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Thesis abstract 

The transduction of luminance contrast is nonlinear. As contrast increases, 

responses first accelerate, and then saturate. This acceleration is thought to be 

responsible for the “dipper effect”: the improvement in stimulus sensitivity at low 

absolute contrasts. Moreover, a stimulus that cannot provoke a neuronal response can 

still modulate a neuron’s response to its preferred stimuli.  Recent evidence suggests 

that similar computations exist in more complex visual parameter spaces. 

Furthermore, there is indication that the divisive inhibitory mechanisms of the brain 

are affected in aging. In this thesis, I present three experiments that explored these 

possibilities. 

My first experiment investigated reports that surround suppression of contrast 

strengthens with age, implying disruption of excitatory/inhibitory balance. I suspected 

that previous reports may reflect contributions from overlay masking, a distinct form 

of suppression. Using stimuli that preclude overlay masking, I found surround 

suppression to be similar in younger and older observers, suggesting that spatial 

suppression is stable with age. I also reported a novel finding of untuned 

suprathreshold suppression in central vision.   

My second experiment explored whether the “dipper effect” can be found in 

the mid-level perception of global form. I also expanded on reports of enhanced 

sensitivity to concentric and radial form. By manipulating the saliency of the global 

form percept elicited by Glass patterns, I reported a dipper effect that was similar 

across the pattern axes I examined. In my third experiment, using 

electroencephalography, I investigated whether this global form “dipper effect” is 

predicted by neuronal responses. At ventral electrodes, I found evidence for a 

transducer that would produce a dipper effect, though the level of global form for 

which it predicted peak sensitivity differed from psychophysical predictions. I 

reasoned that this discrepancy is likely due to methodological limitations, but also 

provided an explanation from attentional modulation and gain control.  
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Chapter 1. General introduction 

This thesis is focused on nonlinear visual processing phenomena, that is, 

operations carried out by neuronal populations that go beyond simple additions or 

subtractions. In this chapter, I will begin by providing an overview of nonlinear 

transduction in low level visual perception and the different forms of spatially-

dependant contrast suppression. This will be followed by an outline of the gaps in the 

literature that have motivated my experimental chapters. I will conclude this chapter 

with more specific rationale for each experiment I have carried out.            

1.1 An introduction to nonlinear phenomena in the perception 

of luminance contrast 

1.1.1 The linear-nonlinear model of early visual perception 

 In the early visual system, we tend to model the initial response of a neuron to 

a visual stimulus as the sum of its weighted ON/OFF subregion activations (Carandini 

et al., 2005). These subregions receive feedforward responses from earlier processing 

nodes, originating from the photoreceptors of the retina. If the area of visual space 

subtending the ON subregion increases in luminance, the excitatory potential of the 

neuron is increased, when an increase in luminance subtends the OFF subregion, the 

inhibitory potential is increased. When the spatial distribution of luminance is 

sufficient for excitation to escape inhibition, the neuron will produce an action 

potential. Therefore, the spatial distribution of luminance in the perceived 

environment (i.e., edges, contours, patterns) is encoded via the unique shape, size, and 

numerosity of ON/OFF subregions within a neuron’s receptive field. The visual 

systems’ ability to encode the degree to which a stimulus matches these spatial filters 

ultimately allows perceptually informed decision making.  

For a given point in space, the granularity of spatial information is not carried 

by any single neuron, but rather by an entire population of neurons with different and 

complementary subregion configurations. Retinal ganglion cells, and many neurons 

within the lateral geniculate nucleus (LGN), have centre-surround receptive fields 

(Hubel & Wiesel, 1960; Kuffler, 1953; Wiesel & Hubel, 1966), with ON and OFF 

subregions often modelled as two concentric circles. These encode luminance “blobs”, 

and have a preferred spatial frequency dictated by the size of the central subregion 
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(which can be ON or OFF weighted). Though these neurons will fire vigorously for 

spatial luminance modulation at their preferred spatial frequency, they still produce a 

gradient of responses for suboptimal spatial frequencies (Enroth-Cugell & Robson, 

1966; Hawken et al., 1997). This is because stimuli that partially match the spatial 

filter described by the receptive field can still evoke a response.  The same is true of 

the elliptical receptive fields of V1 simple cells (to which LGN neurons have 

feedforward connections) though their asymmetric configuration additionally confers 

orientation selectivity (Hubel & Wiesel, 1968; Ringach et al., 1997, 2002). Therefore, 

up to V1 (and indeed beyond), the response of a neuron is contingent on the spatial 

modulation of luminance. However, responses also depend on the amplitude of this 

modulation: the luminance contrast. Individual neuronal responses of the early visual 

system tend to monotonically increase with luminance contrast, aside from a minority 

of neurons that reduce in response after reaching their maximum (supersaturation) 

(Albrecht & Hamilton, 1982). Furthermore, some forms of spatial tuning (such as 

orientation & spatial frequency) are often found to be contrast invariant (Sclar & 

Freeman, 1982; Skottun et al., 1987), but receptive field size may vary with contrast 

(Sceniak et al., 1999). 

 
Figure 1.1: Contrast response functions of macaque striate neurons 
The responses of four striate neurons (different markers) across a range of luminance contrasts. 

Curves represent the best-fit of a hyperbolic ratio function. Reprinted from the Journal of 

Neurophysiology, 48, 217-37, Albrecht & Hamilton (1982), “Striate cortex of monkey and cat: 

contrast response function”, with permission from The American Physiological Society.  
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If  the visual system were a strictly linear system, we might expect neural 

response to scale proportionally with contrast, such that doubling the contrast doubles 

the response. Instead, we find a remarkable set of response nonlinearities. The work 

of Albrecht and Hamilton (1982) demonstrated that many macaque V1 cells have a 

contrast response function that is sigmoidal when presented on linear axes. The 

responses they recorded for several V1 neurons are shown in Figure 1.1 - as contrast 

increases, neuronal responses tend to first accelerate, often reaching half of their 

maximum response by 10-30% contrast, and then to compress to the point of 

saturation, sometimes as early as ~30%. This means that a small range of lower 

contrasts - those within the accelerating regime of the function - occupy a large 

proportion of the neuron’s dynamic range, and thus have high response granularity 

relative to the later compressive regime. The end-product is a bank of neurons with a 

discrete contrast range of high sensitivity that can differ considerably between cells 

(Albrecht & Hamilton, 1982), and cortical layers (Tootell et al., 1988). The neuronal 

mechanism that produces response acceleration and saturation is still a topic for 

investigation, but there is evidence to suggest (at least for saturation) that they are not 

simply the consequence of a static biophysical limitation (Peirce, 2007), but rather an 

active control process that can adjust the response rate of the cell according to the 

spatiotemporal parameters of the stimulus.  

Whatever the generative cellular process may be, it has long been known that 

computational models incorporating exponential and divisive nonlinearities 

(originating from the work of Naka and Rushton (1966)) often provide good fits to 

recorded responses (Albrecht & Hamilton, 1982; Heeger, 1992a; Somers et al., 1998). 

It has even been proposed that response expansion and compression are fundamental 

response transformations that can be found throughout the brain (Carandini & Heeger, 

2011) that allow neuronal responses to be much more sensitive over a discrete range 

of contrasts, relative to a linear response relationship. These models, an example of 

which is inlaid in Figure 1.2B, typically include an inhibitory (denominator) input that 

is outpaced by an excitatory (numerator) input across lower contrasts. At low contrasts 

(c), due to an additive constant (c50) that is applied to the denominator, the ratio of 

excitation to inhibition (i.e., model neuronal response) accelerates freely thanks to an 

exponentiation term (n). As the input contrast approaches and exceeds the additive 

constant, the denominator acts to more substantially limit the response of the cell. 
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Figure 1.2 graphs the transducer model used by Albrecht and Hamilton (1982)  

alongside its theoretical relationship to excitation and inhibition (Figure 1.2A is 

essentially the quotient of the lines graphed in Figure 1.2B). At low contrasts, we can 

see that inhibition remains quite stable, while the excitatory drive ramps-up, meaning 

the neural response is free to accelerate. As contrast increases, inhibitory drive 

increases alongside excitation, meaning the response function asymptotes. It should 

be noted similar response nonlinearities for contrast have been identified at the 

population level in human observers using non-invasive recording techniques such as 

fMRI (Boynton et al., 1999) and EEG (Baker et al., 2021). Irrespective of the best 

fitting model, an interesting aspect of the observed response nonlinearity is the degree 

to which it is reflected in behavioural thresholds. If behavioural detection and 

discrimination thresholds for contrast are purely the derivative of neuronal response 

functions, then we should expect observers to be most sensitive to stimulus changes 

around the steepest part of the neuronal response function. 

 
Figure 1.2: Producing a sigmoidal nonlinearity via divisive inhibition 
A: The model response of single V1 neuron to a gradient of luminance contrasts. B: The numerator 

and denominator (excitation and inhibition, respectively) of the hyperbolic ratio function shown in 

A. The pointwise quotient of B (excitation/inhibition) produces A. This figure was generated using 

the “H-Ratio” function from Albrecht and Hamilton (1982), which is inlaid in panel A. The rMAX 

and rMIN parameters of this function have been omitted for brevity.  

 

1.1.2 The behavioural outcome of response nonlinearity 

Observers’ sensitivity to changes in stimulus intensity can be measured along 

any continuous parameter space through the use of a pedestal experiment. Here, 

measurements of just-noticeable differences (JNDs) are used to assess the absolute 

detection threshold (the JND from zero intensity), and discrimination thresholds (the 
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JND from a non-zero “pedestal”). By measuring JNDs at multiple pedestal intensities, 

we can discretely sample an observer’s JND threshold vs intensity (TvI) function, 

which describes sensitivity as a function of the absolute intensity of the stimulus. 

Assuming behavioural responses are limited by a static source of noise after any 

compressive or expansive nonlinearity, it is the integral of this function that should 

approximate the shape of the neuronal transducer. Figure 1.3 illustrates this 

relationship; panel B is the shape of the behavioural TvI function predicted by the 

neuronal transducer in panel A (B is the first derivative of A). Notice that where the 

neuronal response is accelerating, behavioural sensitivity is predicted to be at its best 

(“facilitated”), with discrimination thresholds smaller even than the threshold for 

absolute detection (the threshold at a pedestal of zero). Likewise, as the response 

function saturates discrimination thresholds increase (are “suppressed”), reflecting the 

need for greater increases in contrast to achieve the same change in neuronal response. 

However, the question remains: do we find evidence for such a pattern of behavioural 

sensitivity to contrast as predicted by neuronal responses?     

 
Figure 1.3: Relating the neuronal transducer to behavioural sensitivity 
A: The model response of single V1 neuron to a gradient of luminance contrasts (the same as Figure 

1.2A). B: The first derivative of the curve in panel A, the rate of change in A dictates the form of B. 

Inlaid text and arrows describe the distinct regimes of each function.  
 

Evidence for a saturating nonlinearity can be found at the inception of formal 

psychophysical experimentation. This was implied in the sensation of weight from the 

work of Ernst Weber, later published and codified by Theodore Fechner as “Weber’s 

law” (Fechner, 1860). Weber’s observation was that the amount of added weight 

required to discern the weight of two held objects was a constant fraction of the 

weights being compared (a line of unity slope on logarithmic axes). In a derivation 



Chapter 1.    

13 

 

published alongside Weber’s law, Fechner attributed this proportionality to a 

logarithmic scaling of internal sensations (similar to the excitatory curve of Figure 

1.2B), which we may now interpret as a form of compressive nonlinearity in neuronal 

responses. Aside from weight sensation, there are multiple sensory parameter spaces 

that approximately adhere to Weber’s law (with some deviations at high/low 

intensities), including luminance (Barlow, 1957) and loudness (Parker & Schneider, 

1980), and the detection of global form in corruptive noise (Maloney et al., 1987).  

Interestingly, for luminance contrast however, discrimination thresholds at 

small (but suprathreshold) pedestals show a distinct non-monotonicity that is 

consistent with an accelerating nonlinearity. This was initially recognised by 

Nachmias and Sansbury (1974), who themselves proposed an expansive nonlinearity 

as an explanation. They found that notice that discrimination thresholds are best at 

pedestals near the absolute detection threshold (i.e., they are “facilitated” relative to 

detection), but worsen as contrast increases – consistent with a compressive 

nonlinearity. This pattern of discrimination thresholds (see Figure 1 of Nachmias and 

Sansbury (1974)) often referred to as the “dipper” or “pedestal” effect, has been quite 

convincingly replicated (Bird et al., 2002; Boynton et al., 1999; Boynton & Foley, 

1999; G. J. Burton, 1981; Foley & Legge, 1981), and is indeed well described by a 

model incorporating response exponentiation and compression (Foley, 1994). That 

behavioural thresholds are well described by a nonlinear contrast transducer is further 

supported by fMRI work from Boynton and colleagues (1999), who, in human 

observers, measured the blood-oxygen level dependant (BOLD) signal in V1 and 

discrimination thresholds as a function of luminance contrast. By fitting a variation of 

the transducer model used by Albrecht and Hamilton (1982) to both JNDs and V1 

BOLD contrast responses, they found the best fit was produced by an accelerating and 

saturating nonlinearity.  

While an observable response nonlinearity in agreement with psychophysical 

sensitivity heavily favours an explanation from nonlinear transduction, it should be 

noted that there are competing explanations for the dipper effect that do not rely on a 

nonlinear transducer. These typically dispute the aforementioned assumption of a late, 

static, and additive noise source, contending that noise proportional (or related to) the 

input signal could also produce the facilitation and suppression of the dipper effect. 
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There are several such explanations: uncertainty reduction could account for 

facilitation at low contrasts (Pelli, 1985), and multiplicative noise with a linear 

transducer rather than additive noise with a nonlinear transducer could produce 

suppression as contrast increases (Kontsevich et al., 2002). These alternative 

explanations will be elaborated upon when appropriate in the forthcoming chapters, 

but Solomon (2009) provides a relatively recent review of alternative accounts for the 

dipper effect (see also Sanborn and Dayan (2011)).          

1.1.3 Spatial contributions to divisive nonlinearity 

Thus far, I have outlined the nonlinearity of the contrast response function and 

its behavioural consequence. However, there is a wealth of evidence that nonlinearity 

can also be observed in the lateral and feedback interactions between neurons with 

different receptive fields across the visual hierarchy (Angelucci et al., 2017). One of 

the advantages of the accelerating and saturating nonlinearity is greater response 

resolution over the steepest section of a neuron’s transducer function. However, this 

also introduces a problem: what if the average contrast of a stimulus is below or 

beyond a neuron’s range of sensitivity? Early observations in feline and primate 

electrophysiology revealed that the firing rate of a neuron to a stimulus of optimal 

spatial frequency and orientation can be reduced by the simultaneous presentation of 

a non-optimal stimulus, even when this stimulus itself cannot provoke a response 

(Bonds, 1989; DeAngelis et al., 1992), suggestive of some active contribution from 

other neurons with different receptive field properties. Initially referred to as 

“nonspecific suppression”, this phenomenon cannot be explained by a purely linear 

computation. Within a receptive field, summing or subtracting responses between an 

optimal stimulus and a stimulus that cannot provoke any response should yield only 

the response of the optimal stimulus. The prevalent explanation for this reduction in 

neuronal activity is an inhibitory input from other neurons with proximal receptive 

field locations, and that this inhibition is not a just linear subtraction, but rather a 

division (Carandini et al., 1997; Cavanaugh et al., 2002). This computation is thought 

to reflect a form of contrast normalisation employed by the visual system, such that 

neurons’ response functions are horizontally shifted to cover the average contrast of 

the stimulus. Contrast suppression is predicted by an extension of the model used to 

fit responses to increasing contrast, but the denominator now receives contributions 

from a “normalisation pool”, which contains the summed responses from other 
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neurons with different or similar spatial feature sensitivity (orientation, spatial 

frequency, receptive field location, etc.), which can inform the spatial selectivity of 

suppression (Carandini & Heeger, 2011; Heeger, 1992a).  

Response normalisation is thought to be another canonical computation 

employed by neurons that serves to increase the effective dynamic range for contrast 

(Carandini & Heeger, 2011), and there is evidence that this computation is applied 

differently for different stimulus configurations. We tend to make a qualitative 

distinction between suppression that is triggered by stimuli that are superimposed onto 

the original stimulus (often called overlay masking) and suppression triggered by a 

non-overlapping stimulus, usually via an annular surround (referred to as surround 

suppression). An illustration of this spatial distinction is presented in Figure 1.4, via 

the stimuli used in Petrov et al., (2005), who’s work will be discussed in a later section. 

In terms of projections to V1, this distinction is analogous to the difference between 

suppression that occurs within a cortical hyper-column (overlapping receptive fields) 

and suppression that occurs across hyper-columns (nearby/surrounding receptive 

fields), though there is evidence of suppressive contributions from pre-cortical 

mechanisms in both cases.  

It is challenging to discern the cortical and pre-cortical contributions to overlay 

masking and surround suppression. Both electrophysiology and psychophysical 

assessment tend to do so by comparing the spatiotemporal selectivity profiles of 

overlay masking and surround suppression (i.e., the conditions in which they are 

strongest). These suppression/masking tuning functions can then be related to 

 
Figure 1.4: Stimuli producing distinct forms of contrast suppression/masking 
A: The central target to be suppressed/masked. B: An annular mask designed to produce surround 

suppression. C: A superimposed mask designed to produce overlay masking. Note, the term “mask” 

is often used to refer to the suppressive stimulus, particularly in psychophysical experimentation. 

Figure taken from Petrov et al. (2005), Figure 1 (with minor formatting alterations). Copyright 2022 

Society for Neuroscience. 
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previously established receptive field configurations and temporal sensitivities. As 

previously described, different visual processing regions contain neurons with distinct 

receptive field properties. While there is some overlap in these properties between 

processing regions, this can still provide some indication of the generative neuronal 

population. Psychophysically, Meier and Carandini (2002) demonstrated that overlay 

masking is still strong when using gratings that are drifting faster than the temporal 

resolution of most cortical neurons, consistent with similar findings from feline 

electrophysiology (Freeman et al., 2002; Sengpiel & Vorobyov, 2005). The inverse 

has been observed for surround suppression, the effect of which can be considerably 

diminished by the same manipulation (Durand et al., 2007). This finding suggests that 

surround suppression has a significant basis in cortex, as this manipulation is designed 

to attenuate responses from cortical neurons (which are selective for slower drift-

rates), but preserve responses from pre-cortical neurons which response to a greater 

range of drift frequencies. Although, since Durand and colleagues did not find 

surround suppression to be entirely abolished by high drift rates, both cortical and pre-

cortical sites may still be implicated in surround suppression. This is compatible with 

eye-of-origin experiments that find distinct spatiotemporal tuning functions for 

within-eye and across-eye surround suppression in the responses of macaque V1 

(Webb et al., 2005) and human contrast detection thresholds (Cai et al., 2008; Petrov 

& McKee, 2009; Schallmo & Murray, 2016), suggesting different contributions from 

suppressive mechanisms occurring before and after binocular fusion. Similar eye-of-

origin experiments for overlay masking also suggest the presence of multiple 

generative components (Baker, Meese, & Summers, 2007; Meese & Baker, 2009). 

Though, it should be noted that a phenomenon being abolished by dichoptic 

presentation does not guarantee a pre-cortical locus, as monocularly driven neurons 

with centre-surround receptive fields can still be found in primary visual cortex (Hubel 

& Wiesel, 1968).  

Few experiments have directly compared the tuning characteristics of overlay 

masking and surround suppression in human observers; the work of Petrov et al. 

(2005) is currently authoritative in this regard. Using binocular stimuli, they examined 

the effect of both overlay masking and surround suppression on contrast detection 

thresholds, but varied the degree of spatial similarity between the target and 

suppressive stimulus (the latter is often referred to as the “masker”). They found 
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surround suppression to be more dependent on the degree of similarity between the 

target stimulus and the suppressive surround, as well as the eccentricity at which 

stimuli were presented (Figure 1.5 shows their suppression/masking tuning curves). 

Surround suppression was effectively absent at the fovea, but also into the perifovea 

when surrounds were oriented orthogonal to the target stimulus (indicative of sharp 

orientation tuning). In contrast, overlay masking was relatively stable across all 

eccentricities, and only broadly orientation tuned, still doubling the detection threshold 

even with an orthogonal mask. Both forms of suppression/masking showed some 

dependence on the spatial frequency of the surround, but overlay masking was only 

vulnerable to severe spatial frequency discontinuities, whereas surround suppression 

had a clear preference for similarity. The orientation specificity of surround 

suppression is consistent with a cortical contribution, as elongated receptive fields first 

arise in V1 (Scholl et al., 2013), and orientation biases are quite weak in pre-cortical 

neurons (Xu et al., 2002), likely due to slightly elliptical receptive centre-surround 

receptive fields. 

 
Figure 1.5: Spatial tuning of surround suppression and overlay masking 
A: Selectivity for mask orientation. B: Selectivity for mask spatial frequency. C: Selectivity for 

eccentricity (both central probe and mask were moved together). A suppression factor of 1 is 

indicative of no suppression, positive factors indicate suppression. Figure taken from Petrov et al., 

(2005), Figure 2, with the addition of arrows on the abscissae of  panels A and B to illustrate the 

parameters of the central target stimulus. Copyright 2022 Society for Neuroscience. 
 

Petrov and colleagues (2005) also examined the order in which the surround 

and overlay suppression are applied. They accomplished this by superimposing an 

orthogonal mask onto a suppressive annulus, finding that the suppressive effect of an 

annular surround could be severely attenuated under this condition. This implies that 
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overlay masking is applied before surround suppression as the annulus was suppressed 

by the orthogonal mask before surround suppression could be enacted.  This seriality 

does not confirm a pre-cortical origin for overlay masking, though it is compatible 

with it. Overall, Petrov and colleagues’ report overlay masking to be broadly spatially 

tuned, consistent with previous work from feline and macaque models (Bonds, 1989; 

DeAngelis et al., 1992), and to be present throughout the visual field. Conversely, 

surround suppression (which occurs later in the processing hierarchy) is orientation 

and spatial frequency selective, but effectively absent in central vision. 

Interestingly, it appears that Petrov and colleagues’ finding that surround 

suppression is absent in the fovea may only be true of detection thresholds 

(subthreshold stimuli). Several studies have found surround suppression of contrast in 

central vision when using readily detectable (suprathreshold) target probes (Cai et al., 

2008; Cannon & Fullenkamp, 1991; Meese & Hess, 2004; Nurminen et al., 2010; 

Vanegas et al., 2015; Xing & Heeger, 2000). The subset of experiments that also 

examined the orientation specificity of central-vision suprathreshold surround 

suppression have found it to be orientation tuned (Cannon & Fullenkamp, 1991; Xing 

& Heeger, 2000), with Xing and Heeger reporting it strengthen at greater 

eccentricities, much like the suppression reported by Petrov and colleagues. That the 

effect of surround suppression depends on the absolute contrast of the stimulus has 

also been suggested by primate electrophysiology, where surround suppression has 

been observed to broaden in its orientation tuning at lower contrasts (Levitt & Lund, 

1997; Webb et al., 2005), though these measurements are obtained from neurons with 

perifoveal receptive fields, so their sensitivity profiles may not generalise to fixation. 

Overall, it is clear that the terms “surround” and “overlay” suppression/masking only 

succeed in describing the physical attributes of a stimulus that can produce them, but 

do not convey the variety of spatiotemporal parameters over which they can be 

distinguished, including sensitivities to orientation, spatial frequency, temporal 

frequency, eccentricity, and absolute contrast.  

1.2 Gaps in our understanding of nonlinearity in visual 

perception 

This section will more specifically outline the context for the research 

questions addressed by the experimental chapters of this thesis, which are based in the 
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content of the broader overview provided in the previous section. I begin with the 

observations leading to my first experimental chapter, which explores the possibility 

of a change in surround suppression strength across the human lifespan. My second 

and third experimental chapters focus on investigating nonlinear transduction beyond 

the representation of luminance contrast.    

