

One Dimensional Mean Line Performance

Prediction Program for Turbocharger Axial

Turbines

Alan Martin Taylor

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Philosophy

The University of Sheffield

Faculty of Engineering

Department of Mechanical Engineering

 July 2021

2

Acknowledgements

First of all, I would like to thank Dr Robert Howell for all of his kind support and guidance during my

time at the University of Sheffield. Similarly, I wish to thank Napier Turbochargers and my colleagues

at Napier Turbochargers for their continued support and assistance during my course.

Finally, I would like to thank my family for their unwavering support throughout my course, thank

you.

3

Abstract

Mean line turbine performance prediction calculations are commonplace in the early stages of the

turbine design process and are used to predict turbine performance and estimate geometric

parameters before committing to CFD analysis. Napier Turbochargers also use such a tool for turbine

performance map generation, turbine maps which are used in engine simulation software to predict

engine performance. Periodically it is necessary to update the loss mechanisms used in the 1D tool

based on current experimental data and research to ensure the accuracy and relevance of the

results are maintained. The current performance prediction code used by Napier Turbochargers

requires updating, it is necessary to review suitable, more recent axial turbine loss mechanisms with

the aim of increasing the accuracy of efficiency prediction over a wide range of operating conditions

for families of turbine geometries.

The results retrieved from the new program in conjunction with the selected loss models are

compared to CFD results in order to validate the performance code and assess the chosen loss

correlations. A number of productionised turbine geometries have been selected from the Napier

Turbocharger portfolio to test the suitability of each loss correlation.

Analysis of the results revealed the governing parameters of each loss correlation and their

applicability to a turbocharger turbine stage. The results were also assessed with the goal of possibly

creating a selective tool to select the optimum loss correlation based on the required operating

condition or turbine geometry.

4

List of Contents

Acknowledgements page 2

Abstract page 3

List of Contents page 4

List of Tables page 9

List of Figures page 9

Nomenclature page 17

Declaration page 22

1 Introduction page 24

1.1 Turbocharging and Performance page 24

1.2 Scope of Work page 26

1.3 Thesis Outline and Synopses of Chapters page 27

2 Literature Review page 28

 2.1 Introduction page 28

2.2 Turbocharger Turbine Fundamentals page 29

2.3 Operating Characteristics page 33

 2.3.1 Stage Loading Coefficient page 34

 2.3.2 Flow coefficient page 34

 2.3.3 Velocity Ratio page 35

 2.3.4 Degree of Reaction page 35

 2.3.5 Smith Chart page 36

2.4 Flow Field in Axial Turbines page 37

2.5 Loss Classification page 40

2.5.1 Profile Loss page 40

2.5.2 Trailing Edge Loss page 40

2.5.3 Annulus Loss page 41

2.5.4 Secondary loss page 41

5

2.5.5 Tip clearance loss page 41

2.6 Loss Correlations page 42

 2.6.1 Ainley and Mathieson Loss Model page 42

 2.6.1.1 Total Loss page 42

 2.6.1.2 Profile Loss page 42

 2.6.1.3 Secondary Loss page 45

 2.6.1.4 Tip Clearance loss page 46

2.6.1.5 Trailing Edge Correction page 46

 2.6.2 Dunham and Came Loss Model page 47

2.6.2.1 Total Loss page 47

 2.6.2.2 Profile Loss page 47

 2.6.2.3 Secondary and tip clearance loss page 47

 2.6.2.4 Tip Clearance loss page 48

2.6.3 Kacker and Okapuu Loss Model page 48

 2.6.3.1 Total Loss page 48

2.6.3.2 Profile Loss page 48

2.6.3.3 Secondary Loss page 50

2.6.3.4 Trailing Edge Loss page 51

2.6.3.5 Tip Clearance Loss page 52

 2.6.4 Craig and Cox Loss Model page 53

 2.6.4.1 Total Loss page 53

2.6.4.2 Profile Loss page 53

2.6.4.3 Secondary Loss page 61

2.6.4.4 Tip Clearance Loss page 63

2.6.4.5 Annulus loss page 63

2.6.4.6 Cavity Loss page 64

2.6.4.7 Leakage Flow Through Glands page 65

6

2.6.4.8 Other Loss page 65

 2.6.5 Denton Loss Model page 65

 2.6.5.1 Boundary layer Loss page 65

2.6.5.2 Trailing Edge Loss page 67

2.6.5.3 Tip Leakage Loss page 68

2.6.5.4 Endwall Loss page 68

2.6.5.5 Shock loss page 68

2.7 Loss Model Accuracy page 69

2.7.1 Ainley and Mathieson Loss Model page 69

2.7.2 Dunham and Came Loss Model page 69

2.7.3 Kacker and Okapuu Loss Model page 70

2.7.4 Craig and Cox Loss Model page 71

2.7.5 Discussion page 71

3 Mean Line Performance Prediction Tool page 73

 3.1 Introduction page 73

3.2 Mean Line Tool Structure page 74

3.3 Mean line Tool Inputs page 75

3.4 Loss Correlation Implementation page 78

 3.3.1 Kacker and Okapuu page 79

 3.3.2 Craig and Cox page 79

3.3.3 Denton page 80

 3.3.3.1 Profile Loss page 80

 3.3.3.2 Trailing Edge Loss page 81

 3.3.3.3 Secondary Loss page 81

 3.3.3.4 Tip Clearance Loss page 81

4 CFD and Results Comparison page 83

4.1 Introduction page 83

7

4.2 MULTALL CFD Code page 84

4.2.1 CFD Mesh Study page 87

4.3 MULTALL CFD Validation page 87

4.4 MULTALL Boundary Conditions page 88

4.5 Results Comparison and Analysis page 88

 4.5.1 Geometry for Simulation page 89

4.5.2 Geometry 1 page 90

4.5.3 Geometry 2 page 102

4.5.4 Geometry 3 page 113

4.6 Individual Loss Mechanism Analysis page 119

 4.6.1 Profile Loss page 119

 4.6.1.1 Kacker and Okapuu page 119

 4.6.1.2 Craig and Cox page 120

 4.6.1.3 Denton page 120

 4.6.1.4 Discussion page 121

 4.6.2 Secondary Loss page 122

 4.6.2.1 Kacker and Okapuu page 122

 4.6.2.2 Craig and Cox page 122

 4.6.2.3 Denton page 123

 4.6.2.4 Discussion page 123

 4.6.3 Trailing Edge Loss page 126

 4.6.3.1 Kacker and Okapuu page 126

 4.6.3.2 Craig and Cox page 126

 4.6.3.3 Denton page 126

 4.6.3.4 Discussion page 126

 4.6.4 Tip Clearance Loss page 127

 4.6.4.1 Kacker and Okapuu page 127

8

 4.6.4.2 Craig and Cox page 127

 4.6.4.3 Denton page 127

 4.6.4.4 Discussion page 128

4.7 Results Summary page 128

5 Conclusions and Recommendations for Future Work page 133

5.1 Implementation of selective loss correlation based on operating page 133

conditions and geometry.

5.2 Conclusion page 134

5.3 Recommendations for Future work page 135

6 Bibliography page 136

7 Appendices page 139

 Appendix A Page 140

 A.1 Sample MULTALL input file without blade geometry page 140

Appendix B Page 141

 B.1 Denton profile loss bilinear interpolation page 141

Appendix C Page 142

 C.1 Kacker and Okapuu VBA code for Loss Model page 142

C.2 Denton VBA code for Loss Model page 148

C.3 Craig and Cox VBA code for Loss Model page 152

9

List of Tables

Table 1 Breakdown of losses in the Craig and Cox loss system (Craig and Cox 1971). Page 53

Table 2 Input parameters to mean line turbine performance prediction tool. Page 75

Table 3 MULTALL boundary conditions. Page 88

Table 4 Important geometric ratios of the turbine stage geometries to be investigated. Page 89

Table 5 Important geometric factors relating to the first turbine stage geometry to be

investigated. Page 90

Table 6 Important geometric factors relating to the second turbine stage geometry to be

investigated. Page 102

Table 7 Important geometric factors relating to the third turbine stage geometry to be

investigated. Page 113

List of Figures

Fig. 1-1, Wartsila Goodman Energy Center in Kansas USA

(https://www.wartsila.com/media/news/16-12-2014-wartsila-supplies-extension-to-a-

wind-balancing-power-plant-in-kansas-usa) Page 25

Fig. 1-2a MV ETNE engine room (Napier Turbochargers). Page 25

Fig. 1-2b MV ETNE

(https://www.marinetraffic.com/en/photos/of/ships/shipid:305467/ships) Page 25

Fig. 2-1 Cutaway of a Napier NT1-10 turbocharger (Napier Turbochargers). Page 29

Fig. 2-2 Axial flow turbine stage (Watson 1982). Page 30

Fig. 2-3 Turbine performance map total to static efficiency (Napier Turbochargers). Page 31

Fig. 2-4 Turbine performance map swallowing capacity (Napier Turbochargers). Page 31

Fig. 2-5 Enthalpy entropy diagram (Watson 1982). Page 32

Fig. 2-6 Velocity triangles (Watson 1982). Page 33

Fig. 2-7 Smith chart (Smith 1965). Page 36

Fig. 2-8 Turbine flow field (Denton 1994). Page 37

Fig. 2-9a Secondary losses (Langston 2001). Page 38

Fig. 2-9b Secondary losses (Klein 1966). Page 38

Fig. 2-10 Secondary flow model (Sjolander1997). Page 38

10

Fig. 2-11 Flow over the tip gap for an unshrouded blade (Denton 1993). Page 39

Fig. 2-12 Leading edge separation bubbles and their effect on blade surface static

pressure distribution (Moustapha 2003). Page 39

Fig. 2-13 Profile loss coefficients for conventional section blades at zero incidence

(Ainley and Mathieson 1951). Page 42

Fig. 2-14 Profile loss coefficients for conventional section blades at zero incidence

(Ainley and Mathieson 1951). Page 43

Fig. 2-15 Positive stalling incidences of cascades of turbine blades

(Ainley and Mathieson 1951). Page 43

Fig. 2-16 Positive stalling incidences of cascades of turbine blades

(Ainley and Mathieson 1951). Page 44

Fig. 2-17 Positive stalling incidences of cascades of turbine blades

(Ainley and Mathieson 1951). Page 44

Fig. 2-18 Profile loss incidence correction (Ainley and Mathieson 1951). Page 44

Fig. 2-19 Secondary losses in turbine blade rows (Ainley and Mathieson 1951). Page 45

Fig. 2-20 Effect of trailing edge thickness on blade loss coefficients

(Ainley and Mathieson 1951). Page 46

Fig. 2-21 Inlet Mach number ratio for nonfree-vortex turbine blades

(Kacker and Okapuu 1982). Page 49

Fig. 2-22 Combined effect of leading edge shock on inner end wall flow and the blade

channel next to it (Kacker and Okapuu 1982). Page 49

Fig. 2-23 Mach number correction factor ��for the profile loss coefficient, for

accelerating cascades of �� → �� (Kacker and Okapuu 1982). Page 50

Fig. 2-24 Mach number correction factor ��for the profile loss coefficient

(Kacker and Okapuu 1982). Page 50

Fig. 2-25 Mach number correction factor ��for the secondary loss coefficient

(Kacker and Okapuu 1982). Page 51

Fig. 2-26 Trailing edge loss (energy) coefficient correlated against the ratio of

trailing edge thickness to throat opening (Kacker and Okapuu 1982). Page 52

Fig. 2-27 Profile loss ratio against Reynolds number effect (Craig and Cox 1971). Page 54

Fig. 2-28 Lift parameter (Craig and Cox 1971). Page 54

11

Fig. 2-29 Basic profile loss (Craig and Cox 1971). Page 55

Fig. 2-30 Contraction ratio for average profiles (Craig and Cox 1971). Page 55

Fig. 2-31 Trailing edge thickness losses (Craig and Cox 1971). Page 56

Fig. 2-32 Incidence losses (Craig and Cox 1971). Page 56

Fig. 2-33 Basic positive stalling incidence (Craig and Cox 1971). Page 57

Fig. 2-34 Incidence correction for positive stalling incidences (Craig and Cox 1971). Page 57

Fig. 2-35 Incidence correction for positive stalling incidences (Craig and Cox 1971). Page 58

Fig. 2-36 Basic negative stalling incidence (Craig and Cox 1971). Page 58

Fig. 2-37 Incidence correction (Craig and Cox 1971). Page 59

Fig. 2-38 Basic stalling incidences for blade angles greater than 90 (Craig and Cox 1971). Page 59

Fig. 2-39 Minimum loss incidence-range ratio �� (Craig and Cox 1971). Page 60

Fig. 2-40 Mach number loss for convergent blading (Craig and Cox 1971). Page 60

Fig. 2-41 Blade back radius losses (Craig and Cox 1971). Page 61

Fig. 2-42 Secondary loss – basic loss factor (Craig and Cox 1971). Page 62

Fig. 2-43 Secondary loss – aspect ratio factor (Craig and Cox 1971). Page 62

Fig. 2-44 Shrouded efficiency loss (Craig and Cox 1971). Page 63

Fig. 2-45 Annulus wall loss (Craig and Cox 1971). Page 64

Fig. 2-46 Cavity loss (Craig and Cox 1971). Page 64

Fig. 2-47 Calculated dissipation coefficients for turbulent boundary layers

(Denton 1993). Page 66

Fig. 2-48 Dissipation coefficient for laminar and turbulent boundary layers

(Denton 1993). Page 67

Fig. 2-49 Comparison of design point efficiencies of 25 turbines

(Dunham and Came 1970). Page 69

Fig. 2-50 Turbine stage efficiency at zero tip leakage calculated by the Kacker and

Okapuu method (Kacker and Okapuu 1982). Page 70

Fig. 2-51 Comparison of predicted efficiency with experimental efficiency of 33

turbines (Kacker and Okapuu 1982). Page 71

Fig. 2-52 Comparison of predicted and measured test efficiencies (Craig and Cox 1971). Page 72

12

Fig. 3-1 Turbine blade nomenclature (Ainley and Mathieson 1951). Page 76

Fig. 3-2 Turbine blade nomenclature (Ainley and Mathieson 1951) Page 76

Fig. 3-3 Basic structure of the calculation process in the new mean line tool. Page 77

Fig. 3-4 Screenshot of Chart digitization program developed by the author. Page 78

Fig. 3-5 Parabola arc length (https://www.vcalc.com/wiki/vCalc/Parabola+-+arc+length). Page 79

Fig. 3-6 Generic surface velocity distribution for a turbine (Denton 1990). Page 80

Fig. 3-7 Predicted profile loss (%) of Turbine blades at optimum pitch to chord ratios

(Denton 1993). Page 81

Fig. 3-8 Tip leakage loss coefficient for unshrouded blades: contours in percent exist

dynamic head per 1 percent clearance/height (Denton 1993). Page 82

Fig. 4-1 Blade to blade view of grid on a streamwise surface from MULTALL. Page 85

Fig. 4-2 Meridional view of grid from MULTALL Page 85

Fig. 4-3 Mixing plane treatment (Denton 2017). Page 86

Fig. 4-4 CFD mesh study. Page 87

Fig. 4-5 Typical Napier Turbocharger axial turbine arrangement. Page 89

Fig. 4-6 Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional

speed of
	
��
 = 593 ���/√�. Page 90

Fig. 4-7 Stator total loss coefficient
	
��
 = 593 ���/√� geometry 1. Page 91

Fig. 4-8 Turbine total loss coefficient
	
��
 = 593 ���/√� geometry 1. Page 91

Fig. 4-9 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 593 ���/√�

geometry 1. Page 92

Fig. 4-10 Breakdown of stator losses Craig and Cox
	
��
 = 593 ���/√�

geometry 1. Page 93

Fig. 4-11 Breakdown of turbine losses Denton
	
��
 = 593 ���/√� geometry 1. Page 94

Fig. 4-12 Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional

speed of
	
��
 = 989 ���/√�. Page 95

Fig. 4-13 Stator total loss coefficient
	
��
 = 989 ���/√� geometry 1. Page 95

13

Fig. 4-14 Turbine total loss coefficient
	
��
 = 989 ���/√� geometry 1. Page 96

Fig. 4-15 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 989 ���/√�

geometry 1. Page 96

Fig. 4-16 Breakdown of turbine losses Craig and Cox
	
��
 = 989 ���/√� geometry 1. Page 97

Fig. 4-17 Breakdown of turbine losses Denton
	
��
 = 989 ���/√� geometry 1. Page 98

Fig. 4-18 Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional

speed of
	
��
 = 1285 ���/√�. Page 99

Fig. 4-19 Stator total loss coefficient
	
��
 = 1285 ���/√� geometry 1. Page 99

Fig. 4-20 Turbine total loss coefficient
	
��
 = 1285 ���/√� geometry 1. Page 100

Fig. 4-21 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1285 ���/√�

geometry 1. Page 100

Fig. 4-22 Breakdown of turbine losses Craig and Cox
	
��
 = 1285 ���/√� geometry 1. Page 101

Fig. 4-23 Breakdown of rotor losses Denton
	
��
 = 1285 ���/√� geometry 1. Page 101

Fig. 4-24 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional

speed of
	
��
 = 635 ���/√�. Page 102

Fig. 4-25 Stator total loss coefficient
	
��
 = 635 ���/√� geometry 2. Page 103

Fig. 4-26 Turbine total loss coefficient
	
��
 = 635 ���/√� geometry 2. Page 103

Fig. 4-27 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 635 ���/√�

geometry 2. Page 104

Fig. 4-28 Breakdown of turbine losses Craig and Cox
	
��
 = 635 ���/√� geometry 2. Page 105

Fig. 4-29 Breakdown of turbine losses Denton
	
��
 = 635 ���/√� geometry 2. Page 106

14

Fig. 4-30 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional

speed of
	
��
 = 1060 ���/√�. Page 106

Fig. 4-31 Stator total loss coefficient
	
��
 = 1060 ���/√� geometry 2. Page 107

Fig. 4-32 Turbine total loss coefficient
	
��
 = 1060 ���/√� geometry 2. Page 107

Fig. 4-33 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1060 ���/√�

geometry 2. Page 108

Fig. 4-34 Breakdown of turbine losses Craig and Cox
	
��
 = 1060 ���/√� geometry 2. Page 108

Fig. 4-35 Breakdown of turbine losses Denton
	
��
 = 1060 ���/√� geometry 2. Page 109

Fig. 4-36 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional

 speed of
	
��
 = 1271 ���/√�. Page 110

Fig. 4-37 Stator total loss coefficient
	
��
 = 1271 ���/√� geometry 2. Page 110

Fig. 4-38 Turbine total loss coefficient
	
��
 = 1271 ���/√� geometry 2. Page 111

Fig. 4-39 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1271 ���/√�

geometry 2. Page 111

Fig. 4-40 Breakdown of turbine losses Craig and Cox
	
��
 = 1271 ���/√� geometry 2. Page 112

Fig. 4-41 Breakdown of turbine losses Denton
	
��
 = 1271 ���/√� geometry 2. Page 112

Fig. 4-42 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional

speed of
	
��
 = 745 ���/√�. Page 113

Fig. 4-43 Stator total loss coefficient
	
��
 = 745 ���/√� geometry 3. Page 114

Fig. 4-44 Turbine total loss coefficient
	
��
 = 745 ���/√� geometry 3. Page 114

Fig. 4-45 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 745 ���/√�

geometry 3. Page 115

15

Fig. 4-46 Breakdown of turbine losses Craig and Cox
	
��
 = 745 ���/√� geometry 3. Page 115

Fig. 4-47 Breakdown of turbine losses Denton
	
��
 = 745 ���/√� geometry 3. Page 116

Fig. 4-48 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional

speed of
	
��
 = 1043 ���/√�. Page 116

Fig. 4-49 Stator total loss coefficient
	
��
 = 1043 ���/√� geometry 3. Page 117

Fig. 4-50 Turbine total loss coefficient
	
��
 = 1043 ���/√� geometry 3. Page 117

Fig. 4-51 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1043 ���/√�

geometry 3. Page 118

Fig. 4-52 Breakdown of turbine losses Craig and Cox
	
��
 = 1043 ���/√� geometry 3. Page 118

Fig. 4-53 Breakdown of turbine losses Denton
	��
 = 1043 ���/√� geometry 3. Page 119

Fig. 4-54 Turbine profile losses at
	��
 = 989 ���/√� geometry 1. Page 121

Fig. 4-55 Turbine profile losses at
	��
 = 1060 ���/√� geometry 2. Page 121

Fig. 4-56 Turbine profile losses at
	��
 = 745 ���/√� geometry 3. Page 122

Fig. 4-57 Turbine secondary losses at
	��
 = 989 ���/√� geometry 1. Page 124

Fig. 4-58 Turbine secondary losses at
	��
 = 1060 ���/√� geometry 2. Page 124

Fig. 4-59 Turbine secondary losses at
	��
 = 745 ���/√� geometry 3. Page 125

Fig. 4-60 Comparison of the turbine secondary losses between geometry 1 and 2. Page 125

Fig. 4-61 Predicted turbine efficiency with CFD efficiency for geometry 1 at

	
��
 = 593 ���/√�. Page 128

Fig. 4-62 Predicted turbine efficiency with CFD efficiency for geometry 1 at

	
��
 = 989 ���/√�. Page 129

16

Fig. 4-63 Predicted turbine efficiency with CFD efficiency for geometry 1 at

	
��
 = 1285 ���/√� N/√T. Page 129

Fig. 4-64 Predicted turbine efficiency with CFD efficiency for geometry 2 at

	
��
 = 635 ���/√�. Page 130

Fig. 4-65 Predicted turbine efficiency with CFD efficiency for geometry 2 at

	
��
 = 1060 ���/√� N/√T. Page 130

Fig. 4-66 Predicted turbine efficiency with CFD efficiency for geometry 2 at

	
��
 = 1271 ���/√�. Page 131

Fig. 4-67 Predicted turbine efficiency with CFD efficiency for geometry 3 at

	
��
 = 745 ���/√�. Page 131

Fig. 4-68 Predicted turbine efficiency with CFD efficiency for geometry 3 at

	
��
 = 1043 ���/√�. Page 132

17

Nomenclature

� gas flow area; fluid relative inlet angle

� � annulus area at outlet to stator row

� ! annulus area at outlet to rotor row

" fluid relative outlet angle

backbone length

#$ axial chord

% absolute velocity

%& lift coefficient

' true chord

%(contraction ratio

%) dissipation coefficient

%* Friction factor

%+ blade surface length %,- base pressure coefficient

%,, %/ specific heat capacities

0 back surface radius of curvature

12345 aspect ratio function

146 Reynolds number correction factor

�7 Cavity Factor

�& lift parameter �� minimum loss incidence-range ratio

�8 efficiency debit factor

9 gravitational constant

: mass flow through blades

ℎ enthalpy

< height

18

= incidence angle

=+ stalling incidence

=>� incidence for minimum loss

= + @ABCC positive stalling incidence

= − @ABCC negative stalling incidence

2= + @ABCC5-7+�E value for standard value of @/# and %(

2= − @ABCC5-7+�E value for standard value of @/#

F. H. inside diameter of turbine annulus

I. H. outside diameter of turbine annulus

J radial tip clearance

��, ��, ��, �,, �K correction factors

� mach number

� mass flow rate

L loss ratio

M throat opening

N pressure

O heat transfer

(0 Reynolds number

(0P Reynolds number based on blade opening

(0Q Reynolds number based on momentum thickness

� radius

@ blade pitch

RS total entropy

RS7 entropy creation rate per unit surface area

A time

A>7$ maximum blade thickness

A0 trailing edge thickness

19

T temperature

U blade speed

U/% Velocity Ratio

V volume

W$ specific work transfer

W velocity relative to blade

W� relative velocity at inlet to runner

W� relative velocity at outlet to runner

X basic loss factor

X, Y, Z cartesian coordinates

[�6 trailing edge correction factor

[� incidence coefficient

[total loss factor

\, profile loss coefficient

\, secondary loss coefficient

\8 clearance loss coefficient

\K]^_` Shock loss

\a Total loss coefficient

\�b� Trailing edge loss coefficient

Greeks

c gas flow angle; blade inlet angle

c> mean gas flow angle

d blade angle

e ratio of specific heats f f∗ boundary layer displacement thickness

20

h+, h entropy and energy loss coefficient

i efficiency

i- blading efficiency

ji efficiency debit k boundary layer momentum thickness

l empirical factor defining secondary loss

m reaction

n stagger angle

o fluid density

p flow coefficient p� kinetic energy coefficient

jp�b�� trailing edge K.E. loss coefficient

q stage loading coefficient; runner blade velocity coefficient (Craig and Cox)

Subscripts

0 stagnation

1,2,... stations define stations

B annulus; axial

basic

��H% as per Ainley, Mathieson, Dunham and Came

ℎ hub

ℎ/# aspect ratio

= incidence

=@0r isentropic

s leakage flow

� mach number; mainstream flow

� profile

21

� Reynolds number

@ secondary

@/0 back curvature

A tip

T turbine

A@ total to static

AA total to total

k tangential

f at the edge of the boundary layer

Abbreviations

CFD Computational fluid dynamics

CFL The Courant–Friedrichs–Lewy condition

AM Ainley Mathiseson loss model

AMDC Ainley Mathiseson Dunham Came loss model

CC Craig and Cox loss model

KO Kacker and Okapuu loss model

22

I, the author, confirm that the Thesis is my own work. I am aware of the University’s

Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This work

has not been previously been presented for an award at this, or any other, university.

23

24

Chapter 1

Introduction

1.1 Turbocharging and Performance

Turbocharging is an integral system of the internal combustion diesel engine. A turbocharger

comprises of a compressor driven by a turbine which extracts energy from the engine exhaust gases.

The compressor enables an increased amount of air to be delivered to the engine cylinder through

compression of the intake air, this provides several benefits for engine performance including

increased power output, fuel economy and reduced engine emissions. The compressor and turbine

are matched to the engine to give optimum performance according to manufacturer requirements,

this process involves the use of performance maps and simulation software.

Napier turbochargers supplies hardware for large and medium speed diesel engines for applications

such as baseload power plant, pumping stations and nuclear back up engines in the energy sector

and cruise ships, offshore vessels and merchant ships in the marine sector, as well as various traction

applications for legacy turbochargers. Below are examples of turbocharger installations for a power

plant application, Figure 1-1, and a marine application, Figure 1-2.

25

Fig. 1-1. Wärtsilä Goodman Energy Center in Kansas.

Fig. 1-2a Fig. 1-2b

Fig. 1-2a MV Etne engine room, Fig. 1-2b MV Etne passenger ferry.

Depending on the type of application or where the application is located it is necessary to adhere to

some form of emission legislation. Current emission legislations include IMO T3 (International

Maritime Organisation ©2019), EPA T4 (United States Environmental Protection Agency ©2021) and

TA-Luft (Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit ©2021) and ½ TA-Luft.

The various emission legislations control the pollution of engines, regulating such pollutants as

Nitrous Oxide, Carbon Dioxide, particulates, and the Sulphur content of fuels.

With the implementation of stricter emission legislation, engine manufacturers are demanding

higher pressure ratio capabilities from turbochargers (Wik and Hallback 2007) and are developing

alternative emission reduction technologies (Drews 2019). One of the advantages of increasing the

inlet air density to the engine is the reduction of fuel consumption, this is permitted due to the

higher cylinder pressures which enable the use of a leaner air/fuel mixture during combustion. There

are a number of technologies that may be employed to satisfy the demand for lower emissions while

26

maintaining similar or improved fuel consumptions. One such technology is two stage turbocharging

which compliments an engine strategy known as Miller timing which reduces combustion

temperatures thus reducing NOx emissions. Other engine emission reduction technologies include

selective catalytic reduction and exhaust gas recirculation which can also be used in combination

with two stage or compound turbocharging (Mayr 2019) (Codan et al 2010).

To assess the performance of the diesel engine and such emission reducing technologies, engine

simulation software is becoming more prevalent. This requires compressor and turbine

characteristics to accurately predict system performance; thus, it is imperative the characteristics

are of sufficient range and accuracy to ensure suitable interpretation in the simulation software and

generation of realistic results.

Several computational tools are used to analyse turbine performance including CFD. This however

can be time consuming and often demands a complete detailed model of the turbine blade and

housing arrangement to produce accurate results. CFD code also requires a certain amount of

calibration against experimental results in order to improve the accuracy of off design performance

prediction. The one-dimensional mean line loss calculation method of turbine performance offers a

less time consuming and more flexible tool, which can predict turbine performance over a wide

range of operating conditions and is ideal for first design iterations, where the turbine blade

geometry is not yet fixed, and performance map generation.

As a result of the demand for strict emission control at varying turbocharger operating conditions

the accuracy of the turbine performance maps used in engine simulation software is paramount.

This study investigates turbine efficiency prediction at a wide range of turbocharger operating

conditions using typical turbocharger turbines where the previous studies researched of one-

dimensional mean line performance prediction methods have tended to concentrate on design point

efficiency performance.

1.2 Scope of Work

The software currently in use is based on the Ainley and Mathieson (Ainley and Mathieson 1951)

mean line loss technique published in 1951 and updated by Dunham and Came in 1970 (Dunham

and Came 1970). The program is written in Fortran without any standardisation or background text

and contains many unorganised loops and unexplained factors which have been implemented as the

code has undergone iterations to ensure correlation to the latest experimental test data is

maintained, periodic iterations have also been necessary due to advancements in analytical

capability, although the program still suffers from a number of limitations which impact the quality

of the performance data produced. It is necessary to review suitable, more recent axial turbine loss

mechanisms to update the current code to increase the accuracy of efficiency prediction over a wide

range of operating conditions and families of turbine geometries.

The present work will be undertaken on a part time basis while the author continues to fulfil his post

within Napier Turbochargers as Principal Performance Engineer. A literature review will be carried

out to research turbine theory fundamentals and identify more modern common loss correlations.

On completion of the literature review a programming language will be chosen for the one-

27

dimensional performance code. The basic performance calculations will be carried over from the

original Fortran program, outlined by Ainley and Mathieson (1952), and the newly identified loss

correlations will be built into the new program as selectable routines.

Due to the absence of a dedicated turbine test rig Napier does not possess sufficient complete

turbine test data to adequately validate the turbine performance prediction method therefore the

CFD based program MULTALL (Denton 2009) produced by Prof. J.D. Denton will be used to validate

the performance code and assess the loss correlations. A number of productionised turbine

geometries with differing features have been selected to test the suitability of each loss correlation.

The results retrieved from each loss correlation will be compared based on accuracy over a wide

range of operating conditions.

1.3 Thesis Outline and Synopses of Chapters

The thesis aims to improve the current mean line turbine performance prediction program by

adopting a more accessible programming language and implementing more modern loss

correlations. The performance results obtained from the new mean line loss program will be

compared to CFD data to assess the accuracy of the loss models over a wide range of operating

conditions and turbocharger turbine geometries. The results will also be examined, and

opportunities identified where the loss models may be used selectively based on turbine operating

condition or geometry. The thesis is divided into 5 Chapters, a synopsis of each is given in the

following paragraphs:

Chapter 1 has introduced the turbocharger highlighting its advantages when applied to the internal

combustion diesel engine and the requirement for further development. The requirement for

accurate turbine performance prediction methods was also identified. A brief outline of the

applications of Napier Turbochargers is also given.

Chapter 2 presents a review of the fundamentals of the turbocharger axial turbine as well as its main

operating characteristics. The flow field of the axial turbine is examined and a classification of the

relevant losses in a turbine stage are provided. Finally, more modern loss correlations are reviewed

in detail.

Chapter 3 looks at the structure and design of the new mean line tool and explains how the chosen

loss correlations have been translated into code.

Chapter 4 reviews the CFD program that will be used to validate the mean line tool and shows a

comparison between CFD and predicted results. The individual loss mechanisms are also analysed

and discussed. A summary of the results is also presented to assess the suitability of each loss

model.

Chapter 5 concludes the results retrieved from the new mean line tool and CFD. Suggestions for

further work are also presented.

28

Chapter 2

Literature Review

2.1 Introduction

This chapter aims to review the relevant literature on turbocharger axial turbine stages performance

characteristics and loss mechanisms. A review of the fundamentals of turbocharger axial turbines

will be covered where turbine efficiency, working cycle and velocity triangles of the turbocharger

axial turbine are defined. The operating characteristics of an axial turbine will also be analysed

including such parameters as the stage loading coefficient, flow coefficient and degree of reaction.

The complex flow field of an axial turbine is broken down into its constituent parts where the major

sources of loss are classified. Since the loss model the original code is based on was published there

have been significant advancements not only in the research conducted on axial turbine loss

mechanisms but also turbine design methodologies and analyses. There also exists a greater amount

of turbine test data for a variety of turbine geometries. Kacker and Okapuu suggest that the loss

system used in a mean line performance prediction program should be critically reviewed and

updated at least once every decade (Kacker and Okapuu 1982). The loss correlations covered in the

final section of this chapter are some of the more common and widely used methods which will be

incorporated into the mean line performance prediction program.

