wave feature over a fibre-

composite plate were collected. This data was then fed through multiple learning

algorithms, each with increasing levels of prior knowledge embedded. The work has

shown how physical knowledge of the guided waves can be utilised in modelling

using an ML tool, and that by careful consideration when applying machine-learning

techniques, more robust models can be generated, which offer advantages such as

extrapolation, physical interpretation, and increased performance.

The second tool developed was a Bayesian approach to decomposition of single-source,

multi-mode signals. This tool was tested on a localisation problem, where decompo-

sition of single-source signals is required to provide information on signals reflected

from the damage. A simulation method which can model complex multi-mode wave

interaction was used to demonstrate the capability of the decomposition tool. The

tool shown here has a distinct advantage in that it produces quantified results for the

uncertainty in the decomposed signal, which lends well to any NDE/SHM strategy

utilising probabilistic approaches for detection. Furthermore, it was shown that the

method inherently produces parametric features which are indicative of the physical

behaviour of the wave. The proposed decomposition method was shown to allow

localisation of damage accurate to within 1mm in many sensor configurations.

The final tool shown in this thesis, is a Bayesian method for material identification

using UGWs. This tool was assessed with the objective of determining accurate

group velocity, as is required for localisation of damage. The method uses a Markov

chain Monte Carlo procedure to simulate samples of the distribution for each of the

parameters. Observations of dispersion-curve data were measured, and used to assess

the material properties using a computationally-efficient solution to dispersion curves

in orthotropic materials. The results showed the importance and capability of the

method having freedom to generate the posterior distribution with respect to both

shape and multivariate dependencies. Furthermore, the work presented shows that

the method performs well for the objective of determining accurate dispersion-curve

information – i.e. group velocity curves.



Nomenclature

Symbol Variable Unit

A Amplitude of wave

c Bulk wave velocity m/s

c(p,g) Wave velocity (phase and group) m/s

c(L,T ) Wave velocity (longitudinal and transverse) m/s

Cijkl Stiffness tensor N/m2

D Boolean image mask

D Dataset

E Young’s Modulus N/m2

E[y] Expected values of model output

f frequency Hz

h Plate half-thickness m

hm Maximum of Hilbert-envelope of signal m

k Wavenumber rad/m

k(x,x) Covariance function

` lengthscale

m(x) Mean function

NMSE Normalised mean squre error

PLL Predictive log-likelihood

q Dimensionless spatial coordinate

t Time s
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ui Displacement in direction i m

V Covariance matrix

V[y] Expected variance of model output

w Weight vector

x Propagation distance m

x x-coordinate m

x Input vector of data point i

X ⊂ D Input set

xi Location in direction i m

y Output of model

y y-coordinate m

y ⊂ D Output set

ỹ Predicted output

β Basis function coefficients

ε Model noise

εij Strain field tensor element

λ, µ Lamé parameters N/m2

ν Poisson’s ratio

ρ Density kg/m3

ρ Radial coordinate m

σ2 Variance

σij Stress field tensor element N/m2

θ Angular coordinate rad

θ Propagation angle rad

Θ Parameter vector

ω Circular frequency rad/s

ζ Viscoelastic attenuation coefficient
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1

Introduction

In engineering applications, the use of complex materials, such as fibre-composites,

can offer benefits thanks to their high strength-to-weight ratio. In addition to the

use of such materials, the employment of damage detection and state-monitoring

strategies is also gaining popularity in order to decrease risk, downtime and costs.

As well as determining the existent of damage, the location and characteristics of

the damage are sought. Ultrasonic guided waves (UGWs), may offer a convenient

and practical approach to this problem, as they have some distinct advantages –

which will be discussed later in this chapter – and, thanks to analogy with diffraction

theory, can detect, locate, and characterise damage of small size.

When applying UGWs on fibre-composite materials, there are many difficulties to

overcome; which has limited their application to relatively-simple scenarios. The

aim of this work was to develop advanced, novel tools, which enhance further

understanding of UGWs in fibre-composite materials, in order to robustly design and

implement/enhance damage detection strategies. The motivation for this project

comes from the industry partner Siemens Gamesa Renewable Energy (SGRE). One

such structure which uses fibre-composite materials and would benefit from a robust

damage detection system is the wind turbine blade. In particular, there is a motive

from SGRE to detect and locate damage in critical locations of the blade; which is

1



Introduction 2

where UGWs may offer an appropriate solution. In order to robustly develop such a

system using UGWs, it is beneficial to develop some modern tools which will further

enhance the understanding, and application, of UGWs in fibre-composites.

This chapter aims to introduce the concepts of non-destructive evaluation (NDE)

and structural health monitoring (SHM), followed by how these strategies are useful

for wind turbine blades. The uses of ultrasonic waves for NDE and SHM purposes

are then introduced, and finally the objectives of this work are detailed, along with

a brief outline of the chapters in the thesis.

1.1 Non-Destructive Evaluation and Structural Health Mon-

itoring

Testing and monitoring of systems, objects and materials is so habitual that one

doesn’t notice. Inspection of the state of a system or structure can be either periodic

(or interruptive) or continuous in its execution. This description of inspection

frequency is one of the main differences in characterising non-destructive evaluation

(NDE) and structural health monitoring (SHM). To better understand how these

might differ in practice, it can be useful to explore the concept of checking the state

of a car.

When purchasing a pre-owned car, a buyer will inspect the body and engine for any

visible defects. This person might also run the engine and take the car for a drive,

referring to how they know a car should operate or feel. The detection of any faults

is done using an intuitive knowledge set – which could be called features – developed

over years of driving; such as engine sound, clutch smoothness or exhaust. By proper

checking of the car, the buyer can avoid large costs that would be associated with

purchasing a damaged vehicle. The periodic checking of the state of the car by

checking against the expected feature behaviour can be compared to non-destructive

evaluation (NDE).

Modern cars can tell the driver where faults are, based on onboard sensors at known

locations, which can be used to detect significant changes from the norm. The

addition of an onboard diagnosis system decreases the uncertainty of defect detection
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and increases the efficiency of repair by providing information on the type and location

of the defect. In an industrial context, continuous assessment and monitoring of the

health of structures and systems has the same benefits of avoiding unnecessary cost,

increasing efficiency and reducing waste. This concept is known as structural health

monitoring (SHM). Detection via an intuitive sense is how one might envision the

use of a probabilistic perspective on SHM.

Generally, the main difference between SHM and NDE, is the applicability of SHM

strategies to be employed on-line. Farrar and Worden [1], state that SHM ‘usually

refers to the process of implementing a damage detection strategy for aerospace,

civil or mechanical engineering infrastructure.’ Though NDE is usually carried out

off-line, such strategies can be used in-situ on structures. Traditionally, NDE is

used when the site of potential damage is located, and so monitoring strategies may

employ a two-step application where SHM alerts the engineers of damage being

present, and NDE is used to locate, size or assess the damage.

Figure 1.1: Adaption to Rytter’s proposed hierarchy of SHM [1,2].

Rytter [2] proposed a hierarchical structure to SHM, where each level requires that all

lower-level information is available. The original hierarchy was proposed as follows,
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� Level 1: detection,

� Level 2: location,

� Level 3: assessment,

� Level 4: prediction.

This four-stage hierarchy was then adapted by Farrar and Worden [1], to include

classification, which is required when multiple damage mechanisms are possible. This

five-stage hierarchy is shown in Figure 1.1, and has been widely adopted in the SHM

community. This hierarchy can also be used in NDE; however it is likely that a

minimum of at least Level Two would be necessary for an adequate NDE routine.

1.2 SHM and NDE for Fibre-Composite Materials

Modern structures are increasingly using fibre-composite materials (FCMs) thanks to

advantages such as their strength-to-weight ratio [3]. Along with complex materials,

modern structures are also progressively including SHM or NDE strategies into their

infrastructure. There are a variety of methods used to detect damage in FCMs,

each with their own advantages [4]. For example, SHM can be done using vibration

analysis [5], in which the techniques do not vary greatly from non-complex materials

and so are simpler to apply. Or, one might use methods involving shorter wavelengths,

such as acoustic emission [6] or ultrasonic guided waves [7]. By analogy to diffraction

theory, the use of shorter wavelengths allows for detection and characterisation

of damage of smaller size; however, the implementation of strategies using these

methods can be more difficult.

For a system which is capable of achieving levels 2 or 3 in Rytter’s hierarchy [2],

high-frequency elastic waves offer a useful tool. Acoustic emission (AE) is a passive

approach to using such waves, whereby data is recorded when a ‘burst’ of read by

the acoustic sensors. The use of AE was initially explored, however, there are two

main disadvantages which deterred further investigation for this project. The first of

these is the dependency of the propagation velocity of the wave on its frequency and

propagation angle. With an active system, the central frequency is better controlled
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Figure 1.2: A comparison of characteristic frequencies of failure modes from various

studies of composite structures [8–14]. Extended from the study by Autieri [15].

and known and so only the angular dependency needs to be overcome. The second

disadvantage with respect to AE is the irregularity of characteristics frequencies of

failure modes, as shown in Figure 1.2.

Fibre-reinforced polymers give rise to a number of increased difficulties in an SHM

or NDE context, such as; greater number of failure mechanisms [16–18], increased

modelling complexity [19], and nonlinear behaviour [20, 21]. There exists a broad

range of strategies aiming to address these additional complexities in monitoring

fibre-composite structures, from increased fidelity of physical modelling [22], to the

use of machine-learning techniques to ‘fill in the gaps’ left behind by incomplete

physical models [23], and lots of techniques in between.

An example of a fibre-composite structure which would benefit from a robust moni-

toring or damage identification system is a wind-turbine blade (WTB). There have

been advances in methods involving the use of low-frequency behaviour of the blades

in order to detect the onset of damage [24], though using a diffraction theory analogy

suggests that these require large levels of damage in order to provide a significant
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enough change for detection. Furthermore, the information in these structures is

highly susceptible to environmental conditions [25], such as wind speed (and therefore

load).

Figure 1.3: Example of the root of a wind turbine blade, which is an area susceptible

to damage. Taken from Lee et al. [26].

Wind turbine blades are made of complex geometries and materials, therefore, there

is a wide variety of failure mechanisms, severity and possibilities [27]. Geometric

complexities at the root can cause delamination failures as a result of bumping of the

blade shell [26], an example of which can be seen in Figure 1.3. Areas of structural

joints, such as the web, can fail by debonding, delamination or core failure (where

the wooden core exhibits cracks) [28]. Structural bond lines can suffer from tensile

cracks, which can change direction partway through the damage life-cycle [29]. It is

clear that there are several critical locations on the blade where there is motivation

for an active monitoring strategy that can provide information at higher levels of the

SHM hierarchy (Figure 1.1). Some of these critical locations are shown in Figure 1.4.

By using higher-frequency behaviour of the structure, advances in localisation and

earlier detection can be made [30]. Ultrasonic scans have shown to be useful for
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Figure 1.4: Diagram showing some critical locations on the wind turbine blade.

locating otherwise invisible damage within the material of the blades [31]. Previous

work has shown the potential for the use of ultrasonic waves for application to damage

detection on WTBs [32–34]. A network of on-board piezoelectric transducers was

also tested, which successfully detected damage with basic techniques [35]. These

papers show that ultrasonic waves offer a promising approach for damage detection

in WTBs, although more advanced tools may be necessary to improve guided wave

application in complex materials and geometries.

1.3 Use of Ultrasonic Waves in SHM and NDE

Ultrasonic waves are the general name for high-frequency stress waves within a

material, and the use of these waves for damage detection has become increasingly

prominent in SHM systems. An active example of using ultrasonic waves for damage

detection is the use of ultrasonic guided waves (UGWs). This method induces a wave

within certain structure types which act as wave-guides, and analysis of the wave-

packet as it arrives in certain locations can give indications of any inhomogeneities

in the structure. Figure 1.5 gives an illustration of how ultrasonic guided waves can

be used to detect damage. The strength of UGWs as a damage detection tool is

further reinforced by their additional use in automatic inspection during component

manufacture [36]. The primary characteristic of UGW-based NDE/SHM regimes is

by measuring both the direct (here named nominal) and reflected waves.
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Figure 1.5: Illustration of damage detection using ultrasonic guided waves.

A good overview of the current and potential uses of UGWs in SHM is presented by

Rose [37], as well as their limitations. There are a variety of natural wave-guides

present in many structures, such as rods, hollow cylinders and, importantly for use

in WTBs, multi-layered structures and plates. Some of the benefits of UGWs for

SHM are:

i. inspection over long distance is possible with a single probe;

ii. via mode and frequency tuning, they have excellent detection and sizing

potential;

iii. they have greater sensitivity than standard beam ultrasonic inspection;

iv. their ability to inspect hidden structures with great sensitivity;

v. their cost effectiveness, thanks to their simplicity and speed.

Many applications of UGWs have been demonstrated, and are gaining traction in

the context of SHM and NDE in aircraft applications [38–40], because of their sensor

simplicity, and capability to detect defects in complex structures. Thanks to their

lightweight and simple system setup, they are often used for remotely deployed

sensing systems [41].

Applying ultrasonic waves for SHM and NDE purposes on composite materials

presents a number of increased difficulties [42] – much like any other damage-detection
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strategy for application to complex materials. In particular for fibre-composites, these

difficulties include; steering of group velocity, additional damping from the epoxy

matrix, and wave scattering from the fibres [43]. At the risk of repetition, addressing

these difficulties has been attempted via the use of more complex analytical and

numerical models [44–46], machine-learning methods [47, 48], and techniques in

between [49].

1.4 Project Motivation and Objectives

The initial motivation behind the project was to research inspection methods for

fibre-composite materials (FCMs). After an initial study, it was found that ultrasonic

guided waves offer a potential solution for an active method of detecting damage in

FCMs, however, guided waves in fibre-composites cannot be applied with rudimentary

techniques. Therefore, the aim of the thesis was focussed to developing unique tools

that advance new ways in understanding, and the use of, guided waves in fibre-

composite structures. To attempt to achieve this aim, the objectives in this thesis

are:

– To develop a method of determining physics-based feature spaces which are

useful for damage detection.

– To build a localisation strategy which combats the steering behaviour of the

group velocity.

– To develop a physics and data-driven method of determining accurate dispersion

curve information for fibre-composite materials.

The motivation behind the first objective was to determine the ‘baseline’ model

of the damage-sensitive feature set, but with more capabilities than a purely data-

driven approach. The first objective can be classed into the first stage of Rytter’s

hierarchy [2], and so the second objective was with an aim to develop tools for

use in the second stage of the hierarchy. Localisation requires decomposition of

the wave signals, though there is motivation to include a probabilistic approach to

this decomposition, as this provides several advantages which are discussed later.

The motivation behind the third tool follows on directly from the second; as the
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propagation velocity of the wave is required for localisation, it is important to be

able to determine this information accurately for the material in question.

1.5 Outline of the Thesis

The thesis begins by detailing background information on using guided waves for

SHM and NDE purposes. In Chapter 2 a review of the literature is presented which

notes the current state-of-the-art and where there are gaps in research and the tools

available. Following this, a detailed knowledge of the physics of ultrasonic waves is

built in Chapter 3, as well as guided-wave phenomena in fibre-composites and the

modelling techniques used in this work. Chapter 4 then gives an overview of the

machine-learning techniques used in this thesis, including quantitative performance

metrics used to assess the models generated.

At this point, the novel work of this project is presented for the remainder of the

thesis. Chapter 5 shows the work done to generate feature spaces of guided waves in

complex materials, using the machine-learning techniques introduced in Chapter 4,

and is steered by the knowledge of physics built in Chapter 3. This work is applied to

an experimental setup where guided waves are measured in a carbon-fibre composite

using a scanning laser Doppler vibrometer (SLDV). In Chapter 6, a novel method of

defect localisation is presented, which uses a probabilistic approach to decompose

the wave signals, to extract signals of waves reflected from the defect. Chapter 6

directly leads on to the focus of Chapter 7, where the problem of modelling the wave

propagation velocity is addressed. In Chapter 7, a Bayesian approach to determining

this model is presented, using SLDV data to identify the material properties which

govern wave velocity. Finally, conclusions are presented in Chapter 8, along with

suggestions for further work.



2

Literature Review

This chapter provides an overview of the literature of ultrasonic guided waves

(UGWs), their use in damage detection, and the state-of-the-art in their use in

fibre-composite materials. The chapter begins in Section 2.1 by showing related work

on the general background of UGWs. Section 2.2 presents the literature on guided

waves in anisotropic and composite media, discussing modelling techniques and

unique phenomena. This material is followed by a presentation of feature modelling

strategies in Section 2.3, and guided wave interactions with damage in Section 2.4.

Next, there are two associated sections on literature for Lamb-wave localisation

and signal decomposition in Sections 2.5 and 2.6 respectively. Finally, literature is

discussed on determining dispersion characteristics for guided waves in Section 2.7,

which is followed by a summary of the literature in Section 2.8

The discussion on the literature here is aimed to be as non-technical and general

as possible, with limited (or low-level) prior knowledge on guided waves required.

However, if the reader would prefer to understand more on the mechanics of UGWs,

detailed information on such is presented in Chapter 3. In this chapter, where

required, a brief description of the UGW phenomena, which is being discussed, will

be given.

11
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2.1 Ultrasonic guided waves

One of the earliest resources available on the physics of guided waves is the work

of Viktorov [50], where governing physical properties for both Rayleigh and Lamb

waves are detailed. In the relatively short book, Viktorov uses fundamental physics

to derive the equations which define the characteristics of guided waves in isotropic

media. The book finishes with some brief examples of applications of ultrasonic

guided waves in engineering, which arguably prophesied what was to come in later

years.

When elastic waves propagate in certain structure types, guided waves can exhibit

as either Rayleigh or Lamb waves. The former of these wave types is where the

wave propagates on the surface of the medium, whereas in the latter as bounded

by two surfaces. Further details on the physics of these waves, which are crucial

understanding for their use in NDE and SHM regimes, are given in Chapter 3.

Where discussion in this chapter references certain physical phenomena, this will

be explained briefly here, and in more detail in later chapters. Now, there are a

wealth of resources available for knowledge on ultrasonic guided waves (UGWs). For

an introduction to UGWs, some useful reading is the work from Worden [51] and

Rose [52]. In these writings, the fundamental concepts and physics of UGWs are

introduced in an-easy-to follow manner, and are used as a reference for Chapter 3.

As stated earlier, and first referenced by Viktorov [50], UGWs are primarily used

for non-destructive evaluation and structural health monitoring [38–40]. In their

books, Rose [37] and Kundu [53], outline how UGWs are used in damage-detection

strategies, and the physics and knowledge required for such application. Some key

pre-requisite knowledge is of the dispersive properties of UGWs in the system of

application; which are described by the relationship between the central frequency

and the wavenumber, phase velocity, or group velocity of the wave.

There are several techniques available for detecting damage in composite materials

using guided waves – in particular Lamb waves [54–56]. A key separation of methods

for the study of Lamb waves is in the sparsity of measurement points; by this, one

means primarily the use of individual sensors placed on the structure [57], or the use
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of a scanning-laser doppler vibrometer to measure a high density of points over the

wave propagation [58]. In practice, the use of a high-density array for guided wave-

based damage detection regimes is expensive and impractical, as it often requires

laser-scanning-Doppler-vibrometers (SLDVs). The method often results in images

which can be used to directly infer damage states [59]. However, their use is in the

understanding and modelling stages of guided-wave strategies. As the quantification

and modelling of guided waves in fibre-composite materials is still in a juvenile stage,

much of the work here uses the high-density wave propagation measurements to

deliver tools which can provide the beginning stages of a damage-detection regime.

2.2 Guided waves in anisotropic media

When elastic waves propagate in anisotropic media, the modelling and solutions

become very complex, even more so when attempting to model their interaction

with defects [60–62]. There have been several techniques shown which attempt to

determine accurate numerical models of wave propagation in complex materials.

Another approach is to use finite-element modelling to generate an accurate physical

model of wave propagation [63]. Developments in finite element modelling have

included using a combined model to include physical descriptions of Lamb waves

[64,65]. However, the finite-element modelling approach has shortcomings, such as

only being able to model one fundamental mode at a time [66], and so complex

dispersive interactions between modes are not captured. Furthermore, because of

computational constraints, these methods are still limited to transversely isotropic,

or quasi-isotropic materials.

Another method of modelling guided-wave propagation in plates is using the local

interaction simulation approach (LISA), which allows for more complex materials

and wave interaction to be directly modelled. Application of this method was first

shown by Delsanto [67–69], and has been shown to be accurate for use in Lamb-wave

modelling for more complex methodologies by Dobie [70], who included a linear-

systems model to allow for effects of the actuator to be applied. The LISA approach

was improved further, to allow for simulation of anisotropic materials, by Nadella
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and Cesnik [71,72], and was improved further to include viscoelastic properties of

the material [73]. The main shortcoming of this method is the limit imposed by

computational memory, and so only small systems can be modelled.

A crucial characteristic of guided waves in fibrous materials, such as carbon-fibre-

reinforced-polymers (CFRP), is the phenomena of Continuous Mode Conversion

(CMC) [74], as shown by Mook et al [75] and Willberg et al [76], where the boundaries

of layers or weaves cause conversion of mode shapes with frequent-enough occurrence

that they can be considered continuous along the propagation path. CMC can cause

many issues in the application of UGWs in fibre-composite structures, in particular

for time-series analysis techniques where the signal shape is more precisely dependent

on the propagation distance when compared to less-complex material types. At

propagation paths through the fibres, the energy of all modes is reduced, thanks to

this phenomena. Much of the study into CMC is at a qualitative level currently, with

much of the focus being on the first stages of numerical modelling of the phenomena.

In certain structures, where CMC operates on a much smaller spatial scale than the

area of interest, it may be useful to consider the problem at a more stochastic level,

and consider the distribution of wave characteristics due to CMC instead.

Another key consideration of guided waves in anisotropic media is the propagation-

angle-dependent wave velocity [77]. Determining this velocity can be done by

measuring the onset of the wave-front at known distances [78], although for generating

a model over a large frequency range, this could quickly become laborious and costly.

A recent advancement in determining dispersion curve solutions of anisotropic

materials was first shown by Lefebvre [79], which uses a Legendre polynomial

expansion to form an eigenvalue problem for the final solution. This approach was

then shown applicable to single and multi-layer orthotropic plates by Othmani [80,81],

highlighting the method’s much lower computational cost.

2.3 Guided wave feature modelling

In Chapter 1, the concepts of non-destructive evaluation and structural health

monitoring were introduced. Both of these concepts use features as quantitative
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measures which provide information on the damage [1], and are used at all levels of

Rytter’s hierarchy [2]. Determining the feature space of guided waves could be done

by several approaches. The first option would be to determine the feature spaces for

each state using an analytical or numerical model [82]; examples have been given

which compare single-location model features to detect damage [56,83]. However, the

problem of using this approach is in the requirement of an accurate physical model,

which aligns well with the system being evaluated. For fibre-composite materials, as

discussed above, determining an accurate model can be difficult. Furthermore, as

only features are used, it may be advantageous for computational resources to only

generate a model of the features, rather than a full wave-propagation model.

An alternative approach would be to collect experimental data and use a machine-

learning algorithm to determine an empirical feature space [84]. One such example

of which was shown by Legendre [85], where an artificial neural network (ANN) was

used to classify wavelet-based features from wave signals in numerous damage states.

Another example was shown by Su [86], and Lu [87], in which they, again, used an

ANN to identify cracks in plates, although finite element modelling was used here

rather than experimental data.

Machine learning (ML), has become a popular tool for learning relationships which

are highly complex and difficult to describe analytically. The capability and power

of ML methods has given rise to the increased use of such methods [88], particularly

in SHM [89]. However, in their applications to NDE and SHM, there is an often-

overlooked flaw; they will generally mean that data on all possible states must be

collected for a reasonable detection regime.

This discussion leads on to the concept of physics-informed machine learning of

feature spaces for NDE/SHM. Prior knowledge of the physics involved in the problem

can be used to ‘guide’ the learning of the model, and has been shown to be useful

for applications such as parameter estimation [90,91]. Gaussian processes (GP) offer

a useful approach to learning difficult models, and have been shown to be a powerful

tool for SHM applications [92]. The methodology and mathematics behind GPs also

allow for elegant methods of incorporating physics via kernel design [93,94].
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2.4 Guided wave interactions with damage

The interaction of Lamb waves with local inhomogeneities is well studied and the

effects are well documented [61]. Almost intuitively, when a Lamb wave interacts with

damage, it will reflect and scatter in directions other than its original propagation

direction collinear with the actuation source and the damage. UGWs are exhibited

in multiple ‘modes’, and the reflection of UGWs when interacting with damage

varies between these modes, and is dependent on the relation between wavelength

and damage size [95,96]. A particular phenomenon that occurs when Lamb waves

interact with damage is that of mode conversion [61], where modes are converted

into others as a result of variations in plate dimensions. This phenomenon is directly

linked to the reflection characteristics of the interaction.

Numerical modelling of Lamb wave interaction with damage is possible, and the

LISA method mentioned above has been shown to perform well for this [70,82,97].

These works show that, when developing and testing a methodology for Lamb wave

application to damage detection, numerical models are an appropriate approach.

A comparative review of state-of-the-art modelling methodologies for damage in

composites has been made by Orifici et al˙ [98], in which they discuss many issues

such as length scales and implicit modelling.

2.5 Localisation

There has been evidence of useful techniques for damage localisation that do not

require decomposition, such as via the use of piezoelectric rosettes [99]; however,

the cost of using such hardware may quickly rise for large-scale structures. A novel

method has been proposed by Rebillat et al., involving the decomposition of three-

way tensors constructed from ‘actuator’, ‘sensor’ and ‘time dimensions’ that shows

robustness [100]. However, this method requires that data are collected from multiple

actuation sources and sensor locations, so it may be advantageous in some systems

to be able to localise using fewer such locations, thus reducing data usage and

processing time. Methods that do not require decomposition of measured signals,

such as the ones mentioned here, use either costly equipment or are computationally
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expensive; consequently, there is an opportunity for a computationally-efficient

strategy, involving simple equipment, to be developed.

