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Abstract

The majority of studies on multi-scale vortex motions employ a
two-dimensional geometry by using a variety of observational and
numerical data. This approach limits the understanding of the na-
ture of physical processes responsible for vortex dynamics. Here we
develop a new methodology to extract essential information from
the boundary surface of vortex tubes. 3D high-resolution mag-
netoconvection MURaM numerical data has been used to analyse
photospheric intergranular velocity vortices. The Lagrangian Aver-
aged Vorticity Deviation (LAVD) technique was applied to define
the centers of vortex structures and their boundary surfaces based
on the advection of fluid elements. These surfaces were mapped
onto a constructed envelope grid that allows the study of the key
plasma parameters as functions of space and time. Physical quan-
tities that help in the understanding of plasma dynamics were also
identified. Our results suggest that, while density and pressure
have a rather global behaviour, the other physical quantities un-
dergo local changes, with their magnitude and orientation changing
in space and time. At the surface, the mixing in the horizontal di-
rection is not efficient, leading to appearance of localized regions
with higher/lower temperatures. In addition, the analysis of the
MHD Poynting flux confirms that the majority of the energy is di-
rected in the horizontal direction. Our findings also indicate that
the pressure and magnetic forces that drive the dynamics of the
plasma on vortex surfaces are unbalanced and therefore the vor-
tices do not rotate as a rigid body.

Next, we investigate the signatures of waves that might propagate
via vortices. The objective of this study is to construct basic ro-
tating magnetic flux tubes and then to analyse the existence and
signature of local and global waves travelling through solar vortex
tubes. The Proper Orthogonal Decomposition (POD) technique
was used to analyse the wave morphology.
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CHAPTER 1

Introduction

1.1 The Sun

The study of the Sun is crucial for many reasons, paramount being that the

Sun is the closest star that can be studied in great detail and because of its role

in maintaining and supporting life on Earth. Thanks to the high-resolution of

observations of the last few decades provided by a myriad of space satellites

and ground-based telescopes such as SoHO, TRACE, HiNODE, STEREO,

SDO, BBSO, SST, DKIST, etc., the solar physics has entered in a new golden

age. The new results are revolutionising the way we understand and model

the structure and evolution of the Sun. Therefore, our Sun presents an unique

opportunity to investigate the stellar properties in detail.

Another crucial feature of the Sun is that its activity can have a signifi-

cant effect on our highly technological society. The solar atmosphere’s outer-

most layer is constantly expanding and transporting magnetic fields and ener-

getic particles. Thereby, storm conditions can be transported from the sun to

Earth, affecting ground-based technological devices, telecommunication satel-

lites. Thus, it is critical to understand the main mechanisms driving energetic

solar activity events in order to prevent hazardous effects in our technology. In

other words, the study of the solar atmosphere enables a deeper understanding

of the mechanism that influences space weather events and the conditions of

near-Earth space.
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Studying the Sun also provides valuable information on physical mecha-

nisms that are able to sustain a million Kelvin upper atmosphere in sun-like

stars. The current Thesis focuses on the study of dynamical processes as vor-

tices and waves which are believed to play an essential role in heating up

the solar atmosphere. The beginning of this Chapter is devoted to a detailed

overview of the Sun, its structure and magnetic features. Finally, a brief in-

troduction into vortices in the solar plasma is presented.

In the present section, the bulk of the material has been derived from Priest

(2014), and it should be used as a source unless otherwise specified.

1.2 The Structure of the Sun and its Physical

Properties

The Sun is very inhomogeneous and has a complex composition. For the most

part, the Sun is largely comprised of hydrogen (about 92% of its mass) and he-

lium (approximately 8% of its mass), with just small quantities of other heavier

elements, such as oxygen, carbon, and nitrogen. The Sun can be divided into

two major and distinct parts: the solar interior and the solar atmosphere. As

the interior of the Sun is not directly observed, its properties are described

using mathematical models of helioseismology. On the other hand, current

high-resolution/cadence observations from the ground and space provide valu-

able information to investigate different parts of the solar atmosphere. Figure

1.1 depicts a visual representation of the solar interior and atmosphere as well

as several additional features occurring in the solar atmosphere that will be

discussed later.
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Figure 1.1: A schematic representation of the structure of the Sun, together
with several features in the solar atmosphere. Credit: modification of work by
NASA/Goddard.
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1.2.1 The solar interior

Since the Sun does not have a solid surface, the delimitation of the upper

boundary of the solar interior is taken conventionally as the height beyond

which the solar plasma becomes optically thin and energy is radiated outward

and spectral lines are formed. The regions of the internal part of the Sun

are defined as regions that have a dominant physical mechanism driving its

evolution. Information about the solar interior can be obtained only indirectly

and this information was used to construct a standard solar model. The model

for the solar interior assumes that half of the solar mass is concentrated in its

core and that the temperature, density, and pressure diminishes as function of

the radial distance from the center.

The centre of the Sun is occupied by the solar core, which is the hottest

and densest region of the Sun and it extends to approximately 0.25 R⊙. It

has a temperature of around 15.7 million degrees Kelvin (K) and a density of

150 grammes per cubic centimetre (g/cm3), which is up to 150 times higher

than the density of water. Half of the Sun’s mass is contained inside a volume

that is just one-fiftieth of its total size, yet the core is responsible for 99.9%

of the Sun’s total energy production. The majority of this energy originates

from two types of fusion reactions: the proton-proton chain reaction and the

CNO (carbon-nitrogen-oxygen) cycle. The result of these fusion processes is

the release of all of the Sun’s energy. The results of thermonuclear reactions

are photons and neutrinos that are able to leave the core and travel towards

the surface of the Sun. Due to the weak interaction with matter, neutrinos

travel through the solar interior practically unaffected with nearly the speed

of light, taking about 5 seconds to reach the solar surface. On the other hand,

the highly collisional medium inside the Sun causes photons to spend millions

of years in the solar interior as they are transported through different layers
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of the solar interior.

The radiative zone extends from the top of the solar core to about 70% of

the solar radius. As one moves up from the bottom of the radiative zone to

its top, the density of this layer decreases from 20 g/cm3 to 0.2 g/cm3. The

photons created in the core are progressively transported across this layer by

radiation and conduction. Since photons cannot travel a long distance without

hitting with another particle, the density of the substance in this area prohibits

photons from travelling for a long distance without changing direction and re-

leasing some energy. In particular, the large number of collisions that photons

encounter during this period have a significant impact, namely, increasing the

wavelength of the high-energy -rays that emerge from the core, resulting in

visible light at the solar surface.

On top of the radiative region we have the convective region, where the en-

ergy is transported via convection. The convection zone enables the convective

transmission of heat and light. It is approximately 200,000 kilometres deep and

transmits energy from the radiation region’s edge to the Sun’s surface. Bub-

bles emerge in the burning plasma at the bottom and lose heat to space as

they rise to the top. The bottom plasma is very hot, and bubbles grow until

they reach the top, when they lose their heat to space. As the plasma cools, it

falls back toward the bottom of this layer. Between the radiative and convec-

tion zones, Spiegel and Zahn (1992) suggested a thin layer called tachocline,

that presumably plays an important role in the creation of the solar magnetic

field by a dynamo mechanism. In the tachocline, the uniform rotation of the

radiative zone changes to a differential rotation in the convective zone, lead-

ing to intense shear flows. Thereby, the main dynamo models assumes that

the magnetic field lines are stretched by the flows and the magnetic field is

intensified in the tachocline before emerging due to plasma instabilities.
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1.2.2 The solar atmosphere

The solar atmosphere is defined as the region of the Sun where photons may

immediately escape and features may become visible. The atmosphere is di-

vided into four distinct zones, each with its own set of physical characteristics.

The photosphere is a thin layer of plasma approximately 500 kilometres

thick and it is the densest part of the solar atmosphere. It also is optically thick

and opaque, and it absorbs the majority of solar light. The photosphere hosts

the first visible manifestations of solar magnetism, where fields of different

strengths emerge from the solar interior and form structures as sunspots, pores,

plages, etc. The other important feature that can be seen in high resolution

observations are the granular structure of the solar surface. The granules are

the top of the convective cells just beneath the surface. Therefore, granulation

covers practically the whole solar surface, resulting in several million granules

of random forms being present at any one moment (see Figure 1.2). In each

granule, the central region is shining because it is made up of hot, rising (with

speeds of 0.5 to 1.5 km s−1), horizontally outflowing plasma, while the 0.3

Mm-wide edges (or intergranular lanes) are dark because they are made up of

cold, falling material (with speeds of 0.5 to 1.5 km s−1). In magnetic areas

close to the limb, granules seem brighter, allowing one to see deeper layers

of a granule. Granules have an average lifespan of around 5 to 10 minutes,

with a range of 1 to 20 minutes: the granules with the longest lifetime are

the biggest and have the lowest random horizontal velocities, while those with

shorter lifetimes are the smallest and largest.

In addition to these small-scale granulation patterns, there is the so called

supergranular scale motion. Hart (1956) was the first to reported large scales

horizontal velocities in the Equatorial region. Further analysis by Leighton

et al. (1962) using Doppler photographs of the Sun revealed that such large
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Figure 1.2: The granular structure of the solar photosphere. The granulation
is a result of convective motions of bubbles of hot gas that rise from the solar
interior. When these bubbles reach the surface, the gas cools and flows down
again in the darker lanes between the bright cells (also called intergranular
lanes). Credit: The Daniel K. Inouye Solar Telescope (DKIST).

scale motions cover the whole sun. The most common sizes of supergranules

are 30 Mm, however they may be anywhere from 20 to 70 Mm (Rieutord and

Rincon, 2010). Every supergranule cell has its own unique plasma flow pattern.

Plasma rises in the centre of each supergranule cell, flows horizontally outward

at around 350 m s−1, and then lowers at the cell’s edges (Hathaway et al.,

2002; Rieutord et al., 2010).

The next layer above the photosphere the solar chromosphere, which is

more transparent and has a thickness of approximately 2 Mm. Here the tem-

perature rises steadily so that at the top of this region the temperature reaches

a few ten of thousands of degrees K. It is optically thin in the near-ultraviolet,

visible, and near-infrared ranges, but thick in strong spectral lines. The mag-

netic field becomes more inclined forming the magnetic network that is re-

sponsible for the existence of several phenomena in the chromosphere such as

prominences and spicules. Above the solar limb prominences are luminous
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ionised gas eruptions that may stretch thousands of kilometres from the chro-

mosphere to the corona. On the solar disk these magnetic features are seen as

dark regions and they are called fibrils. Spicules are defined as dynamic jets

that stretch from the photosphere to the chromosphere (Foukal, 1971; De Pon-

tieu et al., 2007; Pietarila et al., 2009). The chromosphere is also a very

dynamic layer, where the plasma is changing from being partially ionised to

fully ionised, it is the location where the plasma dynamics changes from being

pressure force dominated to magnetic field dominated and flows are observed

on all temporal and spatial scales (Martínez-Sykora et al., 2015).

The Transition Region lies between the corona and the chromosphere, fea-

turing high temperature gradients and a small height width. In its lower part,

the network structure resembles the one found in the chromosphere whereas

the plasma features in the upper part tends to be more similar to the corona.

The solar corona is the uppermost part of the Sun’s atmosphere and extends

millions of kilometres outwards into the heliosphere. Given its very low density,

the corona appears significantly less luminous than the Sun’s surface. During

eclipses, the corona is seen as a pale halo of low density and high temperature.

The layer of the atmosphere shows a very strong magnetic structuring into

coronal loops of different lengths and thicknesses. Coronal loops are described

as magnetic structures that originate and terminate in active regions on the

solar surface (see Figure 1.3). The length of the coronal loops varies over a

very large scale: small active-region loops have a length in the range of 1 Mm

to 10 Mm, the length of the standard active-region loops is 100 Mm, and it

extends to 1,000 Mm for giant loops. Flaring loops have temperatures up to

10 MK, while active region loops have a temperature of about 2-3 MK.

The corona is also location of many very energetic phenomena, such as flares

and coronal mass ejections (CMEs) generated by interconnecting magnetic

fields of different polarity, or magnetic reconnection. Each reconnection implies
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Figure 1.3: Magnetic structures in the solar corona seen in Extreme Ultraviolet
wavelengths. The white/dark regions show very hot/cool plasma. Coronal
loops appear as brigth arcades connecting two active regions. Credit: Solar
Dynamics Observatory (SDO, NASA).
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the transformation of magnetic energy into kinetic and thermal energy, with

particles released into the interplanetary space.

The variation of various physical parameters (temperature, number den-

sity, pressure, etc.) in the solar atmosphere can be determined with the help

of spectroscopic analysis that allows scientists to construct solar atmospheric

models that are the foundation of many investigations. Figure 1.4 depicts

variation of temperature and mass density with height according to the model

developed by Vernazza et al. (1981), also known as the VAL model. The tem-

perature of the photosphere drops with height by around thousand degrees

Kelvin and reaching the minimum temperature of about 4400 K (see Figure

1.4).

Figure 1.4: The variation of temperature and mass density with height accord-
ing to the VAL model (Vernazza et al., 1981)

In many parts of the atmosphere, the one-dimensional VAL model accu-

rately describes the changes of physical parameters. This model predicts a

rapid increase in temperature from a chromospheric value of 25 000 K to over
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1 MK in the corona in a very narrow transition region. The factors responsible

for this sudden rise in temperature are still a mystery, and research into them

is currently in progress. Research in this area addresses the famous coronal

heating problem (Kuperus et al., 1981; Zirker, 1993; Erdélyi and Ballai, 2007;

Parnell and De Moortel, 2012), etc.

Nowadays it is accepted that the heating of the upper part of the solar

atmosphere is provided by alternating currents (AC) manifested as waves that

transfer kinetic energy into heat or direct currents (DC) thanks to the inter-

connecting magnetic fields of different polarity that convert magnetic energy

into heat. Recent observations have put many constraints of these processes in

order to be viable mechanism able to compensate the radiative loss of the chro-

mosphere and corona. As the solar environment is very dynamic, both sorts

of events are likely to occur. To a great extent, wave-based heating processes

have gone full circle since they were initially proposed as a means of providing

the solar atmosphere with the required energy input (Parnell and De Moortel,

2012). One key aspect of wave-based heating problem is how waves are gen-

erated and how they propagate to the upper part of the atmosphere. In this

respect solar photospheric swirling motions received increased attention be-

cause they have the ability to excite a broad variety of magnetohydrodynamic

(MHD) waves, including slow and rapid magneto-acoustic as well as Alfvén

waves (Fedun et al., 2011). Later in this Thesis, we will examine the physical

mechanisms behind vortex dynamics.

The most widely acknowledged differentiation between solar phenomena

is the division of areas on the surface of the Sun into two categories: quiet

and active regions. The Sun’s active regions are more dynamic than the quiet

regions, allowing for a higher variety of transient events to occur. Sunspots,

prominences, flares, and coronal mass ejections are all examples of transitory

occurrences in active areas. Compared to active areas, the quiet Sun regions
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are less dynamic and have a weaker magnetic field.

1.3 Vortices in the solar atmosphere

Vortices are dynamic features appearing in solar plasmas as a result of com-

plex interplay of various conditions. They are ideal environments for energy

transport, contributing to the energisation of the solar upper atmosphere. The

present Thesis deals with the properties of these structures and the morphology

of waves that can propagate on the surface of vortices.

1.3.1 Vortices in the solar photosphere

The solar photospheric plasma hosts a diverse range of dynamics and flows

observed on all spatial and time scales. This environment is kept under contin-

uous shuffling by the granular motion, where magnetic structures in the inter-

granular lanes are buffeted by granular cells, imposing translation or shearing

motion that could end up as rotation.

Vortex motions, in particular, are a distinguishing characteristic of pho-

tospheric plasma fluxes. Nordlund (1985) initially observed the formation

of plasma vortices in simulations based on convective motion. Using high-

resolution observations of granulation taken with the SST, Brandt et al. (1988)

evidenced vortex structures which visibly dominated the motion of the gran-

ules in their neighbourhood. Their research revealed that these structures had

an average lifespan of around 1.5 hours. Moreover, it has been postulated that

such vortices, which are a common characteristic of the solar convective zone,

might serve as a key mechanism for the heating of solar/stellar chromospheres

and coronae by twisting the imprints of magnetic flux tubes. Bonet et al.

(2008) established that the vortices seen in the solar photosphere emerge in

areas of cooled plasma downflows and that they can track the supergranulation
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and the mesogranulation well using the motion of bright points (BPs). On the

solar disk, the number of vortices is determined to be around 0.9 × 10−2 per

Mm2 (Bonet et al., 2008). According to Wedemeyer et al. (2016), as a funda-

mental physical process in the solar atmosphere, magnetic vortex flows occur

when a magnetic field structure is swept into a vortex flow in an intergranular

lanes at the solar surface (see Figure 1.5).

Figure 1.5: A schematic representation of the magnetic structure of the solar
quiet Sun lower atmosphere. In this diagram, the magnetic field lines are
shown by thick lines, whereas field lines with footpoints in the internetwork
are depicted by thin dashed lines. The big arrows reflect large-scale convective
fluxes while the small arrows denote flows on lower spatial scales (Wedemeyer-
Böhm et al., 2009)

.

Vortices have been observed in the solar atmosphere in a wide range of tem-

poral and spatial scale, from granular (e.g. 0.1-1 Mm in diameter) (Giagkiozis

et al., 2018) to meso- and supergranular scales (e.g. 5-10 Mm in diameter)

(Bonet et al., 2010; Requerey et al., 2018; Chian et al., 2019). Depending on

the analysed scale, vortices will display different lifetimes. For granular scales,

Giagkiozis et al. (2018) applied Fourier Local Correlation Tracking (FLCT)

(Fisher and Welsch, 2008) to intensity maps and obtained a mean lifetime

around 16.5 seconds and maximum duration around 100 seconds. In contrast,

supergranular vortices can last for a couple of hours (Requerey et al., 2018;
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Chian et al., 2019, 2020). In the photosphere, the evolution of magnetic el-

ements that co-exist with rotational motion is strongly correlated with those

vortices which act to stabilize the magnetic flux (Requerey et al., 2018).

1.3.2 Vortices in chromosphere

The rotation of photospheric magnetic footpoints is transmitted into the atmo-

sphere above, where plasma is compelled to follow the spinning field structure

(Wedemeyer and Steiner, 2014). This process generates a visible mark in the

chromosphere, known as a chromospheric swirl (Wedemeyer-Böhm and van der

Voort, 2009). The study by Wedemeyer and Steiner (2014), used SST and So-

lar Dynamic Observatory (SDO) observations to reveal rotating magnetic field

structures, called magnetic tornadoes, extending from the solar surface into

the chromosphere and the corona. These structures are detected as rings or

spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chro-

mospheric swirls). Their analysis also showed that the observed chromospheric

plasma motion is caused by the rotation of magnetic field structures, which

again, are driven by photospheric vortex flows at their footpoints. Two vortex

flow systems could be coupled and they are situated on top of each other.

The intergranular vortex flow (IVF) is situated in the lower part of the system

and it extends from the low photosphere into the convection zone. Once a

magnetic field structure is co-located with an IVF, the rotation is mediated

into the upper atmospheric layers and an atmospheric vortex flow (AVF, or

magnetic tornado) is generated. Figure 1.6 illustrates the two forms of vortex

flow.

Each AVF is triggered by an IVF, yet it is possible for IVFs to occur in

the absence of a matching AVF. In quiet Sun regions, the upper convection

zone has a high ratio of thermal gas pressure to magnetic pressure, which is
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Figure 1.6: Diagram of the double nature of vortex flows. As discussed by
Wedemeyer-Böhm et al. (2012), an atmospheric vortex flow (AVF), commonly
known as a "magnetic tornado," may occur on top of a photospheric inter-
granular vortex flow (IVF), which extends into the upper convective zone and
pushes the AVF above. The virtual borders of both vortex flows can be seen
with strong solid lines to represent their virtual bounds. Plasma can flow up
and down in the AVF (thin lines with arrows), but in the IVF it sinks. Low
plasma-β conditions are required for the formation of the AVF, whereas higher
plasma-β conditions are required for the formation of the IVF. The magnetic
field connects the two vortices (thin line). Image adapted from Wedemeyer
and Steiner (2014).
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referred to as plasma-β that can be written as

β =
nkBT

B2/µ0

, (1.1)

where µ0 = 4π × 107 N A−2 is the magnetic permeability of free space, kB ≈

1.38×10−23 J K−1 is the Boltzmann constant, T is the temperature, and n is the

total number density. This parameter is one of the most important quantities

in plasma physics, as its value compared to unity will denote dynamics of

different nature. Figure 1.7 displays the plasma-β as function of height. For

plasma-β > 1 the dynamics is mostly driven by pressure forces, while the

regime corresponding to plasma-β < 1 means that the dynamics is driven

mostly by magnetic forces. It is customary to consider that the plasma in the

photosphere and lower chromosphere has plasma-β > 1, while in the upper

chromospere, solar corona and solar wind the value of the plasma parameter

is always smaller than 1.

Figure 1.7: Plasma-β, the ratio of gas pressure to magnetic pressure, is shown
as a function of height. Image adapted from Lang (2000).
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In the solar convection zone the gas is significantly ionized so that the

magnetic field is essentially frozen-in and is advected with the convective flows.