1.2.1 What is the effect of age on surround suppression? 

 One of the most robust effects of age on visual perception is an increase 

contrast detection thresholds at intermediate and high spatial frequencies (Arundale, 

1978; Beard et al., 1994; Owsley, 1983), which can mostly be attributed to changes to 

the optical media (Owsley, 2011). While there is evidence for some role of post-optical 

neuronal factors at the retina and beyond (Spear, 1993), there is little evidence that 

these actually lead to any practical reductions in contrast perception (Owsley, 2011). 

Nevertheless, there are functional and structural changes to neurons in primary visual 

cortex with age in both humans (Brewer & Barton, 2012) and in the macaque 

(Schmolesky et al., 2000; Yu et al., 2006), so investigating age-related changes in 

cortically dependant visual processing is worthwhile. One such form of processing, as 

I have described in the previous section, is surround suppression of contrast. There is 

already evidence that alterations in neuronal inhibitory/excitatory balance accompany 

aging (Betts et al., 2005), but also Alzheimer’s disease (Zhuang et al., 2016), autism 

(Schallmo et al., 2020) and schizophrenia (Serrano-Pedraza et al., 2014). Although 

these findings come from experiments focused on the suppression of motion direction 

perception (a phenomenon identified by Tadin (2003)), they highlight the diagnostic 

potential of simple psychophysical experiments designed to measure processes of 

spatial suppression. Indeed, if processes of normalisation (a suspected “canonical” 

computation) are generally affected throughout the brain in these populations, we 

should also expect surround suppression of contrast to be compromised.  

Betts and colleagues’ (2005) findings suggested that surround suppression of 

motion direction weakens with age, a finding that has provoked a decade of research 

investigating the consequences of age on surround suppression of contrast. 

Interestingly, this body of work (which probes suprathreshold surround suppression 

of contrast at fixation) routinely finds evidence to the contrary of Betts et al. – 

suppression of contrast may strengthen with age (Karas & McKendrick, 2009, 2011, 
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2015), such that older observers (>60 years of age) experience a more severe reduction 

in apparent target contrast. Importantly, this effect does not appear to be related to the 

increase in absolute detection thresholds that accompanies advancing age (Karas & 

McKendrick, 2011). It has also been shown to be robust to different stimulus 

configurations, with initial work using the Chubb illusion (Chubb et al., 1989; Karas 

& McKendrick, 2009) and more recent work showing the same effect with static and 

drifting sinusoidal gratings (Karas & McKendrick, 2012, 2015). The augmentation of 

surround suppression in older observers is predominant at low contrasts (20%) absent 

for very short stimulus durations of 40ms (Pitchaimuthu, Nguyen, et al., 2017), 

strongest at intermediary presentation times of 100ms, and still present in some older 

observers up to 500ms (Karas & McKendrick, 2015). Interestingly, the eye-of-origin 

work from Pitchaimuthu et al. (2017) found the age-effect to be abolished by dichoptic 

presentation of the centre and surround, suggesting that the neuronal circuitry affected 

by age occurs prior to binocular fusion. That the effect occurs pre-fusion and is 

strongest at low contrasts may suggest that it is based in a mechanism analogous to 

the low-contrast and monoptic (within-eye) component of surround suppression 

identified in macaque V1 by Webb et al. (2005).  

  
Figure 1.6: Stimuli previously used to investigate age and surround 

suppression of contrast.  
The spatial configuration of the stimulus typically used by McKendrick and colleagues. The red 

circle has been added to illustrate the extent to which the surround may encroach on mechanisms of 

overlay masking according to Petrov et al., (2005). This image has been generated based on the 

parameters of McKendrick et al. (2015)  

 

Indeed, the mechanism affected by age has often been interpreted to be 

surround suppression in previous reports. However, there remains the possibility that 
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overlay masking is the mechanism affected by age. Petrov and colleagues’ (2005) 

measurement of the spatial tuning characteristics of overlay masking and surround 

suppression provided an important reference point for understanding how stimulus 

configuration affects suppressive tuning characteristics. Importantly, they also took 

steps to increase the likelihood of separately measuring these two types of suppression, 

though these precautions are scarcely adopted by subsequent experimentation probing 

suprathreshold surround suppression. When testing surround suppression,  Petrov and 

colleagues principal precaution was the addition of a mean luminance gap between the 

central grating and surrounding annulus (see Figure 1.4). This gap, a width of 1 grating 

cycle, is important because it (in theory) reduces the probability of overlay masking 

“leaking” into surround suppression. When using a surrounding annulus with an inner 

border that directly (or very closely) abuts the border of the central probe, some 

receptive fields will be occupied by both the centre and surround, effectively 

producing overlay masking in these neuronal populations. By introducing a one cycle 

gap between the centre and surround, contamination from overlay masking can no 

longer be sourced from neurons with a preference for the spatial frequency of the 

central stimulus and only a single ON-OFF subregion cycle. Neurons with very large 

receptive fields, or more than a single subregion cycle (which do occur in V1 – see 

Chen et al.,(2020)) could still contribute, but suppression from the centre-surround 

receptive fields of the retina and LGN (which are a strong candidate for overlay 

masking) would be heavily attenuated. The stimuli used by McKendrick and 

colleagues regularly employ a surround that closely (or directly) abuts the central 

probe (c.f. the red circle in Figure 1.6 and Figure 1.4B). This means that there is an 

open question as to whether their age-related effect persists in stimuli designed to 

preclude contributions from overlay masking.  

1.2.2 Is there a “dipper effect” beyond low-level visual processing, and 

is it reflected in neuronal responses? 

 Most of our current understanding of nonlinear transduction, and comparisons 

to behavioural sensitivity, have been made in the luminance contrast parameter space. 

The lack of similar explorations for higher-level visual parameter spaces is justifiable: 

luminance contrast is encoded as early as the retina, and homologues of early visual 

processing nodes can be found in other mammalian species (Orban et al., 2004; Payne, 

1993). However, extensive investigation of low-level luminance contrast encoding has 
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supported the development of  predictive models which can be compared to human 

behaviour. Moreover, it has led to the proposition of “canonical computations” – 

mathematical functions that are employed throughout the brain. Exponentiation and 

saturation of neuronal responses have been proposed to be such computations 

(Carandini & Heeger, 2011), implying that sigmoidal transducer nonlinearities may 

be found throughout the visual system, along with its theorised consequence in 

behaviour – the “dipper effect”. This leads to the following question: do we find 

evidence for nonlinear transduction in more derivative parameter spaces, beyond 

luminance contrast?  

Accepting that the “dipper effect” is a consequence of nonlinear transduction, 

then evidence for an accelerating and saturating nonlinearity can be found in other 

domains. For example, in the visual and tactile perception of speed, speed 

discrimination (that of a spinning wheel) is facilitated at low speeds relative to the 

speed required to detect movement (Gori et al., 2011; Simpson & Finsten, 1995). A 

similar finding comes from Huang and Chen (2014) for the visual perception of 2nd 

order patterns (gratings defined by contrast boundaries rather than luminance 

boundaries), and Morgan et al., (2008) for the discrimination of orientation variance 

in a field of small Gabor patches. A dipper effect has even been identified in a 

parameter space as complex as human facial expression. Gray et al. (2020) collected 

discrimination thresholds and EEGs for face images drawn from a bespoke facial 

expression parameter space. They found that the discrimination threshold for a small 

(but suprathreshold) difference in expressivity is lower than the threshold for detecting 

an expression in a face, and that discrimination thresholds increase with emotivity, 

consistent with a saturating nonlinearity. By measuring steady-state visually evoked 

potentials (SSVEPs), the authors further demonstrated that population neuronal 

responses are consistent with response saturation as facial emotivity increases, though 

they were unable to confirm the presence of an accelerating regime due to signal-to-

noise limitations. That a parameter space as complex as facial expression shows 

behavioural thresholds consistent with an accelerating and saturating nonlinearity is 

an exciting finding. However, evidence from  more intermediate processing nodes is 

required to support the ubiquity of an accelerating and saturating nonlinearity in visual 

processing. One example of a percept dependent on mid-level pooling processes is the 

global form elicited by Glass patterns.  
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Figure 1.7: Glass patterns across three alignment axes 
Three varieties of Glass patterns: translational, radial, and concentric.  

 

A Glass pattern is a type of global form stimulus, initially recognised by Leon 

Glass (1969). Glass patterns, several forms of which are illustrated in Figure 1.7, can 

be generated by drawing a field of randomly positioned dots, applying some geometric 

transformation to their coordinates, and drawing them again. These patterns are 

remarkable because they are able to provoke a global form percept that emerges from 

local dot-pair (dipole) orientations, though no individual element of the pattern is 

innately oriented. Glass patterns have several interesting qualities. First, their 

perception must rely on at least two integration processes, one that can pool two dots 

into an oriented dipole, and another that can pool across multiple dipoles to encode 

information about their wide-field global correlation (H. R. Wilson & Wilkinson, 

1998). The percept of a Glass pattern is severely eroded by within-dipole luminance 

differences (i.e., a dipole consisting of one black and one white dot) but relatively 

robust to differences across dipoles (Anstis, 1970; Glass & Switkes, 1976; J. A. Wilson 

et al., 2004). The sensitivity of the global form percept to equiluminance within a 

dipole is consistent with primate work indicating that dots can be pooled into locally 

oriented elements (“virtual lines” – (Prazdny, 1986)) by the elongated receptive fields 

of V1 simple cells, such that two white dots within and parallel to an elongated ON 

subregion can produce a suprathreshold action potential (Movshon et al., 2010; Smith 

et al., 2002), while a black and white dot would produce net-zero excitation.  

The configuration of the mechanism that integrates across dipoles is still a 

topic for investigation. For polar form, early (H. R. Wilson & Wilkinson, 1998; H. R. 

Wilson et al., 1997) and more recent (Lin et al., 2017) models incorporate a global 

orientation summation stage containing subunits with a preference for orientated 

elements perpendicular or parallel to its central origin. Wilson and colleagues have 



Chapter 1.    

24 

 

often found that increasing the “signal area” of a pattern (the proportion of the circular 

aperture containing geometrically correlated dipoles) improves the salience of 

concentric and radial form, but not the salience of translational form. When interpreted 

as an absence of spatial summation for translational form, this implies the existence 

of distinct mid-level circuitry specific to representing polar form. Indeed, there is 

evidence for neurons with a preference for polar form in extrastriate visual areas such 

as macaque V4 (Gallant et al., 1996) and for concentric form in the population 

responses of human lateral occipital cortex (Ostwald et al., 2008), though some global 

form selectivity can be found as early as V1 (Mannion et al., 2009; Ostwald et al., 

2008).  

Overall, Glass patterns are an ideal stimulus for probing mid-level local-to-

global integration processes. However, most electroencephalography and fMRI 

experiments (an exception being Mannion et al., (2013)) that investigate Glass patterns 

use maximally coherent dipole fields, and the majority of psychophysical experiments 

focus on the detection of Glass patterns in noise. Thus, we have little information on 

how behavioural sensitivity differs along a gradient of suprathreshold global form 

intensities. While finding a “dipper effect” is a strong indicator of transducer 

nonlinearity, it is not a guarantee. As mentioned previously, there are alternative 

explanations for the dipper effect that do not require nonlinear transduction 

(Kontsevich et al., 2002; Pelli, 1985; Solomon, 2009), though it is difficult to separate 

these explanations psychophysically. One approach to establishing the explanatory 

merit of nonlinear transduction in human observers is to non-invasively measure the 

transducer (at a population-response level) using fMRI (Boynton et al., 1999) or EEG 

(Gray et al., 2020), and compare the behavioural sensitivity predicted by the measured 

transducer with that obtained psychophysically. If both functions predict a similar 

profile of sensitivity (i.e., the intensity at which thresholds are facilitated), an 

explanation from nonlinear transduction is strongly supported. The intensity of the 

global form percept elicited by a Glass pattern can be manipulated in several ways: 

one can embed Glass pattern dipoles in a field of randomly positioned unpaired dots 

(Maloney et al., 1987); or manipulate the proportion of geometrically aligned signal 

dipoles to randomly oriented noise dipoles (H. R. Wilson & Wilkinson, 1998, 2003; 

H. R. Wilson et al., 1997), or set the orientation of all dipoles according to a Gaussian 

distribution (Dakin, 1997). These different approaches produce subtly different pattern 
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fields, and any could be used to assess the discrimination of the global form percept 

elicited by Glass patterns.       

1.2.3 Is there a suprathreshold bias for the perception of polar form?  

As previously described, there are a variety of transformations that can be 

applied to generate Glass patterns. Many experiments focus on horizontal, vertical, 

radial, and concentric patterns. These transformations are particularly interesting 

because they are based in two different coordinate systems: horizontal and vertical 

translations are based on a cartesian reference frame, and only contain a single dipole 

orientation (when using perfectly aligned patterns) relative to the vertical or horizontal 

meridian, while radial and concentric patterns are polar forms that can contain any 

orientation, and are correlated relative to the centre of the pattern field. This distinction 

is important because encoding polar global form likely requires an extra processing 

step (as mentioned in the previous section), but also because there is psychophysical 

evidence to suggest that human observers are better at detecting polar form embedded 

in fields of randomly oriented dipoles, particularly so for concentric form (Seu & 

Ferrera, 2001; H. R. Wilson & Wilkinson, 1998; H. R. Wilson et al., 1997). Indeed, 

there is evidence from magnetoencephalography and EEG showing that maximally 

aligned radial and concentric forms elicit a higher neuronal response than translational 

form (Pei et al., 2005; Rampone & Makin, 2020; Swettenham et al., 2010), and that 

polar form selectivity can be found at extrastriate processing nodes (Gallant et al., 

1996; Ostwald et al., 2008). Thus, there is reason to suspect that a unique and more 

sensitive mechanism may exist for polar form integration, and that increased 

sensitivity to concentric form does not merely reflect aperture artefacts, as has been 

previously suggested (Dakin & Bex, 2002).  

1.3 Rationale for the current thesis 

Above, I have detailed several gaps in the literature pertaining to nonlinear 

phenomena in visual perception. Each experimental chapter of this thesis (of which 

there are three) is designed to explore one or more of these gaps in our collective 

knowledge. In the present section – the final part of my general introduction – the 

rationale and approach of each experimental chapter is briefly summarised.  
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First, there are several reports that surround suppression of suprathreshold 

contrast in central vision increases with age (Karas & McKendrick, 2009, 2011, 2015). 

Surround suppression of contrast, interpreted as a form of automatic input gain control, 

acts to keep neuronal responses at the most sensitive region of their response function. 

If older adults are experiencing a strengthening of surround suppression, an imbalance 

of excitation and inhibition is implied. It is unclear how this may affect their natural 

perceptual experiences, but there may be implications for segmentation operations that 

serve to highlight spatial contrast discontinuities (object boundaries, contours etc.). 

For this reason, it is important to ensure that the age-related increase in contrast 

suppression in previous reports truly does reflect surround suppression, and that it is 

not being contaminated purely by the use of surrounds that directly/closely abut the 

central stimulus (as is the case in existing reports). Such stimuli may lead to difficulties 

segmenting the central and surrounding stimulus  (Appelbaum et al., 2008), which 

could be mistaken for “suppression”. Although, that the age-effect can still be 

observed even with out-of-phase surrounds (Karas & McKendrick, 2011) suggests that 

difficulties related to segmentation are unlikely to be the basis for the effect observed. 

Alternatively, closely abutting surrounds could lead to contributions from untuned 

overlay masking (Petrov et al., 2005), a separate (likely pre-cortical) inhibitory 

mechanism. Unlike surround suppression, overlay masking is generated from within 

a neuron’s receptive field, and strengthening of it may produce perceptual challenges 

unique to the normalisation of local image contrast. Therefore, the first experimental 

chapter of my thesis (Chapter 2) is designed to compare surround suppression in 

younger and older observers, but using stimuli designed to attenuate contributions 

from edge effects and overlay masking. In this chapter, we have also assessed the 

orientation tuning of suprathreshold surround suppression at central fixation, as 

previous investigations with the same aim have also used stimuli vulnerable to 

contributions from overlay masking.  

Second, our understanding of expansive and compressive nonlinearities (and 

their behavioural consequences in visual perception) is mostly based in low-level 

visual perception, though there are proposals that they may exist throughout the visual 

system as “canonical” computations (Carandini & Heeger, 2011). Recently, this 

proposal has gained some traction, as evidence for a dipper effect and a saturating 

nonlinearity has been found in the perception of human facial expression (Gray et al., 
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2020). However, the extent to which this finding persists at intermediate (mid-level) 

forms of visual processing is unclear, suggesting that behavioural and 

electrophysiological explorations of global form perception would be fruitful. 

Exploring the possibility of a sigmoidal transducer in the perception of global form 

would add to our understanding of how common such nonlinearities are throughout 

the visual processing hierarchy. Additionally, we have observed that reports of 

increased sensitivity to polar global form (radial and concentric Glass patterns) are 

limited to psychophysically assessed global form detection thresholds (Seu & Ferrera, 

2001; H. R. Wilson & Wilkinson, 1998; H. R. Wilson et al., 1997) and neuronal 

responses to maximally aligned Glass patterns (Ostwald et al., 2008; Pei et al., 2005; 

Rampone & Makin, 2020; Swettenham et al., 2010). Suprathreshold sensitivity at 

intermediate global form coherences is scarcely investigated. Thus, it is unknown 

whether the polar form biases at detection and maximal coherence can also be found 

along a gradient of suprathreshold global form intensities. Assuming the presence of 

a sigmoidal nonlinearity: it is possible that the shape of the transducer (or TvI curve) 

varies as a function pattern axis. As such, the 2nd and 3rd experimental chapters of this 

thesis focus on measuring the profile of suprathreshold sensitivity for the global form 

percept elicited by translational, radial, and concentric Glass patterns. In Chapter 3, 

we present the results of an online pedestal experiment designed to measure Glass 

pattern global form discrimination thresholds. To predict the neuronal response 

function that would generate the thresholds we observed, we fit them with a 

differentiated neuronal transducer function. In Chapter 4, we compared these model 

predictions with steady-state visually evoked potentials (SSVEPs) along the same 

global form continuum that we tested psychophysically. 
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Chapter 2. Measuring the effects of age on contrast 

suppression 

2.1 Abstract 

The perceived contrast of a suprathreshold central stimulus can be reduced by 

the presence of a surrounding stimulus. It has been suggested that this this effect 

increases with age when measured using foveal stimuli. The underlying mechanism 

proposed for this age dependence (a general change in the balance of inhibition and 

excitation in cortex) makes this psychophysical phenomenon potentially interesting as 

a biomarker of neurological dysfunction. In this chapter, we attempt to repeat these 

measurements using stimuli that are designed to eliminate potential confounds that 

were present in the early reports. Principally, we control for untuned ‘overlay’ 

masking which is thought to have a pre-cortical origin. We measured contrast 

matching thresholds in twenty younger (< 30) and seventeen older (>60) observers. 

Across all observers, we find suppression that has little or no orientation tuning and, 

importantly, no effect of age. Our findings contradict those from earlier studies and 

suggest that effects relating to age may arise from an ‘overlay masking’ mechanism 

that could originate as early as the retina.  

2.2 Introduction 

The average human lifespan  is increasing in the United Kingdom, and is 

projected to be above 90 years for new-borns by 2045 (Office for National Statistics, 

2022). This trend calls for an increase in our understanding of the unique perceptual 

challenges faced by the elderly. In visual perception, age-related changes in visual 

acuity and contrast sensitivity are mostly (though not entirely) driven by changes to 

the optical media (Owsley, 2011) in healthy subjects. However, there is clear evidence 

that the human visual cortex is affected by structural and functional senescence 

(Brewer & Barton, 2012), and investigations of post-retinal visual processing across 

the lifespan may prove useful in understanding how best to prevent or palliate age-

related changes in visual perception. One line of enquiry could be the perceptual 

normalisation processes that rely on the delicate balance between neuronal excitation 

and inhibition. In visual perception, normalisation is thought to shift a neuron’s 

dynamic range along the input axis to minimise output saturation, effectively 



Chapter 2.   Age and surround suppression 

29 

 

preserving sensitivity over a wide range of inputs (i.e., a range of luminance contrasts). 

It has been previously suggested that response normalisation is a “canonical” 

computation – a fundamental neural operation that is enacted throughout the 

subdivisions of the brain (Carandini & Heeger, 2011). If these mechanisms de-

sensitise or diminish with age, it could produce age-related changes in visual 

perception, but also other sensory modalities, and perhaps memory and cognition. 

Therefore, measuring the action of these mechanisms using relatively simple visual 

experiments can inform our understanding of the general effect of age on the human 

brain. In visual perception, neuronal populations that contribute to the regulation of 

neuronal responses are though to exist throughout the low and mid-level visual 

processing hierarchy (Angelucci et al., 2017), and have been shown to become less 

effective in aging monkeys (Fu et al., 2010; Schmolesky et al., 2000).  

In humans, a plausible example of neuronal inhibition comes from motion 

direction perception. Tadin et al. (2003) asked observers to judge the direction of a 

moving stimulus, bur parametrically varied its size. They reported that larger stimuli 

made this task more difficult, likely due to an inhibitory mechanism that is dependent 

on the spatial extent of the stimulus. Interestingly, later work from Betts et al. (2005) 

suggests that the strength of this spatial antagonism may reduce with age, finding that 

older observers were better than younger observers at judging the direction of large 

stimuli. Though this interpretation is not universally accepted (Hutchinson et al., 

2014), it has encouraged further investigation of the relationship between spatial 

inhibition and advancing age. Examples of spatial inhibition are not limited to motion 

perception. When viewing a texture of set luminance contrast surrounded by a texture 

of greater contrast, the apparent contrast of the central texture is reduced (Cannon & 

Fullenkamp, 1991; Chubb et al., 1989; Petrov & McKee, 2006; Xing & Heeger, 2001). 

This effect (‘surround suppression’) appears to be physiologically distinct from a 

contrast suppression that is found when two stimuli are overlaid (Petrov et al., 2005): 

it operates over long ranges (i.e., neighbouring receptive fields) and is tuned for 

orientation and spatial frequency – suggestive of  an origin in the elongated receptive 

fields found in the primary visual cortex. In comparison, overlay masking appears to 

be short range and untuned and could arise as early as the centre-surround receptive 

fields of the retinal ganglion cells. Later work has shown that surround suppression 

may be the result of  at least two serial mechanisms with different tuning properties 
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(Petrov & McKee, 2009; Webb et al., 2005). When measuring contrast detection 

thresholds, most labs find that surround suppression is weak or effectively absent at 

fixation (Meese & Hess, 2004; Petrov et al., 2005; Saarela & Herzog, 2008), and some 

find it to increases in strength into and beyond the perifovea (Petrov et al., 2005; 

Snowden & Hammett, 1998). 

Over the past decade, work from one lab has investigated whether surround 

suppression of contrast is subject to the same age-related weakening reported by Betts 

and colleagues’ in perception of motion. Surprisingly, initial work using a version of 

the Chubb illusion (Chubb et al., 1989) suggested that surround suppression 

strengthened with age (Karas & McKendrick, 2009). This pattern of results was has 

also been replicated using drifting luminance gratings (Karas & McKendrick, 2012), 

and static gratings (Karas & McKendrick, 2011), with the latter work finding the age-

effect to be present even when the centre and surround are 180° out of phase. Probing 

a subset of spatiotemporal tuning characteristics, Karas & McKendrick (2015) 

reported that older adults experience enhanced suppression primarily a low contrasts 

(centres of 20% contrast), that surrounds at the same or twice the contrast produce the 

greatest age-related difference in suppression strength. The same study also found the 

age difference in surround suppression to be most profound with shorter  stimulus 

presentation times of 150ms, but still observable at durations of 500ms. Though later 

work has indicated that very short presentation times (~40ms) abolish the age-related 

difference (Pitchaimuthu, Nguyen, et al., 2017). Overall, McKendrick and colleagues’ 

work has often found surround suppression to strengthen with age, despite previous 

evidence suggesting a weakening of spatial inhibition in older adults (Betts et al., 

2005).  

