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Abstract 

It is notable that investigation of detailed kinetic mechanisms is beneficial to understanding 

of the combustion process and exhaust gases formation. Therefore, the aim of this thesis is to 

numerically study the combustion and emission characteristics of partially cracked ammonia 

(NH3/H2/N2/air mixtures) and chemiluminescent emission for hydrocarbon fuel based on the 

chemical kinetic mechanism. 

In this study, the potential of partially cracked ammonia in controlling NOX emission and 

widening operation range in a single and staged combustion system is discussed for the first 

time. As well, the effect of cracking ratio and other influential factors on the NOX emissions is 

numerically demonstrated. Besides, in order to further study the flame characteristics, the 

ability of flame chemiluminescence as a sensor of heat release rate at various equivalence 

ratios is discussed. Consequently, total chemiluminescence is more acceptable as a reliable 

signal to character the heat release rate.  

Usually, development of an accurate and relatively compact reduced mechanisms is required 

to save computation time of numerical study. The direct relationship graph with error 

propagation (DRGEP) and the generalized entropy production analysis (GEPA) methods are 

integrated to establish the ethanol reduced kinetic mechanism. In addition, a two-stage 

reduction process combining the improved path flux analysis (IPFA) and the generalized 

entropy production analysis (GEPA) method is performed for the first time to develop the 

reduced ammonia/hydrogen/methane mechanism. The results show generally good 

agreements between reduced mechanism and extensive experimental measurements.  
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𝑊$ Molecular weight of the kth species 

(g/mol) 
x Spatial coordinate (cm) 
Xj Mole fraction of the jth species 
[Xk] Mole concentration of the kth species 

(mol/cm3) 
Yk Mass fraction of the kth species 
𝛼$ Chemical affinity of the kth reaction 

(cal/mol)  
𝛿1D  Parameter of judgement on whether 

species B is involved in the ith reaction or 
not  

ε User-specified threshold 
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γ Cracking ratio 
λ Thermal conductivity of the gas mixture 

(cal/cm·s·K) 
𝜈0,D  Stoichiometric coefficient of species A in 

the ith reaction 
𝜇"  Chemical potential of the jth species 

(cal/mol) 
𝜔̇ Reaction rate (mol/cm3·s)  
ωf,i Forward reaction rate of the ith reaction 

(mol/cm3·s) 
ωb,i Backward reaction rate of the ith reaction 

(mol/cm3·s) 
ωi Net reaction rate of the ith reaction 

(mol/cm3·s)  
ρ Mass density (g/cm3) 
Φ Equivalence ratio 
Φoverall Overall equivalence ratio in rich-lean burn 

combustor  
Φprimary Equivalence ratio of primary stage in rich-

lean burn combustor  
τPFR Residence time in PFR (ms) 
τPSR Residence time in PSR (ms) 
τtotal Total residence time (ms) 
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1. Introduction 
1.1. Motivation 

Combustion, as one of the common ways of energy conversion, plays a key role in varied 

important fields such as energy, electricity, transportation. It promotes rapid industrial and 

economic development while also contributing to significant consumption of fossil fuels, 

leading to large number of emissions of pollutants and many environmental problems. 

In order to achieve the target of reduction in greenhouse gas (GHG) emissions, it is important 

to explore renewable energy sources for human and industrial activities. Hydrogen, natural 

gas, alcohols and ammonia, as low or zero carbon fuels were proposed to alleviate the energy 

shortage crisis [1]. As a promising carbon free fuel, the possibility of using ammonia as a 

surrogate of hydrocarbon fuels in engines was discussed in previous experimental works [2-

5]. However, due to its noticeably low laminar burning speed, narrow flammability limits and 

high ignition energy, ammonia-fuelled combustors are prone to low combustion stability and 

combustion efficiency [ 6 - 9 ]. To solve this problem, one of the effective enhancement 

strategies is to mix ammonia with other reactive fuels, such as oxidizer, hydrocarbons and 

hydrogen [10,11]. It is important to note that the production of H2 from cracked ammonia is 

straightforward, there is no need to add new components when using H2 as an addictive 

[12,13]. Thereby directly using partially cracking ammonia instead of hydrogen enables to 

enhance combustion performance and effectively avoid the safety problem of H2 in 

transportation. Therefore, the present work considers using cracking ammonia for keeping 

high combustion efficiency and low NOX emissions in gas turbines, based on its capability of 

thermally cracking to nitrogen, hydrogen, and unburned ammonia radicals. 
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Another great challenge of ammonia combustion is high NOX emissions that hinders NH3 

utilization in gas turbines [14]. Consistent results were reported by a number of researchers 

[15-18] that NOX emission is able to be remarkably reduced under slightly rich equivalence 

ratios (1.05-1.2) compared to stoichiometric or slightly fuel-lean conditions. However, these 

studies also implied excessive emissions of unburnt NH3 and H2 and efficiency issues under 

the rich burning condition. Therefore, rich-lean combustion is considered since it can take 

advantage of suppressing NOX production, as well as burning off the remaining ammonia and 

hydrogen in the lean-burn stage [12,17,19].  

In order to explore the potential of partially cracked ammonia (NH3/H2/N2/air mixtures) in 

controlling NOX emission and widening operation range in single and two-staged combustors, 

a numerical study on the combustion and emission characteristics for partially cracked 

ammonia (NH3/H2/N2/air mixtures) in gas turbines is performed for the first time. 

It is known that investigation of detailed kinetic mechanisms is beneficial to deeply 

understand the combustion process and exhaust gases formation. Most combustion reaction 

kinetics models consist of more than hundreds of elementary chemical reaction steps that 

have a profound impact on the combustion phenomena [20]. Usually, it is necessary to reduce 

the extremely rigid problems of complex detailed mechanisms encountered in the numerical 

simulation of flow and combustion coupling. Meanwhile the reduced model should maintain 

the physicochemical properties of the fuel within wide operating conditions. To further study 

of the ammonia combustion process and NOX emissions, development of an accurate and 

relatively compact reduced mechanism for the ammonia oxidation is required. Therefore, in 

order to retain the essential dynamic features of the reaction system and reduce stiffness 
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induced by the highly reactive radicals, a reduced kinetics mechanism for NH3/H2/CH4 

mixtures is developed and well validated. 

In addition, application of renewable and clean energy, alcohols, especially ethanol that are 

applied as fossil fuel substitute fuels have attracted more attention as well [21,22]. To reduce 

computation time of simulation, a new reduced ethanol mechanism including excited radicals 

(OH*, CH* and C2*) is developed and successfully validated with extensive experimental 

results. 

With the aim of better studying the complex phenomena in the combustion process, the 

optical diagnostic technology has been widely concerned, as it has no interference to the 

combustion field during the diagnosis process. Chemiluminescence is regarded as a promising 

low-cost optical diagnostic tool [23,24]. At present, the applications of chemiluminescence 

are performed to understand the ignition and flame development characteristics more 

intuitively [25,26,27,28]. It has long been known that kinetic modelling is a very effective tool 

for combustion investigations. Therefore, numerical analysis of ethanol flame structure based 

on chemiluminescence from the flame is motivated and conducted by using the reduced 

ethanol mechanism. Also, the peak chemiluminescence intensity of C2*/CH* as an indicator 

of local equivalence ratio is illustrated in hydrocarbon fuel flames from the aspect of the 

chemical mechanism. 

  

1.2. Aim and Objective 

Based on the motivation of the present thesis, the main objective includes three aspects: 

firstly, develop a compact reduced kinetics mechanism of ethanol for further investigation of 



4 
 

flame chemiluminescence, and establish an accurate reduced mechanism for NH3/H2/CH4 

mixtures to understand the NH3/H2/CH4 combustion process and exhaust gases generation. 

Secondly, explore the potential of partially cracked ammonia (NH3/H2/N2/air mixtures) in 

controlling NOX emission and widening operation range in a single and two-staged combustion 

system. Moreover, provide a deep insight in improving combustion and controlling emission 

characteristics of partially cracked ammonia in both single and 2-stage rich-lean gas turbine 

combustors. Finally, analyse the equivalence ratio and heat release rate determination by 

using excited state species (OH*, CH* and C2*) chemiluminescence profiles. In detail, the 

objectives are listed as follows: 

Ø For establishing the reduced kinetic mechanism 

• The direct relationship graph with error propagation (DRGEP) and the generalized 

entropy production analysis (GEPA) methods are integrated to establish the ethanol 

reduced kinetic mechanism. 

• The reduced ethanol mechanism is validated by available experimental data including 

ignition delay time, species mole fraction in jet stirred reactor and laminar burning 

velocity over numerous operating conditions. 

• A two-stage reduction process combining the improved path flux analysis (IPFA) and 

the generalized entropy production analysis (GEPA) methods is performed for the first 

time to develop the reduced ammonia/hydrogen/methane mechanism. 

• Extensive validations of the proposed reduced model are conducted by comparing 

with the detailed mechanism as well as available experimental data of ignition delay 

time in shock tube, species profiles and laminar flame speed over a broad range of 
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equivalence ratios, temperatures, and pressures. 

• The NOX emission characteristics of NH3/H2/CH4 mixtures in a gas turbine are 

numerically investigated through a chemical reactor network (CRN) model based on 

the proposed ammonia reduced mechanism. 

 

Ø For studying combustion and NOX emission characteristics for partially cracked 

ammonia 

• The laminar burning velocity of partially cracked ammonia flame is predicted with a 

one-dimensional freely propagating laminar flame calculation model of CHEMKIN-PRO 

[29]. 

• The chemical reactor network (CRN) model is constructed to characterize the NOX 

emission of partially cracked ammonia combustion in a single stage and 2-stage gas 

turbine combustor. 

• A reaction pathways flux method is used to represent NO reaction pathways at various 

operating factors and cracking ratios. 

• The potential of controlling the important intermediate species and reactions on NO 

formation/reduction is demonstrated by identifying the major NOX reaction pathways 

and analysing the NO rate of production (ROP). 

 

Ø For studying the ability of flame chemiluminescence as a sensor of heat release rate 

at various equivalence ratio 

• The ability of flame chemiluminescence as a sensor of heat release rate at various 
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equivalence ratio is discussed by combining rate of production analysis and sensitivity 

analysis. 

• Reaction paths analysis is conducted for better understanding ethanol oxidation 

process and the formation and consumption reactions of the excited state species. 

• The correlations between the chemiluminescence intensity ratio of C2*/CH* and the 

equivalence ratio are investigated in hydrocarbon premixed flames based on chemical 

reaction kinetics mechanisms. 

• The phenomenon, where the peak chemiluminescence intensity ratio of C2*/CH* 

increases almost linearly following by a descending trend when the local equivalence 

ratio increases, is demonstrated from chemical mechanisms’ aspect for the first time. 

 

1.3. Outline of the thesis 

In this thesis, the combustion and emission characteristics of partially cracked ammonia 

(NH3/H2/N2/air mixtures) and chemiluminescent emission for hydrocarbon fuel based on the 

chemical kinetic mechanism are mainly studied. Firstly, to save computation time of numerical 

study, the direct relationship graph with error propagation (DRGEP) and the generalized 

entropy production analysis (GEPA) methods are integrated to establish the ethanol reduced 

kinetic mechanism. In addition, a two-stage reduction process combining the improved path 

flux analysis (IPFA) and the generalized entropy production analysis (GEPA) method is 

performed. Secondly, the potential of partially cracked ammonia in controlling NOX emission 

and widening operation range in a single and staged combustion system is discussed for the 

first time. As well, the effect of cracking ratio and other influential factors on the NOX 



7 
 

emissions is numerically demonstrated. Last but not least, in order to further study the flame 

characteristics, the ability of flame chemiluminescence as a sensor of heat release rate at 

various equivalence ratios is discussed. Consequently, total chemiluminescence is more 

acceptable as a reliable signal to character the heat release rate. 

In detail, the present thesis consists seven chapters, which are the introduction, the basic 

background knowledge, the numerical methods, the numerical results as well as the 

conclusions. The contents are listed in detail as follows: 

In Chapter 1, the motivation of the present study is provided, the aim and objectives of this 

work, and the outline of the thesis are presented.  

In Chapter 2, the background knowledge associated with the present thesis has been given. 

The literature review includes four primary aspects, consisting of the fundamental knowledge 

of chemical kinetics mechanism, the introduction of mechanism reduction methods and the 

methods of reduced mechanism validation; the background of ammonia as a fuel, including 

the review for the application of ammonia in engines, the introduction of the ammonia 

combustion in gas turbines and the ammonia cracking, and the review of ammonia chemical 

kinetics mechanism development; the introduction of the general optical diagnostic, and 

flame chemiluminescence; the general concept of hydrocarbon combustion, the brief 

definition of premixed flame, equivalence ratio and the laminar flame speed. This chapter 

concentrates on the elementary knowledge of the present thesis, more details will be given 

in the introduction part of corresponding chapters.  

In Chapter 3, the basic numerical methods are developed and presented as results. The 

theories of DRGEP, IPFA and GEPA methods are introduced in the first section. As well, the 
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validation model for reduced mechanism is discussed in the second section. The third section 

introduces the CRN model including the fundamentals, the components of CRN models in 

singe and two staged gas turbine combustion, and the validation of the CRN model. At the 

end of this Chapter, for simulating the flame chemiluminescence, the chemiluminescence 

reaction mechanism of OH*, CH* and C2* and the theory of chemiluminescent intensity 

calculation are introduced. And the validation of the chemiluminescent intensity modelling of 

excited state species is provided. 

In Chapter 4, reduced reaction mechanisms for ethanol and NH3/H2/CH4 mixtures are 

developed. In detail, the DRGEP combined with GEPA method and an integrating method of 

IPFA and GEPA are employed to reduce ethanol and NH3/H2/CH4 mechanisms respectively, 

including the error analysis and the reduction process for both methods. Besides, the 

validations of ignition delay time, species profiles and laminar flame speed for the reduced 

mechanisms of ethanol and NH3/H2/CH4 mechanisms are performed separately under 

numerous conditions. 

In Chapter 5, it is mainly to investigate the combustion and NOX emission characteristics of 

partially cracked ammonia in gas turbines. The effect of cracking ratio, equivalence ratio and 

initial pressure on the NOX emissions and laminar flame velocity (LBV) are numerically 

discussed separately from the aspect of kinetics mechanism. Moreover, a reaction pathways 

flux method is performed to present NO reaction pathways of practically cracked ammonia at 

virous operating parameters. In addition, important species and reactions of NO 

formation/reduction are analysed for getting low levels of NOX emissions.  

In Chapter 6, numerically analysing on the equivalence ratio and heat release rate 
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determination by using common excited state species (OH*, CH* and C2*) chemiluminescence 

profiles is investigated in one-dimensional laminar premixed ethanol flame. The ability of 

flame chemiluminescence as a sensor of heat release rate at various equivalence ratio is 

discussed by combining rate of production analysis and sensitivity analysis. Moreover, the 

correlations between the ratio of C2*/CH* and the equivalence ratio are investigated in 

hydrocarbon premixed flames based on chemical reaction kinetics mechanisms. At the end of 

the chapter, the phenomenon where the peak chemiluminescence intensity ratio of C2*/CH* 

increases almost linearly following by a descending trend when the local equivalence ratio 

rises is demonstrated from the chemical mechanisms’ aspect for the first time.  

In Chapter 7, the main conclusions and contributions of the present thesis are listed. At the 

end of this chapter, some suggestions of future works are presented.  
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2. Basic Background Knowledge 
2.1. Introduction 

The basic background knowledge of the present thesis is introduced in this chapter which 

contains four main parts. The first section provides the background knowledge of chemical 

kinetics mechanism, the methods of mechanism reduction and validation, including the 

definition of ignition delay time as well as laminar burning velocity. The second part is the 

background of ammonia combustion. The properties and the applications of ammonia in 

engines and gas turbines are introduced. Then, studies related with ammonia cracking are 

reviewed. Moreover, the development of ammonia chemical kinetics mechanism is concluded 

for further study. The third section introduced the background of optical diagnostic methods 

that consists of laser diagnostic and chemiluminescence. In addition, the application and 

mechanism of excited state species for flame chemiluminescence are reviewed separately. 

The last part of this chapter is general concept of hydrocarbon combustion including of 

premixed flame and laminar flame speed. Literature review in this chapter covers basic 

background knowledge of this study, more details of this filed will be discussed in its relative 

chapter. 

 

2.2.  Chemical Kinetics Mechanism Reduction 

2.2.1. Introduction 

Chemical kinetic mechanisms for combustion area have been developed rapidly in recent 

years [30-36]. It is notable that chemical kinetic mechanisms can be applied for descriptions 

of combustion processes at the level of elementary chemical steps occurring, based on their 
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individual rate parameters. Various specific applications are targeted by different mechanisms. 

For chemical kinetic mechanisms establishment, they have common in the principle, in which 

the elementary rate parameters are consistent with fundamental rate computations and 

measurements. 

A chemical kinetic mechanism consists of two parts: (i) species with related transport and 

thermodynamic properties; (ii) elementary chemical reactions with related rate constants [37]. 

For example, the hydrogen oxidation is described applying the global reaction 2H2+O2=2H2O. 

However, this reaction does not occur as above in reality. The description of hydrogen 

oxidation over a broad range of pressures and temperatures requires eight species and around 

30 elementary reactions [38,39], which are more complicated. In an elementary reaction, the 

reactant and product species as well as the related rate constant are specified. Here, the 

elementary (reversible or irreversible) reactions as follows are taken as an example: 

A	↔	B.                              (2.1) 

If the reaction goes forward (i.e., from left to right), the species A is reactant, the species B 

represents product. Otherwise, species B is reactant, and species A is product. Accordingly, 

the forward and reverse rates can be written as kf[A] and kr[B], where [A] and [B] are the molar 

concentration of species A and B, kf and kr are the forward and backward rate constants, 

respectively. The expressions for kf and kr are given in the modified Arrhenius form [40,41]: 

𝑘 = 𝐴𝑇=𝑒>E+/GH ,                           (2.2) 

where A represents the pre-exponential factor, n is the exponent of the absolute temperature 

T(K), Ea is the apparent activation energy (cal/mol), R is the gas constant (cal/(mol K)). When 

at the equilibrium state, both forward and backward rates are equal. Hence, based on the 
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known forward rate constant as well as the thermochemical parameters of the reactant and 

product species, the reverse rate constant can be possibly obtained under the thermodynamic 

equilibrium condition [42]. 

2.2.2. Background knowledge of mechanism reduction 

Due to the great importance of different elementary steps in various applications, the wider 

the scope of applications is addressed, the larger size are displayed for chemical kinetic 

mechanisms. Therefore, some detailed chemical kinetic mechanisms include thousands of 

elementary reactions and hundreds of chemical species, seen in Figure 2.1, which present 

strong challenges to researchers in combustion area. 

 

Figure 2.1 Size of detailed chemical kinetics for various fuel [43]. 

Reduced kinetic mechanisms, which contain much fewer numbers of species and elementary 

reactions compared with the detailed mechanisms, can reproduce the associated physical 

phenomena satisfactorily under a wide range of targeted situations [44,45,46]. Besides, three-
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dimensional and large-scale combustion modelling with detailed kinetic mechanisms needs 

comparatively huge calculational costs in terms of computation time and memory [47]. 

Furthermore, the application of detailed kinetic mechanisms is limited since large 

inconsistencies in timescale for variation of different species leading to the problem of 

stiffness [43]. Therefore, considering the disadvantages of using the detailed mechanisms for 

numerical simulations, there is an imperious demand of reduced kinetic mechanisms. The 

reduced models should be accurate, relatively compact and robust. More importantly, it needs 

to be beneficial for decreasing computational time for CFD simulation. 

2.2.3. Mechanism reduction methods 

In recent days, the research topics of chemical mechanism reduction have attracted more 

attention. As a result, various methods have been proposed to generate reduced chemical 

kinetic mechanisms, which can generally be categorised into four aspects: (i) solution mapping 

methods; (ii) timescale analysis methods; (iii) lumping methods; (iv) species and reaction 

removement methods [48]. These methods are elaborated in the following paragraphs. 

(i) Solution mapping methods employ stored solutions to replace the differential equations 

embedding mass-action kinetics [49]. Therefore, the mechanistic details are totally lost. The 

solution mapping methods include (a) parameterization based on orthonormal polynomials 

[50], (b) piecewise reusable implementation of solution mapping [51], and (c) in situ adaptive 

tabulation (ISAT) [52,53]. In the ISAT, when the simulation is performed in situ, the chemical 

source term is integrated, and the essential information is stored using binary tree data 

structures [52,53]. However, the disadvantages of these methods are unavoidable, since for a 

combustion including large mechanisms covering a broad range of temperature and 
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concentration gradient distributions, the difficulties in data retrieval and large time 

consumption need to be considered carefully [54].      

(ii) Timescale analysis methods are applied to reduce detailed mechanisms, which are based 

on the decomposition of movement into slow and fast in the phase space [55]. In this type of 

approach, the concentrations related with species with fast timescales are expressed as 

functions of those associated with slow subsystems. Two typical approaches employing this 

view are partial equilibrium assumption (PEA) [56] and quasi steady state approximation 

(QSSA) [57,58]. The PEA can eliminate fast timescales from the problem and leads to a 

reduction in the number of independent thermodynamic variables [56]. The QSSA is based on 

recognizing species reacting on comparably fast timescales and thus equilibrate in comparison 

with slower species locally [57,58]. Besides, from the point view of the dynamical systems and 

according to Jacobian analysis, the intrinsic low dimensional manifold (ILDM) [ 59 ] and 

computational singular perturbation (CSP) [60-63] methods are proposed for mechanisms 

reduction. In the ILDM method, the local timescales in the composition space are recognized 

by the eigenvector analysis of the governing equations in a homogeneous system. The state 

properties are determined automatically as functions of coordinates related to the freedom 

degrees [59]. In the CSP method, the time dependency of the Jacobian matrix is fully 

considered. Meanwhile, the fast modes can be identified accurately [60-63]. However, the 

disadvantages of above methods are obvious, i.e., the refinement procedure for conducting 

time-dependent Jacobian analysis requires a large amount of calculation time. 

(iii) As the name suggests, lumping methods use lumped species and reactions to replace 

species and reactions which have similarities in chemical or physical properties [58,64,65]. In 
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this category, constrained nonlinear lumping [66], unconstrained nonlinear lumping [65] as 

well as reaction lumping applying QSSA methods [58] are proposed. In the constrained and 

unconstrained nonlinear lumping methods, reduced differential equation systems with higher 

dimensional constrained and unconstrained nonlinear lumping schemes, respectively, are 

given to describe new variables, that are nonlinearly associated with the original ones [65,66]. 

In the reaction lumping applying QSSA method, reaction lumping with QSSA is employed to 

obtain a reduced mechanism in standard kinetic form involving new lumping reaction rate 

coefficients but results in elimination of QSS species increasing computational overhead [58]. 

The shortcomings of the lumping methods are that low-order approximation is introduced to 

develop the reduced mechanisms, which leads to uncertainties relevant to kinetic data [67]. 

(iv) Generally, the detailed mechanisms need to be made as robust and accurate as possible. 

Therefore, detailed mechanisms probably contain all the elementary reactions, which are 

significant under a wide range of conditions, but may not be necessary in certain specific 

conditions. As a result, a great number of unimportant species and redundant elementary 

reactions can be removed, when detailed mechanisms are applied in some specific problems. 

This is the basic idea behind the species and reaction elimination methods. The insignificant 

species can be eliminated by, for instance, (a) necessity analysis (NA) [68], (b) the connectivity 

method (CM) [69], and simulation error minimization CM (SEM-CM) [70], (c) directed relation 

graph (DRG) [7175], DRG aided sensitivity analysis (DRGASA) [76], DRG with error propagation 

(DRGEP) [77,78], and DRGEP with sensitivity analysis (DRGEPSA) [79], (d) path flux analysis 

(PFA) [80], and improved path flux analysis (IPFA) [81]. In the NA, each species is given a 

necessity value corresponding to the combination of atoms flow between species, which is 
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used for identification of important species [68]. In the CM, strongly connected sets of species, 

identified based on normalization, are added into the reduced mechanisms [69,70].  

 

Figure 2.2 A directed relation graph presenting relations of each species. 

As for the DRG and its derived methods, the net reaction flux across multi generations is used 

to generate a directed relation graph whose nodes are the species (as shown in Figure 2.2). 

The strength of the directed edge linking one species to another species is defined as the 

direct interaction coefficient (DIC) and used to identify the important species. The link with 

lower strength (i.e., smaller DIC) will not be considered (i.e., the unimportant species is 

removed) [71,76,77,79]. In the PFA and its improved version, instead of employing net 

reaction fluxes, the production and consumption fluxes are used separately to seek significant 

reaction pathways. According to this type of operation, the drawbacks of the DRG methods 

can be overcome [80,81]. As for elimination of reactions having minimal effects on 

mechanisms, the following methods can be employed: (a) principal component analysis (PCA) 

[82,83], the functional PCA method (FPCA) [84], and PCA of rate-sensitivity matrix [85], (b) 

sensitivity analysis (SA) [69,86,87,88], (c) species production and heat rate analysis [89], (d) 
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entropy production analysis (EPA) [42], and generalized entropy production analysis (GEPA) 

[90]. In the PCA and its extended methods, the eigenvalue-eigenvector analysis is conducted 

to reveal the parts of the detailed mechanism containing strongly interacting reactions 

[82,84,85]. In the SA, the reactions with those parameters which can lead to large 

uncertainties need to be retained. The parameters include activation energies, rate constants, 

transport coefficients and thermodynamic constants. The SA, which can give aid to further 

mechanism reduction, is normally combined with other elimination methods [69,86,87,88]. 

In the species production and heat rate analysis, the reduction is on the basis of testing the 

production rate of the reactions and contributions of the reactions to the heat release [89]. 

Compared to the methods introduced to eliminate redundant reactions, the EPA and its 

general version are much easier to implement and have attracted more attention. The 

contribution of the reactions to the total entropy production is identified as an index to 

eliminate unimportant reactions. The calculation of the local contribution of the reactions is 

based on the reaction rates and thermodynamic properties of species [42]. 

2.2.4. Mechanism validation methods 

A large number of fundamental studies have been performed to have better understandings 

of the combustion characteristics of fuels. The investigations involve the ignition delay 

[2,36,91-107], speciation [35,42,80,108-121], and flame propagation [44,45,122-130]. Those 

data can serve as validation targets for the reduced kinetic mechanisms. In detail, the 

validation for the ignition delay time, mole fraction of species as well as laminar burning 

velocity which are the three most significant combustion characteristics, are reviewed in the 

following paragraphs.  
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(i) Ignition delay time. 