As a consequence, the magnetic field is forced to spin in synchronised way

with the plasma flow within an IVF, resulting in the rotation of the magnetic

footpoint and, as a result, the rotation of the whole magnetic field structure.

(Wedemeyer and Steiner, 2014).

The differentiation between IVFs and AVFs may also be understood in

terms of the varied plasma conditions in which they take place. IVFs are

created at the boundary between the dense upper convection zone and the

photosphere, where the value of plasma-β is high. Here, the magnetic field

is dragged along by the plasma, which has taken control. Alternatively, an

AVF occurs in the atmosphere due to a driving IVF below, in a low plasma-

β environment. This area is dominated by a magnetic field, which pulls the

plasma along. The spatial extent of both vortex systems is shown in Figure 1.6

by the thick solid lines. The structure of the magnetic field is more complicated

than shown in this simplified diagram (Figure 1.6), because plasma and its

accompanying magnetic field may join or depart at any moment.

Recently, Shetye et al. (2019) suggested that the chromospheric swirl is a

flux tube that extends above a magnetic concentration region in the photo-

sphere. This idea is in accordance with the scenario proposed by Wedemeyer-

Böhm et al. (2012), where the chromospheric swirls and the photospheric vor-

tices are part of the same solar vortex tube. In the chromosphere, swirls have a

lifetime of around 200-300 seconds (Tziotziou et al., 2018) and are dominated

by transverse and rotational motions (Tziotziou et al., 2019).

According to the study by Yadav et al. (2020) the enormous vortices de-

tected in the chromosphere region are most likely groups of many smaller

vortices that have not yet been resolved by observations. They demonstrated

that when appropriate spatial resolution declines, the vertical Poynting flux
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drops fast and is carried mostly by horizontal plasma movements rather than

vertical flows. Yadav et al. (2021) observed that vortices in the chromosphere

have greater densities and temperatures than average values at the same spa-

tial height.

In a recent study Silva et al. (2020) identified 3D vortices in numerical sim-

ulation data that were dispersed in intergranular zones from the photosphere

to the low chromosphere. They were able to calculate average radial profiles

of various physical parameters and analysed the dynamics across the vortical

flows at various altitude levels. They found that vorticity growth is influenced

by the magnetic field. The study by Silva et al. (2021) demonstrated that there

are two sorts of vortex tubes: magnetic and kinetic vortices. The intergran-

ular downflow is the preferred place for these two forms of vortices, however

although magnetic vortices are typically found in limited regions where plasma-

β > 1, rotating flow patterns, or kinetic vortices, have been observed in sites

where plasma-β < 1. In this Thesis, we are going to focus on the kinetic vortex

only.

Thesis focusses on the identification of vortices in numerical simulations

and the determination of physical properties of vortices and the associated

dynamics. We are also going to investigate the morphology of waves that

are able to propagate on the surface of magnetic cylinders that mimic the

rotational properties of vortices.

1.4 Thesis Outline

The main aim of this study is to understand of the nature of physical processes

responsible for vortex dynamics, the interplay of various forces that drive the

dynamics on the surface of vortices, but also on the signatures of waves that

could propagate on vortices, here modelled as simple rotating magnetic flux
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tubes. The current Thesis is a summary of my research and it is structured

as:

Chapter 2 discusses the methods employed for vortex identification in nu-

merical simulations and the theoretical foundations of guided MHD waves.

Since one of the primary objectives of this Thesis is to gain a better under-

standing of the nature of the physical mechanisms that cause vortex dynamics,

the very first step in their study is a review of the techniques used to detect

vortices and their geometrical structures. As a consequence, in this Chapter,

we will discuss the various approaches that are currently in use for the identifi-

cation of vortices, with an emphasis on the their advantages and disadvantages.

In order to qualitatively and quantitatively describe the MHD waves in vortex

structures we will present the set of ideal MHD equations. These equations

will be employed to discuss the nature and properties of MHD waves in a uni-

form unbounded magnetized plasma. Later, we will present the properties of

guided MHD waves, i.e. waves constrained to propagate in a geometrically

well defined structure such as a magnetic cylinder, as a first approximation

needed to carry out the interpretation of presented results. This Chapter will

also contain a description of wave identification techniques from observations,

their advantages and limitations.

Chapter 3 is devoted to the understanding of the nature of physical pro-

cesses responsible for vortex dynamics. Here we develop a new methodology

to extract essential information from the boundary surface of vortex tubes.

3D high-resolution magnetoconvection MURaM numerical data has been used

to analyse photospheric intergranular velocity vortices. The Lagrangian Aver-

aged Vorticity Deviation (LAVD) technique was applied to define the centres

of vortex structures and their boundary surfaces based on the advection of fluid

elements. These surfaces were mapped onto a constructed envelope grid that

allows the study of the key plasma parameters as functions of space and time.
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Quantities that help in understanding the dynamics of the plasma, e.g. Lorentz

force, pressure force, plasma-β were also determined. Our results suggest that,

while density and pressure have a rather global behaviour, the other physical

quantities undergo local changes, with their magnitude and orientation chang-

ing in space and time. At the surface, the mixing in the horizontal direction

is not efficient, leading to appearance of localized regions with higher/colder

temperatures. In addition, the analysis of the MHD Poynting flux confirms

that the majority of the energy is directed in the horizontal direction. Our

findings also indicate that the pressure and magnetic forces that drive the

dynamics of the plasma on vortex surfaces are unbalanced and therefore the

vortices do not rotate as a rigid body.

Chapter 4 focuses on the identification of morphology of waves propagating

on the surface of a rotating magnetic cylinder that mimics the dynamics of a

vortex. The signature of waves is studied by employing the same projection

technique as presented in Chapter 3. The nature and properties of waves is

studied using the Proper Orthogonal Decomposition (POD) technique on the

surface of flux tube to identify various MHD modes.

In Chapter 5 we will summarise our key results and discuss the implications

of our investigations. Here we will also draft a few directions of future research

that could stem from our analysis.
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CHAPTER 2

Theoretical foundations of plasma vortices and
MHD waves

The main goal of this Thesis is to obtain a better understanding of the nature of

the physical mechanisms associated with vortices in the solar atmosphere. As

the current observational capabilities are not at the suitable level for detailed

and systematic detection, their properties can be investigated in an indirect

way. Instead, we can use realistic numerical simulations of the dynamics of

the solar atmosphere to detect these vortices and study their evolution and

properties. In section 2.1, we are going to discuss several approaches currently

in use for the identification of vortices in numerical data, with an emphasis on

their advantages and disadvantages. Secondly, this thesis also aims to study the

morphology of waves and oscillations that can appear in connection to vortices.

The wave modes that can propagate on the surface of these structures will be

identified by means of the Proper Orthogonal Decomposition (POD) technique

applied in connection with a cylindrical flux that mimics the true motion of

a vortex. To understand the properties of waves recovered this way, we are

going to discuss the properties of MHD waves propagating in a magnetic flux

tube.
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2.1 Vortex identification methods

An automated methodology to identify vortices relies on a precise mathemat-

ical and physical definition of what constitutes a vortex in the flow. However,

there is still no universal definition for a vortex in the current literature (Haller

et al., 2016). Thereby, distinct methodologies are based on different definitions

of vortex.

2.1.1 Theory of fluid descriptions

Flows in fluids can be described using two different approaches: the Eulerian

and Lagrangian methods. In the Eulerian description of fluid flow, individual

fluid particles are not identified. Instead, a control volume is defined. In this

description the fluid parameters that are function of space and time (pressure,

velocity, acceleration, etc.) are described as fields within the control volume.

In this description we are not interested in the location or velocity of any

particular particle, instead the focus is on the velocity, acceleration, etc. of

particles that are at a particular location of interest at a particular time. Since

fluid flow is a continuum phenomenon, at least down to the molecular level, the

Eulerian description is usually preferred in fluid mechanics. This approach also

means that physical laws such as Newton’s laws and the laws of conservation

of mass and energy require a reformulation in this framework.

In contrast, in the Lagrangian description of flows in fluids individual fluid

particles are tracked and their positions, velocities, etc. are described as a

function of time. The physical laws, such as Newton’s laws and conservation of

mass and energy, apply directly to each particle. Given that a fluid is a system

that has very high number of constituent particles, the use of the Lagrangian

description is often too complex. Mathematically, the material derivative (the

total derivative or substantial derivative) bridges the Lagrangian and Eulerian
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descriptions.

2.1.1.1 Eulerian methods

In many cases, the Eulerian vortex criteria are applied. These criteria are de-

rived from the spatial derivatives of the velocity or field, and include features

such as closed spiralling streamlines, iso-vorticity surfaces, pressure minima,

and so on. A coherent structure is identified by the Eulerian criteria as con-

centrated areas of high vorticity, and it typically contains the key properties

of the flow caused by a vortex filament (McWilliams, 1984; Hussain, 1986;

Chakraborty et al., 2005). These Eulerian procedures construct a function

that may be evaluated point-by-point and then categorise each point as either

within or outside a vortex based on the point values of the function. The

majority of criteria for identifying local vortices are derived from the velocity

gradient tensor (or Jacobian), which makes them Galilean invariant, that is,

invariant under constant speed translation of the underlying coordinate sys-

tem (Post et al., 2003; Günther et al., 2015). The most often employed local

criteria are: the Q-criterion (Hunt et al., 1988), the λ-criterion (Jeong and Hus-

sain, 1995), the ∆-criterion (Chong et al., 1990), and the whirling strength,

λci-criterion (Chong et al., 1990).

2.1.1.2 Lagrangian methods

For Lagrangian techniques, a vortex is often seen as a developing region with

a high degree of material invariance (Chakraborty et al., 2005; Haller, 2005).

Every Lagrangian technique is built around the flow map, which is a vector

quantity that maps fluid paths from their beginning positions in space to their

end locations in space after an integration time is taken into account. With the

help of experimental and numerical flow data, the Lagrangian approaches are

able to uncover repelling, attracting, and shear material surfaces. This allows
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for a more simplified understanding of the overall flow geometry, as well as pre-

cise quantification of material transport, which results in a powerful prediction

of vortical features in the flow (Haller, 2015). There have been a number of

Lagrangian techniques presented throughout the past two decades (Peacock

and Dabiri, 2010; Peacock et al., 2015; Haller, 2015; Shadden, 2011; Allshouse

and Peacock, 2015). The Lagrangian coherent structures (LCS) analysis was

pioneered by Haller (2001), and it comprises a set of Lagrangian techniques

that determine quantities by observing the relative behaviour of fluid parti-

cle trajectories. As research in LCS analysis progresses, it is inevitable that

the scope of the area expands. Recently, Haller (2011, 2015) developed a

stretching-based mathematical technique to find Lagrangian vortical struc-

tures from complicated geophysical flow data using the geodesic theory. The

concept of rotationally coherent vortices, as impermeable tubular material ar-

eas with a high concentration of vorticity throughout a limited time period,

was introduced most recently by Farazmand and Haller (2016). In this manner,

Haller et al. (2016) use the Lagrangian Averaged Vorticity Deviation (LAVD)

to identify rotationally coherent vortices, whose constituents display identical

mean material rotation.

These new methodologies to identify LCS were developed in order to give

objective (material invariant) vortex extraction methods for LCS analysis.

To be objective, vortex identification systems must provide invariant findings

when subjected to Euclidean coordinate changes of the form (Truesdell and

Noll, 2004),

y = Q(t)x+ p(t), (2.1)

where Q(t) denotes a time-dependent proper orthogonal tensor and p(t) de-

notes a time-dependent translation. As a result, the Lagrangian vortex is

described objectively in this manner, indicating the development of matter

regardless of the observer’s perspective (Gurtin, 1982). In recent years, La-
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grangian techniques have risen in favour as a new vortex identification strategy,

thanks to their objective nature, i.e. the fact that they are frame invariant

under any smooth translation and rotation of the coordinate system (Günther

et al., 2015).

2.1.2 A Description of Detection Techniques

2.1.2.1 The Γ1 and Γ2 method

The study by Graftieaux et al. (2001) suggested the use of the Γ1 and Γ2

functions to determine the locations of the vortex centres and boundaries,

respectively. According to this study the scalar function Γ1 can be defined by

employing the topology of streamlines to locate the centre of the vortex core

in two-dimensional (2D) flow. When the velocity field is sampled at discrete

spatial locations in a rectangular domain S of fixed size and geometry centred

on P , the function Γ1 is calculated as (Graftieaux et al., 2001)

Γ1(P ) =
1

N

∑
S

(PM×UM) · z
||PM|| · ||UM ||

=
1

N

∑
S

sin(θM). (2.2)

where N is the number of points M inside S, z denotes the unit vector normal

to the measuring plane, θM represents the angle between the velocity vector

UM and the radius vector PM. In this context, the parameter N serves as a

spatial filter, although it only has a little impact on the position of the maxi-

mum of Γ1 function’s peak. In order to address this problem, the preceding Γ1

algorithm was modified to include a local function, Γ2, that takes into consid-

eration a local convection velocity ŨP in the vicinity of P and, therefore, it is

Galilean invariant in nature. The Γ2 function is defined as (Graftieaux et al.,

2001)

Γ2(P ) =
1

N

∑
S

[PM× (UM − ŨP )] · z
||PM|| · ||UM − ŨP ||

, (2.3)
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where ŨP = 1
S

∫
S
UdS. The study conducted by Graftieaux et al. (2001) has

shown that the magnitude of Γ2 is greater than 2/π inside a vortex’s inner

core. Flows with values of Γ2 < 2/π are dominated by strain, while flows

corresponding to Γ2 = 2/π are dominated by pure shear.

This method produces poor vortex boundaries, which makes it difficult to

properly isolate the structure and investigate the physical parameters at the

surface of the vortex. The other difficulty with the Γ-method is that it performs

the identification on the basis of the topological streamline of velocity fields,

which is not an objective quantity (Haller et al., 2016). This may lead to false

vortex detection (see, e.g. Silva et al., 2018), as well as high dependence on

corrections made to remove satellite motion from observational data (Günther

and Theisel, 2018).

2.1.2.2 ∆- criterion

Vortices are defined by the ∆ criterion as a region where the velocity gradient

tensor ∇v has a pair of complex conjugate eigenvalues and a real eigenvalue,

as opposed to other regions (Perry and Chong, 1987). If λ1, λ2, and λ3 are the

eigenvalues of the 3×3 matrix of ∇v, then the characteristic equation may be

written as

λ3 + I1λ
2 + I2λ+ I3 = 0, (2.4)

The I1, I2, and I3 are invariants of the characteristic equation (2.4), and their

values can be given in terms of Viéte’s relations as

I1 = (λ1 + λ2 + λ3) = tr(∇v) (2.5)

I2 = λ1λ2 + λ2λ3 + λ3λ1 −
1

2
[tr(∇v2 − tr(∇v)2)] (2.6)

I3 = λ1λ2λ3 = det(∇v) (2.7)
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According to Equation (2.5), the discriminant of the characteristic is given by

∆ =

(
Q̃

3

)3

+

(
R̃

2

)2

, (2.8)

where Q̃ = I2 − I23 and R̃ = −I3 − 1
3
I21 . If ∆ ≤ 0 is a real number, all

three eigenvalues of the characteristic equation are real, however, if ∆ ≥ 0, the

characteristic equation has one real and two conjugate complex eigenvalues.

The disadvantage of this approach is that it will not provide us with infor-

mation about the boundaries of the vortex tube, i.e. will not fulfill the purpose

we would like to pursue here.

2.1.2.3 Vorticity

It has been more than 150 years since Helmholtz first introduced the term

vorticity. For a fluid with velocity U(x, y, z), the vorticity vector can be defined

as the curl of its velocity, ω = ∇×U. A vortex line or vorticity line is a line

which is everywhere tangent to the local vorticity vector. Vortex lines are

defined by the relation
dx

ωx

=
dy

ωy

=
dz

ωz

, (2.9)

where ωx, ωy and ωz are the three components of the vorticity vector ω in

Cartesian coordinate system.

A vortex tube is defined as the surface in the continuum formed by all

vortex lines passing through a given closed curve in the continuum. The vor-

tex flux is the integral of the vorticity across a cross-section of the tube, and

is the same everywhere along the tube. As a consequence, the vorticity may

be utilised to immediately detect vortices without the need for further infor-

mation. This approach has the disadvantage of being unable to discriminate

between whirling movements and shearing motions, which is a problem in

certain situations (Kida and Miura, 1998). The vorticity of a fluid may be
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easily seen by visualising isosurfaces (|ω|) of the fluid (Holmén, 2012). This

may be troublesome, though, since various thresholds can produce geometrical

formations with varying properties.

2.1.3 Lagrangian Averaged Vorticity Deviation (LAVD)

The Lagrangian-averaged vorticity deviation was defined by Haller et al. (2016)

as an objective criteria for defining vortices. The velocity in fluid mechanics

is defined as

ẋ = u(x(x0, t0, t), t), (2.10)

where x0 represents the starting location of the fluid particle at time t0,

(x0, t0, t) represents the journey of a fluid particle starting from the point

x0 and moving in time between t0 and t.

LAVD is defined as the trajectory integral of the normal vorticity deviation

from its spatial mean around as certain location in space x0 from time t0 to t,

as

LAV Dt
t0
(x0) =

∫ t

t0

|ω(x(s,x0), s)− ω̄(s)|ds. (2.11)

where ω̄ denotes the spatial mean of vorticity and ω(x(s,x0), s) denotes the

vorticity along a material trajectory. According to Haller et al. (2016), a

rotationally coherent Lagrangian vortex may be described as a nested collection

of outward decreasing tubular level sets of Lagrangian vortex dynamics. The

boundary of a Lagrangian vortex is characterised as the most convex member

of a nested tube family that meets the convexity deficiency and arc length

standards.

Later, in Chapter 3, we use the LAVD approach to detect vortex flows,

namely the centre of circulation and the boundary of the vortex flow. The

LAVD approach, in combination with MURaM magneto-convection simulation
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data, is used to find and follow the development of 3D vortex tubes in the solar

photosphere.

2.2 The plasma

Plasma is considered to be the fourth state of matter and it makes up 99%

of the visible universe. A plasma is a hot ionized gas consisting of approxi-

mately equal numbers of positively charged ions, negatively charged electrons

and neutral atoms (if temperatures are not high enough for a full ionisation).

The characteristics of plasmas are significantly different from those of ordi-

nary neutral gases as the interaction between their constituent particles are

controlled by electromagnetic forces. In addition, the dynamics of particles is

also controlled and driven by the electromagnetic field. In the magnetohydro-

dynamics (MHD) approximation although the amalgam of charged particles is

made up from different charges, the plasma can be considered as quasi-neutral

as deviations from charge neutrality occur, in general, over very short distances

(also known as the Debye length). The charge neutrality is equivalent to the

condition that the number densities of positively and negatively charged parti-

cles is approximately equal. Deviations from quasi-neutrality usually are small

since the moment an imbalance occurs, large electric fields are produced that

act to restore the charge neutrality.

Plasmas can be produced by heating an ordinary gas to such high tempera-

tures that the kinetic energy of particles exceed the ionisation energy. Thanks

to collisions, some of the electrons from atoms become free, forming a mixture

of charged (positive and negative) particles. These plasmas need high tem-

peratures, for instance a hydrogen gas becomes a plasma for temperature of

the order of a few thousand degrees Kelvin. On the other hand, a gas can

also become a plasma when its atoms or molecules are exposed to energetic
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photons (e.g. ultraviolet light or X-rays).

Plasmas can be categories in two broad classes: natural and laboratory-

made plasmas. Usually natural plasmas are the space plasmas that include

our Sun, other stars, planetary upper atmospheres, and a large portion of the

interstellar and interplanetary space.

Nowadays the study of plasmas was made easier by studying the formation

and evolution of such environments in laboratories and other plasma devices.

One of the most important of these is human-kind’s attempt to obtain con-

trolled thermonuclear fusion. To achieve that high temperatures are needed (of

the order of 107 K) to overcome the Coulomb repulsion between nuclei. Since

a fusion plasma would be rapidly cooled by the external walls of any ordinary

device, huge efforts were invested in containing the plasma by magnetic fields,

using the "magnetic-bottle" principle. The effort to find a technological con-

figuration that is also economical to confine the dense and hot plasma remains

one of the main challenges of fusion research. Other laboratory-related plasma

devices include magnetohydrodynamic generators of electricity from high tem-

perature plasma jets, ion engines for spacecraft propulsion, surface treatment

processes involving the injection of ions on metal surfaces, etc.

2.3 Theory of magnetohydrodynamic waves

The MHD description of dynamics in plasmas can be considered as a precur-

sor of the modern plasma physics. MHD considers the plasma as a conducting

fluid, where temporal and spatial scales are well above the scales that involve

collisions between particles. As such, the traditional MHD approximation is a

macroscopic approach that does not take into account collisional effects, how-

ever any modification of equations due to non-ideal effects is due to microscopic

effects (e.g. viscosity, conductivity, thermal conduction, etc.). The governing
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equations of MHD are adapted from fluid mechanics with appropriate mod-

ifications to consider for electromagnetic forces that act between electrically

charged particles. A full set of equations includes the definition of currents, as

function of the applied electric field and this was accomplished by using the a

linear form of Ohm’s law. Since the plasma (in the first approximation) can

be considered as electrically neutral, the net charge density is assumed to be

negligible. Since the fluid motions tend to be slower than the characteristic

time scales of the plasma, the displacement currents are also neglected. These

assumptions, together with an appropriate equation of state (assuming the

plasma as an ideal gas) fully describe the behaviour and dynamics of plasmas.

