
StyleGAN-based machining
digital twin for smart

manufacturing

A thesis submitted to the University of Sheffield for the degree of
Doctor of Philosophy

Evgeny Zotov

Department of Automatic Control and Systems Engineering

April 2022

Dedicated to the unknown
for not all being unknowable

i

Acknowledgements

I would like to thank my supervisor Professor Visakan Kadirkamanathan
for continuously putting his trust in my work and for offering invalu-
able guidance without limiting the freedom of thought that produced
this work.

I would also like to express my gratitude to Professors Geoffrey E.
Hinton and Kenneth O. Stanley for producing the works that initially
ignited my interest in the neural network domain.

Special thanks go to my friends and family for their high tolerance
of my stubborn desire to introduce them to the alien concepts that
are mostly not present in their world. And an additional very special
thank you is reserved for my daughter for keeping asking the question
"Why?".

ii

Abstract

Manufacturing enterprises are challenged to remain competitive due
to the increasing demand for greater product variability and quality,
intensifying complexity of the production processes, as well as a drive
for sustainable manufacturing and the increasing regulatory impact
resulting in high labour and energy costs. Consolidated around the
discussion of Industry 4.0, the efficient and effective solutions to these
challenges lie outside the mainstream production methods. One of the
drivers of transition towards the novel manufacturing paradigm is the
technological modernisation of the production processes motivated by
the increasing availability of computational capacities.

Manufacturing digitalisation is a critical part of the transition to-
wards Industry 4.0. Digital twin plays a significant role as the instru-
ment that enables digital access to precise real-time information about
physical objects and supports the optimisation of the related processes
through conversion of the big data associated with them into action-
able information. A number of frameworks and conceptual models
has been proposed in the research literature that addresses the require-
ments and benefits of digital twins, yet their applications are explored
to a lesser extent.

The work presented in this thesis aims to make a proposition that
considers the novel challenges introduced for data analysis in the pres-
ence of heterogeneous and dynamic cyber-physical systems in Industry
4.0. In this thesis a time-domain machining vibration model based on
a generative adversarial network (GAN) is proposed as a digital twin
component. The developed conditional StyleGAN architecture enables
(1) the extraction of knowledge from existing models and (2) a data-
driven simulation applicable for production process optimisation. A
novel solution to the challenges in GAN analysis is then developed,
where the comparison of maps of generative accuracy and sensitivity
reveals patterns of similarity between these metrics.

The proposed simulation model is further extended to reuse the

iii

knowledge extracted from a source model and adapt it to a given target
environment, enabling the elicitation of information from both physics-
based and data-driven solutions. This approach is implemented as a
novel domain adaptation algorithm based on the GAN model: Cy-
cleStyleGAN. The architecture is validated in an experimental scenario
that aims to replicate a real-world manufacturing knowledge transfer
problem. The experiment shows that the transferred information en-
ables the reduction of the required target domain data by one order of
magnitude.

The thesis thus builds a strong case for a StyleGAN-based digital
twin to be developed to support practical implementation of technolo-
gies paving the road towards the target state of Industry 4.0.

Contents

1 Introduction 1

1.1 Research motivation and context 1

1.1.1 Industry 4.0 and the digital twin 1

1.1.2 Simulation and data-driven modelling 4

1.1.3 Artificial neural networks in manufacturing . . . 6

1.1.4 Knowledge transfer in manufacturing 10

1.2 Research aims and contributions 12

1.2.1 Thesis aims and objectives 12

1.2.2 Research contributions 13

2 Artificial neural network models 15

2.1 Artificial intelligence and deep learning 15

2.2 Artificial neural networks 17

2.2.1 Artificial neurons 17

2.2.2 Network layers . 20

2.2.3 Neural network training 25

2.3 Advanced ANN architectures 31

2.3.1 GAN and Conditional GAN 31

2.3.2 StyleGAN . 34

2.3.3 CycleGAN . 35

2.4 Chapter summary . 36

3 Conditional StyleGAN modelling and analysis for a machin-
ing digital twin 37

iv

Contents v

3.1 Introduction . 37
3.2 GAN model as a machining digital twin 38

3.2.1 Dataset: Machining Tool Vibration 38
3.2.2 Conditional StyleGAN architecture 43

3.3 Digital twin performance analysis 46
3.4 Digital twin sensitivity analysis 52

3.4.1 Generator sensitivity 52
3.4.2 Interpolation Analysis 54
3.4.3 Activation node sensitivity 56

3.5 Chapter summary . 58

4 CycleStyleGAN-based knowledge transfer for a machining dig-
ital twin 61
4.1 Introduction . 61
4.2 Materials and Methods . 62

4.2.1 Milling Vibration Datasets 62
4.2.2 CycleStyleGAN architecture 64
4.2.3 Hyperparameter optimisation 68
4.2.4 Training schedules 71

4.3 Results . 72
4.4 Chapter summary . 78

5 Conclusion 79
5.1 Summary of research and contributions 79
5.2 Model limitations and further research 82

Bibliography 86

List of Figures

1.1 Industry 4.0 analytics and informatics challenges summary 2

2.1 Feed-forward neural network example 21
2.2 Graphical representation of a 1D convolutional filter . . 22
2.3 Graphical representation of a 1D transposed convolu-

tional filter . 24
2.4 GAN architecture . 32
2.5 Conditional GAN architecture 34

3.1 Geometrical representation of the forces simulated by
the physics-based model 39

3.2 Workpiece geometry produced by the simulation model 40
3.3 Architecture of the conditional StyleGAN generator net-

work . 44
3.4 Comparison of generated time-series samples and vali-

dation data samples . 47
3.5 Standard deviation of training data samples 48
3.6 Generated time-series error for training and validation

data . 49
3.7 A transition between signals along a path in labels space 51
3.8 Joint distribution of error and sensitivity 53
3.9 Interpolated signals comparison 55
3.10 Distributions of clustered activations before and after

style injection . 57
3.11 Activation node sensitivity distribution 58

vi

List of Figures vii

4.1 Conditional CycleStyleGAN architecture 65
4.2 Architecture of the StyleGAN generator network 66
4.3 Model error plotted against the fraction of data used for

training the networks, separated by target domain dataset 74
4.4 Amplitudes of the true and the predicted signals 77

5.1 Proposed generator model as a part of a process optimi-
sation flow. 81

5.2 Target manufacturing analytics process flow 84

Chapter 1

Introduction

1.1 Research motivation and context

1.1.1 Industry 4.0 and the digital twin

The 4th industrial revolution, i.e. the strategic vision of transition to
Industry 4.0, draws a path to a totally customisable production with
viable single-item customisable batch production, just-in-time execu-
tion and high resource-efficiency including zero waste and right first
time fabrication. Advances along this path are believed to be fea-
sible as a result of pervasive digitalisation throughout the industry,
spanning from the shop-floor to the whole supply chain and to the
users of the end-products [45]. The steps to achieve this state include
development of advanced sensing systems capable of in-process and
embedded metrology that enable high-accuracy representation of the
manufacturing systems’ state. The effectiveness of processing of the
prospective metrological data relies on novel manufacturing analytics
methodologies. The efficiency of such analysis depends on the manu-
facturing informatics technologies that should support the communi-
cation latency and throughput requirements implied by the functional
requirements of the underlying analytics systems. Therefore, several
IT challenges introduced by Industry 4.0 have to be addressed to make

1

2 1.1. Research motivation and context

the implementation of smart factory technologies more accessible and
to thus accelerate the digitalisation rate throughout industry, as sum-
marised in fig. 1.1 [88].

Figure 1.1: Industry 4.0 analytics and informatics challenges sum-
mary.

Total factory digitalisation is being made possible by the technolo-
gies emerging from the research fields of big data, cyber-physical sys-
tems (CPS) and industrial internet of things (IIoT) [64]. The implemen-
tation of these technologies is becoming increasingly accessible as the
big data technology stack has matured over the last couple of decades,
offering many open-source and proprietary software tools supporting
its deployment on commodity hardware [2]. As a result, IIoT imple-

Chapter 1. Introduction 3

mentation became feasible [77] and one anticipates seeing the indus-
try shift rapidly towards widespread adoption of IIoT technologies as
companies compete to disrupt the market or to maintain their position
on it by reaping the performance and efficiency benefits. This would
be a significant step in the evolution towards complete CPS integrated
end-to-end through the value chain. Despite notable progress in de-
velopment of the strategic vision of Industry 4.0 and increasing afford-
ability of hardware and software solutions, actual implementation of
smart factory technologies on manufacturing shop-floors remains rela-
tively low, especially among small and medium enterprises [112]. Re-
searchers and industry experts attribute this fact to the high complexity
of execution, long return on investment periods and high investment
costs [50, 112].

Precise representation of physical objects or processes in the digi-
tal realm is researched within the digital twin domain. Definition of
the digital twin has varied throughout its existence: from the aircraft-
oriented definition originally introduced in the aerospace domain re-
search [96] to the modern concept of digital twin as a complete digital
recreation of whole ecosystems [8]. The main aspect common to all
the proposed scales is the absolute information equivalence between
the perfect digital and the physical twins, implying that any interac-
tion with one is mirrored in another [40]. Development of digital twins
is an important step of the digitalisation process, as the unification of
digital and physical data within a single virtual object enables signifi-
cant efficiency improvements across multiple stages of the object’s life
cycle [111].

A holistic digital twin requires integration of multiple intercon-
nected models and metrology tools that capture the different aspects
of the complete system. The progress towards this goal would thus
be followed in stages with gradual development of digital twin com-
ponents, including infrastructure, monitoring and predictive systems.
Only after significant research advancement in these directions would
the digital twin become usable as a decision-making tool capable of

4 1.1. Research motivation and context

delivering the robust efficiency improvements promised by technology
visionaries [40, 78].

1.1.2 Simulation and data-driven modelling

Simulation modelling is a widely used technique employed in the ver-
ification of engineering designs and evaluation of their functionality
and performance. By utilising the known information about the prod-
uct geometry, its material characteristics and operating conditions, the
virtual recreation of its operation environment enables analysis of the
product’s behaviour. A product can be similarly studied during a man-
ufacturing process, and its feature characteristics both after and during
processing can be predicted [84].

The enhanced efficiency is going to be increasingly attractive to the
manufacturers of high-value products, as simulations enable a shift-
ing of the physical experimentation costs to virtual analysis. And the
increased flexibility shall enable agile product design, which is a pre-
requisite for agile manufacturing. In both cases a significant reduction
of waste, cost and lead times is to be expected [29].

The computational constraints limiting the usefulness of simula-
tion modelling in previous decades is significantly compensated for by
the modern hardware and software advances. Thus, simulations have
become a critical tool utilised in the analysis of the various aspects
related to the machining processes over the last several decades [104].
For example, experimentally validated time-domain simulation models
are used in the dynamic modelling of machining process stability, en-
abling real-time chatter suppression for increased machining stability
[4], as well as in the generation of 3D milled surface profiles [15]. The
finite element method (FEM) is a widely-used approach for simulation
of physical processes, under which a complex problem (or geometry)
is subdivided into its smaller parts for which the approximations of
interactions can be computed via relatively simple equations. Exam-
ples of FEM applications in machining include the simulation of the

Chapter 1. Introduction 5

chip formation and the cutting forces in precision machining [1] and
the simulation of the tool stress and temperature in high-speed milling
[82]. Over the years the physics-based FEM models have been spe-
cialised to niche applications, such as for 3D simulation of titanium
alloy micro-end milling chip flow and tool wear [113] or for simula-
tion of the 3D interactions of various composite material drilling tech-
niques and their effect on composite delamination [98]. By enabling
the off-production virtual experimentation, the simulations thus aid
the practitioners during the configuration of the cutting conditions and
the tool path planning prior to the execution of the machining process
[5]. Further refinement of the established simulation modelling tech-
niques with hybrid data-driven and knowledge-based approaches is an
ongoing research topic [39].

The growing complexity of manufacturing processes and products
has been identified as a stable trend by the end of the previous century
[125]. The variety of error sources and their dynamic nature signifi-
cantly distort the model predictions and present a considerable chal-
lenge that has been and still is thoroughly studied by manufacturing
researchers [26]. These sources include the material uncertainties (such
as its workability, shear stress or deviations from material specifica-
tions) and machining uncertainties (for example, tool wear and run-
out, machine geometry and thermal errors) [68, 126]. These production
process-related uncertainties are propagated and magnified through-
out the potential measurement errors arising from the measurement
strategy choice, fixturing and environment variability, as well as from
measurement tool and software errors [31, 84]. The result is the chaotic
variability of the behaviour of the modelled processes under different
conditions and in heterogeneous environments.

Physics-based analytics models tend to achieve high accuracy rates,
but have several drawbacks that can become blocking factors for im-
plementation of a digital twin. On one hand, in an interconnected
CPS environment interactions between the components introduce very
high complexity of the modelled phenomena. On the other hand, the

6 1.1. Research motivation and context

incremental character of modular development and the fluid module
composition cause an almost constant stream of changes in the system
[80]. This and the utilisation of empirically estimated parameters that
approximate some of the unobserved factors in physics-based models
imply that a given model has to be manually adapted to every new
environment or scenario it is deployed in. Data-driven modelling ad-
dresses this issue by making use of the big data produced by the vari-
ous manufacturer’s CPSs and automating the modelling process, thus
aligning the digital twin state with the evolutionary changes in the
modelled systems [75]. Therefore, despite the wide success of physics-
based simulation models for prediction of abnormal conditions during
milling and turning processes, data-driven simulation methods offer
greater flexibility at adapting to a broader range of conditions, includ-
ing dynamically changing ones [32]. Moreover, increasing amount of
effort is directed towards fusing the physics-based knowledge acquired
by the previous generations with the information extractable from the
new digital data sources [114].

1.1.3 Artificial neural networks in manufacturing

Development of efficient and flexible data-driven simulation models of
physical manufacturing processes is an important step towards CPS
digitalisation in general, and particularly to wide adoption of digital
twins throughout the industry. Artificial neural network (ANN) is a
machine learning model inspired by the information flow structure of
a brain’s neurons. Scaled versions of these networks labelled as deep
learning models [63] have shown increasingly impressive state-of-art
results on many data-driven problems [52]. Among the many works
that have resonated throughout the community are the first AI to beat
the grand champion in the game of Go [102, 103] and the protein fold-
ing model capable of atomic accuracy predictions of protein structures,
even ones that have never been seen before [53]. Deep learning models
have attracted a lot of attention from the manufacturing research com-

Chapter 1. Introduction 7

munity for their wide applicability to problems from different domains
and of different scopes [86]. ANNs have been utilised in manufactur-
ing applications ranging from conventional machine health monitoring
for fault detection and classification [124, 129] to the more advanced
predictive analytics for machine health prognosis [51] to the real-time
product quality monitoring based on acoustic emission signals in ad-
ditive manufacturing [99].

The proposed applications of ANNs to machining domain prob-
lems include chatter prediction for turning processes via the classifica-
tion of the points on a stability lobe diagram [18]. For milling chatter
analysis a use case is available concerning the prediction of chatter fre-
quency and of the critical depth of cut at which the regenerative chatter
occurs [81]. ANNs have also been used for machined surface rough-
ness prediction for various machining process configurations [87, 118].
And a review paper on smart machining highlights the research works
that have applied ANNs to the predictive modelling of surface quality
and machining parameter optimisation in laser, abrasive water jet and
electric discharge machining [57].

Generative adversarial network (GAN) is a type of ANN architec-
ture based on a competitive minimax game between two ANNs: the
generator that learns to produce artificial data samples and the dis-
criminator that learns to identify fake data samples [38]. The data dis-
tribution produced by the generator network thus approaches a repre-
sentation of the true data which can be directly utilised for simulation
of the process underlying the data. In the few years since its incep-
tion the approach has been extended in multiple directions. The re-
search on various neural network architectures for the generator and
the discriminator introduced the deep convolutional model DCGAN
for unsupervised image feature extraction and picture generation [90],
as well as the SeqGAN model for reinforcement learning-based se-
quence generation validated on text and music synthesis tasks [127].
The drive for the generation of higher fidelity imagery meant that the
output resolution of the computationally expensive GANs had to be

8 1.1. Research motivation and context

increased while maintaining the tractability of the calculations. This
has been addressed by the authors of StackGAN via an ensemble of
low-resolution GAN paired with a super-resolution GAN that showed
reasonable performance in 256x256 image generation [128]. The au-
thors of BigGAN further scale up the GAN model to accommodate
512x512 image synthesis capability [14]. Reviews of the GAN training
approaches have produced notable solutions, such as the progressive
growing of the GAN topologies [55], where the authors propose to in-
crementally increase the model output from 4x4 to 1024x1024 during
training, thus pushing the synthetic image resolution even further. The
lack of control over the original GAN’s outputs led the research ef-
forts to the development of methods for the conditioning of the GAN
models by additional inputs or outputs. Initially proposed in Condi-
tional GAN [73], where the image generation was successfully tied to
input labels via supervised learning, successive work showed the un-
supervised conditional training approach based on information theory
with InfoGAN [16]. Furthermore, the ss-InfoGAN extension of this ap-
proach has showed how the human understanding of the relationship
between the labels and the synthetic output conditioned on these labels
can be enforced within the model with minimal supervision [105].