Validation using Ignition delay time of fuels can be traced back to the 1960s [96,98]. Since 

then, a couple of studies have been conducted in shock tubes at different temperatures and 

pressures to validate chemical kinetic mechanisms of fuel oxidation [93,94,95,97]. Among 

these studies, Drummond et al. employed ignition delay times measurement to validate their 

proposed mechanisms at higher pressures [93]. The high-pressure results of their work results 

in troubles for the model validation. Therefore, a great many new experimental work for 

ignition delay times have been reported in recent years [2,36,91,99-102,104,106]. Mathieu et 

al. validated their reduced mechanisms of fuel mixtures applying measured ignition delay 

times in a shock-tube experiment, covering temperatures of 1560-2455 K and pressures (1.4, 

11, 30 atm). The fuel mixtures were highly diluted by Ar with different equivalence ratios [102]. 

Considering operating conditions of modern transport systems, Shu et al. broadened the 

range of measured ignition delay times to pressures of 20 and 40 atm and validated their 

reduced kinetic mechanisms, employing undiluted fuel/air mixtures at different equivalence 

ratios in a shock tube [101]. Pochet et al. performed validation of their proposed reduced 

model with measured ignition delay times of lean fuel mixtures, which are at low temperature 

of 1000-1100 K and high pressures of 43 and 65 atm in a rapid compression machine [100]. 

Further, He et al. validated their reduced kinetic mechanism with extension of the ignition 

delay times measurement at low temperatures of 950-1150 K, pressures of 20, 40, 60 atm, 

applying diluted fuel/oxygen mixtures in a rapid compression machine [36]. Most recently, Dai 

et al. conducted ignition delay times measurement for diluted fuel/oxygen mixtures in a rapid 

compression machine. In their work, they further extended the pressure range, i.e., 20-70 atm 
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[104,105] and validated their models. 

(ii) Mole fraction of species. 

Validating the reduced kinetic mechanism with the mole fraction of species started in the 

1960s [108,114]. Later, Dean et al. measured the mole fraction of species at different distances 

from the burner and performed validations on their reduced models, however in their studies, 

the temperatures and the pressures were not given in detail [117,118,119]. To cover a broad 

range of operating operations, a few studies have been conducted. Sun and Gou’s group 

reduced the chemical kinetic mechanisms of the fuel/air mixtures, the mole fractions of 

species were measured at the temperatures of 400-2400 K and the pressures of 1-20atm in a 

flow reactor [80,81,131]. Perini et al. validated their reduced mechanism of fuel mixtures 

using the measurement of mole fractions of species in a flow reactor. The parameters are the 

temperatures ranging 750-1500 K and the pressures ranging 2-20 atm [132]. Kooshkbaghi et 

al. performed reduction for detailed kinetic mechanisms of fuel mixtures and validated their 

model on the experimental data of mole fractions of species in a jet-stirred reactor. The 

perfectly stirred reactor (PSR) module in the CHEMKIN-PRO package is used to simulate the 

JSR. The model predictions may be considered accurately in the following two cases: 

(a) the model curve fits with the experimental data very well; 

(b) the predicted maximum species mole fraction is within a factor of 2-3 of the experimental 

data. 

The ranges of temperatures and pressures are 600-2400 K and 1-20 atm, respectively [42]. 

Duynslaegher et al. proposed an improved ammonia mechanism and validated the mole 

fractions of species measured in jet-stirred reactor experiment. The operating conditions 
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cover the low pressures of 0.06-0.12 atm [120]. Xiao et al. [121] conducted validation for their 

reduced model with measured mole fractions of species in the jet-stirred reactor experiment 

of Tian et al., where the temperatures range from 1250-2100 K and the pressure is low at 0.04 

atm [113]. 

(iii) Laminar burning velocity. 

Validation based on laminar burning velocity (flame speed) of fuel mixtures began in the 1950s, 

where the measurements were performed in combustors and the laminar burning velocities 

were calculated by the Bunsen flame area approach [122-125]. In the 1970s to 1990s, 

Zakaznov’s and Ronney’s groups validated their reduced models with measured laminar 

burning velocities in lean and rich fuel mixtures at pressures of 0.6-2 atm [126,127]. Nowadays, 

the validation using laminar burning velocity measurement and modelling has attracted more 

attention. Okafor et al. developed a reduced mechanism for fuel/air mixtures at pressures 

ranging from 1 to 5 atm. In their work, their also optimized their reduced model against the 

measurements and data of laminar burning velocities in their experiments [44]. Cazeres et al. 

validated their developed reduced mechanisms of fuel mixtures based on the laminar burning 

velocity measurement. In their study, the measurement is conducted under the atmosphere 

condition [45]. Xi et al. validated their proposed reduce model with the experimental data of 

laminar burning velocities at the temperatures of 360-470 K and the atmospheric pressure 

[130]. Luo et al. proposed a reduced mechanism for fuel mixtures and then optimized it based 

on the validation of the experimental laminar burning velocity. The measurement is 

performed at the temperatures higher than 1000 K and the pressures of 1-10 atm [129]. 

Considering the extension of measurement range, Li et al. developed a reduced chemical 
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model for comprehensive prediction of fuel mixtures combustion, with the validations of 

laminar burning velocity measurement in the experiments. The operating conditions cover 

the temperatures of 1000-2000 K and pressures of 1-50 atm [128]. 

 

2.3. Background of Ammonia Combustion 

2.3.1. Introduction 

Owing to the great contribution to global warming, carbon dioxide emissions from fossil fuels 

have been regarded as a major threat to climate change. In order to achieve the target of 

reduction in greenhouse gas (GHG) emissions, it is significant to explore renewable energy 

sources for human and industrial activities. Renewable energy sources, for example, wind, 

solar and tidal power, are performing an increasingly important role in reducing CO2. However, 

the increasing penetration of intermittent renewable energy leads to fluctuations in energy 

production, which brings new challenges of the development of energy storage technology. 

Also, high cost is required for obtaining energy from these stationary facilities. In order to 

mitigate their fluctuating nature in energy production, electrical, mechanical, chemical and 

thermal methods have been proposed to store electrical energy. However, storage solutions 

such as lithium batteries cannot supply energy storage with required capacity on the scale of 

the grid [133,134]. Pumped storage and compressed air storage methods are subject to the 

geological constraints. Only chemical storage methods can allow the storage of grid-scale 

energy anywhere for a long time [135,136,137]. Therefore, the advantage of chemical storage 

for allowing long-term storage anywhere makes it as an effective option for low-carbon 

storage.  
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Hydrogen, natural gas, alcohols and ammonia, as low or zero carbon fuels were proposed to 

alleviate the energy shortage crisis [1]. Considering high carbon content of part alternatives, 

such as biomass, natural gas, alcohols, etc., hydrogen energy as an efficient and clean energy 

carrier has received extensive attention and in-depth research in the past few decades. 

Hydrogen has many merits as a fuel, such as wide flammability limits, minimum ignition 

energy, and the high heating value [138].  

However, utilization of hydrogen fuel brings a series of safety, storage and transportation 

problems due to its physical and chemical properties [139-143]: 

(1) Hydrogen has the smallest molecular size; thus it is difficult to seal in storage. 

(2) Hydrogen has an extremely wide flammability limits and high laminar flame velocity, 

which is very easy to explode during storage and transportation. 

(3) The flame of hydrogen is difficult to detect and control due to its weak flame radiation 

[144]. 

(4) High costs are required to compress hydrogen in liquid. 

(5) Hydrogen is colourless and its diffusion rate is extremely fast. Once a leak occurs, it is 

difficult to detect and is prone to spontaneous combustion in the environment. 

Considering the challenges mentioned above, ammonia as one of a new zero-carbon hydrogen 

storage alternatives has emerged [33]. In 1996, Lovegrove et al. carried out experimental 

research of ammonia dissociation for solar energy storage and transport. The experiment was 

operated using an open-loop configuration with a high-pressure ammonia dissociation [145]. 

Hereafter, their group performed experiment for solar-driven ammonia-based loop closing 

thermochemical energy storage system [146]. In addition, ammonia dissociation experiments 



23 
 

have been conducted successfully by other groups [147]. Accordingly, ammonia is widely used 

to offer energy storage and transport to solar thermal power generation.  

Same as synthesised hydrogen, NH3 can be obtained from organic wastes, traditionary fossil 

fuels or other renewable sources including photovoltaics and wind. Ammonia (NH3) has more 

obvious advantages as an energy carrier medium especially compared with hydrogen 

[148,149,150,151]: 

(1) Ammonia is carbon-free, and it only produce water and nitrogen when completely 

burned. 

(2) Ammonia can easily be liquefied under low pressure and the liquefaction temperature 

of ammonia is -33 ℃, which is easy to store and transport.  

(3) Large-scale industrial production of ammonia is relatively mature, such as making 

synthetic ammonia by coal gasification, or making ammonia by methane by Haber-

Bosch method [152], because it only contains N and H elements, it is highly possible 

for ammonia to be made directly by synthesizing air and water with solar energy in the 

future. 

(4) Laminar flame velocity of ammonia combustion is low [8] and combustion range is 

narrow [6], so it is not easy explode compared to hydrogen. 

(5) The energy density per unit volume of liquid ammonia is more than 1.5 times that of 

liquid hydrogen, which is equivalent to that of gasoline. Therefore, ammonia gas has 

the potential to be used as a fuel needed for transportation. 

2.3.2. Ammonia as a fuel 

Ammonia is known as a promising carbon free fuel with a compound of nitrogen and hydrogen. 
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Only water (H2O) and nitrogen gas (N2) are released when ammonia is completely oxidized 

according to the reaction (2.3). The enthalpy of NH3 combustion is 317 kJ/mol at standard 

conditions (25 ℃, 1 atm) [153]. Therefore, ammonia can be considered as an environmentally 

friendly and clean fuel when properly treated. 

4ΝΗ3 + 3Ο2 → 2Ν2 + 6Η2Ο      (1270 kJ/mol).             (2.3) 

In early years, most of the ammonia produced has widely been applied into the agriculture 

systems as a fertilizer and refrigeration systems as a refrigerant [149]. Only a small portion of 

ammonia is directly used in industrial applications as a chemical. Recently, energy shortage 

and environmental concerns stimulate ammonia utilization in the energy sector. Many 

attempts are devoted into using ammonia for power generation and internal combustion 

engines, etc.  

(i) Properties of Ammonia. 

Ammonia can be synthesized directly from nitrogen and hydrogen through a spontaneous 

exothermic reaction. There are no precursors and by-products in this progress. Noted that N2 

is non-activated owing to its strong triple bond, non-polarity and low proton affinity. In nature, 

enzymes and abiotics in soil and sand produce a small amount of NH3 through fixing nitrogen. 

However, naturally produced NH3 is far from sufficient to meet current and future NH3 needs 

(such as fertilizer and fuel) [27]. NH3 is mainly produced in industrial processes based on the 

ancient Haber-Bosch process. Optimized for more than 100 years, the Haber-Bosch process 

enables NH3 production efficiencies of more than 95% (achieved through multiple cycles of 

unreacted gas). The nitrogen used in the current Haber-Bosch process is derived from 

separation of air, while the hydrogen is derived from a typical steam methane reforming 
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process. During the reforming process to produce hydrogen, a large amount of carbon dioxide 

as a by-product also can be produced, which is estimated to result in 289.8 million tons of CO2 

emissions worldwide from ammonia production. Moreover, Haber-Bosch is an energy-

intensive process requiring high temperature and pressure to separate impurities such as CO2 

from natural gas reforming and prevent poisoning of part catalysts. As the low-carbon 

economy becomes more popular in the world, alternatives and modifications to the Haber-

Bosch process are worth exploring to reduce energy costs and greenhouse gas emissions. 

Ammonia as a fuel, its physical and chemical properties also have a good performance.  

 
Figure 2.3 Volumetric and gravimetric energy density of a variety of combustible batteries 

and materials from [12]. 

As shown in Figure 2.3, the volumetric energy density of liquid ammonia (20℃, 0.7MPa) is 

between gas fuel and solid-liquid fuel. Also, high H content property enables its gravimetric 

energy density to show a good performance. The energy density of liquid ammonia is similar 

to that of lignite, and its gravimetric and volume energy density are about 1/3 of that of 
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gasoline. At the same time, the energy density of NH3 is almost 3 times higher than that of 

hydrogen stored at similar pressures. The quality of higher volumetric energy density of liquid 

ammonia makes it more attractive than liquid hydrogen and batteries in the aspect of energy 

storage and transport. 

Table 2.1 Fundamental combustion characteristic of hydrocarbon and ammonia fuels [12]. 

Properties NH3 H2 CH4 C3H8 

Boiling temperature at 1atm (°C) −33.4 -253 -161 -42.1 

Condensation pressure at 25°C (atm) 9.90 N/A N/A 9.40 

Lower heating value, LHV (MJ/kg) 18.6 120 50.0 46.4 

Flammability limit (Equivalence ratio) 
0.63-

1.40 
0.10-7.1 0.50-1.7 

0.51-

2.5 

Adiabatic flame temperature (°C) 1800 2110 1950 2000 

Maximum laminar burning velocity (m/s) 0.07 2.91 0.37 0.43 

Minimum auto ignition temperature (°C) 650 520 630 450 

In addition, liquid ammonia has a high-octane number (around 130) and can be used in high 

pressure internal combustion engines with a high combustion quality. Table 2.1 shows 

fundamental combustion characteristics of hydrocarbon and ammonia fuels [12]. It is shown 

that ammonia requires very low temperature, the liquefaction temperature of ammonia is 

33.4 ℃ at 1 atm [12]. Moreover, the condensation pressure and boiling temperature of 

ammonia are nearly identical to that of propane. 

However, the application of ammonia as a fuel has its disadvantages compared with 

traditional hydrocarbon fuels. In general, there are some problems in the combustion of 
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ammonia as an energy storage material. One is the low laminar burning velocity caused by 

the poor reactivity of ammonia, which makes it more difficult to design and manufacture 

ammonia utilization equipment. Furthermore, part of nitrogen oxides and unburned ammonia 

will be produced in the process of ammonia oxidation, which will affect the atmospheric 

environment and biological safety respectively. Besides, high ignition temperature and narrow 

flammability range for NH3/air mixture are accounting for low flammability of ammonia. 

(ii) Ammonia as an effective hydrogen storage. 

Hydrogen is one of the most widely concerned energy storage carriers because it does not 

generate greenhouse gases during utilization. Hydrogen has the higher mass energy density 

(120 MJ/kg) than other traditional fuels such as gasoline (44 MJ/kg), shown in Figure 2.3. The 

production of H2 can be conducted by a variety of techniques, including thermochemical route 

(gasification, modification), biochemical route (fermentation) and electrolysis [16]. Hydrogen 

can also be used in a variety of ways, including battery packs and direct combustion. However, 

the volume energy density of H2 is only 0.01 MJ/L at room temperature and pressure, making 

it difficult to store. To effectively store hydrogen, various hydrogen storage technologies have 

been proposed, including high-pressure gaseous hydrogen storage, liquid hydrogen storage, 

organic liquid hydrogen storage [17], metal hydrogen storage [18], synthetic methanol 

(CH3OH), ammonia (NH3) and other chemical hydrogen storage. 

Using high-pressure storage is the simplest method for hydrogen storage. Due to the low 

hydrogen density, this method requires a high pressure (density of 42.2 kg /m3 at 69 MPa). 

For hydrogen vehicles, a high-pressure container of about 70 MPa is currently required to 

store hydrogen. In addition, as hydrogen is a very small and light element, the possibility 
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leakage at high pressures should be considered during storage and transportation. 

Liquid hydrogen storage is also considered as an efficient and promising hydrogen storage 

option. It has a high density about 800 times that of hydrogen under uncompressed standard 

conditions. However, to introduce hydrogen into the liquid phase, hydrogen needs to be 

refrigerated to a low temperature (-252.8 ℃). Besides, liquid hydrogen is also not conducive 

to long-term storage or transportation over long distances because of cooling requirements.  

Solid state hydrogen storage is mainly though physical adsorption or chemical adsorption [20]. 

Physical adsorption technologies use a range of materials including activated carbon, carbon 

nanotubes, zeolite, and metal-organic frameworks (MOF), which have low hydrogen storage 

efficiency (less than 5wt% at room temperature) and greater demand for low temperatures 

[21]. In chemisorption, hydrogen reacts with solids to produce hydrides. Many complicated 

hydrides have been developed, such as NaAlH4, Mg(NH3)2-LiH, etc. Although these materials 

have a high hydrogen density (up to 10 wt%), their dehydrogenation and hydrogenation are 

very complicated and relatively reversible [22]. The process of dehydrogenation is usually an 

endothermic process, leading to a reduction in energy efficiency. 

Therefore, it is concluded that conventional hydrogen storage has technical difficulties such 

as low volume energy density, difficult storage and processing. Another non-trivial issue is that 

hydrogen can permeate many materials due to its high diffusivity, and the risk of leakage for 

hydrogen is high. Long-term storage of hydrogen using traditional methods is more expensive 

than employing other alternative fuels. A more popular option is to store hydrogen in more 

stable compounds. 
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Figure 2.4 Volumetric and gravimetric H2 density of hydrogen carriers from [154]. 

Figure 2.4 presents the volumetric and gravimetric hydrogen densities for various hydrogen 

carriers [154]. It shows that ammonia is more advantageous in storing hydrogen for all 

candidates, due to its high hydrogen density (17.8wt %). Nitrogen in atmospheric can be 

separated at a lower price than CO2. So, it is economical to combine with renewable hydrogen 

to produce ammonia. Unlike hydrogen, ammonia is more easily stored and transported. 

Ammonia is now widely employed as agricultural fertilizer and refrigerant gas, and a large 

amount of ammonia gas is also used as raw material for the manufacture of explosives, 

pesticides and other chemicals. Infrastructure for the production, storage, transport and 

utilization of ammonia has been established globally. Due to its long-term stability in 

transportation and storage, ammonia can also meet the demand for real-time storage of 

energy and energy import and export [26]. Therefore, ammonia is a kind of high-quality 

hydrogen storage carrier, showing great potential as a fuel in combustion system.  

2.3.3. Application of ammonia for engines 

The ammonia for engines applications goes back as far as the times of World War two. During 
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this period, it is widely looking for alternative fuels for public transport drown by the shortage 

of fossil fuels in some areas. Ammonia with high octane (around 130) was used in engines, 

this enables engine to have efficient operation under condition of higher compression ratio 

(CR) [155]. Ammonia has relatively lower energy density compared with diesel and gasoline, 

but its energy density is larger than that of liquid hydrogen and compressed natural gas. Basic 

characteristics of ammonia and traditional fuels are shown in Table 2.2 [5].  

   Table 2.2 Comparations of the fuel properties for ammonia against hydrocarbon fuels [5]. 

Properties Units Ammonia Natural gas Gasoline Diesel 

Storage method 

 

Compressed 

Liquid 

Compressed 

Liquid 

Liquid Liquid 

Storage temperature K 298 298 298 298 

Storage pressure kPa 1030 24,821 101.3 101.3 

Autoignition temperature K 924 723 573 503 

Flammability limits (gas in air) Vol.% 16–25 5–15 1.4–7.6 0.6–7.5 

Absolute minimum ignition 

energy 

MJ 8 – 0.14 – 

Fuel density kg/m3 602.8 187.2 698.3 838.8 

Energy density MJ/m3 11,333 7132 31,074 36,403 

Octane rating RON 110 107 90–98 – 
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Despite this early start, research into ammonia-fuelled IC engines and spark-ignition engines 

was limited until recent decades. Johnsson et al. [156] reported that narrow flammability 

limits and low flame speed properties is likely to limit ammonia combustion in spark internal 

(SI) engines. In 1968, Starkman et al. [157] studied application of ammonia in spark ignition 

engines and found that it was successful in the case ammonia was regarded as vapour and 

first decomposed into hydrogen and nitrogen. Since then, studies on ammonia application in 

internal combustion engines have been reported in literature [158,159,160,161]. 

In the past decades, ammonia has enjoyed renewed interest because of the urgent for 

decarbonizing the global economy. Due to its carbon-free property and simplicity to be stored 

and transported, ammonia was paid more attention to decrease fossil fuel consumption as 

well as greenhouse gas emissions. Stefano Frigo et al. [162] carried out an experiment to 

analyse the performance of a 4-stroke SI engine which uses ammonia and hydrogen as burning 

substance. The results show that ammonia is directly used as a fuel for an internal combustion 

engine, but an accelerant is required to accelerate combustion. Also, hydrogen is a good 

promoter to speed up the ammonia flame velocity. Considering ammonia high latent of heat, 

direct injection was proposed to reduce in-cylinder temperature [163]. It is noticed that 

ammonia is better operated under lower engine speeds because of its low flame velocity in 

internal combustion engines [164]. Koike et al. [165] pointed out that an auto-thermal-cracker 

helps the engine fuelled with ammonia to run stably. In addition, large number of studies were 

reported the combustion of ammonia in compression ignition engines [166,167], which gives 

insight of ammonia application for marine and power generation [151,168,169]. 
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2.3.4. Ammonia combustion in gas turbines 

Because of the low flame velocity of NH3 flame, the combustion stability and efficiency are 

obvious lower than that of methane. One possible way to promote ammonia combustion is 

to generate turbulence in the combustion chamber, which is helpful to accelerate mixtures 

mixing. It has been shown that strong swirling currents using CH4/NH3 and H2/NH3 mixtures 

can stabilize the flame with low emissions. However, proper swirl number has great effect on 

combustion performance. Since when swirl number is too high, it can affect combustion 

negatively by blowing the flame out. Because of the higher minimum ignition energy and 

slower flame speed of ammonia than that of conventional hydrocarbon fuels, more results 

reported that it is potential to enhance ammonia combustion with cofiring with more reactive 

fuels [33,170]. Xiao et al. [171] established an ammonia/hydrogen combustion model of gas 

turbine combustor by employing large eddy simulation. Iowa State University [172] have 

developed a system with a flame holder that enable to produce stable swirl flame and improve 

the combustion process. Usually, the Perfectly Stirred Reactor (PSR) is adopted to simulate a 

swirling flame including the premixing, circulation and flame zone, followed by a Plug Flow 

Reactor (PFR) that represents a post-flame zone. In a PSR, reactants as well as products are 

assumed to be instantly mixed and there exist no variation of temperature or composition in 

the reactor. 

The other main challenge of ammonia combustion in gas turbines is high NOX emission. 

Experimental studies show that rich fuel condition is beneficial to reduce NOX emissions in 

laminar premixed ammonia flame [15,16,173]. Iki et al. [174] studied the NOX emissions in 

microturbines, results shown that the NOX can be reduced by 50% in rich-lean combustor 
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when ammonia cofiring with methane. Li et al. [175] numerically demonstrated that NOX 

emissions can reach to 30 ppm when ammonia cofiring with 60% CH4 volumetric ratio in 2 

stage combustor. A number of research also confirmed that NOX production is significantly 

influenced by rich/lean conditions in turbulent NH3/air swirling flames [12,19,176].  

2.3.5. Ammonia cracking 

Other effective methods were proposed to enhance ammonia combustion flame, in which 

ammonia cracking should be noticed. Since hydrogen can be directly cracked from ammonia, 

which is an energy carrier and has the potential to be applied as a fuel.   

Gill et al. [177] initially evaluated the carbon-based emissions in a dual-fuel diesel engine that 

is fuelled with cracked ammonia (a mixture of a tiny amount of NH3, H2, and N2). Result shows 

that disassociated ammonia provides better performance with lower brake thermal efficiency 

than ammonia under condition of higher loads. Frigo and Gentili [178,179] analysed the 

performance of a hybrid electric vehicle using ammonia/hydrogen as fuel. The hydrogen was 

produced by ammonia thermal cracking. In addition, research by Pratt [180] and Verkamp et 

al. [181] presented that ammonia partially cracking into H2 as well as NH radical is beneficial 

for flame stability and low NOX emission. However, as highlighted by Comotti and Frigo [159], 

the higher overall NOX emission is displayed in a dissociated ammonia flame for a four-stroke 

twin-cylinder spark. This is mainly caused by high pressure and temperature in cylinder due 

to faster flame speed in engine. 

Usually, ammonia cracking is performed at elevated temperatures, pressures, and catalyst 

addition conditions to reach high NH3 conversion efficiency [27]. At temperatures lower than 

698K, catalytic cracking of ammonia into H2 and N2 can reach 98–99% efficiency. When the 
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temperature is above 773K, NH3 decomposition can be conveniently reached without catalysts 

by thermal cracking [182,183]. Besides, as similar molecular sizes and quadrupole moments 

of H2 and N2 and relatively low Knudsen selectivity of H2 and N2, separating H2 from cracked 

nitrogen is technically difficult [184]. This is also the reason that direct usage of NH3 as a fuel 

rather than a hydrogen carrier should become the more attractive choice. 

Limited publications have been reported to discuss ammonia cracking combustion 

characteristics in gas turbines. Mei et al. [184] focused on laminar flame propagation of 

partially cracked NH3/air mixtures. Also, they clarified that NO formation shows a dramatic 

non-monotonic behaviour with increasing of cracking ratio. Alboshmina et al. [185] developed 

a novel cracker system that is expectable to mitigate NOX emissions for using ammonia as a 

fuel. 

2.3.6. Chemical kinetics mechanism of ammonia 

To better understand the ammonia combustion process in engines by numerical simulation, 

detailed kinetic mechanisms for ammonia oxidation are required. A great many previous 

investigations have focused on the development of NH3 detailed chemical mechanisms. 

Mathieu and Petersen [102] performed a Shock Tube (ST) experiment and developed an 

ammonia oxidation mechanism. Hayakawa et al. [8] compared the predictions of several 

detailed mechanisms of ammonia oxidation that were proposed previously according to the 

experimental data of laminar burning speed they measured. They found that most 

mechanisms failed to represent experimental data. Kumar and Meyer [186] studied the 

performance of the mechanisms established by Konnov [187] and Tian et al. [113] in laminar 

premixed jet flames. It is shown that these two mechanisms perform better only in limited 
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ranges of NH3 content. Mendiara and Glarborg [188] built a new mechanism on the basis of 

the NH3 sub-mechanism given by Tian et al. [113]. It displayed better predictions than the 

mechanisms proposed by Klippenstein et al. [189], Shmakov et al. [190], and Duynslaegher et 

al. [120] by comparing the predictions with the measured flame temperatures and flame front 

position. Pochet et al. [100] and He et al. [36] conducted experiments to research the 

autoignition of ammonia and ammonia blending with hydrogen mixtures in a rapid 

compressor (RCM). Both studies evaluated the performance of various NH3 kinetic models and 

concluded that neither mechanism can reproduce the experiment satisfactorily. 