Surround suppression specifically describes the reduction of perceived contrast 

produced by presenting a target stimulus in the context of a non-overlapping surround, 

but this is not the only route to contrast masking. As previously described, overlay 

masking produces a similar effect but is instead achieved by super-imposing a masking 

stimulus over the target. The aforementioned differences in the spatiotemporal tuning 

characteristics of overlay and surround suppression (see also section 1.1.3), as well as 

the absence of long-range pre-cortical receptive fields (Bonin et al., 2005) suggests 

that they are based on entirely different mechanisms. Importantly, when Petrov and 
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colleagues (2005) measured the distinct spatial tuning properties of surround and 

overlay masking, they included stimulus features to reduce cross-contamination 

between these two suppression types. Primarily, they introduced a gap between the 

central ‘probe’ region and the surround (equal to one stimulus wavelength) to reduce 

the effect of overlay masking when using surround stimuli. This manipulation reduces 

the occurrence of neuronal receptive fields that are partially subtended both by the 

centre and surround, as such neurons would effectively be experiencing overlay 

masking. It also prevents the intrusion of difficulties related to the segmentation of the 

centre from the surround (Appelbaum et al., 2008).  Secondly, though less relevant to 

McKendrick's suprathreshold experiments, to reduce contamination from spatial 

uncertainty they ensured that the position of the target probe was constantly cued by 

the presence of a faint, grey ring. This low contrast cue was too subtle to contribute 

meaningfully to a contrast gain control mechanism. At detection, the presence of a 

surround (which provides an unambiguous cue to location) may appear to increase 

probe contrast, as has been shown using collinear flankers (Petrov et al., 2006). By 

removing these confounds, the authors effectively isolated and characterised two 

distinct mechanisms of contrast gain control: an initial spatially untuned overlay 

masking and a later spatially tuned surround suppression. It is possible that the absence 

of these controls in stimuli used by other groups (principally the lack of a one cycle 

gap) may explain some of the paradoxical effects that they observe. McKendrick and 

colleagues typically present centres and surrounds that directly/closely abut each 

other, and have no spatial cues to target location.  

The present experiment explores the possibility that the increase in surround 

suppression found by previous reports is due to such stimulus confounds. Using a 

contrast matching experiment, we psychophysically assessed the strength of surround 

suppression in younger (< 30) and older (> 60) observers. Our stimuli were similar to 

those used in previous similar experiments: luminance contrast gratings centred on the 

fovea, but with the addition of a mean luminance gap spanning 1-cycle (1λ) of the 

grating’s spatial frequency to preclude any possible contributions from overlay 

masking. If surround suppression alone is the main driver of the age-related changes 

to contrast suppression in central vision, then we expected to find a significant 

difference in suppression strength between age-groups despite this manipulation. We 

additionally assessed the orientation tuning of surround suppression, as the spatial 
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tuning of suprathreshold surround suppression in central vision has not been 

investigated with stimuli such as ours, and there is evidence from macaque 

electrophysiology that the orientation tuning of surround suppression broadens with 

age (Fu et al., 2010).  

2.3 Methods 

2.3.1 Participants 

Seventeen older observers (mean: 69, range: 60 – 81) and twenty younger 

observers (mean: 18.8, range: 18 – 22) with self-reported normal or corrected-to-

normal visual acuity and no personal history of neurological disease or disorder were 

recruited. This age-range was selected to mirror that of previous studies that have 

found the effect of age on surround suppression (Karas & McKendrick, 2011, 2015). 

All observers were aware of the purpose of the study, but not aware of any of our 

predictions. Ethical approval for the study was given by the Department of Psychology 

at the University of York, and all observers were reimbursed for their time and travel 

costs.  

2.3.2 Stimuli & apparatus 

The spatial parameters of the stimuli used are illustrated in Figure 2.1. Stimuli 

frames consisted of centrally presented luminance gratings and annuli with a spatial 

frequency of 3.33 cycles per degree. Central gratings always subtended 0.6 degrees of 

visual angle (meaning there were precisely 2 cycles of luminance modulation). Central 

gratings were surrounded by a thin (2 pixel) grey ring to prevent  uncertainty 

pertaining to the location of the target stimulus, which is known to bias  detection 

thresholds as previously described. When presented, the surrounding annulus 

subtended 3.2 degrees of visual angle. The outer and inner edges of all stimuli were 

smoothed by a raised-cosine mask, and the inner and outer edges of the raised cosine 

plateau were separated by 0.3 degrees of mean luminance (~1λ). Stimuli were 

displayed on a ViewPixx 3D Lite display (1920x1080, 120Hz) 

(https://vpixx.com/products/viewpixx-3d/), via an Apple Mac Pro 6.1 running macOS 

High Sierra (version 10.13.6). The display used 8-bits of grayscale resolution and was 

gamma corrected using a Minolta LS110 photometer. The mean luminance of the 

display after correction was approximately 50cd/cm2. All stimuli were created and 

presented using the Python programming language (https://www.python.org/) and 

https://vpixx.com/products/viewpixx-3d/
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PsychoPy3 (https://www.psychopy.org/). Observers were seated 1 metre away from 

the display and used a chin rest while the experiment was in progress. Despite wearing 

correction, two observers in the older age-group had difficulty seeing the thin grey 

ring at a distance of one metre, and were moved closer to the display (~0.68m), but all 

stimuli were temporarily rescaled to accommodate this.  

 

Figure 2.1: Centre and surround spatial configuration 
Spatial definition of the stimuli used for our contrast matching experiment. The same central grating 

and thin ring were used when measuring contrast detection thresholds.  

 

2.3.3 Procedure 

First, to ensure all observers would be able to perceive the stimuli used in the 

contrast matching task, we measured contrast detection thresholds using the method 

of adjustment. The method of adjustment is not as accurate as a staircase procedure, 

but is sufficient for a quick and coarse guarantee that all observers should be able to 

perform the main experiment reliably. To obtain detection thresholds, observers were 

asked to manipulate the contrast of a centrally presented grating using a trackball 

mouse. This grating shared the spatial parameters of the central grating used in the 

contrast matching procedure (shown in Figure 2.1). Rolling the trackball away from 

them increased the contrast, while rolling it towards them decreased the contrast in 

equal linear increments. Observers were given as much time as they needed to adjust 

the contrast of the grating until it was just barely visible, which they indicated by a 

keypress. While observers were adjusting the contrast, the grating slowly cycled on 

https://www.psychopy.org/
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and off (0.15s ON : 2.15s OFF), and its orientation was randomised on every cycle. 

This procedure was repeated six times, with the median of these six thresholds taken 

as the observers absolute contrast detection threshold.  

To assess the strength of surround suppression across different surround 

configurations, observers took part in a “1-up 1-down” staircase procedure designed 

to measure the point of subjective equivalence (PSE) between the perceived contrast 

of an unmasked reference grating and a surround-masked target grating. Observers 

viewed target and reference gratings sequentially via a two-interval forced-choice 

(2IFC) procedure, and their task was to indicate the interval (1st or 2nd ) that contained 

the central grating of highest contrast. Many observers in the older age-group would 

be completely unfamiliar with visual psychophysics, so we wanted to ensure that the 

experiment was as simple as possible. For this reason, the reference (unmasked) 

grating was always presented in the first interval (at 20% contrast), and the masked 

target grating was always presented in the second interval, with a contrast dictated by 

the staircase procedure over the course of 70 trials. Note, the correct response could 

be in either interval, as the contrast of the target grating can be greater or less than that 

of the reference grating. The target either had no mask (a control condition), a collinear 

mask, or an orthogonal mask, and surrounds were fixed at 40% contrast. The phase 

and orientation of presented stimuli was randomised such that the reference grating in 

interval one had a different phase and orientation to the grating and annulus presented 

in interval two. This was done to ensure observers were only making responses based 

on the perceived contrast, and to prevent adaptation to the spatial parameters of the 

stimulus. As shown in Figure 2.2, a single trial consisted of the reference grating for 

150ms, followed by an inter-stimulus-interval of 500ms. Observers then saw 500ms 

of surround, followed by 150ms of target grating and surround, and a final 500ms of 

surround alone. We included  this 500ms onset delay for the target grating to prevent 

any contribution from temporal onset masking. Observers were then given unlimited 

time to indicate (via a button-press) the interval that contained the central grating of 

highest contrast. The first 5 trials of the staircase procedure had a step-size of 2.25% 

contrast, but subsequent trials were reduced to a step-size of 0.75% to approximate the 

observer’s true PSE more closely. Each of the surround-on conditions were repeated 

up to 3 times by each observer. If the PSE estimates of the 1st and 2nd run (based on a 

least-squares Weibull fit) differed by less than the minimum staircase step-size 
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(0.75%), the final repetition was skipped. This was done to avoid unnecessarily 

straining attentive observers. The no-surround control condition was always 

conducted first, and only once. For each observer, this resulted in 5 – 7 completed 

staircases. To give observers the opportunity to obtain a stable response criterion prior 

to the main experiment, each practised with an abbreviated version of the experiment 

containing one surround and one no-surround condition, each with 25 trials of the 

staircase procedure. Additional practice runs were permitted if necessary. 

 

Figure 2.2: Contrast matching procedure 
Timing of stimulus presentation. To be read from top-left to bottom-right, following diagonal arrows. 

The reference interval is represented by the blue “REF” text, while the target interval is represented 

by the red “TAR” text.  
 

2.3.4 Model fitting and statistical analysis 

Observers’ final PSEs  were estimated by fitting a logistic cumulative density 

function (CDF) to accuracy estimates. This was accomplished using the maximum 

likelihood fitting routines of the Palamedes Toolbox 

(http://www.palamedestoolbox.org/) via MATLAB R2018b. The threshold and slope 

of this psychometric function (PF) were allowed to vary as free parameters, while the 

guess-rate and lapse-rate were both fixed at 0%, such that the threshold parameter 

equates the contrast achieving an accuracy of 50% (the PSE). For each observer, and 

each condition, this fitting procedure was carried out on the accumulated accuracies 

from all staircase repetitions by summing the number of correct responses and total 

trials. The effect of age-group and surround configuration was investigated via a two-

way mixed-model analysis of variance (ANOVA), with age-group (younger, older) 

used as the between subjects factor, and surround condition (no surround, collinear, 

http://www.palamedestoolbox.org/
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orthogonal) used as the within subjects factor. In younger observers, for the orthogonal 

condition, there was a violation of the assumption of normality of residuals (Shapiro-

Wilk, p < .001) due to the presence of an outlier - how we dealt with this datapoint is 

detailed in the results section. This dataset satisfied Levene’s test for the homogeneity 

of variance ( p > .05), but failed Mauchly’s test of sphericity (χ2 (2) = 29.03, p < .001), 

so the Greenhouse-Geisser correction was applied. For completeness, we also report 

a comparison between younger and older observers’ contrast detection thresholds. Due 

to the presence of two outliers (beyond 1st and 3rd quartiles -/+ 1.5 * IQR), this 

comparison was made using an independent samples Mann-Whitney U test 

(comparing medians). All statistical analyses were carried out using SPSS 

(https://www.ibm.com/products/spss-statistics).  

2.4 Results 

2.4.1 Elevated contrast detection thresholds in older observers  

First, to demonstrate that all observers were able to perceive the suprathreshold 

stimulus, we report their contrast detection thresholds. Absolute detection thresholds 

are shown in Figure 2.3, and are all well below the contrast of our matching stimulus 

(20%). Though, there are two high-threshold outliers in the older age-group, and a 

single marginal outlier in the younger age-group. It is unclear whether these reflect 

genuine visual deficit, or whether they a misapprehension/artefact of the method of 

adjustment. Nevertheless, we have no reason to suspect that these data-points are 

artefactual, so we retained their thresholds and conducted a non-parametric 

comparison. We also retained these observers’ supra-threshold contrast matching data, 

as the reference grating would still have been approximately twice their detection 

threshold. There is there is a clear trend towards younger observers having lower 

detection thresholds (median = 2.02%, IQR = .60%), than older observers (median = 

3.55%, IQR = 1.74%), a difference in medians of 1.53%  that was significant according 

to a Mann-Whitney U test (U = 28, z = -4.552, p < .001). This age-related increase in 

contrast detection thresholds is consistent with existing literature (Beard et al., 1994; 

Elliott, 1987; Mei et al., 2007; Owsley, 1983). Having confirmed that all observers 

could readily perceive our suprathreshold stimulus, we will now report the results of 

the contrast matching experiment.  
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Figure 2.3: Detection thresholds compared across age-groups 
Contrast detection thresholds in younger and older adults. Represented as boxplots due to the use of 

non-parametric statistics to compare medians. Grey circles represent individual data points, crosses 

represent outliers. *** = p<.001. The upper whiskers of each boxplot extend to the last data-point 

less than the 3rd quartile + 1.5* the interquartile range (IQR), and the lower whiskers extend to the 

last data-point more than the 1st quartile – 1.5*IQR.   

2.4.2 Surround suppression does not change with age 

In Figure 2.4, we present example psychometric function fits from a younger 

and older observer. Both have discrimination accuracy estimates that are well 

described by a logistic CDF, and the same is true of most observers (see Appendix A 

for all observers’ fits), though two had chance-level accuracy at high target contrasts 

that were not consistent with their performance at lower contrasts. In these observers 

(highlighted in Appendix A), this discontinuity in performance was driven by several 

target intensities with only two trials, likely reflecting a brief excursion of the staircase 

into high target contrasts due to a series of finger errors. For this reason, we removed 

any target intensities with fewer than three trials prior to model fitting for these two 

observers.  
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Figure 2.4: Example psychometric function fits 
Psychometric function fits from two example observers in the three matching condition we used. 

Where the vertical line of the crosshair intercepts the abscissa denotes the point of subjective equality 

that we use for group-level comparisons. 

 

In Figure 2.5, the mean of PSEs estimated by psychometric function fits for 

each surround condition are presented split by age-group. We analysed observers’ 

PSEs with a mixed-model ANOVA, but examination of studentised model residuals 

(via quantile-quantile plots) showed that there were two clear outliers (a studentised 

residual of ± 3), one in the no-surround condition (older), and one in the orthogonal 

condition (younger). Further inspection revealed that the generative psychometric 

functions for these thresholds had sensible fits (these are highlighted in Appendix A). 

As we had no reason to suspect these data-points were artefactual, we elected to run 

the ANOVA with and without their data to examine whether the statistical outcome 

was contingent on their contribution. The interpretation of all p-values was the same 

in either case, so we elected to interpret results based on the full-dataset, but provide 

ANOVA tables both with and without outliers in Appendix B. In Figure 2.5, older and 

younger observers appear to have quite similar PSEs in all surround conditions, though 
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there is some indication that younger observers PSEs may be more sensitive to the 

orientation of the surround. Statistical analysis showed that the within-subjects 

comparison of surround condition was significant (F(1.280,42.240) = 26.545, p < = 

.001), while the between subjects comparison of age-group was non-significant 

(F(1,33) = .060, p = .808), and there was a non-significant interaction between age-

group and surround condition (F(1.280,47.240) = .273, p = .662). These results 

indicate that PSEs were contingent on the configuration and/or presence of the 

surround, but do not support the presence of a broad age-related effect on surround 

suppression, nor any surround-configuration specific effect of age (i.e., due to 

differences in orientation tuning across age-groups, which has been found in monkey 

electrophysiology (Schmolesky et al., 2000)). This pattern of results is better conveyed 

in Figure 2.5B, where we have plotted surround-on PSEs as multiples of observers’ 

surround-off PSEs, emphasising within-subjects differences relative to the surround-

off control. Here, we can see that 95% confidence intervals on the mean (generated 

via bootstrapping with replacement) do not cross 1 for both surround configurations 

for both age-groups (indicative of a significant PSE reduction from control), but are 

almost entirely overlapping within each surround condition, implying  a similar degree 

of surround suppression across age-groups, in disagreement with previous findings of 

increased central supra-threshold surround suppression in the elderly (Karas & 

McKendrick, 2009, 2011, 2012, 2015). 

 
Figure 2.5: Points of subjective equivalence split by age-group 
A: mean of PSEs split by age group & surround condition. Larger open circles represent the within 

condition mean of young participants, larger closed circles represent the same for older participants. 

Error bars represent 95% confidence intervals. B: Same format as A, but showing suppression 

rations. Thresholds below the solid reference line are indicative of suppression. 
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As the within-subjects effect of surround condition was significant, we 

conducted post-hoc paired t-tests across all observers, collapsed across age-groups 

(Figure 2.6A). Observers’ PSEs were, on average, highest in the no-mask control 

condition (mean = 21.5%, 95%CI =[20.8, 22.3]), lowest in the collinear mask 

condition (mean = 19.2%, 95% CI [18.6, 19.9]) and intermediate in the orthogonal 

mask condition (mean = 19.7%; 95CI = [19.1, 20.6]). The mean reduction in PSEs 

between the control and collinear conditions was significant (mean Δ = -2.3%, 95% 

CI: [1%, 3%] p < .001), as was the reduction in PSEs between control and orthogonal 

conditions (mean Δ = -1.8%, 95% CI [.09%, 2.6%] p <.001), and the difference 

between orthogonal and collinear surround PSEs (mean Δ = 0.5%, [.03%, 1.3%],  p < 

.05), though the latter was very small - less than the smallest step-size of our staircase 

procedure. As before, these PSEs are replotted as suppression factors in Figure 2.6B, 

where, on average,  collinear mask PSEs were 90% (95% CI = [86, 93]) of the no mask 

control, increasing to 92% (95% CI = [89, 96]) with an orthogonal mask, representing 

a mild (20%) reduction in masking strength. Unlike Xing and Heeger (2000), who 

found suppression to be strongly attenuated when using orthogonal surrounds.   

 
Figure 2.6: Points of subjective equivalence collapsed across all observers 
A: mean of PSEs collapsed across age groups, split by surround condition. Half-filled circles 

represent the within-condition mean across all observers. Smaller grey dots represent individual 

data points. Error bars represent 95% BCa CIs. B: mean of suppression factors, collapsed across 

age-groups. As before, points below the horizontal reference line are suggestive of suppression. * = 

p<.05, *** = p<.001. 
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2.5 Discussion 

Here, we asked whether age alters a fundamental component of early visual 

processing in humans: surround suppression. We used stimuli contrasts based on the 

work of Karas and McKendrick (2015), which they reported to elicit the strongest age-

related difference. However, to minimise edge effects and overlay masking, we 

included a 1 stimulus cycle gap between the centre and surround (Petrov et al., 2005). 

Although we did observe some surround suppression, it was relatively weak and 

broadly spatially tuned compared to the effect routinely found in the periphery both at 

absolute detection and suprathreshold (Petrov et al., 2005; Shushruth et al., 2013; Xing 

& Heeger, 2000). Contrary to previous publications, we found no evidence for an age-

related change in surround suppression. We will now discuss the meaning of our 

findings in the context of previous reports of surround suppression strengthening with 

age, and where our broadly tuned masking may fit into the existing literature on 

suprathreshold surround suppression in central vision. 

2.5.1 An alternative explanation for age effects in contrast suppression 

Previous work has indicated that surround suppression of contrast at 

suprathreshold intensities increases in magnitude with age (Karas & McKendrick, 

2009, 2011, 2012). We failed to replicate this finding, and propose that the age-related 

alteration of a different suppressive mechanism (such as overlay masking) could 

explain the difference between our results. The idea that surround suppression is not 

the only explanation is compatible with several of McKendrick and colleagues current 

findings. First, their recent work has found that the age-related increase in central-field 

suppression is abolished by interocular presentation of the centre and surround 

(Pitchaimuthu, Nguyen, et al., 2017). This indicates that the inhibitory circuitry 

affected by age exists prior to the fusion of the monocular visual streams in V1. 

McKendrick an colleagues suggest that the mechanism affected by age could be a 

separate, ‘early’ surround-suppression component, such as that proposed by Webb et 

al (2005) (based on macaque V1 electrophysiology) which is more apparent at low 

contrasts, where the age effect has been shown to be most profound in humans (Karas 

& McKendrick, 2015). However, the same pattern of results could just as easily be 

explained by overlay masking, as it too has a broadly tuned monocular component 

(Baker, Meese, & Summers, 2007; Bonds, 1989; DeAngelis et al., 1992; Petrov et al., 
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2005), and has been shown to occur prior to orientation tuned surround suppression 

(Petrov et al., 2005). Though, it is important to note that these findings for overlay 

suppression are at detection threshold, and it is uncertain how far they extend to 

suprathreshold contrast perception. Moreover, Nguyen and McKendrick (2016) 

demonstrated that a very narrow surrounding annulus presented in close proximity to 

a central grating (a gap of ~λ/3) is sufficient to produce increased suppression in the 

elderly – approximately 69% of the age-effect they reported when using spatially 

extensive directly abutting surrounds at the same contrasts in a previous experiment 

(Karas & McKendrick, 2015). This implies that the wide-field extent of the surround 

is of less importance relative to the inner boundary, and indeed, they found the inverse 

age-effect in the periphery when they happened to use an intervening gap in excess of 

1 stimulus cycle. While this was interpreted as a foveal bias in their observed age-

effect, any contribution from overlay suppression would likely have been severely 

reduced in their peripheral condition.  

 A competing explanation for the absence of an age-related strengthening of 

surround suppression in our results could be based on the timing of our stimuli. Our 

central targets were presented for 150ms, a duration shown to produce the age-effect 

previously (Nguyen & McKendrick, 2016). However, the onset of our surrounding 

annulus was not synchronous with the onset of the central target. In our experiment, 

surrounds appeared 500ms before the target, and were sustained until 500ms after the 

offset of the target, whereas McKendrick and colleagues always use targets and masks 

that are synchronous. When a surrounding mask’s onset and offset occurs before or 

after the onset/offset of a central probe, suppression can still be produced (this is often 

referred to as forward and backwards masking). This masking is transient: relative to 

the central probe, suppression is much weaker when the surround’s whole duration is 

offset by as little as 20ms (Petrov & McKee, 2009). However, this weak suppression 

is not to be confused with the suppression we have measured, as our surrounding 

masks still coincided with the timing of the central target (see Figure 2.2). This is an 

important distinction, as it means that we have measured the cumulative suppression 

of forward, simultaneous, and backwards masking in our observers. Could this explain 

our lack of an effect of age on surround suppression? Previous M/EEG experiments 

(Ohtani et al., 2002; Schallmo et al., 2018), have presented surrounds up to 2s before 

and after the target (to measure the separate responses to the centre and surround), and 
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still measure significant suppression of neuronal responses. In a control condition, 

Ohtani and colleagues even compared the suppression elicited by simultaneous and 

sustained early-onset surrounds, finding similar suppression in both cases. Moreover, 

in a psychophysical experiment, Schallmo and Murray (2016) presented surrounds 1-

2s in advance of a probe until 500ms after the probe’s offset, and still reported 

surround suppression at suprathreshold contrasts. Schallmo and colleagues’ stimuli 

were presented in the perifovea (5.3°), as were those of Ohtani et al., so there remains 

the possibility that this pattern of results may change at fixation. Nevertheless, if the 

effect of age on surround suppression in central vision requires the simultaneous onset 

and/or offset of both the centre and surround, our stimuli would indeed have escaped 

it. As stronger surround suppression with age has been identified using centres and 

surround presented for as long as 500ms (Karas & McKendrick, 2015), we think this 

is unlikely, but investigating the temporal dependencies of this effect would be 

interesting line for enquiry.        

