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Life is not a problem to be solved, but a reality to be experienced.

- Søren Kierkegaard
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Abstract

Photons, i.e. the basic energy quanta of monochromatic waves, are

highly non-localised and occupy all available space in one dimension.

This non-local property can complicate the modelling of the quan-

tised electromagnetic field in the presence of optical elements that are

local objects. Therefore, this thesis takes an alternative approach and

shows that a local second quantisation of the electromagnetic (EM)

field is possible but requires an extension of conventional quantum

theory. For light propagating in one dimension, we obtain highly lo-

calised bosonic Fock operators, which we do by doubling the usual

photon Hilbert space with some photonic modes evolving according

to the standard Schrödinger equation and others evolving according

to the complex conjugated Schrödinger equation. We also view the

quantised EM field as a biorthogonal system. However, we view it as

a biorthogonal system where the intersection of the Hilbert space and

its dual Hilbert space is non-zero. To the best of our knowledge, this

is the first time such a construction of the EM field has been made.

These highly localised bosonic Fock operators provide natural building

blocks of wave packets of light and enable us to construct locally act-

ing interaction Hamiltonians for two-sided semi-transparent mirrors.

Using these Hamiltonians, we produce appropriate classical dynamics

of the electric field near a mirror. The question of how to model lo-

cal transformations of the EM field is a hot topic, as physicists often

measure interactions between the EM field and local optical devices

in experiments. Therefore, we expect our results to find large appeal

across both the quantum optics and non-Hermitian communities. We

finish by discussing possible future avenues of research.
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c Speed of light
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Chapter 1

Introduction

1.1 Motivation

What do photons and small children have in common? We cannot get them to

stay in one location. Further still, it is often challenging to assign a location to a

photon in the first place. Because photons are the quanta of light, this apparent

lack of locality can make it difficult to model the interactions of light with local

objects, such as mirrors, at the quantum level. This research therefore aims to

construct a theory that allows us to model local interactions of the quantised

electromagnetic (EM) field. This chapter will introduce our study by discussing

the background and context, the research problem, our aims and questions, the

significance, and the limitations1.

When one reads the phrase “location of an object”, what comes to mind is

likely asking how we can assign this object a property to describe where it is in

some reference frame. For example, a point’s coordinate in 3-D Euclidean space,

the coordinate of an electron in space-time, or the location of a football on a

football pitch. When we say “local transformation of an object”, what comes

to mind is likely a process involving changing the property that describes the

object’s location. Using the examples above, this could be the rotation of a point

about the origin in Euclidean space, the boost of an electron along the x-axis

in space-time, or the kicking of a football on a football pitch. Of course, in this

1Disclaimer: Our research cannot be used to help small children stay in one place.
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1.1 Motivation

thesis we want to model local interactions of the EM field. We therefore describe

what we want a local transformation of the EM field to look like.

In classical electrodynamics, we often characterise light by its local prop-

erties such as local amplitudes, direction of propagation and polarisation. Its

fundamental equations of motion – Maxwell’s equations – are local differential

equations. Practically, we assume that the classical EM field comprises a contin-

uum of local field excitations. In contrast, quantum electrodynamics routinely

decomposes the EM field into monochromatic waves, which are called monochro-

matic photons and are highly non-local. A key reason for this decomposition is

that these monochromatic waves have well-defined energies and so can be help-

ful for modelling interactions between the EM field and objects where energy

conservation is concerned. For example, the emission of a photon when an ex-

cited atom drops to its ground state (Gerry & Knight, 2004). However, such

a non-local approach can result in more complicated equations of motion than

strictly necessary. For example, the Green’s functions of macroscopic quantum

electrodynamics correlate an observer’s position with all spatial positions and

photon frequencies (Buhmann, 2013; Philbin, 2010; Scheel & Buhmann, 2009)1.

Therefore, this thesis takes an alternative approach and quantises the EM field

in position space. As in classical electrodynamics, our equations of motion only

depend on local properties. Hence, we expect them to find many applications, for

example, in modelling systems involving local light-matter interactions or featur-

ing ultrabroadband photonic wave-packets (Javid et al., 2021; Nasr et al., 2008;

Okano et al., 2015; Tanaka et al., 2012).