MHD operates with a set of coupled nonlinear PDEs that describe the spa-

tial and temporal evolution of the plasma, magnetic field and their interaction.

These vectorial and scalar equations can contain non-ideal terms (describing,

e.g. transport mechanisms such as viscosity, electrical resistivity, thermal con-

ductivity, etc.), however these create an unnecessary complexity that can be

neglected when studying the nature of possible waves in plasmas. That is why

we are going to assume that here we are dealing with an ideal environment,

where the characteristic wavelength are much shorter than any characteristic

length involved in non-ideal processes. Non-ideal effects will affect the tempo-

ral evolution of waves’ amplitude causing a damping of waves.

2.3.1 The ideal MHD equations

The set of ideal MHD equations expresses conservation laws (mass, momentum

and energy), which are universal laws for physical systems. Although the

plasma contains a mixture of particles (here we assume that the plasma is fully

ionised), we consider that they have a collective motion and their dynamics

can be described with the help of macroscopic quantities. Accordingly, the set
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of ideal MHD equations is (Aschwanden, 2006):

dρ

dt
= −ρ∇ · v, (2.12)

ρ
dv

dt
= −∇p+ ρg +

1

µ0

[(∇×B)×B], (2.13)

d

dt

(
p

ργ

)
= 0, (2.14)

∇× (v ×B) =
∂B

∂t
, (2.15)

∇ ·B = 0, (2.16)

where
d

dt
=

∂

∂t
+ v · ∇, (2.17)

is the convective operator, γ, µ0, ρ, p, v, and B are the adiabatic index,

permeability of free space, density, pressure, velocity field, and induction of

the magnetic field, respectively and g is gravity.

Equation (2.12) is the mass conservation equation and expresses that in

a system that is closed to all transfers of matter and energy, the mass of the

system must remain constant over time, as the system’s mass cannot change.

This equation is one of the most fundamental relations relevant not only to

fluid dynamics, but also chemistry, electromagnetism (with mass density and

velocity replaced by charged density and current density), quantum mechanics

(conservation of probability), chemistry, etc.

Equation (2.13) describes the equilibrium of forces and it can be derived

from Newton’s second law. Accordingly, the movement of a plasma element

of unit volume is driven by pressure forces (∇p), gravitational force (ρg), and

the Lorentz force ((∇×B) ×B/µ0). Possible additional forces (e.g. Coriolis

force, viscous forces, etc.) are all neglected.

Equation (2.14) connects the thermodynamical quantities of pressure (p)
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and density (ρ) and describes the conservation of energy in an adiabatic pro-

cess. The zero on the right-hand side of this equation specifies that there are

no additional sinks or sources of energy in the system.

The next equation (2.15) is the induction equation that can be derived from

Ohm’s law taking into account Ampére’s law and it connects the magnetic field

(B) and fluid velocity. In this approximation the field and plasma are tightly

coupled, being frozen into each other.

The last equation of the above system (2.16) is the solenoidal condition

that stipulates that there are no magnetic monopoles and the magnetic field

lines are closed.

Using the fact that the processes we are interested in are adiabatic, in

Equation (2.13) we can replace pressure term using the relation ∇p = c2S∇ρ,

where cS =
√

γp/ρ is the adiabatic sound speed. Using standard vector iden-

tities we can include the last equation of the above system to rewrite the set

of ideal MHD equations into (Aschwanden, 2006):

dρ

dt
= −ρ∇ · v, (2.18)

ρ
dv

dt
= −c2S∇ρ+ ρg +

1

µ0

[(
−1

2
∇B2

)
+ (B · ∇)B

]
, (2.19)

∂B

∂t
= −B(∇ · v) + (B · ∇)v − (v · ∇)B. (2.20)

The last term of Equation (2.19) was derived by writing the Lorentz force as

the sum of its projection in the parallel and perpendicular direction to the

magnetic field. In this form the first term describes the magnetic pressure,

while the second one describes the magnetic tension.
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2.3.1.1 Linearised MHD equations

One of the difficulties in solving the system of MHD equations is that it con-

tains highly nonlinear (quadratic and cubic) terms. However, this difficulty

can be surpassed by considering the linearised version of the system. Accord-

ingly we will assume that in the equilibrium the system is stationary and all

forces are balanced. Next, we consider small perturbations of physical quanti-

ties and write all physical quantities as the sum between an equilibrium value

(denoted by an index 0) and a small perturbation (denoted by an index 1),

which means that in the original system of equations all terms containing the

product or square of perturbations can be neglected. In order to simplify the

discussion we are going to assume that the wavelengths we will operate are

much sorter than the gravitational scale-height (the distance over which grav-

itational stratification is defined), therefore, the gravitational restoring force

can be neglected.

Accordingly, let us write all physical quantities as

B(r, t) = B0 +B1(r, t), v(r, t) = v0 + v0(r, t) = 0 + v1(r, t),

ρ(r, t) = ρ0 + ρ1(r, t), p(r, t) = p0 + ρ1(r, t).

Next we substitute these quantities into the set of ideal MHD equations. Tak-

ing into account the simplifications mentioned above, we obtain

dρ1
dt

= −ρ0∇ · v1 (2.21)

ρ0
dv1

dt
= −c2S∇ρ1 +

1

µ0

[−∇(B0 ·B1) + (B0 · ∇)B1] (2.22)

∂B1

∂t
= −B0(∇ · v1) + (B0 · ∇)v1 (2.23)

This set of equations are known as linearised MHD equations. These coupled
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equations will be used in the next Chapter to discuss the properties of waves

in homogeneous and structured plasmas.

2.3.1.2 Wave in an unbounded and homogeneous plasma

The simplest configuration in which waves can be studied is when the plasma

is unbounded and the equilibrium is static, stationary and homogeneous, i.e.

the equilibrium quantities do not have any temporal and spatial dependence.

That is why we assume that the homogeneous magnetic field points in the

z-direction, so we can write B0 = (0, 0, B0). Waves will propagate with wave

vector k = (0, ky, kz) in the y − z plane. The wave propagation in such media

has been discussed extensively by many authors (e.g. Cowling (1976), Roberts

(1981a), Priest (2014), etc).

Combining Equations (2.21)- (2.23), we can derive relation that describes

the evolution of the compressibility factor (∆ = ∇ · v1) as

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆+ c2Sv

2
A

∂2

∂z2
∇2∆ = 0, (2.24)

where v2A = B2
0/µ0ρ0 is the square of the Alfvén speed. Next we Fourier

decompose the above equation and write ∆ = ∆̂eı(ωt+kyy+kzz), where ω is the

real frequency of waves. The above relation will be used in what follows to

derive the dispersion relation of waves.

The simplest limit in which the dispersion relation can be derived is the

incompressible case that corresponds to ∇·v1 = 0. In this case the wavevector

is perpendicular to the velocity perturbation, meaning that we are dealing with

a transversal wave that is purely a magnetic wave, also known as the Alfvén

wave. In this limit the governing equation (2.24) reduces to the very simple

dispersion relation

ω2 = v2Ak
2 cos2(θ) or v2ph = v2A cos2(θ), (2.25)
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where vph = ω/k is the phase speed of waves and θ is the angle between the

wavevector and the background magnetic field. This dispersion relation de-

scribes the non-dispersive Alfvén wave (often called shear Alfvén wave) whose

only restoring force is the magnetic tension. We should note that these waves

propagate faster along the field, but do not propagate normal to the field.

Figure 2.1: Friedrichs diagram showing the variation of the phase speed of the
three modes depending on the inclination angle of the wavevector compared
to the direction of the equilibrium magnetic field (here assumed to be along
the horizontal direction). The phase speed of slow (vslow), Alfvén (vAlfvn) and
fast (vfast) waves are shown in blue, green, and red lines, respectively. For
reference we also plot the magnitude of the sound (cS) and Alfvén (vA) speeds
in yellow and black dashed lines.

In the compressible case, both the magnetic force and pressure gradients

are important. Using Equation (2.25) we can obtain the dispersion relation of

magneto-acoustic modes (the fast and slow modes) as given by

v4ph − (c2S + v2A)v
2
ph + c2Sv

2
A cos2(θ) = 0. (2.26)

Clearly, Equation (2.26) describes propagation of a pair of waves travelling in

opposite directions, whose phase speeds are given by

vph = ±
√

1

2
(c2S + v2A) +

1

2
(c4S + v4A − 2c2Sv

2
A cos(2θ))1/2, (2.27)

vph = ±
√

1

2
(c2S + v2A)−

1

2
(c4S + v4A − 2c2Sv

2
A cos(2θ))1/2. (2.28)
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The two magnetoacoustic modes can be seen as a sound wave modified by the

magnetic field and an Alfvén wave modified by the gas pressure. In the case of

vanishing magnetic field the slow wave disappears, and the fast wave becomes

a sound wave.

The properties of these three modes can be clearly seen in a polar diagram

(also known as Friedrich diagram) shown in Figure 2.1). The discussion of these

properties depends very much on the value of plasma-β and we can distinguish

between two distinct situations corresponding to photospheric (β ≫ 1) or

coronal (β ≪ 1) limits. In all cases slow and Alfvén waves cannot propagate

across the field. The only mode that can propagate across the field is the fast

mode and its phase speed will be (c2S+v2A)
1/2. For slow modes, the phase speed

is in the range of 0 ≤ vph ≤ min(cS, vA), however, the phase speed of the fast

mode is in the range of max(cS, vA) ≤ vph ≤ (c2S + v2A).

2.3.2 Dispersion relations of MHD waves in structured

plasmas

In reality the solar magnetic field is not diffuse, instead it tends to accumu-

late in magnetic entities that can take various forms (e.g. sunspots, spicules,

prominences, coronal loops, coronal plumes, etc), meaning that some sort of

finite size structuring takes place. The simplest configuration mimicking struc-

turing is the magnetic interface, similar to the density interface in fluids. In

this model the magnetic field is parallel to the separating interface and there

will be a jump in the value of the magnetic field across the interface. Of course,

this is an ideal configuration, as sudden jumps (or true discontinuities) do not

exist in reality, instead the magnetic field has a smooth transition from one

region to another one. As a possible extension of a single interface case we

will study the dispersion relation of waves in a magnetic slab and later in a

magnetic cylinder. The last two examples are unique because by considering
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guided waves we explore the dispersive character of these waves, i.e. their

propagation speed will depend on the wavelength of waves. The structuring

of the magnetic field can be considered as an extreme inhomogeneity that still

allow us to derive dispersion relations.

2.3.2.1 Wave propagation in magnetic interface

There are several examples in the solar atmosphere where we can consider that

two regions of different properties are separated by an interface along which

surface waves can propagate, e.g. edges of sunspots or prominences, various

discontinuities in the coronal hole and solar wind, etc. To model the properties

of waves, for simplicity, we will assume that the magnetic field is parallel to the

interface. Therefore, the separating interface can be considered as a tangential

discontinuity. The method of finding the dispersion relation is similar to the

technique that is so well known in fluid mechanics: we are going to solve the

MHD equations on both sides of the interface and the solutions will be matched

at the interface taking into account kinematic and dynamic boundary condi-

tions: the normal component of the velocity and total pressure (kinetic plus

magnetic) are continuous across the interface. In addition we impose that the

wave stays localised on the interface, meaning that in the transversal direction

waves are evanescent (their amplitude decays exponentially with distance)

The problem of surface wave propagation along an interface and the effect

of compressibility on these waves was studied first by Wentzel (1979), who

focussed on the energy carried by a surface wave. The dispersion relation

for isothermal disturbance derived by Wentzel (1979) was fully understood

following the study by Roberts (1981a), who showed that in fact there are

two surface waves that can propagate in a sharply structured plasma, and the

existence of these waves depends very much on the particular values of the

magnetic field. The dispersion relation of waves propagating at an interface
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separating two regions of densities ρi and ρe was derived by Roberts (1981a)

and it reads

ρi(k
2v2Ai − ω2)(m2

e + ℓ2)
1
2 + ρe(k

2v2Ae − ω2)(m2
i + ℓ2)

1
2 = 0, (2.29)

where

m2
i =

(k2c2Si − ω2)(k2v2Ai − ω2)

(c2Si + v2Ai)(k
2c2T i − ω2)

(2.30)

m2
e =

(k2c2Se − ω2)(k2v2Ae − ω2)

(c2Se + v2Ae)(k
2c2Te − ω2)

(2.31)

are the two magnetoacoustic parameters, and

c2T i =
c2Siv

2
Ai

c2Si + v2Ai

, c2Te =
c2Sev

2
Ae

c2Se + v2Ae

(2.32)

are the two tube (cusp) speeds. In Equation (2.29) k and ℓ are the components

of the wavevector along the x and y directions and the indices i and e refer to

the two regions.

Roberts (1981a) found that the interface supports the propagation of two

surface waves (slow and fast surface waves), however, the slow surface wave

will propagate only when one region is field-free. In the case of the slow surface

wave, the phase speed is in the range vph < min(cSe, cT i). On the other hand,

the propagation of the fast surface wave may occur when the fluid in the

magnetic region is cooler than the field-free plasma. The range of phase speed

for fast surface wave is cSi < vph < min(cSe, vAi).

2.3.2.2 Wave propagation in magnetic slab

Magnetic slabs can be considered as a pair of magnetic interfaces separated

by a constant distance x0, where the slab is parallel to the z-axis. It is well

known that once we restrict the wave propagation by plasma structuring, the

wave becomes dispersive and the degree dispersion is determined by the rel-
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ative ratio between the size of the waveguide and the wavelength of waves.

Although in real life we are not going to meet such a situation, it provides a

natural extension to a single interface and qualitatively gives us the behaviour

of waves in such structures. Parker (1979) discussed the propagation of waves

in magnetic slabs in the limit of incompressible plasma. The effect of compress-

ibility was considered later by Cram and Wilson (1975) and they concluded

that the propagation of the fast wave is not a free vibration. Later, the study

by Roberts (1981b) explained that the fast wave is not a free vibration only if

the slab is warmer than its field free environment. Since we are dealing with

two interfaces, similar boundary conditions have to be imposed as in the case

of a single interface. Denoting the environment inside the slab by an index i

and the external regions by an index e, the equilibrium state is described by

p0(x), ρ0(x), B0(x) =


pi, ρi, Bi, |x| < x0,

pe, ρe, Be, |x| > x0.

(2.33)

The continuity of the total pressure in equilibrium requires that

pi +
B2

i

2µ0

= pe +
B2

e

2µ0

. (2.34)

Using the expressions of the sound speed and Alfvén speeds in the two regions,

the above expression can be also written as

ρe
ρi

=
2c2Si + γv2Ai

2c2Se + γv2Ae

. (2.35)

Since the plasma is now separated into two uniform regions, the slab interior

and its environment, different governing equations can be written for each

region and the solutions of the governing equations must be matched at the

boundaries of the slab.
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Accordingly, inside the slab the equation describing the variation of the

transversal component of the velocity becomes

d2v̂x
dx2

−m2
i v̂x = 0 (2.36)

where the quantity m2
i has been defined earlier in equation (2.30). In addition,

the relation that connects the total pressure P̂T and the transversal component

of the velocity becomes

P̂T =
iρi(c

2
Si + v2Ai)

ω

k2c2T i − ω2

k2c2Si − ω2

dv̂x
dx

. (2.37)

A similar set of equations can be derived for the outside region (x > |x0|) of

the magnetic slab. All plasma quantities in this case will be indicated with an

index e. Since waves are guided and propagate within the magnetic slab, it is

natural to impose the condition that in the outside regions perturbations are

evanescent.

As a result, the solutions for the transversal component of velocity becomes

v̂x(x) =


αee

−me(x−x0), x > x0,

αi coshmix+ βi sinhmix, −x0 < x < x0,

βee
me(x+x0), x < −x0.

(2.38)

Where αe, βe, αi and βi are arbitrary constants that can be determined by

imposing the boundary conditions at x = ±x0 and the expression of me which

has been defined earlier. For laterally evanescent waves we require that me is

a positive quantity.

After imposing the continuity of the transversal component of velocity and

total pressure at the boundaries of the waveguide, the dispersion relation in

a magnetic slab becomes surrounded by a magnetic environment and can be
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written as (Roberts, 1981b)

ρe(k
2v2Ae − ω2)mi

tanh

coth

mix0 + ρi(k
2v2Ai − ω2)me = 0. (2.39)

Before discussing the implications of this dispersion relation, we need to intro-

duce the terminology that helps us classify the possible wave solutions of the

dispersion relation. According to the criteria introduced by Roberts (1981a),

solutions corresponding to m2
i > 0 and m2

i < 0 correspond to surface and

body waves, respectively. This classification is connected to the type of the

behaviour of modes inside the waveguide. Surface modes are evanescent in-

side the slab and attain their maximum amplitude at the boundary of the

slab (see Fig. 2.2(b)). In contrast, body waves are oscillatory inside the slab

(see Fig. 2.2(c)). A further classification arises from the even (tanh) and odd

Figure 2.2: A schematic representation of the distribution of the velocity am-
plitude for (a) guided waves along an interface; (b) surface waves in a slab;
and (c) body waves in a slab. Imaged adapted from Priest (2014).

(coth) solutions of (2.39) that are referred to as sausage and kink oscillations

respectively (see Fig. 2.3). Sausage modes (often called symmetric or pulsat-

ing) propagate such that the symmetry axis of the slab is not perturbed. In

contrast, kink modes oscillate such that the symmetry axis is oscillating. A
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schematic representation of these waves is shown in Figure 2.3. The relative

Figure 2.3: The longitudinal (sausage, left panel) and transversal (kink, right
panel) modes propagating along a cylindrical magnetic waveguide are shown
with red lines. The sausage wave is characterised by periodic stretching and
squeezing of the magnetic field, while the kink wave corresponds to a displace-
ment of the symmetry axis magnetic flux tube. The thick arrows represent the
amplitudes of the velocity perturbations, while the thin arrows represent the
direction of the background magnetic field. Image taken from Morton et al.
(2012)

relationship between the characteristic speeds inside and outside the slab will

determine whether the wave will be a slow or fast wave. The solutions of

the dispersion relation (2.39) are represented in Figure 2.4 for photospheric

conditions (β ≫ 1) and coronal (β ≪ 1) conditions, respectively. According

to the dispersion diagrams, fast waves are strongly dispersive and propagate

slower for smaller wavelengths. Slow waves, in turn, are dispersive and these

waves will propagate faster for smaller wavelengths. There are a few important

conclusions that can be drawn from the dispersion relation (2.39). First of all,

surface waves (m2
i > 0) appear only when the phase speed of waves (ω/k) lies

between the two Alfvén speeds, i.e. min(vAi, vAe) < ω/k < max(vAi, vAe).

Since we are interested in laterally evanescent solutions, the requirement

that m2
e > 0 implies that (see Equation 2.31) the possible phase speed has to

be either smaller than the external cusp speed, cTe, or situated in the interval
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Figure 2.4: The solution of the dispersion relation for magnetic slab under
photospheric (left panel) and coronal (right panel) condition. SSW, FSW,
SBW and FBW stand for slow surface waves, fast surface waves, slow body
waves, fast body waves, respectively. The grey regions correspond to domains
where waves cannot propagate.

min(vAe, cSe) < ω/k < max(vAe, cSe).

Furthermore, the dispersion relation (2.39) reveals that although ω/k =

±vAe and ω/k = ±vAi are solutions of the dispersion relation, these are de-

generate solutions, since such a choice for the phase speed results in vanish-

ing eigenvectors. The same degeneracy of the system can be obtained when

cSi = cSe (in which case pure sound waves propagate without disturbing the

magnetic field), or when vAe = vAi (Roberts, 1981b).

One way to simplify the dispersion relation (2.39) is to consider the limits

is slender or wide waveguide. These limits correspond to the conditions that

the wavelength of any disturbance is much greater (or much smaller) than

the transversal geometrical size of the slab, i.e. |kx0| ≪ 1 and |kx0| ≫ 1,

respectively (in fluid mechanics these conditions correspond to the cases of

shallow and deep water limits). In these situations the hyperbolic functions in

the dispersion relation take simpler forms, meaning that analytical expressions

can be derived for the frequency of waves.
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2.3.2.3 Wave propagation in a magnetic cylinder

Modelling a magnetic structure in a cylindrical geometry is certainly more ap-

propriate for many applications in solar physics, for example, for photospheric

flux tubes (including vortices) and coronal loops. In solar physics, there have

been several investigations of dynamics in cylindrical waveguides (Roberts and

Webb, 1978; Wilson, 1979; Roberts and Webb, 1979; Parker, 1979; Wentzel,

1979; Webb, 1980; Spruit, 1981, 1982; Edwin and Roberts, 1983) which pro-

vided a complex array of waves in such media. In this Thesis we are going to

present the key findings of the study by Edwin and Roberts (1983).