Our findings of no effect of age on supra-threshold surround suppression in 

central vision coupled with alternative interpretations of McKendrick and colleagues’ 

findings suggest that further investigation to identify the unique contributions of 

overlay masking and surround suppression to age-related changes in contrast 

suppression would be fruitful. Although, work from the same lab recently did not to 

find the age effect even when using directly abutting surrounds (Nguyen et al., 2020), 

suggesting that a general contribution from overlay masking may not be the sole 

explanation for the differences in our findings. In this experiment, the authors used 

stimuli at lower spatial frequencies than usual (1cpd), where a sizeable proportion of 

the surrounding annulus would be within a stimulus wavelength of the central target. 

That they did not find the effect of age in this case suggests that there may be some 

selectivity in the mechanism effected by age, such that it is absent at low spatial 

frequencies. If we accept that surround suppression changes in spatial tuning as a 

function of absolute stimulus contrast (Levitt & Lund, 1997; Webb et al., 2005), then 

a different  uppressivee mechanisms may be dominant at low spatial frequencies 

which may escape the effect of age. Some temporal specificity is also implied, such 

that the increase in suppression with age is present for intermediate durations of 150 

– 200ms (Karas & McKendrick, 2015; Pitchaimuthu, Nguyen, et al., 2017), but 

severely diminished at longer durations of 500ms (Karas & McKendrick, 2015) and 
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totally absent shorter durations of 40ms (Pitchaimuthu, Nguyen, et al., 2017). Indeed, 

that such minor alterations to the stimulus (including our own) abolish the age-effect 

suggests that it is generated by a suppressive mechanism (or a subset of mechanisms) 

that is spatially and temporally narrow-band, rather than a general feature of contrast 

gain-control processes throughout the visual system. 

2.5.2 Broadly tuned central supra-threshold surround suppression 

Surround suppression is an umbrella term for a number of distinct neural 

mechanisms with distinct spatiotemporal tunings. At the centre of the visual field, 

surround suppression is mostly absent at detection threshold (Kim et al., 2010; Petrov 

et al., 2005; Saarela & Herzog, 2008), but is present at supra-threshold intensities 

(Vanegas et al., 2015) and found to be orientation tuned (Cannon & Fullenkamp, 1991; 

Xing & Heeger, 2000). In fact, Xing & Heeger found an orthogonal surround to 

abolish suppression almost entirely when using a central stimulus. We too found 

significant supra-threshold suppression, but only found a small (thought significant) 

difference between collinear and orthogonal suppression indices. What might explain 

the broader tuning we have encountered? It is difficult to draw comparisons between 

Xing and Heeger’s findings and our own, as they (like many others), use almost 

directly abutting surrounds, so it is impossible to fully dissociate contributions from 

overlay masking and surround suppression in their findings. Nevertheless, one 

explanation for our observation of broad spatial tuning is a difference the 

spatiotemporal parameters of our stimuli. Xing and Heeger used gratings that contrast-

reversed at 8Hz while we used static gratings that were presented for 150ms, and 

which were therefore relatively long-lived. It is possible that Xing and Heeger’s 

stimuli were detected by neurons tuned to higher temporal frequencies than the 

neurons subject to the  suppressive mechanism we have observed. At detection 

threshold in the periphery, transient and sustained surround suppression are both found 

to be orientation tuned (Petrov & McKee, 2009), but it may be that not all mechanisms 

contributing to surround suppression in central vision share these tuning properties. In 

other words, it is possible that transient suprathreshold surround suppression is sharply 

orientation tuned in central vision, while the more sustained suppression that we may 

have isolated is not. Furthermore, when measuring orientation tuning, Xing and 

Heeger used much larger stimuli than we did (both centres and surrounds), at just over 

half our spatial frequency (we used 3.33cpd, they used 2cpd). Their surrounds 
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subtended 11° of visual angle, while ours only subtended 3.2°, so it is plausible that 

their stimuli recruited longer-range suppression that may be distinct in its tuning 

characteristics, although this would be counter to evidence suggesting that long-range 

surround suppression is less orientation tuned than the shorter-range suppression that 

we may have measured (Angelucci et al., 2017; Nurminen et al., 2010).  

If we accept that Xing and Heeger’s (2000) results may be explained via a 

difference in the spatiotemporal tuning of the suppressive mechanisms activated by 

our respective stimuli, and if we discount any intrusion of overlay masking into their 

design, then our findings provoke further exploration of how stimulus transience and 

spatial location interact to determine the strength of surround suppression. In human 

observers, previous work using stimuli presented at the near-periphery has identified 

that transient and sustained suppressive mechanisms are strongly orientation tuned 

(Petrov & McKee, 2009), and that the suppression enacted upon briefly presented 

stimuli (<100ms) is more profound. However, it remains to be seen whether the 

temporal invariance of tuning found at peripheral eccentricities is also present at 

fixation – it is possible that surround suppression in central vision has distinct 

spatiotemporal tuning characteristics. Tentatively: our findings of broad orientation 

tuning using sustained stimuli, taken together with the tighter tuning observed using 

transient stimuli (Xing & Heeger, 2000) are compatible with the orientation tuning of 

surround suppression in central vision being more temporally dependant than the 

suppression found in the periphery. Future experiments could directly address this 

possibility, and might also explore whether these spatiotemporal tuning characteristics 

vary as a function of absolute stimulus contrast. In Macaque V1, at perifoveal 

eccentricities, the orientation tuning of surround suppression appears to be strongest 

when using high contrast stimuli. Levitt and Lund (1997) found such contrast 

specificity in over half of the contrast-dependant neurons from which they measured 

responses, and Webb et al. (2005) noted that a low-contrast grating was similarly 

suppressed by a collinear grating annulus and one of uniform luminance. If the 

orientation tuning of surround suppression changes as a function of input contrast, 

perhaps the transience of its effect on perceived contrast does as well. 
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2.6 Conclusion 

 We have shown that the age-related increase in surround suppression reported 

in a recent series of publications is not a universal finding. Using stimuli designed to 

isolate surround suppression from overlay masking, we report no effect of age on 

supra-threshold contrast suppression, despite using contrasts previously reported to 

yield the maximum age-related difference. We propose that the lack of agreement 

between our results and previous reports could be unintentional contributions from 

overlay masking. The suppression we did find is weak, and only broadly tuned to the 

collinearity of the target and the surround, unlike previous reports of suprathreshold 

masking in central vision. We propose that future investigation of the strength of 

overlay masking relative to surround suppression across the human lifespan would be 

fruitful. 
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Chapter 3. Human sensitivity to global form violates 

Weber’s law  

3.1 Abstract 

Decades of psychophysical experiments have shown that the perception of 

luminance contrast violates Weber’s law: contrast discrimination is best at low (but 

non-zero) pedestal intensities. More recently, this “dipper effect” has been found in 

more complex visual parameter spaces, suggesting that it may be the consequence of 

a “canonical” computation in visual processing. Here, we ask whether the mid-level 

perception of global form elicited by Glass patterns also violates Weber’s law, and 

whether the pattern of discrimination thresholds reveals a bias towards a certain axis 

of global form alignment (translational, radial, concentric). We parameterised global 

form by sampling Glass pattern dipole orientations from a Gaussian distribution, such 

that the variance of the sampling distribution controls the coherence of the pattern. In 

an online psychophysical experiment, we examined observers’ sensitivity to global 

form across several pedestal coherence levels. By fitting the resultant detection and 

discrimination thresholds with a differentiated neuronal transducer function, we find 

evidence of mild dipper effect: threshold facilitation, followed by suppression 

proportional to Weber’s law.  Unlike previous reports, we find little evidence for a 

difference in sensitivity across pattern axes. Our work shows, for the first time, that 

the perception of global form elicited by Glass patterns may be subject to a dipper 

effect.  

3.2 Introduction   

Our senses provide graded, rather than binary responses to external stimuli. This 

means that we can usually distinguish or discriminate between two stimuli of the same 

type but different magnitudes. This discrimination is limited both by the noise in the 

measurement system and the difference in neuronal response that the two stimuli elicit. 

Over the past 100 years, a key finding from sensory psychophysics is that the 

discriminability of two stimuli depends on their absolute intensity. Two stimuli, with 

a set additive difference in intensity, are often harder to discriminate when their 

absolute intensities are high. One of the first (likely the first) attempts to make a 
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general model of the ‘just noticeable differences’ (JNDs) in stimulus intensity comes 

in the form of Weber’s law (Fechner, 1860). For a given sensory parameter space, for 

any stimulus intensity I, Weber’s law states that the JND in stimulus intensity (ΔC) is 

a fixed proportion (𝑘)  of the original magnitude such that ΔC =  𝑘 ∙  C . In other 

words, the difference in stimulus intensity necessary for sensory discrimination is a 

multiplicative constant, rather than additive one, such that the difference in intensity 

required is proportional to the absolute intensity of the stimulus. We now know 

Weber’s law to be an approximation that can fail at very low and high stimulus 

magnitudes. At these extremes, JNDs often follow a different monotonic rule, such as 

a square root law (ΔC =  √C). Examples come from light intensity (Barlow, 1957), 

loudness (Parker & Schneider, 1980) and pure tones (McGill & Goldberg, 1968– - all 

show a small but reliable violation of Weber’s proportionality. The perception of 

luminance contrast, however, has proven to be more problematic for Weber’s law.  

In 1974, Jacob Nachmias & Richard Sansbury found an intriguing violation of 

Weber’s law. At very low pedestal contrasts, close to absolute detection, 

discrimination thresholds improve (are “facilitated”) before showing a Weber-like 

trend of proportional increases (or “suppression”). This early facilitation of contrast 

(often called the “dipper” or “pedestal” effect) has been reliably observed for decades 

(Baker, Meese, & Georgeson, 2007; Foley, 1994; Foley & Legge, 1981; Legge & 

Foley, 1980; Nachmias & Sansbury, 1974), and has encouraged the development of 

theoretical explanations for nonmonotonicity in contrast discrimination. There are 

competing explanations from nonlinear transduction (Legge & Foley, 1980; Nachmias 

& Sansbury, 1974), and uncertainty reduction (Pelli, 1985). While the explanation for 

the dipper effect is still debated in some circles (see Solomon (2009)), recent 

experimental work has indicated that the “dipper effect” can be found in much more 

complex forms of visual perception. Morgan et al. (2008) presented observers with 

fields of vertically oriented Gabor patches and measured the increase in orientation 

variability required for the discrimination of two different Gabor fields. They found 

that the increase in standard deviation required for discrimination was subject to early 

facilitation followed by suppression. More recently, Gray et al. (2020) found evidence 

for a dipper effect in a facial emotion parameter space, where sensitivity to more subtle 

facial expressions is improved beyond the threshold for expression detection. Similar 

behavioural findings extend to the visual perception of perceived speed (Gori et al., 



Chapter 3.   Behavioural sensitivity to global form 

49 

 

2011) and 2nd order luminance patterns (P.-C. Huang & Chen, 2014). That the “dipper 

effect” can be found in several forms of visual perception – even as far as the 

perception of facial expressions - suggests that it may be the consequence of a 

“canonical computation”: a fundamental neuronal operation that is applied at multiple 

stages of visual processing. For example, a “half-squaring” threshold nonlinearity has 

been found to predict the accelerating responses of neurons at low contrasts (Heeger, 

1992b), and has been incorporated into models of divisive gain control (Carandini & 

Heeger, 2011). It is possible that a similar transformation (exponentiation at low 

stimulus intensities) is applied throughout the visual processing hierarchy, producing 

“dipper effects” in both rudimentary and more complex visual parameter spaces. In 

this chapter, we further examine the ubiquity of the “dipper effect” by exploring 

observers’ sensitivity using a putatively mid-level visual stimulus that is an 

intermediary of luminance contrast and facial perception: the global form percept 

elicited by Glass patterns.  

Glass patterns (Glass, 1969; Glass & Pérez, 1973; Glass & Switkes, 1976) are a 

global form stimulus comprised of orientated dot-pairs (dipoles) generated by drawing 

a field of randomly placed individual dots, applying a geometric transformation to 

their coordinates (i.e., dilation, rotation, translation) and redrawing them. The output 

is a field of dipoles that are locally distinct as separate pairs, but geometrically 

correlated across the whole pattern. This correlation yields the percept of form along 

the transformation axis that was applied, though no individual element is innately 

oriented. The perception of Glass patterns is thought to rely on at least two distinct 

pooling stages (H. R. Wilson & Wilkinson, 1998; H. R. Wilson et al., 1997): one that 

can pool dots into oriented dipoles, likely supported by the small oriented receptive 

fields of V1 and V2 (Movshon et al., 2010; Smith et al., 2007); and another that can 

pool local orientation signals into detectible global structure, likely located in 

extrastriate processing regions like V4 and the lateral occipital cortex (Gallant et al., 

1996; Mannion et al., 2013; Ostwald et al., 2008). Glass patterns allow experimenters 

to manipulate the local information (carried by each dipole) and the global form 

information (carried across dipoles) independently. They are therefore an ideal 

stimulus for studying intermediary spatial pooling processes. Most experiments 

investigating Glass pattern global form focus on probing absolute detection thresholds 

by manipulating the number of locally corruptive unpaired dots in the dipole field 
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(Maloney et al., 1987), or more often by altering the proportion of signal and noise 

dipoles (Dakin & Bex, 2002; Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 1998). 

Recent experiments using the latter manipulation asked whether the human visual 

system is optimised to perceive global form along specific axes, finding a general 

enhancement for radial and concentric form over translational form (P.-C. Huang & 

Chen, 2016; Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 1998; H. R. Wilson et 

al., 1997). 

 Unlike absolute detection, the pattern of global form discrimination thresholds 

has scarcely been investigated, nor compared across pattern axes. Nankoo et al. (2012) 

indirectly assessed this by measuring global form sensitivity under signal detection 

theory (fitting a psychometric function to values of d’ as a function of pattern 

coherence), but did not report or compare any parameters of these fits beyond the d’ 

threshold (they also found increased sensitivity for concentric and radial patterns). For 

luminance contrast, discrimination thresholds can be predicted based on zero baseline 

d’ values (Nachmias & Sansbury, 1974; Pelli, 1985), but this prediction assumes that 

observers’ performance is limited by an additive source of noise (with a nonlinear 

transducer) which is still debated for contrast (Pelli, 1985; Solomon, 2009), and 

unknown for the discrimination of Glass pattern global form. To parameterise global 

form in the present study, we take an approach similar to that of Dakin (1997) and 

Morgan et al. (2008) by sampling dipole orientations from a Gaussian distribution. 

Though unlike Morgan et al. and Dakin, who effectively treat a perfectly aligned 

pattern as “zero” intensity (as in, zero variance), we do the opposite, assessing 

discrimination starting from random orientation noise (dipole orientations sampled 

from a uniform distribution). In an online experiment, we use dipole fields of 

increasing specificity around their principal axis to measure global form 

discrimination thresholds at several pedestal levels – separately for translational, 

radial, and concentric patterns. We have two aims. First, to assess the degree to which 

global form discrimination obeys Weber’s law. Second, to investigate whether there 

is enhanced supra-threshold sensitivity to radial and concentric form over translational 

form, as in existing reports at detection threshold. To accomplish these objectives, we 

fit group-average discrimination thresholds with both a power-law (which describes 

only threshold suppression/a saturating nonlinearity) and the first derivative of a 

sigmoidal neuronal transducer  that can simultaneously describe threshold facilitation 
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and suppression. We compare the descriptive merit of these models, and then contrast 

the bootstrapped fit parameters of descriptive model fits across Glass pattern 

alignment axes.   

3.3 Methods 

3.3.1 Participants 

Forty-two observers were recruited for this experiment via Prolific 

(www.prolific.co), an online participant recruitment platform; 25 males, 16 females 

with a mean age of 27 years (SD = 7.8). One observer did not report their sex, and 3 

did not report their age. Using Prolific’s database of screening questions, recruitment 

was targeted at individuals who had self-reported normal or corrected-to-normal visual 

acuity; no disease or disorder of the eye or visual system; no severe hearing 

impairments; no personal history of epilepsy, cognitive impairment, or dementia; and 

usage of a computer, not a smartphone or tablet device, for participation. Satisfaction 

of these criteria was recapitulated via forced-choice questions on the consent form, 

presented to participants via Qualtrics (www.qualtrics.com), where their age and 

gender were also acquired. Before the point of participation, further screening was 

performed using custom JavaScript (JS) code; if a smartphone, tablet device, or 

unstable frame-timings were detected, participants were not able to continue. 

Participants were advised of all screening criteria in advance via the experiment’s 

landing page, information sheet and consent form. Participants who satisfied these 

criteria and completed all 3 sessions of the experiment were paid £9 for their time. 

Ethical approval for the study was provided by the Department of Psychology at the 

University of York. 

3.3.2 Online design and calibration 

The experiment was conducted online using Pavlovia (www.pavlovia.org), a 

web-browser based experimentation platform. As such, full control of display and 

room conditions was not possible, but measures were taken to control for observers’ 

viewing distance using the “virtual chinrest” protocol set out by Li et al. (2020). 

Briefly: for each observer’s display, a pixels-per-centimetre value was obtained by 

asking the observer to scale a rectangle to the size of a standard reference (a bank 

http://www.qualtrics.com/
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card). Viewing distance was then calibrated by identifying the distance from fixation 

to the nasal border of the left-eye optic disk blind-spot. This distance (in centimetres) 

was treated as equivalent to 13.5 degrees of visual angle. This equivocation was found 

to optimal by Li and colleagues, and we used it to maintain (approximately) the size 

of our stimuli across observers’ retinae. Observers were asked to minimise movement 

throughout the experiment, and to try and sit at the same distance again if they pause 

the experiment for any reason. Remote psychophysical gamma correction via motion 

nulling (Ledgeway & Smith, 1994) was not possible at the time of data-collection due 

to web-browser limitations. 

3.3.3 Visual Stimuli 

The programming language Python (https://www.python.org/) was used to 

generate stimuli frames, which were stored as a set of high-resolution rasterised 

images for online presentation. The spatial parameters of the dipole-fields used are 

illustrated in Figure 3.1. 

 
Figure 3.1: Spatial configuration of Glass patterns 
An example of the Glass patterns used in this experiment; Translational, Radial, and Concentric 

transformations were applied to random dot coordinates.  

 

Each stimulus frame was a field of 62 full contrast dot-pairs (dipoles), with a 

50/50 split of black and white pairs. Assuming the accurate remote calibration of 
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observer distance and display scale, these dipoles were presented within a circular 

field subtending 10° of visual angle, with an areal density of  3.9% (1.6 pairs/deg2). 

Within a dipole, each dot had a diameter of 10.02 arcmin and a centre-to-centre 

separation of 19.2 arcmin. The distance between dipole centres was at least 45.6 

arcmin. This was ensured for each dipole field by continuously generating random 

dipole-centre coordinates and keeping values that were lawfully spaced and rejecting 

those that were not until a sufficient number of coordinates were generated (a method 

often referred to as rejection sampling). A thin grey ring was presented around the 

dipole fields for the duration of the experiment to eliminate any spatial uncertainty 

about where the stimuli would appear. Dipole-fields with different degrees of global 

form coherence were generated for translational, radial, and concentric pattern axes – 

see Figure 3.1 for examples of these patterns at maximum coherence.  

𝑣𝑀𝑝𝑑𝑓(x | κ, μ) =
eκ cos ( x−μ)

2πI0(κ)
 ( 1 ) 

To generate dipole fields of different global form coherence, the angular 

orientation of each dipole in a field was sampled from a semi-circular von-Mises 

distribution. The von-Mises probability density function is provided in equation 1. 

Here, kappa (κ) is a specificity parameter – it is analogous to the reciprocal of the 

variance. A kappa of zero produces a uniform distribution, while increasingly positive 

values increase the probability density symmetrically around the mean angle mu (μ) – 

which we set to zero. Sampling from this distribution returns values spanning 2π, 

which are halved, wrapping them on the semi-circle instead ( -π/2 > π/2 ). This was 

done as each dipole is oriented along a line, but has no sense/direction (i.e., for a radial 

dipole, there is no distinction between an inwards and outwards heading). In the end, 

this produces an array of 62 semi-circular angles/arc lengths, centred on zero, with an 

angular specificity dependant on the value of kappa. This array is then used to displace 

a 2nd array of 62 angles that are perfectly aligned along the desired global form axis. 

Therefore, as kappa increases, so does the global orientation alignment of the dipole 

field. 
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Figure 3.2: Parameterisation of global form 
The pedestal levels of von-Mises concentration (k) used in this experiment shown using a radial 

Glass pattern. The bottom-right figure shows the jitter distribution for each level of kappa used as a 

pedestal. The percentages under k values are the output of equation 2 for each value of k.  

 

To estimate observers’ global form discrimination thresholds psychophysically, 

the von-Mises distribution was used to generate patterns across a range of kappa 

values, illustrated in Figure 3.2 for a radial pattern. For translational, radial, and 

concentric pattern axes, dipole orientation arrays were generated at five pedestal levels 

of kappa, a range we refer to as κp, where p is the rank of the pedestal. The first pedestal 

level (κ1) was zero, representing detection of global form against random noise. 

Subsequent levels (κ2 > κ5) were spaced in 5.6dB increments, starting from κ = 0.57. 

Then, for each value of κp, a separate list of κp + increment values was generated allow the 

measurement of discrimination thresholds. There were five increment values used, 

more widely spaced (by 8dB) to accommodate cross-observer variance in 

discrimination thresholds. For pedestals κ1, κ2, and κ3, the 8db increments started at 

0.150, but for κ4 and κ5, they started at 0.600. This decision was made based on pilots 

suggesting that a range of increments starting from 0.15 would mostly capture chance-

level performance for κ4 and κ5. Dipole-field images were then generated for each 

unique value of κp and κp + increment. For every unique kappa value used, we produced 

fifteen pre-rasterised exemplars drawn from the same probability distribution. The 

order of exemplars used was pseudo-randomised such that the same exemplar could 

never be presented twice in immediate succession. Multiple exemplars were used to 
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reduce the probability of pattern discrimination purely on the basis of recognising a 

previously seen image. As the number of dipoles used in this experiment was quite 

low, each distribution generated was assessed using a Kolmogorov-Smirnov test ( 

against α = 0.05)  for the equality of the randomly sampled variates with the theoretical 

von-Mises PDF. Any sample distributions that failed this test were resampled until a 

legal distribution was obtained. 

𝑃𝑒𝑑𝑒𝑠𝑡𝑎𝑙% = (∫ 𝑣𝑀𝑝𝑑𝑓(𝑥, 𝑝𝑒𝑑𝑒𝑠𝑡𝑎𝑙𝑘 , 0) 
10°

−10°

) 
( 2 ) 

 
𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡% = (∫ 𝑣𝑀𝑝𝑑𝑓(𝑥, 𝑝𝑒𝑑𝑒𝑠𝑡𝑎𝑙𝑘 +  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑘 , 0)

10°

−10°

) − 𝑃𝑒𝑑𝑒𝑠𝑡𝑎𝑙% 

 To represent our parameterisation of global form in finite units that can related 

to neuronal orientation tuning profiles, pedestal and increment kappa values were 

converted to a bounded range that we refer to as “global form coherence”. These 

transformed values were obtained by integrating the von-Mises PDF at all values of 

κp and κp + increment across a 20° range centred on zero, and treating the value yielded by 

this integration as a measure of global form intensity. This value describes the 

probability of sampled dipole orientations falling within 10° of perfect alignment, and 

we treat it as though it faithfully equates this proportion, which is reliable assumption 

due to the use of a K-S tests to filter out aberrant distributions. The 20° integration 

window was chosen based on primate literature indicating that this is the lower-bound 

on the full-width half-maximum bandwidth of neurons in V1 with a receptive field 

size that covers a dipole width (Gur et al., 2004). This approximates the integration 

range reported by Dakin (1997), who found the judgement of mean orientation of 

translational Glass patterns to be stable until a local orientation standard deviation of 

approximately 9°. That our transformation (equation 2) assumes that all dipoles within 

the 20° integration range will equally affect the neuronal response is an 

oversimplification, but we believe it is sufficient for the relative comparisons 

performed in the present experiment, and for the comparisons performed in Chapter 

4. This transformation was performed using equation 2, where the difference between 

the transformed values of κp and κp + increment becomes the increment values to which 

we fit a psychometric function for each observer to obtain JNDs. The transformation 

between kappa and coherence defined in this way is illustrated in Figure 3.3. 