Among NH3/H2 mechanisms, mechanisms proposed by Mathieu and Petersen [102] as well as 

Tian et al. [113] are promising for studying ammonia combustion characteristics in practical 

industrial applications, especially under elevated pressure conditions [36]. In addition, Xiao 

and Valera-Medina [31] compared performance of 12 mechanisms on predicting laminar 

flame speed, NOX emissions and ignition delay times for NH3/H2 mixtures. Discrepancies 

between predictions of majority of kinetic models were demonstrated, and further 

supplement of the experimental database of ammonia oxidation was required. Furthermore, 

as methane is one of main fuels of gas turbines, the detailed kinetic mechanisms of NH3/CH4 

were investigated to better analyse and design ammonia combustion systems for power 

generation. Xiao et al. [191] appraised five different NH3/CH4 mechanisms, mechanisms 

proposed by Tian [113] and Teresa [188] show the best prediction of ignition delay time. 

As is known to us all, most of combustion reaction kinetics models include more than 

hundreds of elementary chemical reaction steps that have a profound impact on the 

combustion phenomena [20]. Usually, a detailed reaction kinetic mechanism is very 
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complicated, it is essential to reduce the extremely rigid problems of ammonia model 

encountered in the numerical simulation of flow and combustion coupling. Meanwhile the 

reduced model should maintain the physicochemical properties of the fuel under numerous 

operating conditions. As for ammonia kinetic model reduction, Duynslaegher et al. [120] 

reduced the Konnov mechanism [187] based on a contribution rates calculation of the Cosilab 

software [192]. The reduced mechanism of ammonia combustion includes 19 species and 80 

reactions. After that Nozari et al. [193] also established reduced mechanisms applying a 

renewed version of the Konnov’s mechanism. Currently, Li et al. [128] proposed an integrated 

mechanism of NH3/H2/CH4, then reduced the model using directed relation graph with error 

propagation (DRGEP) as well as DRGEP with sensitivity analysis (DRGEPSA) methods. However, 

laminar burning velocities were over-predicted for both detail reduced mechanisms of pure 

NH3, mixtures of NH3/H2 as well as NH3/CH4. Therefore, more accurate ammonia reaction 

kinetic model and extensive experimental database are required for further studying 

ammonia combustion characteristics. 

Recently, Okafor et al. [11] combining GRI Mech 3.0 mechanism [194] as well as mechanism 

proposed by Tian et al. [113], developed a mechanism for laminar flame velocity study. Otomo 

et al. [44] established NH3/air as well as NH3/H2/air combustion mechanisms according to 

Song et al. [195], in which the reactions of NH2, HNO and N2H2 are improved. Later, Shrestha 

et al. [ 196 ] improved their previous ammonia oxidation model [34] and extended 

experimental database, including ignition delay times (IDT), speciation in jet-stirred reactors 

(JSR), and burner stabilized flames (BSF). 
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Table 2.3 Overview of ammonia chemical kinetic mechanisms (IDT: ignition delay time, SP: 

species profile, LBV: laminar burning velocity. ST: shock tube, JSR: jet-stirred reactor, SF: 

spherical flame, FR: flow reactor, RPM: rapid compression machine). 

Authors/year Species Reactions T/K P/atm 𝛷 Validation 

Mendiara et al., 
2009 [188] 

97 779 973-1773 1 0.13-1.55 SP(FR) 

Tian et al., 2009 
[113] 

84 703 
1250-
2100 

0.04 1 SP 

Duynslaegher et 
al., 2012 [120] 

31 241 400-2000 0.06-0.12 0.9-1.1 SP 

Hayakawa et al., 
2015 [8] 

42 130 298 1-5 0.7-1.3 LBV(SF) 

Song et al., 2016 
[195] 

32 204 450-925 30-100 1 SP(FR) 

Shrestha et al., 
2018 [34] 

125 1090 298-2000 1-33 0.5-1.8 
IDT(ST), 

SP(JSR,FR), 
LBV 

Okafor et al., 
2018 [11] 

59 356 298 1 0.8-1.3 
SP,   

LBV(SF) 
Otomo et al., 

2018 [32] 
33 222 

1500-
2500 

1.4-30 0.5-2 
IDT(ST), 
LBV(SF) 

Glarborg et al., 
2018 [197] 

151 1397 760-2500 1-1.4 0.7-1.6 
IDT(ST), 
SP(FR) 

Mei et al., 2019 
[7] 

38 265 
1500-
2500 

1-30 0.6-2 
IDT(ST), 
LBV(SF) 

Li et al., 2019 
[128] 

128 957 
1000-
2000 

1-50 0.5-2 
IDT(ST), 
LBV(SF) 

Shrestha et al., 
2020 [196] 

125 1099 298-2500 1-40 0.5-2 
IDT(ST,RCM), 

SP(JSR), 
LBV(SF) 

Stagni et al., 
2020 [112] 

31 203 500-2000 1.4-60 
0.01-
0.375 

IDT(ST,RCM), 
SP(JSR,FR), 

LBV(SF) 

 

2.4. Background of Optical Diagnostics 

2.4.1. Introduction 

It is known that factors affecting the formation of pollutants, for example, nitrogen oxides, are 
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very complicated, and are closely associated with the type of fuels, the combustion mode, 

and the equivalence ratio of the combustion region. To further reduce pollution emissions, 

the proportion of air in the combustion zone can be increased. However, it could not only 

reduce the temperature in the combustion process but also increase CO and UHC emissions 

[198]. Furthermore, this circumstance of combustion may result in an unstable combustion 

regime, thermoacoustic instability, and severe pressure oscillations in the combustion 

chamber [199]. Consequently, to explore the feasibility of combustion technology and to 

understand the complex phenomena in engines, it is crucial to explore the essence of 

combustion. Thus, an important means is to study the evolution of the flame composition and 

transformation of the combustion model by measuring the concentration profiles of 

combustion intermediates. The measurement of combustion intermediates concentration is 

mainly achieved by using combustion diagnostic technology. 

2.4.2. General methods of optical diagnostics 

The combustion process in traditional engine is very complicated, because of the limited 

combustion space, high flow velocity, high mixing intensity, high combustion intensity, wide 

working ranges and sudden changes in parameters [200,201]. The main factors affecting 

engine combustion include combustion chemical reactions, combustion-flow interactions, 

and extreme operation conditions. Due to the high complexity of turbulent combustion, the 

flow and the many parameters of combustion are intertwined, and it is quite hard to 

quantitatively conduct measurements for temperature field, velocity field, flame surface 

structure and main component concentration. In modern combustion systems with high 

temperature, high pressure and other harsh environments, laser-based measurement 
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technology is a good method to do basic research on combustion, as well as achieving high 

combustion efficiency and less pollution in actual combustion devices.  

Optical diagnostics are a non-intrusive measurement method that has good spatial and 

temporal resolution of the test region without any interference, so that it can precisely 

monitor burning process in combustion chamber. The existing optical testing technology can 

quantitatively measure the temperature field, concentration field, flame propagation process 

and the composition of each component of the combustion products, which can more 

intuitively understand the ignition and the flame development characteristics and deepen the 

cognition of the combustion process. 

At present, with the development of laser and optical technology, the application of current 

optical testing technologies can directly measure the temperature field, self-luminous flame 

transition process in the cylinder, which can be more intuitively understood the ignition of 

flame and flame development characteristics. On the other hand, it can also provide real-time 

and high-resolution measurements. More specifically, with the rapid development of laser 

technology [ 202 ], laser Rayleigh scattering method [ 203 , 204 ], plane laser induced 

fluorescence method (PLIF) [205,206] and plane laser induced glazing method (PLII) [207,208] 

and other approaches have been utilized to perform temperature measurement in cylinder, 

mixture conditions and combustion intermediates [ 209 , 210 , 211 ]. Nevertheless, laser 

diagnostic techniques are quite unsuitable for practice especially in harsh environments 

because it requires an external source and optical port to link the laser beam with the 

combustion chamber. Moreover, additional technical modifications are more likely to affect 

the combustion process. Therefore, laser optical diagnostics are very expensive and 
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complicated for practical applications. These shortcomings of traditional laser-based 

diagnostic methods promote the further investigation of lower cost and more directly optical 

technologies. 

(i) Laser diagnostics. 

Usually, combustion optical diagnosis includes high-speed imaging, spectral analysis and laser 

diagnosis. Traditional two-dimensional optical diagnosis methods without laser, such as 

schlieren method [212,213] and shadow method [214,215], obtain the cumulative value of 

optical signal along the depth of the line of sight, so it is impossible to measure the signal 

value in a certain plane of space independently, which is that the measurement based on 

spatial resolution cannot be realized. In recent years, laser diagnosis technology has 

developed rapidly. Laser induced fluorescence (LIF) spectroscopy technique is regarded as a 

common tool for measuring free radicals. When the laser wavelength is tuned to a certain two 

specific energy levels of a molecule, the molecule resonation would happen, absorbing 

photon energy and exciting to a high level of energy state. It is known that molecules are 

unstable at high energy state, which is more possible to back to the ground state through 

emitting energy. The light emitted by molecules backing to the ground state by spontaneous 

emission is called laser-induced fluorescence. However, LIF measurements are also facing 

challenges in high-pressure flames due to the collision quenching of excited states and the 

high laser pulse energy required to generate detectable fluorescence signals. Additionally, the 

line light source is spread into a sheet light source to measure the stimulated emission of 

molecules on the basis of LIF, which is called PLIF. PLIF spectra can measure the information 

of two-dimensional spatial distribution and the concentration of combustion intermediate 
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radicals such as CH, OH, HCO in real time [216]. Complex laser-based diagnostics are employed 

to make the heat release distribution of flames visualized in laboratory. Heat emission imaging 

of formaldehyde (CH2O) was diagnosed by LIF [217,218], which has been successfully used to 

characterize and quantify the spatial resolution of the concentration of CH2O and OH, since 

the concentration of these intermediate radicals is related to the local exothermicity.  

(ii) Chemiluminescence. 

Chemiluminescence is regarded as a promising low-cost optical diagnostic tool. It is the 

spontaneous emission of electron-excited substances formed by chemical reactions in the 

combustion reaction zone, seen from Figure 2.5. The most common visible and ultraviolet 

light-emitting chemiluminescent radicals in a typical hydrocarbon flame are CH*, OH*, and 

C2*, where the asterisk denotes electronic excitation. Figure 2.6 shows the flame spectrum of 

various excited species in a hydrocarbon flame at different wavelengths. 

 

Figure 2.5 Chemiluminescence reaction mechanism [219]. 
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Figure 2.6 Flame spectrum of a hydrocarbon flame presenting the appearance of different 

excited species at different wavelengths [219]. 

Chemical reaction kinetics is very important in the study of pollutant formation process. CH 

has been considered as the key reactant for the formation of nitrogen oxides, so measuring 

the concentration and spatial distribution of CH is an important method to test the formation 

of pollutants. Since the short-lived chemical excited state CH* produces blue light in the low 

carbon smoke flame, it can provide an understanding of the C2 reaction chain [220]. Therefore, 

predicting the concentration of excited state substances requires more effort to quantitative 

study through experiments or calculation methods. 

The ability to simulate and predict chemiluminescence will provide an alternative and more 

flexible way to understand the effect of key combustion parameters on chemiluminescence 

signals. Such models will also be of practical value in the development of combustion 

diagnosis as well as interpretation of simulation and experiments results. Reliable 

chemiluminescence dynamic simulation requires accurate simulation of the formation rate of 
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excited state species. Therefore, it is necessary to know the chemiluminescence reaction steps 

and their rate constants. In addition, a standard fuel oxidant system that mimics the 

concentrations of precursor and quencher for chemiluminescence needs to be constructed 

with a reliable detailed chemical kinetic mechanism. 

2.4.3. Flame chemiluminescence 

Most studies focused on using optical techniques, such as laser induced fluorescence [221] or 

chemiluminescence [222] to research flame location, shape, and structure in combustors. 

Chemiluminescence is frequently applied to measure local distributions of heat release and 

investigate overall temporal fluctuations [ 223 ]. Tinaut et al. [ 224 ] concluded that the 

maximum OH* chemiluminescence was consistent with the highest rate of heat release. 

(i) OH* chemiluminescence. 

As an active radical that takes part in many crucial reactions, OH* (about 307nm) is especially 

important [225], due to the fact that it can be detected in the flame front [226], and it is used 

to mark ignition delay times in the oxidation of hydrogen flame systems [227] and diagnose 

equivalence ratio in methane air systems [228]. OH* emission reactions have been extensively 

studied [229,230,231,232]. Kaskan et al. [233] measured the OH* emission in a series of rich 

H2/O2/N2 flames held on flat porous burners and found that the vibrational of OH* 

distributions are proportional to the fluctuation of flame gas temperature, which is attributed 

to the exothermicity of R1. Dandy et al [ 234] developed a model for use in predicting 

chemiluminescence and assumed that OH* radicals’ products though the reaction (R2), which 

was firstly proposed by Krishnamachari et al. [235]. But this model only can be able to predict 

OH* radical chemiluminescence at one-dimensional and steady flame and in narrow 
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temperature scope. The shock-tube experimental results of Gutman et al. [236] showed that 

both of the chain reactions (R3) and (R4) are responsible for the OH* emission by monitoring 

OH* chemiluminescence in the induction process of the H2-O2 reaction. Later, Yoo et al. [237] 

also mentioned that the reaction of atomic H reacting with O and a three-body is likely a 

springhead of the OH* state in hydrogen/methane flames. The reaction (R3) as the source of 

OH* chemiluminescence at room temperature also was demonstrated by Spindler and his co-

workers [238]. Moreover, the most popular reactions of OH* formation also include R2 

[239,240]. Carl et al. [240] demonstrated conclusively that OH* emission intensities are 

consistent with concentrations of O2 and CH in low pressure C2H2/O/H/O2 atomic flames. 

 H + OH + OH → H2 + OH* (R1),                      (2.4) 

CH + O2 ↔	 OH*	+ CO (R2),                        (2.5) 

H + O + (M) ↔	 OH* + (M) (R3),                      (2.6) 

H + O2 + (M)		↔	 OH* + (M) (R4).                      (2.7) 

In 2006, Hall et al. [241] assembled and optimized a kinetics model of OH* chemiluminescence 

to predict OH* formation as well as quenching at high temperature and atmospheric pressures. 

OH* quenching occurs generally by channel Q1. The partners that participate in the collisional 

quenching of OH* include H2, H2O, CO, CO2, O2, N2 and Ar [242,243,244,245]. However, there 

are lots of controversies for the contribution rate among those partners on the collisional 

quenching of OH*. On top of that, the chemiluminescence emission from excited OH* is 

absorbed not only by self-absorption but also by other molecules, such as CO2 and H2O 

[246,247]. 

OH*+ M ↔	 OH + M (Q1).                       (2.8) 
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(ii) CH* chemiluminescence. 

The spectrum of the CH* species (about 431nm and 390nm) are located in the visible region 

[239]. Because of the weak transitions of CH* (about 390nm) and lack of formation reaction 

rates, it is not studied in current study. Based on the sources of CH* that are proposed 

previously, research has mainly paid attention to the following reactions: 

C2H + O ↔	 CH* + CO (R1),                       (2.9) 

C2H + O2 ↔	 CH* + CO2 (R2),                     (2.10) 

C2 + OH ↔	 CH*	+ CO (R3).                      (2.11) 

R3 (Equation 2.11) was first showed in the study of hydrocarbon flame by Gaydon [248], and 

then Bowman [249] presented that it is a primary exothermic reaction to form CH* for 

methane in high temperature oxidation shock-tube experiments. However, it was agued by 

Brenig [250] and Smith [251]. Brenig’s experiments found that the O atoms played a key role 

in the formation of CH*, which can react with ethynyl radicals (C2H), also Glass et al. [252] and 

Grebe and Homann [253] regarded the R2 as the main channel. Smith suggested that reaction 

R3 has a minor contribution for CH* formation with less than 10 %. Later Hand [254] proposed 

reactions of equation 2.9 and 2.10 via shock tube experiments of acetylene-oxygen reactions, 

which also were supported by Hall [ 255 ] who suggested that R2 (Equation 2.10) is an 

important CH* formation pathway over the wide range of conditions. Devriendt et al. [256] 

measured CH* chemiluminescence by pulse laser photolysis at low pressure and indicted that 

the R1 (Equation 2.9) is the major of CH* production. On the other hand, Renlund et al. [257] 

depicted that O2 is more advantaged than O atom for reacting with C2H.  



46 
 

For the formation pathways of CH*, it is clear there is not good agreement. Also, the rate 

coefficient of the reactions leading to the generation of CH* are different by several orders of 

magnitude in the literature. Grebe and Homann [253] reported the rate data of R1 was k(R1) 

= 6.6×1011 cm3mol−1s−1 at room temperature, which is one order of magnitude lower than that 

of Joklik et al. [258] who studied acetylene flame in low-pressure conditions. Devriendt [259] 

made estimation for the room temperature rate of this reaction R1 as k(R1) = 1.08×1013 

cm3mol−1s−1 by a sophisticated pulsed laser photolysis study over the temperature range (300-

1000 K). Lens-based optical alignment may have influenced the conclusions of the 

measurements of chemiluminescence intensity. Smith et al. [251] suggested that the rate 

coefficient of R1 was k(R1) = 6.2×1012 cm3mol−1s−1 by calibrating procedure of the optical 

detection system in low pressure premixed methane/air flame system. Afterwards, the 

authors recommend that k(R1) should be lower in CH4/N2O oxide flames. Among earlier 

studies on the R2, Hwang et al. [260] estimated a rate coefficient k(R1) = 4.10 ×1013exp(Ea/ 

RT) cm3mol−1s−1 by means of a shock-tube investigation, which is three order magnificent 

higher than that of Devriendt [259]. Later on, Elsamra et al. [261] reported a temperature rate 

coefficient of R2 to be 6.0×10−4T4.4exp(Ea/RT) cm3mol−1s−1 by comparing modelling values 

with different experiments data, but it was proved to be overpredicted the CH* concentration 

by Kathrotia et al. [ 262 ]. Smith et al. [251] proposed for k(R1) = 3.2 ×1011 exp(Ea/RT) 

cm3mol−1s−1. So, it is ambiguity about the key reactions and its rate coefficient continuously. 

Further efforts should be paid on this area to make the contribution of CH* formation more 

clearly. Table 2.4 shows about all the important CH* formation and quenching reactions along 

with the irrespective rate parameters and sources. 
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Table 2.4 The rate parameters and sources of all the important formation and quenching 

reactions for CH*. 

No. Reaction A(cm3/(mole s)) b E(cal/mol) Reference 
RCH*1 C2H+O=CH*+CO 1.080 × 10?I 0.00 0 [259] 

  6.023 × 10?A 0.00 457 [261] 
  2.5 × 10?A 0.00 0 [253] 
  6.2 × 10?A 0.00 0 [239] 

RCH*2 C2H+O2=CH*+CO2 2.170 × 10?# 0.00 0 [259] 
  6.023 × 10>J 4.4 -2285.1 [261] 
  4.470 × 10?K 0.00 25000 [263] 
  3.2 × 10?? 0.00 805 [253] 
  3.2 × 10?? 0.00 6.7 [262] 
  4.1 × 10?I 0.00 4500 [239] 

RCH*3 C2 +OH=CO+ CH* 1.1 × 10?I 0.00 0 [239] 
RCH*4 C+H+M=CH*+M 3.630 × 10?I 0.00 0 [264] 
QCH*1 CH*=CH 1.850 × 10L 0.00 0 [265] 

  2.1 × 10L 0.00 0 [266] 
  2.08 × 10L 0.00 0 [267] 
  2.25 × 10L 0.00 0 [268] 
  2.17 × 10L 0.00 0 [269] 
  1.87 × 10L 0.00 0 [270] 
  1.97 × 10L 0.00 0 [271] 
  2.27 × 10L 0.00 0 [272] 

QCH*2 CH*+N2=CH+N2 3.030 × 10A 3.40 -381 [265] 
QCH*3 CH*+AR=CH+AR 3.130 × 10?? 0.00 0 [264] 
QCH*4 CH*+O2=CH+O2 2.480 × 10L 2.14 -1720 [265] 

  2.480 × 10L 2.14 -7.2 [264] 
QCH*5 CH*+H2O=CH+H2O 5.30 × 10?I 0.00 0 [265] 
QCH*6 CH*+H2=CH+H2 1.470 × 10?J 0.00 1361 [265] 
QCH*7 CH*+CO2=CH+CO2 2.400 × 10>? 4.30 -1694 [265] 

  2.480 × 10>? 4.30 -7.1 [264] 
QCH*8 CH*+CO=CH+CO 2.440 × 10?A 0.50 0 [265] 
QCH*9 CH*+CH4=CH+CH4 1.730 × 10?I 0.00 167 [265] 

  1.730 × 10?I 0.00 0.7 [264] 
QCH*10 CH*+M=CH+M 6.502 × 10?A 0.00 0 [273] 
QCH*11 CH*+H=CH+H 2.010 × 10?J 0.00 5.7 [264] 
QCH*12 CH*+OH=CH+OH 7.130 × 10?I 0.00 5.7 [264] 
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(iii) C2* chemiluminescence. 

The spectrum of the C2* species is mainly found between 470-550nm. There is not enough 

data for C2* formation, among which reactions CH2 + C = H2 + C2*(RC2*1) and C2H + H = H2 + 

C2*(RC2*2) were originally proposed by Gaydon [248], and Kathrotia [264] proposed C3 + O <=> 

CO + C2*(RC2*3). According to the study of the electronically excited C2* radical in C2H2 flames 

[274], either RC2*2 or 2CH = C2* + H (RC2*4) do not show significantly influence on C2* 

production that has been recognized by other studies [275,276,277]. The reaction of CH2 with 

C is investigated in C2H2/O/H system by Grebe and Homann [275] who proposed reaction 

(RC2*1) that is regarded as primary exothermic reaction for C2* formation. Marques et al. [278] 

simulated the C2* production rate that shows RC2*1 is the main source of the C2* excited 

radical, contributing to about 98% of the total amount, while RC2*2 contributes only around of 

2% to C2* production in acetylene flames. In previous studies, Savadatti [279] suggested that 

the reaction of C3 with atomic oxygen can be also regarded as a source of C2*, and this reaction 

RC2*3 is also studied by Kathrotia [264]. Most of the Kinetic parameters of C2* reactions were 

applied according to similar reactions of C2 in the ground electronic state, due to that fact that 

it is lack the data to investigate this. Grebe proposed the rate of the RC2*1 to be 7.5×1013 

cm3mol−1s−1 at room temperature as well as 2.4×1012 cm3mol−1s−1 at high temperatures from 

1500 to 1950 K [253]. Table 2.5 lists the irrespective rate parameters and sources of all the 

important formation as well as quenching reactions for C2*. 
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Table 2.5 The irrespective rate parameters and sources of all the important formation and 

quenching reactions for C2*. 

No. Reaction A(cm3/(mole s)) b E(cal/mol) Reference 

RC2*1 CH2+C=H2+C2* 7.500 × 10?I 0.00 0 [253] 

  2.400 × 10?A 0.00 0  [264] 

RC2*2 C3+O=CO+C2* 4.200 × 10?? 0.00 0 [264] 

QC2*1 C2*=C2 1.000 × 10M 0.00 0 [264] 

QC2*2 C2*+M=C2+M 3.630 × 10?I 0.00 0 [239] 

QC2*3 C2*+O2=C2+O2 4.800 × 10?I 0.00 0 [264] 

QC2*4 C2*+CO2=C2+CO2 4.800 × 10?I 0.00 0 [264] 

QC2*5 C2*+H2O=C2+H2O 4.800 × 10?I 0.00 0 [264] 

QC2*6 C2*+CO=C2+CO 4.800 × 10?I 0.00 0 [264] 

QC2*7 C2*+CH4=C2+CH4 4.800 × 10?I 0.00 0 [264] 

QC2*8 C2*+H2=C2+H2 4.800 × 10?I 0.00 0 [264] 

QC2*9 C2*+AR=C2+AR 4.800 × 10?I 0.00 0 [264] 

 

2.5. General Concept of Hydrocarbon Combustion 

2.5.1. Premixed flame 

According to the premixing status of mixtures, the flame can be categorized into a diffusion 

flame (non-premixed flame) and a premixed flame. As well, according to fluid flow type, the 

flame can be sub-categorized into two flames: a laminar flame and a turbulent flame [280]. 

Usually, a flame on Bunsen burner is a kind of premixed laminar flame, while the flame such 

as in a gasoline turbine commonly belongs to premixed turbulent flame [281]. In addition, 
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flames like candle and wood flame are usually laminar diffusion flame [282]. 

For premixed flame, fuel as well as oxidizer are mixed homogeneously at molecular level prior 

to combustion. The initial reaction mainly occurs at the interfacial layer due to high 

temperature, which can be obtained by absorbing heat energy from the ignition source. From 

the initial reaction, the heat released is applied for burning the premixed molecule. During 

the period of this time, the reaction goes very fast, so that there is a thin combustion zone to 

separate the unburnt gas and burnt gas. 

 

Figure 2.7 (a) The details of the chemical reaction structure and products [283]; (b) The 

schematic of the premixed flame. 

The activation energy is provided in this area to decompose the fuel and oxidizer molecules, 

shown in Figure 2.7(a) [283]. When the temperature is beyond the critical point of the 

combustion, the heat is released mainly by a chain reaction. In Figure 2.7(b) presents the 

schematic of the premixed flame, and the inner luminous cone is defined by the laminar flame 

velocity ratio to the mixture velocity [284], where flame speed is roughly estimated as the 

premixed flame propagation speed. In premixed flame, chemical reaction has a dominant 
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effect on reaction rate. In luminous reaction zone, flame colour is produced by flame 

chemiluminescence. 

2.5.2. Equivalence ratio 

The equivalence ratio 𝛷 indicates the fuel to air ratio under the combustion condition, which 

is defined as follows, 

          𝛷 = (%-/'	@(	+D*	P('+*	*+@D()!"#$!%
(%-/'	@(	+D*	P('+*	*+@D()&#'(")('*+#,("	"'./(#('.	

.	 	 	 	 	 	 	 	 	 	 	 	    (2.12)	

For 𝛷 = 1, the fuel is theoretically consumed completely by the available oxidizer and no 

excess oxidizer or fuel is left after reaction at stoichiometric condition. 𝛷 > 1 means the fuel 

is rich in mixture, while 𝛷 < 1 means the fuel is lean in mixture. 

The equivalence ratio is an important parameter in combustion. It has significant impact on 

numerous combustion characteristics, including laminar flame speed, exhaust emissions, 

temperature and even flammability. In practice, the operation condition of flame is hardly 

achieved under the stoichiometric condition due to the complex combustion progress. 

Therefore, analysis of fuel with various proportion in air is usually significant to fully study the 

combustion behaviour. 

2.5.3. Laminar flame speed 

Generally, laminar flame speed is one of fundamental properties of premixed combustible 

mixtures [285]. It is the homogeneous unburned reactants propagation speed that takes along 

the information on diffusivity, reactivity, and exothermicity of a given mixture [286]. Therefore, 

the laminar burning velocity is usually used to characterize flames. 
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Figure 2.8 Schematic of a one-dimensional planar and unstretched flame front, from [287]. 

