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Abstract 

Mean line turbine performance prediction calculations are commonplace in the early stages of the 

turbine design process and are used to predict turbine performance and estimate geometric 

parameters before committing to CFD analysis. Napier Turbochargers also use such a tool for turbine 

performance map generation, turbine maps which are used in engine simulation software to predict 

engine performance. Periodically it is necessary to update the loss mechanisms used in the 1D tool 

based on current experimental data and research to ensure the accuracy and relevance of the 

results are maintained. The current performance prediction code used by Napier Turbochargers 

requires updating, it is necessary to review suitable, more recent axial turbine loss mechanisms with 

the aim of increasing the accuracy of efficiency prediction over a wide range of operating conditions 

for families of turbine geometries. 

The results retrieved from the new program in conjunction with the selected loss models are 

compared to CFD results in order to validate the performance code and assess the chosen loss 

correlations. A number of productionised turbine geometries have been selected from the Napier 

Turbocharger portfolio to test the suitability of each loss correlation. 

Analysis of the results revealed the governing parameters of each loss correlation and their 

applicability to a turbocharger turbine stage. The results were also assessed with the goal of possibly 

creating a selective tool to select the optimum loss correlation based on the required operating 

condition or turbine geometry. 
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Chapter 1 

 

Introduction 

 

1.1 Turbocharging and Performance 

Turbocharging is an integral system of the internal combustion diesel engine. A turbocharger 

comprises of a compressor driven by a turbine which extracts energy from the engine exhaust gases. 

The compressor enables an increased amount of air to be delivered to the engine cylinder through 

compression of the intake air, this provides several benefits for engine performance including 

increased power output, fuel economy and reduced engine emissions. The compressor and turbine 

are matched to the engine to give optimum performance according to manufacturer requirements, 

this process involves the use of performance maps and simulation software. 

Napier turbochargers supplies hardware for large and medium speed diesel engines for applications 

such as baseload power plant, pumping stations and nuclear back up engines in the energy sector 

and cruise ships, offshore vessels and merchant ships in the marine sector, as well as various traction 

applications for legacy turbochargers. Below are examples of turbocharger installations for a power 

plant application, Figure 1-1, and a marine application, Figure 1-2. 
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Fig. 1-1. Wärtsilä Goodman Energy Center in Kansas. 

  

Fig. 1-2a       Fig. 1-2b 

Fig. 1-2a MV Etne engine room, Fig. 1-2b MV Etne passenger ferry. 

Depending on the type of application or where the application is located it is necessary to adhere to 

some form of emission legislation. Current emission legislations include IMO T3 (International 

Maritime Organisation ©2019), EPA T4 (United States Environmental Protection Agency ©2021) and 

TA-Luft (Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit ©2021) and ½ TA-Luft. 

The various emission legislations control the pollution of engines, regulating such pollutants as 

Nitrous Oxide, Carbon Dioxide, particulates, and the Sulphur content of fuels. 

With the implementation of stricter emission legislation, engine manufacturers are demanding 

higher pressure ratio capabilities from turbochargers (Wik and Hallback 2007) and are developing 

alternative emission reduction technologies (Drews 2019). One of the advantages of increasing the 

inlet air density to the engine is the reduction of fuel consumption, this is permitted due to the 

higher cylinder pressures which enable the use of a leaner air/fuel mixture during combustion. There 

are a number of technologies that may be employed to satisfy the demand for lower emissions while 
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maintaining similar or improved fuel consumptions. One such technology is two stage turbocharging 

which compliments an engine strategy known as Miller timing which reduces combustion 

temperatures thus reducing NOx emissions. Other engine emission reduction technologies include 

selective catalytic reduction and exhaust gas recirculation which can also be used in combination 

with two stage or compound turbocharging (Mayr 2019) (Codan et al 2010). 

To assess the performance of the diesel engine and such emission reducing technologies, engine 

simulation software is becoming more prevalent. This requires compressor and turbine 

characteristics to accurately predict system performance; thus, it is imperative the characteristics 

are of sufficient range and accuracy to ensure suitable interpretation in the simulation software and 

generation of realistic results.  

Several computational tools are used to analyse turbine performance including CFD. This however 

can be time consuming and often demands a complete detailed model of the turbine blade and 

housing arrangement to produce accurate results. CFD code also requires a certain amount of 

calibration against experimental results in order to improve the accuracy of off design performance 

prediction. The one-dimensional mean line loss calculation method of turbine performance offers a 

less time consuming and more flexible tool, which can predict turbine performance over a wide 

range of operating conditions and is ideal for first design iterations, where the turbine blade 

geometry is not yet fixed, and performance map generation.  

As a result of the demand for strict emission control at varying turbocharger operating conditions 

the accuracy of the turbine performance maps used in engine simulation software is paramount. 

This study investigates turbine efficiency prediction at a wide range of turbocharger operating 

conditions using typical turbocharger turbines where the previous studies researched of one-

dimensional mean line performance prediction methods have tended to concentrate on design point 

efficiency performance.  

 

1.2 Scope of Work 

The software currently in use is based on the Ainley and Mathieson (Ainley and Mathieson 1951) 

mean line loss technique published in 1951 and updated by Dunham and Came in 1970 (Dunham 

and Came 1970). The program is written in Fortran without any standardisation or background text 

and contains many unorganised loops and unexplained factors which have been implemented as the 

code has undergone iterations to ensure correlation to the latest experimental test data is 

maintained, periodic iterations have also been necessary due to advancements in analytical 

capability, although the program still suffers from a number of limitations which impact the quality 

of the performance data produced. It is necessary to review suitable, more recent axial turbine loss 

mechanisms to update the current code to increase the accuracy of efficiency prediction over a wide 

range of operating conditions and families of turbine geometries. 

The present work will be undertaken on a part time basis while the author continues to fulfil his post 

within Napier Turbochargers as Principal Performance Engineer. A literature review will be carried 

out to research turbine theory fundamentals and identify more modern common loss correlations. 

On completion of the literature review a programming language will be chosen for the one-
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dimensional performance code. The basic performance calculations will be carried over from the 

original Fortran program, outlined by Ainley and Mathieson (1952), and the newly identified loss 

correlations will be built into the new program as selectable routines. 

Due to the absence of a dedicated turbine test rig Napier does not possess sufficient complete 

turbine test data to adequately validate the turbine performance prediction method therefore the 

CFD based program MULTALL (Denton 2009) produced by Prof. J.D. Denton will be used to validate 

the performance code and assess the loss correlations. A number of productionised turbine 

geometries with differing features have been selected to test the suitability of each loss correlation. 

The results retrieved from each loss correlation will be compared based on accuracy over a wide 

range of operating conditions. 

 

1.3 Thesis Outline and Synopses of Chapters 

The thesis aims to improve the current mean line turbine performance prediction program by 

adopting a more accessible programming language and implementing more modern loss 

correlations. The performance results obtained from the new mean line loss program will be 

compared to CFD data to assess the accuracy of the loss models over a wide range of operating 

conditions and turbocharger turbine geometries. The results will also be examined, and 

opportunities identified where the loss models may be used selectively based on turbine operating 

condition or geometry.  The thesis is divided into 5 Chapters, a synopsis of each is given in the 

following paragraphs: 

Chapter 1 has introduced the turbocharger highlighting its advantages when applied to the internal 

combustion diesel engine and the requirement for further development. The requirement for 

accurate turbine performance prediction methods was also identified. A brief outline of the 

applications of Napier Turbochargers is also given. 

Chapter 2 presents a review of the fundamentals of the turbocharger axial turbine as well as its main 

operating characteristics. The flow field of the axial turbine is examined and a classification of the 

relevant losses in a turbine stage are provided. Finally, more modern loss correlations are reviewed 

in detail.  

Chapter 3 looks at the structure and design of the new mean line tool and explains how the chosen 

loss correlations have been translated into code. 

Chapter 4 reviews the CFD program that will be used to validate the mean line tool and shows a 

comparison between CFD and predicted results. The individual loss mechanisms are also analysed 

and discussed. A summary of the results is also presented to assess the suitability of each loss 

model. 

Chapter 5 concludes the results retrieved from the new mean line tool and CFD. Suggestions for 

further work are also presented.  
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Chapter 2 

 

Literature Review 

 

2.1 Introduction 

This chapter aims to review the relevant literature on turbocharger axial turbine stages performance 

characteristics and loss mechanisms. A review of the fundamentals of turbocharger axial turbines 

will be covered where turbine efficiency, working cycle and velocity triangles of the turbocharger 

axial turbine are defined. The operating characteristics of an axial turbine will also be analysed 

including such parameters as the stage loading coefficient, flow coefficient and degree of reaction. 

The complex flow field of an axial turbine is broken down into its constituent parts where the major 

sources of loss are classified. Since the loss model the original code is based on was published there 

have been significant advancements not only in the research conducted on axial turbine loss 

mechanisms but also turbine design methodologies and analyses. There also exists a greater amount 

of turbine test data for a variety of turbine geometries. Kacker and Okapuu suggest that the loss 

system used in a mean line performance prediction program should be critically reviewed and 

updated at least once every decade (Kacker and Okapuu 1982). The loss correlations covered in the 

final section of this chapter are some of the more common and widely used methods which will be 

incorporated into the mean line performance prediction program.  
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2.2 Turbocharger Axial Turbine Fundamentals 

The turbocharger comprises of three main components the compressor, turbine and a shaft linking 

the two. Fig. 2.1 shows a cutaway view of a Napier NT1-10 turbocharger revealing the rotor and 

showing the structure of the turbocharger. The compressor is a centrifugal type and the turbine can 

be of axial or radial construction. These components require a high level of design and engineering 

to ensure desirable performance at suitable service life. For a turbocharged engine to operate 

efficiently the turbocharger must be matched according to the target conditions set out by the 

engine manufacturer by selecting the correct aerodynamic components. The selection of these 

components is derived from various performance calculations based on an energy balance across 

the turbocharger. 

 

Fig. 2.1 NT1-10 Turbocharger Cutaway. 

Figure 2-2 displays a typical arrangement of an axial turbine turbocharger. It can be seen a 

turbocharger axial turbine stage consists of a single row of nozzle (stator) blades and rotor (turbine) 

blades. Figure 2-2 also defines the station numbers used in the following calculations.  
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Fig. 2-2 Axial flow turbine stage (Watson 1982). 

Component efficiency is critical in a turbocharger in order to deliver the best performance possible 

to optimise engine brake specification fuel consumption, emissions and thermal loading. The 

isentropic efficiency is used as an indicator for performance and is defined as the actual work 

divided by the isentropic work for a turbine. 

i�aa = 7Eat7u vPw8�+6 awP,�E vPw8 = x�
yx�zx�
yx�z{|}~    Eq. 2-1 

 

There will be some residual kinetic energy that must be accounted for, typically turbochargers of the 

size considered in this paper include some kind of exhaust diffuser to recover some of this energy. 

Typically, it is industry standard to express the turbine efficiency as total-to-static. The total-to-static 

efficiency of the turbine is shown below.  

i�a+ = �y2��z/��
5�y2�z/��
52��
5/�     Eq. 2-2 
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Examples of turbine performance maps used during the turbocharger matching process are shown 

below for an axial turbine, these maps are controlled by an SAE a standard (SAE International 1995). 

 

Fig. 2-3 Typical turbine efficiency characteristic of total to static efficiency plotted against turbine 

pressure ratio taken from a turbine map. 

 

Fig. 2-4 Typical turbine swallowing capacity characteristic of turbine swallowing capacity plotted 

against turbine pressure ratio taken from a turbine map. 
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Both plots show characteristics (blue lines) at various turbocharger rotational speeds. The 

swallowing capacity used in the above chart is a quasi-nondimensional parameter which accounts 

for the turbine inlet conditions to facilitate data comparison and is defined below. 

R�BCCM�=r9 'B�B'=AY = >
��
��
      Eq.2-3 

Compressors and turbines used in turbochargers are rotordynamic machines in that the work 

transfer occurs by the interaction of moving blades and a fluid travelling through the machine. The 

operation of such machines is complex, the work transfer can be expressed in two distinct ways one 

is based on fluid mechanics, changes in fluid momentum, and the other on thermodynamics, 

changes in fluid enthalpy. Euler’s turbomachine equation provides the connection between changes 

in work transfer and velocity. It is based on Newton’s second law of motion equating the torque 

developed at the shaft to the rate of change of angular momentum. Where U is the blade speed and %Q the tangential velocity component.  

W$ = U2%Q� − %Q�5     Eq.2-3 

Using the first law of thermodynamics the work transfer can also be expressed in terms of the 

change of total enthalpy of the flow. 

O − W$ = ℎ�� − ℎ��     Eq.2-4 

So long as the heat transfer, Q, to the environment is small (i.e. the process is adiabatic) the specific 

work transfer relates directly to the total enthalpy change. The working cycle of the turbine can be 

expressed by a H-S diagram, this shows the changes of state through the stage during the expansion 

process. 

 

Fig 2-5 Enthalpy Entropy diagram for a turbine (Watson 1982). 
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Stations 1 to 2 show the change of state through the stator and stations 2 to 3 the rotor. From the H-

S diagram it can be observed there is no stagnation enthalpy change in the stator therefore the total 

work done is equal to the work done only by the rotor. Also, it is shown how the stagnation enthalpy 

can be calculated by summing the kinetic energy and static enthalpy. Finally, it can be seen the static 

enthalpy drop is a function of the velocity components hence an expression for the work done as a 

function of the velocity components can be established. 

jW$ = �� �2%�� − %��5 + 2W�� − W��5�    Eq. 2-5 

The velocities in the relation above may be obtained by sketching the velocity diagrams for the 

turbine stage, an example is shown in Fig. 2-6. The relative velocities are denoted by a W and the 

absolute velocities by a C, the inlet and outlet angles are denoted using α for absolute and β for 

relative, U denotes the rotor blade speed. 

 

Fig. 2-6 Velocity diagram for axial flow turbine stage (Watson 1982).  
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2.3 Operating Characteristics 

During the design of the turbine blade a number of dimensionless parameters are considered by the 

designer. These parameters include the stage loading coefficient, the flow coefficient, the velocity 

ratio and the degree of reaction. These parameters dictate the angles of the gas at the inlet and 

outlet of each blade row and with the addition of the blade speed set the gas velocities. These 

parameters will be briefly described as they will be used to compare the turbine designs selected to 

validate the one-dimensional mean line loss calculations and additional loss correlations, their 

implications on turbine performance will also be investigated. 

 

2.3.1 Stage Loading Coefficient 

The stage loading coefficient is defined as the change in total enthalpy across a stage divided by the 

blade speed squared. This is a measure of the work capacity of a stage, high stage loading 

coefficients are desirable but usually at the cost of efficiency.  

q = �x��!      Eq. 2-6 

If the flow is adiabatic the total enthalpy change is equal to the specific work output and the above 

equation can be rewritten. 

q = �_��      Eq. 2-7 

Based on this it can be deduced a high stage loading coefficient signifies large flow turning. The stage 

loading coefficient can also be written. 

q = _����
!�! = �_�� 2ABrd� + ABrd�5    Eq. 2-8 

 

2.3.2 Flow coefficient 

The flow coefficient is the axial component of velocity divided by the blade speed. 

p = _��      Eq. 2-9 

The value of the flow coefficient determines the relative flow angles in a stage velocity triangle. A 

stage with a low flow coefficient implies relative flow angles close to tangential whereas a high value 

for the flow coefficient implies low stagger and flow angles closer to axial line (Dixon and Hall, 2010). 

Larger flow coefficients require smaller areas, thus smaller blade heights at the cost of performance. 
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2.3.3 Velocity Ratio 

The velocity ratio is another useful non-dimensional parameter. It is similar to the stage loading 

coefficient but in reverse. Where U is the blade speed which is divided by the isentropic enthalpy 

drop over the turbine stage. The velocity ratio is often used during the design stage of a 

turbocharger axial turbine where a velocity ratio is targeted to achieve maximum efficiency 

depending on the turbocharger application. 

 

�_ = �
��⋅E�⋅�
⋅��y� �z��
�2��
5� �

     Eq. 2-10 

 

2.3.4 Degree of Reaction 

The degree of reaction controls how the expansion through the turbine is divided between the 

stator and rotor. Typically, the reaction is expressed in terms of enthalpy, however it can also be 

expressed in terms of pressure. 

m = x!yxzx�
yx�z     Eq. 2-11 

The degree of reaction can be related to blade angles. 

m = x!yxzx�
yx�z = _��� 2ABrd� + ABrd�5   Eq. 2-12 

The reaction is defined as the static enthalpy drop across the rotor divided by the total enthalpy 

change across the complete stage. The total enthalpy change across the stage is also used to define 

the stage loading coefficient, therefore it can be deduced that for a low reaction turbine most of the 

expansion occurs in the stator whereas for a high reaction turbine most of the expansion occurs 

across the rotor. In turbocharger turbines a neutral degree of reaction is preferable where the gas 

expansion is shared between the stator and rotor in order to preserve efficiency and limit gas 

velocities. 

These non-dimensional parameters can be combined. The below equations can be used to obtain 

the gas and blade angles as a function of the dimensionless parameters. 

 q = 2p2ABrd� + ABrd�5    Eq. 2-13 

m = �� 2ABrd� − ABrd�5    Eq. 2-14 
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2.3.5 Smith Chart 

 

Fig. 2-7 Smith Chart (Smith 1965) 

The Smith chart (Smith 1965) is a correlation of experimental data which offers the designer a guide 

on optimum stage loading and flow coefficients. The correlation was published in 1965 and is still 

widely used today in preliminary turbine design. The stages tested range from 0.2 to 0.6 in terms of 

degree of reaction with a relatively large blade aspect ratio, also the efficiencies were corrected to 

eliminate tip leakage losses. It is evident from the correlation that best efficiency occurs at low 

values of stage loading and flow coefficient. As the value of the stage loading coefficient is set by the 

maximum permissible blade speed, at this value there will be a flow coefficient that maximises the 

efficiency however, the designer must consider whether this flow coefficient is acceptable within the 

turbine design constraints. Confirmatory tests made by Kacker and Okapuu (1982) and Craig and Cox 

(1971) have proven the usefulness of the chart in preliminary turbine design. 
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2.4 Flow Field in Axial Turbines 

The flow travelling through a turbine stage is very complex. It is understood the flow through an 

axial turbine is three dimensional, viscous and unsteady, comprising of many vortices and pressure 

gradients simultaneously (Wei 2000). There is also the possibility of compressible or incompressible 

flow, and subsonic, transonic or supersonic regimes that can be present at the same time in different 

regions throughout the field. 

 

 

Fig. 2.8 Flow field in an axial turbine (Denton 1994) 

As can be seen from Figure 2.8 there is a primary flow field through the blade row which describes 

the mean flow path, and an overlapping secondary flow. There is also a tip leakage flow over the 

blades from the pressure to the suction side for unshrouded blades which will disturb the primary 

flow. At the trailing edge blade wakes form which will interact with the next blade row. For transonic 

conditions there will also be shockwaves present at the blade suction surface. 

The secondary flows in the turbine flow field are generated as the flow turns in the blade passage 

due to viscous effects at the endwall. In the endwall boundary layers fluid has a lower velocity 

compared to the mainstream and the cross-passage pressure gradient causes this low momentum 

boundary layer flow to migrate towards the suction side of the blade. This eventually causes the 

boundary layer to roll up into the passage vortices shown in Fig. 2.9. Horseshoe vortices are created 

in front of the blade at the saddle point forming a vortex which distributes itself about the pressure 

and suction sides of the blade.  The secondary flow model presented by Klein (1966), Fig. 2.9b, 

shows the stagnation point vortex sweeping across the blade passage and rolling up into the passage 

vortex. Langston (2001) proposes a similar model based on three-dimensional cascade 

measurements and flow visualisations. Here it can be seen the pressure side leg of the vortex is 

drawn into the cascade passage forming the passage vortex and the suction side leg of the vortex is 

drawn into an adjacent passage with an opposite sense of rotation and possibly rotates around the 

axis of the passage vortex.  
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Fig. 2.9a      Fig. 2.9b 

 Fig 2.9 Endwall flow models (a) (Langston 2001), (b) (Klein 1966)  

The tip clearance and associated loss have a significant impact on inefficiency in axial turbines. Flow 

that leaks through the tip clearance, driven by the pressure gradients between the pressure and 

suction sides, produces a loss in performance by bypassing the blade passage. The tip leakage flow 

also forms a vortex which interacts with the secondary flow. It has been shown that the effect of the 

tip clearance is not isolated to the tip gap itself and typically covers 50% of the blade height due to 

its intense and complex interaction with secondary flow (Moustapha 2003). The most influential 

parameters impacting the leakage flow are blade clearance and blade loading.  

 

Fig. 2.10 Secondary flow model (Sjolander 1997)  

For unshrouded blades, shown in Figure 2.11 from Denton (1993), the flow separates at the blade tip 

forming a jet and mixing with the mainstream flow on the suction side of the blade. The vortex 

formed by the leakage flow and its interaction with the main flow results in losses. It can also be 

seen how the jet mixes out over a thicker blade causing an increase in static pressure and entropy. 
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Fig. 2.11 Flow over the tip gap for an unshrouded blade (Denton 1993) 

The flow conditions at the boundary layer effect blade heat transfer and aerodynamics therefore 

understanding boundary layer development and behaviour is important (Moustapha 2003). As 

illustrated in Figure 2.12, laminar flows can separate from the blade surface due to local adverse 

pressure gradients, caused by accelerating flows, forming a separation bubble. This separation 

bubble may reattach to the blade surface downstream initiating transitional flow which may result in 

turbulent flow increasing losses.   

 

Fig. 2.12 Leading edge separation bubbles and their effect on blade surface static pressure 

distribution (Moustapha 2003). 
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2.5 Loss Classification 

In order to predict the losses in a turbine it is common practice to divide the overall loss into the 

major sources of loss in the flow field. This is considered a simplification as each of the losses are 

interacting in some way and cannot be separated completely unambiguously. However, with an 

understanding of the physical processes which govern the blade passage flow a meaningful division 

is possible. The major sources of loss will now be described. 

 

2.5.1 Profile Loss 

The profile loss is the loss due to boundary layer growth over the blade itself and is influenced by 

such factors as Reynolds number, surface roughness, turbulence and the velocity distribution. Due to 

the complexity of the flow through the turbine it is almost impossible to isolate this loss hence the 

profile loss is typically estimated based on correlations derived from cascade data. Such profile loss 

correlations are described in the work of Ainley and Mathieson (1951) and Craig and Cox (1971). 

Kacker and Okapuu (1982) reviewed the Ainley and Mathieson (1951) method of profile loss 

prediction and proposed changes to account for shock losses, channel flow acceleration and 

supersonic drag rise. They also introduced a factor to account for Reynolds number. Craig and Cox 

(1971) define a basic profile loss parameter as a function of the modified lift parameter and blade 

contraction ratio. Craig and Cox (1971) also propose correction factors to account for higher Mach 

number conditions and Reynolds number. Denton states that the profile loss is equal to the entropy 

generated in the boundary layers and may be found by employing a typical blade velocity 

distribution (Denton 1993). To account for Reynolds number Denton includes a dissipation 

coefficient.  

 

2.5.2 Trailing Edge Loss 

Trailing edge loss is the loss associated with the separation of the pressure and suction surface 

boundary layers close to the trailing edge creating a recirculation zone. In this recirculation zone the 

dissipation of energy will be high as the blade wake mixes out downstream of the turbine blade. 

Ainley and Mathieson (1951) base their loss estimation method on a trailing edge thickness 

approximately equal to two percent of the blade pitch, for trailing-edge thickness to blade pitch 

ratios different to 0.02 they recommend the use of a correction factor. Craig and Cox (1971) account 

for the trailing edge thickness by applying a multiplication and additive loss factor to the profile 

losses. Denton states that the magnitude of the trailing edge loss has been seriously underestimated 

in the past (Denton 1993). In his work Denton proposes the trailing edge loss is a result of entropy 

generation in the mixing out of a wake behind the trailing edge and considers the surface boundary 

layers upstream of the trailing edge and base pressure acting on the trailing edge in his estimation. 

Sieverding (1980) provides a comprehensive summary of the importance of the base pressure term 

in the calculation of trailing edge loss in his work.  
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2.5.3 Annulus Loss 

Annulus loss is the loss associated with the boundary layer drag on the turbine endwalls. This loss is 

dependent on such factors as the turbine blade geometry and in particular the blade chord length to 

height ratio (Watson 1982). The annulus loss is often accounted for with the secondary losses as 

they are difficult to separate in practice.  

 

2.5.4 Secondary loss 

Secondary losses are losses that occur as a result of the deflection of the boundary layers through 

the blade row, this is caused by lower endwall velocities and the cross-passage pressure gradient 

turning the flow creating vortices. These vortices mix with the main flow and can interact with the 

wall and blade boundary layer and wake causing additional losses. Denton states that the secondary 

loss component is the most difficult to understand and to predict and virtually all prediction 

methods are still based on correlations of empirical data (Denton 1993), most of these correlations 

were reviewed by Dunham (1970) and Sieverding (1985). 

 

2.5.5 Tip clearance loss 

Another main source of loss in a turbine is tip clearance loss which is the leakage of flow over the 

blade tip. Depending on the design of the blade this can be considered in two ways for either 

shrouded or unshrouded blades. Kacker and Okapuu (1982) estimate tip clearance loss using an 

iterative method to estimate an efficiency debit in unshrouded blades. Craig and Cox (1971) propose 

a method to calculate a tip clearance loss for shrouded blades and suggest applying a factor for 

unshrouded blades. Denton (1993) establishes a method for tip clearance loss for unshrouded 

blades based on the entropy generation of the leakage flow mixing with the main flow on the 

suction side of the blade. The total entropy production is dependent on the leakage flow rate and 

difference in streamwise velocity of the main flow and leakage flow. 
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2.6 Loss Correlations 

Having established the fundamental flow physics involved in turbomachinery, the more common 

loss correlations used in turbine performance estimation will be examined. The loss correlation of 

the current original code will be described first.  

 

2.6.1 Ainley and Mathieson Loss Model 

The loss correlation of Ainley and Mathieson was first published in 1951, later it was refined by 

Dunham and Came. The original method of performance estimation calculated the efficiency of the 

subject turbines to within +/- 2% of the test efficiency.  

2.6.1.1 Total Loss 

The total loss coefficient is a sum of the profile loss and secondary and tip clearance losses. 

\a = �\, + \+ + \8�[�6     Eq. 2-15 

2.6.1.2 Profile Loss 

In order to establish the profile loss, the loss at zero incidence is calculated first. This is based on 

charts showing cascade data of total pressure loss against pitch to chord ratio for nozzle and impulse 

blading.  

\,2���5 = �\2�
��5 + ��
�!�� �\2�
�y�!5 − \2�
��5�� �a E⁄�.����
�!   Eq. 2-16 

It is stated the impulse blading is relevant for blade thickness to chord ratios between 0.15 to 0.25. 

 

Fig. 2-13 Profile loss coefficients for conventional section blades at zero incidence (Ainley and 

Mathieson 1951) 
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Fig. 2-14 Profile loss coefficients for conventional section blades at zero incidence (Ainley and 

Mathieson 1951) 

To obtain the profile loss at incidences other than 0 the stalling incidence must be determined, 

Figure 2-15, Figure 2-16, Figure 2-17, then a correlation derived by Ainley and Mathieson relating the 

ratio of profile loss at any incidence to the profile loss at zero incidence and the ratio of incidence to 

stalling incidence, Figure 2-18, is used to correct the profile loss at zero incidence. The stalling 

incidence is approximately a function of gas outlet angle, the blade inlet angle to gas outlet angle 

ratio and the pitch to chord ratio.  The stalling incidences for a wide range of blades having a pitch to 

chord ratio of 0.75 are established along with the variation of stalling incidence and gas outlet angle 

with pitch to chord ratio. The final expression for profile loss, 

\, = [�\,2���5     Eq. 2-17 

 

Fig.2-15 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951) 
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Fig.2-16 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951) 

 

Fig.2-17 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951) 

 

Fig. 2-18 Variation of profile loss with incidence for typical turbine blading (Ainley and Mathieson 

1951) 
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2.6.1.3 Secondary and tip clearance loss 

It was demonstrated by Ainley and Mathieson (1951) that secondary losses may be expressed by the 

following equation. 

\+ = l �_ �|¡�¢� 2'M@�c� 'M@�c>⁄ 5    Eq. 2-18 

Where,  

λ is an empirical function which depends upon the degree of acceleration imparted on the gas as it 

flows through the blade row, Figure 2-19.  

l = 1£2��/��5�/21 + F. H. I. H.⁄ 5¤   Eq. 2-19 

�� = � �'M@d�     Eq. 2-20 

�� = � !'M@c�      Eq. 2-21 

 

Fig. 2-19 Secondary losses in turbine blade rows (Ainley and Mathieson 1951) 

%& is the lift coefficient thus %&/2@/'5 is defined as, 

%&/2@/'5 = 22ABrc� − ABrc�5'M@c>    Eq. 2-22 

c> is the average flow angle in the cascade and is defined as, 

c> = ABry��2ABrc� + ABrc�5/2�    Eq. 2-23 
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Thus, the secondary loss formula becomes, 

\+ = l4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ �    Eq. 2-24 

2.6.1.4 Tip Clearance loss 

The tip clearance loss is defined similarly to the secondary loss, as a function of blade loading with 

the addition of the ratio of tip clearance to blade height. 