Recently GANs have advanced the state of the art in various do-
mains. For example, in neural audio synthesis WaveGAN adapts the
DCGAN model mentioned above for audio sequence generation [24],
and GANSynth is developed for the generation of high-quality audio
spectrograms [28]. The authors of [54] include a GAN into an ensem-
ble model for speech reconstruction from a compact representation,
and the authors of VoiceGAN adopt style transfer techniques for voice
impersonation, i.e. the translation of speech style onto content [35].
RelGAN has advanced the state of the art in text generation, while
also introducing a model configuration parameter for controlling the
ratio of the synthesised samples’ diversity to their quality [79]. Fi-
nally, a most notable advance in simulation of realistic high-resolution
(1024x1024) images of human faces has been achieved via the Style-

Chapter 1. Introduction 9

GAN architecture that has adapted the style transfer methods for the
GAN’s generator network [56]. With most of GAN studies focussed on
image-generation, the generation of time-domain signals with GANs
remains a very narrow field of research. Some examples can be found
within the publications on healthcare, such as the radiation dose opti-
misation for lung cancer patients’ radiotherapy [115] and the genera-
tion of time-domain medical data [30]. Wind and solar energy output
prediction models based on GANs have been proposed for the renew-
able energy scenario generation [17]. An attempt at the synthesis of
classical music samples is also available with the C-RNN-GAN [74].

Data augmentation aimed at the support of a primary classification
model currently dominates the research agenda on GANs in manufac-
turing, with the very similar use of the generator network applied for
generation of rare fault samples for planetary gearbox fault diagnosis
[42, 122] or for wafer fabrication defect recognition [120], for generation
of missing data for energy consumption monitoring [121] and in a dig-
ital twin-based prognostics and health monitoring system [11]. This is
also evidenced by multiple review papers touching on ANN and GAN
applications in manufacturing, where the only identified use case for
GAN models is data augmentation [51, 59, 89, 119]. An increasing
plethora of works is being published in the recent years that propose
GAN solutions for enhancing the classification accuracy of machinery
fault detection through data augmentation, as evidenced in the review
papers covering just the deep learning research on the machinery fault
diagnosis topic [66]. Adoption of a GAN’s generator as a primary
instrument for manufacturing problems are discussed within image-
generation GAN research considering generative material design [110]
and sample super-resolution [3]. Additionally, a very recent anomaly
detection approach was proposed in [22] via inversion of the generator,
i.e. the authors considered the optimisation of the generator input with
the rest of the network fixed for a given data sample. The generative
accuracy of the sample produced by the GAN this way is suggested as
a measure of the abnormality of the given data sample. Thus, the re-

10 1.1. Research motivation and context

search on the generative function of GANs for manufacturing process
simulation remains largely unexplored.

1.1.4 Knowledge transfer in manufacturing

The main limitation of the data-driven modelling is its requirement for
data. At the current stage of industrial digitalisation it is likely that a
data-driven method would lack the range of empirical data variability
necessary for capturing the underlying process behaviour. Moreover,
the data-driven model would not be able to reason from first princi-
ples unless merged into a hybrid system with the incorporation of a
physics-based model. It is thus likely that a training regime based on
hybrid dataset comprised of the experimental data and the data ob-
tained from an existing model would in practice be employed at first.
Such hybrid approaches are actively investigated by the research com-
munity [39], but their implementation is limited by the access to the
underlying models of the physics-based tools used in industry. The
proprietary modelling software rarely provides flexible integration ac-
cess to its outputs, even less so to its internal procedures. Nevertheless,
the information contained within such models is of great value, usually
reflected in the price tag of the proprietary modelling software. The ex-
traction of this information in a reusable form is one of the applications
of the methods found in the knowledge transfer research domain [83]
and is the main topic of this work.

Knowledge transfer for data analytics deals with the problem of het-
erogeneous or non-stationary environments, where a model effective in
some environment requires adaptation to new or changed conditions
to remain accurate [9]. In the context of manufacturing this usually
implies that the target domain data is very limited, thus the need for
efficient knowledge transfer from data-abundant domains. Knowledge
transfer is usually regarded as an approach for information transfer
between machine learning methods [83]. But for simulation modelling
the current work shows that the source model does not strictly nec-

Chapter 1. Introduction 11

essary have to be a learned model, as knowledge is extractable from
physics-based simulation models using a GAN.

A recent review by [9] groups the knowledge transfer methods into
two groups: incremental learning and domain adaptation. The main
difference between the approaches in these groups is the discarding of
the source domain data during incremental learning, as only the source
domain knowledge encoded via a trained model is carried over to the
target domain training phase [36]. Domain adaptation, on the contrary,
implies that the source domain data is at least partially available and
used to learn a mapping between the source and the target domains
[34, 123].

Several recent domain adaptation methods are inspired by the ad-
versarial interactions within GANs, as reflected in the terminology
used to describe these techniques: adversarial domain adaptation. They
are usually categorised as either feature-level [69, 108] or pixel-level
adversarial domain adaptation approaches [12, 101] with some of the
recent works merging the two in hybrid adversarial domain adaptation
models, e.g. [13].

GAN-based approaches are widely popular in image processing
domain adaptation, with examples available in unsupervised image
transformation via the CoGAN, which is trained to add or remove cer-
tain attributes to the images of faces or to transform colour images into
depth images [69]; CycleGAN [131], an image-to-image translation net-
work that utilises mirrored duplex-GAN architecture for image style
transfer between two domains; and the CyCADA model that has in-
troduced cycle-consistency loss for image segmentation and image-to-
image translation [47]. A recent work proposed a technique for knowl-
edge propagation and knowledge sharing between the classes in con-
ditional GANs via the sharing of batch normalisation parameters [97].
Another recently published paper adopted the attention mechanism
that has been gaining popularity recently for improving the accuracy
of text-to-image translation task [109].

Current research on domain adaptation GAN approaches in man-

12 1.2. Research aims and contributions

ufacturing follows the same pattern, as the manufacturing GAN re-
search in general: while popular in the image translation domain, the
use of GANs for time-series domain adaptation problems is relatively
limited. The application of digital twin simulations in the context of
knowledge extraction for Industry 4.0 is thus an even less studied area
than the application of GANs for manufacturing process simulation
[130].

1.2 Research aims and contributions

1.2.1 Thesis aims and objectives

The research presented in this thesis aims to address the implementa-
tion challenges that the manufacturing industry is facing in its transi-
tion to a smart manufacturing paradigm throughout the 4th industrial
revolution, also known as Industry 4.0. This work is focused on infor-
mation technology innovation that enables manufacturing companies
to transform their facilities into “smart factories”. Thus, this disserta-
tion pursues the following objectives:

1. Extraction of the manufacturing process knowledge contained
within the existing industrial modelling tools and its reuse in a
digital twin.

2. Data-driven adaptation of the information, either extracted from
or embedded in the existing models, to new environments with
limited available data.

Chapter 2 of this thesis introduces the reader to the basic philosoph-
ical and technical background relevant for understanding the research
methods proposed in the subsequent chapters.

Chapter 3 introduces the novel conditional StyleGAN model as a
digital twin component. This module is aimed at capturing the condi-
tional distribution of a machining vibration signal, thus enabling the

Chapter 1. Introduction 13

configurable simulation of the underlying process. The performance
and reliability of this model are evaluated using a novel sensitivity
analysis approach. And the applications of the proposed method for
manufacturing process optimisation and for knowledge extraction are
explored.

The subsequent chapter 4 narrows the inspected machining simula-
tion modelling problem towards the issue of the practical applicability
of the StyleGAN model. The adaptability of the data-driven simula-
tion model to specific environment conditions under data limitation
constraint is investigated, and a novel GAN architecture is proposed
to address the identified issues. The novel CycleStyleGAN model is
implemented as a domain adaptation method aimed at the facilita-
tion of knowledge transfer from a data-rich domain. This approach
is validated in an experiment designed to approximate a real-world
manufacturing deployment that shows the almost tenfold data volume
optimisation capability.

1.2.2 Research contributions

The work presented henceforth has partly been previously made public
within the following research papers:

• The StyleGAN model presented in chapter 3 has initially been
brought forward within the conference paper:

E. Zotov, A. Tiwari, and V. Kadirkamanathan. Towards a dig-
ital twin with generative adversarial network modelling of ma-
chining vibration. In L. Iliadis, P.P. Angelov, C. Jayne, and E.
Pimenidis, editors, Proceedings of the 21st EANN (Engineering
Applications of Neural Networks) 2020 Conference, pages 190–
201, Cham, 2020.

• The subsequent journal publication has discussed the StyleGAN
modelling analysis:

14 1.2. Research aims and contributions

E. Zotov, A. Tiwari, and V. Kadirkamanathan. Conditional Style-
GAN modelling and analysis for a machining digital twin. Inte-
grated Computer-Aided Engineering, pages 1–17, jul 2021.

• And chapter 4 is based on the following journal publication:

E. Zotov and V. Kadirkamanathan. CycleStyleGAN-based knowl-
edge transfer for a machining digital twin. Frontiers in Artificial
Intelligence, 4, 2021.

The data used in the experiments presented in this thesis is freely
available at GitLab:

• Chapter 3: https://gitlab.com/EZotoff/conditional-stylega
n-digital-twin

• Chapter 4: https://gitlab.com/EZotoff/cyclestylegan-based
-knowledge-transfer-for-a-machining-digital-twin

https://gitlab.com/EZotoff/conditional-stylegan-digital-twin
https://gitlab.com/EZotoff/conditional-stylegan-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin

Chapter 2

Artificial neural network models

2.1 Artificial intelligence and deep learning

The philosophical thought of humanity for seemingly the entirety of
its existence has considered the problem of consciousness. Yet, the
millennia-long debate yields poor explanation not only of the origin
of consciousness, but even of its existence. The acquisition of con-
sciousness or intelligence by inanimate entities is a popular narrative
represented in the mythos of different peoples: from the early sto-
ries about gods bringing matter to life or craftsmen producing living
automata, through the medieval concept of a golem and the Enlight-
enment period’s Frankenstein, to the modern computer-based artificial
intelligence (AI). The common-sense contemporary understanding of
an AI is highly influenced by the seminal works of Alan Turing that
first proposed the concept that we now call software [19], followed by
the widely popular Turing Test introduced for the purpose of identifi-
cation of a human-like intelligence in a machine [116]. While AI as a
field of research was formulated based on the information theory and
cybernetics research areas at the Dartmouth College Artificial Intelli-
gence Conference [71] in 1956, the application of this idea found more
success with the fiction authors, rather than research scientists. The de-
velopment of a general-purpose AI, like the ones portrayed in the west-

15

16 2.1. Artificial intelligence and deep learning

ern culture’s cinematography, for example, in "2001: A Space Odyssey"
(1968) or "Alien" (1979), is to date a work in progress surrounded by
debate on its feasibility, ethics and existential consequences. While the
philosophical arguments about human-level AI are now mostly treated
as a prerogative of public speakers, the science and industry commu-
nities have narrowed the AI development effort and found ways to
train the machines to effectively perform specific tasks towards the
end of the 20th century. Machine learning methods that mostly ex-
isted since the inception of AI have suddenly resurged, driven by the
increasing availability of computational resources. Within the first two
decades of the 21st century, the breakthrough research significantly
pushed the performance of specialised AI in different areas. To name
a few, human-level accuracy in handwriting recognition [20] (based on
the MNIST dataset) and super-human performance in image classifi-
cation [43] or playing the game of Go [102] has been achieved. The
vast majority of these technological marvels utilise an Artificial Neural
Network (ANN) as the substrate that captures the knowledge neces-
sary to perform the specialised task that the network is trained in. The
study of large-scale ANNs has since been regarded as a separate sub-
field of machine learning, named deep learning owing to the concept
of depth used in the formulation of ANN architectures. The following
sections of this chapter provide an overview of the basic concepts that
constitute the elements of ANNs. This overview is intentionally kept
simple in order to accommodate both non-technical readers and those
unfamiliar with the presented topics. Works that provide the complete
detail of the relevant concepts are referenced alongside their condensed
introductions.

Chapter 2. Artificial neural network models 17

2.2 Artificial neural networks

2.2.1 Artificial neurons

Perceptron, introduced in [92] and later expanded upon in [93], is a
simple processing unit that converts some input vector x = {x1, .., xn}
of length n into a binary output y,

y =

1 if ∑ wixi + b > 0

0 otherwise
, (2.1)

by taking the weighted and biased sum of its inputs (∑ wixi + b), where
wi are the scaling factors (weights) applied to these inputs and b, called
bias, is a constant shift added to the resulting weighted sum, and eval-
uating whether the result is positive or not. In the former case the
perceptron is excited, outputting 1, or it outputs 0 in the latter case.
Itself being inspired by the mechanism of a biological brain’s neuron
excitation, this module influenced the development of the basic unit of
the ANNs — the artificial neuron. Formulated generally, the artificial
neuron outputs an excitation value y,

y = f (∑ wixi + b), (2.2)

by taking the weighted and biased sum of the neuron’s inputs, ∑ wixi +

b, and applying some activation function f to the result.

A thorough review of the advantages and disadvantages of the dif-
ferent activation functions depending on their role in a ANN’s archi-
tecture is a research topic of its own and is explored in the published
research, e.g. [23]. Among the simplest functions is the step function
that can be used to specify the neuron’s behaviour to that of the per-
ceptron:

f (z) =

1 if z ≥ 0

0 if z < 0
. (2.3)

18 2.2. Artificial neural networks

While usable for manually constructed boolean logic functions [72], the
main problem with the application of this activation function in the
training artificial neural networks is its non-differentiability, because
most gradient-based training methods require the functions within the
neural network to be differentiable. This issue and the available solu-
tions are addressed below in section 2.2.3.

Initial solution that aimed to replicate the step function, but in a
smooth differentiable form, is the sigmoid activation:

f (z) =
1

1 + e−z , (2.4)

which is likewise bound by the range (0, 1). Due to this property, it is
often used when an output represents a ratio or a percentage. A modi-
fication of the sigmoid activation function that attempts to improve the
ANN trainability and also adds a potentially desirable property of ap-
proximating the identity function near z = 0 is the tangent hyperbolic
function:

f (z) =
ez − e−z

ez + e−z . (2.5)

Another activation function, arguably the most widely used at the mo-
ment of writing, is the rectified linear unit (ReLU) [37]:

f (z) = max(0, z). (2.6)

The idea behind its formulation again draws inspiration from the hy-
pothesised functioning of the human brain, particularly the fact that
its activity is mostly sparse, which means that most, 95% – 99%, of
the brain’s neurons remain inactive during regular activities [65]. The
ReLU thus tries to emulate this sparsity by nullifying all the non-
positive inputs it receives. The authors argue that the neural network
is thus lent the opportunity of learning separable, disentangled repre-
sentations of the data it processes, due to the direct ability of silencing
or "turning off" individual neurons. This ability can make the net-

Chapter 2. Artificial neural network models 19

work output insensitive to small changes in some of its inputs, which
is harder to achieve with, for example, sigmoid neurons, where each
input node is connected to all the downstream neurons.

Despite the empirical effectiveness of the sparsity introduced by
ReLU [23], its use entails a drawback originating from the training of
the ANNs based on back-propagation of the network’s errors. As will
be evident from the discussion in section 2.2.3, the constant output of
a ReLU for negative inputs provides the network with no information
about the direction towards potentially optimal network weights. This
means that some data samples, for which a neurons inputs turn out
to be negative, stop advancing the ANN training towards optimum.
And therefore, if for some ReLU neuron all the data samples result
in zero activation, this neuron is effectively "dead", as its output shall
never be different from zero. To prevent the potential non-trainability
of neurons while preserving the capability for developing a sparse rep-
resentation of the data, an extension of the ReLU is proposed - the
leaky ReLU [70]:

f (z) =

z if z > 0

αz otherwise
, (2.7)

where 0 < α < 1 is the leakiness coefficient that determines the slope of
the activation function for negative inputs. By using a small value for
α, the negative values that the neuron receives are no longer translated
into a constant output, but are still closely approximate to the sparsity-
inducing zero. The non-constant output implies that the gradient is still
computable for the negative input range, which is expected to improve
the network trainability.

The selection of optimal activation functions seems to depend on
the specific task or data structures that an ANN tries to learn. To
the best of authors knowledge, the choice of suitable activation func-
tions for a specific implementation is currently based on an empirical
evaluation of the AI engineer building the said network, as no robust
and complete comparison of the activation functions’ performance has

20 2.2. Artificial neural networks

been published to date. Some data suggests that the ReLU produces
the best classification accuracy [23], but this fact requires robust verifi-
cation across a wider range of ANN architectures and network sizes, as
well as for other modelling tasks. An alternative approach is the inclu-
sion of the activation functions types as a hyperparameter in the neural
network architecture optimisation process. It must be noted though,
that for a deep ANN this means that each of the many network lay-
ers could be parametrised with a different activation function. Thus,
despite its potential for improving the effectiveness and efficiency of
the trained model, the multiplicative increase of the possible network
architecture variations implies that an expert-based approach for acti-
vation function selection would significantly reduce the requirements
for computational resources’ availability. Therefore, in this thesis the
choice of activation functions is guided by the previous works that in-
troduced the used ANN modules.

