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Abstract

This thesis presents a study of anionic surfactant solutions via experimental and

simulation methods. The surfactants studied in this work are some of the most

common ionic surfactants used in consumer products. Therefore understanding

and predicting their behaviour, as a function of concentration, is crucial to the

manufacturing of these products. Surfactant solutions can take the form of differ-

ent ‘mesophases’ depending on the concentration, which all show widely different

properties as a result of molecular self-assembly in solution. The simulation meth-

ods used in this work contribute to understanding the behaviour of fluids on the

macro-scale, by simulating the individual molecules in solution.

Experimental analysis in this work makes use of techniques such as polarised

optical microscopy (POM), rheological measurements, Raman spectroscopy and

dynamic light scattering (DLS). These experiments were performed not only to

establish the phase behaviour of the surfactant solutions, but also to uncover as-

pects of the structure at different concentrations. These results are then compared

with simulations which are performed for similar systems. For example, Raman

spectroscopy is used to show that the conformation of molecules is influenced by

structural changes within the fluid, which is later found to be reproducible using

simulation.

The simulation technique of dissipative particle dynamics (DPD) is used in

this work for studying the equilibrium phase behaviour of solutions at room tem-

perature. Following an establishment of the equilibrium behaviour, a study is

performed investigating the effect of the application of shear to these solutions.
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From these simulations we can also calculate a viscosity vs. shear rate profile for

comparison with experimental results. A small selection of equilibrium molecu-

lar dynamics (MD) simulations are performed, in order to demonstrate that the

simplifications made in performing DPD simulations vs. MD simulations have

minimal impact on the final results.
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Chapter 1

Introduction

Surfactants are present in many everyday products, such as detergents, shampoos,

paints and foods. When the concentration of surfactant molecules in solution is

above a critical concentration, the molecules can self-assemble into mesophases.

This self-assembly behaviour is driven by the amphiphilic nature of the surfactant

molecules. The structure of these mesophases varies, depending on conditions

such as the temperature and concentration. Typically mesophases include: mi-

cellar, hexagonal, bi-continuous cubic, and lamellar solutions. The structure of

these phases will be discussed in greater detail in Chapter 2 of this thesis. Dif-

ferent mesophases have different properties due to their different structures, in

particular they tend to have extremely different rheological properties, which will

be a topic of interest in this work. Understanding the rheological properties of

a surfactant solution for a given set of conditions (e.g. for a given concentration

and temperature) is key to the manufacturing process of surfactant containing

products. The equilibrium phases of surfactant solutions have been studied across

literature, for a variety of different surfactant types, using a variety of experimental

and numerical methods. This work will make use of different simulation and ex-

perimental techniques, in order to investigate the phase behaviour and rheological

properties of surfactant solutions.

The particular surfactants of interest in this work are alkyl ethoxysulphates

(AES), which are common anionic surfactants. The AES in this work is supplied
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by Proctor and Gamble, and is a common component in a number of their prod-

ucts, including laundry detergent, household cleaning products and personal care

products. These surfactants molecules have chemical structure

CH3(CH2)x(OCH2CH2)nOSO3Na where x and n take integer values. Typically, in

the AES used in commercial products, there is a distribution of x and n. However,

in published research, focus is normally on monodisperse systems (fixed x and n).

In particular, the surfactant molecule described by x = 11 and n = 0 has the

name sodium dodecyl sulphate (or sodium lauryl sulphate), and its behaviour at

low concentration is a relatively well researched topic, using both experimental

and simulation techniques. However, molecules of increasing n are less frequently

modelled, as are systems of higher concentration.

The modelling of surfactant systems is usually undertaken with the use of a

microscale or mesoscale technique. In these methods the individual surfactant

molecules are modelled, in order to understand how the structure on the atomistic

scale effects the fluid on the macroscopic scale. Simulation in this manner can aid

in the understanding some of the phenomena observed in experiments. The most

commonly used simulation method, on this scale, for general systems is that of

molecular dynamics (MD). MD has historically been used to model the atomistic

behaviour of a wide variety of different systems, including surfactant systems.

However, for surfactant systems, the time scales required for the self-assembly

process of the molecules starts to become unobtainable. This method is time

consuming, and it is difficult to reach both the large length scales and time scales

due to the computational effort involved. This led to the development of dissipative

particle dynamics (DPD). DPD is a mesoscale simulation technique, which uses soft

interaction potentials between large, coarse grained molecules to reproduce liquid

behaviour. DPD has the benefit of being able to reach time and length scales

that were previously unobtainable by traditional MD methods. DPD has been

applied to studying the phase behaviour of a variety of systems, as well as being

used to study the rheological properties of simple and complex fluids. However,
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the application of DPD to ionic surfactant systems is only a recent development.

The traditional way of modelling the electrostatic force in MD cannot be directly

applied to DPD systems, and so the best method of calculating the Coulombic

force for ionic molecules is still an open area of research.

The aim of this work is to study the equilibrium and rheological behaviour

of AES-like molecules, using DPD. This work focuses on behaviour specifically at

room temperature, with the effect of varying concentration and number of ethoxy

groups n, being the main variables of investigation. An understanding of the effect

that both concentration and n has, is valuable for the manufacture of surfactant

containing products. The ability to predict the effect varying n has on various

solution properties, enables for easier development and fine-tuning of commercial

products.

The first stage of this work is to confirm that DPD can accurately reproduce

the correct phase behaviour for these systems, since there is relatively little work

published using DPD for these types of surfactants. Experimentally, we first estab-

lish the phase diagram of a commercial AES product, as a function of it’s varying

concentration. DPD can then be used to simulate the same AES product, which

contains a polydisperse distribution of molecules with a varying number of ethoxy

groups n. The DPD results are compared with experimental data to confirm the

validity of the DPD method for studying the phase diagram. Following this, we

investigate the effect of varying n for monodisperse solutions. In particular the

location of the phase boundaries, and the types of mesophases that are produced

for a given value of n, are of interest in this study.

Following the establishment of a phase diagram, as a function of concentra-

tion and n, the individual mesophase structures can be analysed in greater detail.

The structure of surfactant solutions can be difficult to study experimentally, and

there is often discrepancy between different experimental techniques. This makes

computational study an attractive alternative to studying surfactant solutions. In

particular, in this work, we find that the micellar, hexagonal and lamellar phases
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dominate the phase diagram, and therefore their structures are investigated in

detail using DPD. For the micellar solutions the micelle shape and size are of par-

ticular interest. Micellar shape and size changes are typically difficult to quantify

experimentally, however these changes can effect bulk behaviour, such as the vis-

cosity. For the liquid crystal phases, the structure can be primarily quantified by

their periodicity, which has also been shown to influence overall bulk properties

and behaviour. Therefore, the effect that variation of n and concentration has on

the periodicity of the liquid crystal phases is studied in this work.

Next we turn to studying the effect that concentration and degree of ethoxy-

lation has on the individual molecular shape, as opposed to the self-assembled

structures discussed thus far. An interesting question is to whether a coarse-

grained simulation method, such as DPD, can capture conformational changes

which result from mesophase transitions. Typically this has not been investigated

in existing literature, because it is assumed that any conformational behaviour

would be lost as a result of coarse-graining. We begin by experimentally studying

the conformational changes that AES molecules undergo, as a result of variation of

concentration (and therefore phase transitions), by means of Raman spectroscopy.

We then compare this with the results obtained via DPD, to try and understand

if any information can be gained from studying such quantities via coarse-grained

simulation. Conformational changes can play a role in understanding overall bulk

behaviour. However, typically molecules which are large and complex, such as

surfactants, are once again difficult to study experimentally.

Next we turn our attention to the rheology of surfactant solutions. Surfac-

tant solutions typically possess a complex rhological profile, depending on which

mesophase they are residing in. The viscosity vs. shear rate behaviour of AES

is measured experimentally. While this plays a part in establishing the phase

diagram, it also enables us to investigate whether DPD can be used to recreate

the correct viscosity-shear rate profiles. Simulations are performed using DPD, in

which shear is applied to the surfactant solution structures, at varying shear rates.
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From this we can not only calculate viscosity, but also study the effect that shear

has on the mesophase structures.

A final aspect of this work turns to MD simulations. As already discussed,

MD is more time consuming than DPD, and the time scales required for the

self-assembly of molecules starts to become unreachable. However, one of the

drawbacks of DPD simulations, is that it is often unknown the extent to which

the coarse-graining has on the final results. Therefore we perform additional MD

simulations which aim confirm whether the parameters calculated in this work are

affected by the coarse-graining performed. Here we focus on the micellar phase

only due to the computational cost involved for these simulations. Therefore, in

particular, we focus on the effect coarse-graining has on the shape of the micelles,

as well as the individual molecules.

In summary, the aims of this project can be reduced to the following key

questions:

• What effect does the degree of ethoxylation n have on the phase diagram?

This includes which mesophases, in particular, are produced through self-

assembly, and at what concentrations do transitions to different mesophases

occur?

• How does the value of n and the concentration affect the mesophase struc-

ture? Of particular interest are aspects of the structure that are typically

difficult to measure experimentally.

• Does transition between mesophases have an effect on the conformation of

AES molecules? If so, can DPD capture this despite the coarse-graining

procedure?

• Can the rheology of different mesophases be captured using DPD, including

the viscosity vs. shear rate profile? Can we use DPD shearing simulations

to understand what is happening to a complex fluid when subject to a shear

force?
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• Is there any evidence that the coarse-graining performed for DPD simulations

influences the results calculated? Therefore, would different results would be

obtained via molecular dynamics simulations?

This thesis is structured as follows. Chapter 2 begins with a detailed discussion

on the different mesophases that can form for surfactant solutions with varying

concentration and temperature. Chapter 3 then presents an overview of the dif-

ferent simulation methods that can be used to model surfactant solutions, before

going into detail about the simulation methods used in this work.

Chapters 4 and 5 provide experimentally obtained information about AES so-

lutions, in order for a comparison with the simulated results in later chapters. In

Chapter 4, the phase diagram for AES is established, as well as the rheological

behaviour of the different mesophases. Chapter 5 provides information about how

the molecular shape is effected by the phase changes, by means of Raman Spec-

troscopy measurements. These measurements also help to confirm the boundries

between the different mesophases, as a function of their concentration.

Chapters 6 and 7 then present detailed investigations using the DPD simula-

tion method. Chapter 8 presents a small selection of MD results, studying the

the surfactant solutions in the low concentration region. This allows for a direct

comparison of similar parameters, calculated from the two different simulation

methods, for the same system.

The DPD simulations are all performed using the DL MESO [26] simulation

package, while the MD simulations are performed using LAMMPS [27]. The sim-

ulations are performed using two different HPC services. The first is the Tier 3

University of Leeds service ‘ARC’ (Advanced Research Computing). While addi-

tional support for simulations was provided by the Tier 2 service ‘CSD3’ (Cam-

bridge Service for Data-Driven Discovery). The CSD3 service provided just over

3 million CPU hours in order to produce the results presented in this thesis.
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Chapter 2

Surfactants

Surfactants are typically molecules that are amphiphilic, meaning that they con-

tain both hydrophobic (‘tail ’) and hydrophilic (‘head ’) parts [28]. Usually the tail

of an amphiphile is composed of one or two hydrocarbon chains [29], and an il-

lustration of this structure is shown in Fig. 2.1. The head is either an ionic or

nonionic group, and surfactants are often classified according to their head group:

nonionic, anionic, cationic or amphoteric.

Surfactants are also typically defined as materials that, at low concentrations,

lower the surface tension (or interfacial tension) between either two liquids, a gas

and a liquid, or between a liquid and a solid. This is, in fact, where the word

‘surfactant’ originates from; as a contraction of the phrase ‘surface active agent’.

When surfactant is added to a solvent, such as water, it has the effect of decreasing

the surface tension up to a critical value of the concentration, a value which is

given the name of the ‘critical micelle concentration’ (CMC). Above the CMC, the

surface tension will no longer decrease and remains constant, however, surfactant

molecules begin to self-assemble into micelles [30]. A micelle is an aggregate of

Hydrophobic tail

Hydrophilic head

Figure 2.1: Simple illustration of the amphiphilic nature of surfactant molecules.
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Increasing concentration c

Figure 2.2: The effect of increasing concentration in a surfactant solution. Micelles
do not form until the solution is above a critical concentration (CMC) such that
the interface is saturated with molecules.

(a) Spherical

(b) Worm-like

Figure 2.3: Illustration of micelle shapes.

the surfactant dispersed in solution. This process is illustrated in Fig. 2.2. The

value of the CMC is different for each surfactant, as is the number of monomers

which make up the micelle. This aggregation is a result of the amphiphilic nature

of the molecules, and the tendency for a system to organise itself in a way that

will minimise its free energy [31]. The initial types of micelles that form are

approximately spherical in shape, with the hydrocarbon tails directed towards the

centre. At higher concentrations these spherical aggregates can often grow to long,

rod-like micelles, particularly for nonionic surfactants. Spherical and rod-like (or

‘worm-like’) micelles are illustrated in Fig. 2.3.

Higher values of surfactant concentration will result in the self-assembly of sur-

factant molecules into crystal-like structures, often referred to as being different

‘mesophases’ of the solution. A material that forms liquid crystal phases upon the

addition of a solvent is given the name ‘lyotropic’. The lyotropic phases can be

categorised into three main types: lamellar, hexagonal and cubic. The structure

of these phases is shown in Fig. 2.4. In the lamellar structure, the surfactant
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(a) Lamellar

(b) Bicontinuous Cubic

(c) Hexagonal

Figure 2.4: Illustration of different lyotropic liquid crystal phases.

molecules are arranged in bilayers separated by water layers. The layers extend

over large distances, of the order of microns or more [32]. The hexagonal phase con-

sists of long cylindrical rods of molecules arranged on a hexagonal lattice. There

are two different kinds of cubic phase. One phase (that typically forms between

the lamellar and hexagonal phase) is called the bicontinuous phase, and this is

one of the most complicated phases. It consists of rod-like surfactant structures

forming extended networks [33]. The other (which forms between the hexagonal

phase and micellar solutions) is called the micellar cubic phase. In this phase the

molecules arrange themselves into micelles, which then organise to form a cubic

lattice [34]. The particular mesophase formed by the surfactant solution is also

dependant on its temperature, as well as its concentration. In particular there is a

critical temperature required for the formation of the discussed structures, called
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Figure 2.5: Image taken from Dierking and Al-Zangana (2018) [1], illustrating a
typical equilibrium phase diagram.

the Kraft temperature. Below the Krafft temperature the surfactant molecules

remain in crystalline form, even in an aqueous solution. In general, the mesophase

formed by single-chain ionic surfactants tends to be most dependant on variation

of the concentration, while for many non-ionic surfactants temperature is a more

important variable [35]. A phase diagram provides information on what particular

phase a solution will be in under a given set of equilibrium conditions. A typi-

cal example of a phase diagram for surfactant systems is presented in Fig. 2.5.

Note that the Kraft temperature increases as the concentration of the surfactant

molecules increases in solution [34].

This chapter will continue by first discussing the formation and structure of

the expected phases in more detail, initially covering the micellar phase in Section

2.1, before moving onto the lyotropic crystalline phases in Section 2.2. Following

this, the AES systems that are to be studied in this work are described, and what

phase behaviour is expected from similar systems in Section 2.3.
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2.1 Micelles

Micelles begin to form when the surfactant concentration is above the CMC. These

spherical aggregates are dynamic and are continuously formed and broken down

in solution. The micelles dissociate into monomers and reaggregate into micelles

continuously [36]. This is an important consideration when experimentally study-

ing the micelles, as the method for measuring the micelle must take place over

a time period that captures the micelle before reorganisation occurs. There can

be considered to be two relaxation processes (and associated time scales) for mi-

celles. The first τ1 being the relatively fast exchange of monomers between the

micelles and bulk solution, and the second being the slower relaxation time τ2

related to the complete micelle dissociation. The relaxation process τ1 occurs on

the time scale of microseconds, while τ2 on milliseconds [36]. In fact it is shown

by Oh and Shah [36] that for molecules formed by sodium dodecyl sulphate (an-

ionic surfactant with chemical formula CH3(CH2)11SO4Na), the relaxation time τ2

can vary strongly depending on the solution concentration (ranging from 0.005s –

10s), implying an optimum concentration at which the micelles are most stable.

The spontaneous self-assembly of molecules into micelles is driven by the aim of a

minimal free energy. The free energy of the system decreases when the hydrocar-

bon/water contact area is minimised, leading to the enclosure of the hydrocarbon

chain inside the micelle [37].

A typical parameter for characterising micellar solutions is the aggregation

number of the system. The aggregation number of a micelle is defined as the

number of surfactant molecules per micelle. The aggregation number of a system

is not a single value but usually takes the form of a distribution, from which a

mean aggregation number Nagg can be calculated. A typical size distribution for

micellar solutions is shown in Fig. 2.6.

Micelles formed from ionic surfactants are more complicated due to the fact

that the micelles will have a net charge. This causes the ions to gather at the

surface of the micelle due to electrostatic attraction. This behaviour was first
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Figure 2.6: Typical micelle size distribution, where Cn is the number of aggregates
of size n. The initial decay is the monomer distribution i.e. the monomers that
do not belong to micelles. The Gaussian peak at higher n is a representation of
monomers belonging to micelles, with the distribution of micelles having mean
aggregation number Nagg.

described by the the electrical double layer (EDL) model, originally developed

by Helmholtz [38] and since expanded on by numerous others [39–41] to create

Gouy–Chapman–Stern theory. A representation of the structure of an ionic micelle

and the EDL model, as described by Gouy–Chapman–Stern theory, is presented

in Fig. 2.7. At the centre of the micelle there is a hydrophobic core, made of

the hydrocarbon chains, surrounded by the charged head group of the molecule.

The double layer model then consists of the Stern layer, which is a layer of ions

strongly-bound to the charged micelle surface. Following this is an outer layer of

loosely associated mobile ions (diffuse layer). The Stern layer is a concentric shell

with (1 − α)N counterions, where α is the degree of ionisation (also referred to

as the apparent degree of counterion dissociation [42]) and N is the aggregation

number. The electrical double layer, due to the formation of the counterion layers,

results in electrostatic screening of the charged micelle [2,31]. The zeta potential is

a measure of the strength of the electrostatic potential at the ‘slip plane’ between

particle and solution. The slip plane can be understood as the point at which the
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Figure 2.7: Representation of the electrical double layer of ionic micelles. Figure
adapted from Lombardo [2].

cluster of charges at the surface of the micelle ends, and transition into solution

begins. A commonly used length scale is the Debye length λD. This is the distance

from the particle at which the electrostatic potential falls by 1/e, and can be

considered as a measure of a micelle’s net electrostatic effect in solution, and how

far its electrostatic impact persists. Of course solutions containing a large and/or

high number of micelles will lead to an overlap of these EDLs, leading to further

complication [43]. Despite the electrostatic screening (sometimes also called the

‘Debye screening’) of the charged micelles, the electrostatic force persists over a

relatively large distance, such that there can be strong intermicellar interactions

due to the charges.

At high concentrations in the micellar region, ‘micellar cubic’ phases can some-

times form. This occurs when a large number of micelles have formed, and the

aggregates organise themselves onto a cubic lattice [2,44,45], in order to maximise

their spacing. This organisation is shown in Fig. 2.8. There have been a variety of

different cubic structures observed for the micellar cubic phase, including Pm3n,

IM3m and Fm3m space groups [44,46,47]. Micellar cubic phases are isotropic [45],
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Figure 2.8: Structure of micellar cubic mesophases. Spherical micelles organise
themselves onto a cubic lattice.

and therefore like other micellar phases are unable to be identified using polar-

ising microscopy, a technique that will be discussed and applied in Chapter 4,

but are distinguishable from standard micellar solutions by their relatively high

viscosity [44,45].

2.2 Liquid Crystals

At increasing concentrations, spherical micelles can transform in to rod-like mi-

celles. When the concentration is further increased, this can cause rod-like micelles

to orientate and pack themselves into a hexagonal structure, called the hexagonal

mesophase. Further increase in concentration often results in the transition to the

neat layered structure of the lamellar phase. For some surfactants, there can be a

cubic phase occurring between the hexagonal and lamellar phases, although this

is often only within a narrow concentration range or is absent. This section will

provide more detail about these lyotropic liquid crystals and their structure.

2.2.1 Lamellar Phase

In the lamellar phase, surfactant molecules are aligned in a bilayer structure which

extends over large distances. These layers can slide over each other if an external

force, such as shear, is applied, allowing the solution to flow like a liquid. While

the lamellar phase is viscous relative to the micellar phase, it is typically one of

the least viscous lyotropic liquid crystal structures. The structure of the lamellar

phase is anisotropic, and therefore visible when placed between crossed polarisers.
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Figure 2.9: Meaning of the unit vector the ‘director’, which describes the average
direction of the surfactant molecules, and thus provides a parameter with which
to describe the orientation of the lamellar phase.

This, therefore, is a common and useful method for detecting the existence of this

mesophase.

The lamellar phase can be characterised by the periodicity of the layers, re-

ferred to as the d-spacing. This value includes the thickness of the bilayer and its

associated water layer. This d-spacing value is frequently calculated from experi-

ments using small angle X-ray scattering (SAXS) [15, 48, 49]. The d-spacing that

the lamellar layers form at for a given surfactant molecule depends on a variety

of factors, including the temperature [50, 51] and the concentration [49, 50, 52].

Furthermore, different types of surfactants can follow different concentration vs.

d-spacing relationships. It is commonly found using SAXS that the d-spacing de-

creases with increasing surfactant concentration [49, 50, 53, 54], however there are

rare occasions that the opposite behaviour has been found for different surfactant

types [55].

The molecules in the lamellar phase are aligned approximately in the same

direction. In order to describe this orientation, a unit vector called the director

can be introduced, which is described in Fig. 2.9. The director can be defined

as the average direction of the long molecular axes of all molecules in the liquid

crystal. Therefore, an individual molecule may vary in its degree of alignment

with the director.
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Figure 2.10: Representation of the unit cell of the hexagonal lattice, formed by
hexagonal mesophase, in which |~a| = |~b| and θ = 120◦. For the hexagonal phase
there are two d-spacings, d100 and d110, which can be measured by experimental
techniques in order to determine the inter-rod spacing a = |~a| = |~b|, using that
a = 2d100/

√
3 and a = 2d110 for a hexagonal lattice.

2.2.2 Hexagonal Phase

The hexagonal mesophase consists of indefinitely long cylindrical micelles, which

become aligned to form a two-dimensional hexagonal lattice. The space in-between

the surfactant rods is filled with water molecules. This phase is viscous in com-

parison to the lamellar phase, but not relative to cubic phase. Similarly to the

previously discussed lamellar phase, when the hexagonal phase is observed by po-

larised microscopy, textures can be seen due to the long-range orientational order,

aiding in its identification.

The structure of this phase can be characterised by the spacing between the

rods, a, as illustrated in Fig. 2.10. The spacing between these rods has been

shown to be dependant on factors such as the concentration [24, 25, 49, 50] and

temperature [50, 51].

2.2.3 Bicontinuous Cubic Phases

The structure of the bicontinuous cubic phase is more complex than that of the

lamellar and hexagonal phases, and therefore the least well understood of the

liquid crystalline structures. While the lamellar phase consists of a one-dimensional

stacking of bilayers, and the hexagonal phase is based on two-dimensional stacking

of micellar rods, the cubic phase shows periodicity in all three dimensions.
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Typically authors may divide the cubic phases into two different groups: (1)

cubic structures that are continuous with respect to both the water and hydrocar-

bon components; and (2) those that are discontinuous in their hydrocarbon regions

but continuous in their water regions [56]. The micellar cubic phase, as discussed

in Section 2.1, would be an example of the type 2 cubic phases. The first type of

cubic phases are usually called ‘bicontinuous’, since they are continuous in both

water and hydrocarbon regions. As the second type has already been discussed in

previous sections, the type 1, bicontinous phases are the focus of this section.

The bicontinuous cubic phase structure as shown in Fig. 2.4b is just one of

the accepted forms that the structure can take (also identifiable as space group

Im3m). However, the structure presented is theoretically the most likely form of

the cubic phase when it appears in between a lamellar and hexagonal phase, while

other types exist in other parts of the phase diagram [57]. In existing literature,

to be discussed in Section 2.3, it is found that for the surfactants of study in this

work, the region between the hexagonal and lamellar phases is the most likely

concentration range in which the cubic phase may be observed. Other potential

bicontinuous cubic structures that are of note include those that can be described

as two networks of rods, mutually intertwined and unconnected (space groups

Ia3d and Pn3m) [57, 58]. These were among the first of the cubic phases that

were identified and the structure established [58]. There are numerous reviews

that discuss the other forms that the cubic region can take in much greater detail

[35,56–58], due to their structural complexity. Finally, it is worth mentioning that

experimentally determining the form of a cubic phase is difficult and, whilst their

presence can be inferred from experimental results, the exact structure that they

take can be open to debate.

2.3 Alkyl ethoxysulphates (AES)

Alkyl ethoxysulphates (AES) are common anionic surfactants, and will be the pri-

mary surfactant used for experimental study in this thesis. Commercial AES is

53



usually a mixture which consists of an alkyl chain of between 12 and 16 carbon units

joined to an ethylene oxide (EO) chain of between 1 to 8 EO units, terminated by a

sulphate group. Chemical structure is of the form CH3(CH2)x(OCH2CH2)nOSO3Na

[59]. The type of AES to be used in this work is provided by Proctor and Gamble,

and the distribution of x and n is illustrated in Table 2.1. This type of AES can

also be referred to as AE1S, as a result of the average degree of ethoxylation being

approximately 1 (actual value 1.03). The AES is provided in the form of a paste

made up of 70% surfactant and 30% water.

It is much more common for research across literature to focus on monodis-

perse, as opposed to polydisperse, solutions. As part of the analysis of the phase be-

haviour of AE1S, we will compare with the equilibrium phases formed by monodis-

perse solutions of molecules similar to AES (i.e. solutions in which x and n do

not take the form of a distribution). Therefore, we will now, in the remainder of

this section, review the published phase diagrams, as found by other researchers.

For example, sodium lauryl ether sulphate (SLES) (also sometimes called sodium

laureth sulphate) is the name given to the molecule in which x = 11, but still with

variable ethoxylation n. Sometimes n is specified in the name of the molecule, for

example laureth-2 sulphate. The molecule that is defined by x = 11 and n = 0 is

given the name sodium dodecyl sulphate (SDS) (or sometimes sodium lauryl sul-

phate). To our knowledge there is no existing published phase diagram for AE1S,

which is therefore investigated in Chapter 4. However there is work published by

Li et al. (2016) [15] studying the molecularly similar AE3S. As this is expected to

be similar to AE1S, we will also review their reported phase diagram to allow for

a comparison with the results reported in Chapter 4.

The simulation aspect of this research will have particular interest on the effect

of introducing ethylene oxide (EO) into the hydrophobic chain. For example,

it has been shown that for AES type molecules the Krafft point changes (the

minimum temperature at which a surfactant can form micelles), as a function of

both hydrocarbon chain length n and number of OCH2CH2 groups x [60]. In other
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research it has been found that, for SLES molecules, the addition of EO groups

leads to higher micellar aggregation numbers, perhaps due to dispersing the charges

in the head-group, thus weakening the electrostatic repulsion [61]. Zhang et al. [62]

analyse the effect of varying the EO groups on the rheology of different ionic and

nonionic surfactants, finding that they can greatly effect the rheological behaviour,

including the relationship between the viscosity and the shear rate.

Ethoxylation AES (%)
0 49.0
1 24.0
2 13.0
3 7.0
4 4.0
5 2.0
6 1.0
7 0.0

Chain length AES (%)
C12 67
C13 0
C14 26
C15 0
C16 6

Table 2.1: Information on the distribution of chain lengths in AES.

2.3.1 Equilibrium Phase Diagrams

2.3.1.1 AE3S

In the work of Li et al. (2016) [15], researchers investigate AE3S solutions at

room temperature, by using polarising optical microscopy and small angle X-ray

diffraction. They find that mesophases micellar, hexagonal, cubic and lamellar

form with increasing AE3S concentration. A summary of the phase boundaries

found are shown in Table 2.2. It is of note that the cubic range that appears

is relatively narrow, so it is uncertain whether an equivalent phase will form for

AE1S. It is also reported that there is a multiphase micellar-hexagonal region,

which is primarily identified by polarising optical microscopy images. Typically

these regions where two phases are thought to co-exist are difficult to identify, so

this will be a boundary of interest when studying the phase diagram of AE1S.
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Mesophase Concentration Range (wt. %) Viscosity Range (Pa· s)
Micellar 0− 40 0− 10
Micellar/Hexagonal 40− 45 10− 100
Hexagonal 45− 80 200− 1000
Cubic 80− 90 200− 1000
Lamellar 90− 100 10− 100

Table 2.2: A summary of the phase boundaries found by Li et al. (2016) [15] for
AE3S solutions at 25◦C. Also listed is an estimate for the range the mesophase
viscosities fall within, for each of the different mesophases. Note that the concen-
trations are given as a percentage of the 70% AES paste, not as a percentage of
surfactant that the solutions contain.

2.3.1.2 Sodium Dodecyl Sulphate (SDS)

SDS is an extremely commonly studied anionic surfactant, particularly in the rel-

atively low concentration range of the micellar phase. However, the high concen-

tration regions are less well studied. The extremely commonly referenced [63, 64]

phase diagram, as found by Kékicheff et al. [3] via differential calorimetric mea-

surements, for SDS solutions is shown in Fig. 2.11. At lower temperatures, this

phase diagram predicts that the mesophases can coexist with parts of hydrated

crystal within the solution (which are labelled as C2), which they refer to as a

coagel. Note that according to this phase diagram, at our planned temperature of

study (≈ 25◦C), we are on the edge of a phase boundary above around 40 wt.%.

This phase diagram also indicates that the lamellar phase should never form under

equilibrium conditions at room temperature, for any value of surfactant concentra-

tion. Despite the phase diagram found by Kékicheff et al. [3] being widely cited,

other researchers have reported different findings, particularly with regard to the

composition of the phase at room temperature between around 40 wt.% and 60

wt.%. Guo [65] reports that at 20◦C, the following regions are found with varying

concentration: above 0.2wt.% micelles exist with spherical structure; concentra-

tion above 1.6 wt.% micelles have a rod/cylinder structure; concentration above

≈ 40 wt.% shows a single phase of the hexagonal liquid crystal. Other well known

investigations of SDS around room temperature include the work of McDonald and

Peel [66]. As part of their work they study samples of constant concentration, and
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Figure 2.11: The phase diagram for SDS/water mixtures as determined by
Kékicheff et al. [3]. Structures are labelled as: Hα, Hexagonal phase; Mα, two
dimensional monoclinc phase; Rα, rhombohedral phase; Qα, cubic phase; Tα,
tetragonal phase; Lα, lamellar phase. C refers to SDS hydrates, where the sub-
script refers to the number of molecules associated with each SDS molecule in the
hydrate.

vary the temperature to investigate phase transitions in the phase diagram. They

report that there are phase transitions at ≈ 22◦C, for the samples 50 wt.% and

60wt.%, indicating the formation of the hexagonal phase. Meanwhile the transi-

tions above 31◦C, in those containing 70, 75 and 80 wt.%, indicate the formation

of lamellar phase. Leigh et al. [24], however, disputed the findings of McDonald

and Peel [66] in the finding of a lamellar phase at ambient temperatures, stating

that they did not find evidence of a lamellar phase at any of the concentrations

trialled, for temperatures below 320K (around 47◦C). For measurements taken at

313K, they do however agree that the phase in the 40–60% concentration range

can be attributed to being hexagonal (with decreasing unit cell size with increasing

concentration). Conversely, in recent research, Bahadur et al. [67] report that SDS

58 wt.% at room temperature results in a gel phase due to random jamming of

the lamellar structured entities. Is observed that the equilibrated SDS gel shows a

lamellar structure similar to that in powder SDS. The lamellar thickness in the gel
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phase is estimated to be 4.6nm, compared with 3.9nm in the powder phase (SDS

systems crystallize with lamellar structures [68, 69]). All of the above discussed

research leads to a complicated view of the SDS phase diagram, particularly at

room temperature.

In the process of producing a phase diagram, such as the one shown in Fig.

2.11, generally a researcher will take a concentration sample, and gradually in-

crease or decrease the temperature, in order to obtain the equilibrium phase at

a selection of temperatures, doing so for a variety of different samples at a vari-

ety of concentrations. An interesting note is that Kékicheff et al. [3] report their

coagel solution states are dependant on their thermal hysteresis. For example, if

the heating rate chosen is too fast, then phase jumps can be missed in the pro-

cess of gradual heating, indicating that the system does not reach thermodynamic

equilibrium between each transition. This is because the liquid crystalline phases

can take a very long time to form. It has been noted [70] that isoplethal methods

(constant composition) such as these are less ideal than performing isothermal

(constant temperature) experiments, and therefore can lead to uncertainties and

errors, but are more often performed because they are more practical.

2.3.1.3 Sodium Lauryl Ether Sulphate (SLES)

SLES is the case in which the surfactant molecules are defined by x = 11 with

variable n. The more specific case in which x = 11 and n = 3 will from now on

be referred to as SLE3S. Poulos et al. [4] use penetration experiments to establish

an approximate phase diagram for SLE3S surfactant solutions, with their findings

shown in Fig. 2.12. Similar research also investigating the dissolution of SL3S

confirms this order of phase transition [71]. The small-angle neutron scattering

pattern, found by Poulos et al. [4], of the initial SLE3S/water phase with 72 wt.%

confirms lamellar phase with repeat distance d = 43.9Å.
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Figure 2.12: Approximate phase diagram of the SLE3S surfactant, as determined
by Poulos et al. [4]. Initial phase is a paste containing 72% volume fraction surfac-
tant in water. When dissolving, an initially lamellar phase (Lα) transforms into
a cubic phase (V ), a hexagonal phase (H), and finally an isotropic micellar phase
(L1). φS is the volume fraction of surfactant in solution.

2.4 Summary

This chapter has provided an overview of surfactant solutions, and the structures

mesophase can form at different concentrations. Although surfactant solutions can

also undergo a phase change as a result of changing temperature, this work will be

primarily concerned with the phase behaviour at room temperature (defined in this

work as 25◦C). In particular, this work will be interested in the phase behaviour

of systems described by the chemical formula CH3(CH2)x(OCH2CH2)nOSO3Na,

which, in most commercial applications, comes with varying x and n.

There is generally a lack of literature reporting the phase diagrams of simple,

single surfactant systems. Most literature reports the phase behaviour of mixtures

consisting of two or more surfactant types, meaning that available existing experi-

mental data is limited. An exception to this is the special case in which x = 11 and

n = 0, which has the name sodium dodecyl sulphate (SDS). Therefore the phase

behaviour for the molecular distribution described in Table 2.1 will be presented

in Chapter 4.
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Chapter 3

Simulation Methods

3.1 Overview

There are many different approaches to simulating surfactant phase formation.

Generally, we can split the study of the behaviour of fluids into different ap-

proaches which consider different length scales, including: quantum mechanical,

atomistic, mesoscopic and continuum mechanics. With increasing length scale,

simulations are able to access longer time scales, however, this has the trade off

of neglecting more of the finer atomistic details. The different length and time

scales represented by different simulation methods is illustrated in Fig. 3.1. There

is often a compromise between the desire to reach high accuracy, vs. the desire to

simulate large systems for a long time.

Quantum mechanical (QM) methods, which include the treatment of the quan-

tum nature of electrons and nuclei, are computationally very demanding. It often

isn’t feasible to study a system’s time evolution with this level of detail [72], except

for very small scale systems. Therefore, for many applications that require simu-

lating a large number of atoms, the simulations are scaled up to a more atomistic

level. Atomistic approaches include molecular dynamics (MD) simulations [73–85].

In these methods the atoms in a molecular chain are individually modelled, being

represented as bonded point masses. The atoms in the simulation are allowed to

interact via a set of forces (defined by a set of potentials) for a period of time.
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Figure 3.1: An illustration of the different simulation methods, and the differences
in the time and length scales they are able to access.

Newton’s equations of motion are solved for each atom, therefore these simulations

can be very expensive computationally. Hence, MD simulations have only been

possible for studying micelle formation in recent years, due to the long timescales

involved in micelle aggregation, requiring enormous computational resources. MD

simulations contain a variety of parameters that need to be obtained in order to

correctly model the interaction potentials, and these parameters are often obtained

via full quantum mechanical simulations [14,72] or from experiment [86].

On a larger length scale we move to coarse grain models. In these models a num-

ber of atoms are grouped together, instead of being modelled individually. This

reduces the number of calculations that need to be performed per iteration. One

such method is coarse-grained molecular dynamics [76–81], which is the far more

common method of choice for surfactant systems (as opposed to all-atom molecular

dynamics [80,82–85]), due to the long chain nature of surfactant molecules.

Other coarse grained methods include Monte Carlo methods [87–93], which rely

on random sampling in order to obtain the equilibrium molecular configurations for

solutions. Monte Carlo methods have been one of the most widely used methods to
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study surfactant self-assembly processes, owing to their fast computational speed,

and the fact that they can be used with relative ease to calculate characteristics

for a solution, such as critical micelle concentration and micelle size. In these

simplified models, the molecules can either be confined to a lattice [87–90], or be

free to move in continuous space [91–93], with earlier calculations taking place

on lattices. Although the simulation progresses forward via time steps, these

time steps do not correlate directly with real time, and therefore MC methods

can’t be used to calculate dynamical properties, such as transport coefficients

and rheological properties, like MD methods can. Therefore MC methods are

unsuitable for our purposes. However, such methods have still been useful for

many years in predicting equilibrium properties of simple surfactant solutions.

For example, lattice Monte Carlo simulation was the first simulation method to

predict a drop in free monomer concentration (the concentration of molecules not

belonging to aggregates) above the CMC value, which is seen experimentally but

not predicted by theory [89].

Next, we will move onto mesoscale modelling. Mesoscale modelling is intended

to be the bridge between the atomistic methods discussed and the macroscale.

Even when coarse graining is applied to the MD, we are still generally unable to

reach long time and length scales, hence the need for the development of other

numerical models, in order to enable the calculation of dynamical properties.

Mesoscopic methods include lattice-Boltzmann [94, 95] and lattice gas automa-

ton [95,96]. Although these methods have been applied to polymer systems, their

main disadvantage comes from the restriction of the particles to a lattice. Another

mesoscale modelling method that has become popular for surfactant systems is

dissipative particle dynamics (DPD) simulations [97–101]. DPD is distinctly dif-

ferent from lattice-Boltzmann and lattice gas automaton models, as the particles

are allowed to interact in continuous space. This method involves the grouping

of atoms in a similar way to the coarse grain modelling in MD, except the sites

involved in these simulations typically cover more atoms than sites in the coarse
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grain MD models. The forces in DPD simulations are also modelled differently to

those in MD, further enhancing computational speed, as much longer time steps

can be taken relative to MD simulations. The longer time steps, combined with

the larger particle size, makes DPD a much more attractive method than MD for

simulating hydrodynamics.

The macroscale is the most coarse-grained scale, in which continuum-based

calculations are performed, for example with the use of computational fluid dy-

namics (CFD) [102–104]. At this level, the solution is modelled as a field quantity

and therefore there are challenges in trying to capture small-scale phenomena in a

large-scale simulation. These methods rely on using constitutive equations in order

to capture the microscopic details of the fluid, as the length scale is too large for

the modelling of the phenomena themselves. This limits the molecular complexity

that can be captured in the simulation. Such constitutive material models can be

derived from experimental observations [105–107]. As we aim to uncover some of

the molecular physics that leads to explanations of phase formation behaviour this

method is not suitable for our purposes.

For our calculations DPD is the ideal simulation method, due to its ability to

capture the phase formation by modelling the individual molecules, while being

computationally efficient. From modelling of the fluid structure, we can calculate

a variety of parameters that would normally have to be found via experiments. As

well as comparing how well the DPD method makes predictions when compared

with data obtained experimentally, we will also perform a small selection of MD

simulations. This will allow us to analyse how the method of coarse graining

affects the phase formation in the simulation. The DPD method can also be used

to calculate and predict properties such as the viscosity as a function of the shear

rate. This means we can find a constitutive relationship between the viscosity and

shear rate, without the need for experiments.

In the next two sections we will discuss the mechanics of how the DPD and

MD simulations work, as well as how they are linked.
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3.2 Molecular Dynamics

3.2.1 Forces and General Algorithm

Molecular dynamics uses classical mechanics to model molecular systems, and

atoms are modelled as single spherical particles with an assigned radius. Quantum-

mechanical properties of systems are entirely neglected. The potential energy can

be calculated by summing energies that arise from a variety of different interac-

tions:

EPot = ELJ + Eelectrostatic︸ ︷︷ ︸
non−bonded

+Ebond + Eangle + Etor︸ ︷︷ ︸
bonded

(3.1)

where the above terms will be explained in this section. The energies can be

categorised into those that come from bonds between atoms in a molecule and

non-bonded interactions between all atoms in the system.

The energy between two neutral, non-bonded atoms comes from a combination

of the Pauli repulsion, due to overlapping electron orbitals, and van der Waals

attraction. It is most commonly modelled by the Lennard-Jones potential [108,

109], or alternatively the Buckingham potential [110], which was proposed as a

simplification of the Lennard-Jones potential. The Lennard-Jones potential takes

the form

ELJ = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(3.2)

where rij is the distance between the two centres of atoms i and j, with two

parameters to be chosen: the diameter σ and the well depth ε. An alternative to

ELJ in Eq. 3.1, is the Buckingham potential, given by:

EBuck = A exp (−Brij)−
C

r6ij
(3.3)

where A, B and C are positive constants. The first term on the RHS is the

repulsive term and the second term is the attractive term.

The electrostatic potential energy Eelectrostatic between a pair of atoms with
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charges qi and qj is given by:

Eelectrostatic =
qiqj

4πε0rij
. (3.4)

The electrostatic force is the term that usually causes the most difficulty, as it leads

to the most computationally expensive part of the calculation. Therefore, in liter-

ature, it is far more common to find research using non-ionic molecules, as opposed

to ionic. This is due to the long-range nature of the Coulombic force, compared

with the other contributions which are relatively short-range. Since the Coulom-

bic force is so long range, it isn’t realistic to apply a cut-off in the same way that

can be applied to the Lennard-Jones force. A typical method for dealing with the

ionic contributions makes use of the Ewald summation method [111–113]. In this

method, the interaction illustrated in Eq. 3.4 is divided into two parts consisting of

a short-range contribution and a long-range contribution. The short-range part is

calculated in real space, while the long-range part is calculated in reciprocal space

by making use of a Fourier transform [114]. This method is much quicker than per-

forming the direct summation. An adaptation of the traditional Ewald method are

Particle-Particle-Particle-Mesh (PPPM) [115] methods. Both Ewald and PPPM

split the calculation into the short- and long-range parts. In PPPM, the long-range

interaction parts are calculated by use of a mesh. The charge density is mapped

onto a discrete, finely spaced mesh throughout the domain, and then fast Fourier

transforms (FFTs) can be used to solve Poisson’s equation on the mesh, and then

interpolate electric fields on the mesh points back to the atoms [116]. While the

two methods are very similar, the PPPM method is much more efficient, due to

how it solves the reciprocal space part of the calculation. The traditional Ewald

summation method scales as N3/2, where N is the number of atoms in the system.

The PPPM solver scales as N logN , due to the FFTs [112]. More information on

the implementation of the two algorithms can be found in Pollock and Glosli [117].

So far the discussed energies come from non-bonded interactions. We will now

discuss the remaining interactions, which arise from bonded interactions. For two
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atoms that are covalently bonded, there is an optimum separation distance between

the two. When the two atoms are separated by this distance, the bond energy is

zero. When their distance strays from this optimal distance the bond energy is

non zero. The bond energy can be represented by a harmonic potential [118]

Ebond =
1

2
kij(rij − r0ij)2, (3.5)

where kij is a spring constant, rij is the distance between the two atoms, and r0ij

is the optimal distance between the two atoms. This energy can be thought of as

the stretching energy. The bond energy can be represented in other different ways,

such as the Morse potential for diatomic molecules [119].

The potential energy that comes with bond angle flexing is given by [118]

Eangle =
1

2
kijk(θijk − θ0ijk)2, (3.6)

where kijk is a force constant, θijk is the bond angle between the two atoms i and

k about j, and θ0ijk is the equilibrium bond angle between the two atoms. This

energy can be thought of as the bending energy.

The torsion angle θt is the angle between the planes formed by the first three

and last three atoms of four consecutively bonded atoms. The torsion angle energy

is periodic, and can be given by [118]

Etor = A(1 + cos (mθt − φ)) (3.7)

where A, m and φ are constant values.

From the expression for the potential energy (Eq. 3.1), an expression for the

force can be found using f = −∇EPot. The trajectories of the molecules are found

by solving Newton’s equations of motion

fi = m
dvi
dt
, (3.8)
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dri
dt

= vi (3.9)

for each particle. These equations are typically integrated using the velocity-Verlet

algorithm [120], which is a mathematically equivalent, but more computationally

efficient, implementation of the originally proposed Verlet algorithm [121]. The

velocity-Verlet algorithm is normally implemented, in order to advance from time

t to t+ ∆t, as follows.

1. Create velocities vi at an intermediate time t + 1
2
∆t, using vi(t + 1

2
∆t) =

vi(t) + 1
2
∆tai(t).

2. Update the positions at t+ ∆t, using the intermediate velocity calculated in

the previous step, by ri(t+ ∆t) = ri(t) + ∆tvi(t+ ∆t)

3. Evaluate the forces, and thus calculate an acceleration ai(t + 1
2
∆t) at the

new time step, using ri(t+ ∆t).

4. Calculate the fully advanced velocity using vi(t + ∆t) = vi(t + 1
2
∆t) +

1
2
∆tai(t+ ∆t)

Note that the acceleration ai(t + ∆t) is calculated from the interaction potential

using ri(t + ∆t). This algorithm assumes that the acceleration ai(t + ∆t) only

depends on the position ri(t+∆t), and does not depend on the velocity vi(t+∆t).

There are a number of constants in the discussed equations that must be de-

fined. In the context of molecular modelling, a force field refers to the parameter

sets used in the above equations in order to calculate the potential energy EPot

of a system. These parameters are often found from experiments [86] or calcula-

tions using quantum mechanics [14, 72] (or a combination of both). There have

been a large number of different force field models that have been developed, often

for specific molecule types. Some examples include the Martini force field [122],

which is specifically for coarse-grained models. Initially it was developed for the

simulation of lipids, but has since been extended to other molecules. This force

field involves a mapping of four heavy atoms to one coarse-grained interaction
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site. Other general force fields for all-atom simulations include the Dreiding [123]

and GROMOS [86] force fields. One of the popular models for water is the SPC

model [124].

MD simulations are often begun from a random initial configuration of particles

within the domain. The domain is usually a cubic system with periodic boundary

conditions. This allows for the simulation of a relatively small number of atoms

to function as if it is a part of a larger system, hopefully producing results that

are representative of the bulk material. Therefore it is important to consider the

minimum size of the system that must be simulated for this to be true. This

is particularly important for simulations trying to reproduce systems with large

features or periodicity. Clearly, the number of interactions per iteration increases

greatly with increasing number of particles N in the simulation. However, in

practice, usually a cut-off is applied at a defined separation between particles.

Beyond this cut-off (for forces other than the electrostatic force) it is taken that

the force is negligibly small and can be considered to be zero. This allows more

efficiency in computing the forces, since all atom pairs need no longer be considered.

For the electrostatic force a cut-off of this form induces too much error, due to its

long range nature and required more careful consideration, as previously discussed.

With increasing iterations the molecules will arrange themselves in order to

decrease the repulsion forces when equilibrium is reached. The time step ∆t has

to be very small (on the order of femtoseconds), and thus reaching large time

scales with this simulation method is difficult (a discussion on methods for de-

termining the correct time step to use in MD simulations can be found in Choe

and Kim (2000) [125]). In theory, a variety of properties can be analysed using

the simulation method, including the viscosity and diffusion coefficients. However,

due to the relatively long time scales needed for the self assembly of amphiphilic

molecules into their micellar or liquid crystal phases, this method is difficult to

use for analysing such systems. Typically, if MD is to be used, the phase is pre-

arranged into something close to its equilibrium phase and the simulation begins
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from there. This is opposed to the ideal scenario of beginning from a completely

random initial configuration of molecules and atoms. Also, due to the high molec-

ular weight of surfactant molecules, the molecule is often coarse-grained in order

to reduce computational effort.

In summary, the procedure for a molecular dynamics simulation is as follows:

1. Give atoms an initial position and velocity.

2. Calculate the forces on each of the atoms.

3. Using a discretised version of Newton’s equations and an adequately small

time step ∆t, find a set of updated positions and velocities for the atoms in

the domain e.g. using the velocity-Verlet algorithm.

4. Apply temperature control (i.e. adjust the atoms velocities to remain at a

fixed temperature).