29

2.2 Turbocharger Axial Turbine Fundamentals

The turbocharger comprises of three main components the compressor, turbine and a shaft linking

the two. Fig. 2.1 shows a cutaway view of a Napier NT1-10 turbocharger revealing the rotor and

showing the structure of the turbocharger. The compressor is a centrifugal type and the turbine can

be of axial or radial construction. These components require a high level of design and engineering

to ensure desirable performance at suitable service life. For a turbocharged engine to operate

efficiently the turbocharger must be matched according to the target conditions set out by the

engine manufacturer by selecting the correct aerodynamic components. The selection of these

components is derived from various performance calculations based on an energy balance across

the turbocharger.

Fig. 2.1 NT1-10 Turbocharger Cutaway.

Figure 2-2 displays a typical arrangement of an axial turbine turbocharger. It can be seen a

turbocharger axial turbine stage consists of a single row of nozzle (stator) blades and rotor (turbine)

blades. Figure 2-2 also defines the station numbers used in the following calculations.

30

Fig. 2-2 Axial flow turbine stage (Watson 1982).

Component efficiency is critical in a turbocharger in order to deliver the best performance possible

to optimise engine brake specification fuel consumption, emissions and thermal loading. The

isentropic efficiency is used as an indicator for performance and is defined as the actual work

divided by the isentropic work for a turbine.

i�aa = 7Eat7u vPw8�+6 awP,�E vPw8 = x�
yx�zx�
yx�z{|}~ Eq. 2-1

There will be some residual kinetic energy that must be accounted for, typically turbochargers of the

size considered in this paper include some kind of exhaust diffuser to recover some of this energy.

Typically, it is industry standard to express the turbine efficiency as total-to-static. The total-to-static

efficiency of the turbine is shown below.

i�a+ = �y2��z/��
5�y2�z/��
52��
5/� Eq. 2-2

31

Examples of turbine performance maps used during the turbocharger matching process are shown

below for an axial turbine, these maps are controlled by an SAE a standard (SAE International 1995).

Fig. 2-3 Typical turbine efficiency characteristic of total to static efficiency plotted against turbine

pressure ratio taken from a turbine map.

Fig. 2-4 Typical turbine swallowing capacity characteristic of turbine swallowing capacity plotted

against turbine pressure ratio taken from a turbine map.

32

Both plots show characteristics (blue lines) at various turbocharger rotational speeds. The

swallowing capacity used in the above chart is a quasi-nondimensional parameter which accounts

for the turbine inlet conditions to facilitate data comparison and is defined below.

R�BCCM�=r9 'B�B'=AY = >
��
��
 Eq.2-3

Compressors and turbines used in turbochargers are rotordynamic machines in that the work

transfer occurs by the interaction of moving blades and a fluid travelling through the machine. The

operation of such machines is complex, the work transfer can be expressed in two distinct ways one

is based on fluid mechanics, changes in fluid momentum, and the other on thermodynamics,

changes in fluid enthalpy. Euler’s turbomachine equation provides the connection between changes

in work transfer and velocity. It is based on Newton’s second law of motion equating the torque

developed at the shaft to the rate of change of angular momentum. Where U is the blade speed and %Q the tangential velocity component.

W$ = U2%Q� − %Q�5 Eq.2-3

Using the first law of thermodynamics the work transfer can also be expressed in terms of the

change of total enthalpy of the flow.

O − W$ = ℎ�� − ℎ�� Eq.2-4

So long as the heat transfer, Q, to the environment is small (i.e. the process is adiabatic) the specific

work transfer relates directly to the total enthalpy change. The working cycle of the turbine can be

expressed by a H-S diagram, this shows the changes of state through the stage during the expansion

process.

Fig 2-5 Enthalpy Entropy diagram for a turbine (Watson 1982).

33

Stations 1 to 2 show the change of state through the stator and stations 2 to 3 the rotor. From the H-

S diagram it can be observed there is no stagnation enthalpy change in the stator therefore the total

work done is equal to the work done only by the rotor. Also, it is shown how the stagnation enthalpy

can be calculated by summing the kinetic energy and static enthalpy. Finally, it can be seen the static

enthalpy drop is a function of the velocity components hence an expression for the work done as a

function of the velocity components can be established.

jW$ = �� �2%�� − %��5 + 2W�� − W��5� Eq. 2-5

The velocities in the relation above may be obtained by sketching the velocity diagrams for the

turbine stage, an example is shown in Fig. 2-6. The relative velocities are denoted by a W and the

absolute velocities by a C, the inlet and outlet angles are denoted using α for absolute and β for

relative, U denotes the rotor blade speed.

Fig. 2-6 Velocity diagram for axial flow turbine stage (Watson 1982).

34

2.3 Operating Characteristics

During the design of the turbine blade a number of dimensionless parameters are considered by the

designer. These parameters include the stage loading coefficient, the flow coefficient, the velocity

ratio and the degree of reaction. These parameters dictate the angles of the gas at the inlet and

outlet of each blade row and with the addition of the blade speed set the gas velocities. These

parameters will be briefly described as they will be used to compare the turbine designs selected to

validate the one-dimensional mean line loss calculations and additional loss correlations, their

implications on turbine performance will also be investigated.

2.3.1 Stage Loading Coefficient

The stage loading coefficient is defined as the change in total enthalpy across a stage divided by the

blade speed squared. This is a measure of the work capacity of a stage, high stage loading

coefficients are desirable but usually at the cost of efficiency.

q = �x��! Eq. 2-6

If the flow is adiabatic the total enthalpy change is equal to the specific work output and the above

equation can be rewritten.

q = �_�� Eq. 2-7

Based on this it can be deduced a high stage loading coefficient signifies large flow turning. The stage

loading coefficient can also be written.

q = _����
!�! = �_�� 2ABrd� + ABrd�5 Eq. 2-8

2.3.2 Flow coefficient

The flow coefficient is the axial component of velocity divided by the blade speed.

p = _�� Eq. 2-9

The value of the flow coefficient determines the relative flow angles in a stage velocity triangle. A

stage with a low flow coefficient implies relative flow angles close to tangential whereas a high value

for the flow coefficient implies low stagger and flow angles closer to axial line (Dixon and Hall, 2010).

Larger flow coefficients require smaller areas, thus smaller blade heights at the cost of performance.

35

2.3.3 Velocity Ratio

The velocity ratio is another useful non-dimensional parameter. It is similar to the stage loading

coefficient but in reverse. Where U is the blade speed which is divided by the isentropic enthalpy

drop over the turbine stage. The velocity ratio is often used during the design stage of a

turbocharger axial turbine where a velocity ratio is targeted to achieve maximum efficiency

depending on the turbocharger application.

�_ = �
��⋅E�⋅�
⋅��y� �z��
�2��
5� �

 Eq. 2-10

2.3.4 Degree of Reaction

The degree of reaction controls how the expansion through the turbine is divided between the

stator and rotor. Typically, the reaction is expressed in terms of enthalpy, however it can also be

expressed in terms of pressure.

m = x!yxzx�
yx�z Eq. 2-11

The degree of reaction can be related to blade angles.

m = x!yxzx�
yx�z = _��� 2ABrd� + ABrd�5 Eq. 2-12

The reaction is defined as the static enthalpy drop across the rotor divided by the total enthalpy

change across the complete stage. The total enthalpy change across the stage is also used to define

the stage loading coefficient, therefore it can be deduced that for a low reaction turbine most of the

expansion occurs in the stator whereas for a high reaction turbine most of the expansion occurs

across the rotor. In turbocharger turbines a neutral degree of reaction is preferable where the gas

expansion is shared between the stator and rotor in order to preserve efficiency and limit gas

velocities.

These non-dimensional parameters can be combined. The below equations can be used to obtain

the gas and blade angles as a function of the dimensionless parameters.

 q = 2p2ABrd� + ABrd�5 Eq. 2-13

m = �� 2ABrd� − ABrd�5 Eq. 2-14

36

2.3.5 Smith Chart

Fig. 2-7 Smith Chart (Smith 1965)

The Smith chart (Smith 1965) is a correlation of experimental data which offers the designer a guide

on optimum stage loading and flow coefficients. The correlation was published in 1965 and is still

widely used today in preliminary turbine design. The stages tested range from 0.2 to 0.6 in terms of

degree of reaction with a relatively large blade aspect ratio, also the efficiencies were corrected to

eliminate tip leakage losses. It is evident from the correlation that best efficiency occurs at low

values of stage loading and flow coefficient. As the value of the stage loading coefficient is set by the

maximum permissible blade speed, at this value there will be a flow coefficient that maximises the

efficiency however, the designer must consider whether this flow coefficient is acceptable within the

turbine design constraints. Confirmatory tests made by Kacker and Okapuu (1982) and Craig and Cox

(1971) have proven the usefulness of the chart in preliminary turbine design.

37

2.4 Flow Field in Axial Turbines

The flow travelling through a turbine stage is very complex. It is understood the flow through an

axial turbine is three dimensional, viscous and unsteady, comprising of many vortices and pressure

gradients simultaneously (Wei 2000). There is also the possibility of compressible or incompressible

flow, and subsonic, transonic or supersonic regimes that can be present at the same time in different

regions throughout the field.

Fig. 2.8 Flow field in an axial turbine (Denton 1994)

As can be seen from Figure 2.8 there is a primary flow field through the blade row which describes

the mean flow path, and an overlapping secondary flow. There is also a tip leakage flow over the

blades from the pressure to the suction side for unshrouded blades which will disturb the primary

flow. At the trailing edge blade wakes form which will interact with the next blade row. For transonic

conditions there will also be shockwaves present at the blade suction surface.

The secondary flows in the turbine flow field are generated as the flow turns in the blade passage

due to viscous effects at the endwall. In the endwall boundary layers fluid has a lower velocity

compared to the mainstream and the cross-passage pressure gradient causes this low momentum

boundary layer flow to migrate towards the suction side of the blade. This eventually causes the

boundary layer to roll up into the passage vortices shown in Fig. 2.9. Horseshoe vortices are created

in front of the blade at the saddle point forming a vortex which distributes itself about the pressure

and suction sides of the blade. The secondary flow model presented by Klein (1966), Fig. 2.9b,

shows the stagnation point vortex sweeping across the blade passage and rolling up into the passage

vortex. Langston (2001) proposes a similar model based on three-dimensional cascade

measurements and flow visualisations. Here it can be seen the pressure side leg of the vortex is

drawn into the cascade passage forming the passage vortex and the suction side leg of the vortex is

drawn into an adjacent passage with an opposite sense of rotation and possibly rotates around the

axis of the passage vortex.

38

Fig. 2.9a Fig. 2.9b

 Fig 2.9 Endwall flow models (a) (Langston 2001), (b) (Klein 1966)

The tip clearance and associated loss have a significant impact on inefficiency in axial turbines. Flow

that leaks through the tip clearance, driven by the pressure gradients between the pressure and

suction sides, produces a loss in performance by bypassing the blade passage. The tip leakage flow

also forms a vortex which interacts with the secondary flow. It has been shown that the effect of the

tip clearance is not isolated to the tip gap itself and typically covers 50% of the blade height due to

its intense and complex interaction with secondary flow (Moustapha 2003). The most influential

parameters impacting the leakage flow are blade clearance and blade loading.

Fig. 2.10 Secondary flow model (Sjolander 1997)

For unshrouded blades, shown in Figure 2.11 from Denton (1993), the flow separates at the blade tip

forming a jet and mixing with the mainstream flow on the suction side of the blade. The vortex

formed by the leakage flow and its interaction with the main flow results in losses. It can also be

seen how the jet mixes out over a thicker blade causing an increase in static pressure and entropy.

39

Fig. 2.11 Flow over the tip gap for an unshrouded blade (Denton 1993)

The flow conditions at the boundary layer effect blade heat transfer and aerodynamics therefore

understanding boundary layer development and behaviour is important (Moustapha 2003). As

illustrated in Figure 2.12, laminar flows can separate from the blade surface due to local adverse

pressure gradients, caused by accelerating flows, forming a separation bubble. This separation

bubble may reattach to the blade surface downstream initiating transitional flow which may result in

turbulent flow increasing losses.

Fig. 2.12 Leading edge separation bubbles and their effect on blade surface static pressure

distribution (Moustapha 2003).

40

2.5 Loss Classification

In order to predict the losses in a turbine it is common practice to divide the overall loss into the

major sources of loss in the flow field. This is considered a simplification as each of the losses are

interacting in some way and cannot be separated completely unambiguously. However, with an

understanding of the physical processes which govern the blade passage flow a meaningful division

is possible. The major sources of loss will now be described.

2.5.1 Profile Loss

The profile loss is the loss due to boundary layer growth over the blade itself and is influenced by

such factors as Reynolds number, surface roughness, turbulence and the velocity distribution. Due to

the complexity of the flow through the turbine it is almost impossible to isolate this loss hence the

profile loss is typically estimated based on correlations derived from cascade data. Such profile loss

correlations are described in the work of Ainley and Mathieson (1951) and Craig and Cox (1971).

Kacker and Okapuu (1982) reviewed the Ainley and Mathieson (1951) method of profile loss

prediction and proposed changes to account for shock losses, channel flow acceleration and

supersonic drag rise. They also introduced a factor to account for Reynolds number. Craig and Cox

(1971) define a basic profile loss parameter as a function of the modified lift parameter and blade

contraction ratio. Craig and Cox (1971) also propose correction factors to account for higher Mach

number conditions and Reynolds number. Denton states that the profile loss is equal to the entropy

generated in the boundary layers and may be found by employing a typical blade velocity

distribution (Denton 1993). To account for Reynolds number Denton includes a dissipation

coefficient.

2.5.2 Trailing Edge Loss

Trailing edge loss is the loss associated with the separation of the pressure and suction surface

boundary layers close to the trailing edge creating a recirculation zone. In this recirculation zone the

dissipation of energy will be high as the blade wake mixes out downstream of the turbine blade.

Ainley and Mathieson (1951) base their loss estimation method on a trailing edge thickness

approximately equal to two percent of the blade pitch, for trailing-edge thickness to blade pitch

ratios different to 0.02 they recommend the use of a correction factor. Craig and Cox (1971) account

for the trailing edge thickness by applying a multiplication and additive loss factor to the profile

losses. Denton states that the magnitude of the trailing edge loss has been seriously underestimated

in the past (Denton 1993). In his work Denton proposes the trailing edge loss is a result of entropy

generation in the mixing out of a wake behind the trailing edge and considers the surface boundary

layers upstream of the trailing edge and base pressure acting on the trailing edge in his estimation.

Sieverding (1980) provides a comprehensive summary of the importance of the base pressure term

in the calculation of trailing edge loss in his work.

41

2.5.3 Annulus Loss

Annulus loss is the loss associated with the boundary layer drag on the turbine endwalls. This loss is

dependent on such factors as the turbine blade geometry and in particular the blade chord length to

height ratio (Watson 1982). The annulus loss is often accounted for with the secondary losses as

they are difficult to separate in practice.

2.5.4 Secondary loss

Secondary losses are losses that occur as a result of the deflection of the boundary layers through

the blade row, this is caused by lower endwall velocities and the cross-passage pressure gradient

turning the flow creating vortices. These vortices mix with the main flow and can interact with the

wall and blade boundary layer and wake causing additional losses. Denton states that the secondary

loss component is the most difficult to understand and to predict and virtually all prediction

methods are still based on correlations of empirical data (Denton 1993), most of these correlations

were reviewed by Dunham (1970) and Sieverding (1985).

2.5.5 Tip clearance loss

Another main source of loss in a turbine is tip clearance loss which is the leakage of flow over the

blade tip. Depending on the design of the blade this can be considered in two ways for either

shrouded or unshrouded blades. Kacker and Okapuu (1982) estimate tip clearance loss using an

iterative method to estimate an efficiency debit in unshrouded blades. Craig and Cox (1971) propose

a method to calculate a tip clearance loss for shrouded blades and suggest applying a factor for

unshrouded blades. Denton (1993) establishes a method for tip clearance loss for unshrouded

blades based on the entropy generation of the leakage flow mixing with the main flow on the

suction side of the blade. The total entropy production is dependent on the leakage flow rate and

difference in streamwise velocity of the main flow and leakage flow.

42

2.6 Loss Correlations

Having established the fundamental flow physics involved in turbomachinery, the more common

loss correlations used in turbine performance estimation will be examined. The loss correlation of

the current original code will be described first.

2.6.1 Ainley and Mathieson Loss Model

The loss correlation of Ainley and Mathieson was first published in 1951, later it was refined by

Dunham and Came. The original method of performance estimation calculated the efficiency of the

subject turbines to within +/- 2% of the test efficiency.

2.6.1.1 Total Loss

The total loss coefficient is a sum of the profile loss and secondary and tip clearance losses.

\a = �\, + \+ + \8�[�6 Eq. 2-15

2.6.1.2 Profile Loss

In order to establish the profile loss, the loss at zero incidence is calculated first. This is based on

charts showing cascade data of total pressure loss against pitch to chord ratio for nozzle and impulse

blading.

\,2���5 = �\2�
��5 + ��
�!�� �\2�
�y�!5 − \2�
��5�� �a E⁄�.����
�! Eq. 2-16

It is stated the impulse blading is relevant for blade thickness to chord ratios between 0.15 to 0.25.

Fig. 2-13 Profile loss coefficients for conventional section blades at zero incidence (Ainley and

Mathieson 1951)

43

Fig. 2-14 Profile loss coefficients for conventional section blades at zero incidence (Ainley and

Mathieson 1951)

To obtain the profile loss at incidences other than 0 the stalling incidence must be determined,

Figure 2-15, Figure 2-16, Figure 2-17, then a correlation derived by Ainley and Mathieson relating the

ratio of profile loss at any incidence to the profile loss at zero incidence and the ratio of incidence to

stalling incidence, Figure 2-18, is used to correct the profile loss at zero incidence. The stalling

incidence is approximately a function of gas outlet angle, the blade inlet angle to gas outlet angle

ratio and the pitch to chord ratio. The stalling incidences for a wide range of blades having a pitch to

chord ratio of 0.75 are established along with the variation of stalling incidence and gas outlet angle

with pitch to chord ratio. The final expression for profile loss,

\, = [�\,2���5 Eq. 2-17

Fig.2-15 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951)

44

Fig.2-16 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951)

Fig.2-17 Positive stalling incidences of cascades of turbine blades (Ainley and Mathieson 1951)

Fig. 2-18 Variation of profile loss with incidence for typical turbine blading (Ainley and Mathieson

1951)

45

2.6.1.3 Secondary and tip clearance loss

It was demonstrated by Ainley and Mathieson (1951) that secondary losses may be expressed by the

following equation.

\+ = l �_ �|¡�¢� 2'M@�c� 'M@�c>⁄ 5 Eq. 2-18

Where,

λ is an empirical function which depends upon the degree of acceleration imparted on the gas as it

flows through the blade row, Figure 2-19.

l = 1£2��/��5�/21 + F. H. I. H.⁄ 5¤ Eq. 2-19

�� = � �'M@d� Eq. 2-20

�� = � !'M@c� Eq. 2-21

Fig. 2-19 Secondary losses in turbine blade rows (Ainley and Mathieson 1951)

%& is the lift coefficient thus %&/2@/'5 is defined as,

%&/2@/'5 = 22ABrc� − ABrc�5'M@c> Eq. 2-22

c> is the average flow angle in the cascade and is defined as,

c> = ABry��2ABrc� + ABrc�5/2� Eq. 2-23

46

Thus, the secondary loss formula becomes,

\+ = l4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ � Eq. 2-24

2.6.1.4 Tip Clearance loss

The tip clearance loss is defined similarly to the secondary loss, as a function of blade loading with

the addition of the ratio of tip clearance to blade height.

\8 = " 8x 4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ � Eq. 2-25

In this instance B is a constant defined as 0.25 for shrouded blades or 0.5 for unshrouded blades.

2.6.1.5 Trailing Edge Correction

The trailing edge correction factor presented by Ainley and Mathieson can be found from Figure 2-

20. The method presented by Ainley and Mathieson was valid for turbine blades having a trailing

edge thickness roughly equal to 2 percent of the blade pitch. Ainley and Mathieson identify trailing

edge thickness can have a large impact on the total loss coefficient based on research of the time

(Ainley and Mathieson 1951). Therefore, they introduce a correction factor when trailing edge

thickness to blade pitch ratio, A6 @⁄ , differs from 0.02.

Fig. 2-20 Effect of trailing edge thickness on blade loss coefficients (Ainley and Mathieson 1951).

47

2.6.2 Dunham and Came Loss model

In 1970 Dunham and Came reviewed the Ainley and Mathieson (1951) turbine performance

prediction method and proposed improvements based on experimental data from 25 turbine stages

of the time. It was concluded the performance results for small turbines using the Ainley and

Mathieson method were misleading, and a number of improvements were implemented.

2.6.2.1 Total loss

The total loss of the blade row now considers the influence of Reynolds number on the profile and

secondary losses. The application of the Reynolds number correction accounts for conditions where (0 < 2 × 10¨.

\� = ©�\, + \+� � 46� $ ��ª�y�.� + \̀ « [�6 Eq. 2-26

Reynolds number is the measure which indicates whether a fluid is laminar or turbulent. Reynolds

number may be defined as the ratio of the inertial forces and viscous forces and may be calculated

using the formula below.

(0YrMC¬@ r­�#0� = =r0�A=BC 1M�'0 / 1�='A=Mr 1M�'0 = oVs/µ

Where,

o = density µ = dynamic viscosity V = velocity s = characteristic length

2.6.2.2 Profile loss

The additional losses encountered when a blade row chokes due to the development of shockwaves

is taken into account by using a correction factor incorporating the outlet Mach number in the

profile loss calculation.

\, = �1 + 602�Pta − 15��[�\,2���5 Eq. 2-27

2.6.2.3 Secondary Loss

Dunham and Came (1970) proposed a new blade loading parameter based on cascade data which is

a development of the loading parameter proposed by Ainley and Mathieson (1951). A single

numerical constant was used in place of a function of wall boundary layer thickness and blade shape.

The numerical constant was devised from comparisons with overall efficiency data.

48

\+ = 0.0334 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
� Eq. 2-28

2.6.2.4 Tip Clearance Loss

It was found that Ainley and Mathieson’s blade loading parameter replicated the effect of blade

loading satisfactorily (Dunham and Came 1970). Also, it was suggested by Dunham and Came that

the usual linear dependence of loss on tip clearance should be replaced by the power law which

showed greater correlation to experimental data.

\̀ = " �Ex� �8E��.¯° 4 2ABrc� − ABrc�5� �EP+!�!EP+�¥ � Eq. 2-29

Where the constant " is modified to 0.47 for plain tip clearance and 0.37 for shrouded.

2.6.3 Kacker and Okapuu Loss Model

In 1982 Kacker and Okapuu reviewed the existing loss systems, specifically proposing modifications

to the AMDC loss correlations based on analytical capability, which had seen major advancements in

computer technology and aerodynamic analyses in the thirty years since Ainley and Mathieson

published their loss method in 1951, and turbine data of the time. Their modifications were tested

against design point efficiencies of 33 turbine stages.

2.6.3.1 Total Loss

The total loss coefficient presented by Kacker and Okapuu (1982) is the sum of the profile,

secondary, trailing edge and tip leakage losses where the profile losses are corrected for Reynolds

number effects.

\� = \�146 + \+ + \�b� + \̀ Eq. 2-30

Where 146 is the Reynolds number correction factor.

146 =
⎩⎪⎨
⎪⎧� 46� × ��ª�y�.µ 1M� (0 ≤ 2 × 10¨ 1 1M� 2 × 10¨ < (0 < 10·

� 46��¸�y�.� 1M� (0 > 10· Eq. 2-31

2.6.3.2 Profile Loss

Cascade testing following the publication of the Ainley and Mathieson (1951) method have shown

profile loss is not independent of Mach number (Kacker and Okapuu 1982). The profile loss

formulated by Kacker and Okapuu uses the relation proposed by AMDC but also takes into account

turbine operation at higher Mach numbers and shock losses.

\� = 0.914 ��� \�,3º»_�, + \K]^_`� Eq. 2-32

49

Shocks can occur at leading edges at relatively low inlet Mach numbers, due to acceleration of the

flow adjacent to the highly curved leading edges. Kacker and Okapuu (1982) present a correction

based on the inlet Mach number at the hub and the inlet and outlet mean line Mach numbers. The

correlation to decipher the inlet Mach number at the blade hub is based on a sampling of known

turbines.

Fig. 2-21 Inlet Mach number ratio for nonfree-vortex turbine blades (Kacker and Okapuu 1982).

From Figure 2-21 the Mach number at the hub can be calculated when the midspan Mach number

and the hub/tip radius ratio are known. The shock loss can then be found using Figure 2-22.

Fig. 2-22 Combined effect of leading edge shock on inner end wall flow and the blade channel next

to it (Kacker and Okapuu 1982)

The final expression for shock loss is shown below which accounts for blade hub/tip ratio and is

expressed in terms of blade exit dynamic head.

\K]^_` = 0.75���,]�¼ − 0.4��.¯¨ �4½4¾ � ��
�!� ��y��¿��
! º
!� ���

�y��¿��
! º!!� ���
� Eq. 2-33

50

The Mach number correction factor �, is based on correlations relating to the effects of exit Mach

number and channel acceleration. The corrections for the effects of exit Mach number and channel

acceleration are shown in Fig. 2-23 and Fig. 2-24, these are then combined to formulate �,.

Fig. 2-23 Mach number correction factor ��for the profile loss coefficient, for accelerating cascades

of �� → �� (Kacker and Okapuu 1982)

Fig. 2-24 Mach number correction factor ��for the profile loss coefficient (Kacker and Okapuu 1982)

�, = 1 − 1.252�� − 0.25 �º
º!��
 Eq. 2-34

In the final profile loss expression Kacker and Okapuu added two multiplying factors to make the

AMDC loss system predict the correct shapes of the efficiency islands on the Smith chart.

2.6.3.3 Secondary Loss

The secondary loss calculation adopted by Kacker and Okapuu is similar to that of Dunham and

Came (1970) apart from its dependency on aspect ratio. During their investigation Dunham and

Came noted that the results of their method showed a rapid increase in losses as aspect ratio was

decreased which when compared to experimental data exhibited poor correlation. Kacker and

Okapuu (1982) confirmed this behaviour and identified that the increase in losses is less rapid for

aspect ratios less than two. The following equations were established to predict secondary loss.

\+ 3º»_ = 0.033412345 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
� Eq. 2-35

51

Where,

12345 = À �y�.�¨
�yx E⁄x E⁄ 1M� ℎ '⁄ ≤ 2�x E⁄ 1M� ℎ '⁄ > 2 Eq. 2-36

As with profile losses compressibility is also a factor when considering endwall losses. To account for

this the correction factor is defined in terms of the factor for profile loss and aspect ratio.

�+ = 1 − ���1 − �,� Eq. 2-37

�� may be deduced from the following chart.

Fig. 2-25 Mach number correction factor ��for the secondary loss coefficient (Kacker and Okapuu

1982)

The final expression for secondary loss is shown below.

\+ = 1.2\+ 3º»_�+ Eq. 2-38

2.6.3.4 Trailing Edge Loss

Kacker and Okapuu also propose an expression for the trailing edge loss in terms of the trailing edge

thickness and throat opening. The correlation shown in Figure 2-26 is based on a large quantity of

published and in-house cascade data.

52

Fig. 2-26 Trailing edge loss (energy) coefficient correlated against the ratio of trailing edge thickness

to throat opening (Kacker and Okapuu 1982)

Here the loss is expressed in terms of an energy loss coefficient. As is noticeable from Figure 2-26

two characteristics exist for axial entry nozzles and impulse blades. Kacker and Okapuu (1982)

provide a method to interpolate between these curves for any combination of angles shown below,

this is similar to the method used by Ainley and Mathieson (1951) for profile losses in equation 2-16.

jp�b�� = jp�b�� 2�
��5 + ��
�!�� ©jp�b�� 2�!��5 − jp�b�� 2�
��5« Eq. 2-39

The trailing edge loss expressed as an energy coefficient may be converted to a pressure loss

coefficient using the formula below.

\�b� = ��y��
! º!!Á

�ÂÃ¾Ä¾! y�Å¢� ���
y�
�y��¿��
! º!!�� ���
 Eq. 2-40

2.6.3.5 Tip Clearance Loss

Tip clearance losses are a major source of loss in a turbomachine, Kacker and Okapuu (1982)

presented an iterative method to decipher the loss due to tip clearance for unshrouded blades. First

the turbine efficiency is calculated with zero tip clearance then the efficiency loss due to tip

clearance is estimated using the formula below and increasing the rotor loss coefficient until the

process converges on efficiency, while recalculating the velocity triangles and other loss coefficients.

ji = 0.93 � 4¾Æ�4ÇÄÈÉ� � �xEP+�!� iaa,�jJ Eq. 2-41

53

2.6.4 Craig and Cox Loss Model

In 1971 Craig and Cox presented a method for the prediction of losses in an axial turbine stage. The

proposed method was expanded for use with steam and gas turbines accounting for the effects of

aspect ratio and blade height which previous published methods of performance estimation

neglected. The presented loss correlations are derived from linear cascade test data, the proposed

method gave an accuracy of approximately +/- 1.25%. Craig and Cox categorised turbine stage losses

into two groups shown below.

2.6.4.1 Total Loss

Table 1 Breakdown of losses in the Craig and Cox loss system (Craig and Cox 1971).

Craig and Cox (1971) evaluate the Group 1 losses as loss factors based on relative blade inlet and

outlet velocities. Whereas the Group 2 losses are evaluated as efficiency debits this being the

simplest way they are derived from test data. Thus, Craig and Cox (1971) give the following formula

for stage efficiency.

ia = ÊPw8)P 6 � -u7)� ËÊPw8)P 6 � -u7)� Ë¿ÌwPt, � uP++6+ − ∑ :�M­� 2 011='=0r'Y ¬0#=A@ Eq. 2-42

Where the Group 1 losses may be written approximately as,

:�M­� 1 CM@@0@ = �[, + [+ + [7�Ë _
!���ËÎ + �[, + [+ + [7 _!!Ê!!�w Ê!!���ËÎ Eq. 2-43

Based on over 100 cascade tests Craig and Cox (1971) established all losses are related on a basis of

velocity coefficients and are dependent on Reynolds number, aspect ratio, blade angles and passage

geometry, pitch to back bone length ratio, Mach number and incidence. The various loss correlations

presented by Craig and Cox will now be examined.

2.6.4.2 Profile Loss

Craig and Cox (1971) proposed the following expression to calculate profile loss.

[� = X,-L,wL,�L,a + �jX,�a + �jX,�+/6 + �jX,�> Eq. 2-44

Craig and Cox (1971) account for the effect of Reynolds number using the correlation shown in

Figure 2-27. The method used is based on the blade opening rather than the chord or axial width,

the impact of surface roughness is also included.

54

Fig. 2-27 Profile loss ratio against Reynolds number effect (Craig and Cox 1971)

Craig and Cox (1971) describe the basic profile loss, the loss at or near the incidence where loss is at

a minimum, using Figure 2-28 and Figure 2-29. Figure 2-28 is a lift parameter and Figure 2-29 is the

basic loss parameter as a function of the modified lift parameter and contraction ratio. The contract

ratio shown in Figure 2-30 represents the internal blade passage width ratio and is a function of the

pitch to backbone length and the inlet and outlet relative flow angles.

Fig. 2-28 Lift parameter (Craig and Cox 1971)

55

Fig. 2-29 Basic Profile loss (Craig and Cox 1971)

Fig. 2-30 Contraction ratio for average profiles (Craig and Cox 1971)

56

Fig. 2-31 Trailing edge thickness losses (Craig and Cox 1971)

The trailing edge loss parameter is described in Figure 2-31 and shows the loss parameter is a

function of fluid outlet angle and trailing edge thickness to pitch ratio. The next parameter

accounted for by Craig and Cox (1971) to estimate profile loss considers the impact of incidence loss

at off design conditions. The incidence loss can become significant when incidences are not held at

the optimum level. A correction for incidence is presented in Fig. 2-32.

Fig. 2-32 Incidence losses (Craig and Cox 1971)

57

The correction given is similar to that given by Ainley and Mathieson (1951) however the negative

stalling incidence and minimum loss incidence included in the incidence ratio are dealt with

separately to the positive stalling incidence. The incidence parameters are determined from the

following formulae. For the positive stalling incidence for c ≤ 90,

= + @ABCC = 2= + @ABCC5-7+�E + 2j= + @ABCC5+/- + 2j= + @ABCC5_4 Eq. 2-45

Where 2= + @ABCC5-7+�E is given by Fig. 2-32, 2j= + @ABCC5+/- by Fig. 2-33 and 2j= + @ABCC5_4 by Fig.