\8 = " 8x 4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ �    Eq. 2-25 

In this instance B is a constant defined as 0.25 for shrouded blades or 0.5 for unshrouded blades. 

2.6.1.5 Trailing Edge Correction 

The trailing edge correction factor presented by Ainley and Mathieson can be found from Figure 2-

20. The method presented by Ainley and Mathieson was valid for turbine blades having a trailing 

edge thickness roughly equal to 2 percent of the blade pitch. Ainley and Mathieson identify trailing 

edge thickness can have a large impact on the total loss coefficient based on research of the time 

(Ainley and Mathieson 1951). Therefore, they introduce a correction factor when trailing edge 

thickness to blade pitch ratio, A6 @⁄ , differs from 0.02.  

 

Fig. 2-20 Effect of trailing edge thickness on blade loss coefficients (Ainley and Mathieson 1951). 
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2.6.2 Dunham and Came Loss model 

In 1970 Dunham and Came reviewed the Ainley and Mathieson (1951) turbine performance 

prediction method and proposed improvements based on experimental data from 25 turbine stages 

of the time. It was concluded the performance results for small turbines using the Ainley and 

Mathieson method were misleading, and a number of improvements were implemented. 

 

2.6.2.1 Total loss 

The total loss of the blade row now considers the influence of Reynolds number on the profile and 

secondary losses. The application of the Reynolds number correction accounts for conditions where (0 <  2 × 10¨. 

\� = ©�\, + \+� � 46� $ ��ª�y�.� + \̀ « [�6     Eq. 2-26 

Reynolds number is the measure which indicates whether a fluid is laminar or turbulent. Reynolds 

number may be defined as the ratio of the inertial forces and viscous forces and may be calculated 

using the formula below. 

(0YrMC¬@ r­�#0� =  =r0�A=BC 1M�'0 / 1�='A=Mr 1M�'0 =  oVs/µ 

Where, 

o = density µ = dynamic viscosity V = velocity s = characteristic length 

 

2.6.2.2 Profile loss 

The additional losses encountered when a blade row chokes due to the development of shockwaves 

is taken into account by using a correction factor incorporating the outlet Mach number in the 

profile loss calculation. 

\, = �1 + 602�Pta − 15��[�\,2���5     Eq. 2-27 

2.6.2.3 Secondary Loss 

Dunham and Came (1970) proposed a new blade loading parameter based on cascade data which is 

a development of the loading parameter proposed by Ainley and Mathieson (1951). A single 

numerical constant was used in place of a function of wall boundary layer thickness and blade shape. 

The numerical constant was devised from comparisons with overall efficiency data. 
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\+ = 0.0334 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
�    Eq. 2-28 

2.6.2.4 Tip Clearance Loss 

It was found that Ainley and Mathieson’s blade loading parameter replicated the effect of blade 

loading satisfactorily (Dunham and Came 1970). Also, it was suggested by Dunham and Came that 

the usual linear dependence of loss on tip clearance should be replaced by the power law which 

showed greater correlation to experimental data. 

\̀ = " �Ex� �8E��.¯° 4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ �   Eq. 2-29 

Where the constant " is modified to 0.47 for plain tip clearance and 0.37 for shrouded. 

 

2.6.3 Kacker and Okapuu Loss Model 

In 1982 Kacker and Okapuu reviewed the existing loss systems, specifically proposing modifications 

to the AMDC loss correlations based on analytical capability, which had seen major advancements in 

computer technology and aerodynamic analyses in the thirty years since Ainley and Mathieson 

published their loss method in 1951, and turbine data of the time. Their modifications were tested 

against design point efficiencies of 33 turbine stages.    

2.6.3.1 Total Loss 

The total loss coefficient presented by Kacker and Okapuu (1982) is the sum of the profile, 

secondary, trailing edge and tip leakage losses where the profile losses are corrected for Reynolds 

number effects. 

\� = \�146 + \+ + \�b� + \̀     Eq. 2-30 

Where 146 is the Reynolds number correction factor. 

146 =
⎩⎪⎨
⎪⎧� 46� × ��ª�y�.µ 1M� (0 ≤ 2 ×  10¨ 1 1M� 2 ×  10¨ < (0 < 10·

� 46��¸�y�.� 1M� (0 > 10·      Eq. 2-31 

2.6.3.2 Profile Loss 

Cascade testing following the publication of the Ainley and Mathieson (1951) method have shown 

profile loss is not independent of Mach number (Kacker and Okapuu 1982). The profile loss 

formulated by Kacker and Okapuu uses the relation proposed by AMDC but also takes into account 

turbine operation at higher Mach numbers and shock losses. 

\� = 0.914 ��� \�,3º»_�, + \K]^_`�    Eq. 2-32 
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Shocks can occur at leading edges at relatively low inlet Mach numbers, due to acceleration of the 

flow adjacent to the highly curved leading edges. Kacker and Okapuu (1982) present a correction 

based on the inlet Mach number at the hub and the inlet and outlet mean line Mach numbers. The 

correlation to decipher the inlet Mach number at the blade hub is based on a sampling of known 

turbines. 

 

 

Fig. 2-21 Inlet Mach number ratio for nonfree-vortex turbine blades (Kacker and Okapuu 1982). 

From Figure 2-21 the Mach number at the hub can be calculated when the midspan Mach number 

and the hub/tip radius ratio are known. The shock loss can then be found using Figure 2-22. 

 

 

Fig. 2-22 Combined effect of leading edge shock on inner end wall flow and the blade channel next 

to it (Kacker and Okapuu 1982) 

The final expression for shock loss is shown below which accounts for blade hub/tip ratio and is 

expressed in terms of blade exit dynamic head. 

\K]^_` = 0.75���,]�¼ − 0.4��.¯¨ �4½4¾ � ��
�!� ��y��¿��
! º
!� ���

�y��¿��
! º!!� ���
�   Eq. 2-33 
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The Mach number correction factor �, is based on correlations relating to the effects of exit Mach 

number and channel acceleration. The corrections for the effects of exit Mach number and channel 

acceleration are shown in Fig. 2-23 and Fig. 2-24, these are then combined to formulate �,. 

 

Fig. 2-23 Mach number correction factor ��for the profile loss coefficient, for accelerating cascades 

of �� → �� (Kacker and Okapuu 1982) 

 

Fig. 2-24 Mach number correction factor ��for the profile loss coefficient (Kacker and Okapuu 1982) 

�, = 1 − 1.252�� − 0.25 �º
º!��
    Eq. 2-34 

In the final profile loss expression Kacker and Okapuu added two multiplying factors to make the 

AMDC loss system predict the correct shapes of the efficiency islands on the Smith chart. 

2.6.3.3 Secondary Loss 

The secondary loss calculation adopted by Kacker and Okapuu is similar to that of Dunham and 

Came (1970) apart from its dependency on aspect ratio. During their investigation Dunham and 

Came noted that the results of their method showed a rapid increase in losses as aspect ratio was 

decreased which when compared to experimental data exhibited poor correlation. Kacker and 

Okapuu (1982) confirmed this behaviour and identified that the increase in losses is less rapid for 

aspect ratios less than two. The following equations were established to predict secondary loss. 

 

\+ 3º»_ = 0.033412345 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
�   Eq. 2-35 
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Where, 

12345 = À �y�.�¨
�yx E⁄x E⁄  1M� ℎ '⁄ ≤ 2�x E⁄                            1M� ℎ '⁄ > 2    Eq. 2-36 

As with profile losses compressibility is also a factor when considering endwall losses. To account for 

this the correction factor is defined in terms of the factor for profile loss and aspect ratio. 

�+ = 1 − ���1 − �,�      Eq. 2-37 

�� may be deduced from the following chart. 

 

 

Fig. 2-25 Mach number correction factor ��for the secondary loss coefficient (Kacker and Okapuu 

1982) 

The final expression for secondary loss is shown below. 

\+ = 1.2\+ 3º»_�+     Eq. 2-38 

2.6.3.4 Trailing Edge Loss 

Kacker and Okapuu also propose an expression for the trailing edge loss in terms of the trailing edge 

thickness and throat opening. The correlation shown in Figure 2-26 is based on a large quantity of 

published and in-house cascade data. 
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Fig. 2-26 Trailing edge loss (energy) coefficient correlated against the ratio of trailing edge thickness 

to throat opening (Kacker and Okapuu 1982)  

Here the loss is expressed in terms of an energy loss coefficient. As is noticeable from Figure 2-26 

two characteristics exist for axial entry nozzles and impulse blades. Kacker and Okapuu (1982) 

provide a method to interpolate between these curves for any combination of angles shown below, 

this is similar to the method used by Ainley and Mathieson (1951) for profile losses in equation 2-16. 

jp�b�� = jp�b�� 2�
��5 + ��
�!�� ©jp�b�� 2�!��5 − jp�b�� 2�
��5«   Eq. 2-39 

The trailing edge loss expressed as an energy coefficient may be converted to a pressure loss 

coefficient using the formula below. 

\�b� =  ��y��
! º!!Á 

�ÂÃ¾Ä¾! y�Å¢� ���
y�
�y��¿��
! º!!�� ���
     Eq. 2-40 

2.6.3.5 Tip Clearance Loss 

Tip clearance losses are a major source of loss in a turbomachine, Kacker and Okapuu (1982) 

presented an iterative method to decipher the loss due to tip clearance for unshrouded blades. First 

the turbine efficiency is calculated with zero tip clearance then the efficiency loss due to tip 

clearance is estimated using the formula below and increasing the rotor loss coefficient until the 

process converges on efficiency, while recalculating the velocity triangles and other loss coefficients. 

ji = 0.93 � 4¾Æ�4ÇÄÈÉ� � �xEP+�!� iaa,�jJ     Eq. 2-41 
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2.6.4 Craig and Cox Loss Model 

In 1971 Craig and Cox presented a method for the prediction of losses in an axial turbine stage. The 

proposed method was expanded for use with steam and gas turbines accounting for the effects of 

aspect ratio and blade height which previous published methods of performance estimation 

neglected. The presented loss correlations are derived from linear cascade test data, the proposed 

method gave an accuracy of approximately +/- 1.25%. Craig and Cox categorised turbine stage losses 

into two groups shown below. 

2.6.4.1 Total Loss 

 

Table 1 Breakdown of losses in the Craig and Cox loss system (Craig and Cox 1971). 

Craig and Cox (1971) evaluate the Group 1 losses as loss factors based on relative blade inlet and 

outlet velocities. Whereas the Group 2 losses are evaluated as efficiency debits this being the 

simplest way they are derived from test data. Thus, Craig and Cox (1971) give the following formula 

for stage efficiency. 

ia = ÊPw8 )P 6 �  -u7)� ËÊPw8 )P 6 �  -u7)� Ë¿ÌwPt, � uP++6+ − ∑ :�M­� 2 011='=0r'Y ¬0#=A@  Eq. 2-42 

Where the Group 1 losses may be written approximately as, 

:�M­� 1 CM@@0@ =  �[, + [+ + [7�Ë _
!���ËÎ + �[, + [+ + [7 _!!Ê!!�w Ê!!���ËÎ   Eq. 2-43 

Based on over 100 cascade tests Craig and Cox (1971) established all losses are related on a basis of 

velocity coefficients and are dependent on Reynolds number, aspect ratio, blade angles and passage 

geometry, pitch to back bone length ratio, Mach number and incidence. The various loss correlations 

presented by Craig and Cox will now be examined. 

2.6.4.2 Profile Loss 

Craig and Cox (1971) proposed the following expression to calculate profile loss. 

[� = X,-L,wL,�L,a + �jX,�a + �jX,�+/6 + �jX,�>    Eq. 2-44 

Craig and Cox (1971) account for the effect of Reynolds number using the correlation shown in 

Figure 2-27. The method used is based on the blade opening rather than the chord or axial width, 

the impact of surface roughness is also included. 
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Fig. 2-27 Profile loss ratio against Reynolds number effect (Craig and Cox 1971) 

Craig and Cox (1971) describe the basic profile loss, the loss at or near the incidence where loss is at 

a minimum, using Figure 2-28 and Figure 2-29. Figure 2-28 is a lift parameter and Figure 2-29 is the 

basic loss parameter as a function of the modified lift parameter and contraction ratio. The contract 

ratio shown in Figure 2-30 represents the internal blade passage width ratio and is a function of the 

pitch to backbone length and the inlet and outlet relative flow angles. 

 

Fig. 2-28 Lift parameter (Craig and Cox 1971) 
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Fig. 2-29 Basic Profile loss (Craig and Cox 1971) 

 

Fig. 2-30 Contraction ratio for average profiles (Craig and Cox 1971) 
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Fig. 2-31 Trailing edge thickness losses (Craig and Cox 1971) 

The trailing edge loss parameter is described in Figure 2-31 and shows the loss parameter is a 

function of fluid outlet angle and trailing edge thickness to pitch ratio. The next parameter 

accounted for by Craig and Cox (1971) to estimate profile loss considers the impact of incidence loss 

at off design conditions. The incidence loss can become significant when incidences are not held at 

the optimum level. A correction for incidence is presented in Fig. 2-32. 

 

 

Fig. 2-32 Incidence losses (Craig and Cox 1971) 
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The correction given is similar to that given by Ainley and Mathieson (1951) however the negative 

stalling incidence and minimum loss incidence included in the incidence ratio are dealt with 

separately to the positive stalling incidence. The incidence parameters are determined from the 

following formulae. For the positive stalling incidence for c ≤ 90, 

= + @ABCC =  2= + @ABCC5-7+�E + 2j= + @ABCC5+/- + 2j= + @ABCC5_4  Eq. 2-45 

Where 2= + @ABCC5-7+�E is given by Fig. 2-32, 2j= + @ABCC5+/- by Fig. 2-33 and 2j= + @ABCC5_4 by Fig. 

2-34. 

 

Fig. 2-33 Basic positive stalling incidence 2= + @ABCC5-7+�E (Craig and Cox 1971) 

 

Fig. 2-34 Incidence correction for positive stalling incidences (Craig and Cox 1971) 

 



58 

 

 

Fig. 2-35 Incidence correction for positive stalling incidences (Craig and Cox 1971) 

Craig and Cox (1971) provided a correlation for the negative stalling incidence at c ≤ 90 and a 

different correlation when c > 90 for positive stalling incidence. 

= − @ABCC =  2= − @ABCC5-7+�E + 2j= − @ABCC5+/-    Eq. 2-46 

Where 2= − @ABCC5-7+�E is given by Fig. 2-35 and 2j= − @ABCC5+/- by Fig. 2-36. 

 = + @ABCC =  2= + @ABCC5-7+�E + �1 − �yÏ�Ï�yÐÑÒ�
 P/+� × �2j= + @ABCC5+/- + 2j= + @ABCC5_4�         Eq. 2-47 

Where 2= + @ABCC5-7+�E is given by Fig. 2-37 and for negative stalling incidence, 

= − @ABCC =  2= − @ABCC5-7+�E + �1 − �yÏ�Ï�yÐÑÒ�
 P/+� × 2j= + @ABCC5+/-  Eq. 2-48 

Where 2= − @ABCC5-7+�E may also be deciphered from Fig. 2-38. 

 

 

Fig. 2-36 Basic negative stalling incidence (Craig and Cox 1971) 
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Fig. 2-37 Incidence correction (Craig and Cox 1971) 

 

Fig. 2-38 Basic stalling incidences for blade angles greater than 90 (Craig and Cox 1971) 

The minimum loss incidence may be established using the formula below. 

=>� = 2�¿+a7uu5¿Ó{2�y+a7uu5�¿Ó{      Eq. 2-49 

Where �� is given by Fig. 2-39. 
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Fig. 2-39 Minimum loss incidence-range ratio �� (Craig and Cox 1971) 

The final expressions in the Craig and Cox (1971) profile loss estimation are additive losses relating 

to the trailing edge and high Mach numbers at the blade outlet. The increments relating to Mach 

number are to account for conditions above the subsonic regime which the loss mechanism was 

developed at. The trailing edge loss increment is shown in Figure 2-31. The first additive loss relating 

to high Mach numbers refers to convergent profiles designed with a straight suction surface 

downstream of the throat, shown in Fig. 2-40. The second additive loss relating to high Mach 

numbers accounts for profiles with a pronounced convex suction surface downstream of the throat, 

shown in Fig. 2-41. 

 

Fig. 2-40 Mach number loss for convergent blading (Craig and Cox 1971) 
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Fig. 2-41 Blade back radius losses (Craig and Cox 1971) 

2.6.4.3 Secondary Loss 

Craig and Cox (1971) describe the secondary loss as consisting of two sources of loss, partly from 

true aerodynamic secondary loss and partly also from wall friction. Both effects are difficult to 

predict accurately due to inconsistencies relating to wall shape and interaction with clearance flows. 

The correlation proposed assumes that the secondary loss is approximately inversely proportional to 

the aspect ratio of the blading and in addition shows a Reynolds number effect similar to that 

exhibited by the basic profile loss. The overall secondary loss factor may be calculated by, 

[+ = 2L+5w2LK5x/-2X+5-     Eq. 2-50 

Where 2X+5- is given by Figure 2-42 and 2LK5x/- by Figure 2-43. 
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Fig. 2-42 Secondary loss – basic loss factor (Craig and Cox 1971) 

 

Fig. 2-43 Secondary loss – aspect ratio factor (Craig and Cox 1971) 
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2.6.4.4 Tip Clearance Loss 

Craig and Cox (1971) account for tip clearance loss using an efficiency debit which is given by the 

following correlation for shrouded turbine blades, where �8 is given by Figure 2-44. Craig and Cox 

state for unshrouded blades the methodology presented by Ainley and Mathieson (1951) is 

representative when axial velocity remains approximately constant across the blade row and relative 

velocities are well below the sonic value. 

ji8 = �8 3Ô3Õ × i�,8      Eq. 2-51 

 

Fig. 2-44 Shrouded efficiency loss (Craig and Cox 1971) 

2.6.4.5 Annulus loss 

Craig and Cox (1971) also account for an annulus loss when there is an appreciable diffusion 

between two stages. The annulus wall loss may be obtained from Fig. 2-45 for controlled (solid lines) 

and uncontrolled expansion (dotted lines). 

 

Fig. 2-45 Annulus wall loss (Craig and Cox 1971) 
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2.6.4.6 Cavity Loss 

Craig and Cox (1971) include the cavity loss with the annulus loss coefficient. The cavity loss factor 

may be determined from Fig. 2-46 and is based on the geometry of the cavity. 

 

Fig. 2-46 Cavity loss (Craig and Cox 1971)  

 

2.6.4.7 Leakage Flow Through Glands 

Another contributor to loss in a turbine is as a result of leakage through glands. Craig and Cox (1971) 

give an approximation of the efficiency debit due to leakage flow through glands using the formula 

below, 

ji C0BJB90 =  � �ËÌ¿ �Ë� i-      Eq. 2-52 

Where � �ËÌ¿ �Ë� denotes the leakage fraction. 

2.6.4.8 Other Losses  

Other kinds of losses were also considered by Craig and Cox (1971) including lacing wire, wetness, 

disc windage and partial admission losses. These losses are considered as efficiency debits and are 

not taken into account in the overall cascade loss. These losses are also considered small when 

compared to the main sources of loss in a turbine. 

 

 



65 

 

2.6.5 Denton Loss Model 

Denton promotes a greater understanding of the physics involved with performance loss in 

turbomachines in his work, rather than relying on correlations derived from empirical data. Denton 

ultimately attributes efficiency loss to entropy generation and using the basic principles of 

thermodynamics establishes a methodology for predicting the various losses in turbomachines. 

There are many useful definitions of loss coefficient for individual blade rows (Brown 1972), for a 

turbine one of the more common definitions is in terms of stagnation pressure loss coefficient, 

\ = 2N�� − N��5/2N�� − N�5    Eq. 2-53 

Another loss coefficient definition is the energy or enthalpy loss coefficient defined below for a 

turbine, 

h = x!yx!|x�!yx!      Eq. 2-54 

However, Denton states these definitions are not adequate for machines with a rotating blade row 

where the relative stagnation pressure and enthalpy can change as a result of changes in radius 

without any implied loss of efficiency. Changes to isentropic efficiency occur as a result of heat 

transfer or thermodynamic irreversibility. For adiabatic flow entropy creation due to irreversibility is 

the main contributing factor to loss of efficiency. Denton concludes the only rational measure of loss 

in an adiabatic machine is entropy creation (Denton 1993). Another advantage identified by Denton 

in the use of entropy as a measure of loss in a turbine stage is unlike stagnation pressure, stagnation 

enthalpy or kinetic energy it is not dependent on whether the blade row is stationary or rotating.  

The entropy loss coefficient for turbine blades is defined below, 

h+ = �!�+x�!yx!     Eq. 2-55 

2.6.5.1 Boundary Layer Loss 

Denton (1993) attributes boundary layer entropy generation to viscous effects in the boundary layer 

and derives the following formula, from boundary layer theory, to calculate the total entropy 

creation in the boundary layer, 

RS = ∑ %+ Ö _×ØÙz� ¬2X %+⁄ 5���K       Eq. 2-56 

For conveniency Denton recommends accounting for the entropy production rate by using a 

dissipation coefficient, %). Full knowledge of the state of the boundary layer is required to calculate 

the dissipation coefficient precisely. The dissipation coefficient is defined by the formula below, 

%)  = �KSÚØÙÛz     Eq. 2-57 

Based on much experimental data some general results have been established relating to the 

magnitude of the dissipation coefficient for varying boundary layers (Schlichting 1966). It has been 

found for turbulent boundary layers the dissipation coefficient is much less dependent on the shape 
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of the boundary layer. Schlichting gives the following relationship for turbulent boundary layers with 1.2 < RℎB�0 �B'AM� < 2.0 and with 10� < (0Q < 10¨, 

%)  = 0.0056(0Qy�/·
     Eq. 2-58 

On comparison of the formula above (Equation 15) with the results of the Cebeci calculation (Denton 

1993), Figure 2-47, Denton recommends employing a dissipation coefficient of 0.002 for turbulent 

boundary layers. 

 

Fig. 2-47 Calculated dissipation coefficients for turbulent boundary layers (Denton 1993). 

Denton also stresses the importance of predicting the boundary layer transition due to the large 

difference in dissipation coefficient between laminar and turbulent boundary layers around this 

point (Denton 1993), shown in Figure 2-48. 
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Fig. 2-48 Dissipation coefficient for laminar and turbulent boundary layers (Denton 1993).  

It can also be discerned from equation 2-56 that the boundary layer loss is proportional to the cube 

of the velocity. The total entropy generation is then converted to an entropy loss coefficient by 

dividing the total entropy produced by the mass flow rate and a reference dynamic head using the 

formula below, 

h = �KS>S  �.¨ ÙÜ}Ý!       Eq. 2-59 

The formulae above are applicable for both stator and turbine where in the case of the stator the 

absolute velocity is used and for the turbine the relative velocity is used. 

2.6.5.2 Trailing Edge Loss 

Denton (1993) also attributes the losses at the trailing edge to viscous dissipation in the mixing out 

of the wake behind the trailing edge. Here the overall entropy generation can be calculated applying 

the equations of conservation of mass, energy and momentum to a control volume between the 

blade throat and some point downstream where the flow has returned to uniformity. The base 

pressure acting on the trailing edge is also included in the relationship. 

Denton adopts the following formula to estimate the trailing edge loss, 

h = ����.¨ Ø ÙÕ}! = _�ÞA0P ßàÐ �! + � QP ßàÐ �! + � á∗¿A0P ßàÐ �!��
    Eq. 2-60 

Denton (1993) gives the following correlation for the base pressure, typical values of %,- are in the 

range -0.1 to -0.2 according to the relationship below, 

%,- = �N- − Nw6*� �0.5oVw6*� �â      Eq. 2-61 
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2.6.5.3 Tip Leakage Loss 

Denton (1993) provides separate correlations for tip leakage losses depending on whether the blade 

row is shrouded or unshrouded. Entropy creation in tip leakage flows is mainly associated with the 

mixing of the leakage flow with the mainstream flow. 

For shrouded turbines the entropy creation is calculated using, 

h = 2 > >¥ �1 − ãäÒ �
ãäÒ �! @=r �c��     Eq. 2-62 

For unshrouded turbines the condition is more complex involving the formation of a jet interacting 

with the mainstream flow. To simplify the calculation process Denton suggests using the same 

velocity distribution as utilised to calculate the boundary layer loss, 

h = �_×8_x, ßàÐ �! Ö �Ù|Ù!���� �1 − Ù�Ù|� åæ1 − �Ù�Ù|��ç )è_     Eq. 2-63 

2.6.5.4 Endwall Loss 

Endwall loss also referred to as secondary loss is a major contributor to overall efficiency loss in 

turbines. Denton states endwall loss is difficult to understand and predict with virtually all previous 

prediction methods based on correlations of empirical data (Denton 1993). However, by adopting 

endwall boundary layer calculations, similar to those used to predict profile losses, Denton (1993) 

established the formula below to predict endwall entropy generation. 

RS = 0.25 Ö _×� �Ù|éyÙ�é��Ù|yÙ��_�� o�¬X      Eq. 2-64 

2.6.5.5 Shock Loss 

Denton (1993) also considers shock waves in turbines and their potential associated losses in 

transonic conditions. The formula below may be used to calculate the entropy creation due to shock. 

From this it can be seen that entropy creation roughly varies with the cube of 2�� − 15. 

j@ ≈ %/ �ë2ëy�5�2ë¿�5! 2�� − 15�     Eq. 2-65 
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2.7 Loss Model Accuracy 

Now the formulation of the more common methods of loss prediction in axial turbines has been 

established where available their correlation to experimental data of the time period will be 

summarised. Each author verifies their method against typical experimental turbine test data of the 

time period the method was presented, this gives an indication of the accuracy of the method and 

its suitability to predict design point turbine efficiency. 

 

2.7.1 Ainley Mathieson Loss Model 

The Ainley Mathieson turbine performance prediction method was compared to a variety of single 

and two stage turbines. All of the comparisons made were within +/- 2 percent in turbine efficiency 

at the turbine design point. Turbine capacity variance in turbine capacity compared to test data was 

+/- 3 percent.  

 

2.7.2 Dunham Came Loss Model 

The Dunham and Came loss model was verified against twenty five single stage gas turbines, these 

covered a wide range of designs and sizes. With cold air rig performance data available for each 

stage. The original Ainley Mathieson method predicted design point efficiencies to within +/- 3 

percent, the revised method proposed by Dunham and Came improved the correlation with test 

data bringing the majority of the examples to within +/- 2% (Dunham and Came 1970). 

           

Fig. 2-49 Comparison of design point efficiencies of 25 turbines (Dunham and Came 1970). 
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Dunham and Came (1970) also found their method improved efficiency prediction at choke 

conditions when compared to experimental data from a typical aircraft engine. However, the main 

improvement was found when considering low aspect ratio turbines and low reaction turbines 

where previously the prediction of secondary losses was inadequate. When comparing their 

calculated efficiencies to a turbine with mean aspect ratio of about unity efficiency prediction is 

improved significantly at design speed and 50 percent design speed.  

 

2.7.3 Kacker Okapuu Loss Model 

Kacker and Okapuu (1982) validated their loss model against the Smith chart, Figure 2-7, and 33 

turbines which included gas generator, automobile and thrust turbofan turbines. Kacker and Okapuu 

found that when comparing the Ainley and Mathieson loss system to the Smith chart while satisfying 

the change in efficiency with stage loading it struggled to replicate accurately the change with stage 

flow factor at values higher than 0.6. Kacker and Okapuu concluded that only compressibility and 

shock loss corrections to the profile loss and secondary loss can accurately replicate the Smith chart, 

with the shock loss correction mainly impacting turbine operation at higher stage flow factors and 

the acceleration correction influencing the overall efficiency level (Kacker and Okapuu 1982). As such 

Figures 2-21, 2-22, 2-23, 2-24 and 2-25 were determined iteratively to achieve correlation with the 

efficiency contours in Smith’s chart. Kacker and Okapuu (1982) produced a chart similar to that of 

Smith using their new loss system, Figure 2-50. The contours estimated using the Kacker and Okapuu 

method seem to display satisfactory correlation to the Smith chart. Quantitatively, the efficiency 

contours predicted by Kacker and Okapuu (1982) peak at a lower stage loading factor and extend to 

a higher stage flow factor. Nonetheless, the quantitative agreement was considered satisfactory by 

Kacker and Okapuu (1982) despite the unavoidable scatter of the data.  

 

Fig. 2-50 Turbine stage efficiency at zero tip leakage calculated by the Kacker and Okapuu method 

(Kacker and Okapuu 1982). 
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Kacker and Okapuu (1982) also tested their loss system against design point efficiencies from 33 

state of the art turbines of the time period. These ranged from a gas generator turbine of a small 

automobile to a low-pressure turbine of a thrust turbofan turbine. As can be seen from the charts 

depicted in Figure 2-51 the correlation between experimental and calculated data using the method 

developed by Kacker and Okapuu is within +/- 1.5 percent whereas the correlation using the AMDC 

loss system is not desirable (Kacker and Okapuu 1982). 