After decomposition of Lamb wave signals into direct/nominal and reflected waves,

the reflected wave signal can be treated as a new wave source; where the time of the

reflection occurrence and distance of the damage from each sensor is unknown. After

formulating the problem in this way, methods of localisation vary depending on the

prior information known of the system [101,102]. Common practice for localisation

of unknown initiation time is relatively simple, involving the difference in time of

arrival of the wave between sensors at known locations [101]. As numerical solutions

of the Lamb waves give prior information on the wave velocity, given a frequency,

the localisation step becomes a simple computation problem. However, for situations

where the wave speed is unknown, localisation is still possible using an iterative

optimisation procedure [102]. As the decomposition strategy used here is designed

for application to complex geometries and materials, it is important to also consider

localisation in situations where confidence in prior wave velocity is limited. For such

situations, it may be useful to take a probabilistic approach, such as in [103] and [104].

Using such an approach would also allow for quantification of the uncertainty in

location, an important metric to consider in NDE or SHM strategies.

2.6 Lamb-wave signal decomposition

For damage localisation using Lamb waves, the received signal must be decomposed

into all waves and wave modes within the wave-packet, in order to determine which

of the superposition of signals represents the reflected wave. Decomposition of Lamb

waves can be separated into two main categories; full-field decomposition, which uses

data along the propagation in one or more directions, or single-source decomposition

which can be applied to the received signal at a single location. Previously, full-field

decomposition has been done in the frequency-wavenumber space [105], where the

wave propagation is represented in the form of dispersion curves.

Some multi-mode decomposition techniques have been proposed with a variety of

approaches. One such approach is a parameter-based iterative procedure to match the
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shape of the wave with the physical equations governing a Lamb wave in homogeneous

materials [106]. Other methods involve the identification of ratio features from signal

processing of the received signal [107]; however, this relies on an accurate physical

model and has so far only been shown on isotropic materials. Another method

involves using concentric ring and circular PZTs [108], but some drawbacks are;

increased equipment cost of sensors, lack of, or more complex, actuation from such

concentric sensors, meaning limited sensor-actuator array capabilities.

Many current individual-signal decomposition methods require accurate previous

models of guided-wave propagation in the material being inspected, and analytical

models of which are difficult to attain accurately for complex materials. Such an

example would be for fibre-matrix composites, where the attenuation varies with

respect to fibre-orientation. Therefore, there is an apparent need for a method for

single-source, multi-mode decomposition, that only requires prior data on Lamb

wave propagation in an arbitrary material.

2.7 Determining dispersion characteristics

A particular characteristic of guided waves is their dispersion, and information

of this phenomenon is used frequently in guided-wave research and application.

As the propagation velocity of guided waves is dependent on the wave mode and

frequency, a wave-packet of mixed waves will spread out in space and time – this is

known as dispersion. More information on dispersion, and how to determine this

information, is given in Chapter 3. Therefore, accurate determination of solutions

for dispersion curves for a given material/structure is key to their application in

NDE/SHM regimes. Solutions of dispersion curves for isotropic materials are a

simple numerical procedure [37]; however, the solutions for complex materials are

more difficult.

There is no standard model for anisotropic materials, though many are available.

An approach by Solie and Auld [109], attempts to derive the equations using the

partial-wave technique, which aims to provide a solution for wave propagation in

anisotropic media. This method assumes that the Lamb wave can be formulated
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as the superposition of three upward and three downward waves, each of which are

referred to as partial waves. Traditionally, matrix formulations are used to retrieve

wave propagation characteristics for a given frequency [53]. Both these methods have

a high computational cost.

An issue is still present in the requirement of accurate information a priori ; in this

case, the elastic constants must be known for the material. When this information

is not known, an accurate prior model of dispersion characteristics is difficult to

obtain. For an arbitrary material, the evident next step is to determine measurements

of the dispersion curve. One potential method is by the use of a ‘Matrix Pencil’

method [110], which forms an eigenvalue problem on either the frequency-time or

wavenumber-distance space, of which the eigenvalues are used to determine the

wavenumber or frequency respectively. However, the results shown lacked accuracy in

comparison to analytical and standard method results, especially for the symmetric

mode, and for regions in the curve where multiple modes coincide.

From the governing equations, the dispersion curves are defined by these elastic

constants, the number of which can become extensive for anisotropic and/or inho-

mogeneous materials. It follows then, that information on the dispersion curves

may allow for inference of these material properties. An example of this has been

shown using a genetic algorithm to estimate the elastic constants of a fibre-composite

plate using dispersion curves [111]; this generated feasible elastic constants and

a distribution based on an assumed Gaussian posterior. This assumption of the

posterior shape is a shortcoming of the approach, as well as the absence of any

possible inference on the cross-correlation between material properties. In addition,

the genetic algorithm has a high computational cost [112].

2.8 Summary of literature

It is clear from the literature that the use of ultrasonic guided waves for damage

detection in fibre-composite requires development of more tools for their application.

The modelling of UGWs in fibre-composites is difficult and costly, and can be difficult

to adapt to multiple material/geometry types. This issue led to the aim of the tools
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developed to be generalisable approaches which, though applied specifically here, are

easily adaptable to the other complex materials/geometries.

The aim of this thesis is to present a number of unique tools that have been developed

for advancing the use of ultrasonic guided waves in fibre-composite structures. The

approaches use a probabilistic approach, as these methods lend themselves well to a

damage-detection strategy, as the quantified uncertainty can be propagated through

each stage of the strategy. In the rest of the thesis, the motivation behind the

methodology or tool being presented is discussed at the beginning of each chapter.



3

Ultrasonic Waves

For the application of ultrasonic waves in the fields of non-destructive evaluation and

structural health monitoring, prior knowledge of their behaviour is essential. Such

waves undergo an interesting phenomenon when they occur in particular structures,

such as rods, hollow cylinders and plates; they propagate primarily in the longitudinal

direction perpendicular to oscillation and are known as guided waves. When such

waves are guided via propagation along the surface of a medium, they are known

as Rayleigh waves. However, if a wave travels in a bounded medium, between two

surfaces, where the wavelength is sufficiently long compared to the distance between

these surfaces, often exhibited in plates, it is called a Lamb wave [50–52]. This

chapter aims to provide a general background for ultrasonic waves in isotropic and

anisotropic media, with some information on modelling techniques that are used

throughout this thesis.

3.1 Bulk waves

The coordinate system for the following description of bulk waves is shown in

Figure 3.1. The equation of motion for an elastic medium can be derived from

Newton’s second law [113], and if the body forces are neglected, the equation can be

21
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Figure 3.1: Coordinate system for bulk waves in an arbitrary medium.

expressed as [114],

ρ
∂2ui
∂t2

=
∂σij
∂xij

(3.1)

where i, j refers to the three dimensions in Cartesian space, i, j = 1, 2, 3, ui is the

particle displacement in the x1, x2, x3 directions respectively, σij is the stress field

tensor element and ρ is the density of the material. According to the generalised

Hooke’s law, the stress σij of a given material is proportional to the stiffness tensor

Cijkl and the strain εij,

σij = Cijklεkl (3.2)

where i, j, k, l = 1, 2, 3 and the strain tensor εij is linked to the displacement u by,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

where i, j = 1, 2, 3. By including the stress symmetry σij = σji and strain symmetry

εij = εji, the stiffness tensor derives similar symmetry expressions; Cijkl = Cjikl and

Cijkl = Cijlk respectively. Additionally, the following matrix notation is defined using

Voigt notation,

[σ] =



σ11

σ22

σ33

σ23

σ13

σ12


, [ε] =



ε11

ε22

ε33

2ε23

2ε13

2ε12


(3.4)
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For arbitrary anisotropic materials, the generalised Hooke’s law, implying the stress-

strain relation, can be written in the following form,

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(3.5)

where Ckl(k, l = 1, 6) identifies the stiffness matrix and represents the elastic constant

of the anisotropic medium.

3.1.1 Isotropic media

For an isotropic medium, Hooke’s law can be written as,

σij = λδijεkk + 2µεij (3.6)

where δij is the Kronecker delta and λ, µ are the Lamé constants, which are related

to the stiffness tensor by,

C12 = C13 = C21 = C23 = C31 = C32 = λ (3.7)

C44 = C55 = C66 = µ (3.8)

C11 = C22 = C33 = λ+ 2µ (3.9)

The Lamé constants can be expressed in terms of the more common Young’s modulus

E, Poisson’s ratio ν and bulk modulus µ.

E =
µ(3λ+ 2µ)

λ+ µ
(3.10)

ν =
λ

2(λ+ µ)
(3.11)

By substituting these relations into the elastodynamic equation (3.1), it can be

expressed as,

ρ
∂2ui
∂t2

= (λ+ µ)
∂∆

∂xi
+ µ∇2ui (3.12)
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where i, j = 1, 2, 3, ∆ = ε11 + ε22 + ε33 and ∇2 is defined as,

∇2 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
(3.13)

Solutions to equation (3.12), give two different propagation velocities, which cor-

respond to the longitudinal and shear waves, the first of which represents motion

where no rotation takes place and the second represents motion where no change in

the volume of a unit cube (or dilatation) occurs. The relation between the velocities

of these waves and the Lamé constants is,

λ = ρc2L − 2µ (3.14)

µ = ρc2T (3.15)

where cL and cT are the propagation velocities of the longitudinal and shear waves

respectively.

3.2 Lamb Waves

When a wave travels in a bounded medium, the boundary conditions can be applied

to produce some neat descriptions of the physics. In bounded media, these waves

will exhibit as Lamb waves, which in isotropic elastic media will exhibit two distinct

modes: symmetric (S) and antisymmetric (A). For anisotropic media, an additional

shear horizontal (SH) mode will propagate, where particle motion is in the same

direction as propagation. The model that describes the governing equations is shown

here and follows the free-plate problem as described in [52]. For the purposes of this

problem, the coordinates are defined as in Figure 3.2.

Via steps provided in [52], the equations to describe particle motion on the surface

of an isotropic plate can be developed. There are two types of solutions available, in

the first, the in-plane displacement u1 is an even function of u3; such solutions are

called symmetric. When u1 is an odd function of u3, the antisymmetric solutions are

returned.
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2h

x3

x1

Figure 3.2: Coordinate system and dimensions for Lamb waves in a plate of thickness

2h

Where A1,2 and B1,2 are arbitrary constants, and x3 is the distance from the centre

of the plate, for symmetric modes one has [52],

u1 = ikA2 cos(px3) + qB1 cos(qx3) (3.16a)

u3 = −pA2 sin(px3)− ikB1 sin(qx3) (3.16b)

and for antisymmetric modes,

u1 = ikA1 sin(px3)− qB2 sin(qx3) (3.17a)

u3 = pA1 cos(px3)− ikB2 cos(qx3) (3.17b)

where,

p =
ω√

c2L − c2
, q =

ω√
c2T − c

(3.18)

where 2h is the plate thickness, k is the real wavenumber, ω is the central frequency,

c is the material bulk wave speed, cL is the longitudinal wave speed and cT is the

transverse wave speed. For guided waves in isotropic materials, the bulk wave speed

is equal to the phase velocity, cp = c and the wavenumber is equal to k = ω/cp.

After applying the boundary conditions σ31 = σ33 = 0 at x3 = ±h, two characteristic

equations are formed for Lamb waves which describe their behaviour in given media:

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(3.19)

for the symmetric modes and,

tan(ph)

tan(qh)
= − 4k2pq

(q2 − k2)2
(3.20)
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for the antisymmetric modes. These equations are known as the Rayleigh-Lamb

frequency relations. It should be noted that these equations will only hold for

isotropic materials, approaches to deriving the governing equations of anisotropic

materials are discussed later.

3.3 Dispersion

This section will introduce the concept of dispersion by explanation with respect

to isotropic materials, solutions for dispersion curves in anisotropic materials will

be presented in Section 3.5. Given a value of ω, equations (3.19) and (3.20) specify

allowed values of c for either mode; as c is a function of ω this means that the

waves will spread out in space and time – i.e. they are dispersive. As ω only enters

into equations (3.19) and (3.20) as a product with h, dispersion curves are often

presented in terms of the frequency-thickness product (FTP). Solutions to these

equations are determined numerically, and plots of the wave velocity with respect

to frequency-thickness are called dispersion curves. In order to generate dispersion

curves in relation to the phase velocity cp, the governing equations (3.19) and (3.20)

are rearranged as,
tan(qh)

q
+

4k2p tan(ph)

(q2 − k2)2
= 0 (3.21)

for the symmetric modes and,

q tan(qh) +
(q2 − k2)2 tan(ph)

4k2p
= 0 (3.22)

for the antisymmetric modes. The steps for generating dispersion curves are,

1. Choose frequency-thickness (ωh)0.

2. Make an initial estimate of the phase velocity (cp)0.

3. Evaluate the left-hand side of equation (3.21) or equation (3.22).

4. Choose another phase velocity (cp)1 > (cp)0 and re-evaluate the sign of equation

(3.21) or equation (3.22).

5. Repeat Steps 3 and 4 until the sign changes. As the function is continuous, a

change in sign between phase velocities (cp)n and (cp)n+1 indicates the root is

between these values.
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Figure 3.3: Dispersion curves for the group velocity of a 1mm-thick aluminium plate,

calculated using DISPERSE software [117]. The blue lines indicate the antisymmetric

An modes, and the red lines indicate the symmetric Sn modes, with the order they

appear along the x-axis being the order n of the mode. The aluminium plate is

modelled with density of 2710 kg/m3, cL = 6.42 m/ms & cT = 3.04 m/ms.

6. Use an iterative root-finding algorithm such as Newton-Raphson [115] or

Secant methods [116], to locate precisely the phase velocity in the interval

(cp)n < cp < (cp)n+1.

7. Chose another frequency-thickness (ωh)n and repeat Steps 2 to 6.

From the phase velocity, the wave number and group velocity can be determined

using the relations,

k =
ω

cp
(3.23)

cg =
dω

dk
(3.24)

Software packages are available to calculate these solutions and generate numerically-

determined dispersion curve information – an example being DISPERSE [117].

An example of dispersion information determined using this method is shown in

Figure 3.3.
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Dispersion curves can also be determined from experimental regimes by the use of a

two-dimensional Fourier transform (2DFT); this is done by recording the surface

displacement of a Lamb wave, spatially sampled along its propagation path, to

generate the time-distance [t-x ] space. Passing this through a 2DFT then provides a

transformation to the frequency-wavenumber [ω-k ] space [118].

Typical presentations of dispersion curves are as the relation of FTP to group velocity,

phase velocity or wavenumber. For this thesis, the group velocity and wavenumber

dispersion curves are important, as the group velocity is required for triangulation of

reflection signals, and the [ω-k ] curve is the type generated by experiment.

Dispersion curves are regularly used in guided-wave application, as knowledge of the

wave velocity is required for wave source localisation, and wavenumber characteristics

can be used as features for detection regimes. Lamb waves often propagate with

multiple modes – a minimum of two – which causes a problem for practical application

as the separation of these modes may be necessary for proper determination of

reflected waves. As a result of the dispersive nature of Lamb waves, they will arrive

at a sensor at different times, which may make the signal processing again more

difficult. By the use of tuned actuation techniques, it is possible to excite individual

modes, although these are often more expensive, and exciting multiple modes can

provide more information on the structure.

3.4 Attenuation of guided waves

The attenuation of Rayleigh waves can be defined fairly simply. As Rayleigh waves

propagate along a surface of a structure, their amplitude A, decays with propagation

distance [50], x, by

A(x) ∝ 1√
kRx

(3.25)

where kR is the real wavenumber. The attenuation of Lamb waves depends on many

factors, although Pollock [74] states the four most important ones to be:

(i) geometric spreading (as above),

(ii) material damping,
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(iii) dissipation into adjacent media,

(iv) wave dispersion,

Attenuation of Lamb waves has been accurately modelled by the inclusion of pro-

portional damping in numerical and experimental studies [119, 120]. Geometric

spreading describes the loss of amplitude because of the growing length of a wave

front departing in all directions from a source. The effect of propagation distance on

the amplitude of the wave has been described for geometric spreading [120],

A(r) ∝ A0

√
r0/r (3.26)

where A0 & r0 are the amplitude and distance at an initial location from a point

source. It should be noted that for fibre-reinforced materials, attenuation of waves

propagating along fibre-rich directions is reduced in geometric spreading. Material

damping [37], describes how much energy stored in the wave dissipates because of

non-perfect elastic material behaviour. Fibre-reinforced materials exhibit much larger

material damping than metallic structures. Attenuation from material damping is

described as,

A(r) ∝ A0 exp (−ζir) (3.27)

where ζi is the attenuation coefficient of the viscoelastic medium. Because of dispersive

characteristics of Lamb waves, ζi is dependent on the central frequency of the wave.

Two relatively-simple attenuation mechanisms have been introduced here, and will

be used in Chapter 5, as these are the fundamental mechanisms which are found to

be exhibited in every material. If wishing to model multiple attenuation mechanisms,

the method of combination is important. An additive (or subtractive) combination

would imply that each mechanism acts independently to each other and only relies

on the initial amplitude. However, a multiplicative combination would imply the

attenuation mechanisms act in conjunction, and so the amplitude is considered along

the entire propagation path.

3.5 Guided waves in anisotropic media

The study of guided-wave propagation in anisotropic media has attracted a lot of

attention recently because of its growing use in state-of-the-art industrial applications.
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However, modelling guided-wave phenomena in complex materials is much more

difficult than for isotropic materials because of their anisotropy resulting in more

complicated phenomena.

Following discussions made earlier on the methods proposed for modelling Lamb

wave characteristics of anisotropic media, the work of Lefebvre [79] is described here

for determining dispersion curves of anisotropic media. This method uses a Legendre

polynomial expansion to form an eigenvalue problem, utilising the orthonormal basis

set for expansion of the field quantities. For orthotropic materials, the generalised

Hooke’s law (equation (3.5)), can be rewritten as,

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(3.28)

The boundary conditions of zero stresses on the surface can be applied by introducing

a rectangular window function πh(x3),

πh(x3) =

1 0 ≤ x3 ≤ h

0 otherwise
(3.29)

the above-mentioned boundary conditions are automatically incorporated in the

constitutive relations, and by substituting in the relationship of the strain (equation

(3.3)), and transforming the spatial coordinates into dimensionless form qα,

qα = kxα, (α = 1, 3) (3.30)

then the constitutive relations are,

σij =

(
Cijkl

∂ul
∂qk

)
kπh(q3) (3.31)

For a wave propagating in the x1 direction, the displacement components are assumed

to be of the form,

ui(q1, q2, q3, t) = Ui(q3)ei(q1−ωt) (3.32)
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where the Ui(q3) represent the magnitudes of the fields in the xi direction. Substitut-

ing equations (3.31) and (3.32) into equation (3.1) gives,

−ω
2

k2
U1 =− U1

C11

ρ
+ iU ′3

(
C13 + C55

ρ

)
+ U ′′1

C55

ρ

+ iU3
C55

ρ
(δ(q3)− δ(q3 = kh)) + U ′1

C55

ρ
(δ(q3)− δ(q3 = kh))

(3.33a)

−ω
2

k2
U2 =− U2

C66

ρ
+ U ′′2

C44

ρ
+ U ′2

C44

ρ
(δ(q3)− δ(q3 = kh)) (3.33b)

−ω
2

k2
U3 =− U3

C55

ρ
+ iU ′1

(
C31 + C55

ρ

)
+ U ′′3

C33

ρ

+ iU1
C13

ρ
(δ(q3)− δ(q3 = kh)) + U ′3

C55

ρ
(δ(q3)− δ(q3 = kh))

(3.33c)

where the superscript (·)′ refers to the partial derivative with respect to q3. It is

clear to see that equation (3.33b) is independent of equations (3.33a) and (3.33c); in

fact, equation (3.33b) represents the vibration of the SH waves in the orthotropic

viscoelastic plates and equations (3.33a) and (3.33c) control propagation of Lamb-

wave modes.

In order to solve the decoupled wave equations, the Legendre polynomial method

expands Ui(x3) over an orthonormal-polynomial basis [79–81],

Ui(q3) =
∞∑
m=0

pimQm(q3), i = 1, 2, 3 (3.34)

where pim is the expansion coefficient and,

Qm(q3) =

√
2m+ 1

kh
Pm

( q3
kh
− 1
)

(3.35)

where Pm(x) is the Legendre polynomial expansion of order m. Theoretically, m

runs from 0 to ∞; however in practice, the summation over polynomials in equation

(3.34) can be halted at some finite value of m = M , when higher-order terms become

negligible.

To retrieve the final equations to be solved, one substitutes equations (3.34) and (3.35)
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into equation (3.33), multiplies by Q∗j(q3) and integrates over q3 from 0 to kh, giving,

ω2

k2
p1m = −M−1

jm

[
Ajm11 p

1
m + Ajm13 p

3
m

]
(3.36a)

ω2

k2
p2m = −M−1

jm

[
Ajm22 p

2
m

]
(3.36b)

ω2

k2
p3m = −M−1

jm

[
Ajm31 p

1
m + Ajm33 p

3
m

]
(3.36c)

with j and m running from 0 to M , and (·)∗ means the complex conjugate. The

definitions of the matrix elements are given in ??.

By separating out equation (3.36) into only the coupled Lamb-wave modes and

decoupled SH wave mode, the final solution can be arranged as an eigenvalue

problem, [
Ajm11 Ajm13

Ajm31 Ajm33

][
p1m

p3m

]
= −ω

2

k2
Mjm

[
p1m

p3m

]
(3.37a)

[
Ajm22

]
p2m = −ω

2

k2
Mjmp

2
m (3.37b)

with eigenvalues λi − c2p,i and corresponding eigenvectors {p1m, p3m}>i . Here, 3(M + 1)

eigenmodes are generated at the order M of the expansion. The solutions to be

accepted are only those eigenmodes for which convergence is obtained as M is

increased [79–81].

Previous studies on this Legendre-polynomial expansion approach showed the ac-

curacy and rigour of the method, including the ability to determine the through-

thickness mode shapes by determining the values of the eigenvectors. This method’s

low computational-cost gives it promising application for modelling of guided waves

in complex materials, in particular as it uses the stiffness tensor elements allowing

for dull definition of the material in question. The next steps of research using this

method would be to implement the approach using an unreduced stiffness tensor for

fully asymmetric materials.

3.6 LISA Simulation

A proven-robust method for simulating guided waves in plates has been shown using

the local interaction simulation approach (LISA), a particular advantage of which
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is that it captures multi-mode interactions well. For this reason, the approach was

used in this work (shown in Chapter 6), and a short introduction will be given here.

The LISA simulation method uses iterative difference equations and is based on a

sharp-interface model. This allows LISA to incorporate the effects of boundaries and

inhomogeneities with ease – a primary benefit of using the method – as well as faster

computing time in comparison to finite-element analysis (FEA). The application

of LISA to the simulation of guided waves is well documented [69, 70, 72]. A key

difference between this method and standard finite-difference (FD) approaches is that

LISA solves a discrete form of equation (3.1) exactly, modelling physical phenomena

without other approximations, whereas the FD is a solution of the partial differential

equation after discretisation.

A finite-difference formulation is used in equation (3.1) to generate spatial and

temporal iterative equations that can be applied for a given point in space. For

LISA simulation of orthotropic media with in-plane rotation (such as fibres), the

stiffness tensor from equation (3.1) is often expressed in terms of stress and Lamé

parameters [71,72],

C =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


=



σ1 λ6 λ5 0 0 τ16

σ2 λ4 0 0 τ26

σ3 0 0 τ36

µ4 γ45 0

µ5 0

µ6


(3.38)

First, the system is discretised into evenly-sized cells and these cells are considered

as a series of springs and masses which populate the medium. At any point, which is

neighboured by eight cells, the sharp-interface model is used to average the properties

of the neighbouring cells. It is assumed at each point, that the material properties and

displacements are continuous, whereas interfaces of cells are treated as discontinuous.

As the LISA simulation is not the focus of this work, detailed information on the

method and the final equations are given in ??. The main considerations of LISA

simulation is the limit of computer memory, and so only small simulations can be
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considered for now. However, the main advantage of LISA is that there are few

limitations on the material type, as the governing equations stem directly from

the stiffness tensor. So, as less sparse stiffness matrices simply result in more

laborious, but no less difficult, derivation of the final equations, model reduction and

simplification is by reduction of the stiffness tensor.



4

Machine Learning Techniques

As discussed previously, the physics of guided waves in fibre-composite materials

becomes complex, and it is difficult to generate accurate analytical or numerical

models that are easily updated (though this does not discredit their capability, as

is seen in later chapters). So in this work, machine-learning techniques are used

in a variety of ways to model wave propagation in fibre-composite materials. In

this chapter, some background is provided on two of the primary machine-learning

techniques used in this work; Bayesian linear regression and Gaussian processes.

These are both methods that attempt to ‘learn’ the mapping between an input and

output space.

The methods outlined in this work follow the format of Bayesian probability theory.

To illustrate these methods it useful to discuss some definitions. Firstly, there

is the prior and posterior probability distributions; the former of which is the

distribution that is believed to describe the data before any evidence is provided.

The posterior distribution is that which is determined with proper evidence and

background information. An uninformative prior is one which gives vague information

of the probabilities, and is useful when prior knowledge is not available. When the

posterior distributions belong to the same family as the prior distributions, these are

known as conjugate distributions, and the prior is called a conjugate prior. Finally,

35
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the likelihood expresses how likely a particular value or set of values is, given the

statistical parameters, and is a useful tool for determining the best estimates of

unknown parameters or models. As well as the above definitions, it is useful to

introduce Bayes’ rule [121]; this provides a way of updating one’s belief based on new,

relevant pieces of evidence. If A is the event one wishes to know the probability of,

and B is the new evidence, Bayes’ rule states that the posterior P (A|B) is dependent

on the likelihood P (B|A), the prior P (A) and the marginal likelihood P (B) via,

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

4.1 Bayesian Linear Regression (BLR)

Traditional linear regression formulates a model using point estimates of a set of

parameters which “best” fit an available dataset, based on minimising an L2-norm

between the model predictions and the data. Instead, BLR aims to establish a

probability distribution of possible model parameters. This method is often used

when the model is either linear or ‘linear-in-the-parameters’, and so it is simple and

efficient to recover both the estimate of the mean and the variance (uncertainty) in the

model. For models where linearity in the model is not possible, more complex methods

and algorithms can be used such as neural networks [122], or spline regression [123].