Chapter 3.   Behavioural sensitivity to global form 

56 

 

 

 
Figure 3.3: Transformation of kappa to coherence 
The function of equation 2 used to convert the von-Mises concentration parameter (k) to a percentage 

based on existing tuning bandwidth estimates of neurons in primate visual cortex. The dotted lines 

represent the pedestal levels used in this experiment. 

 

3.3.4 Experimental procedure 

In a between-subjects design, each observer was allocated to either the 

translational, radial, or concentric pattern condition. While a within-subjects 

comparison between pattern axes would have been preferable, this would have 

required 3x the time commitment from each observer, and we were concerned that 

online participants may not return data for all three conditions. For each observer, the 

whole experiment took place across three identical sessions, for which the following 

procedure was carried out. Initially, observers carried out the calibration procedure as 

detailed previously. Then, they were shown short animations and written instructions 

explaining their task, the pattern axes they would see; (i.e., what is meant by 

“concentric”, “radial”, and “vertical”); and images conveying our operationalisation 

of global form alignment (similar to Figure 3.2, but without the distribution curves). 

Then, using the method of constant stimuli (MOCS), observers performed a two-

interval-forced-choice (2IFC) procedure to obtain discrimination accuracy estimates 

for each increment coherence, at each pedestal. The timing of a single 2IFC trial is 

illustrated in Figure 3.4. Note, all blank intervals still contained the grey annulus and 

fixation cross. Observers saw a 500ms empty period, 100ms of pattern interval one, a 
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750ms empty period, followed by 100ms of pattern interval two. Then, they had 

unlimited time to make their response. Each interval contained a dipole-field generated 

either from a pedestal or pedestal + increment value of kappa, and the order of pedestal 

and target presentation was randomised on every trial. Observers were told that their 

task was to select the pattern that appeared to be most aligned along the pattern axis 

that had been explained to them. In each session, for each of five pedestal kappa levels, 

20 trials were collected per increment kappa level, totalling 100 trials per session. To 

stabilise observers’ response criteria prior to data collection, they carried out an 

abbreviated version of the experiment before the real task began, which contained 1 

trial for each increment value, for every pedestal (a total of 25 practice trials before 

each session).  

3.3.5 Model fitting 

To extract JNDs at each pedestal coherence, each observer’s response accuracy 

for each increment coherence was fit with a Weibull function using the psignifit-4 

toolbox (Schütt et al., 2016) in Python. The lapse rate was fixed to 1%, the lower 

asymptote of the function was fixed at the 2IFC chance level of 50%, and the threshold 

and slope parameters were allowed to vary freely. This fit was then used to extract a 

coherence value equating the 75% response accuracy. For each pedestal level, all 300 

trials across an observer’s three sessions were pooled and treated as if from a single 

 
Figure 3.4: Stimulus presentation 
Timing of a single 2AFC trial of the MOCS procedure used in this experiment. Observers perceived 

two 100ms intervals separated by 750ms. One interval contained the pedestal patterns, the other 

contained the target pattern. 
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session. This means that that each observer had a single Weibull fit (and JND) for each 

pedestal level. Observers’ discrimination thresholds were normalised to their 

respective detection thresholds prior to further model fitting, a process which will be 

elaborated upon in the results section. We compared normalised discrimination 

thresholds to the median threshold for detection using estimation statistics (Claridge-

Chang & Assam, 2016), whereby significance is assessed by generating 95% 

confidence intervals on the normalised values. Where these confidence intervals do 

not contain the median detection threshold, a significant difference can be concluded.  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑐 | 𝑛, 𝑐50, 𝑟𝑀𝑎𝑥) =  𝑟𝑀𝑎𝑥 ∗
𝑐𝑛

(𝑐𝑛 + 𝑐50
𝑛 )

 
( 3 ) 

 

To provide descriptive parameter estimates on the pattern of detection and 

discrimination thresholds across observers, median thresholds were fit with the first 

derivative of a hyperbolic ratio function, a neuronal transducer curve which is often 

used to model contrast responses (Albrecht & Geisler, 1991; Albrecht & Hamilton, 

1982; Boynton et al., 1999; Williford & Maunsell, 2006). This function (eq. 3) models 

the input-output transfer function of neurons whose responses encode a sensory 

parameter space, and its 1st derivative can be used to predict behavioural thresholds. 

This function has the useful quality of being able to describe a range of response 

profiles with only three parameters,: rMax, the c50, and n-exponent. The rMax is a 

scaling coefficient reflecting the intensity at which a neuron’s (or population of 

neurons’) response reaches its maximum value - it is defined in arbitrary units when 

fitting behavioural thresholds. Changing the rMax parameter vertically translates the 

behavioural thresholds predicted by the model, and has previously been related to 

attentional modulation (L. Huang & Dobkins, 2005). The c50 describes the stimulus 

value that produces and output equal to half the value of rMax. Changes in the c50 

diagonally translate the thresholds predicted by the model, such that increasing the c50 

shifts the discrimination function to operate over higher pedestal and threshold values. 

The exponent, n, describes the form of nonlinearities occurring around the c50 value. 

When n > 1, this simultaneously predicts facilitation at low intensities, and 

suppression at high intensities (the form of suppression may or may not resemble 

Weber’s law). Exponents at or below one mean that the input-output function is never 

expansive, only compressive, reflecting behavioural threshold suppression but an 
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absence of facilitation. Note, a c50 beyond 100% is possible (in that it describes a legal 

function), but the resultant hyperbolic ratio function may be a less than optimal 

descriptor for the underlying neuronal response function. We compared the fit quality 

of the differentiated hyperbolic ratio function with that of a power-law 𝑅(𝐶 |𝑦 𝑚) =

𝑦 ∙ 𝐶𝑚, where an exponent (m) of 1 equates to the proportional increase predicted by 

Weber’s law.  For both functions, the parameters that best fit the median of the 

normalised JNDs were found using a Nelder-Mead simplex search algorithm that 

minimised the sum of squared error between the model and the median thresholds. A 

bootstrapping procedure was then used to generate confidence intervals on fit 

parameters and the fit residuals. In a single iteration of this bootstrap: pedestal JNDs 

were resampled with replacement across all observers. Then, the median of these 

values was fit with the desired model, and the parameters saved. This was repeated 

104 times, resulting in 104 resampled estimates on the model fit parameters. Contrasts 

of the fit parameters between the pattern axes (translational, radial, concentric) were 

then performed whereby the distributions of fit parameters were differenced, and 

confidence intervals on these differences calculated as the 2.5th and 97.5th percentile 

values of the distribution of differences. Where this confidence interval does not 

contain zero, we can conclude with a high degree of certainty that there is a difference 

in a given fit parameter between conditions.  

3.4 Results 

3.4.1 Example psychometric functions  

Examples of psychometric functions fit to each pedestal level for a single observer 

are presented in Figure 3.5. Each plot shows the response accuracy estimates for a 

single pedestal at each increment value, and the best fitting psychometric function. For 

this observer, at all pedestal levels, the data are well described by a Weibull CDF. The 

same is true of most observers, except for three who’s data were rejected on the 

grounds of consistent chance-level performance (highlighted in Appendix C). 

Additionally, some observers’ Weibull fits to the highest pedestal level had poor 

support above the JND threshold, meaning they were unable to achieve 75% accuracy 

at any increment value used in the experiment for this pedestal. This was the case for 

three observers in the concentric condition, and one observer in the translational 
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condition. For these three observers, for the highest pedestal, the JND thresholds 

generated were not entered into the bootstrapping procedure, but thresholds from all 

lower pedestals were kept. Overall, bootstrapped model fits were conducted on data 

from 12, 14, and 13 observers for the translational, radial, and concentric conditions, 

respectively. See Appendix C all observers’ psychometric fits with rejected thresholds 

highlighted. 

 
Figure 3.5: Example global form psychometric function fits 
Psychometric function fits for a single observer. Each subplot shows the Weibull function fit to the 

accuracy estimates for a single pedestal level (see headings). Where the vertical reference line 

intercepts the curve marks the 75% JND, while the horizontal dotted line shows the 2AFC chance 

level of 50% accuracy. 

3.4.2 Normalisation to variable detection thresholds 

Global form coherence thresholds prior to normalisation are shown in Figure 

3.6A. Qualitatively, these thresholds show some indication of facilitation at the first 

pedestal for the concentric condition, and at the 2nd pedestal for the radial condition. 

Note, however, that the variance in detection thresholds (the 95% CI on the open 

circles) includes the  discrimination thresholds at all but the final pedestal. Although 

this variance in detection thresholds was present in each pattern condition, the spread 

of detection thresholds was quite similar across conditions. Figure 3.6B shows 

bootstrapped confidence intervals on the difference between the median detection 



Chapter 3.   Behavioural sensitivity to global form 

61 

 

threshold for each combination of conditions, where  there was a slight bias towards 

lower detection thresholds in the translational condition, but the confidence interval 

indicates that this bias was non-significant.  

 
Figure 3.6: Coherence discrimination and detection thresholds 
A: Coherence threshold estimates for all pedestal levels across pattern conditions. Within each plot, 

the filled circles show median discrimination thresholds, while the open circle is the median 

detection threshold. The small grey circles show individual data points, and the small arrows on 

each abscissa show the median detection threshold for a given condition. B: kernel density estimates 

on the bootstrapped difference in detection threshold between each pattern condition. Vertical solid 

lines denote the median, while vertical dashed lines denote the 95% CI on the median difference. 

Where this CI does not contain zero (vertical dotted line), a significant difference can be concluded.  

 

To account for any observer-specific vertical translation of discrimination 

thresholds (caused, for example, by slightly different levels of internal noise), the data 

in Figure 3.6A were normalised to each observer’s threshold for detection, such that 

𝐹𝑐  =  𝛥𝐶/𝐶𝑑𝑒𝑡, where Fc is a change-from-detection coefficient, ΔC is an observer’s 

discrimination threshold for a given pedestal, and Cdet is their threshold for global form 

detection. These coefficients were then transformed back into the global form 

coherence parameter space via ΔCnorm =  Fc ∙  𝐶𝑑𝑒𝑡
̃ , where the normalised 
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discrimination thresholds for each observer are the product of the group median 

detection threshold and their individual change-from-detection coefficient. This 

effectively equates absolute detection thresholds across observers. The result of this 

normalisation is shown Figure 3.7, where thresholds above or below the dashed 

horizontal line suggest suppression or facilitation, respectively. Confidence intervals 

that do not cross this line are indicative of a significant group-level difference from 

detection for a given pedestal.  

 
Figure 3.7: Normalised coherence discrimination threshold 
Normalised discrimination thresholds for each pattern condition. The horizontal dashed line denotes 

the median detection threshold, as does the open circle. Thresholds with a star above them deviate 

significantly from median detection. 

 

In all pattern conditions, the median discrimination thresholds fall below the 

detection line, but this facilitation is only quantitatively supported in the concentric 

condition at the first pedestal level. For all conditions, there is evidence for significant 

suppression of thresholds relative to detection at the highest pedestal level. Overall, 

initial assessment of normalised data suggests significant suppression for all 

conditions at the highest pedestal, and significant facilitation for concentric Glass 

patterns. However, interpreting the threshold values in isolation of the overall pattern 

of thresholds does not capture the full extent of these results. So, to describe the pattern 

of sensitivity across discrimination thresholds, and compare this pattern across 

conditions, we now present the results of our model fitting procedure. 

3.4.3 Violation of Weber’s law at low global form coherence  

To assess the degree to which global form coherence thresholds adhere to 

Weber’s law, we fit normalised thresholds with the  first derivative of a hyperbolic 

ratio function and a power-law and bootstrapped their fit parameters. To determine the 
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optimal model, we compare the distribution of root-mean-square error returned by 

each model generated by our bootstrapping procedure. As fits were performed on 

thresholds normalised to absolute detection, the residuals being minimised by the 

simplex algorithm were weighted such that fits were forced to pass through the median 

detection threshold (the open circles). The fits of the hyperbolic ratio and power law 

are shown in Figure 3.8A and Figure 3.8B, respectively.  

 
Figure 3.8: Model fits to normalised thresholds 
A: fit of a hyperbolic ratio function. Black markers show the median thresholds with a 95% 

confidence interval. The solid line shows the best fit of the model to the median thresholds, and the 

grey shaded area shows the 95% CI on the model parameters derived via our bootstrapping 

procedure. Fit parameters of the solid line are shown in the inlaid text. The dashed reference line 

represents the median detection threshold. B: Same as A, but for the power law model. 

 

The hyperbolic ratio fits generated sensible values for all conditions; for radial 

and concentric very few bootstraps resamples yielded incompatible fits with c50s 

beyond 100% coherence (10/104 and 11/104, respectively). For the translational 

condition, all fits were compatible. As the proportion of incompatible fits was so low 

(< 0.01%), we proceeded with further comparisons, but removed the incompatible fits 

from the parameter distribution yielded by the bootstrapping procedure. It is notable 

that the predictive power of the power-law fits were significantly worse than that of 
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the hyperbolic ratio. The residuals of fits to the actual medians are shown inlaid in 

Figure 3.8, where the RMSE of the power-law is more than three times that of the 

hyperbolic ratio (>7x for translational). This reduction in error for the hyperbolic ratio 

fits was significant, as shown in the contrasts in Figure 3.9. Across all bootstraps, this 

represents a median improvement in RMSE of 3.5% (95% CI [1.8, 5.0], 3.2% (95% 

CI [1.4, 5.4]), and 3.7% (95% CI [0.7, 7.1]) for the translational, radial, and concentric 

conditions, respectively.     

 
Figure 3.9: Contrast of model residuals 

Kernel density estimates showing the difference in residuals between the bootstrapped fits of the 

hyperbolic ratio and power-law functions. A shift left of the zero-line indicates lower error for the 

hyperbolic ratio, a rightward shift indicates a better fit for the power-law. Tr: translational, Rd: 

radial, Cn: concentric. Contrasts with a star besides them are indicative of a significant difference 

between comparators. 
As the fit from the hyperbolic ratio was the better descriptor of observers’ 

thresholds across the board, we now report the bootstrapped exponent parameter of 

this model, which describes the degree of suppression and facilitation across the 

pattern of thresholds. The distribution of exponent values for each condition are shown 

in Figure 3.10, where the median and lower confidence intervals on the exponent were 

greater than 1 for the translational (median = 2.15, 95% CI [1.75, 2.56]), radial 

(median = 1.86, 95% CI [1.42, 2.39]), and concentric (median = 2.22, 95% CI [1.57, 

2.72]) conditions. Exponents greater than 1 suggest that the pattern across thresholds 

is best explained by a model containing both the facilitation and suppression, possibly 

due to an accelerating and saturating nonlinearity. This indicates that discrimination 

of the global form percept elicited by Glass patterns does not obey Weber’s law at low 

levels of form coherence. In other words, when the pattern of thresholds across all 



Chapter 3.   Behavioural sensitivity to global form 

65 

 

pedestals is considered, we find evidence suggestive of a “dipper effect” in the 

perception of global form coherence for all pattern axes.  

 
Figure 3.10: Hyperbolic-ratio exponent parameter 
Exponent parameter KDEs from the bootstrapped fit of a hyperbolic ratio function to normalised 

thresholds. Vertical dashed lines and black regions of the KDE represent the 2.5th and  97.5th 

percentiles of the distribution, while the solid line represents the median.(Tr: translational, Rd: 

radial, Cn: concentric. 

 

To test the extent to which the suppressive “handle” of the dipper function is 

consistent with Weber’s law, we repeated the bootstrapped fit of the power-law model, 

but constrained it to only consider the discrimination thresholds. The results of this fit, 

and the contrast of its residuals to the hyperbolic ratio fits, are shown in Figure 3.11A 

and B, respectively. Here, the fit of the power law is vastly improved, and the contrast 

of the power-law and hyperbolic ratio residual distributions demonstrates that both 

models are similar in the quality of their fit, still with a slight bias towards the 

hyperbolic ratio, but this does not reach significance. In Figure 3.11C, the 

bootstrapped estimates on the exponent of the power-law function are provided, which 

cluster around a median of 1 for translational and radial, but are more variable in the 

concentric condition (likely owing to the discontinuity at the 3rd pedestal level). 

Overall, these fits indicate that supra-threshold discrimination of global form in Glass 

patterns is equally described by both a hyperbolic ratio and a power law, and that the 

form of this function is, on average, in agreement with Weber’s law. However, when 

detection thresholds are taken into consideration, the hyperbolic ratio function is 

clearly the better predictor of the data between these models.  
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Figure 3.11: Fit of a power law suprathreshold discrimination  
A: Normalised thresholds fit with a power-law function, ignoring absolute detection thresholds. B: 

contrast of the power-law residuals with the residuals of the hyperbolic fit. C: the exponent 

parameter distribution of the power-law. Tr: translational, Rd: radial, Cn: concentric 

 

3.4.4 No evidence for enhanced sensitivity to polar form 

Next, we investigated whether observers demonstrated enhanced sensitivity to 

a specific global form axis, as has been found in previous reports (Seu & Ferrera, 2001; 

H. R. Wilson & Wilkinson, 1998). We compared the bootstrapped parameter estimates 

of the hyperbolic ratio function across pattern conditions. Figure 3.12A shows the 

distribution of parameter estimates for each condition, while Figure 3.12B shows 

contrasts performed between parameter distributions for each condition. In Figure 

3.12A, the median c50 appears quite similar across pattern types; but is highest for 

radial (median: 33%, 95% CI [29.4, 42.5]), lowest for concentric (median: 30.8%, 

95% CI [27, 56.1]) and intermediate for the translational condition (median: 31.3%, 

95% CI [28, 36.4]). For the values of the exponent, the concentric (median: 2.12, 95% 

CI [1.75, 2.55]) and translational (median: 2.22, 95% CI [1.56, 2.7]) conditions have 

similar distributions, with a leftwards shift in the radial condition towards a lower 
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exponent (median: 1.86, [1.42, 2.38]), responsible for the shallower negative 

deflection in Figure 3.8A for this condition. For the rMax, which denotes the vertical 

translation of the curve, the medians of the radial (3.80, 95% CI [3.50, 4.65])  and 

concentric (3.90, 95% CI [3.31, 6.93]) condition are similar, while the translational 

condition shows a slight rightwards shift in the distribution (4.38, 95% CI [3.90, 

5.15]). Note that both the c50 and rMax distributions of the concentric condition are 

heavily skewed relative to the other conditions. As before, this is likely due to the 

discontinuity present at the 3rd pedestal level. To assess the confidence that can be 

placed on these differences, fit parameter contrasts across conditions are shown Figure 

3.12B. Here, there is little evidence for a significant difference in any of the hyperbolic 

ratio fit parameters for translational, radial, or concentric Glass patterns as all 

confidence intervals, for the difference in all parameters, cross zero. This suggests, 

when discrimination thresholds are considered in aggregate, observers’ sensitivity to 

the global form percept elicited by Glass patterns is not uniquely enhanced for radial 

or concentric polar form.  

 
Figure 3.12: Cross-condition contrast of model fit parameters 
A: The distribution of parameter estimates retrieved from the bootstrapped model fit for each pattern 

condition. Each sub-plot represents the distributions for a single fit parameter, and each ridgeline 

shows the kernel density estimate of the distribution’s histogram. The vertical dashed lines show the 

percentile 95% CI, any area of the KDE outside of this range is shaded black. B: The condition-wise 

contrasts of the distributions in A. Where the vertical dashed lines do not contain zero a significant 

difference can be concluded. Tr: translational, Rd: radial, Cn: concentric 
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3.5 Discussion 

 This experiment had two objectives: to explore the pattern of behavioural 

sensitivity underlying the perception of Glass pattern global form; and to investigate 

whether there is any evidence for a difference in suprathreshold sensitivity between 

three often used pattern axes (translational, radial, and concentric). Our findings 

indicated that Glass pattern detection and discrimination thresholds cannot be 

explained by Weber’s law, and are significantly better described by a model based on 

a neuronal response function that includes an accelerating and saturating nonlinearity, 

consistent with a “dipper effect”. When hyperbolic ratio parameters were compared 

across pattern types, there was little evidence for a consistent enhancement of 

sensitivity specific to a certain global form axis. We will now discuss where our results 

fit in with previous work on Glass pattern sensitivity and competing explanations of 

observers’ sensitivity to changes in visual stimuli magnitude.  

3.5.1 A “dipper effect” for global form coherence?  

Our modelling results, which summarised the shape of the discrimination 

function across thresholds, reported parameters consistent with a mild dipper effect 

for the percept of global form elicited by Glass patterns. However, it is true that there 

was a great deal of variance in the horizontal translation (conveyed via the c50) of the 

modelled discrimination functions, particularly for radial and concentric patterns. 

What might explain this variation? One possibility is that the range of pedestals at 

which facilitation occurs is unstable, perhaps due to top-down attentional processes. 

Indeed, significant suppression of thresholds (relative to detection) was only apparent 

at the final pedestal coherence, with many individual thresholds still less than detection 

for the preceding pedestal. In the contrast domain, Huang and Dobkins (2005) 

demonstrated that shifts in the c50 can be induced by introducing a secondary task that 

occupies observers’ attention. As our experiment was conducted online (and was thus 

unsupervised) varying degrees of observer attention should perhaps be expected. Since 

we did not directly measure observers’ attention, and have insufficient data to 

accurately estimate the lapse rate of psychometric function fits, we cannot rule out this 

possibility. However, if we accept that increased reaction times are a corollary of 

inattention, we can say that they do not appear to correlate with the c50s estimated by 

our bootstrapping procedure, as shown in Figure 3.13. It could also be argued that the 
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lack of control over the luminance of the displays observers’ used might affect the 

horizonal location of thresholds. We doubt this is the case, however, as the 

psychophysical results of Burton et al. (2016) demonstrate that global form density 

thresholds are quite stable across photopic and mesopic viewing conditions. Moreover, 

the perception of Glass patterns is most dependant on the similarity between the dots 

comprising a dipole (Kovaćs & Julesz, 1992; J. A. Wilson et al., 2004), as opposed 

changes in the luminance of all dots producing the pattern. 

 
Figure 3.13: Reaction times as function of c50 
The bootstrapped distribution of c50s plotted against the median reaction time of observers within 

each resample, for each pattern condition. Individual circles represent the values from a single 

resample.  