         

Fig. 2-51 Comparison of predicted efficiency with experimental efficiency of 33 turbines (Kacker and 

Okapuu 1982). 

 

2.7.4 Craig and Cox Loss Model 

Craig and Cox (1971) validated their loss system against a large number of turbines for which 

suitable experimental data was available. During their investigation Craig and Cox found no 

systematic or major discrepancies during comparison with over fifty machines with most calculated 

values of turbine efficiency being significantly within +/- 1.4 percent. Figure 2-52 presents their 

findings of the efficiency difference between measured and calculated values plotted against the 

output of each machine.  
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Fig. 2-52 Comparison of predicted and measured test efficiencies (Craig and Cox 1971). 

2.7.5 Discussion 

Reviewing each authors validation of their loss model it is clear when compared to design point 

efficiencies each loss system seems to perform relatively well. Only Dunham and Came (1970) 

present a comparison at half and 85 percent turbine design speed with a favourable result. 

Turbocharger turbines are required to run at off design conditions for prolonged periods depending 

on the turbocharger application. Whether it be a marine application where low load operation is 

expected for manoeuvring in port or a peaking power plant application which continuously cycles 

load. Therefore, accurate efficiency prediction over a wide range of operating conditions is required. 
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Chapter 3 

 

Mean Line Performance Prediction 

Tool 

 

3.1 Introduction 

In this chapter the mean line performance prediction program will be examined in more detail. The 

program chosen to construct the mean line tool was Microsoft Excel where the inbuilt programming 

language, Excel VBA, was used to create the mathematical model.  The author has extensive 

programming experience in Excel VBA having written a number of programmes related to 

turbocharger test data analysis, engine data analysis and also a chart digitiser program which was 

used to extract the data for the loss correlations described in the previous chapter. Microsoft Excel 

was also chosen due to its accessibility and well-known interface; Excel also provides a significant 

number of inbuilt tools for data analysis and manipulation which may prove useful in the 

development of the program in the future. 
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3.2 Mean Line Tool Structure 

To begin structuring the mean line tool in Excel VBA it was first necessary to decode the original 

Fortran program. Most of the calculation steps were identifiable by following the performance 

prediction method described by Ainley and Mathieson (1951) which the original code was based on. 

However, no informative text existed on the structure of the program and there were no details on 

some of the differences between the method described by Ainley and Mathieson and the code used 

by Napier Turbochargers. As the code has undergone various modifications by past employees of 

Napier Turbochargers without any documentation some of the modifications to the code have been 

interpreted as improvements to maintain the accuracy of the efficiency prediction compared to 

modern blade designs as such they have been carried over and applied to the chosen loss 

correlations. For example, one of the main limitations of the original code is it uses correlations 

which are based on turbine designs from when the method was first conceived. The Ainley and 

Mathieson method was first conceived in 1951 since then turbine blade design has evolved including 

blade leading edge design, with modern designs employing a more elliptical shape. To account for 

this change in the original code the leading-edge blade angle is multiplied by a factor of 0.3. Other 

unexplained modifications include the limiting of the range of incidence to stalling incidence ratio 

when calculating the profile loss incidence correction factor, Figure 2-18, and the blade outlet angle 

is divided by a factor of 100 when deciphering the profile loss coefficient, Figure 2-13 and 2-14.  

Eventually most of the code was unravelled and translated into Excel VBA, Figure 3-3 shows the 

basic structure of the calculation process in the new mean line tool.  

The tool begins by importing the input data and initiating the speed increment at the lowest speed 

outlined in the input file. The turbine mass flow is then imposed, the first flow step to be computed 

is the design flow, the program then increments the stage row number calculating the loss 

coefficients and operating conditions for the stator and turbine. The loss coefficient is modified 

based on the outlet conditions from each row, the loss coefficient and outlet condition calculations 

are iterated until the loss coefficient converges. Once converged the choking mass flow is 

established and imposed and the row increment is repeated calculating the loss coefficient and 

operating conditions for the stator and turbine. Thereafter the flow is incremented using a 

correlation from the original code based on the choking mass flow and minimum mass flow. Once all 

of the speeds have been processed a .txt file is output containing the turbine map parameters, non-

dimensional speed, swallowing capacity, turbine pressure ratio and total to static efficiency as 

outlined by the standard SAE International (1995). 
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3.3 Mean line Tool Inputs 

Each set of geometry or input file is extracted from blade profile data and includes parameters for 

both blade rows of the turbocharger. The parameters required for each blade row are shown below. 

Symbol Code Input File 

- Number of cases 

- Title 

- Number of blade rows M Throat width 0 Back surface radius of curvature J Tip clearance 

- Tip clearance turbine factor 

-  Unshrouded turbine factor 

- Throat area @ Pitch d� Leading Edge blade angle ' True chord A Max. thickness A0 Trailing edge thickness �x Hub radii �a Tip radii 

- Cp(gas), N/rtT(design), MrtT/P(design), T01 

- MrtT/P(min), Max. Mach 

- Pressure recovery of TOC, Efficiency debit 

- Number of N/rtT curves required 

 

Table 2 Input parameters for mean line tool. 

The inputs for the program include parameters relating to the geometry of the turbine stage and the 

stator and rotor arrangement as well as a number of parameters defining design conditions and 

stage constants. The following section describes the non-geometric parameters. The number of 

blade rows for a turbocharger will typically be two. The tip clearance factor is defined in section 

2.6.1.4 and depends on whether the stage is shrouded or unshrouded, there is also a factor included 

in the Ainley and Mathieson (1951) method to account for radial tip clearance when calculating 

blade flow outlet angle, for unshrouded turbines this figure is 1.35 (Ainley and Mathieson 1951). The 

following boundary conditions are included in the input file, the specific heat capacity, %,, of the gas 

entering the stage is 1115.3 J/kg C° and the stage total inlet temperature, T01, is 763 Kelvin. The 

following non dimensional parameters are used to describe the design speed N/√T(design), 

swallowing capacity M√T/P(design), and minimum swallowing capacity M√T/P(min) these 

parameters are dictated by the particular application the turbine is intended for in order to achieve 

optimum performance. The maximum Mach number is also included in the input and is typically set 

at 1.6. In order to account for the pressure recovery which occurs in the exhaust diffuser a factor is 

included which has been derived from CFD and test data. There is also a constant efficiency debit to 

account for lacing wire loss and non-swirl related losses which for simplicity is subtracted from the 
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turbine efficiency. Finally, the number of speed lines required is declared. The following sketches 

provide a definition of the geometric parameters included in the input file. 

 

Fig. 3-1 Turbine blade nomenclature (Ainley and Mathieson 1951) 

The throat area of the stator and turbine blade is calculated at the throat opening. The calculation of 

the back-surface radius of curvature for each blade row is derived below. 

 

Fig. 3-2 Turbine blade nomenclature (Ainley and Mathieson 1951) 

�ì� = 0 =  í�/8Z     Eq. 3-1  
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*This is the swallowing capacity where the turbine stage reaches choke conditions.  

Fig. 3-3 Basic structure of the calculation process in the new mean line tool. 
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3.3 Loss Correlation Implementation 

In this section the implementation of the loss models to the chosen program are described. As the 

chosen loss mechanisms include various correlations the translation of these into a digital format 

and integration into the math code will be covered first. 

In order to retrieve the raw data from the correlations a digitization tool developed in Excel VBA 

code using Microsoft Excel by the author during his employment at Napier Turbochargers was used. 

The program allows you to import a picture file, set the axis and extract the required data, a 

screenshot of the program is shown in Figure 3-4. 

 

Fig. 3-4 Screenshot of Chart digitization program developed by the author.  

This tool has been tested extensively in the Napier Turbochargers Engineering department and is 

regularly utilised for tasks such as the construction of compressor characteristics from rig data and 

the retrieval of data from published material. Once the raw data has been retrieved it is tabulated 

and stored in Microsoft Excel where necessary the data is referenced by the code using double 

interpolation. 

Where double interpolation was not appropriate, for example the correlations used by Denton for 

profile loss and tip clearance loss (Denton 1993) where there are three variables x, y, z, and x, y are 

independent variables and z is dependent on both, bi-linear interpolation was employed. The data 

presented by Denton (1993) was digitised using the digitization tool and used to construct a matrix 

of data which can be stored in Microsoft Excel, bi-linear interpolation was then used to interpolate 

within this grid to find the desired value of z at the given x and y values. The formula for bi-linear 

interpolation is shown in Eq. 3-2, the grid of values and corresponding contour chart used in the 

code for Denton’s correlation relating to profile loss is shown in Appendix B. 
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12X, Y5 ≈ �2$!y$
52î!yî
5 �Z��2X� − X52Y� − Y5 + Z��2X − X�52Y� − Y5 + Z��2X� − X52Y − Y�5 +Z��2X − X�52Y − Y�5�         Eq. 3-2 

 

3.3.1 Kacker and Okapuu  

The loss models proposed by Kacker and Okapuu have been translated into code with minimal 

modification. As the Kacker and Okapu loss model is a development of the Ainley and Mathieson 

technique the modifications included in the original code have been carried over to the Kacker and 

Okapuu model. The Kacker and Okapuu routine does include an extra iteration in order to decipher 

the tip clearance efficiency debit as described in section 2.6.3.5. The VBA code relating to the Kacker 

and Okapuu loss model is included in Appendix C. 

3.3.2 Craig and Cox 

For the Craig and Cox method the losses relating to annulus, cavity and gland leakage loss have been 

left out as they do not apply to an axial turbine in a turbocharger. Also, as there are no 

productionised shrouded turbines in the Napier product range only the calculations relating to 

unshrouded turbines have been considered. The Craig and Cox method also requires the blade 

camber line length or backbone length, the following parabola arc length formula will be adopted to 

give an estimate of this length. 

s =  �� √#� + 16. B� + -!°.7 ln æµ.7¿√-!¿�·.7!- ç     Eq. 3-3 

Where, 

 

Fig.3-5 Parabola arc length 

The correlations used by the Craig and Cox (1971) method were digitised using the digitization tool 

and are stored in the mean line program for reference when calculating the loss coefficients. The 

VBA code relating to the Craig and Cox loss model is included in Appendix C. 
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3.3.3 Denton 

The Denton loss mechanism has been simplified for implementation to the mathematical model. The 

equations set out previously relating to Denton’s method require complete knowledge of the 

velocity distribution at both suction and pressure sides of the turbine stage. As this knowledge is 

often not always available Denton proposed a simplified method to estimate turbine performance. 

This method concentrates on the profile, trailing edge, secondary and tip clearance losses. The VBA 

code relating to the Denton loss model is included in Appendix C. 

3.3.3.1 Profile Loss 

Denton adapts the semi-analytical method presented by Balje and Binsley (1968). Which is based on 

an approximate blade surface velocity distribution and a simple turbulent boundary layer calculation 

to estimate the trailing edge momentum thicknesses. This method is not dependent on 

experimental conditions, only the mean level is adjusted to agree with a range of test data. Denton 

uses a similar method applying the theories of entropy generation in boundary layers to calculate 

profile loss coefficients at optimum pitch-to-chord ratios. 

 

Fig. 3-6 Generic surface velocity distribution for a turbine (Denton 1990). 

A typical surface velocity distribution used by Denton in his work is shown in Fig 3-6. By equating the 

blade load to the momentum change it is possible to predict the entropy creation and energy loss 

coefficients from equation 2-56. The chart in Fig. 3-7 is generated by systematically varying the blade 

load. As described initially this is translated into the mathematical model as a matrix deciphering the 

profile loss at given inlet and outlet angles using bi-linear interpolation. 
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Fig. 3-7 Predicted profile loss (%) of Turbine blades at optimum pitch to chord ratios (Denton 1993). 

3.3.3.2 Trailing Edge Loss 

The calculation of the entropy generation due to mixing losses at the trailing edge requires the 

formulation of the momentum and displacement thicknesses of the boundary layer. For the 

purposes of this investigation, it was deemed acceptable to simplify the calculation of these 

parameters by considering the momentum and displacement thicknesses of a flat plate at turbulent 

conditions. Firstly, the Reynolds number was established. 

(0YrMC¬@ r­�#0� =  =r0�A=B 1M�'0 / 1�='A=Mr 1M�'0 =  oVs/µ   Eq. 3-4 

The relationships for a flat plate at turbulent conditions were used to calculate the displacement and 

momentum thicknesses. 

3.3.3.3 Secondary Loss 

It is suggested by Denton that the Dunham and Came (1970) method of calculating endwall losses 

remains the most satisfactory. This is an extension of the method developed by Ainley and 

Mathieson (1951) enabling different users to apply correction factors to suit their own needs based 

on test data. Based on a large number of comparisons with test data Denton uses a modification of 

this applying a factor of 0.375. 

\+ = 0.375 ∗ 0.0334 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
�    Eq. 3-5 

3.3.3.4 Tip clearance loss 

Tip leakage loss provides one of the main sources of loss in turbines. Denton (1993) provides two 

correlations for shrouded and unshrouded blades. For unshrouded blades Denton (1993) uses simple 

theoretical methods to produce the correlation shown in Fig 4-6 assuming a tip clearance of 1% on 

height ratio.  
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Fig. 3-8 Tip leakage loss coefficient for unshrouded blades: contours in percent exist dynamic head 

per 1 percent clearance/height (Denton 1993). 
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Chapter 4 

 

CFD and Results Comparison 

 

4.1 Introduction 

In order to assess the suitability of the chosen loss correlations the results gained from the mean line 

performance prediction method and loss mechanisms will be compared to CFD data. In this chapter 

an overview of the chosen CFD program will be outlined including descriptions of the main aspects 

of the CFD code and diagrams of a representative mesh used to simulate the selected turbine 

geometries. Then the comparison and analysis of the results obtained using the mean line prediction 

method and the CFD data for the selected turbine geometries will be presented. Each geometry will 

be simulated at various turbine speeds and mass flows to gain an understanding of how the loss 

mechanisms perform over a wide range of operating conditions. Typically, a turbine map is produced 

by computing a range of speeds however, rather than analysing the entire map at once the following 

analysis will concentrate on low speed, design speed and high speed conditions. The geometries 

selected for the test analysis are taken from the current Napier product range and represent the 

current standard and design philosophy of turbine blade. As Napier Turbochargers would rather not 

publicise the performance and geometries of their turbines all turbine efficiencies will be normalised 

using the maximum efficiency and only some of the important geometric ratios will be detailed. The 

individual loss mechanisms of each loss model will also be analysed and discussed. Finally, a 

summary of the results and comparisons will be included at the end of this chapter to assess each 

loss models suitability regarding efficiency prediction.   
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 4.2 MULTALL CFD Code 

Due to the lack of availability of turbine test data at the required operating conditions it was decided 

a CFD program will be used to validate the chosen loss mechanisms. This is mainly a result of Napier 

Turbochargers not having access to a dedicated turbine test rig to enable the testing of a given 

turbine at the full range of velocity ratio. The chosen CFD program is MULTALL, which was developed 

by Prof. John Denton at the Whittle Lab, Cambridge UK. Napier Turbochargers have accumulated 

extensive experience with MULTALL which has been used in the Aerodynamics department for 

turbine analysis for a number of years. A computer of suitable performance based on campus at The 

University of Sheffield was enlisted to run MULTALL remotely, the computer includes a Zenon 

processor, with 12 cores and was built in 2014. As a number of constant turbine speed lines were 

required with a suitable number of points to achieve a meaningful efficiency characteristic it was 

imperative the chosen computer was able to run uninterrupted. 

MULTALL is a 3D multistage turbomachinery flow calculation for steady flows. The version of 

MULTALL used by Napier Turbochargers and for this investigation, MULTALL-09, uses the SCREE 

solution algorithm. The SCREE algorithm is a second order method which is extremely simple and 

very fast. The code is based on an explicit time marching finite method for solving the N-S equations 

(Denton 2017). Each computed time derivative is stored and utilised in the next time step.  The 

primary flow variables integrated over a time step for a finite volume cell can be written, 

j� = �aÙPu ∑ �C­X0@_6uu*7E6+     Eq. 4-1 

Where F is any one of the conserved variables (F = ρ, ρE, ρV$, ρVw or ρrVa). j� is calculated for every 

conserved variable on every time step. The value of dF/dt from the previous time step is combined 

with the current value in order to extrapolate the value of dF/dt to the end of the time step, and we 

use the extrapolated values to update the time step, 

� ¿� = � + j�, �ℎ0�0 j� = æ2 �ñÓña� − �ñÓña� y�ç jA                          Eq. 4-2 

This method was found to be stable and very robust for CFL numbers up to approximately 0.5 

(Denton 2017). The SCREE algorithm only requires a single computation of the fluxes and update of 

the variables for each time step and is therefore very simplistic. Also, the method works at extremely 

low Mach numbers so incompressible flow can be computed (Denton 2002). 

The mesh in MULTALL is defined using pitchwise, streamwise and quasi-orthogonal grid lines. This 

type of grid simplifies generation, the application of boundary conditions and modelling of mixing 

planes. The grid lines should be closely spaced around the leading edge where fluid properties are 

changing rapidly. A body force field and a fine grid may be applied to the trailing edge to force the 

flow to separate (Denton 2009). Figure 4-1 shows a blade to blade view of a representative mesh 

used in MULTALL to simulate the chosen blade geometries. Figure 4-2 shows the meridional view of 

the same mesh. 
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Fig. 4-1 Blade to blade view of grid on a streamwise surface from MULTALL 

 

Fig. 4-2 Meridional view of grid from MULTALL 

The mixing plane model used in MULTALL-09 has been developed over a number of years (Denton 

2017). The aim of the mixing plane model is to allow instantaneous mixing out at a plane rather than 

downstream of the blade row. Static pressure and entropy will increase across the mixing plane to 

replicate a real mixing process. An improved version of the “flux extrapolation” model is used in the 

present code (Denton 1990). Figure 4-3 gives a visual representation of the method. 
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Fig. 4-3 Mixing plane treatment (Denton 2017). 

At all spanwise points there are two equivalent pitchwise gridlines, labelled Jmix and Jmix+1, the 

flow on both these lines is pitchwise uniform. A one-dimensional time marching method is used to 

pass information between Jmix and Jmix+1 to update the pitchwise uniform variables. This 

guarantees the flow on the two equivalent lines match when the solution is converged, and the flow 

is mixed out (Denton 1990). The treatment of the upstream face may be summarized by the 

following equation, 

�sU[Î>�$ = �sU[7/Ë,Î>�$ + �6$a��sU[Î>�$y� − �sU[7/Ë,Î>�$y��  Eq. 4-3 

The total flux across the mixing plane is not affected by the average value of the extrapolated flux 

however it causes only a gradual decay of pitchwise non uniformity in the cells adjacent to the 

mixing plane rather than a sudden removal which would cause an upstream disturbance in the flow. 

The downstream of the mixing plane will have pitchwise uniform relative stagnation enthalpy and 

entropy but the flow direction and static pressure must not be pitchwise uniform. The mixed out 

entropy and relative stagnation temperature from the mixing plane with the calculated static 

pressure is used to calculate an isentropic velocity and density at Jmix+2. The flow direction at 

Jmix+2 is extrapolated and combined with the isentropic velocity to give the velocity components, 

deviations in these are reduced to ensure pitchwise uniformity of the entropy and relative 

stagnation enthalpy entering the downstream row. 

The viscous model in MULTALL-09 is a body force model, where body forces are used to solve the 

Navier-Stokes equations. The body forces are obtained from a thin shear layer approximation to the 

Navier stokes equations, the model assumes that viscous normal stresses and viscous stresses on the 

quasi-orthogonal faces of the elements can be neglected (Denton 2009). CPU time is greatly reduced 

using the body force method as the viscous terms are calculated every five time steps. The wall 
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shear stresses are calculated using wall functions which use curve fit to the log law for equilibrium 

boundary layers. 

Denton (2009) strongly recommends that a cusp is used at the trailing edge of the blade and as such 

a cusp generation method is included in MULTALL-09. The simulations carried out using MULTALL-09 

use the default cusp at the trailing edge. 

Tip leakage flows are accounted for in MULTALL-09 using the pinched tip model where the blade is 

thinned towards the tip and periodicity is applied across the tip gap. 

 

4.2.1 CFD Mesh Study 

A mesh study was performed to check the optimum mesh was being used in MULTALL. The current 

mesh size adopted by Napier Turbochargers for MULTALL was tested at -50%, -25%, +25% and +50% 

mesh density. The chart in Figure 4-3 shows the findings. The turbine efficiency has been removed 

from the y axis however the increment on the y axis is 0.2% efficiency. The findings show a very 

small variance in turbine efficiency between the mesh densities tested. 

 

Fig. 4-4 CFD mesh study carried out at -50%, -25%, +25% and +50% mesh density using geometry 

one. 

 

4.3 MULTALL CFD Validation 

The MULTALL CFD code has been validated internally by Napier Turbochargers using the MT1 

turbine DERA experimental data. The MT1 turbine stage has undergone extensive investigation at 

the Isentropic Light Piston Facility at DERA, Pyestock, Hilditch et al (1994) reports the installation of 

the facility. Napier Turbochargers had access to this data while they were owned by Siemens who 

were partners in the turbine performance investigations carried out using the MT1 turbine. Napier 

Turbochargers became a limited company in 2008, and therefore were no longer under ownership 
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by Siemens. Unfortunately, this meant Napier Turbochargers no longer had access to the reports 

detailing summaries of the measurements gained at the DERA facility. As these reports are not in the 

public domain and are under restricted access the results of the validation cannot be included here. 

However, the investigations carried out by Napier Turbochargers revealed MULTALL showed good 

agreement to the MT1 data and also highlighted some weaknesses in the CFD code which required 

attention. Further work was carried out using MULTALL in order to calibrate the CFD code against 

the MT1 data including investigations relating to mesh density and trailing edge body forces. 

 

4.4 MULTALL Boundary Conditions 

In order to achieve a complete speed line with an appropriate distribution of efficiency, the 

following boundary conditions were used to simulate the selected turbine geometries in MULTALL at 

the rotational speeds corresponding to the mean line tool input files. An example of the MULTALL 

input file used during the CFD simulations, without the blade geometry, is included in Appendix A, 

detailing the additional parameters that were used for the simulations. An overview of the input file 

can be found in the MULTALL manual Denton (2009).  

P01 T01 Pexit 

bar  K bar 

1.5 763 1.0 

2.0 763 1.0 

2.5 763 1.0 

3.0  763 1.0 

4.0 763 1.0 

4.5 763 1.0 

 

Table 3 MULTALL boundary conditions  

 

4.5 Results Comparison and Analysis 

The following section concentrates on the comparison of the turbine efficiency gained from the 

mean line method of turbine efficiency prediction combined with the chosen loss methods described 

previously and CFD MUTALL data. The losses are analysed separating the stator and rotor total loss 

coefficients initially and then the total losses are broken down further into individual losses where 

the characteristics of each loss are analysed. Only the rotor losses will be analysed in detail however 

if the individual stator losses are of intertest they will be included also. The analysis of the first 

geometry will be examined in greater detail and will be referenced for the second and third 

geometry where appropriate in order to avoid repetition. The analysis of the third geometry will 

comprise of a summary as the trends are expected to be close to that of the second geometry. 

The overall turbine efficiency of a turbocharger should include the pressure recovery which takes 

place in the turbine exhaust diffuser, a typical axial turbine turbocharger arrangement is pictured in 

Figure 4-5 showing the exhaust diffuser. A casing recovery factor is included in the original code 

which accounts for this pressure recovery however, in order to gain a direct comparison when 
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comparing the model results to the proposed CFD performance data the pressure recovery factor 

has been set to zero.  

 

Fig. 4-5 Typical Napier Turbocharger axial turbine arrangement. 

Another factor which is often accounted for in the turbine efficiency, which is included in the SAE 

turbine map standard (SAE International 1995), are mechanical losses. Again, in order to achieve a 

direct comparison between performance data the mechanical losses will be omitted from any 

analysis.  The lacing wire loss and non-swirl related losses are accounted for by a constant efficiency 

debit for simplicity which will be subtracted from both sets of performance results.     

 

4.5.1 Geometry for Simulation 

The important geometric ratios of the chosen turbines stages to be analysed are shown in Table 4. 

The chosen stages are taken from the existing Napier turbochargers turbocharger portfolio. 

Geometry 2 and 3 are taken from one of the latest turbochargers and have a higher aspect ratio 

compared to Geometry 1. The blade design philosophy applied to these turbines was intended to 

maximise efficiency by increasing the trailing edge area by lengthening the turbine blade, this 

reduces the absolute-frame outlet velocity reducing outlet Mach numbers and in turn minimising 

losses.  Geometry 3 is the largest of the turbines in terms of swallowing capacity and has the highest 

number of blades. 

  Geometry 1 Geometry 2 Geometry 3 

Geometric Ratio Stator Turbine Stator Turbine Stator Turbine 

Pitch to Chord Ratio (s/c) 0.84 0.72 0.73 0.78 0.76 0.64 

Aspect Ratio (H/c) 1.09 2.05 0.74 2.38 1.03 2.26 

Trailing Edge to Throat Area Ratio 0.08 0.03 0.10 0.04 0.05 0.03 

Reynolds number range 25000 - 190000 25000 - 190000 30000 - 320000 

 

Table 4 Important geometric ratios of the turbine stage geometries to be investigated. 
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4.5.2 Geometry 1 

The first turbine stage to be analysed is taken from a current productionised Napier turbocharger. 

The following table shows the important geometric ratios. 

Geometric Ratio Stator Turbine 

Pitch to Chord Ratio 2@/'5 0.84 0.72 

Aspect Ratio 2</'5 1.09 2.05 

Trailing Edge to Throat Area Ratio 0.08 0.03 

 

Table 5 Important geometric factors relating to the second turbine stage geometry to be 

investigated. 

Figure 4-6 shows the normalised total to static efficiency at the low-speed condition retrieved using 

the chosen loss models compared to MULTALL data at the non-dimensional speed 593 ���/√�. It 

is clear to see that the Kacker and Okapuu method shows good correlation to the MULTALL data, 

with the Craig and Cox and AMDC efficiency characteristics showing optimistic efficiency 

characteristics compared to MULTALL. The Denton efficiency characteristic however appears to 

underestimate the loss coefficients resulting in an overestimated efficiency characteristic. 

 

Fig. 4-6 Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of 
	
��
 =593 ���/√�. 

As anticipated observing Figure 4-7 and Figure 4-8 it is clear that the Denton loss mechanism 

predicts the lowest losses which results in the highest efficiency. Also, as anticipated the stator loss 

coefficient is reasonably constant for all the loss mechanisms.  
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Looking at the loss coefficients in more detail it appears the profile losses in the Denton method for 

the stator and the turbine are grossly under predicted compared to the other loss mechanisms at 

this rotor speed. 

 

Fig. 4-7 Stator total loss coefficient 
	
��
 = 593 ���/√� geometry 1. 

 

Fig. 4-8 Turbine total loss coefficient 
	
��
 = 593 ���/√� geometry 1. 

 



92 

 

 

Fig. 4-9 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 593 ���/√� geometry 1. 

Figure 4-9 shows a breakdown of the losses for the Kacker and Okapuu loss model in the turbine 

plotted against blade incidence. Profile loss is lowest close to zero incidence, as incidence loss 

deviates from zero profile loss will increase. This is due to the correlation in the loss mechanism used 

to correct for off-design conditions. The off-design correlation for varying incidence in the Kacker 

and Okapuu method is taken from the Ainley and Mathieson method and is based on the ratio of 

incidence and stalling incidence. The stalling incidence is based on pitch to chord ratio and the ratio 

of blade inlet and outlet flow angles. The high incidence angle and large absolute ratio of blade inlet 

and outlet flow angle indicates possible separation of the flow on the blade surfaces and results in a 

small stalling incidence producing high profile losses at off-design conditions. The Kacker and 

Okapuu profile loss is lower compared to the original Ainley and Mathieson loss due to the 

application of a factor reducing the profile loss by a third.   

As already outlined secondary losses arise as a result of the boundary layers on the blade endwalls 

interacting with the main flow stream. Secondary losses also increase as incidence rises, in the 

Kacker and Okapuu mechanism secondary loss is mainly influenced by blade turning defined by the 

inlet and outlet flow angles, as incidence rises the difference between the inlet and outlet flow 

angles increases implying high turning of the flow in the blade passage and high blade loading. A 

subsonic Mach number correction factor is also included in the Kacker and Okapuu secondary loss 

term to account for compressibility which impacts the acceleration of flow next to the endwalls, the 

Mach number correction factor is based on outlet Mach number and the ratio of inlet and outlet 

Mach number. This would explain why the secondary loss reduces slightly at high incidence, as the 

turbine is operating with a negative degree of reaction under choke conditions where flow is 

decelerating through the turbine which decreases the Mach number correction factor reducing the 

secondary losses. 

The tip clearance losses are mainly a function of the tip clearance and blade loading. For unshrouded 

turbines the tip clearance losses are calculated iteratively using an efficiency debit which is 
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subtracted from the total-to-total efficiency as suggested by Kacker and Okapuu. Fig. 4-9 shows the 

trailing edge losses at this low-speed condition are very minimal. 