In quantum physics, we usually represent physical quantities, such as the

energy of a system, by mathematical objects known as observables. These ob-

servables are a certain class of mathematical objects called operators. This rep-

resentation applies to the electric field at a point x ∈ R in 1-dimensional space,

which we represent by the operator E(x).

Furthermore, we can often represent observables by the sum of operators

known as creation and annihilation operators. Suppose aa(k) and ac(k)2, where

1That’s not to say Green’s functions aren’t useful; they have been found to be advantageous

in the quantisation of the EM field within certain dielectrics (Gruner & Welsch, 1996).
2The reason for this non-standard notation will become clear shortly.
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1.1 Motivation

k is a continuous variable, are two operators that satisfy the commutation relation

[aa(k), ac(k′)] = δ(k − k′) . (1.1)

Then we can call ac(k) a bosonic creation operator and aa(k) its corresponding

bosonic annihilation operator. We explain the properties of these operators more

in the main sections of this thesis, but for now, what is important to know is that

Eq. (1.1) is zero if k 6= k′ and non-zero if k = k′.

For a given quantum system, an operator known as the Hamiltonian, H(t),

governs time evolution. Hamiltonians that are Hermitian satisfy the equation

H(t) = H†(t) , (1.2)

where the † symbol denotes the Hermitian conjugate, as this leads to unitary

dynamics, which we discuss more in the main text. Whats important to know

now is that unitary dynamics are important for maintaining a probabilistic inter-

pretation of quantum theory. The Hermitian conjugate of an operator is closely

related to the system’s inner product, 〈,〉. The inner product is a property of

the Hilbert space, a mathematical space we use to model our system. In conven-

tional quantum physics, the Hermitian conjugate of an operator is equal to its

complex conjugate transpose and, to be consistent, we reserve the † notation only

for the conventional inner product, unless we explicitly state otherwise. In what

we call the Heisenberg picture, all time-dependence goes into the observables. If

the time dependence of an observable, A(t), is due only to a system’s Hermitian

Hamiltonian, its time derivative is

d

dt
A(t) = − i

~
[A(t), H(t)] . (1.3)

This equation means that solving the dynamics of operators will involve comput-

ing the commutator between these operators and the systems’ Hamiltonian.

Light is bosonic and this has been shown in experiments (English et al., 2010;

Hong et al., 1987). Suppose, then, that we can construct the electric field opera-

tor, E(x), out of a sum of bosonic creation and annihilation operators that take

the position coordinate x as their continuous variable so that

E(x) =
N∑
i=0

bia
a
i (x) + cia

c
i(x) , (1.4)
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1.1 Motivation

where bi and ci are constants, and N is a positive integer. If we can do this we

can then construct Hermitian Hamiltonians out of annihilation/creation operators

corresponding to the creation/annihilation operators in the electric field operator

to utilise the commutation relation Eq. (1.1) and obtain transformations that

only act at certain locations.

Unfortunately, in the standard description the electric field operator in 1-

dimension is proportional to (Bennett et al., 2015)

E(x) ∝
∑
s,λ

asλ(x) + a†sλ(x) , (1.5)

where

[asλ(x), a†sλ(x
′)] 6= δ(x− x′) . (1.6)

Here s denotes the direction of propagation, in either the positive or negative

direction, and λ denotes the polarisation, which we can label either horizontal,

H, or vertical, V . Here, the † superscript corresponds to the Hermitian conju-

gate in conventional quantum physics. We describe the electric field operator

in much more detail in the following sections. However, for now, we point out

that the above commutation relation means that asλ(x) is not the annihilation

operator of its Hermitian conjugate, a†sλ(x), which makes it difficult to construct

conventionally Hermitian Hamiltonians that alter the EM field only at specific

locations. To construct such Hamiltonians, we require two steps. First, we will

need to construct the creation/annihilation operators corresponding to the an-

nihilation/creation operators in Eq. (1.5), asλ(x) and a†sλ(x). We will achieve

this by introducing monochromatic photon modes that evolve according to the

complex conjugate Heisenberg equation, which, as we will see, is equivalent to

introducing negative frequency modes in free space1. Second, we then need to

identify a system where the creation and annihilation operators corresponding to

asλ(x) and a†sλ(x) are also their respective Hermitian conjugates, and that they

evolve with appropriate dynamics. We will achieve this by modelling the EM field

as a biorthogonal system (Brody, 2013). Biorthogonal quantum mechanics is a

form of non-Hermitian physics where a dual Hilbert space is used in addition to

1We do not localise monochromatic photons. However, we use them to construct localised