 

3.5.2 Nonlinear transduction or uncertainty reduction? 

Our model fitting results are consistent with a “dipper effect” in the perception 

of global form. The most-often cited explanation for the dipper effect is a 

nonlinear/sigmoidal neuronal transducer (Boynton et al., 1999; Foley & Legge, 1981; 

Nachmias & Sansbury, 1974), where the factor determining discrimination thresholds 

is the form the transfer function possessed by neurons encoding a given parameter 

space. Indeed, by fitting our behavioural thresholds with the differentiated neuronal 

transducer function, it would appear that we are implicitly supporting the validity of 

this account. However, the dipper effect can, in theory, be explained without the use 

of  any neuronal nonlinearity. A competing explanation for threshold facilitation is 

uncertainly reduction (Pelli, 1985), an approach that models the visual system as a 

collection of channels, with each channel describing some parameter in the visual 

world. Here, the dipper effect arises because of uncertainty about the optimal 

channel(s) to use as the basis for a behavioural decision. When measuring absolute 

detection thresholds via a pedestal experiment, one of the comparators is the absence 
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of stimulation (a pedestal of zero). This means the perceptual cues indicating 

informative channels are severely reduced, elevating channel uncertainty. This 

uncertainty means the observer may be attending to a mixture of informative and 

uninformative channels, thus the threshold for absolute detection is elevated relative 

to discrimination at low pedestal intensities. Could uncertainty reduction explain our 

results? It is unclear where uncertainty might have infiltrated our methodology. When 

the dot-field was not being presented, its location was constantly indicated by a thin 

grey annulus, so any uncertainty in the location of the stimulus was unlikely. It is 

possible that there was a degree of initial uncertainty in pattern axis that should be 

attended, but observers practiced with all pedestals prior to the task, giving them ample 

time to develop their response criterion. Moreover, all pedestals were tested in separate 

blocks, so the ideal channel to attend for a given pedestal was likely optimised within 

the first few trials. For these reasons, we suspect that an explanation from uncertainty 

reduction is unlikely, though we cannot definitively rule out some contribution from 

intrinsic uncertainty. One indication that our behavioural results may be explained by 

a nonlinear transducer is the steepness of the psychometric function underlying 

observers’ discrimination thresholds. If the transducer is subject to an accelerating 

nonlinearity followed by a saturating nonlinearity, we should expect to see the slope 

of the Weibull psychometric function steepen where performance is best (proximal to 

the first pedestal after detection, in this case) which is qualitatively the case for our 

results for two of the pattern axes we tested ( on average, as shown in Appendix D). 

However, it is also true that the slope parameter is quite variable in our results, and 

some observers show a reduction in slope at this and later pedestals, which would be 

consistent with an alternative explanation from uncertainty reduction (Pelli, 1985). 

Indeed, these explanations are difficult to distinguish psychophysically, and they 

likely both play a role in determining observer sensitivity. However, an alternative 

way to explore the role of nonlinear transduction in relative isolation is to measure 

neuronal responses to increasing stimulus magnitude, as Boynton et al. (1999) did for 

luminance contrast using fMRI. If the form of the transducer (when differentiated), 

reflects the pattern of detection thresholds we have observed, this would be quite 

convincing evidence for an explanation from nonlinear transduction. Making this 

comparison is the aim of the next chapter of this thesis.  
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3.5.3 Equal sensitivity along different global form axes  

Previous work has indicated that concentric and radial patterns are more 

readily perceived than translational patterns (Anderson & Swettenham, 2006; Kelly et 

al., 2001; Nankoo et al., 2012; Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 1998). 

We found very little evidence to this effect, in that the fit parameters of both the 

hyperbolic ratio function and power-law were similar across pattern axes. Dakin and 

Bex (2002) argued that the enhanced sensitivity to concentric Glass patterns reported 

by Wilson and colleagues is purely an artefact of the circular aperture within which 

patterns are often presented, and that any enhancement is abolished by the use of a 

square aperture. While our results agree with notion of uniformity in the sensitivity to 

different pattern axes, we used a circular aperture, so why did we not find evidence 

for consistent enhancement of sensitivity to concentric form? Ours would not be the 

first to find evidence contradicting Dakin & Bex’s proposal; an earlier experiment by 

Kelly et al. (2001) examined human observers’ sensitivity to different Glass pattern 

axes using a square aperture, and still found a concentric and radial enhancement 

relative to horizontal and vertical. Like many existing experiments showing concentric 

and radial enhancement, they parameterised global form coherence using a proportion-

aligned approach. Here, the salience of global form is manipulated such that a 

coherence of 50% means half of the dipoles in the pattern field are obeying (perfectly) 

the geometric rule, while the remaining dipoles are randomly oriented. Perhaps the 

alternative parameterisation of global form used in our experiment is responsible for 

the absence of polar form enhancement? One explanation could be separate 

contributions to global form perception from neural populations with narrow and 

broad local orientation pooling. Some sub-populations of neurons encoding global 

form along polar axes may have very narrow local orientation bandwidths, essentially 

encoding the degree of co-circularity within an image (elements tangent and cotangent 

to the centre of the dipole field). When using the proportion aligned approach as the 

parameterisation of global form, increasing the intensity of the stimulus would 

innervate these tightly tuned sub-populations. Conversely, in the present experiment, 

perfectly aligned dipoles are quite rare as their orientations are sampled from a 

Gaussian distribution. This forces observers to make behavioural responses based on 

more broadly tuned sub-populations, which may not possess a preference for polar 
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form. Future work may be directed towards exploring the possibility of distinct 

contributions from tightly and broadly tuned global form detectors.   

3.6 Conclusion 

We have shown that the detection and discrimination of Glass pattern global 

form does not obey Weber’s law at low coherences. As coherence increases further 

beyond the threshold for detection, discrimination thresholds increase in a proportion 

resembling Weber’s law. Overall, these results are consistent with a “dipper effect” in 

the perception of global form. This is compatible with the idea of an accelerating and 

saturating neuronal response function in higher-level parameter spaces beyond 

luminance contrast. The role of a sigmoidal neuronal transducer in the thresholds we 

have observed could be further explored by measuring population neuronal response 

across the same range of global form coherences. Unlike previous reports, we found 

very little evidence for an enhancement of behavioural sensitivity to any specific axis 

of global form, a finding which may be related to the parameterisation of global form 

we elected to use.   
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Chapter 4. Evidence of nonlinear transduction in the 

perception of global form 

4.1 Abstract 

In the previous chapter, we demonstrated that the percept of global form 

elicited by Glass patterns is subject to a “dipper effect”. In this chapter, we ask whether 

the population neuronal responses evoked by the same range of Glass pattern 

coherences show a profile that is predictive of the facilitation and suppression we 

observed in behavioural thresholds. By fitting the same transducer function to the 

neuronal responses evoked by translational, radial, and concentric global form, we 

find evidence for an accelerating nonlinearity that saturates as global form coherence 

increases. However, the region of peak sensitivity predicted by the transducer we 

found does not align with psychophysical estimates, in that it occurs over a 

significantly higher range of coherence values. We offer explanations for this 

horizontal shift via the inherent limitations of EEG and from attentional modulation. 

We find little evidence for increased sensitivity to polar form over translational form, 

consistent with our psychophysical predictions. 

4.2 Introduction 

In the previous chapter, we demonstrated that the coherence of the global form 

percept elicited by Glass patterns may be subject to a “dipper” effect. Relative to the 

threshold for absolute detection, discrimination thresholds are facilitated at low (but 

detectable) pattern coherences, and suppressed as pattern coherence increases. 

However, the neuronal circuitry that may explain this pattern of global form 

discrimination thresholds is unknown, thus gaining insight into its neuronal 

underpinnings is the purpose of the present chapter. Hypothetical explanations for the 

dipper effect we have observed can be made by turning to a more thoroughly 

investigated visual parameter space. In the domain of luminance contrast, there are 

competing explanations for both the early facilitation and late suppression described 

by the dipper effect. The most enduring, which accounts for both facilitation and 

suppression, is the explanation from nonlinear transduction (Albrecht & Hamilton, 

1982; Legge & Foley, 1980; Nachmias & Sansbury, 1974). This explanation proposes 

that contrast detection and discrimination thresholds are determined almost purely by 
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the shape of the input-output transducer possessed by neurons encoding luminance 

contrast. This explanation assumes that any contribution from internal noise (within 

the sensory system) is additive, invariant to the intensity of the stimulus, and applied 

at a post-transduction processing stage. At low contrasts, the transducer is accelerating 

along its output axis, meaning the increase in stimulus intensity (the input) required to 

produce a discernible internal response is reduced relative to detection – producing 

threshold facilitation. As contrast increases, the transducer begins to flatten (or 

saturate), so relatively large increments in contrast are required to produce a response 

that is equally as discernible (threshold suppression).  

Importantly, alternative explanations for the dipper effect that do not require a 

nonlinear transducer have been proposed. For threshold facilitation, a reduction in 

decision uncertainty could just as easily explain why observers appear to be more 

sensitive at low (but non-zero) contrasts (Pelli, 1985). Here, the visual system is 

modelled as a collection of information channels, with each channel encoding some 

aspect of visual perception (size, contrast, spatial frequency, position, etc.). Keeping 

with the example of luminance contrast, this explanation proposes that the information 

available to observers indicating which channels are relevant to stimulus detection is 

diminished due to one of the comparators always being invisible. When discriminating 

two supra-threshold stimuli, all ancillary stimulus information (where the stimulus is, 

how big it is, etc.) is readily available, so the observer can devote resources to 

monitoring the channel representing luminance contrast, producing threshold 

facilitation. An alternative account for the suppression of thresholds relative to 

detection (the “handle” of the “dipper” function) argues that a saturating transducer 

with additive noise is equivalent to a linear transducer with noise that is proportional 

to the stimulus intensity (Kontsevich et al., 2002).  

Ultimately, it is difficult to disentangle competing explanations using a pedestal 

vs threshold experiment (as we used in the previous chapter), as they predict the same 

behaviour - just via different models. A different approach to this problem is to 

measure neural responses in human observers (via M/EEG or fMRI) across a range of 

stimulus intensities and examine the degree to which the measured response function 

predicts sensory discrimination. If we accept assumptions on the coupling between 

neural response magnitude and behaviour, this is equivalent to measuring the neuronal 
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transducer itself, instead of its behavioural derivative. For luminance contrast, 

Boynton et al. (1999) performed this experiment using fMRI, and found a pattern of 

BOLD responses in primary visual cortex that mirrored contrast discrimination 

thresholds obtained from the same observers, offering convincing evidence that the 

contrast dipper effect is due to transducer nonlinearity. The present experiment applies 

a similar methodology, but to the facilitation and suppression we uncovered in the 

previous chapter for the global form coherence of Glass patterns. Using 

electroencephalography (EEG), we aim to investigate (for the first time to our 

knowledge) whether this non-monotonicity in global form discrimination thresholds 

is reflected by an accelerating and saturating nonlinearity in neuronal responses.  

Previous work investigating neuronal responses to Glass patterns has mainly 

focused on answering two questions: where is global form information represented in 

the human visual system, and do global form selective regions show a preference for 

a certain pattern axis? The fMRI work conducted by Ostwald et al. (2008) was 

amongst the first to address these questions in human observers by exploring blood-

oxygen level dependant (BOLD) responses to translational, radial, and concentric 

Glass patterns. Using multivariate pattern analysis, Ostwald and colleagues 

demonstrated that low to mid-level retinotopic regions (V1 – V4)  and lateral occipital 

cortex (LOC) all carry information that can accurately predict the presence of Glass 

patterns, a finding also supported by the later fMRI work of Mannion et al. (2010). 

Ostwald et al. also found a general bias in early retinotopic areas towards improved 

classification of radial patterns over other types. More importantly, they found that the 

LOC was the only region to show a bias towards the classification of concentric form. 

The LOC also demonstrated a significant difference in classification accuracy when 

comparing local and global shifts in dipole orientation, a finding that could provide a 

neurological basis for the behavioural enhancement often found for concentric Glass 

patterns (P.-C. Huang & Chen, 2016; Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 

1998; H. R. Wilson et al., 1997).  

Generally, the finding of enhanced responses to radial and concentric form over 

translational form is common in the Glass pattern literature (Pei et al., 2005; Rampone 

& Makin, 2020; Swettenham et al., 2010). However, we propose that the tendency for 

existing research to measure responses to maximally coherent patterns and Glass 
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pattern detection thresholds precludes a holistic understanding of human observers 

sensitivity to global form. Indeed, the discrimination of supra-threshold intensities is 

just as fundamental an operation as detecting the absolute presence of a stimulus. As 

in the psychophysical domain, very little work has been done to investigate the 

gradient of neuronal responses that encodes degrees of Glass pattern global form, and 

how such gradients may differ across different pattern alignment axes. One experiment 

by Mannion et al. (2013) investigated neural responses to a range of Glass pattern 

global form intensities, but did not distinguish between pattern types, or make any 

behavioural comparisons. As with most of the preceding psychophysical work (apart 

from Dakin (1997) and ours), Mannion et al. parameterised global form as the 

proportion of perfectly aligned dipoles to randomly oriented dipoles. They found a 

mostly linear gradient of responses for increasing alignment proportions in V3, and in 

other mid-level Glass pattern responsive regions, though they did not measure any 

behavioural thresholds for comparison. To our knowledge, no published work has 

measured neural responses to a gradient of global form coherences and compared them 

with psychophysically obtained detection and discrimination thresholds. Therefore, 

the present experiment aims to extend our psychophysical work and test the predictive 

power of psychophysically obtained thresholds for neural responses obtained via EEG. 

We do so by measuring steady-state visually evoked potentials (SSVEPs) to 

translational, radial, and concentric Glass patterns across the same range of coherences 

we have tested psychophysically. By fitting the same transducer model to neuronal 

responses as we did to detection and discrimination thresholds (in differentiated form), 

we investigated the degree to which their parameter estimates correspond.  

4.3 Methods 

4.3.1 Participants 

Twenty-one participants were recruited for this experiment (10 females, 11 

males, mean age = 28, standard deviation = 9) from the Department of Psychology’s 

participant pool at the University of York, UK. Participants had normal or corrected-

to-normal vision, no known disease or disorder of the eye or visual system, no severe 

hearing impairments, and no personal history of epilepsy, cognitive impairment, or 

dementia. All experimental protocols were approved by the Department of Psychology 

ethics committee at the University of York. 
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4.3.2 Visual Stimuli 

4.3.2.1 Spatial parameters 

Stimuli were generated in the Python (https://www.python.org/) programming 

language  using routines from the PsychoPy toolbox (https://www.psychopy.org/). 

Stimuli were presented to observers in a dark room via a ViewPixx 3DLite LED 

display (1920x1080, 120Hz) using an Apple Mac Pro running OSX 3.5. To ensure 

precise frame timings, graphical processing overhead was minimised by rendering all 

frames at an internal resolution of 1280x720, but upscaling them to the native 

resolution of the display. The display was gamma-corrected via a luminance look-up-

table acquired using a Minolta LS100 photometer and had a (post-correction) mean 

luminance of 41cd/m2. The visual stimuli, illustrated in Figure 4.1, were a field of 62 

full contrast dot-pairs (dipoles), with a 50/50 split of black and white pairs, and all 

spatial parameters matched to our earlier psychophysical work (Chapter 3, Methods). 

Dipole fields were presented to observers at a distance of 100cm within a circular field 

subtending 10° of visual angle, with an areal density of 3.9% (1.6 pairs/deg2). Within 

a dipole, each dot had a diameter of 10.02 arcmin and a centre-to-centre separation of 

19.2 arcmin. To match our psychophysical experiment, a thin grey ring was always 

present around the dipole field to reduce spatial uncertainty. The distance between 

dipole centres was at least 45.6 arcmin, which was ensured for each unique field by 

continuously generating random dipole-centre coordinates and keeping values that 

were lawfully spaced and rejecting those that were not until a sufficient number of 

coordinates were generated (a method often referred to as rejection sampling).  
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Figure 4.1: Glass pattern spatial specification 
An example of the Glass patterns used in this experiment; Translational, Radial, and Concentric. 

Spatial parameters are annotated where relevant.   

 

4.3.2.2 Parameterisation of global form 

To generate dipole fields of different global form coherences, the angular 

orientation of each dipole in a field was sampled from a semi-circular von-Mises 

distribution, which produces a Gaussian probability distribution function (PDF), 

defined in radians. 

𝑣𝑀𝑝𝑑𝑓(x | κ, μ) =
eκ cos ( x−μ)

2πI0(κ)
 ( 4 ) 

The equation for the PDF of a von-Mises distribution is provided in equation 4. Here, 

kappa is a specificity parameter, analogous to the reciprocal of the variance. A kappa 

of zero produces a uniform distribution, while progressively positive values 

symmetrically increase the probability density around the angle mu, which is set to 

zero. Sampling from this distribution returns values spanning 2π, which are halved, 

wrapping them on the semi-circle instead ( -π/2 > π/2 ). This half-wrapping was 

performed because each dipole is oriented along a line, but has no direction (i.e., for a 

radial dipole, there is no distinction between an inwards and outwards heading). In the 

end, this produces an array of 62 semi-circular angles (one per dipole), centred on 

zero, with an angular specificity dependant on the value of kappa. This array is then 



Chapter 4.   Measuring the global form transducer 

79 

 

used to displace a 2nd array of 62 dipole angles that are perfectly aligned along the 

desired axis. Therefore, as kappa increases, so does the global orientation alignment 

of the dipole field. Dipole fields were generated at 8 pre-defined kappa levels spanning 

the range of our psychophysically sampled discrimination thresholds; zero (chance-

level coherence), six values spaced in 5dB steps, starting from and including 0.30, and 

maximally aligned patterns (i.e., k = ∞). As the number of dipoles in the patterns used 

in this experiment was relatively low, all patterns generated were assessed using a 

Kolmogorov-Smirnov test (against α = 0.05)  for the equality of the sampled 

orientations with the theoretical von-Mises PDF. Any distributions failing this test 

were rejected until a valid distribution was achieved.  

                                         𝐺𝑙𝑜𝑏𝑎𝑙 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = (∫ 𝑣𝑀𝑝𝑑𝑓(𝑥, 𝑘𝑎𝑝𝑝𝑎, 0)
10°

−10°

) ( 5 ) 

To allow for direct comparison, we represent global form in in the same units 

as our psychophysical work by converting kappa values to a bounded range that we 

refer to as “global form coherence”. These transformed values were obtained by 

integrating the von-Mises PDF at all values of kappa across a 20° range centred on 

zero, and treating the finite probability yielded by this integration as a measure of 

global form intensity. This value describes the probability of sampled dipole 

orientations falling within 10° of perfect alignment, and we treat it as though it 

faithfully equates this proportion, which is reliable assumption due to the use of a K-

S tests to filter out aberrant distributions. The 20° integration window was chosen 

based on non-human primate literature indicating that this is the lower-bound on the 

full-width half-maximum bandwidth of neurons in V1 with a receptive field size that 

covers a dipole width (Gur et al., 2004). This calculation assumes that all dipoles 

within the 20° integration range will equally affect the neuronal response. This is an 

oversimplification, but we believe it is sufficient for the relative comparisons 

performed here. This transformation was performed using equation 5, whose kappa-

coherence transfer function is provided in the previous chapter (Figure 3.3). 

4.3.2.3 Temporal parameters 

Dipole fields were presented to observers as dynamic Glass patterns (dGPs), 

which are distinct from static Glass patterns in that they are temporally modulated at 

two different frequencies. The first is a global form switch between a field of dipoles 



Chapter 4.   Measuring the global form transducer 

80 

 

with orientations drawn from a uniform distribution (i.e., chance-level coherence), and 

a field of dipoles with orientations drawn from a distribution with above-chance 

coherence (using the levels defined in the previous section of this chapter). The second 

frequency of modulation is a constant (and faster) resampling of these two 

distributions. In theory, the global form switching will elicit responses from neuronal 

populations encoding global form correlations, while the local switching will capture 

responses that encode local parameters, such as dipole positions and their local 

orientations. In the present experiment, we adopt the temporal design of Palomares et 

al. (2012), such that our global-form switching occurred at 0.83Hz, and distributions 

were continuously locally resampled at 30Hz. From now on, we will use the following 

convention when referring to these input frequencies: “1F1” refers to 0.83Hz global 

form switching, and “1F2” refers to 30Hz local resampling. When referring to 

harmonics of stimulation frequencies, the order of the harmonic in reference prefixes 

the “F”, such that 1F1 and 2F1 refer to the fundamental frequency and the 2nd harmonic 

of the global switching, respectively. Both 1F1 (global) and 1F2 (local) were square 

wave modulations with a 50% duty cycle, and the phase of 1F1 was set such that the 

observer saw random orientations in the first half-cycle of global form switching. To 

present pattern switching with as little computational overhead as possible, dipole 

coordinates and orientation distributions for each stimulus frame were pre-generated 

and loaded into memory before any stimuli were shown to the observer. 

 
Figure 4.2: Presentation protocol for a single pattern condition 
An illustration of the experimental design for a single pattern alignment axis (concentric in this 

example). Within each repetition, observers saw 10 1F1 stimulation cycles. There were 10 repetitions 

per coherence level.   

 



Chapter 4.   Measuring the global form transducer 

81 

 

4.3.3 Experimental procedure 

Upon their arrival, observers were given an overview of the experiment, and a 

brief demonstration of the stimuli. Once settled, they were fit with an appropriately 

sized EEG cap that was aligned to their nasion, inion, and pre-auricular points 

according to the 10-20 system (Klem et al., 1999). For the duration of the experiment, 

observers sat at a distance of 1 metre from the display on a comfortable chair - no 

chinrest was used. In separate blocks for translational, radial, and concentric pattern 

axes, observers viewed dGPs across all pre-defined global form coherence levels. The 

procedure carried out for a single axis condition is illustrated in Figure 4.2. For a single 

coherence level, there were ten repetitions, with each repetition containing ten 1F1 

cycles (12s of stimulation), with each repetition separated by a 2 second break period. 

Therefore, across all coherence levels observers experienced eighty 12s stimulation 

trains for each pattern axis – 240 for the whole experiment. The “pypixxlib” toolbox 

from ViewPixx was used to send transistor-transistor logic (TTL) triggers to the 

recording software immediately after the first and last frame of each 12s repetition, 

which were later used to split continuous records into epochs. Observers were 

encouraged to avoid blinking, jaw clenching, swallowing, and head movement during 

visual stimulation, and to restrict these activities to the 2s break period. Every 20 

repetitions, and in-between each pattern condition, observers were given a longer self-

paced break to allow them to stretch, rest their eyes, or take a drink. The order in which 

coherence levels were presented was randomised within each pattern axis, and the 

order of pattern axes was counterbalanced across observers. For most individuals, the 

experiment lasted for approximately an hour and fifteen minutes. Due to COVID-19 

restrictions, the experimenter could not stay in the room during data acquisition, but 

was monitoring the observer via a video/audio link from the next room, checking-in 

with them after each condition, and whenever they required assistance.  

4.3.4 Data acquisition and pre-processing 

Electroencephalograms were recorded at a sampling rate of 1kHz using an 

antNeuro “asalab” system: a 64-channel amplifier (+ bipolar channels) and 

“waveguard” EEG cap with 64 electrodes (https://www.ant-neuro.com/). Cap 

electrodes were monopolar, using electrode FCz as the online reference, and 

vertical/horizontal bipolar electrooculograms (EOGs) were recorded to later aid 

offline artifact rejection. All pre-processing was carried out offline using custom code 

https://www.ant-neuro.com/
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and/or routines from the EEGLAB toolbox where specified (Delorme & Makeig, 

2004) in MATLAB version 2018b. The following process was repeated for all 

observers. First, to allow the entire dataset to fit into computer memory, all continuous 

timeseries were down-sampled to 250Hz (factor 4 decimation), and then further 

filtered using a 0.1Hz high-pass filter and a 45Hz low-pass filter. As a first pass of 

quality control, the power-spectrum of each channel was calculated and manually 

inspected to reveal any records with channel-wide data quality issues (i.e., high power 

relative to other channels with a smooth roll-off). Three observers were rejected at this 

stage due to a presumed reference fault that produced extremely high power at all 

channels across a broad range of frequencies.  

Further artifact rejection was carried out using EEGLAB’s implementation of 

infomax independent components analysis (ICA), guided by the semi-automated 

selection of ICA components toolbox (SASICA - see Chaumon et al.  (2015)). 

Initially, ICA weights were trained on the continuous EEGs, and the routines of 

SASICA were used to identify high-ranking single-channel components that exhibited 

a low correlation with neighbouring channels. The generative channel for these 

components were rejected as artefactual, as plausible EEG signals are necessarily 

correlated with nearby channels (due to volume conduction). Rejected electrodes were 

then replaced using EEGLab’s spherical spline interpolation method (Ferree, 2006), 

and ICA weights were then recalculated on the remaining channels (with rank adjusted 

accordingly). The remaining components were then screened for high correlation with 

vertical and horizonal EOG signals (again using SASICA). Usually, the first few 

components were highly correlated with the EOGs, and had a topography consistent 

with eye blinking and eye movements. However, any component that was highly 

correlated with the EOGs was removed from the data. 