It can be seen the total loss increases more severely at positive incidence due to the increase in 

profile loss. 

 

Fig. 4-10 Breakdown of stator losses Craig and Cox 
	
��
 = 593 ���/√� geometry 1. 

A breakdown of the turbine losses calculated in the Craig and Cox method are shown in Fig. 4-10. 

The basic profile loss is derived from the pitch to backbone length, contraction ratio and lift 

parameter which are a function of the inlet and outlet flow angle. The profile loss will increase at the 

off-design points where incidence angle and stalling incidence angle deviate from the optimum 

values. Craig and Cox provide a correlation based on an incidence ratio where negative stalling 

incidence and minimum loss incidence are correlated independently of positive stalling incidence. 

The incidence correlations are based on blade inlet angle, outlet angle, ratio of pitch to backbone 

length and the contraction ratio describing the blade passage. If the difference in blade inlet and 

outlet angle is large, the ratio of pitch to backbone length is large and contraction ratio is low the 

flow passing through the blade passage will increase causing flow separation at the blade surfaces 

leading to increased off-design profile losses. 

For this speed condition the Craig and Cox model predicts the secondary losses are higher than the 

profile losses at high incidences. Craig and Cox use a blade loading parameter, Reynolds number 

factor and a basic secondary loss factor to predict secondary losses. The basic secondary loss factor 

is a function of the relative mean velocity and lift parameter. Therefore, a high lift parameter, mean 

velocity and aspect ratio means increased losses at high incidences. As incidence rises the difference 

between the inlet and outlet flow angles increases implying high turning of the flow in blade passage 

and high blade loading which lead to high losses. 

The tip clearance losses for unshrouded blades in the Craig and Cox model is taken from the Ainley 

and Mathieson method as recommended by the authors. As such the tip clearance loss is a function 
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of the tip clearance and blade loading, therefore as the difference between blade inlet and outlet 

flow angles increases blade loading will increase which will give rise to tip clearance losses. Again, 

the trailing edge losses are minimal at this low-speed condition. 

Comparing the total turbine loss coefficient to the other methods shows the Craig and Cox model 

predicts similar losses to Kacker and Okapuu and Ainley and Mathieson.      

 

Fig. 4-11 Breakdown of turbine losses Denton 
	
��
 = 593 ���/√� geometry 1. 

On analysing the Denton losses in greater detail, it is apparent they are a lot lower when compared 

to the other loss models at the low-speed condition. Figure 4-11 shows the tip clearance loss is the 

most significant and is higher than both the profile and secondary losses. Checking the inlet and 

outlet flow angles show that the inlet flow angle is outside the range of applicability for the Denton 

profile loss correlation, which ranges from -60 to 60. Thus, the inlet flow angle has been limited to 

the corresponding maximum value for the purposes of profile loss prediction in the loss mechanism.  

The tip clearance loss provides one of the main sources of loss in a turbine. The difference in 

pressure between the blade pressure and suction surfaces dictates the magnitude of tip leakage 

flow for an unshrouded blade. The correlation employed by Denton assumes a tip gap of 1% of the 

blade height ratio, this seems to give comparable results compared to the other loss mechanisms.  

Figure 4-12 shows the results at the design speed condition at a non-dimensional speed of 989 ���/√�. Here the efficiency characteristics of the Kacker and Okapuu and AMDC show good 

correlation to the MULTALL data whereas the Craig and Cox data appears to correlate at low 

pressure ratios and diverge at higher pressure ratios, again the Denton loss mechanism appears to 

overestimate the efficiency. It must be noted in this instance the efficiency prediction using Denton’s 

loss mechanism is substantially closer to the MULTALL reference when compared with the low-

speed data and the correlation at low turbine pressure ratios is improved. 
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Fig 4-12. Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of 	
��
 = 989 ���/√�. 

A similar trend may be identified in the design speed data as for the low-speed data when analysing 

the loss coefficients. Plotting the stator and rotor loss coefficients separately enables the 

identification of the underestimated Denton loss coefficients 

 

Fig. 4-13 Stator total loss coefficient 
	
��
 = 989 ���/√� geometry 1. 
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Fig. 4-14 Turbine total loss coefficient 
	
��
 = 989 ���/√� geometry 1. 

 

Fig. 4-15 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 989 ���/√� geometry 1. 

Figure 4-15 shows a breakdown of the turbine losses from the Kacker and Okapuu loss model. It is 

noticeable that the levels of loss have reduced and now the dominating loss in the rotor is the tip 

clearance loss. The profile loss has a similar trend to the loss from the low-speed condition in that 

the minimum loss occurs around zero incidence. As rotor speed increases the incidence angle 

reduces, the absolute ratio of blade inlet and outlet flow angle also reduces which lessens the 

possibility of flow separation on the blade surfaces. The variation in loss with incidence is also not as 

pronounced as the low-speed condition which is another result of the blade incidence reducing. 
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The secondary losses have also reduced in magnitude and increase steadily towards higher 

incidences as shown at the low-speed condition. 

From Figure 4-15 it is noticeable the tip clearance loss is constant; this is due to the efficiency debit 

iteration reaching its upper limit. Typically for the efficiency penalty due to tip clearance losses 

Napier would expect no more than approximately 1.5% this roughly corresponds to a tip clearance 

pressure loss of approximately 0.1. Concerning the trailing edge loss predictions have increased 

slightly compared to the low-speed condition. 

The total loss has reduced compared to the low-speed condition as a result of the profile and 

secondary losses decreasing. 

 

Fig. 4-16 Breakdown of turbine losses Craig and Cox 
	
��
 = 989 ���/√� geometry 1. 

A summary of the losses predicted by the Craig and Cox model are shown in Figure 4-16. The profile 

losses have decreased compared to the low-speed condition due to the reduction in incidence angle. 

The profile losses for the design speed condition resemble part of the trend from the low-speed 

condition with the indicated lowest profile loss occuring at a higher incidence angle thus the profile 

losses are still reducing above zero incidence. 

The secondary losses have reduced compared to the low-speed condition. As previously discussed, 

this is as a result of the increase in rotor speed reducing the blade inlet and outlet angle ratio 

resulting in less flow turning in the blade passage and lower blade loading. 

The tip clearance loss steadily increases towards higher incidence angles as it is mainly a function of 

tip clearance and blade load. As incidence increases, the inlet to outlet flow angle ratio increases 

which results in higher tip clearance loss. Regarding trailing edge loss there is a slight increase 

compared to the low-speed condition. 
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The total loss has reduced for a given mass flow compared to the low-speed condition resulting in a 

higher efficiency characteristic. 

The losses computed using the Denton loss prediction method are shown in Figure 4-17. As for the 

lower speed conditions the losses predicted using Denton’s methodology are low by comparison to 

the other methods. 

 

Fig. 4-17 Breakdown of turbine losses Denton 
	
��
 = 989 ���/√�  geometry 1. 

Figure 4-18 shows the final high-speed condition for geometry 1 at a non-dimensional speed of 1285 ���/√�. Kacker and Okapuu efficiency characteristic seems to show the best correlation to 

MULTALL data. With a similar trend seen for the Denton and Craig and Cox efficiency characteristics 

as previous turbine speeds. 
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Fig. 4-18. Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of 	
��
 = 1285 ���/√�. 

Plotting the loss coefficients for the stator and rotor reveals a similar state to the previous speed 

conditions. Similarly, to the lower and design speed conditions Denton predicts the lowest total loss 

coefficients.  

 

Fig. 4-19 Stator total loss coefficient 
	
��
 = 1285 ���/√� geometry 1. 
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Fig. 4-20 Turbine total loss coefficient 
	
��
 = 1285 ���/√� geometry 1. 

 

Fig. 4-21 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 1285 ���/√� geometry 1. 

Looking at the losses predicted by Kacker and Okapuu in more detail shows a similar trend to the 

design speed condition. Profile losses show the same trend as the design speed condition with losses 

beginning to increase at very low incidence angles due to the off-design incidence correction 

discussed previously. Blade inlet angle reduces, minimising blade incidence angles thus lowering the 

profile and secondary loss coefficients. Tip clearance remains at the maximum specified value of 0.1 

and trailing edge losses increase slightly. 
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Fig. 4-22 Breakdown of turbine losses Craig and Cox 
	
��
 = 1285 ���/√� geometry 1. 

Viewing Figure 4-22 showing the turbine losses predicted by the Craig and Cox method for the high-

speed condition it is apparent the losses seem to be following the correct trends. Profile loss is 

increasing as it deviates from the optimum incidence range, secondary loss has reduced again due to 

the increase in turbine speed reducing the blade inlet and outlet angle ratio and blade loading. Tip 

clearance has reduced slightly due the reduction in blade loading but increases at low incidences. 

Trailing edge loss has remained roughly constant compared to the lower and design speed 

conditions. Total loss has increased as the profile loss has begun to increase. 

 

Fig. 4-23 Breakdown of rotor losses Denton 
	
��
 = 1285 ���/√� geometry 1. 
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The losses calculated by the Denton loss model for the high-speed condition are shown in Figure 4-

23. Profile and secondary losses have reduced compared to the previous speed condition as 

expected. Tip clearance losses have also reduced as the pressure gradient between the pressure and 

suction surfaces reduces reducing the leakage flow over the turbine blade. Trailing edge loss has also 

remained roughly constant compared to the design speed condition.  

 

4.5.3 Geometry 2 

The second turbine stage to be analysed is also from a productionised turbocharger and has a longer 

turbine blade compared to the first geometry investigated. The table below shows the geometric 

ratios of the second turbine stage to be investigated. 

Geometric Ratio Stator Turbine 

Pitch to Chord Ratio 2@/'5 0.73 0.78 

Aspect Ratio 2</'5 0.74 2.38 

Trailing Edge to Throat Area Ratio 0.10 0.04 

 

Table 6 Important geometric factors relating to the second turbine stage geometry to be 

investigated. 

 

Fig. 4-24 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 635 ���/√�. 
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The efficiency characteristics predicted by the selected loss models are shown in Fig. 4-24 for the 

second geometry at the low-speed condition. Kacker and Okapuu and AMDC seem to show good 

correlation to the MULTALL data while Craig and Cox displays very good correlation and again 

Denton overestimates the efficiency. 

Plotting the pressure loss coefficients of the stator and turbine enables the detection of the low loss 

coefficients for both the stator and rotor produced by the Denton Method.   

 

Fig. 4-25 Stator total loss coefficient 
	
��
 = 635 ���/√� geometry 2. 

 

Fig 4-26 Turbine total loss coefficient 
	
��
 = 635 ���/√� geometry 2. 
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Fig. 4-27 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 635 ���/√� geometry 2. 

Analysing the loss coefficients produced by the Kacker and Okapuu method in greater detail for the 

low-speed condition shows the profile losses are the main contributing factor at high incidences as 

expected. As incidence increases the turbine operates away from the optimum incidence and the 

off-design correction factor increases. Profile losses are not affected by the increase in aspect ratio 

as this parameter is not included in the profile loss correlation. 

The secondary losses appear to have reduced compared to the low-speed condition of the first 

geometry. This is caused by the increase in blade height which reduces the possibility of interaction 

between the passage vortices on the endwalls reducing losses. Secondary losses also reduce slightly 

at high incidences this is due to the Mach number correction factor and the turbine operating with 

negative reaction while choking as seen with the first geometry. 

Tip leakage losses have also reduced slightly compared to the findings of the first geometry analysis. 

This is due to the increase in aspect ratio and the efficiency debit in the Kacker and Okapuu method 

reducing due to the increase in blade height. There is also an increase in trailing edge loss compared 

to the first geometry due to increase in the trailing edge thickness to throat opening ratio with the 

second geometry. 

There is a reduction in the total loss compared to the first geometry as anticipated which is due to 

the increase in aspect ratio. 
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Fig. 4-28 Breakdown of turbine losses Craig and Cox 
	
��
 = 635 ���/√� geometry 2. 

The breakdown of losses shown in Figure 4-28 were calculated using the Craig and Cox method. 

Similarly, to the first geometry investigated profile loss increases at high incidences due to off-design 

conditions. The incidence is also higher with the second geometry due to the reduction of the blade 

inlet angle by almost half. Secondary loss has reduced compared to the first geometry due to the 

increase in blade aspect ratio as seen with the Kacker and Okapuu secondary loss coefficient. Tip 

clearance losses have also reduced due to the increase in blade height. Trailing edge loss is still very 

low compared to the other loss coefficients and has reduced slightly compared to the first geometry. 

Total loss is higher than the first geometry at high incidences due to the sharp increase in profile 

losses at high incidences. 

The losses shown in Figure 4-29 are formulated using the Denton loss model and show a similar 

trend to those retrieved while analysing the first geometry at the low-speed condition. Tip clearance 

loss is the highest loss while the profile and secondary losses are predicted low compared with the 

other loss methods which results in a low total loss coefficient. As theorised previously it is possible 

the adopted Denton profile loss correlation is not suited for turbocharger turbine operation at such 

a low speed. Concerning the secondary loss, it is also possible the factor of 0.375 is too severe for 

this operating condition.   
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Fig. 4-29 Breakdown of turbine losses Denton 
	
��
 = 635 ���/√� geometry 2. 

Figure 4-30 shows the results retrieved at the design speed condition at a non-dimensional speed of 1060 ���/√� for the second geometry. Kacker/Opkauu and AMDC show reasonable correlation to 

the MULTALL data. The Denton and Craig and Cox methods seem to correlate at mid turbine 

pressure ratios but are slightly higher at low and high turbine pressure ratios. 

 

Fig. 4-30 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 1060 ���/√�. 
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Fig. 4-31 Stator total loss coefficient 
	
��
 = 1060 ���/√� geometry 2. 

 

Fig. 4-32 Turbine total loss coefficient 
	
��
 = 1060 ���/√�  geometry 2. 

The breakdown of losses shown in Figure 4-33 were formulated using the Kacker and Okapuu 

method at the design speed for geometry 2. They follow a similar trend to the losses obtained in the 

first investigation at a higher speed compared to the low-speed condition. As with the low-speed 

condition secondary losses have reduced slightly compared to the first investigation due to the 

increase in blade height. Tip clearance losses are limited to the maximum value stated previously. 

Trailing edge losses remain roughly constant. Total loss has reduced at a higher speed compared to 

the low-speed condition due to the profile and secondary losses reducing. 
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Fig. 4-33 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 1060 ���/√� geometry 2. 

Figure 4-34 shows the loss coefficients gained using the Craig and Cox loss model. The losses show a 

similar trend to the losses investigated with the first geometry. Profile loss has remained at a similar 

level compared to the first investigation and secondary losses have reduced slightly due to the 

increase in blade height. Tip clearance losses have reduced compared to the lower speed condition 

due to reduced blade loading. Trailing edge losses have remained roughly constant. Total loss has 

reduced compared to the low-speed condition due to the turbine operating around optimum 

conditions.  

 

Fig. 4-34 Breakdown of turbine losses Craig and Cox 
	
��
 = 1060 ���/√� geometry 2. 
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The losses shown in Figure 4-35 are taken from the Denton loss method and show similar behaviour 

to the losses predicted in the first investigation. Profile and secondary losses have reduced, tip 

clearance losses have also reduced, and trailing edge losses have remained roughly constant. Total 

loss has reduced as turbine operation nears the optimum operating range. 

 

Fig. 4-35 Breakdown of turbine losses Denton 
	
��
 = 1060 ���/√� geometry 2. 

The final speed to be examined for the second geometry is the high-speed condition at a non-

dimensional speed of 1271 ���/√�, the results are shown in Figure 4-36. It can be seen the Kacker 

and Okapuu and AMDC loss methods predict an efficiency characteristic close to the MULTALL data 

throughout the turbine pressure ratio range, while Denton’s predictions are close at low turbine 

pressure ratios but diverge at higher pressure ratios and the Craig and Cox predictions show very 

good correlation up to a turbine pressure ratio of 3 where at higher pressure ratios the efficiency 

deviates from the MULTALL data. 
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Fig. 4-36 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 1271 ���/√�. 

The stator and rotor total loss coefficients are shown in Figures 4-37 and 4-38. 

 

Fig. 4-37 Stator total loss coefficient 
	
��
 = 1271 ���/√� geometry 2. 
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Fig. 4-38 Turbine total loss coefficient 
	
��
 = 1271 ���/√� geometry 2. 

 

Fig. 4-39 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 1271 ���/√� geometry 2. 

The Kacker and Okapuu losses are shown in Figure 4-39 for the high-speed condition of geometry 2. 

The results follow a similar trend to the data analysed in the first investigation at the high-speed 

condition. 
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Fig. 4-40 Breakdown of turbine losses Craig and Cox 
	
��
 = 1271 ���/√� geometry 2. 

A breakdown of the losses from the Craig and Cox model at the high-speed condition for geometry 2 

are shown in Figure 4-40. The results display similar trends to the previous geometry and behave as 

expected. 

 

Fig. 4-41 Breakdown of turbine losses Denton 
	
��
 = 1271 ���/√� geometry 2. 

A breakdown of the losses from the Denton model at the high-speed condition for geometry 2 are 

shown in Figure 4-41. The results display similar trends to the previous geometry and behave as 

anticipated. 
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4.5.4 Geometry 3 

The third geometry to be analysed has similar attributes to the second geometry, which are shown 

below, but has a higher swallowing capacity. The third geometry turbine will be simulated at design 

and a high-speed conditions. 

Geometric Ratio Stator Turbine 

Pitch to Chord Ratio 2@/'5 0.76 0.64 

Aspect Ratio 2</'5 1.03 2.26 

Trailing Edge to Throat Area Ratio 0.05 0.03 

 

Table 7 Important geometric factors relating to the second turbine stage geometry to be 

investigated. 

It can be seen from Figure 4-42 that the loss models of Kacker and Okpauu and AMDC show 

reasonable correlation to the MULTALL data with Craig and Cox showing very good alignment to the 

CFD data. The effiency characteristic from the Denton loss model is higher compared to the CFD 

data.  

 

Fig. 4-42 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional speed of 	
��
 = 745 ���/√�. 

The total loss coefficients from the stator and rotor are shown in Figures 4-43 and 4-44. For this 

turbine speed Kacker and Okapuu, Craig and Cox and AMDC predict the similar stator total loss 

coefficients. As seen previously the Denton loss model predicts the lowest losses. 
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Fig. 4-43 Stator total loss coefficient 
	
��
 = 745 ���/√� geometry 3. 

 

 

Fig. 4-44 Turbine total loss coefficient 
	
��
 = 745 ���/√� geometry 3. 
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Fig. 4-45 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 745 ���/√� geometry 3. 

The breakdown of losses shown in Figure 4-45 for the Kacker and Okapuu loss model behave has 

expected and follow trends similar to the previous investigations.  

 

Fig. 4-46 Breakdown of turbine losses Craig and Cox 
	
��
 = 745 ���/√� geometry 3. 

The breakdown of losses shown in figure 4-46 for the Craig and Cox prediction method follow a 

similar trend to the previous investigations. 
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Fig. 4-47 Breakdown of turbine losses Denton 
	
��
 = 745 ���/√� geometry 3. 

As with the other loss models the losses predicted by Denton replicate the trends shown in previous 

investigations. 

The efficiency plot in Figure 4-48 shows the turbine efficiency characteristics simulated at the non-

dimensional speed 1043 ���/√�. The Craig and Cox loss model displays close correlation to the 

MULTALL data. While the remaining efficiency characteristics diverge from the CFD data at certain 

turbine pressure ratios. 

 

Fig. 4-48 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional speed of 	
��
 = 1043 ���/√�. 
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Fig. 4-49 Stator total loss coefficient 
	
��
 = 1043 ���/√� geometry 3. 

 

Fig. 4-50 Turbine total loss coefficient 
	
��
 = 1043 ���/√� geometry 3. 
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Fig. 4-51 Breakdown of turbine losses Kacker and Okapuu 
	
��
 = 1043 ���/√� geometry 3. 

The breakdown of losses shown in Figure 4-51 for the Kacker and Okapuu loss model shows similar 

trends to previous analyses. 

 

 

Fig. 4-52 Breakdown of turbine losses Craig and Cox 
	
��
 = 1043 ���/√� geometry 3. 

The breakdown of losses shown in Figure 4-52 for the Craig and Cox displays comparable trends to 

previous analyses. 
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Fig. 4-53 Breakdown of turbine losses Denton 
	��
 = 1043 ���/√�  geometry 3. 

The breakdown of losses shown in Figure 4-53 for the Denton displays comparable trends to 

previous analyses. 

 

4.6 Individual loss mechanism analysis 

Now the chosen loss models have been simulated and have provided plausible results compared to 

CFD performance data the various individual loss mechanisms will be reviewed outlining their 

constituent parts.     

 

4.6.1 Profile Loss 

4.6.1.1 Kacker and Okapuu 

The profile loss correlation proposed by Kacker and Okapuu (1982) is based on the work of Ainley 

and Mathieson (1951) which was later improved by Dunham and Came (1970). The correlation is 

based on experimental data of turbines of the time when the method was proposed. Kacker and 

Okapuu identified that since the method had been proposed turbine technology and aerodynamic 

analysis had evolved and suggested the Ainley and Mathieson approach overestimated the profile 

loss and as such they recommended applying a reduction factor of two thirds to the loss. Kacker and 

Okapuu also identified that the Ainley and Mathieson profile loss was based on cascade test data 

with subsonic velocities and did not account for operation at high Mach numbers. A correction 

factor was introduced to account for high Mach numbers based on the outlet Mach number and 

ratio of inlet and outlet Mach numbers. Kacker and Okapuu also suggested shock losses should be 

accounted for in the profile loss. They introduced a shock loss which is correlated to the Mach 
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number at the hub of the blade and hub to tip radius ratio. Finally, Kacker and Okapuu also include a 

factor to account for the effect of Reynolds number. They assume the profile loss coefficient is 

calculated at a reference Reynolds number based on true chord and cascade exit conditions. From 

the investigations performed it is clear inlet and exit flow angles have an impact on profile loss. This 

can be seen in Figures 2-13 and 2-14 where a higher outlet flow angle results in a higher profile loss. 

These figures also show the range of applicability and are valid for outlet angles ranging from 40° to 

70° for turbine blades and 40° to 80° for nozzle blades, for outlet angles outside of these values the 

profile loss is extrapolated which could lead to unreliable profile loss estimation. 

4.6.1.2 Craig and Cox 

The method of predicting profile loss proposed by Craig and Cox (1971) for subsonic flow uses a lift 

parameter and contraction ratio to establish a basic profile loss parameter which is near the 

incidence at which loss is at a minimum. The lift parameter and contraction ratio are functions of 

inlet and outlet flow angles and pitch to backbone length ratio. The contraction ratio describes the 

internal blade passage width ratio. The other factors considered by Craig and Cox relate to high 

Mach number conditions and a Reynolds number correction factor. Craig and Cox give to 

correlations for Mach numbers exceeding unity to account for different styles of blading including 

convergent profiles designed with straight suction surface downstream of the throat and profiles 

designed with pronounced convex suction surfaces. The Reynolds number correction is based on the 

blade opening to give better correlation. Craig and Cox also introduced Reynolds number values with 

varying surface roughness as it is believed to control the boundary layer thickness. Similarly, to the 

correlation of Ainley and Mathieson (1951) the Craig and Cox profile loss has a range of applicability 

extrapolation outside of these values can lead to unreliable results. The outlet flow angle should be 

in the range 10° to 90° and the inlet flow angle should be within 10° to 140°. 

4.6.1.3 Denton 

The profile loss estimation used by Denton (1993) is based on the theories of entropy generation in 

the boundary layers due to friction on the blade surfaces. To accurately predict profile loss Denton 

states full knowledge of the state of the boundary layer is required (Denton 1993). His correlation 

depends on a dissipation coefficient and the velocity distribution over the blade surface. Denton 

provides generic surface velocity distributions which can be used to estimate profile loss. He also 

provides a simplified correlation to obtain minimum loss coefficients at optimum pitch to chord 

ratios. As described in previously in the implementation of the loss correlation section this simplified 

correlation was obtained by systematically varying the blade load. The correlation provided by 

Denton is a function of inlet and outlet blade angle and also has a range of applicability, inlet angles 

range from -60° to 60° and out angles from 40° to 80°. Denton also reviews the impact of shock 

losses in his work however concludes without an accurate measurement of the average pressure at 

the blade surface reliable prediction is difficult.  

 

 

 



121 

 

4.6.1.4 Discussion 

The profile loss mechanisms reviewed agree that flow turning is an important factor dictating profile 

loss. Large absolute ratios of blade inlet and outlet flow angle indicate high flow turning and blade 

loading which can result in possible flow separation on the blade surfaces causing a large increase in 

loss. This is shown in Figures 4.54, 4.55 and 4.57. Analysing the plotted data, it can be seen the Craig 

and Cox method predicts the highest profile losses at 
	��
 = 989 ���/√�  for geometry 1. For 

geometry 2 all methods produce roughly the same loss below 80° flow turning at 
	��
 =1060 ���/√�  . For geometry 3 the Denton loss mechanism produces the highest profile losses 

below 75° flow turning at 
	��
 = 745 ���/√�.  It can also be seen the useful range of data appears 

less with Denton’s method compared to the other loss mechanisms which may indicate the Kacker 

and Okapuu and Craig and Cox mechanisms are more proficient at off design conditions. 

 

Fig. 4-54 Turbine profile losses at  
	��
 = 989 ���/√�  geometry 1. 

 

Fig. 4-55 Turbine profile losses at  
	��
 = 1060 ���/√�  geometry 2. 
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Fig. 4-56 Turbine profile losses at  
	��
 = 745 ���/√�  geometry 3. 

Another important factor considered by all of the correlations when predicting profile loss is pitch to 

chord ratio. This implies there is an optimum value where blade surface friction and diffusion losses 

are minimal. All the correlations agree Reynolds number is also an important factor in estimating 

profile loss as is compressibility at high Mach number conditions. 

 

4.6.2 Secondary Loss 

4.6.2.1 Kacker and Okapuu 

Kacker and Okapuu (1982) base their secondary loss correlation on the work of Dunham and Came 

(1970). Based on experimental data they applied a factor to correct the correlation of Dunham and 

Came below aspect ratios of two in order to replicate the more significant increase in loss as aspect 

ratio is decreased. Kacker and Okapuu also separated the secondary and trailing edge losses, which 

were replaced by a multiplying factor of 1.2 in their final loss system. As with profile losses Kacker 

and Okapuu account for the effect of compressibility on acceleration of floe next to the endwalls by 

applying a subsonic Mach number correction factor. The factor for the secondary losses is a function 

of the profile loss factor and aspect ratio. Regarding range of applicability Kacker and Okapuu state 

the rise in secondary loss in their loss system is less rapid below aspect ratios of two. Regarding the 

inlet and outlet flow angles although no limits are specified it would be sensible to apply the same 

range as considered for the profile loss. 

4.6.2.2 Craig and Cox 

Craig and Cox (1971) estimate secondary losses in their loss system using a basic loss factor which is 

a function of the blade loading parameter or lift parameter and the velocity ratio. They also apply a 

factor to accommodate for the impact of aspect ratio which they consider to be approximately 

inversely proportional to the secondary losses. Craig and Cox also consider the effects of Reynolds 

number on secondary losses. They apply a factor similar to the method used for profile losses. 
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4.6.2.3 Denton 

In his work Denton (1993) identifies that the secondary losses as the most complex and hardest to 

comprehend of the loss mechanisms with virtually all current correlations based on empirical data. 

Denton suggests the entropy generation per unit surface area of the endwalls may be estimated in a 

similar way to that of the blade surfaces with an approximation of the dissipation coefficient. 

However, this would require knowledge of the velocity distribution and boundary layer transition 

from laminar to a turbulent state for reliable predictions. Denton also states the entropy generation 

in the endwalls only accounts for two thirds of the loss coefficient and the remaining losses are 

associated with inlet boundary layer mixing and an increase in secondary kinetic energy due to 

vortices formation (Denton 1993). In order to simplify the secondary loss calculation process Denton 

recommends using the correlation provided by Dunham and Came (1970) which he promotes as 

being one of the best methods for secondary loss prediction with the inclusion of an additional 

factor (Denton 2012). Denton also considers the total entropy production near the endwalls is 

inversely proportional to aspect ratio if independent of blade height which is in agreement with 

other loss models. 

4.6.2.4 Discussion 

All of the correlations regarding secondary loss agree blade loading and aspect ratio are the main 

factors impacting loss prediction. All of the correlations are based on empirical data, and until the 

physics governing secondary losses are better understood secondary loss prediction will be reliant 

on empirical correlations. It is also noticeable from Figures 4-57, 4-58 and 4-59 that the secondary 

losses of the Denton mechanism are under predicted compared to the other loss prediction 

methods. Where the losses predicted by the Kacker and Okapuu method are approximately 2.2 

times greater compared to Denton method and the losses gained using the Craig and Cox method 

are approximately 3.8 times higher for geometry 1 at 
	��
 = 989 ���/√�. For geometry 2 both the 

Kacker and Okapuu and Craig and Cox methods predicted secondary losses roughly 3 times higher 

than Denton at 
	��
 = 1060 ���/√� . Finally, for geometry 3 the secondary losses predicted by 

Kacker and Okapuu are similar, and the losses calculated by Craig and Cox are 3.1 times higher. This 

may be due to Denton recommending using the secondary loss calculation proposed by Dunham and 

Came which is a modification of the Ainley and Mathieson method. However, Denton uses a factor 

of 0.375, based on a large number of comparisons, which dramatically decreases the secondary 

losses. 