Let us consider that the plasma is permeated by a homogeneous magnetic

field inside and outside the magnetic flux tube and the magnetic field is oriented

along the longitudinal axis of the cylinder, i.e. Bi = Biẑ and Beẑ = Beẑ. The

discontinuity occurs at the boundary of the tube situated at r = ra, where ra

is the radius of the magnetic flux tube.

The plasma in equilibrium state is considered homogeneous and, as before,

the quantities inside the flux tube will be labelled by an index i, while quantities

outside the flux tube will be described by the index e.

Using the linearised equations presented in Section 2.3.1.2, we can derive a

single equation that describes the temporal and spatial evolution of the com-

pressibility in cylindrical geometry (Lighthill, 1960; Cowling, 1976; Roberts,

1981a; Aschwanden, 2006)

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆+ c2Sv

2
A

∂2

∂z2
∇2∆ = 0, (2.40)

where ∆ = ∇·v is the compressibility of the plasma and the Laplace operator

is expressed in the cylindrical coordinate system (r, θ, z) as

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (2.41)
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Since the equilibrium is homogeneous in the azimuthal and longitudinal direc-

tion,we can write that

∆ = R(r)exp(ı(ωt+ nθ + kz)), (2.42)

where n and k denote the wavenumber in the azimuthal and longitudinal direc-

tions, ω is the angular frequency, and R(r) specifies the r-dependent amplitude

of compressibility.

After plugging Equation (2.42) into Equation (2.40), we obtain

d2R

dr2
+

1

r

dR

dr
− (m2

i +
n2

r2
)R = 0, (2.43)

where the expression of mi has been defined by Equation (2.30).

Equation (2.43) is a Bessel-type differential equation that admits solutions

of the form

R(r) =


A0In(mir) + A1Kn(mir), m2

i > 0,

A0Jn(nir) + A1Yn(nir), m2
i = −n2

i < 0.

(2.44)

where the constants A0 and A1 must be determined for each mode number

n, In, Kn, Jn, and Yn are Bessel functions. Clearly, a similar solution can be

written for the external region.

Imposing the conditions that solutions are bounded at r = 0 and the vari-

ables are evanescent in the external region, solutions of the governing differen-

tial equation reduces to

R(r) = A0


In(mir), m2

i > 0,

Jn(nir), m2
i = −n2

i < 0.

(2.45)
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for the inside region (r < ra) and

R(r) = A2Kn(mer) (2.46)

for the external region (r > ra).

Applying similar boundary conditions as in the case of a magnetic slab

(continuity of the total pressure and normal component of velocity) results in

the dispersion relations (Edwin and Roberts, 1983)

ρi(k
2v2Ai − ω2)me

K ′
n(mera)

K ′
n(mera)

= ρe(k
2v2Ae − ω2)mi

I ′n(mira)

In(mira)
, (2.47)

for surface waves (m2
i > 0), and

ρi(k
2v2Ai − ω2)me

K ′
n(mera)

K ′
n(mera)

= ρe(k
2v2Ae − ω2)ni

J ′
n(mira)

Jn(mira)
, (2.48)

for body waves (m2
i = −n2

i < 0). In the above expressions the dash denotes

the derivatives of the Bessel functions with respect to their argument.

Based on the forms of the function R(r), the expressions of various variables

can be given as (see, e.g Spruit (1982)),

vz = −iA
kc2S
ω2

ℜn, (2.49)

vr = A
ω2 − kc2S
ω2m2

i

d

dr
ℜn, (2.50)

vθ = iA
ω2 − kc2S
ω2m2

i

n

r
ℜn, (2.51)

bz = iABi
ω2 − kc2S

ω3
ℜn, (2.52)

br = −Bi
k

ω
vr, (2.53)

bθ = Bi
k

ω
vθ, (2.54)
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p = iAρi
c2S
ω
ℜn, (2.55)

PT = −i
ρi
ω3

(c2S + v2A)(ω
2 − k2c2T )ℜn, (2.56)

where A denotes an arbitrary amplitude, and ℜn is the corresponding Bessel

function.

The dispersion relation admits a rich spectrum of MHD waves under the

photospheric (β ≫ 1) and coronal (β ≪ 1) conditions. The variation of the

phase velocity with the parameter kra given for these two limits is shown in

Figure (2.5). For a slender tube kra → 0 and it is assumed that in this limit

Figure 2.5: The same as in Figure 2.4, but here we plot the dispersion diagram
of waves propagating in a magnetic cylinder of radius ra.

both, mira and mera, tend to zero. As a result the Bessel functions simplify

to

I0(mira) ∼ 1, I1(mira) ∼
1

2
mira, (2.57)

K0(mera) ∼ ln(mera), K1(mera) ∼ (mera)
−1. (2.58)

In this case the dispersion relation for surface waves becomes

ρer
2
a

4
(k2v2Ae − ω2)(k2c2Si − ω2) ln(m2

er
2
a) = ρi(c

2
Si + v2Ai)(k

2c2T i − ω2). (2.59)
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This equation gives rise to two symmetric modes that have the approximative

phase velocity

ω

k
≈
[
c2T i −

ρe(v
2
Ae − c2T i)(c

2
Si − c2T i)k

2r2a ln(k
2r2a)

4ρi(c2Si + v2Ai)c
2
T i

]1/2
, (2.60)

and

ω

k
≈
{
c2e −

(c2Te − c2Se)(c
2
Se + v2Ae)

k2r2a(v
2
Ae − c2Se)

exp

[
− 4ρi(c

2
Si + v2Ai)(c

2
Se − c2T i)

ρek2r2a(c
2
Se − v2Ae)(c

2
Se − c2Si)

]}1/2

,

(2.61)

which are valid provided cSe > cSi and cSe > vAe or cT i < cSe < cSi and

cSe < vAe. These relations show that for a slender slab symmetric modes

propagate with almost identical phase speeds as their counterparts in magnetic

slabs, i.e. sausage modes propagate with the phase speeds close to cT i and cSe,

respectively.

In contrast, kink modes present a different behaviour. For illustrative pur-

poses we are going to concentrate only on the n = 1 case, and the above

statement can be shown to be true for the n ≥ 1 modes. When n = 1 we can

consider that mira → 0 and mera → 0, so the dispersion relation reduces to

ω

k
= cK ≈

(
ρiv

2
Ai + ρev

2
Ae

ρi + ρe

)1/2

. (2.62)

Kink waves have played a key role in seismological methods developed in the

last decades (Aschwanden et al., 1999; Nakariakov et al., 1999; Arregui et al.,

2005, 2007; Pascoe, 2014). When the radius of the cylinder is large compared

to the wavelength of waves, we are dealing with a wide tube and the dispersion

relation for both sausage and kink modes becomes

ρime(k
2v2Ai − ω2) + ρemi(k

2v2Ae − ω2) = 0. (2.63)
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This dispersion equation is similar to the dispersion relation we would obtain in

a wide slab or a single interface (this conclusion is rather normal since for wide

waveguides the waves would not sense the boundary of the tube, therefore,

they will become non-dispersive).

In the case of body modes propagating in a slender magnetic cylinder it can

be shown that the only possible way to obtain waves is by supposing that when

kra → 0 corresponds to nira → ν, a non-zero finite value. For niraJ1(nira)

to be finite, nira must tend to the roots of J1(nira) = 0, i.e. nira → jq, for

q = 1, 2, . . . , and jq denotes the zeroes of the Bessel function J1. As a result

n2
i r

2
a ≈

k2(c2Si − c2T i)(v
2
Ai − c2T i)r

2
a

(c2Si + v2Ai)c
2
T iν

= j2q (2.64)

and the modes corresponding to kra ≪ 1 are given by

ω

k
≈ cT i

[
1 +

k2r2ac
2
T i

(c2Si + v2Ai)j
2
q

]1/2
, q = 1, 2, . . . (2.65)

Therefore in a slender tube there are an infinite number of modes given by

Equation (2.65).

In the case of body kink modes the dispersion relation reduces to the dis-

persion relation given by Equation (2.63), therefore in a slender tube the body

and surface kink modes are indistinguishable, i.e. they are independent on mi

and/or ni.

Finally, in a wide tube the solutions of the dispersion relation for sausage

modes are given by

tan(nira − π/4) =
ρi(k

2v2Ai − ω2)

ρe(k2v2Ae − ω2)

me

ni

, (2.66)

while kink modes are characteristics of kink modes can be recovered as solu-
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tions of the relation

tan(nira − π/4) = −ρe(k
2v2Ae − ω2)

ρi(k2v2Ai − ω2)

ni

me

, (2.67)

2.3.3 Numerical method for solving dispersion relations

Since the dispersion relation presented earlier contains hyperbolic or Bessel

functions, a closed analytical solution can be obtained only for the particular

limits of slender and wide waveguides. However, these limits do not cover the

whole spectrum of solutions. That is why solutions of dispersion relations have

to be obtained using a numerical approach. As an illustration we will present

the numerical steps undertaken to study the solutions of the dispersion relation

(2.39), describing the propagation of waves in a magnetic slab.

The solutions of the dispersion relations have been obtained graphically

after solving numerically these relations using the bisection method. For illus-

tration we describe the method for a magnetic slab and the method necessary

to plot the solution of the dispersion relation for a magnetic cylinder would be

analogous.

First of all, we rewrite Equation (2.39) in terms of the phase speed and

normalizing the phase speed with the internal sound speed

ρe

(
v2Ae

c2Si
− V 2

)
m̃i

tanh

coth

 (m̃ikxi) + ρi

(
v2Ai

c2Si
− V 2

)
m̃e = 0, (2.68)

where the normalised magnetoacoustic parameters are

m̃i =

√√√√√(k2 − ω2

cSi
)− (k2V 2 − ω2

c2Si
)

(1 + V 2)(
k2c2Ti

c2Si
− ω2

c2Si
)

, (2.69)
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m̃e =

√√√√√(k2 − ω2

cSi
)− (k2V 2 − ω2

c2Si
)

(
c2Se

c2Si
+ V 2)(

k2c2Te

c2Si
− ω2

c2Si
)
. (2.70)

Here V = vph/ci is normalized phase speed with the internal sound speed.

Next, we divide the normalized phase speeds into small subintervals, each

with a lower and upper boundaries, denoted by VLi
, VUi

. The range of the

wavenumber (displayed on the horizontal axis) is also discretised and it is

denoted by kxi. Table 2.1 explains how the method works.

Table 2.1: The numerical background used to find solutions to the dispersion
relation of guided waves.

kxi VLi
VUi

= VLi
+ ϵ Fi(VLi

, kxi) Fi(VUi
, kxi) Fi(VLi

, kxi) ∗ Fi(VUi
, kxi)

kx1 VL1 VU1 F1(VL1 , kx1) F1(VU1 , kx1) F1(VL1 , kx1) ∗ F1(VU1 , kx1)
kx1 VL2 VU2 F2(VL2 , kx1) F2(VU2 , kx1) F2(VL1 , kx1) ∗ F2(VU1 , kx1)
kx1 VL3 VU3 F3(VL3 , kx1) F3(VU3 , kx1) F3(VL3 , kx1) ∗ F3(VU3 , kx1)
...

...
...

...
...

...
kx2 VL1 VU1 F1(VL1 , kx2) F1(VU1 , kx2) F1(VL1 , kx2) ∗ F1(VU1 , kx2)
kx2 VL2 VU2 F2(VL2 , kx2) F2(VU2 , kx2) F2(VL2 , kx2) ∗ F2(VU2 , kx2)
...

...
...

...
...

...
kx3 VL1 VU1 F1(VL1 , kx3) F1(VU1 , kx3) F1(VL1 , kx3) ∗ F1(VU1 , kx3)
...

...
...

...
...

...
...

...
...

...
...

...

Here ϵ is the small distance between VLi
and VUi

(stepsize) and F is a

function of two variables from Equation 2.68. We consider only the results

that satisfy the condition Fi(VL, kx) ∗ Fi(VU , kx) < 0.

The above numerical technique is applied to the dispersion relation of the

magnetic slab (see Equation 2.39) and magnetic cylinder (Equations 2.47 and

2.48) under photospheric and coronal conditions. The results of these investi-

gations are shown in Figures 2.4 and 2.5.

Waves propagating in a homogeneous and unstructured plasma presented

in Section 2.3.1.2 are very different from the waves that can propagate in

geometrically defined waveguides. First of all the fact that waves are restricted

to propagate in waveguides, renders waves to be dispersive, i.e. their phase
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speeds depends on the wavlength (or wavenumber) of the waves. Figures 2.4

and 2.5 reveal that fast waves are strongly dispersive (negative dispersion),

while slow waves have a weak dispersion (positive dispersion). Kink modes

under photospheric conditions show a somehow different behaviour. All modes

will become non-dispersive for wide structures, as shown by Equation 2.63.

Guided waves will also be characterised by their transversal structure and the

way they perturb the symmetry axis of the waveguide. A full picture on the

behaviour of these modes can be obtained by plotting the eigenvectors, in

particular the components of the velocity. For illustration we will consider the

cylindrical flux tube model and we plot the values of the velocity components

as given by Equation 2.56 and here we focus on the characteristics of fast

surface sausage, kink and fluting (n = 2) modes (see Figures 2.6, 2.7 and 2.8).

The characteristic speeds we employ for this simulation are vAi = 2cSi,

cSe = 1.5cSi, and vAe = 0.5cSi. Later, in Chapter 4 we will use the combina-

tion of these three modes to study the morphology of global waves propagating

in vortex tubes and apply the Proper Orthogonal Decomposition (POD) tech-

nique for mode identification.
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Figure 2.6: The sausage mode (n = 0) propagating along the magnetic cylin-
der. The first row is the 3D representation of the oscillating flux tube and
the colormap values represent the distance between the cylinder’s centre and
its boundaries at each height. The second row displays the cross cut across
the flux tube at z = 0. The white arrows describe the velocity perturbations
and the colour bar shows the density perturbation. In the second row, a pos-
itive density disturbance is indicated by warmer colours, with red signifying
the maximum. Negative density perturbations are displayed by cooler colours,
with blue denoting the lowest. The black line shows the cross section of the
unperturbed flux tube of radius 1 and the pink line denotes the contour of the
flux tube in the presence of perturbations.

54



Figure 2.7: The same as Figure 2.6, but here we represent the propagation of
kink modes (n = 1).
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Figure 2.8: The same as Figure 2.6, but here show the propagation of the the
fluting mode (n = 2).
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CHAPTER 3

New approach for analysing dynamical processes
on the surface of photospheric vortex tubes 1

3.1 Introduction

A number of modern space- and ground-based observational facilities, e.g.

SDO, Hinode, Solar Orbiter, SST, DST, DKIST allow us to obtain key infor-

mation about various plasma flow and wave processes at different time and

spatial scales in the solar atmosphere. This solar region is permeated by the

magnetic field generated in the solar interior, and advected to the surface by

convective motions. The magnetic field is not distributed uniformly, instead it

accumulates in various structures differentiated by their transverse size, life-

time, location, etc. The photospheric plasma layer presents a rich spectrum

of dynamics and classes of flows of all spatial and temporal scales. In partic-

ular, a key feature of photospheric plasma flows is the vortex motions. Using

high-quality series of granulation images taken with the SST, Brandt et al.

(1988) evidenced vortex structures which visibly dominated the motion of the

granules in their neighbourhood. They found that the average lifetime of such

structures is about 90 minutes. It was also suggested that such vortices, be-

ing common feature of the solar convective zone, can provide an important

mechanism for the heating of stellar chromospheres and coronae by twisting

the footprints of magnetic flux tubes. Later, Bonet et al. (2008), based on
1This Chapter is based on a research that is published in The Astrophysical Journal.
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the motion of bright points determined that the vortices observed in the solar

photosphere appear in regions of cooled plasma downflows and they can trace

well the supergranulation and the mesogranulation. They also found that the

density of vortices on the solar disk is approximately 0.9 × 10−2 vortices per

Mm2.

Various vortices in the solar atmosphere have been observed in a wide range

of temporal and spatial scales, from granular (e.g. 0.1-1 Mm in diameter, Gi-

agkiozis et al., 2018) to meso- and supergranular scales (e.g. 5-10 Mm in diame-

ter, Bonet et al., 2010; Requerey et al., 2018; Chian et al., 2019). Depending on

the analysed scale, vortices will display different lifetimes. For granular scales,

Giagkiozis et al. (2018) applied Fourier Local Correlation Tracking (FLCT)

(Fisher and Welsch, 2008) to intensity maps and obtained a lifetime around

16.5 s and maximum duration around 100 s. In contrast, supergranular vor-

tices can last for a couple of hours (Requerey et al., 2018; Chian et al., 2019,

2020).

In the photosphere, the evolution of magnetic elements that co-exist with

rotational motion is strongly correlated with those vortices which act to sta-

bilize the magnetic flux (Requerey et al., 2018). Recently, Shetye et al. (2019)

suggested that the chromospheric swirl is a flux tube that extends above a

magnetic concentration region in the photosphere. This idea is in accordance

with the scenario proposed by Wedemeyer-Böhm et al. (2012), where the chro-

mospheric swirls and the photospheric vortices are part of the same solar vor-

tex tube. In the chromosphere, the swirls have a lifetime around 200-300 s

(Tziotziou et al., 2018) and are dominated by transverse and rotational mo-

tions (Tziotziou et al., 2019).

Solar vortex tubes can be spontaneously generated by turbulent convection.

In simulations of quiet Sun regions vortices are found along intergranular lanes

(Shelyag et al., 2011a; Kitiashvili et al., 2012; Moll et al., 2012; Silva et al.,
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2020). They have an average lifetime of around 80 s (Silva et al., 2021) and

a radius between 40 and 80 km Shelyag et al. (2013); Silva et al. (2020).

Solar kinetic vortex tubes (Silva et al., 2021) act as a sink for magnetic field,

creating magnetic flux tubes that expand with height (Kitiashvili et al., 2012;

Moll et al., 2012; Silva et al., 2020). The concentration of magnetic flux leads

to a high magnetic field tension, which can prevent the magnetic field lines

to be twisted by the rotational motion (Shelyag et al., 2011b; Moll et al.,

2012; Nelson et al., 2013; Silva et al., 2021). In some cases, twisted magnetic

flux tubes appear close enough to flow vortices, leading to magnetic and kinetic

vortex structures closely co-existing in regions with high plasma-β (Wedemeyer

and Steiner, 2014; Rappazzo et al., 2019; Silva et al., 2021). The vortical

motions can still trigger perturbations along magnetic lines that could lead

to wave excitation, e.g. Battaglia et al. (2021a). The vorticity evolution in

the magnetised solar atmosphere is mainly ruled by the magnetic field, which

also influences the general shape of the vortices (Shelyag et al., 2011a). Based

on the analysis of swirling strength, the part of the vorticity only linked to

swirling motion (Shelyag et al., 2011b; Canivete Cuissa and Steiner, 2020)

showed that the magnetic terms in the swirling equation evolution tend to

cancel the hydrodynamic terms close to the solar surface, whereas the magnetic

terms dominate alone the production of swirling motion in the chromosphere.

The magnetic field also tends to have an important role in the plasma dynamics

along the whole vortex tube, as the Lorentz force has a magnitude comparable

to the pressure gradient (Silva et al., 2020; Kitiashvili et al., 2013). High-speed

flow jets have also been linked to simulated vortex tubes, driven by high-

pressure gradients close to the photosphere and by Lorentz force in the weakly

magnetised upper solar photosphere (Kitiashvili et al., 2013). In general, the

averaged radial profile of magnetic field, angular velocity, pressure gradient

inside of the vortex tube at the lower chromosphere and photosphere levels
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show similar behaviour (Silva et al., 2020).

There are several methods that can be used for vortex identification and

analysis in fluid flows, e.g. Günther and Theisel (2018). However, in so-

lar physics most of the previous analysis of vortices in the solar atmosphere

were based on visual inspection. Automated methods were first applied in the

analysis of solar vortices by Moll et al. (2012). Authors applied the vortic-

ity strength method (Zhou et al., 1999), to identify the area dominated by

vortex plasma flows in simulated quiet Sun and solar plage regions. Another

vortex identification technique is the Γ-method, which is able to define both

the vortex centre and boundary, and has been used to identify vortices in

observational solar data (Giagkiozis et al., 2018). However, one of the stum-

bling blocks of the Γ-method is that it carries out the identification based on

the topology of the streamlines of velocity fields, which are not an objective

quantity (Haller et al., 2016). In other words, the Γ-method is not invariant

under time-dependent rotations and translations of the reference frame. This

may lead to false vortex detection (see, e.g. Silva et al., 2018) as well as high

dependence on corrections made to remove satellite motion from observational

data (Günther and Theisel, 2018). Further discussions on the importance of

objectivity for vortex identification and description of flow topology can be

found in (Haller et al., 2016).

The analysis of solar vortices in simulated solar atmosphere data tends to

be bi-dimensional due to the limitations of the applied techniques. Silva et al.