2-34.

Fig. 2-33 Basic positive stalling incidence 2= + @ABCC5-7+�E (Craig and Cox 1971)

Fig. 2-34 Incidence correction for positive stalling incidences (Craig and Cox 1971)

58

Fig. 2-35 Incidence correction for positive stalling incidences (Craig and Cox 1971)

Craig and Cox (1971) provided a correlation for the negative stalling incidence at c ≤ 90 and a

different correlation when c > 90 for positive stalling incidence.

= − @ABCC = 2= − @ABCC5-7+�E + 2j= − @ABCC5+/- Eq. 2-46

Where 2= − @ABCC5-7+�E is given by Fig. 2-35 and 2j= − @ABCC5+/- by Fig. 2-36.

 = + @ABCC = 2= + @ABCC5-7+�E + �1 − �yÏ�Ï�yÐÑÒ�
 P/+� × �2j= + @ABCC5+/- + 2j= + @ABCC5_4� Eq. 2-47

Where 2= + @ABCC5-7+�E is given by Fig. 2-37 and for negative stalling incidence,

= − @ABCC = 2= − @ABCC5-7+�E + �1 − �yÏ�Ï�yÐÑÒ�
 P/+� × 2j= + @ABCC5+/- Eq. 2-48

Where 2= − @ABCC5-7+�E may also be deciphered from Fig. 2-38.

Fig. 2-36 Basic negative stalling incidence (Craig and Cox 1971)

59

Fig. 2-37 Incidence correction (Craig and Cox 1971)

Fig. 2-38 Basic stalling incidences for blade angles greater than 90 (Craig and Cox 1971)

The minimum loss incidence may be established using the formula below.

=>� = 2�¿+a7uu5¿Ó{2�y+a7uu5�¿Ó{ Eq. 2-49

Where �� is given by Fig. 2-39.

60

Fig. 2-39 Minimum loss incidence-range ratio �� (Craig and Cox 1971)

The final expressions in the Craig and Cox (1971) profile loss estimation are additive losses relating

to the trailing edge and high Mach numbers at the blade outlet. The increments relating to Mach

number are to account for conditions above the subsonic regime which the loss mechanism was

developed at. The trailing edge loss increment is shown in Figure 2-31. The first additive loss relating

to high Mach numbers refers to convergent profiles designed with a straight suction surface

downstream of the throat, shown in Fig. 2-40. The second additive loss relating to high Mach

numbers accounts for profiles with a pronounced convex suction surface downstream of the throat,

shown in Fig. 2-41.

Fig. 2-40 Mach number loss for convergent blading (Craig and Cox 1971)

61

Fig. 2-41 Blade back radius losses (Craig and Cox 1971)

2.6.4.3 Secondary Loss

Craig and Cox (1971) describe the secondary loss as consisting of two sources of loss, partly from

true aerodynamic secondary loss and partly also from wall friction. Both effects are difficult to

predict accurately due to inconsistencies relating to wall shape and interaction with clearance flows.

The correlation proposed assumes that the secondary loss is approximately inversely proportional to

the aspect ratio of the blading and in addition shows a Reynolds number effect similar to that

exhibited by the basic profile loss. The overall secondary loss factor may be calculated by,

[+ = 2L+5w2LK5x/-2X+5- Eq. 2-50

Where 2X+5- is given by Figure 2-42 and 2LK5x/- by Figure 2-43.

62

Fig. 2-42 Secondary loss – basic loss factor (Craig and Cox 1971)

Fig. 2-43 Secondary loss – aspect ratio factor (Craig and Cox 1971)

63

2.6.4.4 Tip Clearance Loss

Craig and Cox (1971) account for tip clearance loss using an efficiency debit which is given by the

following correlation for shrouded turbine blades, where �8 is given by Figure 2-44. Craig and Cox

state for unshrouded blades the methodology presented by Ainley and Mathieson (1951) is

representative when axial velocity remains approximately constant across the blade row and relative

velocities are well below the sonic value.

ji8 = �8 3Ô3Õ × i�,8 Eq. 2-51

Fig. 2-44 Shrouded efficiency loss (Craig and Cox 1971)

2.6.4.5 Annulus loss

Craig and Cox (1971) also account for an annulus loss when there is an appreciable diffusion

between two stages. The annulus wall loss may be obtained from Fig. 2-45 for controlled (solid lines)

and uncontrolled expansion (dotted lines).

Fig. 2-45 Annulus wall loss (Craig and Cox 1971)

64

2.6.4.6 Cavity Loss

Craig and Cox (1971) include the cavity loss with the annulus loss coefficient. The cavity loss factor

may be determined from Fig. 2-46 and is based on the geometry of the cavity.

Fig. 2-46 Cavity loss (Craig and Cox 1971)

2.6.4.7 Leakage Flow Through Glands

Another contributor to loss in a turbine is as a result of leakage through glands. Craig and Cox (1971)

give an approximation of the efficiency debit due to leakage flow through glands using the formula

below,

ji C0BJB90 = � �ËÌ¿ �Ë� i- Eq. 2-52

Where � �ËÌ¿ �Ë� denotes the leakage fraction.

2.6.4.8 Other Losses

Other kinds of losses were also considered by Craig and Cox (1971) including lacing wire, wetness,

disc windage and partial admission losses. These losses are considered as efficiency debits and are

not taken into account in the overall cascade loss. These losses are also considered small when

compared to the main sources of loss in a turbine.

65

2.6.5 Denton Loss Model

Denton promotes a greater understanding of the physics involved with performance loss in

turbomachines in his work, rather than relying on correlations derived from empirical data. Denton

ultimately attributes efficiency loss to entropy generation and using the basic principles of

thermodynamics establishes a methodology for predicting the various losses in turbomachines.

There are many useful definitions of loss coefficient for individual blade rows (Brown 1972), for a

turbine one of the more common definitions is in terms of stagnation pressure loss coefficient,

\ = 2N�� − N��5/2N�� − N�5 Eq. 2-53

Another loss coefficient definition is the energy or enthalpy loss coefficient defined below for a

turbine,

h = x!yx!|x�!yx! Eq. 2-54

However, Denton states these definitions are not adequate for machines with a rotating blade row

where the relative stagnation pressure and enthalpy can change as a result of changes in radius

without any implied loss of efficiency. Changes to isentropic efficiency occur as a result of heat

transfer or thermodynamic irreversibility. For adiabatic flow entropy creation due to irreversibility is

the main contributing factor to loss of efficiency. Denton concludes the only rational measure of loss

in an adiabatic machine is entropy creation (Denton 1993). Another advantage identified by Denton

in the use of entropy as a measure of loss in a turbine stage is unlike stagnation pressure, stagnation

enthalpy or kinetic energy it is not dependent on whether the blade row is stationary or rotating.

The entropy loss coefficient for turbine blades is defined below,

h+ = �!�+x�!yx! Eq. 2-55

2.6.5.1 Boundary Layer Loss

Denton (1993) attributes boundary layer entropy generation to viscous effects in the boundary layer

and derives the following formula, from boundary layer theory, to calculate the total entropy

creation in the boundary layer,

RS = ∑ %+ Ö _×ØÙz� ¬2X %+⁄ 5���K Eq. 2-56

For conveniency Denton recommends accounting for the entropy production rate by using a

dissipation coefficient, %). Full knowledge of the state of the boundary layer is required to calculate

the dissipation coefficient precisely. The dissipation coefficient is defined by the formula below,

%) = �KSÚØÙÛz Eq. 2-57

Based on much experimental data some general results have been established relating to the

magnitude of the dissipation coefficient for varying boundary layers (Schlichting 1966). It has been

found for turbulent boundary layers the dissipation coefficient is much less dependent on the shape

66

of the boundary layer. Schlichting gives the following relationship for turbulent boundary layers with 1.2 < RℎB�0 �B'AM� < 2.0 and with 10� < (0Q < 10¨,

%) = 0.0056(0Qy�/·
 Eq. 2-58

On comparison of the formula above (Equation 15) with the results of the Cebeci calculation (Denton

1993), Figure 2-47, Denton recommends employing a dissipation coefficient of 0.002 for turbulent

boundary layers.

Fig. 2-47 Calculated dissipation coefficients for turbulent boundary layers (Denton 1993).

Denton also stresses the importance of predicting the boundary layer transition due to the large

difference in dissipation coefficient between laminar and turbulent boundary layers around this

point (Denton 1993), shown in Figure 2-48.

67

Fig. 2-48 Dissipation coefficient for laminar and turbulent boundary layers (Denton 1993).

It can also be discerned from equation 2-56 that the boundary layer loss is proportional to the cube

of the velocity. The total entropy generation is then converted to an entropy loss coefficient by

dividing the total entropy produced by the mass flow rate and a reference dynamic head using the

formula below,

h = �KS>S �.¨ ÙÜ}Ý! Eq. 2-59

The formulae above are applicable for both stator and turbine where in the case of the stator the

absolute velocity is used and for the turbine the relative velocity is used.

2.6.5.2 Trailing Edge Loss

Denton (1993) also attributes the losses at the trailing edge to viscous dissipation in the mixing out

of the wake behind the trailing edge. Here the overall entropy generation can be calculated applying

the equations of conservation of mass, energy and momentum to a control volume between the

blade throat and some point downstream where the flow has returned to uniformity. The base

pressure acting on the trailing edge is also included in the relationship.

Denton adopts the following formula to estimate the trailing edge loss,

h = ����.¨ Ø ÙÕ}! = _�ÞA0P ßàÐ �! + � QP ßàÐ �! + � á∗¿A0P ßàÐ �!��
 Eq. 2-60

Denton (1993) gives the following correlation for the base pressure, typical values of %,- are in the

range -0.1 to -0.2 according to the relationship below,

%,- = �N- − Nw6*� �0.5oVw6*� �â Eq. 2-61

68

2.6.5.3 Tip Leakage Loss

Denton (1993) provides separate correlations for tip leakage losses depending on whether the blade

row is shrouded or unshrouded. Entropy creation in tip leakage flows is mainly associated with the

mixing of the leakage flow with the mainstream flow.

For shrouded turbines the entropy creation is calculated using,

h = 2 > >¥ �1 − ãäÒ �
ãäÒ �! @=r �c�� Eq. 2-62

For unshrouded turbines the condition is more complex involving the formation of a jet interacting

with the mainstream flow. To simplify the calculation process Denton suggests using the same

velocity distribution as utilised to calculate the boundary layer loss,

h = �_×8_x, ßàÐ �! Ö �Ù|Ù!���� �1 − Ù�Ù|� åæ1 − �Ù�Ù|��ç)è_ Eq. 2-63

2.6.5.4 Endwall Loss

Endwall loss also referred to as secondary loss is a major contributor to overall efficiency loss in

turbines. Denton states endwall loss is difficult to understand and predict with virtually all previous

prediction methods based on correlations of empirical data (Denton 1993). However, by adopting

endwall boundary layer calculations, similar to those used to predict profile losses, Denton (1993)

established the formula below to predict endwall entropy generation.

RS = 0.25 Ö _×� �Ù|éyÙ�é��Ù|yÙ��_�� o�¬X Eq. 2-64

2.6.5.5 Shock Loss

Denton (1993) also considers shock waves in turbines and their potential associated losses in

transonic conditions. The formula below may be used to calculate the entropy creation due to shock.

From this it can be seen that entropy creation roughly varies with the cube of 2�� − 15.

j@ ≈ %/ �ë2ëy�5�2ë¿�5! 2�� − 15� Eq. 2-65

69

2.7 Loss Model Accuracy

Now the formulation of the more common methods of loss prediction in axial turbines has been

established where available their correlation to experimental data of the time period will be

summarised. Each author verifies their method against typical experimental turbine test data of the

time period the method was presented, this gives an indication of the accuracy of the method and

its suitability to predict design point turbine efficiency.

2.7.1 Ainley Mathieson Loss Model

The Ainley Mathieson turbine performance prediction method was compared to a variety of single

and two stage turbines. All of the comparisons made were within +/- 2 percent in turbine efficiency

at the turbine design point. Turbine capacity variance in turbine capacity compared to test data was

+/- 3 percent.

2.7.2 Dunham Came Loss Model

The Dunham and Came loss model was verified against twenty five single stage gas turbines, these

covered a wide range of designs and sizes. With cold air rig performance data available for each

stage. The original Ainley Mathieson method predicted design point efficiencies to within +/- 3

percent, the revised method proposed by Dunham and Came improved the correlation with test

data bringing the majority of the examples to within +/- 2% (Dunham and Came 1970).

Fig. 2-49 Comparison of design point efficiencies of 25 turbines (Dunham and Came 1970).

70

Dunham and Came (1970) also found their method improved efficiency prediction at choke

conditions when compared to experimental data from a typical aircraft engine. However, the main

improvement was found when considering low aspect ratio turbines and low reaction turbines

where previously the prediction of secondary losses was inadequate. When comparing their

calculated efficiencies to a turbine with mean aspect ratio of about unity efficiency prediction is

improved significantly at design speed and 50 percent design speed.

2.7.3 Kacker Okapuu Loss Model

Kacker and Okapuu (1982) validated their loss model against the Smith chart, Figure 2-7, and 33

turbines which included gas generator, automobile and thrust turbofan turbines. Kacker and Okapuu

found that when comparing the Ainley and Mathieson loss system to the Smith chart while satisfying

the change in efficiency with stage loading it struggled to replicate accurately the change with stage

flow factor at values higher than 0.6. Kacker and Okapuu concluded that only compressibility and

shock loss corrections to the profile loss and secondary loss can accurately replicate the Smith chart,

with the shock loss correction mainly impacting turbine operation at higher stage flow factors and

the acceleration correction influencing the overall efficiency level (Kacker and Okapuu 1982). As such

Figures 2-21, 2-22, 2-23, 2-24 and 2-25 were determined iteratively to achieve correlation with the

efficiency contours in Smith’s chart. Kacker and Okapuu (1982) produced a chart similar to that of

Smith using their new loss system, Figure 2-50. The contours estimated using the Kacker and Okapuu

method seem to display satisfactory correlation to the Smith chart. Quantitatively, the efficiency

contours predicted by Kacker and Okapuu (1982) peak at a lower stage loading factor and extend to

a higher stage flow factor. Nonetheless, the quantitative agreement was considered satisfactory by

Kacker and Okapuu (1982) despite the unavoidable scatter of the data.

Fig. 2-50 Turbine stage efficiency at zero tip leakage calculated by the Kacker and Okapuu method

(Kacker and Okapuu 1982).

71

Kacker and Okapuu (1982) also tested their loss system against design point efficiencies from 33

state of the art turbines of the time period. These ranged from a gas generator turbine of a small

automobile to a low-pressure turbine of a thrust turbofan turbine. As can be seen from the charts

depicted in Figure 2-51 the correlation between experimental and calculated data using the method

developed by Kacker and Okapuu is within +/- 1.5 percent whereas the correlation using the AMDC

loss system is not desirable (Kacker and Okapuu 1982).

Fig. 2-51 Comparison of predicted efficiency with experimental efficiency of 33 turbines (Kacker and

Okapuu 1982).

2.7.4 Craig and Cox Loss Model

Craig and Cox (1971) validated their loss system against a large number of turbines for which

suitable experimental data was available. During their investigation Craig and Cox found no

systematic or major discrepancies during comparison with over fifty machines with most calculated

values of turbine efficiency being significantly within +/- 1.4 percent. Figure 2-52 presents their

findings of the efficiency difference between measured and calculated values plotted against the

output of each machine.

72

Fig. 2-52 Comparison of predicted and measured test efficiencies (Craig and Cox 1971).

2.7.5 Discussion

Reviewing each authors validation of their loss model it is clear when compared to design point

efficiencies each loss system seems to perform relatively well. Only Dunham and Came (1970)

present a comparison at half and 85 percent turbine design speed with a favourable result.

Turbocharger turbines are required to run at off design conditions for prolonged periods depending

on the turbocharger application. Whether it be a marine application where low load operation is

expected for manoeuvring in port or a peaking power plant application which continuously cycles

load. Therefore, accurate efficiency prediction over a wide range of operating conditions is required.

73

Chapter 3

Mean Line Performance Prediction

Tool

3.1 Introduction

In this chapter the mean line performance prediction program will be examined in more detail. The

program chosen to construct the mean line tool was Microsoft Excel where the inbuilt programming

language, Excel VBA, was used to create the mathematical model. The author has extensive

programming experience in Excel VBA having written a number of programmes related to

turbocharger test data analysis, engine data analysis and also a chart digitiser program which was

used to extract the data for the loss correlations described in the previous chapter. Microsoft Excel

was also chosen due to its accessibility and well-known interface; Excel also provides a significant

number of inbuilt tools for data analysis and manipulation which may prove useful in the

development of the program in the future.

74

3.2 Mean Line Tool Structure

To begin structuring the mean line tool in Excel VBA it was first necessary to decode the original

Fortran program. Most of the calculation steps were identifiable by following the performance

prediction method described by Ainley and Mathieson (1951) which the original code was based on.

However, no informative text existed on the structure of the program and there were no details on

some of the differences between the method described by Ainley and Mathieson and the code used

by Napier Turbochargers. As the code has undergone various modifications by past employees of

Napier Turbochargers without any documentation some of the modifications to the code have been

interpreted as improvements to maintain the accuracy of the efficiency prediction compared to

modern blade designs as such they have been carried over and applied to the chosen loss

correlations. For example, one of the main limitations of the original code is it uses correlations

which are based on turbine designs from when the method was first conceived. The Ainley and

Mathieson method was first conceived in 1951 since then turbine blade design has evolved including

blade leading edge design, with modern designs employing a more elliptical shape. To account for

this change in the original code the leading-edge blade angle is multiplied by a factor of 0.3. Other

unexplained modifications include the limiting of the range of incidence to stalling incidence ratio

when calculating the profile loss incidence correction factor, Figure 2-18, and the blade outlet angle

is divided by a factor of 100 when deciphering the profile loss coefficient, Figure 2-13 and 2-14.

Eventually most of the code was unravelled and translated into Excel VBA, Figure 3-3 shows the

basic structure of the calculation process in the new mean line tool.

The tool begins by importing the input data and initiating the speed increment at the lowest speed

outlined in the input file. The turbine mass flow is then imposed, the first flow step to be computed

is the design flow, the program then increments the stage row number calculating the loss

coefficients and operating conditions for the stator and turbine. The loss coefficient is modified

based on the outlet conditions from each row, the loss coefficient and outlet condition calculations

are iterated until the loss coefficient converges. Once converged the choking mass flow is

established and imposed and the row increment is repeated calculating the loss coefficient and

operating conditions for the stator and turbine. Thereafter the flow is incremented using a

correlation from the original code based on the choking mass flow and minimum mass flow. Once all

of the speeds have been processed a .txt file is output containing the turbine map parameters, non-

dimensional speed, swallowing capacity, turbine pressure ratio and total to static efficiency as

outlined by the standard SAE International (1995).

75

3.3 Mean line Tool Inputs

Each set of geometry or input file is extracted from blade profile data and includes parameters for

both blade rows of the turbocharger. The parameters required for each blade row are shown below.

Symbol Code Input File

- Number of cases

- Title

- Number of blade rows M Throat width 0 Back surface radius of curvature J Tip clearance

- Tip clearance turbine factor

- Unshrouded turbine factor

- Throat area @ Pitch d� Leading Edge blade angle ' True chord A Max. thickness A0 Trailing edge thickness �x Hub radii �a Tip radii

- Cp(gas), N/rtT(design), MrtT/P(design), T01

- MrtT/P(min), Max. Mach

- Pressure recovery of TOC, Efficiency debit

- Number of N/rtT curves required

Table 2 Input parameters for mean line tool.

The inputs for the program include parameters relating to the geometry of the turbine stage and the

stator and rotor arrangement as well as a number of parameters defining design conditions and

stage constants. The following section describes the non-geometric parameters. The number of

blade rows for a turbocharger will typically be two. The tip clearance factor is defined in section

2.6.1.4 and depends on whether the stage is shrouded or unshrouded, there is also a factor included

in the Ainley and Mathieson (1951) method to account for radial tip clearance when calculating

blade flow outlet angle, for unshrouded turbines this figure is 1.35 (Ainley and Mathieson 1951). The

following boundary conditions are included in the input file, the specific heat capacity, %,, of the gas

entering the stage is 1115.3 J/kg C° and the stage total inlet temperature, T01, is 763 Kelvin. The

following non dimensional parameters are used to describe the design speed N/√T(design),

swallowing capacity M√T/P(design), and minimum swallowing capacity M√T/P(min) these

parameters are dictated by the particular application the turbine is intended for in order to achieve

optimum performance. The maximum Mach number is also included in the input and is typically set

at 1.6. In order to account for the pressure recovery which occurs in the exhaust diffuser a factor is

included which has been derived from CFD and test data. There is also a constant efficiency debit to

account for lacing wire loss and non-swirl related losses which for simplicity is subtracted from the

76

turbine efficiency. Finally, the number of speed lines required is declared. The following sketches

provide a definition of the geometric parameters included in the input file.

Fig. 3-1 Turbine blade nomenclature (Ainley and Mathieson 1951)

The throat area of the stator and turbine blade is calculated at the throat opening. The calculation of

the back-surface radius of curvature for each blade row is derived below.

Fig. 3-2 Turbine blade nomenclature (Ainley and Mathieson 1951)

�ì� = 0 = í�/8Z Eq. 3-1

77

*This is the swallowing capacity where the turbine stage reaches choke conditions.

Fig. 3-3 Basic structure of the calculation process in the new mean line tool.

78

3.3 Loss Correlation Implementation

In this section the implementation of the loss models to the chosen program are described. As the

chosen loss mechanisms include various correlations the translation of these into a digital format

and integration into the math code will be covered first.

In order to retrieve the raw data from the correlations a digitization tool developed in Excel VBA

code using Microsoft Excel by the author during his employment at Napier Turbochargers was used.

The program allows you to import a picture file, set the axis and extract the required data, a

screenshot of the program is shown in Figure 3-4.

Fig. 3-4 Screenshot of Chart digitization program developed by the author.

This tool has been tested extensively in the Napier Turbochargers Engineering department and is

regularly utilised for tasks such as the construction of compressor characteristics from rig data and

the retrieval of data from published material. Once the raw data has been retrieved it is tabulated

and stored in Microsoft Excel where necessary the data is referenced by the code using double

interpolation.

Where double interpolation was not appropriate, for example the correlations used by Denton for

profile loss and tip clearance loss (Denton 1993) where there are three variables x, y, z, and x, y are

independent variables and z is dependent on both, bi-linear interpolation was employed. The data

presented by Denton (1993) was digitised using the digitization tool and used to construct a matrix

of data which can be stored in Microsoft Excel, bi-linear interpolation was then used to interpolate

within this grid to find the desired value of z at the given x and y values. The formula for bi-linear

interpolation is shown in Eq. 3-2, the grid of values and corresponding contour chart used in the

code for Denton’s correlation relating to profile loss is shown in Appendix B.

79

12X, Y5 ≈ �2$!y$
52î!yî
5 �Z��2X� − X52Y� − Y5 + Z��2X − X�52Y� − Y5 + Z��2X� − X52Y − Y�5 +Z��2X − X�52Y − Y�5� Eq. 3-2

3.3.1 Kacker and Okapuu

The loss models proposed by Kacker and Okapuu have been translated into code with minimal

modification. As the Kacker and Okapu loss model is a development of the Ainley and Mathieson

technique the modifications included in the original code have been carried over to the Kacker and

Okapuu model. The Kacker and Okapuu routine does include an extra iteration in order to decipher

the tip clearance efficiency debit as described in section 2.6.3.5. The VBA code relating to the Kacker

and Okapuu loss model is included in Appendix C.

3.3.2 Craig and Cox

For the Craig and Cox method the losses relating to annulus, cavity and gland leakage loss have been

left out as they do not apply to an axial turbine in a turbocharger. Also, as there are no

productionised shrouded turbines in the Napier product range only the calculations relating to

unshrouded turbines have been considered. The Craig and Cox method also requires the blade

camber line length or backbone length, the following parabola arc length formula will be adopted to

give an estimate of this length.

s = �� √#� + 16. B� + -!°.7 ln æµ.7¿√-!¿�·.7!- ç Eq. 3-3

Where,

Fig.3-5 Parabola arc length

The correlations used by the Craig and Cox (1971) method were digitised using the digitization tool

and are stored in the mean line program for reference when calculating the loss coefficients. The

VBA code relating to the Craig and Cox loss model is included in Appendix C.

80

3.3.3 Denton

The Denton loss mechanism has been simplified for implementation to the mathematical model. The

equations set out previously relating to Denton’s method require complete knowledge of the

velocity distribution at both suction and pressure sides of the turbine stage. As this knowledge is

often not always available Denton proposed a simplified method to estimate turbine performance.

This method concentrates on the profile, trailing edge, secondary and tip clearance losses. The VBA

code relating to the Denton loss model is included in Appendix C.

3.3.3.1 Profile Loss

Denton adapts the semi-analytical method presented by Balje and Binsley (1968). Which is based on

an approximate blade surface velocity distribution and a simple turbulent boundary layer calculation

to estimate the trailing edge momentum thicknesses. This method is not dependent on

experimental conditions, only the mean level is adjusted to agree with a range of test data. Denton

uses a similar method applying the theories of entropy generation in boundary layers to calculate

profile loss coefficients at optimum pitch-to-chord ratios.

Fig. 3-6 Generic surface velocity distribution for a turbine (Denton 1990).

A typical surface velocity distribution used by Denton in his work is shown in Fig 3-6. By equating the

blade load to the momentum change it is possible to predict the entropy creation and energy loss

coefficients from equation 2-56. The chart in Fig. 3-7 is generated by systematically varying the blade

load. As described initially this is translated into the mathematical model as a matrix deciphering the

profile loss at given inlet and outlet angles using bi-linear interpolation.

81

Fig. 3-7 Predicted profile loss (%) of Turbine blades at optimum pitch to chord ratios (Denton 1993).

3.3.3.2 Trailing Edge Loss

The calculation of the entropy generation due to mixing losses at the trailing edge requires the

formulation of the momentum and displacement thicknesses of the boundary layer. For the

purposes of this investigation, it was deemed acceptable to simplify the calculation of these

parameters by considering the momentum and displacement thicknesses of a flat plate at turbulent

conditions. Firstly, the Reynolds number was established.

(0YrMC¬@ r­�#0� = =r0�A=B 1M�'0 / 1�='A=Mr 1M�'0 = oVs/µ Eq. 3-4

The relationships for a flat plate at turbulent conditions were used to calculate the displacement and

momentum thicknesses.

3.3.3.3 Secondary Loss

It is suggested by Denton that the Dunham and Came (1970) method of calculating endwall losses

remains the most satisfactory. This is an extension of the method developed by Ainley and

Mathieson (1951) enabling different users to apply correction factors to suit their own needs based

on test data. Based on a large number of comparisons with test data Denton uses a modification of

this applying a factor of 0.375.

\+ = 0.375 ∗ 0.0334 �Ex� 4 2ABrc� − ABrc�5� � EP+!�!EP+z�¥� �EP+�!EP+�
� Eq. 3-5

3.3.3.4 Tip clearance loss

Tip leakage loss provides one of the main sources of loss in turbines. Denton (1993) provides two

correlations for shrouded and unshrouded blades. For unshrouded blades Denton (1993) uses simple

theoretical methods to produce the correlation shown in Fig 4-6 assuming a tip clearance of 1% on

height ratio.

82

Fig. 3-8 Tip leakage loss coefficient for unshrouded blades: contours in percent exist dynamic head

per 1 percent clearance/height (Denton 1993).

83

Chapter 4

CFD and Results Comparison

4.1 Introduction

In order to assess the suitability of the chosen loss correlations the results gained from the mean line

performance prediction method and loss mechanisms will be compared to CFD data. In this chapter

an overview of the chosen CFD program will be outlined including descriptions of the main aspects

of the CFD code and diagrams of a representative mesh used to simulate the selected turbine

geometries. Then the comparison and analysis of the results obtained using the mean line prediction

method and the CFD data for the selected turbine geometries will be presented. Each geometry will

be simulated at various turbine speeds and mass flows to gain an understanding of how the loss

mechanisms perform over a wide range of operating conditions. Typically, a turbine map is produced

by computing a range of speeds however, rather than analysing the entire map at once the following

analysis will concentrate on low speed, design speed and high speed conditions. The geometries

selected for the test analysis are taken from the current Napier product range and represent the

current standard and design philosophy of turbine blade. As Napier Turbochargers would rather not

publicise the performance and geometries of their turbines all turbine efficiencies will be normalised

using the maximum efficiency and only some of the important geometric ratios will be detailed. The

individual loss mechanisms of each loss model will also be analysed and discussed. Finally, a

summary of the results and comparisons will be included at the end of this chapter to assess each

loss models suitability regarding efficiency prediction.

84

 4.2 MULTALL CFD Code

Due to the lack of availability of turbine test data at the required operating conditions it was decided

a CFD program will be used to validate the chosen loss mechanisms. This is mainly a result of Napier

Turbochargers not having access to a dedicated turbine test rig to enable the testing of a given

turbine at the full range of velocity ratio. The chosen CFD program is MULTALL, which was developed

by Prof. John Denton at the Whittle Lab, Cambridge UK. Napier Turbochargers have accumulated

extensive experience with MULTALL which has been used in the Aerodynamics department for

turbine analysis for a number of years. A computer of suitable performance based on campus at The

University of Sheffield was enlisted to run MULTALL remotely, the computer includes a Zenon

processor, with 12 cores and was built in 2014. As a number of constant turbine speed lines were

required with a suitable number of points to achieve a meaningful efficiency characteristic it was

imperative the chosen computer was able to run uninterrupted.

MULTALL is a 3D multistage turbomachinery flow calculation for steady flows. The version of

MULTALL used by Napier Turbochargers and for this investigation, MULTALL-09, uses the SCREE

solution algorithm. The SCREE algorithm is a second order method which is extremely simple and

very fast. The code is based on an explicit time marching finite method for solving the N-S equations

(Denton 2017). Each computed time derivative is stored and utilised in the next time step. The

primary flow variables integrated over a time step for a finite volume cell can be written,

j� = �aÙPu ∑ �C­X0@_6uu*7E6+ Eq. 4-1

Where F is any one of the conserved variables (F = ρ, ρE, ρV$, ρVw or ρrVa). j� is calculated for every

conserved variable on every time step. The value of dF/dt from the previous time step is combined

with the current value in order to extrapolate the value of dF/dt to the end of the time step, and we

use the extrapolated values to update the time step,

� ¿� = � + j�, �ℎ0�0 j� = æ2 �ñÓña� − �ñÓña� y�ç jA Eq. 4-2

This method was found to be stable and very robust for CFL numbers up to approximately 0.5

(Denton 2017). The SCREE algorithm only requires a single computation of the fluxes and update of

the variables for each time step and is therefore very simplistic. Also, the method works at extremely

low Mach numbers so incompressible flow can be computed (Denton 2002).

The mesh in MULTALL is defined using pitchwise, streamwise and quasi-orthogonal grid lines. This

type of grid simplifies generation, the application of boundary conditions and modelling of mixing

planes. The grid lines should be closely spaced around the leading edge where fluid properties are

changing rapidly. A body force field and a fine grid may be applied to the trailing edge to force the

flow to separate (Denton 2009). Figure 4-1 shows a blade to blade view of a representative mesh

used in MULTALL to simulate the chosen blade geometries. Figure 4-2 shows the meridional view of

the same mesh.

85

Fig. 4-1 Blade to blade view of grid on a streamwise surface from MULTALL

Fig. 4-2 Meridional view of grid from MULTALL

The mixing plane model used in MULTALL-09 has been developed over a number of years (Denton

2017). The aim of the mixing plane model is to allow instantaneous mixing out at a plane rather than

downstream of the blade row. Static pressure and entropy will increase across the mixing plane to

replicate a real mixing process. An improved version of the “flux extrapolation” model is used in the

present code (Denton 1990). Figure 4-3 gives a visual representation of the method.

86

Fig. 4-3 Mixing plane treatment (Denton 2017).

At all spanwise points there are two equivalent pitchwise gridlines, labelled Jmix and Jmix+1, the

flow on both these lines is pitchwise uniform. A one-dimensional time marching method is used to

pass information between Jmix and Jmix+1 to update the pitchwise uniform variables. This

guarantees the flow on the two equivalent lines match when the solution is converged, and the flow

is mixed out (Denton 1990). The treatment of the upstream face may be summarized by the

following equation,

�sU[Î>�$ = �sU[7/Ë,Î>�$ + �6$a��sU[Î>�$y� − �sU[7/Ë,Î>�$y�� Eq. 4-3

The total flux across the mixing plane is not affected by the average value of the extrapolated flux

however it causes only a gradual decay of pitchwise non uniformity in the cells adjacent to the

mixing plane rather than a sudden removal which would cause an upstream disturbance in the flow.