The results also show how blade turning and loading effect secondary losses as incidence angle 

increases and the difference between the inlet and outlet flow angle increases secondary losses 

increase. The greater the blade load and turning the sooner the endwall boundary layer migrates to 

the suction surface which leads to increased losses. The only correlation to consider Reynolds 

number effect is Craig and Cox, by applying a Reynolds number correction factor to the secondary 

loss in a similar manner to the profile loss. 
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Fig. 4-57 Turbine secondary losses at  
	��
 = 989 ���/√�  geometry 1. 

 

Fig. 4-58 Turbine secondary losses at  
	��
 = 1060 ���/√�  geometry 2. 
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Fig. 4-59 Turbine secondary losses at  
	��
 = 745 ���/√�  geometry 3. 

The results gained for geometry 2 with a higher aspect ratio when compared to geometry 1 show a 

decrease in secondary losses for the Craig and Cox and Denton methods shown in Figure 4-60. 

Increasing blade height reduces the possibility of interaction between the passage vortices on the 

endwalls reducing losses. 

 

Fig. 4-60 Comparison of the turbine secondary losses between geometry 1 and 2. 
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4.6.3 Trailing Edge Loss 

4.6.3.1 Kacker and Okapuu 

The trailing edge loss coefficient adopted by Kacker and Okapuu (1982) is in terms of trailing edge 

blockage. Based on experimental data Kacker and Okapuu produce a relationship of trailing edge 

energy loss coefficient and trailing edge blockage. Figure 2-26 shows two different curves for axial 

entry nozzles and impulse blades. The difference between the curves relates to profile boundary 

layer thicknesses at the trailing edges, impulse blades have thick boundary layers and low base 

pressure coefficients resulting in lower losses. Kacker and Okapuu provide a means of interpolating 

the trailing edge energy loss coefficient for blades other than the types mentioned. The 

experimental data shown by Kacker and Okapuu ranges from 0 to 0.4 trailing edge to throat opening 

ratios.  

4.6.3.2 Craig and Cox 

 The estimation of the trailing edge loss coefficient provided by Craig and Cox (1971) is a function of 

the flow outlet angle and trailing edge thickness to pitch ratio. The applicability range for the outlet 

angle ranges from 10° to 50°. 

4.6.3.3 Denton 

Denton (1993) relates trailing edge loss to the mixing out of a wake behind the trailing edge. The 

wake will experience high shear rates and turbulent flow will induce high entropy generation. The 

entropy produced by this process can be equated to a balance of the mass, momentum, and energy 

at an upstream boundary where the flow is known and a downstream boundary where the flow has 

returned to uniformity. The formula includes the base pressure term acting on the trailing edge. For 

accurate prediction of the trailing edge loss complete details of the boundary layer state are also 

required. 

4.6.3.4 Discussion 

Trailing edge loss is treated in the same way in all of the chosen methodologies. The main factors 

impacting the trailing edge losses are flow acceleration and trailing edge to throat opening ratios. 

Also, trailing edge thickness effects the base pressure at the trailing edge and strongly influences the 

drag of highly accelerating cascades. Trailing edge to pitch ratio intuitively has an impact on trailing 

edge losses as pitch increases the number of blades decreases reducing trailing edge losses. The final 

characteristic effecting trailing edge loss is the mixing process behind the trailing edge where suction 

and pressure side boundary layers propagate from either side of the blade. Certain simplifications 

are necessary when considering the boundary layers as the exact state of the boundary layer is not 

known. 
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4.6.4 Tip clearance loss 

 4.6.4.1 Kacker and Okapuu 

Tip clearance losses are calculated in the Kacker and Okapuu (1982) loss model for unshrouded 

blades using an efficiency debit which is computed iteratively and is based on tip clearance to blade 

height ratio and the outlet flow angle from the rotor. As the tip clearance to blade height ratio 

increases leakage flow will increase causing more mixing to take place between the main flow and 

leakage flow on the suction side of the blade thus increasing losses. As seen in the comparison 

between mean line performance data and CFD data as flow turning increases mixing loss will also 

increase. 

4.6.4.2 Craig and Cox 

Craig and Cox (1971) recommend using the tip clearance loss correlation of Ainley and Mathieson 

(1951) which is a function of tip clearance to height ratio and blade loading. 

4.6.4.3 Denton 

The tip clearance loss correlation provided by Denton (1993) for unshrouded blades is mainly 

influenced by the ratio of leakage to main flow, the inlet and outlet blade velocities and the outlet 

flow angle. Higher losses are experienced at conditions of higher leakage flow and higher velocities 

and small outlet flow angles. In a similar manner to the profile loss mechanism Denton provides a 

simplified version of the tip clearance losses which assume a tip gap of 1% of the blade span. Denton 

also demonstrates how blade thickness effects leakage flow, shown in Figure 2-11, where the jet 

formed as the leakage flow passes over the blade tip mixes out causing an increase in static pressure 

and entropy. 

4.6.4.4 Discussion 

The chosen loss models conclusively agree that any increase in blade tip gap increases tip clearance 

losses. An increased tip gap would allow more leakage flow which would in turn increase mixing with 

the main flow. Changes to velocities and outlet angles are well documented to increase mixing.   
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4.7 Results Summary 

The charts in this section show the efficiencies calculated using each loss mechanism how they 

compare to those simulated in the CFD program MULTALL for each geometry at each speed 

condition.  For example, the data depicted in Figure 4-61 shows the normalised predicted and 

normalised MULTALL turbine stage efficiencies from Figure 4-6 presented in a similar manner to 

Figure 2-49 from Dunham and Came (1970) and Figure 2-51 from Kacker and Okapuu (1982) but for 

the entire constant speed line.   

It can be seen from the charts in Figures 4-61, 4-62 and 4-63 that the correlation at the low-speed 

condition is very poor for all of the loss models tested. For the higher speeds the correlation is 

improved with all but the Denton method predicting turbine efficiencies relatively close to a 

variance of +/- 1.5%. Kacker and Okpauu state their loss model can predict design point efficiencies 

to within +/-1.5%, viewing the design speed plot at a non-dimensional speed of 989 most of the 

operating points are within or close to the target of +/- 1.5% variance. The loss system of Craig and 

Cox was also validated against experimental data predicting losses to within +/- 1.25% however it 

seems Craig and Cox shows good correlation to the corresponding MULTALL data at the design 

speed but shows poor alignment at the low and high-speed conditions. Similarly, for the first 

geometry investigated, the Denton loss system seems to predict efficiencies closest to the CFD data 

at the design speed conditions. 

 

Fig. 4-61 Predicted turbine efficiency with CFD efficiency for geometry 1 at 
	
��
 = 593 ���/√�. 
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Fig. 4-62 Predicted turbine efficiency with CFD efficiency for geometry 1 at 
	
��
 = 989 ���/√�. 

 

Fig. 4-63 Predicted turbine efficiency with CFD efficiency for geometry 1 at 
	
��
 = 1285 ���/√� 

N/√T. 

The efficiencies gained from the second geometry, Figures 4-64, 4-65 and 4-66 show improved 

correlation to CFD data at the design and high-speed conditions for all loss correlations. The Craig 
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and Cox method shows good correlation throughout the speed range for the second geometry 

investigated predicting efficiencies within a +/-1.5% variance. As can be seen from the following 

charts the efficiencies predicted by the Denton loss correlation are optimistic at the low-speed 

condition however show improved alignment at the design speed and high-speed conditions. 

 

Fig. 4-64 Predicted turbine efficiency with CFD efficiency for geometry 2 at 
	
��
 = 635 ���/√�. 

 

Fig. 4-65 Predicted turbine efficiency with CFD efficiency for geometry 2 at 
	
��
 = 1060 ���/√� 

N/√T. 
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Fig. 4-66 Predicted turbine efficiency with CFD efficiency for geometry 2 at 
	
��
 = 1271 ���/√�. 

The chart in Figure 4-67 shows the Craig and Cox loss model gave the most accurate results at the 

low-speed condition for the third turbine geometry. The data in Figure 4-68 is skewed due to large 

gaps encountered in the data between standard operating conditions and choke conditions. 

 

Fig. 4-67 Predicted turbine efficiency with CFD efficiency for geometry 3 at 
	
��
 = 745 ���/√�. 
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Fig. 4-68 Predicted turbine efficiency with CFD efficiency for geometry 3 at 
	
��
 = 1043 ���/√�. 
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Chapter 5 

 

Conclusions and Recommendations 

for Future work 

 

5.1 Implementation of selective loss correlation based on operating 

conditions and geometry. 

One of the aims of this work was to identify whether the chosen loss correlations could be used in 

conjunction with each other to better predict a significant range of operating conditions which make 

up a turbine map. Based on the data collected the Kacker and Okapuu method seems to show the 

best correlation to the MULTALL data for the first geometry investigated which has a standard blade 

height. For the turbine geometries with higher aspect ratios the Craig and Cox method shows the 

most accurate correlation to the MULTALL data especially at the low-speed conditions. At higher 

speed conditions all of the loss correlations predicted turbine efficiency satisfactorily. Based on 

these three investigations it would be possible to implement a selective algorithm to the current 

code to choose a loss correlation based on turbine geometry and operating condition however, to 

further solidify the findings of this investigation a much larger number of turbine geometries would 

require simulation. 

 



134 

 

5.2 Conclusions 

The main aim of this work was to investigate, recode and expand the current mean line turbine 

efficiency prediction method used by Napier Turbochargers. Implementing additional loss 

correlations and proposing a selective tool which chooses a loss correlation based on operating 

condition and blade geometry.  

The original code has been rewritten into a more accessible language with extensive notes and clear 

highlighting of calculation steps to enable future development as aerodynamic analysis progresses. 

The availability of three loss prediction methods at the turbine design point should facilitate design 

iterations and enhance knowledge of limiting design features. 

Common loss systems were identified, studied and implemented to the code. A number of current 

turbine geometries were selected, and the chosen loss systems were used to predict turbine 

performance. The results were then compared to CFD data to ascertain the chosen loss systems 

accuracy and relevance to a typical turbocharger axial turbine. 

The various loss mechanisms were investigated and compared. The profile losses were found to 

depend principally on flow turning and pitch to chord ratio. The secondary losses are the most 

complex of the loss mechanisms in a turbomachine, still with many unknowns thus most loss 

correlations in use are based on empirical data. It has been established that the main factors 

governing secondary losses are blade aspect ratio and loading. Trailing edge losses are dictated by 

flow acceleration and trailing edge thickness ratios and tip clearance loss is mainly a function of 

blade tip gap. 

The results obtained via the new mean line turbine efficiency prediction tool and chosen loss 

systems also show desirable correlation to similar works Wei (2000), Guedez (2011), Sieverding 

(1985). With each individual loss mechanism behaving as expected and aligning with other detailed 

theoretical studies. 

One of the main limitations of the loss correlations reviewed relates to the design of the blades used 

in the experimental data which the loss correlations have been based on. For example, the 

correlation of Ainley and Mathieson is based on blade profiles designed prior to 1950 where designs 

were comprised of circular arcs and straight lines with circular or parabolic camber lines. Hence the 

requirement for review every decade, as recommended by Kacker and Okapuu (1982), to ensure a 

high level of accuracy is maintained to turbine blade designs of the current time period. Based on 

the results retrieved and comparison to CFD data the more recent loss correlations seem to show an 

acceptable level of applicability to Napier Turbocharger axial turbine stages but may require some 

additional refinement to further improve correlation. 

Based on the results of the investigation of the chosen three loss prediction methods the methods of 

Kacker and Okapuu and Craig and Cox showed the most promising results across the turbine 

geometries and speed conditions simulated. The method proposed by Denton showed poor 

correlation at off design conditions compared to the MULTALL data but displayed improved 

alignment at design conditions. This was primarily illustrated by the data presented in Chapter 4 

although, the investigation did not result in a decisive strategy for selecting a loss correlation based 



135 

 

on turbine blade geometry and speed condition the Kacker and Okpauu and Craig and Cox methods 

showed improvements compared to the current loss prediction method in most cases. 

Although the method proposed by Denton showed the worst correlation at off design conditions 

there are a number of aspects which require verification in the Denton loss model. One in particular 

is the appropriateness of using a correlation which is based on optimum pitch to chord ratio, this 

requires an assessment on how realistic its application to a Napier Turbocharger turbine stage is.   

The efficiency characteristics of the final geometry tested are not complete and the interpolation 

method used on the raw data has skewed the efficiency trend due to large gaps in the data between 

normal operating conditions and choke conditions. The gap in the data only became apparent on the 

third turbine investigated and was not detected previously. In the mean line performance prediction 

program of the present work the choking mass flow is kept constant when choking of a stage is 

detected and this was thought to be the method used in the original program however recent 

developments have shown that there is a difference between the original code which is kept on a 

Linux system and the converted code suitable for a Windows system which the present work was 

calibrated against. After going through the original Linux code, it was found the mass flow at choking 

conditions is reduced which aids population of the gap in the efficiency characteristic on the same 

trend. Although there is a gap in the data the efficiency trends of the original and new mean line 

tools either side of the gap are identical.  This is the reason some of the data in the charts in Figure 

4-60 are so far away from the CFD data. 

5.3 Recommendations for Future work 

The turbine geometries examined represent current production intent however, further 

investigation of the chosen loss correlations is required in order to confirm the variance of 

performance prediction with an extensive range of turbine geometries over a wide range of 

operating conditions. Testing more geometries can only facilitate the goal of establishing a selective 

tool to choose a loss correlation based on operating condition or turbine design. 

The availability and range of actual in-house turbine test data is a concern. Napier Turbochargers 

current in-house test rig setup only permits the acquisition of turbine performance data for a narrow 

band of velocity ratio.  It would be very advantageous for Napier Turbochargers to commission a 

series of tests, using current production turbine geometries, on a dedicated turbine test rig to fully 

map turbine performance across a wide range of velocity ratio to enable validation of current CFD 

and mean line performance prediction methods.  

Now the new mean line performance prediction program has been established in the near future it 

may be developed further, potential modifications may include adding Excel plots to give a preview 

of the output data, updating the user interface based on feedback from users and adjustment of the 

mass flow iterations in the code to give better results at all operating conditions. The large gaps 

encountered in the performance data during the analysis of the third turbine geometry may be 

attributed to the stages of the turbine transitioning into choke conditions. Further investigation is 

required to confirm how the choke flow is reduced in the original code. This must be addressed as 

high swallowing capacity turbines are part of the Napier portfolio thus prediction of reliable and 

complete performance data is essential.     
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Appendix A 

A.1 Sample MULTALL input file without blade geometry  

Bladerows: 01 + 03                                                               

   39  292   39    0 6000    0    0    3    2    1    2    3   20   20    0 

    0    2    3    3    0    0    0    9    5    0    0    0 

    3    3    3    9    9    9 

###############################NOZZLE############################### 

  142   34  117   24    0    0  998  999  998  999    0    1    1    1    1    1 

           0           0           0 

       0.0  155925.0  154365.8  131780.3  130462.5       0.0       0.0 

   0.00100 

>>>> GEOMETRY HERE <<<< 

##############################TURBINE############################### 

  150   26  109   53    0    0   22  113  998  999    0    1    1    1    1    1 

           0           0           0 

  -10293.0  130462.5  129157.9  106060.6  105000.0       0.0  -10293.0 

   0.00100 

>>>> GEOMETRY HERE <<<< 

1126.57361   1.34200   0.40000   0.01250   0.01250   0.00000   0.00000   0.00000 

  10.00000   0.00000   0.40000   0.20000   0.10000   0.00000   0.00001   0.10000 

  155925.0  155925.0  105000.0  105000.0       0.0       0.0       0.0       0.1 

  157500.0  157500.0  157500.0 

     763.0     763.0     763.0 

       0.0       0.0       0.0 

      27.1      27.1      27.1 

       0.0       0.0       0.0 

      10.2      -2.8     -15.8 

       1.0       1.0       1.0 

   1.29361  25.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

9000090000900009000090000 

 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  -1.80000   0.50000  15.00000   0.80000   0.00000   1.00000   0.00000 

   0.02000   0.80000   1.00000 

   1.29361  25.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 

   0.03000   0.03000   0.03000   0.03000   0.03000   0.03000 

   0.03000   0.03000   0.03000   0.03000   0.03000   0.03000 

  2.0    1 
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Appendix B 

B.1 Denton predicted profile loss (percent) at optimum pitch to 

chord ratio correlation for bilinear interpolation  
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Appendix C 

Mean Line Tool Program Constants 

Rowdata(bladerow, 0)  Throat opening 

Rowdata(bladerow, 1)  BS radius of curvature 

Rowdata(bladerow, 2)  Tip clearance 

Rowdata(bladerow, 3)  Tip clearance turbine factor 

Rowdata(bladerow, 4)  Unshrouded turbine factor 

Rowdata(bladerow, 5)  Throat area 

Rowdata(bladerow, 6)  Pitch 

Rowdata(bladerow, 7)  Blade inlet angle 

Rowdata(bladerow, 8)  Chord 

Rowdata(bladerow, 9)  Max thickness 

Rowdata(bladerow, 10)  Trailing edge thickness 

 

Rowgeom(0, 0)   Nozzle inlet hub diameter 

Rowgeom(0, 1)   Turbine inlet hub diameter 

Rowgeom(0, 2)   Turbine outlet hub diameter 

Rowgeom(1, 0)   Nozzle inlet tip diameter 

Rowgeom(1, 1)   Turbine inlet tip diameter 

Rowgeom(1, 2)   Turbine outlet tip diameter 

 

 

nozzleout(0, 0)  Stator gas outlet angle 

nozzleout(1, 0)  Stator Outlet velocity 

nozzleout(2, 0)  Stator Outlet temperature 

nozzleout(3, 0)  Stator Outlet pressure 

nozzleout(4, 0)  Stator Outlet Mach number 

turbineout(0, 0)  Turbine gas outlet angle 

turbineout(1, 0)   Turbine Outlet velocity 

turbineout(2, 0)   Turbine Outlet temperature 

turbineout(3, 0)   Turbine Outlet pressure 

turbineout(4, 0)  Turbine Outlet Mach number 

alpha2   Gas outlet angle corrected for tip clearance 

alpha3   Gas outlet angle at M = 1 

alpha4    Gas outlet angle at zeo tip clearance 

 

 

C.1 Kacker and Okapuu VBA code Loss Model 

Dim sc As Double   pitch to chord ratio 

Dim tc As Double   max thickness to chord ratio 

Dim a9 As Double   Gas flow angle with zero tip clearance 

Dim am As Double   Intermediate secondary loss term 

Dim p As Double   Gas outlet angle radians 

Dim p2 As Double   Intermediate term 

Dim p3 As Double   Intermediate term 

Dim tecorr As Double   Trailing edge correction 

Dim a75 As Double   Incidence angle term at s/c = 0 .75 (Fig 2-16) 

Dim sc2 As Double   pitch to chord ratio correction 

Dim i75 As Double   Incidence angle term at s/c = 0 .75 (Fig 2-17) 

Dim dis As Double   incidence intermediate term 

Dim dis1 As Double   incidence intermediate term 

Dim dis2 As Double   incidence intermediate term 

Dim ai As Double   Inlet gas flow angle 

Dim CLsc As Double   Intermediate secondary loss term 

Dim d1 As Double   Ratio of incidence and stalling incidence 

 

Dim LossCoeff As Collection 

Dim Loss As Variant 

Set LossCoeff = New Collection 

 

Reference diameter 
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LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & "" 

 

Profile loss coefficient (Yp) 

 

sc = rowdata(i1, 6) / rowdata(i1, 8) 

tc = rowdata(i1, 9) / rowdata(i1, 8) 

a9 = Application.WorksheetFunction.Degrees(alpha4(i1, 0)) 

p = Application.WorksheetFunction.Radians(a9) * 0.57296 

p2 = p * p 

p3 = p2 * p 

 

If Abs(Application.WorksheetFunction.Radians(a9)) > 0.01 Then 

r = (rowdata(i1, 7) * 0.3) / a9 

Else 

r = 0 

End If 

 

TC upper and lower limits 

 

If tc < 0.15 Then 

tc = 0.15 

End If 

 

If tc > 0.25 Then 

tc = 0.25 

End If 

 

 

tecorr = 0.914 + 3.86 * rowdata(i1, 10) / rowdata(i1, 6) + 21.6 * (rowdata(i1, 10) / rowdata(i1, 6)) ^ 2 

 

LossCoeff.Add "" & 0.120684 - 0.159513 * p - 0.518933 * p2 - 0.457871 * p3 + (-0.113447 + 1.88405 * p + 5.26857 * p2 + 4.21486 * p3) * 

sc - (0.501061 + 6.27734 * p + 15.6447 * p2 + 11.7592 * p3) * sc ^ 2 + (0.434537 + 4.01075 * p + 9.61499 * p2 + 6.96877 * p3) * sc ^ 3 & "", 

"ypbi0" & i1 & "" Trailing edge thickness correction Fig. 9 

 

LossCoeff.Add "" & 0.376147 + 0.411941 * p + 1.01691 * p2 + 0.640577 * p3 - (1.35419 + 3.41232 * p + 7.4935 * p2 + 4.54488 * p3) * sc + 

(1.81574 + 5.63873 * p + 10.499 * p2 + 4.27037 * p3) * sc ^ 2 - (0.948148 + 3.88398 * p + 7.04043 * p2 + 3.00627 * p3) * sc ^ 3 & "", 

"ypbia2" & i1 & "" 

 

LossCoeff.Add "" & (((LossCoeff.Item("ypbi0" & i1 & "") + r * r * (LossCoeff.Item("ypbia2" & i1 & "") - LossCoeff.Item("ypbi0" & i1 & ""))) * 

(tc * 5) ^ -r)) * tecorr & "", "Yp" & i1 & "" 

 

If LossCoeff.Item("Yp" & i1 & "") < 0.02 Then 

LossCoeff.Remove ("Yp" & i1 & "") 

LossCoeff.Add "" & 0.02 * tecorr & "", "Yp" & i1 & "" 

End If 

 

Stalling incidence 

 

a75 = 57.296 * Application.WorksheetFunction.Radians(a9) / (1.3 - 0.4 * sc) 

 

If Abs(a75) > 0.01 Then 

sc2 = (rowdata(i1, 7) * 0.3) / a75 

Else 

sc2 = 0 

End If 

 

i75 = 0.174819 + 0.865909 * p + 1.71529 * p2 + 0.501105 * p3 + (-0.0128059 - 0.057039 * p + 0.305076 * p2 + 0.354952 * p3) * sc2 - 

(0.495033 + 3.11324 * p + 5.91235 * p2 + 3.0187 * p3) * sc2 ^ 2 - (0.180332 + 1.2849 * p + 2.80671 * p2 + 1.83452 * p3) * sc2 ^ 3 

i75 = 180 * i75 

dis = -37.47 * sc ^ 2 + 20.15 * sc + 6 

dis1 = dis 

If (sc - 0.75) > 0 Then 
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If (a9 + 50) >= 0 Then 

dis2 = 41.75 * sc ^ 2 - 98.1 * sc + 50.15 

dis = dis1 - (a9 + 50) * (dis1 - dis2) / 10 

Else 

dis2 = -40 * sc ^ 2 + 11 * sc + 14.2 

dis = dis1 - (a9 + 50) * (dis1 - dis2) / 10 

End If 

End If 

istall = (dis + i75) / 57.296 

If i1 = 0 Then 

ai = 0 

Else 

ai = nozzleout(0, 0) 

End If 

ince = ai - Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3) 

d1 = ince / istall 

 

Profile loss change with incidence (Xi) 

 

If d1 < 0 Then 

Ypt = ((((((0.023643 * d1) + 0.351157) * d1) - 0.265154) * d1) + 0.977649) * LossCoeff.Item("Yp" & i1 & "") 

Else 

Ypt = ((((((0.993138 * d1) + 0.030551) * d1) + 0.022075) * d1) + 0.996574) * LossCoeff.Item("Yp" & i1 & "") 

End If 

 

Secondary Loss (Ysk) 

 

Dim a10 As Double 

 

If d1 < -1.5 Then 

d1 = -1.5 

End If 

 

If d1 > 1 Then 

d1 = 1 

End If 

 

If i1 = 0 Then 

a10 = 0 

Else 

a10 = d1 * istall 

End If 

 

Dim ang_m As Double 

ang_m = Atn(0.5 * (Tan(a10) + Tan(alpha4(i1, 0)))) 

 

CLsc = 2 * (Tan(a10) - Tan(alpha4(i1, 0))) * Cos(ang_m) 

 

Ysk = 0.0334 * ((rowdata(i1, 8) * 0.0254) / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) * (Cos((alpha4(i1, 0)) / 

Cos(Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3))) * CLsc ^ 2 * (Cos(alpha4(i1, 0)) ^ 2 / (Cos(ang_m)) ^ 3)) 

 

Yt = Ypt + Ysk 

 

Kp 

 

Find Inlet Mach number 

 

If i1 = 0 Then 

 

Dim a1 As Double 

a1 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 0) * 0.0254) ^ 2) / 4 
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Dim a2 As Double 

a2 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 1) * 0.0254) ^ 2) / 4 

 

Dim Annulus As Double 

Annulus = a2 - a1 

 

Dim rho As Double 

rho = (Pi * 6.89 * 1000) / (ti * 287.04) 

 

Dim v7 As Double 

v7 = w / (rho * Annulus) 

 

Dim Min1 As Double 

Min1 = v7 / Sqr(g1 * 3088.6 * ti) 

 

End If 

 

Dim Min As Double 

Dim Mout As Double 

If i1 = 0 Then 

Min = Min1 

Mout = m 

Else 

Min = nozzleout(4, 0) 

Mout = m 

End If 

 

Evaluate Kp 

 

Dim Kp As Double 

 

If m > 0.2 Then 

Kp = 1 - 1.25 * (Mout - 0.2) * (Min / Mout) ^ 2 

Else 

Kp = 1 

End If 

 

Dim RhRt As Double 

 

RhRt = rowgeom(i1, 0) / rowgeom(i1, 1) 

 

M1Hub 

 

Dim M1Hub As Double 

 

If i1 = 0 Then 

M1Hub = Min * ((((4.09223572657754 * RhRt) - 6.69433665602768) * RhRt) + 3.72628470188226) 

Else 

M1Hub = Min * ((((6.20462437817264 * RhRt) - 11.6399297569545) * RhRt) + 6.46172992099636) 

End If 

 

YShock 

 

Dim Pin As Double 

Dim Pout As Double 

 

If i1 = 0 Then 

Pin = Pi 

Pout = nozzleout(3, 0) 

Else 

Pin = nozzleout(3, 0) 

Pout = turbineout(3, 0) 
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End If 

 

Dim Ysh As Double 

Ysh = 0.75 * (IIf(M1Hub < 0.4, 0.4, M1Hub) - 0.4) ^ 1.75 * (rowgeom(i1, 0) / rowgeom(i1, 1)) * (Pin / Pout) * ((1 - (1 + ((g1 - 1) / 2) * Min ^ 

2) ^ (g1 / (g1 - 1))) / (1 - (1 + ((g1 - 1) / 2) * Mout ^ 2) ^ (g1 / (g1 - 1)))) 

 

Calculate new Profile loss 

 

Dim YpKO 

YpKO = 0.914 * (2 / 3 * Ypt * Kp + Ysh) 

 

K3 

 

Dim Axc As Double 

 

If i1 = 0 Then 

Axc = Worksheets("Input").Range("B29").Value 

Else 

Axc = Worksheets("Input").Range("C29").Value 

End If 

 

Dim K3 As Double 

K3 = 1 - (Axc / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) ^ 2 * (1 - Kp) 

 

Dim Xar As Double 

If ((rowgeom(i1, 1) - rowgeom(i1, 0)) / 2) / rowdata(i1, 8) <= 2 Then 

Xar = 1 - 0.25 * Sqr(2 - ((rowgeom(i1, 1) - rowgeom(i1, 0)) / 2) / rowdata(i1, 8)) 

Else 

Xar = 1 

End If 

 

Calculate new Secondary loss 

 

Dim YsKO As Double 

YsKO = 1.2 * K3 * Xar * Ysk 

 

Calculate Trailing Edge Loss 

 

Dim tou As Double 

tou = rowdata(i1, 10) / rowdata(i1, 0) 

 

Trailing edge Beta=0 

Dim DtetB0 As Double 

DtetB0 = (((((-1.01708866742956 * tou) + 1.17997684231952) * tou) + 4.00468287252138E-02) * tou) - 1.89626026330796E-04 

 

Trailing edge Beta=alpha2 

Dim DtetBa As Double 

DtetBa = (((((-0.643405817332678 * tou) + 0.696695855185969) * tou) + 7.27785820593739E-03) * tou) + 5.08558021152712E-04 

 

Trailing edge loss 

Dim Dtet As Double 

Dtet = DtetB0 + r ^ 2 * (DtetBa - DtetB0) 

 