5. Move into the new set of positions and update the time step t = t+ ∆t.

6. Repeat for as long as required.

The different algorithms that can be used in order to apply temperature control

will be described in the following section. The stopping criteria for a MD simu-

lation varies depending on the author and the system being simulated. There is

no real universally accepted stopping criteria for MD simulations [126]. Although

sometimes a stopping criteria is defined based on convergence of system parame-

ters, such as the potential energy [127] or average root mean square (RMS) [128].

3.2.2 Thermostats

If the particles in the simulation interact by a pair-wise potential only, and the

total number of particles N and the volume V are also kept constant, then the

MD simulations are said to be performed in the microcanonical (NVE) ensemble.

In these simulations, the total energy E is conserved. However, by application of a

69



thermostat (temperature control), other ensembles can be produced. For example,

the canonical NVT ensemble is produced in a simulation in which the number of

particles N , volume V , and temperature T are fixed. The isothermal–isobaric

(NPT) ensemble is produced when the number of particles N , pressure P , and

temperature T are conserved [5]. The NPT thermostat is considered to be the

closest thermostat to one replicating laboratory conditions (e.g. with the substance

open to ambient temperature and pressure).

There are many different types of thermostat that have been developed in order

to produce these conditions [129–132]. One simple idea is to re-scale the velocities

of the particles in each time step, in order to maintain constant temperature. This

is called the Berendsen [129] thermostat. The instantaneous temperature of the

system is calculated by making use of the average kinetic energy of the system:

kBT =
1

N

∑
i,α

mv2i,α (3.10)

where N is the number of degrees of freedom and vi,α is the component of the

velocity of atom i, such that α = x, y, z. However, this thermostat is not Galilean

invariant, and since momentum is not locally conserved, this thermostat does not

conserve hydrodynamics [5].

One commonly used thermostat was developed by Anderson [130], in order to

maintain constant temperature. This thermostat operates by randomly selecting

an atom or molecule in the system, and assigning a new velocity (that is given

by Maxwell–Boltzmann statistics) for the given temperature. A downside of this

thermostat is that it does not preserve hydrodynamics. Lowe [131] proposed an

adaptation of the Anderson thermostat that does preserve hydrodynamics. This

thermostat functions by changing the velocities of particle pairs, rather than acting

on single particles. Similarly to in the Anderson thermostat, the velocity of the

particle pair is replaced by a velocity taken from a Maxwell distribution. However,

while the magnitude of the velocity of each of the particles in a given pair is changed

by the same amount, the velocity kick is applied in opposite directions. This means
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that the sum of the velocity vector of the combined pair remains the same before

and after the kick. Therefore keeping the momentum the same and conserving the

total momentum. For each particle, the velocity is exchanged for a new velocity

(drawn from a Maxwell distribution) with a probability given by Γ∆t, where Γ is

a ‘bath’ collision frequency. The viscosity is predicted by Lowe to have viscosity

η ∝ Γ.

Another important thermostat is the Nosé-Hoover thermostat [132]. This ther-

mostat aims to control the temperature by introducing a new internal degree of

freedom into the Hamiltonian. This extra degree of freedom is to represent a

heat bath, in such a way that the temperature and average kinetic energy of the

molecules are fixed. Adding this coupling changes the equations of motion and

introduces an additional variable controlling the weight of that coupling, α [5]:

F =
dp

dt
= −∇EPot − αp (3.11)

where p is the momentum of the particle and coupling α is calculated by

dα

dt
=

1

tS
(T − T0) (3.12)

where tS is the thermostat coupling parameter, controlling energy transfer back and

forth from the thermostat, T is an instantaneously calculated system temperature

and T0 is a system target temperature.

3.3 Dissipative Particle Dynamics (DPD)

The method of DPD was first introduced by Hoogerbrugge and Koelman [133],

and has been developed by many other contributors since [17,101,134–136]. This

section will outline how DPD works, and highlight some of the important contri-

butions that have been made by other researchers during its development.
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3.3.1 Forces and General Algorithm

This section will discuss the principles of the DPD method. Following the de-

scriptions given by Groot and Warren (1997) [134] and Sato (2011) [137] we first

discuss the general DPD approach for a simple set of non-bonded particles.

A DPD simulation box generally consists of cubic, continuous space, with pe-

riodic boundary conditions in every direction. The box is filled with an ensemble

of beads i = 1, ..., N . The DPD method groups atoms in a molecular chain into

a packet or a ‘bead’. Each of these beads has a localised mass, with a continuous

spatial position and velocity. The position of these beads are updated discretely

with advancement in time. Due to the fact that the beads don’t have hard sphere

bounds, the beads can overlap with each other, which is one of the factors aiding

the quick equilibration time of the method. The time evolution of the beads is

governed by Newton’s equations of motion, as in MD. However, the forces involved

are represented differently to those in MD.

The force that acts on bead i from non-bonded beads can be written as

fi =
∑
j 6=i

(FC
ij + FD

ij + FR
ij) (3.13)

where Fij are the forces acting on bead i by bead j. The total force being made

up of a conservative force FC
ij, a dissipative force FD

ij, and a random force FR
ij. The

conservative force is repulsive and given by

FC
ij =


aij(1− rij

rC
)r̂ij for rij < rC

0 for rij ≥ rC

(3.14)

where aij is the maximum repulsion between beads i and j, rC is a specified cut-off

radius, rij = ri − rj, rij = |rij|, r̂ij = rij/|rij|. The conservative force gives beads

a chemical identity with the constant aij. In particular, this is the parameter that

varies between hydrophilic and hydrophobic beads.
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The dissipative (or drag) force FD
ij and random force FR

ij are given by

FD
ij = −γωD(rij)(r̂ij · vij)r̂ij, (3.15)

FR
ij = σωR(rij)ζij r̂ij∆t

−1/2, (3.16)

where ωD and ωR are r dependent weight functions that vanish for rC < r, γ is

a friction coefficient, σ is the noise amplitude, vij = vi − vj, ζij(t) is a randomly

fluctuating Gaussian variable, with zero mean and unit variance. Note that the

dissipative force is dependant on not only the separation between the beads, but

also on the relative velocity of the beads. The dissipative force is often also referred

to as the drag or friction force, due to the fact that as the two beads move near

each other, a slowly moving bead would receive momentum from a faster bead, and

a faster bead would be slowed down by interaction with the bead. This interaction

contributes to the viscosity of the fluid. The random force can be interpreted as the

result of atomic collisions that occur in a real fluid (similar to Brownian motion).

It was shown by Espanol and Warren [135] that one of the weight functions,

either ωD or ωR, can be chosen arbitrarily, and this fixes the other weight function.

This is in order to satisfy the fluctuation-dissipation theorem. The relationship

between the two functions is shown to be

ωD = [ωR]2 (3.17)

and the relationship between the amplitudes is

σ2 = 2γkBT. (3.18)

The dissipative and random forces together form a thermostat, which keeps the

mean temperature of the system constant. In practice the most commonly chosen
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function for ωD is

ωD =


(1− rij

rC
)2 for rij < rC,

0 for rij ≥ rC.

(3.19)

It is suggested by Groot and Warren (1997) [134] to use a modified version of the

velocity-Verlet algorithm to discretise Newton’s equations of motion, as opposed to

the standard velocity-Verlet integration. This is because the force in DPD depends

on the velocity between beads vij, whereas in standard velocity-Verlet the force

is assumed to be independent of vij. This has become the standard integration

method for DPD. The adapted velocity-Verlet algorithm is as follows:

1. Find an updated position for the positions at time t+ ∆t using ri(t+ ∆t) =

ri(t) + ∆tvi(t) + 1
2
(∆t)2ai(t).

2. Find an intermediate value for the velocity ṽi(t+ ∆t) = vi(t) + λ∆tai(t).

3. Calculate the forces between the beads, and hence calculate a value for the

acceleration at the new time step, using both the position ri(t + ∆t) and

intermediate velocity ṽi(t+ ∆t).

4. Calculate the final updated velocity at the new time step using the original

and new acceleration, vi(t+ ∆t) = vi(t) + 1
2
∆t(ai(t) + ai(t+ ∆t)).

The variable factor λ is also introduced as a parameter to be chosen. Groot and

Warren (1997) [134] choose to use λ = 0.5 in their work, along with ∆t = 0.04, but

also later investigate varying λ and conclude that a higher value can be used which

means a higher time step could be used. As within MD, the simulation can begin

with the molecules randomly placed. Once we move forward in time, the beads

will arrange themselves in order to decrease the repulsion forces when equilibrium

is reached. This is how equilibrium behaviour can be investigated. If the force

were independent of velocity, the actual velocity-Verlet algorithm, as described in

Section 3.2, would be recovered for λ = 0.5. However, as the force does depend

on velocity, the intermediate velocity needs to be used in order to find an updated

value for the acceleration.
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In order to use DPD to model polymer systems, an additional force is intro-

duced to Eq. 3.13 in order to ‘bond’ together a chain of beads to replicate a long

chain polymer. This has the form of a simple harmonic spring force [97]

F S
i =

∑
j

C(rij − l0)r̂ij, (3.20)

where the sum runs over all of the beads which are directly connected (i.e. those

that are chemically bonded) to bead i. C is the spring constant and l0 is an

unstretched bond length. Another possible additional force is one which takes into

account the hydrocarbon chain stiffness. A common choice for a potential for such

an addition could take the form [97]

U(i− 1, i, i+ 1) = K(1− cos(θ − θ0)) (3.21)

where the angle θ is defined as the scalar product of the two bonds connecting

beads i− 1, i and i, i+ 1 (in other words the angle between adjoining bonds), K

is a bending constant, and θ0 is a preferred, equilibrium angle. However, in this

work we will take the potential to be the slightly more simple form [17]

U =
1

2
K(θ − θ0)2 (3.22)

which simply comes from a Taylor expansion of (1− cos(θ − θ0)) when (θ − θ0) is

small.

3.3.2 Electrostatic interactions

As is the case in MD simulations, there is difficulty in application of the DPD

method to molecules with charges. For all of DPD interactions currently discussed,

the interactions vanish when the distance between two beads exceed the cutoff

radius rC. However, long range electrostatic interactions cannot be treated in a

similar way. Long range electrostatic interactions have been dealt with in MD
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simulations by Ewald summation methods, as discussed in Section 3.2. However,

that approach models the atoms as point charges, and application of this in DPD

would lead to problems. Due to the soft repulsions used in DPD, in which the beads

are allowed to overlap, as opposed to the hard repulsion forces of the Lennard Jones

potential, this would lead to artificial ionic pair formation.

One of the earliest examples of using DPD to model ionic surfactants is that of

Groot (2003) [101], who proposes a way to work electrostatic interactions into the

DPD method. In this method they tried to prevent artificial ion-pair formation

by solving the electrostatic field locally on a lattice, and smearing the charge on a

DPD bead out over a number of the nearest grid points. An alternative method

builds on this idea of charge smearing and is suggested by Gonzalez-Melchor et

al. (2006) [138]. The electrostatic interactions are calculated using the standard

Ewald sum method. Charge distributions of the exponential form are used on

DPD beads, in order to prevent artificial ionic pair formation. Other forms of

charge shearing have been investigated, for example Warren et al. (2013) [139]

investigate using Gaussian smearing. A comparison of different smearing methods

is discussed in Warren and Vlasov (2014) [139].

3.3.3 Unit Conversion

Most work using DPD is usually presented in reduced DPD units, in which the unit

of length is the particle size rC = 1, the unit of mass is the particle mass m = 1,

and the unit of energy is defined by setting kBT = 1. One method of converting

the units used in DPD to real units, is by matching the density of water in the

simulation to a known experimental value, and therefore a value for rC can be

obtained in real units.

The parameterisation used in this work, presented by Anderson et al. (2018)

[17], groups two molecules together to form the water bead in the simulation.

Therefore, the mass of one DPD bead of water m is the mass of two water

molecules; in real units this is m = 5.98 × 10−26kg. A typical choice for the
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number density ρ of beads in the simulation box, and the one used in this thesis,

is defined by ρr3C = 3. The reason for this choice is due to the work of Groot and

Warren [134], and this will be discussed in Section 3.3.4.

Use that the number density ρ = ρm/m where ρm is the mass density, producing

relation for rC:

rC =

(
3m

ρm

)1/3

. (3.23)

Using that the density of water at room temperature is ≈ 1000 kg/m3, this finds

a value for rC in real units to be rC ≈ 5.65× 10−10m.

The standard time scale used in DPD simulations results from setting kBT = 1.

Making use of the relation

1

2
m〈v2〉 =

3

2
kBT (3.24)

this means that, by using m = 1, 〈v2DPD〉 = 3 in DPD units. By saying that:

the distance in real units dReal = dDPDrC; time in real units tReal = tDPDτC; and

vDPD = dDPD/tDPD, we can show that using the relationship in real units yields

m

2

〈(
dDPDrC
tDPDτC

)2〉
=

3

2
kBT (3.25)(

rC
τC

)2

m

〈(
dDPD

tDPD

)2〉
= 3kBT (3.26)(

rC
τC

)2

=
kBT

m
. (3.27)

Using kBT = 4.11 × 10−21J at room temperature, and the previously calculated

values of rC = 5.65 × 10−10m and m = 5.98 × 10−26kg, finds a value for the time

scale of τC = 2.16× 10−12s.

The above base units can be used to find conversions from DPD units into real

units for other quantities that will be useful throughout this thesis. Viscosity has

dimensions [mass/length]/[time] this means that conversation into real units η = 1

DPD units = 4.5× 10−5 kg/(m· s).
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3.3.4 The Conservative Repulsion Parameter

The choice for the values of the conservative repulsion parameters aij in equation

3.14 are clearly crucial to making sure that the model will produce the right phase

behaviour. The values of aij essentially define the chemical species of a bead. A

typical choice for aij comes from trying to match the compressibility of the liquid

with that found experimentally. Following the derivation from Groot and Warren

(1997) [134], the compressibility is given by

κ−1 =
1

nkBTκT
=

1

kBT

(
∂p

∂ρ

)
T

, (3.28)

where κT is the isothermal compressibility. Groot and Warren define the pressure,

using the virial theorem [140], as

p = ρkBT +
1

3V

〈∑
j>i

(ri − rj) · FC
ij

〉
, (3.29)

and they are able to determine via simulation that

p = ρkBT + αaρ2 (3.30)

where α = 0.101r4C, is a good approximation for the pressure, provided a suf-

ficiently high density (ρ > 2/r3C). This now implies that the compressibility of

water is now able to be calculated by (and setting rC = 1)

κ−1 ≈ 1 + 0.2
aρ

kBT
. (3.31)

This expression now means that experimental compressibilities can be used, in

order to obtain conservative force parameters for bulk fluids. For example, authors

will often to choose to match to the compressibility of water. At 300K, water is

determined experimentally to have the value κ−1 = 15.9835, generating the typical
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parameterisation:

aij =
75kBT

ρ
(3.32)

where it is very common to choose ρ = 3 due to Groot and Warren finding that

this is one of the lowest possible densities where the scaling relation still holds.

Choosing a lower density is optimal as the number of interactions (and therefore

computational effort) increases with increasing density. The above derivation only

holds if one DPD bead corresponds to one water molecule. The relation was later

corrected by Groot and Rabone (2001) [141] so that

aij =
75NmkBT

ρ
(3.33)

where Nm is the number of water molecules per bead, however many researchers

still use the incorrect first version, despite having a bead mapping numbers where

Nm 6= 1.

However other researchers, such as Anderson et al. (2017) [16], argue that

matching the compressibility is irrelevant, arguing that what really matters is

that density fluctuations should be relatively insignificant above the DPD length

scale. They also argue that the above method can suffer from unrealistic artefacts,

due to the coarse-graining procedure, at high values of aij. In the follow up paper

Anderson et al. (2018) [17], it is argued that for the choice of number density ρr3C =

3, and for aij ≥ O(10), the DPD fluid can be regarded as being thermodynamically

incompressible on length scales larger than rC.

It is from the work of Anderson et al. (2017) [16] and Anderson et al. (2018) [17]

that we will take our parameters for DPD simulations. The authors argue that

thermodynamic properties of the system are expected to be largely determined by

the value of aij(R
C
ij)

3 (where RC
ij is the cut-off for interactions between beads i and

j) . Generally other researchers often choose RC
ij ≡ rC = 1, so that all interactions

have the same cut-off length, and the difference in bead species is defined entirely

by the choices of aij. However, this would be an unsatisfactory method if the beads
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Figure 3.2: Illustration of the coarse graining used in the DPD simulations, where
the number of [CH2OCH2] beads is varied.

were to have different numbers of atoms such that they cannot be assumed to have

the same molar volumes for different bead types. Sometimes it is impractical to

force the discretisation to fulfil this criteria. Therefore Anderson et al. (2018) [17]

choose to separately specify both aij and RC
ij for a pair of beads, and use the values

of the self-repulsion cutoffs (RC
ii)

3 in order to capture the differences in the beads’

molar volumes. They assign the value of (RC
ij)

3 for different beads, in proportion

to the molar volume of the fragment of the molecule the bead is representing. The

molar volume of water is used as a reference and is defined as (RC
ij)

3 = r3C = 1.

They define the values of aij by using a combination of mutual solubilities, partition

coefficients, and liquid density matching [16]. When extending to ionic molecules,

they chose aij such that aij(R
C
ij)

3 = 25 is satisfied [17] when dealing with the

interaction between either two ionic molecules, or one ionic molecule and a water

molecule. In order to calculate the cut-off between two different types of beads the

simple rule is applied: RC
ij = 1

2
(RC

ii + RC
jj). The full set of aij and RC

ij parameters

to be used in our simulations is shown in Table 3.1, and the coarse graining used

is illustrated in Fig. 3.2.

In order to model the electrostatic pair potential between charged beads, the

authors use Slater-type charge smearing, in which the Coulombic potential between

two charged beads i and j is given by:

Eelectrostatic =
Γqiqj
4πrij

[1− (1 + β∗rij)e
−2β∗rij ] (3.34)
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bead i bead j aij RC
ij

H2O H2O 25.0 1.0000
H2O CH2CH2 45.0 1.0370
H2O CH3 45.0 0.9775
H2O CH2OSO−13 17.9 1.1170
H2O CH2OCH2 24.0 1.0580
H2O Na+ 25.0 1.0000

CH2CH2 CH2CH2 22.0 1.0740
CH2CH2 CH3 23.0 1.0145
CH2CH2 CH2OSO−13 28.5 1.1540
CH2CH2 CH2OCH2 28.5 1.0950
CH2CH2 Na+ 45.0 1.0370

CH3 CH3 24.0 0.9550
CH3 CH2OSO−13 28.5 1.0945
CH3 CH2OCH2 28.5 1.0355
CH3 Na+ 45.0 0.9775

CH2OSO−13 CH2OSO−13 13.3 1.2340
CH2OSO−13 CH2OCH2 25.5 1.1750
CH2OSO−13 Na+ 17.9 1.1170
CH2OCH2 CH2OCH2 25.5 1.1160
CH2OCH2 Na+ 24.0 1.0580

Na+ Na+ 25.0 1.0000

Table 3.1: Values for parameters aij and RC
ij to be used in this study, taken from

the research of Anderson et al. (2017) [16] and Anderson et al. (2018) [17].
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where rij is the bead separation, qi and qj are the charges, Γ = e2/(kBTε0εrrC) is a

dimensionless electrostatic coupling parameter, and β∗ = 0.929r−1C is the tuneable

Slater parameter. Ewald summation methods can then be used to implement this

calculation, and this is the method which we will also use in our simulations. Other

choices of parameters that we adopt from their research include: spring constant

C = 150 (DPD units) in Eq. 3.20; bending constant K = 5 (DPD units) and

equilibrium angle θ0 = 180◦ in Eq. 3.22. Choice of bond lengths in Eq. 3.20

are set according to the number of heavy atoms ni and nj in the bonded beads,

calculated as l0 = 0.1(ni + nj) − 0.01. The origin of this choice stems from the

fact that it will result in l0 = 0.39 for bonds between beads that each contain two

heavy atoms e.g. between two (CH2CH2) beads. For the parameters adopted in

Anderson [16] the resulting bond length during simulation has an average location

at l = 0.445rC or 2.52Å in real units. This is approximately equivalent to the

distance between three carbon atoms in an alkyl chain.

3.3.5 Other Parameters

Other choices, in order to complete the expressions for forces, need to be made

for friction coefficient γ and noise amplitude σ. As the two are related, only one

independent choice needs to be made. It is extremely common across published

DPD research to make the choice of γ = 4.5, and the time step ∆t = 0.04 [98,142].

For the choice of time step, a compromise must be made between computational

efficiency with choosing as large a time step as possible, but also maintaining the

stability of the simulation. These parameter choices stem from the early work

of Groot and Warren [134], in which they find that for σ = 3, a time step of

∆t = 0.04 results in deviations in temperature of 2% (when using the velocity-

Verlet integration scheme), which is deemed as an acceptable compromise.

Sometimes researchers will use a slightly lower time step in their simulations

in order to improve on this temperature control [17, 143], but most researchers in

recent work still make the choice of γ = 4.5. In the initial simulations in this
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work we adopt the parameter choice of Anderson [17] who use ∆t = 0.01, and

the standard choice for the noise amplitude σ = 3. However, later the parameter

σ becomes irrelevant as we apply a thermostat to the equations, which will be

discussed in Section 3.3.6.

3.3.6 Schmidt number and Thermostats

Traditionally, DPD doesn’t require a thermostat to keep the temperature in check.

Instead it uses the dissipative and random forces as the system thermostat. The

dissipative force parameter γ is one way that the dynamic viscosity µ can be

controlled. However, the relationship between γ and µ is fairly complex. For

example, if the conservative forces are neglected, Marsh [136] showed that the

expression for the dynamic viscosity µ takes the form

µ ≈ 45kBT

4πγr3C
+

2πγρ2r5C
1575

. (3.35)

This expression is fairly complicated, even without the addition of the conservative

and electrostatic forces. When converted into real units, this viscosity is extremely

low compared to what would be expected for fluids. Using standard DPD and

varying γ, it would be fairly difficult to obtain a realistic viscosity for a fluid. It is

also suggested that a large γ may result in difficulty in controlling the temperature

of the system and the time step may need to be reduced [144].

Another point of interest is the Schmidt number Sc. The Schmidt number is

defined as the ratio of kinematic viscosity ν and mass diffusivity D: Sc ≡ ν
D

= µ
ρD

.

Similarly as above, Marsh [136] showed that the expression for the self diffusion

coefficient takes the form

D ≈ 45kBT

2πγρr3C
(3.36)

leading to an expression for the Schmidt number

Sc ≈ 1

2
+

(2πγr4C)2

70875kBT
. (3.37)
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The typical choices used in DPD for the dissipative force parameter γ and

dissipative force cutoff rC generates a fluid with an unrealistically small Schmidt

number (on the order of ≈ 1). The Schmidt number could also be increased by

increasing rC, however this also increases the number of calculations per iteration,

and thus computational expense. This low Schmidt number is suitable for gases,

but too small for liquids, which have Schmidt numbers around 1000. There are

a variety of ways to raise Schmidt number, such as increasing γ and rC from

their usual choices of γ = 4.5 and rC ≈ 1, but both of these methods decrease

computational efficiency.

One way around the confusing relationship between γ and µ, is to use a dif-

ferent pairwise thermostat. Two that are of note for DPD systems are the Lowe-

Andersen [131] and Stoyanov-Groot [5] thermostats. Both of these thermostats

implement temperature control using a similar method. The Lowe-Andersen ther-

mostat is discussed in the context of MD simulations in Section 3.2.2, where we

also discuss the Nosé-Hoover thermostat. The Stoyanov-Groot thermostat was

specifically developed for DPD particle systems, and is a combination of the Lowe-

Anderson thermostat and a thermostat that is similar to the Nosé-Hoover ther-

mostat, coupled in parallel. The Nosé-Hoover thermostat is adapted to be one

that acts on pairs of beads (as the Lowe-Andersen thermostat does), rather than

individual beads. The Nosé-Hoover thermostat is adapted and implemented by

applying a thermostating force on pairs of beads i and j within a cutoff distance

rC:

Fij = αψ(rij/rC)(1− T/T0)[(vi − vj) · eij]eij (3.38)

where α is a thermostat coupling parameter, ψ is a smearing function such that

4π
∫ 1

0
ψ(r)r2dr = 1 and ψ(r) = 0 for 1 ≤ r, rij = |rij| is the distance between

beads i and j, rC is the cut-off radius, T is the instantaneous temperature value,

T0 is the predefined temperature for the system, vi is the velocity of bead i, and

eij = rij/|rij| is a unit vector in the direction of rij. Unlike the α in the standard

Nosé-Hoover algorithm described in Eq. 3.2.2, the coupling parameter remains

84



constant throughout the simulation.

With the Stoyanov-Groot thermostat, for each pair of beads that is selected, we

choose between the Nosé-Hoover thermostat and the Lowe-Anderson thermostat

with probability P = Γ∆t (where ∆t is the integration time step and Γ is the Lowe-

Andersen exchange frequency, as discussed in Section 3.2.2). In extreme cases of

the probability P , the original two thermostats can be recovered. When P = 0,

then the thermostat functions entirely as the pairwise variation of the Nosé-Hoover

thermostat. When P = 1, this produces the Lowe-Andersen thermostat. When P

is low, the resulting simulation has a high diffusion coefficient and low viscosity,

and when P is high the liquid will have low diffusion coefficient and high viscosity.

In summary, in both the Lowe-Anderson thermostat and the Stoyanov-Groot

thermostat a random selection of bead pairs are selected to have their relative

velocities replaced with values from a Maxwell-Boltzmann distribution, for the re-

quired temperature. The Stoyanov thermostat also applies additional forces based

on instantaneous temperatures to other bead pairs. Both of these thermostats re-

quire a choice of a collision frequency Γ, while the Stoyanov-Groot thermostat also

requires the choice of additional parameter α. The fluid viscosity is thought to be

linearly proportional to the choice of parameter Γ. The diffusivity is ∝ 1/Γ, mean-

ing that the Schmidt number ends up being ∝ Γ2. This relationship is confirmed

by simulations performed by Stoyanov and Groot [5], with their results shown in

Fig. 3.3.

There is no consensus in literature about how important the Schmidt number

is in simulations, and the impact it has on results, although it is a topic of inter-

est [134]. For example, Symeonidis et al. [145] perform DPD simulations modelling

polymer chains and applying the Lowe-Andersen thermostat with varying choices

of Γ in order to vary the Schmidt number. They find that when no shear is ap-

plied, the effect of varying Sc is minimal on the value for the radius of gyration Rg.

However, when shear is applied using Less-Edwards boundary conditions, there is

a large difference in the value of Rg found at different Γ values. However, one
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Figure 3.3: Figure showing the relationship between probability P = Γ∆t and the
viscosity η for DPD simulations conducted using Stoyanov-Groot [5] thermostat.
Also shown is the relationship between P and the inverse of the diffusion coefficient
1/D. The fact that these two relationships are linearly proportional means that
the Schmidt number will be ∝ Γ2 [5].

study investigating the effect of the Schmidt number on the rheology of macro-

molecules, simulated using DPD, finds that the Schmidt number is unimportant

in determining the rheology [146].

3.3.7 Implementing Shear Flow

There are a number of different ways in which shear flow can be induced in a

DPD simulation, and a number of different methods for calculating the viscosity.

Methods for calculating the shear viscosity can broadly be categorised into two

types: equilibrium and non-equilibrium methods. A typical equilibrium method

makes use of Green–Kubo relations [147, 148], which used auto-correlation func-

tions (ACF), which calculates the shear viscosity as:

η(t) =
V

kBT

∫ ∞
0

〈σ(n)σ(n+ t)〉ndt (3.39)

where σ are the off-diagonal components of the stress tensor, V is the simulation

volume, kB is the Boltzmann constant and T is the temperature. The tensor
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consists of nine components σij which define the state of stress at a point inside

the simulation box, however only the off diagonal components are used in the

viscosity calculation. The method of calculating the stress tensor will be discussed

in the following section. The angular brackets indicate an average over different

starting times n or time origins. This integrand decays to zero in the limit of

a long t. This method is most useful for Newtonian fluids. For non-Newtonian

fluids the method will produce a value for the zero shear viscosity (the theoretical

viscosity of a material when it is effectively at rest). However, this method is often

hampered by the noisy tail of the ACF given by Eq. 3.39.

In order to investigate fluids that are expected to exhibit non-Newtonian be-

haviour, other methods are required. One such method is a non-equilibrium

method, by using Lees-Edwards boundary conditions [6]. Lees-Edwards boundary

conditions are an adaptation of standard periodic boundary conditions for inducing

shear flow. The introduction of a shear strain into the simulation allows for inves-

tigation of the effect this has on the viscosity, for Newtonian fluids. This method

works by giving a periodic domain a velocity that is proportional to the domain’s

vertical position, when compared with the centre domain, as is illustrated in Fig.

3.4. As a bead in the simulation box moves through the boundary at either the

top or the bottom of the box, it has its velocity and tangential position changed.

This generates a generate a linear velocity profile over the box domain, and we

can obtain a constant shear rate for the system.

3.4 Shear Viscosity for Liquid Crystals

For an isotropic fluid, the shear viscosity can be simply calculated using the stress

(or pressure) tensor and the applied shear rate. For a shear flow defined as applica-

tion of a velocity field such that v = vx(y)x̂, there is only one non-zero off-diagonal

term in the stress tensor: σxy (or the equivalent σyx). Using that the shear rate is
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Figure 3.4: Illustration of Lees-Edwards boundary conditions [6] for shear flow.
The shear rate γ̇ can be calculated using the velocity vx of the box.

given by ∂vx
∂y

, the viscosity can be calculated using

σxy = −η∂vx
∂y

, (3.40)

where the viscosity can vary for a variety of fluids depending on the magnitude

of the shear rate applied. This stress tensor can be calculated using the Irving-

Kirkwood definition [149] for a system by summing components of pairwise forces

and vectors between bead pairs and by averaging over a large number of time

steps. The stress tensor is therefore calculated using

σαβ =
∑
i

(mivi,αvi,β +
∑
j>i

Fij,αrij,β), (3.41)

where α and β represent the x, y, and z directions, and the sum in i is over all

beads in the system. Although as noted above, only the component defined by

α = x and β = y is needed to calculate the viscosity.

However, for a nematic or a smectic liquid crystal, there are effectively 3 dif-

ferent shear viscosity coefficients to be considered, depending on the direction of

shear flow. Miesowicz viscosity coefficients η1, η2, or η3 are defined by the shear
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Figure 3.5: Definition of the Miesowicz viscosity coefficients η1, η2, and η3. Mea-
surement of the coefficients ηi involved orientating the director of the liquid crystal
n̂ relative to the flow velocity.

viscosities of the fluid in the nematic phase when the director lies along the x, y,

or z axis, respectively. An illustration of the definition of η1, η2, and η3 relative

to the director is shown in Fig. 3.5. These were first measured experimentally

by Miesowicz [150, 151], by aligning the director of the sample using an external

magnetic field and measuring the viscosities using an oscillating plate viscometer.

An electric field could also be used in place of the magnetic field. A summary of

the three viscosities in relation to the flow velocity v [152] follows:

• η1 is when director n is parallel to flow velocity;

• η2 is when n is parallel to the velocity gradient;

• η3 is when n is orthogonal to both the flow and the velocity gradient.

Note that other authors often use slightly different definitions of which coefficient

ηi corresponds to which direction. Consider a nematic liquid crystal which has a

director n that can be considered as a function of two angles θ and φ:

n = (cos θ cosφ, cos θ sinφ, sin θ) (3.42)

where angles θ and φ are defined in Fig. 3.6. The viscosity is a combination of

the three Miesowicz viscosities as well as a fourth η12, which cannot be visualised

in the usual way, but is related to a stretch deformation [152]. It can be found
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Figure 3.6: Definition of angles used in Eqs. 3.42 and 3.43 for the director of the
liquid crystal n̂.

that the expression for the apparent viscosity becomes [152]

η(θ, φ) = η1 cos2 θ cos2 φ+ η2 sin2 θ + η3 sin2 φ cos2 θ +
1

4
η12 sin2 2θ cos2 φ. (3.43)

Clearly the apparent viscosity depends on the alignment of the director with re-

spect to the directions of shear and the velocity gradient. However, there is still a

use for classical shear flow viscometers in order to assess such systems. Generally

a change in the orientation of the director is induced under application of shear.

In general, nematic crystals under shear will have a director that is parallel to

the velocity, so a conventional shear rheometer will give a good approximation for

η1. In a smectic crystal such as the lamellar phase, there is generally a prefer-

ence to form the layers in one of two orientations. When the lamellar layers are

stacked in the direction of the velocity gradient, this is usually referred to as the

parallel oriented lamellar phase (η2). When the lamellar layers are stacked in the

velocity gradient-neutral plane, and since the orientation of the director is perpen-

dicular to the velocity gradient, this orientation is referred as the perpendicular

orientation (η3). These two orientations are illustrated in Fig. 3.7. For SLE3S

surfactant/water, which is molecularly very similar to AES, textures viewed un-

der a polarised optical microscope indicate a parallel orientated alignment of the

lamellar phase under shear [4]. Similarly, orientation of the liquid crystal phase

has been found for the hexagonal mesophase, generally with the rods of the hexag-

onal crystal in alignment with the flow direction [153]. Further discussion of the

experimental evidence for the alignment of the mesophases is provided in Chapter
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Figure 3.7: Meaning of the parallel and perpendicular orientations of the lamellar
phase under the application of shear. Figure adapted from Ref [7].

4.

For the purpose of calculating a Schmidt number, we need to not only cal-

culate a value for the viscosity η, but also for the diffusivity D. There are two

common ways to calculate the diffusion coefficient. One method uses mean squared

displacement, so that D is calculated using [154]

D =
〈(r(t)− r0)

2〉
2td

(3.44)

where r is the position of the bead, r0 is the initial position at time t = 0, t is

time, d is the number of dimensions of the simulation box, and the angled brackets

indicate an average over all beads. The diffusion coefficient can also be calculated

using the velocity auto-correlation function [154], in a similar way that the zero-

shear viscosity can be calculated using Eq. 3.39. In this case D can be calculated

as

D =
1

d

∫ ∞
0

〈v(n) · v(n+ t)〉ndt (3.45)

where v is the velocity vector and the angled brackets indicate an average over all

different starting positions, as in Eq. 3.39.
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3.5 Effect of Periodic Boundary Conditions on

Lyotropic Crystal Phases

3.5.1 Lamellar Phase

The lamellar phase can form within the simulation box in an orientation that

creates a d-spacing value that minimises the potential energy of the box, and

therefore is as close to the equilibrium d-spacing as possible. However, the nature

of the finite size of the box and the periodic boundary conditions imposes some

constraints on the orientations that the layers can form at, and therefore the

available d-spacing values for the layers to take. Opposite sides of the boxes must

match due to the periodic boundary conditions. This means, for example, for the

two box sides in the x − y plane, the surfactant layers must pass through the

same x and y coordinates for the surfaces located at both z = 0 and z = L. This

leads to a constraint on the angle that the layers can form at, and is illustrated in

2-dimensions in Fig. 3.8. The imposition of the constraints in 3-dimensions leads

to the condition that the d-spacing layers must form to satisfy

(
d

L

)2

(κ21 + κ22 + κ23) = 1 (3.46)

where κi are integers related to the number of layers that have formed in dimension

i. Further derivation of this expression can be found in Appendix A.

3.5.2 Hexagonal Phase

The effect of boundary conditions on the hexagonal phase is more complicated due

to the extra dimension of the structure (i.e. two dimensions as opposed to one in

the lamellar phase). Consider the formation of a lattice in a 2-dimensional case,

which forms in a square domain with periodic boundary conditions. An example

of a unit cell that would satisfy these boundary conditions is shown in Fig. 3.9,
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Figure 3.8: Illustration of the formation of repeated lamellar layers in the simula-
tion box. A triangle illustrates the constraint that the periodic boundary condi-
tions impose. The vertical line of this triangle has a length the same as box size L.
A second line has length κd, where κ is an integer related to the number of layer
repeats it passes though, and d is the spacing between the repeated layers. This
line is normal to the periodic layers in the box and is in the same direction as the
director for the molecules. These lines can form a right angled triangle such that
L cos θ = κd.

and the unit cell must form in such a way to satisfy equations

I1~a+ I2~b =

L
0

 ,
I3~a+ I4~b =

0

L

 ,
(3.47)

where Ii are integers, in order to satisfy the boundary conditions. In order to

be considered a perfect hexagonal lattice, this would require |~a| = |~b|. However,

the formation of the unit cell is restricted by these boundary conditions, and the

hexagonal lattice tends to form in a stretched/obscured way in order to meet these

conditions. In the perfect hexagonal lattice described in Fig. 2.10, there is just one

inter-rod spacing value, as the nearest six neighbours to any lattice point are all of

equal distance away. However, for the situation described in Fig. 3.9 there can be

up to three independent distances for the nearest neighbour spacing, described by

the length of vectors |~a|, |~b| and |~a+~b|. Therefore an average inter-rod spacing r,

can be calculated as an average of these three distances. It will be discussed later

in Chapter 7, why in the case of the simulations carried out in this work, it is not
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Figure 3.9: Formation of a lattice inside a 2-dimensional box, with periodic bound-
ary conditions.

necessary to extend the above description to three dimensions.
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Chapter 4

Experimental AES Phase

Diagram and Rheology

As discussed in Chapter 2, there is no known published phase diagram for AE1S.

There are also no known published rheological studies, detailing the relationship

between the applied shear rate and the solution viscosity, as a function of com-

position. Therefore, this chapter will look to identify the mesophases formed by

AES/water solutions, and identify the location of the phase boundaries, by a com-

bination of polarising optical microscopy and rheological measurements. The re-

sults of these measurements will allow for a comparison with computational studies

in later chapters.

There are many different experimental methods which can be used in order

to determine the mesophase that forms for a surfactant solution at a given tem-

perature and concentration. It is most often the case that a combination of dif-

ferent experimental techniques are used, in order to determine the phase dia-

gram. One popular experimental method is through polarising optical microscopy

(POM) [15, 155, 156], which uses plane-polarised light to observe structures that

are birefringent (i.e. structures that are anisotropic). Structures that can be iden-

tified via this method include the hexagonal and lamellar phases, however this

method cannot be used to identify the micellar and cubic phases, because they
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are optically isotropic and do not give textures. In order to distinguish between

the cubic and micellar phases, it is sometimes possible to use the fact that they

have enormous difference in viscosities [155]. Other methods that could be used

to identify the mesophase that has formed include small-angle neutron scatter-

ing [157–159], light scattering experiments [157, 158], small angle X-ray scatter-

ing [156,160], NMR [161], and Raman spectroscopy [162].

4.1 Materials

The homogeneous samples for these measurements were prepared by mixing a

controlled amount of surfactant with deionised water to create the desired concen-

tration, and leaving the sample to stand at room temperature.

The AES paste used for creating the samples consists of 70% AES, and is

supplied by Procter & Gamble. However, the concentration will be presented as

a weight percentage (wt.%) of AES, as opposed to a percentage of the paste, as

is done by some researchers [15]. Rheological measurements on micellar solutions

formed by sodium dodecyl sulphate (SDS) are also performed in Section 4.3.2.

The SDS (99+%) was purchased from Sigma-Aldrich.

Samples were created across the full concentration range obtainable via the

AES paste (0-70 wt.%). For SDS solutions, samples are created in the micellar

region (0-20 wt.%). Solutions that went on to form micellar solutions were left to

equilibrate for at least 2 weeks before measurement, all other samples at higher

concentrations were allowed to stand for at least 12 weeks before rheological mea-

surements were performed. Microscopy imaging took place a significant time later

than the rheological measurements, due to a lack of access to experimental facilities

during the Covid-19 university shutdown. Therefore, the optical microscopy im-

ages reported in this chapter were performed on samples that were left to stand for

at least 12 months. Samples were stored in sealed containers, in order to prevent

drying or contamination.
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Figure 4.1: Illustration of polarised light. Once the ordinary light passes through
the polariser, it is only oscillating in one direction, and therefore the analyser must
also be orientated in the same direction in order for the light to pass.

4.2 Polarised optical microscopy (POM)

4.2.1 Background

Polarised optical microscopy uses plane-polarised light to observe structures that

are birefringent. Normal sources of light are unpolarised and have electric field

oscillating in all directions (perpendicular to the direction of propagation). If the

electric field oscillates in one direction only, it is referred to as plane polarised

light. Something that polarises light is referred to as a polariser. The principle

of polarised light is illustrated in Fig. 4.1. When a second polariser (analyser) is

added, the light can only travel through it fully if it is orientated in the same way

as the polarised light. If the analyser is placed 90◦ to the polarised light, beyond

the analyser no light will get through.

If a crystal is placed between the polariser and analyser, as the light enters the

crystal it will be split into two rays with different velocities vibrating perpendicular

to each other [163]. One of these rays is called the ordinary-ray (O-ray) and one the

extraordinary-ray (E-ray). The ordinary- and the extraordinary- rays become out-

of-phase once they exit the material. These two rays are then recombined with

constructive and destructive interference when they pass through the analyser
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[164]. Polarisation colours result from the interference of the two waves, and the

angle between the polariser and analyser can be varied to extract information

about materials.

The light that enters the crystal after passing through the polariser is only split

when the material is anisotropic and the material contains a range of refractive

indices. Isotropic materials, such as cubic crystals and micellar solutions, only

have one refractive index and therefore do not act as beam splitters. Therefore,

since POM relies on analysing the interference of the split beams as they are

recombined through the analyser, no information can be gained by looking at

isotropic materials.

4.2.2 AES Phase Identification

This section will look at identifying the phases formed by use of POM. In order

to visualise the textures, a thin layer of pre-equilibrated sample is viewed under

crossed polarisers. The process for achieving this thin sample is to squeeze a small

amount of sample between two glass slides. However, this can inadvertently apply

a degree of shear to the sample, and the application of shear force can influence

the phase taken. To avoid this, we apply as small an amount of sample as possible

to the glass slide, and apply as little force as possible to flatten. While one could

then leave the sample on the prepared slide to equilibrate after being prepared,

there could then be an influence from the exposed boundary with the air, such as

sample evaporation, which may alter the phase. Hence we chose to not do this,

and simply try and prepare the sample in a way which applies as little force as

possible to the sample that is to be imaged.

A summary of the different textures identified for different AES concentrations

is shown in Table 4.1, and the corresponding approximate phase boundaries in

Fig. 4.2. Concentrations 6.9, 13.2 and 20.1% exhibit no textures, indicating the

existence of an isotropic solution. Qualitatively the viscosity of these solutions is

relatively low, therefore they will be assigned to the micellar phase. Quantitative
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rheology measurements in Section 4.3 will confirm this. There then exists a large

hexagonal region for samples of concentrations from 28% up to 58.6%, which are

identifiable from their marble/smoke-like [165,166] or mosaic [71,166] textures. A

sample of 59.9% displays a transition to lamellar phases, which is identifiable from

a more streaked like texture [166]. Further increase in concentration continues to

display lamellar textures. A selection of microscopy images at different concentra-

tions is shown in Fig. 4.3. An interesting observation is that the lamellar phases

also display a high degree of alignment at solution/air boundaries, as illustrated in

Fig. 4.4. This helps provide an extra point of identification between the hexagonal

and lamellar phases.

Sample Concentration (wt.%) Appearance
6.9 No Textures
13.2 No Textures
20.1 No Textures
28.0 Hexagonal
34.7 Hexagonal
41.3 Hexagonal
49.7 Hexagonal
52.1 Hexagonal
58.6 Hexagonal
59.9 Lamellar
63.1 Lamellar
70 Lamellar

Table 4.1: Identification of the mesophases formed by AES/water solutions at
room temperature. Phases identified using POM.

0 20 40 60 80 100
Concentration (wt%)

Micellar Hexagonal Lamellar

Figure 4.2: Phase boundaries of AES solutions at room temperature, identified by
POM imaging.

Identifying the phases of solutions at concentration boundaries can be difficult

due to potential inhomogeneities in the solution sample. This is particularly true

for very viscous phases where dissolution is slow, and different portions of the
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(a) c = 41.3wt.% (b) c = 52.1wt.%

(c) c = 59.9wt.% (d) c = 70wt.%

Figure 4.3: POM images at 5x magnification of a variety of AES solutions at
different concentrations c. Phases identified as hexagonal (a and b) and lamellar
(c and d).
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Figure 4.4: POM images at 5x magnification of a sample at concentration c =
63.1wt.%. Phase is identified at this concentration as lamellar. The region of this
image that is completely black is where no solution is present. There is increased
phase alignment of the lamellar phase at the phase boundary between the bulk
surfactant and the interface with the air.

sample could be residing at slightly different concentrations, and therefore slightly

different phases. However, our samples were allowed to equilibrate for between 12

and 24 months before POM imaging, so it is unlikely that further equilibration

time would improve homogeneity. Furthermore, repeated microscopy images were

taken from different parts of the sample to confirm conclusions. For AES/water

solutions, identifying the boundary between the hexagonal and lamellar phases

is the most tricky. For some surfactants a cubic phase can exist in between the

two phases [4, 15], and for AE3S this is discussed in Section 2.3. This makes the

identification of the phase boundary easier, however, no cubic phase is identified

for AE1S/water solutions at room temperature. Originally, the samples in the

region where a cubic phase would be expected to exist were prepared at 52.1%,

with the next sample concentration at 63.1%. In order to attempt to locate any

potential cubic phase, additional samples at interim concentrations were created.

As a concentration of 58.6% was identified to have a hexagonal phase, this narrows

the window for any potential cubic phase to just 1.3%, making it unlikely that it

has been missed. Otherwise, the location of the phase boundaries identified is

reasonably similar between AE1S and AE3S.
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An alternative method to investigating the phases formed by AES/water so-

lutions would be to conduct a penetration scan experiment [4, 167, 168]. In this

experiment, a concentrated amount of surfactant is placed in a capillary tube and

placed in contact with pure water, creating an interface between the two. Then,

POM images of the surfactant-water interface are taken at short time intervals,

in order to observe phase formation as a function of composition. This produces

layers of different mesophases as the concentration varies between the two sam-

ples. This method has its benefits, including the fact that it is quicker due to

not having to wait for fully equilibrated samples for imaging. It also removes the

homogeneity uncertainty problem, as discussed above. However, it is more difficult

to gauge an estimate for the location of the phase boundaries using this method.

Quantitative information on the phase boundaries can only be obtained if the lo-

cal composition along the tube can be determined, for example by refractive index

measurements [169]. Therefore, this isn’t a method that has been explored in this

research.

4.3 Rheology

Rheological measurements can aid in phase identification, because different mesophases

are expected to have different viscosity ranges. Solutions containing spherical mi-

celles are generally of low viscosity [170, 171]. If the micelles start to become less

spherical at increased concentrations (i.e. more rod like), there can be an increase

in the viscosity of the solution [171], although the solution still has relatively low

viscosity when compared to liquid crystal phases. When the concentration reaches

high enough levels, these elongated micellar rods can align into an hexagonal phase,

which results in a large increase in value for the viscosity. Lamellar phases on the

other hand generally have a lower viscosity value than the cubic and hexagonal

phases, due to the layered nature of the system [172]. Cubic phases usually have

the highest viscosity values of all liquid crystal phases, however no cubic phases

are identified for this system using POM imaging.
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4.3.1 Background

There are two basic types of flow, these being shear flow and extensional flow. In

the study of shear flow, fluids are subject to a simple shear stress field, causing

components to shear past one another. In extensional flow, fluid components flow

away or toward each other. Shear flows are much easier to study, and are most

easily measured on a rotational rheometer [173]. These are the types of flow we

will be measuring.

The shear viscosity η, also referred to as the apparent viscosity, is defined as

the shear stress τ experienced by the fluid, divided by the shear rate γ̇

η =
τ

γ̇
. (4.1)

This is also how viscometers or rheometers calculate the viscosity. There are a

number of different types of viscometer, but by far the most common is the rota-

tional viscometer. These viscometers work by immersing a rotating spindle into a

fluid, and measuring how much torque is required to turn the spindle. The spindle

applies stress to the fluid, and then from use of Eq. 4.1 a viscosity can be calcu-

lated. The shape of the spindle can take many forms. A cone-plate/plate-plate

configuration can also be used for applying the shear stress. Some of the different

types of geometries used in viscometers are illustrated in Fig. 4.5. Different spindle

types are more (or less) appropriate, depending on the fluid to be measured. The

cone-plate geometry usually consists of a lower, temperature controlled plate and

an upper rotating cone of a very shallow angle. A small amount of sample is placed

in between the two plates, and the cone is brought down to make contact with the

sample. This set up has the benefit that a uniform shear rate is generated across

the entire sample. Another benefit is that, as the sample is small, temperature

equilibration is rapid. The plate-plate configuration is very similar, but it does not

generate a uniform shear rate. In the concentric cylinder configuration, the sample

is poured into an outer ‘cup’, and the inner cylinder lowered into the sample. This
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Figure 4.5: Illustration of different kinds of rotational geometries that can be used
to measure viscosity using a rheometer.

geometry is useful for solutions that would struggle to be loaded into the cone-plate

geometry (e.g. solutions with such low viscosity that they would run out of the

edges of the cone-plate/plate-plate system), although a much larger sample size is

usually required. In this work the low-viscosity solutions (likely to correspond to

the micellar phase) are measured using the concentric cylinder system, while the

higher viscosity samples are measured using the cone-plate geometry.