2.2.2 Network layers

A single neuron on its own does not possess the computational capac-
ity to perform anything extraordinary, unlike an ensemble of numerous
neurons forming the layers that constitute a ANN. For example, one of
its simplest forms is a three-layer neural network:

y = fy(z) = fy(fz(x)), (2.8)

where x is the networks’ inputs, z the result produced by the so-called
hidden layers that process the network’s inputs to be passed to the
last, output layer that transforms them into y. And fz and fy are acti-
vation functions used in the hidden and the output layers respectively.
A graphic representation found on fig. 2.1 helps the comprehension of
this concept by presenting a basic example of an ANN with two in-
puts, one hidden layer with three neurons and a single output. Such a
network architecture is referred to as the multi-layer perceptron. Each

Chapter 2. Artificial neural network models 21

Figure 2.1: Example of a feed-forward neural network with two in-
puts x, one hidden layer with its neurons’ outputs: z, and one output
that produces y.

neuron of the four in the hidden and the output layers applies its own
set of weights and a bias to the input it receives from the preceding
layer, for example

z1 = fz((w
z1
1 x1 + wz1

2 x2) + bz1) (2.9)

and
y = fy((w

y
1z1 + wy

2z2 + wy
2z2) + by), (2.10)

where and wL
i are the weights of layer L applied to its i-th input and

bL is the bias of this layer.

The hidden layer from the example above is called fully-connected,
owing to the all-to-all connection pattern between its neurons and
the outputs of the preceding layer. This example ANN is also feed-
forward, as the connections between the layers are strictly one-sided.
Another common layer type used in the feed-forward networks is the
convolutional layer. Based on the initial attempts at the modelling of

22 2.2. Artificial neural networks

Figure 2.2: Graphical representation of a single one-dimensional con-
volutional filter k applied to obtain the first two elements of the layer
output b.

the brain’s pattern recognition capability [33], the convolutional layer
became the main component of many computer vision systems after
its significant successful application for optical character recognition
[62]. The convolutional layer iteratively applies a kernel k (also called
filter) with some weights wi, i ∈ {0, .., n} to the subset of its input to
produce an element of its output on each iteration. Figure 2.2 presents
an example for the first two computations of a convolutional filter of
length 5 applied to an input vector a of size 8 with the target output
vector b of size 4. In this example, the first element of the output is

b0 = w0a0 + w1a1 + w2a2 + w3a3 + w4a4 (2.11)

and the second one is

b1 = w0a1 + w1a2 + w2a3 + w3a4 + w4a5. (2.12)

The kernel can be said to slide over the input, filtering out some fea-

Chapter 2. Artificial neural network models 23

tures from each section of the input, with the type of the captured fea-
tures dependent on the weights w constituting this kernel. The matrix
representation of this operation may be found useful for clarification
of its mechanism:

b = ka, (2.13)

where k is the matrix form of the kernel:

b0

b1

b2

b3

 =

w0 w1 w2 w3 w4 0 0 0
0 w0 w1 w2 w3 w4 0 0
0 0 w0 w1 w2 w3 w4 0
0 0 0 w0 w1 w2 w3 w4

×

a0

a1

a2

a3

a4

a5

a6

a7

(2.14)

The convolutional layers in a typical convolutional neural network
(CNN) operate on significantly more than a single kernel, thus ex-
tracting multiple different features at each layer, that are then fur-
ther processed by the downstream convolutional layers into increas-
ingly abstract features. For a handwriting recognition system this may
mean that the initial layers learn to identify strokes or edges in the in-
puts, with a subsequent layer capturing the presence of simple shapes
formed by these edges, and the final convolutions transforming the
detected shape information into an abstract concept that we might call
"letter A".

For tasks that require the expansion of some data from its compact
representation, an inverse of the convolutional operation was found
to enable significant performance gains. The transposed convolutional
layers implement this inverse transformation in the ANNs. The un-
derlying mechanism of this layer type is almost exactly the same as
the one employed in the convolutional layers. The similarity is evident
from both the graphical depiction of this operation (fig. 2.3) and its

24 2.2. Artificial neural networks

matrix representation:

b0

b1

b2

b3

b4

b5

b6

b7

=

w4 0 0 0
w3 w4 0 0
w2 w3 w4 0
w1 w2 w3 w4

w0 w1 w2 w3

0 w0 w1 w2

0 0 w0 w1

0 0 0 w0

×

a0

a1

a2

a3

 (2.15)

Additional configurations of both the convolutional and the trans-
posed convolutional layers, including padding types, strides and dila-
tion, are presented in the published papers [25], but are not of direct
relevance to the current work.

Another ANN layer type widely present in deep learning research
is the recurrent layer. Originating from the sequence modelling do-
main, the core necessity behind its function is the representation of

Figure 2.3: Graphical representation of a single one-dimensional
transposed convolutional filter k applied to obtain the first two ele-
ments of the layer output b.

Chapter 2. Artificial neural network models 25

causality between elements of a, often temporal, sequence, includ-
ing cases when such a relationship is exerted over long distances in
terms of the sequence steps. In its basic implementation, a fully-
connected layer described above is enhanced with the recurrent con-
nection, adding its output at step t to the inputs at t + 1. Such an
implementation did not achieve much success in modelling the target
phenomena, but its extension that includes an explicit mechanism for
the storage of long-term information proved to be significantly more
effective. This recurrent architecture, called the long short-term mem-
ory (LSTM) [46], was introduced in 1997, and after almost 20 years of
maturation it now occupies an important place in the fields of speech
recognition and machine translation.

While mostly applied in their respective historical domains, both
the recurrent and the convolutional models are becoming intertwined.
Although evidence suggests that convolutional networks may perform
comparably or better than recurrent networks on sequence modelling
tasks [7], the extension of the convolutional layers with recurrent ele-
ments seems promising, and the analysis of the first hybrid convolu-
tional LSTM [100] systems is available in the research literature.

2.2.3 Neural network training

Most of the ANN modules have existed long before the widespread
use of deep learning. The key component that enabled the significant
advance of their capabilities is the act of training a network, alongside
the relatively low price of the modern computational resources that ac-
commodate increasingly large neural networks. The process of training
an artificial neural network is similar to the process of shaping a bio-
logical neural network, for instance as in the Pavlov’s dog experiment.
The AI in training is presented with a stimulus, i.e. some input, and
is then incentivised in case of a desired reaction and penalised if the
resulting behaviour is erroneous. For an ANN this process requires a
quantifiable measure of success of the trained network, an objective. A

26 2.2. Artificial neural networks

loss function measuring the error of the classification or regression task
at hand is a common representation of an objective. As noted in the
sections above, the weights and biases that form the connections be-
tween the ANN layers determine the transformations that the network
inputs are processed with before being output by the ANN. Therefore,
the training of a neural network implies the modification of the param-
eters w, b aimed at the optimisation of the network’s performance in
terms of the objective function L:

arg min
w,b

L(w, b). (2.16)

The specific loss function strongly depends on the learned task, as it
should accurately quantify the (un)desirable behaviour of the trained
network. The standard loss used for classification tasks is the cross-
entropy that essentially measures how badly a sample is misclassified.
For a predicted probability yc of the output y belonging to class c, the
cross-entropy loss Lcross_entropy is calculated as

Lcross_entropy(y, c) = −ln(yc). (2.17)

Thus, in case the sample is correctly attributed to the target class the
loss is equal to 0, and it increases towards infinity as the prediction
deviates from the correct output probability 100% and towards 0. The
standard loss function used in regression tasks is the mean squared
error (MSE):

MSE(y, ỹ) =
1
n

n

∑
i=1

(yi − ỹi)
2, (2.18)

where y = y1, .., yn and ỹ = ỹ1, .., ỹn are the vectors with length n
of target and predicted outputs respectively. The MSE loss function
thus directly measures the average difference between the prediction
and the actual value and penalises large errors relatively stronger than
smaller ones.

Key for the work described in this thesis is the approach of evalu-

Chapter 2. Artificial neural network models 27

ation of a neural network’s performance by another ANN, i.e. the use
of a neural network’s output as a loss function for another network.
This idea forms the core of the method proposed by the authors of the
GAN [38], which will be reviewed in the next section. The networks
presented in the current thesis models continuous labels and outputs
and are thus trained using MSE as the loss function where the adver-
sarial approach is not used.

The concrete mechanism that implements the discrete optimisation
steps of the parameters of an ANN is yet another active research topic.
The most popular optimisers are the gradient-based methods, like the
stochastic gradient descent with momentum [94] and the Adam opti-
miser [58], built on the foundation of error back-propagation. These
algorithms propagate the gradient, which can be thought of as the di-
rection of a slope that leads down towards the optimum of the objective
function, from the output error back through the weights and biases
used to generate this output. In other words, starting with a small step
improvement of the output error, the algorithm calculates the small
step changes in the parameters of a preceding neural network layer
that would result in the respective output error change. This process is
then repeated for each layer, propagating the error change throughout
the entirety of the neural network parameter set. The main difference
of Adam to the stochastic gradient descent is the adaptive learning
rate used for different parameters. This means that the size of the
step changes applied to the network’s weights during the optimisation
adapts to the history of observed gradients by making the step size
invariant to the gradient’s scale. The formulation of the Adam opti-
miser update rules that are iteratively applied at each time step are as

28 2.2. Artificial neural networks

follows:

gt = ∇θ L(θt−1)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt = θt−1 −
αm̂t√
v̂t + ε

,

(2.19)

where gt is the gradient obtained from the loss function, t is the opti-
misation time step index, θ is the optimised parameter set of the neural
network; mt and vt are the exponential moving averages of the gradient
and of the squared gradient respectively with the exponential decay
rates parametrised with β1 and β2, which represent the estimates of
the mean and the variance of the gradient; m̂t and v̂t denote the bias-
corrected estimates of mt and vt that remove the bias towards zero that
the exponential moving averages receive from their initialisation with
zero values. The Adam optimiser, as the current de facto standard, is
utilised during training of the ANN presented in chapter 3. The model
presented in chapter chapter 4 is built based on hyperparameter opti-
misation, and the choice of the optimiser is included in this process as
one of the hyperparameters.

The main drawback of gradient-based methods is the requirement
for the differentiability of the loss function and the operations con-
stituting the ANN’s layers. While reasonable in many use cases, this
requirement cannot be satisfied without additional approximations or
simplifications for discontinuous functions. In such cases the non-
gradient optimisation methods can be employed, among which the
evolutionary optimisation algorithms occupy a significant place in ANN
optimisation domain followed by similar methods, like the simulated
annealing. Evolutionary optimisation considers the weights and bi-

Chapter 2. Artificial neural network models 29

ases or the neural network architecture (or sometimes both) to form a
candidate solution to the problem the model is evolved to solve. The
optimiser searches the solution space by iteratively evolving a set of
candidate solutions using some rules that depend on the specific evo-
lutionary optimisation heuristic. The rules usually define a mechanism
for the generation of new candidate solutions based on the existing
ones and on some random perturbation and a method for pruning the
candidate solution set that bounds the maximal size of the set. While
most of such algorithms are explicitly aimed at the search of the objec-
tive function optimum, several attempts have been made to implicitly
search for the optimum via an open-ended search for novel solutions,
e.g. [21]. In these cases, the candidate solutions are formed based on
their difference to the existing candidate solutions rather than on their
performance on the target task. Proof that such an approach outper-
forms objective search is limited, but the method has been shown to
enhance optimisation process in hybrid systems, especially for prob-
lems with complex search space where objective search tends to yield
local but not global optimum [117].

For example, interesting solutions to the neural network architec-
ture search problem are available in the published materials [27, 91].
Some evidence suggests that non-gradient methods might be compa-
rable in performance to the gradient-based ones [76, 107], but more
substantial evaluation is currently lacking with an overwhelming ma-
jority of machine learning research applying the established gradient-
based optimisers due to the ease of access to their highly-efficient GPU
(graphical processing unit, i.e. the video card) implementations across
a wide range of computing software libraries.

Training the ANN is the process of optimisation of the loss func-
tions it is provided with, which usually represent the accuracy of the
neural network at modelling a given training set. While this approach
may incentivise the neural network to learn the underlying concepts
of the modelled phenomena, i.e. to build an "understanding" of it, the
ANN may also cheat by memorising only the correct answers with-

30 2.2. Artificial neural networks

out developing interpolation or extrapolation abilities. The resulting
neural network shows good performance when evaluated on the data
it has been trained on, but fails to produce accurate results on the
data it has not yet been exposed to. This generalisation incapabil-
ity is called model overfitting and may occur with most data-driven
methods. A common approach for the identification of overfitting is
cross-validation. For this the dataset is separated into the training data
and the validation data subsets. The model is then trained using only
the training data and evaluated using the validation data. The signifi-
cantly lower accuracy obtained on the validation data than that on the
training dataset would then indicate the presence of overfitting. The
standard way of overfitting prevention applicable to any loss-based
training of an ANN is thus the early stopping of the training. Under
this approach the performance of the neural network on the valida-
tion dataset is calculated during training, and the model is trained as
long as this performance is improving. Several methods have been
proposed that attempt to introduce some form or regularisation into
the training process aimed at overfitting reduction. Among the widely
used is the dropout method [106] which randomly overrides different
neuron’s outputs and its gradients with zeros during training. Reduc-
tion of co-adaptation between neurons is the intended effect, implying
that the network is forced to encapsulate the target processing logic
within smaller neural structures by limiting during training the stabil-
ity of the connections between neurons that are separated by several
layers of the neural network. Another common approach that aims to
reduce overfitting is weights regularisation. This technique implies the
addition of the sum of weights, taken at absolute value in case of L1
regularisation or at squared value in case of L2 regularisation, to the
loss function. The model is thus incentivised to follow the Occam’s ra-
zor principle by making the regularised loss lower for networks using
lower values for their parameters all else (i.e., accuracy) being equal.
The models described in this thesis are trained with the early stop-
ping policy implemented to prevent overfitting. Empirical tests on the

Chapter 2. Artificial neural network models 31

data used in the current work showed that neither dropout nor L1/L2
regularisation improve neither the training time nor the final accuracy
of the trained models, thus none of these methods are used with the
methods developed in this thesis.

2.3 Advanced ANN architectures

Based on the basic methods introduced above a plethora of large-scale
neural network models has been developed to date. The research do-
main that considers the various architectures and training methods
with common uses in the development of AI models is called deep
learning. The desire to model complex phenomena requires the used
computational framework to support the increasingly intricate non-
linear relationships between the analysed or generated concepts. Pre-
vious research shows that multi-layer neural networks with many lay-
ers, called deep ANNs, provide this desired capability more efficiently
than the networks with few but wide layers [10]. As the size of the
neural network architectures used in practice, so does the composition
of the modules that they are built with. With some of the basic rele-
vant neural network components discussed above, the current section
introduces several ANN architectures relevant to the work presented
in this thesis.

2.3.1 GAN and Conditional GAN

While the initial success of ANNs has been clear in the discriminative
domains, such as the classification of images according to some classes,
the research community encountered computational intractability and
other difficulties during the application of the same methods for the
generative tasks [38]. GAN is a generative neural network that aimed
at solving these issues by engaging two networks, the generator G and

32 2.3. Advanced ANN architectures

Figure 2.4: Original GAN architecture. G denotes the generator net-
work, D - the discriminator.

the discriminator D, in a competitive interaction:

min
G

max
D

E
x∼pdata(x)

[log D(x)] + E
z∼pz(z)

[1− log D(G(z))], (2.20)

where x denotes true samples and z is some input that the generator
uses to produce fake samples [38], and Ex∼pdata(x)[log D(x)] denotes the
accuracy of discriminator at the identification of x as origination from
the true data distribution pdata, and Ez∼pz(z)[1− log D(G(z))] denotes
the probabilities estimated by the discriminator of samples z belonging
to the distribution of fake samples. The purpose of the discriminator
is thus the identification of whether a given data sample is fake or
real, and the generator is trained to produce synthetic data that the
discriminator would classify as real. The high level representation of
this architecture is depicted on fig. 2.4.

The training of GANs has been accompanied by several problems
in the early years since its inception. These include training instability,
gradient vanishing due to discriminator overtraining and mode col-
lapse, i.e. the condition of the generator outputting a single output
type instead of the many types present in the true data. Over several
iterations of research works addressing these issues, the publications
converged onto the application of the Earth Mover distance as the loss
metric in Wasserstein GAN [6] and its extension with gradient penalty

Chapter 2. Artificial neural network models 33

in WGAN-GP [41]. WGAN-GP losses for the generator G and the dis-
criminator D networks are

Lwgan-gp
G = − E

x̃∼Pg
[D(x̃)],

Lwgan-gp
D = E

x̃∼Pg
[D(x̃)]− E

x∼Pr
[D(x)] + λgpLgp

(2.21)

respectively, where Pr and Pg are the real and the generated signal
distributions, and

Lgp = E
x̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2] (2.22)

is the gradient penalty, λgp is its scaling hyperparameter, x and x̃ de-
note the real and fake signals respectively and ||∇x̂D(x̂)||2 is the square
norm of the gradient of D(x̂); and Px̂ is a distribution sampled uni-
formly from straight lines between pairs of points from Pr and Pg [41].
Initial empirical tests with GAN training performed in scope of this
thesis’ work showed that the Wasserstein loss with gradient penalty
indeed provides the robustness of training results across multiple runs
that was not attainable with the original GAN loss. It must be noted
that the calculation of the gradient penalty (eq. 2.22) requires a second
call to the discriminator function during gradient evaluation, which
increases total training time by approximately 70%. Despite the in-
creased computational load, the stability of training was considered
subjectively more important, thus WGAN-GP loss was used during
the training of the GANs presented in this thesis.