states.
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1.1 Motivation

the original Hilbert space for calculations on a system, and we review the details

of such a system in the next chapter. However, we find that to achieve appro-

priate dynamics for the EM field observables, we have to model the EM field as

a biorthogonal system that has a non-zero intersection between its Hilbert space

and dual Hilbert space. To the best of our knowledge, this is the first time such

a construction of the EM field has been made.

The construction of such local creation/annihilation operators is easier said

than done, however. For example, there are certain no go theorems such as

the Hegerfeldt (1998a) and Malament (1996) theorems that put constraints on

locality. The Hegerfeldt (1998a) theorem, in particular, asserts that even if a

state is initially localised to some region V , at a time t > 0 the probability to

detect it anywhere outside the region V will be non-zero if the Hamiltonian is

positive and evolves according to the Schrödinger equation (Hegerfeldt, 2001).

The Schrödinger equation governs how states evolve in the Schrödinger picture

where all time-dependence from the Hamiltonian goes into the states.

Furthermore, they are not an entirely new concept, either (Bialynicki-Birula,

1996; Chan et al., 2002; Cook, 1982a; Hawton & Debierre, 2017; Raymer & Walm-

sley, 2020; Sipe, 1995; Smith & Raymer, 2007). For example, Smith & Raymer

(2007) introduced modes of the electric field that can be local under an inner

product that is adjusted from the conventional one. However, their modes fit

the conditions for Hegerfeldt’s theorem to be applied so that their modes do not

remain localised in time. Also, adjusting the inner product may change the nor-

malisation of certain states. For example, a property of monochromatic photons

is that they are pair-wise orthonormal to each other with respect to the standard

inner product. In this thesis, we wish to preserve this property as it allows us

to construct states that behave classically. Hawton & Debierre (2017) used neg-

ative frequencies to overcome the Hegerfeldt theorem and biorthogonal quantum

physics (Brody, 2013) to construct local states of the EM field. However, we show

that the concept of negative frequencies can only describe certain local interac-

tions. We also show we need a biorthogonal system with a nonzero intersection

between its Hilbert space and dual Hilbert space to calculate EM expectation

values near a semi-transparent mirror. Hawton & Debierre (2017) also uses a

time-dependent inner product in what is called the interaction picture. It has

6



1.1 Motivation

often been debated if an interaction picture can exist (Earman & Fraser, 2005).

Discussing the existence of this picture is not the purpose of this thesis, but, in

any case, it would be helpful to have an inner product that does not require us to

be in a particular picture or be time-dependent. Fermi (1932) also used negative

frequencies to overcome a causality problem between the interaction of two atoms

via radiation. There, he claimed that the negative terms added were negligible,

but we now know that they were vital for his proof (Hegerfeldt, 1994).

As photons are chargeless, they are identical to their antiparticles, anti-

photons (Bialynicki-Birula, 1996). This is perhaps why photons with negative

frequencies, or that evolve according the complex conjugate Schrödinger equa-

tion, are often neglected. Like Hawton & Debierre (2017) did with negative fre-

quencies, we show that photons with complex conjugated dynamics can be used

to overcome the Hegerfeldt (1998a); Malament (1996) locality no-go theorems in

quantum field theory.

Therefore, this thesis will aim to construct the EM field observables out of

bosonic operators such that we do not violate key no-go theorems, we do not

require a time-dependent inner product and can operate in any picture. Having

local bosonic operators also provide natural building blocks of wave packets of

light as they help us to construct states, |1sλ(x)〉, such that

〈1sλ(x)|1sλ(x′)〉 = δ(x− x′) . (1.7)

Therefore, they provide natural building blocks of wave packets of light that are

localised within a certain region.