Generally, fluids can be classified into two different types depending on Eq.

4.1: either Newtonian fluids or non-Newtonian fluids. When the viscosity η that is

calculated is independent of the shear rate γ̇, at a given temperature, these fluids

are called Newtonian, as they obey Newton’s law of viscosity. However, it is more

common that fluids exhibit non-Newtonian behaviour, meaning that their viscosity

is dependent on their shear rate. Among non-Newtonian fluids, we can also classify

into shear-thinning and shear-thickening fluids. That is fluids that have a decrease

in viscosity with increasing shear, and those that have an increase. Examples

of shear-thickening fluids are cornstarch in water and nanoparticles dispersed in

a polymer solution. Examples of shear-thinning fluid are paints and polymer

solutions. It should be noted that fluid viscosity, even for a Newtonian fluid, is

generally still dependant on the pressure and temperature, with viscosity usually

increasing with increased pressure and decreasing temperature.

Shear flow can be illustrated as layers of fluid sliding over one another with
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Figure 4.6: Illustration of Couette flow using two infinite flat plates. The upper
plate is being moved in the x direction with velocity u while the bottom plate is
stationary. This creates a linear velocity profile between the two plates. The x
component of the velocity of a fluid element at height h in the y direction can be
calculated as vx = yu/h.

each layer moving at a different speed, such that there is a velocity profile across

the domain. A simple case of illustrating shear flow is Couette flow, as illustrated

in Fig. 4.6. In this case a fluid is trapped in between two parallel plates, where

one plate is moved with a velocity relative to the other. In this set up the shear

rate γ̇ is simply the velocity of the wall u divided by the plate separation h i.e.

γ̇ =
u

h
=

dvx
dy

. (4.2)

This Couette flow can be induced in the geometries illustrated in Fig. 4.5.

For most fluids, the effect of shear-thinning is reversible, and the fluid will even-

tually return to its original viscosity when the shearing force is removed. When this

recovery process is time dependent, the fluid is considered to be thixotropic [173]

(note that thixotropic materials are always shear-thinning). Thixotropic materials

usually exhibit this behaviour because there are time dependent microstructural

rearrangements occurring in the fluid following the application of shear.

The following section will discuss the rheological behaviour that is expected

for surfactant systems similar to AES/water solutions. Discussion will split into

dealing with the micellar phase and the liquid crystal phases separately, due to
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their differing behaviour.

4.3.2 Micellar Solutions

4.3.2.1 Overview of Empirical Rheology Models for Micellar Solutions

For micellar systems, changes in the solution viscosity are expected to be most

influenced by changes in the shape of micellar aggregates, the number of micelles

formed and/or due to micellar interactions [174–177]. AES is structurally very

similar to SDS. Therefore, the rheology of monodisperse SDS/water systems is

expected to be very similar to that of polydisperse AES/water systems. The

micellar phase of SDS/water systems has been found by other researchers to be

Newtonian, with an increasing viscosity with increasing concentration within this

region [175,176]. A number of reasons for this increase in viscosity have been sug-

gested by different researchers. It is most often suggested that for SDS solutions,

the size and shape of the SDS micelles changes very little, and therefore the strong

repulsive intermicellar interactions play a large role in the measured increase in

the viscosity [175–177].

There have been a number of theoretical attempts to connect the viscosity of

micellar solutions to the concentration. For example, early relations include the

Einstein equation [178]

η = ηw(1 + 2.5Φ) (4.3)

where ηw is water viscosity and Φ is the volume fraction of surfactant. This relation

is applicable if the micelles were to behave as single spherical and noninteracting

particles. At infinite dilution (where these interaction between micelles are min-

imised), the viscosity is expected to be mostly sensitive to the shape and size of

the micelles in the solution. At very low concentrations (below ≈ 0.2%), Eastoe et

al. [174] confirm that this relationship correctly describes the viscosity of surfac-

tant solutions with Na+ counterions. Therefore, this indicates spherical micelles

at least at very low concentrations. Alternatively, there is Batchelor’s corrected
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equation, that also considers two-body hydrodynamic interaction between hard

spheres, given as:

η = ηw(1 + 2.5Φ + 6.2Φ2). (4.4)

Montalvo [175] finds for SDS micelles in solution that the data does not appear

to fit either Eq. 4.3 or Eq. 4.4 beyond very low concentrations, suggesting that

higher-order terms to these equations should be expected, due to strong repulsive

intermicellar interactions, that become more important at higher concentrations.

Arguably the most popular equation for describing the viscosity of rigid and

spherical particles is the Mooney equation [179]:

η = ηw exp
2.5Φ

1−QΦ
(4.5)

where Q is an inter-particle parameter in the range 1.35 < Q < 1.91. Note that for

dilute solutions as Φ → 0, Eq. 4.5 is the same as Eq. 4.3. The Mooney equation

was then generalised to the form [180]

η = ηw exp
KΦ

1−QΦ
(4.6)

where K is a shape factor that varies from 2.5 < K < 5 and Q varies between

0.6 < Q < 2.1. The choice of K = 2.5 theoretically correlates to what is expected

for spherical particles, while deviation from this would indicate prolate or oblate

shapes. However, it is theorised that very high values of K ≈ 5 can also arise

from electroviscous effects from the presence of charge on the surface of dispersed

particles [180]. In the Mooney equation, the hydrodynamic effects of particle

collisions have been neglected, and these effects become important as concentration

increases [181]. In order to take into account the mutual interaction of particles

and their collisions, Vand [182] derived the theoretical formula

η = ηw exp

(
vΦ + r(k − g)Φ2

1−QΦ

)
(4.7)
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where g and k are shape factors, Q is the hydrodynamic interaction constant, and

r is the collision time parameter, which indicates how long particles are involved in

collisions. For rigid, non-solvated spheres without mutual interactions and Brow-

nian motion, the theoretical values of g = 2.5, k = 3.175, Q = 0.609 and r = 4

are derived. As r is representing the proportion of time spent by particles in a

collision, its value will be reduced for particles of decreased size due to Brownian

motion, or particles with repulsive forces [181]. However, generally the parame-

ters in other non-theoretical cases are not known. Fitting to Eq. 4.7, in order

to find exact values for the parameters, may be relatively difficult compared to

previous equations discussed, due to the increased number of parameters (leading

to overfitting).

4.3.2.2 Measurements for AES Rheology for Micellar Solutions

Viscosity measurements in the AES micellar phase were made for concentrations

7, 11, 13, 17, 20 AES wt.%. Measurements were also made for a range of SDS

solutions with concentrations 5, 10, 15, 20 wt.%, as well as for pure water. Al-

though the viscosity of SDS micellar solutions has been reported by other au-

thors [175,183], they are repeated here to allow for a direct comparison with AES

solutions, measured using the same procedure and equipment. Measurements were

performed at 25◦C using the Anton Paar Physica MCR301 Rheometer and 27mm

concentric cylinder geometry (as illustrated in Fig. 4.5).

The readings were made in the largest shear-rate-range that the equipment

would allow for each sample. The limiting factor on the lower bound for the shear

rate is due to torque that can be measured (minimum torque = 0.1 µNm) by

the Anton Paar Rheometer. At higher shear rates, there can be an influence of

secondary flows, and Couette flow can no longer be assumed, placing an upper

bound on what can be measured. A logarithmic step-wise ramp method was used

in order to gradually increase the shear rate, starting at a shear rate of 0.01s−1

(although in every case the shear rate had to reach higher values before a large
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enough torque value was measured for viscosity calculation). Once the shear rate

had reached 100s−1 the results were repeated in order to check for thixotropic

behaviour, but the results were found to be independent of past shearing.

A plot of the calculated viscosity against shear rate is shown in Fig. 4.7, and

it can be seen that in the shear rates trialled, the solutions exhibit Newtonian

behaviour. Newtonian behaviour indicates that the micelles are maintaining ap-

proximately the same size and shape with application of shear, as any change in

micelle size would be expected to have an influence on the viscosity value. A

plot of the calculated viscosity η against surfactant concentration c is shown in

Fig. 4.8. The relationship between η and c, for SDS, is in excellent agreement

with values measured by other authors [175,183]. Fitting to Eq. 4.6 is performed

by assuming that the volume fraction Φ and weight fractions are approximately

equivalent. A fit to the parameters in Eq. 4.6 is performed using a least squares

to fitting method, using a Python script. The viscosity increases non linearly with

increasing concentration for both AES and SDS systems, with the AES solutions

having a viscosity of higher magnitude than the SDS systems. In particular, the

viscosity difference between the two systems is most noticeable at higher surfac-

tant concentrations. The larger viscosity of AES solutions may be in part due to

an increase in the micelle size, due to the average length of an AES molecule being

approximately one ethoxylation unit (OCH2CH2) longer. If we assume that the

micelles are spherical with a radius close to the length of one surfactant molecule,

this would increase the size of an AES micelle by 2(OCH2CH2), relative to an SDS

micelle.

Fits are also obtained to Eqs. 4.4 and 4.5, as well as Eq. 4.6, with the results for

this shown in Fig. 4.9. Eq. 4.4 is shown to be a poor fit to the data, in agreement

with what is found by Montalvo [175] for SDS solutions. This is to be expected, as

Eq. 4.4 is not expected to be valid beyond very low concentrations. Eq. 4.5 pro-

vides a more reasonable fit to the data, however a much better fit is obtained when

Eq. 4.6 is used and K is allowed to deviate from 2.5. The parameters obtained
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(a) AES solutions

(b) SDS solutions

Figure 4.7: Calculated viscosity against shear rate for a range of (a) AES and
(b) SDS solutions in the micellar mesophase, for a variety of concentrations c.
Solutions display Newtonian behaviour.
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Figure 4.8: Plots of calculated viscosity (mPa·s) against concentration (wt.%) for
AES and SDS solutions. The solutions are fitted using Eq. 4.6. Error bars are
calculated as the standard deviation of the results obtained from varying shear
rates (Fig. 4.7), but are smaller than the symbol size so are not visible.

from fitting Eq. 4.6 to the data are: K = 5.07 and Q = 2.65 (AES); K = 5.84 and

Q = 0.86 (SDS), indicating that the viscosity of the solution cannot be modelled

as non-interacting hard spheres (which requires K = 2.50). This is likely to be

because of a combination of non-spherical micelles (as we are considering relatively

high concentrations) and/or interactions between those micelles. In order to inves-

tigate whether the effect is caused by micellar interaction, the data was fit using

Eq. 4.7. Guettari [181] find that fitting to micelles in an AOT/water/isooctane

system (where AOT is sodium bis(2-ethylhexyl) sulfoccinate) requires a value for

the interaction time that is much higher than the theoretical value r = 4, as a re-

sult of attractive forces dominating the interaction. If we use theoretically derived

values for spherical particles g = 2.5, k = 3.175 and Q = 0.609, and allow r to be a

fitting parameter, values for r are found to be r = 52.6 (AES) and r = 28.6 (SDS).

This could indicate that it is micellar interactions playing a role in increasing the

viscosity.

Although a number of theoretical equations can provide adequate fits to the
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(a) AES solutions

(b) SDS solutions

Figure 4.9: Plots of calculated viscosity (mPa·s) against concentration (wt.%) for
AES and SDS solutions: (a) AES and (b) SDS solutions fitted with Eqs. 4.4, 4.5,
4.6. Error bars are calculated as the standard deviation of the results obtained
from varying shear rates (Fig. 4.7), but are smaller than the symbol size so are
not visible.
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experimental data, it is unclear from these fits alone, what the causes the increasing

viscosity. While the theoretical equations discussed can account for non-spherical

micelles, most of the theoretically derived equations assume that the micellar shape

and size does not change much with increasing concentration. It is more likely

that the shape factor is concentration dependant, with micelles deviating from

spherical shape upon increasing concentration. Also most exclude considerations of

intermicellar interactions, in particular electrostatic interactions. The fits obtained

using equations that assume spherical shape and neglect interactions are in general

poor beyond extremely low concentrations. At the beginning of this section it was

proposed that an increase in viscosity was likely due to an increase in the number

of micelles, the shape of those micelles, or as a result of intermicellar interactions.

The effect of varying the concentration on the micellar shape and size will be

discussed in the following chapter.

4.3.3 Lyotropic Liquid Crystals

4.3.3.1 Overview of Rheology for Lyotropic Liquid Crystals

The non-micellar mesophases of surfactant/water systems produce extremely dif-

ferent rheological behaviour when compared with the micellar case. They possess

a viscosity value many orders of magnitude larger than that of micellar systems,

while also displaying a more complex viscosity vs. shear rate relationship, which

is expected to be shear-thinning and time-dependent [15, 175, 184–188]. The be-

haviour of the liquid crystals formed by surfactant/water systems is less well stud-

ied than the micellar region, due to this extra level of complication.

While liquid crystals generally maintain their ordered structure under appli-

cation of shear, lamellar and hexagonal solutions can enter the flowing state. For

example, the bilayers of the lamellar phase can slide over one another under the

influence of a shear force, and similarly in the hexagonal phase the rods can slide

past one another. Both the hexagonal [153, 189–191] and lamellar [7, 192–194]

phases have been shown to exhibit phase orientation under the application of
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shear. This is briefly mentioned in Section 3.4, as evidence for why we can focus

on one orientation for our simulations. For example it is shown that for SLE3S

surfactant/water systems, there is a parallel-orientated alignment of the lamellar

phase under shear [4], in the shear range that the authors researched. Experimen-

tal research suggests that for some systems, there is a transition from the parallel

orientation to the perpendicular orientation at very high shear rate [192,193,195].

Such behaviour has also been found using MD [7]. It is suggested that a potential

reason for the the shear-induced orientation transition is the smaller viscosity in

the perpendicular lamellar phase [7,195]. However, this high shear rate behaviour

doesn’t appear for all lamellar systems, and for many systems the parallel orien-

tation can be shown to persist from both low to high shear rates [194]. For other

systems, there can be a transition for the parallel bilayers to vesicles at high shear

rates (also often referred to as ‘onions’) [185]. In the range of shear rates to be

studied in this research, generally the experimental evidence suggests that we can

assume that the phase maintains parallel orientation of the lamellar bilayers.

The hexagonal phase generally has a viscosity higher than that of the lamellar

phase. Experimental research also shows shear alignment of the hexagonal struc-

ture [153,189–191]. For example, Richering et al. [153] investigate the rheological

properties of an hexagonal phase formed by nonionic surfactant. The hexagonal

solutions exhibit shear-thinning, and under shear two different alignments can be

obtained: either an in-shear-plane orientation or an out-of-shear-plane ‘log-rolling’

orientation. An illustration of these two alignments is shown in Fig. 4.10. When

shear is applied to the solutions, the hexagonal phase first aligns perpendicular to

the direction of shear flow at short shearing time, and then and eventually parallel

to the flow direction at long shearing time. This alignment of the hexagonal rods

along the flow direction is the most common orientation that has been found by

other researchers [189–191]. For a hexagonal phase in which the rods are along the

flow direction, there can also be orientation of the hexagonal structure in the plane

perpendicular to the shear flow. Suppose that Couette flow is induced by applying
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Figure 4.10: If shear flow is induced in the x direction by shearing using the x− z
plane, the rods in the hexagonal phase align in either in an (a) in-shear-plane or
an (b) out-of-shear-plane ‘log-rolling’ orientation .
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Figure 4.11: If shear flow is induced in the x direction by shearing using the
x − z plane, rods in the hexagonal phase tend to align along the x-axis. The
perpendicular plane (y−z plane), experimentally, takes one of the two orientations
that are given the name parallel (a) or perpendicular (b).

shear to the x-z plane in the x direction, so that the hexagonal rods are aligned

along the x-axis. Figure 4.11 illustrates the two possible orientations of the unit

cell. It is most often found that at room temperature the orientation described as

parallel forms [189, 191]. It has been shown that at very high temperatures, the

orientation can change such that a perpendicular orientation forms [189], however

in all of our work we will be at temperatures in the range such that we can assume

parallel alignment.

The shear thinning behaviour of these systems is often able to be fit to one of
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the following similar models for polymers under shear flow. The Cross model [105]:

η = η∞ +
η0 − η∞

1 + αγ̇(1−n)
(4.8)

where η∞ is the infinite shear viscosity, η0 is the zero shear viscosity, α is a constant,

n is the power law index. When αγ̇(1−n) � 1, Eq. 4.8 becomes the Sisko equation

[106]:

η = η∞ +Kγ̇(n−1) (4.9)

where K is the consistency index. When we do not see the effects of plateau to the

infinite shear viscosity we can simplify further to just the power law relationship:

η = Kγ̇(n−1) (4.10)

When solutions follow this relationship, a plot of η vs. γ on a log-log scale would

appear linear with gradient (n − 1). It is most common to use Eq. 4.10 for

fitting for surfactant systems [185–188]. However, the Sisko equation can be used

[196] when the plateau to η∞ can be observed, and the Cross model [197] when

the crystal displays a plateau to zero shear viscosity η0. The approximate flow

curves that these equations model are illustrated in Fig. 4.12. There can be

variations on the fitted parameters K and n between different surfactants, as well

as from changing surfactant chain length [196], concentration [185,187,188,198] or

temperature [187,188,198].

The structures formed in lyotropic liquid crystals have, however, often been

shown to exhibit viscoelastic behaviour [15, 175, 185, 187, 196, 197], and a number

of authors have reported plastic behaviour by some lyotropic liquid crystal phases

[175, 186, 188]. In this case, the solutions initially behave like a solid by being

resistant to flow, and requiring a minimum yield stress to start flowing. This

means that the concept of a zero shear viscosity doesn’t exist, with the fluid having

an ever increasing viscosity as the shear rate approaches zero. In these fluids the

yield stress can be estimated by extrapolating shear rate γ̇ → 0, in plots of shear
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Figure 4.12: Illustration of a flow curve and the models that can be used for fitting
to its shape.

stress vs. shear rate. This is more commonly observed in the lamellar phases as

opposed to the hexagonal phases [197]. The yield stress is difficult to obtain as

a true material constant, due to the fact that the value found can be dependent

on the measurement technique employed, of which there are many. There is no

universal method for determining yield stress, and there is usually a preference

for different methods across different industries [199]. While the yield stress can

be considered as an engineering reality, it does not have a clear scientific meaning

since it is a manifestation of strong viscoelasticity [200].

The spacing between the periodic components of the lamellar and hexagonal

phases are expected to play roles in their rheology. For example, it is concluded

by Ichihara et al. [201] that the viscosity of lamellar gels was in part controlled

by the layer-to-layer interactions between bilayers. Measurements revealed that

an increased NaCl concentration resulted in a decreased d-spacing caused by the

screening of electrostatic repulsion between lamellar bilayers. This decreased layer

separation increased the layer-to-layer interactions, leading to increased viscosity.

Given that a number of authors have found a dependence of the lamellar d-spacing

and hexagonal inter-rod values on surfactant concentration [24, 25, 50, 53, 55], one

might expect that the viscosity of the lyotropic phases is directly influenced by

concentration of surfactant molecules. The exact relationship between the con-
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centration and viscosity found experimentally is not clear. Most often it is found

that an increase in the surfactant concentration leads to an increase in the viscos-

ity [188], whilst it is found by others that the viscosity for a particular phase is at

its maximum in the middle of the concentration range [202]. Other authors have

found that the viscosity of the hexagonal and lamellar phases vary only slightly as

a function of the composition [184], relative to the viscosity changes that are in-

duced by a phase transition. Therefore it is possible that the relationship between

the concentration and viscosity for a given phase is surfactant specific.

The rheological behaviour of lyotropic liquid crystals has been shown to be

strongly dependent on shear history [184,196]. Versluis and van de Pas [196] vary

the number of ethylene oxide units in anionic surfactant chains forming lamellar

layers, and find that the samples with the largest number of EO (ethylene oxide)

units show the most noticeable shear/time history. With the first up-curve (the

viscosity vs. shear rate profile produced when starting from a low shear rate and

increasing) resulting in lower viscosity values than those produced from subsequent

down (starting from high shear rate and decreasing) and up-curves. This indicates

a change in the microstructure due to the shear history. The fitted values of K

and n also therefore change. The values of index n decreases for fits to curves

after the initial first shearing cycle, while values for K increase. Values for K

are also higher for shorter chains, while n is lower. Gallegos et al. [185] show

that for lamellar systems, there is an initial growth of viscosity, which is due to

viscoelasticity, followed by a decrease in viscosity to a steady-state value. These

results are explained by the partial alignment of the lamellar layers, and then

finally, total alignment when an equilibrium viscosity is reached.

Clearly, it is important to take into account the shear history of a fluid when

finding a viscosity vs. shear relationship, as well as making sure the structure has

been allowed sufficient time under a given shear stress to reach its equilibrium

structure. The most common protocol for analysing the rheology of a system

involves making shear rate or shear stress ramps (as in flow curves). However, a
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viscosity value taken from a flow curve is likely to be biased by previous shear rates

applied in the ramp. One alternative way to study the rheology of the systems

would be to perform measurements of steady state viscosities. However, for highly

viscoelastic samples, the measurement of steady state values at low shear rates can

be extremely time consuming and can be a challenge from an experimental point

of view [200].

4.3.3.2 Measurements for AES Rheology for Lyotropic Liquid Crystals

Due to the fact that the rheological behaviour of these phases is expected to be

dependant on the shear history, initial measurements are taken without pre-shear

treatment, which is similar to the protocol taken by other researchers [184, 201].

Shearing is performed using an Anton Paar Physica MCR301 Rheometer, as was

performed for the micellar solutions. Due to the higher viscosity of the lamellar

and hexagonal phases, a cone and plate geometry was used (diameter of the upper

plate 75mm, 1◦ angle, measuring gap 1 mm).

In order to investigate the time dependant behaviour of the solutions, constant

shear rate experiments were performed. The calculated viscosity can then be

plotted as a function of time. An illustration of the time dependant viscosity of a

63.1% AES solution, which is expected to be in the lamellar phase (based on POM

imaging), is shown in Fig. 4.13. This run begins at a shear rate of γ̇ = 0.001s−1,

which is maintained for a 20 minute period. After this period the shear rate is

increased to γ̇ = 0.01s−1, and following further 20 minute equilibration periods

to γ̇ = 0.1s−1 and then γ̇ = 1.00s−1. It is clear that it is the initial shearing

run that has the most time dependant viscosity. This increasing viscosity in the

initial shearing stage at low shear rate is expected to be due to the existence

of a yield stress as a manifestation of viscoelasticity, and is observed by other

researchers in similar systems [185]. For subsequent increases in the shear rate,

the calculated viscosity decreases as a function of time, and it is expected that

this is due to the phase becoming increasingly aligned due to the application of
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shear. With increasing shear rate, shear alignment is induced more quickly. The

alignment induced at higher shear rates has an effect on the viscosity when the

sample is returned back down to reduced shear rates. Upon returning to the lower

shear rate γ̇ = 0.10s−1 from γ̇ = 1.00s−1, the viscosity is approximately time

independent and is lower in value. This indicates that full shear alignment of the

lamellar phase has taken place.

When the initial shear rate chosen is larger, we can miss the behaviour that

provides evidence for a yield stress. For example, the time dependant viscosity

found from shearing a 70% AES solution, which is also expected to be lamellar,

is shown in Fig. 4.14. The sample is initially sheared at γ̇ = 0.10s−1, and while

the sample takes a relatively long time to induce alignment, there is no increase in

the viscosity as a function of time at any point. The shear rate is then increased

to γ̇ = 1.00s−1, and sheared until it reaches an approximately constant viscosity.

The shear rate is increased again to γ̇ = 5.00s−1. For each of these jumps to higher

shear rates the equilibration time to reach a constant viscosity is relatively short

compared to the initial run. Similar time dependant behaviour under steady shear

is found for phases that exist in the hexagonal phase, an example of which is shown

in Fig. 4.15.

Obviously the downside to studying the solutions using steady shear measure-

ments is that it is very time consuming. Long periods of time are needed to find

steady-state viscosities at low shear rates. Rheological behaviour can also be inves-

tigated by making steady-shear measurements and ramping the shear rate up and

down, producing flow curves. Repeated cycles should highlight any thixotropic

behaviours of the fluid, in particular the behaviour that is as a result of shear

alignment of the crystal phases. If alignment was induced as a result of the initial

up-curve run (due to long shearing time and high shear rates used), then any fur-

ther up-down cycles should produce the same calculated viscosities as the induced

alignment is maintained. The effect of this on a 34.6% AES concentration sample

which, based on the POM images, is expected to be in the hexagonal phase, is
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Figure 4.13: Steady state shear measurements of 63.1% AES solution. Shearing
begins at a shear rate of 0.001s−1, and is gradually increased at 20 minute intervals
to γ̇ = 0.01s−1, γ̇ = 0.1s−1 and γ̇ = 1s−1, before being returned to γ̇ = 0.1s−1.
Each data point corresponds to a measurement made over a period of 60s.

Figure 4.14: Steady state shear measurements of 70.0% AES solution. Shearing
begins at a shear rate of γ̇ = 0.1s−1, and is increased at 20 minute intervals to
γ̇ = 1.00s−1 and γ̇ = 5.00s−1. Each data point corresponds to a measurement
made over a period of 60s.
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Figure 4.15: Steady state shear measurements of 41.3% AES solution. Shearing
begins at a shear rate of γ̇ = 0.05s−1, and is increased at 20 minute intervals to
γ̇ = 0.01s−1 and γ̇ = 0.50s−1. Each data point corresponds to a measurement
made over a period of 60s.

shown in Fig. 4.16. It is clear from Fig. 4.16 that the results from the initial up

run are vastly different from subsequent shear cycles. The initial ramp up of the

shear rate from γ̇ = 0.001s−1 to γ̇ = 1s−1 induces alignment in the liquid crystal

that is maintained when the sample is returned to lower shear rates. As we have

chosen to perform our DPD simulations using liquid crystal phases that are aligned

in the shear direction, the rheological behaviour found in these is most likely to

be comparable to results produced once shear alignment has been induced, rather

than the initial up-curves, in which there is not yet full alignment.

Viscosity vs. shear rate flow curves are obtained from measurements on a

variety of concentrations in the range 20-70%. Based on the POM images, this

range is expected to cover the hexagonal and lamellar mesophases. The viscosity

vs. shear rate curves for a selection of concentrations is shown in Fig. 4.17.

The curves shown are those that are obtained following previous up-down ramp

cycles. Consecutive up-down cycles are performed until approximately consistent

flow curves are achieved. The 28.0, 34.6 and 41.3% concentrations are thought to

correspond to hexagonal phases, while concentrations 63.1 and 70.0% are lamellar.
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Figure 4.16: Steady-shear measurements of a 34.6% AES concentration sample.
Each data point is measured at a constant shear rate, for a duration of 60s. Mea-
surements are started at a shear rate of γ̇ = 0.001s−1 and gradually increased to a
maximum of γ̇ = 1s−1 (grey). They are then ramped back down (green), followed
by another cycle of increase (blue) and decreasing (red) shear rates. Linear fits
are obtained using Eq. 4.10. The gradient provides the value of (n− 1).

At no concentration trialled in the shear rate range used do we observe a plateau

to zero-shear viscosity. It is of note that two of the larger hexagonal phases plateau

at high shear rates within this range, while the lamellar cases continue to decrease

at high γ̇. It is likely that the lamellar phase would also plateau at shear rates

10s−1 < γ̇, as has been observed in other lamellar systems [196]. The viscosity vs.

shear behaviour is consistent with that found by other authors of other lamellar and

hexagonal systems [175, 184, 185, 188]. The behaviour of the 28.0% concentration

is somewhere in between the behaviour of the other samples, with the change in

gradient at higher shear rates indicating a potential plateau at shear rates higher

than those trialled.

In the shear rate range where the relationship of η vs. γ̇ can be fit by a power

law relationship given by Eq. 4.10, values for K and (n−1) can be obtained. Table

4.2 shows the fits obtained for a variety of concentrations. The results obtained

for a 58.6% sample are also included, which is not plotted in Fig. 4.17. The
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Figure 4.17: Steady-shear measurements of samples with AES concentrations 28.0,
34.6, 41.3, 63.1 and 70.0%. Fits shown are performed in the approximately linear
region that can be fitted using Eq. 4.10. The gradient provides a value for (n− 1)
in Eq. 4.10. Based on POM imaging, the solutions were assigned to the hexagonal
(28.0%, 34.6%, 41.3%) and lamellar (63.1%, 70.0%) phases.

value of (n − 1) is indicative of how the sample responds to the application of

shear. The gradient (n − 1) of these two phases are found to be largely similar,

while the decreased viscosity of the fluid in transition from hexagonal to lamellar

is highlighted by the change in the value of K. The relative consistency of the flow

index n with varying concentration has been observed in similar systems [188],

even when the value of K changes considerably. For other liquid crystal systems,

the value of (n− 1) can vary considerably, depending on the surfactant, although

usually takes a value in the range −1.3 < (n − 1) < −0.4 [175, 184, 185, 188, 196],

which is consistent with what is found for AES systems.

The 58.6% concentration is indicated by POM measurements to be on the edge

of the hexagonal region, where interpreting the textures can become more difficult.

This sample is incredibly viscous, and therefore it becomes very difficult to measure

the rheology, particularly at lower shear rates. The measurements obtained for this

sample are shown in Fig. 4.18, but are not particularly reliable, due to the large

fluctuations in the values obtained for the viscosity. While the other samples are
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Concentration (%) (n− 1) K
28.0 -0.87 2.79
34.6 -1.00 2.75
41.3 -0.98 2.97
58.6 -0.38 5.29
63.1 -1.14 1.01
70.0 -1.05 1.84

Table 4.2: Values obtained by applying power law given in Eq. 4.10 to viscosity vs.
shear rate curves for different concentrations of AES (wt. %) in solution. Fits are
performed to curves that are obtained from approximately aligned lyotropic crystal
phases. For concentration 58.6%, the data is fitted in the shear rate range γ̇ =
0.02−0.05s−1. All other concentrations are fitted in the range γ̇ = 0.001−0.05s−1.

able to be fit as a power-law fluid using Eq. 4.10, in the approximate shear rate

range of γ̇ = 0.001s−1 to γ̇ = 0.05s−1, the 58.6% solution can only be measured

consistently at shear rates above γ̇ ≈ 0.02s−1. At lower shear rates the solution is

expected to be above viscosity values that are out of range of the rheometer. As

there is the possibility that this viscosity is being measured in a range where the

viscosity has plateaued (or is plateauing), the values obtained for n and K may not

be comparable with other values obtained from other concentrations (explaining

why the values for 58.6% in Table 4.2 are very different to the values for other

concentrations). However, due to the fact that upon transition to a lamellar phase

we would expect a noticeable drop in the viscosity, the large magnitude of the

viscosity indicates that at this concentration the phase transition has not taken

place, and at 58.6% we still have a hexagonal phase.

The differing behaviour of the 28% concentration when compared with the

other two higher hexagonal concentrations, could be a reflection of the fact that

the sample is on the boundary between the micellar and hexagonal phases. It is

possible that this sample is undergoing a shear induced phase change, or is a mix-

ture of a micellar/hexagonal phase. POM imaging at this concentration indicates

the existence of the hexagonal phase, and the relatively high viscosity of the solu-

tion at this concentration when compared with the viscosities of micellar solutions

helps confirm this. However, qualitatively it can be observed from handling of the

solution, that it possesses a relatively low viscosity when compared with the other
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Figure 4.18: Steady-shear measurements of samples with AES concentration
58.6%. Fits shown are performed in the approximately linear region, fitted us-
ing Eq. 4.10. The gradient provides a value for (n − 1) in Eq. 4.10. Based on
POM imaging, this solution belongs to the hexagonal phase, but is practically
difficult to measure due to its high viscosity.

hexagonal phase solutions. This is partially indicated in Fig. 4.17 by its smaller

viscosity at γ̇ = 0.001s−1, and its shallower gradient in the line of best fit, which

when extrapolated to lower shear rates highlights its increasingly low viscosity

at small shear rates. It could be that the hexagonal phase at this concentration

is unstable and poorly formed, with increasing stability and structure under the

influence of shear. It is worth considering the point made in Section 4.2.2, that

to some degree some shear has to be applied to the sample, in order to produce

the POM images. This will be discussed in greater detail in Chapter 7, when the

solution at this concentration can be analysed in greater detail, with the aid of

simulation results.

4.4 Summary

The aim of this chapter was to investigate the phases formed by AES/water so-

lutions at room temperature, as well as establish the rheological behaviour of the
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different phases. POM imaging finds evidence of micellar, hexagonal, and lamel-

lar phases. The phase boundary between the micellar and hexagonal phase exists

somewhere between 20.1 and 28.0%, while the hexagonal/lamellar boundary is be-

tween 58.6 and 59.9%, based on this imaging. The boundary between the micellar

and hexagonal phase is confirmed by the difference in the rheology of the solution

at 20.1% and 28.0%, as the solution displays a transition from Newtonian with

low viscosity, to shear-thinning with higher viscosity. The transition to a lamel-

lar phase is also confirmed by a drop in the magnitude of the viscosity from the

hexagonal phase.

In general, the solutions appear to have an increase in viscosity with compo-

sition, within their respective phases. Analysis of the samples on the edge of the

hexagonal phase are the most difficult. In particular the 58.6% sample becomes

difficult to measure, because of its high viscosity, whilst the 28.0% sample dis-

plays slightly different shear thinning behaviour compared to samples from the

middle of the hexagonal region. The high viscosity of the 58.6% sample can cause

problems from a manufacturing point of view. Commercial products often contain

surfactants in a micellar concentration range. The high viscosity at intermediate

concentrations between the lamellar paste and the micellar concentrations, means

the mixing and dissolution process required to create these products is more chal-

lenging.

The following chapter will study the effect the phase change has on the shape

of the molecules in the solution, using Raman spectroscopy. This will also aid in

confirming the phase boundaries, as established in this chapter.
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Chapter 5

Changes in Molecular Shape

The effect of varying the concentration of AES molecules in solution is discussed

in Chapter 4. The influence the concentration has on the phase structure is dis-

cussed, and estimates for the location of the phase boundaries is obtained through

a combination of POM imaging, and rheological measurements. The process of a

phase change is likely to have an influence on the shape of the individual molecules.

This is one of the aspects that will be analysed in DPD simulations. Therefore,

this chapter will look at experimentally obtaining information about the shape

molecules take, depending on the phase of the solution, in order for a comparison.

Two of the most common methods to assess conformational changes experi-

mentally are infrared (IR) spectroscopy and Raman spectroscopy. The technique

of Raman spectroscopy is used in this work for analysing AES systems under equi-

librium conditions. Raman spectroscopy is selected as it displays advantages over

IR for systems containing water molecules, which will be discussed further later in

this chapter.

This chapter will begin with how the conformational changes of the molecules

will be characterised throughout this chapter, using the definition of trans and

gauche conformations of the molecule. Following this, the experimental technique

of Raman spectroscopy is described, how its application to AES systems can aid

in understanding these conformational changes, and discussing the limitations of

what can be gained by experimental methods.
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5.1 Conformational Changes

The surfactant molecules can undergo conformational changes due to phase and

concentration changes of the solution. This is because the shape of the molecule

in solution is influenced by the other molecules around it. Conformational changes

refer to different ways of bending/twisting the same molecule, without breaking

bonds. It is expected that structured phases will lead to less twisted or ‘curved’

molecules in solution. The surfactant AES molecules are primarily made up of

long hydrocarbon chains, and so this is a natural starting place for analysis of the

Raman spectrum. Analysis in computation requires the calculation of the dihedral

angles.

Consider a chain of carbon-carbon single bonds labelled ..., i − 1, i, i + 1, ....

The rotational angle of bond i is defined as the angle between two planes. The

first plane is defined by bonds i − 1 and i, and the second plane by bonds i and

i + 1. The angle between these planes illustrated in Figure 5.1 [9]. If we define

that bond i is described by vector ui, for a series of three consecutive bonds, this

can be calculated mathematically as

cos θ =
(u1 × u2) · (u2 × u3)

|u1 × u2| |u2 × u3|
(5.1)

sin θ =
u2 · ((u1 × u2)× (u2 × u3))

|u2| |u1 × u2| |u2 × u3|
. (5.2)

Special cases of this angle θ include: θ = 180◦, θ = +60◦ and θ = −60◦ which are

the trans, gauche+ and gauche− conformations. Figure 5.2 illustrates the difference

between a trans and gauche state.
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Figure 5.1: Illustration of the meaning of angle θ in Eqs. 5.1 and 5.2 [8].
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Figure 5.2: Illustration of the (a) trans state, and (b) the introduction of a gauche
dihedral angle. The thicker bond symbol represents a bond pointed out of the
paper towards the reader. Illustration adapted from Sperling (2015) [9].

5.2 Raman Spectroscopy

5.2.1 Overview

This section will discuss the background of Raman Spectroscopy, and its appli-

cation to mesophase forming systems such as AES solutions. Raman scattering

occurs when light interacts with molecular vibrations, and while most of our anal-

ysis will be on liquid systems, this technique can also be used to study gas and

solid phases.

5.2.1.1 Principles of the Method

There are three different types of spectroscopy, including: absorption spectroscopy,

in which a substance absorbs some electromagnetic radiation (e.g. IR and NMR);

emission spectroscopy, in which a substance emits rather than absorbs (e.g. lu-

minescence); and scatter spectroscopy, in which we measure the amount of light

that a substance scatters at different wavelengths. Raman spectroscopy is a form
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of scatter spectroscopy.

Most of the time when a photon interacts with a material and is scattered, it

does so elastically (the energy of the photons remains the same before and after

scattering). This is called Rayleigh scattering. However, a small percentage of

time the incident photons interact in a way that leads to energy being lost or

gained by the scattered photons; meaning that the scattered photons also have a

different frequency to the incident photons. Raman scattering can be classified into

two types depending on if the energy is lost or gained: Stokes Raman scattering

and anti-Stokes Raman scattering. In Stokes Raman scattering, an electron is

excited from the ground level and falls to a higher vibrational level than its initial

level. Therefore, Stokes scattered light has less energy than the incident light. In

anti-Stokes scattering, an electron is excited and then falls to a lower level than

its initial level. This means there is an energy transfer to the scattered photon,

so the scattered light has more energy than the incident light. The value of the

change in energy depends on the frequency of vibration of the molecule. If it is

high frequency the energy change is significant. If it is low frequency the energy

change is small. Rayleigh scattering, Stokes and anti-Stokes scatter is illustrated

in Fig. 5.3.

In order to analyse the results from these experiments, the intensity of this

scattered light vs. frequency shift is plotted for the sample. The Rayleigh scat-

tered light is removed using a filter. Using this spectrum, different frequencies

correspond to the energy levels of different functional group vibrations. Therefore

the location of the peaks in the spectrum at different frequency values, helps us

work out which functional groups are present in the solution. The value of the

intensity is largely proportional to the number of those vibrational groups in the

solution. Therefore a change in the abundance of a given vibrational mode in a

solution is reflected in the change in intensity.

We will now briefly discuss why Raman spectroscopy is the more ideal choice

for our system, as opposed to the equally common spectral method of IR. Ra-
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Figure 5.3: An illustration of the Rayleigh scattering, Stokes and anti-Stokes scat-
tering processes [10].

man spectroscopy depends on a change in polarisability of a molecule, whereas

IR spectroscopy depends on a change in the dipole moment. The magnitude of

the scattered Raman intensity for a given bond correlates with polarisability of the

molecule. Vibrations that involve polar bonds (e.g. C-O , N-O , O-H) are relatively

weak Raman scatterers, while neutral bonds (e.g. C-C , C-H , C=C) have large

changes in polarisability during a vibration, and therefore are strong scatterers.

This makes Raman spectroscopy ideal for studying surfactant molecules in solu-

tion. In contrast, in IR spectroscopy, the dipole moment is not similarly affected

such that while vibrations involving neutral bonds are strong Raman scatterers,

they are weak in IR. It is usually the case that bonds that have large Raman in-

tensities often have weak IR intensities, and vice versa. IR interacts very strongly

with water molecules, with these vibrational modes being so large that they usually

obscure other vibrational modes in the sample. This means that IR is unsuited

for studying AES solutions, due to its weak scattering of C-H bonds and strong

scattering of O-H bonds, which would dominate the spectra.

5.2.1.2 Analysing the Spectra

As already mentioned, the Raman shift in the spectra is different for different

vibrational modes in the sample. These different vibrations can be caused by

different bonds and different kinds of vibrations for each of those bonds. For

example, CH2 components in the hydrocarbon chain can produce multiple peaks

in the spectra, for different kinds of vibrations. These include stretching, bending
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Figure 5.4: Illustration of the different kinds of vibrations for CH2 that show up
in Raman Spectra. Figure taken from Zaharescu and Mocioiu [11].

(or scissoring), twisting, rocking, and wagging, amongst others. An illustration of

the different movements involved for CH2 is shown in Fig. 5.4, and the frequency

peaks corresponding to each of these modes will manifest at different locations.

Vibrations manifest as curves with the shape of a Gaussian or Lorentzian.

Theoretically, the concentration of a vibrational mode is represented by the area

of the curve, rather than the absolute peak height, due to interactions that can lead

to broadening. While it would be best to analyse these bands by considering their

integrated area, authors will very often consider peak heights (from either curve

fits or simply the raw data), because of complications in resolving overlapping

curves [203], even in recent research [204]. Also generally, it is most common to

calculate the ratio of two of the peaks within the spectra, to monitor changes. This

is because the absolute intensity of the spectra can vary between measurements,

whereas the internal ratio between two peaks should not change. However, while

there is usefulness in the ratios for characterising the environmental state of a

system, this ratio can not necessarily be considered a quantitative measure of

lateral order [205] unless we can be certain of the origin of the peaks involved.

5.2.1.3 Conformational Changes

As previously mentioned, Raman spectroscopy can be used to analyse any confor-

mational changes that may occur in the molecules in solution. The Raman tech-

nique is particularly suited to studying the conformation of the hydrocarbon chain
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portion of the surfactants and has been used extensively by researchers [206–209].

In n-alkanes with up to around 18 carbon atoms, the all-trans configuration is the

most stable [210] (meaning that the hydrocarbon chain is made up of entirely trans

dihedral angles). With increasing numbers of gauche dihedral angles in the hy-

drocarbon chain, the potential energy increases. While the gauche conformation

in a hydrocarbon chain is less energetically favoured than the trans conforma-

tion [9], they are present in solution because small amounts of energy are sufficient

to overcome the energy barrier between a trans and gauche conformation. It has

been shown using Raman spectroscopy, that the ratio between gauche and trans

segments can show an abrupt change under a phase change [211], as the trans

conformation becomes more energetically favourable at higher concentrations, as

the energy barriers become harder to overcome.

For AES molecules, the bands that appear in Raman spectra with the largest in-

tensity are from the O-H bonds of water at 3000–3800cm−1, and from C-H stretch-

ing modes between 2800–3000cm−1. There are also a number of medium-size peaks

of interest in the region from 900–1800cm−1. There are other peaks of smaller mag-

nitude in other regions, but these are subject to larger amounts of noise and become

more difficult to analyse. An illustration of the raw intensity data produced during

a Raman spectroscopy reading, without background removal, is shown in Fig. 5.5.

It is hoped that by comparing the ratios of peak intensities, in-particular trans to

gauche ratios, this can aid in identifying conformational changes in the different

mesophases. In turn, this should also aid in identifying the locations of the phase

boundaries.

5.2.2 Curve Fitting and Peak Locations

Along with peak height ratios to categorise phase change, discontinuities can also

be observed in the location of peak frequency and full width half maxima (FWHM)

of curves [212]. Obviously, this relates back to our discussion about using the peak

area rather than the absolute intensity for analysis, as the FWHM and peak height
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Figure 5.5: Examples of raw data taken by Raman spectroscopy for a variety of
concentrations. Background removal has not been applied.

are related to the area of a sub-band.

When bands are resolved into their individual sub-bands by curve fitting tech-

niques, they are normally fit to either Gaussian [213] or Lorentzian [203,211,214]

distributions. Raman spectroscopy is based on exciting molecules from a ground

state to a first excited state from the absorption of energy from a laser. The ex-

cited molecules rapidly return to the ground state after a few picoseconds, and

this relaxation is called the lifetime τa. The shape of the curve of the vibration

is related to this lifetime τa. At first, all of the excited molecules vibrate coher-

ently together, but after some time, motion and slight differences in vibrational

frequencies randomise this over time. The time over which the molecules vibrate

coherently has lifetime τc. It is the relationship between this τa and τc that dic-

tate what shape curve we end up with. In solids τc � τa, because the molecule’s

environment is not in motion i.e. the excited molecule relaxes before incoherence

becomes a factor. This results in a Gaussian profile for the vibration. However, in

a gas τc � τa, and the resulting line shape is Lorentzian. Liquids sit somewhere

between these two extremes, so the profiles can have features of both Gaussian
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and Lorentzian curve shape. We will therefore use the most simple curve fitting

procedure that combines both the Lorentzian and Gaussian shapes. The Gaussian-

Lorentzian (G-L) profile can be represented as f(x) = AG + (1 − A)L, where G

and L are Gaussian and Lorentzian profiles respectively, and A is the fraction of

Gaussian curve (0 6 A 6 1) [215].

Difficulties arrive with curve fitting when there are many overlapping modes

in the same region and at this point fitting curves becomes tricky or impossible.

The difficulty in fitting increases as the number of modes in the fit increases,

and there can be less confidence in the reproducibility of the fits. For this reason,

researchers will often choose to still compare peak intensities instead of doing curve

decomposition.

While peak positions could be obtained simply as the location (cm−1) of the

maximum intensity, the shift values as obtained from experiment are discretised

to the nearest integer. As the shift in the peaks is relatively small, this often

provides little information about the movements of the peak due to concentration

changes. Therefore, more precise values for the peak location are obtained by

fitting a Gaussian to the top portion of the peak (usually ≈ 90% of the maximum

intensity) and taking the location from this fitted curve.

5.2.3 Background Removal and Peak Scaling

The largest source of uncertainty in our results for the peak frequency positions

and height ratios is likely to be due to variability in the spectral background,

and difficulty in removing the background. There is no standardised method for

background removal, posing challenges in making comparisons with the results of

other researchers. Kint et al. [216] make the same observation, and choose the

method of defining linear baselines between certain ranges. For example, a linear

baseline is defined within the regions from: 3200 to 2500 for C-H stretching bands;

and 3850cm−1 to 3100cm−1 for OH stretching bands. Others use different methods,

e.g. Vogel [211] choose to use a Lorentzian profile to fit the background. As there
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is, in general, a lack of consensus among researchers on the best baseline removal

method, we compare different baseline removal methods for different regions of

the spectrum. For the modes producing larger peak intensities, the exact choice

of baseline is less relevant, becoming more relevant when the peak is smaller.

Another issue is that of peak height scaling. Even with a suitable background

removal method, the absolute height of the peaks is subject to change between

measurements, while the absolute ratios between the peaks should not change. It

is also common by other researchers to use an additive to the solution in order to

scale the intensities, or to find another peak within the spectrum that is assumed

not to change. Both of these methods have their flaws, and therefore it is usually

safer to compare peak ratios within the spectra, rather than attempting to scale

all peak heights to one reference peak.

5.2.4 Results and Analysis

5.2.4.1 Baseline Removal in Region 900–1800cm−1

There are a number of vibrational modes from different bonds within this region,

some of which overlap. The peaks produced by an AES solution is shown in

Fig. 5.6. These can broadly be separated into four distinct regions: 1000–1200

(dominated by C-C stretching), 1200–1400 (dominated by CH2 twisting), 1400–

1520 (dominated by CH2 scissoring), and 1520–1800 (O-H bending). Each of these

regions are potentially overlapping, making a baseline fit difficult. One approach

would be to choose to treat the entire range as overlapping peaks and fit a curved

or linear baseline to the whole region. This is what is defined as ‘Baseline 1’ in Fig.

5.6. Alternatively one could choose to fit a baseline to each sub-region individually,

using the edges of each region. This is what is illustrated by ‘Baseline 2’ in Fig.

5.6. We will analyse our results using both baseline choices, in order to verify

that the choice of baseline fitting does not impact the results of the analysis of the

intensity changes. In the following sections, we will analyse each of these distinct

regions individually.
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(a) Raw data fitted with different baselines.

(b) Raw data minus baselines. Plot scaled to the largest peak.