BLR is used here as the models used are simple to define in linear terms, and so

recovering probabilistic quantities is simpler and computationally efficient to do. The

model has the form,

y = w>φ(x) + ε, ε ∼ N (0, σ2) (4.2)

where φ is some basis for expansion of a p-dimensional data point x; the associated

weights of the basis expansion are w = {w1, w2, ..., wp}, and ε is an additive Gaussian

white noise distributed as N (0, σ2). The weights w and the variance σ2 are the

unknowns. The Bayesian linear regression model approach was chosen since it returns

a quantified uncertainty. The task is then to compute the posterior distribution of

the parameters p(w, σ2|D). This posterior distribution has the form,

p(w, σ2|D) = NIG(w, σ2|wN ,VN , aN , bN) (4.3)
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where NIG is the normal-inverse-gamma distribution. And the parameters are

defined by,

wN = VN(V−10 w0 + X>y) (4.4)

VN = (V−10 + X>X)−1 (4.5)

aN = a0 + n/2 (4.6)

bN = b0 +
1

2

(
w>0 V−10 w0 + y>y −w>NV−1N wN

)
(4.7)

where V0, w0, a0 and b0 are hyperparameters of the prior, which are parameters used

to control the learning process. It is possible to set a less-informative prior for σ2

by applying a0 = b0 = 0. Also setting w0 = 0 and V0 = g(X>X)−1 for any positive

value g; leads to Zellner’s g-prior [124]. By having the prior variance proportional to

(X>X)−1, it is ensured that the posterior is invariant under scaling of the inputs.

An important assessment metric that is attainable from the Bayesian linear regression

method, is the predictive likelihood, which gives an indication of the likelihood that

the model fits, and takes into account the uncertainty as well as the quality of

the mean fit. In probabilistic data science, the likelihood is the calculation of the

best distribution of data, given a set of observations. In this case, the likelihood is

the value of probability of a predicted value, taken from the distribution of these

predicted values, based on the observed data.

As this method uses a tractable Gaussian posterior, the predictive likelihood is given

by,

p(ỹ|x̃,y,x) = N (E [ỹ] ,V [ỹ]) (4.8)

where E [ỹ] and V [ỹ] are the predicted values and variance of the output, given input

x. For computational stability, this likelihood is calculated in the log space, and is

named the independent predictive log-likelihood PLLi and is defined by,

PLLi =
N∑
i

logN (yi|E[yi],V[yi],w) (4.9)

for N data points. This value is the product over the predictive likelihoods for every

point, i.e. the joint likelihood if they were uncorrelated.
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4.2 Gaussian Processes

The Gaussian process (GP) is a flexible Bayesian regression method, which works by

placing a prior over functions, which is then updated on the basis of data, to return

a posterior distribution over functions [125,126]. Conceptually, one can think of this

process as estimating, rather than one “best” fit through the data, a distribution over

all the possible functions that could explain the data. By virtue of its construction,

the marginal and conditional distributions of any finite subset of data points in the

function are Gaussian. In other words, any finite set of data modelled by the Gaussian

process can be represented by a multivariate Gaussian distribution. The benefit of

this result is that computations are normally available in closed form; for example,

the conditional distribution of some new test points given the already observed data

can be recovered exactly. The model is also nonparametric; the form of the function

which will fit the data does not need to be specified, i.e. it is not necessary to choose

a basis, such as a polynomial one. Instead, the function is modelled by representing

the covariance in the data via a kernel or covariance function. This kernel is used

to embed belief about which family of functions the data have come from, e.g. a

nonlinear or periodic function.

The Gaussian process can be used to model nonlinear regression problems of the

form,

y = f(X) + ε ε ∼ N (0, σ2
nI) (4.10)

where y is a vector of N observed targets, X a matrix of N observed inputs in D

dimensions, and ε a vector of realisations from a zero-mean Gaussian white noise

process with variance σ2
n.

A GP is fully defined by its mean and covariance functions,

f(x) ∼ GP (m(x), k(x,x′)) (4.11)

The mean function m(x), can be any parametric mapping of x, e.g. a polynomial.

The correlation between the targets is captured by the covariance function which

expresses the similarity between two input vectors x and x′. To predict at a new



39 4.2 Gaussian Processes

test point x?, or set of test points X?, predictive equations are used to determine

the expected mean function E[f?] and expected covariance V[f?] [125],

f? ∼ N (E[f?],V[f?]) (4.12a)

E[f?] = m(x?) + k(x?, X)(k(X,X) + σ2
nI)−1y (4.12b)

V[f?] = k(x?,x?)− k(x?, X)(k(X,X) + σ2
nI)−1k(X,x?) (4.12c)

If predicting at noisy output locations, i.e. y?, it is trivial to add the noise variance

σ2
nI to the predictive covariance in equation (4.12c). As such the GP returns the

posterior distribution over f? or y? as a Gaussian distribution.

The primary influence of the user, when implementing a GP, is in the choice of the

kernel, which is calculated as any other kernel; linear pair-wise distances between

points to form a covariance matrix. Careful consideration of data should also be

applied in implementation, such as data type (scale, sign, etc.), data size and space

on which it operates. There are a number of choices available for the kernel function,

each of which embeds a different prior belief as to which family of functions f(x) is

drawn from. For example, if a linear kernel is used, the solution to a Bayesian linear

regression is recovered. More commonly, nonlinear kernels will be chosen, as many

tasks require regression of nonlinear functions; popular choices include the use of the

Squared-Exponential (SE) kernel or the Matérn class of kernels. In most cases the

mean function is set to zero in the prior.

4.2.1 General nonlinear kernels

It will be important to consider how the GP would model data if no restrictions

were placed on it with respect to the coordinate system of the input space. Two

important properties, which certain kernels possess, are stationarity and isotropy. A

stationary kernel is only dependent upon the difference between any two points, not

the absolute values of those points. An isotropic kernel is invariant to translation

or rotation of the input data; practically, this appears as the covariance being only

dependent on the absolute difference between two data points [125]. These properties

will be important when discussing what is desired from a kernel to model the features

of guided waves.
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One such stationary and isotropic kernel, is the popular squared-exponential (SE)

kernel [125]. This kernel is given by,

kSE(x,x′) = σ2
f exp

{
−||x− x′||22

2`2

}
(4.13)

where ` is the characteristic lengthscale, and σ2
f is the noise variance parameter. An

alternative general nonlinear kernel is the Matérn 5/2 kernel (as applied here to the

radial dimension); this well-established kernel is used as it offers relatively smooth

shapes and is defined as,

kmat(x,x
′) =

(
1 +

√
5|x− x′|
`

+
5|x− x′|2

3`2

)
exp

(
−
√

5|x− x′|
`

)
(4.14)

4.2.2 Applying Gaussian processes in polar coordinates

Chapter 3 provided detail on the physics and modelling of guided waves, the de-

scriptions of characteristics such as attenuation are often expressed in terms of the

wave propagation distance. As well as this, dispersive characteristics of waves means

that the time-difference between wave modes within one wave-packet will depend on

propagation distance. For anisotropic materials, the propagation angle has an effect

on the propagation of the waves; for all propagation characteristics. From this, the

description of the physics of guided wave propagation is more suitably defined in

polar coordinate space. Therefore, it is useful to look at how to modify the Gaussian

process to be better applied in this space.

To make this modification is not as trivial as it may seem. Remembering that

the covariance function is a measure of similarity between two data points, it is

necessary to define a kernel which encodes this. Specifically, it is necessary to have

high covariance between points that are close to each other in angle. For example a

point with angle 359◦ should have a high covariance with 1◦ if the radii are also close.

This will require modifications to the kernel in terms of the distance used to assess

how close together points are and also to the covariance function itself. Padonou

and Roustant [127] suggest two potential definitions for a distance which fulfils this

criteria, as shown in Figure 4.1(a). These two distances are: the chordal distance
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(a)
(b)

Figure 4.1: (a) Chordal (d1) and geodesic (d2) distances. (b) Angular covariance as

a function of geodesic distance, with varying values of τ .

d1(θ, θ
′) = 2 sin

(
θ−θ′
2

)
or the geodesic distance d2(θ, θ

′) = arccos(cos(θ − θ′)). Using

these definitions, it is possible to define the covariance in the θ dimension of a {ρ, θ}
polar coordinate system.

The C2-Wendland function is used as the kernel, since this produces a covariance of

0 when d2 = π and is strictly positive when d2 > π, both are necessary conditions

for the polar kernel design. The C2-Wendland function is defined as,

Wc(t) =

(
1 + τ

t

c

)(
1− t

c

)τ
+

, c ∈ [0, π]; τ ≥ 4 (4.15)

When applying the Wendland function as the covariance function, the value of c

must change depending on the angular distance chosen,

kW =

kchord(θ, θ′) = W2(d1(θ, θ
′))

kgeo(θ, θ
′) = Wπ(d2(θ, θ

′))
(4.16)

Here, the value of τ acts as a ‘steepening’ parameter on the angular covariance; this

can be seen as the angular analogue to the inverse of the length-scale parameter

described previously. By displaying equation (4.15) as a function of geodesic distance

as in Figure 4.1(b), the effect of τ can be more clearly seen.

To form a full polar covariance function, a different kernel is applied only on the

radial dimension of the input. This kernel could be any stationary isotropic kernel;
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in this work the Matérn 5/2 kernel is used as in [127],

kmat = σ2
n

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
(4.17)

In that case the distance used in the Matérn kernel is the absolute difference between

the two radial components r = |ρ− ρ′|. For the angular component, equation (4.15)

is used with the geodesic distance such that kernel kgeo is used.

These choices define the covariance in the model along each of the directions - the

radial ρ and the angular θ. To form the total covariance it is necessary to combine

these two. It is known that the addition or pointwise multiplication of any two

valid covariance functions is itself a valid covariance [125]. In this work an ANOVA

combination [128] of the kernels in each dimension is used, as in [127]; this allows

variations in each dimension, as well as the combination, to contribute to variation

in the function. The combined ANOVA kernel is defined as,

k2(x,x
′) = σ2

f

(
1 + σ2

f,rkmat(ρ, ρ
′)
) (

1 + σ2
f,akW(θ, θ′)

)
(4.18)

where σf,m and σf,a act as weights representing the influence of changes in each

dimension on a change in the output.

4.2.3 Hyperparameter learning

Thus far, the kernels of the GPs have been presented as priors over the functions

which that GP will generate. However, each of these kernels has a small number

of associated hyperparameters, which govern the characteristics of the family of

functions they represent. It is necessary, therefore, to review how a user may

practically ascertain the values of these hyperparameters. As with many problems

in machine learning, and indeed engineering, this boils down to an optimisation

problem. The specific form of this problem will now be shown.

The hyperparameters vary depending on the form of the kernel, but for generality,

Θk is considered to be the vector of hyperparameters for whichever kernel is being

used. For example, in the case of the kernel proposed by equation (4.18), this vector

is defined as Θk = {`, σ2
f,r, σ

2
f,a, τ, σ

2
n}. The hyperparameters each control distinct
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and important characteristics of the kernel. For example, for the kernel mentioned

above, the characteristics are interpreted as follows:

(i) ` is the characteristic length scale of the Matérn kernel.

(ii) τ is the characteristic steepness of change with respect to angle (Figure 4.1(b)).

(iii) σ2
f terms are scaling factors for individual kernels which control their relative

importance when combined.

(iv) σ2
n is the noise variance parameter related to the expected measurement noise

in the signal.

Standard practice to determine the hyperparameters of a Gaussian process is to

maximise the marginal likelihood, which in practice is done by minimising the log

marginal likelihood (NLML),

Θ̂ = arg min(− log p(y|Θ)) (4.19)

where the negative log marginal likelihood of the Gaussian process is given by,

− log p(y|X,Θ) =
1

2
log |Ky|+

1

2
y>K−1y y +

N

2
log(σ2

n) (4.20)

When defining Ky = K(X,X) + σ2
nI, K(X,X) is the pairwise covariance matrix of

all of the training inputs and N is the number of data points.

4.2.4 Performance metrics

At this point it is necessary to discuss some metrics by which machine-learning

models can be assessed. It is common practice to separate the data into a training

set, Xtr and a test set Xt. The performance of each model is then reported on both

the training and the test data; it is important to consider the test data performance,

as this is the best indicator of which models are able to generalise, i.e. which will

work best on unseen data.

The first metric used here is the normalised mean squared error (NMSE) which can

be computed for both training set (NMSEtr) and test set (NMSEt). For descriptive
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purposes, the NMSE indicates how well the estimate of the output fits with the

observed values. The NMSE will return a score of zero when the predicted values are

identical to those measured (this is impossible in the presence of any noise). A score

of 100 is equivalent to simply taking the mean of the observed data as the prediction

at every instance. The calculation for the NMSE is,

NMSE =
100

nσ2
y

(y − y∗)>(y − y∗) (4.21)

where y is the vector of observed outputs and y∗ the predicted outputs. n is the

number of observations in y and σ2
y the variance of those observations.

The second metric will be to compare the predictive likelihoods of the model. This

metric can be a more informative way of assessing the models as it takes into account

the uncertainty in the prediction, as well as the quality of the mean fit. The predictive

likelihood is given as p(y∗|x∗,y,x); this will change, dependent upon the model being

assessed. For models which have a tractable Gaussian posterior, such as Bayesian

linear regression and Gaussian process models, it is given by,

p(y∗|x∗,y,x) = N (E[y∗],V[y∗]) (4.22)

This quantity is used here in two ways. First, one can consider each prediction to

be independent, by not including the cross variance terms in V[y∗], the predictive

variance matrix. The full covariance of the prediction, which considers each prediction

to be co-dependent, can also be considered from the Gaussian process, and this can

give better insight into how well the function has been modelled.

For computational stability, these likelihood estimates are both calculated in the log

space. The first quantity will be referred to as the independent predictive log-likelihood

PLLi, and is defined by,

PLLi =
N∑
i

logN (y,|E[yi],V[yi,Θ]) (4.23)

for N data points. This is the product over the predictive likelihoods for every point,

i.e. the joint likelihood if they were uncorrelated. The second will be considered the

co-dependent predictive log-likelihood PLLc, defined by,

PLLc = log p(y,|E[yi],V[yi,Θ]) (4.24)
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where PLLc is computed as the likelihood of the full multivariate Gaussian over

the predictive points, including the predicted covariance between these points. The

full cross-covariance is not returned from the BLR method and so PLLc cannot be

calculated.
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5

Modelling Guided Wave Feature

Spaces in Complex Materials

A key step in any structural health monitoring strategy is to establish a baseline

or healthy state, deviation from which indicates damage. For guided-wave signal

data, a healthy state can be found by measuring the propagation of signals in an

undamaged system, either through experimental, analytical or numerical modelling.

In order to reduce computational complexity and data storage, novelty detection

using signal data is often done on a D-dimensional feature space. Transformation

into the D-dimensional space from the full signal can be by either a dimensionality

reduction technique or by physics-based signal processing. In this chapter, feature

spaces from physics-based signal processing are used. Determination of a baseline

model can be either physics driven, data driven, or a combination of both.

As discussed earlier, there have been many advances for guided waves in complex

materials (see Chapter 2). A particular issue in modelling guided waves in fibre-

composites is the phenomena of continuous mode conversion (CMC) [75,76], which

causes propagation-angle-dependent wave behaviour, such as wave velocity variation

and attenuation. As a result of the increased cost and requirements of modelling

guided waves in fibre-composites, there has been an increase in the use of purely

47
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data-driven models to determine a baseline state [129]; however, it is then reasonable

to assume this baseline state only applies to nominally-identical scenarios/structures

from which the data are collected. Since models generated from typical data-driven

methods are general and not specific to the scenario of interest, enhancing the data-

driven models may be valuable in order to offer advantages, such as extrapolability,

whilst maintaining accuracy from real data.

In this chapter, a novel approach to feature-space modelling of guided waves in fibre-

composite materials is presented, which uses physical knowledge to build structured

machine-learning tools. Instead of building directly interpretable models (such as

a system identification approach to find material properties), belief is embedded

from prior knowledge of the physics which controls guided-wave features. Firstly,

purely physical one-dimensional models of the attenuation of the waves as they

propagate from a point source are investigated. The one-dimensional models are

based on a Bayesian linear regression (BLR). This choice allows insight into the effect

and contribution of the first two attenuation mechanisms described by Pollock [74],

geometric spreading and material damping. This is followed by two-dimensional

feature space modelling using Gaussian processes. Increasingly sophisticated models

are generated to incorporate physical knowledge into the machine learning tool. After

considering the effectiveness of a ‘black-box’ approach, where the model is purely

based on data, the knowledge of the guided waves is included via two techniques;

one of which is through incorporation of a mean function in the radial direction

from the source. The mean function models the one-dimensional attenuation, i.e. it

models the geometric spreading and material damping in the composite. The second

approach is to include the physical knowledge of the guided waves by modifications

to the kernel of the Gaussian process.

The models were tested on an energy-based feature extracted from signals of surface

displacement measurements on a carbon-fibre-reinforced-polymer (CFRP) plate,

taken using a scanning-laser-doppler-vibrometer (SLDV). CFRP weave represents

one of the most complex materials to model guided wave propagation; for example,

it strongly results in CMC, and has lines of symmetry for angular-dependent propa-

gation. The use of CFRP is becoming more popular in aerospace and automotive
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applications [130, 131] and have potential future use in wind turbine blades [132].

For these reasons, CFRP was the chosen material for this work, as enhancing the

understanding of guided waves for damage detection in fibre-weave materials is

crucial.

5.1 Experiment

The physical setup of the experiment is shown in Figure 5.1, highlighting the

orientation of the plate, where the fibre directions are shown by the coordinates

arrows on the front view diagram. Wave propagation directions of 0°, 90°, -90° and

180° are termed as propagation along the fibres, and other directions as through

the fibres. Guided waves were initiated in a CFRP plate by excitation of a 20mm

diameter piezo-electric transducer (PZT) at the centre of the plate, as shown in

Figure 5.1. The PZT was actuated with a 300kHz, five-cycle, Hanning-windowed

sine wave, allowing multiple wave modes to be excited. A Polytec PSV-400 scanning

laser vibrometer was used to measure the out-of-plane surface displacement of the

induced wave-packets on the opposite side to the PZT, where the recording state was

synchronised with the start of the excitation signal. Each wave-packet was then fed

through a simple feature-extraction process to generate a two-dimensional feature-

space map of the maximum of the Hilbert envelope, hm, over the surface of the plate.

The Hilbert envelope is taken as the magnitude of the complex Hilbert transform

of the full signal. The maximum value of this envelope represents the maximum

amplitude of the energy of the wave packet. Specific details of the experimental

setup are shown in Table 5.1.

The results of the experiment showing the raw data feature-space map of hm over

the surface of the plate can be seen in Figure 5.2. One can clearly see the effect of

the fibres on the amplitude of the first asymmetric mode; thanks to the phenomena

of continuous mode conversion, the amplitude is greater when propagating along

the fibres compared to when propagating across the fibres. There appears to be a

‘band’ of higher-energy waves at a propagation angle of 20°, which may be due to

imperfections in the layup of the material, however, destructive testing and inspection
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Plate dimensions 300 mm× 300 mm× 1 mm

Layup [90/0/90]s, Epoxy matrix

PZT Location 150 mm× 150 mm

Central frequency 300kHz

Signal record length 4ms

Pre-trigger 400µs

No. scan points 8,314

No. of averages 200

Table 5.1: Details of experimental setup used to acquire feature-space data.

of the plate revealed no major inhomogeneities. After inspection of the experimental

area, the authors believe this to be an artefact resulting from strong reflections

of light by a nearby object, which interfered with the laser measurement. This

experimental procedure, though simple, is pivotal for the advanced tools in order to

aid ‘black-box’ data-based ML tools for development of an informed, data-driven

(IDD) model.

Figure 5.1: Diagram showing the experimental setup and location of PZT on the

300 mm× 300 mm CFRP plate. The left diagram shows as top-down view of the

setup, and the right a front-on view. The redd dashed line shows the area captured

using the SLDV, which was done up to the location of the bolts which held the plate

in place.
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Figure 5.2: Results of feature-space map of hm over the surface of the plate from

raw data, represented in log10 scale for viewing purposes.

5.2 One-dimensional attenuation model

Initially, a one-dimensional attenuation model is considered, modelled using a

Bayesian linear regression (BLR). A full description of BLR is given in Section 4.1.

Several basis expansions of propagation distance ρ were tested in combination, the

full model is shown in equation (5.1). These basis expansions correspond to dif-

ferent attenuation mechanisms associated with damping, geometric spreading and

a combination of the two; these models are shown in Table 5.2. The parameters

(Φ = φ1, φ2, φ3) are switching parameters (φn = 0, 1), which control the combination

of functions shown in equation (5.2b). The initial model of the any energy based

feature A, as a function of the propagation distance ρ, is defined as,

A(ρ) = βφ11 (exp(−β2ρ))φ2
(
ρ−1/2

)φ3
(5.1)

The model shown above is not a linear form that can be represented by equation

(4.2); however, by taking the natural log of equation (5.1) a linear-in-the-parameters

model can be developed;, this is shown below in equation (5.2b),
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f(ρ) = ln(A(ρ)) = (ln(β1)) · φ1 − (β2ρ) · φ2 − 1/2(ln(ρ)) · φ3 (5.2a)

f(ρ) = ln(A(ρ)) = w1 · φ1 − (w2ρ) · φ2 − 1/2(ln(ρ)) · φ3 (5.2b)

The values of β1 and β2 can be recovered by exponentiating w1 and w2 respectively.

Model Basis Linear Form Basis Parameters

A1(ρ) = β1 exp(−β2ρ) f(ρ) = ln(β1)− β2ρ Φ1 = [1, 1, 0]

A2(ρ) = β1ρ
−1/2 f(ρ) = ln(β1)− 1/2 ln(ρ) Φ2 = [1, 0, 1]

A3(ρ) = β1 exp(−β2ρ)ρ−1/2 f(ρ) = ln(β1)− β2ρ− 1/2 ln(ρ) Φ3 = [1, 1, 1]

Table 5.2: Bayesian linear regression model basis expansions

The models shown in Table 5.2 were tested for two different cases; the first is where

data are collected at points along the fibres in the weave and the second when across

the fibres. The NMSE is calculated using equation (4.21) for both the training set

and test data sets (NMSEtr and NMSEt respectively), and are shown in table 5.3.

From the values of the NMSE for both propagation orientations, it appears that the

multiplicative combination of geometric spreading and material damping is the most

promising model for the attenuation of the energy of the first antisymmetric mode

for all propagation directions in a CFRP plate.

When modelling the attenuation of the guided waves propagating through the fibres,

the 95% confidence intervals, seen in Figure 5.3, are much larger. This is also

reflected in the values for σ2 in Table 5.3. By inspection of Figure 5.3, it appears that

although the multiplicative combination of both attenuation mechanisms provides

the optimal model, for propagation directions across the fibres, further mechanisms

need to be included. As the wave propagates across the fibres, continuous mode

conversion [75,76] will provide additional mechanisms of attenuation. In contrast,

when propagating along the fibres, the wave mode is relatively uninterrupted in

comparison, and so its initial energy has a strong effect on the resulting shape.

An advantage of the method shown here is that the parameters are directly inter-

pretable; here β1 represents the product of the relative initial energy of the wave
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(a) (b)

Figure 5.3: Models of attenuation of the energy of the first antisymmetric mode

using model Φ3 for propagation directions (a) along the fibres and (b) across the

fibres. The estimated mean function is plotted with a solid red line and the 95%

confidence interval is shown with dashed red lines.

(A0 in equations (3.26) and (3.27)) and some constant α, and β2 represents the

viscoelastic attenuation coefficient (ζi in equation (3.27)). For both propagation

directions, there is a similar pattern in the estimated parameters:

� When only damping is included, there is a lower A0α product and a larger

attenuation coefficient

� When only geometric spreading is included, there is a higher A0α product

estimated than for model Φ1

� When both mechanisms are included, there is a higher A0α product estimated

than for models Φ1 and Φ2, and a lower estimated attenuation coefficient than

for model Φ1

For both propagation directions, the values of β1 are similar for both models which

include damping; however, the initial estimated energy is lower for propagation across

the fibres. As the viscoelastic damping will mostly result from material properties
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of the epoxy matrix, the ζi should remain similar for all propagation directions.

However, the A0α product increases when both attenuation mechanisms are included;

this could be because of the need for both mechanisms to be included in order for

the model of decay to encapsulate all data points from an initial starting energy.

β1 β2 σ2 σw NMSEtr NMSEt PLLi

Along fibres

Φ1 5.917 0.01983 0.1731 1.360e-04 4.724e+04 1.465e+04 1.595e+05

Φ2 12.441 0.3577 3.188e-01 3.495e+04 1.136e+04 1.100e+05

Φ3 23.834 0.01034 0.1565 1.109e-04 5.413e+04 1.669e+04 1.263e+05

Through fibres

Φ1 2.807 0.01866 0.3784 4.851e-04 4.611e+04 1.530e+04 8.259e+04

Φ2 5.340 0.5098 6.481e-01 4.107e+04 1.356e+04 4.759e+04

Φ3 12.110 0.0106 0.2996 3.041e-04 4.970e+04 1.626e+04 1.411e+05

Table 5.3: Table of results from 1D attenuation modelling using BLR; β1 & β2 are

linear-form model weight parameters, σ2 is the estimated variance of the function, σw

is the estimated variance of the weights, NMSEtr is the normalised mean squared-error

between the model and the dataset used for training, NMSEt is between the model

and the independent validation set, and PLLi is the independent log-likelihood.

As can be seen in Table 5.3, the confidence in the mean weights (which increases

as σw decreases), is similarly large for model Φ1 but shows much less confidence

for model Φ2. The confidence in the mean weights is increased again for model Φ3,

indicating that for this model, one is most certain about the parameters. However,

the confidence in the weights is decreased when modelling attenuation of propagation

across the fibres.

5.3 Two-dimensional feature-space model

So far, it has been shown how physical attenuation phenomena can be modelled via

a Bayesian linear regression along one dimension (the propagation direction). Now,

attention turns to modelling the two-dimensional input feature space. If such a plate
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were homogeneous, modelling of the features along any one direction would provide

an adequate model of the two-dimensional feature space. However, in more complex

materials – such as composites – this is no longer sufficient. Instead, the attenuation

changes with direction, and therefore the model of the space must be able to capture

changes in behaviour across the two-dimensional field. For waves propagating from a

point source, it can be helpful to think that there is a radial and angular component

to the function over the space which describes the feature of interest.