Dim YteKO As Double 

YteKO = ((1 - ((g1 - 1) / 2) * m ^ 2 * ((1 / (1 - Dtet)) - 1)) ^ -(g1 / (g1 - 1)) - 1) / (1 - (1 + ((g1 - 1) / 2) * m ^ 2) ^ -(g1 / (g1 - 1))) 

 

Reynolds Number 

 

 Dynamic viscosity 

 

Dim mu As Double 
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If i1 = 0 Then 

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 

Else 

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 

End If 

 

Density 

 

Dim rho2 As Double 

 

If i1 = 0 Then 

rho2 = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287) 

Else 

rho2 = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287) 

End If 

 

Dim Re2 As Double 

Re2 = (rho2 * (vo * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu) 

 

Dim Xre As Double 

Xre = IIf(Re2 <= 2 * 10 ^ 5, (Re2 / (2 * 10 ^ 5)) ^ -0.4, IIf(Re2 > 10 ^ 6, (Re2 / (10 ^ 6)) ^ -0.2, 1)) 

 

Tip Clearance Loss 

 

Dim deff As Double 

Dim efftt3 As Double 

 

deff = 0.93 * (rowgeom(1, i1) / refdia) * (1 / (LossCoeff.Item("bldhgt" & i1 & "") * Cos(alpha2(i1, 0)))) * efftt1 * rowdata(i1, 2) 

 

efftt3 = efftt1 - Abs(deff) 

 

Yt2clr = Yt 

 

Do 

countclr = countclr + 1 

Yt2clr = Yt2clr + 0.0001 

If countclr > 1000 Then 

Ytclr = 0.1 

Exit Sub 

End If 

 

If efftt1 < 0 > 150 Then 

Ytclr = 0.1 

Exit Sub 

End If 

 

Loop Until Abs(efftt1 - efftt3) < 0.01 

 

Ytclr = Yt2clr - Yt 

 

Yt = Xre * YpKO + YsKO + YteKO + Ytclr 

 

End Sub 
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C.2 Denton VBA code for Loss Model 

Dim YpDc As Double 

Dim YtcDc As Double 

Dim YteDc As Double 

Dim YsD As Double 

Dim convert As Double 

 

convert = (1 + 0.5 * (g1 - 1) * m ^ 2) ^ (1 / (g1 - 1)) 

 

Dim LossCoeff As Collection 

Dim Loss As Variant 

Set LossCoeff = New Collection 

Reference Diameter 

LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & "" 

 

Profile Loss (YpD) 

 

Input 

 

Dim x7 As Double 

Dim y7 As Double 

 

x7 = -alpha2(i1, 0) 

 

If i1 = 0 Then 

y7 = 0 

Else 

y7 = -Application.WorksheetFunction.Degrees(nozzleout(0, 0)) 

End If 

 

 

If y7 > 60 Then 

y7 = 60 

End If 

 

If y7 < -60 Then 

y7 = -60 

End If 

 

Dim x1 As Double 

Dim x2 As Double 

Dim y1 As Double 

Dim y2 As Double 

Dim q11 As Double 

Dim q12 As Double 

Dim q21 As Double 

Dim q22 As Double 

 

If y7 = 60 Then 

 

x1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"), 

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1)) 

x2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"), 

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1) + 1) 

y1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"), 

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1) - 1) 

y2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"), 

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1)) 

 

Else 
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x1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"), 

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1)) 

x2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"), 

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1) + 1) 

y1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"), 

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1)) 

y2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"), 

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1) + 1) 

 

End If 

 

q11 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"), 

Application.WorksheetFunction.Match(y1, Worksheets("Denton Contour Plots").Range("B5:B29"), 0), 

Application.WorksheetFunction.Match(x1, Worksheets("Denton Contour Plots").Range("C4:S4"), 0)) 

q12 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"), 

Application.WorksheetFunction.Match(y2, Worksheets("Denton Contour Plots").Range("B5:B29"), 0), 

Application.WorksheetFunction.Match(x1, Worksheets("Denton Contour Plots").Range("C4:S4"), 0)) 

q21 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"), 

Application.WorksheetFunction.Match(y1, Worksheets("Denton Contour Plots").Range("B5:B29"), 0), 

Application.WorksheetFunction.Match(x2, Worksheets("Denton Contour Plots").Range("C4:S4"), 0)) 

q22 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"), 

Application.WorksheetFunction.Match(y2, Worksheets("Denton Contour Plots").Range("B5:B29"), 0), 

Application.WorksheetFunction.Match(x2, Worksheets("Denton Contour Plots").Range("C4:S4"), 0)) 

 

Dim YpD As Double 

 

If x7 < 40 Or x7 > 80 Then 

YpD = 0.02 

Else 

YpD = (1 / ((x2 - x1) * (y2 - y1)) * (q11 * (x2 - x7) * (y2 - y7) + q21 * (x7 - x1) * (y2 - y7) + q12 * (x2 - x7) * (y7 - y1) + q22 * (x7 - x1) * (y7 - 

y1))) / 100 

End If 

 

Tip Clearance Loss (YtcD) 

 

Input 

 

If i1 = 0 Then 

 

Else 

 

Dim x8 As Double 

Dim y8 As Double 

 

x8 = -alpha2(i1, 0) 

y8 = -Application.WorksheetFunction.Degrees(nozzleout(0, 0)) 

 

If y8 > 60 Then 

y8 = 60 

End If 

 

If y8 < -60 Then 

y8 = -60 

End If 

 

Dim x81 As Double 

Dim x82 As Double 

Dim y81 As Double 

Dim y82 As Double 

Dim q811 As Double 

Dim q812 As Double 
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Dim q821 As Double 

Dim q822 As Double 

 

If y7 = 60 Then 

 

x81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"), 

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1)) 

x82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"), 

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1) + 1) 

y81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"), 

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1) - 1) 

y82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"), 

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1)) 

 

Else 

 

x81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"), 

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1)) 

x82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"), 

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1) + 1) 

y81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"), 

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1)) 

y82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"), 

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1) + 1) 

 

End If 

 

q811 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"), 

Application.WorksheetFunction.Match(y81, Worksheets("Denton Contour Plots").Range("B34:B58"), 0), 

Application.WorksheetFunction.Match(x81, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0)) 

q812 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"), 

Application.WorksheetFunction.Match(y82, Worksheets("Denton Contour Plots").Range("B34:B58"), 0), 

Application.WorksheetFunction.Match(x81, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0)) 

q821 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"), 

Application.WorksheetFunction.Match(y81, Worksheets("Denton Contour Plots").Range("B34:B58"), 0), 

Application.WorksheetFunction.Match(x82, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0)) 

q822 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"), 

Application.WorksheetFunction.Match(y82, Worksheets("Denton Contour Plots").Range("B34:B58"), 0), 

Application.WorksheetFunction.Match(x82, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0)) 

 

Dim YtcD As Double 

YtcD = (1 / ((x82 - x81) * (y82 - y81)) * (q811 * (x82 - x8) * (y82 - y8) + q821 * (x8 - x81) * (y82 - y8) + q812 * (x82 - x8) * (y8 - y81) + q822 * 

(x8 - x81) * (y8 - y81))) / 100 

End If 

 

Secondary Loss (YsD) 

 

Dim a10 As Double 

 

If i1 = 0 Then 

a10 = 0 

Else 

a10 = nozzleout(0, 0) 

End If 

 

Dim ang_m As Double 

ang_m = Atn(0.5 * (Tan(a10) + Tan(alpha4(i1, 0)))) 

 

Dim CLsc As Double 

CLsc = 2 * (Tan(a10) - Tan(alpha4(i1, 0))) * Cos(ang_m) 

 



151 

 

YsD = 0.375 * 0.0334 * ((rowdata(i1, 8) * 0.0254) / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) * (Cos(alpha4(i1, 0) / 

Cos(Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3))) * CLsc ^ 2 * (Cos(alpha4(i1, 0)) ^ 2 / (Cos(ang_m)) ^ 3)) 

 

YpDc = YpD * convert 

YtcDc = YtcD * convert 

 

YtD = YpDc + YtcDc + YsD 

 

Trailing Edge Loss (YteD) 

 

Dynamic viscosity 

 

Dim mu As Double 

 

If i1 = 0 Then 

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 

Else 

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 

End If 

 

Density 

 

Dim rho As Double 

 

If i1 = 0 Then 

rho = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287) 

Else 

rho = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287) 

End If 

 

 

Dim Re As Double 

Re = (rho * (vo) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu 

 

Dim theta As Double 

theta = 0.016 / Sqr(Re) ^ (1 / 7) * (rowdata(i1, 8) * 0.0254) 

 

Dim sigma As Double 

sigma = 0.02 / Sqr(Re) ^ (1 / 7) * (rowdata(i1, 8) * 0.0254) 

 

Dim YteD As Double 

YteD = ((-((-0.15 * (rowdata(i1, 10) * 0.0254)) / (rowdata(i1, 0) * 0.0254)) + ((2 * theta) / (rowdata(i1, 0) * 0.0254)) + ((sigma + (rowdata(i1, 

10) * 0.0254)) / (rowdata(i1, 0) * 0.0254)) ^ 2)) / 100 

 

YteDc = YteD * convert 

 

Yt = YtD + YteDc 
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C.3 Craig and Cox VBA Code for Loss Model 

Flow angle conversion 

 

If i1 = 0 Then 

alphacc1 = 90 

Else 

alphacc1 = 90 - Application.WorksheetFunction.Degrees(nozzleout(0, 0)) 

End If 

 

If alphacc1 > 140 Then 

alphacc1 = 140 

End If 

 

alphacc2 = (alpha2(i1, 0) + 90) 

 

Backbone length 

 

Bb = (0.5 * Sqr(rowdata(i1, 8) ^ 2 + 16 * rowdata(i1, 9) ^ 2) + (rowdata(i1, 8) ^ 2 / (8 * rowdata(i1, 9))) * Log((4 * rowdata(i1, 9) + 

Sqr(rowdata(i1, 8) ^ 2 + 16 * rowdata(i1, 9) ^ 2)) / rowdata(i1, 8))) * 0.0254 

 

Contraction Ratio 

 

Dim CRLossRngx As Range 

Dim CRLossRngyA As Range 

Dim CRLossRngyB As Range 

Dim CRLossRngyC As Range 

Dim CRLossRngyD As Range 

Dim CRLossRngyE As Range 

 

    Set CRLossRngx = Worksheets("CraigCox Corr").Range("P5:P13") 

    Set CRLossRngyA = Worksheets("CraigCox Corr").Range("Q5:Q13") 

    Set CRLossRngyB = Worksheets("CraigCox Corr").Range("R5:R13") 

    Set CRLossRngyC = Worksheets("CraigCox Corr").Range("S5:S13") 

    Set CRLossRngyD = Worksheets("CraigCox Corr").Range("T5:T13") 

    Set CRLossRngyE = Worksheets("CraigCox Corr").Range("U5:U13") 

   

    1st Polynomial Factors 

     

    Dim CRLossA(6, 0) As Double 

    CRLossA(0, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    CRLossA(1, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    CRLossA(2, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    CRLossA(3, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    CRLossA(4, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    CRLossA(5, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    CRLossA(6, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim CRLossB(6, 0) As Double 

    CRLossB(0, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    CRLossB(1, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    CRLossB(2, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    CRLossB(3, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    CRLossB(4, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    CRLossB(5, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    CRLossB(6, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim CRLossC(6, 0) As Double 

    CRLossC(0, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    CRLossC(1, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    CRLossC(2, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 
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    CRLossC(3, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    CRLossC(4, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    CRLossC(5, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    CRLossC(6, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim CRLossD(6, 0) As Double 

    CRLossD(0, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    CRLossD(1, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    CRLossD(2, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    CRLossD(3, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    CRLossD(4, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    CRLossD(5, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    CRLossD(6, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim CRLossE(6, 0) As Double 

    CRLossE(0, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    CRLossE(1, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    CRLossE(2, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    CRLossE(3, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    CRLossE(4, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    CRLossE(5, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    CRLossE(6, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

 

Dim s_b As Double 

s_b = rowdata(i1, 6) / rowdata(i1, 8) 

 

Dim SINB_SINA As Double 

SINB_SINA = 1 - (Sin(Application.WorksheetFunction.Radians(alphacc2)) / Sin(Application.WorksheetFunction.Radians(alphacc1))) 

 

    2nd Polynomial Factors 

     

    Dim CRLoss2(4, 0) As Double 

    CRLoss2(0, 0) = (((((((((((CRLossA(0, 0) * s_b) + CRLossA(1, 0)) * s_b) + CRLossA(2, 0)) * s_b) + CRLossA(3, 0)) * s_b) + CRLossA(4, 0)) * s_b) 

+ CRLossA(5, 0)) * s_b) + CRLossA(6, 0) 

    CRLoss2(1, 0) = (((((((((((CRLossB(0, 0) * s_b) + CRLossB(1, 0)) * s_b) + CRLossB(2, 0)) * s_b) + CRLossB(3, 0)) * s_b) + CRLossB(4, 0)) * s_b) 

+ CRLossB(5, 0)) * s_b) + CRLossB(6, 0) 

    CRLoss2(2, 0) = (((((((((((CRLossC(0, 0) * s_b) + CRLossC(1, 0)) * s_b) + CRLossC(2, 0)) * s_b) + CRLossC(3, 0)) * s_b) + CRLossC(4, 0)) * s_b) 

+ CRLossC(5, 0)) * s_b) + CRLossC(6, 0) 

    CRLoss2(3, 0) = (((((((((((CRLossD(0, 0) * s_b) + CRLossD(1, 0)) * s_b) + CRLossD(2, 0)) * s_b) + CRLossD(3, 0)) * s_b) + CRLossD(4, 0)) * 

s_b) + CRLossD(5, 0)) * s_b) + CRLossD(6, 0) 

    CRLoss2(4, 0) = (((((((((((CRLossE(0, 0) * s_b) + CRLossE(1, 0)) * s_b) + CRLossE(2, 0)) * s_b) + CRLossE(3, 0)) * s_b) + CRLossE(4, 0)) * s_b) 

+ CRLossE(5, 0)) * s_b) + CRLossE(6, 0) 

     

 CR 

 

    CR = (((((((CRLoss2(0, 0) * SINB_SINA) + CRLoss2(1, 0)) * SINB_SINA) + CRLoss2(2, 0)) * SINB_SINA) + CRLoss2(3, 0)) * SINB_SINA) + 

CRLoss2(4, 0) 

 

Lift Parameter 

 

Dim FLLossRngx As Range 

Dim FLLossRngyA As Range 

Dim FLLossRngyB As Range 

Dim FLLossRngyC As Range 

Dim FLLossRngyD As Range 

Dim FLLossRngyE As Range 

 

    Set FLLossRngx = Worksheets("CraigCox Corr").Range("I5:I16") 

    Set FLLossRngyA = Worksheets("CraigCox Corr").Range("J5:J16") 

    Set FLLossRngyB = Worksheets("CraigCox Corr").Range("K5:K16") 

    Set FLLossRngyC = Worksheets("CraigCox Corr").Range("L5:L16") 
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    Set FLLossRngyD = Worksheets("CraigCox Corr").Range("M5:M16") 

    Set FLLossRngyE = Worksheets("CraigCox Corr").Range("N5:N16") 

   

    1st Polynomial Factors 

     

    Dim FLLossA(6, 0) As Double 

    FLLossA(0, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    FLLossA(1, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    FLLossA(2, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    FLLossA(3, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    FLLossA(4, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    FLLossA(5, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    FLLossA(6, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim FLLossB(6, 0) As Double 

    FLLossB(0, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    FLLossB(1, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    FLLossB(2, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    FLLossB(3, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    FLLossB(4, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    FLLossB(5, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    FLLossB(6, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim FLLossC(6, 0) As Double 

    FLLossC(0, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    FLLossC(1, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    FLLossC(2, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    FLLossC(3, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    FLLossC(4, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    FLLossC(5, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    FLLossC(6, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim FLLossD(6, 0) As Double 

    FLLossD(0, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    FLLossD(1, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    FLLossD(2, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    FLLossD(3, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    FLLossD(4, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    FLLossD(5, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    FLLossD(6, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim FLLossE(6, 0) As Double 

    FLLossE(0, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    FLLossE(1, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    FLLossE(2, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    FLLossE(3, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    FLLossE(4, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    FLLossE(5, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    FLLossE(6, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    2nd Polynomial Factors 

     

    Dim FLLoss2(4, 0) As Double 

    FLLoss2(0, 0) = (((((((((((FLLossA(0, 0) * alphacc1) + FLLossA(1, 0)) * alphacc1) + FLLossA(2, 0)) * alphacc1) + FLLossA(3, 0)) * alphacc1) + 

FLLossA(4, 0)) * alphacc1) + FLLossA(5, 0)) * alphacc1) + FLLossA(6, 0) 

    FLLoss2(1, 0) = (((((((((((FLLossB(0, 0) * alphacc1) + FLLossB(1, 0)) * alphacc1) + FLLossB(2, 0)) * alphacc1) + FLLossB(3, 0)) * alphacc1) + 

FLLossB(4, 0)) * alphacc1) + FLLossB(5, 0)) * alphacc1) + FLLossB(6, 0) 

    FLLoss2(2, 0) = (((((((((((FLLossC(0, 0) * alphacc1) + FLLossC(1, 0)) * alphacc1) + FLLossC(2, 0)) * alphacc1) + FLLossC(3, 0)) * alphacc1) + 

FLLossC(4, 0)) * alphacc1) + FLLossC(5, 0)) * alphacc1) + FLLossC(6, 0) 

    FLLoss2(3, 0) = (((((((((((FLLossD(0, 0) * alphacc1) + FLLossD(1, 0)) * alphacc1) + FLLossD(2, 0)) * alphacc1) + FLLossD(3, 0)) * alphacc1) + 

FLLossD(4, 0)) * alphacc1) + FLLossD(5, 0)) * alphacc1) + FLLossD(6, 0) 
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    FLLoss2(4, 0) = (((((((((((FLLossE(0, 0) * alphacc1) + FLLossE(1, 0)) * alphacc1) + FLLossE(2, 0)) * alphacc1) + FLLossE(3, 0)) * alphacc1) + 

FLLossE(4, 0)) * alphacc1) + FLLossE(5, 0)) * alphacc1) + FLLossE(6, 0) 

     

 

FL 

     

    FL = (((((((FLLoss2(0, 0) * alphacc2) + FLLoss2(1, 0)) * alphacc2) + FLLoss2(2, 0)) * alphacc2) + FLLoss2(3, 0)) * alphacc2) + FLLoss2(4, 0) 

 

Profile Loss (PLoss) 

 

Dim BasLossRngx As Range 

Dim BasLossRngyA As Range 

Dim BasLossRngyB As Range 

Dim BasLossRngyC As Range 

Dim BasLossRngyD As Range 

Dim BasLossRngyE As Range 

Dim BasLossA(6, 0) As Double 

Dim BasLossB(6, 0) As Double 

Dim BasLossC(6, 0) As Double 

Dim BasLossD(6, 0) As Double 

Dim BasLossE(6, 0) As Double 

Dim BasLoss2(4, 0) As Double 

Dim Loss As Double 

 

If CR <= 2 Then 

 

    Set BasLossRngx = Worksheets("CraigCox Corr").Range("B5:B15") 

    Set BasLossRngyA = Worksheets("CraigCox Corr").Range("C5:C15") 

    Set BasLossRngyB = Worksheets("CraigCox Corr").Range("D5:D15") 

    Set BasLossRngyC = Worksheets("CraigCox Corr").Range("E5:E15") 

    Set BasLossRngyD = Worksheets("CraigCox Corr").Range("F5:F15") 

    Set BasLossRngyE = Worksheets("CraigCox Corr").Range("G5:G15") 

   

    1st Polynomial Factors 

     

    BasLossA(0, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossA(1, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossA(2, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossA(3, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossA(4, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossA(5, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossA(6, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossB(0, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossB(1, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossB(2, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossB(3, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossB(4, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossB(5, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossB(6, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossC(0, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossC(1, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossC(2, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossC(3, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossC(4, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossC(5, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossC(6, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossD(0, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossD(1, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossD(2, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 
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    BasLossD(3, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossD(4, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossD(5, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossD(6, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    BasLossE(0, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossE(1, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossE(2, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossE(3, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossE(4, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossE(5, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossE(6, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

     

    2nd Polynomial Factors 

     

    BasLoss2(0, 0) = (((((((((((BasLossA(0, 0) * CR) + BasLossA(1, 0)) * CR) + BasLossA(2, 0)) * CR) + BasLossA(3, 0)) * CR) + BasLossA(4, 0)) * 

CR) + BasLossA(5, 0)) * CR) + BasLossA(6, 0) 

    BasLoss2(1, 0) = (((((((((((BasLossB(0, 0) * CR) + BasLossB(1, 0)) * CR) + BasLossB(2, 0)) * CR) + BasLossB(3, 0)) * CR) + BasLossB(4, 0)) * 

CR) + BasLossB(5, 0)) * CR) + BasLossB(6, 0) 

    BasLoss2(2, 0) = (((((((((((BasLossC(0, 0) * CR) + BasLossC(1, 0)) * CR) + BasLossC(2, 0)) * CR) + BasLossC(3, 0)) * CR) + BasLossC(4, 0)) * 

CR) + BasLossC(5, 0)) * CR) + BasLossC(6, 0) 

    BasLoss2(3, 0) = (((((((((((BasLossD(0, 0) * CR) + BasLossD(1, 0)) * CR) + BasLossD(2, 0)) * CR) + BasLossD(3, 0)) * CR) + BasLossD(4, 0)) * 

CR) + BasLossD(5, 0)) * CR) + BasLossD(6, 0) 

    BasLoss2(4, 0) = (((((((((((BasLossE(0, 0) * CR) + BasLossE(1, 0)) * CR) + BasLossE(2, 0)) * CR) + BasLossE(3, 0)) * CR) + BasLossE(4, 0)) * CR) 

+ BasLossE(5, 0)) * CR) + BasLossE(6, 0) 

 

FL_sb = FL * ((rowdata(i1, 6) * 0.0254) / Bb) 

 

    Basic Loss 

     

    Loss = (((((((BasLoss2(0, 0) * FL_sb) + BasLoss2(1, 0)) * FL_sb) + BasLoss2(2, 0)) * FL_sb) + BasLoss2(3, 0)) * FL_sb) + BasLoss2(4, 0) 

 

Else 

 

    Set BasLossRngx = Worksheets("CraigCox Corr").Range("B15:B30") 

    Set BasLossRngyA = Worksheets("CraigCox Corr").Range("C15:C30") 

    Set BasLossRngyB = Worksheets("CraigCox Corr").Range("D15:D30") 

    Set BasLossRngyC = Worksheets("CraigCox Corr").Range("E15:E30") 

    Set BasLossRngyD = Worksheets("CraigCox Corr").Range("F15:F30") 

    Set BasLossRngyE = Worksheets("CraigCox Corr").Range("G15:G30") 

   

    1st Polynomial Factors 

     

    BasLossA(0, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossA(1, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossA(2, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossA(3, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossA(4, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossA(5, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossA(6, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossB(0, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossB(1, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossB(2, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossB(3, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossB(4, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossB(5, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossB(6, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossC(0, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossC(1, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 
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    BasLossC(2, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossC(3, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossC(4, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossC(5, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossC(6, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossD(0, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossD(1, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossD(2, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossD(3, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossD(4, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossD(5, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossD(6, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    BasLossE(0, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BasLossE(1, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BasLossE(2, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BasLossE(3, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BasLossE(4, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BasLossE(5, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BasLossE(6, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

     

    2nd Polynomial Factors 

 

    BasLoss2(0, 0) = (((((((((((BasLossA(0, 0) * CR) + BasLossA(1, 0)) * CR) + BasLossA(2, 0)) * CR) + BasLossA(3, 0)) * CR) + BasLossA(4, 0)) * 

CR) + BasLossA(5, 0)) * CR) + BasLossA(6, 0) 

    BasLoss2(1, 0) = (((((((((((BasLossB(0, 0) * CR) + BasLossB(1, 0)) * CR) + BasLossB(2, 0)) * CR) + BasLossB(3, 0)) * CR) + BasLossB(4, 0)) * 

CR) + BasLossB(5, 0)) * CR) + BasLossB(6, 0) 

    BasLoss2(2, 0) = (((((((((((BasLossC(0, 0) * CR) + BasLossC(1, 0)) * CR) + BasLossC(2, 0)) * CR) + BasLossC(3, 0)) * CR) + BasLossC(4, 0)) * 

CR) + BasLossC(5, 0)) * CR) + BasLossC(6, 0) 

    BasLoss2(3, 0) = (((((((((((BasLossD(0, 0) * CR) + BasLossD(1, 0)) * CR) + BasLossD(2, 0)) * CR) + BasLossD(3, 0)) * CR) + BasLossD(4, 0)) * 

CR) + BasLossD(5, 0)) * CR) + BasLossD(6, 0) 

    BasLoss2(4, 0) = (((((((((((BasLossE(0, 0) * CR) + BasLossE(1, 0)) * CR) + BasLossE(2, 0)) * CR) + BasLossE(3, 0)) * CR) + BasLossE(4, 0)) * CR) 

+ BasLossE(5, 0)) * CR) + BasLossE(6, 0) 

 

FL_sb = FL * ((rowdata(i1, 6) * 0.0254) / Bb) 

 

If FL_sb > 10 Then 

FL_sb = 10 

End If 

 

    Basic Loss 

     

    Loss = (((((((BasLoss2(0, 0) * FL_sb) + BasLoss2(1, 0)) * FL_sb) + BasLoss2(2, 0)) * FL_sb) + BasLoss2(3, 0)) * FL_sb) + BasLoss2(4, 0) 

 

End If 

 

PLoss = Loss / (Bb / (rowdata(i1, 6) * 0.0254) * Sin(Application.WorksheetFunction.Radians(alphacc2))) 

 

Trailing Edge Loss ( Pte) 

 

Dim TELossRngx As Range 

Dim TELossRngyA As Range 

Dim TELossRngyB As Range 

Dim TELossRngyC As Range 

Dim TELossRngyD As Range 

Dim TELossRngyE As Range 

 

    Set TELossRngx = Worksheets("CraigCox Corr").Range("B35:B45") 

    Set TELossRngyA = Worksheets("CraigCox Corr").Range("C35:C45") 

    Set TELossRngyB = Worksheets("CraigCox Corr").Range("D35:D45") 
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    Set TELossRngyC = Worksheets("CraigCox Corr").Range("E35:E45") 

    Set TELossRngyD = Worksheets("CraigCox Corr").Range("F35:F45") 

    Set TELossRngyE = Worksheets("CraigCox Corr").Range("G35:G45") 

   

    1st Polynomial Factors 

     

    Dim TELossA(6, 0) As Double 

    TELossA(0, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    TELossA(1, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    TELossA(2, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    TELossA(3, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    TELossA(4, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    TELossA(5, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    TELossA(6, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim TELossB(6, 0) As Double 

    TELossB(0, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    TELossB(1, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    TELossB(2, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    TELossB(3, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    TELossB(4, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    TELossB(5, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    TELossB(6, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim TELossC(6, 0) As Double 

    TELossC(0, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    TELossC(1, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    TELossC(2, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    TELossC(3, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    TELossC(4, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    TELossC(5, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    TELossC(6, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim TELossD(6, 0) As Double 

    TELossD(0, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    TELossD(1, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    TELossD(2, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    TELossD(3, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    TELossD(4, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    TELossD(5, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    TELossD(6, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim TELossE(6, 0) As Double 

    TELossE(0, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    TELossE(1, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    TELossE(2, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    TELossE(3, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    TELossE(4, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    TELossE(5, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    TELossE(6, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

 

Dim te_s As Double 

te_s = rowdata(i1, 10) / rowdata(i1, 6) 

     

    2nd Polynomial Factors 

     

    Dim TELoss2(4, 0) As Double 

    TELoss2(0, 0) = (((((((((((TELossA(0, 0) * alphacc2) + TELossA(1, 0)) * alphacc2) + TELossA(2, 0)) * alphacc2) + TELossA(3, 0)) * alphacc2) + 

TELossA(4, 0)) * alphacc2) + TELossA(5, 0)) * alphacc2) + TELossA(6, 0) 

    TELoss2(1, 0) = (((((((((((TELossB(0, 0) * alphacc2) + TELossB(1, 0)) * alphacc2) + TELossB(2, 0)) * alphacc2) + TELossB(3, 0)) * alphacc2) + 

TELossB(4, 0)) * alphacc2) + TELossB(5, 0)) * alphacc2) + TELossB(6, 0) 
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    TELoss2(2, 0) = (((((((((((TELossC(0, 0) * alphacc2) + TELossC(1, 0)) * alphacc2) + TELossC(2, 0)) * alphacc2) + TELossC(3, 0)) * alphacc2) + 

TELossC(4, 0)) * alphacc2) + TELossC(5, 0)) * alphacc2) + TELossC(6, 0) 