Figure 5.6: Baseline fitting in the region 900–1800cm−1. Example shown for solu-
tion with concentration c = 67 wt.% AES.
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Figure 5.7: Three modal curve decomposition (illustrated by the black curve) in
the region 1220–1350cm−1 (raw data shown in red). Example is given to intensity
data using the baseline removal method baseline 2, as illustrated in Fig. 5.6.
Similar fits are obtained using the linear baseline fit (baseline 1). Concentration
sample = 67%

5.2.4.2 Modes in Region 1200–1400cm−1

An example of what is found for AES molecules in the region 1200–1400cm−1 is

shown in Fig. 5.7, along with a three modal decomposition. At least three curves

are required to provide a reasonable fit to the data, however, we will discuss how

it is expected that there are more underlying modes in the spectra.

The region is dominated by a peak at 1295cm−1, which is related to CH2

twisting in the hydrocarbon chain [217–219]. Quantum mechanical simulations by

Tarazona et al. [220] on n-alkanes reveal that C-C stretching of primarily trans con-

formers produces peaks at around 1250cm−1, while gauche conformers introduce

peaks at higher frequencies at around 1260–1280cm−1. Conversely, studies looking

at molecules containing (OCH2CH2)n components report twisting CH2 modes at

around 1280cm−1 (trans-trans-trans and trans-gauche-trans conformations in the

OCCO chain) and 1245cm−1 (trans-gauche-trans and gauche-gauche-gauche) con-

formations [221,222]. The number of overlapping peaks in this region makes curve
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decomposition very difficult, with a greater number of modes than that shown in

Fig. 5.7 usually producing inconsistent results.

Other peaks in this region may include a vibration at around 1300cm−1, re-

lated to SO4 stretch [218]. While this would be expected to overlap with the

proposed CH2 twisting peak, the SO4 mode is expected to be weak in compar-

ison, so that the CH2 twisting mode dominates [223]. The CH2 twisting mode

at ≈ 1300cm−1 has been found to be moderately sensitive to chain conformation,

with Kint et al. [216] finding band narrowing. These changes are suggested to in-

dicate increased conformational order. This is supported by Tarazona et al. [220],

whose quantum mechanical calculations show that consecutive trans bonds pro-

duces a narrow band in the CH2 twisting peak, whereas conformations containing

a mixture of trans and gauche produce broad spectral responses. However, the

overall integrated intensity of the band is shown to be largely conformer indepen-

dent, which confirms what is suggested from experimental results by Strobl and

Hagedom [224], that the integration of the intensity of this band could be used

as a reference for studying intensity changes in other parts of the spectrum. We

will use this invariance to compare with other peak ratios in other regions in later

sections. For our results for AES solutions, the width of the peak at 1300cm−1 is

found to be largely concentration independent, and no band narrowing is found.

Therefore we can approximately say that the maximum intensity of the peak at

I(1300)∝ area of the curve. Therefore, we will assume that the intensity is largely

conformation independent, instead of needing to rely on an integration from curve

decomposition.

5.2.4.3 Modes in Regions 3000–3425 cm−1

It is also possible to analyse the changes in water molecules when surfactants

are present [225, 226], as there is an O-H stretching band appearing at 3000–

3800cm−1. This band is inhomogeneously broad and is usually fitted as a number

of overlapping component subbands related to different O-H vibrational modes.
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For example, one possible fit places sub-bands at: 3041, 3232, 3430, 3557, and

3635cm−1 [227]. Due to limitations in our equipment, we only have access to

measuring a proportion of this band, with equipment measuring up to 3425cm−1.

Without access to the full range of the band, resolving into sub-bands for analysis

is difficult. Therefore we will not make use of this region for analysing the effect of

varying concentration on the solutions. However, there is close proximity between

the bands produced from CH2 and CH3 stretching in the 2800–3000cm−1 range

and this water peak. There can be considerable overlap between these two regions,

so we can’t completely ignore the bands produced from the water molecules, par-

ticularly at low concentrations. Generally, however, we can approximate the fit

of the water vibrations in this region using only a two-curve fit. There are other

vibrational modes as a result of O-H bonds, for example, OH bending modes ap-

pearing at 1581 and 1641cm−1, but these modes are very weak and only appear

with very low intensity [228]. Therefore they are of limited use for our analysis

due to the noise that they will contain.

5.2.4.4 Modes in Region 2800–3000cm−1

While it was first the bands appearing from C-C stretching that were shown to

be correlated with the trans/gauche ratios, it has also been shown that the C-H

stretching vibrations can give some information on the order or disordered state

of hydrocarbon chains [229]. Peak ratios in this region have been found to be

sensitive to the physical state of a system, and thus can provide estimates on the

degree of chain conformation.

In the 2800–3000cm−1 region, this broad band has historically been thought

to be made up of four individual sub-band contributions, attributed to CH3 and

CH2 symmetric and asymmetric stretching. Assignments of band peaks in similar

molecules (sodium lauryl sulphate [230], sodium dodecyl sulphate [231, 232] and

other hydrocarbon chains [233]) often place peaks at approximately: 2850cm−1

(CH2 symmetric), 2880cm−1 (CH2 asymmetric), 2873cm−1 (CH3 symmetric) ,
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2955cm−1 (CH3 asymmetric) [232]. However, sometimes in other molecules, the

peaks manifest in slightly different locations. For example, Kint et al. [216] inves-

tigate dimyristoylphosphatidylcholine (DMPC) using Raman at different temper-

atures and concentrations. DMPC undergoes a phase change from micelles, to a

gel phase, to a lamellar phase, with increasing concentration. They find bands at

2853, 2883, 2935 and 2960cm−1. The bands are shown to be sensitive to the alkyl

chain order/disorder and show abrupt changes at lipid phase transitions.

However, generally, it has been difficult to exactly assign these peaks to their

specific origins, and the assignments as discussed above have been challenged in

more recent years. In particular, it has been difficult to experimentally attribute

which parts are a result of gauche vibrations vs. those from trans vibrations. It

would be useful to be able to effectively categorise the origin of these peaks, for

a more quantitative assessment of the degree of change in the conformation of

the molecules. Some researchers have started to suppose that this region can be

decomposed into more than four modes. This has been assisted by developments

in computational and theoretical research [234,235]. For example in alkane chains,

Shemouratov et al. [234] assign 2848 and 2881cm−1 to the symmetric and anti-

symmetric stretching vibrations of the CH2 group in the trans-conformers. The

gauche-conformers are assigned to frequencies at 2876 and 2925cm−1. Peaks at

2938 and 2962cm−1 are assigned to the symmetric and antisymmetric vibrations

of CH3. There are also several overtone spectral features, with the most peaked

at 2900 and 2940cm−1 and corresponding to the overtones of the deformation

vibrations of the CH2 groups.

For AES in this region, we find a large region of overlapping peaks correspond-

ing to the CH2 and CH3 modes, as expected. However, since these overlap with

the later O-H vibrations at higher wavelengths, this makes complex baseline re-

moval difficult. Therefore in this region, we adopt the linear baseline technique

similar to Kint et al. [216], in which we fit a straight line to the distribution in

range 2200–2300cm−1, as in this range there are not any expected or identified
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Figure 5.8: Linear baseline fitting for the overlapping CH modes in the region
2800–3000cm−1 and OH modes in the 3000–3400cm−1 region. Concentration c =
67wt.%.

peaks in the spectrum. This can then be extrapolated as the baseline fit over the

2300–3400cm−1 range. An illustration of the baseline removal in this region is

shown in Fig. 5.8.

Intensity Ratios

The location of the peaks we find in this region are almost identical to that of

Kint et al. [216]. These authors find that the ratio of their I(2883)/I(2935) in-

creases with concentration, with different behaviour in different phase regions.

The most drastic increase is seen in the micellar region, until the solution un-

dergoes phase change and enters a gel phase, during which the gradient of the

relationship between I(2883)/I(2935) and concentration greatly decreases. There

is another abrupt jump upon phase transition from gel to lamellar. Based on

the suggestion of the location of the underlying gauche and trans peaks by She-

mouratov et al. [234], this behaviour would be expected for an increase in trans

conformations with increasing concentration. This is because the I(2935) peak

would be mainly expected to be dominated by the antisymmetric CH2 gauche

vibrations, and I(2883) mainly from antisymmetric CH2 trans vibrations. While
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Kint et al. [216] do not also report the ratio of I(2850)/I(2935), similar behaviour

should be expected for this ratio based on similar reasoning. The results ob-

tained for AES solutions for these ratios is shown in Fig. 5.9. Also plotted is

the ratio I(2850)/I(2883), which remains approximately constant, as expected as

these two peaks in the spectra are dominated by trans vibrational modes. Note

that in all plots the error bars are calculated as the standard error σx = σ/
√
S

where σ is the standard deviation of multiple readings S. The changes in the

ratios I(2883)/I(2935) and I(2850)/I(2935) are consistent with an increase in trans

modes with concentration, as well as being consistent with what is found by Kint

et al. [216]. The jump in the value of the ratio between phases is less pronounced

than that found by Kint et al. [216], but the behaviour within each phase region

is broadly the same. The trans/gauche ratio that these intensity ratios are pre-

sumed to represent, show the greatest change within the micellar and lamellar

mesophases, while only there is only a moderate effect of increasing concentration

within the hexagonal range. There is no identifiable change in the intensity ra-

tios that could indicate an additional, unique phase in between the hexagonal and

lamellar phases (e.g. a cubic phase). Rather the ratios would indicate a simple

transition from hexagonal to lamellar phase.

Based on the suggested positions of the gauche and trans component modes,

there are a variety of other changes in the peaks that would be seen if there were an

increase in trans conformations. The peak at 2960cm−1 is assigned to CH3 modes,

which are expected to be less sensitive to chain conformation than CH2 modes

in the middle of the chain. Therefore the peak at 2960cm−1 could be considered

approximately invariant relative to the CH2 modes. This means that the height of

the peaks at 2850cm−1 and 2880cm−1 would be expected to grow in relation to this

shoulder peak at 2960cm−1. This has been found by other researchers. For example

Hadri et al. [236], who plot the ratios I(2883)/I(2940) and I(2883)/I(2962) for a

nonionic surfactant, finding this to be the case. A plot of the ratio I(2850)/I(2960)

is shown in Fig. 5.10, as well as a comparison with the ratio I(2850)/I(2930). It
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Figure 5.9: Ratio of intensities in the region 2800–3000cm−1 with increasing con-
centration. The error bars are calculated as the standard error σx = σ/

√
S where

σ is the standard deviation of multiple readings S.

can be seen that I(2850)/I(2960) increases with similar behaviour as compared to

I(2850)/I(2880) and I(2850)/I(2930), however, the magnitude of the ratio changes

much more greatly. This may be due to a lack of obscuring from gauche mode

peaks in intensity at I(2960), thus enabling I(2850)/I(2960) to better capture the

increase in the I(2850) mode. However, we still reach a similar conclusion, that

there is little change in the number of trans modes in the hexagonal region, when

compared with the lamellar and micellar cases. Once again, there is no suggestion

of an additional region in between the hexagonal and lamellar phases.

A comparison can be made with the peak located at 1300cm−1, which is as-

sumed to be approximately conformation invariant. Plots of I(2850)/I(1300) and

I(2930)/I(1300) are shown in Fig. 5.11. Recall that the peak at I(2850) is expected

to be almost entirely dominated by trans and that I(2930) is made up of trans and

gauche modes. While it may seem counter-intuitive that the ratios of both of

these peaks are increasing, this can be explained by the fact that the trans peak

has a larger proportionality constant than that of the gauche peak. To explain

this, consider that the peak at 2850cm−1 can be represented by I(2850)= AcNT ,
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Figure 5.10: Comparison of the change in ratios I(2850)/I(2930) and
I(2850)/I(2960) with increasing concentration. The error bars are calculated as
the standard error σx = σ/

√
S where σ is the standard deviation of multiple

readings S.

where A is a constant, 0 < c < 1 is the concentration of surfactant molecules and

NT is the fraction of surfactant molecules in the trans conformation. Similarly,

I(2930)= c(BNT + CNG) where B and C are constants and NG is the number of

gauche configurations. If NT is increasing and NG decreasing, then the ratio of

I(2850)/I(2930) shown in Fig. 5.10 , will always increase no matter the value of

constants A,B,C. If we assume that I(1300)= Dc, where D is a constant, and

therefore I(1300) is independent of conformation. For the ratio I(2850)/I(1300)

= (A/D)NT , that is, it is proportional to the number of trans configurations. For

the ratio I(2930)/I(1300)= (BNT + CNG)/D, if NT is increasing with increas-

ing concentration (so that NG is decreasing), then I(2930)/I(1300) will increase if

C < B and decrease if B < C. Based on this reasoning, the ratio I(2850)/I(1300)

should provide the best estimate for the change in the number of trans configura-

tions in the solution.

In Fig. 5.11 there are three distinct regions that can be identified, which

are interpreted as corresponding to the micellar, hexagonal, and lamellar phases.
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(a) (b)

Figure 5.11: Plot of intensity ratios (a) I(2930)/I(1300) and (b) I(2850)/I(1300).
Ratios calculated using linear fit baselines for both regions. The error bars are
calculated as the standard error σx = σ/

√
S where σ is the standard deviation of

multiple readings S.

Each region is fitted differently, and it is observed that the hexagonal and lamellar

regions display approximately linear relationships.

Peak Positions

Besides intensity ratio changes, there could also be a variety of changes seen in

the location of the peak maximum, due to changes in the size of contributing

modes from overlapping peaks. For example, it would be reasonable for there

to be a downward shift in the peak position at around 2850cm−1, as this peak

grows with increasing trans modes, and the influence from the overlapping gauche

mode at 2876cm−1 becomes less significant. This behaviour has been seen by

other researchers such as, Plastin et al. [204], who study the micelle formation in

solutions of sodium octanoate. They find a peak with position around 2860cm−1,

where the peak position decreases with increasing concentration. They attribute

this to the change in conformation of the hydrocarbon tails during micelle forma-

tion, suggesting that the trans formation is more common in micelles than in free

monomers, as the molecules in micelles are ‘straightened’. They suggest that this

behaviour comes about because the trans conformations contributing to the peak,

have a frequency lower than in gauche conformations which is consistent with the

assignment of trans and gauche modes by Shemouratov et al. [234]. Therefore, a
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(a) (b)

Figure 5.12: Position of peaks in the region (a) 2850cm−1 and (b) 2880cm−1. The
error bars are calculated as the standard error σx = σ/

√
S where σ is the standard

deviation of multiple readings S.

decrease in the frequency at around 2860cm−1 indicates an increase of the fraction

of surfactants in the trans conformation, and, consequently, micelle formation.

A plot of this peak for AES solutions is shown in Fig. 5.12a. This is similar to

the behaviour seen by Plastin et al. [204] for this peak during micelle formation.

The change in position of the primarily trans 2880cm−1 peak would be difficult to

suggest, as it is expected to overlap with gauche modes on either side. However,

the location of our peak for AES within this region is located at a slightly higher

location than the 2880cm−1 expected, with a position of around 2890cm−1 at low

concentrations in the micellar phase. This slightly higher location may be mani-

festing due to overlap with neighbouring peaks at higher locations. Therefore it

might be reasonable to expect to see movement from 2890cm−1 towards 2880cm−1,

as the trans peak begins to dominate over adjacent modes. The behaviour of this

peak is shown in Fig. 5.12a. While both the position of the 2850 and 2880cm−1

peaks increase or decrease as expected, a more obvious behavioural difference be-

tween mesophases is found from the position of the 2850cm−1 peak, perhaps due to

a greater level of obscuring from multiple underlying modes of the 2880cm−1 peak.

The position of the 2880cm−1 peak once again indicates that there is an increase in

trans modes with increasing concentration within the micellar and lamellar phases,

with minimal change within the hexagonal phase.
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(a) (b)

Figure 5.13: Comparison of curve decomposition in the region 2800–3000cm−1, for
a number of (a) four or (b) six modes. Intensity is scaled by the intensity of the
peak located at approximately 2850cm−1. Raw data is shown in red, fitted curve
is shown in black. Concentration sample = 67%. Other peaks show the curves
used in the fits.

Curve Decomposition

While it is most common to model this range with a decomposition of four curves,

it has been shown how it is likely that this region is actually made up of a greater

number of components. However, fitting an increasing number of modes becomes

tricky with increasing fitting parameters, and we run the risk of over fitting. A

comparison of fitting peaks using four vs. six curves is shown in Fig. 5.13. The

peaks for the six mode fit are located around the same approximate positions as

those suggested by Shemouratov et al. [234]. We also allow for the fitting of two

additional curves with maximums centred at around 3250cm−1 and 3460cm−1, that

stem from the overlapping contribution from the O-H bonds in water molecules.

The influence of the water curves on the CH vibrational modes is shown in Fig.

5.14. At low surfactant concentration levels, the water curve begins to overlap

with the CH vibrational modes and taking the water modes into account in curve

fitting becomes important. It can be seen that we obtain a much better fit with

the six curves, in particular, there is a slight shoulder in the peak of the spectrum

at 2850cm−1, which is much better fit with the addition of another curve at around

2860cm−1. The asymmetry of this peak has been seen in the Raman spectra of

lyotropic liquid crystals in other works [237], however, its exact origin is uncertain.
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(a) c = 13.3wt. % (b) c = 68.5 wt. %

Figure 5.14: Curve decomposition including the influence of the water vibrational
peaks in region 2800–3400cm−1. Examples are shown for two different concentra-
tions c. Intensity is scaled to the largest peak in the domain for plotting. In the
region 2800–3000cm−1 the four curve fitting is shown.

While there is a greater match to the raw data from the fit consisting of six

modes as opposed to four modes, the six mode fit displays greater variability

and it is more difficult to obtain consistent fits between spectra corresponding to

the same concentration. Therefore we will instead study the effect of increasing

concentration in the curve decomposition from four peaks in the 2800–3400cm−1

region. Results of the ratio of peak at 2850 and 2930cm−1are shown in 5.15. Note

that concentrations below 10 wt.% are not shown, due to increased difficulty fitting

at lower concentrations. Although the fitted curves are likely to be representing

multiple vibration nodes, it is thought that the fitted curves fitted at around 2850

and 2890cm−1 are dominated by trans configurations, while the curve at 2930cm−1

is influenced by gauche modes. Broadly similar behaviour is found from these fitted

curves, to what is found by peak intensity ratios in Fig. 5.9. Although, the size of

the error bars illustrates the greater variability in using results from curve fits as

opposed to the intensity data shown in Fig. 5.9. Smaller changes are seen in the

ratio of the areas rather than the ratio of the maximum intensity, reflected in the

smaller gradients, which is similar to what is shown by other researchers [203].
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(a) (b)

Figure 5.15: Ratio of fitted curves shown in Fig. 5.14 located at 2850cm−1 and
2930cm−1. Shown is the ratio of the (a) maximum peak intensity and ratio of the
(b) areas under the curves.

5.2.4.5 Modes in Region 1000–1150cm−1

In hydrocarbon chains, it is usually found that three Raman bands appear in the

region of 1000–1150cm−1. Two bands appear at around 1060cm−1 and 1130cm−1,

which can be assigned to C-C stretching of trans segments. Another band ap-

pears at around 1080cm−1 which is assigned to C-C stretching modes of gauche

segments, and this region has been widely used for monitoring conformational

changes [203, 206, 211, 229, 238]. The ratio of these peaks can be used to evaluate

the average number of trans bonds appearing in solution. These peaks can also

undergo frequency shifts as a result of the phase change [206]. In SDS molecules,

some authors attribute part of the peak at around 1080cm−1 to being the result of

symmetrical stretching of SO3, Picqart [206] considers this and argues that there

is likely significant obscuring of the C-C stretching modes from SO3 stretching in

this region.

A further added complication in this region is that it is highly likely there are a

number of hidden contributions from C-O bonds. For example polyethylene oxide

H(OCH2CH2)nOH shows Raman peaks in aqueous solution at around 1040, 1060,

1120 and 1140cm−1, all corresponding to C-O-C modes [221]. Similarly placed

bands are reported in the spectra of CH3OCH2CH2OCH3 [222] and poly(ethylene

glycol) [239]. Despite this being the most common spectral range for analysing the
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Figure 5.16: Five modal curve decomposition (black curve) in the region 1000–
1150cm−1 (raw data shown in red). Example is given to fit using the intensity
data using the linear fit baseline removal method (baseline 1). Similar fits are
obtained using the closer baseline fit (baseline 2). Note that the baselines are
shown in Fig. 5.6. Concentration c = 67%.

trans/gauche ratio in hydrocarbon chains, this is difficult for AES like molecules,

due to the number of overlapping peaks expected in the region.

An example of what is found in the vibrational spectra for AES solutions is

shown in Fig. 5.16, along with a five curve modal decomposition. However, it is

expected that there are actually more than five underlying modes contributing to

the spectrum, but the modes are too small to accurately fit to the spectra.

Peaks are clearly identifiable at approximately 1025, 1066, and 1128 cm−1.

There also appears to be at least one peak around 1085cm−1, explaining the appar-

ent asymmetry of the curve centred at 1060cm−1. The peaks 1066 and 1128cm−1

can primarily be considered originating from C-C trans vibrational modes, with

underlying C-O modes. The 1085cm−1 bulge is expected to partially originate from

overlapping modes related to C-C gauche and SO3 vibrations. The peak centred

at around 1025cm−1 doesn’t seem to appear in the Raman Spectra of SDS of other

researchers [206], leading us to conclude that the peak is related to the ethoxyl
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groups (OCH2CH2) in the AES molecules, however specific assignment of its exact

mode is difficult. Underlying this spectra are expected modes from different C-O

vibrations, making curve decomposition difficult.

If the peaks in the region were entirely from C-C stretching modes, then we

might expect that we could get an idea of the trans-gauche transition from the

position of the 1066cm−1 peak. There would be an expected peak shift from higher

to lower with increasing number of trans modes. A plot of this peak position is

shown in Fig. 5.17 where it is shown that the opposite behaviour is seen with

increasing concentration. This suggests that contribution to the spectra from C-O

related bonds as well as vibrations in the head group are significant, and can’t be

ignored in the curve decomposition.

Figure 5.17: Position of intensity peak at around 1060cm−1 against increasing
concentration. The error bars are calculated as the standard error σx = σ/

√
S

where σ is the standard deviation of multiple readings S.

Analysis of the curve decomposition shown in Fig. 5.16 supports the idea

that there is another mode contributing to the peak at 1060cm−1. The positions

of the fitted curves at approximately 1060cm−1 and 1080cm−1 are shown in Fig.

5.18. There is a slight movement of the fitted curve at 1060cm−1 towards higher

frequencies, while the peak at approximately 1080cm−1 dramatically shifts to lower

frequencies at higher concentrations. Particularly the 1080cm−1 curve shifts with

the greatest intensity once we enter what we believe to be the lamellar phase.

Indicating that this movement is trying to compensate for the existence of a peak
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(a) (b)

Figure 5.18: Position of fitted curves shown in Fig. 5.16 located at (a) 1060cm−1

and (b) 1080cm−1 against increasing concentration of AES. The error bars are
calculated as the standard error σx = σ/

√
S where σ is the standard deviation of

multiple readings S.

in the range 1060–1080cm−1. However attempts at trying to fit a peak in this range

struggle to be consistent between different spectra. The ratio of the fitted curve

at 1060cm−1 to 1080cm−1 is shown in Fig. 5.19. This ratio would be expected

to correspond to the ratio of trans/gauche conformations. In the micellar and

hexagonal phase ranges, this ratio behaves in a way that is consistent with that

found from trans/gauche ratios in the 2800–3000m−1 region. However, once the

solution enters the presumed lamellar phase, the plot deviates from this behaviour.

It is presumed that the missing peak in the frequency range 1060–1080cm−1 is the

head group vibrational mode corresponding to SO3 vibrations, that undergoes

dramatic change under lamellar phase transition.

5.2.4.6 Modes in Other Regions

Further peaks that come from vibrations related to the hydrocarbon chain include:

1440cm−1 (CH2 scissoring), 890cm−1 (CH3 rocking), 830cm−1 (CC stretching),

720cm−1 (CH2 rocking) [217–219]. In the region 700-1000cm−1 there are is a huge

number of contributing modes that are mostly medium or weak in strength [221,

222]. Therefore we will not attempt to analyse this region, due to the difficulties in

separating out any peaks. There are also a number of S-O weak/medium bending

modes in the 400–650cm−1 region [223], which we will not attempt to discuss.
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(a) (b)

Figure 5.19: Ratio of fitted curves shown in Fig. 5.16 located at 1060cm−1 and
1080cm−1. Shown is the ratio of the (a) maximum peak intensity and (b) areas
under the curves. The error bars are calculated as the standard error σx = σ/

√
S

where σ is the standard deviation of multiple readings S. The error bars are
calculated as the standard error σx = σ/

√
S where σ is the standard deviation of

multiple readings S.

We find that the CH2 scissoring band presents two components, a main band

at 1440cm−1 and a shoulder at 1460cm−1. The shoulder at around 1460cm−1 is

usually attributed to the CH3 mode [236]. These modes have been shown to be sen-

sitive to phase structural changes, having been shown to change with temperature

and concentration e.g. a decrease in frequency separation of the two components

with increasing concentration [216]. However, how these changes relate directly to

the conformational shape is not well known. Furthermore, there is most likely at

least one peak of unknown origin in this band, with curve decomposition requiring

at least one additional curve to obtain a reasonable fit. This is shown in Fig. 5.20

Therefore, we will not analyse this region for evidence of conformational changes.

5.2.4.7 Summary

In this section, we have analysed how the number of trans and gauche modes

in the hydrophobic chain of AES molecules varies with increasing concentration,

using Raman spectroscopy. By analysing peaks originating from a variety of vi-

brational modes, we have established a clear link between the increase in the num-

ber of molecules in the trans conformation with increasing concentration. There
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Figure 5.20: Three modal curve decomposition (illustrated by the black curve) in
the region 1400–1520cm−1 (raw data shown in red). Example is given to intensity
data using the baseline removal method baseline 2, as illustrated in Fig. 5.6.
Similar fits are obtained using the linear baseline fit (baseline 1). Concentration
c = 67%.

are differences in the effect of increasing concentration for each of the different

mesophases. In the micellar region, increasing concentration appears to have a

relatively large effect on the number of trans bonds compared to the lyotropic

phases. The lamellar phase also shows an increase in trans conformations, while

the number in the hexagonal phase shows little change with increasing concentra-

tion.

It is shown in this section how it can be difficult to be certain of the origin and

meaning of the peaks found in Raman spectra. Often we rely on the research of

others looking at similar molecules, or from computational research, in order to

assign peaks to different vibrational modes. It can also be difficult to be sure that

a curve seen in the spectra can be completely assigned to a particular vibrational

node, because there may be underlying vibrations with smaller intensity obscuring

the spectra.

It was hoped that these Raman spectroscopy experiments could help provide
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verification for the location of the phase boundaries. While peak ratios can help

distinguish between the micellar, hexagonal and lamellar phases, there is noth-

ing in our analysis to suggest the existence of a unique cubic phase between the

hexagonal and lamellar mesophases, in agreement with the POM and rheological

measurements in the previous chapter. From the data presented in this chapter,

a boundary between the hexagonal and lamellar phases would be placed at ap-

proximately ≈ 60 wt. %, which is in good agreement with that determined in the

previous chapter. In many cases there is an abrupt change in the Raman results at

a concentration located in the range between the 28% and 35%. If this were due

to a phase change between the micellar and hexagonal phases, this would place

the phase boundary slightly higher than that identified in the previous chapter,

in which POM imaging identified the 28% sample as belonging to the hexagonal

phase. This raised the query as the exact nature of the solution at this concentra-

tion. This will be investigated in more detail in subsequent chapters.
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Chapter 6

Micellar Phase

AES and SDS micellar solutions experimentally exhibit Newtonian behaviour, as

presented in Section 4.3.2. Increasing the concentration of the solution increases

the viscosity, with a nonlinear relationship. However, it is not necessarily clear

whether this viscosity increase is due to changes in the micellar shape or size, or

due to increased interaction between the micelles, potentially due to electrostatic

effects. Therefore, it would be beneficial to experimentally investigate the effect

of increasing surfactant concentration on the size and shape of micelles. This can

be performed via a variety of experimental techniques. One of the most simple

methods is dynamic light scattering (DLS). DLS measurements are non-invasive,

relatively quick, and involve very little sample preparation. This chapter will

begin by detailing the DLS method, followed by its application to studying micelle

formation in AES and SDS systems. There are limitations to what can be gained

from DLS measurements, which will be discussed later in the chapter. Section 6.2

then moves onto discussing other experimental methods, which have been used by

other researchers, to study SDS micelle size and shape, and how this compares

with the data obtained via DLS measurements.

The next section of this chapter, Section 6.3, presents a DPD study of the for-

mation of micellar solutions. The aim of this study is firstly to confirm that DPD

reproduces a micellar solution that is in reasonable agreement with what is found

experimentally. Secondly, it also aims to investigate the effect on the micelles of
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varying ethoxylation n in the surfactant molecule, as described by the chemical for-

mula CH3(CH2)x(OCH2CH2)nOSO3Na. Simulations are also performed in which a

distribution of n is used, which represents the distribution of n in AES as described

by Table 2.1. This DPD section is split into two main parts, the first being a study

of the solutions as they form under equilibrium conditions (Section 6.3.1), which

includes the aims discussed thus far. Following this, Section 6.4 moves onto using

DPD in order to obtain viscosity measurements from the simulations, as well as

discussing the effect of applying shear to the simulation boxes, and what impact

this has on the shape of the micelles. The obtained viscosity measurements for the

SDS and AES solutions can be compared with those presented in Chapter 4.

6.1 Dynamic Light Scattering (DLS)

The interaction of light with substances can be used to obtain information about

structure. A technique that works well for solutions of relatively low concentration

is dynamic light scattering (DLS). DLS can be used for measuring the size and

size distribution of particles in the submicron region. These experiments monitor

fluctuations in scattered light as a function of time, in order to find this infor-

mation. This section will briefly summarise the DLS method. Specifically, the

measurements are performed in this work using the Malvern Zetasizer Nano ZS

2, and so this section contains a summary of technical information from Malvern

Instruments [240,241].

This experimental method is based on the effect of incident electromagnetic ra-

diation on a molecule. When electromagnetic radiation is incident on a molecule,

it will induce an oscillating dipole. This oscillating dipole will re-emit the elec-

tromagnetic radiation at the same wavelength as the incident radiation (elastic

scattering), however the wave will be scattered in a different direction (so long as

the particles are small compared to the incident radiations wavelength). As the

particles are undergoing random, Brownian motion, this causes laser light to be

scattered at different intensities. It is from the analysis of the intensity fluctuations
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that the velocity of the Brownian motion of the particles can be found. Larger

particles will be slower, and smaller faster, because they are given greater kicks

from the solvent molecules. The initial information calculated is a value for the

diffusion coefficient D of a scattered particle.

Intensity of the scattered light fluctuates as a function of time, due to the

constant motion of the particles in solution. The intensity recorded during the

experiment is usually analysed in terms of the intensity auto-correlation function

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

(6.1)

where I is the intensity and τ is the delay time. This autocorrelation function de-

cays starting from zero delay time (τ = 0). If the solution consists of monodisperse

particles, Eq. 6.1 is an exponential decay of the form

G(τ) = A[1 +B exp(−2Γτ)] (6.2)

where A is the baseline, B is the intercept,

Γ = Dq2 (6.3)

where D is the translational diffusion coefficient and

q =
4πn

λW
sin

θ

2
(6.4)

where n is the refractive index of the dispersant (water), λW is the wavelength of

the laser and θ is the scattering angle. However, if the solution is polydisperse,

the decay of the auto-correlation function can have a variety of contributing ex-

ponential decays from particles of different sizes. Faster dynamics due to smaller

particles lead to faster decorrelation of the scattered intensity. In this case the

decay can be represented as a sum of exponential decays.

An estimate for the mean hydrodynamic diameter d for spherical particles in di-
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lute suspensions, can be found from the calculated transitional diffusion coefficient

D using the Stokes-Einstein relationship

D =
kBT

3πηd
(6.5)

where kB is Boltzmann’s constant, T is temperature, and η is the viscosity of the

solvent. As a result of this method, the value that is found for d will depend

on not only the size of the particle core, but will also measure the layer of ions

surrounding the micelle. The measurement will also be influenced by the surface

structure of the micelles. Uneven micelle surface, with protruding monomers in

different directions, will affect the diffusion coefficient of a micelle and slow it

down, resulting in a larger estimate for the hydrodynamic radius.

The data output from a DLS experiment using Malvern Zetasizer Nano ZS 2, is

the intensity distribution of particle sizes. This intensity distribution is weighted

by the scattering intensity of each particle fraction. This scattering intensity is

proportional to the molecular mass m of a particle squared, while the mass is

proportional to the volume, resulting in I ∝ m2 ∝ d6. Therefore, the presence of

large particles in the solution can dominate the intensity distribution, which can

produce initially misleading results. Therefore, it is often desirable to convert the

intensity distribution data into volume or number distributions instead, using Mie

theory [242, 243]. However, there are a number of assumptions that are made in

order to convert from an intensity distribution to a volume or mass distribution.

These include: all particles are spherical; the particles are homogenous and similar

density; the optical properties of the particles are known (the refractive index); and

that there is no error in the intensity distribution. An example of the micelle sizes

found from using different distributions by Martina et al. [18] is shown in Table

6.1. Notice that two peaks are identified in the intensity distribution, while there is

only one in the volume distribution and the number distribution. There are often

additional peaks corresponding to large particle sizes in the intensity distribution,

that become insignificantly small in the volume and number distributions. Also
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Distribution Size
Intensity Peaks 4.210± 1.104

119.1± 43.00
Volume Peak 3.46± 0.7105
Number Peak 3.012± 0.4651

Table 6.1: Data obtained by Martina et al. [18] for an SDS solution with a con-
centration of 0.01M (≈ 0.3wt.% ). Sizes in nm.

note how the peak located at 4.2nm in the intensity distribution shifts its location

in the corresponding number and volume distributions.

6.1.1 Background of measuring SDS using DLS

DLS can be used to ascertain information about the size and polydispersity of

micelles in solution, and has been applied by other researchers to SDS solutions

in particular [18, 244–247]. The CMC value for SDS is around 8.2mM (0.24wt.%)

[248], above which DLS can be used to find information about the size of the

micelles that form.

However, for SDS micelles, the application of DLS is complicated, due to the

layer of charges surrounding the micelle. For example, Ali et al. (2013) [246]

find that, at a temperature of 298K and concentration of 0.05M (1.5%), SDS

solutions exhibit a DLS peak diameter of 1.54nm. This is smaller than the diameter

of 4.2nm, reported by Martina [18] (shown in Table 6.1) for a concentration of

0.01M (0.3wt.%). As the location of this peak should indicate the size of the SDS

micelle, this would imply a counter-intuitive conclusion that the SDS micelles are

decreasing in size, with increasing concentration. Similarly, Mehta et al. [245] and

Ali et al. (2017) [247] report similar decreases in the position of the intensity peak

with increasing SDS concentration in aqueous solution.

The results as reported above are not what might be expected. The reported

SDS results would indicate a decrease in the micellar size with increasing concen-

tration, and that the micelle size is much smaller than is expected. The length of

an SDS molecule is expected to be around 2nm, so a theoretical estimate for the

diameter a spherical micelle consisting of SDS molecules would be around 4nm.

162



These results are also in contradiction with results reported from experimental

methods such as small angle X-ray scattering, which find micelle diameters of

around 4-5nm [249] (note that this will be discussed in more detail in Section 6.2).

The underestimate in the size of micelles from DLS measurements roots back to

an overestimation for the translational diffusion coefficient D, as a result of the

ionic nature of SDS, and there are several approaches in published literature to

try to explain these results.

One approach is to consider that the calculated value of D in DLS, produces

the value for the mutual diffusion coefficient, rather than the micelle diffusion co-

efficient [12]. That is the total diffusion for all the surfactant components, includ-

ing contributions from micelles, free surfactant monomers, and free counterions.

Consider the contributions to the mutual diffusion coefficient D for a nonionic

surfactant to be

D =
c1D1 +Nagg

2cmicDmic

c1 +Nagg
2cmic

(6.6)

where D1 is the free monomer diffusion coefficient and Dmic is the micelle diffusion

coefficient, Nagg is the aggregation number and the concentration of the species

are c1 and cmic. When we are far above the CMC, the number of free monomers

is relatively small so D ≈ Dmic. For an ionic surfactants, the expression includes

contributions for counterions and becomes the much more complicated expression

D =
c1c+D1D+ + q2c1cmicD1Dmic +Nagg

2c+cmicD+Dmic

c1D1 + c+D+ + (Nagg − q)2cmicDmic

× c1 + c+ + (Nagg − q)2cmic

c1c+ + q2c1c+ +Nagg
2c+cmic

(6.7)

where D+ and c+ are the counterion diffusion coefficient and concentration. q is

the number of bound counterions to a micelle consisting of Nagg surfactant ions.

At high concentrations much above the CMC, the expression simplifies to

D =
(1 +m− q)D+Dmic

D+ + (m− q)Dmic

. (6.8)
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Fig. 6.1 shows the mutual diffusion coefficients calculated theoretically using the

expression in Eqs. 6.7 and 6.6 by Sutherland et al. [12], substituting in values that

are representative. There is a sharp drop as the concentration reaches the CMC

for both cases. For ionic micelles the increase in the mutual diffusion coefficient

is a result of ionic diffusion. Sutherland et al. [12] calculate micelle diffusion co-

efficients for a variety of sodium alkylsulfonates, via Taylor dispersion methods.

They then compare this with the results obtained from DLS experiments, as well as

mutual diffusion coefficients from other studies. At surfactant concentrations well

above the CMC value, the DLS diffusion coefficients for nonionic surfactant solu-

tions are approximately identical to the micelle and mutual diffusion coefficients.

For ionic surfactants, the DLS and mutual diffusion coefficients are identical, but

considerably larger than the micelle diffusion coefficient. Their results for SDS

molecules are shown in Fig. 6.2. Sutherland et al. [12] reach the conclusion that

their results suggest that the diffusion coefficients obtained in DLS are actually

mutual, rather than micelle, diffusion coefficients. However, it can be found from

Eq. 6.7, that at low concentrations (before ionic diffusion dominates) D ≈ Dmic,

proof of which is shown in Appendix B. Therefore, an estimate for Dmic could be

obtained at low concentrations, by fitting and extrapolating to zero concentration

(above the CMC).

Another, more common, approach is by considering the potential effect of inter-

micellar interactions [250,251]. Due to the fact that the micelles are charged, the

forces of repulsion between them can be significant. Assuming that an increasing

surfactant concentration leads to an increased number of micelles in the solution,

which is reasonable given that research suggests that the aggregation number re-

mains approximately constant, there will be a decrease in the average distance

between them. This increasing electrostatic force can influence the diffusion of the

micelle, making the diffusion coefficient concentration dependant. On the basis of

this argument, D is often approximated to take the form (to the first order in the
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Figure 6.1: Mutual diffusion coefficients D for nonionic surfactants and ionic sur-
factants using Eqs. 6.7 and 6.6, as calculated by Sutherland et al. [12]. Parameters
used: Dmic = 0.1× 10−5cm2s−1, D1 = 0.5× 10−5cm2s−1, D+ = 1.0× 10−5cm2s−1,
m = 60 and q/m = 0.83.

Figure 6.2: Diffusion coefficients as calculated by Sutherland et al. [12]. Coef-
ficients given as: DLS (filled circles), mutual (open squares and triangles), and
micelle (open circles) diffusion coefficients for aqueous solutions of sodium dodecyl
sulphate at 25◦C.
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concentration above CMC, c) [251]

D = D0(1 + kD(c− cCMC)) (6.9)

where kD is an interaction parameter (usually obtained from fitting to experimental

results), and D0 is the diffusion coefficient at infinite dilution. Using this argument,

one should be able to obtain a reasonable estimate D0, from extrapolation of

c→ cCMC. Crucially, if the micelles interact repulsively (which they are expected

to do because of their net charge) then this has the effect of increasing the diffusion

coefficient, which has been shown to be what is expected theoretically [252].

It is possible that the effect of the ions in solution results in a combination of

the two explanations above. However, in both interpretations, an estimate for the

micellar size can be obtained by extrapolating to zero concentration (above the

CMC). However, it is likely to be difficult to interpret any changes in size of the

micelles at increasing concentrations. Section 6.1.2 will now detail the results of

measuring SDS and AES micelles, at a variety of concentrations.

6.1.2 Study using DLS to measure AES and SDS solutions

Measurements are made on SDS and AES aqueous solutions, in the micellar

mesophase concentration range. These experiments were performed using Malvern

Zetasizer Nano ZS 2. The scattered light is detected at an angle of 173◦, known

as back scatter detection. There are several advantages to using back scattering

techniques, with one crucial advantage being the treatment of contaminants, such

as dust particles. These particles are typically larger in size than the micelles

we want to measure. Large particles will mainly scatter in the forward direction,

therefore by using back scattering detection, the effects of contaminants can be

reduced.

Measurements are made in the approximate concentration range 0−20%. The

samples are prepared using a similar method as discussed in the previous chapter.
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However before measurement they are filtered using a syringe filter, in order to

remove any contaminants or dust particles. The Malvern Zetasizer software au-

tomatically fits a variety of overlapping exponential decays to the autocorrelation

function, using Eq. 6.2, and uses Eq. 6.5 to calculate an intensity vs. size distri-

bution. An example of the intensity vs. size distribution obtained for a selection

of concentrations is shown in Fig. 6.3, as well as its conversion into a volume

distribution using Mie theory. A peak in the intensity distribution for all solutions

above the CMC value is located in the 0.8–4.5nm range. For higher concentra-

tions, there is also a peak at higher size values, ranging from peak location around

10–35nm. However, in the intensity distribution, the magnitude of the scattered

light is I ∝ d6. Converting into a volume distribution, the volume is V ∝ d3. If

we convert the peaks found in the 10–35nm intensity distribution to the volume-

weighted distribution, they become insignificantly small. This indicates that they

are only an insignificantly small contribution to the solution. Therefore peaks lo-

cated in the 10-35nm size range, will not be analysed further, and the remainder

of this section will focus on the peaks in the lower range.

A plot of the location of the peak in the intensity distribution, as well as the

corresponding values of the diffusion coefficient using Eq. 6.5, is shown in Fig.

6.4. The peak location is taken from the intensity distributions, as opposed to the

number or volume distribution, due to a lack of confidence in the assumptions that

have to be made in Mie theory for the conversion. All of the concentrations plotted

correspond to solutions above the CMC, where micelle formation is expected to

be taking place.

The values for size obtained are significantly lower than what is expected based

on the theoretical size of an individual SDS molecule (expected diameter ≈ 4nm).

Although, the initial increase in the diffusion coefficients, with increasing concen-

tration just beyond the CMC, is consistent with the values found using DLS by

Sutherland et al. [12], who explain this increase in D to be reflective of the fact

that it is a mutual diffusion coefficient influenced by ionic diffusion. Note that
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(a) AES Solution

(b) AES Solution

(c) SDS Solution

(d) SDS Solution

Figure 6.3: The size data obtained from DLS measurements using the Malvern
Zetasizer. Shown are the intensity and corresponding volume distributions for
AES and SDS solutions of varying concentration.
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these authors only make measurements up to a concentration of around 2%.

The drop off in the diffusion coefficient at higher concentration values (≈ 10%)

is not predicted by Eq. 6.7, and could be explained by a couple of different sce-

narios. First is that the SDS micelle is growing in size, potentially becoming

non-spherical and rod-like. An alternative is that the decrease is manifesting due

to intrinsic problems with using DLS at higher concentrations. For high concentra-

tions, there may be more inter-particle or inter-micellar interactions, due to closer

proximity in solution. In other words, an individual molecule may encounter (or

cross paths with) another molecule in solution, altering its diffused distance over

the course of a measurement. Therefore, the size calculated from the value of diffu-

sion coefficient would not be indicative of the size of that molecule. Also, at higher

concentrations there is also the problem of multiple scattering. A single photon

of laser light will scatter off multiple particles before reaching the detector. This

would lead to the detection of a less correlated signal, compared to the original

signal. This rapid loss of correlation is not the result of particle motion, and thus

not related to the particle’s size.

When the concentration gets larger, the calculated diffusion coefficients are

significantly lower for AES than they are for SDS solutions. However, based on

the information available, it is unclear why this is the case. Therefore, we will

focus on the lower concentration range, as shown in Fig. 6.5, using the theory for

ionic micelles as discussed in the previous section. Eq. 6.9 can be used in order

to obtain estimates for the diffusion coefficient at infinite dilution D0. In Eq. 6.9

the concentration (c − cCMC) corresponds to the concentration above the CMC,

therefore Fig. 6.5 shows the diffusion coefficient plotted against the concentration

of surfactant in the system, minus the CMC value. Eq. 6.9 is fitted to the data at

low concentration values, and extrapolation of (c−cCMC)→ 0 provides an estimate

for D0. This fit is performing using Python, using a least-squares fitting method.

The value of the CMC used for SDS is 8.2mM [253] (or 0.24%). It is found that

for monodisperse solutions containing increasing ethoxylation n, the value of the
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Figure 6.4: Location of peak in the size distribution data obtained from DLS
measurements, and the corresponding diffusion coefficient. Data is plotted for a
variety of concentrations, of both AES and SDS solutions. Error bars represent
the standard deviation in repeated measurements.
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CMC drops for n = 1, 2, 3 to a constant value of cCMC = 0.8mM [253]. Therefore,

as the average ethoxylation of AES is n ≈ 1, the CMC is estimated to be 0.8mM

(or 0.03%).

For SDS micelles the estimate for D0 from DLS measurements is D0 = (0.082±

0.013)×10−5cm2/s, which corresponds to a hydrodynamic size estimate of dSDS =

6.0±1.0nm. The value obtained for AES isD0 = (0.073±0.009)×10−5cm2/s, corre-

sponding to a size value of dAES = 6.75±0.88nm. This value of dSDS = 6.0±1.0nm

is larger than the theoretical estimate of around 4nm. This could be explained

by DLS measuring the hydrodynamic size rather than the size of the micelle core.

This means the value would be larger than expected as it would also include a layer

of ions around the core, as depicted by Fig. 2.7. The AES micelles are predicted

to be larger, as expected due to their longer average molecular length, by around

l ≈ 0.75nm. Estimating that the bond length of C-O is around (1.4± 0.1)Å [254],

and the bond length of C-C is (1.5 ± 0.1)Å [255], the resulting contribution of

(OCH2CH2) contributes an additional length of around (4.3 ± 0.2)Å (of course

the actual length of OCH2CH2 will be slightly less than this when taking into

account bond angles). Expecting that the micelles grow by 2× this length (which

is 0.86nm), this is in good agreement with the growth of the micelle size from SDS

micelles to AES micelles.

6.1.3 Conclusion

The technique of DLS could not be used to gain information about how the micelles

of SDS or AES change size or shape with varying concentration. Due to likely inter-

actions between micelles, the diffusion coefficient is greatly overestimated, leading

to a large under-prediction of the micellar size. At very low concentrations, an

estimate for the hydrodynamic size of the micelles can be found by performing a

linear fit to the relationship between the diffusion coefficient and concentration,

then extrapolating the concentration to zero. This provides size estimates for SDS

and AES of d = 6.0 ± 1.0nm and d = 6.75 ± 0.88nm respectively. These over
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Figure 6.5: The diffusion coefficient plotted against the concentration above the
CMC, as determined via DLS measurements. The x-axis is the concentration of
surfactant in the system minus the CMC value. The error bars represent the
standard deviation in repeated measurements. Eq. 6.9 is used to fit to the linear
region of the data at low concentrations, and uncertainties in the fit are obtained
by extreme fits through the error bars.

predictions could be explained by the fact that DLS measures a hydrodynamic

radius, which would include not only the micelle core, but also an additional layer

of ions surrounding the micelle. Additionally, with the knowledge now of how

quickly the relationship between the diffusion coefficient and concentration be-

comes nonlinear, a more accurate estimate may have been obtained by performing

more measurements in the very low concentration range.

There are other experimental methods that exist that may be more appropriate

for determining the size and shape of ionic micelles in the larger concentration

range. This is most commonly conducted for SDS micelles, and the micelles of

other variations of ethoxylation n are less commonly reported. The following

section will review some of the other experimental methods that can be used to

find information about the size and shape of micelles, and present a summary of

what is reported in literature for SDS micelles.
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6.2 Shape of Micelles

6.2.1 Experimental Methods

As discussed in the previous section, one experimental method to find out infor-

mation about micelle size is DLS. One of the limitations of DLS is that the method

assumes that all particles are spherical and the system is monodisperse [256]. How-

ever, due to geometrical packing constraints, the micelles are likely to become in-

creasingly non-spherical as they grow in size [19]. The results obtained via DLS are

also affected by electrostatic interactions between the micelles, making a link be-

tween the diffusion coefficient obtained, and the size of the micelle difficult. There

has been much research dedicated to investigating the shape SDS micelles take us-

ing other experimental methods, particularly using small-angle neutron scattering

(SANS) [19, 21, 22, 249, 257–259] and small-angle X-ray scattering [244, 260, 261]

(SAXS). These methods can provide more detailed information on the structures

of particles in solution, despite requiring more complicated procedures [256]. The

scattering intensity data that is produced from these experiments, is usually fitted

to an ellipsoidal model. The shapes that these models represent for individual

micelles are illustrated in Fig. 6.6. It is typical when modelling SDS micelles to

use core-shell model ellipsoids. This is simply a model that consists of treating the

micelles as two concentric ellipsoids, termed the ‘core’ and ‘shell’ components. The

core consists of the hydrophobic tails of the surfactants, while the shell consists of

the hydrophilic head groups and counter ions [262].