To verify its utility, we shall use it to model a physical scenario where the

EM field is interacting with two-sided semi-transparent mirror. We focus on

two-sided semitransparent mirrors as this topic has already attracted a lot of in-

terest in the literature and they are devices that are often used in optical cavities

(Agarwal, 1975; Carniglia & Mandel, 1971; Collett & Gardiner, 1984; Creatore

& Andreani, 2008; Dalton et al., 1999; Dawson et al., 2020, 2021; Dilley et al.,

2012; Furtak-Wells et al., 2018; Gardiner & Collett, 1985; Glauber & Lewenstein,

1991; Huttner & Barnett, 1992; Knöll et al., 1987; Meschede et al., 1990; Wang

et al., 2021). In addition to using classical Green’s functions (Buhmann, 2013;

Gruner & Welsch, 1996; Philbin, 2010; Scheel & Buhmann, 2009), it is possible

7



1.1 Motivation

to describe semi-transparent mirrors by restricting the Hilbert space of the EM

field onto a subset of so-called triplet modes (Carniglia & Mandel, 1971). These

consist of incident, reflected and transmitted waves and can be used to reproduce

the well-known classical dynamics of field expectation values for light approach-

ing a semi-transparent mirror from one side. However, they did not give a locally

acting Hamiltonian for the mirror and cannot describe situations in which wave

packets approach a mirror surface from both sides without resulting in the predic-

tion of nonphysical interference effects (Żakowicz, 1995). Some authors therefore

prefer phenomenological approaches such as the input-output formalism (Collett

& Gardiner, 1984; Dilley et al., 2012; Gardiner & Collett, 1985) or a quantum

mirror image detector method that maps light scattering by semi-transparent

mirrors onto analogous free-space scenarios (Dawson et al., 2020, 2021; Furtak-

Wells et al., 2018). Although these models describe well the experiments that

they have been designed for, they have not been derived from basic principles.

The mirror image method of classical electrodynamics simply describes light

scattering by replacing any wave packet which comes in contact with the scat-

tering object, at least partially, by its mirror image (Jackson, 1975). For semi-

transparent mirrors, the mirror image is a wave packet with reduced field ampli-

tudes which travels in the opposite direction and seems to emerge from the other

side. In this thesis, we take a similar approach. We quantise the EM field in terms

of local bosonic operators starting from the standard description of the quantised

EM field. Afterwards, we construct locally-acting mirror Hamiltonians and show

that these reproduce well-known classical dynamics. For example, they can cause

a complete conversion of incoming into outgoing wave packets without altering

the dynamics of outgoing wave packets. To relate further to classical dynamics,

we show how these Hamiltonians reproduce the classical electric field expecta-

tion values, using coherent states, near a semi-transparent mirror. We achieve

both of these with exactly solvable systems. Since most quantum systems have

a Hamiltonian, the same should apply to optical elements.

The research we present will contribute to the body of knowledge on local

interactions of the EM field, shed new light on how we can model experimental

scenarios, and describe how to utilise a peculiar non-Hermitian construction.

8



1.2 Thesis outline

Therefore, we expect our results to find large appeal across both the quantum

optics and non-Hermitian communities.

We have kept the research in this thesis to light propagation in one spatial

dimension, but work on generalising to three spatial dimensions is ongoing.

1.2 Thesis outline

Chapter 2 reviews some properties of quantum physics. Chapter 3 reviews the

quantised EM field in free space. In chapter 4, we describe how to model the

free space EM field as a biorthogonal system, including how to define appropriate

dynamical equations and an appropriate inner product. This also includes how to

construct the EM field operators using local bosonic modes. Chapter 5 describes

how to solve certain bosonic systems and model light scattering by a two-sided

semi-transparent mirror. We conclude this thesis in chapter 6.

9



Chapter 2

Quantum theory

This chapter reviews some of the basic foundations of quantum theory. We

begin by taking a whistle-stop tour of quantum theory’s development, start-

ing with quantum mechanics in the early 1900s and its mathematical formu-

lation. Next, we review the postulates of quantum theory, the uncertainty prin-

ciple, and the quantum harmonic oscillator and its coherent states. Last, we re-

view some aspects of biorthogonal quantum (Brody, 2016) and pseudo-Hermitian

(Mostafazadeh, 2010) physics. The theory we review in this section will give us

the tools required for our results later in this thesis.