To build such a model, it is necessary to have a tool which can model data across

a two-dimensional space on the basis of observed data and which can be guided

by belief about the physical phenomena. For this purpose, a machine-learning

approach is adopted; the tool chosen for the job is a Gaussian process (GP). The

kernel used in the GP is a significant modelling choice, and modifications of these

provide structure via embedding prior belief in the model. Prior belief can also be

introduced by inclusion of a mean function m(x), although this can be considered a

more constrictive approach to imposing prior beliefs, as only residual information is

then determined by the GP.

An important characteristic of GPs is that standard stationary kernels operate based

on the Euclidean distance between two points, and so map covariances well when

using Cartesian space input. However, the physics and behaviour of guided waves is

described here using the polar coordinate system, as they are emitted from a point

source. Therefore, this attribute must be considered when utilising GPs for modelling

the feature-space of guided waves. A method of applying Gaussian processes on

a polar input space has been outlined in Section 4.2.2, where separate kernels are

applied to the angular and radial dimensions separately, before combining to generate

an overall covariance function.

5.3.1 Kernel choice and design

The kernel used in the GP is a significant modelling choice, and modifications of

these provides structure by embedding prior belief in the model. In this work, several

approaches to modelling the hm feature space over the surface of the plate are applied.

Firstly, two general nonlinear kernels are applied; the SE kernel (equation (4.13)) is
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applied to the Cartesian input space and the generic polar kernel (equation (4.18)) is

applied to the polar input space. Secondly, a non-zero mean function is included with

the generic polar kernel and then the kernel as modified to assume the prior belief

embedded via the mean function is accurate. Finally, novel kernels are introduced

which embed physical knowledge via kernel design.

General nonlinear kernels

The simplest and perhaps most obvious choice for mapping the features across a

composite plate would be to set x = {x, y}, the Cartesian coordinates of a location

on the plate. This method imposes the prior belief that the feature being modelled

across the plate will vary smoothly in a nonlinear manner with respect to the x and

y coordinate. In many senses this is the simplest model that could be chosen, it is

also the most flexible, as it imposes very little restriction on the form of the functions

that can be modelled.

However, since it is known here that the waves are generated from a point source in

the centre of the plate, and that these will propagate from that point, the behaviour

would be better modelled in a set of polar coordinates. For the general case, here

the work of Padonou and Roustant [127] is followed, and a detailed description is

provided in Section 4.2.2. The general polar kernel is defined as,

k2(x,x
′) = σ2

f

(
1 + σ2

f,rkmat(ρ, ρ
′)
) (

1 + σ2
f,akW(θ, θ′)

)
(5.3)

where σf,m and σf,a act as weights representing the influence of changes in each

dimension on a change in the output.

Since the GP is a generative model over functions, it is possible to sample realisations

of possible functions from the distribution, allowing the user to understand the type

of functions that the kernel will generate. If this is done without conditioning the

model on any data points, it is possible to see what realisations from the prior

may look like. This strategy can be helpful, as it allows the user to understand

heuristically the type of functions that the kernel they have chosen will generate.

In this case, it will be used to show how the models can generate behaviour which

appears closer to what would be expected physically a priori. Using this method, four
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Figure 5.4: Selection of four random polar space functions randomly generated from

covariance function represented in equation (5.3), with hyperparameter values of

τ = 4, l = 1 and σ2
f,m = σ2

f,a = 1.

prior realisations were generated from the polar kernel shown in equation (5.3), and

can be seen in Figure 5.4. The functions generated appear to operate separately on

each dimension ρ and θ. A key characteristic to note, is that there is no discontinuity

as θ moves through 2π to zero in the angular direction; this is as a result of choosing

the Wendland-C2 function kernel (equations (4.15) and (4.16)). Further discussions

on the characteristics of such a kernel can be found in [127]. For this work, the

polar kernel will serve as an alternate model where there is very little restriction

placed on the functions that can be modelled. It can also be considered to embed

minimal knowledge of the physics of the process except that the function can be

well represented in a polar coordinate space. The knowledge this kernel embeds is
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periodicity on θ, which for systems described by polar coordinates is inherent in their

physics.

Mean function modelling of attenuation

From this point onwards, the model learning will make use of prior knowledge of

guided-wave propagation. This informed model learning will begin by considering

how a mean function m(x) can be used to introduce a physical basis to the model.

There is no restriction on this mean function, given that it is known. Mathematically,

it is trivial to include the mean function (if known), by simply subtracting the

expected mean function from the target data and training on the residuals,

ỹ = y −m(x) (5.4)

This can be interpreted as learning the difference or discrepancy between this chosen

mean function and the generating function of the data. In this scenario, the mean

function m(x) = w>φ(x) is the model described in Section 5.2, the one-dimensional

Bayesian linear regression model. Since the weights of the model vary depending

on the propagation direction with respect to fibre orientation, it is necessary to

simultaneously learn the distribution of w – the weights of the BLR – and the

hyperparameters of the GP. Therefore, the linearised form shown in equation (5.2b)

is used, and the target data become,

ỹ = ln(y)− ln(ρ−1/2)−m(x) (5.5)

and the step for training and finding expected values of the mean and variance

can be followed as in [125]. This solution can be interpreted as finding the mean

one-dimensional behaviour across all propagation directions. This mean behaviour is

then compensated by the GP to fit the observed data and learn the latent function

which describes it.

Functional priors via kernel design

An alternative to using the mean function to include what is known about guided

waves, is to modify the kernel. It is possible to restrict the family of functions a
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priori to generate only functions which are plausible, given physical understanding

of the guided waves. This restriction is the key advantage of the proposed Bayesian

approaches presented here.

All of the models which are generated from this point onwards will consider the

propagation of the guided waves to occur in a polar coordinate system, where the

source is located at radius ρ = 0, i.e. the source is at the origin. These kernels

will build upon the work of [127], by also incorporating prior belief about the

physical form of the guided-wave feature space. Since the kernel which defines

the process will be composed of the ANOVA combination of the radial component

and the angular component, it is possible to consider how to modify each of these

components individually. In other words, it will be shown how expected radial and

angular behaviour can be embedded in isolation from the other. This separation of

dimensions in modelling is especially useful, since varying amounts of information

may be available for each of these.

Imposing rotational symmetry in the feature space It can be seen in Fig-

ure 5.2, that the energy of the wave exhibits a symmetry on the plate. Physically,

this makes sense, given what is known about the symmetry in the orientation of the

fibres in the lay-up; it is therefore desirable to exploit this in the kernel. equation

(5.6) was designed to model this symmetric behaviour. The strictly-periodic kernel

is applied to the angular dimension, where n can be altered to include the number

of axes of symmetry,

ksym(θ, θ′) = (α1 + α2 cos(2nd2)) , n ≥ 1 (5.6)

d2 = arccos(cos(θ − θ′)) is the geodesic distance, n the number of symmetry axes

required, α1 is the offset term, and α2 the amplitude hyperparameter.

Sample functions from this prior are shown in Figure 5.5. These samples show

the strict periodicity that this kernel imposes. Notably, this form of kernel does

not enforce the phase of the function. Instead, as data are observed, the posterior

distribution — or function that is learnt — adapts to the phase information in the
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Figure 5.5: Samples of random prior functions for the angular kernel designs, over

a full circle range, for (a) strictly-periodic kernel (equation (5.6)), (b) squared-

exponential kernel (equation (4.13)), (c) multiplied combination and (d) additive

combination of the kernels (equation (5.7)). Each line represents a different random

function drawn from these priors.

data. This adaptability is a benefit, since enforcing phase within the kernel may lead

to issues if the fibre orientation is not known exactly.

The primary issue with the strictly-periodic kernel is the assumption of consistent rate

of variation in the function with θ, which may make equation (5.6) too restrictive to

model accurately the guided-wave feature space. It is clear to see in Figure 5.2, that

the energy of the wave decays rapidly in the transition between propagation along
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fibres and across fibres, as the angle θ varies. Therefore, flexibility was introduced by

an additive combination of the strictly-periodic kernel and the squared-exponential

kernel previously shown in equation (4.13).

As well as allowing a varying rate of change with θ, a combined kernel also reduces

some of the restrictions that are imposed with the pure strictly-periodic kernel of

equation (5.6). An additive combination was used as opposed to multiplicative, as

this does not generate large variations in amplitude between period peaks and allows

for the kernel to capture the symmetry, while still allowing some variation to take

place. The additive combination can be considered an ‘OR’ operation [133], the

resulting kernel applied to the angular dimension is given by,

kang(θ, θ
′) = σ2

f,sqe exp

(
−d

2
2

l21

)
+ σ2

f,sym (α1 + α2 cos (nd2)) (5.7)

An important property of the resulting kernel is that it is stationary, as it is only

proportional to the distance between points, rather than their values. This fact

means that the kernel is unaffected by translation or rotation of the coordinates, a

key advantage when modelling in the angular dimension.

Kernel forms for radial attenuation As discussed in Section 3.4, two known

and documented attenuation mechanisms can be modelled; these are shown in

equations (3.26) and (3.27). Attenuation effects resulting from viscoelastic damping

of a material can be embedded into the priors by the use of an exponential decay

(ED) kernel, where propagation distance represented by the vector ρ,

ked(ρ, ρ′) = exp (−ρ`) · exp
(
−ρ′>`

)
(5.8)

Attenuation effects from geometric spreading can be modelled by the use of a

polynomial kernel (equation (5.9)), where p = −1/2, in order to represent equation

(3.26).

kpol(ρ, ρ
′) = (ρ · ρ′>)p (5.9)

Prior draws from both the ED and polynomial kernels can be seen in Figures

5.6(a) and 5.6(b) respectively. Both kernel functions embed decay with respect to
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Figure 5.6: Samples of random prior functions for the radial-kernel designs, for (a)

exponential decay kernel (equation (5.8)), (b) square-root decay (equation (5.9)), (c)

multiplicative combination (equation (5.10)) and (d) additive combination of the

kernels. Each line represents a different random function drawn from these priors.

propagation distance ρ, but each model shows a different mechanism for this decay.

The kernel chosen to represent decay from geometric spreading will always tend to

infinity as ρ→ 0 and this limitation should be considered.

To illustrate the use of these kernels, multiplicative and additive combination of

these two attenuation mechanism kernels can be seen in Figures 5.6(c) and 5.6(d)

respectively. A multiplicative combination of the attenuation mechanisms aligns

more closely with physical understanding and the discussion presented in [120], since
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the kernels operate to reduce the energy in the wave simultaneously and do not

subtract energy, but rather reduce it multiplicatively. As such, a kernel to model

attenuation along the radial direction is proposed as the multiplicative combination

of the exponential decay (equation (5.8)) and polynomial (equation (5.9)) kernels;

thus,

krad(ρ, ρ′) = σ2
f,r(ρ · ρ′>)p ·

(
exp (−ρ`2) · exp

(
−ρ′>`2

))
(5.10)

Combined two-dimensional kernel It has been shown how understanding of

the physical processes involved in the attenuation of guided waves can be used to

impose prior belief in the GP machine learning model along each of the radial and

angular dimensions. It remains to explain how these may be combined to form a

meaningful prior over the two-dimensional feature space.

Following closely the approach of [127], for the general nonlinear kernel in polar

coordinates, the two kernels described in equations (5.7) and (5.10) will be combined

using an ANOVA approach,

k3(x,x
′) =

(
1 + σ2

f,akang(θ, θ
′)
) (

1 + σ2
f,rkrad(ρ, ρ′)

)
(5.11)

where x = {{θ, ρ}1, ..., {θ, ρ}m}.

Again, it is possible to draw samples of the functions, now in the two-dimensional

space, to visualise the restrictions which have been placed on the functions that can

be modelled. Four prior draws from a GP with zero mean and the covariance defined

in equation (5.11) can be seen in Figure 5.7. It should be noted at this point, that

the input units and output values are non-dimensional, and the figures showcase key

characteristics imposed by the kernels, by displaying functions that are samples from

an arbitrary prior. It is reassuring that these prior draws match, at least visually,

the behaviour that would be expected in the data being modelled. This type of prior

predictive checking can be invaluable for confirming that the assumptions built into

the model are reasonable. A key feature that can be seen is the symmetry that is

introduced in the angular dimension without requiring a fixed phase to be specified.

It can also be seen that slight variations from this symmetry are possible via the

inclusion of the squared-exponential kernel in equation (5.7). The decay in the radial
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direction as a result of the kernel shown in equation (5.10), is also clearly seen. As a

result of these characteristics, it has been shown how a GP kernel can be designed in

such a way that it is applicable to modelling the attenuation of guided waves in a

two-dimensional space.

Figure 5.7: Four samples of random polar space functions, selected from 1000 random

functions generated from the covariance function represented in equation (5.11), with

hyperparameter values of Θk = {1, 10, 10, 1, 1, 1, 1, 1, 0.001}. Here the functions are

non-dimensional as the functions are samples from an arbitrary prior.

A second kernel was also tested with the same radial component as described in

equation (5.10), but with an alternative angular kernel. For this method, kang(θ, θ
′)

becomes a modified version of equation (4.16), where the geodesic distance is instead
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Figure 5.8: Prior variances over polar coordinate space from kernel E (left) and

kernel F (right), represented by equations (5.11) and (5.12) respectively. Variances

are plotted in log10-scale for viewing purposes.

defined as d2(θ, θ
′) = arccos(cos(2n(θ−θ′))), where n is again the number of symmetry

lines required. This alteration was made to still enforce symmetry, but allow a more

flexible modelling of the functions being considered in the angular dimension. This

kernel has the form,

k4(x,x
′) =

(
1 + σ2

f,akW(θ, θ′)
) (

1 + σ2
f,rkrad(ρ, ρ′)

)
(5.12)

So far, only samples from each GP have been shown. However, it is possible to

recover the distribution over the model in closed form. Since the mean function

chosen in most models is simply zero across the complete space, the prior mean is not

very informative. The prior variance, however, is of interest to consider. In Figure 5.8

the prior variances of equations (5.11) and (5.12) are shown. It is important to

remember that this is the variance in predictions made by the model before the

information from any data has been included. The variance for both of these kernels

is seen to decay as the distance from the source increases. The model will tend

towards infinity at ρ = 0 for two reasons; the kernels are non-stationary [125], and

because of the exponential decay included via equation (5.8), the function values

themselves will tend towards infinity as seen in Figure 5.7. This limitation of the

models should be considered, and care should be taken if predicting close to ρ = 0.
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However, in the experimental data used in this study the waves are generated by

means of a piezoelectric actuator. This means that the source of the guided waves is

not a point source and the models should not be used within the region covered by

the piezoelectric actuator.

5.3.2 Overview of modelling approaches

Up to this point, it has been discussed how one might construct a GP kernel which can

represent the behaviour of guided-wave attenuation. It is worth reviewing the models

which will be compared when results are shown on experimental data. Table 5.4

shows a summary of all six models which will be compared in this study.

As a baseline, model A is the archetypal Gaussian-process model, with a zero-mean

function and the use of the squared-exponential kernel operating on two inputs,

the x and y coordinates on the plate. This choice provides a benchmark, where no

knowledge of the guided-waves is included.

The second model (B) is a demonstration of the use of the polar coordinate GP

of [127]. This model also contains no specific reference to the physical mechanisms in

guided-waves, but does make use of the knowledge that the guided-waves propagate

radially from a source. The use of a polar coordinate system in this case is a sensible

choice, given the structure of the data being used. This method serves as another

benchmark demonstrating an approach which requires very little understanding of

the physical mechanisms involved in guided-wave propagation.

Model C is the first model where a specific physical process is included. In this case,

the model of wave attenuation A3(x) (Table 5.2), is used along the radial direction

as the mean function. The kernel used is the same flexible polar kernel as in model

B — that proposed in [127]. Importantly, this kernel remains flexible to influence

the model in both the radial and the angular dimensions, potentially correcting for

any unmodeled phenomena along the radial dimension in the mean function.

Model D restricts the flexibility of Model C by removing the dependence of the

kernel on the radial dimension. The GP used here relies on the mean function to

capture all of the radial behaviour via A3(x), and the covariance to capture all the
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variation in the angular dimension. This GP model form implies that the data can

be generated by some function, offset from the mean, which is only dependent upon

the angle being considered. This model should be considered with care, since it is

highly restrictive.

Model E removes the use of the mean function; instead the knowledge of the guided

waves is embedded directly in the kernel as a functional prior. This model enforces

periodicity in the angular dimension and embeds the physical attenuation models in

the radial direction by means of the kernel described in equation (5.11). Model F is

very similar to Model E, but with the kernel defined as in equation (5.12), with the

modification to the angular component described previously.

Model Mean m(x) Covariance k(x,x′) Input space

A 0 kSQE(x,x′) Cartesian

B 0 k2(x,x
′) Polar

C A3(ρ) k2(x,x
′) Polar

D A3(ρ) kW(θ, θ′) Polar

E 0 k3(x,x
′) Polar

F 0 k4(x,x
′) Polar

Table 5.4: Table of GP strategies tested for feature-space mapping, showing the

properties and characteristics of each model.

?? provides a reference in which each of these kernel forms can be compared and in

which the hyperparameters are listed. The reader may find this a useful companion

if planning to reproduce the methodology from this work.

5.3.3 Results

In this section, the various approaches to modelling the two-dimensional feature space

summarised in Table 5.4 will be compared. Models are compared visually and based

upon a number of metrics as described in Section 4.2.4. The quantitative assessment

of the models is discussed in Section 5.3.4. The first of these metrics is the log

marginal likelihood LML, which is a measure of how well the model fits the training
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data. Next, the predictive log likelihood of an independent test set, considered

in the case where every prediction is assumed independent PLLi, and when the

predictions are assumed correlated PLLc. Finally, the normalised mean-squared

error NMSE of the mean fit to the independent test set is also computed. This final

metric should be treated with care, since it does not represent the quality of the

uncertainty quantification in the model fit. The most rigorous test of these models

can be considered to be the correlated predictive log likelihood which captures the

full correlation of the predictive model, including the mean, variance and covariance

predictions. For all graphical representations shown, the data are presented in a

log10 scale, but the models were all trained directly on the values of hm. Therefore,

the units for the figures are in log10(mm).

Uninformed Gaussian-process models

Figure 5.9 shows the mean predictions of the two uninformed GP models (A and B

in Table 5.4). It can be clearly seen, that even without specific prior knowledge, the

use of polar coordinate system (Model B), offers a significant improvement over the

Cartesian approach (Model A). Model A appears to be an ‘out-of-focus’ copy of the

original data, whereas Model B has generated a smoother function, which is more

likely to represent the physical mechanisms by which the wave operates. Even this

simple consideration of the structure of the data being modelled leads to far more

consistent results from the model. The quality of the fits for each of these models is

compared qualitatively in Table 5.5, along with the other GP models.

Since the wave attenuation data naturally follow (approximately), a polar behaviour,

one could envisage this problem as the GP trying to learn the mapping of Cartesian

to polar spaces as well as the mapping from the polar to the feature-space. This two-

stage mapping is being attempted with a single kernel and significantly complicates

the modelling problem, thus, it is likely to underperform a model specified in the

correct space. Further to this, it is concerning that the Cartesian model may have

attempted to model some of the structure in the measurement noise. This is again a

topic of further investigation for the future.

However, as can be seen in Figure 5.9(b), by learning the model via an uninformed
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kernel operating on the polar coordinates, a more believable model of the feature

space is learnt. These results show that, even when implementing machine learning

methods with no direct embedding of the physical process, the space in which the

function operates must still be taken into account.

(a) (b)

Figure 5.9: Results of uninformed ‘black-box’ GPs; (a) Model A and (b) Model B.

The units are in log10(mm).

Guided wave mean functions

Models C and D in Table 5.4 show the two approaches where mean-function behaviour

is included in the model to capture the expected behaviour of the guided waves.

Both of these models make use of the third one-dimensional attenuation model

from Section 5.2, which includes both geometric spreading and viscoelastic damping.

Model C couples this mean behaviour in the radial direction with the flexible polar

kernel used in Model B; this allows the GP to learn functional behaviour in both

the radial and angular dimensions. Model D is more restrictive and it is assumed

that the mean function captures all of the radial behaviour and the GP only models

functional behaviour in the angular dimension.
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The resulting mean predictions on an independent test set for each of these models

are shown in Figure 5.10. Considering the prediction shown in Figure 5.10(a), a

‘banding’ effect is seen as a circular structure centred on the origin. This ‘banding’ is

most prominent in areas of propagation across the fibres, and less prominent in the

central region, around the wave source. This banding can be explained by considering

how the mean function is included in the model. The mean function m(x) is likely to

fit the mean of the ρ dimension well as the two dominant attenuation mechanisms are

captured in the function. The inclusion of the mean function in a Gaussian process

can be imagined as subtracting this function from the relevant dataset. When the

mean function captures most of the behaviour, only unstructured data should be

left to be modelled by the GP covariance, i.e. the noise in the system. In the results

shown here, the mean function fits the data well and the unstructured data along

the radial ρ dimension is still modelled in equation (4.14). The GP can still attempt

to find structure in unstructured data. An interesting note from this result is that, if

there were functional information in the data still to be inferred, this would be picked

up by the covariance kernel. In this case, it is believed that the banding artefact

may be a result of the GP modelling structure in the noise on this realisation of the

measurement; it is expected that if further training data were included, this effect

would diminish.

To avoid this issue, and assuming that the mean function models well the radial

attenuation behaviour, Model D does not include the radial component in its covari-

ance kernel, so it has covariance given by equation (4.15). The results of training the

model with exclusion of the radial kernel can be seen in Figure 5.10(b), in which it

can be seen that the banding artefacts are no longer evident. However, the model also

appears to lose accuracy as the value of hm attenuates much more quickly away from

the source than is seen in Figure 5.2. The loss of the banding artefacts demonstrates

that it is the inclusion of this radial dimension in the kernel which leads to this

phenomenon. These models will also be compared quantitatively once all models

have been shown qualitatively.
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(a) (b)

Figure 5.10: Results of informed model generated using generic kernels and inclusion

of a mean function in the GP, with (a) Model C, the full polar kernel, and (b) Model

D, the GP only modelling angular behaviour. The units are in log10(mm).

Kernels capturing guided-wave behaviour

The final two models (E and F), attempt to embed understanding of the guided-waves

by directly modifying the prior belief in the model via kernel design.

The estimated mean predictions on an independent test set for each of these models

are shown in Figures 5.11(a) and 5.11(b). It is clear in these results, how even the

small changes between the two kernels can significantly impact the function space

that is learnt. Comparatively, Model E (Figure 5.11(a)) leads to a much ‘smoother’

result in comparison to Model F (Figure 5.11(b)). Fewer high-frequency components

are seen in the angular dimension, leading to this appearance. This difference is

because of the differences in the prior belief imposed in the angular kernels for each

of these models.

An interesting result seen here, is the spreading of energy away from the fibre

orientation. This spreading could be physically explained by acknowledging the

secondary-guiding characteristics of the fibres themselves. As the waves travel along
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(a) (b)

Figure 5.11: Results of informed model generation using non-generic kernels, here

indicating the expected mean function over the entire space when modelling with (a)

Model E and (b) Model F. The units are in log10(mm).

the fibres independently, they will lose some energy into adjacent media (i.e. the

epoxy matrix). This mechanism will manifest itself as energy spreading in a different

direction to the fibre orientation.

Visually, Model E appears to allow the capture of the spreading of the wave energy

better. In Figure 5.11(b) it appears that the decay of energy is not captured well and

that energy is only propagating along the fibres, not across. The periodicity enforced

in Model F is obvious to see in the significantly lower value ‘band’ at approximately

θ = {20◦, 110◦, 200◦, 290◦}. The kernel used in Model E offers greater flexibility in

symmetry, as a result of the additive combination of the SE kernel along the angular

dimension. For both kernels, the predictive mean has less variation in the function

modelling wave propagation along the fibres, and is a less smooth function when

propagating through the fibres. This difference could be improved by increasing the

signal-to-noise ratio of the experiment. This alteration will help model areas of high

attenuation (i.e. low energy); since the energy of the wave decreases significantly

away from the fibre orientation, the value of hm may not exceed the noise floor.
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Currently, in regions with large ρ, the data become unstructured and it is difficult to

infer the function with as much confidence.

(a) (b)

Figure 5.12: Results of model generation using informed kernels, here indicating the

expected variance over the entire space when modelling with (a) Model E and (b)

Model F.

For both models E and F, the estimated variance over the surface generates similar

results; this can be seen in Figures 5.12(a) and 5.12(b). Both models see a sharp

increase in variance towards the centre; this can be explained by examining the

one-dimensional attenuation kernel proposed in equation (5.10). The polynomial-

kernel equation (5.10) included in these models will result in functions that tend

to infinity with ρ→ 0. This kernel is used in multiplicative combination with the

exponential-decay kernel of equation (5.8), resulting in functions with the same

characteristic. The second kernel design results in a slight increase in variance at

approximately θ = {50◦, 140◦, 230◦, 320◦}. From physical interpretation of how fibres

affect the energy of the waves, the variance should not increase at this orientation if

not also at θ = {40◦, 130◦, etc.}. For both kernel designs, there also appears to be a

greater variance in the energy of the wave when propagating along the fibres; this
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is likely a result of the short range of θ in which the wave has directly propagated

away from the source along a single fibre.

5.3.4 Quantification of model performance

Until now, the modelling approaches for guided-wave features have been compared in

a qualitative manner. It has been discussed how certain models give rise to desirable

characteristics in the latent functions being learnt, which may obscure the physical

behaviour.

Model m(x) k(x,x′) LML PLLi PLLc NMSE

A 0 kSQE({x, y}, {x, y}′) 24,301 3,745.1 3,770.9 4.424

B 0 k2({ρ, θ}, {ρ, θ}′) 50,012 9,964.4 9,975.40 4.0567

C A3(ρ) k2({ρ, θ}, {ρ, θ}′) 19,872 13,047.7 4,221.4 1,037.7

D A3(ρ) kW(θ, θ′) 14,950 11,176.6 3,326.9 29.9

E 0 k3({ρ, θ}, {ρ, θ}′) 96,952 21,013.6 22,727.4 9.9422

F 0 k4({ρ, θ}, {ρ, θ}′) 75,682 16,274.9 16,291.3 9.9133

Table 5.5: Table of quantitative assessment values for 2D GP modelling strategies

tested: the log-marginal likelihood (LML), independent predictive log likelihood

(PLLi), co-dependent predictive log likelihood (PLLc), and normalised mean-square

error (NMSE). Best values for each metric are highlighted in bold.

Table 5.5 shows the results of the GP models tested against the metrics previously

described. These metrics allow insight into the accuracy and validity of the models,

and also provide an opportunity to discuss what might be meant by a “good model”.