There can be quite a wide variety of different results found for the shape of

SDS molecules in literature, particularly for lower concentrations, owing to the

difficulty in fitting models to the scattering data. For example, Berr and Jones [249]

investigate using SANS for SDS molecules at 0.05M (≈ 1.4wt.%) concentration

and room temperature, finding that the data is best fit by the micelles taking an

oblate ellipsoid shape, with b2 = b3 = 25.0Å and b1 = 20.3Å, producing a ratio

of b1/b2 = 0.81. Likewise, Bergstrom and Pedersen [19] attempt a model to their
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Figure 6.6: An illustration of the different models typically used to fit experimental
data, in order to determine the size and shape micelles form in solution.

wt.% b1 (Å) b2 = b3 (Å) Nagg b1/b2
0.25 8.9 19.9 42 0.45
0.50 11.5 19.8 54 0.56
1.0 12.0 20.4 60 0.59

Table 6.2: A summary of the results of Bergstrom and Pedersen [19]. Results are
obtained via SANS data fitted using an oblate ellipsoidal model, for SDS micelles
that form at 40.0◦C for various concentrations. Nagg corresponds to the calculated
mean aggregation.

SANS data for monodisperse tri-axial ellipsoids (i.e. where b2 6= b3), however it

was found that b2 ≈ b3, and so the data was reanalysed with a model for which

b2 = b3 6= b1. A summary of the results of these oblate ellipsoidal fits are in Table

6.2.

As the concentration increases, there is reasonable amount of experimental

evidence to suggest that the micelles start to approach a more spherical form. For

example at a concentration of 0.07M (≈ 2wt.%), a SANS study of SDS micelles

finds that the micelles are spheres or ellipsoids whose axial ratio is near 1 [257].

With further increasing concentrations, research suggests that the micelles begin

to stretch into the prolate form. SANS experiments by Kumar et al. [263] in

0.3M SDS solutions (≈ 8.7wt.%) found the best fit to the scattering data using

monodisperse, prolate ellipsoidal micelles of radius b1 = 33.0Å and b2 = b3 = 16.7Å

resulting in ratio b1/b2 = 1.98. Summerton et al. [264] find that at 20 wt.% and
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Temperature (◦C) b1 (Å) b2 = b3 (Å) Nagg b1/b2
14.0 36.5 18.6 96 1.96
20.0 34.3 18.6 104 1.84
40.0 29.9 18.6 122 1.61
60.0 26.9 18.6 136 1.45

Table 6.3: A summary of the results of Khodaparast et al. [20]. Results consist of
SANS data analysed using a prolate ellipsoid model, where SDS micelles form at
20 wt.% at various temperatures. Nagg is the mean aggregation number.

Concentration (mM) Concentration (wt%) b1/b2 Nagg

71.8 2.1 1.49 83
135 3.9 1.64 91
180 5.2 1.72 99
359 10.4 1.95 108

Table 6.4: Results obtained by Ludwig et al. [21]. The SANS data is analysed
using a prolate ellipsoid model, where SDS micelles form at 20◦C at various con-
centrations. Nagg is the mean aggregation number.

20.0◦C, micelles form with an aggregation number N = 170 and b1/b2 = 1.8.

Likewise Khodaparast et al. [20] also find the micelles take the prolate shape at 20

wt.%, with their results for varying temperatures illustrated in Table 6.3. Ludwig

et al. [21] also study SDS micelle formation using SANS, finding prolate micelles

with varying axial ratios for different concentrations. Their results are illustrated

in Table 6.4.

It is worth noting that varying results are not only found between different

authors, but also when comparing results from different experimental methods. For

example, Gawali [260] investigate SDS micelles at room temperature using both

SAXS and SANS, using the core-shell ellipsoid model. For a 10wt.% solution, using

SAXS, the authors report a prolate shape with b1 = 18.2Å and b2 = b3 = 13.1Å,

generating a ratio b1/b2 = 1.39. This contrasts with the results that are found

using SANS, reporting values b1 = 24.6Å and b2 = b3 = 15.1Å, generating a

ratio b1/b2 = 1.63. Interestingly, they also note that both prolate ellipsoid and

oblate ellipsoid models can fit the data to a reasonable extent, however only finding

slightly better fits using the prolate ellipsoid model.

However, while prolate models appear to be the most common choice at high
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Concentration (wt%) Nagg

0.5 58.6
1 65.7
2 84.3
5 91.6
10 104
20 112

Table 6.5: Aggregation numbers reported by Hammouda [22] for SDS micelles, at
room temperature with varying concentration, as determined by SANS measure-
ments. Nagg is the mean aggregation number.

micellar concentration, not all authors report that prolate models fit the data best.

Hammouda [22] also investigate SDS micellar solutions using SANS, and find that

their data is best fit by oblate ellipsoids, for micelles formed in the entire concen-

tration range 0.5wt.%–20wt.%. While they obtain their results using an oblate fit,

the increase in micellar volume with increasing concentration is consistent with au-

thors using prolate models. The values that they find for the aggregation number

Nagg with increasing concentration are listed in Table 6.5.

Vass et al. [265] discuss the issue of conflicting literature suggesting whether

ionic micelles, including SDS micelles, are oblate or prolate. The main source of

the problem is that the scattering functions from an oblate or prolate micelle are

very similar. From their analysis of SANS data, Vass et al. [265] conclude that

generally systems could be reasonably fitted by micellar models with both pro-

late and oblate micelles. In their analysis of the works of others, they conclude

that there are some findings that are in agreement, despite researchers sometimes

making different ellipsoidal fits. It is concluded that, at sufficiently high ionic sur-

factant concentration, the aggregates most certainly become elongated structures

and that the dimensions of their circular or ellipsoidal cross sections are limited

by the length of the hydrocarbon segment of the surfactant. However, at low

concentrations, the data can be particularly hard to fit, presumably because the

micelle is not particularly stretched in either direction (that is that they are nearly

spherical).

It is also interesting to note that, due to long range Coulombic interactions,
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charged micelles tend to arrange themselves into an ordered structure, giving rise

to a correlation peak in SAXS data. The relationship between this peak and the

average separation in micelles is more easily determined at higher concentrations

[266]. For SDS micelles at 20% concentration at room temperature, this separation

is determined to be 5.7nm [266].

Clearly there are lots of potential sources of error for the discussed experimen-

tal calculations, even though they are an improvement over DLS methods. For

example, much of the discussed research also uses monodisperse data fits, with

these being much simpler and easier to implement when compared to a polydis-

perse fit. For example, Hassan et al. [267] observe that micelles are dynamic,

so small shape fluctuations are likely, and will introduce a small polydispersity

in the circular cross section. However, these effects would be hard to observe in

the scattering data observed, so chose to use the more simple prolate ellipsoidal

fit. As illustrated, experimental results are often model dependent, and differ-

ent conclusions can be made about the micellar size and shape depending on the

assumptions and approximations made in analysing the experimental data. The

most consistent conclusion for how SDS micelles change with increasing concen-

tration, is that they most certainly grow in volume and likely transform from

spherical or nearly spherical micelles to elongated or rod-like micelles. Therefore

computational studies can complement experimental research, and help provide

more details for understanding the micellar shape changes.

6.2.2 Simulation Methods

This subsection will provide an overview of the two methods that will be used to

assess the size and shape of micelles, as found via DPD simulation. Determining

the aggregation number via simulations is more straight forward than experimental

methods, as the aggregation number can be calculated directly from the simulation

results, and no assumptions have to be made about the relationship between the

micelle size and the number of molecules contributing to an individual micelle.
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Determining the size and shape of the micelle is less straight forward, owing to

the difficulty in determining the boundary between the surface of the micelle and

the solution, as well as dealing with fluctuations of monomers at the surface of the

micelle. One common method for assessing micelle shape and size in simulations is

to use the radius of gyration of the micelle, which will be discussed further within

this section.

6.2.2.1 Aggregation number

As discussed in Section 2.1, the mean aggregation number Nagg is widely used

to characterise micellar systems, where Nagg is the mean number of molecules

per micelle in a solution. In order to calculate Nagg individual micelles need to

be identified. This is performed by outputting the position of all beads in the

simulation box at a set interval, and then analysing each snapshot for the number

of aggregates. Clusters are identified by defining a cut-off distance, and molecules

that are closer than that distance are said to be in contact with each other and

form an aggregate. Only the hydrophobic tail of the molecules is used in this

calculation, as they are expected to make up the hydrophobic core of the micelle.

The cut-off distance used in all of the calculations to be performed is 1 DPD unit.

In simulations we can also calculate a weighted aggregation number, defined

as NW = 〈N2〉/〈N〉 where 〈N2〉 =
∑∞

N=1N
2Pmicelle(N). Here N is the number of

monomers in a given molecule, and Pmicelle is the probability of finding a monomer

existing in a micelle of size N . This can also be described as the number weighted

average of the micellar component of the aggregate size distribution. The use of

the weighted aggregation number, as opposed to simply the aggregation number,

can capture the polydispersity of the system. The difference between the mean

aggregation number Nagg and the weighted aggregation number NW is illustrated

in Fig. 6.7. The different average aggregation numbers (i.e. a number average

Nagg or weighted average NW) correspond to those determined by different exper-

imental techniques [268]. For example, the number average can be obtained via
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membrane osmometry [269], while the weighted average is determined via static

light scattering measurements [270].

(a) Probability Gaussian distribution P (N)
vs. micelle size N for a variety of standard
deviation σ values.

(b) Resulting weighted aggregation num-
bers NW produced from distributions with
different standard deviations σ.

Figure 6.7: Theoretical illustration of the meaning of the weighted aggregation
number NW . All distributions have mean aggregation number value Nagg = 50.0.
With increasing polydispersity (illustrated by increasing standard deviation σ),
the weighted aggregation number NW increasingly deviates from Nagg.

6.2.2.2 Geometrical Size and Shape of Micelles

The radius of gyration, RG, is the main parameter that will be used in order to

quantify the size of micelles. The value of RG is commonly used in the analysis of

simulation results, in order to give information about the size of an object. The

radius of gyration for a given micelle is calculated as:

R2
G =

1

N

N∑
k=1

(rk − rCOM)2 (6.10)

where rk is the position of a particle in a micelle consisting of N particles and

rCOM is the centre-of-mass for the micelle: rCOM =
∑N

i miri∑N
i mi

.

If spherically-shaped micelles, and constant density, are assumed, there exists a

simple relationship between the radius of gyration RG of a micelle and an effective

micelle radius RS [271]:

RS =

√
5

3
〈RG〉. (6.11)
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The effective radius is linked to the hydrodynamic radius that is measured in DLS

techniques. Using DLS measurement techniques, a spherical particle in solution

is measured by assuming that it is a body moving through the solution. If the

solvent is water, the hydrodynamic radius includes all the ions and water molecules

attracted to the micelle. Therefore, if there were no inter-micellar interactions

interfering with the results, the value obtained by DLS techniques may be expected

to be larger than that obtained obtained in the above equation, as it wouldn’t

account for this additional layer.

In reality, the micelles are most likely not smooth spheres. Micelles most likely

have protrusions from various monomers, resulting in a rough surface. These mi-

celles are likely to be in liquid-like dynamic motion, and the fluctuations most likely

result in a spherical micelle when averaged over time [272]. This varying surface

shape is one of the reasons that the radius of gyration is most commonly used for

analysing micelle shape and size. Compared to other methods for analysing the

size, for example a spherioidal fit to the shape of a micelles surface, the radius of

gyration is relatively easy to calculate. Fits to the surface of a micelle, for example,

are very difficult due to the fluctuations.

When micelles begin to elongate, the relationship given in Eq. 6.11 will no

longer hold. However the value of the radius of gyration can still be used to

help characterise the shape of the micelle. If we use the fact that the volume

of the hydrophobic core is proportional to N (i.e. the density remains constant

no matter the aggregation number), then spherical micelles will follow the relation

RG ∝ N1/3. Therefore the value of R3
G/N should be independent of N for spherical

micelles. However, rod- and worm-like structures will require a larger power law.

For example, Anderson et al. [17] use this reasoning to identify the concentration

at which the micelles become non-spherical, in an SDS/water system described

by DPD. Note that throughout this section, we will use N to denote an aggrega-

tion number for a particular micelle, while Nagg is used to talk about the mean

aggregation number.

180



Figure 6.8: Theoretical relationship between R3
G/N and the ratio of the ellipsoid

axis b1/b2 (as defined in Fig. 6.6). The plotted value of R3
G/N is scaled to the

value of R3
G/N for spherical micelles (i.e. b1/b2 = 1). Data points are determined

using a Monte Carlo calculation performed in Python.

If we assume that micelles take one of the spheriod shapes illustrated in Fig.

6.6, then we can find the theoretical variation of R3
G/N for non-spherical micelles.

The relationship between R3
G/N and the ratio of the ellipsoid axis, b1/b2, assuming

constant density of molecules inside the micelle, is shown in Fig. 6.8. For values in

which b1/b2 < 1 illustrates an oblate structure, while 1 < b1/b2 is a prolate micelle.

6.2.2.3 Geometrical Size and Shape of Molecules

As well as considering the size and shape of the micelles, we can also consider the

size and shape of the individual molecules. The radius of gyration can also be

used to quantify changes in the molecular shape. In this context, it is defined as

the average squared distance of the beads making up the molecule, from its centre

of mass. This is in contrast to its previous usage for categorising the shape of the

whole micelle. For a single molecule:

R2
g =

1

N

N∑
k=1

(rk − rCOM)2 (6.12)

181



where N is the number of particles in the molecule and rCOM is the centre-of-mass

for the molecule: rCOM =
∑N

i miri∑N
i mi

.

6.3 DPD Simulations

The method of DPD was introduced in Section 3.3, as a simulation technique

using coarse-grained particles for modelling complex fluids. The simulation pack-

age used in this work for the DPD calculations is DL MESO [26]. This package

is selected as it has been extended for application to ionic systems, while many

other available packages are currently not. DPD has been extensively applied to

surfactant systems [17, 63, 97, 98, 273–277]. DPD is well suited for application to

surfactant systems, as it allows for modelling systems in a way that would not

be achievable using traditional MD techniques, due to the length- and time-scales

involved. DPD has been shown to be able to reproduce the micellar phase be-

haviour [63,98,273,274,276–278], from initial configurations consisting of a random

placement of beads in the simulation box.

In early DPD research, the interaction parameters chosen for the beads rep-

resenting the hydrophobic and hydrophilic behaviour portions of the surfactant

molecules generally did not represent any chemical species in particular (i.e. there

was no link between the interaction parameters and specific molecules to be mod-

elled) [97, 98, 273, 274, 276, 277]. More recently various authors have attempted to

generate more specific interaction parameters to correlate to a surfactant molecule

in particular [16, 17, 63], including the parameters that will be used in this study

[17].

Typically DPD is most often applied to nonionic surfactant systems [97, 98,

273–278], allowing all of the forces between molecules to be modelled using short

range forces. DPD is less typically applied to ionic systems [17, 63], such as the

anionic surfactant used in this work, due to the complication of introducing the

long-range electrostatic force. The introduction of the ionic force into the DPD

method is discussed in Section 3.3.2. The introduction of the ionic force into DPD
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simulations is still relatively recent, and the best method for its integration is still

under consideration.

DPD has also been applied to studying the rheological behaviour of surfactant

systems [273–277]. Although simulations which apply shear to measure the vis-

cosity are typically only performed at high shear rates [273, 275, 277, 279], as the

simulations suffer from a large amount of noise at decreasing shear rates [273,279].

Using DPD, shear-thinning behaviour has often been reported for micellar sys-

tems [273, 274, 277]. Typically it is observed that micelles can change shape due

to the application of shear, in particular spherical micelles can transform into

stretched, worm-like micelles under heavy shear [276]. Worm-like micelles can also

be broken up into small spherical micelles at high shear rates, leading to lower

viscosity [273,274]. It has been shown in DPD simulations that the application of

shear force can stretch a random molecular conformation, to more extended con-

formations during the shear flow. The surfactant molecules can stretch in length

as a result of large applications of shear force [276]. This has the result of meaning

that the radius of gyration calculated can be dependent on the shear rate [280].

The purpose of the remainder of this chapter will be to study the results

of DPD modelling of the micellar phase, for molecules with SLES like struc-

ture. The parameters and the treatment of the electrostatic interactions in this

study will be taken from Anderson et al. (2018) [17], who only apply them

to micellar systems where the ethoxylation value n = 0 (in chemical formula

CH3(CH2)x(OCH2CH2)nOSO3Na). The only computational studies that could be

found investigating micellar solutions of single-component SLES surfactants were

two recent studies. Panoukidou et al. [281] study SLES in sodium chloride/water

solutions using DPD, and Peroukidis et al. [282] who study SLEnS solutions with

n = 1, 2, 3 using MD simulations. The first part of this investigation will consist of

equilibrium simulations, in order to determine the phase behaviour under equilib-

rium conditions at room temperature. Following this there will be an investigation

into whether DPD can be used to study such systems under the influence of a shear
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force, as a fluid would be subject to in a rheometer, and if the viscosity can be

accurately calculated using DPD for such systems.

6.3.1 Micellar Solution Study

Micellar solutions with concentrations 7%, 10% and 20% are investigated, which is

expected to be completely in the micellar range, based on the experimental results

shown in Chapter 4. For each concentration trialled, we also run a number of

simulations investigating the effect of varying the ethoxylation n in the molecular

chain length. For each concentration, four monodisperse simulations are performed

(for n = 0, 1, 2, 3), as well as a polydisperse case (distribution of n), corresponding

to the distribution of chain lengths in AES. However, as the number of molecules

corresponding to the higher values of n in Table 2.1 is relatively small, only values

up to n = 3 in AES are included. The AES distribution case has an average value

of n = 0.76 in the simulations. The hydrocarbon chains are also simplified, in that

only chains with 12 carbon atoms are included (i.e. the hydrocarbon chain length

is monodisperse). The variation of concentration and n will allow us to understand

the effect of this on parameters such as the size and shape of the micelles that form.

The concentration is calculated as a percentage of mass weight. As the sodium

atoms in the solution are considered to be partially hydrated with two water

molecules, this is taken into consideration in the calculation of the concentration.

It has previously been discussed in Chapter 3 that DPD typically does not

require the addition of a thermostat for temperature control. This is because

the dissipative and random forces act in a way that naturally thermostats the

system. However, typical parameter choices for dissipative parameter γ and cut-

off rC (such as the ones used in these simulations) lead to a very low value for the

Schmidt number. Possible choices for additional thermostats that can be applied

are discussed in Section 3.3.6. One of the draw backs to applying a thermostat in

this way is that obtaining the equilibration of the surfactant phases is slower than

if no thermostat was applied, reducing the benefit of performing DPD simulations
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over other simulation methods. Therefore in this work traditional DPD will first be

applied (i.e. no additional thermostat), in order to perform the initial equilibration

of the surfactant phases at various concentrations. Once the equilibrium phases

have been generated, we will switch to using the Stoyanov-Groot thermostat, when

shear is applied and the viscosity is calculated. The exact choices of parameters

required for the thermostat will be discussed in later sections. The Stoyanov-Groot

thermostat is selected due to the large range of different Schmidt numbers that

can be generated using this thermostat. This will allow us to investigate the effect

of varying the Schmidt number on some of the parameters for the micellar phase

under shear.

6.3.1.1 Simulation Set-Up

Cubic boxes are used with periodic boundary conditions in all simulations. The

box size used in the following simulations is L = 50 in all cases. The large value of

L was chosen in order to produce a large number of micelles so that a distribution

of micelle sizes would be found. The simulations are initialised by populating the

box with a random configuration of molecules and water beads. The number of

beads in the box n is chosen to satisfy ρ = n/L3 = 3 (see Section 3.3.4). The coarse

graining of the molecules matches that used by Anderson et al. (2018) [17] in their

investigation of SDS molecules, and is discussed in Section 3.3.4. The choices for

the parameters aij and RC
ij are listed in Table 3.1. The cutoff for the dissipative

and random forces is assigned to be the maximum value of RC
ij used in the system,

and the dissipative friction amplitude was set at γ = 4.5. The energy of the system

is governed by setting kBT = 1. The noise amplitude is automatically chosen in

DL MESO [26] in order to satisfy the relationship between noise amplitude σ and

dissipative parameter γ, shown in Eq. 3.18. Finally, the time step chosen also

matches that used by Anderson et al. (2018) [17], with a value of ∆t = 0.01.

Based on the work of Groot and Warren [134] a time step of this size should result

in artificial temperature fluctuations of less than 1%.
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In the work of Anderson et al. (2018) [17], the simulations are performed

in boxes that contain 500 surfactant monomers. The size of the box and the

number of water beads are adjusted in order to achieve the desired concentration

at the correct bead density, which is simulated in the concentration range 0.06-

23%. It is found by Anderson et al. (2018) [17] that at lower concentrations the

DPD simulations result in an under prediction of the mean aggregation number

Nagg for SDS micelles. However, the mean aggregation number grows rapidly at

concentrations above about 15%, and the aggregation numbers become more like

those found experimentally. For concentrations that are relatively low, this choice

in box size would produce a number of micelles, e.g. a concentration of about

7% would produce ≈ 10 micelles on average. However, the authors report that

by 23% the aggregation number reaches such a large value that on average there

are only, on average, two micelles in the simulation box, which appears to result

in the continuous coalescence and separation of those two micelles into one large

micelle of maximum aggregation number N = 500. This work will primarily be

concerned with solutions at large concentrations, and therefore larger box sizes of

L = 50 are used, in order to achieve a greater number of micelles. The case in

which n = 3 and c = 7% contains the smallest number of surfactant molecules

Ns = 2265, while the largest number of surfactant molecules are in the n = 0,

c = 20% case where Ns = 9609 (full details on the number of surfactant molecules

for each simulation case can be found in Appendix C). This will have the draw

back of being more computationally expensive, but does mean that a distribution of

micelle sizes can be calculated, as well as assessing whether there is any underlying

structure in the location and separation of the micelles (e.g. micellar cubic phases).

Furthermore, the very large aggregation numbers that are found by Anderson et

al. (2018) [17] at high concentrations are much higher than what is found by

equivalent concentrations experimentally [22], and the relatively small box sizes

may be one of the causes.
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6.3.1.2 Equilibration

Once a micellar simulation is begun from a random configuration of molecules,

the formation of the initial micelles is rapid. However, the subsequent increase in

the micellar size, and therefore mean aggregation number Nagg equilibration takes

a considerable amount of time. In order to determine that the micellar solution

is fully equilibrated, it is typical to monitor the value of the mean aggregation

number of the system Nagg, and to state that equilibration has taken place once

no further change in Nagg is observed, over a defined time period. Anderson

et al. (2018) [17] perform their simulation in boxes containing 500 surfactant

monomers. Equilibrium in Nagg is defined as the point at which block averages,

where a block is 5000 DPD time units (or 5 × 105 time steps), of the number of

micelles fluctuate about a constant value. However, the exact length of time that

a system maintains constant Nagg before it is considered equilibrated is relatively

arbitrary and difficult to define. For example, the plot of Nagg over time, for

a 7% solution in which n = 3, is shown in Fig. 6.9. This simulation contains

2265 surfactant molecules and 350085 water beads. The initial growth in Nagg

is rapid, with Nagg = 30.6 achieved after only 3.5 × 104 time units. However,

subsequent growth is very slow. There is also a period in the time range 1.5–

2.1 × 105 in which the aggregation number maintains an almost constant value

of Nagg = 35.4, before jumping to a higher value after increased time. Based on

the previously discussed equilibration criteria, one might have assumed that the

simulation was fully equilibrated. Therefore in this work each simulation is run

for as long as is realistically possible with the computational resources that are

available. An example of the final micelles obtained for a 20% case is shown in Fig.

6.10. The majority of the simulations presented in this section are conducted on

the HPC system for the University of Leeds [283]. The simulation shown in Fig.

6.9 is performed on 27 processors (splitting the domain into equal cubic boxes of

size 3 × 3 × 3). The results are obtained by performing approximately 2.5 × 107

iterations, which requires approximately 52,000 CPU hours. The ARC (Advanced
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Research Computing) HPC service at Leeds places a time limit on submitted

jobs of 48 hours. While the total running time of the simulation amounts to

approximately 3 months, taking into queuing time for frequent re-submissions, this

amounted to the calculation taking, in practice, around 7 months. The number of

iterations/hour could, in theory, be sped up by, for example, increasing the number

of processors or executing the calculations on entire nodes (as opposed to splitting

across multiple nodes which slows the simulation due to extra communication time

between processors). However both of these options increase the amount of queue

waiting time by such an amount that they are no longer beneficial. Note that

calculations on other systems in this work were later able to make use of a more

efficient, Tier 2 service. These will be discussed in later chapters.

The computational cost per iteration is dominated by the long range electro-

static interactions. The method used to calculate the electrostatic forces is Smooth

Particle Mesh Ewald, which scales with the number of beads bN in the simulation

as ∝ bN log bN (note that the number of beads grows as bN ∝ L3). This approxi-

mate scaling, for a simulation case with n = 1 and concentration of 7%, is shown

in Fig. 6.11. It was decided that L = 50 was the largest feasible box size that

could be run in the time frame with this scaling. Based on the scaling ∝ bN log bN,

larger box size of L = 60 would take approximately 1.8 times longer to run than

a L = 50, for the same number of iterations.

While monitoring the mean aggregation number Nagg is one of the most com-

mon methods of determining equilibration [17, 281, 282, 284], other authors have

taken different approaches. A variety of parameters can be monitored as a function

of simulation time in order to determine that adequate equilibration has occurred.

Some have determined that equilibrium has been achieved by the more simple

approach of simply monitoring the number of micelles [285], as opposed to their

average size. Other, even more simple, approaches include requiring a minimum

simulation time before data sampling begins [75] (although this is more common in

simulations with an element of pre-assembly), while others have taken more com-
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Figure 6.9: Equilibration of Nagg for a 7% solution containing molecules with
n = 3. Simulation performed on a cubic box with size L = 50, containing 2265
surfactant molecules and 350085 water beads.

Figure 6.10: Equilibrated DPD simulation box containing a 20% solution of SDS
(n = 0).
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Figure 6.11: The scaling of DPD simulations with electrostatic interactions in
DL MESO. The electrostatic interactions dominate the computational cost per
iteration, scaling as approximately bN log bN where bN is the number of beads in
the system. Scaling was calculated by performing simulations on 8 processors.

plex approaches. For example Faramarzi et al. [74] observe that there is a sharp

change in the micellar radius of gyration once equilibration has been achieved,

potentially making this a variable of interest. It is interesting to note that even

in simulations of pre-assembled micelles, it has been reported that a significant

amount of simulation time is required to achieve equilibration in parameters such

as the radius of gyration [73]. Johnston et al. [284] also trial calculating various

observables in order to monitor the approach to equilibrium. One metric that the

authors determine to be satisfactory, is the monitoring of the number of surfactant

molecules in sub-micellar clusters (i.e. molecules that are either free monomers

or are in clusters not large enough to yet be considered micelles). However, the

authors also make the observation that no protocol can be expected to work for

all molecules and force fields that might be studied, and therefore a better equi-

libration method might be through monitoring a combination of observables. In

this work we deemed that monitoring the mean aggregation number was sufficient

for our purposes, since it is predicted from previous authors work [17] that the
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Figure 6.12: Mean aggregation number Nagg against solution concentration. Plot
shows the results for varying degrees of ethoxylation value n, as well as the results
for a case with a distribution of n, which represents AES. Error bars represent the
standard deviation over the sampling period.

micelles will most likely not achieve experimental aggregation numbers for any of

the simulation cases.

6.3.1.3 Aggregation Number

The mean aggregation number Nagg for each simulation case is calculated using the

method discussed in Section 6.2.2.2. The effect of varying the concentration and

ethoxylation n on the value found is shown in Fig. 6.12, and the increase in ag-

gregation number Nagg is approximately linear with increasing concentration. The

strongest dependence on the final calculated value is found to be with concentra-

tion, as opposed to variation in n. The variation in the values of Nagg for different

values of n, but similar concentrations, are likely to be due to varying levels of

equilibration or random fluctuations, as opposed to having physical meaning.

The weighted aggregation number NW is also calculated for each case, the

definition of which is also described in Section 6.2.2.2, and reported in Table 6.6.

This quantity is commonly used to report the final aggregation number of micellar
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c = 7% c = 10% c = 20%

n = 0
Nagg = 40± 12
NW = 44± 15
Nagg/NW = 1.09

Nagg = 52± 10
NW = 54± 11
Nagg/NW = 1.04

Nagg = 75± 19
NW = 80± 28
Nagg/NW = 1.06

n = 1
Nagg = 37± 13
NW = 41± 21
Nagg/NW = 1.12

Nagg = 44± 14
NW = 48± 18
Nagg/NW = 1.10

Nagg = 88± 24
NW = 94± 33
Nagg/NW = 1.07

n = 2
Nagg = 38± 10
NW = 41± 12
Nagg/NW=1.07

Nagg = 50± 10
NW = 52± 12
Nagg/NW = 1.07

Nagg = 87± 25
NW = 94± 28
Nagg/NW=1.08

n = 3
Nagg = 36± 11
NW = 39± 13
Nagg/NW = 1.09

Nagg = 47± 13
NW = 51± 16
Nagg/NW = 1.08

Nagg = 77± 22
NW = 83± 28
Nagg/NW = 1.08

AES
Nagg = 43± 12
NW = 46± 12
Nagg/NW = 1.07

Nagg = 53± 15
NW = 57± 19
Nagg/NW = 1.09

Nagg = 85± 17
NW = 88± 20
Nagg/NW = 1.04

Table 6.6: Values for the mean aggregation number Nagg and weighted aggregation
number NW for varying micellar solutions.

systems in literature [17], since it is more commonly reported than the number

average from experiments. The weighted aggregation number is in all cases larger

than the standard mean aggregation number Nagg, as a result of the polydispersity

of the micelle sizes.

The value of NW = 44, obtained for the weighted aggregation number for SDS

(n = 0) solutions at 7% concentration, is in agreement with that obtained by

Anderson et al. (2018) [17], although not in agreement with what is reported

experimentally [21, 22]. Therefore there is a significant under-prediction of the

aggregation number, where it is approximately half of that found experimentally.

However, the aggregation number of the micelles grows rapidly with increasing

concentration in the DPD simulations, at a rate which is not seen experimentally.

This means that at a concentration of 20% the under prediction in DPD when

compared with experiment is much less severe. Experimentally, the mean aggre-

gation number at this concentration is reported as Nagg = 104 [20,22]. In this work

a 20% SDS solution is predicted to have a mean aggregation number of Nagg = 80.

Resulting in an an aggregation number that is 77% of that determined experimen-

tally. Contrastingly, in the work of Anderson et al. (2018) [17], the aggregation
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number for an equivalent system is N = 134, which is a significant over-prediction.

However, in this work the system is made up of, on average, 128 micelles, while in

Anderson et al. (2018) [17] the system is made up of just 3–4 micelles.

The over-prediction in their work could be a result of the small number of

micelles in the system. The narrowing of the gap between the DPD results in

this work and those found experimentally, once we reach higher concentrations,

could suggests that the simulation factor causing the under-prediction becomes

less important at higher concentration, or that if the under-prediction is a result

of poor equilibration, this becomes less relevant at high concentrations. It could

be the case that at low concentrations the micelles are further apart, and due to

the strong inter-micellar repulsions, they struggle to reach close enough to coalesce

into larger micelles.

The average separation of the micelles can be calculated for each simulation

case. The system is characterised by the radial distribution function g(r) which

describes how the density varies as a function of distance from an individual mi-

celle. This function is calculated by calculating a distance from the centre of mass

of a micelle to other micelles in the simulation box. This function is normalised

to the mean density of the system. The first peak in g(r) represents the nearest

neighbour distance. As the distance from the reference particle increases, the os-

cillations in g(r) dampen, and it approaches a value of 1 (i.e. approaches average

density). A figure showing this is presented in Fig. 6.13. The location if the first

peak for varying concentration and n is shown in Table 6.7. The average separation

generally decreases with increasing concentration and increases with increasing n.

Interestingly, the average distance between micelles correlates much more closely

with varying n, than the mean aggregation number does. As n increases, there are

fewer surfactant molecules in a solution with equivalent weight concentration. This

means that as the aggregation number stays approximately constant with n, fewer

micelles are formed, and therefore their average spacing increases. Experimentally,

for SDS micelles at 20% concentration at room temperature, this separation is de-
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Figure 6.13: Radial distribution function for increasing concentration. Distance in
DPD units. Results shown for case in which n = 3.

Concentration c (%)
c = 7 c = 10 c = 20

Ethoxylation n

n = 0 11.75 11.25 10.25
n = 1 11.75 11.25 11.25
n = 2 12.75 12.25 12.25
n = 3 13.25 12.75 12.25
AES 12.25 11.75 11.25

Table 6.7: Average micelle separation for different values of n, with values given in
DPD units. Note that all values have an uncertainty of ±0.25, which is calculated
as the width of the bins in Fig. 6.13.
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termined to be 5.7nm [266]. In DPD the value found, converted into real units

(see section 3.3.3 for this conversion), is 5.8± 0.1nm, which is in good agreement,

despite the smaller aggregation number. However, for the 20% concentration case

the mean aggregation number is less severely under-predicted than in the lower

concentration cases. In these cases the inter-micellar spacing might have greater

divergence from the experimentally measured value, however the experimental re-

sults for lower concentrations are more difficult to interpret [266].

For the AES case with a distribution of n, an investigation is performed into

the how different length molecules are distributed across the micelles. It might

be expected that molecules which are similar in length prefer to form micelles

together, resulting in a larger spread of micelle sizes compared to polydisperse

cases. However, this is not found. The micelles generally contain a fraction of each

molecule type, which is consistent with their overall abundance in the solution.

6.3.1.4 Radius of Gyration of Micelles

In order to investigate the relationship between the aggregation number N of an

individual micelle and size of that micelle, Fig. 6.14 shows the radius of gyration

RG plotted against N for a variety of simulation cases. There is a clear increase

in the value of RG with increasing N for all cases of n. There is also very little

dependence of RG on concentration, for a given aggregation number N . The largest

observable difference in the results from different concentration solutions, is that

the maximum aggregation number achieved shifts to higher values, at increasing

concentration.

Since there is very little difference in the relationship between RG and N for

different concentrations c, the results for each case of c can be combined in order to

compare the effect of varying n. Therefore a comparison of the different values of

RG obtained from varying the number of ethoxy groups n in the molecule, is shown

in Fig. 6.15. Larger values of RG are found for increasing n, owing to the increase

in the molecular length and therefore increasing micelle size. As the aggregation
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

(e) n = AES

Figure 6.14: RG plotted against N for a variety of choices of ethoxylation values n.
For each case of n the results from 3 different simulations of varying concentration
are plotted: 7% (red), 10% (blue), and 20% (orange). The simulations reach
higher aggregation numbers as the concentration of the simulation increases. The
aggregation number N is binned into bins of size 5 and error bars represent the
standard deviation.
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Figure 6.15: RG against aggregation number N for a variety of solutions with vary-
ing ethoxylation n values. In this figure the results from all three concentrations
simulated (7, 10 and 20%) are combined. The aggregation number N is binned
into bins of size 5 and error bars represent the standard deviation.

number increases, the radius of gyration grows at a faster rate for molecules with

smaller values of n, as opposed to longer molecules with larger n. This could be

suggesting that micelles formed from molecules with lower n become asymmetric

more rapidly, with increasing aggregation number.

In order to investigate the effect of varying N on the shape of a micelle, Fig.

6.16 shows the relationship between R3
G/N and N for all simulation cases. For

spherical micelles the value of R3
G/N should be independent of N , however it is

illustrated in Fig. 6.8 that for non-spherical micelles this relationship can deviate.

In all simulation cases Fig. 6.16 shows that there is a range in N for which

R3
G ∝ N holds, and the plot of R3

G/N against N produces an horizontal line

with zero gradient. However, at very low and high values of N the relationship

deviates, suggesting a non spherical nature. For most cases, the actual size of the

range where the relationship holds is quite narrow, and the transition from oblate

to prolate occurs quite rapidly.

Once again, note that there is only a very slight difference between the different
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concentration solutions. If it is assumed that the micelles take a spheriod shape,

then Fig. 6.8 shows that the deviations in R3
G/N that can result from the micelle

taking an oblate or prolate shape. It is likely that the deviations at low aggregation

numbers N are as a result of prolate shape, while deviations at high aggregation

numbers are observed to be from increasingly oblate shape. In this analysis we

assume that transition to rod-like structures has not yet taken place, however

at higher concentration solutions above 20%, this assumption no longer becomes

applicable. The phase behaviour of concentrations above 20% will be discussed in

more detail in the following chapter.

Once again, the results from varying concentrations can be pooled for the ratio

R3
G/N , as there is not much deviation with changing concentration. Fig. 6.17

compares the relationship between R3
G/N and N , for varying n values. It is clear

that the range of aggregation numbers over which the micelles take a spherical

shape varies with n. A value for the the middle of this range can be found, by

averaging over the values of N where the plot of R3
G/N vs. N has zero gradient.

Similarly, the value of RG at this value of N is also calculated. This means we can

plot the increase in the size of spherical micelles, as a result of varying n. This is

shown in Fig. 6.18. The plot shows the relationship with both parameters increases

linearly with n. The linear relationship between RG and n means that the micelles

are growing proportionally to the increase in the surfactant molecule’s length.

Also plotted are the values for micelles containing a distribution of n (representing

AES), which take the values Nagg = 53.4 and RG = 0.365. The values of RG

and aggregation number calculated for AES solutions (with an average value of

n = 0.76) fit in reasonably well with the trends calculated from the monodisperse

cases. There is a slight indication that the properties of mixtures of surfactants

of varying n, cannot simply be calculated from interpolation of pure component

cases, since the values at 0.76 are slightly lower than expected. However this looks

to be a relatively subtle effect.

In the region of low aggregation number (i.e. at values of N below the plateau),
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

(e) n = AES

Figure 6.16: R3
G/N plotted against N for a variety of choices of ethoxylation values

n. For each case of n the results from 3 different simulations of varying concentra-
tion are plotted: 7% (red), 10% (blue), and 20% (orange). The simulations reach
higher aggregation numbers as the concentration of the simulation increases. The
aggregation number N is binned into bins of size 5 and error bars represent the
standard deviation. Fits are intended to be a guide to the eye, and are performed
using a fit to a polynomial function of degree 3, using a least squares method in
Python.
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Figure 6.17: R3
G/N against aggregation number N for a variety of solutions with

varying ethoxylation n values. In this figure the results from all three concen-
trations simulated (7, 10 and 20%) are combined. The aggregation number N is
binned into bins of size 5 and error bars represent the standard deviation.

the deviation from spherical shape is more pronounced with increasing n. For

example, for systems described by n = 3, the value of R3
G/N at N = 17 is ≈ 36%

larger than the value of R3
G/N in the middle of the plateau (i.e. the region that

describes spherical micelles at N ≈ 95). Whereas for systems in which n = 0,

the increase in R3
G/N for spherical micelles (identified at N ≈ 40), to micelles at

aggregation number N = 17, is only ≈ 7%. If the higher aggregation region of Fig.

6.17 is considered, the opposite behaviour is true. The tendency of the micelles

formed with smaller values of n to become non-spherical more easily is consistent

with other computational studies [281,282].

Although the DPD simulations under-predict the value for the mean aggrega-

tion number, the shape of the micelles for a given aggregation number are rea-

sonably consistent with experiment. For example, at an aggregation number of

N = 83, the value of R3
G/N for SDS is estimated to be R3

G/N ≈ 0.364, while when

the micelles are spherical, the ratio is found as R3
G/N = 0.312 resulting in a ratio

of the two values 0.364/0.312 ≈ 1.17. Experimentally at Nagg = 83, the ratio of the
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Figure 6.18: The radius of gyration RG (DPD units) and mean aggregation number
is calculated for micelles which are deemed to be approximately spherical, based
on the value of R3

G/N . Plotted is the variation of these two quantities with varying
chain length n. Error bars shown represent the standard deviation. Also plotted
is the value calculated for AES, which has an average value of n = 0.76.

axis in the prolate shape are reported to be b1/b2 = 1.49 [21]. Based off the figure

shown in Fig. 6.8, this should result in a ratio of R3
G/N to be 1.13, comparing

well with what is found in DPD. The fit to the relationship between R3
G/N vs. N

for SDS micelles gets more uncertain as the aggregation number increases, due to

fewer micelles forming at high values of N .

6.3.1.5 Radius of Gyration of Molecules

In this section we turn our attention to the size and shape of the individual

molecules that form the micelles. As well as calculating the radius of gyration

RG for a micelle, made up of many molecules, the radius of gyration can be calcu-

lated for each constituent molecule Rg in that micelle, using Eq. 6.12. This means

that the variation of Rg with aggregation number N can be found, in order to

investigate the effect that increasing micelle size has on the size of the molecules

forming that micelle.

The value of Rg will increase with increasing ethoxylation n, just from the fact
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Figure 6.19: Average radius of gyration of molecules Rg of different length n. The
value of Rg for a given n is obtained by averaging across simulations conducted at
concentrations c = 7, 10, 20%. The error bars, calculated at the standard deviation,
are smaller than the symbol sizes.

that the addition of the ethoxylation bead (OCH2CH2) increases the length of the

molecule. The average value of Rg, for a given value of n (averaged across different

concentrations), is shown in Fig. 6.19. The average value of Rg increases linearly,

as expected due to the additional ethoxylation bead.

Plots of the radius of gyration Rg against aggregation number, for a variety of

simulation cases, is shown in Fig. 6.20. It is shown that the radius of gyration Rg

increases with increasing aggregation number N , before plateauing at a maximum

value. However the radius of gyration only changes by a very small fraction, such

that the error bars would obscure the plot. Therefore, it is difficult to definitively

confirm that there is a trend.

6.3.1.6 Conclusion

In this section the equilibrium behaviour of micellar solutions of varying concentra-

tion c and varying ethoxylation n have been investigated. The mean aggregation

numbers are generally an under-prediction of those found experimentally, although

there is an increase in Nagg with increasing concentration, as expected. No sta-
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

(e) n = AES

Figure 6.20: Rg plotted against N for a variety of choices of ethoxylation values n.
For each case of n the results from 3 different simulations of varying concentration
are plotted: 7% (red), 10% (blue), and 20% (orange). The aggregation number
N is binned into bins of size 10. Note that the error bars are not plotted, as the
standard deviation of each bin is so large that it obscures the plot when included.
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tistical difference is found in the mean aggregation numbers for different n at any

value of the concentration, although some dependence on n was expected from

experimental observations [286].

The under-prediction of the aggregation number is likely to be due to the

treatment of the electrostatic interaction, which was also discussed by Anderson

et al. [17]. These authors suggest that one potential problem with the electrostatic

treatment is the assumption of a uniform dielectric permittivity in the simulations.

We notice that the disparity between experimental results and simulated results

decreases with increasing concentration. It is thought that the long range effect of

the electrostatic interaction becomes outweighed by the importance of the short

range interactions as the concentration increases. In the following section chapter

we will investigate the effect of increasing concentration into the lyotropic regimes,

so will see if mistreatment of the electrostatic interaction becomes unimportant

as the concentration increases. Of course fully understanding the reason behind

the under prediction of the aggregation number requires further research. In par-

ticular, the effect that ‘smearing’ the charge, as opposed to treating the beads as

point charges, should be fully investigated. Further to this, a later chapter in this

thesis (Chapter 8) uses molecular dynamics to investigate SDS micelles. It will be

shown in this chapter that quantum mechanical calculations determine that the

charge distribution on an SDS molecule is more complex than how it has been

approximated in the DPD simulations. In this DPD work, the charge has all been

confined to the first bead in the chain (CH2OSO−13 ), whereas in reality there is a

distribution of charge across the entire molecule. It would be a worthwhile area of

research to assess how much of an effect this simplification has on the final results.

The size of the micelles as a function of their aggregation number N was quan-

tified using the radius of gyration RG, and the shape could then be quantified by

the ratio R3
G/N . It was concluded that the aggregation number N at which spher-

ical micelles form, varied with n. The aggregation number at which the transition

from spherical micelles to prolate micelles shifts to higher values as the number of
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ethoxy groups in the surfactant chain increases. The ability to accurately quan-

tify the shape of the micelles in a DPD simulation is incredibly useful, given the

difficulty obtaining similar results from experiments. The ambiguity across differ-

ent experimental methods and results from different researchers was highlighted

in Section 6.2.

The remainder of this chapter will now study the different methods which can

be used to calculate the viscosity of the systems described. Also covered will be

how the systems behave when subject to a shear force, and the effect this has on

the micelles.

6.4 DPD Simulations for Micellar Solutions Un-

der Shear and Viscosity

In the equilibrium simulations discussed thus far, the traditional thermostat has

been used. However, Section 3.3.6 discussed how the traditional thermostat for

DPD does not generate a very realistic viscosity (or diffusion coefficient) for fluids.

This can be rectified by applying an additional thermostat. At the beginning

of this chapter, it was stated that for the viscosity calculations, it is chosen to

switch to using the Stoyanov-Groot thermostat. In first applying the traditional

DPD and then switching to thermostated DPD later on, we get the benefit of the

rapid equilibration from traditional DPD, but also generate more realistic Schmidt

numbers for studying the rheological behaviour. The effect of different Schmidt

numbers can be investigated for micellar solutions subject to shear. Therefore, the

first part of this section will be dedicated to investigating how the Stoyanov-Groot

thermostat behaves, when applied to a simple simulation case consisting of purely

water beads. Following this we will move onto using DPD methods in order to

apply shear to the micellar systems, and also calculate the viscosity.
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6.4.1 Thermostating and Parameter Choices

A variety of initial simulations were performed on simulation boxes containing

only water beads, in order to investigate the effect of varying certain parameters

including: collision frequency Γ (as described in Section 3.3.6), time step ∆t, box

size L and shear rate γ̇. The primary aim of this section is to investigate the

effect of varying these parameters on the viscosity and diffusion coefficient of the

simulation (and therefore the effect on the Schmidt number). As water is expected

to be Newtonian, the calculated viscosity should be independent of the applied

shear rate. The viscosity can be calculated using two different methods. The first

is by using auto-correlation functions, as is described by Eq. 3.39. This is an

equilibrium method in which no shear is applied, and is only applicable because

we already assume that the fluid will have Newtonian behaviour. The second

method relies on the application of shear, and the viscosity is calculated using the

off-diagonal stress tensors described by Eq. 3.40. Using this second method we

can apply varying shear rate to confirm Newtonian behaviour, and compare with

the viscosity calculated via the auto-correlation method. The diffusion coefficient

can be calculated by two different methods, however they both only require an

equilibrium simulation. The diffusion coefficient can be calculated using correlation

functions described in Eq. 3.45, alternatively it can also be calculated using the

mean squared displacement, as shown in Eq. 3.44. We will calculate the diffusion

coefficient D via both methods in order to compare and verify that both methods

are consistent. In summary, this section aims to answer the following questions:

• Does calculating the diffusion coefficient via the mean squared displacement

and autocorrelation methods produce the same result?

• Does calculating the viscosity via the autocorrelation and the shearing meth-

ods produce the same result?

• Is the viscosity calculated via the shearing method independent of the shear

rate used?
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Figure 6.21: Plot of 〈(r(t) − r0)
2〉 (MSD) against time for a different values of

collision parameter Γ. A fit to the linear portion of the plot can be used to find
the diffusion coefficient. Time step used ∆t = 0.01 and box size L = 20.

• Does box size alter the calculation of the viscosity or diffusion coefficient?

• How do choices for Γ and ∆t affect the viscosity and diffusion coefficients?

6.4.1.1 Calculating Diffusion Coefficient

The diffusion coefficient is calculated by two different, equilibrium methods. The

first is the mean squared displacement (MSD) method. The MSD is plotted against

run time t for two different Γ values in Fig. 6.21. From these fitted gradients the

diffusion coefficient D can be found using Eq. 3.44. Plots showing the time step

independence and Γ dependence for the diffusion coefficient D, as calculated using

the MSD method, are shown in Fig. 6.22.

The diffusion coefficient can also be calculated using Green–Kubo formulas,

which relate D to the integral of the velocity autocorrelation function (see Eq.

3.45). An example of the velocity autocorrelation is shown in Fig. 6.23. The

function decays to zero at long time scales, so the area under the curve is integrated
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Figure 6.22: Plot of the inverse of the diffusion coefficient (1/D) against collision
parameter Γ for different time steps ∆t = 0.01 and ∆t = 0.001. Diffusion coeffi-
cient is calculated using the MSD method for box size L = 20. Line of best fit is
to data points for ∆t = 0.001.