The resultant “clean” records were then split into epochs. Using the TTL 

trigger timings, the first 1.2s of each 12s stimulation repetition were removed, and the 

remaining samples broken down into 3.6s epochs (yielding three epochs per 

repetition). We removed the first 1.2s of stimulation to avoid the contamination of 

steady-state responses by transient pattern onset responses and eye-blinks or 

movement that occurred just prior to pattern onset. Then, a discrete Fourier transform 

was performed on the samples of each individual 3.6s epoch, yielding a Fourier series 
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with frequency bins 0.27Hz (1F1 / 3) in width. This series was clipped at the Nyquist 

limit (125Hz). In the end, this produced a 450 x 63 x 240 x 8 array (Fourier coefficients 

x channels x epochs x coherence level) for each observer, and for each pattern axis 

condition. To ensure we are fitting models to meaningful signals, we then applied a 

final screening using the cross-channel average of complex valued Fourier 

coefficients. Any observers who did not show a significant 1F1 response at maximum 

pattern coherence across conditions were removed from further consideration. This 

screening was performed based on the outcome of a t2-circ test (Victor & Mast, 1991) 

against an alpha level of 0.05, which removed 5 observers from the experiment. The 

timeseries from the remaining thirteen observers were then submitted for further 

analysis.   

4.3.5 Reliable components analysis 

To produce a channel-wise spatial filter that describes cross-observer 

responses to global form switching and local resampling, the Fourier coefficients of 

frequencies of interest for each epoch, channel, and observer were submitted to 

frequency-domain reliable components analysis (RCA – Dmochowski et al., (2015)). 

Like principal components analysis, frequency-domain RCA reduces high dimension 

data (in this case 63 EEG channels) to linear channel combinations, with each 

combination ranked in terms of the value of an objective function. However, where 

PCA would conventionally find a spatial filter that maximises within-epoch 

covariance, RCA instead produces a filter that maximises the ratio of cross-epoch 

covariance to within-epoch covariance, exploiting the assumption that the amplitude 

and phase of SSVEPs are consistent across trials due to the periodicity of the stimulus. 

We used RCA to generate a group-level channel spatial filter by submitting the within 

and across epoch spatial covariance matrices accumulated across observers to the 

RCA algorithm (this accumulation was performed using the MATLAB toolbox for 

RCA;  https://github.com/svndl/rcaBase). A global form response filter was calculated 

for each pattern axis condition separately, and a local resampling filter was calculated 

across all pattern conditions. The global filter was generated used the Fourier 

coefficients of multiple harmonic frequencies (1F1, 2F1, 3F1, 4F1 and 5F1), from 7 

above-chance global form coherence values, while the local filter used only the 

coefficients of 1F2 – but was trained across all 8 global coherences values, including 

the zero baseline (as the 1F2 switching is present in these epochs). In summary, 
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multiple group-level RCA computations were used to produce three separate global 

component hierarchies (one for each pattern axis), and a single local component 

hierarchy (across all pattern axes). These “reliable components” (RCs) can then be 

visualised in the original electrode space by projecting the within-epoch covariance 

matrices through an RCs spatial filter weighting. The scalp topography produced 

represents the activation expected were only the neural generators of a given RC to be 

present in the sensor records (Haufe et al., 2014; Parra et al., 2005). For transducer 

fitting, individual observers’ time-domain sensor data for each coherence level were 

projected through the group-level filters, yielding a weighted sum of sample 

amplitudes at each coherence level, for each reliable component. These values were 

then used to determine the signal to noise ratio (SNR) at each global form coherence 

level, for each pattern axis.  

4.3.6 Signal-to-noise ratio calculation  

To control for cross-observer variance in the baseline noise level, we transformed 

RCA filtered time-domain data to SNR. For each observer, coherence level, and 

pattern axis, RCA filtered time-domain data were Fourier transformed, the complex 

valued Fourier coefficients at frequencies of interest extracted, averaged across all 3.6s 

epochs, and their moduli transformed to amplitudes (via magnitude/DFT length). 

Then, to produce a pooled measure that captures all harmonic responses to 1F1 global 

form switching, the root-mean-square (RMS) amplitude across the harmonics used to 

train RCA filters (1F1 > 1F5) was calculated (Cottereau et al., 2011). 

𝑆𝑁𝑅 =
𝑅𝑀𝑆𝑠𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(5) 

To control for cross-observer variance in baseline noise, a signal-to-noise ratio 

was calculated at the individual observer level by dividing the RMS amplitude of 

above-chance global form coherence (k > 0) by the RMS amplitude of responses to 

chance-level global coherence (k = 0), shown in equation 5. A similar process was 

carried out using data projected through the cross-condition local resampling RCA 

filter, but only 1F2 was used, so no harmonic pooling was necessary. Unlike global 

form responses, the denominator (i.e., noise) used when calculating the SNR of local 

responses was the RMS of the five frequency bins adjacent to 1F2.    
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Prior to model fitting, we directly compared the SNR values of different 

components using estimation statistics (Claridge-Chang & Assam, 2016), whereby 

significance is assessed by generating 95% confidence intervals on the differences 

between median component SNR values. For a given comparison, confidence intervals 

on the difference in medians are generated by resampling (with replacement) SNR 

values from each comparator 10000 times (using “bootci” in MATLAB), and each 

time taking the median of each comparator, and differencing those medians. Unless 

otherwise specified, intervals represent the 95% bias-corrected accelerated (BCa) 

bootstrap confidence interval (DiCiccio & Efron, 1996). Where this confidence 

interval on the difference between two conditions does not contain zero, a significant 

difference can be concluded.  

4.3.7 Model fitting  

The median of observers’ SNRs for each global form coherence were fit with 

the same hyperbolic ratio function which we used to fit global form discrimination 

thresholds in the previous chapter, allowing for the direct comparison of their 

parameter estimates.  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑟𝑀𝑎𝑥 ∗
𝑐𝑘

(𝑐𝑘 + 𝑐50
𝑘 )

+ 𝑟𝑀𝑖𝑛 (6) 

Unlike in Chapter 3, the rMin parameter was specified, and fixed to an SNR 

of 1 (i.e., the noise floor), as shown in equation 6. As before, the rMax, c50, and k-

exponent parameters were optimised using a loosely constrained Nelder-Mead 

simplex search algorithm that minimised the sum of squared error (SSE) between the 

model and median SNR values. This fit was then entered into a bootstrapping 

procedure where, for each iteration, the cross-observer SNRs for each coherence level 

were resampled with replacement, the median taken, and a new hyperbolic ratio fit 

produced. The resultant 10000 x 3 matrix of bootstrapped fit parameters was then used 

to generate a 10000 x 8 matrix of SNRs. The 2.5th  at 97.5th percentiles of this final 

matrix were used to produce upper and lower-bound curves that constitute 95% 

confidence intervals on the median model fit. As a brief reminder, the rMax parameter 

describes the maximum response of the neural population, the c50 describes the 

coherence level at half of rMax, while the k-exponent describes the shape of the 

transducer function around the c50. Exponents above 1 are indicative of an 
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accelerating and saturating nonlinearity (the theoretical generator of the “dipper 

effect”), while exponents at or below 1 are indicative of only a saturating nonlinearity. 

A c50 beyond 100% coherence is possible, and it indicates that the neural response 

showed little evidence of response saturation. In this situation, it’s possible that a 

different function may be a better descriptor of the data. The bootstrapped distributions 

of model fit parameters were also compared using estimation statistics (Claridge-

Chang & Assam, 2016).   

4.4 Results 

4.4.1 Grand-average responses to global and local switching 

We first present an overview of grand-average responses prior to RCA filtering, 

as this cross-channel average informed the number of 1F1 harmonics to be used for 

RCA. These data are presented in Figure 4.3, which shows the timeseries and 

amplitude spectrum of full coherence 1F1 global form switching averaged across all 

conditions, observers, and channels. Figure 4.3A shows this data in the time-domain, 

where there is a clear negative peak approximately 150ms after the switch to a full 

coherence Glass pattern (the dashed square-wave shows the 1F1 stimulation model). 

This signal is markedly asymmetric, resembling a positively clipped sine wave. As 

such, both odd and even harmonics of 1F1 are present in the Fourier representation of 

this signal, as evidenced in Figure 4.3B, where both global and local switching 

harmonics are denoted by the black bars and inlaid text, the latter after the axis break. 

We calculated the T2circ statistic (Victor & Mast, 1991) on the Fourier coefficients of 

harmonics 1F1 through 8F1, and found significant responses up to and including 5F1 

(p < .05, FWE corrected; Benjamini and Yekutieli (2001)), and at 1F2 (the local 

resampling frequency). Evidently, responses to global and local form switching have 

been captured at these harmonics, so they were selected as the input frequencies for 

RCA dimension reduction.  
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Figure 4.3: Grand average sensor timeseries and spectrum 
A: Grand average timeseries. The solid line represents the grand-mean waveform, while the grey 

shading represents the bootstrapped 95% CI on the mean (n=10000). The dashed square-wave 

overlaid represents the temporal profile of 1F1 global form switching stimulus. B: The Fourier series 

of A, with stimulus harmonics labelled appropriately. The abscissa has been broken to show the 

response at 30Hz.  

  

4.4.2 Spatially extensive responses to global form 

To allow group-level assessment of a single scalar value that collectively 

describes scalp responses at channels showing consistent phase-locked responses, 

group-level RCA global form switching filters were calculated for each axis of pattern 

alignment, and separately for the 1F2 dipole resampling rate across pattern axes. The 

proportion of the total trial-to-trial covariance recovered by the first six components 

are presented in Figure 4.4. For global form RCs, the first component accounts for 79 

- 81% of the cross-trial covariance, the 2nd component only explains approximately 12 

– 14%, while the third component accounts for very little (3 – 6%). However, the local 

component does not show such a steep decline, with the 1st, 2nd, and 3rd components 

capturing 58%, 28%, and 19%, respectively. Across all filters, the proportion of 

covariance recovered is uniformly low by the 4th component – a maximum of 6% for 

the 1F2 filter. Therefore, we focus our analysis on the first three components of each 

RCA hierarchy.  
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Figure 4.4: Hierarchy of reliable components 
The proportion of trial-to-trial covariance in Fourier coefficients recovered by each RCA component 

(i.e., each spatial filter) trained separately on global and local frequency harmonics. Markers 

represent the condition that was submitted to calculate RCA filters; 1F1 – 5F1 global form 

harmonics (Tr: translational, Rd: radial, Cn: concentric) and 1F2 local resampling.    

 

To visualise the components recovered by RCA, we present their projected 

scalp topographies in Figure 4.5. For the first component of filters trained on 1F2 local 

resampling, we find a slightly left-lateralised occipital topography with peak responses 

at electrodes O1 and PO7, and with convex contour lines encapsulating parieto-

occipital electrodes. In comparison, for the first component of all global form 

switching filters, we find a topography that includes that of local resampling, but with 

peak responses that extend to more anterior parietal electrodes with more concave 

contour lines, suggestive of more lateralised responses. These topographies are 

consistent with those found by Palomares et al. (2012), and the notion that information 

pertaining to global form correlations is represented in early and mid-level processing 

regions (Mannion et al., 2010; Ostwald et al., 2008). For global form, there is still an 

RC2 topography over parieto-central and parieto-occipital electrode sites that is 

consistent across pattern conditions. Although it does not account for a great deal of 

covariance, this topography resembles the 2nd harmonic topography found by Pei et 

al. (2005). While we do not distinguish harmonics in the present experiment, it is 

interesting to note that these authors found that the activation of this topography was 

uniform across pattern axes and randomly oriented dipole fields. By RC3, cross 

pattern-axis consistency is lost for global form filters, suggesting that they reflect noise 

unrelated to the stimulus, especially when coupled with the low proportion of 

covariance recovered by this component. For the local resampling projections, RC2 
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and RC3 still explain a significant proportion of cross-trial covariance and are heavily 

lateralised. It is possible that these topographies represent some contribution from 

areas sensitive to the illusory motion percept elicited by dynamic Glass patterns, such 

as V5/hMT  (Krekelberg et al., 2005). For both local and global RCs, we compare the 

SNR of each component across coherence levels in the next section.  

 
Figure 4.5: Topographies of reliable components 
Scalp projection of RCs one, two, and three for the local and global stimulation harmonics. Local 

RCs are based on all conditions, global RCs are generated on a per-condition basis. Tr = 

translational, Rd = radial, and Cn = concentric. The heatmap is in the arbitrary units of the RCA 

forward model, and uses the “coolwarm” diverging colourmap (Moreland, 2009).    

4.4.3 Responses to local resampling 

Observers’ sensor data was projected through the weightings of the group-level 

spatial filter for the first three RCs, enabling the assessment of component signal-to-

noise ratios. We first describe the projected values generated from the local filters, and 

then shift focus solely to the global filters, as they are of prime interest. As shown in 

Figure 4.6A, all coherence levels, for all local resampling RCs had 95% confidence 

intervals that did not contain baseline noise, indicative of significant 1F2 responses. 

As expected, the SNR for the local switching (30Hz) response did not vary with global 

form coherence for any RC, as evidenced by bootstrapped contrasts carried out 

between each unique combination of coherence levels, for each component (see 

Appendix E). Averaging across coherence levels, the more occipital local RC1 filter 

showed the highest SNR (median: 4.1, 95% CI: [3.8, 4.3]), followed by RC2 (median: 

3.0, 95% CI: [2.7, 3.7]), and RC3 (median: 1.8; 95% CI: [1.5, 2.0]). In Figure 4.6B, 
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contrasts on the distribution of SNRs across coherence levels are shown, indicating 

that the SNRs of all RCs were distinct from one-another, as all 95% confidence 

intervals on the differences in medians did not contain zero, with the largest difference 

being between RC1 and RC3 (median Δ: 2.3, 95%CI: [2.0, 2.6]). Overall, these results 

suggest that RCs one through three all show significant 1F2 activity, that the more 

occipital RC1 was most responsive, and that 1F2 responses were static across 

coherence levels.   

  
Figure 4.6: SNR of local RCs across global form coherence levels 
A: Local component SNR as a function of global form coherence collapsed across all pattern axes. 

Line and marker colour denotes the reliable component (RC). The grey shaded region illustrates the 

noise floor (SNR = 1). The median across all coherence levels is provided in the right-most section 

of A, and is contrasted in B. B: Contrasts on the median SNR across coherence levels. Shaded curves 

show kernel density estimates generated by bootstrapping the difference in medians. The vertical 

solid line shows the empirical difference in medians, while the dashed lines show the bootstrapped 

confidence interval (CI) on this difference. Where CIs do not cross the zero a significant difference 

is implied (marked by stars) .  

 

4.4.4 Lateralised responses scale with global form coherence  

Having established that peak local responses were static across coherences 

levels, we now report responses to global form switching for each RC. Now, SNR is 

defined as detailed in equation 5. In Figure 4.7A, the median SNR, and 95% CIs on 

those medians, for each RC are shown for each pattern axis. The markers inlaid at the 

top of each panel denote SNR values with confidence intervals that do not contain 

baseline noise. A significant change from baseline is implied where 95% CIs do not 

cross the baseline threshold (SNR=1, grey region). RC1 appears to show a response 

that grows with global form coherence, as does RC2 to some extent in the translational 

condition, but with a general tendency towards much lower SNR. Some RC2 
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activation is not unexpected, as RCA components are not necessarily orthogonal, and 

RC1 shares some topography with RC2.  

 
Figure 4.7: SNR of global RCs across global form coherence levels and 

pattern axes 
For each subplot, different line colours represent the three reliable components (RCs) we compared. 

Error bars represent 95% confidence intervals. The shaded grey region represents the noise floor 

(an SNR of 1). The smaller markers at the top of each subplot indicate where the SNR was 

significantly larger than 1 (black dot = N.S.). Tr: translational, Rd: radial, Cn: concentric 
    

In Figure 4.8 we illustrate the unique contribution from RC1 by performing 

contrasts between the SNR values of each RC, for each coherence level. These 

comparisons indicate that, when comparing RC1 with RC2 and RC3, a relative 

increase in RC1 SNR starts at 30 – 40% coherence, which continues to grow up to 

100% coherence for all pattern conditions. However, when comparing RC2 and RC3, 

no such difference is encountered, having SNR values that are quite similar despite 

their distinct topographies. As RC1 shows a response that scales with global form, and 

shows SNR values that significantly differ from other RCs, we focus our model fitting 

analysis on sensor records that have been projected through this filter. 
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Figure 4.8: Contrasts of SNR between each RC, across coherence and pattern 

axes 
Each panel represents a reliable component contrast (see headings). For each panel, different line 

colours represent different pattern axes, and the dashed horizontal zero line represents a difference 

of zero between conditions. Where error bars (95%CIs) do not contain this reference line, a 

significant difference in SNR between RCs is implied, and is represented by the smaller markers 

inlaid at the top of each plot (a black dot = N.S.). Tr: translational, Rd: radial, Cn: concentric 

4.4.5 An accelerating nonlinearity independent of pattern axis    

In Figure 4.9, global RC1 median SNR is plotted as a function of global form 

coherence. We have changed the abscissa to a linear scale, to illustrate any sigmoidal 

(accelerating/saturating) nonlinearities more clearly. Also shown is the fit of a 

hyperbolic ratio function, optimising the c50, rMax, and exponent parameters. 

Qualitatively, responses appear to be dynamic over a wide range of coherence values, 

showing some indication of mild response saturation, though a horizontal asymptote 

is never clearly achieved in the radial and concentric condition. In the translational 

condition, this saturation is more distinct, and has responses to maximum coherence 

that are generally lower than that of the other conditions. While some saturation is 

apparent in the median SNR of all conditions, some bootstrapped fits returned a c50 

parameter beyond 100% coherence. This indicates that some combinations of 

observers were best fit by a function that shows an absence of saturation, evidenced 

by the shape of the upper limit on  the confidence interval in all conditions. The 

proportion of fits with a c50 > 100% was 22% for the translational and radial 

condition, and 15% for the concentric. This suggests that a saturating nonlinearity can 

describe the pattern of responses in the majority of observers, but that some may be 

better described by a different (perhaps linear) form of transducer.  
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Figure 4.9: Bootstrapped model fits to median SNR  
Median SNR from baseline for data projected through RC1 for each pattern condition. The solid line 

is the best fit of a hyperbolic ratio function to the median SNR, while the shaded grey region around 

the line is the 95% CI on this model fit. Tr: translational, Rd: radial, Cn: concentric. Individual 

datapoints are omitted for clarity, but are available in Appendix F. 

 

When the c50 is beyond 100%, the value of the other parameters describes a 

function that is beyond the possible range of stimulus values, so we have removed 

bootstraps that contain c50s > 100 from consideration. This means that all forthcoming 

parameter contrasts are performed based on the lowest number of bootstrapped 

hyperbolic ratio fits with c50s < 100% (n = 7784). The distribution of remaining 

bootstrap parameter values is shown in Figure 4.10 for each pattern condition. First, 

that the median exponent values are all above 1 (and that they do not cross 1 in their 

confidence intervals) is consistent with an accelerating nonlinearity followed by 

saturation in the majority of observers. The exponents are quite similar for radial and 

concentric responses, showing median values of 3.45 (95% CI [2.5, 5.8]) and 3.15 

(95% CI [3.2, 8.7]), respectively. However, the translational condition shows a great 

deal of variation in the exponent parameter, having an upper confidence interval that 

reaches the simplex fitting constraint (median: 5, 95% CI: [1.6, 10]). Such exponent 

values occur when responses traverse the rMin to rMax delta over a very brief range 

of coherence values, and these extreme fits are visible in the lower CI of the model fit 

for this condition (Figure 4.9). The differences in exponent values between pattern 

conditions (Figure 4.10B, right-most panel) were within the margin for error in all 

cases, though it is clear that the variability of translational exponent fit is likely to 

mask any subtle differences when making comparisons with this condition. Extreme 

exponent values do not preclude the assessment of other parameters, where we 

continue to see a trend towards the translational condition showing exceptional 

estimates. The c50 distributions are quite similar for radial and concentric responses, 
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showing median values of 60% (95% CI [43, 95]) and 62% (95% CI [53, 90]), while 

the translational condition reaches half-saturation at a lower coherence, on average 

(median c50: 47%, 95% CI [40, 83]). However, as shown in Figure 4.10B, cross-

condition contrasts of the c50 indicate that this difference was not significant, as its 

confidence intervals all cross zero.  

 
Figure 4.10: Comparison of fit parameters between Glass pattern axes 
A: Distribution of parameter estimates recovered from the model fit bootstrapping procedure. 

Vertical dashed lines and black regions show the 2.5th and 97.5th percentiles. B: Distribution of 

differences in parameter estimates. When a confidence interval (vertical dashed lines) does not 

contain the zero reference (dotted) line, a significant difference is implied. Translational, radial, and 

concentric are abbreviated to Tr, Rd, and Cn (respectively). 

 

The final fit parameter - the rMax - also shows a trend towards lower values in 

the translational condition (median: 1.8, 95% CI [1.0, 5.29]) when compared to the 

radial (median: 4.9. 95% CI [3.8, 9.0]) and concentric (median: 3.7, 95% CI [1.8, 6.4]). 

Despite the magnitude of this reduction, it does not prove to be significant. Indeed, 

some observers show maximum responses in the translational condition on-par with 

the other pattern conditions, and the highest overall SNR was actually from one 

observer in the translational condition. Overall, when comparing the hyperbolic ratio 

fit parameters across pattern types, we find little evidence for a reliable difference in 
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parameters across pattern types, consistent with the fits we have previously performed 

on psychophysically obtained discrimination thresholds. Although, the confidence 

interval on the difference between translational and radial form only marginally 

crosses zero, and the ubiquity of reports finding increased responses to radial patterns 

prompted further investigation. As we have directly measured the responses to 100% 

coherence, and because the rMax parameter is affected by responses at all levels of 

coherence, we ran a supplementary analysis contrasting observers’ SNR values to 

100% coherence between pattern axes. The results of this contrast are shown in Figure 

4.11, where we find that SNR values were significantly higher in the radial condition 

than in the translational condition, in-line with previous research. This indicates that 

some observers had increased responses to maximally aligned radial patterns that were 

not fully captured by the hyperbolic ratio transducer model.  

 
Figure 4.11: Comparison of SNR at maximum coherence across pattern axes 
A: Bootstrap distribution of SNR at maximum pattern coherence. B: Cross-condition contrasts of 

responses to maximum coherence. Contrasts with a star besides them are indicative of a significant 

difference between comparators. 

4.4.6 Response dynamic range is higher than behavioural predictions  

Having established the general form of the transducer recovered by our SSVEP 

methodology for global form RC1, we now directly compare the parameter estimates 

of the neuronal transducer fits with those predicted by our earlier psychophysical 

work. In Figure 4.12, the hyperbolic ratio function that best fit behavioural thresholds 

is overlayed with those of the present experiment (this was accomplished by 

substituting the SSVEP c50 and exponent values with those obtained 

psychophysically, but still using the rMAX value of the SSVEP). Initial inspection 

suggests that psychophysical thresholds predict peak sensitivity over a much lower 

range of coherence levels, and had a more pronounced response saturation. This is 
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illustrated by the leftwards shift of the dotted curve relative to the curves derived from 

EEG responses in all three conditions.  

 
Figure 4.12: Comparison of SSVEP models with psychophysical predictions 
Comparison of hyperbolic ratio fits from the psychophysical experiment (dotted line) and those based 

on electrophysiological recordings (solid). The bootstrapped confidence interval on the 

psychophysical fits is not shown here, but is instead represented in the distributions in Figure 4.13. 