10



2.1 Basic fundamentals of quantum theory

2.1 Basic fundamentals of quantum theory

2.1.1 In the beginning

Around 120 years ago, quantum theory was born through the collection of ideas

from many outstanding scientists. It is often believed, and commonly still taught

in schools, that Max Planck first set quantum theory in motion in 1900. It was

during this year that he first presented his work on black-body radiation using

the concept of energy quanta, which leads to avoiding the so-called ultraviolet

catastrophe in classical physics (Klein, 1962).

However, whether it was Planck that truly founded quantum theory is hard

to say, as it has been claimed that his idea of quantum theory is a lot different

from how we see it today. Around the same time, others had similar, perhaps

influenced ideas, most notably Bohr and Einstein (Kragh, 2000). As for who

was the true founder of quantum theory, if such a founder exists, who can say?1

What is objectively clear, however, is that many scientists and philosophers have

contributed to the field and have made it what it is today — an extremely useful

theory to understand our physical universe (Dirac, 1925; Schrödinger, 1926).

We do not claim to hold the truth of what the exact interpretation of quantum

theory should be. However, in typical fashion, in this thesis we interpret quantum

theory as a probabilistic theory, in which we have a well-defined set of rules, or

formalism, to follow in performing our calculations. We then use postulates to

correspond to how this theory describes physical reality with calculations (Born,

1969; Faye, 2008). People may have subjective interpretations, but (ideally) we

want objective calculations2. This interpretation is not the only interpretation

of quantum theory. For example, it could be said that it is a kinematic theory

in which physical states are wave functions (Carroll, 2020; Crease, 2019; Wilce,

2010). However, some say that states in quantum theory are just a construct of

the observer and not an objective state in reality because measurements alone

cannot determine the state (Hartle, 1968). For example, if we measure the posi-

tion and momentum of a classical state, we have only one state that corresponds

1I certainly cannot answer that.
2Two parties may disagree on blue paint being suitable for a kitchen wall, but they can

both agree that the paint is blue (relativity not taken into account).
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2.1 Basic fundamentals of quantum theory

to our measurement outcome. In contrast, if we take the same measurements on

a quantum state, we can have many states that could give us the same measure-

ment outcomes. We can still deduce what quantum state we have in a system —

we just need to know how it was prepared.

We will not dwell on the philosophical pondering on what quantum theory

is — this a theoretical physics thesis, not a philosophy one — in what follows,

we shall review the formalities of quantum theory we need for the calculations in

this thesis. In a fashion that the reader should find very familiar and similar to

that found in many quantum textbooks (Griffiths & Schroeter, 2018; Nielsen &

Chuang, 2011).

2.1.2 The Hilbert space

In quantum physics, we often use a mathematical structure called a Hilbert space

to represent a system. The elements of the Hilbert space are known as state

vectors and, for a given Hilbert space, these state vectors represent possible states

of the system. We will refer to state vectors simply as states.

A Hilbert space, H, is an inner product space so that it associates with a pair

of states, |ψ〉 , |φ〉 ∈ H, a complex number via an inner product, which is denoted

by 〈|ψ〉 , |φ〉〉. This inner product satisfies the following properties:

1. The inner product of a pair of states is equal to the complex conjugate of

the swapped states. This means 〈|ψ〉 , |φ〉〉 = 〈|φ〉 , |ψ〉〉∗ where the asterisk

denotes complex conjugation.

2. The inner product is linear in its first argument. This means

〈a |ψ〉1 + b |ψ〉2 , |φ〉〉 = a〈|ψ〉 , |φ〉1〉+ b〈|ψ〉2 , |φ〉〉 where a, b ∈ C.

3. The inner product is positive definite. This means 〈|ψ〉 , |ψ〉〉 > 0 if |ψ〉 6= 0

and 〈|ψ〉 , |ψ〉〉 = 0 if |ψ〉 = 0.

We define the norm of a state by ‖ |ψ〉 ‖ =
√
〈|ψ〉 , |ψ〉〉. We define operators

acting on our Hilbert space by A where A : H→ H. We denote the adjoint of an

operator by A† and it satisfies 〈|ψ〉 , A |φ〉〉 = 〈A† |ψ〉 , |φ〉〉. We call an operator

Hermitian if it satisfies A† = A. Additionally, if the an operator satisfies A = A†

12



2.1 Basic fundamentals of quantum theory

and the domain of A is equal to the domain of A† then it is self-adjoint (Ballentine,

2014).