Γ = 1 Γ = 10 Γ = 250 Γ = 500
MSD Method 0.152 0.0541 0.00323 0.00151

Autocorrelation Method 0.156 0.0550 0.00324 0.00152

Table 6.8: Diffusion coefficients calculated for a variety of collision parameters
Γ, for both methods of calculating the diffusion coefficient D. Time step used is
∆t = 0.001 and box size is L = 20 for all calculations.

up to a suitable cutoff, after which the remaining contribution to the integral is

assumed to be zero. The values found for calculating D from both methods are

found to be equivalent, as illustrated by a selection of data in Table 6.8.

6.4.1.2 Calculating Viscosity

The viscosity is calculated using two different methods. One being the equilibrium

method that uses autocorrelation functions, the other is a non-equilibrium method

which relies on the application of shear and averaging the off-diagonal stress tensor

components. The results obtained from the shearing method will be discussed first,
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Figure 6.23: Plot of 〈v(n)v(n+ t)〉n against time for a different values of collision
parameter Γ. The area under the curve can be integrated to find a value for the
diffusion coefficient. Time step used ∆t = 0.01 and box size L = 20.

before comparing with those obtained from autocorrelation function methods.

Upon initial application of shear, the value of the off-diagonal stress tensor σxy

of the solution (calculated using Eq. 3.41) exhibits an initial response, and this

is shown in Fig. 6.24. Over this initial response time, the average value of the

stress tensor is changing, before plateauing to an equilibrium which can be used

for calculating the viscosity. Table 6.9 shows the effect of varying shear rate γ̇, for

varying cases of time step ∆t and collision parameter Γ. Table 6.9 allows us to

draw a number of different conclusions. The first is that the viscosity that can be

obtained via a simulation is capped by the value of Γ∆t which, as it represents a

probability in the application of the theromostat, must be Γ∆t ≤ 1. The second

conclusion is that, provided this constraint is satisfied, the viscosity calculated is

independent of the time step used, but the values start to deviate when both ∆t

and Γ are large (even if Γ∆t ≤ 1 is satisfied). Finally, the results also show that

the obtained value of viscosity is effectively independent of the shear rate, in all

cases of Γ and ∆t, confirming Newtonian behaviour.

Obtaining a final viscosity value is easier for some sets of parameters illustrated
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Γ = 1 Γ = 100 Γ = 250

γ̇ = 0.06
∆t = 0.01 1.01 45.3 46.4
∆t = 0.001 1.02 35.1 90.7
∆t = 0.0001 1.03 33.8 84.1

γ̇ = 0.0006
∆t = 0.01 1.05 45.6 46.7
∆t = 0.001 1.03 35.8 86.8
∆t = 0.0001 1.01 35.1 85.2

Table 6.9: Viscosity calculated for a box containing pure water, and varying the
collision parameter Γ, shear rate γ̇ and time step ∆t. All simulations are performed
using box size L = 20.

Γ = 1 Γ = 10 Γ = 100 Γ = 250 Γ = 500
γ̇ = 0.06 0.19 0.22 0.66 1.1 1.6
γ̇ = 0.006 0.020 0.023 0.066 0.11 0.16

Table 6.10: Signal-to-noise ratio (SNR) of the off-diagonal stress tensor σxy for
varying shear rate γ̇ and varying collision parameter Γ. Values obtained from
simulations using time step ∆t = 0.001 and L = 20.

in Table 6.9 than others. Finding the viscosity can involve needing to average over a

vary large number of stress tensor outputs in order to find an equilibrated value (i.e.

a value that is no longer considered to be changing with further iterations). The

cases in which it is easier to obtain the viscosity are when there is a greater signal-

to-noise (SNR) ratio of the outputted off-diagonal stress tensors. The definition

of the SNR as used in this work is defined as the ratio of the mean value of

the off-diagonal stress tensor outputs, to the standard deviation of the outputted

data. Table 6.10 shows the value of SNR for varying shear rate γ̇ and varying

collision parameter Γ. It is shown that the signal-to-noise ratio is much stronger

for higher shear rates and larger values of Γ. In fact, the value of SNR decreases in

proportion to decreases in γ̇. This implies that obtaining viscosity values increases

with difficulty with decreasing shear rate. The larger value of SNR implies that it

might be beneficial to use larger values of Γ, in order to investigate the relationship

between the applied shear rate and the viscosity. However, the simulations with

larger values of Γ take longer to run, outweighing the benefit of a larger SNR. For

example, simulations using Γ = 45 take approximately 4 times longer per iteration,

than simulations conducted using Γ = 0.
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Figure 6.24: Response of a solution consisting of water beads, in a simulation of
box size L = 20, to an initial application of shear with shear rate γ̇ = 0.06. In
the example given, parameters used are ∆t = 0.01 and Γ = 100, which results
in a final value of 〈σxy〉 = −2.73 and η = 45.4. Plotted is the average value of
the off-diagonal stress tensor σxy against the iteration. Following the reach of a
plateau, data can be collected in order to calculate the value of σxy for calculating
the viscosity.
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Figure 6.25: The relationship between collision parameter Γ and the resulting
viscosity of a solution containing only water beads. The viscosity is obtained
using the shearing method, a shear rate of γ̇ = 0.006, and box size L = 20. Two
different time steps are trialled ∆t = 0.01 and ∆t = 0.001. Fit is applied to the
points from the ∆t = 0.001 for Γ ≤ 250.

Fig. 6.25 confirms that the relationship between viscosity η and Γ is linear,

as is expected for this thermostat. Also shown are the results from different time

steps, showing that the results are equivalent. The relationship deviates from

nonlinearity when the value of Γ∆t begins to get large.

The viscosity η can also be calculated via Green–Kubo formulas, which relates

η to the integral of the autocorrelation function of the off diagonal stress tensor.

In order to investigate whether this method produces equivalent results to the

above method, the viscosity is calculated using a variety of different Γ choices, and

the autocorrelation function is shown in Fig. 6.26. The curves shown in 6.26 are

then integrated up to a sufficiently large value of t, in order to obtain a value for

η. It is shown that as the value of Γ increases (i.e. the friction increases), the

autocorrelation function decays more rapidly, which is consistent with that found

by other researchers [287]. This poses a problem for using this method at high

Γ values. A comparison of the viscosity values obtained via the autocorrelation
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Figure 6.26: Examples of the autocorrelation functions obtained for different values
of the collision parameter Γ. The auto-correlation function is integrated over time,
in order to provide values for the viscosity. Values of viscosity obtained from
integrating curves: η = 0.703 (Γ = 0), η = 0.961 (Γ = 1), and η = 3.95 (Γ = 10).

method and the shearing method are shown in Table 6.11. Also included are the

results from varying box size L. It is clear that the results obtained via the two

different methods are equivalent within a reasonable margin. The results from the

two different box sizes are also equivalent.

6.4.1.3 Relationship Between Γ and Schmidt Number

Fig. 6.22 confirms that the relationship between Γ and 1/D is linear, and Fig.

6.25 confirms that the relationship between Γ and η is linear. The relationships

only began to display slightly non-linearity at very high values of Γ∆t. Therefore

Fig. 6.27 shows the relationship between Γ and the Schmidt number, confirming

a Sc ∝ Γ2 relationship.
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Figure 6.27: The relationship between collision parameter Γ and the resulting
Schmidt number of a solution containing only water beads. Two different time
steps are trialled ∆t = 0.01 and ∆t = 0.001. The fit of the form Sc = AΓ2 + B
where A and B are constants are applied to the points from the ∆t = 0.001 for
Γ ≤ 250.

Γ = 1 Γ = 45

Shearing Method
L = 20 1.01 17.9
L = 40 1.02 18.1

Autocorrelation Method
L = 20 0.961 18.0
L = 40 0.978 18.1

Table 6.11: Viscosity calculated using both the shearing and auto-correlation
methods, for box sizes L = 20 and L = 40. Time step used is ∆t = 0.01 for
all calculations with shear rate γ̇ = 0.06 for the calculations involving the appli-
cation of shear.

6.4.1.4 Conclusion

For the purpose of calculating the viscosity, the autocorrelation function method is

superior in some ways. The shearing method requires the simulation box to be run

for longer in order to obtain the same result. However, the autocorrelation function

method can only be used to find the viscosity for Newtonian fluids, which may be

applicable for micellar cases, but not the liquid crystal phases. The autocorrelation

function for the viscosity calculation also decays much more rapidly for larger
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values of the collision parameter Γ, meaning that only low values of Γ can be used

in this method. It has been shown that the viscosity is independent of the box

size, irrespective of the calculation method used, or the choice of Γ. Of course,

for the micellar phase, additional considerations need to be made related to the

number of micelles formed in the box, as the box size will need to be sufficiently

large in order to have a large enough number of micelles.

The range of Schmidt numbers that can be obtained via the Stoyanov-Groot

thermostat is very large. For pure water at 25◦C, experimentally determined

values for the self-diffusion coefficient and the viscosity find a Schmidt number

of approximately Sc ≈ 400. This means that an equivalent Schmidt number in

DPD would be generated with a collision parameter of Γ ≈ 45.

In the following section both viscosity calculation methods will be used in order

to investigate the rheological behaviour of micellar solutions.

6.4.2 Viscosity via the Autocorrelation Method

In order to investigate the viscosity of the simulation cases described in Section

6.3, the autocorrelation method is first applied. The method is applied to the equi-

librated micellar simulation boxes. The thermostat is switched to the Stoyanov-

Groot thermostat, and a selection of collision parameter values are trialled. This

begins with Γ = 0 (i.e. a pairwise variation of the Nosé-Hoover thermostat). Γ = 0

is selected due it being shown in the previous section that the autocorrelation func-

tion decays (as a function of time) more slowly when Γ is small. Therefore for low

Γ values it will be easier to find a value for the viscosity via this method. The

time step remains at ∆t = 0.01.

The difference in the autocorrelation functions obtained for different concen-

trations, is shown in Fig. 6.28. The same cutoff tC = 1.8 for integration over time

t is applied to all simulation cases for consistency, at a value at which all functions

have decayed to approximately zero.

The obtained viscosity for all simulation cases is shown in Fig. 6.29. Simi-
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Figure 6.28: The autocorrelation function against time obtained for the case of
mixed n (representing AES) for different concentration cases c (wt%).

larly to the aggregation number plot shown in Fig. 6.12, the viscosities obtained

for varying n at each concentration are relatively indistinguishable, with overlap-

ping error bars. However, there is a clear growth in the viscosity with increasing

concentration. The growth of the viscosity with increasing concentration is at a

smaller rate than predicted experimentally. For example, the ratio of the viscos-

ity calculated η to the viscosity of water ηW, as found via DPD, takes the values

η/ηW = 1.1 (7%), η/ηW = 1.3 (10%) and η/ηW = 1.6 (20%). In contrast the

values obtained experimentally are for SDS η/ηW = 1.5 (7%), η/ηW = 1.9 (10%)

and η/ηW = 4.1 (20%). For AES the ratios obtained are larger at higher concen-

tration: η/ηW = 1.5 (7%), η/ηW = 2.0 (10%) and η/ηW = 8.3 (20%). However,

the under-prediction is expected, due to the under-prediction of the aggregation

number of the micelles in DPD.

Ideally, we would now investigate if the choice of Γ effects the relative viscosity

changes (i.e. value of η/ηW). However, it was reported in the previous section

that for increasing values of Γ the autocorrelation decays more quickly. It was

found that at larger values of Γ, the autocorrelation function decayed too quickly
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Figure 6.29: Viscosity calculated for the micellar solutions with Γ = 0 using the
autocorrelation method. The error bars represent the standard deviation of the
values obtained from different off-diagonal stress tensor values. For reference the
viscosity of water obtained using this value of Γ is η = 0.70 and time step ∆t = 0.01

to calculate accurate values of the viscosity, in a way that meant a meaningful

comparison of the different cases could be made. However, we vary the value of Γ

anyway, in order to see if it results in any change in the radius of gyration of the

molecules Rg, in a similar way to other research [145]. For these simulations, the

final configuration obtained in Section 6.3 was taken as the initial configuration

for the simulations varying Γ. The value of the radius of gyration was found to be

independent of the collision parameter Γ for all simulation cases of ethoxylation

n and concentration c. An example of this for the case in which n = 0 and

the concentration c = 20% is shown in Table 6.12. This is in agreement with

Symeonidis et al. [145], who find that for DPD simulations modelling polymer

chains, and applying the Lowe-Andersen thermostat with varying choices of Γ,

when no shear is applied, the effect of varying Sc is minimal on the value for

the radius of gyration 〈R2
g〉. However, they also report than when when shear is

applied there is a large difference in the value of 〈R2
g〉 at different Γ values. This

will be investigated in the next section.
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Thermostat parameters Radius of gyration Rg

No thermostat 0.8541± 0.0007
Γ = 10 0.8548± 0.0006
Γ = 45 0.8546± 0.0005
Γ = 250 0.8543± 0.0005

Table 6.12: The average value of Rg obtained for simulations with varying collision
parameter Γ. Also shown are the original results obtained from the previous
section, when applying no additional thermostat is applied. In these simulations
n = 0 and the concentration c = 20%. The uncertainties are calculated as the
standard deviation.

6.4.3 Shearing Micelles

This section will look at applying shear to the micellar solutions. This will allow for

investigation into if the application of shear has any effect on the size and shape of

the micelles. Since the micellar solutions exhibited Newtonian rheology in Chapter

4, this would not be expected at moderate values of shear rate, as any size change

would be thought to affect the rheology. However, for extremely high values of

the shear rate, other authors have reported stretching of micelles, leading to a

non-Newtonian rheology [62]. This section will also calculate the viscosity from

these solutions, using the off diagonal stress tensor components that are non-zero

due to the application of the shear force.

6.4.3.1 Simulation Set-Up

The process of using applied shear in order to calculate viscosity is explained in

Section 3.4. Lees-Edwards boundary conditions are used, which is an adapta-

tion of the standard periodic boundary conditions, for inducing shear flow. The

application of these boundary conditions generates a linear velocity profile. The

simulations are initialised from the previously equilibrated results in the earlier

part of this chapter. The simulations are then switched to being performed in the

Stoyanov-Groot thermostat, in order to change the value of the Schmidt number.

In order to investigate the effect of the collision parameter on the shearing

calculations, two values of Γ are trialled. Of particular interest is the impact

Γ has on the calculated viscosity profile, and the the radius of gyration of the
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molecules, since in published work these have been parameters of interest (with

varying Schmidt number) [145,146]. The first collision parameter trialled is Γ = 45.

This value was chosen as it represents a realistic Schmidt number for the fluid. The

second was a value of Γ = 250, in order to generate a significantly larger Schmidt

number for comparison. This value is chosen since it will be used in the viscosity

calculations in the following chapter for the liquid crystals (to be discussed further

in Section 7.3). In the simulations using Γ = 45, a time step of ∆t = 0.01 can be

used, however, when Γ = 250 the time step must be reduced and a time step of

∆t = 0.001 is used.

In this chapter the aim was to reproduce the experimental simulations as much

as possible, which means that low shear rates should be used. Shear rate has units

of [time]−1, so using the conversion between DPD units and real time described in

Section 3.3.3, this means that for the shear rate γ̇ = 1DPD unit = 4.61× 1011s−1.

Given that the rheometer measurements for the micellar solutions go up to a value

of shear rate around γ̇ = 60s−1, the typical range of shear rates in other DPD

works are very large. However, one of the main barriers to achieving low shear

rates is the amount of noise in the simulation, and the SNR ratio was shown to

increase at a rate equivalent to the rate of decrease in the shear rate in Table

6.10. Theoretical values at low shear rates can still be obtained, using very long

simulation times. A range of shear rates are trialled in this study, varying from

γ̇ = 1.2 × 10−6 to γ̇ = 1.2 × 10−1 (in DPD units), with increments of 10. The

simulation cases investigated include: n = 0 (10% and 20%), mixed n (10% and

20%) and n = 1 (10% and 20%).

6.4.3.2 Micellar Shape

This section will begin with looking at the simulations performed using collision

parameter Γ = 45. At the low values of shear rate trialled, there was no observ-

able difference in the shape of the micelles, when compared with the equilibrium

simulations. However, at very extreme shear rates, changes in the micellar shape
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start to become observable. This is shown for the n = 1 case at 20% concentration

in Fig. 6.30. At shear rates ≤ 1.2 × 10−4, the micelles retain the same shape

and configuration as in the equilibrium simulations. However at a shear rate of

γ̇ = 1.2 × 10−3, some of the longer, more worm-like micelles become aligned in

direction of the shear flow. With subsequent increase in the shear rate, the mi-

celles noticeably elongated in the direction of shear flow. Finally, an increase to

γ̇ = 1.2× 10−1 breaks down the micelles into something closer to a nematic phase.

This abrupt change occurs at around the same shear rate for all of the simulation

cases trialled.

The micellar shape change has a significant effect on the radius of gyration

of the micelles RG. It might be assumed that it would be difficult to calculate

a value for RG, or the mean aggregation number Nagg, at high shear rates, due

to the distances between any aggregates becoming very small. However, when

the same processing codes are applied to the resulting final configurations (as

the ones used in the previous section), the aggregation number and radius of

gyration of the micelles found are shown in Fig. 6.31. At very high shear rate

(γ̇ = 1.2 × 10−1) the codes still pick up on the drop in the aggregation number,

but there is an increased likely hood of adjacent micelles being miss-classified as

connected, therefore the absolute value of the aggregation number may be not

entirely reliable at this shear rate. Moderate amounts of shear have the effect

of slightly enhancing the aggregation number, by encouraging free micelles to join

aggregates. Once the micelles start to significantly stretch, at increased shear rate,

they break into smaller micelles, decreasing the mean aggregation number. The

radius of gyration grows significantly under shear, mostly due to the stretch of

the micelles in the direction of shear. Once the micelles break down in to smaller

micelles at higher shear rate this radius of gyration drops accordingly. Both the

10% and 20% concentrations show similar trends with increasing shear rate.

The impact of the shear rate on the radius of gyration of the individual

molecules Rg, is shown in Fig. 6.32, with the effect being most pronounced when
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(a) γ̇ = 1.2× 10−4

(b) γ̇ = 1.2× 10−3

(c) γ̇ = 1.2× 10−2

(d) γ̇ = 1.2× 10−1

Figure 6.30: A micellar solution with 20% concentration, and molecules described
by n = 1, at increasing rates of shear in a DPD simulation. Note that only the
surfactant molecules are shown for clarity. Calculation performed using collision
parameter Γ = 45.
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(a) c = 10% (b) c = 10%

(c) c = 20% (d) c = 20%

Figure 6.31: Effect of shear rate on the mean aggregation number Nagg and micellar
radius of gyration RG, for solutions with n = 0, n = 1, AES and concentrations
c = 10% and c = 20%.

the micelles have completely broken down. Interestingly, the molecules show a

decrease in their radius of gyration with increasing shear rate, not an increase as

might be expected, which would be due to a stretch. The decrease in the radius

of gyration is likely to be because of a straightening of the molecule.

So far all of the presented results are obtained for collision parameter Γ = 45.

Also trialled, was increasing the collision parameter to Γ = 250. This significantly

raises the Schmidt number of the solution, in order to answer the question of

whether the Schmidt number alters the results of the calculation. The resulting

configurations for the n = 1 and 20% case is shown in Fig. 6.33 (which is equivalent

to the case shown in Fig. 6.30 when Γ = 45). It is observed that increasing the

value of Γ lowers the value of the shear rate at which the transition from spherical

micelles to stretched micelles, and finally dissaggregated micelles occur.
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(a) n = 0 (b) AES

Figure 6.32: Effect of shear rate on the radius of gyration Rg for solutions with
n = 0 and AES and concentrations c = 10% and c = 20%.

The effect of varying Γ on the mean aggregation number and radius of gyration

of the micelles is shown in Fig. 6.34. There is relatively little difference between

the two choices of Γ. Some slight differences begin to appear at higher shear rates,

although this is likely to be related to the transition from non-spherical micelles

occurring at a lower shear rate for the higher Γ case. It was shown in the previous

section, that varying the collision parameter Γ had minimal effect on the radius of

gyration of molecules Rg, when no shear is applied. The variation of Rg with shear

rate, for both values of Γ trialled, is shown in Fig. 6.35. The effect of varying Γ

has more of an effect on the individual molecules than it did on the micelles as

a whole. The radius of gyration displays very different behaviour at extremely

high shear rates, when the micelles have largely broken down. Symeonidis et

al. [145] find that the radius of gyration of molecules grows with increasing shear

rate, irrespective of Γ, although grows significantly less for systems with larger Γ.

However this was for a purely polymer system with no micelle formation. In our

case the radius of gyration drops once the molecules are no longer in a micelle at

Γ = 45 and increases when Γ = 250. Micelle formation has been shown earlier

in the chapter to lead to increases in the radius of gyration, explaining the drop.

Once the micelles break down in this system, the molecules behave much more like

a standard polymer system would.
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(a) γ̇ = 1.2× 10−4

(b) γ̇ = 1.2× 10−3

(c) γ̇ = 1.2× 10−2

(d) γ̇ = 1.2× 10−1

Figure 6.33: A micellar solution with 20% concentration, and molecules described
by n = 1, at increasing rates of shear in a DPD simulation. Note that only the
surfactant molecules are shown for clarity. Calculation performed using collision
parameter Γ = 250. 224



Figure 6.34: Comparison of the values of Nagg and RG obtained using different
values of Γ. Results shown for two different concentrations c.
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Figure 6.35: Comparison of the values of Rg obtained using different values of Γ.
Results shown for two different concentrations c.

6.4.3.3 Viscosity Calculation

Although simulations are run using shear rates in the range from γ̇ = 1.2 × 10−6

to γ̇ = 1.2 × 10−1, it is found that, there is too much noise in simulations with

γ̇ < 1.2 × 10−4 to obtain a converged value for the viscosity. For the simulations

conducted using Γ = 45, a comparison of the different values calculated for the

viscosity for concentration and n is shown in Fig. 6.36. The same results are also

plotted in Fig. 6.37, comparing the effect of varying n. The results show largely

shear thinning behaviour, which is likely related to the change in the micellar

shape and their break down. Due to the difficulty in accessing lower shear rates, it

can’t be observed if this viscosity eventually plateaus to a Newtonian relationship

with the shear rate at lower shear rate values (i.e. in the region in which the

micelles are not thought to be changing shape). However, comparing the values of

the viscosity at the lower shear rates, it is observable that the viscosity calculated

for the AES and n = 1 values are significantly larger than for the n = 0 case,

particularly for the case in which the concentration is larger. This is, at least

qualitatively, consistent with what is expected from experiment.
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(a) n = 0 (b) n = 1

(c) AES

Figure 6.36: Viscosity calculated at varying shear rates from applying shear in
DPD calculations. Individual plots correspond to the ethoxylation n, while in
each plot two different concentrations are shown. Error bars correspond to the
standard error. The horizontal black line indicates the viscosity of water at a
value of Γ = 45.

(a) c = 10% (b) c = 20%

Figure 6.37: Viscosity calculated at varying shear rates from applying shear in
DPD calculations. Individual plots correspond to different concentrations c, while
in each plot three different values of n are shown. Error bars correspond to the
standard error.
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Figure 6.38: Viscosity calculated for molecules with n = 0 in micellar solutions
using Γ = 250. Error bars correspond to the standard error.

The relationship between the viscosity and the shear rate, calculated using

Γ = 250, is qualitatively fairly similar to that found in the Γ = 45 case. However,

the viscosity overall is of a larger magnitude. An example shown for the n = 0 case

is shown in Fig. 6.38. The data points with shear rates γ̇ = 1.2× 10−3–1.2× 10−1

are well converged, and there is good confidence in the viscosity calculated in this

shear rate range. Some points with γ̇ = 1.2 × 10−4 are not shown because there

was too much noise in the final data in order to ascertain whether the simulations

had fully converged. They also are of note for having relatively large error bars.

The general trend is similar to the results obtained using Γ = 45. The relative

viscosity changes (η/ηW) for Γ = 45 and Γ = 250 are compared in Fig. 6.39 for

the viscosity calculated in the shear rate range γ̇ = 1.2 × 10−3–1.2 × 10−1. Only

the results obtained from the higher shear rate are used in this calculation, since

there is a larger amount of confidence in these calculated values compared to the

values obtained at γ̇ = 1.2× 10−4. The ratio of η/ηW is significantly larger for the

simulations using Γ = 45 vs. those from Γ = 250, indicating that Γ is relevant

when calculating viscosity ratios, and a simulation cannot simply be scaled by one
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(a) n = 0 (b) AES

Figure 6.39: Comparison of the ratio of the shear viscosity η calculated in a micellar
solution under shear, to the viscosity of water ηW. Results shown for varying Γ,
concentration c and ethoxylation n.

reference viscosity value.

Ideally the simulations would be conducted at increasingly lower shear rates

in order to find a point at which they plateau to a constant η/ηW value. While

the value for η/ηW is lower than what is found experimentally, the results indicate

that this may be a result of a high shear rate being used, and that perhaps if the

shear rate were lowered for the value of η/ηW would reach something that closer

matches the experimental results.

6.4.3.4 Summary

In this section we study the impact that shear flow has on micelles in solution.

The shear force can have a large impact on the micelles, which at increasing shear

rate can lead to micellar break down. A small amount of shear is indicated to

slightly enhance aggregation of the micelles, while increasing the size of the micelles

and aligning and stretching them in the direction of shear flow. This may be an

approach for investigating whether the equilibration of micellar systems can be

encouraged by applying a small amount of shear during the micelle formation

period, in order to increase the mean aggregation number towards values found

experimentally.

Whether the Schmidt number of the solution has any effect on the results
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obtained via DPD, has been open to debate in literature. It was found that

varying the value of Γ in simulations not subject to shear had no impact on the

values of the radius of gyration. The influence of Γ on Rg was found to have even

less of an impact than Symeonidis et al. [145] found for polymer systems, likely

because the micellar structure has a greater effect on the radius of gyration (when

compared to a free monomer) than altering the value of Γ would. In this section

we determine that the effect of increasing the Schmidt number can alter the values

of the radius of gyration at high shear rates. This effect is most pronounced when

the molecules are no longer in structured micelles, which is consistent with the

behaviour found by Symeonidis et al. [145].

The ratio of η/ηW is very different depending on the choice of Γ. However, this

analysis was performed at very high shear rates only, when the micellar shape has

begun to change, so is not necessarily applicable when the shear rate is lowered.
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Chapter 7

Lyotropic Liquid Crystal Phases

The previous chapter studies the effect of varying the concentration and chain

length on the micelles formed. For the lamellar and hexagonal phases, these factors

are also expected to affect the structure formed. The structures formed can be

parameterised by the periodicity of the liquid crystals that form. For the lamellar

phase this is primarily the d-spacing, while for the hexagonal phase it is the inter-

rod spacing. Experimentally these values are often obtained by small angle X-ray

scattering (SAXS) [15, 48, 49]. This experimental method is based on the long-

range order in the liquid crystalline states, which give rise to Bragg reflections.

The focus of this chapter will be to investigate if DPD can reproduce the liquid

crystalline phases of AES-like molecules, by comparing the liquid crystal structure

parameters found using DPD with those found experimentally. Following this we

can fully investigate the effect that varying the concentration and ethoxylation has

on the phase diagram, and structure of the liquid crystals. This chapter will begin

with a short summary of some existing experimental data for AES-like molecules

in Section 7.1, before moving on to compare with that found via DPD simulations

in Section 7.2.

The final section, Section 7.3 in this chapter considers the impact of shear force

on the liquid crystal phases. The shear rate can be varied in order to quantify this

impact in terms of the shear rate, and to also investigate the effect that the shear

rate has on the viscosity calculated.
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7.1 Lyotropic Structure Experiments

This section will briefly highlight existing literature reporting the structure param-

eters for the lamellar and hexagonal phases, as determined by SAXS. Experiments

involve the deflection of X-ray radiation through interaction with electrons in the

medium. These experiments result in intensity data as a function of momentum

transfer. The positions of peaks in this data are characteristic of the different

liquid crystalline phases [48], and the peak locations can be used to calculate the

d-spacing and inter-rod spacing values.

SDS is commonly accepted to form the hexagonal phase in the intermediate

concentration range, as discussed in Section 2.3.1.2. Table 7.1 lists experimentally

obtained inter-rod spacing values for varying concentration and temperature. This

work considers the phase formation at temperatures of ≈ 25◦ (or 298K), however

values at higher temperatures are also presented in Table 7.1, as the inter-rod

spacing for SDS is not found to vary significantly with temperature. It is shown

that the value of the spacing decreases with increasing concentration.

For other solutions with values of ethoxylation different to SDS, solutions are

more often found to exist in both the hexagonal and lamellar phases at room

temperature. The values for d-spacing and inter-rod spacing are most often re-

ported for surfactants as part of a mixture of surfactant types [288] (i.e. a solution

containing two or more different types of surfactant), as opposed to for a binary

system, so experimental data is limited. Values reported for the lamellar spacing

for AES at a concentration of 70% are 4.05nm at 30◦ [289]. For monodisperse

solutions of surfactant SLE3S, the reported d-spacing value at a concentration of

72% at room temperature is 4.39nm [4]. As AES has an average ethoxylation

value of n = 1.03, this may indicate an increase in the d-spacing with increasing

ethoxylation at similar concentrations.

The experimental data for the d-spacing and inter-rod spacing at room tem-

perature for these systems was found to be limited, with the SDS solutions being

an exception.
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c = 40 c = 50 c = 60
303K [23] 5.44 - -
313K [24] 4.95± 0.5 4.73± 0.05 4.60± 0.02
343K [25] 4.96± 0.1 4.61± 0.1 4.36± 0.1

Table 7.1: Experimental values of the inter-rod spacing for SDS solutions, as
reported by various authors [23–25] at different temperatures. Results presented
in units (nm). Note that the concentration c in references [23] and [25] are weight
concentrations while in reference [24] c is a volume concentration, however we can
assume that the density is close to ≈1g/cm3.

7.2 DPD Simulations for Equilibrium Phases

The previous chapter looked at the phases formed in the concentration range 0–

20%, which was confirmed to be entirely micellar. This section will cover the phases

formed above this concentration range, which is expected to be in the range of the

lyotropic liquid crystal phases.

DPD has been shown to reproduce the phase behaviour of lyotropic liquid crys-

tal systems, including hexagonal [63, 98], cubic [98], and lamellar [63, 97, 98, 275,

290, 291] phases. A variety of experimentally observed phenomena are able to be

reproduced using DPD simulations. For example, for lamellar systems, the orien-

tation of lamellar layers relative to the direction of shear, as found experimentally,

has been reported [275,290]. DPD simulations that study the lamellar layer forma-

tion under shear can provide insights into why parallel orientations are less stable,

for some surfactant types, at higher shear rates [275, 290]. The shear viscosity

for the parallel and perpendicular lamellar orientations, with respect to the flow

direction, can also be investigated more easily in DPD which can be difficult to

measure experimentally [291].

This section will begin with an investigation into the equilibrium phases formed

by AES-like molecules in solution. It will begin with an overview of how the

simulations were set-up, in Section 7.2.1, including how the simulation box sizes

were chosen. The generation of the lyotropic liquid crystal phases is affected by

the choice of box size, which will also be discussed in Section 7.2.1. Finally, the

determined phase boundaries for solutions containing varying ethoxylation values n
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and varying concentration are determined via DPD, and reported in Section 7.2.2.

As well as this, values for the d-spacing and inter-rod spacing are calculated, in

order for comparison with experimental results reported in Section 7.1.

7.2.1 Simulation Set-Up and Box Size

The set-up for these simulation boxes is nearly identical to the set-up for the

micellar solutions described in the previous chapter, with the set-up and parameter

choices discussed in Section 6.3.1.1. It was shown in the previous chapter, that

as the concentration of the micellar solution increases, the agreement between the

DPD results and experimental results increases. Therefore it is hoped that as the

concentration increases further, the same parameters can accurately reproduce

the structure factors for the lyotropic crystals. The main difference between the

set-up of the simulations in this chapter and the micellar case (other than the

concentration) is the box sizes that will be used. The choice of box size is more

complicated than in the micellar case, and is discussed theoretically in Section 3.5.

The effect of varying the box size for the lamellar and hexagonal phases in practice

is discussed in the remainder of this sub-section.

7.2.1.1 Box Size: Lamellar Phase

The lamellar layers can form at any orientation within the box, in order to find

a d-spacing value that minimises the potential energy of the phase formed. How-

ever, there is a relationship between the box size used and the available d-spacing

values that the lamellar phase can form, because the structure is restricted by the

application of periodic boundary conditions. These restrictions are described in

Section 3.5.1, and the resulting constraint described in Eq. 3.46.

In order to confirm this theoretical relationship, a variety of box sizes L are

trialled for a test case in which the concentration of the box is set at c = 70%,

and the surfactant molecules in the box are defined by hydrocarbon chain length

x = 5 and ethoxylation n = 0. Suppose we define a vector that is normal to
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the surface of the lamellar bi-layers, which can be easily calculated by finding the

director of the box, from the orientation of the individual molecules within the

bilayers, as described in Section 2.2.1. Next define angle θ as the polar angle to

this normal vector. Note that this angle θ will always be between 0 and 45◦ (or

π/4 rad). A plot of how θ varies with increasing box size is shown in Fig. 7.1, and

shows the rotation of the lamellar layers in order to adapt to the changing box

size. The value of θ gradually increases for a given number κ of bi-layers formed,

where it reaches a maximum angle before forming an additional layer and rotating

back to θ = 0. An example of lamellar layers formed for two different box sizes

is shown in Fig. 7.2. The increasing value of θ can be understood by considering

Fig. 3.8, which is a 2-dimensional representation of the problem. The bi-layers

must form in order to satisfy relationship L cos θ = κd, where d is the d-spacing.

In order to maintain a constant value of κd, as L increases, cos θ must compensate

by decreasing, leading to an increase in θ. This then leads to an efficient method

of calculating the d-spacing for a lamellar layer system, as simply

d =
L cos θ

κ
. (7.1)

The angle θ is found to be able to be calculated with a high degree of precision,

due to the large number of molecules in the simulation box, making this a very

accurate method for determining a value for d.

As was previously discussed, although the system can rotate by θ to obtain its

ideal d-spacing value to minimise the box energy, the values of θ are constrained to

being values that satisfy the periodic boundary conditions. The ‘available’ values

as predicted by Eq. 3.46 for different box sizes is shown in Fig. 7.3. It can be seen

that there are more accessible values of d as the box size increases, leading to the

conclusion that ideally one would simulate the largest box size possible, in order

to investigate d-spacing values for different systems. However, since the number

of beads bN grows as bN ∝ L3, a balance must be made between large enough

box sizes and computational work. It is decided that for simulations investigating
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Figure 7.1: The effect of varying box size L on the orientation formed by a sim-
ulation of the lamellar phase. The θ is the polar angle, to a vector normal to
the lamellar bi-layers, and is presented in units of radians. κ is the number of
layers formed in the box. The concentration of the box is c = 70%, and the sur-
factant molecules in the box are defined by hydrocarbon chain length x = 5 and
ethoxylation n = 0.

how the d-spacing value changes with varying concentration and molecular chain

length, that L = 40 gives a good balance between computational effort and a large

enough box size to give meaningful results.

7.2.1.2 Box Size: Hexagonal Phase

For the hexagonal phases, the impact of varying the box size is more compli-

cated, due to the additional dimension in the problem. Initial simulations trialling

concentrations expected to be in the hexagonal range did not yield any stable

configurations, which was suspected to be as a result of a long equilibration time.

In order to get around this problem, shear was applied to the box, which had

the effect of encouraging the phase to form more rapidly. This process and the

results will be discussed in the following section. The choice of the box size was

therefore made on an estimate of what the unit cell dimensions would be, based

on the experimental data listed in Table 7.1. Assuming that the inter-rod spacing
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(a) L = 18

(b) L = 19

Figure 7.2: Different orientation of the lamellar layers in to simulations of differ-
ing box size. Different colours represent different type of beads: water (white),
surfactant molecule (light blue), Na counterion (dark blue). Images created using
VMD [13]. The left and right images show the simulation box from two different
perspectives.
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Figure 7.3: The effect of varying box size L on the possible d-spacing values that
the bi-layers can take. Points plotted for d-spacing values between 5 and 8.

will take a value of around r = 5nm, which (using rC = 5.65× 10−10m) is around

9 DPD units, it was determined that a box of size L = 40 would provide space for

at least 4–5 unit cells within the box.

7.2.2 Equilibrium Phase Diagram and Structure

A variety of concentrations are trialled in the range from 30% to 80%, which

is expected to be the region consisting of the liquid crystal phases. For each

concentration trialled, a number of simulations investigating the effect of varying

the ethoxylation n are also trialled. For each concentration, four monodisperse

simulations are performed (for n = 0, 1, 2, 3), as well as a case which has varying

n, corresponding to the distribution in AES. This is identical to the different cases

that were trialled in the previous chapter for the micellar phase. Full details on

the number of surfactant molecules for each simulation can be found in Appendix

D.

For all of the cases trialled, it is concluded that the phases either form a lamellar

or hexagonal phase. No cubic phases are found at any concentration or value

238



of n. At the lower end of the concentration range (≈ 30%) there appears to

be a transition region between the hexagonal and micellar phases, which will be

discussed in Section 7.2.2.1.3.

This section will begin with a discussion on the equilibration period for each

of the phases, including how the hexagonal phase is induced with the application

of shear. Following the determination of the phase behaviour for varying n and

concentration, the phase structure can be analysed more closely.

7.2.2.1 Equilibration Period

7.2.2.1.1 Lamellar Phase

The equilibrium simulations in this section were mostly performed on a Tier 2 HPC

service (CSD3 [292]), which was more efficient than the simulations performed on

the Tier 3 Leeds service (see Section 6.3.1.2 in the previous chapter for discussion

on the iteration time). Each node on CSD3 has 32 CPUs (cores), and so the

domain is split into non-cubic sub-domains (4× 2× 4). Jobs run on whole nodes

by default so the calculation is more efficient increasing the number of iterations

per unit time.

It is primarily visual inspection that is used in order to confirm that the lamellar

phases have reached their equilibrium structure e.g. when there are clear, well

defined layers of alternating water and surfactant molecules. An example of the

equilibration of a lamellar phase is shown in Fig. 7.4. It is found that the lamellar

phases form over a relatively smaller number of iterations, when compared to the

time scales involved in equilibrating the micellar solutions, and systems that form

hexagonal phases. The lamellar systems of higher concentration generally take

fewer iterations to reach an equilibrium state than those with lower concentrations.

For example, for the system containing surfactant molecules with n = 1, the case

in which c = 80% takes 7.2 × 106 iterations (or 7.2 × 104 time units) to fully

equilibrate into separated lamellar layers. This is equivalent to approximately

6,000 CPU hours. While for the same surfactant molecule, a system consisting of
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Figure 7.4: The equilibration of a case in which the number of ethoxylation beads
n = 0 and concentration c = 80%, which results in lamellar layers is shown at
different iterations I. a) I = 0; b) I = 2× 105; c) I = 1.4× 106; d) I = 2.2× 106.
Beads are coloured according to their type: light blue (surfactant chain), dark blue
(sodium ions), white (water). Figure created using VMD [13].

c = 60% takes 1.3× 107 iterations (or 1.3× 105 time units). This is equivalent to

approximately 10,000 CPU hours. The phases also take fewer iterations to form

when there are fewer ethoxy units n in the surfactant molecule, e.g. when n = 0,

the c = 80% case takes only 2.2× 106 iterations (or 2.2× 104 time units) to form,

which is just 1,800 CPU hours.

The lamellar phases are categorised into two different cases, which will simply

be referred to as ‘perfect’ and ‘imperfect’. In higher concentration cases, the

phase typically forms into well defined, discrete layers of alternating water and

surfactant layers. The parallel layers of water do not connect once the phase

has formed, as do not the equivalent layers of surfactant molecules. However,

for cases that have a concentration which is on the edge of the lamellar region

(before transformation into a hexagonal phase), the lamellar phase can form with
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Figure 7.5: Simulation case in which the number of ethoxy groups n = 1 and
the concentration c = 60%. The phase forms lamellar layers, although while the
surfactant layers are well separated (blue), the water layers form dynamic bridges
(white). Figure created using VMD [13].

bridges that spontaneously form and disconnect between the alternating water

layers. This behaviour is shown in Fig. 7.5. These bridges are shown to persist in

the simulation, although still in dynamic motion, even with further iterations.

7.2.2.1.2 Hexagonal Phase

The equilibration period for the hexagonal phase is significantly longer than for

lamellar structures. Boxes of size L = 40, with concentrations which are expected

to form the hexagonal phase, do not reach a steady, structured formation when run

over significantly larger numbers of iterations than the lamellar cases. A selection

of simulations are performed at a smaller box size of L = 20, in order to investigate

if equilibriation can be encouraged when the box size isn’t as demanding. Cases

trialled at this box size are c = 40% with (n = 0, 1, 2) and c = 50% with (n =

0, 1, 2). This would, of course, greatly decrease the accessible rod spacings that

can form vs. an L = 40 sized box. Over the course of 9×107 iterations, only two of

these cases form an hexagonal phase, which are the two concentration cases with

n = 2, both at values of average inter-rod spacing r ≈ 10. Therefore, an different

approach is required in order to investigate the hexagonal phases.

It is found that when shear is applied to the simulation box (with size L = 40),

the hexagonal phase forms much more quickly. It can be confirmed that the

hexagonal phase structure formed by this method is stable, by the preservation
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of structure once the shear is removed. The application of shear does however

have the effect of orientating the phases such that the hexagonal rods lie in the

in-shear-plane orientation, as described by Fig. 4.10. This then confines the for-

mation of the hexagonal phase to being able to orientate itself in only 2-dimensions

(as opposed to 3-dimensions without shear), in order to find the optimal inter-rod

separation r. This leads to the restrictions on r imposed by the periodic boundary

conditions, as described in Section 3.5.2. An example of how shear can be used to

encourage the formation of the hexagonal phase is shown in Fig. 7.6. For the case

in which shear is applied to the simulation box, the molecules take on a structured

hexagonal configuration. Without shear the molecules do not, even over a much

larger number of iterations, and it is assumed the box is still undergoing equili-

bration. Therefore, in the interest of time constraints, the study of the structure

of hexagonal phases at different concentrations and values of n will focus on the

final configuration as obtained by inducing the phase with shear.

7.2.2.1.3 Worm-like Micellar

For concentrations just above the micellar region (≈ 30%) there appears to be a

phase that forms that is neither entirely micellar or hexagonal. On first obser-

vation, the simulation box appears to consist of inter-woven micellar rods, which

could be assumed to be a poorly equilibrated hexagonal phase. Once subjected to

shear, these micelles align in the direction of shear, just has the hexagonal phase

does. To a degree, these micellar rods also form hexagonal like separations, be-

tween the stretched micelles, but do not necessarily form infinitely long rods. Gaps

can be observed in the rods that lie in the direction of shear. This phase cannot

be classed as a true hexagonal phase, due to the gaps in the rods, but also because

once the shear force to the box is removed, any structure which does resemble

hexagonal like separation between rods, quickly breaks down. An example of a

the phase structure before and after shearing is shown in Fig. 7.7.
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(a) With shear. Couette flow in the simulation box is induced by moving the x-z plane
in the x direction, so that the hexagonal rods are aligned along the x-axis, and a velocity
gradient is induced in the y direction.

(b) Without Shear. An equilibrium phase does not form in the run period for this case.

Figure 7.6: Formation of the hexagonal phase in a cubic box with periodic bound-
ary conditions of size L = 40. The surfactant molecules in the example shown
take a distribution of ethoxylation n, in order to model AES, at a concentration
of 40%. Only the surfactant molecules are plotted for clarity, the space in be-
tween the rods is filled with water beads (not shown). Fig (a) shows the resulting
bead configuration after 3 × 106 iterations, while Fig (b) shows the lack of phase
formation after 5× 107 iterations.
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(a) Without Shear

(b) With Shear. Looking down the direc-
tion of partially formed rods.

Figure 7.7: DPD simulation with concentration c = 30%, for with (a) and without
(b) shear. Figure (c) shows a sub-region of the domain when shear is applied. The
sub-region is selected to show that there are some infinitely long rods which lie in
the direction of shear flow, but there are also broken rods and smaller micelles in
the domain. Simulation box has size L = 40.
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Figure 7.8: The phase diagram, as determined via DPD, for a varying values of
ethoxylation n.

7.2.2.2 Phase Diagram

The resulting phase behaviour determined for varying n and concentration is shown

in Fig. 7.8. Five main phases are plotted, including the micellar region (discussed

in detail in the previous chapter); the worm-like micellar phase that is explained

in Section 7.2.2.1.3, the hexagonal phase, and two lamellar phases (perfect and

imperfect). There is also a sixth case labelled as ‘Hexagonal/Lamellar’ for the

case in which n = 3. In this case the phase formed a hybrid of the hexagonal

and lamellar phases, in which parallel layers formed, but these layers did then not

completely break down into individual rods, although some non-uniformity is seen

across the layer. This case is illustrated in Fig. 7.9. The phase is pictured from

the same view point as that shown for a perfect hexagonal phase in Fig. 7.6 (i.e.

down the length of the rods). If the phase in Fig. 7.9 was hexagonal, we would

expect to see individual rods forming, while if it was lamellar the layers would

have constant thickness from the top to the bottom of the box.

The phase boundary between the hexagonal and lamellar phases shifts to higher

concentration, at larger values of n. As well as this, the boundary between the
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Figure 7.9: Phase formed in the case where n = 3 at 65%, black molecules are the
hydrocarbon portion of the surfactant chain and the other beads are not shown
for clarity. The phase almost takes the form of parallel layers, but the layers form
interconnecting rods. This phase is concluded to be a hexagonal/lamellar hybrid.

micellar phase and hexagonal phase shifts slightly at n = 3. The location of

the hexagonal-lamellar phase boundary is fairly consistent with that determined

experimentally for AES in Chapter 4. In Chapter 4, there was some uncertainty

as to what kind of phase was formed by a concentration of 28%. POM imaging

suggested that the phase took the form of an hexagonal phase, but rheologically it

behaved very different from the other hexagonal phases at higher concentrations.

For example, solution handles very differently to what one might expect from an

hexagonal solution (i.e. it flows relatively easily, compared to the gel like behaviour

of a hexagonal phase). In the Raman spectroscopy measurements, presented in

Chapter 5, the ratio of the trans to gauche conformations fits more closely with

the trend in the micellar region. It is possible that at a concentration of 28%,

the phase is subject to shear induced phase transition. The Raman measurements

can be performed with no application of shear to the sample before measurement,

however the act of preparing the sample for POM imaging applies some shear, in

order to prepare the thin layer. DPD results support this claim, as they show that

the phase forms something hexagonal like while subject to shear, but that this

quickly breaks down once the shear is removed.

Focus will now turn to investigating the different d-spacing and inter-rod spac-

ing values, for the phases illustrated in Fig. 7.8.
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7.2.2.3 Values For d-spacing and Inter-rod Spacing

7.2.2.3.1 Lamellar Phase

A plot showing the d-spacing formed for lamellar cases of varying concentration

c and ethoxylation n is shown in Fig. 7.10. Note that results are not shown for

cases where (n = 3 and c < 70) and (n = 2 and c < 65) as these cases form

a hexagonal phase to be discussed in the following section. Also shown are the

available values of the d-spacing that are accessible in a box of size L = 40. It

is worth consideration that the spacing between the available d-spacings increases

at higher d-spacings values. Therefore if we were to consider running simulations

containing molecules that were longer in length than those trialled, it would be

likely to be necessary to increase the size of the box to increase the number of

available orientations, and therefore spacings, the layers could take. The layer

separation is shown to increase with increasing n, and decrease with increasing

concentration. This trend with concentration is consistent with what is found

experimentally for most types of surfactant [49,50,53,54].

There is only a small amount of difference between the spacing formed by the

n = 1 and AES simulation cases. The AES distribution case has an average value

of n = 0.76 in the simulations, which explains why the values for AES are slightly

below the ones for when n = 1. The fact that the simulation is a distribution

of chain lengths seems to have relatively little impact on the d-spacing formed,

beyond being impacted by the average value of n. An interesting consideration is

whether the d-spacing for the AES case can be calculated using the d-spacing from

the monodisperse simulations (with n = 0 and n = 1). Therefore, we calculate

values

dSpacingInterp =
dSpacingAES − dSpacing0

dSpacing1 − dSpacing0

(7.2)

for each value of concentration. In this equation dSpacing0 , dSpacing1 and dSpacingAES are the

d-spacings for the n = 0, n = 1 and AES cases respectively. For concentrations 65–

80%, we find this takes an average value of dSpacingInterp = 0.81± 0.03 (where c = 60%

is excluded as it is assumed to be an anomalous value). Comparing this with
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the average ethoxylation of AES as n = 0.76, implies that the d-spacing for the

polydisperse lamellar phase can be reasonably interpolated from the monodisperse

lamellar calculations.