The initial theoretical analyses on the laminar flame speed were conducted by assuming that 

the combustion is sustained, and the temperature of the unburned mixture will increase to 

the ignition temperature by absorbing heat from upstream burned gas [281]. Therefore, the 

one-dimensional flame is split into two zones including of a preheat zone and a reaction zone, 

seen from Figure 2.8. According to postulation, although the laminar burning velocity strongly 

depends on the temperature of burned gas (𝑇8) and unburned gas (𝑇R), the heat diffusion in 

preheat zone as well as reaction zone should be also considered [288]. In the present work, 

the simulation of laminar premixed flame is conducted in CHEMKIN-PRO package, and the 

thermal diffusion is considered. Based on the energy balance and establishment of a 

proportionality between 𝑇8, 𝑇R and pressure P, the laminar flame speed 𝑆S [289] is given 

as follows: 

                    𝑆!~#
"!#""

$
$
%.'()

∙ 𝑇* ∙ 𝑇+
,-#$. ∙ exp	(− /%

$0""
) ∙ 𝑝(2,$)/$.            (2.13)  
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3. The Numerical Methods 
3.1. Introduction 

The main objective of the thesis is to develop a compact reduced kinetics mechanism of 

ethanol for further investigation of flame chemiluminescence and establish an accurate 

reduced mechanism for NH3/H2/CH4 mixtures to better understand the NH3/H2/CH4 

combustion process as well as exhaust gases generation. In section 3.2, the theory of DRGEP 

and IPFA methods combined with GEPA are presented respectively to reduce the detailed 

mechanisms of ethanol and ammonia. As well, the validation model for reduced mechanism is 

shown in section 3.3. Furthermore, in section 3.4, the CRN models are demonstrated including the 

fundamentals, components of CRN models in singe and two staged gas turbine combustors, and the 

validation of the CRN model. At the end of this Chapter, the chemiluminescence reaction mechanism 

of OH*, CH* as well as C2* and chemiluminescent intensity calculation theory are introduced. And the 

validation of the chemiluminescent intensity modelling of excited state species is provided. 

 

3.2. The methods of mechanism reduction 

3.2.1. DRGEP 

The DRGEP method, a derived method from the DRG method, was proposed by Pepiot et al. 

[77,78]. In this approach, interaction coefficients of two species are defined and used for 

identification of the dependence of one species on the other species. The direct interaction 

coefficient (DIC), used for describing reliance of species A on species B, can be expressed as 

follows [77]: 

𝑟0123456 =
T∑ V0,2W2X3

2
245,6 T
P+Y(;0,	Z0)

,                       (3.1) 
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ωD = ω[,D −ω\,D ,                          (3.2) 

where i represents the whole number of elementary reactions, 𝜈0,D  is stoichiometric 

coefficient of species A in the ith reaction, ωf,i, ωb,i, and ωi are forward, backward, as well as 

net reaction rates of the ith reaction, PA and CA are production and consumption fluxes of 

species A, respectively, which are expressed with 

𝑃0 = ∑ 𝑚𝑎𝑥dν0,DωD , 0fD]?,: ,                    (3.3) 

𝐶7 = ∑ 𝑚𝑎𝑥d−ν7,DωD , 0fD]?,: .                   (3.4) 

In Equation 3.1, 𝛿1D  is given by 

𝛿1D = h1, 									𝑖𝑓	𝑡ℎ𝑒	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	𝐵	𝑖𝑠	𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑	𝑖𝑛	𝑡ℎ𝑒	𝑖𝑡ℎ	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦	𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛0, 									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (3.5) 

The numerator of coefficient 𝑟0123456 can be easily demonstrated [77]: 

r∑ ν0,DωDδ1DD]?,: r = r∑ 𝑚𝑎𝑥dν0,DωDδ1D , 0fD]?,: −	∑ 𝑚𝑎𝑥d−ν0,DωDδ1D , 0fD]?,: r = |𝑃01 − 𝐶01|,            

(3.6) 

where 𝑃01 and 𝐶01 represent production and consumption fluxes of species A related to 

species B, respectively. Substituting Equation (3.6) into Equation (3.1), the coefficient 𝑟0123456 

is expressed by: 

𝑟0123456 =
|;03>Z03|
P+Y(;0,	Z0)

.                       (3.7)  

Based on the evaluated DIC for all species pairs, here, a DRG can be built. Strength of each 

edge linking one species A with another species B is indicated by 𝑟0123456. Suppose species A 

is the target species, intermediate species C is linked to target species A directly, and species 

B is linked to intermediate species C directly, i.e., indirectly linked to target species A (see the 

pathway 2 in Figure 3.1). 
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Figure 3.1 A relation graph involving species in the DRGEP method. 

To consider this error propagation process due to the indirect links, a geometric damping is 

applied in the selection procedure. The path interaction coefficient (PIC), which represents 

product of intermediate DICs between target species A and species B via each pathway is given 

by 

𝑟01,B_23456 = ∏ 𝑟 2`275
=>?
D]? ,                        (3.8) 

where pw is the certain pathway, n is number of species between species A and B in each 

pathway, S is intermediate species between species A and B, such as species C, D, E in Figure 

3.1. 

The maximum value of all PICs is expressed as overall interaction coefficient (OIC): 

𝑅0123456 = max
abb	B_

𝑟01,B_23456.                         (3.9) 

If certain error is introduced into the prediction of species B, it has to propagate to longer way 

to reach the target species A, and typically, its effect is smaller. The DRGEP method is target 

oriented and used to provide a finer selection of the essential paths for accurately predicting 
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the targets set, by retaining species related to larger OIC and removing species with smaller 

OIC [77]. In the present thesis, the DRGEP method is applied to conduct reduction for detailed 

mechanism of ethanol, which contains 36 species and 252 reactions. 

3.2.2. IPFA 

The IPFA with multi generations method was proposed by Wang and Gou [81] based on the 

PFA method [80]. Compared to the DRGEP method, the IPFA method can obtain a more 

accurate and compact reduced mechanism from a larger-sized detailed mechanism containing 

hundreds of species as well as thousands of reactions [80,81]. Moreover, the IPFA method is 

an improved version of PFA method, capable of eliminating species with more caution, and 

avoid the phenomenon in which one species is removed since consumption or production rate 

is comparatively larger compared to the other [81].  

 

Figure 3.2 A relation graph involving species in the PFA and IPFA methods. 

Considering the IPFA method with two generations, which was proved to be adequate for 

mechanism reduction in the previous studies [131,290], instead of employing net reaction 

rates to calculate DIC, the production as well as consumption fluxes are used separately to 
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seek significant reaction pathways. Therefore, interaction coefficients for production as well 

as consumption of species A via B of first generation, as well as those of second generation 

derived via a third reactant Mi (see Figure 3.2) are defined as follows [81]: 

𝑟78,:;<7
B*(>?)@ = ;89

;8
,                           (3.10) 

𝑟78,:;<7.(=>?)@ = Z89
Z8
,                           (3.11) 

𝑟78,:;<7
B*(>A=, = ∑ d𝑟7c2

B*(>?)@𝑟c28
B*(>?)@fc2d7,8 ,                (3.12) 

𝑟78,:;<7.(=>A=, = ∑ d𝑟7c2
.(=>?)@𝑟c28

.(=>?)@fc2d7,8 .                (3.13) 

Theoretically speaking, for each interaction coefficient, one threshold value should be set. For 

simplicity, only one threshold value is set, and all the interaction coefficients are lumped 

together as follows [81]: 

𝑟78:;<7 = 𝑟78,:;<7
B*(>?)@ + 𝑟78,:;<7.(=>?)@ + 𝑟78,:;<7

B*(>A=, + 𝑟78,:;<7.(=>A=, .          (3.14) 

The coefficient defined above, which evaluates dependence of species A on B, is applied to 

make decision whether species B is kept. The procedure for selecting significant species as 

well as their relevant reactions from detailed mechanisms are concluded: (i) one or more 

species including reactants, products or certain significant intermediate components are set 

as the initial target species; (ii) a user-specified threshold ε, larger or smaller than 1, is used 

to be standard to determine significance of other species to initial target species; (iii) 

computing the coefficient 𝑟78:;<7; (iv) Updating the set of initial target species. If 𝑟78:;<7 > ε, 

the corresponding species are added into the updated initial target species set. If none of any 

species is appended, one can go directly to (v). Otherwise, the updated initial target species 

set is applied to be the initial one as well as (iii) needs to be repeated; (v) the skeletal 

mechanism, including the species as well as their relevant reactions selected from previous 
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steps, is generated.  

In the present thesis, the IPFA method is applied to reduce detailed mechanism of 

ammonia/hydrogen/methane mixtures, which contains 125 species and 1099 reactions. 

3.2.3. GEPA 

The GEPA method is used to remove insignificant reactions with a proper threshold [90]. Here, 

the details are stated. Within the scope of chemical kinetics, the local entropy production is 

capable of characterizing crucial reactions in various regions of composition space [291]. An 

elaborate discussion of the concepts for entropy and entropy production was conducted by 

Gorban and Beretta [292,293]. According to these concepts, Kooshkbaghi et al. [42] proposed 

the EPA method to form the skeletal mechanism. For a homogeneous closed system, at time 

t, the total entropy production per unit volume due to chemical reactions can be expressed 

as [42]: 

,`
,@
= ?

H
∑ α$d𝑞$

% − 𝑞$&f$]?,: ,                     (3.15) 

where T is the temperature, I is the whole number of reactions, 𝑞$
% and 𝑞$& are forward as 

well as backward reaction rates of the kth reaction, respectively, 𝛼$ is the chemical affinity 

(or called as De Donder's affinity [294]) of the kth reaction, which is defined as [295]: 

α$ = ∑ ν"$"]?,=& µ" ,                         (3.16) 

where ns is whole number of species, 𝜈"$ is stoichiometric coefficient of the jth species of 

the kth reaction, 𝜇"  is the chemical potential of the jth species. 

At time t, relative contribution of the kth reaction to whole entropy production is expressed 

as: 
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𝑟$(𝑡) =
ef:gh:

;>h:
<ie

∑ ef:gh:
;>h:

<ie:45,=>
,                        (3.17) 

the absolute values are essential due to the fact that regardless of the sign of contribution of 

the kth reaction, the most significant reactions need to be identified. 

In the EPA method, assuming that the deviations from the principle of detailed balance are 

absent [293], therefore, 𝛼$ becomes 

α$,E;7 = 𝑅.𝑇ln {
h:
;

h:
<|,                        (3.18) 

where Rc is the ideal gas constant. 

However, a great number of detailed reaction mechanisms, specifically those modelling 

complicated fuels including irreversible reactions, disobey detailed balance principle. In these 

cases, performance of the EPA approach is not satisfying, which can easily introduce 

arbitrariness.  

The GEPA method is a more generalized form of EPA method, which can easily deal with those 

containing reversible reactions not satisfying the principle of microscopic reversibility or even 

irreversible reactions [90]. Considering ideal gas mixtures, the chemical potentials 𝜇"  of jth 

species can be expressed as [296]: 

µ"(𝑇, 𝑃) = {
j?
@

GAH
−

)?
@

GA
| + 𝑅.𝑇𝑙𝑛 }

;k?
;@
~,                  (3.19) 

where P and P0 are the current state and standard state pressures (usually 1atm), respectively. 

ℎ"#  and 𝑠"#  are the standard state enthalpy and entropy of the jth species, which are 

calculated via thermodynamic data using NASA polynomials [297]. Xj is mole fraction of the 

jth species. 

Substituting Equation (3.19) into (3.16), 𝛼$ is obtained as [90]: 
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α$,lE;7 = ∑ ν"$ �{
j?
@

GAH
−

)?
@

GA
| + 𝑅.𝑇𝑙𝑛 }

;k?
;@
~�"]?,=& .            (3.20) 

Here, the relative contribution rk of Eq. (3.17) is regarded as the standard of identifying 

unimportant reactions. The steps for reducing the mechanism are summarised: (i) a database 

of the thermochemical states (compositions, pressure, temperature) is constructed; (ii) a user-

specified threshold ε is set as the standard to recognize significant reactions of the mechanism; 

(iii) calculating the relative contribution rk of the equation (3.17); (iv) Selecting the significant 

reactions of the mechanism. If rk > ε, the corresponding reactions are retained, otherwise, the 

reactions are eliminated; (v) The final reduced skeletal mechanism, containing the reactions 

retained from previous steps and the species participating in these reactions, can be 

generated. 

In the present thesis, the GEPA approach is combined with DRGEP approach to reduce detailed 

mechanism of ethanol and is also combined with IPFA method to reduce detailed mechanism 

of ammonia/hydrogen/methane mixtures. The role of GEPA method in these combined 

approaches is to further eliminate redundant reactions from the skeletal mechanisms. 

 

3.3. The validation model for reduced mechanism 

3.3.1. Constant volume homogeneous reactor model 

Validation of ignition delay times is completed by comparing the simulated values of reduced 

mechanisms with that of the detailed mechanism as well as the experimental measurements 

of shock tube. It is considered that the chemical reaction in the shock tube is in a 

homogeneous and constant volume adiabatic state [298]. Therefore, the constant volume 

homogeneous reactor model in the CHEMKIN-PRO package is employed for predicting ignition 
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delay time in a shock tube. Predicting ignition times is helpful to understand the underlying 

chemistry. 

 

Figure 3.3 Schematic of a Well Mixed Reactor Module [299]. 

Figure 3.3 shows the schematic of a well-mixed reactor module. The gas reaction is conducted 

under constant volume and homogeneous adiabatic conditions, satisfying the conservation of 

mass, momentum and energy: 

 ,H
,@
= ?

m.B
∑ (ℎ$𝜔̇ × 𝑀$)n
$]? + H

.B
× ,G

,H
, (3.21) 

 ,;
,@
= 𝑅 × 𝑇 × ,m

,@
+ 𝜌 × 𝑅 × ,H

,@
, (3.22) 

 ,o:
,@

= ṗ×c:
m
, (3.23) 

where T, P, and R are the temperature (K), pressure (atm) as well as gas constant. k and K are 

the serial number of species as well as total number of species. 𝑐! represents mean molar 

heat capacity at constant volume (J/(mol·K)). hk, Mk, and Yk are specific enthalpy (J/mol), mole 

mass (g/mol), and mass fraction of the kth species, respectively. 𝜔̇, is reaction rate (cm2/s). 

𝜌 is the mass density of a gas mixture (g/cm3). Conservation of energy equation [299] is： 

	 ,R&C&(?)

,@
= ∑ 𝑚̇∗(")t2=FGH

(?)

D]? ∑ (𝑌$,D∗ ℎ$,D∗ )(")
ng
$]? + ∑ 𝑚̇(*)𝑅*"

tJKL
*]? (𝑌$ℎ$)(*) −

		}𝑚̇ ∑ 𝑌$ℎ$
ng
$]? ~

(")
− 𝑄'())

(") + 𝑄)(-*./
(") − 𝑃(") ,u

?

,@
	 	 	 	 	 	 	 	 	 	 	 j=1,	NPSR,	 	 	 	 	 	 	 	 	 	 	 (3.24)	
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where	𝑈)C) (J) is the whole internal energy, which contain internal energy of as, deposited 

phases, surface phases, and walls. 𝑁D='/@
(")  is number of inlets for each reactor j. NPSR is whole 

number of reactor modules in reactor network. 𝑚̇ is outlet mas flow rate. Kg is the gas-phase 

species. 𝑄'()) (J) is net heat flux directed out of the reactor. 𝑄)(-*./  (J) is the source of heat 

release in reactor. 

 

3.3.2.  1-D premixed laminar flames 

The premixed laminar flame is simulated employing the PREMIX module in the CHEMKIN-PRO 

package. The model involves a freely propagating flame. The flame velocity of the gas mixture 

can be calculated at inlet temperature as well as specified pressure. The balance governing 

conservation equations for continuity, chemical species and energy are as follows [299]: 

𝑀̇ = 𝜌𝑢𝐴,                             (3.25) 

𝑀̇ 𝑌𝑘
𝑑𝑥+

𝑑
𝑑𝑥
(𝜌𝐴𝑌𝑘𝑉𝑘)−𝐴𝜔̇𝑘𝑊𝑘 = 0					(𝑘 = 1,… ,𝐾𝑔),          (3.26) 

𝑀̇ 𝑑𝑇
𝑑𝑥−

1
𝑐𝑃

𝑑
𝑑𝑥 '𝜆𝐴

𝑑𝑇
𝑑𝑥(+

𝐴
𝑐𝑃
∑ 𝜌𝑌𝑘𝑉𝑘𝑐𝑃𝑘

𝑑𝑇
𝑑𝑥

𝐾
𝑘=1 + 𝐴

𝑐𝑃
∑ 𝜔̇𝑘ℎ𝑘𝑊𝑘
𝐾
𝑘=1 + 𝐴

𝑐𝑃
𝑄̇𝑟𝑎𝑑 = 0,   (3.27) 

where 𝑥 is coordinate in the space (cm); 𝐴 is the area of the flame at the cross-sectional 

interface (cm2); 𝑀̇ denotes the mass flow rate (cm/s); 𝑌$ is mass fraction of the kth species; 

P denotes the pressure (atm); 𝜔̇$ represents chemical production rate per unit volume of 

the kth species (mole/(cm3s)); 𝑢 is the axial speed of the fluids (cm/s); 𝑊$  is molecular 

weight of the kth species (g/mole); 𝑐; is heat capacity of mixture at the constant pressure 

(J/(mole · K)); 𝑐;$  is molar heat capacity of the kth species at the constant 

pressure(J/(mole·K)); ℎ$  is the specific enthalpy of the kth species (J/g); λ is thermal 

conductivity of the gas mixture (J/cm·s·K); 𝑉$ is ordinary diffusion speed of the kth species 
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(cm/s); 𝑄̇*+,  is radiation heat release (J). 

For calculation of the speed of laminar premixed flames, it is assumed that the mixtures are 

initialised with fully burnt composition at one side of an equilibrium composition, while the 

unburnt species on the other side. 

 

3.4. CRN model construction for NOX emission 

Considering the requirement of 3D CFD simulation on high computational cost, a chemical 

reactor network (CRN) model is performed to study combustion in gas turbines [300-303]. 

Although the highly simplified CRN model is difficult to reflect the flow field structure and 

temperature field distribution in real combustors, it is regarded as an effective numerical 

method to predict NOX emissions via calibrated and validated data in previously research [304-

306]. Therefore, in the current study, the CRN model is employed to analyse NOX emission 

characteristics of partially cracked ammonia combustion in single stage and 2-stage gas 

turbine combustor.  

Two clusters are included in the chemical reactor network, seen in Figure 3.4. Different 

chemical reactors are used to accurately predict the combustion in each corresponding zone 

of the combustion chamber. The Perfectly Stirred Reactor (PSR) is adopted to simulate a 

swirling flame including the premixing, circulation and flame zone, followed by a Plug Flow 

Reactor (PFR) that represents a post-flame zone. In a PSR, reactants as well as products are 

assumed to be instantly mixed and there exist no variation of temperature or composition in 

the reactor. This is the reason that can be used to simulate combustion process in primary 

flame zone, where the reactants and temperatures are generally evenly distributed due to 
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intense recirculation. Three sub-zones are used to represent the swirling flame, i.e., PSR1 is 

the mixing zone near the inlet exit; PSR2 is the central recirculation zone (CRZ)with 20% 

recirculation rate; PSR3 is primary flame zone, as shown in Figure 3.4(b). The flame picture is 

provided by literature [307].  

 

 

Figure 3.4 (a) The schematic of CRN model; (b) Single stage gas turbine network for 1-D 

modelling. 

As for the 2-stage combustor, the schematic of the CRN model is depicted in Figure 3.5. Two 

network of combustion reactors, including a PSR followed by a PFR, are constructed for 

simulating rich-lean burn combustor.  
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Figure 3.5 (a) The concept of rich-lean burn combustor; (b) CRN model of 2-stage gas 

turbine combustor. 

Table 3.1 Specific pressure, temperature, and residence time parameters. 

P (atm) Tunburn (K) Tburn (K) single stage 
combustor (ms) 

2- stage combustor (ms) 

20 600 1800 
τPSR τPFR τPSR1 τPSR2 τPFR1 τFPR2 
5 20 3 2 18 2 

 

The parameters for demonstrating NOX emission characteristics in the CRN model are 

according to the state-of-the-art H/J class heavy duty gas turbines operating conditions [308]. 

The specific conditions are fixed and presented in Table 3.1 including the temperature at the 

outlet of the combustor and inlet air and fuel temperature, as well as total residence times of 

single stage and 2-staged combustors and PSRs. As inlet conditions, the inlet air and fuel 

temperature (CIT) is preheated to 600K and same total residence time (τtotal) for two 

combustors is set to 25ms according to the representative residence times in real combustion 

devices [175], in which the PSRs residence time (τPSR) is fixed at 5ms and PFR residence time 

(τPFR) is 20ms for single stage combustor. As for 2-staged combustor, the total residence time 
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of each two PSRs is 5ms. While, the factors, such as pressure, overall equivalence ratio, 

primary stage equivalence ratio for 2-staged combustor and cracking ratio of NH3, are 

independently varied to explore the influence of NOX emission characteristics. 

 

Figure 3.6 NOX emission comparison of present simulations and experimental and numerical 

data reported by Zhang et al. [307] at various equivalence ratios. (Symbols: experimental 

data; Dash lines: simulation results; Solid lines, present work simulation results). 

Further validation of the NOX emissions was presented based on the CRN model established 

in this paper, shown in Figure 3.6. The parameters for running CRN model are provided from 

Zhang et al. [307]. They conducted experiments on a model swirl flame combustor for 

detecting the emission characteristics of CH4/NH3/air. In Figure 3.6, the dots and the dash lines 

are representing their experimental and numerical results separately, and the solid lines show 

the NOX emissions calculations at various equivalence ratios in present work. Compared with 

reported experimental data and numerical results [307], good agreement on the trend of NOX 

curves is captured. The differences between model and experimental results are regarded as 

predictable, since the flow parameters in real combustors are complex and independent with 
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chemical reaction and time, the limitation of CRN model on the conservation of momentum 

is not directly calculated. Therefore, the capability of the simplified model to conduct basic 

research on NOX emissions is acceptable, instead of reproducing experimental measurements 

in real combustor. 

 

3.5. Chemiluminescence modelling 

In order to provide theoretical support to quantitatively simulate chemiluminescent emission 

intensity, the one-dimensional freely propagating laminar flame calculation model of 

CHEMKIN-PRO and PREMIX [ 309 ] are employed to perform detailed chemical kinetic 

calculations, without considering the influence of strain rate. Because the strain rate hardly 

affects premixed flame structure [310]. Sub-mechanisms of excited state radicals (OH*, CH* 

and C2*) [311], which are listed in Table 3.2, are added into the fully developed ethanol model 

[ 312 ]. The effect of complementary sub-mechanisms on the overall combustion 

characteristics of ethanol can be neglected. Generally, the concentrations of the excited 

species are quite low due to their short lifetimes.  

Seen from Figure 3.7, the radical CH and its excited state CH* are chosen as an example to 

investigate the relative order of magnitude for mole fraction profiles. The mole fraction 

profiles are calculated at constant temperature and atmospheric pressure under the 

stoichiometric ratio condition. It can be found that the peak ratio of CH*/CH is extremely small, 

around equal to 3.02×10-5. Therefore, the sub-model of excited species is of interest in quasi-

steady state assumption [240]. 
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Figure 3.7 Simulation of mole fraction profiles of CH ground state and CH* excited state. 

Emitting chemiluminescent light is result from the transition between excited-state radicals to 

the ground state. The chemiluminescent emission intensity (mol photons/(cm3·s−1) of excited 

species (OH*, CH* and C2*) is calculated by following equations [228]: 

[𝑋8] = 𝑋8
9
:

,                               (3.28) 

𝑖$ = 𝐴$[𝑋$],                            (3.29) 

where [𝑋$] is the concentration of the kth species (mol/cm3), Ak is the Einstein coefficient 

for spontaneous emission (A(OH*)=1.40×106 s-1 [265], A(CH*)=1.85×106 s-1[228], and 

A(C2*)=1.0×106 s-1[313]). There are no abundant literatures for C2* studying, so the Einstein 

coefficient for C2* was estimated according to [313]. 𝜌 is mass density (g/cm3), and 𝑊?  is 

the mean molecular weight (g/mol). 

To reveal chemiluminescent emissions per unit flame area, the simulated photon emission 

intensity across the flame is integrated over the whole numerical length. So, total 

chemiluminescence emitted from flame is given by: 

                                       𝐼! = ∫ 𝑖!𝑑
"
# 𝑥,                               (3.30) 
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where L is the integration length (m).  

Table 3.2 Chemiluminescence reaction mechanism of OH*[311], CH* [311] and C2* [314]. 

Number Reaction A B Ea 
R106 C2H+O<=>CH*+CO   								1.080 × 10;' 0.000 0.00 
R107 C2H+O2<=>CH*+CO2 								2.170 × 10;% 0.000 0.00 
R108 CH*<=>CH 								1.850 × 10< 0.000 0.00 
R109 CH*+N2<=>CH+N2 								3.030 × 10$ 3.400 -381.00 
R110 CH*+O2<=>CH+O2 								2.480 × 10< 2.140 -1720.00 
R111 CH*+H2O<=>CH+H2O 								5.300 × 10;' 0.000 0.00 
R112 CH*+H2<=>CH+H2 								1.470 × 10;= 0.000 1361.00 
R113 CH*+CO2<=>CH+CO2 									2.400 × 10,; 4.300 -1694.00 
R114 CH*+CO<=>CH+CO 									2.440 × 10;$ 0.500 0.00 
R115 CH*+CH4<=>CH+CH4 									1.730 × 10;' 0.000 167.00 
R116 CH+O2<=>OH*+CO 									6.00 × 10;% 0.000 0.00 
R117 OH*<=>OH 									1.450 × 10< 0.000 0.00 
R118 OH*+N2<=>OH+N2 									1.080 × 10;; 0.500 -1238.00 
R119 OH*+O2<=>OH+O2 									2.100 × 10;$ 0.500 -482.00 
R120 OH*+H2O<=>OH+H2O 5.920 × 10;$ 0.500 -861.00 
R121 OH*+H2<=>OH+H2 2.950 × 10;$ 0.500 -444.00 
R122 OH*+CO2<=>OH+CO2 2.750 × 10;$  0.500 -968.00 
R123 OH*+CO<=>OH+CO 3.230 × 10;$ 0.500 -787.00 
R124 OH*+CH4<=>OH+CH4 3.360 × 10;$ 0.500 -635.00 
R125 CH2+C<=>H2+C2* 7.500 × 10;' 0.000 0.00 
R126 C2H+H<=>H2+C2* 1.000 × 10;$ 0.000 0.00 
R127 C2*+M<=>C2+M 2.045 × 10;$ 0.000 0.00 
R128 C2*<=>C2   1.000 × 10< 0.000 0.00 

Although sub-models of excited state species have been widely utilized, it is still required to 

examine the validity of this comprehensive model when sub-reaction mechanisms for excited 

state species are added into the ethanol mechanism. Bertran et al. [314] detected light 

emissions from ethanol flame under pressure of 35.5kPa and an equivalence ratio of 1.0. The 

experimental records are applied to compare with the kinetics simulation results of OH*, CH* 

and C2* intensities that are evaluated by using post-possessing algorithms.  
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Figure 3.8 Comparison between experimental (black dot line) [314] and simulated (red line) 

chemiluminescence profiles with standard scale for excited radicals. 