The conditional GAN is an extension of the original GAN architec-
ture with the additional input that the networks are conditioned on.
This is achieved by substituting the random noise input of the genera-
tor network in the vanilla GAN for the conditioning labels. In case of
a manufacturing simulation model, these labels could be the process
parameters that define the configuration of the manufacturing process.
A high-level visualisation of the conditional GAN architecture is pre-

34 2.3. Advanced ANN architectures

Figure 2.5: Conditional GAN architecture. G denotes the generator
network, D - the discriminator.

sented on fig. 2.5. The control over the network’s output via the input
parameters is of interest for the manufacturing process simulation use
case, and its application to the proposed GAN model extension will be
described in the sections below.

2.3.2 StyleGAN

The digital twin component architecture discussed in the chapters of
this thesis is inspired by StyleGAN [56]. It is an image generation
model based on two-dimensional deep convolutional networks with
the enhancement of the generator by style-injection adopted from style
transfer research works. While the traditional GAN feeds the generator
inputs directly into the network, in StyleGAN the input is first trans-
formed into an intermediate space via a mapping network. This net-
work transforms the label inputs into style components that are then
injected into the layers of the synthesis network via the adaptive in-
stance normalisation (AdaIN) operation [49] defined as

AdaIN(x f , si) = ss
i
x f − µ(x f)

σ(x f)
+ sb

i , (2.23)

where x f is a filter response that is each normalised separately and ss
i

and sb
i are the scaling and the bias components of the style vector at

level i. This way AdaIN renormalises the means and standard devi-
ations of each channel of the generator’s output at level i with those
calculated by the mapping network from the input labels (i.e., the pro-

Chapter 2. Artificial neural network models 35

cess parameters in our case) and encoded as the style component si.
The signal generation within the deep synthesis network of the Style-
GAN starts with a learned constant vector that is iteratively modulated
by the style components introduced at each level, alongside an addition
of a noise map input at each layer, and processed by a convolutional
layer. The output of each subsequent convolution blocks, each com-
posed of two AdaIN operations and two convolutional layers, is a set
of multichannel images with their resolution doubling at each block.
Following the StyleGAN architecture, the conditional StyleGAN model
proposed in chapter 3 injects the style components into the network via
the AdaIN operation. The synthesis is likewise initiated from a learned
constant, but the noise inputs are omitted, as the target data model that
the generator aims to learn is deterministic, which is discussed further
in section 3.2.

2.3.3 CycleGAN

One of the extensions of the GAN architecture for the use in trans-
fer learning is the CycleGAN [131], an image-to-image translation net-
work that utilises mirrored duplex-GAN architecture for image style
transfer between two domains. The underlying intent is the training
of two generators: one, Gab, that translates data samples from domain
a to domain b and the other, Gba, that executes the inverse transfor-
mation. The key invention of [131], which necessitates the addition of
the second GAN structure, is the cycle consistency loss that enforces
the equivalence between the true signals from one of the domains x̃
and the reconstructed signals ˜̃x that are obtained after passing the true
signals through both generators, i.e.

˜̃xa = Gba(x̃b) = Gba(Gab(xa)) (2.24)

and
˜̃xb = Gab(x̃a) = Gab(Gba(xb)), (2.25)

36 2.4. Chapter summary

where a and b denote the two domains. The cycle consistency loss is
calculated for both domains and is defined as:

Lcycle = |xa − ˜̃xa|+ |xb − ˜̃xb|
= |xa − Gba(Gab(xa))|+ |xb − Gab(Gba(xb))|.

(2.26)

The use of the cycle loss solves the issue of mode collapse in unpaired
image-to-image translation tasks, i.e. the image domain adaptation
problem where the training dataset consists of unpaired images from
the two domains. For this purpose the Lcycle is useful for the domain
adaptation of machining signals to the domains with limited data avail-
ability, as evidenced by its implementation within the CycleStyleGAN
model proposed in chapter 4.

2.4 Chapter summary

The advent of cheap computational power that followed the Moore’s
law over the last few decades relatively well has made some of the
former science fiction technologies accessible today. While not all fan-
tasies have come true to date, and the technological advances have
not shed much light on the topic of consciousness, the techniques for
AI training and their applications in industrial, social and domestic
use cases have challenged the established methods and approaches to
many problems. Having identified the research gaps in the previous
chapter, the current chapter established the background and the basics
underpinning the AI methods proposed in this thesis and introduced
the GAN, conditional GAN, StyleGAN and CycleGAN ANN architec-
tures relevant for further discussion. The rest of the work discloses
the modelling and analysis results targeted at the manufacturing ap-
plication of the generative AI in the context of a machining digital twin
implementation.

Chapter 3

Conditional StyleGAN
modelling and analysis for a
machining digital twin

3.1 Introduction

An unexplored area of research of GAN applications in the manufac-
turing field is the potential use of controllable generative features of
a GAN for analysis of the manufacturing processes. Research in this
direction can potentially uncover ANN-based data-driven simulation
techniques that could significantly augment the decision-making pro-
cess pipelines in a manufacturing enterprise. This work focusses on
simulation via data-driven generation as a component of a future dig-
ital twin. GAN is a suitable candidate for digital twin development
due to its efficiency at inference time and the generative nature of the
model, in addition to the flexibility benefits of a data-driven method
that reduce the expected cost of implementation of the model for highly
variable processes.

The current work proposes the first StyleGAN-based digital twin
machining simulation component. A conditional StyleGAN architec-
ture is developed that captures the conditional distribution of a vibra-

37

38 3.2. GAN model as a machining digital twin

tion signal. The process signal generation is controllable via manipula-
tion of the input machining process parameters. The model may thus
act as a vibration simulation tool that maps process parameter inputs
to vibration signal outputs. This makes the proposed GAN usable as a
process optimisation instrument. An optimisation process loop would
search for the best process parameters by interrogating the model to ob-
tain parameters-signal pairs and determining the process quality based
on the obtained signals. This chapter also introduces a method of un-
certainty analysis that is applicable to the optimised process state. To
this end, a novel generation sensitivity analysis technique is proposed
that aims to estimate the conditions under which the simulation yields
reliable results.

The following text describes the data and the neural network model
in section 3.2, followed by the methodology and the experimental anal-
ysis in sections 3.3 and 3.4 and concluded with a discussion of the im-
plications of the analysis results for potential applications and future
research in section 3.5.

3.2 GAN model as a machining digital twin

3.2.1 Dataset: Machining Tool Vibration

Manufacturing process data is a scarce resource at the current mo-
ment due to its acquisition cost. While the sensing hardware is get-
ting increasingly cost-effective, the production processes themselves
are costly to run, implying that any manufacturing operations yield
a sunk cost in case they do not produce a valuable product, which
is the case for most experimental operations. And although the data
could be collected from the monitoring of a live production process, the
variability in its conditions is likely to be insufficient for a data-driven
modelling approach to capture the system dynamics across these con-
ditions. Commercial confidentiality of such data adds an additional
impediment to its use in public research. It can be expected that ac-

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 39

Figure 3.1: Geometrical representation of the forces simulated by the
physics-based model. F is the cutting force and β is the force angle.
Ft and Fn denote the tangential and the normal cutting forces and φ is
the cutting tooth angle.

tual implementations of data-driven digital twins would be initially
trained on the existing and proven physics-based models, due to the
experimental data scarcity mentioned above, and fine-tuned using a
mixture of simulated and empirical data. The simulation that pro-
duced the dataset used in this work represents a surrogate of a real
operational data-generating process. On one hand, this allows for a
rigorous analysis of the digital twin component performance due to
the full control over data generation. On the other hand, the proposed
approach approximates a real world scenario of transition from a pure
physics-based modelling to a scenario with mixed physics-based and
experimental data.

The GAN model described in this work is trained on a synthetic
dataset produced by a physics-based time-domain simulation model
adopted from [95]. The simulation iteratively calculates the forces pro-
duced by the interaction between the cutting teeth of a non-rigid ma-
chining tool and a rigid workpiece (Figure 3.1). These forces are used

40 3.2. GAN model as a machining digital twin

Figure 3.2: Workpiece geometry produced by the simulation model.
h(t) is the instantaneous depth of cut at time t that is the distance
between the current normal direction vibration level n(t) at angle φ
and the cut surface at angle φ produced at time t − T, where T is
the time period of cutting tool revolution between two neighbouring
cutting teeth.

C
hapter

3.C
onditional

StyleG
A

N
m

odelling
and

analysis
for

a
m

achining
digital

tw
in

41
Table 3.1: Milling time-domain simulation parameters

Parameter type Parameter Value

Machining chip width b 0.004 to 0.005
parameters spindle speed ω 3000 to 4000

feed rate f 10.2
Process-dependent number of cutting teeth Nt 3
parameters start angle of cut φs 126.9

exit angle of cut φe 180
process dependent coefficient Ks 2250e6
force angle β 75
x direction dynamics parameter kx 9e6
x direction dynamics parameter ζx 0.02
y direction dynamics parameter ky 1e7
y direction dynamics parameter ζy 0.01

Simulation parameters steps per revolution 256

42 3.2. GAN model as a machining digital twin

Algorithm 3.1 Physics-based simulation algorithm

1: for t in range(simulation time steps) do
2: h(t)← Instantaneous chip thickness
3: F(h)← Cutting force
4: Vibration(F)← Displacement values
5: φ← φ + dφ (increment tooth angle)
6: end for

in the derivation of the acceleration, velocity and displacement, i.e. the
vibration, of the cutting tool. Vibration is selected as the analysed sig-
nal type based on the low expected cost of its acquisition and potential
usefulness in the analysis of the machining process. The simulation
tracks the position of each cutting tooth and the workpiece geometry
produced by material removal (Figure 3.2) to identify which cutting
teeth are performing the cut at each time step. The operation consid-
ered in the current work is a linear non-slotting milling cut performed
with a straight-teeth cutting tool on a metal workpiece.

The physics-based model accepts several variables that control the
deterministic simulation, including the machining parameters control-
lable during the configuration of the metal cutting process and the
parameters dependent on the characteristics of the workpiece material,
the machining tool and the manufactured product. These variables
are detailed in Table 3.1 followed by the values used for generation
of the training data. The parameter values are based on the exam-
ple from [95] that describes a linear down milling cut performed by
a three-tooth square endmill with straight teeth on a low-carbon steel
alloy, the type of cut pictured on Figures 3.1 and 3.2. The parameter
values are constant throughout each cutting operation, and the param-
eters varied across the samples in the produced dataset are chip width
and spindle speed in ranges from 0.004 to 0.005 mm and 3000 to 4000
rpm respectively. The generated signals represent the displacement of
the cutting tool along the x-direction during the third revolution of the
cutting tool, sampled at a rate proportional to the spindle speed.

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 43

A signal sample is obtained for each combination of 200 linearly
spaced chip width and 200 spindle speed parameter values in the
specified ranges, resulting in 40 000 signal samples within the dataset.
The only pre-processing applied to this data is the mean and stan-
dard deviation normalisation that is applied to each of the process
parameters separately and to the time-domain signals. The valida-
tion dataset containing 40 000 samples is produced using the same
approach, but with the process parameters values shifted a half of the
step, i.e. chip width from 0.004025 to 0.005025 and spindle speed 3002.5
to 4002.5. Both training and validation datasets are publicly available at
https://gitlab.com/EZotoff/conditional-stylegan-digital-twin.

3.2.2 Conditional StyleGAN architecture

Elements of StyleGAN introduced in section 2.3 are repurposed for the
1D case of a time-domain signal simulation developed in this chapter.
The noise inputs and the mixing regularisation (regularisation applied
during training that randomly mixes the disentangled latent with an-
other one to produce a sample from the generator G) are excluded
from the model, as the variation of outputs of the target distribution
is deterministic with respect to the input process parameters, i.e. the
training data contains not more than a single sample for each unique
label set. The architecture is enhanced with the substitution of the ran-
dom input latent vector for continuous labels C: the machining process
parameters, chip width and spindle speed, that the generator’s output
is conditioned on. The process parameters are used as inputs to the
generator and as outputs of the discriminator, i.e. the discriminator
learns to not only identify synthetic data samples, but also to estimate
the labels associated with a given time-series. The architecture includes
a non-linear mapping network M that projects process parameter in-
puts into a disentangled latent space. The styles S produced from the
input labels C by the mapping network M subsequently control the
modulation of outputs of the convolutional layers within the synthesis

https://gitlab.com/EZotoff/conditional-stylegan-digital-twin

44 3.2. GAN model as a machining digital twin

Figure 3.3: Architecture of the conditional StyleGAN generator net-
work. "A" denotes learned affine transformations of style components
si; "AdaIN" - adaptive instance normalisation [49], which implements
the per-channel modulation of the network’s intermediate outputs by
the transformed style components.

network F of the generator (see Figure 3.3).

The mapping network M is implemented as a multi-layer percep-
tron and consists of 8 layers with 32 neurons each with leaky ReLU
activation functions. M maps the input process parameters C into style
vectors S of length 256. The first input to the synthesis network is a
learned constant vector of dimension 2x1024, where the first dimension
is the signal length and the second dimension is the number of filters.
This learned constant is sequentially processed by multiple blocks each

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 45

containing two convolutional layers with convolutional kernel of size
7. Except for the first block where the constant vector takes place of
the first convolutional layer’s output, the first convolutional layer in
each block upscales the signal length by a factor of 2 and reduces the
number of filters by a factor of 2 until the number of filters reaches 64.
After each convolutional layer the signals are passed through a leaky
ReLU activation function and then normalised and mixed with the re-
spective style component vector within the AdaIN operation. The last
layer of the synthesis network F applies a convolution operation with
kernel 1 to aggregate the 64 filter outputs produced by the final block
into a single signal of length 256.

The loss functions are adjusted to accommodate the inclusion of
machining process parameters in the network’s architecture by addi-
tion of terms that penalise inaccurate label predictions. This is similar
to the approach followed by the authors of InfoGAN [16], with the fol-
lowing difference. The accuracy of label predictions for training data
Lin f o

D impacts only the discriminator, while the accuracy of the pre-
dictions for fake data samples Lin f o

G is taken into account only by the
generator. The loss terms are

Lin f o
G =

√√√√ 1
n

n

∑
j=1

(ct,j − c̃ f ,j)2,

Lin f o
D =

√√√√ 1
n

n

∑
j=1

(ct,j − c̃r,j)2,

(3.1)

where c̃ f ,j is a value of parameter j predicted by the discriminator
based on a fake signal, c̃r,j is a value predicted from a real signal,
and ct,j are the true parameter values. On one hand, the generator
is thus incentivised to encode the label information in an identifiable
way within the synthesised samples. On the other hand, the discrim-
inator learns the relationship between labels and samples only on the
real data, thus preserving the non-cooperative nature of the minimax

46 3.3. Digital twin performance analysis

game between the generator and the discriminator. With λin f o denot-
ing the scaling factor for the label prediction accuracy error loss, the
total loss functions for the generator LG and the discriminator LD are
therefore:

LG = Lwgan-gp
G + λin f oLin f o

G ,

LD = Lwgan-gp
D + λin f oLin f o

D ,
(3.2)

with Lwgan-gp
G and Lwgan-gp

D are the Wasserstein losses with gradient
penalty defined in equation 2.21.

The generator network learns the conditional distribution of the
time-domain vibration signal with respect to the machining process
parameters that control the basic milling conditions. The use of style-
based architecture of the generator enables a reduction of a trained
model’s complexity via inspection of its style-level components. This
and the degree of control provided by the conditional component of the
generator increases the model’s potential interpretability and enables
a reductionist approach to the analysis of its black-box inner mecha-
nisms.

The models are trained using the Adam optimiser for both the gen-
erator and the discriminator with learning rates of 0.00001 and 0.0001
respectively. The network losses are parametrised with λin f o = 10 and
λgp = 10. The GAN described in this work is trained until convergence,
and the models used in correlation analysis described in Section 3.4.1
were trained for the same number of epochs as the main network, and
thus have not necessarily converged. Training convergence was as-
sessed based on the rate of improvement of the root-mean-square error
(RMSE) metric measured and averaged across the validation dataset.

3.3 Digital twin performance analysis

The generator successfully learns to capture the relationship between
the process parameters and the time-domain signal and performs well

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 47

Figure 3.4: Comparison of generated time-series samples and valida-
tion data samples. X-axis represents time steps, Y-axis - displacement
in log scale. Real signal is represented by the yellow curves and the
generated signal by blue.

both on training and validation data. Figure 3.4 depicts several sam-
ples of generated time-series against the signals from training data pro-
duced using the same process parameters.

The metrics used in the analysis of the generator network perfor-
mance are aimed at capturing the accuracy of the model conditional
on the input parameters. The potential mode collapse (i.e. the inability
of the generator to produce parts of the target distribution) inevitably
affects the accuracy of the generator due to the deterministic nature of
the experimental data coupled with the conditional generation. There-

48 3.3. Digital twin performance analysis

Figure 3.5: Standard deviation of training data samples for each set
of process parameters values (log scale).

fore, the discussed experimental setting permits less attention on the
variety of the generated samples, and the current work focusses on the
analysis of the generator accuracy. The true accuracy value for some
labels C is measured by the root-mean-square error (RMSE) E(C) be-
tween the true signal x(C) from the training data and the synthetic
signal x̃ produced by the generator:

E(C) =
√

1
n

n

∑
i=1

(xi(C)− x̃i(C))2, (3.3)

where n is the signal length.

The generative performance of the neural network is investigated
via analysis of metrics mapped across machining process parameter
values, chip width and spindle speed. This is visualised by calculat-
ing the inspected metric for a range of the process parameter pairs and
plotting the values on a two-dimensional figure with spindle speed var-
ied across the horizontal axis and chip width across the vertical axis.
The training data exhibits high variability, especially across the spindle

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 49

Figure 3.6: Error E values in log scale for generated time-series across
various process parameter values for training data (top) and validation
data (bottom). A single point on the map represents the generator G(C)
error value E measured at process parameter values of chip width and
spindle speed C corresponding to the Y-axis and the X-axis values
respectively. The error pattern similarity on both maps indicates low
over-fitting.