The values in Fig. 7.10 can be converted into real units using rC = 5.65 ×

10−10m as the conversion factor. Experimentally obtained values via SAXS in-

clude: d = 4.39nm at 72% for n = 3; and d = 4.05nm at 70% for AES (see Section

7.1 for details on experimental data). Equivalent values from Fig. 7.10 produce

values in real units of d = 4.35nm for n = 3 and d = 3.57nm for AES (note that

although a calculation wasn’t performed for n = 3 at 72%, the values for 70%

and 75% simulations are identical, so this value is interpolated to be identical in a

72% case). While there is excellent agreement for the solution case n = 3, there is

more of a difference between the experimental value and the DPD value for AES.

Since, in order to model AES using a finite number of molecules, the distribution

for AES was simplified. Most of the long molecular chains were removed from

the distribution and this could be the reason behind the smaller value for the

d-spacing.

In practice, the lamellar phase is not found experimentally for SDS at room

temperature. Although the generation of the lamellar phase in DPD at this tem-

perature has also been reported by other authors modelling SDS [63]. Experimen-

tally, the phase at room temperature may be a non-uniform solution consisting of

regions where the SDS still exists in crystallised form. The existence of the phase

in DPD may be due to the fact that this behaviour would be hard to reproduce in

DPD, due to the relatively small box size (relative to the length scales in the non

uniform scenario).

7.2.2.3.2 Hexagonal Phase

When using box sizes L = 40, for simulations which are not found to form lamellar

layers under equilibrium conditions, these can then be inferred to be belonging to

slowly forming hexagonal phases, which is then confirmed upon the application of

shear. The simulated hexagonal phases can be described by a unit cell, as shown
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Figure 7.10: The d-spacing values for the lamellar phase, for varying concentration
and ethoxylation n, in a box of size L = 40. The horizontal lines in grey represent
the available d-spacings for a box of size L = 40, as calculated using Eq. 3.46.

in Fig. 2.10. Due to the restrictions of the periodic boundary conditions, |~a| 6= |~b|.

Therefore for each simulated hexagonal phase, three different length values can be

calculated (|~a|, |~b| and |~a + ~b|), as well as an average of these three lengths for

a value of the average inter-rod spacing r. For the identified hexagonal phases,

the variation of the inter-rod spacing r with n and concentration, is shown in Fig.

7.11.

For the hexagonal phase it is more difficult to create a finite list of the accessible

spacing values for a given box size L, as was done for the lamellar phase. This is

because while in theory there exists a large number of varying integers that can

satisfy Eq 3.47, in practice the rods form in such a way that appears to keep the

magnitude of lattice vectors |~a| and |~b| as similar as possible. This makes sense

from a logical point of view, as the case in which |~a| = |~b| is thought to minimise

the potential energy. Based on the restrictions given by Eq. 3.47 alone, there are

a huge number of possible inter-rod spacings that the unit cell can take. If the

restriction is imposed that the difference in length of the vectors defining the unit
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Figure 7.11: The average inter-rod spacing value formed in hexagonal phases at
different concentrations and values of ethoxylation n in the surfactant chain. The
horizontal lines are the available spacings, as obtained by the method described in
the text.

cell, should not be more than a particular cut off dco, a reduced number of available

inter-rod spacings r can be obtained. Mathematically this can be written as

|(|~a| − |~b|)| < dco,

|(|~a| − |(~a+~b)|)| < dco,

|(|~b| − |(~a+~b)|)| < dco.

(7.3)

It is observed that in the DPD simulations, the unit cell never forms for cases

in which 1.5 < dco. Therefore an estimate for the available inter-rod spacings r can

be obtained applying the cut off to be dco = 1.5. Combining the above constraint

and the restrictions given by Eq. 3.47, the unit cell can form average inter-rod

spacing values illustrated in Fig. 7.11 by horizontal lines. The values of the lattice

vectors that define the unit cell that results in these average inter-rod spacings are

listed in Table 7.2 (which are included so that the reader can observe the variation

in the three defining spaces of the unit cell). It is clear from these horizontal lines
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that the number of available inter-rod spacings that can be obtained in a box size

of L = 40 is relatively low. This is particularly true for the higher values of inter-

rod spacing r, as the jump between r = 9.65 to the next available value r = 10.8

is relatively large. In the range 7.5 < r < 11 the number of available values for

a box of size L = 40 is just 10, while an increase to box size L = 50 is found

to generate 45 different available values of r, when applying the same conditions

as those used to plot the horizontal lines in Fig. 7.11. However, based on the

scaling discussed in the previous chapter (see Section 6.3.1.2), an increase in box

size from L = 40 to L = 50 would take over twice as long to complete the same

number of iterations. Additionally, the choice of a cubic box usually means that

the hexagonal phase forms in a way in which the lattice vectors are not the same

(i.e. |~a| 6= |~b|), and therefore is strictly speaking not a hexagonal phase. It might

be more ideal to simulate the phase in non cubic box, in order to generate phases

in which |~a| = |~b|.

|~a| |~b| |(~a+~b)| Average r
10.995 10.995 11.314 11.101
11.180 11.180 10.000 10.787
10.000 10.000 8.944 9.648
8.868 9.366 8.696 8.977
8.498 8.498 9.428 8.808
9.330 8.616 8.000 8.649
7.693 8.690 8.081 8.155
8.000 8.538 7.180 7.906
8.000 7.775 7.775 7.850
7.906 7.071 7.906 7.628
7.373 7.068 8.131 7.524

Table 7.2: The lengths of the lattice vectors that define the unit cell that forms
for an hexagonal phase under shearing, in a box of size L = 40. The values of |~a|,
|~b| and |~a +~b| can be averaged to find the average inter-rod spacing r for a given
unit cell. The values listed are those that satisfy the conditions given by Eq. 3.47
and 7.3, in which dco = 1.5.

From the results shown in Fig. 7.11, conclusions can still be made about the

effect of varying ethoxylation n and concentration, despite the small number of

available inter-rod spacings. There is an increase in the spacing r with increasing
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n, as well as a decrease in spacing r with increasing concentration. This behaviour

is similar to the lamellar case.

The decrease in r with increasing concentration is what is expected experi-

mentally, from the results presented in Table 7.1. The inter-rod spacing for SDS

at room temperature (n = 0) is found, via DPD, to take a value in real units of

r = 4.25nm. This is lower than the expected values of 5.0nm (40%) and 4.7nm

(50%) which are found experimentally. This is similar to the lamellar phase, in

which the d-spacing is also under predicted.

It is discussed in Section 4.3.3 that experimentally the hexagonal rods tend

to form in the parallel orientation described in Figure 4.11, when subject to an

applied shear. The alignment of the rods in the direction of shear in DPD is

consistent with experiment. The unit cell also forms in a way that is consistent

with a parallel or near parallel orientation. For most cases, the phase cannot

form the perfect arrangements shown in Figure 4.11, because they rotate in order

to form the desired inter-rod spacing. However, the average inter-rod spacing

r = 9.648 is formed by a unit cell where the length of one of the lattice vectors

is exactly 10 (i.e. the box size divided by the length of the lattice vector is an

integer 40/10 = 4). Therefore, the phase forms in a way that is a perfect parallel or

perfect perpendicular orientation, as described by Figure 4.11. There are four cases

in Fig. 7.11 which form a hexagonal lattice using this set of lattice vectors. There

is likely to be preference of the hexagonal phases to form the parallel arrangement,

because all four of these cases form parallel arrangement (i.e. the lattice vector ~a

is perpendicular to the x-axis).

7.2.2.4 Molecular Changes due to Phase Change

In the previous chapter, it was discussed how the radius of gyration Rg of individual

molecules can be influenced by the aggregation number of the micelle that they

belong to. This section will present the average radius of gyration values for

concentrations across the entire phase diagram, including the liquid crystal phases

252



discussed in this chapter, as well as a summary of the results for the micellar

phases discussed in the previous chapter.

Experimentally, it was also determined in Chapter 5, using Raman Spec-

troscopy, that the conformation of molecules can be influenced by the concen-

tration and phase behaviour of a solution. The second half of this section will look

at whether DPD can capture the same conformational behaviour that is found

experimentally for AES solutions of varying concentration.

7.2.2.4.1 Radius of Gyration Rg

Fig. 7.12 shows the calculated radius of gyration for molecules in solutions of dif-

ferent concentrations. For the polydisperse solution representing an AES solution,

the average radius of gyration can be broken down into the different components

that contribute to the AES distribution, which is shown in Fig. 7.13. The overall

value of Rg for the AES simulations, presented in Fig. 7.12, is the number average

of the different values of n in Fig. 7.13.

Generally, the figures show that the radius of gyration increases with increasing

concentration. The average radius of gyration increases in the micellar phase, due

to the increase in aggregation number. Once the solution enters the worm-like

micellar phase described in Section 7.2.2.1.3, the relationship between Rg and the

concentration becomes less obvious across differing n values. Certainly for the

SDS case (n = 0) the value of Rg increases in the micellar region, largely plateaus

in the worm-like/hexagonal region, and then increases linearly in the lamellar

region. The value for the radius of gyration can be affected by both the shape

of the molecule (how coiled it is) and how long it is (how stretched), which may

be contributing to the confusing relationship. For example, the molecule in the

lamellar phase is often assumed to be in a fairly trans configuration, which is likely

to be why it has a larger radius of gyration than a molecule in a micellar phase.

However, with increasing concentration, and changing thickness of the lamellar

layer, the molecule could become more stretched or squashed, affecting its radius

of gyration. In particular there is a definite decrease in the radius of gyration,
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

(e) n = AES

Figure 7.12: Rg plotted against concentration for a variety of choices of ethoxyla-
tion values n. The error bars represent the standard deviation.
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

Figure 7.13: Rg plotted against concentration for the molecules of varying n mak-
ing up an AES solution. The error bars represent the standard deviation.

255



over the lamellar phase period, for the n = 3 component molecules of the AES

distribution (see Fig. 7.13). In the Raman spectroscopy measurements, it was the

conformation, as opposed to molecular length, that was being measured. Therefore

in the following subsection, the trans/gauche ratio across the phase diagram will

be studied.

7.2.2.4.2 Ratio of trans/gauche Conformations

In order to compare with the experimental results for the conformational changes

due to phase change, obtained via Raman Spectroscopy in Chapter 5, a value for

the trans/gauche ratio is calculated from the DPD simulations. The meaning of

trans and gauche conformations of a molecule is defined in Section 5.1.

For the purpose of analysis in numerical simulations, a range is usually de-

fined for which an angle can be classified as trans or gauche. In this work the

following definition is used: trans (150◦ < θ < 180◦) and gauche (30◦ < θ < 90◦).

The angle θ is defined in Fig. 5.1 as the dihedral angle. Experiments obviously

cannot calculate these dihedral angles exactly. Instead experiments allow us to

find estimates for the number of molecules in the trans or gauche state, by the

different vibrational spectra produced by these two molecular states, when using

an experimental technique such as Raman Spectroscopy.

In the experimental work, the reported trans/gauche ratio relates to the dihe-

dral angle between bonded atoms. The ratio of trans to gauche bonds as calculated

via DPD simulation is, strictly speaking, not directly equivalent. This is due to

the coarse graining of the molecule, since the angle which is calculated, is between

connected beads (which contain a number of atoms). However, since the surfac-

tant hydrocarbon chain is relatively long, it is still expected that calculation of

the trans and gauche angles between beads will yield valuable information about

the conformation of the molecule. In particular, the effect that mesophase has on

molecular conformation.

The value of the ratio trans/gauche is plotted in Fig. 7.14. Three distinct

regions are identified based on the value of the ratio for each case of n, and fitted
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independently with linear relationships. The relationship between the phase that

a solution belongs to and the shape of a molecule, is more more clear in this case

than it was for the radius of gyration. The cases corresponding to higher values of

n are found to correspond to lower values of the ratio, indicating that the molecule

is more prone to increased curvature when the length of the molecule is increased.

This is true for all three of the distinct regions in concentration.

Recall that the worm-like micellar regions (cases around 30% concentration)

showed different structures before and after shear. Once subjected to shear they

form hexagonal like separations between the stretched micelles, but do not form

infinitely long rods. For these cases, calculations were performed for simulation

boxes before and after shear has been applied. Interestingly, very little difference

was found between the two cases. This is illustrated with the results from one of

the shearing cases also being plotted in Fig. 7.14, which shows very little difference

with the non-shear case.

It is difficult to compare quantitatively with the results obtained experimen-

tally, as Raman spectroscopy only provides an estimate of the ratio of trans/gauche

conformations. The Figs. 5.11 and 5.15 given in Chapter 5 provide the best es-

timates for the conformational variation with concentration. The Raman spec-

troscopy results show that the ratio of trans/gauche increases with increasing

concentration across the phase diagram, however the ratio increases in each phase

region at a different rate. The ratio is most dependant on concentration in the

lamellar region, followed by the micellar region, with a weak dependence on con-

centration in the hexagonal region. This same behaviour is broadly found from the

DPD calculations, however the boundary location is slightly different. In the DPD

calculations, the shift from the first unique region to the (relatively concentration

invariant) middle range of the phase diagram occurs at a lower concentration than

identified by Raman spectroscopy. The transition from this middle region, into

the third unique region in Fig. 7.14, closely aligns with the location of the phase

change into the lamellar phase, as illustrated in the DPD phase diagram in Fig.
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Figure 7.14: The ratio of trans to gauche conformations as obtained via DPD
simulations. Note that the error bars are not included as they obscure the scale of
the plot, and therefore they are omitted for clarity. Fits are performed in regions
where a trend with concentration is observed for a particular value of n. Also
included is one case where the result was obtained from a simulation subject to
shear, for comparison.

7.8.

There are two somewhat anomalous data points in Fig. 7.14, belonging to n = 2

and n = 3, at a concentration of 60%. At this concentration and value of n we are

at the upper edge of the hexagonal phase window. This anomalous point could

be because the hexagonal phase that forms is the unnatural equilibrium phase for

this simulation case. This could be because there is no natural inter-rod spacing

available in the simulation box size, or the more likely scenario is that naturally

the phase would form an isotropic cubic phase. Experimentally, the cubic phase

for SLE3S forms in the range 62—67% [4]. In this work the hexagonal phase is

encouraged to form via the application of shear, which may have the side effect of

transforming a cubic phase into the hexagonal phase.
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7.2.2.5 Conclusion

In this section the equilibrium behaviour of SLES surfactants in the concentration

range 30–100% has been investigated. At the low end of this concentration range

the phase is in transition from a micellar to a hexagonal phase, forming worm-

like micelles. With further increase in concentration, by 40% (except for n = 3),

transition into a well-formed hexagonal phase occurs. The hexagonal phase was

identified as taking a long time to form under equilibrium conditions so shear

was applied in order to induce its formation. This may have had the unintended

effect of eliminating the identification of any cubic phases, which transformed into

hexagonal phases upon shearing. With further increase in concentration, around

60-65%, the phase transitions into a lamellar phase. Other researchers have also

observed significantly longer equilibration times for the hexagonal phase vs. the

lamellar structures [293,294]. In fact in Ref [293] Groot reports that the hexagonal

phase is observed to take 8 times longer to form than the lamellar phase. However,

this typically less of a problem for other researchers, who are not concerned with

calculating the inter-rod spacing or the d-spacing values, and therefore they usually

use significantly smaller simulation boxes [63,98,294].

Despite the abundance of research for SDS surfactant systems, there are very

few existing studies of the phase behaviour and properties of binary SLEnS surfac-

tant solutions available in literature. This is despite the fact that SLEnS surfac-

tants are common components of commercial products, and that varying n greatly

affects a variety of properties of the solution. Only two studies could be found,

Peroukidis etl al. [282] who use MD simulations, and Panoukidou et al. [281] who

perform DPD simulations. However both focused exclusively on the micellar region

of the phase diagram.

The d-spacing and inter-rod spacing could be calculated for each simulation

case. While it is common to find simulations studying hexagonal and lamellar

phases in existing literature, it is less common for researchers to use their results

to calculate values for the inter-rod and lamellar spacings. The values that these
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variables could take were dependant on the box size, due to the application of

periodic boundary conditions. For the lamellar phase a box size of L = 40 provided

a suitable number of accessible d-spacing values for the systems. However, for the

hexagonal phase further simulations would benefit from larger box sizes being

trialled, in order to increase the number of accessible inter-rod spacings. The

cubic nature of the box also meant that a perfect hexagonal unit cell could not be

formed, therefore future work studying hexagonal phases may benefit from more

tailored choices of box dimensions.

Typically, experimental phase diagrams will often include two phase regions

[15, 295], for example, for a mixture of a micellar/hexagonal. In these regions

the solution is thought to consist of coexisting micellar and hexagonal phases.

This means that the solution has variable composition across a sample. This

inhomogeneity would be very hard to capture in a small simulation box with

periodic boundary conditions. Therefore our assessment of the concentrations on

the boundary between the micellar and hexagonal phase may not be accurate.

From the research in this work it appears the contrasting experimental behaviour

is due to a shear induced phase change, but it is equally likely to be a solution

consisting of two co-existing phases.

The radius of gyration of the molecules and the ratio of trans to gauche confor-

mations in a molecule are compared across the whole phase diagram, including the

micellar phase. While the radius of gyration does have an observable relationship

with increasing concentration, the ratio of trans/gauche has a more clear one. The

relationship also agrees reasonably well with the experimental results in Chapter

5, although with slightly different transitions between the micellar/hexagonal and

hexagonal/lamellar phases.

260



7.3 DPD Simulations for Lyotropic Liquid Crys-

tals Under Shear

It has been reported by various authors [7, 153, 189–194] that the lamellar and

hexagonal phases orientate under the application of shear, when measured exper-

imentally. The orientation of the hexagonal phase in DPD simulations was con-

firmed in the previous section, and this was deemed to be largely consistent with

experiments on hexagonal phases for general surfactant systems [153, 189–191].

One of the aims of this section, is to investigate the orientation that the lamellar

layers prefer to take in a DPD simulation of AES-like systems, upon the appli-

cation of shear. Lamellar layers in other surfactant systems have been shown to

prefer to exist in the parallel orientation at most shear rates, with some evidence

in some systems that there is a transition to the perpendicular orientation at high

values of the shear rate [7, 192, 193, 195]. This section will also consider if ap-

plication of a shear force causes any structural change to the surfactant phases,

including changes to the shape of the molecules, compared with the equilibrium

configurations discussed in the previous chapter.

From the application of shear, a value for the viscosity can also be calculated,

using the method discussed in Section 3.4. In the previous chapter, the viscosity

for the micellar phases was calculated via two different methods: an equilibrium

method using auto-correlation functions; and a non-equilibrium method that re-

lies on the simulation box’s response to an applied shear force. This was only

possible because the micellar solutions were expected to behave with Newtonian

rheology. However, Chapter 4 details how the rheology of the lyotropic liquid

crystals are expected to behave with shear thinning properties, therefore only the

non-equilibrium shearing method will be used to calculate the viscosity in this

chapter.
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7.3.1 Simulation Set-Up

In the previous chapter, the decision was made that a choice of Γ = 45 would

generate micellar solutions with realistic Schmidt numbers. However, lyotropic

liquid crystals typically have very high viscosity values (see Chapter 4) and very

low values of diffusion. Pure water has an experimental self-diffusion coefficient of

2.3× 10−9m2s−1 at 25◦C [296], whereas for liquid crystals the diffusion coefficient

is typically measured at least one order of magnitude smaller [297–299]. The effect

of higher viscosity and lower diffusion coefficient generates an even larger value

of the Schmidt number, although due to the non-Newtonian nature of the liquid

crystals it is not possible to obtain an exact value. Due to the computational effort

required in generating the shear profile, just one collision parameter is trialled in

this section, with a value of Γ = 250, requiring a time step of ∆t = 0.001. This

choice of Γ generates a Schmidt number for water beads of ≈ 10, 000 (i.e. 25 times

larger than in the micellar solutions using Γ = 45). This value is selected due to

it being one of the largest Schmidt numbers obtainable, without having to further

lower the time step.

For an investigation into the orientation that lamellar layers form at in DPD

systems, the simulations are conducted from an initially random configuration.

This will be studied in the following section. Following this the viscosity of the

lamellar and hexagonal systems will be studied from pre-formed lamellar and

hexagonal structures, which will be explained in more detail in Section 7.3.3.

7.3.2 Orientation of the Lamellar Phase

In order to form a perfect parallel or perpendicular arrangement of lamellar layers

under the application of shear (i.e. an arrangement such that the lamellar layers

are parallel with one of the cubic box surfaces), the box size should be chosen to

be an integer multiple of the equilibrium d-spacing. If a non-integer box size is

chosen, then the layers still choose to form at diagonal orientations, even under

the application of shear. This is likely to be because the potential energy benefit
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of forming at the correct d-spacing value is greater than the impact of shear. The

practice of setting the box sized based on a known equilibrium d-spacing, is a

procedure taken by other researchers studying similar systems [290]. This method

does, however, assume that there is no change in the d-spacing value with varying

shear rate. For each case trialled, this equilibrium d-spacing is taken from the

results in Fig. 7.10.

It is convenient that for the case in which n = 0 at 70%, an integer number

of lamellar layers are formed by a box of size L = 40. Additional simulations are

conducted for the n = 1 and AES distribution of n cases at 70%. For these cases

we chose to use a box size of L = 39 for n = 1 and L = 25 for the AES case. Shear

in this work is applied by using Lees-Edwards boundary conditions, shown in Fig.

3.4, so that the flow velocity is directed along the x axis and a linear velocity

profile is generated along the y-axis.

In the work of others, using DPD to study lamellar phases, there has been a

reported transition from the parallel orientation at low shear rates, to the perpen-

dicular phase at higher shear rates [290, 300, 301]. For example, You et al. [300]

report a transition at around γ̇ = 0.2, while Martin and Brennan [290] report a

transition at a similar shear rate of around γ̇ = 0.4. In this work we investigate

the lamellar layer formation at high shear ranges, in order to investigate the orien-

tation the layers form at. The cases trialled in this work are all at a concentration

of 70%, with values of ethoxylation n = 0 and n = 1 and an AES distribution. A

shear rate of γ̇ = 6 × 10−2 produces the parallel orientation of lamellar layers for

all values of n. A subsequent increase to γ̇ = 6 × 10−1 leads to a breakdown of

the parallel layers, and the system is no longer a lamellar phase. The phase most

closely resembles a nematic liquid crystal phase at these high shear rates. These

two cases, along with the orientation of the director, are shown in Fig. 7.15. For

the lamellar phase, the director of the box is approximately defined as being in the

direction parallel to the normal of the layers (along the y-axis). Upon transition

into the nematic phase the director aligns approximately along the direction of the
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Figure 7.15: Shear is applied to a DPD simulation box consisting of molecules
described by n = 0 at a concentration of 70%. The flow velocity is in the x-axis
and the velocity gradient is along the y-axis. Figure (a) shows the molecules form a
lamellar phase with a parallel orientation under a shear rate of γ̇ = 6×10−2. Figure
(b) shows the breakdown of the lamellar layers at a shear rate of γ̇ = 6 × 10−1.
Also shown (red arrow) is the orientation of the director of the molecules for the
two cases. The box size is L = 40. Beads are coloured by their type: surfactant
molecule (light blue), sodium ion (dark blue), water (white).

shear flow (along the x-axis). For the case shown in Fig. 7.15, the director for the

nematic phase is calculated as (0.96, 0.29, 0), in other words it is at an angle of 17◦

to the x-axis. A selection of intermediate shear rates between γ̇ = 6 × 10−2 and

γ̇ = 6× 10−1 are trialled in order to investigate the possibility of an intermediate

perpendicular orientation (at shear rates γ̇ = 9× 10−2 and γ̇ = 3× 10−3) and no

evidence is found for the formation of a perpendicular phase.

7.3.3 Initial Configurations for Varying Shear Rate

The viscosity calculations in this chapter are conducted so that they are as close to

the experimental set-up as possible. The viscosity is calculated experimentally, in

Chapter 4, by measuring the way the solutions respond to an applied shear force.

At shear rates that are typically measured in a rheometer, the lamellar layers are

most likely to be orientated in the parallel orientation, as opposed to the nematic

transition that occurs at very high shear rates. The viscosity relationship with

applied shear rate is experimentally found to change following subsequent up-

down shear cycles, due to high levels of orientation being induced at high values
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of the shear rate. Therefore, the simulations performed at varying shear rates will

all be initialised with an arrangement of molecules that are already in pre-formed,

perfectly aligned lamellar layers. This replicates the experimental situation, in

which a shear profile is found following the parallel shear alignment induced by a

high shear rate.

When the simulations are initialised with an initially random configuration

and a low shear rate is applied, the lamellar phases are found to still be capable

of forming diagonally. In order to induce the perfect alignment a high shear rate

is applied. It was found in the previous section that the preferred alignment is

the parallel orientation for all cases trialled. Following this alignment, the applied

shear can be removed, and the phases allowed to settle, before the reintroduction

of the shear force at other shear rates, in order to investigate the viscosity vs.

shear rate profile. A shear rate of γ̇ = 6 × 10−2 is used in order to induce the

alignment of the lamellar phase, for the viscosity calculations.

Similarly to above, the hexagonal simulations should be conducted so that the

hexagonal rods lay in the direction of shear. Since the hexagonal phase structures

were already induced by the application of shear, the same configuration that was

already generated in the previous section can be used for calculating the viscosity

profile. Prior to this calculation, the shear that was applied to induce the hexagonal

phase formation is removed for a period of time, in order to allow the phase to

settle, before using the box to investigate the viscosity profile for the simulation

box.

7.3.4 Equilibration Period

The initial focus for the viscosity calculations, was to investigate if DPD could

reproduce the correct shear thinning viscosity vs. shear profile, since there is

little existing literature performing this calculation for these systems. A variety of

independent simulations are conducted for different shear rates. Due to length of

time required to perform these simulations, because of the large amount of noise
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in the stress tensor, this becomes a huge amount of computational effort when the

shear rate is lowered. Only a small selection of the cases described in the previous

section will be investigated for their viscosity vs. shear rate profiles. Initially, two

cases were selected at different concentrations c, both using ethoxylation value

n = 0, c = 70% (lamellar) and c = 40% (hexagonal), in order to see if they could

reproduce the shear thinning relationship found in liquid crystals in Chapter 4. In

theory it may be easier to access lower shear rates compared to for the micellar

phases, due to the viscosity for liquid crystals being larger, and therefore generating

a larger signal-to-noise ratio.

As a result of the large amount of noise in the off-diagonal stress tensor σxy,

in order to assess the equilibration of the systems, a moving average is calculated.

This is illustrated for the hexagonal shearing case of 40% concentration with γ̇ =

6× 10−3 in Fig. 7.16, including the moving average for different window sizes Aw.

Similarly to previous calculations, the simulation box initially exhibits a response

to the application of shear, before the average value of σxy plateaus. After the

initial response time, data for σxy can start being collected and averaged in order

to obtain a value for the viscosity.

The level of noise in σxy is found to be largely similar for the lamellar and

hexagonal cases. When the shear rate is decreased, the window of the moving

average has to get increasingly larger, in order to cope with the increasing SNR.

This is shown for the lamellar case with 70% and γ̇ = 6× 10−6 in Fig. 7.17. The

large amount of fluctuation of the value of σxy for decreasing shear rates is why the

simulation time increases rapidly at low shear rates. Therefore, further decreases

in the shear rate start to become inaccessible.

7.3.5 Viscosity vs. Shear Profile

The viscosity vs. shear rate profile, for the simulation case n = 0 with c = 40%

and c = 70%, is shown in Fig. 7.18. Both cases show shear thinning behaviour,

consistent with the rheology measured in Chapter 4. At high shear rates the
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Figure 7.16: Instantaneous viscosity (calculated using Eq. 3.40) as a function of
iteration, from a simulation consisting of c = 40% for molecules with n = 0. The
output is analysed using moving averages. The effect of increasing window size,
AW, on the moving average is shown.

Figure 7.17: Instantaneous viscosity (calculated using Eq. 3.40) as a function of
iteration, from a simulation consisting of c = 70% for molecules with n = 0. The
output is analysed using moving averages. The effect of increasing window size
AW on the moving average average is shown.
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Figure 7.18: Viscosity vs. shear rate profile generated using DPD simulations for
a system consisting of molecules with n = 0. Results are shown for two different
concentrations which correspond to two different phases: 40% (hexagonal) and
70% (lamellar). The error bars are calculated as the standard error σ/

√
N where

σ is the standard deviation and N is the number of outputs of the stress tensor.

calculated viscosity plateaus to an approximately constant value. It was found

that for shear rates lower than those presented, it was too difficult to obtain a

consistent value for the viscosity, due to the huge amount of noise in the signal.

The large error bar for the case with γ̇ = 6 × 10−9 is an illustration of this. The

simulations at lower shear rates require significantly longer run times. For example,

in order to obtain the result for the lamellar (70%) data point at γ̇ = 6 × 10−3,

only 2.5 × 105 iterations are performed before a reasonable average is obtained.

For the data point corresponding to γ̇ = 6×10−9, 4×106 iterations are performed,

corresponding to around 26,000 CPU hours.

The plateau at high shear rates occurs at almost the same shear rate value

in both phase cases, which isn’t what is found for similar systems experimentally

(see Fig. 4.17). The shear thinning regions for both the hexagonal (40%) and

lamellar (70%) phases are fit using the power law relationship in Eq. 4.10. The

gradient of this relationship is slightly lower than what is found for similar systems
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experimentally, although since the fit is to data points that immediately preceded

the plateau, the gradient is expected to be slightly reduced compared with the

gradient at lower shear rates. Note that the viscosity calculated at a shear rate

of γ̇ = 0.6 isn’t included in the plot as this is when the transition to the nematic

phase occurs. However, the value of the viscosity calculated at this shear rate

has a value of η = 68.0 ± 0.1, which is significantly lower than any of the values

obtained when the molecules are still in the lamellar phase structure, indicating a

significant drop in the viscosity once the lamellar phase disintegrates.

7.3.6 Molecular Changes

This section will now discuss the impact that shear has on the molecules within

the simulation box. While the structure of the phases is visually unchanged with

varying shear rate (i.e. the shape and structure of the lamellar layers and hexag-

onal rods remains, visually, unchanged), the molecules may undergo stretching or

shape changes within the layers as a result of the shear force.

Consider angle Ψ, which is defined as the angle between a normal to the lamellar

layers n̂, and the director of the surfactant molecules. In previous sections, we have

considered these two vectors to be equivalent to each other, and have been able

to use this fact in order to calculate the lamellar layer separation. However, when

subject to shear, there can be a difference between these two vectors. This is

illustrated in Fig. 7.19. Under shearing the lamellar layers remain parallel to the

x− z plane, and therefore the normal to these layers remains as n̂ = (0, 1, 0). The

angle between the director and the normal of the layers is shown in Fig. 7.20. The

molecules shift to being at an angle within the lamellar layers.

This movement has an effect on the radius of gyration Rg of the molecules,

which is shown for the same case described above, in Fig. 7.21. While a significant

amount of reorientation of the molecules is found for shear rates at γ̇ = 6× 10−4,

only a small amount of growth in the radius of gyration is found at this shear

rate. When the shear rate increases to γ̇ = 6 × 10−3, the molecules significantly

269



n̂
Director

n̂
Director

Figure 7.19: Illustration of the orientation of the molecules under shear. The
molecules retain their parallel layers, but are no longer parallel with the normal
to the layer.

Figure 7.20: Angle Ψ between the normal to the lamellar layers and the director
of the surfactant molecules, as a function of the shear rate.
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orientate themselves, and the molecules’ stretch is represented by the growth in

the radius of gyration. At a shear rate of γ̇ = 6× 10−2 (not shown in Fig. 7.20),

the lamellar phase breaks down and the molecules no longer exist in parallel layers.

Based on the rate of growth of angle Ψ in Fig. 7.20, the molecules at γ̇ = 6× 10−2

would have angle Ψ ≈ 1.5rad. This is likely to be a reason that the lamellar

phase breaks down in the simulation box at this shear rate. This change in the

director has been observed in the work of others. For example, Guo [7] report the

change in the orientation of the director, around a period of time when undulation

begins in the lamellar layers, signifying an instability. This is then followed by

the reorientation into the perpendicular orientation. However, in this work no

reorientation into a perpendicular phase is found following the inset of instability

from high shear rate. Instead the phase immediately transforms into the nematic

phase.

It is possible that experimentally the lamellar layers would not disintegrate at

extremely high shear rate, as they do in the simulations. In the simulations, the

disintegration is suspected to be due to the orientation of the molecules with in

the layers. However, due to the box size being chosen based on the equilibrium

d-spacing, the spacing and thickness of the lamellar layers is unable to vary as a

function of shear rate. This may mean that the thickness of the layers is forced to

maintain an undesirable d-spacing value under the application of shear.

The radius of gyration is also calculated for the hexagonal phase, as a function

of the shear rate. This is shown in Fig. 7.22. Similarly to the lamellar phase,

there is little change in the radius of gyration except for very extreme values of

the shear rate. Unlike the lamellar phase, the structure of the hexagonal phase is

allowed more freedom to adjust its periodicity (inter-rod spacing r), since it can

rotate in the y-z plane. Of course it is still limited by the restrictions discussed in

the previous section. It is found that at almost all values of increasing shear rate,

there is no change in the value of r, until reaching a shear rate of γ̇ = 6 × 10−2.

At this point its average inter-rod spacing r increases from r = 7.52 to r = 7.85.
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Figure 7.21: The radius of gyration as function of shear rate for molecules in the
lamellar phase with concentration c = 70% and n = 0.

Note that in the previous section all of the hexagonal phases were aligned using a

shear rate γ̇ = 6× 10−3.

7.3.7 Other Orientations

In this work the lamellar phases used for the viscosity calculations were induced

from an initially random configuration, into the parallel orientation using a shear

rate of γ̇ = 0.06. Subsequent trials at higher shear rates did not yield any evidence

of the preference of the phase to form at a perpendicular orientation, at any shear

rate. In fact at a value of γ̇ = 0.6 the lamellar phase disintegrates. This means

that in all of the viscosity calculations so far, we calculate Miesowicz viscosity

component η2, as described by Fig. 3.5. Although we see no evidence of a natural

transition to the perpendicular orientation of the lamellar layers, simulations can

still be performed in order to investigate the viscosity component η3 (the perpen-

dicular phase). Since the perpendicular phase is not induced at any shear rate

from an initially random configuration, this can be performed by taking a lamellar

phase that is already in a parallel orientation, and rotating to the perpendicular.
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Figure 7.22: The radius of gyration as function of shear rate for molecules in the
hexagonal phase with concentration c = 40% and n = 0.

Some authors [7, 195, 300] have argued that the transition to this perpendicular

phase occurs naturally, due to the perpendicular orientation having a lower vis-

cosity than the parallel. A comparison of the calculated viscosity components η2

and η3, at high shear rates, is shown in Fig. 7.23. It can be observed that the

viscosity calculated for the perpendicular cases (η3) is indeed lower than the values

calculated for the parallel cases (η2), even though the transition to the perpendic-

ular cases was not naturally observed at higher shear rates. This suggests that the

transition from the parallel orientation to the perpendicular case is not entirely

determined by the viscosity, and there are other factors influencing the preferred

orientation of the lamellar phase.

7.3.8 Other Simulation Cases

Additional simulations are performed for the lamellar phase on systems consisting

of n = 1 and a distribution of n representing AES. However, due to time con-

straints, values were not obtained for shear rate values less than γ̇ = 6 × 10−6.

The results for these are shown in Fig. 7.24, showing that all of he results obtained
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Figure 7.23: Viscosity vs. shear rate profile generated using DPD simulations for
a lamellar system with concentration c = 70% and n = 0. Results are shown
for two different orientations which correspond to different Miesowicz viscosity
components η2 (parallel) and η3 (perpendicular).

are mostly in the plateauing region of the plot. However, it can still be observed

that the values obtained for the viscosity for the AES, n = 0 and n = 1 cases are

relatively similar. In the case for AES and n = 0, the increase in viscosity at lower

shear rates occurs at roughly the same shear rate, however, there is an indication

that the increase in viscosity will occur at a lower value of the shear rate with

increasing n, based off the case in which n = 1.

7.3.9 Matching Shear Rate to Real Shear Rate

If the gradient of the viscosity vs. shear rate relationship was independent of the

shear rate, then the gradient between the DPD results and the experimental results

should be equivalent. A comparison of interest in this section would obviously be if

the transition to plateauing shear rate is the same as what is observed experimen-

tally. This requires a conversion of the shear rate in DPD units to real units. In

Section 3.3.3 the time scale for DPD simulations was matched to those in physical

units by matching the units of kBT in DPD and real units at room temperature.
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Figure 7.24: Viscosity vs. shear rate profile generated using DPD simulations
for a variety of systems with varying n. Results are shown for two different con-
centrations which correspond to two different phases: 40% (hexagonal) and 70%
(lamellar).

This isn’t necessarily the best unit conversion to use for matching the shear rates

used. It has been noted that the link between the DPD and physical units is still

not clear and further studies are needed [302]. The mapping between length scales

that has been used so far in this work, has obtained reasonably comparable results

with experimental results. However, it is usually the time unit conversion that

is more controversial, and is performed in a large variety of ways. Another very

common method, besides that described in Section 3.3.3, is to convert DPD time

into physical time by matching the experimental self-diffusion coefficients of liquid

water Dexp to those in DPD, DDPD [303,304], using the expression

τC =
NmDDPDr

2
C

Dexp

(7.4)

where Nm is the bead mapping number defined in Eq. 3.33. For this system this

generates fairly similar time matching values (compared to the value of τC derived

in Section 3.3.3) of τC = 4.2 × 10−11s using Γ = 45 and τC = 9.0 × 10−13s using
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Γ = 250.

In many cases, models are calibrated for a specific application. This means that

the parameters of the model are modified to obtain physically relevant values for

the quantities of interest that describe the target system with a possible disparity

between other physical quantities [304]. For example, Townsend et al. [305] model

solid particles suspended in a fluid. They relate DPD units to physical units by

calculating the diffusion coefficient of the solid particles suspended in the static

fluid. They then convert into physical units by comparing with the experimental

diffusion coefficient of the solid particles. This results in a fairly large estimate

for the time scale, compared to the previously discussed methods. They also

performed experiments to compare the DPD simulations using Ultra-Small An-

gle X-ray Scattering, which complemented well with the findings using the DPD

simulations and this conversion parameter for time. Fedosov [306] perform DPD

simulations modelling polymer fluids. They observe that, experimentally, transi-

tion from the plateau to the power-law region occurs at shear rates O(λ−10 ) where

λ0 is the relaxation time. Since this is also true for the DPD simulations, they

determine that the matching of the relaxation time can be used to relate the real

and DPD time scales. Clearly there is no well established link between DPD time

units and physical time units, making a direct comparison in this work difficult.

7.3.10 Summary

In this section we investigated the effect of shear on the lamellar phase, and the

orientation of the lamellar layers relative to the shear flow direction. It was found

that the lamellar layers prefer to form at the parallel orientation at most shear

rates, and there is a transition to a nematic phase, when the layers break down,

at high shear rates. Contrary to what is observed for some lamellar systems under

shear, we did not observe a perpendicular orientation of the layers at any shear

rate. The break down in the layers is thought to be related to the change in the

orientation of the molecules (the director) under the influence of shear. Typically
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the reason given for a transition to a perpendicular phase is that it has a lower

viscosity. Although the perpendicular phase is shown to have a lower viscosity at

high shear rates, this transition is still not observed.

Following this, the viscosity vs. shear profile is investigated for a lamellar case

and hexagonal case. Both are found to exhibit shear thinning behaviour, and then

a plateau at high shear rates. The main difficulty in using DPD to calculate the

viscosity vs. shear rate relationship is the inability to reach lower shear rates due

to the amount of noise in the values for the stress tensor. Secondly, the conversion

of the DPD shear rate to a shear rate in real units is tricky, because there is not

a clear link between the two, and further studies are needed.

Ideally it would also be nice in future work to investigate the effect of varying Γ

on the simulation results obtained. While the SNR ratio would be expected to be

larger, a smaller value for Γ would increase the number of iterations of the system

that could be achieved. This may make the lower shear rates more accessible.
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Chapter 8

Molecular Dynamics

The method of DPD relies on making a number of simplifications to the structure

of the molecules, as well as the forces by which they interact with each other.

MD, by contrast, can be performed to simulate each individual atom within the

molecule, therefore increasing the level of detail available in the simulation.

In order to investigate the extent to which the simplifications made in the

DPD calculations have an effect on the parameters calculated in previous chapters,

a selection of equivalent MD simulations are performed for SDS molecules, and

are reported in this chapter. There are a variety of differing approaches within

MD, that can be used to investigate the micellar phases formed from surfactant

molecules. Primarily this includes whether the simulation is performed with an

element of atomistic coarse graining, or via an all-atom method. This chapter

will begin with an overview of the different approaches to study micellar phase

formation, before moving onto discussing the simulations performed in this work.

8.1 Micellar Phases in Molecular Dynamics

While, in theory, all-atom MD simulations can be performed, until recent years MD

simulations investigating the aggregation behaviour of surfactants was conducted

purely using coarse-grained simulations [76–81, 282]. From a practical aspect this

was because an all-atom simulation could not reach the time scales required for
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micelle formation. In a coarse-grained simulation, a number of atoms are grouped

together in order to reduce the number of calculations that need to be performed

with each iteration (although to a lesser extent than in DPD). This increases

the time scales that are accessible in the simulation, and allows the micellisation

process to be studied. Of course it also reduces the level of detail in the simulation,

but once again to a lesser extent than DPD simulations do.

All-atom simulations can sometimes be performed, but rarely are done so, from

a random initial configuration. Instead these simulations usually begin with a pre-

formed micelle, with an aggregation number which is close to what is expected from

experimental data. Often these simulations are of a very small number, or indi-

vidual, micelles [80,82–84]. In this technique researchers are not usually interested

in the self assembly process which leads to micelles, but in aspects of the micelle

structure. The method of performing simulations beginning with pre-assembled

micelles is the only way that all-atom simulations can be performed on micelle

sizes that have aggregation numbers close to what is found experimentally. Begin-

ning an all-atom simulation with a random initial configuration usually leads to

significantly under-predicted micelle sizes [85]. The major drawback to performing

calculations on pre-assembled micelles is that it relies on the assumption that the

size the micelle forms at is already known. While the simulation sizes are often

small, this method has been employed for a number of years, and has reached

conclusions about micelle structure that agree with experimental observation. For

example, early research conducted by Watanabe et al. [82] was performed for mi-

celles consisting of just 15 monomers, but reproduced the experimental observation

that micellisation leads to an increased proportion of trans conformations in the

alkyl chains. In more recent studies, such as the one by Chun et al. [307], an SDS

micelle consisting of 60 SDS molecules is simulated, and a variety of information

that agreed with experiment is obtained, including the geometrical radius and

conformational information about the molecules inside the micelle.

In order to investigate the process of spontaneous aggregation into micelles,
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coarse-grained simulations are more appropriate in order to achieve the required

time scales. For example. Fujiwara et al. [78] show that for micelles that eventually

form an oblate shape, the micelle formation process is as follows. The simulation

begins at a random initial configuration, as time elapses small micelles are formed

in several positions, and then at much time later several small micelles coalesce

into a large, disk shaped micelle. Micellar size distributions can also be calculated

in simulations which contain a number of micelles [78], which cannot be accurately

calculated from all-atom simulations consisting of very few micelles.

Rarely have simulations been performed using all-atom modelling, beginning

with random initial configurations. Such simulations are generally not preformed

for systems containing long molecular chains, such as SDS, as they do not result in

fully equilibrated simulation boxes. With modern computational resources, micelle

aggregation can be observed, but at lower aggregation numbers than expected due

to slow equilibration. This means that while properties such as the mean aggre-

gation number can be calculated, they can not be compared in a meaningful way

with experimental results. However, while more uncommon than coarse-grained

simulations, there are examples where authors such as Sammalkorpi et al. [85]

have reported results from partially equilibrated micelle solutions. In their system

the micelles are still evolving, and the average micelle sizes observed are much

lower than those found via experiment. However, the dependence of quantities as

related to their aggregation size N can be reported in a similar way to what was

presented in Chapter 6.

The work reported in this chapter will focus on performing equilibrium, all-

atom simulation of SDS solutions, using MD. This chapter will focus entirely on

equilibrium simulations (i.e. solutions not subject to a shear force) and will be

performed for solutions exclusively in the micellar phase. There are several ex-

isting studies using coarse-grained MD for SDS, but relatively few using all-atom

methods. It would be more beneficial to compare with a result from all-atom

simulations, as opposed to another coarse graining method that may suffer from
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similar simplification effects as DPD. As the DPD method involves simplifying

the molecule through course graining, and by simplifying the forces in order to

speed up the simulation, the DPD method may not capture the level of detail

that can be obtained through more detailed modelling. For example, an interest-

ing study was conducted by Peroukidis et al. [308], who modelled SDS molecules

using coarse-grained MD simulations. They found that the aggregation number

with concentration was greatly over predicted. They then mapped the resulting

configuration from their coarse-grained study to an all-atom simulation, using the

coarse grained results as an input to their all-atom study. From the all-atom

study they found that the micelles dissolved and broke up, to achieve aggregation

numbers that closely replicate experimental results. This clearly suggested that

there were problems in attempting to reproduce correct micellar behaviour using

coarse-grained simulations, that could only be captured in an all-atom study.

This chapter aims to compare some of the parameters that were calculated in

Chapter 6, with equivalent parameters in a more detailed MD simulation. The

exclusively micellar concentration range is selected due to the expectation that at

no concentration of surfactant molecules, would all-atom MD simulations result in

a fully-equilibrated phase. However, a partially equilibrated micellar phase can be

more easily studied than unequilibrated lyotropic crystal phases. Even though the

MD simulations will not reach a fully equilibrated result, due to the time scales

that would be involved, a number of micelles form in the partially equilibrated

simulation boxes, which can still be studied.

8.2 Computational Method

In this work LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simula-

tor) [27] is used in order to perform the MD calculations. LAMMPS is an open

source, classical molecular dynamics code which is well developed for parallel com-

puters. LAMMPS has a huge range of capabilities, and many different models and

algorithms can be selected for different applications.
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The main variable in setting up MD simulations is the choice of the force

field. As described in Section 3.2, the meaning of ‘force field’ in the context of

MD simulations refers to the parameter sets used in the equations controlling the

forces between atoms. The parameters used for the SDS molecules are obtained

from the Automated Topology Builder (ATB) and Repository [14]. The ATB

uses quantum mechanical calculations in order to assign force field parameters.

Further details of these parameters can be found in the Appendix E. For water

molecules there exist a huge number of different models that have been specifically

developed for modelling liquid water in MD calculations. The most common are

three-site models, which have three interaction points corresponding to the three

atoms of the water molecule. Generally, most modernly developed water models

(e.g. OPC [309], SPC/E [310], TIP3P [311]) reproduce the correct density of water

at room temperature [312]. The model selected for these calculations is the TIP3P

model [311], which, since its original inception, has later been adapted for use with

a long-range Coulomb solver [313] (e.g. Ewald or PPPM). The choice of the TIP3P

model is consistent with other researchers for studying micellisation [282, 314],

although it has been shown that the choice of water model does not affect the

predictions for the mean aggregation number of micelles [282]. In this work the

PPPM solver is used for the electrostatic interactions.

The simulation is set-up in a cubic box with periodic boundary conditions, with

molecules at randomly generated positions. Care is taken to ensure that positions

are generated such that atoms do not overlap, which would lead to inter-atomic

potentials computing large forces, causing the simulation to become numerically

unstable. The molecules are generated with an initial density that is lower than the

target mass density, in order to aid with the generation of sufficiently spaced apart

molecules. Following this, an energy minimisation of the system is performed, by

iteratively adjusting atom coordinates, in order to minimise the total potential

energy of the system. This procedure creates the initial configuration for the

system.
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Simulations are then conducted using a isothermal-isobaric (NPT) ensemble.

LAMMPS uses Nose-Hoover equations of motion, in order to calculate the forces

between the atoms. Coupling parameters are required for both the thermostat

Tdamp and barostat Pdamp elements, which are specified in time units, and determine

how rapidly the temperature or pressure is relaxed. Choices of Tdamp = 100 time

steps and Pdamp = 1000 time steps are made for the thermostat and barostats,

respectively, as recommended by the LAMMPS documentation. If Pdamp is too

small, the pressure and volume can fluctuate wildly. Likewise, if Tdamp is too small

the temperature will fluctuate. If the parameters are too large then the pressure

and temperature will take a long time to equilibrate. Therefore the pressure,

volume, and temperature are observed during calculation, in order to confirm that

these parameter choices are optimal for this simulation case. The simulation is

run at a constant pressure of 1atm and a temperature of 300K. Over the course of

the simulation, the box volume decreases until the density reaches an equilibrium,

steady-state value. A time step of 1fs was used throughout the simulations. The

Lennard-Jones interactions were cut off at 1.5nm, and the PPPM Ewald method

was used for the long-ranged electrostatic interactions.