Individual datapoints and CIs on the median are omitted for clarity. Tr: translational, Rd: radial, 

Cn: concentric 

 

In Figure 4.13, the distribution of parameter estimates relating to sensitivity 

(c50s and exponents) are compared across psychophysical and electrophysiological 

estimates. There is quite a striking difference between experiments in the distribution 

of c50s, with the median value from the present experiment being almost double that 

of our psychophysical study. This reduction was significant for translational (median 

Δc50: 15.7%, 95% CI [7.5, 51.6])  and radial (median Δc50: 26.8%, 95% CI [11.2, 

55.0]), but was not significant for the concentric condition (median Δc50: 28.6%, 95% 

CI [-3.5, 62.2]), with the latter showing the most c50 variation in both experiments. 

For the exponent parameter, confidence intervals cross zero for the translational and 

concentric condition, but do not for the radial condition, where the EEG values show 

a median increase of 1.6 (95% CI [.45,3.9]). Overall, in comparing the distribution of 

c50 and exponent fit parameters across experiments, we find significant differences in 

the radial condition for both, and in the c50 only for the translational condition. For 

the concentric condition, confidence intervals on the difference between parameters 

cross zero for both the c50 and exponent, though for the former this is likely due to the 

heavily skewed distribution from the psychophysical experiment. 
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Figure 4.13: Contrast of SSVEP and psychophysical fit parameters 
A: The distribution of absolute fit parameter values, with the psychophysical distribution denoted by 

the hatched pattern. B: the distributions of differences in parameter values between the EEG and 

psychophysical data. Where the confidence intervals (vertical dashed lines) do not contain zero 

(vertical dotted line), a significant difference is implied (marked by star symbols). Distributions to 

the right of the dotted line imply a higher parameter value for the SSVEP model fits. Tr: translational, 

Rd: radial, Cn: concentric 

4.5 Discussion 

This experiment aimed to explore the shape of the population neuronal 

transducer for global form, and to investigate the degree to which the gradient of 

neuronal responses predicts the pattern of discrimination thresholds we previously 

obtained psychophysically (Chapter 3).  Our findings indicate that both behaviour and 

electrophysiology are indicative of threshold facilitation and suppression, in that they 

both can be described by an accelerating and saturating transducer function. However, 

the range of global form coherence values over which peak sensitivity is predicted (the 

steepest part of the transducer) is significantly elevated in electrophysiological 

recordings. Indeed, the psychophysical model fits predicted a transducer that was 

steepest over a lower range of coherence values, such that a pattern of lower coherence 

is still considered to be globally correlated. Nevertheless, response nonlinearity was 
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observed for the majority of observers, although our bootstrapping analysis revealed 

that some observer combinations may have been better fit by a function that lacks a 

saturating nonlinearity (those with a c50 > 100%). In bootstraps that did show 

saturation (the majority of them did), there was an absence of polar form enhancement. 

The hyperbolic ratio parameters that describe the shape and diagonal translation of 

responses (the exponent and the c50) did not significantly differ across pattern 

conditions, which is in line with our psychophysical predictions. 

4.5.1 Relating global form responses to behavioural thresholds 

While we did find evidence for an accelerating and mildly saturating 

nonlinearity in the perception of global form (as would be predicted by our 

psychophysical findings), we found that its accelerating regime occurred beyond the 

range of peak sensitivity predicted by psychophysical thresholds. There are several 

possible explanations for this difference. First, while RCA produces a filter that 

maximises the contribution from electrodes showing consistent responses at the global 

form switching frequency, this does not guarantee that the generative neuronal 

populations are the same population that is used to make an actual decision. It is 

probable that the neuronal population responsible for a behavioural response is just a 

small fraction of the responsive population, the selection of which may be driven by 

attentional processes (Verghese et al., 2012). In other words, our behavioural data are 

likely determined by the most sensitive global form encoding mechanism, rather than 

the average of the entire responsive population (which is what is measured by EEG). 

Indeed, previous fMRI experiments investigating responses to maximally aligned 

Glass patterns have shown that some degree of global form selectivity is broadly 

distributed along low to mid-level visual processing regions, but that only a small 

number of subregions (LOC, V4) encode differences between pattern types (Mannion 

et al., 2010; Ostwald et al., 2008). If global form information is represented throughout 

the visual system, but a relatively small sub-population are behaviourally decisive, our 

findings are limited by the low spatial resolution/volume conduction inherent to EEG, 

and we should perhaps expect that this average sensitivity differs from  behavioural 

performance.  

While we consider the limitations of EEG to explain the majority of the 

difference between our psychophysical and electrophysiological data, there are some 
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further points for consideration. One possibility is that observers’ attention affects the 

range of global form values over which they are most sensitive. In the domain of 

luminance contrast, introducing an attentionally loading task to observers while 

measuring contrast discrimination is known to horizontally shift thresholds, such that 

attention acts as a form of input gain control (L. Huang & Dobkins, 2005; Reynolds 

& Heeger, 2009). When measuring discrimination thresholds psychophysically, a 

minimum level of attention is necessary to engage in the task and to provide accuracy 

estimates that do not reflect chance-level performance. However, in a pure SSVEP 

paradigm (as we have used), a more severe deterioration of attention is almost 

guaranteed as observers have no task other than to visually fixate, which may alter the 

sensitivity of neural populations that are modulated by attention. Currently, there is 

scant evidence to support the existence of a mechanism analogous to contrast gain 

control for global form stimuli, though Palomares et al., (2012) found that diminished 

attention reduces SSVEP responses to maximally aligned dynamic Glass patterns. 

This may be equivalent to changing the rMAX parameter of the present experiment, 

though this reflects a vertical translation of responses (output gain control), not the 

horizontal translation that would unify our psychophysics and electrophysiology. The 

psychophysical work of Pavan et al. (2019) demonstrated that introducing an 

attentional load during adaptation to maximally aligned Glass patterns increased the 

coherence at which a pattern is considered to be composed of randomly oriented 

dipoles. In other words, with an attentional load, observers were less sensitive to Glass 

pattern global form, and required patterns of higher coherence before considering them 

to be geometrically correlated. If this result is interpreted as attentional load elevating 

Glass pattern detection thresholds, then this could reflect an attentionally modulated 

input gain mechanism. This is because increasing the c50 of the transducer diagonally 

translates both detection and discrimination thresholds, such that the threshold for 

detection also increases. Thus, there is some evidence that attention can modulate 

global form responses, but it remains unknown whether a mechanism akin to contrast 

gain exists for the perception of global form. Overall, that we did not find significant 

responses at global form coherence levels that are known to be behaviourally 

discernible limits the interpretation of our results. At the very least, we have found 

strong evidence for a nonlinear profile of responses to global form coherence in most 
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observers, but its relationship to behavioural sensitivity rests on an explanation for 

why the transducer may be horizontally translated.  

4.5.2 Little evidence for polar form enhancement     

Increased sensitivity to concentric form has been identified by earlier 

psychophysical reports that focus on detection thresholds of Glass patterns in noise 

(Kelly et al., 2001; Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 1998; H. R. 

Wilson et al., 1997). As with our psychophysical experiment, we found little evidence 

for a difference in hyperbolic ratio parameter estimates between Glass pattern 

alignment axes. However, it is evident that the translational condition was exceptional 

in the variability of its parameter estimates. The rMax and c50 parameters for this 

condition had quite narrow distributions relative to other pattern types, while the 

exponent varied over quite an extreme range of values. To a first approximation, 

extreme exponents in the model fits for some observers could be taken as suggestive 

of increased sensitivity to translational form (that is, a sharper acceleration and 

saturation). A finding of increased sensitivity to translational form would be 

exceptional with respect to the existing psychophysical literature, and is not predicted 

in our own psychophysical experimentation, prompting alternative explanations. A 

consistent finding from M/EEG and fMRI experiments that investigated responses to 

maximally aligned Glass patterns is that translational patterns evoke a significantly 

weaker responses than concentric and radial patterns (Ohla et al., 2005; Pei et al., 

2005; Rampone & Makin, 2020; Swettenham et al., 2010). In the present experiment 

we also find this distinction between radial and translational patterns when directly 

comparing maximum-coherence SNR values. If translational patterns, for no reason 

related to behavioural thresholds, yield reduced SNR when measured with EEG, then 

a higher global form coherence would be required to reveal significant responses.  In 

our own SSVEP measurements, this would mean that a larger proportion of the 

transducer is masked by physiological noise, perhaps only becoming measurable when 

it is well into its accelerating regime. When setting baseline noise (rMin = SNR of 1) 

as the lower asymptote of the response function (as we have), a more severe exponent 

parameter is required to describe the sudden elevation of responses above the noise 

floor. For this reason, we would advise caution when interpreting the variability of 

translational exponent, as we suspect that it is not related to behavioural sensitivity, 
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but that it may reflect an inherent limitation of measuring the responses from a 

population of neurons using EEG. 

4.6 Conclusion 

In this experiment we demonstrated that activity over parieto-occipital 

electrodes demonstrate a response that scales with the global form coherence of 

translational, radial, and concentric Glass patterns. In the majority of observers, this 

gradient was well described by an accelerating nonlinearity followed by a mild 

saturation. When compared with predictions obtained psychophysically, the SSVEP 

response function predicted peak sensitivity over a significantly higher range of global 

form coherence values. We suspect that this horizontal shift is most likely to be due to 

the lack of spatial selectivity of electroencephalography and the method we used to 

extract signal-to-noise estimates, but also provide an alternative explanation from 

attentional modulation. Consistent with our psychophysical work, we find little 

evidence for a bias in supra-threshold sensitivity to radial or concentric patterns, but 

we do find that radial patterns evoke the largest responses overall, consistent with the 

finding of other experiments. 
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Chapter 5. General discussion  

5.1 Summary of experimental work 

The goal of this thesis was to explore nonlinearity and signal transduction in 

low and mid-level human visual perception, focusing on surround suppression of 

contrast, a divisive nonlinearity, and the transduction of global form. More 

specifically, we aimed to understand the extent to which surround suppression of 

contrast is dependent on advancing age, to further our understanding of suprathreshold 

surround suppression in central vision, and to explore observers’ sensitivity to 

differences in global form and the extent to which psychophysically obtained 

thresholds can be predicted from population neuronal responses. In the following 

section, a brief overview of the findings from each chapter of this thesis is presented. 

In Chapter 2, we investigated the possibility that recent reports of an age-

related increase in surround suppression at supra-threshold contrasts (Karas & 

McKendrick, 2009, 2011, 2015) could be due to contamination from overlay masking, 

a separate, possibly pre-cortical form of contrast normalisation. Using stimuli 

designed to preclude contributions from overlay masking, we measured suppression 

strength in older (> 60) and younger (< 30) observers. Despite using centre and 

surround contrasts reported to produce the maximal age-related increase in the 

suppression of perceived contrast by previous reports, there was little evidence of an 

age-related increase in suppression magnitude. This implies that short-range, pre-

cortical overlay masking could be the mechanism affected by age in existing 

experiments. The surround suppression we did find was weak, but significant. It was 

also mostly independent of the relative orientation of the centre and surround gratings, 

unlike the surround suppression routinely found in the periphery.  

In Chapter 3, we explored behavioural sensitivity to differences in the global 

form percept elicited by Glass patterns. In particular, we were interested to see if the 

“dipper effect” (a paradoxical facilitation of discrimination thresholds at low pedestal 

levels) can be observed in a mid-level parameter space, as it has been for the higher-

level perception of facial expression (Gray et al., 2020). A confirmation of a Glass 

pattern “dipper” would strengthen the notion that the consequences of nonlinear 

neuronal signal transduction can be found throughout the human visual system, and 
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perhaps throughout the whole brain. This also provided the opportunity to investigate 

previous reports of increased sensitivity to concentric and radial global form over 

translational global form, though while measuring across the entire range of 

discrimination thresholds, rather than the detection thresholds that have previously 

been investigated (Seu & Ferrera, 2001; H. R. Wilson & Wilkinson, 1998; H. R. 

Wilson et al., 1997). The results of our experiments suggest that there is evidence for 

both threshold facilitation and suppression, and that they could be the consequence of 

nonlinear transduction in the perception of global form. Unlike previous studies, we 

found little evidence for enhanced sensitivity to polar form over translational form.   

In Chapter 4, we investigated the extent to which the thresholds obtained in 

our online psychophysical experiment could be explained by a nonlinear neuronal 

‘global form’ transducer. We measured steady-state visually evoked potentials for 

dynamic Glass patterns across the same range of global form coherences that we 

examined psychophysically, and fit responses with the same transducer model used to 

fit discrimination thresholds. Our results demonstrated that responses to our 

parameterisation of global form accelerate and saturate (reflective of a dipper effect), 

but that the accelerating and saturating regimes occurred over a higher level of global 

form coherences than would be predicted by our psychophysical thresholds. For the 

most part, we found little difference in the steepness and location of the response 

function across pattern types, but radial patterns did show considerably higher 

responses at maximum pattern coherence, as has been identified in previous reports 

(Ostwald et al., 2008; Pei et al., 2005; Swettenham et al., 2010).  

5.2 Future directions 

The experiments presented in this thesis suggest several future lines of enquiry. In 

Chapter 2, the fact that we did not find any evidence for an age-related effect of 

surround suppression when contributions from overlay masking were attenuated 

suggests that surround suppression is not affected by age, contrary to previous reports 

(Karas & McKendrick, 2009, 2011, 2015; Pitchaimuthu, Nguyen, et al., 2017). It is 

possible that overlay masking is altered by age, and future work should specifically 

compare overlay masking using spatially superimposed stimuli and surround 

suppression between older and younger individuals.  
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Finding an age-related change that specifically affects one form of suppression 

would not only inform our understanding of the changes in vision that accompany age,  

but might also provide clues about their dependency on the concentrations of 

excitatory and inhibitory neurotransmitters. There is evidence from the study of 

schizophrenia that a reduction of the concentration of inhibitory neurotransmitter 

GABA (gamma-aminobutyric acid) in the visual cortex is a corollary of weakened 

orientation tuned surround suppression (Yoon et al., 2010). However, the effect of 

healthy aging on GABAergic signalling has received only limited investigation in 

humans. A study of post-mortem tissue samples found evidence for an age-related 

reduction in GABA compounds in primary visual cortex (Pinto et al., 2010). 

Conversely, recent evidence from magnetic resonance spectroscopy (a method that 

allows the non-invasive measurement of neurotransmitter concentration in living 

humans) has found the concentration of GABA in the visual cortex to increase with 

age (Pitchaimuthu, Wu, et al., 2017). If the strength of surround suppression is broadly 

contingent on the action of GABA, these reports predict contradictory effects. That we 

have not found an effect of age on surround suppression may indicate that GABA does 

not directly govern its magnitude.  

The suppression we did find in Chapter 2 was only broadly orientation tuned, 

though other groups (Cannon & Fullenkamp, 1991; Xing & Heeger, 2000) have 

reported stronger orientation tuning when using centrally presented suprathreshold 

stimuli. Xing and Heeger used long-duration stimuli that flickered at 8Hz, and the 

stimuli of Cannon and Fullenkamp also had a relatively long duration. It is possible 

that some of the differences between our results are due to the presence of long-term 

contrast normalisation in Xing and Heeger’s paradigm (releasing orientation-tuned 

mechanisms from saturation), or perhaps some artefact of exploratory eye movements 

in the case of the extended probes used by Cannon and Fullenkamp. Moreover, both 

studies used closely abutting surrounds when measuring orientation tuning which 

might have generated contamination from overlay masking (Petrov et al., 2005) or 

edge segmentation effects (Appelbaum et al., 2008). Future work exploring the 

orientation tuning of foveal suprathreshold surround suppression could explore these 

issues by parametrically altering the duration, flicker frequency and separation of the 

central probe region.  
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In Chapter 3, we found evidence for a “dipper effect” in global form detection and 

discrimination thresholds, and in Chapter 4 we found evidence for an accelerating and 

saturating nonlinearity in the evoked responses to global form. The semi-saturation 

points (c50s) computed from the electrophysiology were higher for two out of the 

three pattern axes we investigated, such that the psychophysical thresholds predicted 

high sensitivity over a lower range of global form coherences. Future work might be 

directed towards further exploring this inconsistency, as previous work in the contrast 

domain has been successful in relating discrimination to functional activation 

(Boynton et al., 1999). An explanation we provided was some contribution from a top-

down attentional process. When making a behavioural decision, attention likely acts 

to select the most sensitive neuronal sub-population (Verghese et al., 2012), while 

EEG can only measure the whole population response. Therefore, the transducer that 

we fit to evoked scalp responses may be contaminated by response populations that 

are not behaviourally decisive. Alternatively, attention has been previously shown 

translate threshold vs contrast curves (L. Huang & Dobkins, 2005; Reynolds & 

Heeger, 2009). An attention driven gain analogous to contrast gain has not been 

investigated for global form, though it may explain our results. Indeed, the attentional 

load observers are subject to when performing the behavioural discrimination task 

would be higher than the passive viewing required for a steady-state VEP experiment. 

Future work might explore possibility of attentional modulation of global form 

discrimination. A final possibility is that the population responses to subtle global 

form may have simply been below the EEG noise floor in our measurements. 

Although, if this were the case, we should still expect to see a similar saturation of 

responses across both experiments, which was qualitatively not the case. Nevertheless, 

the higher signal-to-noise ratio of a method like magnetoencephalography 

(Goldenholz et al., 2009) may be useful in resolving responses to low levels of global 

form coherence.  

We are the first to establish the shape of the Glass pattern global form 

discrimination function using local orientations sampled from a Gaussian distribution. 

As such, our pedestal levels were chosen relatively sparsely, and we did not sample 

discrimination thresholds at or below absolute detection. This is particularly important 

because the facilitatory regime of the dipper effect for contrast is usually most 

prominent proximal to the threshold for absolute detection (Nachmias & Sansbury, 
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1974). Future experiments may be directed towards a more granular assessment of 

global form discrimination near to the absolute detection thresholds we have reported. 

Moreover, future work would likely have the benefit of vastly improved experimental 

control, as our work was inherently uncontrolled due to the use of online 

experimentation.     

Finally, it is curious that we observed little evidence of enhanced sensitivity to 

concentric global form, as is often reported at detection threshold (Seu & Ferrera, 

2001; H. R. Wilson & Wilkinson, 1998). Dakin (2002) argued that previous reports of 

enhanced sensitivity to concentric form are solely due to the presence of edge cues 

introduced by using a circular aperture. Our experiments used a circular aperture, yet 

in Chapter 3 even the threshold for global form detection was similar across all pattern 

axes we examined. Why do previous reports find concentric enhancement, but we have 

not? A fundamental difference between previous parameterisations of global form and 

our own is the presence of dipoles that are perfectly aligned co-circularly or radially 

to the centre of the pattern field. Previous parameterisations increased the salience of 

global form by increasing the proportion of dipoles that followed the geometric rule, 

such that a “coherence” of 50% means half the dipoles are perfectly aligned, while the 

other half are randomly oriented. In our parameterisation, however, perfectly aligned 

dipoles are relatively rare because their orientation is drawn from a Gaussian 

distribution. One explanation for our results could be the presence of a population of 

neurons with tightly tuned preferences for circular or radial global form. If such 

populations exists, they may also be the generators of concentric bias identified in 

previous reports, and would be scarcely innervated by our stimuli at low and 

intermediary levels of global form coherence. Future work could explore the 

possibility of such a narrow-band global form mechanism via a psychophysical 

adaptation paradigm. For example, observers could be adapted to a perfectly aligned 

concentric Glass pattern (with regular “top-ups”), and their detection thresholds for 

concentric global form obtained both using our parameterisation of global form, and 

(separately) for the proportion-aligned parameterisation. Finding a reduction in 

thresholds for the latter parameterisation, but relatively stable thresholds in the former 

would be indicative of a unique contribution from a highly tuned population 
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5.3 Final conclusions 

The present thesis explored questions relating to nonlinearities in visual 

processing, specifically the spatial modulation of surround suppression and the 

behavioural sensitivity and transduction of mid-level global form stimuli. Our main 

findings are summarised below: 

1. Suprathreshold surround suppression of contrast in central vision is relatively 

stable across the lifespan and is only broadly orientation tuned. 

2. There is threshold facilitation and suppression in the behavioural 

discrimination of the global form percept produced by Glass patterns, 

consistent with a “dipper effect”. 

3. The gradient of neuronal responses to increasing global form coherence shows 

evidence of both acceleration and saturation. While this is also consistent with 

a “dipper effect”, further work is required to reconcile the difference in the 

sensitivity predicted by our psychophysical and electroencephalographical 

experiments   

4. The psychophysical sensitivity to global form, as we have defined it, is similar 

across polar and translational Glass pattern alignment axes.  

5. Steady-state evoked responses are also similar across polar and cartesian form, 

although, at maximum global form coherence, the response to radial patterns 

is significantly higher than the response translational patterns, consistent with 

previous findings. 

These findings extend our understanding of the characteristics of suprathreshold 

spatial modulation of contrast and how it changes across the lifespan, and adds to the 

evidence that nonlinear neuronal transduction is present throughout the human brain.    
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Appendices 

Appendix A: Individual contrast-matching psychometric 

functions 

For each observer (rows), in each subplot, the grey circles represent the 

accuracy estimates obtained from our staircase experiment. They are scaled according 

to the number of trials spent at a given target increment level. The solid lines represent 

the best fit of a Weibull function, and the vertical dashed line represents the PSE 

obtained from this fit.     

 



0   

132 

 

 



0   

133 

 

 



0   

134 

 

 



0   

135 

 

 



0   

136 

 

 



0   

137 

 

 



0   

138 

 

 



0   

139 

 

 



0   

140 

 

 



0   

141 

 

 



0   

142 

 

  

  



0   

143 

 

Appendix B: ANOVA tables for Chapter 2 with and 

without outliers 

ANOVA tables with outliers removed 
Two subjects had thresholds that violated the assumption of normality of residuals. 

In these ANOVA tables, those outliers have been removed. 
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ANOVA tables with outliers retained 
Two subjects had thresholds that violated the assumption of normality of residuals. 

In these ANOVA tables, those outliers have been retained. 
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Appendix C: Global form discrimination psychometric 

functions for individual observers 

For each observer, in each subplot, the small circles represent the accuracy 

estimates obtained from our method of constant stimuli experiment. The solid lines 

represent the best fit of a Weibull function, and the intercept of the vertical and 

horizontal solid lines represents the JND obtained from this fit. Plots shaded red did 

not contribute to the bootstrapped fit of a hyperbolic ratio function.  
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Appendix D: Psychometric function slopes for global form 

thresholds 

 
Psychometric function slopes for global form discrimination 
For each pattern axis, the fitted value of Weibull-B (slope) is presented as a function of pedestal 

global form coherence. The open circle represents the median slope at detection threshold, while the 

solid circles represent the median for discrimination thresholds. Error bars represent 95% BCa 

confidence intervals from 10000 resamples of the median. 
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Appendix E: Contrasts of local component SNR across 

global form coherence levels 

For each reliable component recovered for local form processing (RCs 1, 2, and 3) the 

projected 1F2 SNR has been contrasted between each global form coherence level to 

reveal any changes in local SNR as a function of global form coherence. Each RC is 

represented by a separate figure. Within each figure, contrasts are represented as 

ridgeline kernel-density estimates on the ordinate axis, such that a line for “1-2” 

represents the contrast of 1F2 SNR for the 1st and 2nd global form intensities. Where 

the confidence intervals on the difference do not contain zero (indicative of a 

significant difference), the KDE is coloured red (there were no significant differences, 

so all KDEs are grey).   
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Appendix F: SSVEP model fits with individual datapoints 

 
SSVEP model fits with individual datapoints 

Median SNR from baseline for data projected through RC1 for each pattern condition. The solid line 

is the best fit of a hyperbolic ratio function to the median SNR, while the shaded grey region around 

the line is the 95% CI on this model fit. Tr: translational, Rd: radial, Cn: concentric. Individual 

datapoints are included here unlike the figure in the main text. 

 