As we consider only closed systems in this thesis, we assert that our Hilbert

spaces only contain normalised, |ψ〉, states so that ‖ |ψ〉 ‖ = 1, or 〈|1(x)〉 , |1(x′)〉〉 =

δ(x − x′) where x is a continuous variable (more on this later). This allows us

to obtain a probabilistic interpretation from our theory according to the Born

(1926) rule.

Perhaps the most commonly seen inner product used in quantum theory is

〈|ψ〉 , |φ〉〉 = 〈φ| |ψ〉 where 〈φ| is the complex conjugate transpose of |φ〉. We refer

to this inner product as the conventional inner product. For simplicity, 〈φ| |ψ〉 is

often denoted as 〈φ|ψ〉, and we shall do the same in this thesis. However, quantum

theory is not limited to just the conventional inner product, and many more have

been applied by adjusting this conventional inner product; For example, the PT

inner product used by Bender & Boettcher (1998). In particular, we can adjust

the conventional inner product by introducing a metric operator, g, in the inner

product so that

〈|ψ〉 , |φ〉〉 = 〈φ| g |ψ〉 , (2.1)

where g = Id gives the conventional inner product. Interestingly, this metric g is

not physically observable (Brody, 2016), which opens the door to many physical

observables that are not conventionally Hermitian — as long as they are Hermi-

tian with respect to a suitable inner product, they will produce real expectation

values! For many more examples, see Mostafazadeh (2010), but of relevant use to

us here are inner products seen in biorthogonal quantum mechanics. We will delve

into this later, but for now we describe the postulates of quantum mechanics.

2.1.3 Postulates of quantum mechanics

In finite dimensional systems, a key difference between classical and quantum

probability theory is that in quantum theory there exists continuous and reversible

transformations between the pure states of a system (Hardy, 2001). Here a state

is a pure state if it is equal to a state in the system’s Hilbert space as described

earlier, so that we do not need a density operator to describe it (Fano, 1957).

In quantum information and two dimensions, we can view pure states as points

13



2.1 Basic fundamentals of quantum theory

on the unit Bloch sphere (Nielsen & Chuang, 2011). The Bloch sphere gives a

geometrical interpretation of all the possible pure states of a two-level system1, or

one qubit, where we label the two levels |0〉 and |1〉 in Fig. 2.1. We can represent

any point on this sphere by the state |ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉2, where

θ ∈ [0, π] and φ ∈ [0, 2π). We give the Bloch sphere example as it illustrates

nicely the continuous transformation property between pure states that can arise

in quantum theory but not in classical theory. In classical information theory,

the only possible states of a two-level system would be |0〉 or |1〉. Whereas in the

quantum case, we continuously transform from |0〉 to |1〉, which we can observe

by continuously moving our point on the Bloch sphere at |0〉 to |1〉. During this

process, the probability of measuring the state to be |0〉 decreases, whereas the

probability of measuring the state to be |1〉 increases.

Figure 2.1: The Bloch sphere (Nielsen

& Chuang, 2011)

We now present the postulates of

quantum theory that we use to model

our universe probabilistically.

Postulate 1

A state vector |ψ〉 represents the state

of a system. This state vector belongs

to the system’s Hilbert space H, which

contains all possible equivalence classes

of normalised state vectors of the sys-

tem. Here two normalised state vectors,

|ψ〉 and |φ〉, are equivalent if |ψ〉 = c |φ〉
for some complex number c where |c| = 1. We will refer to state vectors simply

as states.

1For a n-level system we need the complex projective space CPn−1 of complex dimension

n− 1.
2More accurately this should be |ψ〉 = eiΘ(cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉), but as overall

phase factors produce no observable effect we leave out the eiΘ.
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2.1 Basic fundamentals of quantum theory

Postulate 2

Self-adjoint operators represent physically observable quantities, e.g. position,

and we call these operators observables. The normalised eigenstates of self-adjoint

operators provide an orthonormal basis for the Hilbert space. This means that if

|ai〉 denotes the set of eigenstates of a self-adjoint operator A, where 〈|ai〉 , |aj〉〉 =

δij, then we can write any state, |ψ〉 in the form |ψ〉 =
∑

i ci |ai〉 where ci =

〈|ψ〉 , |ai〉〉.