Considering that the excited reagents are mainly consumed after emission intensity reaching 

its peak value, and the reaction process is fairly homogeneous in the decreasing-intensity area 

that fits the condition of the experiment, so only the destruction rate curves for radiative 

decay reaction of every excited species are kept for comparison. As displayed in Figure 3.8, it 

presents the comparison between experimental results (black dot lines) [314] and simulated 

(red lines) chemiluminescence profiles with a standard scale for excited radicals. The 

consumption rate curves of radiative decay reaction of every excited species are normalized 

with its maximum value to compare with experimental data. The curves of chemiluminescent 
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profiles results do not show any deformation after normalizing. Basically, OH*, CH* and C2* 

modelling curves agree well with its experimental chemiluminescent emission intensity. The 

simulated chemiluminescence results for excited species of the comprehensive model are 

significantly dependent on the specific reaction paths and intermediate species such as CH, 

CH3 and C2H2, etc, which will be analysed in the following part. Therefore, the new proposed 

ethanol comprehensive reduced mechanism can be employed to study the ethanol flame 

structure and combustion characteristics.  
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4. Chemical Kinetics Mechanism Reduction 
4.1. Introduction 

In this chapter, reduced reaction mechanisms for ethanol and NH3/H2/CH4 mixtures are 

developed respectively. In detail, in section 4.2, the DRGEP combined with the GEPA method 

are integrated to establish the ethanol reduced kinetic mechanism. The reduction 

methodology and error analysis, as well validations of ignition delay time, species mole 

fraction in a jet stirred reactor as well as laminar burning velocity over a broad range of 

conditions are presented in this section. In section 4.3, an integrating method of IPFA and 

GEPA are firstly employed to reduce NH3/H2/CH4 mechanism, including a two-stage reduction 

process and error analysis. Besides, Extensive validations of the proposed reduced model are 

conducted by comparing with the detailed mechanism as well as available experimental 

measurements of ignition delay time in shock tube, species profiles, laminar flame speed over 

different equivalence ratios, temperatures, and pressures. Results of reduced chemical 

kinetics mechanism are concluded at the end of this chapter. It shows that the methods that 

are applied in this work can accurately reduce mechanisms, and the reduced ethanol 

mechanism and ammonia mechanism can be applied for further study. 

 

4.2. Ethanol Mechanism Reduction and Validation 

4.2.1. Reduction methodology and error analysis 

Reduced mechanisms with smaller sizes are very promising in further numerical simulation for 

fuels combustion. They can be used in place of their corresponding comprehensive 

mechanisms under numerous conditions. In this section, the direct relationship graph with 
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error propagation (DRGEP) as well as the generalized entropy production analysis (GEPA) 

approaches are integrated to reduce the full mechanism of ethanol that was proposed and 

validated by N. Leplat et al. [312]. They investigated the combustion and oxidation of ethanol 

in both experimental and numerical studies, especially added investigation of JSR experiments 

on the basis of the work of Daguat et al. [315]. The ethanol mechanism includes 252 reversible 

reactions and 36 species, and its main feature was widely measured against experimental 

results. In the first stage of reduction process, unimportant species are supposed to be 

eliminated by DRGEP approach proposed by Pepiot-Desjardins and Pitsch et al. [77] based on 

the DRG approach. 

Generally, the smaller tolerances are defined, the larger size of reduced mechanisms might be 

represented. However, it does not necessarily guarantee that larger size mechanisms have 

better performance than those of smaller size due to the complex nonlinear characteristics of 

comprehensive chemical mechanisms [316]. In Figure 4.1, number of species and reactions of 

different generation reduced mechanisms and average relative errors of ignition delay time 

are presented. The average relative errors are calculated by comparing the ignition delay time 

of reduced ethanol flame (2.5%C2H5OH/7.5%O2/90%Ar) at different threshold values with 

experimental results under numerous conditions. The tolerance of average relative error for 

the reduced mechanism is defined around 10% comparing with experimental data, which is 

considered to be acceptable in this work.  

During the reduction process, the DRGEP method is applied at the first time. The target species 

were defined as C2H5OH, O2, H2O and CO2 under a broad range of test conditions, and different 

thresholds setting could generate various scale of semi-detailed mechanisms. Figure 4.1 shows 
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number of species and reactions of different generation reduced mechanisms and mean error 

of ignition delay time. In Figure 4.1(a), the skeleton mechanism that is produced by using 

DRGEP method at threshold εDRGEP = 0.4 has relatively small species and reactions (26 species 

and 188 reactions) while maintaining reasonable accuracy (uncertainty is approximately 

9.08%). Therefore, it is better than other reduced mechanisms and are further reduced at the 

second stage. Afterwards, the final mechanism (26 species and 105 reactions) that has lower 

average error and smaller size is generated via the GEPA method based on the former skeleton 

mechanism, when the threshold αGEPA is 0.003 and uncertainty is about 10.3%. Therefore, this 

final mechanism is validated and used for further chemiluminescence simulation, seen from 

Figure 4.1(b). 

  

Figure 4.1 (a) Skeleton mechanisms by using DRGEP method; (b) Final reduced mechanisms 

by using GEPA method. 

4.2.2. Validation for ignition delay time 

The ignition delay time was identified as a significant parameter of combustion in previous 

study [312]. It was simulated in the constant volume homogeneous batch reactor in CHEMKIN-

PRO package. Natarajan et al. [317] tested the ignition of ethanol oxygen under the condition 
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of P = 1.0, 2.0atm, T = 1300-1700K, and equivalence ratio which ranges from 0.5 to 2.0. Then, 

Dunphy et al. [318] also studied behind reflected shock waves but for different conditions. For 

the reason that the original detailed ethanol mechanism was validated based on the above 

experiments, these experimental results were also employed to check the accuracy of the 

ignition delay time for the reduced mechanism. 

  

 

Figure 4.2 Ignition delay times at P = 1, 2atm, 𝛷 = 0.5, 1 and 2 and 90% Ar dilution. 

Symbols are experimental results from Natarajan et al. [317]; Solid lines are modelling 

results of detailed mechanism; Dash lines are modelling results of reduced mechanism. 
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Figure 4.3 Ignition delay times at P = 3, 4.5bar, 𝛷 = 1 and 90% Ar dilution. Symbols are 

experimental results from Dunphy et al. [318]; Solid lines are the modelling results of 

detailed mechanism; Dash lines are the modelling results of reduced mechanism. 

 

Figure 4.4 Ignition delay times at different pressures, equivalence ratios and 90% Ar dilution. 

Symbols are experimental results from Dunphy et al. [318]; Solid lines are the modelling 

results of detailed mechanism; Dash lines are the modelling results of reduced mechanism. 
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In Figure 4.2-4.4, the ignition delay time of reduced mechanism and detailed mechanism are 

compared with experimental measurements published by Natarajan et al. [317] (Figure 4.2) 

and by Dunphy et al. [318] (Figure 4.3, 4.4), where symbols indicate experimental data, solid 

and dash lines present full and reduced mechanism simulation results respectively. All these 

models agree with the experimental measurements quite well within uncertainties, and it can 

well reflect the reducing trend shown by the ignition delay time with the increase of 

temperature and pressure. Although both ethanol models slightly over-predicted the 

experimental value at 𝛷 = 0.5, as shown in Figure 4.2, agreements remain generally good 

between reduced and detailed ethanol mechanism. Therefore, the reduced mechanism 

enables to well capture the ignition characteristics as the detailed one. 

4.2.3. Validation for laminar flame species profile 

Laminar flame species profiles were detected using the PREMIX module in the CHEMKIN-PRO 

software. Considering laminar premixed flame experiments that were performed on a cooled, 

brass, sintered plate burner with 8cm diameter at 50mbar, the simulation assumed mixture 

averaged transport, and around 200 grid points (GRAD 0.1, CURV 0.1) were used. The flame 

inlet parameters setting can be seen from reference [312]. 
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Figure 4.5 Experimental [312] and computed mole fraction profiles of species in 

ethanol/oxygen/argon flames. 

Figure 4.5 shows the comparison of species profile (CH3, CH4, H2O, C2H2, CO, CH2O, O2, CO2, 

CH3CHO, and C2H5OH) between simulation data and experimental value at various 

equivalence ratio conditions in ethanol laminar flame. Symbols indicate experimental data 

[312], solid and dash lines present detailed and reduced mechanism simulation results 

respectively. Generally, good agreements between experimental and modelling results can be 

observed on the perspective of the positions of concentration profile as well as their 

maximum values. Because most of CO, CO2 and H2O are generated along the flame front, and 

the mole fraction of these species can be more accurately predicted in both rich and lean 

ethanol flame. Despite that, the predicted mole fraction of C2H2 and CH2O in lean flame are 

overestimated than that in rich fuel flame, and the reason could be due to uncomplete 

combustion with lower concentration of oxygen. In addition, although small discrepancies 

between simulations and experiments appear for CH3HCO and CH3, it notably appears that 

the difference between detailed and reduced model is not evident. Overall, seen from Figure 

4.5, the above phenomenon is well predicted by the proposed reduced mechanism, 
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presenting great agreement with the detailed mechanism. 

4.2.4. Validation for jet-stirred reactor species concentration 

Oxidation of ethanol in a jet-stirred reactor (JSR) is simulated using the perfectly stirred 

reactor (PSR) module in the CHEMKIN-PRO package. Considering the experimental condition, 

a fixed mean residence time is set as 0.07s, and pressures are set as 1atm and 10atm at 

different equivalence ratio varying from 0.25 to 2. Mole fraction of main oxidation species is 

estimated, including H2, CH4, H2O, C2H2, C2H4, C2H6, CO, CH2O, O2, CO2, CH3CHO, and C2H5OH, 

and compared with experimental data that reported in the reference [77] and [315] 

accordingly. 

In Figure 4.6-4.7, the comparison of kinetic modeling results as well as JSR experimental data 

for species mole fraction of ethanol oxidation are presented. Symbols indicate experimental 

data, solid and dash line present detailed and reduced mechanism simulation results 

respectively. Seen from Figure 4.6-4.7, it is obviously that the simulated values of detailed and 

reduced model are extremely close excluding the predictions of CH2O at 𝛷 = 0.3, 0.6 and p = 

10atm. However, the prediction of CH2O mole fraction of reduced model shows more accuracy 

than that of detailed model, because the reaction rate constants are calculated during 

reduction process via DRGEP based on constant-volume homogeneous batch reactor that 

differ from jet-stirred reactor. In addition, discrepancy between to models are acceptable 

because its mean value is within a factor of two of the experimental data that can be regarded 

as reasonably accurate. Indeed, reduced mechanism model curve fits very well with the 

detailed model and have a similar trend as the experimental data at all of cases. 
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Figure 4.6 Oxidation of ethanol in a JSR at 1atm and (a) 𝛷 = 1, (b) 𝛷 = 2, (c) 𝛷 = 0.5, (d) 

𝛷 = 0.25. 
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Figure 4.7 Oxidation of ethanol in a JSR at 10atm and (a) 𝛷 = 1, (b) 𝛷 = 2, (c) 𝛷 = 0.6, (d) 

𝛷 = 0.3. 

4.3. Ammonia Mechanism Reduction and Validation 

Ammonia has been considered as a carbon-free fuel with great promise for power generation 

and marine sector in recent years. To have a better understanding of NH3/H2/CH4 combustion 

process as well as exhaust gases formation, an accurate and relatively compact reduced 

kinetics mechanism for NH3/H2/CH4 mixtures is developed. A two-stage reduction process 

combining IPFA and GEPAis performed for the first time to establish the reduced mechanism. 

4.3.1. Reduction process and error analysis 

The procedure of the two-stage mechanism reduction methodology is illustrated in Figure 4.8. 

Similarly, when applying the IPFA and GEPA methods, the size of the reduced skeletal 

mechanism depends non-linearly on the algorithm threshold, generally smaller algorithm 

thresholds lead to larger mechanism size. Therefore, an acceptable skeletal mechanism, which 

has a great compromise between compactness and accuracy, can be obtained through trial 

and error. 
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Figure 4.8 Mechanism reduction procedure. 

(i) Skeletal reduction using IPFA. 

The detailed mechanism of NH3/H2/CH4 mixtures proposed by Shrestha et al. [196] is applied 

to be the original mechanism in this study, which involves 125 species and 1099 reactions. As 

reported in their work, validations have been conducted against numerous experimental data 

for ammonia and ammonia-hydrogen blends oxidation. 

In order to generate an effective reduced mechanism for NH3/H2/CH4 mixtures, reactants NH3, 

H2, CH4, O2 and the products N2, H2O, CO2 are set to be the target species under various testing 

conditions, covering equivalence ratio of 0.5-2.0, pressure of 1-40atm, as well as initial 

temperature of 1300-2500K. The ignition delay time is selected to be the target parameter 

used for examination. The ignition delay time indicates the time required to obtain the 

maximum pressure rising rate in modelling. 
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Figure 4.9(a) presents the variation of maximum error and the number of remaining species 

as well as reactions with the threshold εIPFA. The maximum error is the maximum of relative 

errors between the reduced mechanism using the IPFA method and the detailed mechanism. 

As depicted in Figure 4.9(a), the error keeps constant at about 4% when εIPFA is below 1.15.  

However, when εIPFA exceeds this value, the error increases significantly. In this stage for 

reduction, the aim is to control the error at a quite small value, which is less than the specified 

tolerance (5% in this work), meanwhile keeping the skeletal mechanism as compact as 

possible. Therefore, according to the results shown in Figure 4.9(a), a skeletal mechanism 

including 68 species as well as 687 reactions is obtained (the error is 4.13%). 

(ii) GEPA reduction. 

Though the number of species in reduced mechanism using the IPFA approach has been 

reduced sharply, the skeletal mechanism size still quite large. In this stage, the GEPA method 

is employed to perform the further reduction by eliminating redundant reactions. Reduction 

of skeletal mechanism of the first stage is conducted using a sampling solution database for 

the ignition process covering equivalence ratio of 0.5-2.0, pressure of 1-40atm, as well as 

initial temperature of 1300-2500K. The ignition delay time is also chosen to be the target 

parameter. 

Figure 4.9(b) presents the relation between the maximum error, the number of species as well 

as reactions and the threshold εGEPA. Here, the maximum error is the maximum of relative 

errors between the reduced mechanism applying the GEPA method and the detailed 

mechanism. The specified tolerance is set as 10%, which can allow the final reduced 

mechanism to be more compact under the condition of comparatively small error. It is seen 



89 
 

from Figure 4.9(b), the final reduced mechanism involving 59 species and 210 reactions is 

obtained (the error is 9.24%). 

 

Figure 4.9 The variation of maximum error and the number of remaining species as well as 

reactions with the threshold in the reduction process using (a) IPFA, and (b) GEPA. 

4.3.2. Validation for ignition delay time 

Validation of ignition delay times is completed by comparing calculated values of detailed as 

well as reduced mechanisms with the experimental data of shock tube. Shu et al. [101] 

performed ignition delay experiments of ammonia/air mixture in a high-pressure shock tube 

(HPST) at near 20 and 40atm, high temperatures (1100 –1600K), as well as equivalence ratios 

of 0.5, 1.0, and 2.0. According to results of Shu et al. [101], the total uncertainty in the 

experiment is estimated to be less than 20%. 

Table 4.1 shows the conditions for NH3/O2/N2 mixture simulation according to the shock tube 

experiments conducted by Shu et al. [101]. In Figure 4.10, the predicted ignition delay times 

among detailed mechanism, reduced mechanism, as well as experimental data are compared 

at various equivalence ratios. Within the uncertainties, both models fit experiment equally 

well. It is particularly noted that there is quite small difference in predictions of ignition delay 
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time between detailed and reduced model. Additionally, the developed reduced mechanism 

well depicts that ignition delay time shows a reducing trend with increasing pressure. 

Table 4.1 The parameters of NH3/O2/N2 mixture in a shock tube [101]. 

Mixture 𝛷 NH3/% O2/% N2/% 

1 0.5 12.3 18.4 69.3 

2 1.0 21.9 16.4 61.7 

3 2.0 35.9 13.5 50.6 

 

 

 

Figure 4.10 Comparison of the predicted ignition delay times of reduced and detailed 

mechanisms with experiments data for NH3/O2/N2 mixture. Solid lines: detailed mechanism 

predictions [196], dash lines: reduced mechanism predictions (present work), symbols: 

experiment from [101]. 
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Mathieu and co-workers [102] measured ignition delay times under condition of high 

temperatures (1560–2455K), three pressures (1.4, 11, and 30bar) as well as three equivalence 

ratios (0.5, 1.0, and 2.0) with highly diluted ammonia mixtures in Ar (98–99%). The simulation 

conditions of NH3/O2/Ar mixture are given in Table 4.2. Figure 4.11 shows the ignition delay 

times of NH3/O2/Ar mixture at various equivalence ratios and pressures. Same as Figure 4.10, 

the solid and dash lines represent simulated results of detailed and reduced mechanisms 

respectively, and the symbols are experimental data. Although both of these two mechanisms 

slightly under predict experimental data at 1.4 atm, it can be found that predictions by the 

reduced mechanism show considerably good agreement with results of the detailed model. 

The two lines in three mixtures can even be regarded as overlapped. The ignition 

characteristics are well captured by the reduced mechanism within the error tolerance. 

Table 4.2 The compositions of NH3/O2/Ar mixture in a shock tube [102]. 

Mixture 𝛷 NH3/% O2/% Ar/% 

4 0.5 0.4 0.6 99 

5 1.0 0.5715 0.4285 99 

6 2.0 0.7273 0.2727 99 
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Figure 4.11 Comparison of the predicted ignition delay times of reduced and detailed 

mechanism with experiments data [102] for NH3/O2/Ar mixture. 

Xiao et al. [91] studied ignition characteristics for 60%NH3/40%CH4/air mixture with shock 

tube experiments. The measurements were performed behind reflected shock waves at 

pressure of 2-5atm, temperature of 1369-1804K and different equivalence ratios (0.5, 1, 2). 

Experimental results are compared with numerical predictions of detailed and reduced kinetic 

mechanism, presented in Figure 4.12. It can be seen that prediction results of reduced model 

show satisfactory agreement with experimental data and detailed mechanism simulations 

within the wide range of conditions. To sum up, a good agreement between predictions and 

measurements is captured, which indicates that the reduced kinetic mechanism is capable to 

reflect the ignition characteristics within the wide range of the equivalence ratios, 

temperatures, as well as pressures.  
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Figure 4.12 Comparison of the predicted ignition delay times of reduced and detailed 

mechanism with experiments data [91] for 60%NH3/40%CH4/air mixture. 

4.3.3. Validation for jet-stirred reactor species concentration 

Zhang et al. [319] investigated the oxidation of ammonia/hydrogen mixtures by implementing 

jet-stirred reactor (JSR) oxidation experiments at atmospheric pressure as well as intermediate 

temperatures (800-1280K). According to the experimental condition, the total initial mole 

fraction of NH3/H2 mixture is 2000ppm, in which the content of hydrogen ranges from zero to 

70 vol% at equivalence ratio of 0.25 and 1.0. Mole fraction of intermediates for NH3/H2 

mixture oxidation is simulated using the perfectly stirred reactor (PSR) module of the 

CHEMKIN-PRO package where mean residence time τ is fixed at 1s. The detailed operation 

parameters from literature [319] are displayed in Table 4.3. 
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Table 4.3 Detailed operation parameters for the oxidation of NH3/H2 mixture in JSR [319] 

𝛷 X_(H2)% NH3/ppm H2/ppm O2/% N2/% 

0.25 0 2000 0 1 98.8 

0.25 10 1800 200 0.94 98.86 

0.25 30 1400 600 0.82 98.98 

0.25 50 1000 1000 0.7 99.1 

0.25 70 600 1400 0.58 99.22 

1.0 0 2000 0 0.25 99.55 

1.0 10 1800 200 0.235 99.565 

1.0 30 1400 600 0.205 99.595 

1.0 50 1000 1000 0.175 99.625 

1.0 70 600 1400 0.145 99.655 

In Figure 4.13 and 4.14, mole fraction of main oxidation species (NH3, H2O, NO, N2O) is 

calculated and compared with experimental data reported by Zhang et al. [319] at the 

equivalence ratio of 0.25 and 1.0 respectively. The lines present the simulation results of 

reduced mechanism and symbols indicate experimental data. As seen from Figure 4.13, the 

predicted conversion of NH3 and H2O of reduced mechanism model fits very well with the 

experimental results under varying conditions at 𝛷 = 0.25. Besides, the reduced model 

predicts the mole fraction of NO reasonably when H2 content ranges from zero to 30 vol%. It 

is noted that the reduced model under-predicts the yields of NO when H2 content are 50% 

and 70%. Moreover, the N2O mole fractions are over-predicted generally, the peaks are twice 

higher than those of experimental data at lean-fuel conditions. This is mainly because the 

application range of equivalence ratio is 0.5-2 for Shrestha’s detailed mechanism. Although 

the discrepancies of the simulated and experimental N2O mole fraction are obvious, it is still 

able to capture the enhanced effects of H2 blending.  
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At 𝛷= 1, shown in Figure 4.14, the results present similar trends with those at 𝛷= 0.25 under 

varying H2 content. Furthermore, the predictions of the reduced mechanism are considerably 

consistent with experimental data under all the conditions investigated. In addition, the 

experimental data of NO and N2O mole fraction is well predicted by the developed reduced 

model. The overall results show that blending hydrogen is able to improve the oxidation 

reactivity of NH3 and increase the NO mole fraction. Therefore, the reduced kinetics 

mechanism basically captures the variation of species concentration in JSR, which is 

considered accurately in research conditions.  

 

 

Figure 4.13 Comparison of modeling and experimental results [319] for species 

concentration of NH3/H2 oxidation in JSR at 𝛷= 0.25, diluted by N2. Other parameters are P 

= 1atm, τ = 1s. 

900 1000 1100 1200 1300
0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

M
ol

e 
Fr

ac
tio

n 
of

 N
H

3

Temperature (K)

(a)

900 1000 1100 1200 1300
0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

M
ol

e 
Fr

ac
tio

n 
of

 H
2O

Temperature (K)

(b)
Φ = 0.25, P = 1 atm

900 1000 1100 1200 1300
0E+00

1E-05

2E-05

3E-05

4E-05

5E-05

M
ol

e 
Fr

ac
tio

n 
of

 N
O

Temperature (K)

 0% H2_exp
 10% H2_exp
 30% H2_exp
 50% H2_exp
 70% H2_exp

(c)

900 1000 1100 1200 1300
0E+00

2E-05

4E-05

6E-05

8E-05

M
ol

e 
Fr

ac
tio

n 
of

 N
2O

Temperature (K)

(d)
 0% H2_reduced model
 10% H2_reduced model
 30% H2_reduced model
 50% H2_reduced model
 70% H2_reduced model



96 
 

 

 

Figure 4.14 Comparison of modeling and experimental results [319] for species 

concentration of NH3/H2 oxidation in JSR at 𝛷 = 1.0, diluted by N2. Other parameters are P 

= 1atm, τ = 1s. 
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and stoichiometric conditions, while discrepancies appear at rich fuel side, which is in 

accordance with the study of Shrestha et al. [196]. In rich conditions, the curve of detailed 

model fits well with the measurements from Ronney (1998) [126] and Mei et al. (2019) [7]. As 

for the reduced mechanism based on Shrestha detailed mechanism, good agreement are 

observed compared with the experiment and calculated results of laminar flame speed for 

detailed model. Generally, the proposed reduced mechanism is able to reflect the 

experimental trends qualitatively. It shows that the laminar flame speed first increases with 

𝛷 rising to about 1.1, and then shows a decreasing trend at 𝛷 > 1.1. 

 

Figure 4.15 The variation of laminar burning velocities of NH3/air flames with 𝛷, measured 

in the works of Lhuillier et al. [320], Mei et al. [7], Han et al. [6], Li et al. [321], Hayakawa et 

al. [8], Takizawa et al. [322], Jabbour et al. [323], Ronney [126], Zakazno et al. [127], and 

predicted using the Shrestha’s detailed mechanism and the present reduced mechanism. 

Figure 4.16 presents the laminar flame speeds of NH3/H2/air blends under P = 1atm, T = 473K 

as a function of equivalence ratio with varying H2 content (X_H2%) in mixtures. The symbols 

represent experimental results reported by Shrestha et al. [196], and the solid and dash lines 

are simulation results using detailed as well as reduced mechanism correspondingly. It is 
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observed that the reduced model agrees well with experimental measurements especially 

under lean and stoichiometric conditions. In addition, the results of reduced model are slightly 

over-predicted compered to detailed model in general. However, the discrepancies of 

simulation results between the detailed and reduced model are considerably small, and the 

errors are around +5%. In Figure 4.16, it also shows that the laminar flame speed increases 

with more content of hydrogen varying from zero to 30 vol%, which indicates that blending H2 

is an effective option to improve ammonia combustion. Besides, the tendencies of laminar 

flame speed in NH3/H2/air blends at 473K show the same pattern as that of oxidation in 

NH3/air flame at 298K. 

 

Figure 4.16 Comparison of reduced and detailed modeling with experimental results [196] 

for laminar burning velocity of NH3/H2/air blends oxidation at various equivalence ratios and 

H2 content (P = 1atm, T = 473K). 

The effect of H2 content on the laminar flame speed is demonstrated in NH3/H2/air flame at P 

= 1 atm, T = 298K, and 𝛷 = 1.0, shown in Figure 4.17. Experimental values (Symbols) were 

reported by Lee (2010) [107], Han (2019) [6] and Lhuillier (2020) [320] in recent years. It can 
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be illustrated that the laminar flame speed has a monotonic increase with H2 content in 

NH3/H2/air flame. The curves of laminar flame speed for detailed and reduced model are 

almost overlapped for H2 content in the blend below 30%. For H2 content in the blend above 

30%, the gap between two models begins to appear, but the error is still small, for example, 

the values of laminar flame speed in reduced as well as detailed model are around 33.90 and 

31.28, respectively. 