It is important to consider that any given model is only as good as what it will

ultimately be used for. In the context of engineering, specifically in NDE and

SHM, these models will be used to make operational decisions about the system.

As such, it should be considered whether the end user is most interested in the

point-wise prediction accuracy, in which case the NMSE is the most appropriate

metric. If instead, the models will be carried forward into a risk-driven assessment,

then capturing the full uncertainty in the model is important and the correlated

predictive log likelihood will be the most appropriate metric. In this work, a number
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of possible assessment criteria are presented; the onus is on the end user to choose the

model which best captures the characteristics of the data/function which are most

important to them. It is the opinion of the author that the most robust measure of

how well the functional behaviour of the feature space is captured, is the correlated

predictive log likelihood PLLc.

Turning attention to specific results from these experiments, the results for each of

the six models under each metric are shown in Table 5.5. It can be seen that models

A and B result in the lowest NMSE scores, in other words that their point-wise

predictions are closest to the observed test data. This result may be expected

since they are the most flexible models. Interestingly, Model B, the informed polar

coordinate model, also recovers the highest independent predictive log likelihood.

Interpreting this result; if one wants to predict only the behaviour at single points

on the plate and is not concerned with the correlation between these predictions,

then this is the optimal model (from those tested). It is also seen in the log marginal

likelihood LML that Model B captures the behaviour in the training data much

better than Model A.

The inclusion of the guided-wave attenuation models as mean functions in the GP

(models C and D), appears not to produce desirable effects. These models perform

worst in their representation of the training data LML and their point-wise prediction

capability NMSE. For this dataset, this is compelling evidence that the inclusion

of the guided-wave attenuation mechanisms via a mean function does not lead to a

useful model. As discussed, the models may be finding too much structure in the noise

of the data used for training, especially Model C. This hypothesis is evident in the

very high NMSE score, which would indicate that the model performs considerably

worse than taking the mean of the prediction data. However, it is also important to

note the exceptionally large NMSE for Model C (representing an error of ∼1038%),

which is a result of the estimated mean function resulting in a ’singularity’ towards

the centre of the plate; m(x)→∞ as ρ→ 0.

Finally, considering models E and F, where the knowledge of the guided waves is

used to modify the prior belief in the model via the covariance kernel; both of these

models perform very well when considering their ability to model the training data
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assessed through the LML. When examining their performance on the independent

test set, it is seen that the NMSE score is around 9% compared to the 4% of models

A and B; this, along with their poor independent predictive log likelihoods PLLi

are indicators that the point-wise predictions from these models are not as good

as models A and B. However, in terms of capturing the complete function space,

they far exceed all the other modelling strategies. These approaches appear to best

capture the underlying functional behaviour of the guided-wave attenuation. For

this reason, these models can be considered to be the most suitable for de-noising or

spatially up-sampling the data. These two approaches may also be considered the

most robust methodologies for modelling the guided-wave behaviour not currently

described by governing equations, e.g. outlying behaviour. This advantage has been

achieved via incorporation of the physical mechanisms driving the attenuation in the

prior specification of the model, via modification of the covariance kernel.

The results from this dataset and model would support the use of Model E for

modelling the feature-space of hm for a guided wave in a CFRP plate. However,

when using this strategy, users should consider all models and the system being

modelled, as well as the level of physical knowledge that is currently available for

said system.

5.4 Chapter Summary

This chapter has presented a methodology for modelling the feature-space of guided-

wave propagation in fibre-composite materials using a physics-informed data-driven

learner. Initial analysis on the model forms was done by modelling a one-dimensional

attenuation model in directions along and across the fibres, the results of which

directly influenced the design of the two-dimensional models. The methodology

was presented by modelling an energy-based feature, with the models and kernels

designed using knowledge of attenuation mechanisms, with varying levels of prior

knowledge embedded into the strategy. Based on the probabilistic metrics, the results

indicate that modellng the feature-space using a Gaussian process with physical

knowledge embedded into the kernels is a promising method. The advantages of
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using such a method include the models being more extrapolable and generalisable.

Though the method was presented on experimental data, it could also be applied to

data collected from other methods such as simulation or finite-difference models.
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6

Probabilistic Wave Mode

Decomposition and Localisation

As the wavelength of ultrasonic guided waves is small, using them for an SHM or NDE

strategy would allow one to move up Rytter’s hierarchy [1, 2], going from damage

detection to assessing location or extent [53]. As discussed in Section 2.4, when Lamb

waves interact with damage, they will reflect and scatter [134], causing additional

waves to propagate from the damage location. Therefore, any wave captured by

a sensor at a given location on a plate with damage, will contain information on

the waves directly received from the actuation source, here named nominal waves,

and any reflections or conversions that are caused by the presence of damage. The

received signal will be a superposition of the nominal waves – of which there will be

multiple modes – and reflected waves. By decomposing this multi-mode signal into

the nominal waves at three given propagation distances, a signal can be constructed

which contains only the contents of the signal from reflections. The difference in

arrival times of these reflections can be used, along with known wave velocities, to

determine the location of the source of the scattering.

Here, a method is proposed, which utilises prior knowledge of the nominal symmetric

and antisymmetric modes to obtain reflection signals at a sensor location and use

79
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this to triangulate for the source of reflection. Lamb waves were simulated in an

isotropic plate using the local interaction simulation approach (LISA) [69, 70], for

an undamaged plate and a damaged plate. The choice of simulating an isotropic

material using LISA was made for several reasons; firstly, as discussed in Section 2.2,

LISA has the capability to model complex multi-mode interactions, which presents

similar issues for decomposition as some of the unique phenomena in composites.

Additionally, the use of an isotropic material creates a simpler approach to the

triangulation step by removing the angle-dependent velocity, and this particular step

is not the novel contribution of the work. Therefore, using a LISA simulation to model

complex multi-mode wave propagation is a suitable method of presenting the overall

methodology of probabilistic multi-mode decomposition for damage localisation.

In order to obtain the individual nominal signals of a Lamb wave as it propagates

through space, first a full-field multi-mode separation technique was applied, which

utilises a forward-backward, two-dimensional Fourier transform (2DFT) method [118]

and dispersion-curve information. The simulation is then used to obtain several

‘sensor’ signals at various locations over the plate, which are treated as single-

source signals. These decomposed signals are then used to represent the expected

nominal wave shape at a given location and are used as the basis for decomposing

an individual signal into the nominal and residual signals. The reflected waves are

contained in the residual signal, determination of the onset of which, gives the time

of arrival of the reflection at the sensor. Various combinations of three single-source

signals are used to triangulate the location of the reflection source. By using this

methodology, it is shown here how damage location in a plate can be determined

using a computationally-efficient strategy, and simple equipment.

A Bayesian approach is used for the single-source decomposition stage, which gives a

distribution of solutions, and the mean is used as the solution. This probabilistic

approach gives a number of advantages:

� The predicted distribution of possible signals allows for improved analysis of

residual signals.

� Uncertainty quantification is done at an early stage of the localisation procedure

and can be propagated through to the determined location.
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� The results produce inherent parametric features which are indicative of energy-

based features of UGWs.

� Likelihood estimates can be given to assess the quality of the decomposed

signals.

The novelty of the method shown here, in comparison to previous methods is twofold:

the determination of a nominal-wave dictionary, and the probabilistic approach

to the single-source decomposition. The nominal-wave dictionary approach allows

the method to be applied to materials where accurate analytical models cannot be

formed, such as fibre-composite materials. Previous single-source decomposition

strategies rely on a full-field analytical model of the waves as they propagate in

a known material, limiting applicability to relatively-simple materials (the most

complex being layered composites) and known material properties. The strategy

presented in this paper requires only surface displacement along a single propagation

path and so can be readily used in analytical, numerical or experimental regimes.

The probabilistic approach inherently allows for health-monitoring frameworks to be

applied during the localisation procedure; such as, novelty detection and uncertainty

quantification. As one aim of the method is for applicability to complex materials,

it is also useful to quantify uncertainty in the signal to determine whether residual

signals are from additional waves, rather than more complex phenomena such as

continuous mode conversion [75,76].

The overall steps of the work presented here are as follows:

a) Using LISA, simulate propagation of a Lamb wave in a plate under damage-free

conditions, giving a known wave field at all points on the surface.

b) Reduce this response data to a subset containing only data along a single

propagation direction and use this to determine a ‘dictionary’ of individual

wave modes at known propagation distances.

c) Simulate propagation of a Lamb wave in an identical plate under a known

damage condition.

d) Extract from this full-field wave data, a subset of single-source signals at known

locations.
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e) Using a Bayesian linear regression (BLR), decomposition technique, determine

the predicted nominal waves at the single-source signal location.

f) Assess the quality of the decomposed signal and determine the residual signal

which contains reflected waves.

g) Use the time of arrival of reflected waves with known wave speeds to triangulate

the location of the reflection source: i.e. the damage.

This chapter begins by outlining the multi-stage localisation procedure methodol-

ogy and each stage is described in further detail. The multi-mode decomposition

procedure is then shown, along with results of the Bayesian decomposition of the

damaged-plate wave signals; discussion is made on the confidence of the decomposed

signal, as well as the parametric features obtained. In Section 6.3, the localisation

procedure is outlined and Section 6.3.1 shows the results of the one-dimensional

localisation to demonstrate the concept of reflection-based localisation. The results

of the two-dimensional localisation procedure using the full methodology for various

sensor configurations are then shown in Section 6.3.2. The chapter finishes by dis-

cussing the results shown and the accuracy of the method, and concluding with how

the method leads onto the following chapter.

6.1 Methodology

The overall methodology for the localisation technique presented here is shown in the

flowchart in Figure 6.1. The first key process comprises a full-field decomposition,

which uses the surface displacement data along the one-dimensional propagation

path of the wave. Data for this stage can be collected from either simulation or

experiment, the latter using a scanning-laser doppler vibrometer (SLDV). The second

key process is the single-source decomposition, meaning decomposing a signal from

one location, such as the voltage reading of a piezoelectric transducer. Section 6.1.3

begins here by explaining the details of the full-field multi-mode separation, which

uses a forward-backward two-dimensional Fourier transform approach of masking the

experimentally-determined dispersion curves. This stage produces a nominal-wave

dictionary which provides the expected signal of individual wave modes for a given
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propagation distance. Section 6.1.4 details the single-source multi-mode separation

method, which uses Bayesian linear regression (BLR) to attain a probabilistic

distribution of the expected waves. Finally, Section 6.1.5 explains the triangulation

procedure, and how the times of arrival of the reflected waves are determined using

the Akaike Information Criterion (AIC).

Figure 6.1: Localisation methodology.

6.1.1 LISA Simulation

For the work in this chapter, guided waves were simulated using the local interaction

simulation approach (Section 3.6), as this captures the multi-mode wave signals

well. Lamb waves were simulated in an aluminium plate, the details of which can

be found in Table 6.1. First, a wave-field was simulated in an undamaged plate,

then the simulation was repeated with a 1mm square, half-thickness notch at x = 75

mm, y = 150 mm. The choice of using a square notch, as opposed to a more

physically-common circular notch, is the relatively large cell width in comparison

to the wavelength, and so in the cell-width scale, a smooth shape is not possible.
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The location of the notch was chosen based on allowing analysis of the wave in

propagation directions collinear with the source and at various reflection angles. By

having the damage in a propagation path directly along cell edges from the source,

this allows both more and less complex simulation interaction. For all simulations,

the actuation source is a 20mm diameter piezo-electric transducer placed at the

centre of the plate, with a 1MHz, five-cycle, Hanning-windowed sine wave. This

source is represented using a linear systems model [70]. The results of the damaged

and undamaged plate simulations can be seen in Figure 6.2.

Material Aluminium

Density, ρ 2710 kg/m3

Longitudinal sound speed, cL 6420 m/s

Transverse sound speed, cT 3040 m/s

Width x Length 300 mm× 300 mm

Plate thickness 1 mm

Cell dimension, ε 0.25 mm

Time step, τ 0.01496 µs

Table 6.1: Properties of Lamb wave in plate simulation performed using LISA

approach.

Figure 6.2 shows how the LISA simulation accurately models the effect of damage on

the wave propagation, as the reflections of the A0 mode can be clearly seen. It can

also be seen how the boundaries reflect the waves; this is an important consideration

in the method, as this can have effects on the technique, as will be discussed later.

6.1.2 Data sources

The aim of this subsection is to detail the source of the data used in this work at each

stage of the methodology. All data used here are taken from the LISA simulations

described in Section 6.1.1. The simulation provides the full wave-field information

for all points on the surface of the plate, then data are extracted at each stage to

represent the minimum data required for this stage. For the full-field multi-mode
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(a) (b)

Figure 6.2: Surface displacement results of LISA simulation for: (a) an undamaged

plate and (b) a damaged plate (on which the location of damage is indicated by the

black cross), 35µs from the beginning of the actuation signal. Dimensions are shifted

to place the actuation source at the origin.

separation stage, surface displacement is taken from the undamaged plate simulation

at regularly spaced intervals of 0.25 mm along the propagation path -90° from the

origin (refer to Figure 6.3). This subset gives full-field propagation data of the wave

as it travels along one direction. For the single-source decomposition, the ‘sensor

signals’ are the surface displacements taken from the damage-state simulation at

single points. These data are referred to as ‘measured signals’, as they represent

what would be recorded using PZT sensors in application. Figure 6.3 shows the

locations of the sensor signals on the plate simulation outlined in Section 6.1.1.

The sensor locations were chosen to give a variety of propagation and reflection

angles, but not to be too close to the edge of the plates, as boundary reflections

will interfere with the signal. For the purposes of sensor location description, the

direction of the path between the actuation source and the damage is herein referred

to as the actuator-damage direction, and the direction of the path between a sensor

and the actuator is the incident direction of that sensor. The angle between these
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two directions is referred to as the reflection-incident angle (RIA). Sensor A has an

RIA of 0°, sensors B and C have an RIA of 45°, sensor D has an RIA of 30°, sensor E

has an RIA of 135°, and sensors F, G and H have an RIA of 60°. In order to localise

a reflection source over a 2D plane, a minimum of three sensors is needed [102], so

during the localisation step various combinations of three sensors from the eight

possible were chosen.

The plate simulated in this paper is relatively small, and so there is a quick super-

position of reflected waves within the signal at points further from the damage. In

practice, the user must take careful consideration of reflective characteristics of the

system, such as complex geometrical features, though this is a consistent trait of

guided-wave based systems [102].

6.1.3 Full-field multi-mode separation

Separation of multi-mode signals of a Lamb wave over its propagation in space is

carried out by a forward-backward method using the experimentally-determined

dispersion curve. First, the dispersion curve must be obtained by spatially sampling

the surface displacement of a Lamb wave as it propagates through a bounded medium;

then one performs a two-dimensional Fourier transform (2DFT) along time and

distance sequentially [118],

U(f, k) =

∫ ∞
−∞

∫ ∞
−∞

u(t, x)e−i2π(ft+kx)dtdx (6.1)

where u(t, x) is the surface displacement with respect to time t and distance x. In the

discrete form, this approach uses a two-dimensional fast Fourier transform (2DFFT)

algorithm,

U [m,n] =
M−1∑
m=0

N−1∑
n=0

u[m,n]e−i2π(fm/M+kn/N) (6.2)

where M and N are the number of data points in time and distance respectively. From

the simulation data described in Section 3.6, surface displacement data were extracted

along a single propagation path. The spatially-sampled signals are normalised, based

on dividing each signal by the maximum amplitude of the signal, and then passed

through the 2DFFT algorithm to generate the [f -k ] space. The resulting image data,
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Figure 6.3: Sensor locations used for two-dimensional localisation; the black circle

indicates the location of the PZT actuator, the blue circles indicate the locations

of the ‘sensors’ and their labels, and the red cross indicates the location of the

damage. The arrows show the references for the direction of wave propagation from

the actuator.

which show dispersion-curve information, are shown in Figure 6.4. For the purposes

of visualisation and ridge extraction, the [f -k ] space is expressed in terms of its

magnitude, using a log transformation,

P (f, k) = 20 log10(1 + |U(f, k)|) (6.3)

Several distinct modes can be seen in the experimentally-determined dispersion curve

in Figure 6.4(b). In order to separate the modes, the equivalent curves must first

be extracted from the image data. The extraction was done here using a simple

ridge-picking algorithm, which extracts local maxima as points of the curve. The

algorithm considers each pixel in the image and subtracts the mean of the surrounding
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(a) (b)

Figure 6.4: Example of dispersion information determined from a 2DFT by extracting

an example of the [t-x ] data from the LISA simulation, shown in terms of (a) u(t, x)

and (b) P (f, k)

L2 pixels; it then normalises the data and sets any point with a value below or equal

to 50% to 0, and any above 50% to be 1. The resulting Boolean image data, D, are

then used to extract the curves from the complex 2DFFT data by simply performing

an element-wise multiplication,

U∗ = D ◦ U (6.4)

In order to reduce loss of information as much as possible from the [f -k ] space, a

buffer of ±a and ±b additional data points, in the horizontal and vertical directions

respectively, are set to be 1 in D. The Boolean mask D must be the same size as

U , and it is important to select modes that appear on the full 2DFFT data which

represent the negative frequencies and wavenumbers in the transform; this can be

done by simply returning the mirrored indices from the ridge selection process. D

can also be tuned to include any number of selected modes, to determine which

will be included in the reconstructed signal. Once these curves are extracted, they

can be used to reconstruct individual, or selected, modes by applying an inverse
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two-dimensional Fourier transform (I2DFT) to the new image data,

u∗(t, x) =

∫ ∞
−∞

∫ ∞
−∞

U∗(f, k)ei2π(ft+kx)dfdk (6.5)

or in discrete matrix form using an inverse two-dimensional fast Fourier transform

(I2DFFT),

u∗[m,n] =
M−1∑
f=0

N−1∑
k=0

U∗[f, k]ei2π(fm/M+kn/N) (6.6)

The modes that are included in the reconstructed signals were chosen here based on

comparison to numerical results of dispersion curves determined using DISPERSE

[117]. The resulting decomposed waves were then stored as a nominal-wave dictionary

(NWD) for use in the single-source decomposition stage. Although the signals are

normalised at each distance, it is trivial to return the range of the decomposed

signals to that of the measured signal by storing the normalisation parameters. For

this work, the signal data are kept at the normalised values, as the decomposition

method is focussed on just the shape of the expected nominal signals and not their

amplitude. The full-field multi-mode stage is summarised in Algorithm 1.

6.1.4 Single-source multi-mode separation

After the nominal-wave dictionary was determined and stored, it was used to

decompose a Lamb-wave signal from a single-source into the nominal and residual

signals. This method uses a Bayesian linear regression (BLR) technique, as described

in Section 4.1.

For the purposes of this work, the model of the form,

y(x, t) = w(x)>φ(x, t) + ε, ε ∼ N (0, σ2) (6.7)

uses basis form φ(x, t) = {yA0(x, t), yS0(x, t)}, where yi(x, t) is the surface displace-

ment of the normalised nominal wave, for mode i, at propagation distance x, and

time point t. Here, w(x) is the vector of weights for propagation distance x, and ε is

a noise parameter with normal Gaussian distribution N (0, σ2).

The nominal waves are also re-normalised to their individual ranges in order to better

compare the predicted weights between the wave modes. One could consider φ to
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Algorithm 1: Full-field multi-mode separation.

Input : Multi-mode surface displacement signals over propagation distance u,

initial guess of lowest FTP and k on dispersion curve for each mode g.

Output : Individual nominal-wave dictionary over propagation distance u∗.

1 for Distance point n do

2 Normalise signal u(:, n)→ û(:, n), storing peak-to-peak range PTP (i);

3 end

4 U = 2DFFT (û) using equation (6.2);

5 Power transform of U : P = 20 log10(1 + abs(U));

6 Ridge finding : get locations in P where the normalised value is greater than 50%

above the mean of the surrounding L2 pixels;

7 for Wave mode g do

8 Curve selection: from initial guess of ω and k for each mode, continuously

select ridge points that are all less than dω and dk away in frequency and

wavenumber respectively, set these locations in D to equal 1;

9 Flatten dispersion curve image using equation (6.4);

10 Reconstruct time-distance data for individual modes using equation (6.6) and

store in u∗(g, :, :);

11 end

be the decomposition of the expected nominal signal into the selected modes. For

this work, only the fundamental modes are used, although it would be trivial to use

the same method on more selected modes. The expected weight parameters w will

give relative amplitudes of the nominal waves, directly influenced by the range of

yi. For this method, any signal range can be used, although it is preferable to use

a normalised signal for computational reasons. Normalising the signals also allows

for accounting of attenuation effects, which would distort the dispersion image data

resulting from the two-dimensional Fourier transform.
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The signal is first normalised based on the range of the signal,

y∗ =
y

range(y)
(6.8)

where range(y) = max(y)−min(y), is the peak-to-peak range of measured signal

y. The value of range(y) is stored and the calculated weights are multiplied by

this range to present them in terms of the signal amplitude in m. An example of

the nominal-wave dictionary signals used to decompose a measured signal on the

damaged plate is shown in Figure 6.5.

Figure 6.5: Example nominal-wave dictionary signals yA0 and yS0 , at a propagation

distance x of 50mm, compared to the measured signal in the damage-state simulation.

The dictionary signals are in their normalised values directly from the full-field

decomposition and the measured signal is normalised using equation (6.8).

For this work, qualitative assessment is made of the predicted signal using the

predictive log likelihood as described in Section 4.2.4. The single-source decomposition

process is summarised in Algorithm 2.

6.1.5 Reflection source triangulation

Once the signals are decomposed into their individual nominal modes, the residual

signal can be calculated,

yres = y − ỹ (6.9)

where y is the measured signal and ỹ is the predicted nominal signal. This residual

contains information on reflected/scattered waves because of damage. In order to



Probabilistic Wave Mode Decomposition and Localisation 92

Algorithm 2: Single-source multi-mode separation.

Input : Individual nominal wave dictionary over propagation distance u∗,

measured signal y at propagation distance x̂.

Output : Predicted nominal wave signal at measured signal location ỹ,

predicted variance of nominal wave signal σ2.

1 Normalise measured signal y→ y∗, storing peak-to-peak range PTP ;

2 Load wave mode signals for distance point x̂ from nominal wave dictionary

u∗(:, :, x∗) based on x∗ = argmin(x− x̂);

3 Sum across modes to form the basis expansion X = φ(x, :);

4 Calculate analytical solution of weights w and predicted variance σ2 = diag(V);

5 Reconstruct predicted nominal signal ỹ = w>X

triangulate the source of this reflection, the time of arrival at each sensor must first

be determined. Previous work [135], has shown a simple, yet effective technique using

the Akaike Information Criterion (AIC) [136] to determine arrival times. The AIC

function compares signal entropy before and after each time t in a time series. When

time t is aligned with the signal arrival, the similarity between the high-entropy

uncorrelated noise prior to t, and the low-entropy structured signal after t is at its

lowest and the function returns a minimum. Therefore, a simple minimum-finding

function can be used to determine the location of the onset of a signal. The AIC of

a signal x, for a given time point t, is given by,

AIC(t) = t log10(V [x1:t]) + (T − t− 1) log10(V [xt:T ]) (6.10)

where V [xj:k] is the classic variance of x from point j to point k, and T is the final

time point in the series. For detection of reflection onset only, the portion of the

signal after arrival of the slowest nominal wave was used. This selection is because

onset detection by AIC is based on a change in entropy ratio in the signal before

and after the onset, and there is increased structure in the residual at the nominal

wave portions.

This onset then gives a reflection time of arrival at each sensor tref . It is useful to

look at the problem of localising with a sensor along the propagation path between
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the actuation source and the damage. For this one-dimensional localisation problem,

the distance of the reflection source from the sensor can be calculated simply as,

dr =
1

2

tref − tA0
cA0

(6.11)

where tA0 is the time of arrival of the nominal A0 mode at the sensor and cA0 is the

group velocity of the A0 mode. It should be noted that this may not be a useful

method in practice, as it is unknown whether the sensor, actuator and damage are

collinear. Furthermore, equation (6.11) is only applicable when the sensor is earlier

in the propagation path, because in locations after damage there are no additional

waves, but only converted/reduced energy modes, as can be seen in Figure 6.2(b).

The one-dimensional procedure is included to show a simple illustrative example of

localisation, as well as providing an initial stage to assess the decomposition-based

approach to localisation. This stage is also included to allow the reader to gain

intuition on the procedure, and how a usable algorithm could be developed on this

basis; a two-dimensional example of which will be demonstrated later.

Now consider the problem of locating using reflected signals in a 2D plane, a diagram

which aids in understanding this procedure is shown in Figure 6.6. As the Lamb

wave is propagating in an isotropic, homogeneous structure, the difference in time of

arrival between the sensors and wave velocity c (prior knowledge), can be used to

triangulate for the source of the wave [101,102]. For three sensors, first the reflection

time of arrival for sensors 1, 2 and 3 are denoted as tr,1, tr,2 and tr,3 respectively.

The exact time of the reflection from the damage t0 is unknown, and therefore so

is the time taken for the reflected wave to travel from the damage to the sensors.

These unknown times are denoted t1, t2, t3 and the distance from the damage to

each sensor is given by,

di = c× ti (6.12)

As ti is unknown, di cannot be calculated from equation (6.12). However, the

difference in time of arrival (dTOA) between two sensors tij provides the difference

in distance between the damage location and sensors i and j,

dij = c× tij = c× (ti − tj) (6.13)



Probabilistic Wave Mode Decomposition and Localisation 94

Figure 6.6: Diagram showing distances which are used in triangulation via wave

signals reflected from damage.

In this work, the triangulation of the reflection source is framed as an optimisation

problem, as shown in [137]. In this sense, the source location is estimated by min-

imising the difference between the recorded dTOA and a calculated value originating

from a trial source position. In practice, this was done by defining a cost function,

J =
∑
i,j

(
tij −

|E − Si| − |E − Sj|
c

)2

(6.14)

where E is a trial location of the reflected signal source and |E−Sn| is the Euclidean

distance between this trial location and the location of sensor n. An estimate of the

location of the reflection source was then determined by,

Ê = arg min(J) (6.15)

In this work, this minimisation uses the Nelder-Mead method [138]. The reflection

triangulation process using various sensor locations is summarised in Algorithm 3.

The algorithms are shown individually here for each stage, but work concurrently

in practice and data are fed from through each in order. Firstly, the full-field wave
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Algorithm 3: Reflection source triangulation.