Postulate 3

When we measure an observableA, the result is an eigenvalue of the corresponding

observable. However, if we were to carry out this measurement on an infinite

number of identical states, |ψ〉, the average value of all these measurements is

〈A〉|ψ〉 = 〈A |ψ〉 , |ψ〉〉 , (2.2)

which we call the expectation value. As our universe is real, all expectation values

of physical observables should be real. Therefore, we require 〈A〉|ψ〉 = 〈A〉∗|ψ〉.
Because A is Hermitian, we have

〈A |ψ〉 , |ψ〉〉∗ = 〈|ψ〉 , A |ψ〉〉 using property 1 of the Hilbert space

= 〈A |ψ〉 , |ψ〉〉 since A = A† (2.3)

and so we conclude that 〈A〉|ψ〉 is a real number, as it should be. This also implies

that the eigenvalues of A are real. Setting |ψ〉 = |ai〉 we find

ai = 〈A |ai〉 , |ai〉〉 = 〈|ai〉 , A |ai〉〉 = a∗i . (2.4)

However, this does not mean the converse that only Hermitian operators have

real eigenvalues (Bender & Boettcher, 1998).

Postulate 4

For an observable, A, and (normalised) state, |ψ〉, the probability density of mea-

suring the eigenvalue ai of A is P (ai) = |〈|ai〉 , |ψ〉〉|2 where |ai〉 is the correspond-

ing eigenstate of ai. In this thesis, our observables will only have non-degenerate
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spectra. We define the uncertainty of the observable to be equal to the standard

deviation of the observable

∆A|ψ〉 =
√
〈A2〉|ψ〉 − 〈A〉

2
|ψ〉 . (2.5)

A measurement of A will only ever produce one of its eigenvalues. Therefore, if

the uncertainty is nonzero, |ψ〉 will be a superposition of more than one of A’s

eigenstates. If the uncertainty is zero, then |ψ〉 is an eigenstate of A. We often

refer to the uncertainty of a measurement as its fluctuations.

Postulate 5

Immediately after measurement of an observable, the state collapses to the cor-

responding eigenstate of the eigenvalue measured. This is sometimes referred to

as the collapse of the wave function. It also ensures that repeating the same

measurement on the same state gives the same result.

Postulate 6

States evolve according to the Schrödinger equation, which is

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (2.6)

where H(t) is the Hamiltonian of the system — the operator that corresponds to

the total energy of the system — and is potentially time-dependent. The solution

to this equation is

|ψ(t)〉 = U(t) |ψ(0)〉 ,

U(t) = exp

(
− i
~

∫ t

0

dt′H(t′)

)
, (2.7)

where |ψ(0)〉 is the initial state of the system at time t = 0. In closed systems, we

want to conserve total probability during time evolution. Via the Born rule, this

means we want the absolute inner product between states to be invariant under

time evolution so that

|〈U(t) |ψ〉 , U(t) |φ〉〉| = |〈|ψ〉 , |φ〉〉| . (2.8)
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Wigner’s theorem states that U(t) can either be unitary or antiunitary (Ballen-

tine, 2014). If U(t) is unitary, we have

〈U(t) |ψ〉 , U(t) |φ〉〉 = 〈|ψ〉 , |φ〉〉. (2.9)

and U−1(t) = U †(t). If U(t) is antiunitary, we have

〈U(t) |ψ〉 , U(t) |φ〉〉 = 〈|ψ〉 , |φ〉〉∗ . (2.10)

By Eq. (2.7) time evolution will be unitary only if H†(t) = H(t). So again, we

see the utility of using Hermitian operators. Even if a non-Hermitian Hamiltonian

has real eigenvalues, the inner product will still need to be adjusted for it to

generate unitary dynamics.

This concludes the postulates of quantum mechanics. Later in the thesis, we

shall use them to calculate how light evolves near a semi-transparent mirror. To

do so, we need an appropriate state, observable, and mirror system Hamiltonian

to calculate expectation values, which we describe later.