The downstream of the mixing plane will have pitchwise uniform relative stagnation enthalpy and

entropy but the flow direction and static pressure must not be pitchwise uniform. The mixed out

entropy and relative stagnation temperature from the mixing plane with the calculated static

pressure is used to calculate an isentropic velocity and density at Jmix+2. The flow direction at

Jmix+2 is extrapolated and combined with the isentropic velocity to give the velocity components,

deviations in these are reduced to ensure pitchwise uniformity of the entropy and relative

stagnation enthalpy entering the downstream row.

The viscous model in MULTALL-09 is a body force model, where body forces are used to solve the

Navier-Stokes equations. The body forces are obtained from a thin shear layer approximation to the

Navier stokes equations, the model assumes that viscous normal stresses and viscous stresses on the

quasi-orthogonal faces of the elements can be neglected (Denton 2009). CPU time is greatly reduced

using the body force method as the viscous terms are calculated every five time steps. The wall

87

shear stresses are calculated using wall functions which use curve fit to the log law for equilibrium

boundary layers.

Denton (2009) strongly recommends that a cusp is used at the trailing edge of the blade and as such

a cusp generation method is included in MULTALL-09. The simulations carried out using MULTALL-09

use the default cusp at the trailing edge.

Tip leakage flows are accounted for in MULTALL-09 using the pinched tip model where the blade is

thinned towards the tip and periodicity is applied across the tip gap.

4.2.1 CFD Mesh Study

A mesh study was performed to check the optimum mesh was being used in MULTALL. The current

mesh size adopted by Napier Turbochargers for MULTALL was tested at -50%, -25%, +25% and +50%

mesh density. The chart in Figure 4-3 shows the findings. The turbine efficiency has been removed

from the y axis however the increment on the y axis is 0.2% efficiency. The findings show a very

small variance in turbine efficiency between the mesh densities tested.

Fig. 4-4 CFD mesh study carried out at -50%, -25%, +25% and +50% mesh density using geometry

one.

4.3 MULTALL CFD Validation

The MULTALL CFD code has been validated internally by Napier Turbochargers using the MT1

turbine DERA experimental data. The MT1 turbine stage has undergone extensive investigation at

the Isentropic Light Piston Facility at DERA, Pyestock, Hilditch et al (1994) reports the installation of

the facility. Napier Turbochargers had access to this data while they were owned by Siemens who

were partners in the turbine performance investigations carried out using the MT1 turbine. Napier

Turbochargers became a limited company in 2008, and therefore were no longer under ownership

0 500000 1000000 1500000 2000000 2500000 3000000

T
o

ta
l

to
 S

ta
ti

c
T

u
rb

in
e

 E
ff

ic
ie

n
cy

 (
%

)

No. of Elements

88

by Siemens. Unfortunately, this meant Napier Turbochargers no longer had access to the reports

detailing summaries of the measurements gained at the DERA facility. As these reports are not in the

public domain and are under restricted access the results of the validation cannot be included here.

However, the investigations carried out by Napier Turbochargers revealed MULTALL showed good

agreement to the MT1 data and also highlighted some weaknesses in the CFD code which required

attention. Further work was carried out using MULTALL in order to calibrate the CFD code against

the MT1 data including investigations relating to mesh density and trailing edge body forces.

4.4 MULTALL Boundary Conditions

In order to achieve a complete speed line with an appropriate distribution of efficiency, the

following boundary conditions were used to simulate the selected turbine geometries in MULTALL at

the rotational speeds corresponding to the mean line tool input files. An example of the MULTALL

input file used during the CFD simulations, without the blade geometry, is included in Appendix A,

detailing the additional parameters that were used for the simulations. An overview of the input file

can be found in the MULTALL manual Denton (2009).

P01 T01 Pexit

bar K bar

1.5 763 1.0

2.0 763 1.0

2.5 763 1.0

3.0 763 1.0

4.0 763 1.0

4.5 763 1.0

Table 3 MULTALL boundary conditions

4.5 Results Comparison and Analysis

The following section concentrates on the comparison of the turbine efficiency gained from the

mean line method of turbine efficiency prediction combined with the chosen loss methods described

previously and CFD MUTALL data. The losses are analysed separating the stator and rotor total loss

coefficients initially and then the total losses are broken down further into individual losses where

the characteristics of each loss are analysed. Only the rotor losses will be analysed in detail however

if the individual stator losses are of intertest they will be included also. The analysis of the first

geometry will be examined in greater detail and will be referenced for the second and third

geometry where appropriate in order to avoid repetition. The analysis of the third geometry will

comprise of a summary as the trends are expected to be close to that of the second geometry.

The overall turbine efficiency of a turbocharger should include the pressure recovery which takes

place in the turbine exhaust diffuser, a typical axial turbine turbocharger arrangement is pictured in

Figure 4-5 showing the exhaust diffuser. A casing recovery factor is included in the original code

which accounts for this pressure recovery however, in order to gain a direct comparison when

89

comparing the model results to the proposed CFD performance data the pressure recovery factor

has been set to zero.

Fig. 4-5 Typical Napier Turbocharger axial turbine arrangement.

Another factor which is often accounted for in the turbine efficiency, which is included in the SAE

turbine map standard (SAE International 1995), are mechanical losses. Again, in order to achieve a

direct comparison between performance data the mechanical losses will be omitted from any

analysis. The lacing wire loss and non-swirl related losses are accounted for by a constant efficiency

debit for simplicity which will be subtracted from both sets of performance results.

4.5.1 Geometry for Simulation

The important geometric ratios of the chosen turbines stages to be analysed are shown in Table 4.

The chosen stages are taken from the existing Napier turbochargers turbocharger portfolio.

Geometry 2 and 3 are taken from one of the latest turbochargers and have a higher aspect ratio

compared to Geometry 1. The blade design philosophy applied to these turbines was intended to

maximise efficiency by increasing the trailing edge area by lengthening the turbine blade, this

reduces the absolute-frame outlet velocity reducing outlet Mach numbers and in turn minimising

losses. Geometry 3 is the largest of the turbines in terms of swallowing capacity and has the highest

number of blades.

 Geometry 1 Geometry 2 Geometry 3

Geometric Ratio Stator Turbine Stator Turbine Stator Turbine

Pitch to Chord Ratio (s/c) 0.84 0.72 0.73 0.78 0.76 0.64

Aspect Ratio (H/c) 1.09 2.05 0.74 2.38 1.03 2.26

Trailing Edge to Throat Area Ratio 0.08 0.03 0.10 0.04 0.05 0.03

Reynolds number range 25000 - 190000 25000 - 190000 30000 - 320000

Table 4 Important geometric ratios of the turbine stage geometries to be investigated.

90

4.5.2 Geometry 1

The first turbine stage to be analysed is taken from a current productionised Napier turbocharger.

The following table shows the important geometric ratios.

Geometric Ratio Stator Turbine

Pitch to Chord Ratio 2@/'5 0.84 0.72

Aspect Ratio 2</'5 1.09 2.05

Trailing Edge to Throat Area Ratio 0.08 0.03

Table 5 Important geometric factors relating to the second turbine stage geometry to be

investigated.

Figure 4-6 shows the normalised total to static efficiency at the low-speed condition retrieved using

the chosen loss models compared to MULTALL data at the non-dimensional speed 593 ���/√�. It

is clear to see that the Kacker and Okapuu method shows good correlation to the MULTALL data,

with the Craig and Cox and AMDC efficiency characteristics showing optimistic efficiency

characteristics compared to MULTALL. The Denton efficiency characteristic however appears to

underestimate the loss coefficients resulting in an overestimated efficiency characteristic.

Fig. 4-6 Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of
	
��
 =593 ���/√�.

As anticipated observing Figure 4-7 and Figure 4-8 it is clear that the Denton loss mechanism

predicts the lowest losses which results in the highest efficiency. Also, as anticipated the stator loss

coefficient is reasonably constant for all the loss mechanisms.

91

Looking at the loss coefficients in more detail it appears the profile losses in the Denton method for

the stator and the turbine are grossly under predicted compared to the other loss mechanisms at

this rotor speed.

Fig. 4-7 Stator total loss coefficient
	
��
 = 593 ���/√� geometry 1.

Fig. 4-8 Turbine total loss coefficient
	
��
 = 593 ���/√� geometry 1.

92

Fig. 4-9 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 593 ���/√� geometry 1.

Figure 4-9 shows a breakdown of the losses for the Kacker and Okapuu loss model in the turbine

plotted against blade incidence. Profile loss is lowest close to zero incidence, as incidence loss

deviates from zero profile loss will increase. This is due to the correlation in the loss mechanism used

to correct for off-design conditions. The off-design correlation for varying incidence in the Kacker

and Okapuu method is taken from the Ainley and Mathieson method and is based on the ratio of

incidence and stalling incidence. The stalling incidence is based on pitch to chord ratio and the ratio

of blade inlet and outlet flow angles. The high incidence angle and large absolute ratio of blade inlet

and outlet flow angle indicates possible separation of the flow on the blade surfaces and results in a

small stalling incidence producing high profile losses at off-design conditions. The Kacker and

Okapuu profile loss is lower compared to the original Ainley and Mathieson loss due to the

application of a factor reducing the profile loss by a third.

As already outlined secondary losses arise as a result of the boundary layers on the blade endwalls

interacting with the main flow stream. Secondary losses also increase as incidence rises, in the

Kacker and Okapuu mechanism secondary loss is mainly influenced by blade turning defined by the

inlet and outlet flow angles, as incidence rises the difference between the inlet and outlet flow

angles increases implying high turning of the flow in the blade passage and high blade loading. A

subsonic Mach number correction factor is also included in the Kacker and Okapuu secondary loss

term to account for compressibility which impacts the acceleration of flow next to the endwalls, the

Mach number correction factor is based on outlet Mach number and the ratio of inlet and outlet

Mach number. This would explain why the secondary loss reduces slightly at high incidence, as the

turbine is operating with a negative degree of reaction under choke conditions where flow is

decelerating through the turbine which decreases the Mach number correction factor reducing the

secondary losses.

The tip clearance losses are mainly a function of the tip clearance and blade loading. For unshrouded

turbines the tip clearance losses are calculated iteratively using an efficiency debit which is

93

subtracted from the total-to-total efficiency as suggested by Kacker and Okapuu. Fig. 4-9 shows the

trailing edge losses at this low-speed condition are very minimal.

It can be seen the total loss increases more severely at positive incidence due to the increase in

profile loss.

Fig. 4-10 Breakdown of stator losses Craig and Cox
	
��
 = 593 ���/√� geometry 1.

A breakdown of the turbine losses calculated in the Craig and Cox method are shown in Fig. 4-10.

The basic profile loss is derived from the pitch to backbone length, contraction ratio and lift

parameter which are a function of the inlet and outlet flow angle. The profile loss will increase at the

off-design points where incidence angle and stalling incidence angle deviate from the optimum

values. Craig and Cox provide a correlation based on an incidence ratio where negative stalling

incidence and minimum loss incidence are correlated independently of positive stalling incidence.

The incidence correlations are based on blade inlet angle, outlet angle, ratio of pitch to backbone

length and the contraction ratio describing the blade passage. If the difference in blade inlet and

outlet angle is large, the ratio of pitch to backbone length is large and contraction ratio is low the

flow passing through the blade passage will increase causing flow separation at the blade surfaces

leading to increased off-design profile losses.

For this speed condition the Craig and Cox model predicts the secondary losses are higher than the

profile losses at high incidences. Craig and Cox use a blade loading parameter, Reynolds number

factor and a basic secondary loss factor to predict secondary losses. The basic secondary loss factor

is a function of the relative mean velocity and lift parameter. Therefore, a high lift parameter, mean

velocity and aspect ratio means increased losses at high incidences. As incidence rises the difference

between the inlet and outlet flow angles increases implying high turning of the flow in blade passage

and high blade loading which lead to high losses.

The tip clearance losses for unshrouded blades in the Craig and Cox model is taken from the Ainley

and Mathieson method as recommended by the authors. As such the tip clearance loss is a function

94

of the tip clearance and blade loading, therefore as the difference between blade inlet and outlet

flow angles increases blade loading will increase which will give rise to tip clearance losses. Again,

the trailing edge losses are minimal at this low-speed condition.

Comparing the total turbine loss coefficient to the other methods shows the Craig and Cox model

predicts similar losses to Kacker and Okapuu and Ainley and Mathieson.

Fig. 4-11 Breakdown of turbine losses Denton
	
��
 = 593 ���/√� geometry 1.

On analysing the Denton losses in greater detail, it is apparent they are a lot lower when compared

to the other loss models at the low-speed condition. Figure 4-11 shows the tip clearance loss is the

most significant and is higher than both the profile and secondary losses. Checking the inlet and

outlet flow angles show that the inlet flow angle is outside the range of applicability for the Denton

profile loss correlation, which ranges from -60 to 60. Thus, the inlet flow angle has been limited to

the corresponding maximum value for the purposes of profile loss prediction in the loss mechanism.

The tip clearance loss provides one of the main sources of loss in a turbine. The difference in

pressure between the blade pressure and suction surfaces dictates the magnitude of tip leakage

flow for an unshrouded blade. The correlation employed by Denton assumes a tip gap of 1% of the

blade height ratio, this seems to give comparable results compared to the other loss mechanisms.

Figure 4-12 shows the results at the design speed condition at a non-dimensional speed of 989 ���/√�. Here the efficiency characteristics of the Kacker and Okapuu and AMDC show good

correlation to the MULTALL data whereas the Craig and Cox data appears to correlate at low

pressure ratios and diverge at higher pressure ratios, again the Denton loss mechanism appears to

overestimate the efficiency. It must be noted in this instance the efficiency prediction using Denton’s

loss mechanism is substantially closer to the MULTALL reference when compared with the low-

speed data and the correlation at low turbine pressure ratios is improved.

95

Fig 4-12. Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of 	
��
 = 989 ���/√�.

A similar trend may be identified in the design speed data as for the low-speed data when analysing

the loss coefficients. Plotting the stator and rotor loss coefficients separately enables the

identification of the underestimated Denton loss coefficients

Fig. 4-13 Stator total loss coefficient
	
��
 = 989 ���/√� geometry 1.

96

Fig. 4-14 Turbine total loss coefficient
	
��
 = 989 ���/√� geometry 1.

Fig. 4-15 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 989 ���/√� geometry 1.

Figure 4-15 shows a breakdown of the turbine losses from the Kacker and Okapuu loss model. It is

noticeable that the levels of loss have reduced and now the dominating loss in the rotor is the tip

clearance loss. The profile loss has a similar trend to the loss from the low-speed condition in that

the minimum loss occurs around zero incidence. As rotor speed increases the incidence angle

reduces, the absolute ratio of blade inlet and outlet flow angle also reduces which lessens the

possibility of flow separation on the blade surfaces. The variation in loss with incidence is also not as

pronounced as the low-speed condition which is another result of the blade incidence reducing.

97

The secondary losses have also reduced in magnitude and increase steadily towards higher

incidences as shown at the low-speed condition.

From Figure 4-15 it is noticeable the tip clearance loss is constant; this is due to the efficiency debit

iteration reaching its upper limit. Typically for the efficiency penalty due to tip clearance losses

Napier would expect no more than approximately 1.5% this roughly corresponds to a tip clearance

pressure loss of approximately 0.1. Concerning the trailing edge loss predictions have increased

slightly compared to the low-speed condition.

The total loss has reduced compared to the low-speed condition as a result of the profile and

secondary losses decreasing.

Fig. 4-16 Breakdown of turbine losses Craig and Cox
	
��
 = 989 ���/√� geometry 1.

A summary of the losses predicted by the Craig and Cox model are shown in Figure 4-16. The profile

losses have decreased compared to the low-speed condition due to the reduction in incidence angle.

The profile losses for the design speed condition resemble part of the trend from the low-speed

condition with the indicated lowest profile loss occuring at a higher incidence angle thus the profile

losses are still reducing above zero incidence.

The secondary losses have reduced compared to the low-speed condition. As previously discussed,

this is as a result of the increase in rotor speed reducing the blade inlet and outlet angle ratio

resulting in less flow turning in the blade passage and lower blade loading.

The tip clearance loss steadily increases towards higher incidence angles as it is mainly a function of

tip clearance and blade load. As incidence increases, the inlet to outlet flow angle ratio increases

which results in higher tip clearance loss. Regarding trailing edge loss there is a slight increase

compared to the low-speed condition.

98

The total loss has reduced for a given mass flow compared to the low-speed condition resulting in a

higher efficiency characteristic.

The losses computed using the Denton loss prediction method are shown in Figure 4-17. As for the

lower speed conditions the losses predicted using Denton’s methodology are low by comparison to

the other methods.

Fig. 4-17 Breakdown of turbine losses Denton
	
��
 = 989 ���/√� geometry 1.

Figure 4-18 shows the final high-speed condition for geometry 1 at a non-dimensional speed of 1285 ���/√�. Kacker and Okapuu efficiency characteristic seems to show the best correlation to

MULTALL data. With a similar trend seen for the Denton and Craig and Cox efficiency characteristics

as previous turbine speeds.

99

Fig. 4-18. Normalised Efficiency curves predicted for Geometry 1 at a non-dimensional speed of 	
��
 = 1285 ���/√�.

Plotting the loss coefficients for the stator and rotor reveals a similar state to the previous speed

conditions. Similarly, to the lower and design speed conditions Denton predicts the lowest total loss

coefficients.

Fig. 4-19 Stator total loss coefficient
	
��
 = 1285 ���/√� geometry 1.

100

Fig. 4-20 Turbine total loss coefficient
	
��
 = 1285 ���/√� geometry 1.

Fig. 4-21 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1285 ���/√� geometry 1.

Looking at the losses predicted by Kacker and Okapuu in more detail shows a similar trend to the

design speed condition. Profile losses show the same trend as the design speed condition with losses

beginning to increase at very low incidence angles due to the off-design incidence correction

discussed previously. Blade inlet angle reduces, minimising blade incidence angles thus lowering the

profile and secondary loss coefficients. Tip clearance remains at the maximum specified value of 0.1

and trailing edge losses increase slightly.

101

Fig. 4-22 Breakdown of turbine losses Craig and Cox
	
��
 = 1285 ���/√� geometry 1.

Viewing Figure 4-22 showing the turbine losses predicted by the Craig and Cox method for the high-

speed condition it is apparent the losses seem to be following the correct trends. Profile loss is

increasing as it deviates from the optimum incidence range, secondary loss has reduced again due to

the increase in turbine speed reducing the blade inlet and outlet angle ratio and blade loading. Tip

clearance has reduced slightly due the reduction in blade loading but increases at low incidences.

Trailing edge loss has remained roughly constant compared to the lower and design speed

conditions. Total loss has increased as the profile loss has begun to increase.

Fig. 4-23 Breakdown of rotor losses Denton
	
��
 = 1285 ���/√� geometry 1.

102

The losses calculated by the Denton loss model for the high-speed condition are shown in Figure 4-

23. Profile and secondary losses have reduced compared to the previous speed condition as

expected. Tip clearance losses have also reduced as the pressure gradient between the pressure and

suction surfaces reduces reducing the leakage flow over the turbine blade. Trailing edge loss has also

remained roughly constant compared to the design speed condition.

4.5.3 Geometry 2

The second turbine stage to be analysed is also from a productionised turbocharger and has a longer

turbine blade compared to the first geometry investigated. The table below shows the geometric

ratios of the second turbine stage to be investigated.

Geometric Ratio Stator Turbine

Pitch to Chord Ratio 2@/'5 0.73 0.78

Aspect Ratio 2</'5 0.74 2.38

Trailing Edge to Throat Area Ratio 0.10 0.04

Table 6 Important geometric factors relating to the second turbine stage geometry to be

investigated.

Fig. 4-24 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 635 ���/√�.

103

The efficiency characteristics predicted by the selected loss models are shown in Fig. 4-24 for the

second geometry at the low-speed condition. Kacker and Okapuu and AMDC seem to show good

correlation to the MULTALL data while Craig and Cox displays very good correlation and again

Denton overestimates the efficiency.

Plotting the pressure loss coefficients of the stator and turbine enables the detection of the low loss

coefficients for both the stator and rotor produced by the Denton Method.

Fig. 4-25 Stator total loss coefficient
	
��
 = 635 ���/√� geometry 2.

Fig 4-26 Turbine total loss coefficient
	
��
 = 635 ���/√� geometry 2.

104

Fig. 4-27 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 635 ���/√� geometry 2.

Analysing the loss coefficients produced by the Kacker and Okapuu method in greater detail for the

low-speed condition shows the profile losses are the main contributing factor at high incidences as

expected. As incidence increases the turbine operates away from the optimum incidence and the

off-design correction factor increases. Profile losses are not affected by the increase in aspect ratio

as this parameter is not included in the profile loss correlation.

The secondary losses appear to have reduced compared to the low-speed condition of the first

geometry. This is caused by the increase in blade height which reduces the possibility of interaction

between the passage vortices on the endwalls reducing losses. Secondary losses also reduce slightly

at high incidences this is due to the Mach number correction factor and the turbine operating with

negative reaction while choking as seen with the first geometry.

Tip leakage losses have also reduced slightly compared to the findings of the first geometry analysis.

This is due to the increase in aspect ratio and the efficiency debit in the Kacker and Okapuu method

reducing due to the increase in blade height. There is also an increase in trailing edge loss compared

to the first geometry due to increase in the trailing edge thickness to throat opening ratio with the

second geometry.

There is a reduction in the total loss compared to the first geometry as anticipated which is due to

the increase in aspect ratio.

105

Fig. 4-28 Breakdown of turbine losses Craig and Cox
	
��
 = 635 ���/√� geometry 2.

The breakdown of losses shown in Figure 4-28 were calculated using the Craig and Cox method.

Similarly, to the first geometry investigated profile loss increases at high incidences due to off-design

conditions. The incidence is also higher with the second geometry due to the reduction of the blade

inlet angle by almost half. Secondary loss has reduced compared to the first geometry due to the

increase in blade aspect ratio as seen with the Kacker and Okapuu secondary loss coefficient. Tip

clearance losses have also reduced due to the increase in blade height. Trailing edge loss is still very

low compared to the other loss coefficients and has reduced slightly compared to the first geometry.

Total loss is higher than the first geometry at high incidences due to the sharp increase in profile

losses at high incidences.

The losses shown in Figure 4-29 are formulated using the Denton loss model and show a similar

trend to those retrieved while analysing the first geometry at the low-speed condition. Tip clearance

loss is the highest loss while the profile and secondary losses are predicted low compared with the

other loss methods which results in a low total loss coefficient. As theorised previously it is possible

the adopted Denton profile loss correlation is not suited for turbocharger turbine operation at such

a low speed. Concerning the secondary loss, it is also possible the factor of 0.375 is too severe for

this operating condition.

106

Fig. 4-29 Breakdown of turbine losses Denton
	
��
 = 635 ���/√� geometry 2.

Figure 4-30 shows the results retrieved at the design speed condition at a non-dimensional speed of 1060 ���/√� for the second geometry. Kacker/Opkauu and AMDC show reasonable correlation to

the MULTALL data. The Denton and Craig and Cox methods seem to correlate at mid turbine

pressure ratios but are slightly higher at low and high turbine pressure ratios.

Fig. 4-30 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 1060 ���/√�.

107

Fig. 4-31 Stator total loss coefficient
	
��
 = 1060 ���/√� geometry 2.

Fig. 4-32 Turbine total loss coefficient
	
��
 = 1060 ���/√� geometry 2.

The breakdown of losses shown in Figure 4-33 were formulated using the Kacker and Okapuu

method at the design speed for geometry 2. They follow a similar trend to the losses obtained in the

first investigation at a higher speed compared to the low-speed condition. As with the low-speed

condition secondary losses have reduced slightly compared to the first investigation due to the

increase in blade height. Tip clearance losses are limited to the maximum value stated previously.

Trailing edge losses remain roughly constant. Total loss has reduced at a higher speed compared to

the low-speed condition due to the profile and secondary losses reducing.

108

Fig. 4-33 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1060 ���/√� geometry 2.

Figure 4-34 shows the loss coefficients gained using the Craig and Cox loss model. The losses show a

similar trend to the losses investigated with the first geometry. Profile loss has remained at a similar

level compared to the first investigation and secondary losses have reduced slightly due to the

increase in blade height. Tip clearance losses have reduced compared to the lower speed condition

due to reduced blade loading. Trailing edge losses have remained roughly constant. Total loss has

reduced compared to the low-speed condition due to the turbine operating around optimum

conditions.

Fig. 4-34 Breakdown of turbine losses Craig and Cox
	
��
 = 1060 ���/√� geometry 2.

109

The losses shown in Figure 4-35 are taken from the Denton loss method and show similar behaviour

to the losses predicted in the first investigation. Profile and secondary losses have reduced, tip

clearance losses have also reduced, and trailing edge losses have remained roughly constant. Total

loss has reduced as turbine operation nears the optimum operating range.

Fig. 4-35 Breakdown of turbine losses Denton
	
��
 = 1060 ���/√� geometry 2.

The final speed to be examined for the second geometry is the high-speed condition at a non-

dimensional speed of 1271 ���/√�, the results are shown in Figure 4-36. It can be seen the Kacker

and Okapuu and AMDC loss methods predict an efficiency characteristic close to the MULTALL data

throughout the turbine pressure ratio range, while Denton’s predictions are close at low turbine

pressure ratios but diverge at higher pressure ratios and the Craig and Cox predictions show very

good correlation up to a turbine pressure ratio of 3 where at higher pressure ratios the efficiency

deviates from the MULTALL data.

110

Fig. 4-36 Normalised Efficiency curves predicted for Geometry 2 at a non-dimensional speed of 	
��
 = 1271 ���/√�.

The stator and rotor total loss coefficients are shown in Figures 4-37 and 4-38.

Fig. 4-37 Stator total loss coefficient
	
��
 = 1271 ���/√� geometry 2.

111

Fig. 4-38 Turbine total loss coefficient
	
��
 = 1271 ���/√� geometry 2.

Fig. 4-39 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1271 ���/√� geometry 2.

The Kacker and Okapuu losses are shown in Figure 4-39 for the high-speed condition of geometry 2.

The results follow a similar trend to the data analysed in the first investigation at the high-speed

condition.

112

Fig. 4-40 Breakdown of turbine losses Craig and Cox
	
��
 = 1271 ���/√� geometry 2.

A breakdown of the losses from the Craig and Cox model at the high-speed condition for geometry 2

are shown in Figure 4-40. The results display similar trends to the previous geometry and behave as

expected.

Fig. 4-41 Breakdown of turbine losses Denton
	
��
 = 1271 ���/√� geometry 2.

A breakdown of the losses from the Denton model at the high-speed condition for geometry 2 are

shown in Figure 4-41. The results display similar trends to the previous geometry and behave as

anticipated.

113

4.5.4 Geometry 3

The third geometry to be analysed has similar attributes to the second geometry, which are shown

below, but has a higher swallowing capacity. The third geometry turbine will be simulated at design

and a high-speed conditions.

Geometric Ratio Stator Turbine

Pitch to Chord Ratio 2@/'5 0.76 0.64

Aspect Ratio 2</'5 1.03 2.26

Trailing Edge to Throat Area Ratio 0.05 0.03

Table 7 Important geometric factors relating to the second turbine stage geometry to be

investigated.

It can be seen from Figure 4-42 that the loss models of Kacker and Okpauu and AMDC show

reasonable correlation to the MULTALL data with Craig and Cox showing very good alignment to the

CFD data. The effiency characteristic from the Denton loss model is higher compared to the CFD

data.

Fig. 4-42 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional speed of 	
��
 = 745 ���/√�.

The total loss coefficients from the stator and rotor are shown in Figures 4-43 and 4-44. For this

turbine speed Kacker and Okapuu, Craig and Cox and AMDC predict the similar stator total loss

coefficients. As seen previously the Denton loss model predicts the lowest losses.

114

Fig. 4-43 Stator total loss coefficient
	
��
 = 745 ���/√� geometry 3.

Fig. 4-44 Turbine total loss coefficient
	
��
 = 745 ���/√� geometry 3.

115

Fig. 4-45 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 745 ���/√� geometry 3.

The breakdown of losses shown in Figure 4-45 for the Kacker and Okapuu loss model behave has

expected and follow trends similar to the previous investigations.

Fig. 4-46 Breakdown of turbine losses Craig and Cox
	
��
 = 745 ���/√� geometry 3.

The breakdown of losses shown in figure 4-46 for the Craig and Cox prediction method follow a

similar trend to the previous investigations.

116

Fig. 4-47 Breakdown of turbine losses Denton
	
��
 = 745 ���/√� geometry 3.

As with the other loss models the losses predicted by Denton replicate the trends shown in previous

investigations.

The efficiency plot in Figure 4-48 shows the turbine efficiency characteristics simulated at the non-

dimensional speed 1043 ���/√�. The Craig and Cox loss model displays close correlation to the

MULTALL data. While the remaining efficiency characteristics diverge from the CFD data at certain

turbine pressure ratios.

Fig. 4-48 Normalised Efficiency curves predicted for Geometry 3 at a non-dimensional speed of 	
��
 = 1043 ���/√�.

117

Fig. 4-49 Stator total loss coefficient
	
��
 = 1043 ���/√� geometry 3.

Fig. 4-50 Turbine total loss coefficient
	
��
 = 1043 ���/√� geometry 3.

118

Fig. 4-51 Breakdown of turbine losses Kacker and Okapuu
	
��
 = 1043 ���/√� geometry 3.

The breakdown of losses shown in Figure 4-51 for the Kacker and Okapuu loss model shows similar

trends to previous analyses.

Fig. 4-52 Breakdown of turbine losses Craig and Cox
	
��
 = 1043 ���/√� geometry 3.

The breakdown of losses shown in Figure 4-52 for the Craig and Cox displays comparable trends to

previous analyses.

119

Fig. 4-53 Breakdown of turbine losses Denton
	��
 = 1043 ���/√� geometry 3.

The breakdown of losses shown in Figure 4-53 for the Denton displays comparable trends to

previous analyses.

4.6 Individual loss mechanism analysis

Now the chosen loss models have been simulated and have provided plausible results compared to

CFD performance data the various individual loss mechanisms will be reviewed outlining their

constituent parts.

4.6.1 Profile Loss

4.6.1.1 Kacker and Okapuu

The profile loss correlation proposed by Kacker and Okapuu (1982) is based on the work of Ainley

and Mathieson (1951) which was later improved by Dunham and Came (1970). The correlation is

based on experimental data of turbines of the time when the method was proposed. Kacker and

Okapuu identified that since the method had been proposed turbine technology and aerodynamic

analysis had evolved and suggested the Ainley and Mathieson approach overestimated the profile

loss and as such they recommended applying a reduction factor of two thirds to the loss. Kacker and

Okapuu also identified that the Ainley and Mathieson profile loss was based on cascade test data

with subsonic velocities and did not account for operation at high Mach numbers. A correction

factor was introduced to account for high Mach numbers based on the outlet Mach number and

ratio of inlet and outlet Mach numbers. Kacker and Okapuu also suggested shock losses should be

accounted for in the profile loss. They introduced a shock loss which is correlated to the Mach

120

number at the hub of the blade and hub to tip radius ratio. Finally, Kacker and Okapuu also include a

factor to account for the effect of Reynolds number. They assume the profile loss coefficient is

calculated at a reference Reynolds number based on true chord and cascade exit conditions. From

the investigations performed it is clear inlet and exit flow angles have an impact on profile loss. This

can be seen in Figures 2-13 and 2-14 where a higher outlet flow angle results in a higher profile loss.

These figures also show the range of applicability and are valid for outlet angles ranging from 40° to

70° for turbine blades and 40° to 80° for nozzle blades, for outlet angles outside of these values the

profile loss is extrapolated which could lead to unreliable profile loss estimation.

4.6.1.2 Craig and Cox

The method of predicting profile loss proposed by Craig and Cox (1971) for subsonic flow uses a lift

parameter and contraction ratio to establish a basic profile loss parameter which is near the

incidence at which loss is at a minimum. The lift parameter and contraction ratio are functions of

inlet and outlet flow angles and pitch to backbone length ratio. The contraction ratio describes the

internal blade passage width ratio. The other factors considered by Craig and Cox relate to high

Mach number conditions and a Reynolds number correction factor. Craig and Cox give to

correlations for Mach numbers exceeding unity to account for different styles of blading including

convergent profiles designed with straight suction surface downstream of the throat and profiles

designed with pronounced convex suction surfaces. The Reynolds number correction is based on the

blade opening to give better correlation. Craig and Cox also introduced Reynolds number values with

varying surface roughness as it is believed to control the boundary layer thickness. Similarly, to the

correlation of Ainley and Mathieson (1951) the Craig and Cox profile loss has a range of applicability

extrapolation outside of these values can lead to unreliable results. The outlet flow angle should be

in the range 10° to 90° and the inlet flow angle should be within 10° to 140°.