50 3.3. Digital twin performance analysis

speed parameter values range, visible on the plot of standard devia-
tions of the training data signals (Figure 3.5). Figure 3.6 depicts the
error E(C) of the generated time-series on training and on validation
data. The mean (standard deviation) of these errors are approximately
1.408 (2.554) and 1.408 (2.514) millimetres respectively. Error distri-
butions are nearly identical, i.e. the generator performs equivalently
during both training and validation. The validation dataset is of the
same size as the training dataset, which is feasible due to the control
over the source data synthesis.

In contrast to the high accuracy of the generator in the areas of the
parameter space characterised by low dispersion in the training data,
the generative performance is suboptimal in some regions of high train-
ing data variance. Closer inspection of a region between 3450 and 3550
spindle speed reveals that the generator experiences a local mode col-
lapse at high chip widths (for an example refer to Figure 3.7). The
trough visible on the error map in this region represent a parameter
space where the generator successfully learnt the mode of the target
signal, while the peaks to the sides along the X-axis from this narrow
band of high accuracy are indicative of the dropped modes. An inspec-
tion of the dynamics of change of the training data signals compared to
the change of the synthesised signals reveals that whereas the training
data signals change shape linearly with the change in spindle speed,
the generated signals remain constant for most of the inspected param-
eter space and sharply switch to the next mode near the peak on the
error map.

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 51

Figure 3.7: Example of a path in labels space where the transition
between the signal modes is smooth in the training data, but abrupt
in the signals produced by the generator. The blue dot on the error
maps (left) indicates the parameter values used to compare the two
signals (right), real signal in yellow and generated signal in blue. The
differences between the fake signals along the labels transition paths
shown on the two top figures and the two bottom figures are much
lower than for the real signal. The opposite is true for the transition
captured by the two middle figures.

52 3.4. Digital twin sensitivity analysis

3.4 Digital twin sensitivity analysis

3.4.1 Generator sensitivity

The metric discussed in the following sections is the sensitivity of the
generator output to the input parameters δ:

δ(C) =
1
m

m

∑
j=1

(

∣∣∣∣∣∂x̃(C)
∂cj

∣∣∣∣∣), (3.4)

where cj ∈ C and m is the number of input parameters in a label set C.
The generator sensitivity δ(C) provides an insight into the origin of

the parameter space regions where the GAN produces samples with
relatively high inaccuracy. Empirical observation of the sensitivity
maps obtained from several trained GANs reveals a complex but stably
recurring relationship between the distributions of the generator sen-
sitivity δ(C) and the generator error E(C) across the parameter space.
Comparison of the correlation between the point-wise sensitivity and
error metrics for different generator networks implies a moderately
strong connection between these metrics that is nevertheless consistent
across the generators, with average correlation of 0.45 for 52 different
generator networks. Examples of this comparison are presented on
Figure 3.8. Both the empirical observations and the correlation analy-
sis imply that a complex, potentially non-linear, relationship between
the two metrics exists. If mapped onto the generator accuracy, the gen-
erator sensitivity δ(C) can be used as an accuracy estimator. Thus, the
sensitivity can represent the generation uncertainty at some input pa-
rameter values using only the information obtained from the generator
model itself. Calculation of δ(C) requires generation of an additional
sample from the generator per parameter in C for each evaluated sig-
nal, which yields a negligible additional computational cost for GANs
implemented in most modern neural network libraries that allow batch
evaluation of the models. Generator sensitivity can thus be efficiently
used at inference time to enhance the produced data samples with an

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 53

accuracy uncertainty metric without requiring any external data and
additional measurements.

The discussed relationship between the generative accuracy and
sensitivity to input labels implies that the cause of the modes of fail-
ure of the generator originates from the parameters inputs and con-
sequently from their style representation. This link is studied in the
following section.

(a) Error E (b) Sensitivity δ (c) E and δ

Figure 3.8: Error E and sensitivity δ maps for three trained models, a
model’s plots on each row. The right column contains plots of the joint
distributions of these two measures, with the shaded regions repre-
senting the frequency of samples for the corresponding E and δ values
and the solid lines are the fitted linear regressions.

54 3.4. Digital twin sensitivity analysis

3.4.2 Interpolation Analysis

If the origin of the high sensitivity (which is linked to the high er-
ror) can be found, an approach for dampening the sensitivity could
be applied, theoretically trading reduced maximal model error for in-
creased average error. The style-based neural network architecture en-
ables a reduction of the model analysis complexity via the inspection
of the influence of the disentangled input parameter vectors si at the
different layers i of the synthesis network F(S) within the GAN, where
S = {si} = M(C) is a set of disentangled style vectors produced by
the mapping network M of the generator from the input label vectors
C. This is performed via the analysis of the changes in the generated
output signals arising from alteration of the disentangled inputs. Two
style sets are obtained from the mapping network using different input
parameters,

So = M(Co) and St = M(Ct) for Co 6= Ct, (3.5)

and two signals are generated using these parameter sets,

x̃o = F(So) and x̃t = F(St). (3.6)

An interpolated signal x̃c is calculated by feeding into the synthesis
network an affine combination of style sets So and St:

x̃c = F(Sc),

Sc = {sc
i } = {so

i ∗ wi + st
i ∗ (1− wi)},

(3.7)

where i is the index denoting the style level increasing towards the
output layer of the model and wi is the relative weight of the first style
used at the i-th level. In other words, at each style level i the style
component of Sc is the weighted sum of the components of So and St

at this level, with the weight wi = 0 indicating that only the component
of the first style set So is used and wi = 1 implying that only the second

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 55

Figure 3.9: Comparison of the interpolations over high- and low-level
styles on the top and the bottom figures respectively. The dashed line
represents the initial signal x̃o = F(So) on both plots. Top solid line,
the signal generated using interpolated styles Sc = {st

1..5} ∪ {so
6..16}, is

significantly different from x̃o in its phase and modes. Bottom solid
line, the signal produced from Sc = {so

1..5} ∪ {st
6..16}, differs from the

source in its local high-frequency features.

style St is applied at this layer.

The variation of the generated signals produced as a result of grad-
ual changes to one or several style components reveals the features
that the style components at the respective levels control. By perform-
ing a linear interpolation between so

i and st
i for each i = k individ-

ually, i.e. while keeping sc
i and so

i equal for each i 6= k, we empir-
ically observe that the generator model style layers can be classified

56 3.4. Digital twin sensitivity analysis

into two groups: high-level styles SH and low-level styles SL, where
SH = {s1..5} and SL = {s6..16}. The high-level styles significantly affect
the low-frequency features of the output signal like its phase and gen-
eral envelope shape. The low-level styles impact the high-frequency
detail of the generated output. Figure 3.9 visualises the end points of
this interpolation: an initial signal x̃o, its interpolation towards x̃t in
high-level styles only (i.e. x̃c = M(St

H ∪ So
L)) on the top plot and in

low-level styles only (i.e. x̃c = M(So
H ∪ St

L)) on the bottom one.

An analogous inspection of the style-level interpolation effects is
performed at the layer level of the generator, i.e. the variation of the
activations produced by the intermediary convolutional layers of the
model is observed as a result of changes in the style parameters. Em-
pirical analysis reveals that the sensitivity of the layer activations to
the changes in the high-level style components exhibits the irregular
non-smoothness similar to the sharp gradients notable in δ(C). The
search for the origin of the error-producing high sensitivity discussed
in section 3.4.1 can thus be narrowed to the layers of the GAN where
the high-level styles are injected. The impact of the style modulation
measured at a single-layer level seems insignificant, as evidenced by
the minor difference between the distributions of the input and output
activations of the style injection layers. Example of this is depicted on
Figure 3.10. Nevertheless, these minor changes are propagated through
the generator network and magnified by the complex black box pro-
cessing within the downstream convolutional layers, resulting in major
variability of the network outputs.

3.4.3 Activation node sensitivity

One of the possible ways of further reduction of the complexity of
the analysed chaotic system is an additional refinement of the anal-
ysed object’s scale. Thus, the sensitivity of individual activation nodes
within the generator layers relative to the sensitivities of other nodes
in the same layer is of interest. This sensitivity δ

layer
node is measured as

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 57

Figure 3.10: Distributions of activation clusters that are the input (top
plot) and the output (bottom plot) of a high-level style modulation
layer of the generator network. Solid line is the cluster activations’
mean and the shaded areas show the cluster activations’ distribution
covering the whole range of activation values in a cluster. Style injec-
tion at this layer changes neither the cluster sizes nor the activation
distribution significantly.

the sensitivity of the activation outputs to the changes in input process
parameters averaged across a set of process parameter values C.

δ
layer
node =

∣∣∣∣∣ 1
σk

k

∑
p=1

(δ′(Cp))

∣∣∣∣∣ , where

δ′(Cp) =
1
m

m

∑
j=1

(
∂zlayer

node (Cp)

∂cj
),

(3.8)

zlayer
node (Cp) is the activation output of a single node within a layer, δ′

is the sensitivity of this activation to change in the process parameter
input measured at process parameter values Cp and σ is the standard
deviation of δ′ across the process parameter values.

Therefore, δ
layer
node is high for the activation nodes that are highly sen-

sitive to the process parameters C robustly across the parameter space.
Comparison of δ

layer
node calculated using the complete process parameter

set from training data with δ
layer
node based on a limited parameter set con-

taining only the parameter values that produce the top 5% of generator
sensitivity δ(C) is presented on Figure 3.11. Most of the nodes produc-
ing high sensitivity in regions where the whole generator network is

58 3.5. Chapter summary

Figure 3.11: Distribution of the activation node sensitivity metric
δ

layer
node for one of the generator layers with values of δ

layer
node along the Y-

axis and node indices along the X-axis. Crosses denote the sensitivity
values measured based on the process parameters values from the re-
gions where the whole generator network is highly sensitive to input.
The δ

layer
node calculated on the full process parameter set are marked by

the filled dots.

highly sensitive to input are also producing relatively high sensitivity
in the process parameter regions not characterised by high generator
sensitivity. This metric thus makes possible the identification of the
most sensitive activation nodes within the network and consequently
the convolutional kernels that produce this sensitivity, which can po-
tentially be used for remedying the anomalously high sensitivity δ(C)
of the generator and reducing the errors in the respective regions.

3.5 Chapter summary

The conditional neural network architecture described in this chapter
allows a significant degree of control over the generator via control-
lable input process parameters, thus enhancing the flexibility of the
model and creating the potential for exploratory analysis of the mod-
elled process. Such analysis could serve the purpose of CNC machin-
ing process planning and optimisation. Researchers have shown how
signal data can be utilised to predict product conformity to quality
standards [44, 85], therefore enabling the prediction of manufacturing
errors and product quality prior to manufacturing when coupled with
signal simulation proposed here. Additionally, the machining process
stability estimation can be enhanced with a generative model substitu-

Chapter 3. Conditional StyleGAN modelling and analysis for a
machining digital twin 59

tion for some of the physical measurements, which is a future research
direction also proposed by machining stability experts [39].

The validation of the proposed GAN model using an almost raw vi-
bration signal data, pre-processed only by domain-agnostic mean and
standard deviation normalisation, implies that the findings discussed
in this work are generalisable and relevant for other time-domain sig-
nal generation applications. The neural network architecture at the
base of the proposed model is computationally cheap at inference time.
This and the generative nature of GAN enable the development of a
machining digital twin component that simulates the underlying phys-
ical process in real-time, which is an important step towards implemen-
tation of data-driven simulation models in the development of digital
twins for Industry 4.0. The proposed analysis methodology utilising
the style-based input disentanglement enables a reductionist approach
to the model’s performance analysis, and the generative uncertainty
metrics based on the generator sensitivity presented in this work in-
crease the model’s transparency and interpretability. Both are impor-
tant barriers to the widespread adoption of complex models in the
industrial context [50].

The conditional component of the proposed GAN is naturally ex-
tensible to simulation of longer signals via autoregressive model based
generation, i.e. the inclusion of signal history as a conditioning input
to the generator. The use of recurrent neural network layers might also
prove beneficial for this extension of the generator network. Condition-
ing can additionally be applied for adoption of the proposed model to
a signal transformation problem, e.g. for prediction of cutting forces
from the vibration signals, similar to the image style transfer idea [49].

A real world implementation would likely be limited in terms of
data availability due to the relatively high cost of acquisition of non-
production experimental data. With the lack of data for creation of a
complete map across the various operating conditions, the approach
would have to be implemented using a limited subset of these con-
ditions. An attentive consideration of the sampling efficiency of true

60 3.5. Chapter summary

data would thus be important in the optimisation of the model’s abil-
ity to learn with fewer data. This could also be remedied by a hybrid
data generation approach that assembles the training and validation
datasets using any existing expert- or physics-based models comple-
mented with the real world data.

The problem of data scarcity in the context of machine fleet de-
ployment is the topic of the next chapter, which builds on the mod-
elling approach presented above to propose a solution that leverages
the knowledge already embedded in an existing process model in the
modelling of a process from another domain.

Chapter 4

CycleStyleGAN-based
knowledge transfer for a
machining digital twin

4.1 Introduction

The widespread digitalisation within the transition towards Industry
4.0 creates a drive for flexible and efficient data-driven simulation mod-
elling. The existing simulation solutions frequently lack the required
flexibility and integration access to be effective in a heterogeneous and
dynamic environment of the interconnected cyber-physical systems.
Nevertheless, the knowledge contained within these costly models is
often valued at a very high price. The efficient use of this knowledge is
therefore an important concern for any business employing such sim-
ulations.

The work presented here proposes a solution for extraction of the
knowledge from the existing manufacturing simulation tools applica-
ble both to physics-based and to data-driven source models, thus en-
abling business cost optimisation. The proposed approach implements
a novel CycleStyleGAN domain adaptation model by introducing the
style-based signal representation into the CycleGAN framework. The

61

62 4.2. Materials and Methods

sections below present an evaluation of the effectiveness of the pro-
posed knowledge transfer method and its comparison to an incremen-
tal learning approach validated under identical conditions. A proposed
use case of the developed model for manufacturing process optimisa-
tion is also discussed in section 4.4.

4.2 Materials and Methods

4.2.1 Milling Vibration Datasets

The physics-based model introduced in section 3.2.1 accepts several
variables that influence the deterministic simulation, including ma-
chining parameters that can be controlled during the metal cutting
process configuration and parameters that are dependent on the work-
piece material, machining tool, and the manufactured product char-
acteristics. Three datasets are created for the experiments presented
in this chapter. Dataset 1 represents source domain data. Datasets
2 and 3 correspond to the target domains that differ from the source
domain, respectively, either slightly or significantly. The similarity be-
tween dataset 2 and dataset 1 portrays a situation of a small difference
in the environment temperature or the machined material properties
between the two domains. Dataset 3 represents a case of substantially
varied properties of the underlying signals, for example resulting from
a change of machining tool. The parameter changes made to ob-
tain the two target-domain datasets were chosen based on an empirical
comparison of the resulting datasets to the original dataset with the
purpose of introducing relatively small and large changes to dataset
2 and 3 respectively, as described above. While the resulting parame-
ter values are not directly inferred from a particular real combination
of tool and material properties, they lie within the ranges used in the
examples in [95], and are thus considered realistic.

Table 4.1 details the process simulation variables, followed by the
values used to generate the training data. The hyphens indicate the

C
hapter

4.C
ycleStyleG

A
N

-based
know

ledge
transfer

for
a

m
achining

digital
tw

in
63

Table 4.1: Milling time-domain simulation parameters

Parameter type Parameter Dataset 1 Dataset 2 Dataset 3

Machining chip width b 0.004 to 0.005 - -
parameters spindle speed ω 3000 to 4000 - -

feed rate f 10.2 - -
Process- number of cutting teeth Nt 3 - -
dependent start angle of cut φs 126.9 - -
parameters exit angle of cut φe 180 - -

process dependent coefficient Ks 2250e6 1950e6 1950e6
force angle β 75 - -
x direction dynamics parameter kx 9e6 - 7e6
x direction dynamics parameter ζx 0.02 - -
y direction dynamics parameter ky 1e7 - 1.3e7
y direction dynamics parameter ζy 0.01 - -

Simulation steps per revolution 256 - -
parameters

64 4.2. Materials and Methods

values used in datasets 2 and 3 that are unchanged as compared to
dataset 1. Chip width and spindle speed, which range from 0.004 to
0.005 mm and 3000 to 4000 rpm respectively, are the characteristics that
vary among the samples in a generated dataset. The produced signals
reflect the cutting tool’s displacement in the x-direction during its third
rotation, sampled at a rate proportionate to the spindle speed.

Each combination of 200 linearly spaced chip width and 200 spin-
dle speed parameter values in the given ranges yields a signal sam-
ple, resulting in a total of 40 000 signal samples in the dataset. The
only pre-processing done to this data is mean and standard devia-
tion normalisation, which is done individually for each of the pro-
cess parameters as well as for the time-domain signals. The valida-
tion dataset, which includes 40 000 samples, is created using the same
method but with the process parameters moved half a step, i.e. chip
width ranging from 0.004025 to 0.005025 and spindle speed from 3002.5
to 4002.5. All the datasets are freely accessible on GitLab at https:

//gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-

for-a-machining-digital-twin.