8.2.1 Simulated Systems

Three different SDS concentrations are trialled, corresponding to weight percent-

ages of 5, 10, and 20%. A variety of different box sizes were trialled for concentra-

tions corresponding to the 5 and 10% solutions, while only one box size is trialled

for the 20% concentration. The different-sized simulations are defined by the to-

tal number of molecules inside the box, e.g. for the case of a 5% solution with

100,000 molecules, the simulation is made up of 328 SDS molecules and 99,672

water molecules, resulting in a total of 312,792 atoms in the simulation box. One

box size is chosen for the 20% case as it is expected to take the longest to equi-

librate, so the smallest box size that is appropriate is chosen. A simulation box

containing 20,000 molecules is used, and this size is selected as it contains 334 sur-
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factant molecules, which is a sufficient number to produce a number of micelles,

based on the known experimental aggregation number. This will also allow for an

inter-micellar distance calculation.

These box sizes are larger than are typically used for all-atom MD calculations,

and therefore are expected to take a significant amount of time to equilibrate.

8.2.2 Data Analysis

The micelle clusters are identified in a similar way to the DPD simulations (dis-

cussed in Section 6.2.2.1). Molecules are assigned to a particular cluster if their

hydrocarbon tail falls within a cutoff radius of another molecule belonging to that

cluster. For the purpose of direct comparison with the DPD results, the cut off

is assigned to be 5.65 × 10−10m, which is the same as used in the DPD analysis,

converted into real units.

For comparison with Chapter 6, values are calculated for: the aggregation num-

ber and the radius of gyration of the micelles RG, as a function of their aggregation

number N . In order to analyse the size and shape of the molecules, values are also

calculated for the radius of gyration of the molecule Rg and the ratio of trans to

gauche conformations.

8.3 Equilibration Period

Over the course of the simulation, the simulations reach a constant average mass

density and constant average temperature. The fluctuation over the final mea-

surement period is shown in Fig. 8.1. The quantities fluctuate more for boxes

consisting of fewer molecules, however the magnitude of fluctuation is within rea-

sonable limits for all box sizes.

The aggregation number, as a function of iteration, for an MD simulation

consisting of a 20% concentration is shown in Fig. 8.2. The approach of beginning

the simulation at a low density compared to the target density causes the box size

284



Figure 8.1: Variation of the temperature and density of the simulation boxes over
the period of data collection. Data shown for different box sizes consisting of a
10% concentration.

to rapidly collapse, bringing the molecules together in a non-ideal configuration.

This also briefly creates an artificially large aggregation number. This non-ideal

configuration causes the box to re-expand for re-orientation of the molecules, before

the box decreases in size as the molecules gradually organise into a configuration

that minimises the forces between them. The aggregation number then gradually

comes to a constant value.

Each simulation case is performed over similar time frame, with the domain

divided across the same numbers of processes (64 cores i.e. 4 × 4 × 4 division).

This means that the simulations containing fewer molecules are able to run for

a larger number of iterations than the ones containing more. For example, for

the 10% concentration case, the simulation consisting of 10,000 molecules achieves

3.1 × 108 iterations, while the simulation consisting of 100,000 achieves 4.2 × 107

iterations. Using that the simulations are performed using a time step of ∆t =

1 × 10−15s, these simulations result in run times of 3.1 × 10−7s and 4.2 × 10−8s,

respectively. In both of these examples, the simulations were allowed to run for

similar lengths of time, amounting to approximately 165,000 CPU hours each.

This means that in order to reach similar time scales as the DPD simulations, a

greater amount of computational resources were used, even though even the largest

MD simulation boxes are significantly smaller (in terms of their volume) than the

DPD simulations.
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Figure 8.2: Equilibration of the aggregation number in an MD simulation. The
bins are of size 3× 106 in the iteration axis. The error bars represent the standard
deviation of each bin.

8.4 Simulation Results

8.4.1 Aggregation Number

A plot of the mean aggregation number Nagg for all simulation cases is shown in

Fig. 8.3. It is interesting to note that the mean aggregation numbers achieved

from varying simulation sizes for concentrations 5% and 10% are not that different,

and the smallest simulation box sizes are only marginally higher in their values of

Nagg. This is unexpected, as one might assume that the simulation cases which

have fewer molecules in are much further along in their equilibration than the

larger boxes, which is assumed would lead to larger mean aggregation numbers.

At all concentrations trialled, the mean aggregation numbers achieved are lower

than those seen in experiments, and also significantly lower than those reported in

DPD simulations in Fig. 6.12. This was to be expected, given one of the benefits

of DPD is the increased diffusion that leads to quicker equilibration.

Fig. 8.4 shows the final formation of micelles in the case of 20% concentration.

The micelles in their final configuration are located at approximately average dis-

tances from each other, as a result of their electrostatic repulsion. In Chapter 6

it was found that the radial distribution functions g(r) for the 7% and 10% con-

centrations decay quickly with distance. The 20% concentration shows a higher

degree of long-range order than the lower concentrations, but still dampens to
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Figure 8.3: Mean aggregation number Nagg against solution concentration. Differ-
ent scatter points show the results obtained for simulations in varying box sizes.
Error bars represent the standard deviation over the sampling period.

g(r) = 1 reasonably quickly as the distance increases. From the first peak in g(r),

an inter-micellar distance was calculated. Generally the radial distribution func-

tion can only meaningfully be analysed at distances up to half of the simulation

box edge length, for a system with periodic boundary conditions. Due to the small

box sizes in the MD calculations, it is difficult to assess any long range order of the

micelles. However, the average spacing can be calculated in a similar way from the

MD results to DPD (see Section 6.3.1.3), and the location of the first peak in the

radial distribution function is listed in Table 8.1. Two peaks are identified in the

concentration of 20%, which suggests some underlying cubic structure (i.e. there

are two nearest neighbour distances), however this is possibly due to the small box

size used in the simulations, and the fact that relatively few micelles form in a sim-

ulation box of this size. Both of these peaks occurs at a much lower distance than

was obtained in the DPD (58 ± 1Å) and found experimentally (57Å [266]), how-

ever an under-prediction of the aggregation number would explain why the nearest

neighbour micelles are closer. However, analysis of the inter-micellar distances is

complicated by the small box sizes.
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Figure 8.4: Formation of micelles in MD, in a simulation box consisting of 20,000
molecules with a concentration of 20%. The surfactant molecules are illustrated
by the pink beads. Water molecules are not shown for clarity.

Concentration Simulation Size Simulation Edge Peak
(wt.%) (Molecules) Length Location (Å)

5 100000 143.9± 0.1 39.0± 0.5
10 100000 145.0± 0.1 42.7± 0.5
20 20000 88.4± 0.1 44.2± 0.5 & 51.2± 0.5

Table 8.1: Location of first peak in the radial distribution functions g(r) for dif-
ferent simulation cases. The location of this first peak finds a value for the nearest
neighbour in micellar solutions.
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8.4.2 Radius of Gyration RG

The radius of gyration RG of the micelles against the aggregation number N is

shown in Fig. 8.5. The value of RG for a given aggregation number N is relatively

independent of the simulation size used, as well as the overall concentration of

the box, in agreement with the DPD results. Fig. 8.6 combines the results from

all box sizes and concentrations, in order to plot the RG of the micelles against

their aggregation number N , as well as the relationship between R3
G/N and N . As

discussed in Chapter 6, this quantity helps us to assess the shape of micelles as a

function of N , as for spherical micelles this value would be independent of N . The

value of R3
G/N decreases from aggregation numbers around N ≈ 10 to N ≈ 60,

which is in partial agreement with the results obtained in DPD for n = 0. DPD

finds that beyond about N ≈ 60, R3
G/N increases significantly, as the micelles

start to take on a prolate shape. As none of the MD simulation results achieved

aggregation numbers this high, this behaviour is not seen.

The minima in the plot of R3
G/N in DPD occurs at around N = 44. Since

in the MD results, we only have one data point beyond this value of N , it is

difficult to suggest exactly where an equivalent plateau in the MD results will

be with respect to N , and thus what the value of N that results in transition

from a spherical to a prolate shape. Based on this single data point alone, the

micelles will take their spherical shape at a larger value of aggregation number

than N ≈ 44, with plateau being more likely to be around N ≈ 60. This would

be in better agreement with some of the experimental data presented in section

6.2. For example, experimentally, it is often reported that the concentration at

which SDS micelles start to become prolate is at around 1%, and solutions at this

concentration are reported to have a mean aggregation number of Nagg = 66 [22]

(see Table 6.5). Of course, there is still reasonable disagreement experimentally

at the exact value that SDS micelles begin to become prolate. This could explain

explain why in Fig. 7.14, which details the trans/gauche ratio as determined via

DPD as a function of concentration, the boundary at approximately 20% is at
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(a) c = 5% (b) c = 10%

(c) c = 20% (d) All concentrations.

Figure 8.5: RG plotted against N for a variety of concentrations c. For each con-
centration various different box sizes containing 10000, 20000, 50000 and 100000
molecules are shown. However, for the 20% concentration case only one box size
containing 50000 molecules is trialled. The aggregation number N is binned into
bins of size 5 and error bars represent the standard deviation. In Figs (a)-(c) scat-
ter symbols are coloured by the size of the simulation box, whereas for Fig. (d)
symbols are coloured by their concentration: 5% (black), 10% (blue), 20% (pink).
RG is plotted in units of Angstroms (Å).

a slightly different concentration, when compared with the experimental Raman

results. DPD could be over predicting the rate at which the micelles become

non-spherical.

Wang et al. [79] model the aggregation of a single micelle composed of 60 SDS

molecules, using coarse-grained MD simulations. They obtain micelle radius of

19.9Å for this case. Similarly Chun et al. [307] performed all-atom simulations

with aggregation number of 60 and found a micelle radius of 21Å. Wang et al. [79]

calculate their value as the distance between hydrophilic head group to the micelle

center of mass, while Chun et al. [307] calculate their value by calculating the
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(a) RG plotted against N (b) R3
G/N against N

Figure 8.6: Combination of results from all concentrations and box sizes trialled.
The aggregation number N is binned into bins of size 5 and error bars represent
the standard deviation. RG is plotted in units of Angstroms (Å).

radius of gyration of the micelle RG and making use of Eq. 6.11. In this work, a

micelle of size N = 60 is determined to have a radius of gyration of RG = 14.3Å,

taken from the fit in Fig. 8.6. Using the relationship given in Eq. 6.11, between

the radius of a gyration of a micelle and its geometrical radius (assuming spherical

shape and constant density), this is converted into an effective micelle radius of

18.4Å, which is in reasonable agreement with the findings from other MD studies.

The value found for the radius of gyration in DPD and MD are directly com-

pared in Fig. 8.7. The estimate for the micelle sizes for a given aggregation

number are in relatively good agreement with each other, although the MD simu-

lations don’t reach anywhere near as high aggregation numbers, even for the 20%

concentration case.

8.4.3 Conformation of Molecules

One of the main purposes of this study was to see if the DPD simulations were

reproducing the conformational behaviour of the molecules as well as an all-atom

MD simulation would. Combining the results from all simulations (i.e. all concen-

trations and box sizes) a relationship can be found between the radius of gyration

of an individual molecule, and the aggregation number of the micelle (to which

that molecule belongs). The results of this, compared with the results obtained
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Figure 8.7: Comparison of the relationship between the micelle radius of gyration
RG and aggregation number N , as obtained via DPD (red) and MD (black) sim-
ulations. RG is plotted in units of Angstroms (Å). The conversion between DPD
units and real units uses 1 DPD length unit = 5.65Å.

using DPD, are shown in Fig. 8.8. There is a sharp increase in the value for Rg

for molecules in well-defined micelles 7 < N , and then a plateau. While the DPD

results showed a more clear increase in Rg with increasing aggregation number, the

relationship between Rg and N in MD is less clear, although the absolute values

are in reasonable agreement with each other. The less well-defined relationship

between Rg and the aggregation number N in MD could be a result of less well-

equilibrated micelles. There are relatively few micelles of the larger kind available

for analysis in the MD study, which may contribute to the noise in the analysis of

the results for larger micelles (as evidenced by the fact that the mean aggregation

numbers for the simulation cases are generally < 20). However, there exists a very

strong relationship between the radius of gyration of a molecule, and the ratio of

trans to gauche bonds in the molecule. This is illustrated in Fig. 8.9.
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Figure 8.8: Radius of gyration of molecules Rg against the aggregation number N
of the micelle they belong to. The black points are the results obtained using MD
calculations, while the red points are the DPD results converted into real units.
The error bars represent the standard deviation of the bins, while the error bars
for the DPD results are not shown as to not obscure the results due to large error
bars. Rg is plotted in units of Angstroms (Å).

Figure 8.9: Relationship between the ratio of trans/gauche conformations in
molecule against its radius of gyration Rg.
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8.4.4 Conclusion

In this chapter we aimed to conduct a small selection of all-atom MD simulations,

in order to investigate if the results from the coarse-grained DPD simulations in

Chapter 6, were consistent with a more detailed simulation. As expected, the

aggregation numbers achieved in these simulations were much lower than what is

found experimentally, however, results could still be obtained as a function of the

aggregation number N for comparison. It is common to cite the reason behind

under-predicted aggregation numbers as poor equilibration. It can be observed in

Fig. 8.2 that the aggregation number appear to reach a plateau after long itera-

tions, once almost all of the surfactant molecules in solution have joined up into

micelles. The time scales involved for subsequent micelle coalescence is expected

to be long. The reason given by Sammalkorpi [85] for the low aggregation num-

ber in all-atom simulations of SDS micelles, is related to this reasoning. They

conclude that the micelles are in a local energy minimum, and if the minimum is

deep enough, it is unlikely that we would be able to see any further size evolution

within the time window we are able to examine using all-atom MD simulations.

Since no micelles were formed at an aggregation number where the micelle

was expected to take a prolate shape, as determined via DPD, a comparison of

these types of micelles could not be made. In order to reach larger aggregation

numbers, in a similar way to Peroukidis et al. [308], an interesting study would be

to map the results of the DPD simulation results onto an all-atom MD simulation.

After a relatively short equilibration time, a comparison of the radius of gyration

and trans/gauche parameters, could be conducted for more similar aggregation

numbers.

However, in the region of aggregation numbers for which the MD results could

be compared to the DPD results, see Fig. 8.7, the calculation of the radius of

gyration of the micelles RG is remarkably similar between the two simulation

methods. Therefore there is good evidence that DPD can be used in place of the

more detailed MD simulations for this kind of work, despite the simplifications
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made in DPD. In particular, since a larger amount of computational effort was

required to produce the MD results vs. the DPD results in previous chapters, this

confirms that DPD is an attractive simulation method of choice.
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Chapter 9

Conclusion and Future Work

In this work a variety of experimental and numerical methods have been used to

study anionic surfactant solutions of the form CH3(CH2)x(OCH2CH2)nOSO3Na

(AES). These surfactants are common anionic surfactants used in a variety of

personal care products, and in commercial AES used in these products there is

usually a distribution of x and n. The experimental investigations provide data

with which the simulations could be compared. Despite the prevalence of AES in

commercial personal care products, little existing published research on the phase

diagram could be found. In Chapter 4, experimental methods such as polarised op-

tical microscopy imaging and rheological measurements aided in the identification

of the mesophases formed, as well as helping to identify the concentration phase

boundaries between the different mesophases. This was confirmed in Chapter 5 us-

ing Raman spectroscopy measurements, which identified conformational changes

as a result of mesophase changes. The identification of the boundary between

the micellar and hexagonal phases proved to be the most difficult to determine,

since different experimental techniques indicated different behaviour. This sug-

gested a coexistence of the micellar and hexagonal phases, at concentrations on

the boundary.

The main computational tool used in the work in this thesis is dissipative

particle dynamics (DPD). Overall the phase diagrams identified using DPD tech-

niques are in reasonable agreement with those found experimentally, including the
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location of the phase boundaries identified. The unusual behaviour at the phase

boundary between the micellar phase and the hexagonal phase was indicated using

DPD, to be likely due to shear induced alignment of worm-like micelles. Although

further work studying this region in particular is necessary to explain the be-

haviour fully. If the solution behaviour is due to a co-existence of the micellar and

hexagonal phases, this homogeneity would not be able to be captured in a small

simulation box.

In order to investigate the micellar phase in more detail, experimental mea-

surements using dynamic light scattering (DLS) were performed in Chapter 6.

The aim of these measurements was to quantify changes in the micellar shape and

size, due to increasing concentration. Measurements were made on both AES and

SDS solutions, in order to investigate the effect of varying ethoxylation n. These

measurements proved difficult to interpret, which was likely due to strong inter-

micellar electrostatic interactions. By extrapolating the results to infinitely dilute

concentration, an estimate of the micelle size for SDS and AES could be obtained

for spherical micelles. These results were in agreement with the theory that the

micelle radius increased proportionally to an increase in the average chain length

of the surfactant molecule. However, for investigating the changes in size at higher

concentrations, a different experimental method is required. For example small

angle X-ray scattering or small angle neutron scatting. However, as discussed in

Section 6.2, these methods are more complicated than dynamic light scattering

and can still sometimes lead to conflicting results.

There is still a reasonably large gap in the literature for the experimental in-

vestigation of lyotropic liquid crystal structures formed by pure, monodisperse

surfactants. This was highlighted by the lack of available data for comparison in

Chapter 7, for the lamellar d-spacing and the inter-rod spacing of the hexagonal

phase. This could be measured by means of small angle X-ray or neutron scat-

tering. There is also significant lack of experimental data available describing the

size and shape of micelles in micellar solutions, for varying ethoxylation n (with
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the exception of SDS molecules). The micellar size, even the aggregation num-

ber, is difficult to measure experimentally, with different experimental methods

producing inconsistent results.

There were some aspects of experimental surfactant behaviour that could not

be studied using the DPD method used in this thesis. For example, in Chap-

ter 4 POM imaging highlighted what appeared to be enhanced alignment of the

lamellar phases at the solution-air interface. However, fluid/gas interfaces cannot

be studied using DPD, since standard DPD requires that the simulation beads

be at an approximately constant density throughout the domain. This is due to

the fact that the conservative interaction between beads is entirely repulsive. An

attractive component would be required in order to form phases of different densi-

ties e.g. to have coexisting liquid and gas phases in order to study the boundary.

This has led to the development a simulation method which is an extension to

the DPD method, called many-body dissipative particle dynamics (MDPD) to de-

scribe these systems. Therefore, it would be interesting to expand this research

to the MDPD method, in order to investigate interfacial phenomena, such as that

highlighted by the experimental work.

The simulation method chosen for the bulk of this work was dissipative particle

dynamics (DPD). This simulation method has commonly been applied to nonionic

surfactant solutions, and has benefits over typical molecular dynamics (MD) tech-

niques. While modelling of this nature (i.e. on the atomic scale) may be more

commonly performed using MD, this method is not suitable for the long time and

length scales involved in surfactant solutions. Despite the fact that in commercial

AES there is usually a distribution of x and n, polydisperse distributions such as

these are rarely investigated using numerical techniques. In fact, even for monodis-

perse distributions studied, very little existing literature investigating the effect of

varying n could be found. However, DPD has only recently been extended to

ionic systems, and research in this area is still scarce. The electrostatic force must

be treated differently in DPD vs. MD, and is still an area that requires further
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research. The treatment of this force is suspected to be one of the causes behind

the under-prediction of the mean aggregation number in Chapter 6.

The inclusion of the electrostatic force also becomes the dominating factor in

the computational efficiency. Without electrostatic interactions the computational

cost scales linearly with the number of DPD beads bN (i.e. O(bN)) [315], while with

electrostatics the scaling becomes O(bN log bN), significantly reducing the number

of iterations that can be performed with increasing simulation size. Therefore,

in this work, the large box sizes used required relatively long run times. For the

micellar phase it is more difficult to determine if equilibration has been reached

(compared to the liquid crystal phases) based on the final resulting configuration

alone. This led to the approach to run the simulations for as long as reasonably

possible. However, large box sizes were necessary in order to obtain a large number

of micelles in the simulation box. This lead us to be able to find a distribution

of micelle sizes for every simulation case, as well as to find values for the nearest

neighbour from the radial distribution function.

Despite the aggregation number under-prediction, we could investigate the mi-

cellar shape, as a function of aggregation number N , by plotting R3
G/N vs. N ,

where RG is the radius of gyration of the micelles. For spherical micelles this

relationship would be linear if the density of the micelles remains constant. How-

ever, it was found that for each choice of n, there was only a narrow window of

aggregation numbers for which this was true. By identifying the region in which

this condition was satisfied, we could locate the aggregation number at which the

molecules were most spherical, for a given value of n. The aggregation number

required for spherical micelles was found to increase with increasing n. The radius

for the spherical micelles was also found to increase in proportion to the increase

in length of the molecule, which is consistent with what was found using DLS.

One of the challenges associated with studying micellar solutions via DPD,

is the under-prediction of the aggregation number. There are a number of ways

that this could potentially be tackled. The primary problem is that bringing two,
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smaller micelles together, in order to form one large micelle, must over-come an

energy barrier. It is likely that the micellar solutions struggle to reach larger aggre-

gation numbers due to the emergence of a local equilibrium at a lower aggregation

number, meaning the time scales to see any increase in micelle size would be ex-

tremely long. However, it is observed by Peroukidis et al. [308] that micelles which

are initialised with a larger aggregation number than is optimal, can break down

into smaller micelles relatively easily. Therefore, initialising a DPD simulation

with an aggregation number that is too large may be a way of reaching aggre-

gation numbers that more closely replicate experimental results, since micellar

breakdown happens on a much shorter time-scale than micelle coalescence.

Alternatively, one could take an approach which still initialises surfactant

molecules randomly throughout the domain. It was observed in Fig. 6.12 that

the aggregation number at larger concentrations is much closer to the experimen-

tal value. This is likely due to closer proximity of micelles at higher concentrations,

leading to it being more likely that they have opportunity to combine into large

micelles. Therefore, for example, in order to study a box with a 7% concentration,

one could start with an equilibrated box at 20% concentration. Then we could

remove a number of the micelles in order to achieve a desired, lower, concentration.

In this work we chose to analyse the shape of micelles exclusively using the

radius of gyration. Attempts were made to find alternative ways to quantify the

shape of micelles, in particular using fits to their surface, however most of these

methods failed due to difficulty identifying the surface of a dynamic micelle. Ran-

dom protrusions and oscillations make finding size information from simulation

difficult. However, it would be beneficial to continue exploring alternative meth-

ods for analysing micelle shape, since a variety of different authors have approached

this task differently, and there is no general consensus on the best way to study

micelle shape. In particular, when a study was performed to investigate the via-

bility of fitting to the micelle surface, it was found that large, spherical micelles

can be fit to more easily than smaller or asymmetrical micelles. However, even
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in this case there remains an ambiguity as to the size of the micelle. The density

of the micelle did not have an abrupt end, therefore the point of cut off for the

micelle is difficult to define. This makes comparisons with experimental size data

more difficult. Others have quantified micellar sphericity by variables such as the

eccentricity (which is defined using moments of inertia [75]), although this was not

investigated in this work.

One aspect of the micellar solutions that was not analysed in this thesis is

the distribution of ions in the solution. For example, Fig. 2.7 illustrates how in

micellar solutions ions can arrange themselves in a way to electrostatically screen

micelles. An understanding of the distribution of ions in solution may aid in

explaining the interactions between micelles, and potentially help us to understand

the DLS results. Similarly, it would also be potentially interesting to study the

density distribution of the different bead types, as a function of their distance

from the micelle centre. This would provide quantitative information on how the

micelles are structured. This may be particularly interesting for micelles in the

AES simulations, which are constructed from a distribution of molecular lengths.

The box sizes used for investigating the liquid crystal systems (L = 40) was

slightly smaller than the micellar systems (L = 50), based on an estimate of the

effect the periodic boundary conditions would have on the structures. Each box

size L correlated to an available number of d-spacings and inter-rod spacings r,

with an increasing number of available spacings with increasing box size. While

the lamellar phases formed under equilibrium conditions given sufficient run time,

the hexagonal phases could only be encouraged to form with the addition of an

applied shear. This had the side effect of causing shear induced alignment in

the simulation box, reducing the number of available inter-rod spacings for the

hexagonal phase. Ideally the hexagonal calculations should be repeated for a

slightly larger simulation box, in order to increase the number of available inter-rod

spacings available to each concentration case, for investigating the effect of varying

n and c. The use of a cubic box also meant that a true hexagonal structure could
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not be generated, as the phase was usually skewed or stretched in order to fulfil the

periodic boundary conditions. This makes determining the true value of the inter-

rod spacing difficult. However, the values obtained for the d-spacing and hexagonal

inter-rod spacing compare reasonably well with the limited data that is found

experimentally. This is despite the same DPD parameters resulting in an under-

prediction of the mean aggregation number in the micellar phase. This is consistent

with the thought that the treatment of electrostatic interactions is playing a part

in the under-prediction of the aggregation number. The long-range interactions

will play a larger role in the behaviour of solutions with lower concentrations,

whereas at higher concentrations the short-range interactions will have greater

impact. This is also consistent with the observation that the gap between the

experimental aggregation number and DPD aggregation number decreases with

increasing concentration.

The extent to which monodisperse simulations can be used to reproduce the

behaviour of polydisperse surfactants has been investigated in this work. This is

of note, since the majority of computational work focuses on monodisperse cal-

culations, while the majority of experimental work focuses on the polydisperse.

For example, Fig. 6.18 shows that for micelles produced by a polydisperse sur-

factant, the radius of gyration RG and the aggregation number N of micelles can

largely be predicted from interpolation from monodisperse simulations. In other

words the parameters RG and N , for a surfactant with an average ethoxylation

value of n = 0.76, can be reasonably predicted from the values calculated from

monodisperse simulations with n = 0 and n = 1. Furthermore, calculations in Sec-

tion 7.2.2.3 indicated that the d-spacing for polydisperse cases could be calculated

using interpolation from the monodisperse cases of n = 0 and n = 1. A similar in-

vestigation could not be made for the inter-rod spacing of the hexagonal phase, due

to the limited number of spacings available resulting from the box size. However,

since once one polydisperse case was trialled, an investigation could be performed

for a range of different average n values, in order confirm this observation.
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One of the most interesting comparisons between the DPD and experimental

results were the conformational changes as a result of the phase change. One

might expect that this behaviour would struggle to be captured in DPD, due to

the simplification of the molecules through coarse graining. However, the increase

in the ratio of trans to gauche conformations in the hydrocarbon chain, which was

identified using Raman spectroscopy, was also found using DPD. Considering the

difficulty in interpreting spectroscopy data, such as that presented in Chapter 5,

the confirmation that DPD can reproduce the correct behaviour makes studying

other aspects of molecular conformations easier. This may also help interpret some

of the peaks that appear in Raman spectroscopy data, that historically are hard

to categorise.

We were also able to investigate the impact of shear force on each of the phases.

Experimentally, the hexagonal and lamellar phases exhibit alignment under the

application of shear, which was also shown in the DPD simulations. A shear

thinning profile could be calculated for the lamellar and hexagonal phases, which

plateaued at higher shear rates. This is broadly consistent with the behaviour

expected from experimental measurements. At high values of shear rate, the phases

break down and transform to a nematic phase, which has a director in alignment

with the direction of shear flow. For the micellar phase, increasing shear rate

leads to stretch and aligns micelles in the direction of shear flow. This leads

to shear thinning behaviour. In all simulation cases, reaching lower shear rates

is increasingly difficult, due to the noise in the off diagonal stress tensor. This

effectively places a lower limit on the value of shear rate that can be applied.

DPD is perhaps most useful for investigating the shear behaviour at high shear

rates, which is not easily performed in a rotational rheometer.

In this work we touched upon the effect of varying collision parameter Γ in the

thermostat. The results indicated that the choice of Γ does have an effect on the

behaviour of the solutions, and therefore has an effect on the parameters calculated

in this work. However, more work is required to fully establish the effect Γ has on
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surfactant solutions, since only a couple of different values were trialled.

Mapping the length scale in the DPD simulations to real units was performed

by matching the density of pure water to that measured experimentally at room

temperature. This proved to be a reasonable mapping, based on the comparison of

quantities with length units (e.g. radius of gyration of molecules Rg and micelles

RG) with those calculated experimentally and in the MD simulations. However

mapping the time scale in DPD to real units is more difficult and needs further

investigation. This makes mapping the shear rate from DPD simulations to real

units difficult. Much existing literature performs a mapping based on matching

the specific system being studied, which is not easily generalised to other systems.

Finally, we also performed a small selection of MD simulations in the micel-

lar region, in order to compare with the results obtained via DPD. It is worth

comparing the DPD simulations with another simulation method, as well as ex-

perimental results, as some of the experimental results can be difficult to interpret.

Experimentally it is difficult to calculate information such as the micellar size as

a function of aggregation number. MD simulations involve a greater amount of

detail than the DPD simulations do, therefore MD simulations require much more

computational effort than DPD simulations, but were shown to yield similar re-

sults for the parameters of interest in this work. For example, there is remarkably

good matching between the two simulation methods for the relationship between

the radius of gyration of the micelles against their aggregation number. However,

the DPD simulations are able to achieve higher aggregation numbers than those in

MD, meaning that DPD simulations are a desirable alternative to MD simulations

when studying these systems.

There is much further scope for additional study of AES-like molecules using

DPD simulation. In particular, most commercial products contain a mixture of

surfactant types. Simulations containing both AES molecules and other surfac-

tants can be investigated, now that the validity of DPD for pure systems has been

confirmed. A common area of research is the effect of adding salts, since this has
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been greatly shown to influence the shape and size of micelles. Also, in this work

we focused on the effect of varying the number of (OCH2CH2) groups on the phase

diagram and the mesophase structure. However, commercial AES also possesses

polydispersity in the hydrocarbon chain length. It was assumed in this work that

the effect of varying the number of (OCH2CH2) groups was more significant than

varying the length of the alkyl chain, but this may be worth investigation. In

particular, it would be useful to investigate if a polydisperse alkyl chain would in-

crease the d-spacing values and inter-rod spacings to something which more closely

matches experimental data.
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tin, “Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann

and lattice-gas methods,” Computer Physics Communications, vol. 153,

no. 3, pp. 340–358, 2003. 62

[96] A. J. C. Ladd, M. E. Colvin, and D. Frenkel, “Application of lattice-gas

cellular automata to the brownian motion of solids in suspension,” Phys.

Rev. Lett., vol. 60, pp. 975–978, Mar 1988. 62

[97] J. C. Shillcock and R. Lipowsky, “Equilibrium structure and lateral stress

distribution of amphiphilic bilayers from dissipative particle dynamics simu-

lations,” The Journal of Chemical Physics, vol. 117, no. 10, pp. 5048–5061,

2002. 62, 75, 182, 233

[98] T. L. Rodgers, O. Mihailova, and F. R. Siperstein, “Dissolution of lamellar

phases,” The journal of physical chemistry. B, vol. 115, no. 34, pp. 10218–

10227, 2011. 62, 82, 182, 233, 259

[99] P. Prinsen, P. Warren, and M. Michels, “Mesoscale simulations of surfactant

dissolution and mesophase formation,” Physical review letters, vol. 89, no. 14,

p. 148302, 2002. 62

[100] R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the

gap between atomistic and mesoscopic simulation,” The Journal of Chemical

Physics, vol. 107, no. 11, pp. 4423–4435, 1997. 62

318



[101] R. D. Groot, “Electrostatic interactions in dissipative particle dynam-

ics—simulation of polyelectrolytes and anionic surfactants,” The Journal

of Chemical Physics, vol. 118, no. 24, pp. 11265–11277, 2003. 62, 71, 76

[102] V. Alopaeus, “Modeling surfactant and drop size dynamics in polydisperse

liquid-liquid systems with population balances,” Chemical Engineering Sci-

ence, vol. 248, p. 117269, 2022. 63
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[137] A. Satō, Introduction to practice of molecular simulation : molecular dynam-

ics, Monte Carlo, Brownian dynamics, lattice Boltzmann, dissipative particle

dynamics. Elsevier insights, London: Elsevier, 2011. 72
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Appendix A

Derivation of Constraint on

d-spacing for Lamellar Layers

This section will discuss derivation of Eq 3.46. Consider that for any value of y or

z, a line that is parallel to the x-axis must pass though an integer number of layers

formed (due to the period boundary conditions at x = 0 and x = L). Although,

the spacing the layers project onto that line will be skewed. Therefore, the number

of layers must satisfy κx = L/∆x where ∆x is the skewed separation of the layers

along that line. Likewise for vectors in the x and y direction: κy = L/∆y and

κz = L/∆z. The values of ∆x, ∆y and ∆z combine to find the d-spacing d as:

(
d

∆x

)2

+

(
d

∆y

)2

+

(
d

∆y

)2

= 1. (A.1)

Substituting in the above expressions for ∆x, ∆y and ∆z finds expression in Eq

3.46. Illustration of how expression Eq A.1 is found is illustrated in Fig A.2. In

two dimensions values ∆x and ∆y would combine to find spacing w as follows.

From Fig A.2: w = ∆x cosϕ and w = ∆y sinϕ, combining these two expressions

leads to (
w

∆x

)2

+

(
w

∆y

)2

= 1. (A.2)
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Similar arguments can be made in 3 dimensions to extend this to an expression

for d, as that given in A.1.

Figure A.1: Adapted version of Fig 3.8. Illustration of the formation of repeated
lamellar layers in the simulation box. A triangle illustrates the constraints the
periodic boundary conditions impose. The vertical line of this triangle has a length
the same as box size L. A second line has length κd, where is an integer related
to the number of layer repeats it passes though, and d is the spacing between the
repeated layers. This line is normal to the periodic layers in the box and is in
the same direction as the director for the molecules. These lines can form a right
angled triangle such that L cos θ = κd. Also illustrated is the meaning of ∆x and
∆y.

Figure A.2: Definition of symbols used in derivation of Eq. A.2. Note that ϕ =
(π/2)− θ.
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Appendix B

Limit of Eq. 6.7 at low

concentrations

Suppose that the concentrations can be represented as a function of surfactant

concentration: c1 = A(1− x), c+ = Bx and cmic = Cx. Eq. 6.7 then becomes

D =
AB(1− x)xD1D+ + q2AC(1− x)xD1Dmic +BCm2x2D+Dmic

A(1− x)D1 +BxD+ + C(m− q)2xDmic

× Bx+ A(1− x) + C(m− q)2x
AB(1− x)x+ q2AB(1− x)x+BCm2x2

=
x[AB(1− x)D1D+ + q2AC(1− x)D1Dmic +BCm2xD+Dmic]

AD1 + x[BD+ − AD1 + C(m− q)2Dmic]

× A+ x[B − A+ C(m− q2)]
x[AB(1− x) + q2AB(1− x) +BCm2x]

=
ABD1D+ + q2ACD1Dmic + x[BCm2D+Dmic − ABD1D+ − q2ACD1Dmic]

AD1 + x[BD+ − AD1 + C(m− q)2Dmic]

× A+ x[B − A+ (m− q)2]
AB + q2AB + x[BCm2 − ABq2 − AB]

Taking x→ 0 gives

lim
x→0

D =
ABD1D+ + q2ACD1Dmic

AD1

× A

AB(q2 + 1)

=
Cq2Dmic +BD+

B(q2 + 1)
(B.1)
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We can also use the fact that q will be relatively large to say that

Cq2Dmic +BD+

B(q2 + 1)
× 1/q2

1/q2
=
CDmic +BD+/q

2

B(1 + 1/q2)
≈ (C/B)Dmic. (B.2)
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Appendix C

Number of beads in micellar

DPD simulations

This section provides details for the simulations performed in Section 6.3. Tables

C.1 and C.2 list the number of water beads and surfactant molecules for simulations

of varying concentration, and varying ethoxylation n.

n = 0 n = 1 n = 2 n = 3
NW NMol NW NMol NW NMol NW NMol

7% 348,520 3,310 349,125 2,875 349,690 2,531 350,085 2,265
10% 337,000 4,750 337,875 4,125 338,590 3,641 339,074 3,266
20% 298,128 9,609 299,769 8,359 301,090 7,391 302,125 6,625

Table C.1: The number of water beads NW and number of surfactant molecules
NMol for each DPD micellar simulation case (for monodisperse solutions). Note
that the number of beads in the surfactant molecule depends on n, ranging from
8 beads (n = 0) to 11 beads (n = 3). Box size defined by L = 50.

NW
NMol

n = 0
NMol

n = 1
NMol

n = 2
NMol

n = 3
7% 373,128 1,756 746 357 172
10% 338,075 2,469 1,047 500 500
20% 301,071 4,953 2,109 1,000 484

Table C.2: The number of water beads NW and number of surfactant molecules
NMol of each type, for each DPD micellar simulation case (for polydisperse solutions
representing AES). Box size defined by L = 50.
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Appendix D

Number of beads in liquid crystal

DPD simulations

This section provides details for the simulations performed in Chapter 7. Tables

D.1 and D.2 list the number of water beads and surfactant molecules for simula-

tions of varying concentration, and varying ethoxylation n.

n = 0 n = 1 n = 2 n = 3
NW NMol NW NMol NW NMol NW NMol

30% 132,152 7,481 133,464 6,504 134,460 5,754 135,262 5,158
40% 111,168 10,104 112,854 8,794 114,160 7,784 115,176 6,984
50% 89,600 12,800 91,668 11,148 93,260 9,874 94,518 8,862
60% 67,456 15,568 69,861 13,571 71,720 12,028 73,200 10,800
65% 56,192 16,976 58,728 14,808 60,710 13,129 62,288 11,792
70% 44,712 18,411 47,424 16,064 49,530 14,247 51,200 12,800
75% 33,088 19,864 35,958 17,338 38,170 15,383 39,936 13,824
80% 21,312 21,336 24,312 18,632 26,640 16,536 28,496 14,864

Table D.1: The number of water beads NW and number of surfactant molecules
NMol for each DPD micellar simulation case (for monodisperse solutions). Note
that the number of beads in the surfactant molecule depends on n, ranging from
8 beads (n = 0) to 11 beads (n = 3). Box size defined by L = 40.
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NW
NMol

n = 0
NMol

n = 1
NMol

n = 2
NMol

n = 3
30% 133,160 3,940 1,674 801 386
40% 112,136 5,348 2,272 1,087 524
50% 91,035 6,761 2,873 1,374 662
60% 77,566 7,663 3,256 1,557 751
65% 58,272 8,955 3,805 1,820 877
70% 46,634 9,736 4,135 1,978 953
75% 35,033 10,511 4,466 2,136 1,030
80% 23,379 11,291 4,798 2,295 1,106

Table D.2: The number of water beads NW and number of surfactant molecules
NMol of each type, for each DPD micellar simulation case (for polydisperse solutions
representing AES). Box size defined by L = 40.
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Appendix E

MD parameters for SDS molecule

Mass

Atom Mass (gram/mol)
Oxygen 15.9994
Sulphur 32.0600
Carbon 12.0110

Hydrogen 1.0080
Sodium 22.9898

Table E.1: Summary of the mass values used in MD simulations.

Lennard-Jones interaction parameters

The oxygen and carbon atoms that are closest to the head group are treated

slightly differently to the other atoms in the hydrocarbon chain. The definition of

two different oxygen and carbon atoms are shown in Fig. E.1 and the values for

εij and σij for each atom pair is given in Table E.2.

S Oa

Oa

Oa

ObCbCaCa

H

H

H

H

H

H

H

H

Ca

Figure E.1: Illustration of the two different oxygen atom and two different car-
bon atoms defined in the MD simulation. All subsequent carbon atoms in the
hydrocarbon chain are Ca atoms. Note that hydrogen atoms are not shown.
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Atom i Atom j εij σij
Oa Oa 4.122954462841457168E-01 2.625854035428913935E+00
Oa Ca 1.653354984123153737E-01 3.066537799135407028E+00
Oa H 1.080062726770026210E-01 2.496442138227286112E+00
Oa S 3.575292004274581159E-01 3.057436901376735072E+00
Oa Cb 3.178362756028405567E-01 2.717064020712530947E+00
Oa Ob 1.038204303792348571E-01 3.238295444039348325E+00
Ca Ca 6.630154972997068241E-02 3.581179283634555510E+00
Ca H 4.331183156556572822E-02 2.915407359639444529E+00
Ca S 1.433735664130799115E-01 3.570551028367321855E+00
Ca Cb 1.274562198392401313E-01 3.173055093606844679E+00
Ca Ob 1.015608295071512290E-01 3.259466857310918897E+00
H H 2.829367882355780447E-02 2.373408142809749322E+00
H S 9.365952658314305457E-02 2.906754988123776862E+00
H Cb 8.326143729888541012E-02 2.583156954670584149E+00
H Ob 6.634513912854232698E-02 2.653504030845614370E+00
S S 3.100376933831125448E-01 3.559954315729227936E+00
S Ob 2.756172800531233036E-01 3.163638072888010022E+00
S Cb 2.196198790769573750E-01 3.249793383002357761E+00

Cb Cb 2.450182241873804789E-01 2.811442217672497801E+00
Cb Ob 1.952376598350860082E-01 2.888006183129844473E+00
Ob Ob 1.194971397251269885E-01 3.100004256511835088E+00

Table E.2: Parameters for ε and σ in the Lennard-Jones potential (see Eq. 3.2).
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Charge Distribution

The charge on each atom in the molecule is different. The distribution of charge

across the whole molecule is shown in Fig. E.2.

1.000

-0.592

0.937-0.592 -0.592

-0.457

0.285-0.001 -0.001

-0.0180.017 0.017

-0.0630.007 0.007

0.088-0.019 -0.019

0.050-0.015 -0.015

-0.047-0.001 -0.001

0.048-0.015 -0.015

0.099-0.023 -0.023

-0.1020.010 0.010

0.028-0.006 -0.006

0.174-0.027 -0.027

-0.3130.071 0.071

0.071

Figure E.2: The charge distribution on atoms making up an SDS molecule, as ob-
tained from the Automated Topology Builder (ATB) and Repository [14]. Atoms
are coloured by type: oxygen (yellow), sulphur (red), sodium (green), dark blue
(carbon) and light blue (hydrogen).
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Bond Interactions

The different types of bonds in the simulation are illustrated by the different

colours in Fig. E.1. The parameters for each bond in Eq. 3.5 are listed in Table

E.3.

Bond kij r0ij
S-Oa (red) 2.999759082217973400E+02 1.4800000000E+00

S-Ob (green) 2.031548757170172053E+02 1.6700000000E+00
Cb-Ob (pink) 1.673040152963671190E+01 1.4400000000E+00

Cb-Ca (orange) 2.998439770554493293E+02 1.5200000000E+00
Ca-Ca (blue) 4.000342973231357746E+02 1.5300000000E+00
C-H (black) 3.492741395793498782E+02 1.0900000000E+00

Table E.3: Parameters for the bond interaction given in Eq. 3.5.
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Angle Interactions

The atoms in the SDS molecule are labelled in Fig. E.3. The parameters for the

angle interaction, see Eq. 3.6, between sets of these atoms are listed in Tables E.4

and E.5.

1

23 4

5

67 8

910 11

1213 14

1516 17

1819 20

2122 23

2425 26

2728 29

3031 32

3334 35

3637 38

3940 41

41

Figure E.3: Labelled atoms making up an SDS molecule, as obtained from the
Automated Topology Builder (ATB) and Repository [14]. Atoms are coloured by
type: oxygen (yellow), sulphur (red), sodium (green), dark blue (carbon) and light
blue (hydrogen).
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Atoms i, j, k kijk θ0ijk
1-2-3 1.569219096563931259E+02 1.1400000000E+02
1-2-4 1.569219096563931259E+02 1.1400000000E+02
1-2-5 1.922293393290815686E+02 1.0600000000E+02
3-2-4 1.569219096563931259E+02 1.1400000000E+02
3-2-5 1.922293393290815686E+02 1.0600000000E+02
4-2-5 1.922293393290815686E+02 1.0600000000E+02
2-5-6 4.480849815265150937E+01 1.1600000000E+02
5-6-7 1.804601961048520877E+02 1.0900000000E+02
5-6-8 1.804601961048520877E+02 1.0900000000E+02
5-6-9 5.512715332021083015E+01 1.0950000000E+02
7-6-8 4.750189404085062250E+01 1.0853000000E+02
7-6-9 5.511390518798809524E+01 1.1100000000E+02
8-6-9 5.511390518798809524E+01 1.1100000000E+02
6-9-10 1.804601961048520877E+02 1.0900000000E+02
6-9-11 1.804601961048520877E+02 1.0900000000E+02
6-9-12 5.511390518798809524E+01 1.1100000000E+02
10-9-11 5.502468723625295155E+01 1.0675000000E+02
10-9-12 3.017313270271808179E+01 1.1000000000E+02
11-9-12 3.017313270271808179E+01 1.1000000000E+02
9-12-13 4.763495597414375737E+01 1.0960000000E+02
9-12-14 4.763495597414375737E+01 1.0960000000E+02
9-12-15 5.511390518798809524E+01 1.1100000000E+02
13-12-14 1.922293393290815686E+02 1.0600000000E+02
13-12-15 3.017313270271808179E+01 1.0950000000E+02
14-12-15 3.017313270271808179E+01 1.0950000000E+02
12-15-16 1.804601961048520877E+02 1.0900000000E+02
12-15-17 1.804601961048520877E+02 1.0900000000E+02
12-15-18 5.511390518798809524E+01 1.1100000000E+02
16-15-17 1.922293393290815686E+02 1.0600000000E+02
16-15-18 3.017313270271808179E+01 1.0950000000E+02
17-15-18 3.017313270271808179E+01 1.0950000000E+02
15-18-19 3.017313270271808179E+01 1.0950000000E+02
15-18-20 3.017313270271808179E+01 1.0950000000E+02
15-18-21 5.511390518798809524E+01 1.1100000000E+02
19-18-20 1.922293393290815686E+02 1.0600000000E+02
19-18-21 3.017313270271808179E+01 1.0950000000E+02
20-18-21 3.017313270271808179E+01 1.0950000000E+02
18-21-22 1.804601961048520877E+02 1.0900000000E+02
18-21-23 1.804601961048520877E+02 1.0900000000E+02
18-21-24 5.511390518798809524E+01 1.1100000000E+02
22-21-23 1.922293393290815686E+02 1.0600000000E+02
22-21-24 1.804601961048520877E+02 1.0900000000E+02

Table E.4: Parameters for use in Eq. 3.6.
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Atoms i, j, k kijk θ0ijk
23-21-24 1.804601961048520877E+02 1.0900000000E+02
21-24-25 3.017313270271808179E+01 1.0950000000E+02
21-24-26 3.017313270271808179E+01 1.0950000000E+02
21-24-27 5.511390518798809524E+01 1.1100000000E+02
25-24-26 1.922293393290815686E+02 1.0600000000E+02
25-24-27 3.017313270271808179E+01 1.0950000000E+02
26-24-27 3.017313270271808179E+01 1.0950000000E+02
24-27-28 1.804601961048520877E+02 1.0900000000E+02
24-27-29 1.804601961048520877E+02 1.0900000000E+02
24-27-30 5.511390518798809524E+01 1.1100000000E+02
28-27-29 1.922293393290815686E+02 1.0600000000E+02
28-27-30 1.804601961048520877E+02 1.0900000000E+02
29-27-30 1.804601961048520877E+02 1.0900000000E+02
27-30-31 3.017313270271808179E+01 1.0950000000E+02
27-30-32 3.017313270271808179E+01 1.0950000000E+02
27-30-33 5.511390518798809524E+01 1.1100000000E+02
31-30-32 1.922293393290815686E+02 1.0600000000E+02
31-30-33 1.804601961048520877E+02 1.0900000000E+02
32-30-33 1.804601961048520877E+02 1.0900000000E+02
30-33-34 3.017313270271808179E+01 1.0950000000E+02
30-33-35 3.017313270271808179E+01 1.0950000000E+02
30-33-36 5.511390518798809524E+01 1.1100000000E+02
34-33-35 1.922293393290815686E+02 1.0600000000E+02
34-33-36 1.804601961048520877E+02 1.0900000000E+02
35-33-36 1.804601961048520877E+02 1.0900000000E+02
33-36-37 1.804601961048520877E+02 1.0900000000E+02
33-36-38 1.804601961048520877E+02 1.0900000000E+02
33-36-39 5.511390518798809524E+01 1.1100000000E+02
37-36-38 1.922293393290815686E+02 1.0600000000E+02
37-36-39 3.017313270271808179E+01 1.0950000000E+02
38-36-39 3.017313270271808179E+01 1.0950000000E+02
36-39-40 5.511390518798809524E+01 1.1100000000E+02
36-39-41 5.511390518798809524E+01 1.1100000000E+02
36-39-42 5.511390518798809524E+01 1.1100000000E+02
40-39-41 5.247673834306662144E+01 1.0757000000E+02
40-39-42 5.247673834306662144E+01 1.0757000000E+02
41-39-42 5.247673834306662144E+01 1.0757000000E+02

Table E.5: Parameters for use in Eq. 3.6.
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