 

Figure 4.17 Comparison of reduced and detailed modelling with experimental results 

[6,107 ,320] for laminar burning velocity of NH3/H2/air blends oxidation at various H2 content 

(P = 1atm, T = 298K, 𝛷=1.0). 

Figure 4.18 shows measured laminar flame speeds [320] compared with the model 

predictions for NH3/H2/air blends at P = 3atm and T = 473K. Both detailed and reduced models 

over-predict the laminar burning velocity for pure NH3 combustion. With blending 10% H2 in 

the fuel, the accuracy of predictions is improved. Generally, the best agreement is found with 

measurements at rich-fuel conditions, while it is slightly overestimated under lean to 

stoichiometric conditions. 
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Figure 4.19 demonstrates the effect of pressure (1, 3, 5 atm) on the laminar flame speed in 

NH3/H2/air flame at T = 473K, 𝛷  = 1.1, and various H2 content. Basically, the reduced 

mechanism captures the experimental trends at different conditions very well. The laminar 

burning velocity rises with the increase of H2 content in mixture and decrease of pressure. In 

addition, it can be observed that predictions of the reduced model are slightly higher than 

measurements and detailed model predictions but remain within the error margins of 

experiments. Besides, the laminar flame speed is reduced significantly when pressure varies 

from 1 to 3atm.  

 

Figure 4.18 Comparison of reduced and detailed modeling with experimental results [320] 

for laminar burning velocity of NH3/H2/air blends oxidation at various equivalence ratios and 

H2 content (P = 3atm, T = 473K). 
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Figure 4.19 Comparison of reduced and detailed modelling with experimental results [196] 

for laminar burning velocity of NH3/H2/air blends oxidation at various pressures and H2 

content (T = 473K, 𝛷 = 1.1). 

Han et al. [6] measured laminar burning velocities of NH3/CH4/air flames at P = 1atm, T = 298K 

as a function of the equivalence ratio with varying CH4 content (X_CH4%) in mixtures. Figure 
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results of reduced mechanism and experiments for various equivalence ratios, particularly in 
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discrepancies are generally observed at equivalence ratio below 1.2 for around 40% CH4 

content in the blend. However, good agreement can be observed when the equivalence ratio 

is above 1.2. Similar prediction results were performed and analyzed in the study of Han et al. 

[6] by using GRI-3.0 mechanism [194]. Besides, they investigated the Okafor mechanism [11], 

showing the opposite results, in other words, the Okafor mechanism predicts the laminar 
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equivalence ratio increases. Although the reduced mechanism established in present work 

0 5 10 15 20 25 30
10

20

30

40

50

60

T = 473 K, Φ = 1.1

 1 atm
 3 atm
 5 atm

La
m

in
ar

 b
ur

ni
ng

 s
pe

ed
 (c

m
/s

)

H2 content

Solid line: Detailed model
Dash line: Reduced model
Symbols: Exp_data
                         



102 
 

under-predict the laminar burning velocities at lean conditions with blending of 40% CH4 in 

fuel, it is able to capture the trend of laminar burning velocity varying with equivalence ratio. 

Moreover, improving the ammonia kinetics mechanism with CH4 blending and extending 

experimental database are required. 

 

Figure 4.20 Comparison of reduced mechanism production and experimental results [11] for 

laminar burning velocity of NH3/CH4/air blends oxidation at various equivalence ratios and 

CH4 content (P = 1atm, T = 298K). 
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(𝛷 = 1.0-1.4) for all flames. The main reason is that at lean fuel reaction regions, although the 

fuel NOX emission is declined, the thermal NOX emission is increased. When 30% H2 is added 

into ammonia, the NOX emission is increased compared to the pure ammonia combustion 

flame at lean-fuel conditions, and the same pattern is shown in 70%NH3/30%CH4/air flame. 

The values of NOX emission in 70%NH3/30%H2/air flame are generally higher than those in 

70%NH3/30%CH4/air flame at lean-fuel conditions. In addition, as value of the equivalence 

ratio beyond 0.9, the NOX emission is decreased significantly for all three flames. 

 

Figure 4.21 NOX emission from the CRN predictions for NH3/air, 70%NH3/30%H2/air and 

70%NH3/30%CH4/air flames in a gas turbine based on the proposed reduced mechanism. 
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NOX production. Therefore, introducing additives reasonably plays a vital role in NOX emission 

control and ammonia combustion promotion. 

 

Figure 4.22 Predictions of NOX emission with various NH3 content in NH3/H2/air and 

NH3/CH4/air flames. 
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70%NH3/30%CH4/air flame, resulting in high temperature. The reactions of CH3 oxidation 

consume an amount of oxygen that promotes NOX emission, however, the endothermic 

reaction 2CH3 (+M) = C2H6 (+M) (R55) becomes more significant with the increase of CH4 

content, which decreases the temperature and suppresses NOX. The analysis above suggests 

that the two effects should be taken into careful considerations to minimize the NOx emissions 

in NH3/CH4/air flame. 

 

     

 

Figure 4.23 Temperature sensitivity analysis at the time of ignition for NH3/air, 

70%NH3/30%H2/air and 70%NH3/30%CH4/air combustion. 
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has lower average error and smaller size, and the final uncertainty is about 10.3%. 

The reduced ethanol mechanism is validated with available experimental measurements of 

ignition delay time, species mole fraction in jet stirred reactor as well as laminar burning 

velocity over various conditions. It is shown that agreements remain generally good between 

reduced as well as detailed ethanol mechanism. Moreover, the reduced mechanism enables 

to well capture the ignition characteristics and concentrations of species at wide operation 

conditions. 

4.4.2. Summary of ammonia reduction mechanism 

A novel reduced chemical kinetics mechanism for NH3/H2/CH4/air mixture is proposed for the 

first time by a two-stage reduction procedure, which combines both the IPFA method and the 

GEPA method. Specifically, in the first stage, the detailed mechanism (125 species and 1099 

reactions) is reduced by the IPFA. A skeletal mechanism including 68 species as well as 687 

reactions is obtained within the 5% tolerance on auto-ignition. In the second stage, the 

mechanism is further reduced by the GEPA. As a result, the final skeletal mechanism involving 

59 species and 210 reactions is obtained within the 10% tolerance auto-ignition. 

Extensive validations of the proposed reduced model are conducted by comparing to detailed 

mechanism and experimental measurements of ignition delay time in shock tube, species 

profiles in JSR and the laminar flame velocity in wide range of temperatures (T = 1300–2500K), 

pressures (P = 1–40bar), as well as equivalence ratios (𝛷 = 0.25–2.0). Results show that the 

reduced mechanism makes prediction for ignition delays of NH3, NH3/H2 and NH3/CH4 

mixtures very well. Additionally, predictions of laminar burning velocity using reduced model 

generally agree well with the results of measurements and detailed model. Although the 
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result of the reduced model is slightly over-predicted compared to the detailed mechanism 

for laminar burning velocity, the discrepancies are quite small within the error margins around 

5%. It is noted that the reduced mechanism established in the present work under-predict the 

laminar burning velocities at lean conditions with blending of 40% CH4 in fuel. Moreover, 

improving the ammonia kinetics mechanism with CH4 blending and extending experimental 

database are required. 

Furthermore, the NOX emission characteristics of NH3/H2/CH4 mixtures in a gas turbine are 

numerically analyzed through a chemical reactor network (CRN) model. The effects of H2 and 

CH4 in the combustion of ammonia and the equivalence ratio on emission characteristics are 

investigated. Moreover, the temperature sensitivity analysis is employed to explore the 

reactions that have great impact on the combustion in NH3/air, 70%NH3/30%H2/air as well as 

70%NH3/30%CH4/air flames. Results show that the NOX emission is increased compared to 

pure ammonia combustion flame especially at lean-fuel (𝛷 = 0.6-0.9) conditions, when the 

ammonia blends with H2 or CH4. Also, generally, the NOX emissions show an obvious decrease 

at the content of NH3 above 20% in both NH3/H2/air and NH3/CH4/air flames. Therefore, 

introducing additives reasonably plays a vital role in NOX emission control and ammonia 

combustion promotion. 
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5. Ammonia Combustion and Emission Characteristics 
in Gas Turbines 
5.1. Introduction 

This chapter is mainly studying combustion and emission characteristics of partially cracked 

ammonia in gas turbines. It is already known that chemical kinetic mechanisms are good for 

understanding the combustion process. Therefore, first of all, the kinetic modelling of 

ammonia is analysed. Then, a one-dimensional freely propagating laminar flame calculation 

model is validated for further study of partially cracked ammonia combustion characteristics. 

After that, in section 5.4, the effect of equivalence ratio, cracking ratio as well as initial 

pressure on the laminar flame velocity (LBV) are numerically discussed. In section 5.5-5.6, 

numerical investigations of the combustion and emission characteristics for partially cracked 

ammonia (NH3/H2/N2/air mixtures) in single and 2-stage rich-lean combustor are performed, 

respectively. At the end of the chapter, to further explore the mechanism of partially cracked 

ammonia oxidation, a reaction pathways flux method is used to represent NO reaction 

pathways at various operating factors and cracking ratios. Also, the potential of controlling the 

important intermediate species and reactions on NO formation/reduction is demonstrated by 

identifying the major NOX reaction pathways and analysing the NO rate of production (ROP). 

 

5.2. Kinetic modelling 

Better understanding the ammonia reaction mechanism is essential in analysing and designing 

ammonia combustion systems in a gas turbine. Mathieu and Petersen carried out Shock Tube 

experiments and developed a NH3 oxidation mechanism [102]. By comparing their work 
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against nine other NH3 containing mechanisms, large discrepancies between the ammonia 

mechanisms were clarified. Xiao and Valera-Medina compared 12 different NH3-NOX kinetic 

mechanisms; the majority of mechanisms could not show good performance between the 

measured laminar flame experimental data at various equivalence ratios [31]. As for 

representing comprehensive prediction of the LBV and ignition delay time of NH3, Otomo et 

al. [32] proposed an ammonia oxidation mechanism (UT-LCS) according to the model 

developed by Song et al. [195], including 33 species and 222 reactions. This model was well 

validated of ignition delay time as well as laminar flame speed under wide ranges of conditions. 

It is also appropriately applied to investigate the NH3/H2/air combustion. Therefore, the UT-

LCS mechanism is used in the present work to calculate LBV and NOX emissions characteristic 

in partially cracked ammonia fuelled gas turbines. 

In this work, the cracking ratio (γ) changes from 10% to 80%, which is defined as the mole 

fraction of cracked NH3 ([NH3]cracked) in initial NH3 ([NH3]init). The definition of γ is calculated 

according to the following equations Eq. (5.1), (5.2) and (5.3): 

[NH3]init=γ[NH3]cracked+(1-γ)[NH3]remained                   (5.1) 

2NH3=3H2+1N2                            (5.2) 

γ=[NH3]cracked/[NH3]init=2[H2]/(3[NH3]remained +2[H2])                (5.3) 

When partially cracked NH3 completely burn with air into H2O and N2, the equivalence ratio 

(𝛷) used in the calculations is listed in the following equation (Eq. (5.4)). 

Χ((1-γ)ΝΗ3+γ(1.5Η2+0.5Ν2))+𝑎𝑠𝑡𝑜𝑖(Ο2+3.76Ν2)=αΗ2Ο+βΝ2          (5.4) 
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5.3. Validation of Laminar burning velocity 

The laminar burning velocity in the present study is performed with a one-dimensional freely 

propagating laminar flame calculation model of the CHEMKIN-PRO. Thermal diffusion effects 

are considered and the values of both GRAD and CURV are set as 0.02. All simulations are 

converged to a grid-independent solution. Numerical simulation of LBV for ammonia 

premixed flame is validated against the previous experiment research at 298K temperature 

and atmospheric pressure conditions (P = 0.1 MPa), presented in Figure 5.1. The solid line 

represents calculated results with UT-LCS mechanism, the dots represent LBV values 

measured by experiments published in recent years [8,7,6,328]. Laminar burning velocities of 

the present model agree with experimental flame speeds very well over a broad range of 

equivalence ratios. 

 

Figure 5.1 Laminar flame speed for NH3/air at 1atm and 298K. Symbols: measurements 

published literature [6, 7, 8, 328]. Solid line: this work. 

As for partially cracked ammonia combustion, the comparison of measured and simulated LBV 

of partially cracked NH3/air mixtures (NH3/H2/N2) is presented in Figure 5.2 at various 
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equivalence ratios and pressures when the cracking ratio of ammonia is fixed at 40%. 

Moreover, the validation for variations of the laminar burning velocity with changing ammonia 

cracking ratio is presented in Figure 5.3. The dots are the experimental measurements of LBVs 

[184], and solid lines are simulation results in current work. Generally good performance is 

presented on simulating measured LBVs at various equivalence ratios, pressures and ammonia 

cracking ratios. 

 

Figure 5.2 Laminar flame speed for partially cracked NH3/air mixtures at 1, 2atm and 298K. 

 

Figure 5.3 Variation of the laminar burning velocity with changing ammonia cracking ratio 

for partially cracked NH3/air mixtures at 1, 2atm and 298K. 
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5.4. Factors influence on the laminar burning velocity 

As one of the most siginificant parameters for premixed flames, many studies on laminar 

burning velocities of NH3 containing premixed flame were investigated experimentally and 

numerically [7, 8, 11, 102, 113,186, 188, 197, 195, 196, 320]. 

 

 

Figure 5.4 LBVs of pure NH3/air flames against the equivalence ratio at Tu = 298K and Pu = 1, 

2, 5 and 10atm. 

Figure 5.4 shows the simulated LBVs of NH3/air mixtures at various equivalence ratios and 40% 

ammonia cracking ratio. Similarly, single positive curves tendencies are captured as that of 

NH3/air flames in Figure 5.1. The maximum values of laminar burning velocity are located 

around 𝛷 = 1.1 for all calculated initial pressures. It can be observed that the peak value of 

LBV is close 37 cm/s at Tu = 298K and Pu = 1atm when ammonia is cracked to 40% (seen in 

Figure 5.2), which considerably improved LBV of NH3/O2/N2 flame (around 7cm/s). When the 

initial mixture pressure is increased from 1atm to 10atm, the LBV is decreasing obviously in 

Figure 5.4, and the tendency is in concordance with experimental data of Hayakawa et al. [8] 

for ammonia/air premixed flames. However, when pressure increases to 10atm, the maximum 
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value is around 4.5cm/s, which could lead to unstable flame in this condition.      

    

 

Figure 5.5 LBVs (a) and HRR (b) versus ammonia cracking ratio at various equivalence ratio. 

Figure 5.5 (a) shows the effect of equivalence ratio and ammonia cracking ratio on laminar 

burning velocity of partially cracked NH3/air mixtures premixed flames. The LBVs increases 

significantly when the cracking ratio increases from 10% to 80 %. The tendency indicates that 

the combustion intensity is remarkably enhanced as cracking ratio increases. Furthermore, 

comparison of performance among different ammonia cracking ratios reveals that the 

ammonia combustion performance can be improved by partially cracking. The heat release 
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rate versus different equivalence ratios and ammonia cracking ratios is also displayed in Figure 

5.5(b). The trend of HRR variety is similar as that of the LBV in same conditions, while the 

increasing speed of heat release rate is slow down when ammonia cracking ratio increases to 

80% at fuel rich region. 

  

5.5. NOX emission predictions in a single stage combustor 

The effects of ammonia cracking ratio and equivalence ratio on NOX emissions (consisting of 

NO, NO2 and N2O) of the partially cracked ammonia are investigated in single stage gas turbine 

combustor. To remove the influence of dilution in the gas measurement system, the 

concentration measured in experiments is corrected to the concentration in dry conditions as 

following equation 5.5.  

[NO]?K%�O =
[��]*+!P$,+/,/,Q×(#.A?>#.?K)

#.A?>[�O]*+!P$,+/,/,Q
                    (5.5) 

Therefore, all NOX emissions illustrated throughout this paper are corrected to 15% O2 and 

dry condition unless otherwise specified. Analysis of the factors on NOX emission 

characteristics is shown in Figure 5.6. It can be observed that the amount of NOX emission 

firstly increases and then decreases sharply when the equivalence ratio is within 0.4-1.1. After 

that, a decreasing trend is shown with further equivalence ratio increasing. When the 

equivalence ratio exceeds 0.8, NOX is reduced rapidly as the equivalence ratio of mixtures 

increases. The maximum value of NOX emission can be reached when equivalence ratio is 

close to 0.8 for all ammonia cracking ratios.  

Traditional lean burn combustion is used to reduce the generation of thermal NOX emissions, 

because of the low flame temperature in the combustor. However, more NOX emission seems 
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to be produced under lean burn conditions than that in rich conditions as shown in Figure 

5.6(a). Because the fuel NOX emissions will decrease at lean fuel reaction regions, while 

thermal NOX would be increased due to high temperature. The temperature of 40% cracked 

ammonia flame is shown in Figure 5.6(b). It should be noted that the maximum NOX formation 

is located at around 𝛷 = 0.8, which does not match the peak temperatures. Similar result 

was found by Li et al. [175] and they demonstrated that the NOX formation was not just 

controlled by the Zeldovich thermal NOX mechanism [329]. Seen from Figure 5.6, it shows that 

high NOX emission zone is located at high ammonia cracking ratio and 0.6-1.0 ranges of 

equivalence ratio. Generally, the content of H2 increases with cracking of ammonia, which can 

improve the combustion intensity conspicuously. In addition, the NOX emission is promoted 

with increasing NH3 cracking ratio from 10% to 80% at all equivalence ratio studied.  

      

Figure 5.6 NOX emission from the CRN predictions in single stage combustor at various 

equivalence ratio and cracking ratio. 

To reveal emission characteristics of the partially cracked ammonia/air premixed swirl flame, 

the mole fraction of important intermediate components, such as NO, HNO, N2O, NHi, OH, O, 

H, are analysed at different equivalence ratios and fixed 40% NH3 cracking ratio, as illustrated 
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compared with that of NO and N2O, which displays upward trend as the equivalence ratio 

rising to 0.9. The NHi effect on the NO formation can be neglected in this area. As the 

equivalence ratio further increasing, the mole fraction of OH and HNO reduce and both of NO 

and N2O decreased correspondingly, while the NHi mole fraction increases significantly. It is 

shown that NHi contributes more on NO reduction, and HNO radical can promote NO 

formation. 

   

 

Figure 5.7 Mole fraction of NO, HNO, N2O, NHi, OH, O, H at different equivalence ratios and 

fixed 40% NH3 cracking ratio. 

Further analysis on NO generation is performed based on calculate individual reaction related 

of NO rate of production, shown in Figure 5.8. Top 10 reaction pathways that have great 
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production for each reaction shown in Table 5.1 at various equivalence ratios is calculated and 

demonstrated in Figure 5.8. A positive value represents prompting effect while a negative 

value represents inhibitive effect on NO production. 

Table 5.1 Top 10 reaction pathways on NO generation contribution rate in partially cracked 

NH3/Air. 

Number Reaction A B Ea 

R49 NH2+NO=N2+H2O 1.30 × 10;< -1.2 0.0 

R50 NH2+NO=N2+H2O                                  −3.10 × 10;' -0.5      1180.0 

R51 NH2+NO=NNH+OH                                   4.290 × 10;% 0.3      -870.0 

R60 NH+O2=NO+OH 1.30 × 10< 1.5       100.0 

R63 NH+NO=N2O+H                                     5.00 × 10;= -0.4         0.0 

R117 NO+H(+M)=HNO(+M)                                1.50 × 10;) -0.4         0.0 

R120 HNO+OH=NO+H2O                                   3.60 × 10;' 0.0 0.0 

R121 HNO+O2=HO2+NO                                   2.00 × 10;' 0.0     16000.0 

R124 NO+HO2=NO2+OH                                   2.10 × 10;$ 0.0 -497.0 

R127 NO2+H=NO+OH                                     1.30 × 10;= 0.0       362.0 

It can be seen from Figure 5.8, the ROPs of two reactions R120 and R117 are in positive values 

(𝛷 < 0.85), meanwhile, the NO mole fraction is increasing in Figure 5.7. Therefore, HNO + OH 

= NO + H2O (R120) and NO + H (+ M) = HNO (+ M) (R117) make major contribution on NO 

production. The decrease of NO formation when 𝛷 > 0.8 is mainly because of the decreased 

ROP of R120. Furthermore, as equivalence ratio increases, R117, R121 and R60 have slight 

encouraging effect on NO production, but the NHi pathways, such as NH2+NO=N2+H2O (R49), 

NH2+NO=NNH+OH (R51), and NH+NO=N2O+H (R63), still dominate NO reduction. 
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Figure 5.8 NO Rate of productions of major reaction pathways. 

 

Figure 5.9 NOX emission as a function of pressure. 

Figure 5.9 explores the effect of initial pressure on NOX emission throughout all NH3 cracking 

ratios. It should be noted that the NOX emission goes to a lower value at each cracking ratio 

when the pressure rises from 10 to 20atm. The growth of pressure will generate more flame 
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to the increase of the intensity of the reaction zone. Nevertheless, the fuel NOX emission will 

a decrease, which have a significant effect on total NOX emissions. 

 

Figure 5.10 The mole fraction of NO and OH* at different equivalence ratio and NH3 cracking 

ratio. 

It is known that chemiluminescence intensity is an excellent signature to detect the kinetics 

of the reaction system. Many studies were concentrated on identifying flame structure by 

capturing the OH* chemiluminescence [ 330 , 331 ]. Zhu et al. [ 332 ] indicates that OH* 

chemiluminescence intensity can be used as the surrogate of NO mole fraction under certain 

conditions. This makes it possible to detect emissions-free flame combustion of partially 

cracked ammonia mixtures by employing a low-cost OH* chemiluminescence technology. 

Therefore, the mole fraction of NO and OH* are shown in Figure 5.10 at various equivalence 

ratios and three different NH3 cracking ratios (γ = 0.2, 0.4, and 0.6). The intensity of 

chemiluminescence is proportional to the product of the excited reactants concentration, and 

is capable of identifying the position of flame [333]. Thus, it can be demonstrated that peak 

OH* chemiluminescence intensity located at the position of large NO mole fraction gradients. 
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Seen from Figure 5.10, both mole fraction of NO and OH* are increased with increasing NH3 

cracking ratio, which is expectable, since higher OH radical generated from higher ammonia 

cracking ratio results in rise of NO formation. Besides, considerably higher intensities of OH* 

for all cracking ratios are located at 𝛷 = 1.0 followed by a decaying trend due to lower oxygen, 

suggesting that the flame position hardly changes with NH3 cracking ratios. 

 

5.6. NOX emission predictions in a rich-lean burn combustor 

According to the results of research in section 5.5, NOX emissions decreased obviously at 

slightly rich equivalence ratios. Therefore, stratified-charged strategy is adopted to discuss the 

NOX emissions. Figure 5.11 shows the predictions of NOX emission in rich-lean burn combustor 

at fixed 40% NH3 cracking ratio. The overall equivalence ratio (𝛷(!/*+'') is controlled within 

0.4-0.8, which is calculated by volume flow rate of intake partially cracked NH3 mixtures and 

total combustion air in two stages. 𝛷B*DP+*C is the equivalence ratio in primary stage. The 

residence times of PSRs are shown at Table 3.1 and PFR residence times in primary and 

secondary stage are fixed at 18ms and 2ms separately. 

As the primary equivalence ratio increases, NOX emissions show almost the same 

performance as U-shaped curves, and the turning points are almost located at 1.3 and 1.4. 

The primary equivalence ratio ranges of low NOX emissions (below 50ppm) are observed at 

around from 1.2 to 1.5 when the 𝛷(!/*+''  = 0.4-0.6, as shown in Figure 5.11. However, it is 

increased significantly with overall equivalence ratio rising to 0.7 and 0.8. As primary 

equivalence ratio increases, NOX emissions decrease with the increase of 𝛷B*DP+*C observed 

from 1.0 to around 1.3 firstly, and the NOX prediction values at 𝛷B*DP+*C = 1.0 for all 𝛷(!/*+''  
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are very small (less than 1000ppm), which are considerably lower than those in single stage. 

Because secondary air is added after the main flame zone to form a reducing atmosphere 

where NO can be reduced in air classification. Therefore, using a second combustion stage 

burning is promising to reduce NOX emission and solving the unburned NH3 mixtures problem. 

Then, the gap is enlarged, after that the discrepancy among NOX emissions shrinks, but the 

values are growing up at high 𝛷B*DP+*C . It should be influenced remarkably by unburned 

cracked NH3 mixtures. 

 

Figure 5.11 NOX emission predictions versus 𝛷B*DP+*C in rich-lean burn combustor at NH3 

cracking ratio γ =40%.   

The explanation of high NOX emission that disappeared at high 𝛷B*DP+*C (𝛷B*DP+*C > 1.4) is 

presented in Figure 5.12. The solid dot lines represent NOX emissions in primary stage (rich 

burn stage), while the dash dot lines are in lean burn stage. The NOX formation lines are 

overlapped and decreased in primary stage, but clearly differences of NOX emissions with 

increasing 𝛷B*DP+*C are shown in lean stage. It is expected because the unburned cracked 
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NH3 mixtures content takes a dominant place on NOX formation in the lean stage. Therefore, 

the initial decrease of overall NOX is owing to reduced NOX in rich stage, while the increase of 

overall NOX at high 𝛷B*DP+*C should be influenced by NOX formation in lean stage. It is worth 

noting that discrepancy among NOX emissions is reduced with more unburned NH3 cracking 

at higher 𝛷B*DP+*C (𝛷B*DP+*C > 1.6), suggesting that the impact of unburned cracked NH3 

mixtures is reduced in this region. Therefore, NOX formation is prompted by thermal NOX 

instead of fuel NOX in this region. 

 

Figure 5.12 NOX emissions in primary stage (solid lines) and the lean-burn stage (dash lines) 

at all overall equivalence ratios. 

The effect of NH3 cracking ratio is also explored, shown in Figure 5.13. NOX emissions versus 

primary equivalence ratio are displayed at various cracking ratios and fixed 𝛷(!/*+''  =0.6, 

other conditions are the same as those in Figure 5.11. Similar tendency curves are captured 

at various cracking ratios, shown in Figure 5.13(a), but the position of turning points is right 
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emissions (below 50ppm) are obviously widened with increasing cracking ratio, since more 

content of hydrogen produced from ammonia facilitates the reactivity of ammonia. In addition, 

NOX formation is slightly increased with the growth of cracking ratio, whereas it shows 

gradually reducing trend at high primary equivalence ratio. 