(2020) introduced a new methodology to define a 3D vortex based on the In-

stantaneous Vorticity Deviation (IVD), see e.g. Haller et al. (2016), allowing

automated detection of boundary and centre of vortex tubes. In this chapter,

we used the method of Lagrangian Averaged Vorticity Deviation (LAVD) de-

veloped by Haller et al. (2016) to identify vortex flows, namely the centre of

circulation and their boundary. While the IVD implies an instantaneous field,

60



Figure 3.1: The analysed region of the simulation. Left panel: the xy-plane
of the whole simulation domain at z = 1.0 Mm colored by the z-component
of the velocity. The selected part of the domain investigated in this paper is
delimited by black square. The blue-dotted square delimits the region used to
plot 3D and 2D images of the domain. Right panel: 3D view of the selected
part within the black square shown in the left panel.

the LAVD is calculated by advecting and following the particles. Although

they are both based on vorticity deviation, they are distinct methodologies

that provide the vortex boundary. The choice for the use of instantaneous or

lagrangian approaches depends on the goal of the study. Here we focus on

the understanding of the evolution of plasma dynamics at the vortex bound-

ary and, therefore, LAVD field is more appropriate for the analysis, as IVD

only provides the information about a given time frame and does not take into

account the motion of the particles. Haller et al. (2016) compared these two

methods and they found that IVD tends to under- or overestimate the size

of the vortex at the initial time of the LAVD calculation. IVD also tends to

detect short-lived structures, which are not as interesting as long lived ones

and fails to determine part of the regions that belong to the true vortex during

the time of the analysis.

The LAVD method is applied in conjunction with MURaM magneto-convection

simulation data to detect and track the evolution of 3D vortex tubes in the so-
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lar photosphere. Chapter 3 is organized as follow: in Section 2 we describe the

numerical data, introduce the LAVD technique, explain the isosurface method-

ology to obtain the vortex tube and present the procedure to project the ir-

regular vortex surface onto the envelope grid. Our analysis of the evolution of

plasma variables at the vortex surface is presented in the Section 3. Finally

our results are discussed and conclusions are drawn in Section 4.

3.2 Methodology

3.2.1 MURaM Simulation Data

MURaM (MPS - University of Chicago Radiative MHD, Vögler et al., 2005) is

a multidimensional MHD code designed to realistically model solar magneto-

convection and other related solar photospheric magnetic phenomena, such

as pores (Cameron et al., 2007), sunspots (Rempel et al., 2009), and flux

emergence (Cheung et al., 2007). The code has been used extensively in con-

junction with simulated radiative diagnostics to explain a variety of small-

scale photospheric phenomena, such as photospheric magnetic bright points

(Shelyag et al., 2004), photospheric absorption line profile shapes and asym-

metries (Khomenko et al., 2005; Shelyag et al., 2007), analyse flow structures

in photospheric magnetic reconnection (Shelyag et al., 2018) and provide a link

between photospheric reconnection events and Ellerman bombs (Nelson et al.,

2013). MURaM simulations have also been used to analyse the role of tor-

sional motions in the solar atmospheric energy balance (Shelyag et al., 2011b,

2012, 2013; Yadav et al., 2020, 2021) and in analysis of physics and structure

of photospheric vortical flows (Shelyag et al., 2011a; Silva et al., 2020, 2021).

The code has been set up as follows: the size of the computational domain

in Cartesian geometry is set to 24 Mm in the x and y directions and 1.6

Mm in the z direction. The spatial domain is resolved by 960 × 960 × 160
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grid cells in x, y, and z directions, respectively. The continuum radiation

formation layer (simulated visible “solar surface”) is located approximately at

z = 1 Mm above the bottom boundary, which is made transparent for in- and

outflows. Located at the temperature minimum, the upper boundary is closed

and allows for the horizontal motion of plasma and magnetic field lines. The

lateral boundaries of the simulation box have periodic conditions imposed. The

total mass is controlled through correcting the inflow total pressure, deviation

of which from the value of pressure at the previous timestep is based on the

deviation of the current total mass box from the model, which results in an

inflow density change (see Vögler et al., 2005, for more details). On the other

hand, the upper boundary allows for horizontal motions and is located in the

higher photosphere, where the density is very low. Therefore, partial reflections

from the upper boundary will have only a very small influence on the lower-

photospheric layers of the computational domain.

The simulation starts from a well-developed non-magnetic photospheric

convection snapshot, where a uniform vertical magnetic field with the strength

of 200 G is introduced. The physical reason to choose a uniform vertical

magnetic field is because it is divergence and current-free and will therefore

not perturb the non-magnetic convection model when it is introduced. Then,

it is advected into intergranular lanes by photospheric flows, and after one

granulation lifetime the initial uniformity vanishes. After the magnetic field

collapses into the intergranular lanes, the magnetic field concentrations with

the strength around 1.5 kG in the photosphere are formed. Then, a series of

snapshots, containing state vectors of plasma parameters for each of the grid

cells in the domain, are recorded with the cadence of approximately 3.6 s. The

simulation run contains 120 snapshots, covering roughly 400 seconds of real

physical time, corresponding to one granular turnover time.

Figure 3.1 displays the xy-view of the domain for an xy-plane placed at
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z = 1.0 Mm and colored by the vertical component of the velocity field. Our

analysis is focused on a region located between x, y = 6.2...9.6 Mm, indicated

by the black square. This region extends from the simulated surface, z = 1.0

Mm, to the lower chromosphere, z = 1.6 Mm and comprises 150 × 150 × 60

grid cells in x, y, and z directions, respectively. The square marked with blue

dots is located at x, y = 7.8...9.6 Mm and represents the part of the domain

used to produce zoom-on view of our results.

3.2.2 Vortex identification

In this section, we describe the vortex identification in three dimensions based

on a sequence of time frames (119 snapshots), for the velocity field provided

by the MURaM simulations. Our analysis based on the Lagrangian Averaged

Vorticity Deviation (LAVD) method (see, e.g. Haller et al., 2016) has been

previously applied in solar physics to identify 2D observational vortices Silva

et al. (2018); Chian et al. (2019, 2020). As indicated by its name, LAVD is

a Lagrangian methodology and it is based on following the particles in order

to identify vorticity-dominated regions. For a plasma velocity u(x(t), t), we

can define the vorticity as ω = ∇× u and, therefore, the LAVD field can be

represented as

LAV Dt0+τ
t0 (x0) =

∫ t0+τ

t0

|ω(x(t), t)− ⟨ω(t)⟩|dt. (3.1)

Here, τ is a given time interval and ⟨ω(t)⟩ is the spatial mean of the vorticity at

time t. The position of flow patches, x, is calculated by solving the advection

equation,
dx

dt
= u(x, t), (3.2)

over a grid of initial positions x0 placed in a horizontal xy-plane until the

final positions x(t0 + τ) are reached after a finite-time duration τ . Note that
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the LAVD field depends on the integration time. The average lifetime of flow

vortices in simulation considered in the present paper is 80 s (Silva et al.,

2021). To perform our analysis we set τ = 35 s as after this time the vortex

surface becomes deformed and, therefore, further analysis is difficult. This

time is roughly half of the average lifetime of a vortex. We used the initial

time t = 1321.9 s and integrated until t = 1356.9 s.

To construct a three-dimensional vortex tube, Haller et al. (2016) proposed

a method based on the isosurface of the LAVD field. First, one identifies the

outermost convex contour of LAVD surrounding a local maximum at a chosen

height and then finds the isosurfaces, i.e, the set of points having equal val-

ues for the LAVD field at all the planes for which LAVD was computed. For

our analysis, we have computed LAVD field for the 60 xy-planes above the

simulated solar surface. The isosurface provides the 3D vortex boundary and

describes the initial location for the material elements that undergo the same

intrinsic dynamic rotation. The vortex boundary as defined by LAVD is a ro-

tational Lagrangian coherent structure. Following Haller (2015), a lagrangian

vortex can be described as a Lagrangian coherent structure since its boundary

is a material surface separating regions with vortical and non-vortical dynam-

ics. In other words, it remains together for the time of the analysis, being

defined by the plasma flow and separates the region in the solar atmosphere

where the vorticity dominates the plasma dynamics.

We allow some deviation from convexity for the vortex contour as, the

vortices will most likely have cross-section deviating from convex shapes. This

convexity deviation is called convex deficiency and is defined as

c =
Ac − Ach

Ac

, (3.3)

where Ac is the area which is enclosed by the extracted contour, and Ach is
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the area enclosed by its convex hull. Originally, the convexity requirement

was established as a way to dismiss false detections caused by high vorticity

concentration driven by shear flows. As shear regions do not present convex

shapes in non-magnetized flows, the condition of a convex contour would iden-

tify only the true vortical motions. However, this requirement is not enough

to dismiss wrong vortex identification in the solar atmospheric flows (see, e.g.

Silva et al., 2018). Nevertheless, the convex contour also help to identify the

stable vortices as the sturdy tubular vortical structures in the flow present

near-circular cross-section. The convexity condition ensures that any material

vortex starts out unfilamented at the initial time t0.

The LAVD field computed at z = 1.5 Mm is shown in Figure 3.2 (top

panel). The boundary of the identified vortices at that height are depicted by

red curves. We select three particular vortices (located within black squares)

to analyse further their kinematic and dynamic properties. They are labeled

as R1, R2 and L1, where labels R and L represent a clockwise and counter-

clockwise directions of their rotation, correspondingly.

In general, the whole domain under consideration consists of more than

a hundred identified vortices. In order to demonstrate the full potential of

LAVD, we focused our analysis only on the vortex tubes that had the greatest

vertical length. The selected R1, R2 and L1 vortices spanned over a distance

covering both the photosphere and bottom part of chromosphere, their life-

times were long enough and they represented the general vortices behaviour

features identified in numerical simulation. To connect rotational motion from

different heights, one should optimize the detection for each vortex, that is

the detection should identify the vortex surface such as it encompasses most

of the vertical extension of the simulated atmosphere. This can be carried out

by trying to define the LAVD contour and distinct values of convex deficiency

at different height levels. The three-dimensional boundary of R1, R2, and L1
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(a)

(b)

Figure 3.2: The top panel shows a two-dimensional horizontal slice of the
computational domain at the height z = 1.5 Mm. The colours correspond to
the local values of the LAVD field (see Equation 3.1). The red contours show
the outermost convex boundary of the local maximum of the LAVD field. The
selected vortices are located within black squares and labelled as R1, R2 and L1.
The bottom panels show their 3D reconstruction (shown in different colors).
The cross-section, indicated as a red curve for each 3D surface, represents the
selected height to plot the isosurface.
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Figure 3.3: The projection technique used to create a 2D regular surface from
3D irregular shape. (a) The 3D surface displays the vortex tube colored by
the plasma-β. The red circles at each height have centres which come from
vortex identification and the position of these are given by the black line. The
red circles have the same radius at each height. (b) The blue contours show
the boundaries of the vortex. (c) The green segments represent the radii of
the vortex and the circle at one particular height. The black dot indicates the
centre of the vortex. The vertices of the vortex are indicated by blue dots.
Red dots denote the perimeter of the circle. (d) The last panel describes the
projection of the 3D vortex surface in a 2D surface coloured by the plasma-β.
The corresponding video can be found on the PDG visualisations web-page.
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vortices, were established from isosurfaces for the LAVD value at the outer-

most convex two-dimensional contour at heights of 1.57, 1.44 and 1.32 Mm,

respectively. For each isosurface, a different value of convex deficiency was

applied in order to maximize the area encompassed by the boundary. For the

chosen vortices the associated values of convex deficiency are c = 0.01, 0.5, and

0.1, respectively. The center of each vortex was defined as the local maxima

of the LAVD field (see e.g. Haller et al., 2016). It is shown as a black dot, see

Figure 3.2(a), or as a black line, see Figure 3.2(b).

3.2.3 Vortex tube projection on a envelope grid

In this section, we introduce a new methodology to study the plasma dynamics

at the surface of the vortex. Due to the complexity of spatial distribution

of vortex parameters, e.g. velocity, pressure, temperature, etc. the analysis

of three-dimensional vortices is difficult. One possible way is to create the

stereoscopic projection of the vortex surface, i.e. mapping of the vortex surface

onto a two-dimensional grid (envelope grid), as displayed in Figure 3.3. The

three-dimensional view of the original surface of a selected vortex is depicted

in Figure 3.3(a). Its surface is colored by the plasma-β value and co-centered

with the envelope grid represented by the red circles equidistantly distributed

in the vertical direction. The values of the variables at the vortex surface were

determined by the "linear" and "nearest" interpolation methods implemented

in the griddedInterpolant Matlab function. Both methods were used, but the

"nearest" approach has an advantage, as this method is faster and requires

the least computational memory (see Matlab library for details). Figure 3.3(b)

shows both the boundary and envelop grids. The shape of the vortex boundary

(blue dots) and its projection onto the envelope grid (red dots) at z = 1.18

Mm are shown on the panel (c) of the same Figure 3.3. The black dot indicates

both, the vortex centre and the centre of the envelope grid (represented by the
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red circle). The green lines connect the centre of the vortex, corresponding

vertices and projected vertices in the envelope. This process is repeated for

each height of the vortex to obtain the full projection of the 2D vortex surface

on a 2D envelope. The result is shown in Figure 3.3(d), where we display (as

an example) the distribution of the plasma-β. The vertical axis covers the full

height of the vortex, while the horizontal axis covers the whole 360◦ around

the perimeter of the lateral surface.

3.3 Results

The changes on the vortex tubes due to the flow dynamics were established by

advecting the particles located at the vortex boundary and saving their position

for each time frame. The time interval used for the advection is the same one

applied for the LAVD computation, i.e. t = 1321.9 s to t = 1356.9 s. The

temporal evolution of the vortex’s shape for the analysed vortices is displayed

in Figure 3.4. All the structures display the same general tapered tube shape

with some deformations along their surface. Figure 3.4 indicates that, as the

vortices rotate, they tend to be stretched in the vertical direction due to the

existing downflows in the intergranular lanes. To estimate downdraft speed,

first, the position of every particle in the vertical direction was calculated for

every time snapshot and then propagated across all the advected particles. As

a result, the estimated value is in the range 0.7-1.08 km s−1. The downdraft

speed has large values close to the bottom part of the vortex structures and

it tends to zero close to the upper region as a consequence of the boundary

conditions of the simulated domain (see Figure 3.5). It is clear that the vortex

surface tends to present greater stretching in the lower part of its boundary.

The surfaces of all three vortices can be successfully recovered using the

LAVD technique, even in the case of thin structures, such as vortex R2. How-
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(a)

(b)

(c)

Figure 3.4: Advected vortex boundaries observed from the yz perspective.
From top to bottom: material surface of the R1, R2 and L1 vortices, respec-
tively. The temporal evolution of the three vortices is shown (from left to right)
as a time sequence. The different colours are used to identify the vortices.
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Figure 3.5: The average downdraft speed (Sa) as a function of height. The
physical significance of the negative values in average speed demonstrates that
the flows are in the direction of z. The range of heights that are near to the
top boundary of the MURaM simulation is represented by the grey colour.
The values corresponding to the three vortices are shown by distinct colours.

ever, further analysis in the case of vortex R2 is very difficult due to the limited

spatial resolution, therefore, in what follows we focus our analysis on the vor-

tices R1 and L1 only. The plasma dynamics during the time interval of the

analysis is described by the key plasma variables obtained from interpolation

as the particles on the vortex boundary were advected. We carry out a La-

grangian analysis on the vortex evolution, i.e. we study the temporal evolution

of the plasma variables at the material surface defined by the particle advec-

tion. Our study was performed for the time interval used to compute LAVD,

from t = 1321.9 s to t = 1356.9 s. Figures 3.6, 3.7, 3.8 and 3.9 display the

density, pressure, plasma-β, temperature, velocity and the components of the

magnetic field at the R1 and L1 vortices surfaces. The panels (from the bot-

tom to the top) show the variation of these physical variables on the vortices’

surfaces at six different time-frames, with a regular cadence of 6 s. The ver-

tical extent of each snapshot covers the whole height of the vortex, while the

horizontal extent of each snapshot covers the whole 360◦ around the perimeter
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of the lateral surface. In Figures 3.6 and 3.7, the results obtained for R1 are

shown in the first two columns, while the last two columns display the results

obtained for the vortex L1.

Figure 3.6 displays the Lagrangian evolution of density and pressure for

the two vortices. Comparing the evolution with height and time of these

two quantities, there is no considerable difference between the two vortices

except for small localized variations. Over time, there is a slight change in the

density and pressure gradient along the vertical direction. For regions close to

the simulated surface, we see the trend to have local concentration of plasma

density and pressure as a function of time, but these tend to decrease with

height.

Figure 3.6: Density (rho) and pressure (p) changes with time for vortex R1
and L1, from bottom to top row. The first and second columns represent the
R1 vortex, while the final two columns explain the L1 vortex.
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From energetic and dynamical point of view it is essential to study the vari-

ation of the temperature and plasma-β parameter along the two vortices. The

first and third column of Figure 3.7 shows the spatial and temporal evolution

of temperature, measured in K. One very important result is that the tem-

perature does not have a global behaviour, changes in this important quantity

are rather localised. In general the top of the vortices are cooler than their

bottom. It is also interesting to note that the surface temperature of vortex

R1 is decreasing in those regions where we have a depletion of plasma density.

The second and fourth columns of Figure 3.7 show the spatial and temporal

changes in plasma-β. One important result visible in these snapshots is that

the plasma-β is mostly less than one, meaning that the dynamics of the plasma

is driven mainly by magnetic forces. It is also clear that during the evolution

of the vortex, the value of plasma-β increases, in a similar way as the increase

in temperature seen in Figure 3.7. In the case of vortex L1 the dynamics in

the bottom part of the vortex is driven mainly by pressure forces, however in

time this diminishes and magnetic forces become more and more dominant.

The evolution of the three components of the velocity field indicates a

stable flow configuration as displayed in Figure 3.8. This suggests that the

detected vortices are stable rotating structures. The variations in the values

of the horizontal velocity components suggest the presence of forces acting to

accelerate or slow down the rotational plasma motion. As found in previous

studies (Kitiashvili et al., 2013; Silva et al., 2020), the vortices experience both

up and downflows during the time of the analysis, as indicated by the evolution

of the z-component of the velocity.

Figure 3.9 shows the spatial and temporal evolution of the three compo-

nents of the magnetic field. While x component of the magnetic field (Bx)

shows a fairly homogeneous variation towards the bottom of both R1 and L1

vortices, it decreases towards the top. The By component shows a strong
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Figure 3.7: Temporal development (from bottom to top) of temperature (T )
and plasma-β on the surfaces of the R1 and L1 vortices. The first and second
columns correspond to the vortex R1, whereas the third and fourth columns
correspond to the vortex L1.
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Figure 3.8: The temporal evolution of the three velocity components (Vx, Vy,
and Vz) in the case of vortex R1 and L1. The first, second and third columns
stand for the vortex R1 and the last three columns describe the vortex L1.

shear, however, the Bz component shows that the magnetic field decreases

with height, creating strong vertical gradients. It is also clear that the vortices

have predominantly vertical magnetic component, oriented upwards which in-

creases in time, confirming the conclusion of the vortex’s role as a local sink

for magnetic fields. Except for the By component, there are no drastic changes

in the orientation of the magnetic fields components at the vortices’ boundary

over time.

One of the most interesting aspects that help to determine the nature of the

dynamics on the surface of vortices is the relative inclination of the magnetic

and flow fields (see Figures 3.10 and 3.11). The magnetic field orientation

is indicated by red arrows, while the direction of the flow field is given by

blue arrows. The four snapshots are taken at regular time intervals, e.g. 0,

9.5, 18.4 and 35 s. In these figures the top row shows the evolution of the

vortex’s boundary and the directions of the two vectors fields, the bottom

row shows the angle of the two vector fields measured on the surface of the
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Figure 3.9: The temporal evolution of the three components of the magnetic
field (Bx, By, and Bz) in the case of vortex R1 (left panel) and L1 (right panel).
Since the z-component of the magnetic field is always positive, in the colour
bar we use only positive values.

vortex, where the angle is shown on the colour bar, with 180◦ denoting an anti-

parallel orientation. Initially, most of the lower part of the vortices presents

magnetic and velocity fields directions practically anti-parallel. Looking at the

arrows’ orientation, it is clear that this tends to happen in parts of the surface

with strong downflow. Over time, the relative orientation of the fields tends

to change and the magnetic field is mainly aligned with the plasma flow (in

regions with strong upflows). The narrow and tall regions in the two snapshots

of Figure 3.10 correspond to a localised region where the two vector fields are

anti-parallel and show an oscillatory pattern (with a characteristic length of

about 100 km) that could be an indication of a wave propagation in an opposite

direction to the magnetic field, advected downward by the flow (see also the

fourth column of Figure 3.8).

The oscillatory pattern visible in Figure 3.10 is very localised. Due to the

present resolution of the numerical domain, the full analysis of the nature of
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these wave patterns can not be performed. We speculate that these waves

might be slow magnetoacoustic waves, but further high-resolution simulations

and methodology improvement are needed to clarify this point. In terms of

methodology, it will require incorporation of the coordinate system with the

direction along the magnetic field, and perpendicular to the vortex surface

to be able to project the vector field parameters. This approach will be use-

ful for the identification of velocity and magnetic field perturbations along

and perpendicular directions to the background magnetic field and, therefore,

wave identification. Furthermore, for an accurate determination we would also

need information about the internal part of the vortex, an aspect that is not

addressed here.