4.6.1.3 Denton

The profile loss estimation used by Denton (1993) is based on the theories of entropy generation in

the boundary layers due to friction on the blade surfaces. To accurately predict profile loss Denton

states full knowledge of the state of the boundary layer is required (Denton 1993). His correlation

depends on a dissipation coefficient and the velocity distribution over the blade surface. Denton

provides generic surface velocity distributions which can be used to estimate profile loss. He also

provides a simplified correlation to obtain minimum loss coefficients at optimum pitch to chord

ratios. As described in previously in the implementation of the loss correlation section this simplified

correlation was obtained by systematically varying the blade load. The correlation provided by

Denton is a function of inlet and outlet blade angle and also has a range of applicability, inlet angles

range from -60° to 60° and out angles from 40° to 80°. Denton also reviews the impact of shock

losses in his work however concludes without an accurate measurement of the average pressure at

the blade surface reliable prediction is difficult.

121

4.6.1.4 Discussion

The profile loss mechanisms reviewed agree that flow turning is an important factor dictating profile

loss. Large absolute ratios of blade inlet and outlet flow angle indicate high flow turning and blade

loading which can result in possible flow separation on the blade surfaces causing a large increase in

loss. This is shown in Figures 4.54, 4.55 and 4.57. Analysing the plotted data, it can be seen the Craig

and Cox method predicts the highest profile losses at
	��
 = 989 ���/√� for geometry 1. For

geometry 2 all methods produce roughly the same loss below 80° flow turning at
	��
 =1060 ���/√� . For geometry 3 the Denton loss mechanism produces the highest profile losses

below 75° flow turning at
	��
 = 745 ���/√�. It can also be seen the useful range of data appears

less with Denton’s method compared to the other loss mechanisms which may indicate the Kacker

and Okapuu and Craig and Cox mechanisms are more proficient at off design conditions.

Fig. 4-54 Turbine profile losses at
	��
 = 989 ���/√� geometry 1.

Fig. 4-55 Turbine profile losses at
	��
 = 1060 ���/√� geometry 2.

122

Fig. 4-56 Turbine profile losses at
	��
 = 745 ���/√� geometry 3.

Another important factor considered by all of the correlations when predicting profile loss is pitch to

chord ratio. This implies there is an optimum value where blade surface friction and diffusion losses

are minimal. All the correlations agree Reynolds number is also an important factor in estimating

profile loss as is compressibility at high Mach number conditions.

4.6.2 Secondary Loss

4.6.2.1 Kacker and Okapuu

Kacker and Okapuu (1982) base their secondary loss correlation on the work of Dunham and Came

(1970). Based on experimental data they applied a factor to correct the correlation of Dunham and

Came below aspect ratios of two in order to replicate the more significant increase in loss as aspect

ratio is decreased. Kacker and Okapuu also separated the secondary and trailing edge losses, which

were replaced by a multiplying factor of 1.2 in their final loss system. As with profile losses Kacker

and Okapuu account for the effect of compressibility on acceleration of floe next to the endwalls by

applying a subsonic Mach number correction factor. The factor for the secondary losses is a function

of the profile loss factor and aspect ratio. Regarding range of applicability Kacker and Okapuu state

the rise in secondary loss in their loss system is less rapid below aspect ratios of two. Regarding the

inlet and outlet flow angles although no limits are specified it would be sensible to apply the same

range as considered for the profile loss.

4.6.2.2 Craig and Cox

Craig and Cox (1971) estimate secondary losses in their loss system using a basic loss factor which is

a function of the blade loading parameter or lift parameter and the velocity ratio. They also apply a

factor to accommodate for the impact of aspect ratio which they consider to be approximately

inversely proportional to the secondary losses. Craig and Cox also consider the effects of Reynolds

number on secondary losses. They apply a factor similar to the method used for profile losses.

123

4.6.2.3 Denton

In his work Denton (1993) identifies that the secondary losses as the most complex and hardest to

comprehend of the loss mechanisms with virtually all current correlations based on empirical data.

Denton suggests the entropy generation per unit surface area of the endwalls may be estimated in a

similar way to that of the blade surfaces with an approximation of the dissipation coefficient.

However, this would require knowledge of the velocity distribution and boundary layer transition

from laminar to a turbulent state for reliable predictions. Denton also states the entropy generation

in the endwalls only accounts for two thirds of the loss coefficient and the remaining losses are

associated with inlet boundary layer mixing and an increase in secondary kinetic energy due to

vortices formation (Denton 1993). In order to simplify the secondary loss calculation process Denton

recommends using the correlation provided by Dunham and Came (1970) which he promotes as

being one of the best methods for secondary loss prediction with the inclusion of an additional

factor (Denton 2012). Denton also considers the total entropy production near the endwalls is

inversely proportional to aspect ratio if independent of blade height which is in agreement with

other loss models.

4.6.2.4 Discussion

All of the correlations regarding secondary loss agree blade loading and aspect ratio are the main

factors impacting loss prediction. All of the correlations are based on empirical data, and until the

physics governing secondary losses are better understood secondary loss prediction will be reliant

on empirical correlations. It is also noticeable from Figures 4-57, 4-58 and 4-59 that the secondary

losses of the Denton mechanism are under predicted compared to the other loss prediction

methods. Where the losses predicted by the Kacker and Okapuu method are approximately 2.2

times greater compared to Denton method and the losses gained using the Craig and Cox method

are approximately 3.8 times higher for geometry 1 at
	��
 = 989 ���/√�. For geometry 2 both the

Kacker and Okapuu and Craig and Cox methods predicted secondary losses roughly 3 times higher

than Denton at
	��
 = 1060 ���/√� . Finally, for geometry 3 the secondary losses predicted by

Kacker and Okapuu are similar, and the losses calculated by Craig and Cox are 3.1 times higher. This

may be due to Denton recommending using the secondary loss calculation proposed by Dunham and

Came which is a modification of the Ainley and Mathieson method. However, Denton uses a factor

of 0.375, based on a large number of comparisons, which dramatically decreases the secondary

losses.

The results also show how blade turning and loading effect secondary losses as incidence angle

increases and the difference between the inlet and outlet flow angle increases secondary losses

increase. The greater the blade load and turning the sooner the endwall boundary layer migrates to

the suction surface which leads to increased losses. The only correlation to consider Reynolds

number effect is Craig and Cox, by applying a Reynolds number correction factor to the secondary

loss in a similar manner to the profile loss.

124

Fig. 4-57 Turbine secondary losses at
	��
 = 989 ���/√� geometry 1.

Fig. 4-58 Turbine secondary losses at
	��
 = 1060 ���/√� geometry 2.

125

Fig. 4-59 Turbine secondary losses at
	��
 = 745 ���/√� geometry 3.

The results gained for geometry 2 with a higher aspect ratio when compared to geometry 1 show a

decrease in secondary losses for the Craig and Cox and Denton methods shown in Figure 4-60.

Increasing blade height reduces the possibility of interaction between the passage vortices on the

endwalls reducing losses.

Fig. 4-60 Comparison of the turbine secondary losses between geometry 1 and 2.

126

4.6.3 Trailing Edge Loss

4.6.3.1 Kacker and Okapuu

The trailing edge loss coefficient adopted by Kacker and Okapuu (1982) is in terms of trailing edge

blockage. Based on experimental data Kacker and Okapuu produce a relationship of trailing edge

energy loss coefficient and trailing edge blockage. Figure 2-26 shows two different curves for axial

entry nozzles and impulse blades. The difference between the curves relates to profile boundary

layer thicknesses at the trailing edges, impulse blades have thick boundary layers and low base

pressure coefficients resulting in lower losses. Kacker and Okapuu provide a means of interpolating

the trailing edge energy loss coefficient for blades other than the types mentioned. The

experimental data shown by Kacker and Okapuu ranges from 0 to 0.4 trailing edge to throat opening

ratios.

4.6.3.2 Craig and Cox

 The estimation of the trailing edge loss coefficient provided by Craig and Cox (1971) is a function of

the flow outlet angle and trailing edge thickness to pitch ratio. The applicability range for the outlet

angle ranges from 10° to 50°.

4.6.3.3 Denton

Denton (1993) relates trailing edge loss to the mixing out of a wake behind the trailing edge. The

wake will experience high shear rates and turbulent flow will induce high entropy generation. The

entropy produced by this process can be equated to a balance of the mass, momentum, and energy

at an upstream boundary where the flow is known and a downstream boundary where the flow has

returned to uniformity. The formula includes the base pressure term acting on the trailing edge. For

accurate prediction of the trailing edge loss complete details of the boundary layer state are also

required.

4.6.3.4 Discussion

Trailing edge loss is treated in the same way in all of the chosen methodologies. The main factors

impacting the trailing edge losses are flow acceleration and trailing edge to throat opening ratios.

Also, trailing edge thickness effects the base pressure at the trailing edge and strongly influences the

drag of highly accelerating cascades. Trailing edge to pitch ratio intuitively has an impact on trailing

edge losses as pitch increases the number of blades decreases reducing trailing edge losses. The final

characteristic effecting trailing edge loss is the mixing process behind the trailing edge where suction

and pressure side boundary layers propagate from either side of the blade. Certain simplifications

are necessary when considering the boundary layers as the exact state of the boundary layer is not

known.

127

4.6.4 Tip clearance loss

 4.6.4.1 Kacker and Okapuu

Tip clearance losses are calculated in the Kacker and Okapuu (1982) loss model for unshrouded

blades using an efficiency debit which is computed iteratively and is based on tip clearance to blade

height ratio and the outlet flow angle from the rotor. As the tip clearance to blade height ratio

increases leakage flow will increase causing more mixing to take place between the main flow and

leakage flow on the suction side of the blade thus increasing losses. As seen in the comparison

between mean line performance data and CFD data as flow turning increases mixing loss will also

increase.

4.6.4.2 Craig and Cox

Craig and Cox (1971) recommend using the tip clearance loss correlation of Ainley and Mathieson

(1951) which is a function of tip clearance to height ratio and blade loading.

4.6.4.3 Denton

The tip clearance loss correlation provided by Denton (1993) for unshrouded blades is mainly

influenced by the ratio of leakage to main flow, the inlet and outlet blade velocities and the outlet

flow angle. Higher losses are experienced at conditions of higher leakage flow and higher velocities

and small outlet flow angles. In a similar manner to the profile loss mechanism Denton provides a

simplified version of the tip clearance losses which assume a tip gap of 1% of the blade span. Denton

also demonstrates how blade thickness effects leakage flow, shown in Figure 2-11, where the jet

formed as the leakage flow passes over the blade tip mixes out causing an increase in static pressure

and entropy.

4.6.4.4 Discussion

The chosen loss models conclusively agree that any increase in blade tip gap increases tip clearance

losses. An increased tip gap would allow more leakage flow which would in turn increase mixing with

the main flow. Changes to velocities and outlet angles are well documented to increase mixing.

128

4.7 Results Summary

The charts in this section show the efficiencies calculated using each loss mechanism how they

compare to those simulated in the CFD program MULTALL for each geometry at each speed

condition. For example, the data depicted in Figure 4-61 shows the normalised predicted and

normalised MULTALL turbine stage efficiencies from Figure 4-6 presented in a similar manner to

Figure 2-49 from Dunham and Came (1970) and Figure 2-51 from Kacker and Okapuu (1982) but for

the entire constant speed line.

It can be seen from the charts in Figures 4-61, 4-62 and 4-63 that the correlation at the low-speed

condition is very poor for all of the loss models tested. For the higher speeds the correlation is

improved with all but the Denton method predicting turbine efficiencies relatively close to a

variance of +/- 1.5%. Kacker and Okpauu state their loss model can predict design point efficiencies

to within +/-1.5%, viewing the design speed plot at a non-dimensional speed of 989 most of the

operating points are within or close to the target of +/- 1.5% variance. The loss system of Craig and

Cox was also validated against experimental data predicting losses to within +/- 1.25% however it

seems Craig and Cox shows good correlation to the corresponding MULTALL data at the design

speed but shows poor alignment at the low and high-speed conditions. Similarly, for the first

geometry investigated, the Denton loss system seems to predict efficiencies closest to the CFD data

at the design speed conditions.

Fig. 4-61 Predicted turbine efficiency with CFD efficiency for geometry 1 at
	
��
 = 593 ���/√�.

129

Fig. 4-62 Predicted turbine efficiency with CFD efficiency for geometry 1 at
	
��
 = 989 ���/√�.

Fig. 4-63 Predicted turbine efficiency with CFD efficiency for geometry 1 at
	
��
 = 1285 ���/√�

N/√T.

The efficiencies gained from the second geometry, Figures 4-64, 4-65 and 4-66 show improved

correlation to CFD data at the design and high-speed conditions for all loss correlations. The Craig

130

and Cox method shows good correlation throughout the speed range for the second geometry

investigated predicting efficiencies within a +/-1.5% variance. As can be seen from the following

charts the efficiencies predicted by the Denton loss correlation are optimistic at the low-speed

condition however show improved alignment at the design speed and high-speed conditions.

Fig. 4-64 Predicted turbine efficiency with CFD efficiency for geometry 2 at
	
��
 = 635 ���/√�.

Fig. 4-65 Predicted turbine efficiency with CFD efficiency for geometry 2 at
	
��
 = 1060 ���/√�

N/√T.

131

Fig. 4-66 Predicted turbine efficiency with CFD efficiency for geometry 2 at
	
��
 = 1271 ���/√�.

The chart in Figure 4-67 shows the Craig and Cox loss model gave the most accurate results at the

low-speed condition for the third turbine geometry. The data in Figure 4-68 is skewed due to large

gaps encountered in the data between standard operating conditions and choke conditions.

Fig. 4-67 Predicted turbine efficiency with CFD efficiency for geometry 3 at
	
��
 = 745 ���/√�.

132

Fig. 4-68 Predicted turbine efficiency with CFD efficiency for geometry 3 at
	
��
 = 1043 ���/√�.

133

Chapter 5

Conclusions and Recommendations

for Future work

5.1 Implementation of selective loss correlation based on operating

conditions and geometry.

One of the aims of this work was to identify whether the chosen loss correlations could be used in

conjunction with each other to better predict a significant range of operating conditions which make

up a turbine map. Based on the data collected the Kacker and Okapuu method seems to show the

best correlation to the MULTALL data for the first geometry investigated which has a standard blade

height. For the turbine geometries with higher aspect ratios the Craig and Cox method shows the

most accurate correlation to the MULTALL data especially at the low-speed conditions. At higher

speed conditions all of the loss correlations predicted turbine efficiency satisfactorily. Based on

these three investigations it would be possible to implement a selective algorithm to the current

code to choose a loss correlation based on turbine geometry and operating condition however, to

further solidify the findings of this investigation a much larger number of turbine geometries would

require simulation.

134

5.2 Conclusions

The main aim of this work was to investigate, recode and expand the current mean line turbine

efficiency prediction method used by Napier Turbochargers. Implementing additional loss

correlations and proposing a selective tool which chooses a loss correlation based on operating

condition and blade geometry.

The original code has been rewritten into a more accessible language with extensive notes and clear

highlighting of calculation steps to enable future development as aerodynamic analysis progresses.

The availability of three loss prediction methods at the turbine design point should facilitate design

iterations and enhance knowledge of limiting design features.

Common loss systems were identified, studied and implemented to the code. A number of current

turbine geometries were selected, and the chosen loss systems were used to predict turbine

performance. The results were then compared to CFD data to ascertain the chosen loss systems

accuracy and relevance to a typical turbocharger axial turbine.

The various loss mechanisms were investigated and compared. The profile losses were found to

depend principally on flow turning and pitch to chord ratio. The secondary losses are the most

complex of the loss mechanisms in a turbomachine, still with many unknowns thus most loss

correlations in use are based on empirical data. It has been established that the main factors

governing secondary losses are blade aspect ratio and loading. Trailing edge losses are dictated by

flow acceleration and trailing edge thickness ratios and tip clearance loss is mainly a function of

blade tip gap.

The results obtained via the new mean line turbine efficiency prediction tool and chosen loss

systems also show desirable correlation to similar works Wei (2000), Guedez (2011), Sieverding

(1985). With each individual loss mechanism behaving as expected and aligning with other detailed

theoretical studies.

One of the main limitations of the loss correlations reviewed relates to the design of the blades used

in the experimental data which the loss correlations have been based on. For example, the

correlation of Ainley and Mathieson is based on blade profiles designed prior to 1950 where designs

were comprised of circular arcs and straight lines with circular or parabolic camber lines. Hence the

requirement for review every decade, as recommended by Kacker and Okapuu (1982), to ensure a

high level of accuracy is maintained to turbine blade designs of the current time period. Based on

the results retrieved and comparison to CFD data the more recent loss correlations seem to show an

acceptable level of applicability to Napier Turbocharger axial turbine stages but may require some

additional refinement to further improve correlation.

Based on the results of the investigation of the chosen three loss prediction methods the methods of

Kacker and Okapuu and Craig and Cox showed the most promising results across the turbine

geometries and speed conditions simulated. The method proposed by Denton showed poor

correlation at off design conditions compared to the MULTALL data but displayed improved

alignment at design conditions. This was primarily illustrated by the data presented in Chapter 4

although, the investigation did not result in a decisive strategy for selecting a loss correlation based

135

on turbine blade geometry and speed condition the Kacker and Okpauu and Craig and Cox methods

showed improvements compared to the current loss prediction method in most cases.

Although the method proposed by Denton showed the worst correlation at off design conditions

there are a number of aspects which require verification in the Denton loss model. One in particular

is the appropriateness of using a correlation which is based on optimum pitch to chord ratio, this

requires an assessment on how realistic its application to a Napier Turbocharger turbine stage is.

The efficiency characteristics of the final geometry tested are not complete and the interpolation

method used on the raw data has skewed the efficiency trend due to large gaps in the data between

normal operating conditions and choke conditions. The gap in the data only became apparent on the

third turbine investigated and was not detected previously. In the mean line performance prediction

program of the present work the choking mass flow is kept constant when choking of a stage is

detected and this was thought to be the method used in the original program however recent

developments have shown that there is a difference between the original code which is kept on a

Linux system and the converted code suitable for a Windows system which the present work was

calibrated against. After going through the original Linux code, it was found the mass flow at choking

conditions is reduced which aids population of the gap in the efficiency characteristic on the same

trend. Although there is a gap in the data the efficiency trends of the original and new mean line

tools either side of the gap are identical. This is the reason some of the data in the charts in Figure

4-60 are so far away from the CFD data.

5.3 Recommendations for Future work

The turbine geometries examined represent current production intent however, further

investigation of the chosen loss correlations is required in order to confirm the variance of

performance prediction with an extensive range of turbine geometries over a wide range of

operating conditions. Testing more geometries can only facilitate the goal of establishing a selective

tool to choose a loss correlation based on operating condition or turbine design.

The availability and range of actual in-house turbine test data is a concern. Napier Turbochargers

current in-house test rig setup only permits the acquisition of turbine performance data for a narrow

band of velocity ratio. It would be very advantageous for Napier Turbochargers to commission a

series of tests, using current production turbine geometries, on a dedicated turbine test rig to fully

map turbine performance across a wide range of velocity ratio to enable validation of current CFD

and mean line performance prediction methods.

Now the new mean line performance prediction program has been established in the near future it

may be developed further, potential modifications may include adding Excel plots to give a preview

of the output data, updating the user interface based on feedback from users and adjustment of the

mass flow iterations in the code to give better results at all operating conditions. The large gaps

encountered in the performance data during the analysis of the third turbine geometry may be

attributed to the stages of the turbine transitioning into choke conditions. Further investigation is

required to confirm how the choke flow is reduced in the original code. This must be addressed as

high swallowing capacity turbines are part of the Napier portfolio thus prediction of reliable and

complete performance data is essential.

136

Bibliography

Ainley, D.G., Mathieson, G.C.R., (1951), A Method of Performance Estimation for Axial-Flow

Turbines, R. and M. No. 2974, ARC Technical Report.

Balje, O.E., Binsley, R.L., (1968), Axial Turbine Performance Evaluation. Part A – Loss-Geomertry

Relationships, ASME Journal of Engineering for Gas Turbines and Power, Oct 1968, 90(4): pp 341-

348.

Baines, N.C., (2005), Fundamentals of Turbocharging, Concepts NREC.

Brown, L.E., (1972), Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several

Parameters, ASME Journal Eng Power Trans, Jul 1972, 94(3): pp 193-201.

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (Federal Environment

Ministry), (©2021), Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (Federal

Environment Ministry), Available from: https://www.bmu.de/.

Codan, E., Bernasconi, S., Born, H., (2010), IMO III Emission Regulation: Impact on the Turbocharging

System, CIMAC World Congress on Combustion Engine, 2010, Paper No. 139, Bergen, Norway.

Cohen, H., Rogers, G.F.C., Saravanamuttoo, H.I.H., (1996), Gas Turbine Theory, Addison Wesley

Longman Limited.

Craig, H.R.M., Cox, H.J.A., (1971), Performance Estimation of Axial Flow Turbines, Vol 185 32/71,

Thermodynamics and Fluid Mechanics Group.

Dahlquist, A., (2008), Investigation of Losses Prediction Methods in 1D for Axial Gas Turbines. MSc

Thesis, Lund University, Department of Energy Sciences, Lund, Sweden.

Denton, J.D. (1990), The calculation of three-dimensional viscous flow through multistage

turbomachines, ASME International Gas Turbine and Aeroengine Congress and Exposition, Jun 1990,

paper 90, Brussels.

Denton, J.D., (1990), Entropy Generation in Turbomachinery Flows, 902011 SAE International.

Denton, J.D., (1993), Loss Mechanisms in Turbomachines, ASME Journal of Turbomachinery, Oct

1993, 115(4): pp 621-656.

Denton, J.D., Xu, L., (2002), The effects of lean and sweep on transonic fan performance, ASME,

International Gas Turbine Institute, Turbo Expo (Publication) IGTI 5 A, Jun 2002, 5 pp. 23-32.

Denton, J.D., (2009), Multistage Turbomachinery Flow Calculation Program – MULTALL, Available

from: https://www.dropbox.com/sh/8i0jyxzjb57q4j4/AABD9GQ1MUFwUm5hM.

Denton, J.D., (2012), Axial Turbines Design, lecture notes from Cambridge turbomachinery course.

Denton, J.D., (2017), MULTALL- an open source, CFD based, turbomachinery design system, ASME

Journal of Turbomachinery, Dec 2017, 139(12) Article number 121001.

137

Dixon, S.L., Hall, C., (2010), Fluid Mechanics and Thermodynamics of Turbomachinery, Butterworth-

Heinemann, Elsevier.

Douglas, J.F., Gasiorek, J. M., Swaffield, J.A., Jack, L.B., (2005), Fluid Mechanics, Pearson Education

Limited.

Drews, M., (2019), Marine Application: Meeting IMO III / EPA Tier 4 Regulations Challenges and

Solutions From The View Of A Solution Provider, CIMAC World Congress on Combustion Engine,

2019, Paper 401, Vancouver.

Dunham, J., Came, P.M., (1970), Improvements to the Ainley-Mathieson Method of turbine

Performance Prediction, ASME Journal of Engineering for Gas Turbines and Power, Jul 1970, 92(3):

pp 252-256.

Dunham, J., (1970), A Review of Cascade Data on Secondary Losses in Turbines, Journal of

Mechanical Engineering Science, Feb 1970, 12(1): pp48-59.

Greitzer, E.M., Tan, C.S., Graf, M.B., (2004), Internal Flow – Concepts and Applications, Cambridge

University Press.

Guedez, R., (2011), Implementation and Validation of Loss Prediction Methods to An Existing One-

Dimensional Axial Turbine Design Program. MSc Thesis, KTH School of Industrial Engineering and

Management Energy Technology, Division of Heat and Power Technology, Stockholm, Sweden.

Hilditch, M. A., Fowler, A., Jones, T. V., Chana, K. S., Oldfield, M. L. G., Ainsworth, R.

W., Hogg, S. I., Anderson, S. J., and Smith, G.S., 1994, Installation of a turbine stage in the Pyestock

Isentropic Light Piston Facility, ASME 1994 International Gas Turbine and Aeroengine Congress and

Exposition, paper 94-GT-277.

International Maritime Organization, (©2019), International Maritime Organization. Available from:

https://www.imo.org/en/.

Kacker, S.C., Okapuu, U. (1982), A Mean Line Prediction Method for Axial Flow Turbine Efficiency,

ASME Journal of Engineering for Gas Turbines and Power, Jan 1982, 104(1): pp111-119.

Klein, A., (1966),Untersuchungen uber die Einfluss Der Zustromgrenzschicht auf die

Sekundarstromung in den Beschaufelungen von Axialturbinen, Fotsch. Ing., Ba 32, Nr. 6.

Langston, L., (2001), Secondary Flows in Axial Turbines - A Review, University of Connecticut.

Lozza, G., (1982), A Comparison Between the Craig-Cox and the Kacker-Okapuu Methods of Turbine

Performance Prediction, 17, 211-221 La Meccanica.

Mayr, S., (2019), Turbocharger Innovations for Compliance with Tier III Emission Limits, CIMAC World

Congress on Combustion Engine, 2019, Paper 123, Vancouver.

Moustapha, S., Kacker, S.C., Tremblay, B., (1990), An Improved Incidence Losses Prediction Method

for Turbine Airfoils, Journal of Turbomchinery, Apr. 112(2): pp 267-276.

Moustapha, H., Zelesky, M.F., Baines, N.C., Japikse, D., (2003), Axial and Radial Turbines, Concepts

NREC.

138

SAE International, (1995), Surface Vehicle Recommended Practice, Turbocharger Gas Stand Test

Code, J1826 199503, SAE International.

Schlichting, H., (1987), Boundary-Layer Theory, McGraw Hill.

Sieverding, C.H., (1985), Recent Progress in the Understanding of Basic Aspects of Secondary Flows

in Turbine Blade Pasages, ASME Journal of Engineering for Gas Turbines and Power, Apr 1985,

107(2): pp248-257.

Sieverding, C.H., (1985), Axial Turbine Performance Prediction Methods, Thermodynamics and Fluid

Mechanics of Turbomachinery Volume 2, NATO ASI Series.

Sieverding, C.H., Stanisias, M., Snoeck, J., (1980), The Base Pressure problem in Transonic Turbine

Cascades, ASME Journal of Engineering for Gas Turbines and Power, Jul 1980, 102(3): pp 711-718.

Sjolander, S. A., (1997), Overview of Tip-Clearance Effects in Axial Turbines, Secondary and Tip

Clearance Flows in Axial Turbines VKI Lecture Series 1997-01, Von Karman Institute for Fluid

Dynamics, Rhode-St-Genèse, Belgium.

Smith, S.F., (1965), A Simple Correlation of Turbine Efficiency, Journal of the Royal Aeronautical

Society.

The International Council of Combustion Engines, (2007), Turbocharging Efficiencies – Definitions

and Guidelines for Measurement and Calculation, No. 27.

United States Environmental Protection Agency, (©2021), United States Environmental Protection

Agency, Available from: https://www.epa.gov/.

Watson, N., Janota, M.S., (1982), Turbocharging the Internal Combustion Engine, Palgrave

Macmillan.

Wei, N., (2000), Significance of Loss Models in Aerothermodynamics Simulation for Axial Turbines.

Doctoral Thesis, Royal Institute of Technology - KTH, Department of Energy Technology, Stockholm,

Sweden.

Wik, C., Hallback, B., (2007), Utilisation of 2-stage turbo charging as an emission reduction mean on

a Wartsila 4-stroke medium-speed diesel engine, Paper 101, CIMAC Congress 2007, Vienna.

Wilson, D.G., (1991), The Design of High-Efficiency Turbomachinery and Gas Turbines, pp 487-492,

published by the MIT Press, Cambridge, Massachusetts, 1984, 5th printing 1991.