In order to better understanding overall NOX emission, the dependences of NOX emission on 

primary equivalence ratio is considered in the rich and burn stage separately. Figure 5.13(b) 

shows the rich and lean NOX at various NH3 cracking ratio. In primary stage, NOX emissions 

show slightly increase at high cracking ratio, mainly because the proportion of H2 content is 

high in the initial NH3/H2/N2 mixture. An amount of H2 and OH radical enhance NH3 reactivity 

and increase the flame temperature, resulting in producing more NOX [334]. Besides, the 

effect of cracking ratio on lean NOX shows obviously different tendency at various primary 

equivalence ratios. The influence of H2 content on enhancing NO formation is in predominant 

at low primary equivalence ratio, thus NOX emission increases in lean stage firstly. Then, NOX 

formation significantly drops with increasing cracking ratio at high primary equivalence ratio, 

which can be attributed to lower unburnt NH3 in lean stage. Therefore, the overall NOX 

emission is greatly dependent on NOX formation in primary stage at low 𝛷B*DP+*C, whereas 

the lean NOX is more important for overall NOX production at high 𝛷B*DP+*C. In conclusion, 

cracking more NH3 is beneficial for reducing NOX emission and widening operation. Controlling 

cracking ratio (around at 40%) and primary equivalence ratio (i.e., controlling unburnt NH3) in 

the range of 1.2-1.4 primary equivalence ratio enable to comprehensively widen operation 

range and reduce NOX emissions. 
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Figure 5.13 NOX emission with different primary equivalence ratio and NH3 cracking ratio at 

fixed 𝛷(!/*+''  =0.6. (a) Overall NOX emission (b) NOX emission in primary and lean stage. 

 

Figure 5.14 NOX emission against PFR residence time in primary stage. 

Figure 5.14 discussed the influence of PFR residence time in primary stage on NOX emission. 

According to the description of residence time setting, the global residence time for two PFRs 

is kept as 20ms, the PFR1 residence time in primary stage was varied from 14 to 18ms. 

Cracking ratio is 40%, 𝛷(!/*+''  = 0.6 and 𝛷B*DP+*C = 1.3 based on the study in Figure 5.13, 

other conditions are the same as those in Figure 5.11. The NOX in each stage shows 

monotonically decrease with the residence time in rich burn stage increasing. As the matter 
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of fact, in post-flame zone, NHi plays an essential role in consuming NO formed, where OH 

radical has already been depleted, while NH2 + NO = N2 + H2O and NH + NO = N2O + H are key 

reactions impacting NO consumption [335,336]. Therefore, increasing residence time within 

reasonable context in primary stage has an advantage on NOX reduction.  

 

5.7. Reaction pathways analysis 

Better understanding of NOX production kinetics mechanism in combustion enables to 

develop effective controlling strategies to reduce NOX emissions. Formation mechanisms for 

NO usually results from three main kinetic processes: thermal NO, prompt NO, as well as fuel 

NO [197].  

The thermal mechanism (or Zeldovich mechanism [329]) that dominates in combustion 

systems is described by three chain reactions: 

N2+O=NO+N                              (5.6) 

N+OH=NO+H                              (5.7) 

     N+O2=NO+O                              (5.8) 

The prompt NO mechanism also has significant effect on NO formation, however, NO in 

prompt NO mechanism is mainly produced in hydrocarbon/air flames zones. In addition, the 

fuel NO mechanism is also a principal source of NOX production, in which N2O and NNH are 

main reaction paths of NO. Since the rate of NO formation in thermal NOX mechanism is much 

slower compared to fuel combustion process, in general, thermal NO is formed in post-flame 

zone. 

In order to analyse partially cracked ammonia combustion process, the formation and 
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consumption of NO are further discussed. The numbers shown in reaction pathways present 

the contribution rate of the main reaction path on the corresponding radicals’ consumption. 

 

Figure 5.15 Reaction path diagram in pure NH3 combustion progress at stoichiometric 

condition. 

Figure 5.15 shows a reaction path diagram of pure NH3 combustion progress under 

stoichiometric condition. Ammonia is primarily converted to NH2 by H-atom abstraction 

reactions, specifically by reactive radicals (O, OH, H). Then, the NH2 radical reacts with the 

radical pool and generates NH and N in the sequence. Also, part of NH2 is oxidated by O to 

form HNO radical, and the reaction with NH as well as self-combination to produce N2H2. For 

N2H2, it is mainly consumed to form NNH, while NNH by oxidation, unimolecular 

decomposition reaction and reacting with NO to produce N2 finally. It is readily seen that NHi 

radicals are important to NO formation/consumption. In other words, controlling the reaction 

pathways of NHi reacting with NO or with O, OH, O2 radicals can effectively promote or Inhibit 

NO production. Furthermore, HNO radical obviously shows positive effect on the NO 
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production. As for NO consumption, it is mainly reacted with NH, N, and NNH scheme to 

generate N2. 

(a) 

 

(b) 

  

Figure 5.16 (a) Reaction path diagram in 40% cracking NH3 mixtures combustion progress at 

stoichiometric condition. (b) ROP of different reactions related with NO formation and 

consumption of 20%-60% cracking NH3 mixtures at stoichiometric condition. 
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Compared with pure NH3 reaction pathways, the combustion reaction path diagram of 

cracking 40% NH3 is shown in Figure 5.16(a) under stoichiometric condition. The contribution 

rate of reaction paths that have important influence on NO formation/consumption are signed 

to red for comparison with NH3 reaction paths. The contribution of reactions that related with 

NO formation are obviously increased in 40% cracking ammonia mixtures combustion process, 

while the proportion of reactions with NO consumption decrease. More detailed rate of 

production of major reactions are identified in Figure 5.16(b). It is noted that the proportion 

of O radical reacting with NH2 is increased from 8.76% to 13.13% (R34), and more N radical is 

reacting with O, OH, O2 radicals to form NO. Nevertheless, less NO is consumed to convert to 

N2. For example, there is 31.99% NH reacting with NO to form N2O and then convert into N2 

in ammonia/air flame, but the number is decreased to 20.49% in reaction NH + NO = N2O + H 

(R63). Seen from Figure 5.16(b), when ammonia cracking rate increases from 20% to 60%, the 

contribution rates of ROP of promoting NO formation reactions appear rising tendency (R34, 

R69, R68, R56), while the contribution rates for reactions relating with NO consumption is 

reduced. Therefore, more NO is generated when more ammonia is cracked. 

The impact of equivalence ratio on NO formation is illustrated in Figure 5.17. Figure 5.17(a) 

and (b) show 40% cracking ammonia combustion reaction pathways at 0.8 and 1.2 

equivalence ratio, respectively. Compared with Figure 5.15, the contribution rate of reactions 

related with NO formation are generally decreased with increasing equivalence ratio, while 

the proportion of reactions that react with NO are increasing. Therefore, the overall NO 

formation is reduced with growing equivalence ratio.  
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Figure 5.17 Reaction path diagram in 40% cracking NH3 mixtures combustion progress at 

various equivalence ratio. (a) 𝛷 = 0.8; (b) 𝛷 = 1.2. 

More specific, the ROP of reactions NH2+O (R34), NH+O (R56), N+O2 (R69) and N+OH (R68) 

that play essential role in NO formation are reduced when equivalence ratio rises from 0.8 to 

1.2, demonstrated in Figure 5.18. Opposite tendency for NO consumption reactions (R63, R70, 

R47 and R62) is shown. In conclusion, the overall NO formation is decreasing when the 
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equivalence ratio rises from 0.8 to 1.2. 

 

Figure 5.18 ROP of different reactions related with NO formation and consumption of in 

40% cracking NH3 mixtures at 0.8, 1.0 and 1.2 equivalence ratio. 

 

5.8. Conclusion 

Laminar flame propagation and NOX emission characteristics of partial cracked ammonia 

(NH3/H2/N2/air mixtures) in single and 2-stage rich-lean gas turbine combustor has been 

numerically investigated at various combustor operating parameters. The effects of ammonia 

cracking ratio, equivalence ratio, pressure, as well as residence time on NOX emissions of the 

partially cracked ammonia are explored. In addition, modelling analysis of identifying the 

major NOX reaction pathways and analysing the NO rate of production were conducted to give 

insight into the effects of NH3 cracking ratio and equivalence ratio on NO 

formation/consumption. The major conclusions are summarized below. 

(1) To conclude, the laminar burning speeds rise with increasing equivalence ratio initially, 
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close to 37cm/s at Tu = 298K and Pu = 1atm, which considerably improve LBV of 

NH3/O2/N2 flame (around 7cm/s). Additional, LBV is decreased obviously when the 

initial mixture pressure is increased from 1atm to 10atm. 

(2) The LBVs increases significantly when the cracking ratio increases from 10% to 80 %. 

The tendency indicates that the combustion intensity is remarkably enhanced as 

cracking ratio increases. 

(3) In single stage gas turbine combustor, the amount of NOX emission firstly increases and 

then decreases sharply when the equivalence ratio is within 0.4-1.1. The location of 

maximum value of NOX emission is close to 0.8 for all ammonia cracking ratios. After 

that, a decreasing trend is shown with further equivalence ratio increasing. Therefore, 

rich burn conditions can be employed to reduce total NOX emissions in gas turbines. 

By identifying important intermediate components and reactions, the HNO radical, 

HNO + OH = NO + H2O (R120) and NO + H (+ M) = HNO (+ M) (R117) play important 

role in NO production, while pathways of NHi contribute more on NO reduction. More 

specifically, high NOX emission zone is located at high ammonia cracking ratio and 0.6-

1.0 ranges of equivalence ratio. In addition, the NOX emission is promoted with 

increasing NH3 cracking ratio from 10% to 80% at all equivalence ratio studied. As for 

the effect of initial pressure on NOX emission throughout all NH3 cracking ratios, it is 

noted that the NOX emission goes to a lower value at each cracking ratio when the 

pressure increases from 10atm to 20atm. 

(4) Both mole fraction of NO and OH* are increased as NH3 cracking ratio increases in 

single stage gas turbine combustor. The peak OH* chemiluminescence intensity 
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located at the position of large NO mole fraction gradients. Besides, considerably 

higher intensities of OH* for all cracking ratios are located at 𝛷 = 1.0 followed by a 

decaying trend due to lower oxygen, suggesting the flame position hardly changes with 

NH3 cracking ratios. 

(5) In rich-lean burn stage gas turbine combustor, as the primary equivalence ratio 

increases, NOX emissions show almost the same performance as U-shaped curves, and 

the turning points are almost located at 1.3 and 1.4. The ranges of primary equivalence 

ratio for low NO emissions (below 50ppm) are around at 1.2-1.5 when the 𝛷(!/*+''  = 

0.4 - 0.6. The NOX prediction values at 𝛷B*DP+*C = 1.0 for all 𝛷(!/*+''  are very small 

(less than 1000 ppm), which are considerably lower than that in single stage. Therefore, 

using a second combustion stage burning is promising to reduce NOX emission and 

solving the unburned NH3 mixtures problem. 

(6) The effect of NH3 cracking ratio on NOX emission is also explored in rich-lean burn stage 

gas turbine combustor. Similar tendency curves are captured at various cracking ratio, 

but the position of turning points is right shifted with rising cracking ratio. Interesting 

noting that the operating ranges of low NO emissions (below 50ppm) are obviously 

widen with increasing cracking ratio. In addition, NOX formation is slightly increased 

with the increase of cracking ratio, whereas it shows gradually reducing trend at high 

primary equivalence ratio. In conclusion, cracking more NH3 is beneficial for reducing 

NOX emission and widening operation. Controlling cracking ratio (around at 40%) and 

primary equivalence ratio (i.e., controlling unburnt NH3) in the range of 1.2-1.4 primary 

equivalence ratio enable to comprehensively widen operation range and reduce NOX 
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emissions. 

(7) The NOX in each stage shows monotonically decrease with the increasing residence 

time in rich burn stage. Therefore, increasing residence time within reasonable context 

in primary stage has an advantage on NOX reduction. 

(8) When ammonia cracking rate increases from 20% to 60%, the ROP of promoting NO 

formation reactions rises (R34, R69, R68, R56), while the ROP of reactions related with 

NO consumption decreases. Therefore, more NO is generated with higher ammonia 

cracking rate. 

(9) The contribution rate of reactions related with NO formation are generally decreased 

with increasing equivalence ratio, while the proportion of reactions that react with NO 

are increased. Therefore, the overall NO formation is reduced with equivalence ratio 

increasing from 0.8 to 1.2.  
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6. Chemiluminescent Emission as A Combustion 
Diagnostic Tool and Their Numerical Investigation  
6.1. Introduction 

The flame self-light emission can be readily imaged with modern digital cameras and analyzed 

with the ever-increasing computing and processing power. Therefore, chemiluminescence, as 

a promising optical diagnostic tool, is an area worth of further investigation. In section 6.2, 

numerical analysis on the heat release rate as well as equivalence ratio determination by 

applying excited state species (OH*, CH* and C2*) chemiluminescence profiles is performed 

in a one-dimensional laminar premixed ethanol flame. The ability of flame 

chemiluminescence as a sensor of heat release rate at various equivalence ratios is discussed 

by combining rate of production analysis with sensitivity analysis. In section 6.3, the 

correlations between the chemiluminescence intensity ratio of C2*/CH* as well as the 

equivalence ratio are investigated in hydrocarbon premixed flames based on chemical 

reaction kinetics mechanisms. Also, the phenomenon that the peak chemiluminescence 

intensity ratio of C2*/CH* increases almost linearly following by a descending trend with local 

equivalence ratio is demonstrated from the chemical mechanisms’ aspect for the first time. 

 

6.2. Chemiluminescence intensity in ethanol flame 

6.2.1. Signals of heat release rate with chemiluminescent emission 

Heat release rate (HRR) is one of fundamental flame characteristics for identifying intensive 

reactive flame zone and predicting the unsteady combustion [337,338]. Owing to impractical 

measurement of HRR in flames, chemiluminescence has been employed as a marker of HRR 
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in premixed hydrocarbon flames [338,339]. Therefore, numerical analysis of the correlation 

between OH*, CH* and C2* chemiluminescence profile and heat release rate is carried out in 

one-dimensional laminar premixed ethanol flame via PRE-MIX code of CHEMKIN-PRO package. 

The thermal diffusion effects are considered, and all simulations are converged to a grid-

independent solution.  

The mole fraction of excited state species and HRR profile are presented in Figure 6.1. OH* 

mole fraction increases earlier than others, and has a broader distribution than the others, 

consistent with the experimental results of Kojima et al. [226]. Nevertheless, discrepancy of 

breadth for CH* and C2* is not obvious. It is interesting noted that the trend of excited species 

mole fraction coincides with the profile of heat release rate. The location of peak value of HRR 

matches that of large OH*, CH* and C2* mole fraction gradients. The results suggest that the 

concentration of excited species can be a signal of heat release rate. 

 

 

Figure 6.1 Mole fraction profiles and heat release rate at atmosphere pressure and 𝛷 = 1. 
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rate in an ethanol flame, OH*, CH* and C2* concentrations are calculated. Figure 6.2 (a) 

presents correlations of local heat release rate and mole concentration for excited state 

species in an ethanol/air premixed flame. The local heat release shows a multi-valued 

characteristic of local concentration for all excited state species. The concentrations have two 

profiles with the same value at different distances away from burner port, which shows a 

similar tendency of the heat release rate that can be seen in Figure 6.1. However, the looping 

behaviour indicates that the concentration profile is not able to express a specific monotonous 

correlation with chemiluminescent intensity. 

 

Figure 6.2 The correlation between chemiluminescent intensity and heat release rate at 

atmosphere pressure and 𝛷 = 1. 

To find the one-to-one relation between chemical markers and HRR in detail, the total 

chemiluminescent intensity is calculated to diagnose total HRR that is obtained by integrating 

the HRR profile over the calculating distance. The computational relationship of total heat 

release rate as well as total chemiluminescent emission is presented in Figure 6.2(b). It 

appears that the total heat release rate rises almost linearly with the total chemiluminescence. 

However, it shows a sudden rise at the end of curves followed by a linear relationship because 

the chemical reaction continues when the excited state radicals are consumed totally. This 
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process is going very fast. Additionally, the basic gradient of the corresponding correlation for 

OH*, CH* and C2* decreases gradually. Consequently, the total chemiluminescent intensity is 

more than acceptable as a reliable signal to character the heat release rate. 

 

 

Figure 6.3 The major reactions for excited state species at atmosphere pressure and 𝛷 = 1. 

Rate of production is an effective method to identify contribution of each elementary reaction 

on production and consumption rate of species. In Figure 6.3, it demonstrates the 

contribution rate of each reaction related with excited state species on its rate of production 

at the atmosphere pressure and 𝛷 = 1. Clearly appearing that CH* is generated mainly via 

oxidation reaction of R106 and R107. C2H reacted with O atom and O2 molecule are 

predominant reactions for CH* production, which agree with results reported by Nori et al. 
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[228] and Panoutsos et al. [311]. Moreover, CH* is deactivated via collision reactions with 

N2(R109), CO(R114) and H2O(R111) radicals. Moreover, it is found that the CH oxidation by O2 

plays a major role in producing OH*, which is more important than other reactions of the OH* 

formation. Actually, R116 is a primary exothermic reaction as proposed by Gaydon et al. [248]. 

Similarly, OH* reacting with CO and H2O are main channels to consume OH* radical, according 

to Figure 6.3(b), and this conclusion agrees with the results of the model proposed by 

Kathrotia [340]. In addition, seen from Figure 6.3(c), abstracting H from C2H contributes more 

on C2* formation in ethanol flame. 

 

 

Figure 6.4 The correlation between net reaction rate of elementary reaction for OH*(a), 

CH*(b), C2*(c) and heat release rate at atmosphere pressure and 𝛷 = 1. 
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have a great influence on heat release rate, consistent with results presenting in Figure 6.1. 

The net reaction rate of each elementary for excited state species and heat release rate are 

simulated and displayed in Figure 6.4. Each reaction has individual effect on the heat release 

rate, which depends on its contribution to the major carbon flow. More importantly, reactions 

with a large contribution rate on the formation as well as consumption of the excited state 

species also have a great influence on the heat release rate. 

6.2.2. Flame structure at various equivalence ratio 

Traditionally, accurate control of flame stoichiometry is essential to maintain low levels of 

pollutant emissions while ensuring high efficiency and stable combustion. Usually, The NOX 

production would increase as the fuel-air ratio increases. However, when the flame 

equivalence ratio is in a lean region, there is a serious risk of producing high CO emissions, 

triggering pressure fluctuations and even flame extinction. Therefore, it is of great significance 

to monitor and optimize the fuel-air ratio to improve premixed combustion. Thus, the effect 

of equivalence ratio on the chemiluminescent emissions of OH*, CH* and C2* are analysed. 

Figure 6.5 shows the concentration profile of OH*, CH* and C2* radicals over the range of 

distance at atmosphere pressure, and equivalence ratio varying from 0.6 to 1.5. It can be 

found that the trend of concentration of each excited state species is basically uniform for all 

equivalence ratios, showing single and positive peak curves. In addition, it can be observed 

that the broadness of concentration emissions increases first and then reduces as the 

equivalent ratio rises. The width is narrowest when the peak value of concentration reaches 

the largest. However, the peak values of concentration profiles for different species are 

located at various distances under various equivalence ratios.  
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Figure 6.5 Concentration profiles of OH*, CH* and C2* radicals at atmosphere pressure and 

various equivalence ratio. 

The total heat release rate is also calculated at various equivalence ratios, displayed in Figure 
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OH*, CH* and C2* are compared in Figure 6.7. All peak intensity variations are scaled from 0 

to 1 by its maximum value among all the equivalence ratios for each species. Similar trend 

curves are captured as that of total heat release rate, the peaks of normalized 

chemiluminescence for the three excited state species increase firstly, followed by a 
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chemiluminescent intensity is able to characterize the total heat release rate. However, the 
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locations of maximum peak intensities are different. The trends observed the 

chemiluminescent intensity for CH* and C2* are same as that of OH*. The maximum value of 

OH* and CH* intensities is located at 𝛷 = 1.1, while it appears at around 1.35 for the C2* 

maximum intensity. The deviation should be affected by the specific reaction paths. 

 

Figure 6.6 The total heat release rate at various equivalence ratio. 

 

Figure 6.7 Normalized OH*, CH* and C2* radicals’ chemiluminescent intensity as a function 

of equivalence ratio for premixed ethanol flames. 
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reactions on the peak of chemiluminescent intensity at different equivalence ratios. Three 

equivalence ratios are chosen to explore important producing and consuming reactions of 

each excited state species at lean and rich fuel conditions under atmosphere situation. 

Sensitivity coefficients of important reactions for OH*, CH* and C2* are plotted in Figure 6.8. 

It points out that R116: CH reacts with O2 generating OH* and R120: OH* is deactivated by 

H2O are dominating reactions on OH* concentration, which is consistent with the analysis of 

Figure 6.3. Similarly, reactions R106, R107 and R109 make a significant contribution to CH* 

concentration around all equivalence ratios. Moreover, although the contributions of other 

parts of reactions are different, abstracting H from C2H5OH, and other reactions related 

intermediate species like CH3CHOH, CO, OH, CH2O, C2H4 and CH3 play a crucial role in all of 

excited state species concentration. However, seen from Figure 6.8(a), the sensitivity 

coefficient of reactions CO + OH <=> CO2 + H and H + O2 + M <=> HO2 + M are large for OH* at 

𝛷  = 0.8, while the sensitivity coefficients of them are small when the equivalence ratio 

increases to 1.4. On the other hand, except for these two reactions, others do not show 

obvious difference. The contribution of O2 + H <=> O + OH on CH* and C2* sensitivity 

coefficient decreases with the reducing equivalence ratio. Besides, the discrepancies of 

sensitivity coefficient of reactions C2H4 + OH <=> C2H3+ H2O and CH3 + HO2 <=> CH3O + OH are 

also distinct for CH* and C2* in lean and rich fuel mixtures, shown in Figure 6.8(b) and (c) 

accordingly. 
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Figure 6.8 Sensitivity coefficients for OH*(a), CH*(b)and C2*(c) at 298K, atmosphere 

pressure and different equivalence ratio. 
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6.2.3. Reaction path analysis of ethanol flame 

A further step is to investigate the major mole flux of ethanol oxidation flame with excited 

species at 1atm, 𝛷 = 1 and 1100K, shown in Figure 6.9.  

 

Figure 6.9 The mole flux analyses of ethanol oxidation with excited species. 

The most important intermediates are identified during the ethanol mechanism reduction 

process. The mole fraction of the target radicals is calculated by integrating the production 

rate of the principal reaction paths during the ignition time. Starting from the C2H5OH, which 

is mainly consumed by OH radicals to generate CH3CHOH (around 40.04%) and C2H4 (around 

30.84%). The number indicates the mass fraction of the reactants consumed in the ethanol 

reaction pathway. It can be used to analyze the contribution percentages of the main reaction 

paths to production of the excited state radicals. Reaction C2H5OH + M <=> CH3 + CH2OH + M 

and H-atom abstraction reactions C2H5OH + HO2 <=> CH3CHOH + H2O2 from ethanol dominate 

the consumption of ethanol. After that, the CH3CHOH isomer decomposes with oxygen 

forming CH3HCO, which is an important intermediate radical to impact the generation of CH3 
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radical. Reactions of ethanol consumption and CH3CHOH + HO2 <=> CH3HCO + OH + OH are 

the main channels of carbon flow, and CH3, CH2, C2H2 and HO2 radicals show the great 

influence on significant intermediate species in Figure 6.9. 

Besides, it is clearly noted that excited species (OH*, CH* and C2*) are dominated by C2H, CH2 

and CH2O radicals, however, these radicals are affected greatly by CH3 radicals. As shown in 

Figure 6.9, CH2HCO (60.32%), C2H4 (12.05%) and part of CH2CO react with reactive species to 

form CH3, so the conclusion is that CH3 radical is more likely a precursor of excited species in 

ethanol flames. 
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Figure 6.10 Reaction scheme of OH*(a), CH*(b) and C2*(c) in ethanol combustion. 

Figure 6.10 presents the reaction scheme that is preferred by the CH3 radical to identify the 

predominant reaction paths for excited species formation and consumption. The number 

represents rate of production for each elementary reaction between two species, which is 

calculated in a closed chamber with constant volume. Only the most important reaction paths 

are kept. According to the reaction scheme, the CH3 radical is the precursor for CH2 formation 

via reaction with H and OH radicals. The CH2 radical is responsible for excited species 

formation, especially for OH* radical production (Figure 6.10a). Except for CH3 and CH2 

radicals, C2H3, C2H2 and C2H also have significant effects on the chain production reactions of 

CH* and C2*, but these species do not show great influence on the OH* formation. In 

conclusion, the most important formation reactions of excited state species involve CH3, CH2, 

C2H2 and HO2 radicals in ethanol combustion. It gives a sight that the variation of the precursor 

reaction parameters would significantly affect the chemiluminescence profiles. 
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6.3. Chemiluminescence intensity ratio in hydrocarbon flames 

6.3.1. Chemiluminescence intensity ratio versus local flame stoichiometry 

Investigating the relation between the chemiluminescence intensity ratio of C2*/CH* and the 

equivalence ratio in hydrocarbon premixed flames is very important and desirable. The 

experimental results reported by Kojima et al. [341] indicate that there is linear relationship 

of C2*/CH* to the equivalence ratio from 𝛷  = 0.9 to 1.35. Measurement of 

chemiluminescent emissions of C2* and CH* is much easier than that of OH*. Kojima et al. 

[341] measured the distributions of OH*, CH*, and C2* chemiluminescent intensities at 

equivalence ratios of 0.9-1.5 in a premixed methane/air flame. They analyzed the correlations 

between the peak intensity ratios of the excited state radicals and the equivalence ratio, 

suggesting that the intensity ratio of C2*/CH* is a function of the equivalence ratio. The 

experimental records are applied to compare with the simulation results of methane kinetics 

mechanism that is extended with sub-models of excited state species. Figure 6.11 presents 

the comparison between experimental (dot dash line) [341] and simulated (dot solid line) 

chemiluminescent profiles of the chemiluminescence intensity ratio at different equivalence 

ratios. Generally, the predictions of the intensity ratios of C2*/CH*, C2*/OH*, and OH*/CH* 

agree well with experimental results. The reason for the experimental data of C2*/CH* 

become higher than predictions at an equivalence ratio of 0.9 is that C2* chemiluminescent 

intensity is low, and the experimental data become less reliable, but a high proportion is 

produced in the rich flames, which was also interpreted by Kojima et al. [341]. In any case, the 

calculated results still can well predict experimental data and the little differences that can be 

tolerated in the current study. Therefore, the sub-models of excited state species used in this 
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work are able to be added into other fuel mechanisms for further studying the 

chemiluminescence and flame structure. 

 

Figure 6.11 The comparison between experimental (dot dash line) and simulated (dot solid 

line) chemiluminescent profiles of the chemiluminescence intensity ratio at various of the 

equivalence ratio. 