4.2.2 CycleStyleGAN architecture

Following the style-based modelling approach used for vibration sig-
nal synthesis, the proposed CycleStyleGAN generators also operate on
the style encodings of the signals. The generators Gab and Gba are
thus built as ensembles of three subnetworks: the encoder, the trans-
lator and the decoder, and implement the signal translation functions
Gab : xa → xb, Gba : xb → xa. The encoder network compresses the
input signals into their style representations (Encoderab : xa → Sa and
Encoderba : xb → Sb), which are then passed onto the translator mod-
ule. This module transforms the received style vector into the target
domain style (Translatorab : Sa → Sb, Translatorba : Sb → Sa). Finally,
the decoder subnetwork synthesises the target domain signal from the
translated (Decoderab : Sb → xb, Decoderba : Sa → xa). The schematic

https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 65

Figure 4.1: Conditional CycleStyleGAN architecture. Gab and Gba de-
note the generator networks that translate signals from domain a to
domain b and vice versa. Da and Db are the discriminators that pro-
cess domain a and b signals, both real and the ones translated into their
respective domain. The callout on the bottom shows the subnetworks
of G, using Gba as the example. Other notation: c, c̃ - real and esti-
mated process parameter values; xa (xb) - true domain a (b) signals;
x̃a (x̃b) - signals synthesised via translation to domain a (b); ˜̃xa (˜̃xb) -
signals synthesised via reconstruction back to domain a (b); Sa (Sb) -
style encoding of a domain a (b) signal. The different colour coding
indicates the data structures and the neural networks associated with
each domain.

depiction of the CycleStyleGAN architecture is displayed on figure 4.1.
The parametrisation of the described networks shall be explained in
section 4.2.3.

The current work implements the encoder and the translator net-

66 4.2. Materials and Methods

works as deep convolutional networks with residual blocks that each
contain two convolutional layers. The decoder subnetwork is similar
to the synthesis network described in section 3.2.2 and is a deep trans-
posed convolutional network modified with skip connections (see the
synthesis network F block on figure 4.2).

The two discriminators in the CycleStyleGAN model play roles sim-
ilar to the ones seen in the Conditional StyleGAN model with a key
difference in their classification task: the networks now aim to identify
whether the signals passed to them belong to their respective domains.

Figure 4.2: Architecture of the StyleGAN generator network. "A"
denotes learned affine transformations of style components si; "AdaIN"
- adaptive instance normalisation, outputs of which are modulated by
the transformed style components.

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 67

The adversarial losses are then formulated as:

Lwgan-gp
Gab

= − E
x̃b∼Pb

[Db(x̃b)],

Lwgan-gp
Gba

= − E
x̃a∼Pa

[Da(x̃a)],

Lwgan-gp
Db

= E
x̃b∼Pb

[D(x̃b)]− E
xa∼Pa

[D(xa)] + λgpLgp
b ,

Lwgan-gp
Da

= E
x̃a∼Pa

[D(x̃a)]− E
xb∼Pb

[D(xb)] + λgpLgp
a ,

(4.1)

where

Lgp
a = E

x̃a∼Px̃a
[(||∇x̃a D(x̃a)||2 − 1)2] and

Lgp
b = E

x̃b∼Px̃b

[(||∇x̃b D(x̃b)||2 − 1)2]
(4.2)

are the gradient penalty terms, λgp is the gradient penalty scaling hy-
perparameter, Da and Db are the discriminator networks operating on
domain a and b signals respectively, xa (xb) and x̃a (x̃b) denote the real
domain a (b) signals and the signals translated to the domain a (b)
respectively and Pa (Pb) is the domain a (b) signal distributions.

As in the case of the information loss formulated for the Condi-
tional StyleGAN, the generators are incentivised to preserve the label
information in the synthesised signals, while the discriminators are
penalised for misreading the labels encoded within the training data
samples. These targets are implemented as the following loss function
for the CycleStyleGAN networks:

Lin f o
Gab

=
1
n

n

∑
k=1
|ck − c̃k,b, f ake|, Lin f o

Db
=

1
n

n

∑
k=1
|ck − c̃k,b,real|,

Lin f o
Gba

=
1
n

n

∑
k=1
|ck − c̃k,a, f ake|, Lin f o

Da
=

1
n

n

∑
k=1
|ck − c̃k,a,real|,

(4.3)

68 4.2. Materials and Methods

where

c̃k,a, f ake = Da(x̃a) and

c̃k,b, f ake = Db(x̃b)
(4.4)

are the values of parameter k predicted by the respective discriminators
based on signals translated to domain a or b.

c̃k,a,real = Da(xa) and

c̃k,b,real = Db(xb)
(4.5)

are the values predicted from a domain a or a domain b real signal,
and ck are the true parameter values.

The total losses the generator and the discriminator networks of the
CycleStyleGAN are as follows:

LGab = Lwgan-gp
Gab

+ λin f oLin f o
Gab

+ λcycleLcycle,

LGba = Lwgan-gp
Gba

+ λin f oLin f o
Gba

+ λcycleLcycle,

LDb = Lwgan-gp
Db

+ λin f oLin f o
Db

,

LDa = Lwgan-gp
Da

+ λin f oLin f o
Da

,

(4.6)

where λin f o represents the scaling factor for the label prediction error
loss, λcycle is the cycle consistency loss multiplier. λin f o = 10, λgp = 10
and λcycle = 10 are used to parameterise the network losses during
training.

4.2.3 Hyperparameter optimisation

The neural networks trained during the experiment described in this
work have several hyperparameters that configure their internal struc-
ture. The description of what these hyperparameters are and how they
are optimised to improve the performance of the models is given be-

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 69

low. Where possible, reasonable constraints are enforced to maintain
the tractability of the hyperparameter search given the available com-
putational resources.

The number of convolutional blocks, the structure of which is de-
scribed in section 3.2.2, and the number of convolutional filters used in
each block are the main hyperparameters that determine the size and
complexity of the neural subnetworks. The generative subnetworks,
i.e. the synthesis network of the StyleGAN and the decoder of the
CycleStyleGAN, receive the number of filters equal to the respective
hyperparameter value at the initial convolutional block, that is then
downscaled after each block by the filter scaling factor. The minimal
number of filters that a block can have is defined via a hyperparameter.
The length of the signal is upscaled at the end of each convolutional
block, in a way such that the final output signal is of the target length
256. The subnetworks that process the signal in the opposite direction,
the discriminators and the CycleStyleGAN encoder, are built in a re-
verse manner. The number of filters at the last block is determined
by the hyperparameter, and this number decreases towards the begin-
ning of the network, while the length of the signal is downscaled after
each block from the input’s 256. The full list of the hyperparameters is
presented in table 4.2.

The size of StyleGAN mapping network, which is a feedforward
network with fully connected layers, is configured via its depth (the
number of layers) and breadth (number of neurons per layer). These
are fixed at 8 and 32 respectively, following the StyleGAN work [55].
The hyperparameters in GAN subnetworks with similar functions are
jointly optimised, i.e. the same value is kept between the instances of
such hyperparameters in the different networks. Following this ap-
proach, the sizes of the style vector output by the mapping network
of the StyleGAN model and by the encoder of the CycleStyleGAN are
linked. The equivalence of the StyleGAN synthesis and the CycleStyle-
GAN decoder network architectures is also maintained this way, as
well the configurations of both discriminators and the CycleStyleGAN

70 4.2. Materials and Methods

Table 4.2: Model hyperparameters

Parameter type Allowed values Used value

Optimiser
Generator optimiser type SGD, Adam Adam
Discriminator optimiser type SGD, Adam Adam
Generator learning rate 0.01, 0.001, 0.0001 0.001
Discriminator learning rate 0.001, 0.0001, 0.00001 0.0001

Conditional StyleGAN generator
Mapping network M

Number of layers 8 8
Neurons per layer 32 32
Style vector size 32, 128, 256, 1024 512

Synthesis network F
Number of convolutional blocks 7, 5, 2 2
Starting number of convolutional filters 64, 256, 1024 256
Filter number scaling factor 2, 4 2
Minimal filters number 8, 64, 128 8

Conditional StyleGAN Discriminator
Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1024 512

CycleStyleGAN generator
Encoder

Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1024 512
Style vector size 32, 128, 256, 1024 512

Translator
Number of convolutional blocks 5, 11 5
Number of filters 2, 32, 128 2

Decoder
Number of convolutional blocks 7, 5, 2 2
Starting number of convolutional filters 64, 256, 1024 256
Filter number scaling factor 2, 4 2
Minimal filters number 8, 64, 128 8

CycleStyleGAN Discriminator
Number of convolutional blocks 7, 5, 2 5
Final number of convolutional filters 64, 256, 1024 64
Filter number scaling factor 2, 4 2
Maximal filters number 128, 512, 1024 512

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 71

encoder. Another hyperparameter search space constraint adopted
from previous experiments sets the discriminator optimiser learning
rate to the value of one tenth of the learning rate of the generator.

For further optimisation of the hyperparameter search space we
start with only the 12 StyleGAN and optimiser hyperparameters, using
a single hyperparameter that defines both learning rates as described
above. The StyleGAN model is optimised based on dataset 1 using
the Hyperband algorithm [67]. This approach implies training many
differently parametrised neural network for a few epochs, selection
of the subset of best performing ones with their subsequent further
training. After multiple iterations of such selection and training, the
hyperparameter values of the best-performing network are considered
optimal. After StyleGAN hyperparameter optimisation, the remaining
non-linked CycleStyleGAN hyperparameters, which are only the two
translator subnetwork hyperparameters, are optimised using the same
approach. The hyperparameter optimisation at this stage showed the
same results both on dataset 2 and dataset 3.

4.2.4 Training schedules

The GANs presented in this study are trained until convergence, or un-
til 68 000 000 sample instances are shown to the networks, each instance
representing a single time-series picked from the training dataset. The
training data instances are fed to the network during training in batches
of 1 000 at a time, cycling through all the non-repeating batches. The
rate of improvement of the root-mean-square error (RMSE) metric is
measured and averaged over the testing dataset to determine training
convergence. Convergence is considered reached if no error reduction
is observed over the last 6 800 000 sample instances, i.e. over the last
10% of the maximal total exposure to the training data.

The Conditional StyleGAN model architecture presented in sec-
tion 3.2.2 is used in two training approaches, for brevity henceforth
called retraining and incremental training. Retraining approach im-

72 4.3. Results

plies training of a freshly initialised StyleGAN neural network on a
limited set of data from dataset 2 or 3. Incremental training is imple-
mented as a two-stage training schedule. First, a base neural network
is trained using all samples available in dataset 1. Second, a neural net-
work initialised with the weights obtained from stage one training (in
other words, a copy of the StyleGAN trained on dataset 1) is trained
on a given set of samples from datasets 2 or 3. The sets of samples
used for training the networks under both approaches are obtained by
randomly selecting a fraction of samples from the respective dataset.
The percentages of the used samples are 20%, 15%, 10%, 5%, 2%, 0.8%.

The domain adaptation training of the CycleStyleGANs is performed
using the full source domain data (i.e., dataset 1) and a subset of the
target domain data. The percentages of the used samples are 20%, 15%,
10%, 5%, 2%, 0.8%, 0.2%. The sample sets of datasets 2 and 3 used un-
der this approach are the same as the sets used for incremental training
of the StyleGAN described above.

4.3 Results

The analysis presented in this section seeks the validation of the pro-
posed CycleStyleGAN architecture as a knowledge transfer technique
under the target domain data scarcity constraint. To this extent, the
accuracies of the CycleStyleGAN model instances are compared with
the accuracies of the StyleGAN networks, thus presenting the perfor-
mance of the proposed domain adaptation method against the incre-
mental learning approach. For comparison fairness, the underlying
subnetworks of the models are parametrised identically wherever pos-
sible, and the models are treated with the same sets of samples during
training and are evaluated on the same validation data.

Each trained StyleGAN and CycleStyleGAN model is evaluated by
a generative error metric defined as the average of the mean absolute
error E between the target signals from the validation data x(cval) and

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 73

the synthesised signals x̃, i.e. the signals created by StyleGAN from
parameters:

x̃ = G(cval) (4.7)

or translated by the a→ b CycleStyleGAN from the domain a signals:

x̃ = Gab(x(cval)), (4.8)

E =
1
m

m

∑
j=1
E(cval

j), where (4.9)

E(c) = 1
n

n

∑
i=1
|xi(c)− x̃i(c)|, (4.10)

where m is the number of samples in the validation dataset and n is the
signal length. All models are consecutively trained as described in sec-
tion 4.2.4, starting with the highest fraction of the target dataset, 20%.
The experiment for a particular training approach and dataset is in-
terrupted if the obtained error distribution includes any points above
the model deficiency threshold. This threshold is inferred from the
generative error evaluated on the target domain validation using the
StyleGAN model obtained during stage one of the incremental train-
ing, i.e. the model trained only on the source domain dataset:

E thld =
1
m

m

∑
j=1
E thld(cval

j), where (4.11)

E thld(c) =
1
n

n

∑
i=1

∣∣∣xtarget
i (c)− x̃source

i (c)
∣∣∣. (4.12)

For the sake of limiting the computations required to execute the
experiment, and considering that the focus of this work is on the trans-
fer learning with minimal amount of available data, we do not evaluate
the models using more than 20% of the target domain data. The error
levels of all models differ insignificantly for training runs utilising 15%
or more data. The errors are averaged across multiple training runs for
each combination of samples.

74 4.3. Results

Figure 4.3: Model error (Y-axis) plotted against the fraction of data
used for training (X-axis, log scale) the networks under the three
approaches, separated by target domain dataset. The vertical error
bars indicate the standard deviation of the model error across three
runs under the same conditions. The dashed horizontal lines on both
subcharts represent the errors E thld of the models trained on dataset
1 when evaluated against dataset 2 and 3 validation data respectively.
Any error values above the dashed lines thus indicate that the training
of a model on the target domain data yields worse results than the
application of the source-domain model (i.e. the one trained on dataset
1) used without any exposure to the target domain data.

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 75

The training performance distributions of the models at the differ-
ent levels of target domain data limitations are presented on figure 4.3.
Dataset 2 represents a scenario of small difference between the source
and the target domains, e.g. as a result of minor variations in material
characteristics or environment conditions. Dataset 3 expresses a case of
significantly different characteristics underlying the target domain sig-
nals, for example arising from a machining tool with a different geome-
try. A model trained without any source domain knowledge performs
well on both datasets when trained using 6 000 (out of the total 40
000) or more target domain training data samples, with smaller train-
ing dataset size leading to a sharp drop in the models’ performance.
The incremental learning approach shows a similar pattern of severe
generative accuracy degradation, but below a more strict data limita-
tion constraint: 2 000 samples. The domain adaptation implementation
using the CycleStyleGAN architecture proposed in this thesis displays
different behaviour to the aforementioned approaches. The quality of
the generated signals significantly degrades only when trained on less
than 800 target domain data samples, and the degradation below this
point is smoothly approaching the E thld error level.

These results imply that the CycleStyleGAN error has an upper
bound at E thld, the target domain accuracy level of the model trained
only on the source domain data. Therefore, the reliability of this model
can be estimated from the expected difference between the source and
the target domains. The use of the source domain data during Cy-
cleStyleGAN training ensures that the model does not suffer from
catastrophic forgetting and does not overfit to the small subset of the
observed data samples, contrary to what happens to the neural net-
works trained from scratch or trained incrementally. The CycleStyle-
GAN domain adaptation is thus potentially usable with any amount of
data available at hand at a given moment and can be expected to reach
peak performance with the amount of target domain data one order
of magnitude lower than a model trained from scratch. For an indus-
trial implementation this means that, on one hand, the value of the

76 4.3. Results

knowledge extracted from the source model is not diluted during the
knowledge transfer process, and, on the other hand, that the adaptation
of the transferred information to a new process can be initiated along
with the launch of this process. For a process that requires generative
accuracy above the threshold bound, the proposed method enables a
reduction of the pre-launch data acquisition effort almost tenfold.

A simple process quality metric may be used for the illustration of
a possible application of the proposed model in manufacturing process
optimisation. The amplitude of the vibration signal is thus considered
here as a crude proxy for the machined product quality due to its com-
putational simplicity and its common association with machining pro-
cess degradation [4, 60]. Specifically, the peak-to-peak amplitude u of
a vibration signal x is measured as the difference between the maximal
and the minimal displacement magnitudes of this signal:

u(x) = max(x)−min(x). (4.13)

Figure 4.4 depicts the amplitude metric mapped across the chip width
and spindle speed value ranges for the two target domains. For both
datasets, the process parameters resulting in the minimal vibration am-
plitude are identified to within 20 spindle speed rpm. Taking into ac-
count that the full range of possible spindle speed values in this exper-
iment is 1000 rpm (from 3000 rpm to 4000 rpm), the process parameter
optimisation accuracy achieved in this case can be considered to be
high. The proposed method is not meant to effectively optimise the
machining process parameters, but serves as a short example of a use
case scenario that the generative model can be applied within.

It must be noted that the available computational power limitations
implied that the number of training repetitions in the described exper-
iment had to be limited to three for each set of training conditions. The
server that ran the computations was equipped with Nvidia Titan RTX
GPU, which handled most of the neural network training, and two In-
tel Xeon Silver 4214 CPUs. While this simplification blurs the precision

Chapter 4. CycleStyleGAN-based knowledge transfer for a
machining digital twin 77

(a) True signal amplitudes. Left: dataset 2 signal amplitudes, right: dataset 3.