Input : Measured signal at various locations y, nominal-wave dictionary over

propagation distance u∗.

Output : Predicted location of reflection source Ê.

1 for Measured signal of sensor i do

2 Decompose signal using algorithm 2 to retrieve predicted nominal-wave signal

ỹ;

3 Construct residual signal using equation (6.9);

4 Determine onset of reflection using AIC → ti;

5 end

6 Minimise equation (6.14) using Nelder-Mead method to determine predicted

location Ê;

propagation data are fed into Algorithm 1, from which the nominal-wave dictionary

u∗ is returned. This dictionary is then fed into Algorithm 2, along with the single-

source signals from each sensor yi, i = 1, 2, 3, and the predicted nominal signals ỹi

are returned. The predicted nominal signals are then used in Algorithm 3 to return

the predicted location of the damage, Ê.

6.2 Multi-mode decomposition

To begin, it is useful to analyse and evaluate the probabilistic decomposition of the

full-field propagation and single-source signals. This section initially looks at the

decomposition of the full-field signal as shown in Section 6.2.1, and then at various

distances along the propagation path collinear with damage, the results of which are

shown in Section 6.2.2. Decomposition results at other propagation angles are then

explored at the same distance, all from the damaged plate, in Table 6.2.
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6.2.1 Full-field decomposition

The results of passing the data shown in Figure 6.4(b) through the ridge-picking

algorithm are shown in Figure 6.7(a). By comparing the dispersion curves generated

using equation (6.1) to those generated with ‘DISPERSE’, it can be seen which

individual wave modes correspond to each ridge. The dispersion curves seen in the

image data taken from the 2DFFT show mostly good correspondence with those

calculated numerically, discrepancies between them are a result of the cells per unit

wavelength [70].

(a) (b)

Figure 6.7: (a) Point data of individual modes found using the ridge-picking algorithm

(red circle markers), and compared to data from ‘Disperse’ (blue dashed line).

These lines are representative of (in order of appearance with increasing 2fh), the

A0, S0, A1, S1, S2 and A2 modes. (b) Separated dispersion curves, extracted using

a buffer of a = 11 and b = 3.

After comparing the extracted ridges with the numerically-determined dispersion-

curve data to label the curves selected, the image data are flattened for each mode

using equation (6.4). The separated mode data, H∗, are shown in Figure 6.7(b) in

terms of P (f, k), with the A0, S0, A1, S1, S2 modes selected.

The full-field wave dictionary u∗ was then generated by passing each flattened mode

through equation (6.5) in series. The total reconstructed time-distance space can be
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seen in Figure 6.8, and individual time signals at a propagation distance of 10mm in

Figure 6.9. In comparison to the original data in Figure 6.4(a), the reconstructed

[t-x ] space is missing a larger wavelength component which is likely to be a mode

that is not visible in Figure 6.7(a). From Figure 6.9, it can be seen that the relative

amplitudes of the individual wave modes are preserved throughout the separation. As

the amplitudes of the A0 and S0 modes are significantly larger than the higher-order

modes, it is reasonable to only take these two modes forward to be used in the

separation. The amplitudes of the A0 and S0 modes are larger because the excitation

frequency is tuned to only capture these modes on the dispersion curves. Practically,

this is also reasonable as the reflected signals will be from the fundamental modes also,

and will be of larger amplitude than the additional modes. Thus the nominal-wave

dictionary u∗ is reduced to u∗{A0, S0}.

Figure 6.8: Reconstructed normalised time-distance spaces using inverse 2DFFT for

all modes together, and each mode individually.

Figure 6.9 also shows that the A0 mode is the most influenced by the actuation

signal, and is the signal which retains the shape of this most. This observation can

be explained by examining the dispersion curves; the actuation source was driven at
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300kHz-mm, at which there are only two solutions for the wavenumber, the A0 and

S0 modes. Therefore, the actuation of higher-order modes is because of excitation of

wavelengths of the fundamental modes.

Figure 6.9: Individual normalised signals taken from propagation distance of 50mm

for original data and reconstructed signals for all modes together and each mode

individually.

In most Lamb-wave studies, in order to model or measure the behaviour of wave

modes individually, the structures are excited with a tuned actuation (both in

frequency and mode shape) to excite specific modes. Although this idea works well,

it is much more difficult to excite higher-order modes individually, particularly in

experimental regimes. This problem is because of the increased number of modes

which have overlapping frequency-wavenumber bandwidths, as well as similar mode

shapes. Using the method shown here, generating the signals for individual wave

modes is both simpler and less costly (in terms of time and total computation), as

less actuation models must be performed.
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Other methods of wave-mode separation include using a physics-based approach of

utilising amplitude ratios of anti/symmetric modes [107]; in order to use this however,

accurate prior knowledge of the system is required. A particular advantage of the

method proposed here is for use in the study of complex materials, for which models

are difficult to obtain and validate to an accurate enough degree to reasonably use

for the amplitude-ratio method. More on using this method for decomposing Lamb

waves in composites is shown and discussed in Chapter 7. Another strategy for

mode separation when no prior knowledge is available, is to use machine-learning

methods, such as independent component analysis. This approach has been shown

to work well, but data-based decomposition methods can present disadvantages such

as reconstructed signals being ‘down-sampled’ in comparison to the originals, and

lack of physical insight can limit applicability.

6.2.2 Single-source decomposition

At this point, it is useful to analyse and evaluate the probabilistic decomposition

of a single-source signal. This section aims to do so by initially looking at the

decomposition at various distances along the propagation path collinear with damage,

the results of which are shown in Figures 6.10 and 6.11. Decomposition results

at other propagation angles are then explored at the same distance, all from the

damaged plate, in Table 6.2.

The calculated weights from the BLR decomposition are shown in Figure 6.10, where

the weights are written as the corresponding weight for each mode, wA0 and wS0.

The propagation location in which there is damage is given by the filled red area in

Figure 6.10(b). These weights can be interpreted as parameters relating the shape of

the expected nominal wave to the range of the measured nominal wave. It is clear to

see the attenuation of each mode as the propagation distance increases, although

an interesting point to note, is the sharp drop in the antisymmetric parameter wA0,

after the wave has propagated through the damage. There is a periodic nature to

the weights with respect to the propagation distance; this is likely to be because of

reflected waves coming in and out of phase with the nominal waves. The superposition

of these waves will affect the amplitude of the nominal waves as the phase differences
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(a) (b)

Figure 6.10: Weights representing each mode extracted from BLR decomposition

applied at various propagation distances for: (a) the undamaged plate and (b)

damaged plate. In (b), the section of propagation in which there is damage is given

by the vertical filled red area.

between the waves change.

(a) (b)

Figure 6.11: Predicted variance of nominal waves extracted from BLR decomposition

applied at various propagation distances for: (a) the undamaged plate and (b)

damaged plate. In (b), the section of propagation in which there is damage is given

by the vertical filled area.
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Figure 6.11 shows the predicted variance of the decomposed signals at each propa-

gation distance. An initial observation is of the increased predicted variance when

decomposing signals in the plate containing damage. Furthermore, in Figure 6.11(b)

the predicted variance appears to increase as one moves closer to the reflection

source, and there is a sharp drop afterwards. This trend can be explained using

the information viewed in Figure 6.10(b); as the amplitude of the nominal wave

decreases closer to the damage, and any reflected waves will also attenuate further

away from damage, the relative influence of the superposition of reflected waves will

increase closer to damage. However, past the damage there is no reflection in one

plane, instead there is mode conversion. Therefore, the predicted variance will drop

along with the magnitude of the predicted weights as seen in Figure 6.10(a).

Angle Distance wA0 wS0 σ2 PLL

-90° 50mm 1.397e-07 1.337e-08 1.645e-09 -1.946e+09

90° 50mm 1.396e-07 1.228e-08 9.624e-10 -4.207e+08

-45° 50mm 1.157e-07 1.073e-08 3.224e-09 -2.152e+09

-60° 50mm 1.184e-07 5.359e-09 2.773e-09 -6.516e+08

Table 6.2: Resulting metrics from the BLR decomposition of single-source signals

at various locations over the damaged plate, noted by their propagation angle and

distance. A propagation angle of -90◦ is the direction of damage from the actuation

source. Here, wA0 and wS0 represent the weight parameters to construct the nominal

signals of the A0 and S0 mode respectively.

Surface displacement signals were taken from the damaged plate at various propa-

gation angles, and the decomposition technique was applied to each of these. The

resulting metrics returned by the technique are shown for each signal location in

Table 6.2. A notable observation from these results is of the increased uncertainty

when decomposing signals not taken along the same propagation angle at which the

full-field decomposition took place. This increased uncertainty is likely because of the

change in spatial sampling; the data used for full-field decomposition was taken along

the -90° propagation path, which will result in the smallest spatial-sampling step

size equal to the cell dimension ε. An illustration of how the selected propagation
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angle influences spatial sampling is shown in Figure 6.12, where it can be seen that,

when data are taken at a propagation angle of -45°, spatial-sampling step size is at a

maximum.

Figure 6.12: Illustration of how propagation angle influences spatial sampling of

surface displacement along the propagation path. The grey circle represents the

actuator source (not to scale). The left figure shows, with red arrows, the location

in the LISA simulation of consecutive points at -90° from the actuation source and

in green arrows consecutive points at -45°. The right figure compares the sampling

pattern of the consecutive points at different angles.

Figure 6.13 shows an example of the nominal-dictionary wave φ(x), used to decompose

the measured signal at a propagation distance and angle of 50mm and -45° respectively.

The phase misalignment between the dictionary and measured nominal waves can

be seen, which causes the increased predicted variance and decreased likelihood,

when compared to the same propagation distance at -90°. By knowledge of simple

geometry and analysis of the grid orientation in Figure 6.12, a propagation angle of

-45° will offer the ‘worst case scenario’ in spatial-sampling misalignment. Even at a

maximum spatial-sampling misalignment, the probabilistic decomposition works well

to determine the predicted nominal waves, as shown in Figure 6.14(b).

Results of the decomposition of signals containing reflected waves, at different

propagation angles, are shown in Figure 6.14, including their predicted variance.

It appears in Figure 6.14(a) that the signal taken at a location collinear with the

actuator and damage contains a reflection signal of larger amplitude. Although both
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Figure 6.13: Comparison of the measured signal at a propagation distance and angle

of 50mm and 45° respectively, and the dictionary wave φ(x) used for decomposition

at this point. In addition, the dictionary wave at one distance point further φ(x+ ε)

is shown.

signals contain reflected waves, and those in the signal taken at -90◦ appear stronger,

there is a larger predicted variance for the signal taken at -45◦.

In Figure 6.14(b), the reflection because of damage can be seen at approximately

36 ≤ t ≤ 43µs, and is clearly separable from the predicted nominal-wave signal.

There also appears to be a small phase difference between the measured signal and

predicted nominal signals for each mode. This effect is a result of the dictionary-

measured wave misalignment as shown in Figure 6.13. At a similar distance, the

measured and predicted nominal waves appear to be a similar shape and amplitude,

with the onset and amplitude of the reflected wave being the key difference.

The initial step of the in-situ stages of the methodology shown here is the decom-

position of the single-source signal to obtain information of reflected-wave signals.

The decomposition strategy employed here works well, and appears to provide the

reflection signal needed for accurate localisation. Table 6.2 and Figure 6.14 demon-

strated that there is increased uncertainty when decomposing signals at propagation

distances different to those used for the initial full-field decomposition. As these are

waves of short wavelength, small differences in propagation distance can result in

significant phase differences between the nominal modes because of their dispersive

characteristics. In this case, this spatial-sampling misalignment did not result in
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(a)

(b)

Figure 6.14: Results from the single-source decomposition applied to signals at a

propagation distance of 50mm and propagation angles of: (a) -90◦ and (b)-45◦. The

blue line shows the measured signal, the red line shows the predicted nominal waves

and the green boundaries show the expected variance.

a phase difference large enough to produce an overly-large predicted variance. As

will be shown in Section 6.3.2, the dictionary misalignment did not strongly affect

the localisation accuracy. In all cases, but particularly where spatial sampling is

limited, or noise in the signal is comparatively larger – such as with SLDV methods –

it is important to consider the wavelength with respect to the spatial-sampling step

size. Subject to further work, the ability to capture the predicted variance of the

nominal signals is a key characteristic of this method, as this can be used to better
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determine any ‘outlying’ signals, by only taking the difference when the measured

signal exceeds the expected variance. Overall, the probabilistic approach works well

to decompose the signal into selected modes, doing well to determine the nominal

modes and predicted variance. The parameters resulting from the method follow

what would be expected from the physics, showing that the method can also produce

ready-to-use features that are individual to each mode.

6.3 Localisation

6.3.1 One-dimensional localisation

For illustrative purposes, and to assess the effect of the onset detection stage on the

overall methodology, a one-dimensional localisation strategy along the propagation

path containing the damage is shown here. An example of the signal-processing steps

applied from a single source can be seen in Figure 6.15, showing the decomposed

signal, reflected signal and onset determined for the incident A0 mode and reflected

A0 mode. For both the incident and reflected waves, the onset is determined by the

AIC method, and for the reflection, only the portion of the signal after the incident-

wave arrival is used. The residual signal clearly shows the reflection signal, which

is much stronger than noise present during the period in the signal containing the

nominal waves. During the portion of the residual signal in which the nominal waves

arrive, there is still some structure as a result of errors between the predicted signal

and measured signal. As this structure would likely cause a drop in the calculated

ratio of information, the AIC (equation (6.10)) is calculated for the residual signal

beginning from the onset of the slowest incident wave, which is in this case the A0

mode. By inspection of the simulation results in Figure 6.2(a) and the residual

signal in Figure 6.15, it can be seen that the reflection signal observed is that of the

reflected A0 mode, as the S0 mode reflection is of too little amplitude in comparison

to the noise floor.

The detected onsets align well with the incident and reflected waves seen in the

signals. There is also a drop in the value of the AIC at the end of the reflected wave,

indicating a disparity in the entropy level before and after this point. The author
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Figure 6.15: Results of the reflection onset-detection stage of signal processing. The

upper graph shows the measured and predicted nominal signals, and the lower graph

shows the residual signal in blue and the AIC value in red, with the detected onset

indicated by the black dashed line. The signal shown is for a propagation distance of

55mm at an angle of -90◦.

theorises that this is likely to be because there are no strong waves appearing in

the signal after this point, therefore the signal will be of lower structure than the

structured reflection signal.

The one-dimensional localisation technique outlined in Section 6.1.5 was applied to

signals at various distances along the propagation path. Results of the estimated

reflection source difference are shown in Table 6.3, as well as their error with respect

to the true value. There does not appear to be a correlation between distance between

the reflection source and sensing signal location, as the error values sharply increase

between 10 and 20 mm but proceed to increase slightly at increased distances.

6.3.2 Two-dimensional localisation

By using the method outlined in Section 6.1.5, an estimated location of the damage

on the surface of the plate was calculated for various sensor groups. The results

of these predictions are shown in Table 6.4, where the error is calculated as the
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Signal source {x, y} True Distance Estimated Distance Error % Error

{−65, 0} 10.0 mm 9.9 mm 0.1 mm 0.90%

{−55, 0} 20.0 mm 20.7 mm 0.7 mm 3.64%

{−45, 0} 30.0 mm 30.8 mm 0.8 mm 2.76%

{−35, 0} 40.0 mm 41.0 mm 1.0 mm 2.44%

Table 6.3: Results of damage location estimation along propagation path containing

the damage, showing the true distance and estimated distance of the location of the

signal and the damage.

Euclidean distance between the estimated Ê and true location of damage. As the

reflected wave that is present in the signal is the A0 mode, because of its larger energy

than the S0 mode, the group velocity of the A0 mode was used for triangulation.

From DISPERSE [117], a group velocity for the A0 wave at 1MHz was calculated

to be 3071 m/s. The predicted variance of the decomposed nominal waves is also

shown in Table 6.4, and there do not appear to be any significant differences in

this variance between sensors. Sensor groups with larger error do not appear to

contain significantly-larger predicted variances than groups with low prediction error;

indicating that any inaccuracies are not a result of the decomposition. Furthermore,

all the predicted variances are greater than those for the decomposed waves in

an undamaged plate (Figure 6.11(a)). As the predicted variances are all low in

comparison to the signal amplitude, there is confidence in the predicted nominal

signal matching the nominal waves. This confidence is extended to the confidence of

the residual signal containing only reflected/scattered waves.

A visual representation of predicted locations for the sensor groups with the smallest

error is shown in Figure 6.16. These figures show how accurate the predicted locations

were in regards to the whole plate. It appears that relative orientation and distance

of the sensors from the damage do not influence the accuracy of the method. As

there appears to be no trend relating inaccuracy to sensor positions, some insight

will be offered here into the results of the two most inaccurate sensor groups (3 and

5).

Figure 6.17(a) shows the predicted location from the sensor group with the largest
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Group No.
Sensors Signal Variance (×109) Predicted Damage Location

S1 S2 S3 σ21 σ22 σ23 Ê = {x, y} Error (mm)

1 A B C 1.745 3.252 2.656 {-76.0, 0.00} 1.04

2 B C D 3.252 2.656 3.095 {-75.3, 0.35} 0.43

3 C D E 2.656 3.095 2.614 {-58.0, 3.00} 17.30

4 A C F 1.745 2.656 3.980 {-76.0, 0.00} 1.04

5 B D G 3.252 3.095 2.138 {-68.0, -0.92} 7.00

6 C D H 2.656 3.095 3.981 {-75.7, 0.32} 0.77

Table 6.4: Table of estimated locations for various sensor pairings, and the error

defined as the Euclidean distance between estimated and true location. The predicted

variance of the decomposed signal is also shown for each sensor used. The two sensor

groups with particularly high errors (3 & 5) are highlighted in bold.

(a) (b)

Figure 6.16: Simulation of damaged plate at 35µs, the black cross shows the predicted

location of damage for: (a) sensor group 2 and (b) sensor group 6. The blue circles

indicate the locations of the sensors.

error. Sensor group 3 includes sensor E, which is a large distance from the damage

source. However, there appear to be several reflected waves within the signal, and
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it is difficult to know which of these additional waves is reflected from the damage.

The surface displacement at the time of the detected reflection onset for sensor E

is shown in Figure 6.17(b). The detected onset appears to be the time of arrival

of the S0 wave reflected from the boundary, as this sensor is at 45° to the fibre

direction, the boundary reflections from the upper and right sides of the plate arrive

simultaneously. These boundary reflections arrive before the damage reflections, so

it is difficult to determine the correct onset without significant prior knowledge. For

structures of larger size with respect to the distance between sensor and damage,

boundary reflections would not be as much of an issue in determining the correct

reflection onset, as boundary reflections would arrive at the sensor later in time than

reflections from damage.

(a) (b)

Figure 6.17: (a) Predicated location of damage from sensor group 3, superimposed

on the surface displacement at 35µs and (b) surface displacement at 51.34µs, the

reflection onset determined at Sensor E; the sensor location is indicated by the blue

circle.

The predicted location from the sensor group with second-largest error is shown in

Figure 6.18(a), as well as the reflection onset detected from the measured signal. As

Sensor G is not in any of the groups that predicted the location with lower error, it
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is useful to look at the surface displacement at the time of reflection arrival at this

sensor; this is shown in Figure 6.18(b). At this time point, there does not appear to

be any other reflections arriving at the sensor; in fact, the damage reflection does

appear to be arriving at this time. However, from visual inspection of Figure 6.18(b),

it appears that the true arrival time of the damage reflection was earlier. The

inaccuracy in the onset detection – much like with sensor group 3 – may be explained

by the large number of incident/and reflected waves that are in the signal at the

same time as the damage reflection.

(a) (b)

Figure 6.18: (a) Predicated location of damage from sensor group 5, superimposed

on the surface displacement at 35µs and (b) surface displacement at 47.48µs, the

reflection onset determined at Sensor G; the sensor location is indicated by the blue

circle.

6.4 Discussion

The localisation strategy demonstrated here shows strong capability, often locating

damage accurately to within 1mm. By using a variety of sensor placements and

groups to triangulate, it appears that sensor-group orientation does not influence
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accuracy of location. Errors in localisation from sensor placement is a result of the

influence of boundary reflections. This independence is expected, as the plate was

modelled with a homogeneous material and accurate wave speeds. This result can

also be attributed to the quality of the decomposition remaining high at different

propagation angles, as shown in Section 6.2.2.

The probabilistic decomposition method shown here contributes well to a damage

detection strategy, as the returned parameters can be used to assess the deconstructed

signal. The following is, in the authors opinion, one of the most important outcomes

of the work shown in this chapter. All the single-source signals were decomposed

with a reasonable level of confidence, shown by the relatively low σ2 parameter.

The ability to assess the confidence in nominal-wave decomposition is particularly

important for multi-regime strategies; i.e. using SLDV data for the NWD and PZT

sensors for single-source.

The strongest influence on inaccurate predicted location of damage was from re-

flections of the incident waves from the plate boundary and actuator. The plate

simulated here was relatively small (limited by computational resources), which is

useful in order to determine dispersion curves, as reflection signals are necessary to

capture this information. However, for the purposes of damage detection, this size

plate is not likely to be inspected and so the influence of boundary reflections may be

minimal. In situations where reflections not caused by damage are expected, such as

complex geometries or fasteners, models could be implemented utilising knowledge

of initial wave propagation and reflection characteristics to increase the fidelity of

the nominal-wave dictionary to include expected reflections.

An advantage of the method shown in this chapter is the applicability to more

complex materials and structures, because its only prerequisite information is surface

displacement data along the propagation path, rather than an accurate analytical

model of the waveforms. The Bayesian approach to decomposition is another benefit,

as it determines a distribution of predicted models rather than just the best fit. This

uncertainty can be utilised to assess the predicted signal, and therefore confidence

in the residual signal containing only reflected waves. Furthermore, the method is

efficient in terms of computation, memory and storage, and can be used with low-cost
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sensors.

6.5 Chapter Summary

This chapter demonstrated a methodology for localisation of damage using ultrasonic

guided waves by simulating Lamb waves in an aluminium plate. The overall strategy

involves decomposing measured single-source signals, from which residual signals

can be determined which contain reflected waves, which are then used to triangulate

the reflection source. The decomposition stage uses a Bayesian approach in order

to generate a distribution of possible nominal waves, allowing better determination

of uncertainty. In particular, the full-field decomposition strategy has potential

for use in systems where accurate physical models of signals are difficult to obtain.

In this chapter, the accuracy of the decomposition and localisation methods have

been shown. Inaccurate location was found to be largely because of the influence of

boundary reflections, which is not likely to be an issue in application as the plate

shown here was of small size. Discussion has been made here of the importance of

prior knowledge on the localisation strategy, and how to improve the methodology if

this information was not known.



7

A Bayesian Approach to

Guided-Wave System

Identification

The localisation strategy shown in Chapter 6 requires prerequisite knowledge of the

group velocity, which for given material properties can be determined by generating

dispersion curves via solution of the governing equations (see Sections 3.3 and 3.5).

A problem is presented where the properties governing the dispersion characteristics

are not known; this can be a lack of system information, or where angle-dependent

material properties are more difficult to calculate. For this case, a system identification

procedure can be used to determine these properties. In addition to determining

the predicted values of these properties, it is useful to retrieve the distribution of

these parameters. In this chapter, experimentally-measured Lamb-wave data are

used to recover the posterior distribution of the system properties which govern the

dispersion curves.

Using known points on the dispersion curve, a maximum-likelihood estimate approach

can be formulated, optimisation over the maximum of which returns the most likely

parameters given point data [139]. However, as stated before, the distribution

113
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of the parameters – based on the points on the curve – is also useful to obtain.

One way to do this is by using an iterative Markov-Chain Monte Carlo sampling

procedure [140], which uses a probability assessment to generate samples from the

posterior distribution of the parameters. For an isotropic material, the governing

equations are computationally inexpensive to solve, so sampling procedures are

viable. However, for complex materials – such as fibre-composites – the wave

velocities/wavenumber are dependent on the propagation angle and have a more

complex relationship with the central frequency.

Previously, an iterative sampling procedure would not have been practical for

anisotropic materials because of the large computational cost. However, the Legendre-

polynomial expansion solution outlined in Section 3.5 has a much decreased compu-

tational complexity.

The Legendre polynomial expansion approach has previously been shown to decrease

cost using a symbolic programming approach [81]; however, as the equations form

expansions of polynomials, the procedure has been adapted here to develop a

programmatic method of solving the dispersion curves. This adaptation has allowed

the computational cost to be reduced, providing a viable method for an MCMC

system identification approach.

In this chapter, a scanning-laser Doppler vibrometer is used to record the propagation

of Lamb waves in a glass-fibre-reinforced-polymer (GFRP) coupon which was manu-

factured using the same process as that in a wind turbine blade. Dispersion-curve

image data were then calculated for various propagation angles. These dispersion

curves are then fed into the MCMC system-identification procedure outlined in

Section 7.2, to provide a Bayesian approach to determining system properties of

Lamb-wave propagation at various angles in the plate. The distribution of these

parameters at each angle is then discussed, including the inferred confidence in the

predicted parameters.

As stated in Chapter 1, a WTB is an example of a fibre-composite structure which

could benefit from a monitoring system. Therefore, the industry partner Siemens

Gamesa Renewable Energy provided the coupon used here to test the tools developed

and provide insight into UGW behaviour in a plate which is representative of the
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behaviour in the real structure. The experiment was then repeated on a carbon-fibre-

reinforced-polymer (CFRP) weave plate, the same as used in Chapter 5.

The overall workflow of the methodology is as follows:

i Extract signal data along propagation path in direction from the source.

ii Pass propagation data through two-dimensional Fourier transform to retrieve

the dispersion curve image data.

iii Use ridge-picking algorithm outlined in Section 6.1.3 to determine points along

dispersion curve.

iv Sample over the posterior distribution of the parameters using a probabilistic

simulation of the parameters.

v Return the mean of these distribution as the estimate of the parameters.

7.1 Influence of Material Properties

In this work, the method to solve dispersion-curve equations is that shown in

Section 3.5, which for the antisymmetric and symmetric modes are governed by five

parameters; four components of the stiffness tensor (C11, C13 = C31, C33, C55) and

the density ρ. It is useful to explore the effect each of these parameters has on the

shape and values of the dispersion-curve solutions.