139

Appendices

140

Appendix A

A.1 Sample MULTALL input file without blade geometry

Bladerows: 01 + 03

 39 292 39 0 6000 0 0 3 2 1 2 3 20 20 0

 0 2 3 3 0 0 0 9 5 0 0 0

 3 3 3 9 9 9

###############################NOZZLE###############################

 142 34 117 24 0 0 998 999 998 999 0 1 1 1 1 1

 0 0 0

 0.0 155925.0 154365.8 131780.3 130462.5 0.0 0.0

 0.00100

>>>> GEOMETRY HERE <<<<

##############################TURBINE###############################

 150 26 109 53 0 0 22 113 998 999 0 1 1 1 1 1

 0 0 0

 -10293.0 130462.5 129157.9 106060.6 105000.0 0.0 -10293.0

 0.00100

>>>> GEOMETRY HERE <<<<

1126.57361 1.34200 0.40000 0.01250 0.01250 0.00000 0.00000 0.00000

 10.00000 0.00000 0.40000 0.20000 0.10000 0.00000 0.00001 0.10000

 155925.0 155925.0 105000.0 105000.0 0.0 0.0 0.0 0.1

 157500.0 157500.0 157500.0

 763.0 763.0 763.0

 0.0 0.0 0.0

 27.1 27.1 27.1

 0.0 0.0 0.0

 10.2 -2.8 -15.8

 1.0 1.0 1.0

 1.29361 25.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

9000090000900009000090000

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0

 -1.80000 0.50000 15.00000 0.80000 0.00000 1.00000 0.00000

 0.02000 0.80000 1.00000

 1.29361 25.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

 0.03000 0.03000 0.03000 0.03000 0.03000 0.03000

 0.03000 0.03000 0.03000 0.03000 0.03000 0.03000

 2.0 1

141

Appendix B

B.1 Denton predicted profile loss (percent) at optimum pitch to

chord ratio correlation for bilinear interpolation

142

Appendix C

Mean Line Tool Program Constants

Rowdata(bladerow, 0) Throat opening

Rowdata(bladerow, 1) BS radius of curvature

Rowdata(bladerow, 2) Tip clearance

Rowdata(bladerow, 3) Tip clearance turbine factor

Rowdata(bladerow, 4) Unshrouded turbine factor

Rowdata(bladerow, 5) Throat area

Rowdata(bladerow, 6) Pitch

Rowdata(bladerow, 7) Blade inlet angle

Rowdata(bladerow, 8) Chord

Rowdata(bladerow, 9) Max thickness

Rowdata(bladerow, 10) Trailing edge thickness

Rowgeom(0, 0) Nozzle inlet hub diameter

Rowgeom(0, 1) Turbine inlet hub diameter

Rowgeom(0, 2) Turbine outlet hub diameter

Rowgeom(1, 0) Nozzle inlet tip diameter

Rowgeom(1, 1) Turbine inlet tip diameter

Rowgeom(1, 2) Turbine outlet tip diameter

nozzleout(0, 0) Stator gas outlet angle

nozzleout(1, 0) Stator Outlet velocity

nozzleout(2, 0) Stator Outlet temperature

nozzleout(3, 0) Stator Outlet pressure

nozzleout(4, 0) Stator Outlet Mach number

turbineout(0, 0) Turbine gas outlet angle

turbineout(1, 0) Turbine Outlet velocity

turbineout(2, 0) Turbine Outlet temperature

turbineout(3, 0) Turbine Outlet pressure

turbineout(4, 0) Turbine Outlet Mach number

alpha2 Gas outlet angle corrected for tip clearance

alpha3 Gas outlet angle at M = 1

alpha4 Gas outlet angle at zeo tip clearance

C.1 Kacker and Okapuu VBA code Loss Model

Dim sc As Double pitch to chord ratio

Dim tc As Double max thickness to chord ratio

Dim a9 As Double Gas flow angle with zero tip clearance

Dim am As Double Intermediate secondary loss term

Dim p As Double Gas outlet angle radians

Dim p2 As Double Intermediate term

Dim p3 As Double Intermediate term

Dim tecorr As Double Trailing edge correction

Dim a75 As Double Incidence angle term at s/c = 0 .75 (Fig 2-16)

Dim sc2 As Double pitch to chord ratio correction

Dim i75 As Double Incidence angle term at s/c = 0 .75 (Fig 2-17)

Dim dis As Double incidence intermediate term

Dim dis1 As Double incidence intermediate term

Dim dis2 As Double incidence intermediate term

Dim ai As Double Inlet gas flow angle

Dim CLsc As Double Intermediate secondary loss term

Dim d1 As Double Ratio of incidence and stalling incidence

Dim LossCoeff As Collection

Dim Loss As Variant

Set LossCoeff = New Collection

Reference diameter

143

LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & ""

Profile loss coefficient (Yp)

sc = rowdata(i1, 6) / rowdata(i1, 8)

tc = rowdata(i1, 9) / rowdata(i1, 8)

a9 = Application.WorksheetFunction.Degrees(alpha4(i1, 0))

p = Application.WorksheetFunction.Radians(a9) * 0.57296

p2 = p * p

p3 = p2 * p

If Abs(Application.WorksheetFunction.Radians(a9)) > 0.01 Then

r = (rowdata(i1, 7) * 0.3) / a9

Else

r = 0

End If

TC upper and lower limits

If tc < 0.15 Then

tc = 0.15

End If

If tc > 0.25 Then

tc = 0.25

End If

tecorr = 0.914 + 3.86 * rowdata(i1, 10) / rowdata(i1, 6) + 21.6 * (rowdata(i1, 10) / rowdata(i1, 6)) ^ 2

LossCoeff.Add "" & 0.120684 - 0.159513 * p - 0.518933 * p2 - 0.457871 * p3 + (-0.113447 + 1.88405 * p + 5.26857 * p2 + 4.21486 * p3) *

sc - (0.501061 + 6.27734 * p + 15.6447 * p2 + 11.7592 * p3) * sc ^ 2 + (0.434537 + 4.01075 * p + 9.61499 * p2 + 6.96877 * p3) * sc ^ 3 & "",

"ypbi0" & i1 & "" Trailing edge thickness correction Fig. 9

LossCoeff.Add "" & 0.376147 + 0.411941 * p + 1.01691 * p2 + 0.640577 * p3 - (1.35419 + 3.41232 * p + 7.4935 * p2 + 4.54488 * p3) * sc +

(1.81574 + 5.63873 * p + 10.499 * p2 + 4.27037 * p3) * sc ^ 2 - (0.948148 + 3.88398 * p + 7.04043 * p2 + 3.00627 * p3) * sc ^ 3 & "",

"ypbia2" & i1 & ""

LossCoeff.Add "" & (((LossCoeff.Item("ypbi0" & i1 & "") + r * r * (LossCoeff.Item("ypbia2" & i1 & "") - LossCoeff.Item("ypbi0" & i1 & ""))) *

(tc * 5) ^ -r)) * tecorr & "", "Yp" & i1 & ""

If LossCoeff.Item("Yp" & i1 & "") < 0.02 Then

LossCoeff.Remove ("Yp" & i1 & "")

LossCoeff.Add "" & 0.02 * tecorr & "", "Yp" & i1 & ""

End If

Stalling incidence

a75 = 57.296 * Application.WorksheetFunction.Radians(a9) / (1.3 - 0.4 * sc)

If Abs(a75) > 0.01 Then

sc2 = (rowdata(i1, 7) * 0.3) / a75

Else

sc2 = 0

End If

i75 = 0.174819 + 0.865909 * p + 1.71529 * p2 + 0.501105 * p3 + (-0.0128059 - 0.057039 * p + 0.305076 * p2 + 0.354952 * p3) * sc2 -

(0.495033 + 3.11324 * p + 5.91235 * p2 + 3.0187 * p3) * sc2 ^ 2 - (0.180332 + 1.2849 * p + 2.80671 * p2 + 1.83452 * p3) * sc2 ^ 3

i75 = 180 * i75

dis = -37.47 * sc ^ 2 + 20.15 * sc + 6

dis1 = dis

If (sc - 0.75) > 0 Then

144

If (a9 + 50) >= 0 Then

dis2 = 41.75 * sc ^ 2 - 98.1 * sc + 50.15

dis = dis1 - (a9 + 50) * (dis1 - dis2) / 10

Else

dis2 = -40 * sc ^ 2 + 11 * sc + 14.2

dis = dis1 - (a9 + 50) * (dis1 - dis2) / 10

End If

End If

istall = (dis + i75) / 57.296

If i1 = 0 Then

ai = 0

Else

ai = nozzleout(0, 0)

End If

ince = ai - Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3)

d1 = ince / istall

Profile loss change with incidence (Xi)

If d1 < 0 Then

Ypt = ((((((0.023643 * d1) + 0.351157) * d1) - 0.265154) * d1) + 0.977649) * LossCoeff.Item("Yp" & i1 & "")

Else

Ypt = ((((((0.993138 * d1) + 0.030551) * d1) + 0.022075) * d1) + 0.996574) * LossCoeff.Item("Yp" & i1 & "")

End If

Secondary Loss (Ysk)

Dim a10 As Double

If d1 < -1.5 Then

d1 = -1.5

End If

If d1 > 1 Then

d1 = 1

End If

If i1 = 0 Then

a10 = 0

Else

a10 = d1 * istall

End If

Dim ang_m As Double

ang_m = Atn(0.5 * (Tan(a10) + Tan(alpha4(i1, 0))))

CLsc = 2 * (Tan(a10) - Tan(alpha4(i1, 0))) * Cos(ang_m)

Ysk = 0.0334 * ((rowdata(i1, 8) * 0.0254) / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) * (Cos((alpha4(i1, 0)) /

Cos(Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3))) * CLsc ^ 2 * (Cos(alpha4(i1, 0)) ^ 2 / (Cos(ang_m)) ^ 3))

Yt = Ypt + Ysk

Kp

Find Inlet Mach number

If i1 = 0 Then

Dim a1 As Double

a1 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 0) * 0.0254) ^ 2) / 4

145

Dim a2 As Double

a2 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 1) * 0.0254) ^ 2) / 4

Dim Annulus As Double

Annulus = a2 - a1

Dim rho As Double

rho = (Pi * 6.89 * 1000) / (ti * 287.04)

Dim v7 As Double

v7 = w / (rho * Annulus)

Dim Min1 As Double

Min1 = v7 / Sqr(g1 * 3088.6 * ti)

End If

Dim Min As Double

Dim Mout As Double

If i1 = 0 Then

Min = Min1

Mout = m

Else

Min = nozzleout(4, 0)

Mout = m

End If

Evaluate Kp

Dim Kp As Double

If m > 0.2 Then

Kp = 1 - 1.25 * (Mout - 0.2) * (Min / Mout) ^ 2

Else

Kp = 1

End If

Dim RhRt As Double

RhRt = rowgeom(i1, 0) / rowgeom(i1, 1)

M1Hub

Dim M1Hub As Double

If i1 = 0 Then

M1Hub = Min * ((((4.09223572657754 * RhRt) - 6.69433665602768) * RhRt) + 3.72628470188226)

Else

M1Hub = Min * ((((6.20462437817264 * RhRt) - 11.6399297569545) * RhRt) + 6.46172992099636)

End If

YShock

Dim Pin As Double

Dim Pout As Double

If i1 = 0 Then

Pin = Pi

Pout = nozzleout(3, 0)

Else

Pin = nozzleout(3, 0)

Pout = turbineout(3, 0)

146

End If

Dim Ysh As Double

Ysh = 0.75 * (IIf(M1Hub < 0.4, 0.4, M1Hub) - 0.4) ^ 1.75 * (rowgeom(i1, 0) / rowgeom(i1, 1)) * (Pin / Pout) * ((1 - (1 + ((g1 - 1) / 2) * Min ^

2) ^ (g1 / (g1 - 1))) / (1 - (1 + ((g1 - 1) / 2) * Mout ^ 2) ^ (g1 / (g1 - 1))))

Calculate new Profile loss

Dim YpKO

YpKO = 0.914 * (2 / 3 * Ypt * Kp + Ysh)

K3

Dim Axc As Double

If i1 = 0 Then

Axc = Worksheets("Input").Range("B29").Value

Else

Axc = Worksheets("Input").Range("C29").Value

End If

Dim K3 As Double

K3 = 1 - (Axc / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) ^ 2 * (1 - Kp)

Dim Xar As Double

If ((rowgeom(i1, 1) - rowgeom(i1, 0)) / 2) / rowdata(i1, 8) <= 2 Then

Xar = 1 - 0.25 * Sqr(2 - ((rowgeom(i1, 1) - rowgeom(i1, 0)) / 2) / rowdata(i1, 8))

Else

Xar = 1

End If

Calculate new Secondary loss

Dim YsKO As Double

YsKO = 1.2 * K3 * Xar * Ysk

Calculate Trailing Edge Loss

Dim tou As Double

tou = rowdata(i1, 10) / rowdata(i1, 0)

Trailing edge Beta=0

Dim DtetB0 As Double

DtetB0 = (((((-1.01708866742956 * tou) + 1.17997684231952) * tou) + 4.00468287252138E-02) * tou) - 1.89626026330796E-04

Trailing edge Beta=alpha2

Dim DtetBa As Double

DtetBa = (((((-0.643405817332678 * tou) + 0.696695855185969) * tou) + 7.27785820593739E-03) * tou) + 5.08558021152712E-04

Trailing edge loss

Dim Dtet As Double

Dtet = DtetB0 + r ^ 2 * (DtetBa - DtetB0)

Dim YteKO As Double

YteKO = ((1 - ((g1 - 1) / 2) * m ^ 2 * ((1 / (1 - Dtet)) - 1)) ^ -(g1 / (g1 - 1)) - 1) / (1 - (1 + ((g1 - 1) / 2) * m ^ 2) ^ -(g1 / (g1 - 1)))

Reynolds Number

 Dynamic viscosity

Dim mu As Double

147

If i1 = 0 Then

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

Else

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

End If

Density

Dim rho2 As Double

If i1 = 0 Then

rho2 = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287)

Else

rho2 = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287)

End If

Dim Re2 As Double

Re2 = (rho2 * (vo * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu)

Dim Xre As Double

Xre = IIf(Re2 <= 2 * 10 ^ 5, (Re2 / (2 * 10 ^ 5)) ^ -0.4, IIf(Re2 > 10 ^ 6, (Re2 / (10 ^ 6)) ^ -0.2, 1))

Tip Clearance Loss

Dim deff As Double

Dim efftt3 As Double

deff = 0.93 * (rowgeom(1, i1) / refdia) * (1 / (LossCoeff.Item("bldhgt" & i1 & "") * Cos(alpha2(i1, 0)))) * efftt1 * rowdata(i1, 2)

efftt3 = efftt1 - Abs(deff)

Yt2clr = Yt

Do

countclr = countclr + 1

Yt2clr = Yt2clr + 0.0001

If countclr > 1000 Then

Ytclr = 0.1

Exit Sub

End If

If efftt1 < 0 > 150 Then

Ytclr = 0.1

Exit Sub

End If

Loop Until Abs(efftt1 - efftt3) < 0.01

Ytclr = Yt2clr - Yt

Yt = Xre * YpKO + YsKO + YteKO + Ytclr

End Sub

148

C.2 Denton VBA code for Loss Model

Dim YpDc As Double

Dim YtcDc As Double

Dim YteDc As Double

Dim YsD As Double

Dim convert As Double

convert = (1 + 0.5 * (g1 - 1) * m ^ 2) ^ (1 / (g1 - 1))

Dim LossCoeff As Collection

Dim Loss As Variant

Set LossCoeff = New Collection

Reference Diameter

LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & ""

Profile Loss (YpD)

Input

Dim x7 As Double

Dim y7 As Double

x7 = -alpha2(i1, 0)

If i1 = 0 Then

y7 = 0

Else

y7 = -Application.WorksheetFunction.Degrees(nozzleout(0, 0))

End If

If y7 > 60 Then

y7 = 60

End If

If y7 < -60 Then

y7 = -60

End If

Dim x1 As Double

Dim x2 As Double

Dim y1 As Double

Dim y2 As Double

Dim q11 As Double

Dim q12 As Double

Dim q21 As Double

Dim q22 As Double

If y7 = 60 Then

x1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"),

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1))

x2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"),

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1) + 1)

y1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"),

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1) - 1)

y2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"),

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1))

Else

149

x1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"),

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1))

x2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C4:S4"),

Application.WorksheetFunction.Match(x7, Worksheets("Denton Contour Plots").Range("C4:S4"), 1) + 1)

y1 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"),

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1))

y2 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B5:B29"),

Application.WorksheetFunction.Match(y7, Worksheets("Denton Contour Plots").Range("B5:B29"), 1) + 1)

End If

q11 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"),

Application.WorksheetFunction.Match(y1, Worksheets("Denton Contour Plots").Range("B5:B29"), 0),

Application.WorksheetFunction.Match(x1, Worksheets("Denton Contour Plots").Range("C4:S4"), 0))

q12 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"),

Application.WorksheetFunction.Match(y2, Worksheets("Denton Contour Plots").Range("B5:B29"), 0),

Application.WorksheetFunction.Match(x1, Worksheets("Denton Contour Plots").Range("C4:S4"), 0))

q21 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"),

Application.WorksheetFunction.Match(y1, Worksheets("Denton Contour Plots").Range("B5:B29"), 0),

Application.WorksheetFunction.Match(x2, Worksheets("Denton Contour Plots").Range("C4:S4"), 0))

q22 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C5:S29"),

Application.WorksheetFunction.Match(y2, Worksheets("Denton Contour Plots").Range("B5:B29"), 0),

Application.WorksheetFunction.Match(x2, Worksheets("Denton Contour Plots").Range("C4:S4"), 0))

Dim YpD As Double

If x7 < 40 Or x7 > 80 Then

YpD = 0.02

Else

YpD = (1 / ((x2 - x1) * (y2 - y1)) * (q11 * (x2 - x7) * (y2 - y7) + q21 * (x7 - x1) * (y2 - y7) + q12 * (x2 - x7) * (y7 - y1) + q22 * (x7 - x1) * (y7 -

y1))) / 100

End If

Tip Clearance Loss (YtcD)

Input

If i1 = 0 Then

Else

Dim x8 As Double

Dim y8 As Double

x8 = -alpha2(i1, 0)

y8 = -Application.WorksheetFunction.Degrees(nozzleout(0, 0))

If y8 > 60 Then

y8 = 60

End If

If y8 < -60 Then

y8 = -60

End If

Dim x81 As Double

Dim x82 As Double

Dim y81 As Double

Dim y82 As Double

Dim q811 As Double

Dim q812 As Double

150

Dim q821 As Double

Dim q822 As Double

If y7 = 60 Then

x81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"),

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1))

x82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"),

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1) + 1)

y81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"),

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1) - 1)

y82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"),

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1))

Else

x81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"),

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1))

x82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C33:AF33"),

Application.WorksheetFunction.Match(x8, Worksheets("Denton Contour Plots").Range("C33:AF33"), 1) + 1)

y81 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"),

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1))

y82 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("B34:B58"),

Application.WorksheetFunction.Match(y8, Worksheets("Denton Contour Plots").Range("B34:B58"), 1) + 1)

End If

q811 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"),

Application.WorksheetFunction.Match(y81, Worksheets("Denton Contour Plots").Range("B34:B58"), 0),

Application.WorksheetFunction.Match(x81, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0))

q812 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"),

Application.WorksheetFunction.Match(y82, Worksheets("Denton Contour Plots").Range("B34:B58"), 0),

Application.WorksheetFunction.Match(x81, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0))

q821 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"),

Application.WorksheetFunction.Match(y81, Worksheets("Denton Contour Plots").Range("B34:B58"), 0),

Application.WorksheetFunction.Match(x82, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0))

q822 = Application.WorksheetFunction.Index(Worksheets("Denton Contour Plots").Range("C34:AF58"),

Application.WorksheetFunction.Match(y82, Worksheets("Denton Contour Plots").Range("B34:B58"), 0),

Application.WorksheetFunction.Match(x82, Worksheets("Denton Contour Plots").Range("C33:AF33"), 0))

Dim YtcD As Double

YtcD = (1 / ((x82 - x81) * (y82 - y81)) * (q811 * (x82 - x8) * (y82 - y8) + q821 * (x8 - x81) * (y82 - y8) + q812 * (x82 - x8) * (y8 - y81) + q822 *

(x8 - x81) * (y8 - y81))) / 100

End If

Secondary Loss (YsD)

Dim a10 As Double

If i1 = 0 Then

a10 = 0

Else

a10 = nozzleout(0, 0)

End If

Dim ang_m As Double

ang_m = Atn(0.5 * (Tan(a10) + Tan(alpha4(i1, 0))))

Dim CLsc As Double

CLsc = 2 * (Tan(a10) - Tan(alpha4(i1, 0))) * Cos(ang_m)

151

YsD = 0.375 * 0.0334 * ((rowdata(i1, 8) * 0.0254) / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)) * (Cos(alpha4(i1, 0) /

Cos(Application.WorksheetFunction.Radians(rowdata(i1, 7) * 0.3))) * CLsc ^ 2 * (Cos(alpha4(i1, 0)) ^ 2 / (Cos(ang_m)) ^ 3))

YpDc = YpD * convert

YtcDc = YtcD * convert

YtD = YpDc + YtcDc + YsD

Trailing Edge Loss (YteD)

Dynamic viscosity

Dim mu As Double

If i1 = 0 Then

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

Else

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

End If

Density

Dim rho As Double

If i1 = 0 Then

rho = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287)

Else

rho = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287)

End If

Dim Re As Double

Re = (rho * (vo) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu

Dim theta As Double

theta = 0.016 / Sqr(Re) ^ (1 / 7) * (rowdata(i1, 8) * 0.0254)

Dim sigma As Double

sigma = 0.02 / Sqr(Re) ^ (1 / 7) * (rowdata(i1, 8) * 0.0254)

Dim YteD As Double

YteD = ((-((-0.15 * (rowdata(i1, 10) * 0.0254)) / (rowdata(i1, 0) * 0.0254)) + ((2 * theta) / (rowdata(i1, 0) * 0.0254)) + ((sigma + (rowdata(i1,

10) * 0.0254)) / (rowdata(i1, 0) * 0.0254)) ^ 2)) / 100

YteDc = YteD * convert

Yt = YtD + YteDc

152

C.3 Craig and Cox VBA Code for Loss Model

Flow angle conversion

If i1 = 0 Then

alphacc1 = 90

Else

alphacc1 = 90 - Application.WorksheetFunction.Degrees(nozzleout(0, 0))

End If

If alphacc1 > 140 Then

alphacc1 = 140

End If

alphacc2 = (alpha2(i1, 0) + 90)

Backbone length

Bb = (0.5 * Sqr(rowdata(i1, 8) ^ 2 + 16 * rowdata(i1, 9) ^ 2) + (rowdata(i1, 8) ^ 2 / (8 * rowdata(i1, 9))) * Log((4 * rowdata(i1, 9) +

Sqr(rowdata(i1, 8) ^ 2 + 16 * rowdata(i1, 9) ^ 2)) / rowdata(i1, 8))) * 0.0254

Contraction Ratio

Dim CRLossRngx As Range

Dim CRLossRngyA As Range

Dim CRLossRngyB As Range

Dim CRLossRngyC As Range

Dim CRLossRngyD As Range

Dim CRLossRngyE As Range

 Set CRLossRngx = Worksheets("CraigCox Corr").Range("P5:P13")

 Set CRLossRngyA = Worksheets("CraigCox Corr").Range("Q5:Q13")

 Set CRLossRngyB = Worksheets("CraigCox Corr").Range("R5:R13")

 Set CRLossRngyC = Worksheets("CraigCox Corr").Range("S5:S13")

 Set CRLossRngyD = Worksheets("CraigCox Corr").Range("T5:T13")

 Set CRLossRngyE = Worksheets("CraigCox Corr").Range("U5:U13")

 1st Polynomial Factors

 Dim CRLossA(6, 0) As Double

 CRLossA(0, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 CRLossA(1, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 CRLossA(2, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 CRLossA(3, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 CRLossA(4, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 CRLossA(5, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 CRLossA(6, 0) = Application.Index(Application.LinEst(CRLossRngyA, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim CRLossB(6, 0) As Double

 CRLossB(0, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 CRLossB(1, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 CRLossB(2, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 CRLossB(3, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 CRLossB(4, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 CRLossB(5, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 CRLossB(6, 0) = Application.Index(Application.LinEst(CRLossRngyB, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim CRLossC(6, 0) As Double

 CRLossC(0, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 CRLossC(1, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 CRLossC(2, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

153

 CRLossC(3, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 CRLossC(4, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 CRLossC(5, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 CRLossC(6, 0) = Application.Index(Application.LinEst(CRLossRngyC, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim CRLossD(6, 0) As Double

 CRLossD(0, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 CRLossD(1, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 CRLossD(2, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 CRLossD(3, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 CRLossD(4, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 CRLossD(5, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 CRLossD(6, 0) = Application.Index(Application.LinEst(CRLossRngyD, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim CRLossE(6, 0) As Double

 CRLossE(0, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 CRLossE(1, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 CRLossE(2, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 CRLossE(3, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 CRLossE(4, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 CRLossE(5, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 CRLossE(6, 0) = Application.Index(Application.LinEst(CRLossRngyE, Application.Power(CRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

Dim s_b As Double

s_b = rowdata(i1, 6) / rowdata(i1, 8)

Dim SINB_SINA As Double

SINB_SINA = 1 - (Sin(Application.WorksheetFunction.Radians(alphacc2)) / Sin(Application.WorksheetFunction.Radians(alphacc1)))

 2nd Polynomial Factors

 Dim CRLoss2(4, 0) As Double

 CRLoss2(0, 0) = (((((((((((CRLossA(0, 0) * s_b) + CRLossA(1, 0)) * s_b) + CRLossA(2, 0)) * s_b) + CRLossA(3, 0)) * s_b) + CRLossA(4, 0)) * s_b)

+ CRLossA(5, 0)) * s_b) + CRLossA(6, 0)

 CRLoss2(1, 0) = (((((((((((CRLossB(0, 0) * s_b) + CRLossB(1, 0)) * s_b) + CRLossB(2, 0)) * s_b) + CRLossB(3, 0)) * s_b) + CRLossB(4, 0)) * s_b)

+ CRLossB(5, 0)) * s_b) + CRLossB(6, 0)

 CRLoss2(2, 0) = (((((((((((CRLossC(0, 0) * s_b) + CRLossC(1, 0)) * s_b) + CRLossC(2, 0)) * s_b) + CRLossC(3, 0)) * s_b) + CRLossC(4, 0)) * s_b)

+ CRLossC(5, 0)) * s_b) + CRLossC(6, 0)

 CRLoss2(3, 0) = (((((((((((CRLossD(0, 0) * s_b) + CRLossD(1, 0)) * s_b) + CRLossD(2, 0)) * s_b) + CRLossD(3, 0)) * s_b) + CRLossD(4, 0)) *

s_b) + CRLossD(5, 0)) * s_b) + CRLossD(6, 0)

 CRLoss2(4, 0) = (((((((((((CRLossE(0, 0) * s_b) + CRLossE(1, 0)) * s_b) + CRLossE(2, 0)) * s_b) + CRLossE(3, 0)) * s_b) + CRLossE(4, 0)) * s_b)

+ CRLossE(5, 0)) * s_b) + CRLossE(6, 0)

 CR

 CR = (((((((CRLoss2(0, 0) * SINB_SINA) + CRLoss2(1, 0)) * SINB_SINA) + CRLoss2(2, 0)) * SINB_SINA) + CRLoss2(3, 0)) * SINB_SINA) +

CRLoss2(4, 0)

Lift Parameter

Dim FLLossRngx As Range

Dim FLLossRngyA As Range

Dim FLLossRngyB As Range

Dim FLLossRngyC As Range

Dim FLLossRngyD As Range

Dim FLLossRngyE As Range

 Set FLLossRngx = Worksheets("CraigCox Corr").Range("I5:I16")

 Set FLLossRngyA = Worksheets("CraigCox Corr").Range("J5:J16")

 Set FLLossRngyB = Worksheets("CraigCox Corr").Range("K5:K16")

 Set FLLossRngyC = Worksheets("CraigCox Corr").Range("L5:L16")

154

 Set FLLossRngyD = Worksheets("CraigCox Corr").Range("M5:M16")

 Set FLLossRngyE = Worksheets("CraigCox Corr").Range("N5:N16")

 1st Polynomial Factors

 Dim FLLossA(6, 0) As Double

 FLLossA(0, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 FLLossA(1, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 FLLossA(2, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 FLLossA(3, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 FLLossA(4, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 FLLossA(5, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 FLLossA(6, 0) = Application.Index(Application.LinEst(FLLossRngyA, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim FLLossB(6, 0) As Double

 FLLossB(0, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 FLLossB(1, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 FLLossB(2, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 FLLossB(3, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 FLLossB(4, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 FLLossB(5, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 FLLossB(6, 0) = Application.Index(Application.LinEst(FLLossRngyB, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim FLLossC(6, 0) As Double

 FLLossC(0, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 FLLossC(1, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 FLLossC(2, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 FLLossC(3, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 FLLossC(4, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 FLLossC(5, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 FLLossC(6, 0) = Application.Index(Application.LinEst(FLLossRngyC, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim FLLossD(6, 0) As Double

 FLLossD(0, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 FLLossD(1, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 FLLossD(2, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 FLLossD(3, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 FLLossD(4, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 FLLossD(5, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 FLLossD(6, 0) = Application.Index(Application.LinEst(FLLossRngyD, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim FLLossE(6, 0) As Double

 FLLossE(0, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 FLLossE(1, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 FLLossE(2, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 FLLossE(3, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 FLLossE(4, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 FLLossE(5, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 FLLossE(6, 0) = Application.Index(Application.LinEst(FLLossRngyE, Application.Power(FLLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

 Dim FLLoss2(4, 0) As Double

 FLLoss2(0, 0) = (((((((((((FLLossA(0, 0) * alphacc1) + FLLossA(1, 0)) * alphacc1) + FLLossA(2, 0)) * alphacc1) + FLLossA(3, 0)) * alphacc1) +

FLLossA(4, 0)) * alphacc1) + FLLossA(5, 0)) * alphacc1) + FLLossA(6, 0)

 FLLoss2(1, 0) = (((((((((((FLLossB(0, 0) * alphacc1) + FLLossB(1, 0)) * alphacc1) + FLLossB(2, 0)) * alphacc1) + FLLossB(3, 0)) * alphacc1) +

FLLossB(4, 0)) * alphacc1) + FLLossB(5, 0)) * alphacc1) + FLLossB(6, 0)

 FLLoss2(2, 0) = (((((((((((FLLossC(0, 0) * alphacc1) + FLLossC(1, 0)) * alphacc1) + FLLossC(2, 0)) * alphacc1) + FLLossC(3, 0)) * alphacc1) +

FLLossC(4, 0)) * alphacc1) + FLLossC(5, 0)) * alphacc1) + FLLossC(6, 0)

 FLLoss2(3, 0) = (((((((((((FLLossD(0, 0) * alphacc1) + FLLossD(1, 0)) * alphacc1) + FLLossD(2, 0)) * alphacc1) + FLLossD(3, 0)) * alphacc1) +

FLLossD(4, 0)) * alphacc1) + FLLossD(5, 0)) * alphacc1) + FLLossD(6, 0)

155

 FLLoss2(4, 0) = (((((((((((FLLossE(0, 0) * alphacc1) + FLLossE(1, 0)) * alphacc1) + FLLossE(2, 0)) * alphacc1) + FLLossE(3, 0)) * alphacc1) +

FLLossE(4, 0)) * alphacc1) + FLLossE(5, 0)) * alphacc1) + FLLossE(6, 0)

FL

 FL = (((((((FLLoss2(0, 0) * alphacc2) + FLLoss2(1, 0)) * alphacc2) + FLLoss2(2, 0)) * alphacc2) + FLLoss2(3, 0)) * alphacc2) + FLLoss2(4, 0)

Profile Loss (PLoss)

Dim BasLossRngx As Range

Dim BasLossRngyA As Range

Dim BasLossRngyB As Range

Dim BasLossRngyC As Range

Dim BasLossRngyD As Range

Dim BasLossRngyE As Range

Dim BasLossA(6, 0) As Double

Dim BasLossB(6, 0) As Double

Dim BasLossC(6, 0) As Double

Dim BasLossD(6, 0) As Double

Dim BasLossE(6, 0) As Double

Dim BasLoss2(4, 0) As Double

Dim Loss As Double

If CR <= 2 Then

 Set BasLossRngx = Worksheets("CraigCox Corr").Range("B5:B15")

 Set BasLossRngyA = Worksheets("CraigCox Corr").Range("C5:C15")

 Set BasLossRngyB = Worksheets("CraigCox Corr").Range("D5:D15")

 Set BasLossRngyC = Worksheets("CraigCox Corr").Range("E5:E15")

 Set BasLossRngyD = Worksheets("CraigCox Corr").Range("F5:F15")

 Set BasLossRngyE = Worksheets("CraigCox Corr").Range("G5:G15")

 1st Polynomial Factors

 BasLossA(0, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossA(1, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossA(2, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossA(3, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossA(4, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossA(5, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossA(6, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossB(0, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossB(1, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossB(2, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossB(3, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossB(4, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossB(5, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossB(6, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossC(0, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossC(1, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossC(2, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossC(3, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossC(4, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossC(5, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossC(6, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossD(0, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossD(1, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossD(2, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

156

 BasLossD(3, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossD(4, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossD(5, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossD(6, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossE(0, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossE(1, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossE(2, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossE(3, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossE(4, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossE(5, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossE(6, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

 BasLoss2(0, 0) = (((((((((((BasLossA(0, 0) * CR) + BasLossA(1, 0)) * CR) + BasLossA(2, 0)) * CR) + BasLossA(3, 0)) * CR) + BasLossA(4, 0)) *

CR) + BasLossA(5, 0)) * CR) + BasLossA(6, 0)

 BasLoss2(1, 0) = (((((((((((BasLossB(0, 0) * CR) + BasLossB(1, 0)) * CR) + BasLossB(2, 0)) * CR) + BasLossB(3, 0)) * CR) + BasLossB(4, 0)) *

CR) + BasLossB(5, 0)) * CR) + BasLossB(6, 0)

 BasLoss2(2, 0) = (((((((((((BasLossC(0, 0) * CR) + BasLossC(1, 0)) * CR) + BasLossC(2, 0)) * CR) + BasLossC(3, 0)) * CR) + BasLossC(4, 0)) *

CR) + BasLossC(5, 0)) * CR) + BasLossC(6, 0)

 BasLoss2(3, 0) = (((((((((((BasLossD(0, 0) * CR) + BasLossD(1, 0)) * CR) + BasLossD(2, 0)) * CR) + BasLossD(3, 0)) * CR) + BasLossD(4, 0)) *

CR) + BasLossD(5, 0)) * CR) + BasLossD(6, 0)

 BasLoss2(4, 0) = (((((((((((BasLossE(0, 0) * CR) + BasLossE(1, 0)) * CR) + BasLossE(2, 0)) * CR) + BasLossE(3, 0)) * CR) + BasLossE(4, 0)) * CR)

+ BasLossE(5, 0)) * CR) + BasLossE(6, 0)

FL_sb = FL * ((rowdata(i1, 6) * 0.0254) / Bb)

 Basic Loss

 Loss = (((((((BasLoss2(0, 0) * FL_sb) + BasLoss2(1, 0)) * FL_sb) + BasLoss2(2, 0)) * FL_sb) + BasLoss2(3, 0)) * FL_sb) + BasLoss2(4, 0)

Else

 Set BasLossRngx = Worksheets("CraigCox Corr").Range("B15:B30")

 Set BasLossRngyA = Worksheets("CraigCox Corr").Range("C15:C30")

 Set BasLossRngyB = Worksheets("CraigCox Corr").Range("D15:D30")

 Set BasLossRngyC = Worksheets("CraigCox Corr").Range("E15:E30")

 Set BasLossRngyD = Worksheets("CraigCox Corr").Range("F15:F30")

 Set BasLossRngyE = Worksheets("CraigCox Corr").Range("G15:G30")

 1st Polynomial Factors

 BasLossA(0, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossA(1, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossA(2, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossA(3, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossA(4, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossA(5, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossA(6, 0) = Application.Index(Application.LinEst(BasLossRngyA, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossB(0, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossB(1, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossB(2, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossB(3, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossB(4, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossB(5, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossB(6, 0) = Application.Index(Application.LinEst(BasLossRngyB, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossC(0, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossC(1, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

157

 BasLossC(2, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossC(3, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossC(4, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossC(5, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossC(6, 0) = Application.Index(Application.LinEst(BasLossRngyC, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossD(0, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossD(1, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossD(2, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossD(3, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossD(4, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossD(5, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossD(6, 0) = Application.Index(Application.LinEst(BasLossRngyD, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 BasLossE(0, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BasLossE(1, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BasLossE(2, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BasLossE(3, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BasLossE(4, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BasLossE(5, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BasLossE(6, 0) = Application.Index(Application.LinEst(BasLossRngyE, Application.Power(BasLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