(b) Amplitudes of the predicted signal. Top: dataset 2. Bottom: dataset 3

Figure 4.4: Amplitudes obtained from the true vibration signals and
from the predicted signals produced by three CycleStyleGAN models
for each dataset. White marker indicates the minimal vibration ampli-
tude.

78 4.4. Chapter summary

of the estimated model error distributions, the relatively low variation
in the models’ effectiveness provides sufficient evidence to support the
claims presented in the current work. The stability of training of the
presented models is empirically supported by the fact that not a single
training run resulted in abnormally high error rates.

4.4 Chapter summary

Manufacturing applications of GANs as a primary generative instru-
ment are very limited in the existing research literature, with most
works focussing on the data augmentation capacity of GANs, and an
even less studied area is the application of digital twin simulations in
the context of knowledge extraction for Industry 4.0.

These research gaps are addressed within the work described in
this chapter. The style-based representation of the simulated vibra-
tion signals has been shown in a previous publication to be useful
both for performance improvement and for analysis of the underlying
model [132]. Building on the GAN extensions for the transfer learning
tasks, namely the CycleGAN architecture, this dissertation introduces
the style features into the domain adaptation model via the novel Cy-
cleStyleGAN architecture.

The analysis of the performance of the CycleStyleGAN-based do-
main adaptation model proposed here displays the tenfold data effi-
ciency gain attainable due to the extraction of the knowledge from a
data-abundant domain as well as a smoother model accuracy degra-
dation associated with the data availability constraint compared to the
two naïve approaches. This implies more realistic requirements for the
application of a machining digital twin at an industrial scale. The fol-
lowing chapter reviews this problem in the context of Industry 4.0 and
proposes a use case for the knowledge transfer tool described in this
chapter.

Chapter 5

Conclusion

5.1 Summary of research and contributions

The first application of a style-based GAN for machining process simu-
lation is presented in this thesis. The work uses both the style and con-
ditional components of the GAN architecture for attainment of deeper
insights into the generative function of the neural network. A novel
sensitivity analysis approach for conditional GANs is presented and
applied to the proposed model, establishing a link between the true
accuracy and the label sensitivity of the generator network. The style
component of the GAN architecture is utilised to further advance this
analysis to the level of intermediate neural network layers, resulting in
the identification of the activation nodes that produce abnormal gener-
ative behaviour.

A purely support role of the generator is considered in most rele-
vant publications in the manufacturing domain. Being one of the first
few works that focus on the generator of GAN, the current thesis aims
to promote the use of GANs in manufacturing past simple data aug-
mentation for imbalanced datasets towards more sophisticated simu-
lation applicable to a wider range of use cases. The development of
the CycleStyleGAN model for knowledge transfer further contributes
to this aim by proposing a solution that, on one hand, reuses the value

79

80 5.1. Summary of research and contributions

of the available simulation modelling resources or know-how and, on
the other hand, makes the model applicable to the deployment cases
constrained by severe data limitation.

The contributions of the work presented here can thus be sum-
marised in the following list.

1. A novel StyleGAN-based data-driven machining simulation model
is developed to be used as a digital twin component.

2. Knowledge extraction capabilities of the proposed StyleGAN mo-
del are demonstrated.

3. A data-agnostic sensitivity-based GAN evaluation approach is
proposed and its relation to the model’s generative quality is pre-
sented.

4. A novel CycleStyleGAN architecture is proposed and the evi-
dence of its effectiveness under data availability constraints is
presented.

In a real-world scenario a physics-based model would be the same
for a fleet of machines, but each machine would be operated in dif-
ferent conditions and have slightly varying characteristics. The cali-
bration of such physics-based models is time-consuming and difficult
to perform on a large scale. Therefore, while a physics-based model
might act as a digital twin simulation component, it would inevitably
have made simplifications and idealisations about the process, likely
omitting individual variations of environmental and dynamic factors
that influence the manufacturing process due to their modelling com-
plexity or computational cost. These complex phenomena are never-
theless reflected in the real process data and can thus be captured via
data-driven training of a GAN model. The physics-based model used
in the presented work acts to prepare a surrogate for the real-world
data that a digital twin is likely to have access to. The current work
thus shows not only a data-driven simulation modelling approach, but

Chapter 5. Conclusion 81

Figure 5.1: Proposed generator model as a part of a process optimisa-
tion flow.

also a mechanism for the incorporation of the knowledge contained
within a physics-based model into the data-driven modelling process.
Thus, the proposed method not only generates value from data, but
also effectively extracts the highly valuable knowledge from the exist-
ing physics- or expert-based simulation tools.

Control over the input machining process parameters guides the
process signal synthesis in the proposed CycleStyleGAN model. There-
fore, the model may serve as a vibration simulation tool that translates
the process parameter inputs into vibration signal outputs when com-
bined with a source domain simulation model that produces source
signals from process parameters. Such a simulation may be used for
CNC machining process optimisation and planning. Researchers have
shown how signal data could be utilised for product quality predic-
tion [44, 61, 85], enabling the prediction of manufacturing defects prior
to manufacturing. Furthermore, machining process stability estimates
may be improved by substituting generative models for parts of the
physical data, which is another future study path suggested by ma-
chining stability specialists [39]. The proposed CycleStyleGAN model
is thus usable as a process optimisation tool: by probing the model
to acquire parameter-signal pairs and evaluating the resultant process
quality based on the received signals, an optimisation process loop
would seek the optimum within the parameter space. Schematic rep-
resentation of this process flow is depicted on figure 5.1. This thesis
shows how an established physics-based or data-driven model can be

82 5.2. Model limitations and further research

sourced, thus extracting the value of the information contained within
the said model for further reuse. The cost-efficiency of the proposed
model is believed to be an important driver towards the widespread
use of digital twin solutions along the transition to Industry 4.0.

5.2 Model limitations and further research

The current work considers a conditional GAN with only continuous
inputs, but an adaptation of the described sensitivity analysis method
to the conditional GAN models with categorical inputs would make the
proposed technique universally applicable in GAN performance anal-
ysis. Altering the neural network architecture could also make further
insights available by further shifting the complexity of the multi-layer
convolutional interactions to other operations, such as via skip connec-
tions [48] or residual connections [43].

Future research directions include comparative evaluation of differ-
ent neural network architectures and validation of the proposed model
on real manufacturing data, as well as broadening of the scope of the
digital twin simulation with inclusion of multiple data sources and si-
multaneously modelled processes.

Hybrid machining simulation models could be further developed
by fusing the physics-based data with the sensor readings collected
from a live process. The machining datasets composed may be useful
for future work in this direction and are available via https://gitlab

.com/EZotoff/conditional-stylegan-digital-twin for the dataset
used in chapter 3 or at https://gitlab.com/EZotoff/cyclestylegan
-based-knowledge-transfer-for-a-machining-digital-twin for the
datasets composed for the experiments presented in chapter 4.

A drawback of the CycleStyleGAN model architecture, as compared
to the StyleGAN, is its higher computational resource requirements.
The mirrored GAN structure uses approximately double the memory
and double the computations during training. While these differences

https://gitlab.com/EZotoff/conditional-stylegan-digital-twin
https://gitlab.com/EZotoff/conditional-stylegan-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin
https://gitlab.com/EZotoff/cyclestylegan-based-knowledge-transfer-for-a-machining-digital-twin

Chapter 5. Conclusion 83

are negligible for a trained model due to the efficiency of the neural net-
works at inference time, the training process computations are twice
as costly. Although the costs of computational hardware are incom-
parable to the manufacturing process expenses in most cases, certain
high-volume low-value production industries might find the computa-
tional overhead exceeding the expected value of such simulation model
adaptation. Such businesses, having relatively lower data acquisition
costs, can be expected to be able to effectively employ machine learning
models without the need for transfer learning.

Possible extensions of the proposed domain adaptation approach
may consider inter-task transfer learning. For example, the prediction
of the machining cutting forces from the vibration signals may use-
ful for downstream process analysis. Another research gap the explo-
ration of which might lead to improved generative performance of the
underlying model is the specialised subnetwork architecture. The cur-
rent literature presents multiple options for structuring of these neu-
ral networks, but a comparative analysis of the performance of these
architecture choices is yet to reach the science community. Linked
to this is the application of sophisticated neural network architecture
search approaches. An extension of an advanced method like the ES-
HyperNEAT [91] might aid not only the hyperparameter optimisation
of a pre-defined network structure, but also in discovery of a novel
composition of the neural network.

The practical goal of these research endeavours would be the appli-
cation of the data-driven modelling and simulation tools for a highly
autonomous manufacturing analytics and optimisation suite, such as
the one concisely depicted on fig. 5.2. And while the computational
and decision-making abilities necessary to run such a technological
ensemble on industrial scale seems to currently lie beyond the capa-
bilities of the existing AIs, the work presented in this thesis intends to
advance the scientific thought towards their wide applicability among
the manufacturing enterprises.

84 5.2. Model limitations and further research

Figure 5.2: Target manufacturing analytics process flow

Chapter 5. Conclusion 85

Bibliography

[1] S.M. Afazov, S.M. Ratchev, and J. Segal. Modelling and simula-
tion of micro-milling cutting forces. Journal of Materials Processing
Technology, 210(15):2154–2162, 2010.

[2] D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud com-
puting. In Proceedings of the 14th International Conference on Extend-
ing Database Technology - EDBT/ICDT ’11, page 530, New York,
USA, 2011.

[3] M.B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D.Z. Pan.
GAN-SRAF: Sub-resolution assist feature generation using con-
ditional generative adversarial networks. Proceedings - Design Au-
tomation Conference, (i):1–6, 2019.

[4] Y. Altintas and M. Weck. Chatter stability of metal cutting and
grinding. CIRP Annals - Manufacturing Technology, 53(2):619–642,
2004.

[5] Y. Altintas, P. Kersting, D. Biermann, E. Budak, B. Denkena, and
I. Lazoglu. Virtual process systems for part machining oper-
ations. CIRP Annals - Manufacturing Technology, 63(2):585–605,
2014.

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN, 2017.
URL http://arxiv.org/abs/1701.07875.

[7] S. Bai, J.Z. Kolter, and V. Koltun. An empirical evaluation of

86

http://arxiv.org/abs/1701.07875

Bibliography 87

generic convolutional and recurrent networks for sequence mod-
eling. CoRR, abs/1803.01271, 2018.

[8] M. Bajaj, D. Zwemer, and B. Cole. Architecture to geometry -
Integrating system models with mechanical design. AIAA Space
and Astronautics Forum and Exposition, SPACE 2016, pages 1–19,
2016.

[9] S.H. Bang, R. Ak, A. Narayanan, Y.T. Lee, and H. Cho. A survey
on knowledge transfer for manufacturing data analytics. Com-
puters in Industry, 104:116–130, 2019.

[10] Y. Bengio. Learning deep architectures for AI, volume 2. 2009.

[11] W. Booyse, D.N. Wilke, and S. Heyns. Deep digital twins for
detection, diagnostics and prognostics. Mechanical Systems and
Signal Processing, 140:106612, 2020.

[12] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Kr-
ishnan. Unsupervised pixel-level domain adaptation with gen-
erative adversarial networks. Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
January:95–104, 2017.

[13] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke. Using Simulation and Domain Adaptation to Im-
prove Efficiency of Deep Robotic Grasping. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 4243–
4250. may 2018.

[14] A. Brock, J. Donahue, and K. Simonyan. Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis. sep 2018.

[15] M.L. Campomanes and Y. Altintas. An improved time domain
simulation for dynamic milling at small radial immersions. Jour-

88 Bibliography

nal of Manufacturing Science and Engineering, Transactions of the
ASME, 125(3):416–422, 2003.

[16] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel. InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets. In D. Cre-
mers, I. Reid, H. Saito, and M.H. Yang, editors, Proceedings of
the 30th International Conference on Neural Information Processing
Systems, volume 9006 of Lecture Notes in Computer Science, pages
2180–2188, Cham, jun 2016.

[17] Y. Chen, Y. Wang, D. Kirschen, and B. Zhang. Model-Free Re-
newable Scenario Generation Using Generative Adversarial Net-
works. IEEE Transactions on Power Systems, 33(3):3265–3275, may
2018.

[18] H. Cherukuri, E. Perez-Bernabeu, M. Selles, and T. Schmitz. Ma-
chining chatter prediction using a data learning model. Journal of
Manufacturing and Materials Processing, 3(2), 2019.

[19] A. Church and A.M. Turing. On Computable Numbers, with an
Application to the Entscheidungsproblem. The Journal of Symbolic
Logic, 2(1):42, 1937.

[20] D.C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhu-
ber. Convolutional Neural Network Committees for Handwrit-
ten Character Classification. In 2011 International Conference on
Document Analysis and Recognition, pages 1135–1139. sep 2011.

[21] E. Conti, V. Madhavan, F.P. Such, J. Lehman, K.O. Stanley, and
J. Clune. Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking
Agents. pages 1–17, 2017.

[22] C. Cooper, J. Zhang, R.X. Gao, P. Wang, and I. Ragai. Anomaly
detection in milling tools using acoustic signals and generative

Bibliography 89

adversarial networks. Procedia Manufacturing, 48(2019):372–378,
2020.

[23] B. Ding, H. Qian, and J. Zhou. Activation functions and their
characteristics in deep neural networks. In 2018 Chinese Control
And Decision Conference (CCDC), volume 2, pages 1836–1841. jun
2018.

[24] C. Donahue, J. McAuley, and M. Puckette. Adversarial Audio
Synthesis. In International Conference on Learning Representations,
pages 1–16, feb 2019.

[25] V. Dumoulin and F. Visin. A guide to convolution arithmetic for
deep learning, 2018. URL https://arxiv.org/abs/1603.07285.

[26] W. Elmaraghy, H. Elmaraghy, T. Tomiyama, and L. Monostori.
Complexity in engineering design and manufacturing. CIRP An-
nals - Manufacturing Technology, 61(2):793–814, 2012.

[27] T. Elsken, J.H. Metzen, and F. Hutter. Neural Architecture Search.
Journal of Machine Learning Research, 20:1—-21, 2019.

[28] J. Engel, K.K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts. Gansynth: Adversarial neural audio synthesis. 7th
International Conference on Learning Representations, ICLR 2019,
pages 1–17, 2019.

[29] EPSRC Future Metrology Hub. UK Metrology Research
Roadmap. Technical report, 2020.

[30] C. Esteban, S.L. Hyland, and G. Rätsch. Real-valued (Medical)
Time Series Generation with Recurrent Conditional GANs, jun
2017. URL http://arxiv.org/abs/1706.02633.

[31] A.B. Forbes. Uncertainty associated with form assessment in co-
ordinate metrology. International Journal of Metrology and Quality
Engineering, 4(1):17–22, 2013.

https://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1706.02633

90 Bibliography

[32] J. Friedrich, J. Torzewski, and A. Verl. Online Learning of Stabil-
ity Lobe Diagrams in Milling. Procedia CIRP, 67:278–283, 2018.

[33] K. Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position. Biological Cybernetics, 36(4):193–202, 1980.

[34] Y. Ganin, H. Larochelle, and M. Marchand. Domain-Adversarial
Training of Neural Networks. Journal of Machine Learning Re-
search, 17:1–35, 2016.

[35] Y. Gao, R. Singh, and B. Raj. Voice Impersonation Using Genera-
tive Adversarial Networks. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, 2018-April:
2506–2510, 2018.

[36] C. Giraud-carrier. A Note on the Utility of Incremental Learning.
AI Communications, (February), 2013.

[37] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neu-
ral networks. AISTATS ’11: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, 15:315–323, 2011.

[38] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative Adver-
sarial Networks, 2014. URL http://arxiv.org/abs/1406.2661.

[39] N.P. Greis, M.L. Nogueira, S. Bhattacharya, and T. Schmitz.
Physics-Guided Machine Learning for Self-Aware Machining. In
2020 AAAI Spring Symposium on AI and Manufacturing, 2020.

[40] M. Grieves and J. Vickers. Digital Twin: Mitigating Unpre-
dictable, Undesirable Emergent Behavior in Complex Systems.
In Transdisciplinary Perspectives on Complex Systems: New Findings
and Approaches, pages 85–113. Springer International Publishing,
2017.

http://arxiv.org/abs/1406.2661

Bibliography 91

[41] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans. In Proceed-
ings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 5769–5779, Red Hook, NY, USA,
2017.

[42] T. Han, C. Liu, W. Yang, and D. Jiang. A novel adversarial learn-
ing framework in deep convolutional neural network for intel-
ligent diagnosis of mechanical faults. Knowledge-Based Systems,
165:474–487, 2019.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. Multimedia Tools and Applications, pages 1–17,
dec 2015.

[44] Q.P. He and J. Wang. Statistical process monitoring as a big data
analytics tool for smart manufacturing. Journal of Process Control,
67:35–43, 2018.

[45] K. Henning, W. Wolfgang, and H. Johannes. Recommendations
for implementing the strategic initiative INDUSTRIE 4.0. Techni-
cal Report April, 2013.

[46] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 1997.

[47] J. Hoffman, E. Tzeng, T. Park, J.Y. Zhu, P. Isola, K. Saenko,
A.A. Efros, and T. Darrell. CyCADA: Cycle-Consistent Adver-
sarial Domain adaptation. 35th International Conference on Machine
Learning, ICML 2018, 5:3162–3174, 2018.

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger.
Densely connected convolutional networks. Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, 2017-January:2261–2269, 2017.