    TELoss2(3, 0) = (((((((((((TELossD(0, 0) * alphacc2) + TELossD(1, 0)) * alphacc2) + TELossD(2, 0)) * alphacc2) + TELossD(3, 0)) * alphacc2) + 

TELossD(4, 0)) * alphacc2) + TELossD(5, 0)) * alphacc2) + TELossD(6, 0) 

    TELoss2(4, 0) = (((((((((((TELossE(0, 0) * alphacc2) + TELossE(1, 0)) * alphacc2) + TELossE(2, 0)) * alphacc2) + TELossE(3, 0)) * alphacc2) + 

TELossE(4, 0)) * alphacc2) + TELossE(5, 0)) * alphacc2) + TELossE(6, 0) 

     

    TE 

 

    Xte = (((((((TELoss2(0, 0) * te_s) + TELoss2(1, 0)) * te_s) + TELoss2(2, 0)) * te_s) + TELoss2(3, 0)) * te_s) + TELoss2(4, 0) 

 

 

Dim PteLossRngx As Range 

Dim PteLossRngyA As Range 

 

    Set PteLossRngx = Worksheets("CraigCox Corr").Range("I50:I57") 

    Set PteLossRngyA = Worksheets("CraigCox Corr").Range("J50:J57") 

   

    1st Polynomial Factors 

     

    Dim PteLossA(6, 0) As Double 

    PteLossA(0, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    PteLossA(1, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    PteLossA(2, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    PteLossA(3, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    PteLossA(4, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    PteLossA(5, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    PteLossA(6, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    Pte = (((((((((((PteLossA(0, 0) * te_s) + PteLossA(1, 0)) * te_s) + PteLossA(2, 0)) * te_s) + PteLossA(3, 0)) * te_s) + PteLossA(4, 0)) * te_s) + 

PteLossA(5, 0)) * te_s) + PteLossA(6, 0) 

 

Mach number Losses (MA) 

 

Dim MALossRngx As Range 

Dim MALossRngyA As Range 

Dim MALossRngyB As Range 

Dim MALossRngyC As Range 

Dim MALossRngyD As Range 

Dim MALossRngyE As Range 

Dim MALossRngyF As Range 

Dim MALossRngyG As Range 

 

    Set MALossRngx = Worksheets("CraigCox Corr").Range("I35:I44") 

    Set MALossRngyA = Worksheets("CraigCox Corr").Range("J35:J44") 

    Set MALossRngyB = Worksheets("CraigCox Corr").Range("K35:K44") 

    Set MALossRngyC = Worksheets("CraigCox Corr").Range("L35:L44") 

    Set MALossRngyD = Worksheets("CraigCox Corr").Range("M35:M44") 

    Set MALossRngyE = Worksheets("CraigCox Corr").Range("N35:N44") 

    Set MALossRngyF = Worksheets("CraigCox Corr").Range("O35:O44") 

    Set MALossRngyG = Worksheets("CraigCox Corr").Range("P35:P44") 

   

    1st Polynomial Factors 

     

    Dim MALossA(6, 0) As Double 

    MALossA(0, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossA(1, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossA(2, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossA(3, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossA(4, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossA(5, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossA(6, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 
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    Dim MALossB(6, 0) As Double 

    MALossB(0, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossB(1, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossB(2, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossB(3, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossB(4, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossB(5, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossB(6, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MALossC(6, 0) As Double 

    MALossC(0, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossC(1, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossC(2, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossC(3, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossC(4, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossC(5, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossC(6, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MALossD(6, 0) As Double 

    MALossD(0, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossD(1, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossD(2, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossD(3, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossD(4, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossD(5, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossD(6, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MALossE(6, 0) As Double 

    MALossE(0, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossE(1, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossE(2, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossE(3, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossE(4, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossE(5, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossE(6, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    Dim MALossF(6, 0) As Double 

    MALossF(0, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossF(1, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossF(2, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossF(3, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossF(4, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossF(5, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossF(6, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MALossG(6, 0) As Double 

    MALossG(0, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MALossG(1, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MALossG(2, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MALossG(3, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MALossG(4, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MALossG(5, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MALossG(6, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

 

Dim ote_s As Double 

ote_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) + rowdata(i1, 10)) / rowdata(i1, 6))) 

   

    2nd Polynomial Factors 

     

    Dim MALoss2(6, 0) As Double 
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    MALoss2(0, 0) = (((((((((((MALossA(0, 0) * ote_s) + MALossA(1, 0)) * ote_s) + MALossA(2, 0)) * ote_s) + MALossA(3, 0)) * ote_s) + 

MALossA(4, 0)) * ote_s) + MALossA(5, 0)) * ote_s) + MALossA(6, 0) 

    MALoss2(1, 0) = (((((((((((MALossB(0, 0) * ote_s) + MALossB(1, 0)) * ote_s) + MALossB(2, 0)) * ote_s) + MALossB(3, 0)) * ote_s) + 

MALossB(4, 0)) * ote_s) + MALossB(5, 0)) * ote_s) + MALossB(6, 0) 

    MALoss2(2, 0) = (((((((((((MALossC(0, 0) * ote_s) + MALossC(1, 0)) * ote_s) + MALossC(2, 0)) * ote_s) + MALossC(3, 0)) * ote_s) + 

MALossC(4, 0)) * ote_s) + MALossC(5, 0)) * ote_s) + MALossC(6, 0) 

    MALoss2(3, 0) = (((((((((((MALossD(0, 0) * ote_s) + MALossD(1, 0)) * ote_s) + MALossD(2, 0)) * ote_s) + MALossD(3, 0)) * ote_s) + 

MALossD(4, 0)) * ote_s) + MALossD(5, 0)) * ote_s) + MALossD(6, 0) 

    MALoss2(4, 0) = (((((((((((MALossE(0, 0) * ote_s) + MALossE(1, 0)) * ote_s) + MALossE(2, 0)) * ote_s) + MALossE(3, 0)) * ote_s) + 

MALossE(4, 0)) * ote_s) + MALossE(5, 0)) * ote_s) + MALossE(6, 0) 

    MALoss2(5, 0) = (((((((((((MALossF(0, 0) * ote_s) + MALossF(1, 0)) * ote_s) + MALossF(2, 0)) * ote_s) + MALossF(3, 0)) * ote_s) + 

MALossF(4, 0)) * ote_s) + MALossF(5, 0)) * ote_s) + MALossF(6, 0) 

    MALoss2(6, 0) = (((((((((((MALossG(0, 0) * ote_s) + MALossG(1, 0)) * ote_s) + MALossG(2, 0)) * ote_s) + MALossG(3, 0)) * ote_s) + 

MALossG(4, 0)) * ote_s) + MALossG(5, 0)) * ote_s) + MALossG(6, 0) 

 

    MA 

     

    If m >= 1 Then 

    MA = (((((((((((MALoss2(0, 0) * m) + MALoss2(1, 0)) * m) + MALoss2(2, 0)) * m) + MALoss2(3, 0)) * m) + MALoss2(4, 0)) * m) + MALoss2(5, 

0)) * m) + MALoss2(6, 0) 

    Else 

    MA = 0 

    End If 

     

 Blade Back Radius Losses 

 

Dim BBRLossRngx As Range 

Dim BBRLossRngyA As Range 

Dim BBRLossRngyB As Range 

Dim BBRLossRngyC As Range 

Dim BBRLossRngyD As Range 

 

    Set BBRLossRngx = Worksheets("CraigCox Corr").Range("B50:B62") 

    Set BBRLossRngyA = Worksheets("CraigCox Corr").Range("C50:C62") 

    Set BBRLossRngyB = Worksheets("CraigCox Corr").Range("D50:D62") 

    Set BBRLossRngyC = Worksheets("CraigCox Corr").Range("E50:E62") 

    Set BBRLossRngyD = Worksheets("CraigCox Corr").Range("F50:F62") 

   

    1st Polynomial Factors 

     

    Dim BBRLossA(6, 0) As Double 

    BBRLossA(0, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BBRLossA(1, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BBRLossA(2, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BBRLossA(3, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BBRLossA(4, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BBRLossA(5, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BBRLossA(6, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim BBRLossB(6, 0) As Double 

    BBRLossB(0, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BBRLossB(1, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BBRLossB(2, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BBRLossB(3, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BBRLossB(4, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BBRLossB(5, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BBRLossB(6, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim BBRLossC(6, 0) As Double 

    BBRLossC(0, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BBRLossC(1, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BBRLossC(2, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 
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    BBRLossC(3, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BBRLossC(4, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BBRLossC(5, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BBRLossC(6, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim BBRLossD(6, 0) As Double 

    BBRLossD(0, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    BBRLossD(1, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    BBRLossD(2, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    BBRLossD(3, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    BBRLossD(4, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    BBRLossD(5, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    BBRLossD(6, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

Dim s_e As Double 

s_e = rowdata(i1, 6) / rowdata(i1, 1) 

     

    2nd Polynomial Factors 

     

    Dim BBRLoss2(4, 0) As Double 

    BBRLoss2(0, 0) = (((((((((((BBRLossA(0, 0) * m) + BBRLossA(1, 0)) * m) + BBRLossA(2, 0)) * m) + BBRLossA(3, 0)) * m) + BBRLossA(4, 0)) * 

m) + BBRLossA(5, 0)) * m) + BBRLossA(6, 0) 

    BBRLoss2(1, 0) = (((((((((((BBRLossB(0, 0) * m) + BBRLossB(1, 0)) * m) + BBRLossB(2, 0)) * m) + BBRLossB(3, 0)) * m) + BBRLossB(4, 0)) * 

m) + BBRLossB(5, 0)) * m) + BBRLossB(6, 0) 

    BBRLoss2(2, 0) = (((((((((((BBRLossC(0, 0) * m) + BBRLossC(1, 0)) * m) + BBRLossC(2, 0)) * m) + BBRLossC(3, 0)) * m) + BBRLossC(4, 0)) * m) 

+ BBRLossC(5, 0)) * m) + BBRLossC(6, 0) 

    BBRLoss2(3, 0) = (((((((((((BBRLossD(0, 0) * m) + BBRLossD(1, 0)) * m) + BBRLossD(2, 0)) * m) + BBRLossD(3, 0)) * m) + BBRLossD(4, 0)) * 

m) + BBRLossD(5, 0)) * m) + BBRLossD(6, 0) 

    

    BBR 

     

    If s_e < 1 Then 

    BBR = 0 

    Else 

    BBR = (((((BBRLoss2(0, 0) * s_e) + BBRLoss2(1, 0)) * s_e) + BBRLoss2(2, 0)) * s_e) + BBRLoss2(3, 0) 

    End If 

 

Incidence losses 

 

Basic Positive stalling incidence 

 

Dim BPSIncLossRngx As Range 

Dim BPSIncLossRngyA As Range 

Dim BPSIncLossRngyB As Range 

Dim BPSIncLossRngyC As Range 

Dim BPSIncLossRngyD As Range 

Dim BPSIncLossRngyE As Range 

 

    Set BPSIncLossRngx = Worksheets("CraigCox Corr").Range("B67:B77") 

    Set BPSIncLossRngyA = Worksheets("CraigCox Corr").Range("C67:C77") 

    Set BPSIncLossRngyB = Worksheets("CraigCox Corr").Range("D67:D77") 

    Set BPSIncLossRngyC = Worksheets("CraigCox Corr").Range("E67:E77") 

    Set BPSIncLossRngyD = Worksheets("CraigCox Corr").Range("F67:F77") 

    Set BPSIncLossRngyE = Worksheets("CraigCox Corr").Range("G67:G77") 

   

    1st Polynomial Factors 

     

    Dim BPSIncLossA(6, 0) As Double 

    BPSIncLossA(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 

    BPSIncLossA(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 
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    BPSIncLossA(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    BPSIncLossA(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    BPSIncLossA(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    BPSIncLossA(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    BPSIncLossA(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

     

    Dim BPSIncLossB(6, 0) As Double 

    BPSIncLossB(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 

    BPSIncLossB(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 

    BPSIncLossB(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    BPSIncLossB(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    BPSIncLossB(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    BPSIncLossB(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    BPSIncLossB(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

     

    Dim BPSIncLossC(6, 0) As Double 

    BPSIncLossC(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 

    BPSIncLossC(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 

    BPSIncLossC(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    BPSIncLossC(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    BPSIncLossC(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    BPSIncLossC(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    BPSIncLossC(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

     

    Dim BPSIncLossD(6, 0) As Double 

    BPSIncLossD(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 

    BPSIncLossD(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 

    BPSIncLossD(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    BPSIncLossD(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    BPSIncLossD(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    BPSIncLossD(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    BPSIncLossD(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

     

    Dim BPSIncLossE(6, 0) As Double 

    BPSIncLossE(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 
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    BPSIncLossE(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 

    BPSIncLossE(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    BPSIncLossE(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    BPSIncLossE(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    BPSIncLossE(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    BPSIncLossE(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

 

Dim sin_o_s As Double 

sin_o_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) / rowdata(i1, 6)))) 

 

    2nd Polynomial Factors 

     

    Dim BPSIncLoss2(4, 0) As Double 

  BPSIncLoss2(0, 0) = (((((((((((BPSIncLossA(0, 0) * sin_o_s) + BPSIncLossA(1, 0)) * sin_o_s) + BPSIncLossA(2, 0)) * sin_o_s) + BPSIncLossA(3, 

0)) * sin_o_s) + BPSIncLossA(4, 0)) * sin_o_s) + BPSIncLossA(5, 0)) * sin_o_s) + BPSIncLossA(6, 0) 

    BPSIncLoss2(1, 0) = (((((((((((BPSIncLossB(0, 0) * sin_o_s) + BPSIncLossB(1, 0)) * sin_o_s) + BPSIncLossB(2, 0)) * sin_o_s) + BPSIncLossB(3, 

0)) * sin_o_s) + BPSIncLossB(4, 0)) * sin_o_s) + BPSIncLossB(5, 0)) * sin_o_s) + BPSIncLossB(6, 0) 

    BPSIncLoss2(2, 0) = (((((((((((BPSIncLossC(0, 0) * sin_o_s) + BPSIncLossC(1, 0)) * sin_o_s) + BPSIncLossC(2, 0)) * sin_o_s) + BPSIncLossC(3, 

0)) * sin_o_s) + BPSIncLossC(4, 0)) * sin_o_s) + BPSIncLossC(5, 0)) * sin_o_s) + BPSIncLossC(6, 0) 

    BPSIncLoss2(3, 0) = (((((((((((BPSIncLossD(0, 0) * sin_o_s) + BPSIncLossD(1, 0)) * sin_o_s) + BPSIncLossD(2, 0)) * sin_o_s) + BPSIncLossD(3, 

0)) * sin_o_s) + BPSIncLossD(4, 0)) * sin_o_s) + BPSIncLossD(5, 0)) * sin_o_s) + BPSIncLossD(6, 0) 

    BPSIncLoss2(4, 0) = (((((((((((BPSIncLossE(0, 0) * sin_o_s) + BPSIncLossE(1, 0)) * sin_o_s) + BPSIncLossE(2, 0)) * sin_o_s) + BPSIncLossE(3, 

0)) * sin_o_s) + BPSIncLossE(4, 0)) * sin_o_s) + BPSIncLossE(5, 0)) * sin_o_s) + BPSIncLossE(6, 0) 

 

  i+bas 

 

    i_bas = (((((((BPSIncLoss2(0, 0) * alphacc1) + BPSIncLoss2(1, 0)) * alphacc1) + BPSIncLoss2(2, 0)) * alphacc1) + BPSIncLoss2(3, 0)) * 

alphacc1) + BPSIncLoss2(4, 0) 

 

Incidence correction CR 

 

Dim IncCRLossRngx As Range 

Dim IncCRLossRngyA As Range 

Dim IncCRLossRngyB As Range 

Dim IncCRLossRngyC As Range 

Dim IncCRLossRngyD As Range 

Dim IncCRLossRngyE As Range 

 

    Set IncCRLossRngx = Worksheets("CraigCox Corr").Range("I67:I69") 

    Set IncCRLossRngyA = Worksheets("CraigCox Corr").Range("J67:J69") 

    Set IncCRLossRngyB = Worksheets("CraigCox Corr").Range("K67:K69") 

    Set IncCRLossRngyC = Worksheets("CraigCox Corr").Range("L67:L69") 

    Set IncCRLossRngyD = Worksheets("CraigCox Corr").Range("M67:M69") 

    Set IncCRLossRngyE = Worksheets("CraigCox Corr").Range("N67:N69") 

   

    1st Polynomial Factors 

     

    Dim IncCRLossA(3, 0) As Double 

    IncCRLossA(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1) 

    IncCRLossA(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2) 

    IncCRLossA(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3) 

 

    Dim IncCRLossB(3, 0) As Double 

    IncCRLossB(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1) 

    IncCRLossB(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2) 

    IncCRLossB(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3) 
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    Dim IncCRLossC(3, 0) As Double 

    IncCRLossC(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1) 

    IncCRLossC(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2) 

    IncCRLossC(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3) 

 

     

    Dim IncCRLossD(3, 0) As Double 

    IncCRLossD(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1) 

    IncCRLossD(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2) 

    IncCRLossD(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3) 

 

     

    Dim IncCRLossE(3, 0) As Double 

    IncCRLossE(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1) 

    IncCRLossE(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2) 

    IncCRLossE(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3) 

 

    2nd Polynomial Factors 

     

    Dim IncCRLoss2(4, 0) As Double 

    IncCRLoss2(0, 0) = (((IncCRLossA(0, 0) * sin_o_s) + IncCRLossA(1, 0)) * sin_o_s) + IncCRLossA(2, 0) 

    IncCRLoss2(1, 0) = (((IncCRLossB(0, 0) * sin_o_s) + IncCRLossB(1, 0)) * sin_o_s) + IncCRLossB(2, 0) 

    IncCRLoss2(2, 0) = (((IncCRLossC(0, 0) * sin_o_s) + IncCRLossC(1, 0)) * sin_o_s) + IncCRLossC(2, 0) 

    IncCRLoss2(3, 0) = (((IncCRLossD(0, 0) * sin_o_s) + IncCRLossD(1, 0)) * sin_o_s) + IncCRLossD(2, 0) 

    IncCRLoss2(4, 0) = (((IncCRLossE(0, 0) * sin_o_s) + IncCRLossE(1, 0)) * sin_o_s) + IncCRLossE(2, 0) 

 

  i+CR 

   

    i_CR = (((((((IncCRLoss2(0, 0) * CR) + IncCRLoss2(1, 0)) * CR) + IncCRLoss2(2, 0)) * CR) + IncCRLoss2(3, 0)) * CR) + IncCRLoss2(4, 0) 

 

Incidence correction s/b 

 

Dim IncsbLossRngx As Range 

Dim IncsbLossRngyA As Range 

Dim IncsbLossRngyB As Range 

Dim IncsbLossRngyC As Range 

Dim IncsbLossRngyD As Range 

Dim IncsbLossRngyE As Range 

 

    Set IncsbLossRngx = Worksheets("CraigCox Corr").Range("P67:P79") 

    Set IncsbLossRngyA = Worksheets("CraigCox Corr").Range("Q67:Q79") 

    Set IncsbLossRngyB = Worksheets("CraigCox Corr").Range("R67:R79") 

    Set IncsbLossRngyC = Worksheets("CraigCox Corr").Range("S67:S79") 

    Set IncsbLossRngyD = Worksheets("CraigCox Corr").Range("T67:T79") 

    Set IncsbLossRngyE = Worksheets("CraigCox Corr").Range("U67:U79") 

   

    1st Polynomial Factors 

     

    Dim IncsbLossA(6, 0) As Double 

    IncsbLossA(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    IncsbLossA(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    IncsbLossA(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    IncsbLossA(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    IncsbLossA(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    IncsbLossA(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    IncsbLossA(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim IncsbLossB(6, 0) As Double 

    IncsbLossB(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    IncsbLossB(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 
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    IncsbLossB(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    IncsbLossB(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    IncsbLossB(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    IncsbLossB(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    IncsbLossB(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim IncsbLossC(6, 0) As Double 

    IncsbLossC(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    IncsbLossC(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    IncsbLossC(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    IncsbLossC(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    IncsbLossC(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    IncsbLossC(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    IncsbLossC(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim IncsbLossD(6, 0) As Double 

    IncsbLossD(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    IncsbLossD(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    IncsbLossD(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    IncsbLossD(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    IncsbLossD(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    IncsbLossD(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    IncsbLossD(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim IncsbLossE(6, 0) As Double 

    IncsbLossE(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    IncsbLossE(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    IncsbLossE(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    IncsbLossE(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    IncsbLossE(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    IncsbLossE(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    IncsbLossE(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

     

    2nd Polynomial Factors 

     

    Dim IncsbLoss2(4, 0) As Double 

    IncsbLoss2(0, 0) = (((((((((((IncsbLossA(0, 0) * sin_o_s) + IncsbLossA(1, 0)) * sin_o_s) + IncsbLossA(2, 0)) * sin_o_s) + IncsbLossA(3, 0)) * 

sin_o_s) + IncsbLossA(4, 0)) * sin_o_s) + IncsbLossA(5, 0)) * sin_o_s) + IncsbLossA(6, 0) 

    IncsbLoss2(1, 0) = (((((((((((IncsbLossB(0, 0) * sin_o_s) + IncsbLossB(1, 0)) * sin_o_s) + IncsbLossB(2, 0)) * sin_o_s) + IncsbLossB(3, 0)) * 

sin_o_s) + IncsbLossB(4, 0)) * sin_o_s) + IncsbLossB(5, 0)) * sin_o_s) + IncsbLossB(6, 0) 

    IncsbLoss2(2, 0) = (((((((((((IncsbLossC(0, 0) * sin_o_s) + IncsbLossC(1, 0)) * sin_o_s) + IncsbLossC(2, 0)) * sin_o_s) + IncsbLossC(3, 0)) * 

sin_o_s) + IncsbLossC(4, 0)) * sin_o_s) + IncsbLossC(5, 0)) * sin_o_s) + IncsbLossC(6, 0) 

    IncsbLoss2(3, 0) = (((((((((((IncsbLossD(0, 0) * sin_o_s) + IncsbLossD(1, 0)) * sin_o_s) + IncsbLossD(2, 0)) * sin_o_s) + IncsbLossD(3, 0)) * 

sin_o_s) + IncsbLossD(4, 0)) * sin_o_s) + IncsbLossD(5, 0)) * sin_o_s) + IncsbLossD(6, 0) 

    IncsbLoss2(4, 0) = (((((((((((IncsbLossE(0, 0) * sin_o_s) + IncsbLossE(1, 0)) * sin_o_s) + IncsbLossE(2, 0)) * sin_o_s) + IncsbLossE(3, 0)) * 

sin_o_s) + IncsbLossE(4, 0)) * sin_o_s) + IncsbLossE(5, 0)) * sin_o_s) + IncsbLossE(6, 0) 

 

Dim s_Bb As Double 

s_Bb = ((rowdata(i1, 6) * 0.0254) / Bb) 

 

  i+s/b 

     

    i_s_b = (((((((IncsbLoss2(0, 0) * s_Bb) + IncsbLoss2(1, 0)) * s_Bb) + IncsbLoss2(2, 0)) * s_Bb) + IncsbLoss2(3, 0)) * s_Bb) + IncsbLoss2(4, 0) 

 

 

Negative stalling incidence Losses 

 

Dim NSIncLossRngx As Range 

Dim NSIncLossRngyA As Range 

Dim NSIncLossRngyB As Range 

Dim NSIncLossRngyC As Range 
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Dim NSIncLossRngyD As Range 

Dim NSIncLossRngyE As Range 

Dim NSIncLossRngyF As Range 

 

 

    Set NSIncLossRngx = Worksheets("CraigCox Corr").Range("W67:W79") 

    Set NSIncLossRngyA = Worksheets("CraigCox Corr").Range("X67:X79") 

    Set NSIncLossRngyB = Worksheets("CraigCox Corr").Range("Y67:Y79") 

    Set NSIncLossRngyC = Worksheets("CraigCox Corr").Range("Z67:Z79") 

    Set NSIncLossRngyD = Worksheets("CraigCox Corr").Range("AA67:AA79") 

    Set NSIncLossRngyE = Worksheets("CraigCox Corr").Range("AB67:AB79") 

    Set NSIncLossRngyF = Worksheets("CraigCox Corr").Range("AC67:AC79") 

   

    1st Polynomial Factors 

     

    Dim NSIncLossA(6, 0) As Double 

    NSIncLossA(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    NSIncLossA(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossA(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossA(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossA(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossA(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossA(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim NSIncLossB(6, 0) As Double 

    NSIncLossB(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    NSIncLossB(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossB(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossB(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossB(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossB(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossB(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim NSIncLossC(6, 0) As Double 

    NSIncLossC(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    NSIncLossC(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossC(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossC(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossC(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossC(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossC(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim NSIncLossD(6, 0) As Double 

    NSIncLossD(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    NSIncLossD(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossD(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossD(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossD(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossD(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossD(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim NSIncLossE(6, 0) As Double 

    NSIncLossE(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    NSIncLossE(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossE(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossE(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossE(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossE(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossE(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    Dim NSIncLossF(6, 0) As Double 

    NSIncLossF(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 
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    NSIncLossF(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    NSIncLossF(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    NSIncLossF(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    NSIncLossF(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    NSIncLossF(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    NSIncLossF(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    2nd Polynomial Factors 

     

    Dim NSIncLoss2(6, 0) As Double 

    NSIncLoss2(0, 0) = (((((((((((NSIncLossA(0, 0) * sin_o_s) + NSIncLossA(1, 0)) * sin_o_s) + NSIncLossA(2, 0)) * sin_o_s) + NSIncLossA(3, 0)) * 

sin_o_s) + NSIncLossA(4, 0)) * sin_o_s) + NSIncLossA(5, 0)) * sin_o_s) + NSIncLossA(6, 0) 

    NSIncLoss2(1, 0) = (((((((((((NSIncLossB(0, 0) * sin_o_s) + NSIncLossB(1, 0)) * sin_o_s) + NSIncLossB(2, 0)) * sin_o_s) + NSIncLossB(3, 0)) * 

sin_o_s) + NSIncLossB(4, 0)) * sin_o_s) + NSIncLossB(5, 0)) * sin_o_s) + NSIncLossB(6, 0) 

    NSIncLoss2(2, 0) = (((((((((((NSIncLossC(0, 0) * sin_o_s) + NSIncLossC(1, 0)) * sin_o_s) + NSIncLossC(2, 0)) * sin_o_s) + NSIncLossC(3, 0)) * 

sin_o_s) + NSIncLossC(4, 0)) * sin_o_s) + NSIncLossC(5, 0)) * sin_o_s) + NSIncLossC(6, 0) 

    NSIncLoss2(3, 0) = (((((((((((NSIncLossD(0, 0) * sin_o_s) + NSIncLossD(1, 0)) * sin_o_s) + NSIncLossD(2, 0)) * sin_o_s) + NSIncLossD(3, 0)) * 

sin_o_s) + NSIncLossD(4, 0)) * sin_o_s) + NSIncLossD(5, 0)) * sin_o_s) + NSIncLossD(6, 0) 

    NSIncLoss2(4, 0) = (((((((((((NSIncLossE(0, 0) * sin_o_s) + NSIncLossE(1, 0)) * sin_o_s) + NSIncLossE(2, 0)) * sin_o_s) + NSIncLossE(3, 0)) * 

sin_o_s) + NSIncLossE(4, 0)) * sin_o_s) + NSIncLossE(5, 0)) * sin_o_s) + NSIncLossE(6, 0) 

    NSIncLoss2(5, 0) = (((((((((((NSIncLossF(0, 0) * sin_o_s) + NSIncLossF(1, 0)) * sin_o_s) + NSIncLossF(2, 0)) * sin_o_s) + NSIncLossF(3, 0)) * 

sin_o_s) + NSIncLossF(4, 0)) * sin_o_s) + NSIncLossF(5, 0)) * sin_o_s) + NSIncLossF(6, 0) 

 

    i-stall bas 

     

    i_n_bas = (((((((((NSIncLoss2(0, 0) * alphacc1) + NSIncLoss2(1, 0)) * alphacc1) + NSIncLoss2(2, 0)) * alphacc1) + NSIncLoss2(3, 0)) * 

alphacc1) + NSIncLoss2(4, 0)) * alphacc1) + NSIncLoss2(5, 0) 

 

Negative Stalling Incidences s/b 

 

Dim NSIncsbLossRngx As Range 

Dim NSIncsbLossRngyA As Range 

Dim NSIncsbLossRngyB As Range 

Dim NSIncsbLossRngyC As Range 

Dim NSIncsbLossRngyD As Range 

Dim NSIncsbLossRngyE As Range 

Dim NSIncsbLossRngyF As Range 

Dim NSIncsbLossRngyG As Range 

 

    Set NSIncsbLossRngx = Worksheets("CraigCox Corr").Range("AE67:AE77") 

    Set NSIncsbLossRngyA = Worksheets("CraigCox Corr").Range("AF67:AF77") 

    Set NSIncsbLossRngyB = Worksheets("CraigCox Corr").Range("AG67:AG77") 