 BasLoss2(0, 0) = (((((((((((BasLossA(0, 0) * CR) + BasLossA(1, 0)) * CR) + BasLossA(2, 0)) * CR) + BasLossA(3, 0)) * CR) + BasLossA(4, 0)) *

CR) + BasLossA(5, 0)) * CR) + BasLossA(6, 0)

 BasLoss2(1, 0) = (((((((((((BasLossB(0, 0) * CR) + BasLossB(1, 0)) * CR) + BasLossB(2, 0)) * CR) + BasLossB(3, 0)) * CR) + BasLossB(4, 0)) *

CR) + BasLossB(5, 0)) * CR) + BasLossB(6, 0)

 BasLoss2(2, 0) = (((((((((((BasLossC(0, 0) * CR) + BasLossC(1, 0)) * CR) + BasLossC(2, 0)) * CR) + BasLossC(3, 0)) * CR) + BasLossC(4, 0)) *

CR) + BasLossC(5, 0)) * CR) + BasLossC(6, 0)

 BasLoss2(3, 0) = (((((((((((BasLossD(0, 0) * CR) + BasLossD(1, 0)) * CR) + BasLossD(2, 0)) * CR) + BasLossD(3, 0)) * CR) + BasLossD(4, 0)) *

CR) + BasLossD(5, 0)) * CR) + BasLossD(6, 0)

 BasLoss2(4, 0) = (((((((((((BasLossE(0, 0) * CR) + BasLossE(1, 0)) * CR) + BasLossE(2, 0)) * CR) + BasLossE(3, 0)) * CR) + BasLossE(4, 0)) * CR)

+ BasLossE(5, 0)) * CR) + BasLossE(6, 0)

FL_sb = FL * ((rowdata(i1, 6) * 0.0254) / Bb)

If FL_sb > 10 Then

FL_sb = 10

End If

 Basic Loss

 Loss = (((((((BasLoss2(0, 0) * FL_sb) + BasLoss2(1, 0)) * FL_sb) + BasLoss2(2, 0)) * FL_sb) + BasLoss2(3, 0)) * FL_sb) + BasLoss2(4, 0)

End If

PLoss = Loss / (Bb / (rowdata(i1, 6) * 0.0254) * Sin(Application.WorksheetFunction.Radians(alphacc2)))

Trailing Edge Loss (Pte)

Dim TELossRngx As Range

Dim TELossRngyA As Range

Dim TELossRngyB As Range

Dim TELossRngyC As Range

Dim TELossRngyD As Range

Dim TELossRngyE As Range

 Set TELossRngx = Worksheets("CraigCox Corr").Range("B35:B45")

 Set TELossRngyA = Worksheets("CraigCox Corr").Range("C35:C45")

 Set TELossRngyB = Worksheets("CraigCox Corr").Range("D35:D45")

158

 Set TELossRngyC = Worksheets("CraigCox Corr").Range("E35:E45")

 Set TELossRngyD = Worksheets("CraigCox Corr").Range("F35:F45")

 Set TELossRngyE = Worksheets("CraigCox Corr").Range("G35:G45")

 1st Polynomial Factors

 Dim TELossA(6, 0) As Double

 TELossA(0, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 TELossA(1, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 TELossA(2, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 TELossA(3, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 TELossA(4, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 TELossA(5, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 TELossA(6, 0) = Application.Index(Application.LinEst(TELossRngyA, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim TELossB(6, 0) As Double

 TELossB(0, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 TELossB(1, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 TELossB(2, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 TELossB(3, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 TELossB(4, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 TELossB(5, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 TELossB(6, 0) = Application.Index(Application.LinEst(TELossRngyB, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim TELossC(6, 0) As Double

 TELossC(0, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 TELossC(1, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 TELossC(2, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 TELossC(3, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 TELossC(4, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 TELossC(5, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 TELossC(6, 0) = Application.Index(Application.LinEst(TELossRngyC, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim TELossD(6, 0) As Double

 TELossD(0, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 TELossD(1, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 TELossD(2, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 TELossD(3, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 TELossD(4, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 TELossD(5, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 TELossD(6, 0) = Application.Index(Application.LinEst(TELossRngyD, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim TELossE(6, 0) As Double

 TELossE(0, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 TELossE(1, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 TELossE(2, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 TELossE(3, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 TELossE(4, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 TELossE(5, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 TELossE(6, 0) = Application.Index(Application.LinEst(TELossRngyE, Application.Power(TELossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

Dim te_s As Double

te_s = rowdata(i1, 10) / rowdata(i1, 6)

 2nd Polynomial Factors

 Dim TELoss2(4, 0) As Double

 TELoss2(0, 0) = (((((((((((TELossA(0, 0) * alphacc2) + TELossA(1, 0)) * alphacc2) + TELossA(2, 0)) * alphacc2) + TELossA(3, 0)) * alphacc2) +

TELossA(4, 0)) * alphacc2) + TELossA(5, 0)) * alphacc2) + TELossA(6, 0)

 TELoss2(1, 0) = (((((((((((TELossB(0, 0) * alphacc2) + TELossB(1, 0)) * alphacc2) + TELossB(2, 0)) * alphacc2) + TELossB(3, 0)) * alphacc2) +

TELossB(4, 0)) * alphacc2) + TELossB(5, 0)) * alphacc2) + TELossB(6, 0)

159

 TELoss2(2, 0) = (((((((((((TELossC(0, 0) * alphacc2) + TELossC(1, 0)) * alphacc2) + TELossC(2, 0)) * alphacc2) + TELossC(3, 0)) * alphacc2) +

TELossC(4, 0)) * alphacc2) + TELossC(5, 0)) * alphacc2) + TELossC(6, 0)

 TELoss2(3, 0) = (((((((((((TELossD(0, 0) * alphacc2) + TELossD(1, 0)) * alphacc2) + TELossD(2, 0)) * alphacc2) + TELossD(3, 0)) * alphacc2) +

TELossD(4, 0)) * alphacc2) + TELossD(5, 0)) * alphacc2) + TELossD(6, 0)

 TELoss2(4, 0) = (((((((((((TELossE(0, 0) * alphacc2) + TELossE(1, 0)) * alphacc2) + TELossE(2, 0)) * alphacc2) + TELossE(3, 0)) * alphacc2) +

TELossE(4, 0)) * alphacc2) + TELossE(5, 0)) * alphacc2) + TELossE(6, 0)

 TE

 Xte = (((((((TELoss2(0, 0) * te_s) + TELoss2(1, 0)) * te_s) + TELoss2(2, 0)) * te_s) + TELoss2(3, 0)) * te_s) + TELoss2(4, 0)

Dim PteLossRngx As Range

Dim PteLossRngyA As Range

 Set PteLossRngx = Worksheets("CraigCox Corr").Range("I50:I57")

 Set PteLossRngyA = Worksheets("CraigCox Corr").Range("J50:J57")

 1st Polynomial Factors

 Dim PteLossA(6, 0) As Double

 PteLossA(0, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 PteLossA(1, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 PteLossA(2, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 PteLossA(3, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 PteLossA(4, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 PteLossA(5, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 PteLossA(6, 0) = Application.Index(Application.LinEst(PteLossRngyA, Application.Power(PteLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Pte = (((((((((((PteLossA(0, 0) * te_s) + PteLossA(1, 0)) * te_s) + PteLossA(2, 0)) * te_s) + PteLossA(3, 0)) * te_s) + PteLossA(4, 0)) * te_s) +

PteLossA(5, 0)) * te_s) + PteLossA(6, 0)

Mach number Losses (MA)

Dim MALossRngx As Range

Dim MALossRngyA As Range

Dim MALossRngyB As Range

Dim MALossRngyC As Range

Dim MALossRngyD As Range

Dim MALossRngyE As Range

Dim MALossRngyF As Range

Dim MALossRngyG As Range

 Set MALossRngx = Worksheets("CraigCox Corr").Range("I35:I44")

 Set MALossRngyA = Worksheets("CraigCox Corr").Range("J35:J44")

 Set MALossRngyB = Worksheets("CraigCox Corr").Range("K35:K44")

 Set MALossRngyC = Worksheets("CraigCox Corr").Range("L35:L44")

 Set MALossRngyD = Worksheets("CraigCox Corr").Range("M35:M44")

 Set MALossRngyE = Worksheets("CraigCox Corr").Range("N35:N44")

 Set MALossRngyF = Worksheets("CraigCox Corr").Range("O35:O44")

 Set MALossRngyG = Worksheets("CraigCox Corr").Range("P35:P44")

 1st Polynomial Factors

 Dim MALossA(6, 0) As Double

 MALossA(0, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossA(1, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossA(2, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossA(3, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossA(4, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossA(5, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossA(6, 0) = Application.Index(Application.LinEst(MALossRngyA, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

160

 Dim MALossB(6, 0) As Double

 MALossB(0, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossB(1, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossB(2, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossB(3, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossB(4, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossB(5, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossB(6, 0) = Application.Index(Application.LinEst(MALossRngyB, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MALossC(6, 0) As Double

 MALossC(0, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossC(1, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossC(2, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossC(3, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossC(4, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossC(5, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossC(6, 0) = Application.Index(Application.LinEst(MALossRngyC, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MALossD(6, 0) As Double

 MALossD(0, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossD(1, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossD(2, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossD(3, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossD(4, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossD(5, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossD(6, 0) = Application.Index(Application.LinEst(MALossRngyD, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MALossE(6, 0) As Double

 MALossE(0, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossE(1, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossE(2, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossE(3, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossE(4, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossE(5, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossE(6, 0) = Application.Index(Application.LinEst(MALossRngyE, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MALossF(6, 0) As Double

 MALossF(0, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossF(1, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossF(2, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossF(3, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossF(4, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossF(5, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossF(6, 0) = Application.Index(Application.LinEst(MALossRngyF, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MALossG(6, 0) As Double

 MALossG(0, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MALossG(1, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MALossG(2, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MALossG(3, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MALossG(4, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MALossG(5, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MALossG(6, 0) = Application.Index(Application.LinEst(MALossRngyG, Application.Power(MALossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

Dim ote_s As Double

ote_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) + rowdata(i1, 10)) / rowdata(i1, 6)))

 2nd Polynomial Factors

 Dim MALoss2(6, 0) As Double

161

 MALoss2(0, 0) = (((((((((((MALossA(0, 0) * ote_s) + MALossA(1, 0)) * ote_s) + MALossA(2, 0)) * ote_s) + MALossA(3, 0)) * ote_s) +

MALossA(4, 0)) * ote_s) + MALossA(5, 0)) * ote_s) + MALossA(6, 0)

 MALoss2(1, 0) = (((((((((((MALossB(0, 0) * ote_s) + MALossB(1, 0)) * ote_s) + MALossB(2, 0)) * ote_s) + MALossB(3, 0)) * ote_s) +

MALossB(4, 0)) * ote_s) + MALossB(5, 0)) * ote_s) + MALossB(6, 0)

 MALoss2(2, 0) = (((((((((((MALossC(0, 0) * ote_s) + MALossC(1, 0)) * ote_s) + MALossC(2, 0)) * ote_s) + MALossC(3, 0)) * ote_s) +

MALossC(4, 0)) * ote_s) + MALossC(5, 0)) * ote_s) + MALossC(6, 0)

 MALoss2(3, 0) = (((((((((((MALossD(0, 0) * ote_s) + MALossD(1, 0)) * ote_s) + MALossD(2, 0)) * ote_s) + MALossD(3, 0)) * ote_s) +

MALossD(4, 0)) * ote_s) + MALossD(5, 0)) * ote_s) + MALossD(6, 0)

 MALoss2(4, 0) = (((((((((((MALossE(0, 0) * ote_s) + MALossE(1, 0)) * ote_s) + MALossE(2, 0)) * ote_s) + MALossE(3, 0)) * ote_s) +

MALossE(4, 0)) * ote_s) + MALossE(5, 0)) * ote_s) + MALossE(6, 0)

 MALoss2(5, 0) = (((((((((((MALossF(0, 0) * ote_s) + MALossF(1, 0)) * ote_s) + MALossF(2, 0)) * ote_s) + MALossF(3, 0)) * ote_s) +

MALossF(4, 0)) * ote_s) + MALossF(5, 0)) * ote_s) + MALossF(6, 0)

 MALoss2(6, 0) = (((((((((((MALossG(0, 0) * ote_s) + MALossG(1, 0)) * ote_s) + MALossG(2, 0)) * ote_s) + MALossG(3, 0)) * ote_s) +

MALossG(4, 0)) * ote_s) + MALossG(5, 0)) * ote_s) + MALossG(6, 0)

 MA

 If m >= 1 Then

 MA = (((((((((((MALoss2(0, 0) * m) + MALoss2(1, 0)) * m) + MALoss2(2, 0)) * m) + MALoss2(3, 0)) * m) + MALoss2(4, 0)) * m) + MALoss2(5,

0)) * m) + MALoss2(6, 0)

 Else

 MA = 0

 End If

 Blade Back Radius Losses

Dim BBRLossRngx As Range

Dim BBRLossRngyA As Range

Dim BBRLossRngyB As Range

Dim BBRLossRngyC As Range

Dim BBRLossRngyD As Range

 Set BBRLossRngx = Worksheets("CraigCox Corr").Range("B50:B62")

 Set BBRLossRngyA = Worksheets("CraigCox Corr").Range("C50:C62")

 Set BBRLossRngyB = Worksheets("CraigCox Corr").Range("D50:D62")

 Set BBRLossRngyC = Worksheets("CraigCox Corr").Range("E50:E62")

 Set BBRLossRngyD = Worksheets("CraigCox Corr").Range("F50:F62")

 1st Polynomial Factors

 Dim BBRLossA(6, 0) As Double

 BBRLossA(0, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BBRLossA(1, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BBRLossA(2, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BBRLossA(3, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BBRLossA(4, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BBRLossA(5, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BBRLossA(6, 0) = Application.Index(Application.LinEst(BBRLossRngyA, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim BBRLossB(6, 0) As Double

 BBRLossB(0, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BBRLossB(1, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BBRLossB(2, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BBRLossB(3, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BBRLossB(4, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BBRLossB(5, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BBRLossB(6, 0) = Application.Index(Application.LinEst(BBRLossRngyB, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim BBRLossC(6, 0) As Double

 BBRLossC(0, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BBRLossC(1, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BBRLossC(2, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

162

 BBRLossC(3, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BBRLossC(4, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BBRLossC(5, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BBRLossC(6, 0) = Application.Index(Application.LinEst(BBRLossRngyC, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim BBRLossD(6, 0) As Double

 BBRLossD(0, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 BBRLossD(1, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 BBRLossD(2, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 BBRLossD(3, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 BBRLossD(4, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 BBRLossD(5, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 BBRLossD(6, 0) = Application.Index(Application.LinEst(BBRLossRngyD, Application.Power(BBRLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

Dim s_e As Double

s_e = rowdata(i1, 6) / rowdata(i1, 1)

 2nd Polynomial Factors

 Dim BBRLoss2(4, 0) As Double

 BBRLoss2(0, 0) = (((((((((((BBRLossA(0, 0) * m) + BBRLossA(1, 0)) * m) + BBRLossA(2, 0)) * m) + BBRLossA(3, 0)) * m) + BBRLossA(4, 0)) *

m) + BBRLossA(5, 0)) * m) + BBRLossA(6, 0)

 BBRLoss2(1, 0) = (((((((((((BBRLossB(0, 0) * m) + BBRLossB(1, 0)) * m) + BBRLossB(2, 0)) * m) + BBRLossB(3, 0)) * m) + BBRLossB(4, 0)) *

m) + BBRLossB(5, 0)) * m) + BBRLossB(6, 0)

 BBRLoss2(2, 0) = (((((((((((BBRLossC(0, 0) * m) + BBRLossC(1, 0)) * m) + BBRLossC(2, 0)) * m) + BBRLossC(3, 0)) * m) + BBRLossC(4, 0)) * m)

+ BBRLossC(5, 0)) * m) + BBRLossC(6, 0)

 BBRLoss2(3, 0) = (((((((((((BBRLossD(0, 0) * m) + BBRLossD(1, 0)) * m) + BBRLossD(2, 0)) * m) + BBRLossD(3, 0)) * m) + BBRLossD(4, 0)) *

m) + BBRLossD(5, 0)) * m) + BBRLossD(6, 0)

 BBR

 If s_e < 1 Then

 BBR = 0

 Else

 BBR = (((((BBRLoss2(0, 0) * s_e) + BBRLoss2(1, 0)) * s_e) + BBRLoss2(2, 0)) * s_e) + BBRLoss2(3, 0)

 End If

Incidence losses

Basic Positive stalling incidence

Dim BPSIncLossRngx As Range

Dim BPSIncLossRngyA As Range

Dim BPSIncLossRngyB As Range

Dim BPSIncLossRngyC As Range

Dim BPSIncLossRngyD As Range

Dim BPSIncLossRngyE As Range

 Set BPSIncLossRngx = Worksheets("CraigCox Corr").Range("B67:B77")

 Set BPSIncLossRngyA = Worksheets("CraigCox Corr").Range("C67:C77")

 Set BPSIncLossRngyB = Worksheets("CraigCox Corr").Range("D67:D77")

 Set BPSIncLossRngyC = Worksheets("CraigCox Corr").Range("E67:E77")

 Set BPSIncLossRngyD = Worksheets("CraigCox Corr").Range("F67:F77")

 Set BPSIncLossRngyE = Worksheets("CraigCox Corr").Range("G67:G77")

 1st Polynomial Factors

 Dim BPSIncLossA(6, 0) As Double

 BPSIncLossA(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

 BPSIncLossA(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

163

 BPSIncLossA(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 BPSIncLossA(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 BPSIncLossA(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 BPSIncLossA(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 BPSIncLossA(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyA, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

 Dim BPSIncLossB(6, 0) As Double

 BPSIncLossB(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

 BPSIncLossB(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

 BPSIncLossB(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 BPSIncLossB(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 BPSIncLossB(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 BPSIncLossB(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 BPSIncLossB(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyB, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

 Dim BPSIncLossC(6, 0) As Double

 BPSIncLossC(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

 BPSIncLossC(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

 BPSIncLossC(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 BPSIncLossC(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 BPSIncLossC(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 BPSIncLossC(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 BPSIncLossC(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyC, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

 Dim BPSIncLossD(6, 0) As Double

 BPSIncLossD(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

 BPSIncLossD(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

 BPSIncLossD(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 BPSIncLossD(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 BPSIncLossD(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 BPSIncLossD(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 BPSIncLossD(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyD, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

 Dim BPSIncLossE(6, 0) As Double

 BPSIncLossE(0, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

164

 BPSIncLossE(1, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

 BPSIncLossE(2, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 BPSIncLossE(3, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 BPSIncLossE(4, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 BPSIncLossE(5, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 BPSIncLossE(6, 0) = Application.Index(Application.LinEst(BPSIncLossRngyE, Application.Power(BPSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

Dim sin_o_s As Double

sin_o_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) / rowdata(i1, 6))))

 2nd Polynomial Factors

 Dim BPSIncLoss2(4, 0) As Double

 BPSIncLoss2(0, 0) = (((((((((((BPSIncLossA(0, 0) * sin_o_s) + BPSIncLossA(1, 0)) * sin_o_s) + BPSIncLossA(2, 0)) * sin_o_s) + BPSIncLossA(3,

0)) * sin_o_s) + BPSIncLossA(4, 0)) * sin_o_s) + BPSIncLossA(5, 0)) * sin_o_s) + BPSIncLossA(6, 0)

 BPSIncLoss2(1, 0) = (((((((((((BPSIncLossB(0, 0) * sin_o_s) + BPSIncLossB(1, 0)) * sin_o_s) + BPSIncLossB(2, 0)) * sin_o_s) + BPSIncLossB(3,

0)) * sin_o_s) + BPSIncLossB(4, 0)) * sin_o_s) + BPSIncLossB(5, 0)) * sin_o_s) + BPSIncLossB(6, 0)

 BPSIncLoss2(2, 0) = (((((((((((BPSIncLossC(0, 0) * sin_o_s) + BPSIncLossC(1, 0)) * sin_o_s) + BPSIncLossC(2, 0)) * sin_o_s) + BPSIncLossC(3,

0)) * sin_o_s) + BPSIncLossC(4, 0)) * sin_o_s) + BPSIncLossC(5, 0)) * sin_o_s) + BPSIncLossC(6, 0)

 BPSIncLoss2(3, 0) = (((((((((((BPSIncLossD(0, 0) * sin_o_s) + BPSIncLossD(1, 0)) * sin_o_s) + BPSIncLossD(2, 0)) * sin_o_s) + BPSIncLossD(3,

0)) * sin_o_s) + BPSIncLossD(4, 0)) * sin_o_s) + BPSIncLossD(5, 0)) * sin_o_s) + BPSIncLossD(6, 0)

 BPSIncLoss2(4, 0) = (((((((((((BPSIncLossE(0, 0) * sin_o_s) + BPSIncLossE(1, 0)) * sin_o_s) + BPSIncLossE(2, 0)) * sin_o_s) + BPSIncLossE(3,

0)) * sin_o_s) + BPSIncLossE(4, 0)) * sin_o_s) + BPSIncLossE(5, 0)) * sin_o_s) + BPSIncLossE(6, 0)

 i+bas

 i_bas = (((((((BPSIncLoss2(0, 0) * alphacc1) + BPSIncLoss2(1, 0)) * alphacc1) + BPSIncLoss2(2, 0)) * alphacc1) + BPSIncLoss2(3, 0)) *

alphacc1) + BPSIncLoss2(4, 0)

Incidence correction CR

Dim IncCRLossRngx As Range

Dim IncCRLossRngyA As Range

Dim IncCRLossRngyB As Range

Dim IncCRLossRngyC As Range

Dim IncCRLossRngyD As Range

Dim IncCRLossRngyE As Range

 Set IncCRLossRngx = Worksheets("CraigCox Corr").Range("I67:I69")

 Set IncCRLossRngyA = Worksheets("CraigCox Corr").Range("J67:J69")

 Set IncCRLossRngyB = Worksheets("CraigCox Corr").Range("K67:K69")

 Set IncCRLossRngyC = Worksheets("CraigCox Corr").Range("L67:L69")

 Set IncCRLossRngyD = Worksheets("CraigCox Corr").Range("M67:M69")

 Set IncCRLossRngyE = Worksheets("CraigCox Corr").Range("N67:N69")

 1st Polynomial Factors

 Dim IncCRLossA(3, 0) As Double

 IncCRLossA(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1)

 IncCRLossA(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2)

 IncCRLossA(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyA, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3)

 Dim IncCRLossB(3, 0) As Double

 IncCRLossB(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1)

 IncCRLossB(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2)

 IncCRLossB(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyB, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3)

165

 Dim IncCRLossC(3, 0) As Double

 IncCRLossC(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1)

 IncCRLossC(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2)

 IncCRLossC(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyC, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3)

 Dim IncCRLossD(3, 0) As Double

 IncCRLossD(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1)

 IncCRLossD(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2)

 IncCRLossD(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyD, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3)

 Dim IncCRLossE(3, 0) As Double

 IncCRLossE(0, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 1)

 IncCRLossE(1, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 2)

 IncCRLossE(2, 0) = Application.Index(Application.LinEst(IncCRLossRngyE, Application.Power(IncCRLossRngx, Array(1, 2))), 1, 3)

 2nd Polynomial Factors

 Dim IncCRLoss2(4, 0) As Double

 IncCRLoss2(0, 0) = (((IncCRLossA(0, 0) * sin_o_s) + IncCRLossA(1, 0)) * sin_o_s) + IncCRLossA(2, 0)

 IncCRLoss2(1, 0) = (((IncCRLossB(0, 0) * sin_o_s) + IncCRLossB(1, 0)) * sin_o_s) + IncCRLossB(2, 0)

 IncCRLoss2(2, 0) = (((IncCRLossC(0, 0) * sin_o_s) + IncCRLossC(1, 0)) * sin_o_s) + IncCRLossC(2, 0)

 IncCRLoss2(3, 0) = (((IncCRLossD(0, 0) * sin_o_s) + IncCRLossD(1, 0)) * sin_o_s) + IncCRLossD(2, 0)

 IncCRLoss2(4, 0) = (((IncCRLossE(0, 0) * sin_o_s) + IncCRLossE(1, 0)) * sin_o_s) + IncCRLossE(2, 0)

 i+CR

 i_CR = (((((((IncCRLoss2(0, 0) * CR) + IncCRLoss2(1, 0)) * CR) + IncCRLoss2(2, 0)) * CR) + IncCRLoss2(3, 0)) * CR) + IncCRLoss2(4, 0)

Incidence correction s/b

Dim IncsbLossRngx As Range

Dim IncsbLossRngyA As Range

Dim IncsbLossRngyB As Range

Dim IncsbLossRngyC As Range

Dim IncsbLossRngyD As Range

Dim IncsbLossRngyE As Range

 Set IncsbLossRngx = Worksheets("CraigCox Corr").Range("P67:P79")

 Set IncsbLossRngyA = Worksheets("CraigCox Corr").Range("Q67:Q79")

 Set IncsbLossRngyB = Worksheets("CraigCox Corr").Range("R67:R79")

 Set IncsbLossRngyC = Worksheets("CraigCox Corr").Range("S67:S79")

 Set IncsbLossRngyD = Worksheets("CraigCox Corr").Range("T67:T79")

 Set IncsbLossRngyE = Worksheets("CraigCox Corr").Range("U67:U79")

 1st Polynomial Factors

 Dim IncsbLossA(6, 0) As Double

 IncsbLossA(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 IncsbLossA(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 IncsbLossA(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 IncsbLossA(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 IncsbLossA(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 IncsbLossA(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 IncsbLossA(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyA, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim IncsbLossB(6, 0) As Double

 IncsbLossB(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 IncsbLossB(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

166

 IncsbLossB(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 IncsbLossB(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 IncsbLossB(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 IncsbLossB(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 IncsbLossB(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyB, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim IncsbLossC(6, 0) As Double

 IncsbLossC(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 IncsbLossC(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 IncsbLossC(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 IncsbLossC(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 IncsbLossC(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 IncsbLossC(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 IncsbLossC(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyC, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim IncsbLossD(6, 0) As Double

 IncsbLossD(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 IncsbLossD(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 IncsbLossD(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 IncsbLossD(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 IncsbLossD(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 IncsbLossD(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 IncsbLossD(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyD, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim IncsbLossE(6, 0) As Double

 IncsbLossE(0, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 IncsbLossE(1, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 IncsbLossE(2, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 IncsbLossE(3, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 IncsbLossE(4, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 IncsbLossE(5, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 IncsbLossE(6, 0) = Application.Index(Application.LinEst(IncsbLossRngyE, Application.Power(IncsbLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

 Dim IncsbLoss2(4, 0) As Double

 IncsbLoss2(0, 0) = (((((((((((IncsbLossA(0, 0) * sin_o_s) + IncsbLossA(1, 0)) * sin_o_s) + IncsbLossA(2, 0)) * sin_o_s) + IncsbLossA(3, 0)) *

sin_o_s) + IncsbLossA(4, 0)) * sin_o_s) + IncsbLossA(5, 0)) * sin_o_s) + IncsbLossA(6, 0)

 IncsbLoss2(1, 0) = (((((((((((IncsbLossB(0, 0) * sin_o_s) + IncsbLossB(1, 0)) * sin_o_s) + IncsbLossB(2, 0)) * sin_o_s) + IncsbLossB(3, 0)) *

sin_o_s) + IncsbLossB(4, 0)) * sin_o_s) + IncsbLossB(5, 0)) * sin_o_s) + IncsbLossB(6, 0)

 IncsbLoss2(2, 0) = (((((((((((IncsbLossC(0, 0) * sin_o_s) + IncsbLossC(1, 0)) * sin_o_s) + IncsbLossC(2, 0)) * sin_o_s) + IncsbLossC(3, 0)) *

sin_o_s) + IncsbLossC(4, 0)) * sin_o_s) + IncsbLossC(5, 0)) * sin_o_s) + IncsbLossC(6, 0)

 IncsbLoss2(3, 0) = (((((((((((IncsbLossD(0, 0) * sin_o_s) + IncsbLossD(1, 0)) * sin_o_s) + IncsbLossD(2, 0)) * sin_o_s) + IncsbLossD(3, 0)) *

sin_o_s) + IncsbLossD(4, 0)) * sin_o_s) + IncsbLossD(5, 0)) * sin_o_s) + IncsbLossD(6, 0)

 IncsbLoss2(4, 0) = (((((((((((IncsbLossE(0, 0) * sin_o_s) + IncsbLossE(1, 0)) * sin_o_s) + IncsbLossE(2, 0)) * sin_o_s) + IncsbLossE(3, 0)) *

sin_o_s) + IncsbLossE(4, 0)) * sin_o_s) + IncsbLossE(5, 0)) * sin_o_s) + IncsbLossE(6, 0)

Dim s_Bb As Double

s_Bb = ((rowdata(i1, 6) * 0.0254) / Bb)

 i+s/b

 i_s_b = (((((((IncsbLoss2(0, 0) * s_Bb) + IncsbLoss2(1, 0)) * s_Bb) + IncsbLoss2(2, 0)) * s_Bb) + IncsbLoss2(3, 0)) * s_Bb) + IncsbLoss2(4, 0)

Negative stalling incidence Losses

Dim NSIncLossRngx As Range

Dim NSIncLossRngyA As Range

Dim NSIncLossRngyB As Range

Dim NSIncLossRngyC As Range

167

Dim NSIncLossRngyD As Range

Dim NSIncLossRngyE As Range

Dim NSIncLossRngyF As Range

 Set NSIncLossRngx = Worksheets("CraigCox Corr").Range("W67:W79")

 Set NSIncLossRngyA = Worksheets("CraigCox Corr").Range("X67:X79")

 Set NSIncLossRngyB = Worksheets("CraigCox Corr").Range("Y67:Y79")

 Set NSIncLossRngyC = Worksheets("CraigCox Corr").Range("Z67:Z79")

 Set NSIncLossRngyD = Worksheets("CraigCox Corr").Range("AA67:AA79")

 Set NSIncLossRngyE = Worksheets("CraigCox Corr").Range("AB67:AB79")

 Set NSIncLossRngyF = Worksheets("CraigCox Corr").Range("AC67:AC79")

 1st Polynomial Factors

 Dim NSIncLossA(6, 0) As Double

 NSIncLossA(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 NSIncLossA(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossA(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossA(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossA(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossA(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossA(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyA, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim NSIncLossB(6, 0) As Double

 NSIncLossB(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 NSIncLossB(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossB(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossB(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossB(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossB(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossB(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyB, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim NSIncLossC(6, 0) As Double

 NSIncLossC(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 NSIncLossC(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossC(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossC(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossC(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossC(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossC(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyC, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim NSIncLossD(6, 0) As Double

 NSIncLossD(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 NSIncLossD(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossD(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossD(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossD(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossD(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossD(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyD, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim NSIncLossE(6, 0) As Double

 NSIncLossE(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 NSIncLossE(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossE(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossE(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossE(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossE(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossE(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyE, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim NSIncLossF(6, 0) As Double

 NSIncLossF(0, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

168

 NSIncLossF(1, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 NSIncLossF(2, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 NSIncLossF(3, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 NSIncLossF(4, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 NSIncLossF(5, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 NSIncLossF(6, 0) = Application.Index(Application.LinEst(NSIncLossRngyF, Application.Power(NSIncLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

 Dim NSIncLoss2(6, 0) As Double

 NSIncLoss2(0, 0) = (((((((((((NSIncLossA(0, 0) * sin_o_s) + NSIncLossA(1, 0)) * sin_o_s) + NSIncLossA(2, 0)) * sin_o_s) + NSIncLossA(3, 0)) *

sin_o_s) + NSIncLossA(4, 0)) * sin_o_s) + NSIncLossA(5, 0)) * sin_o_s) + NSIncLossA(6, 0)

 NSIncLoss2(1, 0) = (((((((((((NSIncLossB(0, 0) * sin_o_s) + NSIncLossB(1, 0)) * sin_o_s) + NSIncLossB(2, 0)) * sin_o_s) + NSIncLossB(3, 0)) *

sin_o_s) + NSIncLossB(4, 0)) * sin_o_s) + NSIncLossB(5, 0)) * sin_o_s) + NSIncLossB(6, 0)

 NSIncLoss2(2, 0) = (((((((((((NSIncLossC(0, 0) * sin_o_s) + NSIncLossC(1, 0)) * sin_o_s) + NSIncLossC(2, 0)) * sin_o_s) + NSIncLossC(3, 0)) *

sin_o_s) + NSIncLossC(4, 0)) * sin_o_s) + NSIncLossC(5, 0)) * sin_o_s) + NSIncLossC(6, 0)