Figure 3.10: From the left to right the four snapshots of the R1 vortex are
shown (the magnetic and velocity fields indicated by the red and blue arrows,
respectively). The vortex surface is coloured by the angle between the velocity
field and magnetic field. The same angle is shown in the bottom row in 2D.
The corresponding video can be found on the PDG visualisations web-page.

In the case of vortex L1 at the initial time the two vector fields are anti-

parallel, however, this decreases with time and the two vectors tend to be

more aligned. To analyse the variation of the energy and momentum transport
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Figure 3.11: The same as Figure (3.10), but here vortex L1 is presented. The
corresponding video can be found on the PDG visualisations web-page.

Figure 3.12: The temporal evolution of the three components of the Lorentz
force (Fx, Fy, and Fz) in the case of vortex R1 (left panel) and L1 (right panel).
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on the surface of the two vortices, the spatial and temporal evolution of the

Lorentz force, pressure gradient and Poynting flux have been analysed. Figures

3.12 displays (from left to right) the components of the Lorentz force (Fx, Fy,

Fz), for the vortices R1 and L1, respectively. This is the magnetic restoring

force oriented in the perpendicular direction to the magnetic field that acts

upon changes in the magnetic field (per unit volume on the fluid) and it is

defined as

F =
1

4π
(∇×B)×B. (3.4)

The Lorentz force introduces a magnetic pressure and also a tension along

the magnetic field lines. The left panel of Figure 3.12 describes the spatial

and temporal evolution of the Lorentz force on the surface of the vortex R1,

while the right panel shows the same quantity, but in the case of vortex L1.

In general, the three components of Lorentz force in the two vortices demon-

strate similar behaviour, with the value of the Lorentz force at the top of the

analysed structures being three orders of magnitude (on average) smaller than

at the bottom. The Lorentz force shows large regions where the values of its

components is very small, meaning that in this region the vortex dynamics is

mainly driven by hydrodynamic forces. As expected, the most dynamically

changing component is the one that is in the direction of azimuthal rotation

(Fy) and shows a significant increase during the lifetime of the vortex. The

three components also show that for each vortex the components of the force

change their direction from the lower part of the upper part of the structure.

The same oscillatory pattern can also be observed in the y component of the

Lorentz force in the case of vortex R1. In order to determine the dominant

force driving the dynamics of the plasma on the surface of the two vortices,

we calculate the components of the ratio of the pressure gradient force and
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Lorentz force as

Cx = −∂p

∂x
/Fx, Cy = −∂p

∂y
/Fy, Cz = −∂p

∂z
/Fz (3.5)

These ratios are shown in the Figure 3.13 for R1 and L1 vortices. The

chosen colours denote physically distinct regions. Accordingly, the red colour

denotes regions where the pressure forces dominate, but the two forces are

oriented in the same direction, the blue colour denotes regions where the two

forces are anti-parallel but the pressure force is higher than the Lorentz force.

The green and yellow colours mark the regions where the Lorentz force is larger

than the pressure force, but the two colours are denoting the cases when the

two vectors are parallel and anti-parallel, respectively. Finally, the white and

black colours denote the cases when the two forces are equal, but the their

orientation is parallel and anti-parallel. The results represented in Figure 3.13

are following. First of all, on the boundary surface of the vortex the two forces

are never in balance. In the case of vortex R1 the dynamics of the plasma in

the horizontal directions show a rather complex pattern, with localised regions

where the role of the dominant force is changing. When compared to the results

showed for the distribution of velocity (see Figure 3.8), it is clear that in the

case of vortex R1 the plasma motion is mainly driven by pressure forces and

the two forces are pointing, in general, in different directions. In time, the role

of pressure forces diminish. In the vertical direction, there is also the tendency

of pressure gradient forces being larger than the Lorentz force. The dynamics

on the surface of vortex L1 shows similar complexity thanks to the interplay

of the two forces. Comparing these results with the findings shown in Figure

3.8 (left panel), it is clear that initially the flows in the positive x direction

are driven by pressure forces, while the flows in the negative direction are

driven by magnetic forces. Looking at the second panel of Figure 3.13 we can
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conclude that in the y direction the two forces are almost always anti-parallel

and motion in the positive/negative directions are driven by magnetic/pressure

forces. Finally, the motion in the vertical direction shows an interesting feature,

when the alignment of the two forces is changing in time from being mainly

anti-parallel, to parallel, but pressure forces dominate everywhere.

Figure 3.13: The temporal evolution of the three components of the ratio (Cx,
Cy, and Cz) in the case of vortices R1 (left panel) and L1 (right panel).

MHD approximation of the Poynting flux is defined as the energy trans-

ferred by a wave across a unit area at any instant time and it is given by

S =
1

4π
B× (v ×B) =

1

4π
[v(B ·B)−B(B · v)] . (3.6)

The first term in the above equation is oriented in the direction of the velocity

field, and it is proportional to the square of the magnetic field intensity. In

contrast, the second term is in the same direction as the magnetic field, and

it is proportional to the alignment of the magnetic and velocity fields. The

evolution of the Poynting flux for the vortex R1 is shown in the left panel

of Figure 3.14 and the horizontal components show high correlation with the

pattern of the plasma flow velocity shown in Figure 3.8. The fact that the
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components of this vector have positive and negative values is attributed to

the directions of the plasma flow, but in any case the direction of the energy

flow agrees with the direction of the flow. It is interesting to note that the

vertical component of the Poynting flux shows large regions where this quantity

is close to zero, meaning that the electromagnetic energy is distributed mainly

in the horizontal direction confirming the findings of Silva et al. (2022). In

Figure 3.14: The temporal evolution of the three components of Poynting flux
(Sx, Sy, and Sz) in the case of vortices R1 (left panel) and L1 (right panel).

the case of vortex L1 the magnitude and the direction of the Poynting flux

agrees with the direction of the plasma flow. Again, initially the Poynting flux

is mainly horizontal, but in time, the vertical component increases thanks to

the increase in the plasma flow seen in Figure 3.8. It is interesting to note

the same periodic variation of the y component of the Poynting flux similar to

the variation of the y component of the Lorentz force, and the characteristic

length of these variation are similar.
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3.4 Discussions and conclusions

The current study was dedicated to the analysis of physical paramaters on the

surface of vortices in magnetoconvection numerical data which correspond to

the dynamics in the lower part of the solar atmosphere. The comparison of

radiative magnetoconvection simulations with the real observations has been

reported in a number of papers, e.g. Schüssler et al. (2003); Shelyag et al.

(2004); Khomenko (2005); Shelyag et al. (2007) to name but a few. Notably,

Beeck et al. (2012) have compared results from a number of photospheric

magneto-convection simulations produced by different codes and found that

the results reliably represent the finest details of the observed solar radiation,

including its temporal and spatial scales. Here, the three-dimensional vor-

tex structure has been determined using Lagrangian analysis and the vortex

boundaries were defined by means of isosurfaces of LAVD contours as previ-

ously suggested by Haller et al. (2016). Physically, the use of this technique

means that all the particles on the surface boundary undergo the same intrin-

sic dynamic rotation. In other words, in the time interval used to compute the

LAVD field, the fluid elements at the vortex boundary experience the same

bulk rotation relative to the mean rigid body rotation of the fluid. The radius

of the detected Lagrangian vortices increases with height, as also found for

instantaneous vortex detection (Silva et al., 2020). For the selected vortices,

we see the surfaces change in size while keeping their topology. In this paper,

the LAVD approach was applied to a small subset of the numerical domain.

Due to the fact that the procedure is automated, it may be used in large re-

gions, too. This may be accomplished rather simply by selecting a constant

convexity deficiency value and constantly searching for the LAVD isosurface

that begins at the same height.

The variation of physical parameters on the surface of the examined vortices
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show a very complex behaviour. The LAVD field was used to define vortex

centres and their boundaries based on the fluid elements advection. The case

of vortices presented in the current study, global changes are not occurring for

all physical parameters. It is clear that the variation of density, pressure, par-

ticular magnetic field components are, to a very large extent, changing globally

(see Figsures 3.6 and 3.9), however, the general characteristic of investigated

vortices is that physical parameters describing the state of the plasma and

quantities describing dynamics and energetics have a much more local charac-

ter, meaning that changes occur locally (see, e.g. the variation of temperature,

plasma-β, velocity and Lorentz force). The analysis of the Poynting flux com-

ponents (see Figure 3.14) reveals that the energy flows are mostly present in

the horizontal direction as previously discussed by Silva et al. (2022).

Due to the simultaneous presence of the oppositely oriented flows, the solar

atmospheric vortices are mixing plasma predominantly in the vertical direction.

The forces that drive the plasma dynamics on the vortices surfaces show a

high degree of inhomogeneity (see Figure 3.13, for example). We anticipate

that the increase of vertical velocity component (vz) is related to the net force

balance in the vertical direction. The pressure gradient is always pointing

upwards and the gravity is always pointing downwards. Therefore, although

the pressure gradient tends to dominate over the z-component of Lorentz force,

from results presented in Figure 3.12 it follows that the changes in the vertical

velocity are actually driven by the Lorentz force. Indeed, for both R1 and

L1, we have deceleration and acceleration of vertical flow in regions where the

Lorentz force is increasing downwards and upwards respectively. The pressure

gradient dominance is expected since we are studying the vortex boundary, i.e.

our analysis concerns the outermost region where the flow dynamics is more

effectively affected by the vortical motions.

The structures we study also present dynamics whose driver undergoes a
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transition, from being driven by kinetic forces, to a motion that is driven by

magnetic forces. Therefore, the magnetic nature of the vortex, observed in pre-

vious studies (Shelyag et al., 2012; Kitiashvili et al., 2013; Silva et al., 2020),

is not prevailing over the kinematic dynamics. Our results suggest the La-

grangian vortices recovered from the magneto-convection simulations do not

rotate as a rigid body. This particular rotation will lead to the different an-

gular velocities at different heights of the vortex. The analysis of the angular

velocity profiles as a function of radius for the vortices identified in the mag-

netoconvection numerical simulations were presented in a recent investigation

by Silva et al. (2020).

Future works will focus on the description of plasma and field parameters

inside the magneto-convection Lagrangian vortices. Recent study by Battaglia

et al. (2021b) has evidenced the propagation of Alfvén pulses inside a vortex

structure. Our results suggest that we may have some signatures of wave

propagation on the LAVD-identified vortex surface as periodic changes were

observed for some variables (see Figures 3.12 and 3.14). Therefore, the method-

ology used in our paper to determine the values of physical parameters and

their changes in time is suitable for the identification of the dominant physical

parameters that drive the wave propagation.
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CHAPTER 4

Waves on vortex surfaces

4.1 Introduction

Vortices and vortical flows in the solar photosphere are fundamentally impor-

tant for the generation of magnetohydrodynamic (MHD) waves which are to

propagate into the upper layers of the solar atmosphere. Vortex motions can

transport the energy from photosphere into the higher upper of the solar atmo-

sphere by means of MHD waves, where they can contribute to the heating of

the solar upper regions (Fedun et al., 2004; Erdélyi and Fedun, 2007; Taroyan,

2008; Taroyan and Erdélyi, 2009; Antolin and Shibata, 2010). Vortex tubes

are formed as coherent magnetic field structures in the solar atmosphere, e.g.

twisted magnetic flux tubes.

Using nonlinear 3D simulations with a realistic vortex driver Fedun et al.

(2011) found that the plasma structure of chromospheric magnetic flux tubes

can act as a spatially dependent frequency filter for propagating torsional

Alfvén waves. In addition, these authors showed that the swirly source that

applied is capable of excitation of a variety of wave patterns.

From the discussion presented in Chapter 2 it is clear that magnetic struc-

tures in the solar atmosphere can support the propagation of a rich spectrum

of waves. These waves can be considered as global waves, since the whole

magnetic structure participates in the periodic motion, the magnetic structure

moves as a whole. These waves are constantly observed in magnetic struc-
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tures in different wavelength and they offer a unique tool for the diagnostics

of plasma and magnetic field.

On the other hand, localised waves can be generated on the surface of these

structures (similar to the surface waves at the interface separating water and

air), however, these waves have much shorter spatial scale, making them very

difficult to observe and study.

Our results discussed in Chapter 3.1 suggest that vortices may have the

imprint of wave propagation on their surface, as short-lived periodic changes

were observed for some variables (see, e.g. Figures 3.12 and 3.14). Although

the vortices studied by us were numerically generated in a realistic solar at-

mosphere, the resolution of numerical data does not allow us to study these

waves in great detail.

In this chapter, we will use the Proper Orthogonal Decomposition (POD)

technique to identify and study the wave motion on the surfaces of the numer-

ical vortices presented in Chapter 3. In addition, using synthetic data, we will

carry out forward modelling of waves propagating along a magnetic flux tube

with realistic vortex motion to recover the signature of possible waves using

the same projection technique as presented in Chapter 3.

The Chapter is organized as follow: in Section 2 we introduce the Proper

Orthogonal Decomposition (POD) method and apply this method to the local

periodic changes observed on the surface of vortices studied in Chapter 3.

Section 3 is devoted to the study of global synthetic oscillations of a vortex tube

by constructing a suitable cylindrical flux tube on which we impose a rotational

motion taken from the findings listed in Chapter 3. The morphology of these

waves will be studied and the changes in the parameters of waves will be

investigated in the present of vortical motion. Finally our results are discussed

and conclusions are drawn in Section 4.
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4.2 Local waves on the surface of vortices

One of the most successful methods developed for wave identification is the

Proper Orthgonal Decomposition method.

Originally the method has its roots in the pioneering work by Pearson

(1901), who aimed to develop a technique to be a mechanical equivalent of

the principal axis theorem. The principles of these approach have been used

by Lumley (1967), who developed the POD technique to identify and study

coherent structures in turbulent flow-fields in fluid dynamics.

Nowadays POD is known by a number of names in the literature, such as

principal component analysis (PCA) and Hotelling (or T-squared) analysis.

The POD approach enables spatially orthogonal patterns to be determined

from signals. Given the way the method is constructed, it recovers an equal

number of modes as the number of samples in a given dataset, however, it can

be easily shown that the majority of these modes are unphysical. Therefore,

one of the most difficult aspects of this technique is the determination of which

of the POD modes have a physical significance. On the other hand, the POD

will also provide straightforward ranking criteria based on the contribution of

the modes to the signal’s variation. The POD was used in connection with

granular flows and fluid mechanics (Murray and Ukeiley, 2007; Berry et al.,

2017; Higham et al., 2017; Berry et al., 2017; Higham et al., 2020, 2021). Lately

the method was used in solar physics by (Albidah et al., 2021) to identify MHD

wave modes in the umbral regions of sunspots. In this study, we will apply

POD method on the components of the velocity and magnetic field of MHD

modes and vortices at their boundaries to identify local and global periodic

changes. Before we proceed to this study we need to briefly overview the

mathematics of this method for a better understanding of the results. Let

us consider a set of time series (T) for a given physical parameter that can

89



be recovered from observation or numerical analysis (for instance the velocity

field or magnetic field). Each of them has a spatial size X×Z. As an example

every snapshot has been reorganised to be as a column vector as shown in the

matrix DN×T , with N ≫ T . The matrix can be defined as

DN×T =



d1,1 d1,2 · · · d1,T

d2,1 d2,2 · · · d2,T
...

... . . . ...

dN,1 dN,2 · · · dN,T


, (4.1)

where N = X × Z and each column of this matrix represents the number of

the snapshot, the data is now organized and ready for applying POD. One ap-

proach to find the POD decomposition of D is by using the optimum low rank

approximation known as the Singular Value Decomposition (SVD) developed

by (Eckart and Young, 1936). Accordingly, we write

DN×T = USV ∗ =



u1,1 u1,2 · · · u1,T

u2,1 u2,2 · · · u2,T

...
... . . . ...

uN,1 uN,2 · · · uN,T





s1,1 0 · · · 0

0 s2,2 · · · 0

...
... . . . ...

0 0 · · · sT,T





v1,1 v1,2 · · · v1,T

v2,1 v2,2 · · · v2,T
...

... . . . ...

vT,1 vT,2 · · · vT,T


(4.2)

Here the matrix U of size N × T contains the spatial structure of the

modes, each column represents one mode, and number of mode corresponds to

the number of snapshot. The matrix S is a diagonal matrix which is ranked in

descending order (s1,1,≥ s2,2 ≥ . . . ≥ sT,T ≥ 0), and explains the contribution

to the total variance of the snapshot series. The matrix V of the size T × T

represents the time coefficients of each mode and these represent the temporal

evolution of the POD modes. Hence, the product of the X×Z two-dimensional

90



(a)

Figure 4.1: The first panel lists the power of the POD modes contributing to
the signal for vortex R1. The second column reveals the spatial structure of
the POD 4 mode, the third column displays the time coefficient for the POD
4 mode. Finally, the fourth column provides the FFT for the POD 4 mode.
The POD is applied on the components of the velocity.

spatially orthogonal eigenfunctions and their corresponding one-dimensional

time coefficients are the spatial and temporal output of the POD analysis.

These modes can be periodic or non-periodic and their amplitude can also

vary with time as the POD has no restriction on the time coefficients.

The POD modes have a clear ranking in terms of their contribution to

the total variance of the time series, and the ranking is given by the diagonal

matrix S, with the diagonal elements λ of the matrix S. The contribution to

the total variance of each POD modes is given by the vector

λ =
diag(S)2

N − 1
. (4.3)

We consider the two vortices (R1 and L1) studied in detail in Chapter

3. The results of the POD decomposition for these structures are shown by

Figures 4.1 and 4.2. The power distributions of the contribution to the signal of

all the possible POD modes are given in the left-hand side panel. Although it
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(a)

Figure 4.2: The same as in Figure 4.1, but here we present the results obtained
for vortex L1 .

does not have the highest contribution to the overall signal, we choose the POD

4 mode for both cases (vortex R1 and L1) because the time coefficient for each

component has (at least) one period (see the third columns of Figures 4.1 and

4.2). The POD 4 mode intensity for each velocity component is shown in the

second columns of Figures 4.1 and 4.2) and these indicate that the signature of

wave propagation is present (periodically alternating and localised patterns) ,

confirming the results discussed in Chapter 3, where we found periodic changes

for some variables on the surface of the vortex tube (see Figures 3.12 and 3.14).

We should mention here that higher order POD modes, although presenting

clear oscillatory pattern in their time coefficients, are not good candidates for

our analysis because they have an even less contribution to the signal and their

periodic change might be the result of the way POD decompose the original

signal.

The Fast Fourier Transform (FFT) of the period changes detected on the

surface of the two vortices reveals a wave propagating with a frequency of 0.09

Hz, with the frequency of the z-component of velocity for vortex L1 having a

slightly lower frequency. However, it still is not obvious what is the nature of
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waves we observe. Since no earlier research has addressed how these kinds of

waves can be observed, we attempt to explain how the patterns of MHD wave

modes with vortex flow.

In order to better understand the nature and propagation characteristics of

these waves we would need a much more detailed investigation of several vor-

tices (including the variation of physical parameters inside their structure), a

correlation analysis of periodic motions, and probably a more suitable analyt-

ical model that could describe the changes observed on the surface of vortices.

4.3 Global waves along a magnetic flux tube

In our quest to study the signature of global waves propagating along vortex

tubes, first we are going to generate synthetic surface MHD waves propagating

along the magnetic flux tube. The dispersion relation for these waves (Equa-

tion 2.47) has been discussed in detail earlier in Section 2.3.2.3.

The dispersion relation is solved for particular values vAi = 2cSi, cSe =

1.5cSi, and vAe = 0.5cSi (typical for a photospheric magnetic structure) and

the modes we will deal with are fast magnetoacoustic modes. The propagation

characteristics of sausage, kink and fluting modes were shown earlier in Figures

2.6, 2.7 and 2.8, respectively. The choice of the phase speeds and wave numbers

for each mode is shown in the Table 4.1.

With the help of Equations (2.49)–(2.56) we can find the value of the three

components of velocity at the surface of the waveguide. Figure 4.3 depicts the

pattern of the velocity field for the three MHD wave modes, as well as their

combinations (right-hand panel). The surface of the flux tube is coloured to

show the distance of particular points from the static symmetry axis of the

tube, therefore, yellow and blue colours denote maximum and minimum dis-

tance. Next, we are going to surround the flux tube with a similar mesh grid as
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Table 4.1: Summary of parameters used in connection with the cylindrical
model to generate the global MHD modes propagating along the magnetic flux
tube shown in Figure 4.3. Here the phase speed, Vph, is given in units of kci and
kra is the dimensionless wavenumber. The values of frequencies, dimensionless
wavenumber and phase speeds were collected from the dispersion curves shown
in Figure 2.5 and amplitudes are arbitrary values.

MHD mode Vph kra Frequency, Hz Amplitude
Sausage, n = 0 1.45 1.88 0.1 2.5
Kink, n = 1 1.32 2.06 0.2 1.2
Fluting, n = 2 1.28 1.54 0.3 1.8

presented in Chapter 3 and we project the velocity components of the flux tube

onto this grid. The transformation of the velocity vector between the cylindri-

cal and Cartesian coordinate system is carried out using the transformation

matrix 
vx

vy

vz

 =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1



vr

vϕ

vz

 (4.4)

Figure 4.4 shows the results of this projection, where the first three columns

are representing the three velocity components for sausage, kink and fluting

modes, while the last column describes the signature of the wave that is ob-

tained as a result of the combination of these three waves. The combined

waves contribute in equal weight to the resulting mode. The patterns of the

three waves used here show typical behaviour, while the pattern obtained for

the resulting modes is rather complex.