    Set NSIncsbLossRngyC = Worksheets("CraigCox Corr").Range("AH67:AH77") 

    Set NSIncsbLossRngyD = Worksheets("CraigCox Corr").Range("AI67:AI77") 

    Set NSIncsbLossRngyE = Worksheets("CraigCox Corr").Range("AJ67:AJ77") 

    Set NSIncsbLossRngyF = Worksheets("CraigCox Corr").Range("AK67:AK77") 

    Set NSIncsbLossRngyG = Worksheets("CraigCox Corr").Range("AL67:AL77") 

   

    1st Polynomial Factors 

     

    Dim NSIncsbLossA(6, 0) As Double 

    NSIncsbLossA(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossA(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossA(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossA(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossA(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 
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    NSIncsbLossA(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossA(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim NSIncsbLossB(6, 0) As Double 

    NSIncsbLossB(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossB(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossB(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossB(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossB(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossB(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossB(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim NSIncsbLossC(6, 0) As Double 

    NSIncsbLossC(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossC(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossC(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossC(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossC(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossC(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossC(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim NSIncsbLossD(6, 0) As Double 

    NSIncsbLossD(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossD(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossD(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossD(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossD(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossD(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossD(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim NSIncsbLossE(6, 0) As Double 

    NSIncsbLossE(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossE(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossE(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossE(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 
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    NSIncsbLossE(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossE(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossE(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

 

    Dim NSIncsbLossF(6, 0) As Double 

    NSIncsbLossF(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossF(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossF(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossF(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossF(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossF(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossF(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim NSIncsbLossG(6, 0) As Double 

    NSIncsbLossG(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    NSIncsbLossG(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    NSIncsbLossG(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    NSIncsbLossG(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    NSIncsbLossG(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    NSIncsbLossG(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    NSIncsbLossG(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

 

    2nd Polynomial Factors 

     

    Dim NSIncsbLoss2(6, 0) As Double 

    NSIncsbLoss2(0, 0) = (((((((((((NSIncsbLossA(0, 0) * sin_o_s) + NSIncsbLossA(1, 0)) * sin_o_s) + NSIncsbLossA(2, 0)) * sin_o_s) + 

NSIncsbLossA(3, 0)) * sin_o_s) + NSIncsbLossA(4, 0)) * sin_o_s) + NSIncsbLossA(5, 0)) * sin_o_s) + NSIncsbLossA(6, 0) 

    NSIncsbLoss2(1, 0) = (((((((((((NSIncsbLossB(0, 0) * sin_o_s) + NSIncsbLossB(1, 0)) * sin_o_s) + NSIncsbLossB(2, 0)) * sin_o_s) + 

NSIncsbLossB(3, 0)) * sin_o_s) + NSIncsbLossB(4, 0)) * sin_o_s) + NSIncsbLossB(5, 0)) * sin_o_s) + NSIncsbLossB(6, 0) 

    NSIncsbLoss2(2, 0) = (((((((((((NSIncsbLossC(0, 0) * sin_o_s) + NSIncsbLossC(1, 0)) * sin_o_s) + NSIncsbLossC(2, 0)) * sin_o_s) + 

NSIncsbLossC(3, 0)) * sin_o_s) + NSIncsbLossC(4, 0)) * sin_o_s) + NSIncsbLossC(5, 0)) * sin_o_s) + NSIncsbLossC(6, 0) 

    NSIncsbLoss2(3, 0) = (((((((((((NSIncsbLossD(0, 0) * sin_o_s) + NSIncsbLossD(1, 0)) * sin_o_s) + NSIncsbLossD(2, 0)) * sin_o_s) + 

NSIncsbLossD(3, 0)) * sin_o_s) + NSIncsbLossD(4, 0)) * sin_o_s) + NSIncsbLossD(5, 0)) * sin_o_s) + NSIncsbLossD(6, 0) 

    NSIncsbLoss2(4, 0) = (((((((((((NSIncsbLossE(0, 0) * sin_o_s) + NSIncsbLossE(1, 0)) * sin_o_s) + NSIncsbLossE(2, 0)) * sin_o_s) + 

NSIncsbLossE(3, 0)) * sin_o_s) + NSIncsbLossE(4, 0)) * sin_o_s) + NSIncsbLossE(5, 0)) * sin_o_s) + NSIncsbLossE(6, 0) 

    NSIncsbLoss2(5, 0) = (((((((((((NSIncsbLossF(0, 0) * sin_o_s) + NSIncsbLossF(1, 0)) * sin_o_s) + NSIncsbLossF(2, 0)) * sin_o_s) + 

NSIncsbLossF(3, 0)) * sin_o_s) + NSIncsbLossF(4, 0)) * sin_o_s) + NSIncsbLossF(5, 0)) * sin_o_s) + NSIncsbLossF(6, 0) 

    NSIncsbLoss2(6, 0) = (((((((((((NSIncsbLossG(0, 0) * sin_o_s) + NSIncsbLossG(1, 0)) * sin_o_s) + NSIncsbLossG(2, 0)) * sin_o_s) + 

NSIncsbLossG(3, 0)) * sin_o_s) + NSIncsbLossG(4, 0)) * sin_o_s) + NSIncsbLossG(5, 0)) * sin_o_s) + NSIncsbLossG(6, 0) 

     

    i-stall s/b 

 

    i_n_s_b = (((((((((((NSIncsbLoss2(0, 0) * s_Bb) + NSIncsbLoss2(1, 0)) * s_Bb) + NSIncsbLoss2(2, 0)) * s_Bb) + NSIncsbLoss2(3, 0)) * s_Bb) + 

NSIncsbLoss2(4, 0)) * s_Bb) + NSIncsbLoss2(5, 0)) * s_Bb) + NSIncsbLoss2(6, 0) 
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Basic Negative Stalling Incidence > 90 

 

Dim BNSInc90LossRngx As Range 

Dim BNSInc90LossRngyA As Range 

Dim BNSInc90LossRngyB As Range 

Dim BNSInc90LossRngyC As Range 

Dim BNSInc90LossRngyD As Range 

Dim BNSInc90LossRngyE As Range 

 

    Set BNSInc90LossRngx = Worksheets("CraigCox Corr").Range("AN67:AN79") 

    Set BNSInc90LossRngyA = Worksheets("CraigCox Corr").Range("AO67:AO79") 

    Set BNSInc90LossRngyB = Worksheets("CraigCox Corr").Range("AP67:AP79") 

    Set BNSInc90LossRngyC = Worksheets("CraigCox Corr").Range("AQ67:AQ79") 

    Set BNSInc90LossRngyD = Worksheets("CraigCox Corr").Range("AR67:AR79") 

    Set BNSInc90LossRngyE = Worksheets("CraigCox Corr").Range("AS67:AS79") 

   

    1st Polynomial Factors 

     

    Dim BNSInc90LossA(6, 0) As Double 

    BNSInc90LossA(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 1) 

    BNSInc90LossA(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 2) 

    BNSInc90LossA(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 3) 

    BNSInc90LossA(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 4) 

    BNSInc90LossA(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 5) 

    BNSInc90LossA(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 6) 

    BNSInc90LossA(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 7) 

     

    Dim BNSInc90LossB(6, 0) As Double 

    BNSInc90LossB(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 1) 

    BNSInc90LossB(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 2) 

    BNSInc90LossB(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 3) 

    BNSInc90LossB(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 4) 

    BNSInc90LossB(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 5) 

    BNSInc90LossB(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 6) 

    BNSInc90LossB(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 7) 

     

    Dim BNSInc90LossC(6, 0) As Double 

    BNSInc90LossC(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 1) 

    BNSInc90LossC(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 2) 

    BNSInc90LossC(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 3) 

    BNSInc90LossC(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 4) 

    BNSInc90LossC(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 5) 
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    BNSInc90LossC(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 6) 

    BNSInc90LossC(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 7) 

     

    Dim BNSInc90LossD(6, 0) As Double 

    BNSInc90LossD(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 1) 

    BNSInc90LossD(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 2) 

    BNSInc90LossD(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 3) 

    BNSInc90LossD(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 4) 

    BNSInc90LossD(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 5) 

    BNSInc90LossD(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 6) 

    BNSInc90LossD(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 7) 

     

    Dim BNSInc90LossE(6, 0) As Double 

    BNSInc90LossE(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 1) 

    BNSInc90LossE(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 2) 

    BNSInc90LossE(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 3) 

    BNSInc90LossE(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 4) 

    BNSInc90LossE(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 5) 

    BNSInc90LossE(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 6) 

    BNSInc90LossE(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4, 

5, 6))), 1, 7) 

 

Dim sin_o_s As Double 

sin_o_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) / rowdata(i1, 6)))) 

 

    2nd Polynomial Factors 

     

    Dim BNSInc90Loss2(4, 0) As Double 

    BNSInc90Loss2(0, 0) = (((((((((((BNSInc90LossA(0, 0) * sin_o_s) + BNSInc90LossA(1, 0)) * sin_o_s) + BNSInc90LossA(2, 0)) * sin_o_s) + 

BNSInc90LossA(3, 0)) * sin_o_s) + BNSInc90LossA(4, 0)) * sin_o_s) + BNSInc90LossA(5, 0)) * sin_o_s) + BNSInc90LossA(6, 0) 

    BNSInc90Loss2(1, 0) = (((((((((((BNSInc90LossB(0, 0) * sin_o_s) + BNSInc90LossB(1, 0)) * sin_o_s) + BNSInc90LossB(2, 0)) * sin_o_s) + 

BNSInc90LossB(3, 0)) * sin_o_s) + BNSInc90LossB(4, 0)) * sin_o_s) + BNSInc90LossB(5, 0)) * sin_o_s) + BNSInc90LossB(6, 0) 

    BNSInc90Loss2(2, 0) = (((((((((((BNSInc90LossC(0, 0) * sin_o_s) + BNSInc90LossC(1, 0)) * sin_o_s) + BNSInc90LossC(2, 0)) * sin_o_s) + 

BNSInc90LossC(3, 0)) * sin_o_s) + BNSInc90LossC(4, 0)) * sin_o_s) + BNSInc90LossC(5, 0)) * sin_o_s) + BNSInc90LossC(6, 0) 

    BNSInc90Loss2(3, 0) = (((((((((((BNSInc90LossD(0, 0) * sin_o_s) + BNSInc90LossD(1, 0)) * sin_o_s) + BNSInc90LossD(2, 0)) * sin_o_s) + 

BNSInc90LossD(3, 0)) * sin_o_s) + BNSInc90LossD(4, 0)) * sin_o_s) + BNSInc90LossD(5, 0)) * sin_o_s) + BNSInc90LossD(6, 0) 

    BNSInc90Loss2(4, 0) = (((((((((((BNSInc90LossE(0, 0) * sin_o_s) + BNSInc90LossE(1, 0)) * sin_o_s) + BNSInc90LossE(2, 0)) * sin_o_s) + 

BNSInc90LossE(3, 0)) * sin_o_s) + BNSInc90LossE(4, 0)) * sin_o_s) + BNSInc90LossE(5, 0)) * sin_o_s) + BNSInc90LossE(6, 0) 

     

  i-bas90 

 

    i_nbas90 = (((((((BNSInc90Loss2(0, 0) * alphacc1) + BNSInc90Loss2(1, 0)) * alphacc1) + BNSInc90Loss2(2, 0)) * alphacc1) + 

BNSInc90Loss2(3, 0)) * alphacc1) + BNSInc90Loss2(4, 0) 

 

Basic Positive Stalling Incidence > 90 

 

Dim BPSInc90LossRngx As Range 
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Dim BPSInc90LossRngyA As Range 

Dim BPSInc90LossRngyB As Range 

Dim BPSInc90LossRngyC As Range 

Dim BPSInc90LossRngyD As Range 

Dim BPSInc90LossRngyE As Range 

 

    Set BPSInc90LossRngx = Worksheets("CraigCox Corr").Range("AU67:AU77") 

    Set BPSInc90LossRngyA = Worksheets("CraigCox Corr").Range("AV67:AV77") 

    Set BPSInc90LossRngyB = Worksheets("CraigCox Corr").Range("AW67:AW77") 

    Set BPSInc90LossRngyC = Worksheets("CraigCox Corr").Range("AX67:AX77") 

    Set BPSInc90LossRngyD = Worksheets("CraigCox Corr").Range("AY67:AY77") 

    Set BPSInc90LossRngyE = Worksheets("CraigCox Corr").Range("AZ67:AZ77") 

   

    1st Polynomial Factors 

     

    Dim BPSInc90LossA(6, 0) As Double 

    BPSInc90LossA(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    BPSInc90LossA(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    BPSInc90LossA(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    BPSInc90LossA(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    BPSInc90LossA(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    BPSInc90LossA(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    BPSInc90LossA(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim BPSInc90LossB(6, 0) As Double 

    BPSInc90LossB(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    BPSInc90LossB(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    BPSInc90LossB(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    BPSInc90LossB(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    BPSInc90LossB(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    BPSInc90LossB(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    BPSInc90LossB(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim BPSInc90LossC(6, 0) As Double 

    BPSInc90LossC(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    BPSInc90LossC(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    BPSInc90LossC(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    BPSInc90LossC(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    BPSInc90LossC(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    BPSInc90LossC(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    BPSInc90LossC(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 
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    Dim BPSInc90LossD(6, 0) As Double 

    BPSInc90LossD(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    BPSInc90LossD(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    BPSInc90LossD(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    BPSInc90LossD(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    BPSInc90LossD(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    BPSInc90LossD(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    BPSInc90LossD(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

     

    Dim BPSInc90LossE(6, 0) As Double 

    BPSInc90LossE(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 1) 

    BPSInc90LossE(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 2) 

    BPSInc90LossE(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 3) 

    BPSInc90LossE(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 4) 

    BPSInc90LossE(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 5) 

    BPSInc90LossE(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 6) 

    BPSInc90LossE(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5, 

6))), 1, 7) 

 

    2nd Polynomial Factors 

     

    Dim BPSInc90Loss2(4, 0) As Double 

    BPSInc90Loss2(0, 0) = (((((((((((BPSInc90LossA(0, 0) * sin_o_s) + BPSInc90LossA(1, 0)) * sin_o_s) + BPSInc90LossA(2, 0)) * sin_o_s) + 

BPSInc90LossA(3, 0)) * sin_o_s) + BPSInc90LossA(4, 0)) * sin_o_s) + BPSInc90LossA(5, 0)) * sin_o_s) + BPSInc90LossA(6, 0) 

    BPSInc90Loss2(1, 0) = (((((((((((BPSInc90LossB(0, 0) * sin_o_s) + BPSInc90LossB(1, 0)) * sin_o_s) + BPSInc90LossB(2, 0)) * sin_o_s) + 

BPSInc90LossB(3, 0)) * sin_o_s) + BPSInc90LossB(4, 0)) * sin_o_s) + BPSInc90LossB(5, 0)) * sin_o_s) + BPSInc90LossB(6, 0) 

    BPSInc90Loss2(2, 0) = (((((((((((BPSInc90LossC(0, 0) * sin_o_s) + BPSInc90LossC(1, 0)) * sin_o_s) + BPSInc90LossC(2, 0)) * sin_o_s) + 

BPSInc90LossC(3, 0)) * sin_o_s) + BPSInc90LossC(4, 0)) * sin_o_s) + BPSInc90LossC(5, 0)) * sin_o_s) + BPSInc90LossC(6, 0) 

    BPSInc90Loss2(3, 0) = (((((((((((BPSInc90LossD(0, 0) * sin_o_s) + BPSInc90LossD(1, 0)) * sin_o_s) + BPSInc90LossD(2, 0)) * sin_o_s) + 

BPSInc90LossD(3, 0)) * sin_o_s) + BPSInc90LossD(4, 0)) * sin_o_s) + BPSInc90LossD(5, 0)) * sin_o_s) + BPSInc90LossD(6, 0) 

    BPSInc90Loss2(4, 0) = (((((((((((BPSInc90LossE(0, 0) * sin_o_s) + BPSInc90LossE(1, 0)) * sin_o_s) + BPSInc90LossE(2, 0)) * sin_o_s) + 

BPSInc90LossE(3, 0)) * sin_o_s) + BPSInc90LossE(4, 0)) * sin_o_s) + BPSInc90LossE(5, 0)) * sin_o_s) + BPSInc90LossE(6, 0) 

     

 

  i+bas90 

 

    i_pbas90 = (((((((BPSInc90Loss2(0, 0) * alphacc1) + BPSInc90Loss2(1, 0)) * alphacc1) + BPSInc90Loss2(2, 0)) * alphacc1) + 

BPSInc90Loss2(3, 0)) * alphacc1) + BPSInc90Loss2(4, 0) 

 

Minimum Loss 

 

Dim MinLossRngx As Range 

Dim MinLossRngyA As Range 

Dim MinLossRngyB As Range 

Dim MinLossRngyC As Range 

Dim MinLossRngyD As Range 

Dim MinLossRngyE As Range 
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    Set MinLossRngx = Worksheets("CraigCox Corr").Range("BB67:BB75") 

    Set MinLossRngyA = Worksheets("CraigCox Corr").Range("BC67:BC75") 

    Set MinLossRngyB = Worksheets("CraigCox Corr").Range("BD67:BD75") 

    Set MinLossRngyC = Worksheets("CraigCox Corr").Range("BE67:BE75") 

    Set MinLossRngyD = Worksheets("CraigCox Corr").Range("BF67:BF75") 

    Set MinLossRngyE = Worksheets("CraigCox Corr").Range("BG67:BG75") 

   

    1st Polynomial Factors 

     

    Dim MinLossA(6, 0) As Double 

    MinLossA(0, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MinLossA(1, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MinLossA(2, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MinLossA(3, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MinLossA(4, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MinLossA(5, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MinLossA(6, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MinLossB(6, 0) As Double 

    MinLossB(0, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MinLossB(1, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MinLossB(2, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MinLossB(3, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MinLossB(4, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MinLossB(5, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MinLossB(6, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MinLossC(6, 0) As Double 

    MinLossC(0, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MinLossC(1, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MinLossC(2, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MinLossC(3, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MinLossC(4, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MinLossC(5, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MinLossC(6, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MinLossD(6, 0) As Double 

    MinLossD(0, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MinLossD(1, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MinLossD(2, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MinLossD(3, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MinLossD(4, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MinLossD(5, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MinLossD(6, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

     

    Dim MinLossE(6, 0) As Double 

    MinLossE(0, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    MinLossE(1, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    MinLossE(2, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    MinLossE(3, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    MinLossE(4, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    MinLossE(5, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    MinLossE(6, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 

 

    2nd Polynomial Factors 

     

Dim s_Bb As Double 

s_Bb = ((rowdata(i1, 6) * 0.0254) / Bb) 

     

    Dim MinLoss2(4, 0) As Double 

    MinLoss2(0, 0) = (((((((((((MinLossA(0, 0) * s_Bb) + MinLossA(1, 0)) * s_Bb) + MinLossA(2, 0)) * s_Bb) + MinLossA(3, 0)) * s_Bb) + 

MinLossA(4, 0)) * s_Bb) + MinLossA(5, 0)) * s_Bb) + MinLossA(6, 0) 
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    MinLoss2(1, 0) = (((((((((((MinLossB(0, 0) * s_Bb) + MinLossB(1, 0)) * s_Bb) + MinLossB(2, 0)) * s_Bb) + MinLossB(3, 0)) * s_Bb) + 

MinLossB(4, 0)) * s_Bb) + MinLossB(5, 0)) * s_Bb) + MinLossB(6, 0) 

    MinLoss2(2, 0) = (((((((((((MinLossC(0, 0) * s_Bb) + MinLossC(1, 0)) * s_Bb) + MinLossC(2, 0)) * s_Bb) + MinLossC(3, 0)) * s_Bb) + 

MinLossC(4, 0)) * s_Bb) + MinLossC(5, 0)) * s_Bb) + MinLossC(6, 0) 

    MinLoss2(3, 0) = (((((((((((MinLossD(0, 0) * s_Bb) + MinLossD(1, 0)) * s_Bb) + MinLossD(2, 0)) * s_Bb) + MinLossD(3, 0)) * s_Bb) + 

MinLossD(4, 0)) * s_Bb) + MinLossD(5, 0)) * s_Bb) + MinLossD(6, 0) 

    MinLoss2(4, 0) = (((((((((((MinLossE(0, 0) * s_Bb) + MinLossE(1, 0)) * s_Bb) + MinLossE(2, 0)) * s_Bb) + MinLossE(3, 0)) * s_Bb) + 

MinLossE(4, 0)) * s_Bb) + MinLossE(5, 0)) * s_Bb) + MinLossE(6, 0) 

     

  Fi 

     

    Dim Fi As Double 

    Fi = (((((((MinLoss2(0, 0) * alphacc1) + MinLoss2(1, 0)) * alphacc1) + MinLoss2(2, 0)) * alphacc1) + MinLoss2(3, 0)) * alphacc1) + 

MinLoss2(4, 0) 

 

Incidence Loss 

 

Dim i_pstall As Double 

Dim i_nstall As Double 

 

If alphacc1 > 90 Then 

i_pstall = i_pbas90 + (1 - ((alphacc1 - 90) / (90 - sin_o_s))) * (i_CR + i_s_b) 

i_nstall = i_nbas90 + (1 - ((alphacc1 - 90) / (90 - sin_o_s))) * (i_n_s_b) 

Else 

i_pstall = i_bas + i_CR + i_s_b 

i_nstall = i_n_bas + i_n_s_b 

End If 

 

Dim i_min As Double 

i_min = ((i_pstall + (Fi * i_nstall)) / (1 + Fi)) 

 

Dim inc As Double 

If i1 = 0 Then 

inc = 0 

Else 

inc = Application.WorksheetFunction.Degrees(nozzleout(0, 0)) - rowdata(i1, 7) 

End If 

 

Dim incr As Double 

If Abs(inc) < Abs(i_min) Then 

incr = (inc - i_min) / Abs(i_nstall - i_min) 

Else 

incr = (inc - i_min) / Abs(i_pstall - i_min) 

End If 

 

Dim incLossRngx As Range 

Dim incLossRngyA As Range 

 

    Set incLossRngx = Worksheets("CraigCox Corr").Range("BI67:BI79") 

    Set incLossRngyA = Worksheets("CraigCox Corr").Range("BJ67:BJ79") 

   

    1st Polynomial Factors 

     

    Dim incLossA(6, 0) As Double 

    incLossA(0, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1) 

    incLossA(1, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2) 

    incLossA(2, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3) 

    incLossA(3, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4) 

    incLossA(4, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5) 

    incLossA(5, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6) 

    incLossA(6, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7) 
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    Xi = (((((((((((incLossA(0, 0) * incr) + incLossA(1, 0)) * incr) + incLossA(2, 0)) * incr) + incLossA(3, 0)) * incr) + incLossA(4, 0)) * incr) + 

incLossA(5, 0)) * incr) + incLossA(6, 0) 

 

If inc < -5 Or inc > 10 Then 

Xi = Xi 

Else 

Xi = 1 

End If 

 

 

If Xi > 3.5 Then 

Xi = 3.5 

End If 

 

Corrected Profile Loss 

 

xpcc = 0.01 * (Xte * Xi * PLoss + BBR + MA + Pte) * (1 + 0.5 * g1 * m ^ 2) 

Pte2 = 0.01 * Pte * (1 + 0.5 * g1 * m ^ 2) 

 

Secondary Losses 

 

Aspect ratio factor 

 

Dim LossCoeff As Collection 

Dim Loss As Variant 

Set LossCoeff = New Collection 

 

LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & "" 

 

Dim b_h As Double 

b_h = Bb / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254) 

 

Dim SecARLossRngx As Range 

Dim SecARLossRngyA As Range 

 

    Set SecARLossRngx = Worksheets("CraigCox Corr").Range("B84:B94") 

    Set SecARLossRngyA = Worksheets("CraigCox Corr").Range("c84:c94") 

   

    1st Polynomial Factors 

     

    Dim SecARLossA(6, 0) As Double 

    SecARLossA(0, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

1) 

    SecARLossA(1, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

2) 

    SecARLossA(2, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

3) 

    SecARLossA(3, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

4) 

    SecARLossA(4, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

5) 

    SecARLossA(5, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

6) 

    SecARLossA(6, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 

7) 

 

Dim Nsh_b  As Double 

Nsh_b = (((((((((((SecARLossA(0, 0) * b_h) + SecARLossA(1, 0)) * b_h) + SecARLossA(2, 0)) * b_h) + SecARLossA(3, 0)) * b_h) + SecARLossA(4, 

0)) * b_h) + SecARLossA(5, 0)) * b_h) + SecARLossA(6, 0) 

 

Basic Loss Factor 
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Dim SecBasLossRngx As Range 

Dim SecBasLossRngyA As Range 

Dim SecBasLossRngyB As Range 

 

    Set SecBasLossRngx = Worksheets("CraigCox Corr").Range("B99:B105") 

    Set SecBasLossRngyA = Worksheets("CraigCox Corr").Range("C99:C105") 

    Set SecBasLossRngyB = Worksheets("CraigCox Corr").Range("D99:D105") 

   

    m 

     

    Dim SecBasLossA(1, 0) As Double 

    SecBasLossA(0, 0) = Application.Index(Application.LinEst(SecBasLossRngyA, Application.Power(SecBasLossRngx, Array(1))), 1, 1) 

    SecBasLossA(1, 0) = Application.Index(Application.LinEst(SecBasLossRngyA, Application.Power(SecBasLossRngx, Array(1))), 1, 2) 

     

    C 

     

    Dim SecBasLossB(1, 0) As Double 

    SecBasLossB(0, 0) = Application.Index(Application.LinEst(SecBasLossRngyB, Application.Power(SecBasLossRngx, Array(1))), 1, 1) 

    SecBasLossB(1, 0) = Application.Index(Application.LinEst(SecBasLossRngyB, Application.Power(SecBasLossRngx, Array(1))), 1, 2) 

 

Velocity Ratio 

 

    vel_ratio = 0 

     

    If vel_ratio > 1 Then 

    vel_ratio = 1 

    End If 

     

    Dim secm As Double 

    secm = (SecBasLossA(0, 0) * FL_sb) + SecBasLossA(1, 0) 

     

    Dim secc As Double 

    secc = (SecBasLossB(0, 0) * FL_sb) + SecBasLossB(1, 0) 

     

    Dim Sec_bas As Double 

    Sec_bas = (secm * vel_ratio) + secc 

 

xscc = 0.01 * (Nsh_b * Sec_bas) * (1 + 0.5 * g1 * m ^ 2) 

 

a1 = nozzleout(0, 0) 

 

am = Atn(0.5 * (Tan(a1) + Tan((alpha4(i1, 0))))) 

 

xtcc = 0.47 * (rowdata(i1, 2) / rowdata(i1, 8)) ^ 0.78 * rowdata(i1, 8) / LossCoeff.Item("bldhgt" & i1 & "") * ((Tan(a1) - Tan((alpha4(i1, 0)))) 

* Cos((alpha4(i1, 0)))) ^ 2 / Cos(am) 

 

End If 

 

If i1 = 0 Then 

xtcc = 0 

End If 

 

Yt = xpcc + xscc + xtcc 

 

Profile Loss Reynolds number 

 

Dynamic Viscosity 

 

Dim mu As Double 

If i1 = 0 Then 

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 
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Else 

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) * 

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6 

End If 

 

Density 

 

Dim rho As Double 

 

If i1 = 0 Then 

rho = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287.04) 

Else 

rho = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287.04) 

End If 

 

If i1 = 0 Then 

Re = (rho * (nozzleout(2, 0)) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu 

Else 

Re = (rho * (vo) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu 

End If 

 

ReO = Re * rowdata(i1, 0) / rowdata(i1, 8) 

 

Xre = 21.945740773485 * ReO ^ -0.261777855254533 

 

xpcc = 0.01 * (Xre * Xte * Xi * PLoss + BBR + MA + Pte) * (1 + 0.5 * g1 * m ^ 2) 

 

Velocity Ratio 

 

Dim a7 As Double 

a7 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 0) * 0.0254) ^ 2) / 4 

 

Dim a8 As Double 

a8 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 1) * 0.0254) ^ 2) / 4 

 

Dim Annulus As Double 

Annulus = a8 - a7 

 

Dim rhoi As Double 

rhoi = (Pi * 6.89 * 1000) / (ti * 287.04) 

 

v7 = w / (rhoi * Annulus) 

 

    If i1 = 0 Then 

    vel_ratio = (v7 / vo) ^ 2 

    Else 

    vel_ratio = (nozzleout(1, 0) / vo) ^ 2 

    End If 

     

    If vel_ratio > 1 Then 

    vel_ratio = 1 

    End If 

     

    secm = (SecBasLossA(0, 0) * FL_sb) + SecBasLossA(1, 0) 

 

    secc = (SecBasLossB(0, 0) * FL_sb) + SecBasLossB(1, 0) 

 

    Sec_bas = (secm * vel_ratio) + secc 

 

xscc = 0.01 * (Xre * Nsh_b * Sec_bas) * (1 + 0.5 * g1 * m ^ 2) 

 

If i1 = 0 Then 
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xtcc = 0 

End If 

 

Yt = xpcc + xscc + xtcc 

 