 NSIncLoss2(3, 0) = (((((((((((NSIncLossD(0, 0) * sin_o_s) + NSIncLossD(1, 0)) * sin_o_s) + NSIncLossD(2, 0)) * sin_o_s) + NSIncLossD(3, 0)) *

sin_o_s) + NSIncLossD(4, 0)) * sin_o_s) + NSIncLossD(5, 0)) * sin_o_s) + NSIncLossD(6, 0)

 NSIncLoss2(4, 0) = (((((((((((NSIncLossE(0, 0) * sin_o_s) + NSIncLossE(1, 0)) * sin_o_s) + NSIncLossE(2, 0)) * sin_o_s) + NSIncLossE(3, 0)) *

sin_o_s) + NSIncLossE(4, 0)) * sin_o_s) + NSIncLossE(5, 0)) * sin_o_s) + NSIncLossE(6, 0)

 NSIncLoss2(5, 0) = (((((((((((NSIncLossF(0, 0) * sin_o_s) + NSIncLossF(1, 0)) * sin_o_s) + NSIncLossF(2, 0)) * sin_o_s) + NSIncLossF(3, 0)) *

sin_o_s) + NSIncLossF(4, 0)) * sin_o_s) + NSIncLossF(5, 0)) * sin_o_s) + NSIncLossF(6, 0)

 i-stall bas

 i_n_bas = (((((((((NSIncLoss2(0, 0) * alphacc1) + NSIncLoss2(1, 0)) * alphacc1) + NSIncLoss2(2, 0)) * alphacc1) + NSIncLoss2(3, 0)) *

alphacc1) + NSIncLoss2(4, 0)) * alphacc1) + NSIncLoss2(5, 0)

Negative Stalling Incidences s/b

Dim NSIncsbLossRngx As Range

Dim NSIncsbLossRngyA As Range

Dim NSIncsbLossRngyB As Range

Dim NSIncsbLossRngyC As Range

Dim NSIncsbLossRngyD As Range

Dim NSIncsbLossRngyE As Range

Dim NSIncsbLossRngyF As Range

Dim NSIncsbLossRngyG As Range

 Set NSIncsbLossRngx = Worksheets("CraigCox Corr").Range("AE67:AE77")

 Set NSIncsbLossRngyA = Worksheets("CraigCox Corr").Range("AF67:AF77")

 Set NSIncsbLossRngyB = Worksheets("CraigCox Corr").Range("AG67:AG77")

 Set NSIncsbLossRngyC = Worksheets("CraigCox Corr").Range("AH67:AH77")

 Set NSIncsbLossRngyD = Worksheets("CraigCox Corr").Range("AI67:AI77")

 Set NSIncsbLossRngyE = Worksheets("CraigCox Corr").Range("AJ67:AJ77")

 Set NSIncsbLossRngyF = Worksheets("CraigCox Corr").Range("AK67:AK77")

 Set NSIncsbLossRngyG = Worksheets("CraigCox Corr").Range("AL67:AL77")

 1st Polynomial Factors

 Dim NSIncsbLossA(6, 0) As Double

 NSIncsbLossA(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossA(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossA(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossA(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossA(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

169

 NSIncsbLossA(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossA(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyA, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossB(6, 0) As Double

 NSIncsbLossB(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossB(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossB(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossB(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossB(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossB(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossB(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyB, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossC(6, 0) As Double

 NSIncsbLossC(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossC(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossC(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossC(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossC(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossC(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossC(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyC, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossD(6, 0) As Double

 NSIncsbLossD(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossD(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossD(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossD(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossD(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossD(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossD(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyD, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossE(6, 0) As Double

 NSIncsbLossE(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossE(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossE(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossE(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

170

 NSIncsbLossE(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossE(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossE(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyE, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossF(6, 0) As Double

 NSIncsbLossF(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossF(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossF(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossF(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossF(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossF(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossF(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyF, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim NSIncsbLossG(6, 0) As Double

 NSIncsbLossG(0, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 NSIncsbLossG(1, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 NSIncsbLossG(2, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 NSIncsbLossG(3, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 NSIncsbLossG(4, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 NSIncsbLossG(5, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 NSIncsbLossG(6, 0) = Application.Index(Application.LinEst(NSIncsbLossRngyG, Application.Power(NSIncsbLossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 2nd Polynomial Factors

 Dim NSIncsbLoss2(6, 0) As Double

 NSIncsbLoss2(0, 0) = (((((((((((NSIncsbLossA(0, 0) * sin_o_s) + NSIncsbLossA(1, 0)) * sin_o_s) + NSIncsbLossA(2, 0)) * sin_o_s) +

NSIncsbLossA(3, 0)) * sin_o_s) + NSIncsbLossA(4, 0)) * sin_o_s) + NSIncsbLossA(5, 0)) * sin_o_s) + NSIncsbLossA(6, 0)

 NSIncsbLoss2(1, 0) = (((((((((((NSIncsbLossB(0, 0) * sin_o_s) + NSIncsbLossB(1, 0)) * sin_o_s) + NSIncsbLossB(2, 0)) * sin_o_s) +

NSIncsbLossB(3, 0)) * sin_o_s) + NSIncsbLossB(4, 0)) * sin_o_s) + NSIncsbLossB(5, 0)) * sin_o_s) + NSIncsbLossB(6, 0)

 NSIncsbLoss2(2, 0) = (((((((((((NSIncsbLossC(0, 0) * sin_o_s) + NSIncsbLossC(1, 0)) * sin_o_s) + NSIncsbLossC(2, 0)) * sin_o_s) +

NSIncsbLossC(3, 0)) * sin_o_s) + NSIncsbLossC(4, 0)) * sin_o_s) + NSIncsbLossC(5, 0)) * sin_o_s) + NSIncsbLossC(6, 0)

 NSIncsbLoss2(3, 0) = (((((((((((NSIncsbLossD(0, 0) * sin_o_s) + NSIncsbLossD(1, 0)) * sin_o_s) + NSIncsbLossD(2, 0)) * sin_o_s) +

NSIncsbLossD(3, 0)) * sin_o_s) + NSIncsbLossD(4, 0)) * sin_o_s) + NSIncsbLossD(5, 0)) * sin_o_s) + NSIncsbLossD(6, 0)

 NSIncsbLoss2(4, 0) = (((((((((((NSIncsbLossE(0, 0) * sin_o_s) + NSIncsbLossE(1, 0)) * sin_o_s) + NSIncsbLossE(2, 0)) * sin_o_s) +

NSIncsbLossE(3, 0)) * sin_o_s) + NSIncsbLossE(4, 0)) * sin_o_s) + NSIncsbLossE(5, 0)) * sin_o_s) + NSIncsbLossE(6, 0)

 NSIncsbLoss2(5, 0) = (((((((((((NSIncsbLossF(0, 0) * sin_o_s) + NSIncsbLossF(1, 0)) * sin_o_s) + NSIncsbLossF(2, 0)) * sin_o_s) +

NSIncsbLossF(3, 0)) * sin_o_s) + NSIncsbLossF(4, 0)) * sin_o_s) + NSIncsbLossF(5, 0)) * sin_o_s) + NSIncsbLossF(6, 0)

 NSIncsbLoss2(6, 0) = (((((((((((NSIncsbLossG(0, 0) * sin_o_s) + NSIncsbLossG(1, 0)) * sin_o_s) + NSIncsbLossG(2, 0)) * sin_o_s) +

NSIncsbLossG(3, 0)) * sin_o_s) + NSIncsbLossG(4, 0)) * sin_o_s) + NSIncsbLossG(5, 0)) * sin_o_s) + NSIncsbLossG(6, 0)

 i-stall s/b

 i_n_s_b = (((((((((((NSIncsbLoss2(0, 0) * s_Bb) + NSIncsbLoss2(1, 0)) * s_Bb) + NSIncsbLoss2(2, 0)) * s_Bb) + NSIncsbLoss2(3, 0)) * s_Bb) +

NSIncsbLoss2(4, 0)) * s_Bb) + NSIncsbLoss2(5, 0)) * s_Bb) + NSIncsbLoss2(6, 0)

171

Basic Negative Stalling Incidence > 90

Dim BNSInc90LossRngx As Range

Dim BNSInc90LossRngyA As Range

Dim BNSInc90LossRngyB As Range

Dim BNSInc90LossRngyC As Range

Dim BNSInc90LossRngyD As Range

Dim BNSInc90LossRngyE As Range

 Set BNSInc90LossRngx = Worksheets("CraigCox Corr").Range("AN67:AN79")

 Set BNSInc90LossRngyA = Worksheets("CraigCox Corr").Range("AO67:AO79")

 Set BNSInc90LossRngyB = Worksheets("CraigCox Corr").Range("AP67:AP79")

 Set BNSInc90LossRngyC = Worksheets("CraigCox Corr").Range("AQ67:AQ79")

 Set BNSInc90LossRngyD = Worksheets("CraigCox Corr").Range("AR67:AR79")

 Set BNSInc90LossRngyE = Worksheets("CraigCox Corr").Range("AS67:AS79")

 1st Polynomial Factors

 Dim BNSInc90LossA(6, 0) As Double

 BNSInc90LossA(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 1)

 BNSInc90LossA(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 2)

 BNSInc90LossA(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 3)

 BNSInc90LossA(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 4)

 BNSInc90LossA(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 5)

 BNSInc90LossA(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 6)

 BNSInc90LossA(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyA, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 7)

 Dim BNSInc90LossB(6, 0) As Double

 BNSInc90LossB(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 1)

 BNSInc90LossB(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 2)

 BNSInc90LossB(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 3)

 BNSInc90LossB(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 4)

 BNSInc90LossB(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 5)

 BNSInc90LossB(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 6)

 BNSInc90LossB(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyB, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 7)

 Dim BNSInc90LossC(6, 0) As Double

 BNSInc90LossC(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 1)

 BNSInc90LossC(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 2)

 BNSInc90LossC(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 3)

 BNSInc90LossC(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 4)

 BNSInc90LossC(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 5)

172

 BNSInc90LossC(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 6)

 BNSInc90LossC(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyC, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 7)

 Dim BNSInc90LossD(6, 0) As Double

 BNSInc90LossD(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 1)

 BNSInc90LossD(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 2)

 BNSInc90LossD(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 3)

 BNSInc90LossD(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 4)

 BNSInc90LossD(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 5)

 BNSInc90LossD(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 6)

 BNSInc90LossD(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyD, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 7)

 Dim BNSInc90LossE(6, 0) As Double

 BNSInc90LossE(0, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 1)

 BNSInc90LossE(1, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 2)

 BNSInc90LossE(2, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 3)

 BNSInc90LossE(3, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 4)

 BNSInc90LossE(4, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 5)

 BNSInc90LossE(5, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 6)

 BNSInc90LossE(6, 0) = Application.Index(Application.LinEst(BNSInc90LossRngyE, Application.Power(BNSInc90LossRngx, Array(1, 2, 3, 4,

5, 6))), 1, 7)

Dim sin_o_s As Double

sin_o_s = Application.WorksheetFunction.Degrees(Application.WorksheetFunction.Asin((rowdata(i1, 0) / rowdata(i1, 6))))

 2nd Polynomial Factors

 Dim BNSInc90Loss2(4, 0) As Double

 BNSInc90Loss2(0, 0) = (((((((((((BNSInc90LossA(0, 0) * sin_o_s) + BNSInc90LossA(1, 0)) * sin_o_s) + BNSInc90LossA(2, 0)) * sin_o_s) +

BNSInc90LossA(3, 0)) * sin_o_s) + BNSInc90LossA(4, 0)) * sin_o_s) + BNSInc90LossA(5, 0)) * sin_o_s) + BNSInc90LossA(6, 0)

 BNSInc90Loss2(1, 0) = (((((((((((BNSInc90LossB(0, 0) * sin_o_s) + BNSInc90LossB(1, 0)) * sin_o_s) + BNSInc90LossB(2, 0)) * sin_o_s) +

BNSInc90LossB(3, 0)) * sin_o_s) + BNSInc90LossB(4, 0)) * sin_o_s) + BNSInc90LossB(5, 0)) * sin_o_s) + BNSInc90LossB(6, 0)

 BNSInc90Loss2(2, 0) = (((((((((((BNSInc90LossC(0, 0) * sin_o_s) + BNSInc90LossC(1, 0)) * sin_o_s) + BNSInc90LossC(2, 0)) * sin_o_s) +

BNSInc90LossC(3, 0)) * sin_o_s) + BNSInc90LossC(4, 0)) * sin_o_s) + BNSInc90LossC(5, 0)) * sin_o_s) + BNSInc90LossC(6, 0)

 BNSInc90Loss2(3, 0) = (((((((((((BNSInc90LossD(0, 0) * sin_o_s) + BNSInc90LossD(1, 0)) * sin_o_s) + BNSInc90LossD(2, 0)) * sin_o_s) +

BNSInc90LossD(3, 0)) * sin_o_s) + BNSInc90LossD(4, 0)) * sin_o_s) + BNSInc90LossD(5, 0)) * sin_o_s) + BNSInc90LossD(6, 0)

 BNSInc90Loss2(4, 0) = (((((((((((BNSInc90LossE(0, 0) * sin_o_s) + BNSInc90LossE(1, 0)) * sin_o_s) + BNSInc90LossE(2, 0)) * sin_o_s) +

BNSInc90LossE(3, 0)) * sin_o_s) + BNSInc90LossE(4, 0)) * sin_o_s) + BNSInc90LossE(5, 0)) * sin_o_s) + BNSInc90LossE(6, 0)

 i-bas90

 i_nbas90 = (((((((BNSInc90Loss2(0, 0) * alphacc1) + BNSInc90Loss2(1, 0)) * alphacc1) + BNSInc90Loss2(2, 0)) * alphacc1) +

BNSInc90Loss2(3, 0)) * alphacc1) + BNSInc90Loss2(4, 0)

Basic Positive Stalling Incidence > 90

Dim BPSInc90LossRngx As Range

173

Dim BPSInc90LossRngyA As Range

Dim BPSInc90LossRngyB As Range

Dim BPSInc90LossRngyC As Range

Dim BPSInc90LossRngyD As Range

Dim BPSInc90LossRngyE As Range

 Set BPSInc90LossRngx = Worksheets("CraigCox Corr").Range("AU67:AU77")

 Set BPSInc90LossRngyA = Worksheets("CraigCox Corr").Range("AV67:AV77")

 Set BPSInc90LossRngyB = Worksheets("CraigCox Corr").Range("AW67:AW77")

 Set BPSInc90LossRngyC = Worksheets("CraigCox Corr").Range("AX67:AX77")

 Set BPSInc90LossRngyD = Worksheets("CraigCox Corr").Range("AY67:AY77")

 Set BPSInc90LossRngyE = Worksheets("CraigCox Corr").Range("AZ67:AZ77")

 1st Polynomial Factors

 Dim BPSInc90LossA(6, 0) As Double

 BPSInc90LossA(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 BPSInc90LossA(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 BPSInc90LossA(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 BPSInc90LossA(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 BPSInc90LossA(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 BPSInc90LossA(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 BPSInc90LossA(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyA, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim BPSInc90LossB(6, 0) As Double

 BPSInc90LossB(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 BPSInc90LossB(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 BPSInc90LossB(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 BPSInc90LossB(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 BPSInc90LossB(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 BPSInc90LossB(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 BPSInc90LossB(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyB, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim BPSInc90LossC(6, 0) As Double

 BPSInc90LossC(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 BPSInc90LossC(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 BPSInc90LossC(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 BPSInc90LossC(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 BPSInc90LossC(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 BPSInc90LossC(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 BPSInc90LossC(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyC, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

174

 Dim BPSInc90LossD(6, 0) As Double

 BPSInc90LossD(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 BPSInc90LossD(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 BPSInc90LossD(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 BPSInc90LossD(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 BPSInc90LossD(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 BPSInc90LossD(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 BPSInc90LossD(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyD, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 Dim BPSInc90LossE(6, 0) As Double

 BPSInc90LossE(0, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 1)

 BPSInc90LossE(1, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 2)

 BPSInc90LossE(2, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 3)

 BPSInc90LossE(3, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 4)

 BPSInc90LossE(4, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 5)

 BPSInc90LossE(5, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 6)

 BPSInc90LossE(6, 0) = Application.Index(Application.LinEst(BPSInc90LossRngyE, Application.Power(BPSInc90LossRngx, Array(1, 2, 3, 4, 5,

6))), 1, 7)

 2nd Polynomial Factors

 Dim BPSInc90Loss2(4, 0) As Double

 BPSInc90Loss2(0, 0) = (((((((((((BPSInc90LossA(0, 0) * sin_o_s) + BPSInc90LossA(1, 0)) * sin_o_s) + BPSInc90LossA(2, 0)) * sin_o_s) +

BPSInc90LossA(3, 0)) * sin_o_s) + BPSInc90LossA(4, 0)) * sin_o_s) + BPSInc90LossA(5, 0)) * sin_o_s) + BPSInc90LossA(6, 0)

 BPSInc90Loss2(1, 0) = (((((((((((BPSInc90LossB(0, 0) * sin_o_s) + BPSInc90LossB(1, 0)) * sin_o_s) + BPSInc90LossB(2, 0)) * sin_o_s) +

BPSInc90LossB(3, 0)) * sin_o_s) + BPSInc90LossB(4, 0)) * sin_o_s) + BPSInc90LossB(5, 0)) * sin_o_s) + BPSInc90LossB(6, 0)

 BPSInc90Loss2(2, 0) = (((((((((((BPSInc90LossC(0, 0) * sin_o_s) + BPSInc90LossC(1, 0)) * sin_o_s) + BPSInc90LossC(2, 0)) * sin_o_s) +

BPSInc90LossC(3, 0)) * sin_o_s) + BPSInc90LossC(4, 0)) * sin_o_s) + BPSInc90LossC(5, 0)) * sin_o_s) + BPSInc90LossC(6, 0)

 BPSInc90Loss2(3, 0) = (((((((((((BPSInc90LossD(0, 0) * sin_o_s) + BPSInc90LossD(1, 0)) * sin_o_s) + BPSInc90LossD(2, 0)) * sin_o_s) +

BPSInc90LossD(3, 0)) * sin_o_s) + BPSInc90LossD(4, 0)) * sin_o_s) + BPSInc90LossD(5, 0)) * sin_o_s) + BPSInc90LossD(6, 0)

 BPSInc90Loss2(4, 0) = (((((((((((BPSInc90LossE(0, 0) * sin_o_s) + BPSInc90LossE(1, 0)) * sin_o_s) + BPSInc90LossE(2, 0)) * sin_o_s) +

BPSInc90LossE(3, 0)) * sin_o_s) + BPSInc90LossE(4, 0)) * sin_o_s) + BPSInc90LossE(5, 0)) * sin_o_s) + BPSInc90LossE(6, 0)

 i+bas90

 i_pbas90 = (((((((BPSInc90Loss2(0, 0) * alphacc1) + BPSInc90Loss2(1, 0)) * alphacc1) + BPSInc90Loss2(2, 0)) * alphacc1) +

BPSInc90Loss2(3, 0)) * alphacc1) + BPSInc90Loss2(4, 0)

Minimum Loss

Dim MinLossRngx As Range

Dim MinLossRngyA As Range

Dim MinLossRngyB As Range

Dim MinLossRngyC As Range

Dim MinLossRngyD As Range

Dim MinLossRngyE As Range

175

 Set MinLossRngx = Worksheets("CraigCox Corr").Range("BB67:BB75")

 Set MinLossRngyA = Worksheets("CraigCox Corr").Range("BC67:BC75")

 Set MinLossRngyB = Worksheets("CraigCox Corr").Range("BD67:BD75")

 Set MinLossRngyC = Worksheets("CraigCox Corr").Range("BE67:BE75")

 Set MinLossRngyD = Worksheets("CraigCox Corr").Range("BF67:BF75")

 Set MinLossRngyE = Worksheets("CraigCox Corr").Range("BG67:BG75")

 1st Polynomial Factors

 Dim MinLossA(6, 0) As Double

 MinLossA(0, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MinLossA(1, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MinLossA(2, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MinLossA(3, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MinLossA(4, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MinLossA(5, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MinLossA(6, 0) = Application.Index(Application.LinEst(MinLossRngyA, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MinLossB(6, 0) As Double

 MinLossB(0, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MinLossB(1, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MinLossB(2, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MinLossB(3, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MinLossB(4, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MinLossB(5, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MinLossB(6, 0) = Application.Index(Application.LinEst(MinLossRngyB, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MinLossC(6, 0) As Double

 MinLossC(0, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MinLossC(1, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MinLossC(2, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MinLossC(3, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MinLossC(4, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MinLossC(5, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MinLossC(6, 0) = Application.Index(Application.LinEst(MinLossRngyC, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MinLossD(6, 0) As Double

 MinLossD(0, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MinLossD(1, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MinLossD(2, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MinLossD(3, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MinLossD(4, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MinLossD(5, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MinLossD(6, 0) = Application.Index(Application.LinEst(MinLossRngyD, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 Dim MinLossE(6, 0) As Double

 MinLossE(0, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 MinLossE(1, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 MinLossE(2, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 MinLossE(3, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 MinLossE(4, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 MinLossE(5, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 MinLossE(6, 0) = Application.Index(Application.LinEst(MinLossRngyE, Application.Power(MinLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

 2nd Polynomial Factors

Dim s_Bb As Double

s_Bb = ((rowdata(i1, 6) * 0.0254) / Bb)

 Dim MinLoss2(4, 0) As Double

 MinLoss2(0, 0) = (((((((((((MinLossA(0, 0) * s_Bb) + MinLossA(1, 0)) * s_Bb) + MinLossA(2, 0)) * s_Bb) + MinLossA(3, 0)) * s_Bb) +

MinLossA(4, 0)) * s_Bb) + MinLossA(5, 0)) * s_Bb) + MinLossA(6, 0)

176

 MinLoss2(1, 0) = (((((((((((MinLossB(0, 0) * s_Bb) + MinLossB(1, 0)) * s_Bb) + MinLossB(2, 0)) * s_Bb) + MinLossB(3, 0)) * s_Bb) +

MinLossB(4, 0)) * s_Bb) + MinLossB(5, 0)) * s_Bb) + MinLossB(6, 0)

 MinLoss2(2, 0) = (((((((((((MinLossC(0, 0) * s_Bb) + MinLossC(1, 0)) * s_Bb) + MinLossC(2, 0)) * s_Bb) + MinLossC(3, 0)) * s_Bb) +

MinLossC(4, 0)) * s_Bb) + MinLossC(5, 0)) * s_Bb) + MinLossC(6, 0)

 MinLoss2(3, 0) = (((((((((((MinLossD(0, 0) * s_Bb) + MinLossD(1, 0)) * s_Bb) + MinLossD(2, 0)) * s_Bb) + MinLossD(3, 0)) * s_Bb) +

MinLossD(4, 0)) * s_Bb) + MinLossD(5, 0)) * s_Bb) + MinLossD(6, 0)

 MinLoss2(4, 0) = (((((((((((MinLossE(0, 0) * s_Bb) + MinLossE(1, 0)) * s_Bb) + MinLossE(2, 0)) * s_Bb) + MinLossE(3, 0)) * s_Bb) +

MinLossE(4, 0)) * s_Bb) + MinLossE(5, 0)) * s_Bb) + MinLossE(6, 0)

 Fi

 Dim Fi As Double

 Fi = (((((((MinLoss2(0, 0) * alphacc1) + MinLoss2(1, 0)) * alphacc1) + MinLoss2(2, 0)) * alphacc1) + MinLoss2(3, 0)) * alphacc1) +

MinLoss2(4, 0)

Incidence Loss

Dim i_pstall As Double

Dim i_nstall As Double

If alphacc1 > 90 Then

i_pstall = i_pbas90 + (1 - ((alphacc1 - 90) / (90 - sin_o_s))) * (i_CR + i_s_b)

i_nstall = i_nbas90 + (1 - ((alphacc1 - 90) / (90 - sin_o_s))) * (i_n_s_b)

Else

i_pstall = i_bas + i_CR + i_s_b

i_nstall = i_n_bas + i_n_s_b

End If

Dim i_min As Double

i_min = ((i_pstall + (Fi * i_nstall)) / (1 + Fi))

Dim inc As Double

If i1 = 0 Then

inc = 0

Else

inc = Application.WorksheetFunction.Degrees(nozzleout(0, 0)) - rowdata(i1, 7)

End If

Dim incr As Double

If Abs(inc) < Abs(i_min) Then

incr = (inc - i_min) / Abs(i_nstall - i_min)

Else

incr = (inc - i_min) / Abs(i_pstall - i_min)

End If

Dim incLossRngx As Range

Dim incLossRngyA As Range

 Set incLossRngx = Worksheets("CraigCox Corr").Range("BI67:BI79")

 Set incLossRngyA = Worksheets("CraigCox Corr").Range("BJ67:BJ79")

 1st Polynomial Factors

 Dim incLossA(6, 0) As Double

 incLossA(0, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 1)

 incLossA(1, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 2)

 incLossA(2, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 3)

 incLossA(3, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 4)

 incLossA(4, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 5)

 incLossA(5, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 6)

 incLossA(6, 0) = Application.Index(Application.LinEst(incLossRngyA, Application.Power(incLossRngx, Array(1, 2, 3, 4, 5, 6))), 1, 7)

177

 Xi = (((((((((((incLossA(0, 0) * incr) + incLossA(1, 0)) * incr) + incLossA(2, 0)) * incr) + incLossA(3, 0)) * incr) + incLossA(4, 0)) * incr) +

incLossA(5, 0)) * incr) + incLossA(6, 0)

If inc < -5 Or inc > 10 Then

Xi = Xi

Else

Xi = 1

End If

If Xi > 3.5 Then

Xi = 3.5

End If

Corrected Profile Loss

xpcc = 0.01 * (Xte * Xi * PLoss + BBR + MA + Pte) * (1 + 0.5 * g1 * m ^ 2)

Pte2 = 0.01 * Pte * (1 + 0.5 * g1 * m ^ 2)

Secondary Losses

Aspect ratio factor

Dim LossCoeff As Collection

Dim Loss As Variant

Set LossCoeff = New Collection

LossCoeff.Add "" & 0.25 * (rowgeom(i1 + 1, 1) + rowgeom(i1, 1) - rowgeom(i1 + 1, 0) - rowgeom(i1, 0)) & "", "bldhgt" & i1 & ""

Dim b_h As Double

b_h = Bb / (LossCoeff.Item("bldhgt" & i1 & "") * 0.0254)

Dim SecARLossRngx As Range

Dim SecARLossRngyA As Range

 Set SecARLossRngx = Worksheets("CraigCox Corr").Range("B84:B94")

 Set SecARLossRngyA = Worksheets("CraigCox Corr").Range("c84:c94")

 1st Polynomial Factors

 Dim SecARLossA(6, 0) As Double

 SecARLossA(0, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

1)

 SecARLossA(1, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

2)

 SecARLossA(2, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

3)

 SecARLossA(3, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

4)

 SecARLossA(4, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

5)

 SecARLossA(5, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

6)

 SecARLossA(6, 0) = Application.Index(Application.LinEst(SecARLossRngyA, Application.Power(SecARLossRngx, Array(1, 2, 3, 4, 5, 6))), 1,

7)

Dim Nsh_b As Double

Nsh_b = (((((((((((SecARLossA(0, 0) * b_h) + SecARLossA(1, 0)) * b_h) + SecARLossA(2, 0)) * b_h) + SecARLossA(3, 0)) * b_h) + SecARLossA(4,

0)) * b_h) + SecARLossA(5, 0)) * b_h) + SecARLossA(6, 0)

Basic Loss Factor

178

Dim SecBasLossRngx As Range

Dim SecBasLossRngyA As Range

Dim SecBasLossRngyB As Range

 Set SecBasLossRngx = Worksheets("CraigCox Corr").Range("B99:B105")

 Set SecBasLossRngyA = Worksheets("CraigCox Corr").Range("C99:C105")

 Set SecBasLossRngyB = Worksheets("CraigCox Corr").Range("D99:D105")

 m

 Dim SecBasLossA(1, 0) As Double

 SecBasLossA(0, 0) = Application.Index(Application.LinEst(SecBasLossRngyA, Application.Power(SecBasLossRngx, Array(1))), 1, 1)

 SecBasLossA(1, 0) = Application.Index(Application.LinEst(SecBasLossRngyA, Application.Power(SecBasLossRngx, Array(1))), 1, 2)

 C

 Dim SecBasLossB(1, 0) As Double

 SecBasLossB(0, 0) = Application.Index(Application.LinEst(SecBasLossRngyB, Application.Power(SecBasLossRngx, Array(1))), 1, 1)

 SecBasLossB(1, 0) = Application.Index(Application.LinEst(SecBasLossRngyB, Application.Power(SecBasLossRngx, Array(1))), 1, 2)

Velocity Ratio

 vel_ratio = 0

 If vel_ratio > 1 Then

 vel_ratio = 1

 End If

 Dim secm As Double

 secm = (SecBasLossA(0, 0) * FL_sb) + SecBasLossA(1, 0)

 Dim secc As Double

 secc = (SecBasLossB(0, 0) * FL_sb) + SecBasLossB(1, 0)

 Dim Sec_bas As Double

 Sec_bas = (secm * vel_ratio) + secc

xscc = 0.01 * (Nsh_b * Sec_bas) * (1 + 0.5 * g1 * m ^ 2)

a1 = nozzleout(0, 0)

am = Atn(0.5 * (Tan(a1) + Tan((alpha4(i1, 0)))))

xtcc = 0.47 * (rowdata(i1, 2) / rowdata(i1, 8)) ^ 0.78 * rowdata(i1, 8) / LossCoeff.Item("bldhgt" & i1 & "") * ((Tan(a1) - Tan((alpha4(i1, 0))))

* Cos((alpha4(i1, 0)))) ^ 2 / Cos(am)

End If

If i1 = 0 Then

xtcc = 0

End If

Yt = xpcc + xscc + xtcc

Profile Loss Reynolds number

Dynamic Viscosity

Dim mu As Double

If i1 = 0 Then

mu = ((((((((-6.0671918E-12 * (nozzleout(2, 0) - 273.15)) + 2.212997838519E-08) * (nozzleout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(nozzleout(2, 0) - 273.15)) + 4.95001977743888E-02) * (nozzleout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

179

Else

mu = ((((((((-6.0671918E-12 * (turbineout(2, 0) - 273.15)) + 2.212997838519E-08) * (turbineout(2, 0) - 273.15)) - 3.46909333623785E-05) *

(turbineout(2, 0) - 273.15)) + 4.95001977743888E-02) * (turbineout(2, 0) - 273.15)) + 16.9760680267161) * 10 ^ -6

End If

Density

Dim rho As Double

If i1 = 0 Then

rho = (nozzleout(3, 0) * 6.89 * 1000 + 100000) / (nozzleout(2, 0) * 287.04)

Else

rho = (turbineout(3, 0) * 6.89 * 1000 + 100000) / (turbineout(2, 0) * 287.04)

End If

If i1 = 0 Then

Re = (rho * (nozzleout(2, 0)) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu

Else

Re = (rho * (vo) * 0.3048 * (rowdata(i1, 8) * 0.0254)) / mu

End If

ReO = Re * rowdata(i1, 0) / rowdata(i1, 8)

Xre = 21.945740773485 * ReO ^ -0.261777855254533

xpcc = 0.01 * (Xre * Xte * Xi * PLoss + BBR + MA + Pte) * (1 + 0.5 * g1 * m ^ 2)

Velocity Ratio

Dim a7 As Double

a7 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 0) * 0.0254) ^ 2) / 4

Dim a8 As Double

a8 = Application.WorksheetFunction.Pi() * ((rowgeom(0, 1) * 0.0254) ^ 2) / 4

Dim Annulus As Double

Annulus = a8 - a7

Dim rhoi As Double

rhoi = (Pi * 6.89 * 1000) / (ti * 287.04)

v7 = w / (rhoi * Annulus)

 If i1 = 0 Then

 vel_ratio = (v7 / vo) ^ 2

 Else

 vel_ratio = (nozzleout(1, 0) / vo) ^ 2

 End If

 If vel_ratio > 1 Then

 vel_ratio = 1

 End If

 secm = (SecBasLossA(0, 0) * FL_sb) + SecBasLossA(1, 0)

 secc = (SecBasLossB(0, 0) * FL_sb) + SecBasLossB(1, 0)

 Sec_bas = (secm * vel_ratio) + secc

xscc = 0.01 * (Xre * Nsh_b * Sec_bas) * (1 + 0.5 * g1 * m ^ 2)

If i1 = 0 Then

180

xtcc = 0

End If

Yt = xpcc + xscc + xtcc