Figure 7.1 shows the results of the dispersion curves calculated for the fundamental

Lamb-wave modes of an orthotropic plate, along with the results after a change of

± 30% for each of the elastic constants which define the curves. It is clear that the

parameters have varying levels and directions of effects on the curves, as well as the

frequency range. Changes in all elastic constants appear to result in a consistently

stronger change in the solutions for the S0 mode.

An interesting point to note, is that changes in C13 and C33 appear to only affect the

S0 mode, and that the curves are relatively insensitive to changes in C13. Adding

further, changes in C11 appear to have a stronger effect on the S0 curve than that of

the A0. For the S0 curve, there is an obvious ‘elbow’ at ∼10 Mrad/s, the sharpness of
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(a) (b) (c)

(d) (e)

Figure 7.1: Sensitivity analysis of material constants on dispersion curves of funda-

mental Lamb wave modes, for plate thickness of 1mm, and parameters (a) C11, (b)

C13, (c) C33, (d) C55, and (e) ρ. With initial values C11 = 160GPa, C13 = 6.5GPa,

C33 = 14GPa, C55 = 7GPA, and ρ = 1200kgm−3. For all figures, the black line shows

the solution with initial values, the blue line shows the solution with a change of

+30% and the red line a change of -30%.

which is unique to more complex models and does not appear in isotropic dispersion

curves. Changes in the parameters C33 and C55 appear to only have an effect on

this curve after this elbow. For C55 and ρ, changes appear to be stronger at higher

frequencies, whereas the changes appear more consistent across the frequency range

for C11, C13 and C33.

7.2 System-Identification Procedure

This section outlines the methodology used for the Bayesian approach to material

identification using dispersion curves. It begins by detailing how measured data on
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the dispersion curves were collected, then follows with a two-part explanation of how

to estimate the material properties using these data. This explanation begins by

introducing the idea of a maximum-likelihood estimate of the parameters, which

is followed by an expansion of this to determining the posterior distribution of

parameters.

7.2.1 Measuring dispersion curve observations

The first stage of the process here is to determine a set of measured values on

the dispersion curve {ω̂, k̂}, of the plate in question. Experimentally, this can be

obtained by the use of a two-dimensional Fourier transform (2DFT) [118]. The

surface displacement of a wave is measured at regularly-spaced intervals to form

time-distance [t-x ] data. The signals at each spatial location are then normalised and

the matrix passed through a 2DFT to retrieve the frequency-wavenumber [ω-k ] data.

For the thin-plate coupon used here, Lamb-wave propagation data were measured

for various angles for each plate.

7.2.2 Experimental Setup

For the wind-turbine blade coupon data, a similar experimental setup to Chapter 5

was used. The coupon in question is a unidirectional glass-fibre-reinforced polymer

plate, which was constructed purposefully using the same stacking sequence as that

which is in the blade. Lamb waves were actuated in the GFRP plate by excitation

of a 20mm diameter piezo-electric stack actuator (Physik Instrumente P-016.20P)

on the surface of the plate, as shown in Figure 7.2. The excitation signal used here

was a chirp of length 1ms and upper frequency of 500kHz, allowing for broadband

excitation. The out-of-plane surface displacement was measured at 0° and 90°, where

0° represents that in the direction of the fibres. Specific details of the experiment are

shown in Table 7.1.
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Plate dimensions 800 mm× 700 mm× 16 mm

PZT Location 400 mm× 235 mm

Signal record length 8ms

Sampling frequency 1.024MHz

Table 7.1: Details of experimental setup used to acquire Lamb-wave signal data on

the GFRP blade coupon.

Figure 7.2: Diagram of the experimental setup and location of stack actuator on the

800 mm× 700 mm GFRP plate. The left diagram shows a top-down view, and the

right a front view. The orientation of the fibres and the coordinate system used for

naming conventions is also shown.

7.2.3 Maximum Likelihood Estimate

First, let one introduce the concept of a system-identification procedure to estimate

a set of parameters given a set of n observations,

y = {y1, y2, ..., yn} (7.1)

Here, the likelihood is defined from the maximum likelihood estimate [139], which is a

popular and asymptotically-optimal statistical approach to fitting model parameters

using data [141]. Assuming the model is of the form,

yi = f(r) = r + εi (7.2)
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Figure 7.3: Photo of the GFRP plate experiment setup.

where r is the mean at point n, and εi is a white Gaussian noise process. The

observations are distributed as y ∼ N (r, σ2). The likelihood is then defined as,

L(y|r) =
n∏
i=1

1√
2πσ2

exp

(
−1

2

(yi − r)2

σ2

)
(7.3)

For determining the likelihood of some model, the mean can be replaced with a

function of the input dimension x of the observations, and some parameters Θ,

r = f(xi,Θ) (7.4)

so the likelihood becomes,

L(y|Θ) =
n∏
i=1

1√
2πσ2

exp

(
−(yi − f(xi,Θ))2

2σ2

)
(7.5)

Now, consider the application of this maximum-likelihood-estimate (MLE) procedure

for identifying the material properties using observations from the dispersion curve.

In Section 7.2.1, it was noted that there is a much lower relative resolution in the

wavenumber dimension of the dispersion image and in the resulting selected points
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on the curve. This implies that the Gaussian white-noise distribution is mostly in ω;

thus, if one were to estimate the likelihood based on a model of k(ω,Θ), the function

would be of the form,

yi = f(r + εi) (7.6)

Therefore, the problem is formulated as one based of a model of ω(k,Θ). The

observations are taken as the points on the dispersion curve,

yi = {ω̂i, k̂i} (7.7)

where ω̂i and k̂i are the values of frequency and wavenumber respectively, at point i.

Thus, the likelihood is defined as,

L(y|Θ) =
n∏
i=1

1√
2πσ2

exp

−
(
ω̂i − ω(k̂i,Θ)

)2
2σ2

 (7.8)

In this case, ω(k̂i,Θ) is determined using the methods outlined in Sections 3.3 and 3.5,

depending on the material being modelled. For the case of an orthotropic material,

the parameters are defined as,

Θ = {C11, C13, C33, C55, ρ} (7.9)

as C31 = C13.

The likelihood can be adapted further by separating out the observed and calculated

values of ω for each mode; in this case, the definition of the likelihood becomes,

L(y|Θ) = L(yA0|Θ)L(yS0|Θ) (7.10)

where,

L(yψ|Θ) =
n∏
i=1

1√
2πσ2

exp

−
(
ω̂i,ψ − ωψ(k̂i,Θ)

)2
2σ2

 (7.11)

for wave mode ψ. Maximising L(y|Θ) provides an estimate of the most likely material

properties; however, it is also possible to retrieve information on their distribution.
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7.2.4 Estimating the posterior distribution

The objective at this stage is to determine the distribution of the parameters which

define the dispersion curve. As the likelihood includes a noise variance term σ2, the

parameter vector is extended to include this, so that,

θ = {Θ, σ} = {C11, C13, C33, C55, ρ, σ} (7.12)

The distribution of these parameters can be determined by identifying the posterior

probability given a set of measured data, p(θ|y). However, this is not directly

inferable, so a manipulation is done using Bayes rule,

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(y)p(θ)

(7.13)

where p(y|θ) is calculated using equation (7.8), and p(θ) is the prior, which can be

defined using initial knowledge of the parameters. For d parameters, assuming each

parameter is independent, the prior is calculated as,

p(θ) =
d∏
i=1

p(θi) (7.14)

Now, the problem is transferred, in that the normalisation term in the denominator

is intractable. Instead, a procedure can be used to sample from the posterior with

enough repetition that an estimate of the distribution over the parameters can be

inferred. One such procedure is the Markov-Chain Monte Carlo (MCMC) method,

where subsequent samples depend on assessing their probability with respect to the

previous one.

A full outline of the derivation and procedure for MCMC is given in ??; however, an

overview and important characteristics are given here. MCMC is an iterative sampling

procedure, where the subsequent samples depend on assessing their probability with

respect to the previous one. The aim is to simulate the posterior distributions of the

parameters θ, by sampling them based on the probability of the parameters given a

set of observations y. At each step, a random walk is made in each direction of θ,

then an acceptance ratio is defined as,

α̂ =
p(θ′|y)

p(θk|y)
(7.15)
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where θk is the previous guess and θ′ is the current guess of the parameters. If

α̂ > 1, then θ′ is accepted, but with the Metropolis-Hastings algorithm [142], a

uniform random variable is included in order to allow movement to lower probability

parameters in order to obtain the full distribution.

There is, however, a similar problem to that above, in that p(θ|y) is not known. This

problem is overcome via a manipulation using Bayes rule, and the acceptance ratio

becomes,

α̂ =
p(y|θ′)p(θ′)
p(y|θk)p(θk)

=
p̂(θ′|y)

p̂(θk|y)
(7.16)

and so only the likelihood p(y|θ) and prior p(θ) must be defined. In practice, for

computational stability, the probabilities are calculated in the log space, so the

marginal likelihood becomes,

log(p̂(θ|y)) = log(p(y|θ)) + log(p(θ)) (7.17)

where,

log(p(θ)) =
d∑
i=1

log(p(θi)) (7.18)

Now, consider how to define this problem for the application to dispersion-curve

material identification. The first step is to define the likelihood, which is done using

equation (7.8). Which in the log space is,

log(p(y|θ)) = −n log(σ)− n

2
log(2π)− 1

2

n∑
i=1

(
ω̂i − ω(k̂i,Θ)

)2
σ2

(7.19)

During sampling using MCMC, the size of the random step taken for each parameter

is important, as too large a step will cause stall, and too small a step will require

a large number of iterations. An improvement is made on the standard MCMC

procedure, which incorporates Hamiltonian mechanics, to adapt the step size for an

optimal simulation, and is so called Hamiltonian Monte Carlo (HMC) [143,144]. For

this work, the probabilistic programming language Stan [145] was used.

Next, consider the definition of the priors, which can be done using reasonable

knowledge of the application. As the prior is a combination of the individual
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probabilities of each parameter, prior belief on the distribution of these parameters

can be used to define each p(θi). In this case, the density of the plate is supplied, but

no other material properties were provided. Therefore, a tight prior can be given on

ρ and priors on the elastic constants are defined to capture reasonable values for the

material. The types and definitions of the priors used here are shown in Table 7.2

and their probability density functions are shown in Figure 7.4.

Parameter Distribution Definition

C11 Gamma(α, β) α = 2 β = 0.02

C13 Gamma(α, β) α = 1.5 β = 0.05

C33 Gamma(α, β) α = 1.5 β = 0.05

C55 Gamma(α, β) α = 1.5 β = 0.025

ρ N (µ, σ) µ = 1600 σ = 300

σ Gamma(α, β) α = 2 β = 2× 10−5

Table 7.2: Definitions of priors for parameters in θ.

Figure 7.4: Prior distributions of parameters for the MCMC simulation procedures

performed.
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The calculated prior for each of these distributions is,

N (x|µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(7.20)

Gamma(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx) (7.21)

where x is the value over which the distribution is applied, µ is the mean, σ is the

standard deviation, α is the shape parameter, β is the rate parameter, and Γ(x) is

the Gamma function of x. In the log space, these definitions become,

log(N (x|µ, σ)) = − log(σ)− 1

2
log(2π)− 1

2

(
x− µ
σ

)2

(7.22)

log(Gamma(x|α, β)) = α log(β)− log(Γ(α)) + (α− 1) log(x)− βx (7.23)

7.2.5 Parameter Estimation

After sampling over the parameters using the procedure outlined above, an estimate

of the distribution of these parameters is returned. In practice, there is also an initial

‘burn-in’ period where the chain begins to converge to a stationary distribution.

During ‘burn-in’, the algorithm draws samples from a range not indicative of the

posterior distribution, and instead will continually move towards parameter-space

locations of higher likelihood. These movements may not always be in the same

direction, one will often see during this stage that the sample values will vary greatly

and jumpt to either side of the stationary posterior distribution. The portion of

values returned during this phase is ignored in the final distribution of each parameter.

Taking the iterated values of each parameter, some arithmetic statistical measures

can be calculated. Here, the first two statistical moments are calculated; the mean

and the standard deviation.

For the purposes of system identification here, the mean of the distribution of

each parameter is taken as the estimated value. From these values, the dispersion

curves can be calculated, showing the wave-propagation behaviour in the material.

By taking the second moment as one standard deviation of each parameter, the

confidence interval of the dispersion curve, given each parameter, can be determined.
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7.3 Results

In this section, results for the material-identification procedure applied to both

coupons are shown. Each subsection will show and discuss the results in the same

format; samples from the posterior distributions of the parameters are shown in

both univariate and bivariate distributions, as well as a kernel density estimate used

to estimate the probability density function of the bivariate distributions. Also

shown, are samples of dispersion curves drawn from the samples of the posterior

distributions, overlaid onto the observed dispersion-curve image data taken from the

two-dimensional Fourier transform. Each subsection is split into further subsections,

one for each of the different orientations with respect to the fibres, followed by a

subsection showing the arithmetic calculations of the first two statistical moments,

for each parameter, for all propagation angles.

7.3.1 Wind turbine blade coupon

The first set of tests was performed on the unidirectional GFRP plate, for which

an orthotropic model for the material is applicable. The experimental regime was

adapted here to excite both fundamental Lamb wave modes within the wave-packet,

and so for this section, the modified multimode likelihood in equation (7.11) is used.

Samples from the posterior

The results of 20,000 accepted samples of the sampling procedure for propagation

angles of 0° and 90° are shown in Figures 7.5 and 7.6 respectively. The first observation

that can be made is of the much tighter posterior of each of the parameters, thanks

to including information on multiple wave modes. In both propagation angles, there

is evidence of correlation between material parameters, whereas the distribution of

the noise parameter appears to converge to a univariate distribution. This result is

anticipated, as the elastic properties which form the stiffness matrix are described

by a series of inseparable equations. One observation that can be made, is the

strong correlation between certain parameters, such as between C11 and C13 for a 0°

propagation. Another observation in the results is the independence of σ from all
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Figure 7.5: Results of the material property identification procedure applied to the

blade coupon for the propagation angle of 0°. Figures along the diagonal show the

histogram of the samples for each parameter. Figures in the upper-right triangle,

show a scatter plot of correlation between two parameters. Figures in the lower-left

triangle, show a bivariate kernel density estimate of the cross-correlation between

parameters, where lighter colours represent a larger value of the density.

the other parameters, which is intuitive, as this is the noise and has no effect on the

shape of the curve.

Figure 7.5 indicates the univariate and bivariate distributions for a propagation angle
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Figure 7.6: Results of the material property identification procedure applied to the

blade coupon for the propagation angle of 90°. Figures along the diagonal show the

histogram of the samples for each parameter. Figures in the upper-right triangle,

show a scatter plot of correlation between two parameters. Figures in the lower-left

triangle, show a bivariate kernel density estimate of the cross-correlation between

parameters, where lighter colours represent a larger value of the density.

of 0°. Another observation from these plots, is the pronounced ‘edge’ on the scatter

correlation plots; in particular, between C13 and all other elastic constants. There is

again the hard ‘edge’ on the bivariate samples; in particular, between C13 and all
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other elastic constants, which is a result of the condition of rejection when λ > 0.

As a condition of the solution to the dispersion curve equations is that λ < 0, any

solutions where this is not the case are rejected. The edge may indicate a region of

forbidden parameter combinations which cannot exist given a real elastic material.

There appears to be a strong correlation between C55 and ρ, which appears to be a

linear relationship. This could be explained by comparison to the isotropic case; in

Chapter 3 it was shown that for an isotropic material their relationship can be defined

as C55 = ρc2T . For an orthotropic material, the transverse wave velocity would remain

the same when rotating around the axis in the direction of wave propagation. This

property could be used to reduce the number of parameters, increasing performance

of the simulation.

One observation made in the results of the sample plots for the 90° propagation,

in comparison to 0°, is the less apparent hard edge caused by the rejection param-

eter. This may indicate that the posterior space of valid elastic constants is less

discontinuous when modelling Lamb wave propagation through fibres. Another

difference between the two sets of results is that there is a less strong correlation

in the parameter pairs C11-C13 and C13-C33. This could be a result of the fibres no

longer acting as a secondary wave guide, and instead shear forces through the fibres

have more of an influence on wave propagation.

As stated in the beginning of this chapter, a key advantage of the method shown

here is the freedom in the posterior distribution, as no assumption is made as to

its shape. In an engineering context, this allows freedom in the material type to be

modelled, so long as the model of the dispersion curve solutions is accurate. For

both propagation angles here, the univariate distributions of the parameters do not

all appear to be of the same shape. In fact, the elastic constants and density appear

to converge to a Gamma distribution of varying skewness, and the noise parameter

appears to converge to a normal distribution. In comparison to the results of the

CFRP plate, instead of the elastic constants converging to either Gaussian or Gamma

distributions, all elastic constants converge to Gamma distributions here. As these

results use more information and seem to be more reliable, this indicates that the

true posterior of the elastic constants should converge to a skewed distribution.
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Posterior distribution of dispersion curves

Using the parameters at each sample point, a distribution of the dispersion curves

was also produced, and is shown in Figure 7.7, along with observation points taken

from the [ω-k ] image data. For the propagation angle of 0°, the darker areas of the

image data, as well as the observation points, lie within the distribution well. This

observation shows that the method works well for obtaining dispersion characteristics

of Lamb waves.

Although the coupon used here has a unidirectional fibre, an orthotropic model was

still used for the data at a propagation angle of 90° to test its applicability to all

directions. Figure 7.7(b) indicates that, for determining dispersion curves of the A0

mode, this model still provides a useful solution. However, the curves generated for

the S0 mode become mismatched from the image data, as well as the points taken

from the ridge-picking algorithm, at a frequency-thickness greater than 1.2MHz.

In order to analyse the updated results with respect to the original objective – to

determine an accurate model of the group velocity – the distribution of [ω-cg ] curve

solutions are shown in Figure 7.8. For the propagation angle of 0°, the curves have

no discontinuities and appear to have a low uncertainty. However, the curves for the

90° propagation angle have some discontinuities at 1.25 < fh < 1.8 MHz-mm.

Quantifying the material-property posteriors

For each of the parameters, the expected value and variance are calculated for the

samples from the posterior distributions for both angles, the results of which are

shown in Table 7.3. There is quite a significant discrepancy in the mean value for

density; where for a propagation angle of 90°; it is predicted to be much lower. This

result, as well as the discrepancy between the sampled curve solutions and the image

data, would indicate that the orthotropic model is not suitable when modelling

propagation away from the direction of the fibres.

Relative to the mean values, the standard deviations of each parameter are similar,

which aligns well with the observed posterior distributions that can be seen in

Figures 7.5 and 7.6. This result can be interpreted as meaning that the level of
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(a)

(b)

Figure 7.7: Distribution of generated dispersion curves for each sample taken for

propagation angles of: (a) 0° and (b) 90°. The blue curves show the distribution of

the A0 mode and red curves show the distribution of the S0 mode. The curves are

overlaid on the image data taken from the 2DFT and the ‘+’ markers indicate the

points taken from the ridge-selection algorithm which were used in the procedure as

{ω̂, k̂}.

uncertainty is similar for each parameter, meaning that discrepancies are not confined

to a single parameter, but instead in the combination of parameters. It is important

to note that, in the prior, each parameter is treated as independent, whereas the
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(a)

(b)

Figure 7.8: Distribution of calculated [ω-cg ] curves for each sample taken for propa-

gation angles of: (a) 0° and (b) 90°. The blue curves show the distribution of the A0

mode and red curves show the distribution of the S0 mode.

posterior shows that there is a strongly co-dependent relationship between the

parameters and dispersion-curve solutions.

7.3.2 Thin multi-directional fibre-composite plate

From the work above, the method is shown to be return reliable information for

accurately determining dispersion curve information – with the caveat that the model
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Parameter
0° 90°

E[θ] V[θ] E[θ] V[θ]

C11 34.69 265.9 26.19 150.6

C13 6.917 21.67 20.12 103.3

C33 15.24 51.39 25.874 149.1

C55 3.649 3.052 2.141 1.426

ρ 1,320.9 396,661 874.45 232,668

σ 35,578 6.382e6 14,427 1.576e6

Table 7.3: Expected values (arithmetic mean) and variances calculated from the

samples drawn from the posterior for each parameter and various propagation angles

on the blade coupon.

used is suitable. In order to test the method on a system where the model is assumed

simpler, but not totally unsuitable, it was applied to the CFRP weave plate used in

Chapter 5. Due to the nature of the material and the strong attenuation associated

with the S0 mode, only the A0 mode data were used for this section.

Propagation in the direction of the fibres

The results of 20,000 accepted samples of the sampling procedure for propagation

angles of 0° and 90° are shown in Figures 7.9 and 7.10 respectively. Much like the

results of the sampling for the GFRP plate, there is evidence of correlation between

parameters. However, as a result of including only the A0 mode in the procedure,

the results are different. For 0°, there appears to be a strong correlation between

C33 and both C13 and C11, as well as a very strong correlation between the values of

C55 and ρ. There is again the hard ‘edge’ on the bivariate samples; in particular,

between C11 and C33 with both C55 and ρ.

In comparison to the results for the 0° propagation angle, there are some notable

differences in the posterior distributions for the propagation angle of 90°. Firstly, the

distribution of C11 converges to a lower expected value and C55 converges to a higher

value – indicating that the elastic constants are lower and higher respectively. This
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Figure 7.9: Results of the material property identification procedure for the propaga-

tion angle of 0°. Figures along the diagonal show the histogram of the samples for

each parameter. Figures in the upper-right triangle, show a scatter plot of correlation

between two parameters. Figures in the lower-left triangle, show a bivariate kernel

density estimate of the cross-correlation between parameters, where lighter colours

represent a larger value of the density.

observation indicates that, even with the carbon-fibre weave material, the energy of

the antisymmetric mode is dominated by a particular fibre orientation; otherwise,

it would be expected that for both fibre orientations, the posteriors would remain
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similar. Furthermore, the correlation between C55 and ρ appears to be weaker than

at a propagation angle of 0°, and instead there is a strong correlation between C11

and ρ.

Figure 7.10: Results of the material property identification procedure for the propa-

gation angle of 90°. Figures along the diagonal show the histogram of the samples for

each parameter. Figures in the upper-right triangle, show a scatter plot of correlation

between two parameters. Figures in the lower-left triangle, show a bivariate kernel

density estimate of the cross-correlation between parameters, where lighter colours

represent a larger value of the density.
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When looking at the univariate posterior distributions, it appears that the shape

of these distributions varies between parameters. For example, the posterior for

C11 appears to converge to a Gaussian distribution, whereas that of C33 converges

to a Gamma distribution. The skewness of the Gamma distributions also changes

between parameters; this shows that it is important to give freedom in the posterior

to converge to the true shape.

As with the GFRP plate, using the samples drawn from the posterior, a distribution of

dispersion curves was generated, and is shown in Figure 7.11, along with observations

taken from the [ω-k ] image data. An initial observation is of the dissimilarity of

the S0 mode curves and their representation in the image data. In both cases,

wavenumber is calculated to be higher for all samples drawn. For dispersion curves

of unidirectional fibre-composite materials, the A0 mode is mostly sensitive to the

C11, C55 at 0°, and additionally the C13 and C33 parameters at 90° (Section 7.1). As

the distributions are only sampled based on observations of the A0 mode, it will only

be influenced by those parameters to which the curves are sensitive.

For all samples drawn, the model for the dispersion curve of the A0 mode is very

accurate, and the points lie well within the distribution of the curves. An interesting

note relates to the additional observation points at fh > 0.4MHz-mm for the

propagation angle of 0°. These additional points are likely the cause of the tighter

distribution of curves for this propagation angle, and are likely to be a result of a

clearer dispersion curve on the image data (i.e. more contrast in the image).

In this work, the dispersion curves are solved using an orthotropic model. For the

objectives of the work here, the model provides accurate results based on comparison

to the image data provided. It is important to note the restriction of the curves to

the bandwidth available in the observations.

Propagation Through Fibres

The results of 20,000 accepted samples of the sampling procedure for propagation

angles of 45° and 135° are shown in Figures 7.12 and 7.13 respectively. As with

the results for propagation along the fibres, in both propagation angles, there is
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(a)

(b)

Figure 7.11: Distribution of generated dispersion curves for each sample taken for

propagation angles of: (a) 0° and (b) 90°. The blue curves show the distribution

of the A0 mode and red curves show the distribution of the S0 mode. The curves

are overlaid on the image data taken from the 2DFT, and the red dots indicate the

points taken from the ridge-selection algorithm which were used in the procedure as

{ω̂, k̂}.

evidence of correlation between material parameters, whereas the noise parameter

appears to converge towards an independent univariate distribution. In comparison

to the results from the propagation angles along the fibres, there appear to be more
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material parameter combinations that have a strong correlation.

Figure 7.12: Results of the material property identification procedure for the propa-

gation angle of 45°. Figures along the diagonal show the histogram of the samples for

each parameter. Figures in the upper-right triangle, show a scatter plot of correlation

between two parameters. Figures in the lower-left triangle, show a bivariate kernel

density estimate of the cross-correlation between parameters, where lighter colours

represent a larger value of the density.

Another repeated observation is of the pronounced ‘edge’ on some of the multivariate

distributions; however, these edges are not as ‘sharp’ for these propagation angles. For
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a propagation angle of 135°, the posterior distribution for the C13 has a heavy skew

towards zero, which may indicate that the curve solutions are too insensitive to this

parameter to converge stably. More on the discrepancies of the results between these

propagation angles can be deduced by looking at the distribution of the dispersion

curves from the posterior samples.

Figure 7.14 shows the distributions of the curves taken from the posterior samples

for the propagation angles which indicate propagation across the fibres. Because of

the much larger attenuation of the S0 mode when propagating through the fibres,

there is no visible S0 mode on the image data, so it is difficult to know whether

the resulting S0 curves are modelled well. However, for both angles it appears that

the resultant curves for the A0 mode are accurate. After the ridge-picking step,

some additional points on the curve have been found for the propagation angle

of 135°, which has clearly influenced the results of the sampling procedure. The

horizontal blue lines that can be seen in Figure 7.14(a) are simply an artefact of the

dispersion-curve solutions for material property combinations that are not possible.

This would indicate that the method can benefit from observation of the curves

at greater frequencies in order to better determine a valid combination of elastic

constants.

Much like with the results of the procedure applied to propagation along the fibres,

the univariate posterior distributions converge to different shapes, again indicating

the important of the freedom in the posterior shape. In comparison to the results

of the propagation along the fibres, all parameters appear to converge to a similar

shape in the univariate posterior, although they have different statistical moments

and expected values.