4.3.1 Vortex tube

In Chapter 3 we used magnetoconvection simulations from which we isolated

and reconstructed two vortices (denoted by R1 and L1). These vortices were

studied in great detail and the values of the velocities and magnetic fields on

the lateral surface of these structures were shown by Figures 3.8 and 3.9. The
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Figure 4.3: The sausage (n = 0), kink (n = 1), and fluting (n = 2) modes
propagating along a magnetic flux tube are shown in the first three panels.
The magnetic flux tube is represented within a cuboid of height 6 Mm and
a horizontal sides of 4 Mm. The fourth panel shows the signature of the
combined wave (the superposition of the mentioned three modes). The colour
of the lateral surface of the flux tube is chosen to be proportional to the distance
between the longitudinal axis of the tube and the lateral surface of the flux
tube, so that yellow and blue colours represent the largest and the shortest
distances, respectively.
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Figure 4.4: The velocity components of sausage, kink, and fluting (n = 2)
modes projected onto a 2D mesh grid. Here the height corresponds to the
height of the flux tube and the horizontal coordinate covers the whole 360◦

around the magnetic flux tube. The last column shows the signature of wave
obtained as a combination of the three modes.

numerical dataset has been collected over an interval of 35 seconds with time

cadence of 0.6 seconds, i.e. the data has 60 snapshots. Firstly, we need update

the new Cartesian coordinate positions of the vortex centres and boundaries

before we can begin to analyse them. The rationale for updating the new

Cartesian coordinate location of vortex is to make the analysis of the MHD

modes propagating along vortex tube more straightforward when they are

combined.

Let us use the vortex R1 as an illustration. Since the positions of the vortex

centre and vortex boundaries are already known, we denote the coordinates of

the vortex centre by xi, yi, and zi in each snapshot. Similarly, we are going

to denote by ui, vi, and wi the Cartesian coordinate positions of the vortex

boundaries for each snapshot, where i = 1, 2, ..., N is the number of snapshots.

The new coordinates of the vortex centres and boundaries are updated by
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Figure 4.5: The left panel depicts the three-dimensional structure of vortex R1;
the blue line denotes the position of the vortex boundary at each snapshot,
while the black line denotes the vortex centre. The right panel illustrates the
same vortex, but the boundary and centre positions for each height have been
subtracted from the centre positions for each height. The values along the z
axis are normalised by the largest value in the z direction in the left panel.

using the definitions

Xi = xi − xi−1, Yi = yi − yi−1, Zi =
zi −min(zi)

max(zi)−min(zi)
,

Ui = ui − xi−1, Vi = vi − yi−1, Wi =
wi −min(wi)

max(wi)−min(wi)
, (4.5)

where Xi, Yi, and Zi denote the new Cartesian coordinate position of vortex

centre, and Ui, Vi, and Wi are the new Cartesian coordinate position of vortex

boundary (see Figure 4.5). The scaling presented in Equation (4.5) are intro-

duced to make the symmetry axis of the vortex straight and centered on the

origin of the coordinate system. The new quantities Zi and Wi are necessary

in order to normalise the height to be between 0 and 1. The scaling applied

here are needed to make the structure and extent of the vortex tube similar to

the flux tube along which waves propagate. The vortex tube constructed this

way will provide the information about the rotation that will be added to the

97



Figure 4.6: The first column shows the power of the POD modes contributing
to the overall signal (here we plot only the first ten POD modes), the second,
third and fourth columns show the intensity map of the first three POD modes
for the three velocity components. The last column displays the Fast Fourier
Transform (FFT) of the time coefficients of POD 1, POD 2 and POD3 modes.
The values of the power spectrum are normalized to their maximum value.

oscillating magnetic flux tube.

4.3.2 Result

Figure 4.3 illustrates the oscillation pattern of the magnetic flux tube in the

case of sausage, kink and fluting (n = 2) modes, as well as the mode that

is constructed as a combination of the three modes. We next apply the POD

technique to the time series for the combined MHD waves to them, as shown in

the figure 4.6, which successfully recovers the three MHD waves. The left-hand

side panel shows the power of the POD modes contributing to the signal. For

simplicity we plot the power of the first ten modes, all the other POD modes

have an even smaller contribution. It is clear that the three waves we combined

(shown by the blue, red and black dots) have the most significant power, all

the other modes recovered by POD have an insignificant contribution. The

patterns shown by the POD analysis are identical with the patterns of the
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three waves shown in Figure 4.4. The FFT analysis shown in the last column

recovers the frequencies of the MHD waves, demonstrating the effectiveness of

the POD method for mode identification.

4.3.3 Global MHD modes with vortex dynamics

With the synthetic data describing global oscillations of a flux tube and the

velocity profiles recovered from the vortex tubes studied in Chapter 3, we can

study the morphology of global MHD waves propagating along a vortex tube.

When the rotational motion of the vortex R1 is superimposed on the veloc-

ity components of an oscillating flux tube, the pattern of waves will be modified

and the results of the POD decomposition are shown in Figures 4.7, 4.8 and

4.9. The first column in these figures show the pattern of the three waves in

a magnetic flux tube, the second column shows the velocity pattern recovered

for the vortex R1, while the last column displays the morphology of the three

waves modified by the vortex motion. It is clear that the vortex motion has a

dramatic influence on the pattern of waves, however, the periodic behaviour is

observable. The most noticeable change is in the z-component of the velocity.

The aforementioned POD analysis is applied to the combined data and the

morphology of the first five POD modes are shown in Figures 4.10, 4.11 and

4.12. The time coefficients of the POD decomposition for the three modes is

shown in Figures 4.13, 4.14 and 4.15.

The time coefficients of the POD 1 mode show a clear oscillatory behavior

in time, therefore the POD 1 modes in Figures 4.10, 4.11 and 4.12 they can

be confidently classified as waves. As a matter of fact, the modes recovered

as POD 1 modes are identical with the global mode we used for modelling

and their FFT (see Figure 4.16) shows that although the morphology of these

waves are slightly altered by the presence of the vortex motion, their frequency

undergoes a Doppler shift.
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Figure 4.7: The signature of global sausage modes propagating along a mag-
netic flux tube in the presence of vortical motion. The first column depicts the
components of the velocity field in the case of the sausage mode, the second
column shows the components of the velocity field extracted from numerical
simulations (here we use the vortex R1). The final column displays the com-
ponents of the combined velocity field. Each component is normalized by its
maximum value of absolute value.
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Figure 4.8: The same as Figure 4.7, but here we plot the values of the three
components of velocity in the case of kink modes.

Figure 4.9: The same as Figure 4.7, but here here we plot the values of the
three components of velocity in the case of fluting (n = 2) modes.
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The time coefficients of the POD 2 modes do not show periodic change,

therefore, these modes are not really waves. Indeed, comparing the second

columns of these figures with the second columns of Figures 4.7, 4.8 and 4.9,

it is clear that these are very similar, therefore we can conclude that this POD

is due to the vortex flow.

Figure 4.10: The first five POD modes in the case of fast sausage waves propa-
gating along the vortex flux tube. The vortex motion correspond to the vortex
R1 identified and studied in Chapter 3. The rows correspond to the three
velocity components.

The subsequent POD modes show that the signal is very much degenerated

and the patterns shown on the last three columns of Figures 4.10, 4.11 and

4.12 resemble the applied vortex motion that is perturbed by the presence of

waves. As a result, only local periodic changes can be observed, however the

time coefficients of these modes do not show any periodicity.

A similar analysis with the rotational characteristics of the vortex L1 would

reveal similar results. The above analysis was performed for propagating fast

waves. It is likely that the vortex tube in the presence of global slow waves

would result in identical conclusions as in the case of fast waves.
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Figure 4.11: The same as Figure 4.10, but here we plot the POD decomposition
of the vortex tube (based on the values of the three components of velocity)
in the case of kink modes.

Figure 4.12: The same as Figure 4.10, but here we plot the POD decomposition
of the vortex tube (based on the values of the three components of velocity)
in the case of fluting (n = 2) modes.
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Figure 4.13: The time coefficients of the first five POD modes shown in Figure
4.10.

Figure 4.14: The time coefficients of the first five POD modes shown in Figure
4.11.
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Figure 4.15: The time coefficients of the first five POD modes shown in Figure
4.12.

Figure 4.16: The Fast Fouerier Transform (FFT) of the time coefficients of
POD 1 for each of the velocity components shown in Figures 4.10, 4.11 and
4.12 for each of the cases.
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4.4 Conclusions

Vortices are ideal candidates to energy channeling from the dense solar photo-

sphere to upper regions of the solar atmosphere, where it can be dissipated and

converted into heat. This chapter discussed the possibility of wave propagation

(as a mean for energy propagation) along vortex tubes.

Since such study cannot be confirmed observationally, the nature and prop-

erties of waves propagating along a vortex tube has been studied using the

combination of numerical and synthetic data.

Inspired from the results presented in Chapter 3, it became clear that in

the case of vortex tubes we have to distinguish between local and global waves.

In the case of local waves only a limited portion of the vortex surface oscillate.

The nature of these waves cannot be elucidated as we do not have enough

information about the variation of plasma parameters inside the vortex. The

periodicity of waves has been analysed by means of the POD decomposition.

Our investigation reports on the existence of local waves with frequencies in

the range of tens of mHz.

In order to analyse the morphology of global waves propagating along vor-

tex tubes, first we created a synthetic dataset containing the properties of fast

waves with different radial order (sausage, kink and fluting modes). Then, us-

ing the pattern of rotation derived from MuRAM numerical simulation of vor-

tices presented in Chapter 3 we have imposed a vortex motion on the syntheti-

cally generated flux tube and investigated the morphology of global waves. The

mode decomposition was accomplished using the same POD method, which

proved to be a very reliable tool. The results show that the coupling between

global waves and vortical motion did not generate new waves, the result of this

coupling are the same waves as used in constructing model, however the FFT

anslysis showed that their frequency under shift.
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The POD applied to our synthetic data also revelead that POD is not only

successful in identifying periodic patterns (waves), but also motions with no

specific periodicity. In particular, the POD 2 mode recovered the signature of

the vortical flow.
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CHAPTER 5

Conclusions

5.1 Overview of thesis

The present summarises the research I carried out in the field of vortex iden-

tification and study in the solar photosphere. In particular, my aim was to

understand the nature of physical processes responsible for vortex dynamics,

the interplay of various forces that drive the dynamics on the surface of vor-

tices, as well as the signatures of waves that could propagate on vortices, which

are here modelled as simple rotating magnetic flux tubes.

5.2 Summary of results

After introducing relevant solar physics concepts, I discussed and reviewed the

techniques used to identify vortices. These techniques are well known in fluid

mechyanics, however, very little has been done in the field of plasma physics.

As such, the research presented in this Thesis constitutes probably one of the

very first attempts to isolate and study vortices in the lower solar atmospheric

plasma using a Lagrangian approach. The properties of waves propagating

in structured solar plasmas has also been reviewed, with special discussion

on the properties of guided dispersive waves under photospheric and coronal

conditions,

Chapter 3 was devoted to the investigation of physical parameters on the
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surface of vortices generated using in magnetoconvection simulations that cor-

relate to the dynamics in the lower part of the solar atmosphere. In this study,

Lagrangian analysis was used to identify the three-dimensional vortex struc-

ture, and the vortex boundaries were defined by isosurfaces of LAVD contours,

as previously described by Haller et al. (2016).

We can observe that the surfaces of the chosen vortices vary in size while

maintaining their original structure. The fluctuation of physical parameters on

the surface of the investigated vortices exhibits a very complicated behaviour.

In the case of vortices detailed in this research, global alterations do not occur

for all physical parameters. It is obvious that the variation of density, pressure,

and specific magnetic field components are changing globally (see Figures 3.6

and 3.9), but the general characteristic of investigated vortices is that phys-

ical parameters describing the state of the plasma and quantities describing

dynamics and energetics have a much more local character, implying that

changes occur locally (see, for example, the variation of temperature). The

examination of the Poynting flux components (see Figure 3.14) demonstrates

that the energy fluxes are predominantly present in the horizontal direction,

as previously found by Silva et al. (2022).

The forces that drive plasma dynamics on vortex surfaces are very inho-

mogeneous (see Figure 3.13, for example). We predict that the rise in the

vertical velocity component (vz) is connected to the vertical net force bal-

ance. The pressure gradient always points upwards, whereas gravity always

points downwards. As a consequence, although the pressure gradient seems

to dominate over the z-component of the Lorentz force, the findings shown

in Figure 3.12 indicate that variations in vertical velocity are really driven by

the Lorentz force. Indeed, we see slowing and acceleration of vertical flow in

locations where the Lorentz force increases downwards and upwards, respec-

tively, for both the R1 and L1 vortices. The pressure gradient dominance is
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predicted since we are examining the vortex border, i.e. the outermost area

where vortical movements have the greatest influence on flow dynamics.

Our findings indicate that the Lagrangian vortices retrieved from magne-

toconvection simulations do not rotate like a rigid body. This rotation will

result in varying angular velocities at various heights in the vortex. A recent

study by Silva et al. (2020) provides an examination of the angular velocity

profiles as a function of radius for the vortices detected in the magnetoconvec-

tion numerical simulations.

In Chapter 4 we investigated the presence and signature of local and global

waves propagating along solar vortex tubes. The morphology of waves was

analysed using the Proper Orthogonal Decomposition (POD) method, which

turned out to be very reliable for mode identification.

First, using the data collected in Chapter 3 we analysed the propagation

of local waves, i.e. waves that propagate locally on the surface of vortices.

Our investigation shows that the data contains periodic signals with frequency

of about 0.09 Hz, however, we cannot specify what is the nature of waves as

this would require a detailed knowledge of the plasma condition and dynamics

inside the vortex.

Next we used synthetic data to analyse the modifications of global wave

pattern along a vortex tube. Using the theoretical results in the case of a

homogeneous magnetic cylinder under photopspheric conditions, we have sim-

ulated the pattern of three waves with various radial structures (MHD sausage,

kink and fluting modes). Using the velocity profiles collected for numerically

simulated vortices, we have superimposed these profiles on the theoretical flux

tube. Our POD analysis showed that the resultant waves preserve the nature

and morphology of the constituents waves, however, their frequency is Doppler

shifted. In addition to the clearly oscillatory behaviour, our POD analysis was
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also able to identify the non-oscillatory pattern of flows.

5.3 Future work

The research presented in this Thesis constitutes a novel approach to study

the variation of physical properties and the dynamics of vortex tubes. Our

results revealed many fundamental properties of these structures, however, we

are far from the comprehensive understanding on the structure, the complex

evolution, and role of vortices in the solar atmosphere.

That is why the research presented in this Thesis could be continued along

the following directions:

• Results presented in Chapter 3 show that we are able to extract es-

sential information about the complex dynamics of vortices in the solar

photosphere from numerical simulations. These results can lead to the

research question of whether it would be possible to compare such find-

ings to the observational results. In general, it is conceivable to compare

3D vortex surfaces reconstructed from numerical simulations with their

counterparts from high-resolution observations of the solar atmosphere,

but currently this is not straightforward. The main difficulty of this task

is related to the reconstruction of the horizontal velocity field from pho-

tospheric intensity observations. The available local correlation tracking

(LCT; November and Simon, 1988), FLCT (Fisher and Welsch, 2008),

the recently developed DeepVel deep neural network (Asensio Ramos

et al., 2017) and Multi-Scale Deep Learning (Ishikawa et al., 2021) aim

to recover components of the flow field that are perpendicular to the line-

of-sight. These methodologies have a number of limitations which may

lead to a not fully accurate interpretation of the real physical plasma

flows (see references provided for more details). The second problem is
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related to the data sets available for the analysis. The precise vortex spa-

tial structure can be obtained from the magnetoconvection simulations

(as in the present Thesis), but observations consists of only few horizon-

tal slices (which correspond to the integral signatures of the spectral lines

formed at different heights) that can be used for analysis. Therefore, 3D

reconstructions of the vortex dynamics which are based on observational

data sets may imply errors that would influence the obtained results.

However, it is worth mentioning that even in this case it is possible to

directly compare the temporal and spatial evolution of observable and

numerically simulated vortex parameters, e.g. radial dependence of ve-

locity or magnetic field strength by taking 2D horizontal slices. The

research on this aspect can be continued by combining high resolution

data, machine learning and local correlation techniques to adequately

construct the realistic flow field. Research in the area is currently ongo-

ing.

• The present research can be expanded on the theoretical side, as well. In

solar physics, the theory of MHD wave modes propagating in cylindrical

magnetic waveguides is extensively established and relatively well under-

stood. However, the properties and observational characteristics of MHD

modes in the presence of vortex flows are still not fully understood. It is

likely that in these vortex tubes the frequency of waves degenerate and

the individual frequency of waves are replaced by a continuous distribu-

tion of frequencies and the governing equations become singular. Chapter

4 provides an approximate understanding of how the MHD wave mode

operates by including a basic rotating flow at the boundary of the flux

tube (see Figures 4.7, 4.8 and 4.9). Even this simple vortex rotation can

introduce dramatic changes in the morphology of waves, making them

almost unrecognisable. Future studies will need to focus on deriving
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the dispersion relation of MHD waves modes with vortex flows in order

to acquire the characteristics of modes. It is obvious that the study of

waves’ characteristics in the presence of realistic 3D vortex flows would

require numerical solutions. Only such model will allow the study the

real properties of waves propagating in vortex tubes and their role in

energy transport into the upper solar atmosphere.

113



Bibliography

Albidah, A., Brevis, W., Fedun, V., Ballai, I., Jess, D., Stangalini, M., Higham,
J., and Verth, G. (2021). Proper orthogonal and dynamic mode decompo-
sition of sunspot data. Philosophical Transactions of the Royal Society A,
379(2190):20200181.

Aljohani, Y., Fedun, V., Ballai, I., Silva, S. S., Shelyag, S., and Verth, G.
(2022). New approach for analysing dynamical processes on the surface of
photospheric vortex tubes. arXiv preprint arXiv:2202.09332.

Allshouse, M. R. and Peacock, T. (2015). Lagrangian based methods for coher-
ent structure detection. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 25(9):097617.

Antolin, P. and Shibata, K. (2010). The Role Of Torsional Alfvén Waves in
Coronal Heating. Astrophys. J., 712(1):494–510.

Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., and Poedts, S.
(2007). Mhd seismology of coronal loops using the period and damping of
quasi-mode kink oscillations. Astronomy & Astrophysics, 463(1):333–338.

Arregui, I., Van Doorsselaere, T., Andries, J., Goossens, M., and Kimpe, D.
(2005). Resonantly damped fast mhd kink modes in longitudinally stratified
tubes with thick non-uniform transitional layers. Astronomy & Astrophysics,
441(1):361–370.

Aschwanden, M. (2006). Physics of the solar corona: an introduction with
problems and solutions. Springer Science & Business Media.

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., and Alexander, D. (1999).
Coronal loop oscillations observed with the transition region and coronal
explorer. The Astrophysical Journal, 520(2):880.

114



Asensio Ramos, A., Requerey, I. S., and Vitas, N. (2017). DeepVel: Deep learn-
ing for the estimation of horizontal velocities at the solar surface. Astron.
Astrophys., 604:A11.

Battaglia, A. F., Canivete Cuissa, J. R., Calvo, F., Bossart, A. A., and Steiner,
O. (2021a). The Alfvénic nature of chromospheric swirls. Astron. Astro-
phys., 649:A121.

Battaglia, A. F., Canivete Cuissa, J. R., Calvo, F., Bossart, A. A., and Steiner,
O. (2021b). The Alfvénic nature of chromospheric swirls. Astron. Astro-
phys., 649:A121.

Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R. H., Freytag, B.,
Hayek, W., Ludwig, H. G., and Schüssler, M. (2012). Simulations of the
solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes.
Astron. Astrophys., 539:A121.

Berry, M., Magstadt, A., and Glauser, M. (2017). Application of pod on time-
resolved schlieren in supersonic multi-stream rectangular jets. Physics of
Fluids, 29(2):020706.

Bonet, J. A., Márquez, I., Sánchez Almeida, J., Cabello, I., and Domingo, V.
(2008). Convectively Driven Vortex Flows in the Sun. Astrophys. J. Lett.,
687(2):L131.

Bonet, J. A., Márquez, I., Sánchez Almeida, J., Palacios, J., Martínez Pil-
let, V., Solanki, S. K., del Toro Iniesta, J. C., Domingo, V., Berkefeld, T.,
Schmidt, W., Gandorfer, A., Barthol, P., and Knölker, M. (2010). SUN-
RISE/IMaX Observations of Convectively Driven Vortex Flows in the Sun.
Astrophys. J. Lett., 723(2):L139–L143.

Brandt, P. N., Scharmert, G. B., Ferguson, S., Shine, R. A., Tarbell, T. D.,
and Title, A. M. (1988). Vortex flow in the solar photosphere. Nature,
335:238–240.

Cameron, R., Schüssler, M., Vögler, A., and Zakharov, V. (2007). Radia-
tive magnetohydrodynamic simulations of solar pores. Astron. Astrophys.,
474(1):261–272.