The dependence of the peak chemiluminescence intensity ratio of C2*/CH* on equivalence 

ratios is also simulated in the ethanol and propane flames. Figure 6.12 presents that the peak 

chemiluminescence intensity ratios of C2*/CH* against the equivalence ratio from 0.9 to 1.6 

in ethanol and propane reaction zone. It is interestingly noted that the trend of peak intensity 

ratio of ethanol flame coincides with that of propane. In both, the peak chemiluminescence 

intensity ratio of C2*/CH* increased almost linearly as the equivalence ratio increases to 

around 1.5. After that, similar to the methane curve, the peak intensity ratios present a slowly 

descending tendency. Consequently, the peak intensity ratio of C2*/CH* is formed as a 

function of the equivalence ratio in certain local regions, however, it is insensitive with the 

flame stoichiometry when the equivalence ratio exceeds a specific value. Therefore, it is of 
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interest to analyse the mechanism around the inflection point. 

 
Figure 6.12 The peak chemiluminescence intensity ratios of C2*/CH* against the equivalence 

ratio in ethanol and propane premixed laminar flames. 

6.3.2. ROP analysis of the inflection point 

The concentration of excited state species can indicate the chemiluminescence intensity, 

because the life of electron excitation is low, and it can be quickly removed by collision 

quenching. So, the reactions of excited species are usually of interest in the quasi-steady state 

assumption. In this case, the production and removal rate of the excited state species can be 

analysed to interpret the chemiluminescence intensity. 

Figure 6.13 presents the normalized peak chemiluminescence profiles of OH*, CH* and C2* 

radicals for three fuels over the range of equivalence ratio from 0.6 to 1.6. All peak intensity 

variations were scaled from 0 to 1 by its maximum value among all the equivalence ratios for 

each species. The OH*, CH* and C2* peak chemiluminescent intensities increase 

monotonically with equivalence ratio for all lines initially and then reduces monotonically with 

equivalence ratio going up in the three flames before reaching a maximum. However, the 

locations of the maximum peak intensities are different. In addition, for all of three fuel flames, 
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C2* peak chemiluminescence intensity is relatively higher than that of the CH*, so the 

production and consumption reactions of C2* contributes more than CH* in the peak 

chemiluminescence intensity ratio of C2*/CH*. 

 

Figure 6.13 Normalized chemiluminescent intensity of OH*, CH* and C2* radicals as a 

function of equivalence ratio for (a) methane, (b) ethanol and (c) propane flames. 

Rate of production (ROP) is an effective method to identify the contribution of each 

elementary reaction on production and consumption rate of species. To explain the peak 

chemiluminescence intensity ratio of C2*/CH* around the inflection point, major producing 

and consuming reactions related to CH* and C2* in methane, ethanol, and propane fuel 

premixed flames are presented separately in Figure 6.14-6.16. It is clear that the CH* is 

generated mainly through oxidation reactions of C2H + O <=> CH* + CO (red line) and C2H + O2 
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<=> CH* + CO2 (blue line), and C2* is generated mainly via CH2 + C <=> H2 + C2*(red line) and 

C2H + H <=> H2 + C2* (blue line). 

  

 

 

Figure 6.14 The major reactions for CH* and C2* at 𝛷 = 1.3, 1.4 and 1.5 in methanol flame. 
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Figure 6.15 The major reactions for CH* and C2* at 𝛷 = 1.4, 1.5 and 1.6 in ethanol flame. 
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Figure 6.16 The major reactions for CH* and C2* at 𝛷 = 1.4, 1.5 and 1.6 in propane flame. 
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when the equivalence ratio is beyond the inflection point. It is not the same as methane and 

ethanol, the CH* rate of production of the blue line for propane stays lower than that of the 

red line at 𝛷  = 1.6, but the tendency of the blue line keeps raising with the growing 

equivalence ratio. On the other hand, for C2*, the reaction CH2 + C <=> H2 + C2* is more 

important than C2H + H <=> H2 + C2* at 𝛷 = 1.3, 1.4 in methane flame, but its contribution 

rate becomes lower than that of the reaction C2H + H <=> H2 + C2* when 𝛷 > 1.4. Different 

from the methane flame, the reaction C2H + H <=> H2 + C2* is dominant in all cases in both 

ethanol and propane flames. In addition, the relative consumption contribution rate of each 

reaction for CH* and C2* does not show great difference in the three fuel premixed flames. 

Therefore, it is concluded that reactions C2H + O2 <=> CH* + CO2 and C2H + H <=> H2 + C2* are 

of great significance to invert the monotonicity of the chemiluminescence intensity ratio of 

C2*/CH* with the equivalence ratio. 

6.3.3. SA analysis of the inflection point 

The sensitivity coefficient can be used to indicate the effect of the small perturbation of each 

reaction rate constant on a target value, such as species concentration, temperature and 

reaction rate, based on the Arrhenius equation. In this study, the sensitivity analysis is 

employed to identify the influence of important reactions related to CH* and C2* on the peak 

of chemiluminescence intensity at different equivalence ratios. Three equivalence ratios were 

chosen based on Figures 6.14-6.16 corresponding to the three chosen fuels to explore the 

important reactions under lean and rich fuel conditions in atmosphere circumstance. 

Sensitivity coefficients of CH*and C2* in different fuel flames are plotted in Figure 6.17. A 

positive sensitivity coefficient indicates that the generation of radicals can be promoted, and 
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vice versa. 

   

   

  

Figure 6.17 Sensitivity coefficients for CH* and C2* at atmosphere pressure and different 

equivalence ratio in methane, ethanol and propane flames. 
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 Φ=1.5
 Φ=1.4
 Φ=1.3

< CH4 >

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

 Φ=1.6
 Φ=1.5
 Φ=1.4

R398 C2H+O<=>CH*+CO
R399 C2H+O2<=>CH*+CO

CH* sensitivity coefficient

R407 CH*+CH4<=>CH+CH4
R406 CH*+CO<=>CH+CO
R405 CH*+CO2<=>CH+CO2
R404 CH*+H2<=>CH+H2
R403 CH*+H2O<=>CH+H2O
R402 CH*+O2<=>CH+O2
R401 CH*+N2<=>CH+N2
R400 CH*<=>CH

< C2H5OH >

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

R420 C2*=>C2

R418 C2H+H=>H2+C2*

R419 C2*+M=>C2+M

 Φ=1.6
 Φ=1.5
 Φ=1.4

C2* sensitivity coefficient

< C2H5OH >

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

 Φ=1.6
 Φ=1.5
 Φ=1.4

CH* sensitivity coefficient

R1031 C2H+O<=>CH*+CO
R1032 C2H+O2<=>CH*+CO

R1033 CH*<=>CH
R1034 CH*+N2<=>CH+N2

R1035 CH*+O2<=>CH+O2

R1036 CH*+H2O<=>CH+H2O
R1037 CH*+H2<=>CH+H2

R1038 CH*+CO2<=>CH+CO2

R1039 CH*+CO<=>CH+CO

R1040 CH*+CH4<=>CH+CH4

< C3H8 >

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
C2* sensitivity coefficient

R1044 C2*=>C2

R1041 CH2+C=>H2+C2*

R1042 C2H+H=>H2+C2*

R1043 C2*+M=>C2+M

 Φ=1.6
 Φ=1.5
 Φ=1.4

< C3H8 >
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reactions of CH* and C2* is greater than that of consumption reactions. More interestingly, 

the contribution rate of the reaction that C2H reacts with O2 on the CH* generation stays at a 

high level and keeps almost unchanged, but it is on the decline for the reaction that C2H reacts 

with oxygen atoms with increasing equivalence ratio. Similar results are found in C2* 

production reactions. The reaction of C2H and H atom is dominant in the generation of C2*, 

and the effect of the reaction CH2 + C <=> H2 + C2* on the sensitivity coefficient can be even 

neglected in ethanol and propane flames. This demonstrates that the chemical reactions C2H 

+ O <=> CH* + CO and CH2 + C <=> H2 + C2* are not the principal causes of the change of the 

chemiluminescence intensity ratio of C2*/CH*. According to the sensitivity analysis of CH* and 

C2* for the three fuels, it can be concluded that the influence of reactions C2H + O2 <=> CH* + 

CO2 and CH2 + C <=> H2 + C2* on the sensitivity is more obvious at all ranges of the equivalence 

ratio. 

 

6.4. Conclusions 

A comprehensive mechanism that is combined with ethanol chemical kinetics mechanism and 

excited species sub-model is successfully validated. It is applied to numerically simulate the 

chemiluminescent emission intensities of OH*, CH* and C2* in one-dimensional ethanol 

premixed flames. The results are concluded in the following points: 

A) For the chemiluminescence Intensity in Ethanol Flame:  

• Chemiluminescence as a signal of heat release rate is discussed. The results show that the 

local heat release presents a multi-valued characteristic of local concentration for all 

excited state species. However, the total heat release rate rised almost linearly with 
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increasing total chemiluminescence. Consequently, total chemiluminescence is more 

acceptable as a reliable signal to character the heat release rate. Besides, it is also 

presented that the reactions with a large contribution rate on formation and consumption 

of the excited state species also have significant effects on the heat release rate. 

• In addition, effects of equivalence ratios on chemiluminescent emissions of OH*, CH* as 

well as C2* are analyzed. All peaks of chemiluminescent intensity for the three excited 

states increase at the first time, following that a decreasing trend with the increasing 

equivalent ratio is displayed. The total heat release rate also appears to have the same 

tendency at different equivalence ratios. Moreover, results indicate that the maximum 

value of OH* and CH* chemiluminescence intensities appears at 𝛷  = 1.1, while the 

maximum intensity for C2* appears at around	 𝛷 = 1.35. The deviation should be affected 

by the specific reaction paths. 

• During the process of the formation and decay reactions of the excited radicals, CH3 radical 

is more likely a precursor of excited species in ethanol flames. Analyzing the reaction paths 

can conclude that the variation of the precursor reaction parameters would significantly 

affect the chemiluminescence profiles. As a result, the present numerical simulation 

provides a guidance for employing much easier chemiluminescence experiments setup to 

detect flame characteristics using imaging-based techniques. 

B) For the chemiluminescence intensity ratio versus local flame stoichiometry: 

• Extended mechanisms including OH*, CH* and C2* sub-models for methane, ethanol and 

propane are developed and successfully validated, which are used to examine the reliance 
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of the chemiluminescence intensity ratio of C2*/CH* on the equivalence ratio in three 

premixed laminar flames. 

• In agreement with the experimental observation, the peak chemiluminescence intensity 

ratio of C2*/CH* increases almost linearly as the local equivalence ratio grows from 0.9 for 

all of three fuel flames at first. After that, the intensity ratios present a slowly descending 

tendency when 𝛷 > 1.35, 1.5, 1.5 for methane, ethanol and propane flames respectively. 

• the most important reactions that invert the monotonicity of the chemiluminescence 

intensity ratio of C2*/CH* with increasing equivalence ratio are analysed numerically for 

the first time in three fuel flames. The reactions C2H + O2 <=> CH* + CO2 and C2H + H <=> 

H2 + C2* are identified to be the most important reactions that invert the monotonicity of 

the chemiluminescence intensity ratio of C2*/CH* with equivalence ratio in all the three 

fuel flames. 
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7. Conclusions and Future work 
The main objective of the thesis is to study combustion and emission characteristics of 

partially cracked ammonia (NH3/H2/N2/air mixtures) and chemiluminescent emission for 

hydrocarbon fuel based on the chemical kinetic mechanism. Various methodologies of 

establishing compact reduced kinetics mechanisms for ethanol and NH3/H2/CH4 mixtures have 

been developed, including the DRGEP combined with GEPA method and IPFA integrating with 

GEPA method. The two means of 2-stage reducing mechanism methods have been well 

validated with available experimental data of ignition delay time, species profiles and laminar 

flame speed over a broad range of operating conditions. To study the combustion and 

emission characteristics of partially cracked ammonia in gas turbines, the CRN model is 

proposed to explore the potential of partially cracked ammonia (NH3/H2/N2/air mixtures) in 

controlling NOX emission and widening operation range in a single and two-staged combustion 

system. In details, the main contributions in current work are summarised as below together 

with suggestions for the future work. 

 

7.1. Conclusions of the thesis 

7.1.1. Developed reduced mechanisms 

In this part, the DRGEP combined with GEPA method are integrated to establish the ethanol 

reduced kinetic mechanism. In addition, an integrating method of IPFA and GEPA are firstly 

employed to reduce NH3/H2/CH4 mechanism. Besides, the proposed reduced models are well 

validated by comparing with the detailed mechanism as well as available experimental data 

of ignition delay time in shock tube, species profiles and laminar flame speed over various 
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temperatures, pressures, and equivalence ratios. Results shows that the methods in present 

work can accurately reduce mechanisms, and the reduced ethanol mechanism and ammonia 

mechanism can be applied for further study. In detail, the contributions can be concluded as: 

• An ethanol reduced chemical kinetics mechanism is developed and validated at T = 

850-1650K, P = 1-10atm and 𝛷 = 0.5-2. The reduced ethanol mechanism (26 species 

and 105 reactions) has lower average error and smaller size, and the final uncertainty 

is about 10.3%. 

• The reduced ethanol mechanism is validated with available experimental data of 

ignition delay time, species mole fraction in jet stirred reactor and laminar burning 

velocity over numerous conditions. Results show that agreements remain generally 

good between reduced and detailed ethanol mechanism. Moreover, the reduced 

mechanism can well capture the ignition characteristics and concentrations of species 

at wide operation conditions. 

• A novel reduced chemical kinetics mechanism for NH3/H2/CH4/air mixture is proposed 

for the first time by a two-stage reduction procedure, which combines both the IPFA 

method and the GEPA method. Specifically, in the first stage, the detailed mechanism 

(125 species and 1099 reactions) is reduced by the IPFA. A skeletal mechanism 

including 68 species and 687 reactions is obtained within the 5% tolerance on auto-

ignition. In the second stage, the mechanism is further reduced by the GEPA. As a 

result, the final skeletal mechanism involving 59 species and 210 reactions is obtained 

within the 10% tolerance auto-ignition. 

• Extensive validations of the proposed reduced model are conducted by comparing 
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with the detailed mechanism and experimental measurements of ignition delay time 

in shock tube, species profiles in JSR and the laminar flame speed in wide range of 

temperatures (T = 1300–2500K), pressures (P = 1–40bar), and equivalence ratios (𝛷 = 

0.25–2.0). Results show that the reduced mechanism can predict ignition delays of NH3, 

NH3/H2 and NH3/CH4 mixtures very well. Additionally, predictions of laminar burning 

velocity using reduced model generally agree well with the results of measurements 

and detailed model. Although the result of reduced model is slightly over-predicted 

compared with the detailed mechanism for laminar burning velocity, the discrepancies 

are quite small within the error margins around 5%. It should be noted that the 

reduced mechanism established in the present study under-predict the laminar 

burning velocities at lean conditions with blending of 40% CH4 in fuel. Moreover, 

improving the ammonia kinetics mechanism with CH4 blending and extending 

experimental database are required. 

• The NOX emission characteristics of NH3/H2/CH4 mixtures in a gas turbine are 

numerically analysed through a chemical reactor network (CRN) model. The effects of 

H2 and CH4 in the combustion of ammonia and the equivalence ratio on emission 

characteristics are investigated. Moreover, the temperature sensitivity analysis is 

employed to explore the reactions that have great impact on the combustion in 

NH3/air, 70%NH3/30%H2/air and 70%NH3/30%CH4/air flames. Results show that the 

NOX emission is increased compared to pure ammonia combustion flame especially at 

lean-fuel (𝛷 = 0.6-0.9) conditions, when the ammonia blends with H2 or CH4. Also, 

generally, the NOX emissions show an obvious decrease at the content of NH3 above 
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20% in both NH3/H2/air and NH3/CH4/air flames. Therefore, introducing additives 

reasonably plays a vital role in NOX emission control and ammonia combustion 

promotion. 

7.1.2. Combustion and emission characteristics of partially cracked ammonia 

in gas turbines 

Based on the chemical kinetics mechanism of partially cracked ammonia, the potential of 

partially cracked ammonia (NH3/H2/N2/air mixtures) in controlling NOX emission and widening 

operation range in a single and two-staged combustion system is investigated for the first time. 

The effect of cracking ratio, equivalence ratio and initial pressure on the NOX emissions and 

laminar flame velocity (LBV) are numerically discussed. Moreover, a reaction pathways flux 

method is performed to present NO reaction pathways of practically cracked ammonia at 

virous operating parameters. In addition, important species and reactions of NO 

formation/reduction are analysed for getting low levels of NOX emissions. The current study 

provides a deep insight in improving combustion and controlling emission characteristics of 

partially cracked ammonia in both single and 2-stage rich-lean gas turbine combustor. In detail, 

the main contributions can be summarised as below: 

• To conclude, the laminar burning velocities rise with increasing equivalence ratio first, 

and then appears decreasing tendency at 𝛷 > 1.1. The maximum values of LBV are 

located around 𝛷 = 1.1 for all calculated initial pressures. The peak value of LBV is 

close to 37cm/s at Tu = 298K and Pu = 1atm, which considerably improve LBV of 

NH3/O2/N2 flame (around 7cm/s). Additional, LBV is decreased obviously when the 

initial mixture pressure is increased from 1atm to 10atm. 
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• The LBVs increases significantly when the cracking ratio increases from 10% to 80 %. 

The tendency indicates that the combustion intensity is remarkably enhanced as 

cracking ratio increases. 

• In a single stage gas turbine combustor, the amount of NOX emission firstly increases 

and then decreases sharply when the equivalence ratio is within 0.4-1.1. The location 

of maximum value of NOX emission is close to 0.8 for all ammonia cracking ratios. After 

that, a decreasing trend is shown with further equivalence ratio increasing. Therefore, 

rich burn conditions can be employed to reduce total NOX emissions in gas turbines. 

By identifying important intermediate components and reactions, the HNO radical, 

HNO + OH = NO + H2O (R120) and NO + H (+ M) = HNO (+ M) (R117) play important 

role in NO production, while pathways of NHi contribute more on NO reduction. More 

specifically, high NOX emission zone is located at high ammonia cracking ratio and 0.6-

1.0 ranges of equivalence ratio. In addition, the NOX emission is promoted with 

increasing NH3 cracking ratio from 10% to 80% at all equivalence ratio studied. As for 

the effect of initial pressure on NOX emission throughout all NH3 cracking ratios, it is 

noted that the NOX emission goes to a lower value at each cracking ratio when the 

pressure increases from 10atm to 20atm. 

• Both mole fraction of NO and OH* are increased as NH3 cracking ratio increases in 

single stage gas turbine combustor. The peak OH* chemiluminescence intensity 

located at the position of large NO mole fraction gradients. Besides, considerably 

higher intensities of OH* for all cracking ratios are located at 𝛷 = 1.0 followed by a 

decaying trend due to lower oxygen, suggesting the flame position hardly changes with 
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NH3 cracking ratios. 

• In rich-lean burn stage gas turbine combustor, as the primary equivalence ratio 

increases, NOX emissions show almost the same performance as U-shaped curves, and 

the turning points are almost located at 1.3 and 1.4. The ranges of primary equivalence 

ratio for low NO emissions (below 50ppm) are around at 1.2-1.5 when the 𝛷(!/*+''  = 

0.4 - 0.6. The NOX prediction values at 𝛷B*DP+*C = 1.0 for all 𝛷(!/*+''  are very small 

(less than 1000 ppm), which are considerably lower than that in single stage. Therefore, 

using a second combustion stage burning is promising to reduce NOX emission and 

solving the unburned NH3 mixtures problem. 

• The effect of NH3 cracking ratio on NOX emission is also explored in rich-lean burn stage 

gas turbine combustor. Similar tendency curves are captured at various cracking ratio, 

but the position of turning points is right shifted with rising cracking ratio. Interesting 

noting that the operating ranges of low NO emissions (below 50ppm) are obviously 

widen with increasing cracking ratio. In addition, NOX formation is slightly increased 

with the increase of cracking ratio, whereas it shows gradually reducing trend at high 

primary equivalence ratio. In conclusion, cracking more NH3 is beneficial for reducing 

NOX emission and widening operation. Controlling cracking ratio (around at 40%) and 

primary equivalence ratio (i.e., controlling unburnt NH3) in the range of 1.2-1.4 primary 

equivalence ratio enable to comprehensively widen operation range and reduce NOX 

emissions. 

• The NOX in each stage monotonically decrease with the increasing residence time in 

the rich burn stage. Therefore, increasing residence time within reasonable context in 
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the primary stage has an advantage on NOX reduction. 

• When ammonia cracking rate increases from 20% to 60%, the ROP of promoting NO 

formation reactions rises (R34, R69, R68, R56), while the ROP of reactions related with 

NO consumption decreases. Therefore, more NO is generated with higher ammonia 

cracking rate. 

• The contribution rate of reactions related with NO formation are generally decreased 

with increasing equivalence ratio, while the proportion of reactions that react with NO 

are increased. Therefore, the overall NO formation is reduced with equivalence ratio 

increasing from 0.8 to 1.2. 

7.1.3. The study of the chemiluminescent emission 

Chemiluminescence, as a promising optical diagnostic tool, is an area worth of further 

investigation. In this part, numerically analysing on the heat release rate as well as equivalence 

ratio determination by applying excited state species (OH*, CH* and C2*) chemiluminescence 

profiles is investigated in one-dimensional laminar premixed ethanol flame. The ability of 

flame chemiluminescence as a sensor of heat release rate at various equivalence ratios is 

discussed by combining rate of production analysis with sensitivity analysis. Also, correlations 

between the chemiluminescence intensity ratio of C2*/CH* and the equivalence ratio are 

investigated in hydrocarbon premixed flames based on chemical reaction kinetics mechanisms. 

Results show that the peak chemiluminescence intensity ratio of C2*/CH* increases almost 

linearly following by a descend trend with the local equivalence ratio, which is demonstrated 

from the chemical mechanisms’ aspect for the first time. The contributions of this study are 

listed as below: 
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• Chemiluminescence as a signal of heat release rate is discussed. The results show that the 

local heat release presents a multi-valued characteristic of local concentration for all 

excited state species. However, the total heat release rate rises almost linearly with the 

increasing total chemiluminescence. Consequently, the total chemiluminescence is more 

acceptable as a reliable signal to character the heat release rate. Besides, it is also 

presented that the reactions with a large contribution rate on formation and consumption 

of the excited state species also have a significant effect on the heat release rate. 

• In addition, effects of equivalence ratios on the chemiluminescent emissions of OH*, CH* 

and C2* are analyzed. All peaks of chemiluminescent intensity for the three excited states 

increase at the first time, following that a decreasing trend with the increasing equivalent 

ratio is displayed. The total heat release rate also appears same tendency at various 

equivalence ratios. Moreover, results show that the maximum value of OH* and CH* 

chemiluminescence intensities appears at 𝛷 = 1.1, while the maximum intensity for C2* 

appears at around	 𝛷 = 1.35. The deviation should be affected by the specific reaction 

paths. 

• During the process of the formation and decay reactions of the excited radicals, CH3 radical 

is more likely a precursor of excited species in ethanol flames. Analyzing the reaction paths 

can conclude that the variation of the precursor reaction parameters would significantly 

affect the chemiluminescence profiles. As a result, the present numerical simulation 

provides a guidance for employing much easier chemiluminescence experiments setup to 

detect flame characteristics using imaging-based techniques. 
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• Extended mechanisms including OH*, CH* and C2* sub-models for methane, ethanol and 

propane are developed and successfully validated, which can be applied to examine the 

reliance of the chemiluminescence intensity ratio of C2*/CH* on the equivalence ratio in 

three premixed laminar flames. 

• In agreement with the experimental observation, the peak chemiluminescence intensity 

ratio of C2*/CH* increases almost linearly as the local equivalence ratio grows from 0.9 for 

all of three fuel flames at first. After that, the intensity ratios present a slowly descending 

tendency when 𝛷 > 1.35, 1.5, 1.5 for methane, ethanol and propane flames respectively. 

• The most important reactions that invert the monotonicity of the chemiluminescence 

intensity ratio of C2*/CH* with the increasing equivalence ratio are analysed numerically 

for the first time in three fuel flames. The reactions C2H + O2 <=> CH* + CO2 and C2H + H 

<=> H2 + C2* are identified to be the most important reactions that invert the monotonicity 

of the chemiluminescence intensity ratio of C2*/CH* with equivalence ratio in all the three 

fuel flames. 

 

7.2. Suggested future work in this field 

The suggestions for future work in this field are summarized as follows: 

For the methods of reducing chemical kinetic mechanism: 

• For the current methods of reducing chemical kinetic mechanism, the total calculation 

times for both of DRGEP combining with GEPA and IPFA combining with GEPA are 

dependent on the target species selection. In this study, the reactants and products 

are selected as the target species. However, the target species are flexible. In theory, 
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the more species are selected, the higher the accuracy would be for the reduced 

mechanism. But choosing more target species extends the calculation time, and more 

unimportant reactions will remain. Therefore, the two effects must be carefully 

considered and analysed quantitatively in future work to reduce mechanism. 

• For the present reduction methods, due to their dependence on path flow, if the 

detailed mechanisms contain a large number of paths, the computing efficiency will 

be affected. In most of cases for fuel mixtures, the mechanisms are so complicated 

that include many paths, which leads to the rise of computing time of the present 

method. Considering this, the present reduction methods need to be optimized with 

several path-searching methods. 

  

For the study of practically cracked ammonia combustion and emission characteristics in 

gas turbines: 

• This work numerically investigates the potential of partially cracked ammonia 

(NH3/H2/N2/air mixtures) in controlling NOX emission and widening operation range in 

a single and two-staged combustion system. Experimental measurements are 

beneficial to better understand combustion and emission performance of practically 

cracked ammonia in gas turbines. 

• The combustion in gas turbines is related with turbulence. Although the CRN model is 

regarded as an effective numerical method to predict NOX emissions via calibrated and 

validated in previously research [304,305,306], it is difficult to reflect the flow field 

structure and temperature field distribution in real combustors. Develop turbulent 
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model can predict NOX emission of ammonia combustion more accuracy in gas 

turbines. 

 

For the study of the chemiluminescent emission: 

• This work numerically analysing the ability of flame chemiluminescence as a sensor of 

heat release rate at various equivalence ratio. As a promising optical diagnostic tool, 

chemiluminescence can be readily imaged with modern digital cameras and analysed 

with the ever-increasing computing and processing power. Experiments of 

chemiluminescence can be conducted to measure the chemiluminescence intensity in 

ethanol and hydrocarbon fuel flame. 

• Then the chemiluminescence can be further employed to monitor the comprehensive 

combustion performance in engines, for example, studying the correlations between 

chemiluminescence and ignition and other indeterminate mixtures in HCCI engine. 
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