Statistical moments of the parameters

For each of the parameters, the expected value and variance are calculated for

the samples from the posterior distributions for both angles, the results of which

are shown in Table 7.4. The expected values of C33, ρ and σ are similar for both

propagation angles, whereas the expected values for C11, C13 and C55 appear to

change depending on the propagation angle. The largest of these changes is of the
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Figure 7.13: Results of the material property identification procedure for the propaga-

tion angle of 135°. Figures along the diagonal show the histogram of the samples for

each parameter. Figures in the upper-right triangle, show a scatter plot of correlation

between two parameters. Figures in the lower-left triangle, show a bivariate kernel

density estimate of the cross-correlation between parameters, where lighter colours

represent a larger value of the density.

value of C55; however, this could be explained by looking at the distribution of

curves in Figure 7.11. As there are additional points returned from the ridge-picking

algorithm in the results for the propagation angle of 0°, the likelihood calculation
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(a)

(b)

Figure 7.14: Distribution of generated dispersion curves for each sample taken for

propagation angles of: (a) 45° and (b) 135°. The blue curves show the distribution

of the A0 mode and red curves show the distribution of the S0 mode. The curves

are overlaid on the image data taken from the 2DFT, and the red dots indicate the

points taken from the ridge-selection algorithm which were used in the procedure as

{ω̂, k̂}.

is at a maximum when the S0 curve has a shape which covers these points. The

C55 elastic constant affects the S0 curve past the ‘elbow’ (Section 7.1), and so these

additional measured points will tighten the posterior distribution for C55.
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As the aim of the work here is to determine the dispersion characteristics useful for

NDE/SHM strategies, a key motivation of which is to find the group velocity of

the waves, it is also useful to look at the distribution of curves for this attribute.

During the same curve sample-drawing procedure as above, the value of cg was also

calculated as the slope of the generated [ω-k ] curves. The distributions of the [ω-cg ]

curves for propagation angles of 0° and 135° are shown in Figure 7.15. Much like

the curves seen in Figures 7.11 and 7.14, the distribution of the A0 mode is much

tighter than that of the S0 mode. The shape of the cg curves are similar for both

propagation orientations; however, the velocity of the S0 mode when propagating

across the fibres is much lower.

From the results shown, the method presented here returns accurate and precise

models of the dispersion curves for an arbitrary orthotropic plate. The objective

problem of the work here was to determine dispersion-curve information on the A0

mode, as this is the necessary information required for guided wave-based localisation.

For the purposes of determining the dispersion characteristics from the data given to

the procedure, it performs well. Without information on the S0 curves, however, it

does not seem to converge to a stable solution. This observation led to the adaptation

of the procedure to include information from the S0 mode, which was then applied

to the wind-turbine blade coupon.

Parameter
0° 90° 45° 135°

E[θ] V[θ] E[θ] V[θ] E[θ] V[θ] E[θ] V[θ]

C11 47.06 156.8 25.79 21.91 19.92 13.54 24.87 24.57

C13 3.005 4.486 1.255 0.132 2.252 0.797 1.048 1.111

C33 1.051 0.185 1.018 0.206 1.699 0.846 1.064 0.160

C55 3.746 0.513 27.03 272.1 49.76 1632 4.128 0.590

ρ 1,621.8 88,587 1,617.2 82,563 1,592.9 87,996 1,637.2 81,332

σ 65,946 5.67e6 64,551 5.99e6 63,653 4.05e6 71,987 5.72e6

Table 7.4: Expected value (arithmetic mean) and variance calculated from the

samples drawn from the posterior for each parameter and various propagation angles

on the CFRP plate.
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(a)

(b)

Figure 7.15: Distribution of calculated [ω-cg ] curves for each sample taken for

propagation angles of (a) 0° and (b) 135°. The blue curves show the distribution of

the A0 mode and red curves show the distribution of the S0 mode.

7.4 Chapter summary

This chapter has presented the novel methodology developed for a Bayesian approach

to material identification using Lamb wave dispersion curves. The results show that

the method has worked well for determining accurate models for dispersion curves,

through material property identification. By comparing the results of the orthotropic
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model applied to a fibre-weave plate and unidirectional fibre plate, the importance of

the model used for the solutions is apparent. Not only does this method work well

for dispersion curve determination, it shows promise for full material identification.

In comparison to previous methods, the work shown here allows for simulation of the

posterior distribution in both a univariate and multivariate case. Further discussion

on the conclusions and benefits of this method, and other work shown in this thesis,

are discussed in the next chapter.
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8

Conclusions

8.1 Concluding remarks on the work presented

The motivation behind this thesis was to develop modern, unique and novel tools

which advance the understanding, and use of, ultrasonic guided waves in composite

structures, with a context around SHM/NDE techniques. Ultrasonic guided waves

were chosen as the topic of research, as they have distinct advantages over lower-

frequency or more passive techniques. After researching and reviewing the current

state-of-the-art for application of guided waves to fibre-composite materials, it

was concluded that there is room for development of some novel tools which can

overcome some of the difficulties of UGWs in complex materials. In particular,

the use of probabilistic and machine learning methods were used to develop more

generalised methodologies, which are readily expandable to other material/system

types. Therefore, the aim of this work was to develop novel probabilistic tools for

application of guided waves in damage detection of fibre-composite materials.

Firstly, Chapter 1 introduced the general concepts of NDE/SHM, ultrasonic guided

waves, and the challenges that need to be overcome. Chapter 2 then reviewed the

literature available on topics used in this thesis, highlighting the gaps in research

that this thesis aimed to fill. Chapter 3 gave an overview of the physics of ultrasonic
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guided waves, and a brief overview of the numerical/analytical modelling methods

used. Probabilistic methods were applied in all the novel work of this thesis, and the

machine-learning methods which fall under this category were detailed in Chapter 4.

Novel work is then shown in all the remaining chapters of the thesis. This portion

begins with Chapter 5, which shows the informed Gaussian process tools developed

for modelling features spaces of ultrasonic guided waves. Following this, Chapter 6

showed the multi-stage probabilistic approach to Lamb-wave signal decomposition,

with the focus on damage localisation using reflected waves. The last chapter of novel

material is Chapter 7, which shows the Bayesian approach to material identification

of a plate using Lamb-wave dispersion curves.

The experimental portions of this work were in Chapters 5 and 7, where a scanning-

laser Doppler vibrometer was used to record Lamb-wave propagation on the surface

of the coupons being tested. Clearly, the aim here is not to generate the final-stage

detection strategy, but instead to develop tools for the initial stages of strategy

development, where prerequisite knowledge is determined. The advantage of using

the SLDV is in the ability to measure with a large spatial density, which would

otherwise be impossible using physical sensors. For the feature-space modelling work

in Chapter 5, this characteristic is useful, as a large amount of information is needed

for learning algorithms. However, as noted in Chapter 2, one benefit of including

physics in the learning of a mapping allows for the use of fewer data points, and

so the methodology could be applied to more sparse sensor arrays – such as a PZT

pitch-catch matrix. For the material identification stage, the importance of the

sensor density can be discussed with relation to the measured observations. The

[ω-k ] image data for the GFRP coupon appears to encapsulate the full range of the

wavenumber for the modes present, and as the wavenumber range is proportional to

the spatial density, this is a direct result of using the SLDV.

A continuing trend with difficult analytical/numerical modelling problems is to shift

to a data-driven approach; this is useful for systems that are easily generalised or

where the system/design does not change. However, the work in Chapter 5 showed

that embedding physics into the learning improves the generation of guided-wave

feature spaces. This also has other advantages such as extrapolability and better
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performance in learning.

A barrier to progress in of using guided waves in an NDE or SHM strategy, is the

difficulty of modelling the behaviour of these waves in complex materials. The

work presented in Chapter 5 shows promising steps towards generating a physics-

incorporated, data-driven model for the feature space of guided waves in such

materials. Several characteristics of such a strategy, which must be carefully con-

sidered to maintain robustness, have been discussed. This strategy provides a key

framework for the development of guided-wave models for complex materials – such

as those in a wind turbine blade – by allowing modelling of features which define

the waves propagating throughout the material. The important distinction of this

combined method, in comparison to physics-only or data-driven-only methods, is

that it allows physics to guide the model, whilst allowing unknown or undescribed

physical mechanisms to be incorporated via the data-driven aspect.

When initially looking at the kernels chosen to represent different learning strategies

and levels of constraint, it is not clear which strategy will result in the optimal model

output. By various quantitative assessment values, it is possible to see how each

model fits in comparison to the validation data, in different aspects. By leaving the

model uninformed, it is possible to get a closer fit to the training and validation

data in terms of difference between the predicted and measured values. However, by

guiding the learning process using physics-based implementation of the problem, it

is possible to get a higher-likelihood model.

The localisation of damage using Lamb-wave reflections, requires the decomposition

of received signals to determine the reflection arrival time. Chapter 6 presented a

methodology for localisation of damage using ultrasonic guided waves, by simulating

Lamb waves in an aluminium plate. The overall strategy involves decomposing

measured single-source signals, from which residual signals can be determined which

contain reflected waves, which are then used to triangulate the reflection source. The

decomposition stage uses a Bayesian approach in order to generate a distribution of

possible nominal waves, allowing better determination of uncertainty. In particular,

the full-field decomposition strategy was designed for use in systems where accurate

physical models of signals are difficult to obtain. In Chapter 6, the accuracy of the
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decomposition and localisation methods were shown. Inaccurate location was found

to be largely because of the influence of boundary reflections, which is not likely to

be an issue in future applications, as the plate shown here was of small size.

Discussion was made in Chapter 6, on the importance of prior knowledge on the

localisation strategy, and how to improve the methodology if this information was

not known. One such method for triangulation, when the prior knowledge is limited,

or imprecise, is to use a probabilistic approach. In particular, fibre-composite

materials causing propagation-angle-dependent wave velocities and unknown wave

mode conversion. As the methodology shown here is probabilistic, it lends itself well

to a probabilistic triangulation, as the uncertainty and likelihood calculations can be

propagated through.

Previous decomposition methods required either instantaneous full-field information,

or accurate physical models – which are only available for simple systems. Using

a finite-difference method which can model complex multi-mode interactions, a

probabilistic decomposition method was presented in Chapter 6. This method allows

for a quantification of uncertainty, as well as returning parametric features which

correspond with known physics of wave behaviour.

Chapter 7 presented a novel methodology developed for a Bayesian approach to

material identification using Lamb-wave dispersion curves, which indicated the

promise of the method for its application to, and use of, guided waves. A unique

advantage of this method against others is the freedom in the estimation of the family

or shape of the posterior of the parameters, for both the univariate and multivariate

distributions. This freedom was shown to be necessary; the univariate posteriors

appear to converge to different shapes, and there are clear and different correlations

in the multivariate posterior.

To begin, the orthotropic model-identification procedure was applied to a carbon-

fibre-weave plate, and showed the initial potential of the method. However, as only

information on the A0 mode was available, and sensitivity of the curves was not

exhaustive on this mode, more information was needed to improve the procedure.

Therefore, when applying the method to the wind turbine blade coupon, an alternative

experimental approach, and updated likelihood, was used to include both the A0
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and S0 modes. This addition showed great improvements to the identification results

when applied to propagation along the fibres. When applied to propagation across

the fibres, the converged parameter combination does not appear to be accurate,

showing that consideration of the model being used is important for this procedure.

With respect to the objective of generating dispersion curves for a material in order

to determine dispersive characteristics, in particular group velocity, this method was

shown to work well. Using the procedure, a distribution of estimated dispersion

curves was also generated, which, by observation, had low uncertainty and the

measured data fit well within these distributions. This low uncertainty is useful

for localisation purposes, as the small wavelength indicates that an accurate group

velocity is required.

8.2 Future Work

As with any research, the work shown has opened up many other pathways for

improvement, implementation, and testing of the work shown here. This section

will detail future work which the author believes to be the next steps in the tools

developed here.

8.2.1 Pathway to application on wind turbine blades

The work presented here was motivated by the possibility of using UGWs as a

method for detecting damage in wind turbine blades. There are several steps that

should be studied and researched to aid progression towards application of UGWs

in wind turbine blades, using the tools developed in this thesis. With respect to

the feature-space modelling, work can be done to test the method on structures

that are more similar to that found in the construction of WTBs. The work shown

here was to test and demonstrate initial capabilities of the method, but WTBs also

include additional complexities, such as, embedded wooden cores, web joints across

the internal structure, and discontinuous fibre orientations. Additional kernels could

be designed which incorporate knowledge of how such features of WTBs affect the

attenuation mechanisms (and other characteristics of UGW propagation).
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For the wave decomposition and localisation methodology, the next key stage for

application to WTBs would be to develop and test the determination of the nominal

wave dictionary (NWD) for a known location on the WTB structure. A vital step

would be the validation of this NWD model, in particular for allowing generalisation

of the model to known parameters. Such parameters may be; relative fibre-orientation,

local structural complexities, and material layup.

Finally, for the material identification procedure, it would be useful to verify the

method on a variety of locations within the blade. The Legendre polynomial

expansion approach is readily applicable to layered materials, and improvements to

the methodology outlined in Chapter 7 is discussed later regarding more complex

models for the dispersion curve solutions. For progression to application on WTBs,

it would be beneficial to test the method on locations which have different material

layouts. Furthermore, it may be useful to look into adapting the algorithm for on-line

use, so that dispersion curve information can be updated during operation on the

structure.

8.2.2 Additional tests and improvements of feature space learner

The feature-space model-generation strategy presented in Chapter 5 was employed

on a dataset of energy-based features, which will follow an attenuation model. This

forms the basis of the physics embedding, as the kernel designs were based on

different attenuation mechanisms. The first potential avenue for expanding upon this

method is to develop kernels for features which are described by different physical

mechanisms – such as time of flight, central frequency, etc. Another alternate kernel

design improvement could be to embed knowledge on complex multi-mode interaction

and physics descriptions, e.g. amplitude ratio.

Improvements could also be made on the Gaussian process approach shown in this

work. Some improvements could be to include additional an attenuation mechanism;

namely, dispersive attenuation, which is associated with the central frequency of the

wave. For this addition, an additional dimension of the input would be required

to include the central frequency of the wave. There are many models available

for solutions to dispersive attenuation, though these are numerical procedures –
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they are modelled using dispersion-curve solutions. Work could be done on the

feasibility of including this numerical definition of the dispersive attenuation into

the Gaussian-process kernels.

From the results of the expected variance of the learned models, there is an enforced

asymptotic behaviour from the equations governing the attenuation mechanisms.

Further improvements could be made to the kernels by allowing for a finite value of

these energy-based features. However, it may be argued that this is unnecessary as

the feature space needs only be accurate further away where sensors will be deployed.

Another progression of this method would be to test the extrapolability of the learner

using the physics, by reducing the radius of sensing and assessing its performance

compared to a testing set of points outside of this radius. As well as extrapolation

in the spatial dimensions, tests could also be done on extrapolation in additional

dimensions discussed above, such as frequency. Furthermore, an assessment could

be performed on the number of data points used in modelling, as an advantage

of physics embedding is the lower number of training points required for accurate

modelling.

8.2.3 Using feature-space models to better understand guided waves in

composite media

As well as testing further adaptations and improvements on the feature-space model-

generation method, the strategy developed here can be used to further understanding

guided wave phenomena in fibre-composite materials. The results shown in Chapter 5

show that there are more than just the two attenuation mechanisms included in the

model, and that any additional mechanisms vary over the propagation angle. From

this initial set of results applied to this method, there are already some observations

made. Via additional testing on varying fibre, layup and material types, using the

feature-space learner applied here could allow for better understanding of these

additional attenuation mechanisms.

As well as applying the learning method shown here, further work could be done

to develop a parametric, physics-informed model generation strategy. By adapting
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the method in this way, in particular to make inferable parameters, additional

mechanisms could be more than understood, but also quantified. This further work

could also be applied to features which demonstrate other physical phenomena,

linking to the above-mentioned improvements that could be done to this work.

8.2.4 Further work on aspects of uncertainty

The probabilistic approaches used in this work have an advantage, in that they readily

allow for quantification of the confidence in features, values, and measurements. In

this subsection, several avenues of further work are proposed which relate to the

uncertainty returned from the tools presented in this thesis.

A particular advantage of the decomposition method shown in Chapter 6 is the

quantification of uncertainty in the decomposed signal. In this work, that uncertainty

was used to discuss the level of confidence one has in the decomposed signal, but in

a qualitative manner. Some further work that the author suggests, is to develop a

method of propagating this uncertainty from the decomposition to the uncertainty

in the location. One possible avenue of exploration could be quantifying the path of

uncertainty through the values of; reflection signal, signal onset, time-of-flight and

damage location.

The uncertainty, at several stages of each method, could be compared to a more

‘statistical’ quantification of uncertainty, where multiple observations are used to

generate the uncertainty distribution. In particular, for the localisation method,

these comparisons could be made at several stages of the methodology. For the

feature space modelling method, shown in Chapter 5, this comparison could be done

by quantifying the uncertainty using multiple tests and coupons.

The Bayesian linear regression approach here assumes a Gaussian prior and likelihood,

and so the posterior must also be Gaussian. This assumption means that a constraint

is placed on the shape of the posterior for the signal decomposition shown in

Chapter 6. Work could be done to determine if this constraint on the posterior has

any implications for the uncertainty – in particular with respect to the uncertainty

propagation through to location. Furthermore, tests could be done to determine if

the posterior distributions change when applied to different phenomena.
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The main motivation behind the work of Chapter 7 was to determine accurate

dispersion-curve solutions for a given system, in order to obtain an accurate group

velocity for localisation purposes. The samples from the posteriors can be used to

quantify uncertainty in the material parameters, as well as allowing one to generate

a posterior distribution of the dispersion curves. It may be useful to assess how

each of these distributions affects the uncertainty in localisation. This assessment

could be done by determining a method of propagating the quantified uncertainty,

or by testing the accuracy of systems with large uncertainty and systems with

smaller uncertainties. As well as this, any interaction between the uncertainty in the

parameters and uncertainty in the curves could be studied.

8.2.5 Improving Bayesian material identification

The work in Chapter 7, showed that the model used for the dispersion-curve solutions

is an important consideration in the material identification stage, even when the

objective is just to determine an accurate curve with respect to the observed data.

The applicability of the method to different dispersion-curve models is an encouraged

avenue of research, and whether there is a limit to the model complexity. It is clear

that the model applicability and fit would be highly dependent on a lot of factors, such

as; the dimensionality of the parameter space, the fidelity of the model in comparison

to the complexity of the system/material being measured, and the number and type

of wave modes being included. In addition to this, work could be done to assess what

sort of model reduction can be applied to given material types, whilst maintaining

accuracy in the solutions. For example, can a transversely-isotropic model be used

in place of an orthotropic model to reduce the dimensionality of the parameters?

With respect to the orthotropic model approach used here, some further work could

be done on including the rotation of the stiffness matrix for more accurate modelling

of propagation through the fibres. This adaptation would result in a much less sparse

stiffness matrix being required, and therefore, a larger number of parameters are

required to be sampled over. However, this also means there is only a need for a

single sampling procedure applied to all propagation angles simultaneously, although

this does not balance the increased computational expense.
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As many of the improvements on this procedure will likely lead to increased compu-

tational expense, there is a need for research into the performance of the procedure

for this application. One such avenue of research would be to reduce the order of

dimensionality of the parameter space. The results of the sampling procedure showed

correlation between many of the parameters, which varied between propagation

angles and material types. Using both probabilistic and machine-learning approaches,

a study could be done on determining a reduction mapping; the simplest of which

would be a method such as principal component analysis, or locally-linear embedding.

For all propagation angles and materials, there was a strongly linear correlation

between the parameters C55 and ρ. Therefore, an obvious first step may be to

utilise physical knowledge of material behaviour to apply dimensionality reductions,

although this will be dependent on the fidelity of the model used.

Another potential method of increasing performance, is to determine a multivariate

prior over the parameter space, which would improve sampling by reducing the

number of rejected samples. More on this will be discussed in the next subsection.

8.2.6 Determination of space of valid elastic constants

For the posterior-sampling procedure in Chapter 7, any invalid parameter combi-

nations were rejected from the sampling. This rejection was done by detecting any

combinations which resulted in any eigenvalue in the solution being less than zero.

However, this causes a reduction in model performance, as it creates a discontinuity

in the valid parameter space. Furthermore, as the priors were assumed independent

here, sampling performance could be improved via the use of a multivariate prior on

the full dimensionality of the parameter space.

A solution to both these aspects which affect sampling performance, is to determine

the valid space of material properties, with respect to dispersion-curve solutions.

This implementation would also allow for more physically-meaningful parameters in

the prior for other Bayesian analysis methods. An initial idea would be to define this

space based on the requirement that all eigenvalues of the matrix A be less than zero,

which would define this matrix to be a negative-definite matrix. There are many

tools to determine if a matrix is negative definite; however, they are not required ; i.e.
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these definitions are non-exhaustive. In addition to this, these definitions would be

extremely difficult to propagate backwards onto the material property space through

the Legendre-polynomial expansion approach.

There are multiple approaches that could be done to determining the space of valid

elastic constants. One such example would be to determine whether an analytical

prior can be defined using the constitutive equations which govern the interaction

between stiffness tensor components. For isotropic materials, this would be trivial

using the equations relating the parameters cL, cT and ρ. Another approach would be

to use the definition of valid material property combinations to generate samples of

the valid space. Using these samples, a more data-based approach can be applied to

determine an empirical definition of this space, some examples of which are; manifold

learning, or topological data analysis.
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Additional Work

As well as the studies and results presented in this thesis, the author completed

several other pieces of work during the course of their PhD programme that they feel

are worth highlighting here. As a result of either being extracurricular to this project,

or unfortunate circumstances, the following work was not included in the main body

of this thesis. One such of these works is the development of an experimental system

for investigating guided waves in a full-scale wind turbine blade, with varying levels

and types of damage. This work was intended to be a critical part of the thesis,

however, the resulting data was unfortunately lost due to a clerical error out of the

authors hands. The extracurricular activity that will be mentioned is the creation of

an extensive experimental dataset for modal analysis of glider wings under varying

environmental conditions, damage states, and simulated damage.

Full-Scale Wind Turbine Blade Damage and Fatigue Test

As part of the initial plan for the thesis, in partnership with Siemens Gamesa

Renewable Energy, an experimental test investigating guided wave propagation in a

full-scale wind turbine blade was designed. The test was to be performed during the

cycle of an ongoing fatigue test on the blade, where damage was to be introduced to

the structure, and the growth of this damage monitored under fatigue loading. The
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guided wave system was designed, developed, built, and maintained in order to allow

autonomous collection of the required data. Additionally, due to travel limitations

during the pandemic, the system had to be built to be operated remotely and set up

by an external technician.

Figure 9.1: Layout of sensors and actuators with respect to the damage for full-scale

wind turbine blade UGW experiment. Distances are not to scale.

The same layout was used for each damage case, in each location of the blade, and

is shown in Figure 9.1. For actuation of the UGWs, a pair of Physik Instrumente

P-016.20P Stack Actuators were placed on either side of the damage, and were

supplied with a specified actuation signal. Because of the large thickness of the

structure, PZT stack actuators (PZTSA) were used in order to supply enough

energy to induce guided waves. The PZTSAs were actuated one at a time and

synchronised with the acquisition in order to time-align the wave measurements in

all directions and distances. For wave sensing, an array of evenly-spaced PZT sensors

were placed on both sides of the damage (as shown in Figure 9.1) using Accellent

Smart Layer®Sensors. The PZTSAs and sensing PZTs were placed in order to
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analyse the wave propagation before and after the damage, in both directions.

The system was designed and programmed in LabView�, with the programme

flowchart shown in Figure 9.2. In order to test the effects of dispersion characteristics

and frequency-driven attenuation mechanisms, a variety of actuation source signals

were used.

Figure 9.2: Flowchart of pitch-catch acquisition system.

Glider Wing Modal Analysis Dataset

The research interests of the author cover NDE and SHM techniques which utilise

other methods, such as modal characteristics, which are well known to be damage-
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sensitive. Several challenges still hinder progress in the practical application of such

techniques, and generalising SHM techniques. Such challenges include operational and

environmental fluctuations, repeatability issues, and changes in boundary conditions.

For SHM methodologies based on techniques such as machine learning, this can

cause issues as these changes in conditions may be incorrectly flagged as damage, as

the modal characteristics are changed. Accounting for these variations is especially

important for population-based SHM, which seeks to transfer valuable information,

including normal operating conditions and damage states, across similar structures.

So, an experimental campaign was designed to create a modal dataset of a set of

nominally-similar structures, with data collected at various environmental conditions

and damage states – the latter being both practical and simulated.

Figure 9.3: Glider wing in temperature-controlled chamber.

The structures chosen were four full-scale, 6.45-metre composite Astir glider wings,

where one of the wings had naturally-occurring damage, an example of one setup

for testing is shown in Figure 9.3. The details of these wings is shown in Table 9.1.

Thirty-six uniaxial 10 mV/g accelerometers were placed at various locations along
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Wing ID Side Damage State

A1 Starboard Undamaged

A2 Port Damaged

B1 Starboard Undamaged

B2 Port Undamaged

Table 9.1: Side and damage state of each of the wings tested during experimental

campaign. The first letter of the Wing ID indicates the original glider which the

wing was from.

the underside of each wing, and time signal data was acquired using Siemens PLM

LMS SCADAS hardware and software. The same accelerometers were used on each

wing, and care was taken to ensure that they were attached to the same locations on

each wing. The locations of these sensors are shown in Figure 9.4. The shaking force

was done using electrodynamic shakers, suspended with elastic cords from a gantry

frame, in order to minimise any external blocking forces which may influence the

input spectra.

Figure 9.4: Layout of sensors on the Astir glider wings.

For the undamaged wings, additional masses were placed at specified locations to

simulate the effects of damage on the structure. It is common practice in experimental

work for vibration-based SHM techniques to add mass to the structure, as this has

a similar effect to the reduction in stiffness that occurs as a result of damage [146].

The locations of these masses are also shown in Figure 9.4. Both masses were 64g in

weight and attached using suction cups to not influence internal properties of the

structure. Data was acquired with each mass placed individually, and both masses

on simultaneously.
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This dataset has already shown to be useful in developing and verifying SHM

techniques which can overcome some of the difficulties mentioned above [147]. The

publication of the dataset and accompanying journal paper are being developed by

the author.
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