Canivete Cuissa, J. R. and Steiner, O. (2020). Vortices evolution in the so-
lar atmosphere. A dynamical equation for the swirling strength. Astron.
Astrophys., 639:A118.

115



Chakraborty, P., Balachandar, S., and Adrian, R. J. (2005). On the relation-
ships between local vortex identification schemes. Journal of fluid mechanics,
535:189–214.

Cheung, M. C. M., Schüssler, M., and Moreno-Insertis, F. (2007). Magnetic
flux emergence in granular convection: radiative MHD simulations and ob-
servational signatures. Astron. Astrophys., 467(2):703–719.

Chian, A. C.-L., Silva, S. S. A., Rempel, E. L., Gošić, M., Bellot Rubio, L. R.,
Kusano, K., Miranda, R. A., and Requerey, I. S. (2019). Supergranular tur-
bulence in the quiet Sun: Lagrangian coherent structures. Monthly Notices
of the Royal Astronomical Society, 488(3):3076–3088.

Chian, A. C.-L., Silva, S. S. A., Rempel, E. L., Rubio, L. R. B., Gošić, M., Ku-
sano, K., and Park, S.-H. (2020). Lagrangian chaotic saddles and objective
vortices in solar plasmas. Phys. Rev. E, 102:060201.

Chong, M. S., Perry, A. E., and Cantwell, B. J. (1990). A general classification
of three-dimensional flow fields. Physics of Fluids A, 2(5):765–777.

Cowling, T. G. (1976). Magnetohydrodynamics.

Cowling, T. G. (1976). Magnetohydrodynamics.

Cram, L. and Wilson, P. (1975). Hydromagnetic waves in structured magnetic
fields. Solar Physics, 41(2):313–327.

De Pontieu, B., Hansteen, V., van der Voort, L. R., van Noort, M., and Carls-
son, M. (2007). High-resolution observations and modeling of dynamic fib-
rils. The Astrophysical Journal, 655(1):624.

Eckart, C. and Young, G. (1936). The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218.

Edwin, P. and Roberts, B. (1983). Wave propagation in a magnetic cylinder.
Solar Physics, 88(1-2):179–191.

Erdélyi, R. and Ballai, I. (2007). Heating of the solar and stellar coronae: a
review. Astronomische Nachrichten: Astronomical Notes, 328(8):726–733.

Erdélyi, R. and Fedun, V. (2007). Are There Alfvén Waves in the Solar At-
mosphere? Science, 318(5856):1572.

116



Farazmand, M. and Haller, G. (2016). Polar rotation angle identifies elliptic
islands in unsteady dynamical systems. Physica D: Nonlinear Phenomena,
315:1–12.

Fedun, V., Shelyag, S., Verth, G., Mathioudakis, M., and Erdélyi, R. (2011).
Mhd waves generated by high-frequency photospheric vortex motions. In
Annales Geophysicae, volume 29, pages 1029–1035. Copernicus GmbH.

Fedun, V. N., Yukhimuk, A. K., and Voitsekhovskaya, A. D. (2004). The
transformation of MHD Alfvén waves in space plasma. Journal of Plasma
Physics, 70(6):699–707.

Fisher, G. H. and Welsch, B. T. (2008). FLCT: A Fast, Efficient Method
for Performing Local Correlation Tracking. In Howe, R., Komm, R. W.,
Balasubramaniam, K. S., and Petrie, G. J. D., editors, Subsurface and At-
mospheric Influences on Solar Activity, volume 383 of Astronomical Society
of the Pacific Conference Series, page 373.

Foukal, P. (1971). Morphological relationships in the chromospheric hα fine
structure. Solar Physics, 19(1):59–71.

Giagkiozis, I., Fedun, V., Scullion, E., Jess, D. B., and Verth, G. (2018). Vortex
Flows in the Solar Atmosphere: Automated Identification and Statistical
Analysis. Astrophys. J., 869(2):169.

Graftieaux, L., Michard, M., and Grosjean, N. (2001). Combining PIV, POD
and vortex identification algorithms for the study of unsteady turbulent
swirling flows. Measurement Science and Technology, 12(9):1422–1429.

Günther, T., Schulze, M., and Theisel, H. (2015). Rotation invariant vortices
for flow visualization. IEEE transactions on visualization and computer
graphics, 22(1):817–826.

Gurtin, M. E. (1982). An introduction to continuum mechanics. Academic
press.

Günther, T. and Theisel, H. (2018). The state of the art in vortex extraction.
Computer Graphics Forum, 37(6):149–173.

Haller, G. (2001). Distinguished material surfaces and coherent structures in
three-dimensional fluid flows. Physica D: Nonlinear Phenomena, 149(4):248–
277.

117



Haller, G. (2005). An objective definition of a vortex. Journal of Fluid Me-
chanics, 525:1–26.

Haller, G. (2011). A variational theory of hyperbolic lagrangian coherent struc-
tures. Physica D: Nonlinear Phenomena, 240(7):574–598.

Haller, G. (2015). Lagrangian coherent structures. Annual Review of Fluid
Mechanics, 47:137–162.

Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining
coherent vortices objectively from the vorticity. Journal of Fluid Mechanics,
795:136–173.

Hart, A. B. (1956). Motions in the Sun at the photospheric level. VI. Large-
scale motions in the equatorial region. Mon. Not. Roy. Astron. Soc., 116:38.

Hathaway, D., Beck, J., Han, S., and Raymond, J. (2002). Radial flows in
supergranules. Solar Physics, 205(1):25–38.

Higham, J., Brevis, W., Keylock, C., and Safarzadeh, A. (2017). Using modal
decompositions to explain the sudden expansion of the mixing layer in the
wake of a groyne in a shallow flow. Advances in Water Resources, 107:451–
459.

Higham, J., Shahnam, M., and Vaidheeswaran, A. (2020). Using a proper
orthogonal decomposition to elucidate features in granular flows. Granular
Matter, 22(4):1–13.

Higham, J., Vaidheeswaran, A., Brevis, W., Nicolleau, F., and Marlow, J.
(2021). Modification of modal characteristics in wakes of square cylinders
with multi-scale porosity. Physics of Fluids, 33(4):045117.

Holmén, V. (2012). Methods for vortex identification. Master’s Theses in
Mathematical Sciences.

Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and con-
vergence zones in turbulent flows. In Studying Turbulence Using Numerical
Simulation Databases, 2, pages 193–208.

Hussain, A. F. (1986). Coherent structures and turbulence. Journal of Fluid
Mechanics, 173:303–356.

118



Ishikawa, R. T., Nakata, M., Katsukawa, Y., Masada, Y., and Riethmüller,
T. L. (2021). Multi-Scale Deep Learning for Estimating Horizontal Velocity
Fields on the Solar Surface. arXiv e-prints, page arXiv:2111.12518.

Jeong, J. and Hussain, F. (1995). On the identification of a vortex. Journal of
fluid mechanics, 285:69–94.

Khomenko, E. V., Shelyag, S., Solanki, S. K., and Vögler, A. (2005). Stokes
diagnostics of simulations of magnetoconvection of mixed-polarity quiet-Sun
regions. Astron. Astrophys., 442(3):1059–1078.

Khomenko, V. M. (2005). Carbon oxides in cordierite channels: Determination
of CO2 isotopic species and CO by single crystal IR spectroscopy. American
Mineralogist, 90(11-12):1913–1917.

Kida, S. and Miura, H. (1998). Identification and analysis of vortical structures.
European Journal of Mechanics-B/Fluids, 17(4):471–488.

Kitiashvili, I. N., Kosovichev, A. G., Lele, S. K., Mansour, N. N., and Wray,
A. A. (2013). Ubiquitous solar eruptions driven by magnetized vortex tubes.
ApJ, 770(1):37.

Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., and Wray, A. A.
(2012). DYNAMICS OF MAGNETIZED VORTEX TUBES IN THE SO-
LAR CHROMOSPHERE. The Astrophysical Journal, 751(1):L21.

Kuperus, M., Ionson, J. A., and Spicer, D. S. (1981). On the theory of coro-
nal heating mechanisms. Annual Review of Astronomy and Astrophysics,
19(1):7–40.

Lang, K. R. (2000). The Sun from space, volume 1. Springer.

Leighton, R. B., Noyes, R. W., and Simon, G. W. (1962). Velocity Fields in
the Solar Atmosphere. I. Preliminary Report. Astrophys. J., 135:474.

Lighthill, M. J. (1960). Studies on magneto-hydrodynamic waves and other
anisotropic wave motions. Philosophical Transactions of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 252(1014):397–430.

Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmo-
spheric turbulence and radio wave propagation.

119



Martínez-Sykora, J., De Pontieu, B., Hansteen, V., and Carlsson, M. (2015).
The role of partial ionization effects in the chromosphere. Philosophical
Transactions of the Royal Society of London Series A, 373(2042):20140268–
20140268.

McWilliams, J. C. (1984). The emergence of isolated coherent vortices in
turbulent flow. Journal of Fluid Mechanics, 146:21–43.

Moll, R., Cameron, R. H., and Schüssler, M. (2012). Vortices, shocks, and
heating in the solar photosphere: effect of a magnetic field. Astron. Astro-
phys., 541:A68.

Morton, R. J., Verth, G., Jess, D. B., Kuridze, D., Ruderman, M. S., Math-
ioudakis, M., and Erdélyi, R. (2012). Observations of ubiquitous compressive
waves in the sun’s chromosphere. Nature Communications, 3(1):1–8.

Murray, N. E. and Ukeiley, L. S. (2007). An application of gappy pod. Exper-
iments in Fluids, 42(1):79–91.

Nakariakov, V., Ofman, L., Deluca, E., Roberts, B., and Davila, J. (1999).
Trace observation of damped coronal loop oscillations: Implications for coro-
nal heating. Science, 285(5429):862–864.

Nelson, C. J., Shelyag, S., Mathioudakis, M., Doyle, J. G., Madjarska, M. S.,
Uitenbroek, H., and Erdélyi, R. (2013). Ellerman Bombs—Evidence for
Magnetic Reconnection in the Lower Solar Atmosphere. Astrophys. J.,
779(2):125.

Nordlund, Å. (1985). Solar convection. Solar Physics, 100(1):209–235.

November, L. J. and Simon, G. W. (1988). Precise Proper-Motion Measure-
ment of Solar Granulation. Astrophys. J., 333:427.

Parker, E. N. (1979). Sunspots and the physics of magnetic flux tubes. VIII.
Overstability in a magnetic field in a downdraft. Astrophys. J., 233(3):1005–
1015.

Parnell, C. E. and De Moortel, I. (2012). A contemporary view of coronal
heating. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 370(1970):3217–3240.

Pascoe, D. J. (2014). Numerical simulations for mhd coronal seismology. Re-
search in Astronomy and Astrophysics, 14(7):805.

120



Peacock, T. and Dabiri, J. (2010). Introduction to focus issue: Lagrangian
coherent structures.

Peacock, T., Froyland, G., and Haller, G. (2015). Introduction to focus issue:
Objective detection of coherent structures.

Perry, A. E. and Chong, M. S. (1987). A description of eddying motions
and flow patterns using critical-point concepts. Annual Review of Fluid
Mechanics, 19(1):125–155.

Pietarila, A., Hirzberger, J., Zakharov, V., and Solanki, S. (2009). Bright
fibrils in ca ii k. Astronomy & Astrophysics, 502(2):647–660.

Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H. (2003).
The state of the art in flow visualisation: Feature extraction and tracking. In
Computer Graphics Forum, volume 22, pages 775–792. Wiley Online Library.

Priest, E. (2014). Magnetohydrodynamics of the Sun. Cambridge University
Press.

Rappazzo, A. F., Velli, M., Dahlburg, R. B., and Einaudi, G. (2019). Magnetic
Field Line Twisting by Photospheric Vortices: Energy Storage and Release.
Astrophys. J., 883(2):148.

Rempel, M., Schüssler, M., Cameron, R. H., and Knölker, M. (2009). Penum-
bral Structure and Outflows in Simulated Sunspots. Science, 325(5937):171.

Requerey, I. S., Cobo, B. R., Gošić, M., and Bellot Rubio, L. R. (2018). Per-
sistent magnetic vortex flow at a supergranular vertex. Astron. Astrophys.,
610:A84.

Rieutord, M. and Rincon, F. (2010). The sun’s supergranulation. Living
Reviews in Solar Physics, 7(1):1–82.

Rieutord, M., Roudier, T., Rincon, F., Malherbe, J.-M., Meunier, N., Berger,
T., and Frank, Z. (2010). On the power spectrum of solar surface flows.
Astronomy & Astrophysics, 512:A4.

Roberts, B. (1981a). Wave Propagation in a Magnetically Structured Atmo-
sphere - Part One - Surface Waves at a Magnetic Interface. Solar Phys.,
69(1):27–38.

121



Roberts, B. (1981b). Wave Propagation in a Magnetically Structured Atmo-
sphere - Part Two - Waves in a Magnetic Slab. Solar Phys., 69(1):39–56.

Roberts, B. and Webb, A. (1978). Vertical motions in an intense magnetic flux
tube. Solar Physics, 56(1):5–35.

Roberts, B. and Webb, A. (1979). Vertical motions in an intense magnetic flux
tube. Solar Physics, 64(1):77–92.

Schüssler, M., Shelyag, S., Berdyugina, S., Vögler, A., and Solanki, S. K.
(2003). Why Solar Magnetic Flux Concentrations Are Bright in Molecular
Bands. Astrophys. J. Lett., 597(2):L173–L176.

Shadden, S. C. (2011). Lagrangian coherent structures. Transport and Mixing
in Laminar Flows: From Microfluidics to Oceanic Currents, pages 59–89.

Shelyag, S., Cally, P. S., Reid, A., and Mathioudakis, M. (2013). Alfvén
Waves in Simulations of Solar Photospheric Vortices. Astrophys. J. Lett.,
776(1):L4.

Shelyag, S., Fedun, V., Keenan, F. P., Erdélyi, R., and Mathioudakis, M.
(2011a). Photospheric magnetic vortex structures. Annales Geophysicae,
29(5):883–887.

Shelyag, S., Keys, P., Mathioudakis, M., and Keenan, F. P. (2011b). Vorticity
in the solar photosphere. Astron. Astrophys., 526:A5.

Shelyag, S., Litvinenko, Y. E., Fedun, V., Verth, G., González-Avilés, J. J., and
Guzmán, F. S. (2018). Flows and magnetic field structures in reconnection
regions of simulations of the solar atmosphere: Do flux pile-up models work?
Astron. Astrophys., 620:A159.

Shelyag, S., Mathioudakis, M., and Keenan, F. P. (2012). Mechanisms for
MHD Poynting Flux Generation in Simulations of Solar Photospheric Mag-
netoconvection. Astrophys. J. Lett., 753(1):L22.

Shelyag, S., Schüssler, M., Solanki, S. K., Berdyugina, S. V., and Vögler,
A. (2004). G-band spectral synthesis and diagnostics of simulated solar
magneto-convection. Astron. Astrophys., 427:335–343.

Shelyag, S., Schüssler, M., Solanki, S. K., and Vögler, A. (2007). Stokes
diagnostics of simulated solar magneto-convection. Astron. Astrophys.,
469(2):731–747.

122



Shetye, J., Verwichte, E., Stangalini, M., Judge, P. G., Doyle, J. G., Arber, T.,
Scullion, E., and Wedemeyer, S. (2019). Multiwavelength High-resolution
Observations of Chromospheric Swirls in the Quiet Sun. Astrophys. J.,
881(1):83.

Silva, S. S. A., Fedun, V., Verth, G., Rempel, E. L., and Shelyag, S. (2020).
Solar Vortex Tubes: Vortex Dynamics in the Solar Atmosphere. Astrophys.
J., 898(2):137.

Silva, S. S. A., Murabito, M., Jafarzadeh, S., Stangliani, M., Verth, G., Ballai,
I., and Fedun, V. (2022). The importance of horizontal Poynting flux in the
solar photosphere. Astrophys. J., In press.

Silva, S. S. A., Rempel, E. L., Pinheiro Gomes, T. F., Requerey, I. S., and
Chian, A. C. L. (2018). Objective Lagrangian Vortex Detection in the Solar
Photosphere. Astrophys. J. Lett., 863(1):L2.

Silva, S. S. A., Verth, G., Rempel, E. L., Shelyag, S., Schiavo, L. A. C. A.,
and Fedun, V. (2021). Solar Vortex Tubes. II. On the Origin of Magnetic
Vortices. Astrophys. J., 915(1):24.

Spiegel, E. and Zahn, J.-P. (1992). The solar tachocline. Astronomy and
Astrophysics, 265:106–114.

Spruit, H. C. (1981). Motion of magnetic flux tubes in the solar convection
zone and chromosphere. Astronomy and Astrophysics, 98:155–160.

Spruit, H. C. (1982). Propagation Speeds and Acoustic Damping of Waves in
Magnetic Flux Tubes. Solar Phys., 75(1-2):3–17.

Taroyan, Y. (2008). Alfvén Instability in a Compressible Flow. ,
101(24):245001.

Taroyan, Y. and Erdélyi, R. (2009). Heating Diagnostics with MHD Waves.
Space Sci. Rev., 149(1-4):229–254.

Truesdell, C. and Noll, W. (2004). The non-linear field theories of mechanics.
In The non-linear field theories of mechanics, pages 1–579. Springer.

Tziotziou, K., Tsiropoula, G., and Kontogiannis, I. (2019). A persistent quiet-
Sun small-scale tornado. II. Oscillations. Astron. Astrophys., 623:A160.

123



Tziotziou, K., Tsiropoula, G., Kontogiannis, I., Scullion, E., and Doyle, J. G.
(2018). A persistent quiet-Sun small-scale tornado. I. Characteristics and
dynamics. Astron. Astrophys., 618:A51.

Vernazza, J. E., Avrett, E. H., and Loeser, R. (1981). Structure of the solar
chromosphere. iii-models of the euv brightness components of the quiet-sun.
The Astrophysical Journal Supplement Series, 45:635–725.

Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., and Linde,
T. (2005). Simulations of magneto-convection in the solar photosphere.
Equations, methods, and results of the MURaM code. Astron. Astrophys.,
429:335–351.

Webb, G. (1980). Existence and asymptotic behavior for a strongly damped
nonlinear wave equation. Canadian Journal of Mathematics, 32(3):631–643.

Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Louk-
itcheva, M., Fleck, B., Kontar, E. P., De Pontieu, B., Yagoubov, P., et al.
(2016). Solar science with the atacama large millimeter/submillimeter ar-
ray—a new view of our sun. Space Science Reviews, 200(1-4):1–73.

Wedemeyer, S. and Steiner, O. (2014). On the plasma flow inside magnetic
tornadoes on the sun. Publications of the Astronomical Society of Japan,
66(SP1).

Wedemeyer, S. and Steiner, O. (2014). On the plasma flow inside magnetic
tornadoes on the Sun. Pub. Astron. Soc. Japan, 66:S10.

Wedemeyer-Böhm, S., Lagg, A., and Nordlund, Å. (2009). Coupling from the
photosphere to the chromosphere and the corona. Space Science Reviews,
144(1-4):317–350.

Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L.,
de La Cruz Rodriguez, J., Fedun, V., and Erdélyi, R. (2012). Magnetic
tornadoes as energy channels into the solar corona. Nature, 486(7404):505–
508.

Wedemeyer-Böhm, S., Scullion, E., Steiner, O., van der Voort, L. R.,
de La Cruz Rodriguez, J., Fedun, V., and Erdélyi, R. (2012). Magnetic
tornadoes as energy channels into the solar corona. Nature, 486(7404):505–
508.

124



Wedemeyer-Böhm, S. and van der Voort, L. R. (2009). Small-scale swirl events
in the quiet sun chromosphere. Astronomy & Astrophysics, 507(1):L9–L12.

Wentzel, D. (1979). Hydromagnetic surface waves on cylindrical fluxtubes.
Astronomy and Astrophysics, 76:20–23.

Wilson, P. R. (1979). Wave propagation in a magnetic flux sheath in the
presence of a velocity field. Astrophys. J., 230:194–203.

Yadav, N., Cameron, R. H., and Solanki, S. K. (2020). Simulations show that
vortex flows could heat the chromosphere in solar plage. The Astrophysical
Journal Letters, 894(2):L17.

Yadav, N., Cameron, R. H., and Solanki, S. K. (2020). Simulations Show that
Vortex Flows Could Heat the Chromosphere in Solar Plage. Astrophys. J.
Lett., 894(2):L17.

Yadav, N., Cameron, R. H., and Solanki, S. K. (2021). Vortex flow properties
in simulations of solar plage region: Evidence for their role in chromospheric
heating. Astronomy & Astrophysics, 645:A3.

Yadav, N., Cameron, R. H., and Solanki, S. K. (2021). Vortex flow properties
in simulations of solar plage region: Evidence for their role in chromospheric
heating. Astron. Astrophys., 645:A3.

Zhou, J., Adrian, R. J., Balachandar, S., and Kendall, T. M. (1999). Mech-
anisms for generating coherent packets of hairpin vortices in channel flow.
Journal of Fluid Mechanics, 387(1):353–396.

Zirker, J. B. (1993). Coronal heating. Solar physics, 148(1):43–60.

125