92 Bibliography

[49] X. Huang and S. Belongie. Arbitrary Style Transfer in Real-time
with Adaptive Instance Normalization. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 1510–1519, mar 2017.

[50] A. Issa, D. Lucke, and T. Bauernhansl. Mobilizing SMEs Towards
Industrie 4.0-enabled Smart Products. Procedia CIRP, 63:670–674,
2017.

[51] J. Jiao, M. Zhao, J. Lin, and K. Liang. A comprehensive review on
convolutional neural network in machine fault diagnosis. Neuro-
computing, 417:36–63, 2020.

[52] M.I. Jordan and T.M. Mitchell. Machine learning: Trends, per-
spectives, and prospects. 349(6245), 2015.

[53] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-
neberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko,
A. Bridgland, C. Meyer, S.A. Kohl, A.J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Pe-
tersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A.W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly
accurate protein structure prediction with AlphaFold. Nature,
596(7873):583–589, 2021.

[54] L. Juvela, B. Bollepalli, X. Wang, H. Kameoka, M. Airaksi-
nen, J. Yamagishi, and P. Alku. Speech Waveform Synthesis
from MFCC Sequences with Generative Adversarial Networks.
ICASSP, IEEE International Conference on Acoustics, Speech and Sig-
nal Processing - Proceedings, 2018-April:5679–5683, 2018.

[55] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive grow-
ing of GANs for improved quality, stability, and variation. In
International Conference on Learning Representations, 2018.

Bibliography 93

[56] T. Karras, S. Laine, and T. Aila. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4396–4405, dec 2018.

[57] D.H. Kim, T.J. Kim, X. Wang, M. Kim, Y.J. Quan, J.W. Oh, S.H.
Min, H. Kim, B. Bhandari, I. Yang, and S.H. Ahn. Smart Machin-
ing Process Using Machine Learning: A Review and Perspective
on Machining Industry. International Journal of Precision Engineer-
ing and Manufacturing - Green Technology, 5(4):555–568, 2018.

[58] D.P. Kingma and J.L. Ba. Adam: A method for stochastic opti-
mization. In 3rd International Conference on Learning Representa-
tions, ICLR 2015, pages 1–15, 2015.

[59] A. Kusiak. Convolutional and generative adversarial neural net-
works in manufacturing. International Journal of Production Re-
search, 0(0):1–11, 2019.

[60] C.H. Lauro, L.C. Brandão, D. Baldo, R.A. Reis, and J.P. Davim.
Monitoring and processing signal applied in machining pro-
cesses - A review. Measurement: Journal of the International Mea-
surement Confederation, 58:73–86, 2014.

[61] M. Leco and V. Kadirkamanathan. A perturbation signal based
data-driven gaussian process regression model for in-process
part quality prediction in robotic countersinking operations.
Robotics and Computer-Integrated Manufacturing, 71:102105, 10
2021.

[62] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[63] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521
(7553):436–444, 2015.

94 Bibliography

[64] J. Lee, E. Lapira, B. Bagheri, and H. an Kao. Recent advances and
trends in predictive manufacturing systems in big data environ-
ment. Manufacturing Letters, 1(1):38–41, 2013.

[65] P. Lennie. The Cost of Cortical Computation. Current Biology, 13
(6):493–497, mar 2003.

[66] C. Li, S. Zhang, Y. Qin, and E. Estupinan. A systematic review of
deep transfer learning for machinery fault diagnosis. Neurocom-
puting, 407:121–135, sep 2020.

[67] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar. Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization. The Journal of Machine Learning Research, 18
(1):6765–6816, January 2017.

[68] Y. Li, C. Liu, J.X. Gao, and W. Shen. An integrated feature-based
dynamic control system for on-line machining, inspection and
monitoring. Integrated Computer-Aided Engineering, 22(2):187–200,
2015.

[69] M.y. Liu and O. Tuzel. Coupled Generative Adversarial Net-
works. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 469–477, 2016.

[70] A.L. Maas, A.Y. Hannun, and A.Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 28, 2013.

[71] J. McCarthy, M.L. Minsky, N. Rochester, and C.E. Shannon. A
proposal for the Dartmouth summer research project on artificial
intelligence, August 31, 1955. AI Magazine, 27(4):12–14, 2006.

[72] W.S. McCulloch and W. Pitts. A logical calculus of the ideas im-
manent in nervous activity. The Bulletin of Mathematical Biophysics,
5(4):115–133, dec 1943.

Bibliography 95

[73] M. Mirza and S. Osindero. Conditional Generative Adversarial
Nets. In In NIPS 2014 Workshop on Deep Learning, pages 1–7, nov
2014.

[74] O. Mogren. C-RNN-GAN: continuous recurrent neural networks
with adversarial training. CoRR, abs/1611.09904, 2016.

[75] L. Monostori. AI and machine learning techniques for managing
complexity, changes and uncertainties in manufacturing. Engi-
neering Applications of Artificial Intelligence, 16(4):277–291, 2003.

[76] G. Morse and K.O. Stanley. Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks. Pro-
ceedings of the 2016 on Genetic and Evolutionary Computation Con-
ference - GECCO ’16, pages 477–484, 2016.

[77] E. Mueller, X.L. Chen, and R. Riedel. Challenges and Require-
ments for the Application of Industry 4.0: A Special Insight with
the Usage of Cyber-Physical System. Chinese Journal of Mechanical
Engineering (English Edition), 30(5):1050–1057, 2017.

[78] E. Negri, L. Fumagalli, and M. Macchi. A Review of the Roles of
Digital Twin in CPS-based Production Systems. Procedia Manu-
facturing, 11(June):939–948, 2017.

[79] W. Nie, N. Narodytska, and A. Patel. RelGAN: Relational Gener-
ative Adversarial Networks for Text Generation. In ICLR, pages
1–20, 2019.

[80] O. Niggemann, G. Biswas, J.S. Kinnebrew, H. Khorasgani, S. Vol-
gmann, and A. Bunte. Data-driven monitoring of cyber-physical
systems leveraging on big data and the internet-of-things for di-
agnosis and control. CEUR Workshop Proceedings, 1507:185–192,
2015.

[81] I. Oleaga, C. Pardo, J.J. Zulaika, and A. Bustillo. A machine-
learning based solution for chatter prediction in heavy-duty

96 Bibliography

milling machines. Measurement: Journal of the International Mea-
surement Confederation, 128(May):34–44, 2018.

[82] T. Özel and T. Altan. Process simulation using finite element
method — prediction of cutting forces, tool stresses and tem-
peratures in high-speed flat end milling. International Journal of
Machine Tools and Manufacture, 40(5):713–738, apr 2000.

[83] S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans-
actions on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[84] M. Papananias, T.E. McLeay, M. Mahfouf, and V. Kadirka-
manathan. A Bayesian framework to estimate part quality and
associated uncertainties in multistage manufacturing. Computers
in Industry, 105(February):35–47, 2019.

[85] M. Papananias, T.E. McLeay, M. Mahfouf, and V. Kadirka-
manathan. An intelligent metrology informatics system based
on neural networks for multistage manufacturing processes. Pro-
cedia CIRP, 82(June):444–449, 2019.

[86] D.T. Pham and A.A. Afify. Machine-learning techniques and
their applications in manufacturing. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
219(5):395–412, 2005.

[87] F.J. Pontes, J.R. Ferreira, M.B. Silva, A.P. Paiva, and P.P.
Balestrassi. Artificial neural networks for machining processes
surface roughness modeling. International Journal of Advanced
Manufacturing Technology, 49(9-12):879–902, 2010.

[88] PwC. Industry 4.0: Building the digital enterprise, 2016. URL
https://www.pwc.com/gx/en/industries/industries-4.0/la

nding-page/industry-4.0-building-your-digital-enterpri

se-april-2016.pdf.

https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf
https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf
https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf

Bibliography 97

[89] X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li. Applying Neural-
Network-Based Machine Learning to Additive Manufacturing:
Current Applications, Challenges, and Future Perspectives. En-
gineering, 5(4):721–729, 2019.

[90] A. Radford, L. Metz, and S. Chintala. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial
Networks. In 4th International Conference on Learning Representa-
tions, ICLR 2016, pages 1–16, 2015.

[91] S. Risi and K.O. Stanley. An enhanced hypercube-based encoding
for evolving the placement, density, and connectivity of neurons.
Artificial Life, 18(4):331–363, 2012.

[92] F. Rosenblatt. The Perceptron - A Perceiving and Recognizing
Automaton, 1957.

[93] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Cornell Aeronautical Laboratory. Report
no. VG-1196-G-8. Spartan Books, 1962.

[94] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536,
oct 1986.

[95] T.L. Schmitz and K.S. Smith. Machining Dynamics. Springer In-
ternational Publishing, Cham, 2019.

[96] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp,
J. LeMoigne, and L. Wang. DRAFT Modeling, Simulation, in-
formation Technology & Processing Roadmap - Technology Area
11. National Aeronautics and Space Administration, page 27, 2010.

[97] M. Shahbazi, Z. Huang, D.P. Paudel, A. Chhatkuli, and L. Van
Gool. Efficient Conditional GAN Transfer with Knowledge Prop-
agation across Classes. In 2021 IEEE/CVF Conference on Com-

98 Bibliography

puter Vision and Pattern Recognition (CVPR), pages 12162–12171.
jun 2021.

[98] N. Shetty, S.M. Shahabaz, S.S. Sharma, and S. Divakara Shetty.
A review on finite element method for machining of composite
materials. Composite Structures, 176:790–802, 2017.

[99] S.A. Shevchik, C. Kenel, C. Leinenbach, and K. Wasmer. Acoustic
emission for in situ quality monitoring in additive manufacturing
using spectral convolutional neural networks. Additive Manufac-
turing, 21:598–604, 2018.

[100] X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.C. Woo.
Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. Advances in Neural Information Process-
ing Systems, 2015-Janua:802–810, 2015.

[101] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb. Learning from simulated and unsupervised images
through adversarial training. In Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, volume
2017-Janua, pages 2242–2251, 2017.

[102] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

[103] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lil-
licrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of Go without human knowl-
edge. Nature, 550(7676):354–359, oct 2017.

Bibliography 99

[104] S. Smith and J. Tlusty. Overview of modeling and simulation
of the milling process. Journal of engineering for industry, 113(2):
169–175, 1991.

[105] A. Spurr, E. Aksan, and O. Hilliges. Guiding InfoGAN with
Semi-supervision. In M. Ceci, J. Hollmén, L. Todorovski, C. Vens,
and S. Džeroski, editors, Machine Learning and Knowledge Discov-
ery in Databases, Lecture Notes in Computer Science, pages 119–
134. Springer International Publishing, Cham, jul 2017.

[106] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, jan 2014.

[107] F.P. Such, V. Madhavan, E. Conti, J. Lehman, K.O. Stanley, and
J. Clune. Deep neuroevolution: Genetic algorithms are a compet-
itive alternative for training deep neural networks for reinforce-
ment learning. CoRR, abs/1712.06567, 2017.

[108] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy do-
main adaptation. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, AAAI’16, page 2058–2065. 2016.

[109] H. Tan, X. Liu, M. Liu, B. Yin, and X. Li. KT-GAN: Knowledge-
Transfer Generative Adversarial Network for Text-to-Image Syn-
thesis. IEEE Transactions on Image Processing, 30(8):1275–1290,
2021.

[110] R.K. Tan, N.L. Zhang, and W. Ye. A deep learning–based method
for the design of microstructural materials. Structural and Multi-
disciplinary Optimization, pages 1–22, 2019.

[111] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui. Digital
twin-driven product design, manufacturing and service with big

100 Bibliography

data. International Journal of Advanced Manufacturing Technology,
94(9-12):3563–3576, 2018.

[112] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson,
T. Lundholm, and B. Lennartson. An event-driven manufactur-
ing information system architecture for Industry 4.0. International
Journal of Production Research, 55(5):1297–1311, 2017.

[113] T. Thepsonthi and T. Özel. 3-D finite element process simulation
of micro-end milling Ti-6Al-4V titanium alloy: Experimental val-
idations on chip flow and tool wear. Journal of Materials Processing
Technology, 221:128–145, 2015.

[114] K. Tidriri, N. Chatti, S. Verron, and T. Tiplica. Bridging data-
driven and model-based approaches for process fault diagnosis
and health monitoring: A review of researches and future chal-
lenges. Annual Reviews in Control, 42:63–81, 2016.

[115] H.H. Tseng, Y. Luo, S. Cui, J.T. Chien, R.K. Ten Haken, and
I.E. Naqa. Deep reinforcement learning for automated radiation
adaptation in lung cancer. Medical Physics, 44(12):6690–6705, dec
2017.

[116] A.M. Turing. Computing Machinery and Intelligence. Mind, 59
(236):433–460, oct 1950.

[117] D.V. Vargas, J. Murata, H. Takano, and A.C.B. Delbem. General
Subpopulation Framework and Taming the Conflict Inside Pop-
ulations. Evolutionary Computation, 23(1):1–36, mar 2015.

[118] V.S. Vishnu, K.G. Varghese, and B. Gurumoorthy. A Data-driven
Digital Twin of CNC Machining Processes for Predicting Surface
Roughness. Procedia CIRP, 104:1065–1070, 2021.

[119] J. Wang, Y. Ma, L. Zhang, R.X. Gao, and D. Wu. Deep learning
for smart manufacturing: Methods and applications. Journal of
Manufacturing Systems, 48:144–156, 2018.

Bibliography 101

[120] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.T.K. Chien. Ad-
aBalGAN: An Improved Generative Adversarial Network with
Imbalanced Learning for Wafer Defective Pattern Recognition.
IEEE Transactions on Semiconductor Manufacturing, 32(3):310–319,
2019.

[121] Y. Wang, K. Li, S. Gan, C. Cameron, and M. Zheng. Data augmen-
tation for intelligent manufacturing with generative adversarial
framework. 1st International Conference on Industrial Artificial In-
telligence, IAI 2019, pages 1–6, 2019.

[122] Z. Wang, J. Wang, and Y. Wang. An intelligent diagnosis scheme
based on generative adversarial learning deep neural networks
and its application to planetary gearbox fault pattern recognition.
Neurocomputing, 310:213–222, 2018.

[123] K. Weiss, T.M. Khoshgoftaar, and D. Wang. A survey of transfer
learning. Springer International Publishing, 2016.

[124] L. Wen, X. Li, L. Gao, and Y. Zhang. A New Convolutional Neu-
ral Network-Based Data-Driven Fault Diagnosis Method. IEEE
Transactions on Industrial Electronics, 65(7):5990–5998, 2018.

[125] H.P. Wiendahl and P. Scholtissek. Management and Control of
Complexity in Manufacturing. CIRP Annals - Manufacturing Tech-
nology, 43(2):533–540, 1994.

[126] R.G. Wilhelm, R. Hocken, and H. Schwenke. Task specific uncer-
tainty in coordinate measurement. CIRP Annals - Manufacturing
Technology, 50(2):553–563, 2001.

[127] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence genera-
tive adversarial nets with policy gradient. CoRR, abs/1609.05473,
2016.

[128] H. Zhang, T. Xu, and H. Li. StackGAN: Text to Photo-Realistic
Image Synthesis with Stacked Generative Adversarial Networks.

102 Bibliography

In 2017 IEEE International Conference on Computer Vision (ICCV),
volume 2017-Octob, pages 5908–5916. oct 2017.

[129] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R.X. Gao. Deep
learning and its applications to machine health monitoring. Me-
chanical Systems and Signal Processing, 115:213–237, 2019.

[130] H. Zheng, R. Wang, Y. Yang, J. Yin, Y. Li, Y. Li, and M. Xu. Cross-
Domain Fault Diagnosis Using Knowledge Transfer Strategy: A
Review. IEEE Access, 7:129260–129290, 2019.

[131] J.Y. Zhu, T. Park, P. Isola, and A.A. Efros. Unpaired Image-to-
Image Translation Using Cycle-Consistent Adversarial Networks.
In 2017 IEEE International Conference on Computer Vision (ICCV),
volume October, pages 2242–2251. oct 2017.

[132] E. Zotov, A. Tiwari, and V. Kadirkamanathan. Conditional Style-
GAN modelling and analysis for a machining digital twin. Inte-
grated Computer-Aided Engineering, pages 1–17, jul 2021.

	Introduction
	Research motivation and context
	Industry 4.0 and the digital twin
	Simulation and data-driven modelling
	Artificial neural networks in manufacturing
	Knowledge transfer in manufacturing

	Research aims and contributions
	Thesis aims and objectives
	Research contributions

	Artificial neural network models
	Artificial intelligence and deep learning
	Artificial neural networks
	Artificial neurons
	Network layers
	Neural network training

	Advanced ANN architectures
	GAN and Conditional GAN
	StyleGAN
	CycleGAN

	Chapter summary

	Conditional StyleGAN modelling and analysis for a machining digital twin
	Introduction
	GAN model as a machining digital twin
	Dataset: Machining Tool Vibration
	Conditional StyleGAN architecture

	Digital twin performance analysis
	Digital twin sensitivity analysis
	Generator sensitivity
	Interpolation Analysis
	Activation node sensitivity

	Chapter summary

	CycleStyleGAN-based knowledge transfer for a machining digital twin
	Introduction
	Materials and Methods
	Milling Vibration Datasets
	CycleStyleGAN architecture
	Hyperparameter optimisation
	Training schedules

	Results
	Chapter summary

	Conclusion
	Summary of research and contributions
	Model limitations and further research

	Bibliography