2.1.4 The uncertainty principle

In quantum theory, the position operator x and momentum operator p along

the x direction are canonical conjugate quantities and so obey the canonical

commutation relation1

[x, p] = i~ . (2.11)

This equation leads to the following relationship between the standard deviations

of the position and momentum operators (Robertson, 1929)

∆x∆p ≥ ~
2
, (2.12)

which is known as the uncertainty principle — it dictates how much spread in

momentum and position a quantum state can have. To see this, assume |x〉 is

an eigenstate of the position operator. By the canonical commutation relation,

|x〉 cannot also be an eigenstate of the momentum operator. However, as p is

self-adjoint, |x〉 is a superposition of momentum eigenstates. Therefore, |x〉 has

1The commutator between two operators A and B is [A,B] = AB −BA
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a spread in momentum with its uncertainty dictated by the uncertainty principle

(in this case ∆p cannot be a finite number to satisfy Eq. (2.12), as ∆x = 0,

so we must have maximum uncertainty in momentum). This is not a problem:

it is a fundamental aspect of quantum physics. We mentioned earlier that our

Hilbert space, H, only contains states that are normalised to unity, however, the

position and momentum eigenstates are not normalised to unity. This is because

the position and momentum are continuous variables and so the inner product

between their respective eigenstates is

〈|x〉 , |x′〉〉 = δ(x− x′) , 〈|p〉 , |p′〉〉 = δ(p− p′) , (2.13)

where the δ(y) function has the property that∫ ε

−ε
δ(y)dy = 1 , (2.14)

for ε > 0. The δ(y) function blows up to infinity at y = 0; therefore, the inner

products 〈|x〉 , |x′〉〉 and 〈|p〉 , |p′〉〉 blow up to infinity when x = x′ and p = p′,

respectively. Clearly, the position and momentum eigenstates do not belong in our

Hilbert space. Fortunately, one can define an extended space, Ω×, that contains

the position and momentum eigenstates, in addition to H, and a subspace of H,

Ω, such that for any |ψ〉 ∈ Ω, |φ〉 ∈ Ω× we have that 〈|φ〉 , |ψ〉〉 is finite. The

corresponding triplet

Ω ⊂ H ⊂ Ω× , (2.15)

is called a rigged Hilbert space and these spaces have found many uses in quantum

theory (Ballentine, 2014; de la Madrid, 2005).

Later in the thesis we will calculate how the EM field changes in the presence

of a mirror in a fully quantum setting. However, we will have to make sure

that the produced expectation values evolve as in classical physics. To reproduce

these dynamics, we will use quantum states with the most classical properties and

therefore use states that minimise the uncertainty relation so that ∆x∆p = ~
2
.

2.1.5 The quantum harmonic oscillator

Ubiquitous in quantum physics is the quantum harmonic oscillator, and this is

especially so for the quantised EM field. The EM field itself is a collection of
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quantised harmonic oscillators (Gerry & Knight, 2004). We, therefore, briefly

review the undamped quantum harmonic oscillator in one dimension, using con-

ventional Hermitian physics, since this is its simplest case and will allow us to

introduce concepts such as creation/annihilation operators, which will be very

useful later.

The Hamiltonian of this system is

H =
p2

2m
+

1

2
Kx2 , (2.16)

where p, x and m are the particle’s momentum, displacement from the origin —

the origin being the equilibrium point where the particle experiences no restoring

force — and mass, respectively. The constant K is the positive restoring force

constant. However, as this is a quantum harmonic oscillator we promote x and

p to operators that must obey the canonical commutation relation [x, p] = i~.

Because p and x are real observables, we must have p = p† and x = x†. Setting

ω =
√
K/m and

a =

√
mω

2~

(
x+

i

mω
p

)
,

a† =

√
mω

2~

(
x− i

mω
p

)
, (2.17)

we find the Hamiltonian and the commutator between a and a† is equal to

H = ~ω
(
a†a+

1

2

)
,

[a, a†] = 1 . (2.18)

To see why this representation is useful, we define |n〉 to be the eigenstates of H

with corresponding eigenvalues En. We use the commutators

[H, a†] = ~ωa† ,

[H, a] = −~ωa , (2.19)

to calculate

Ha† |n〉 = (En + ~ω)a† |n〉 ,

Ha |n〉 = (En − ~ω)a |n〉 . (2.20)
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We see that if |n〉 is an eigenstate of H then a† |n〉 is also an eigenstate of H except

with eigenvalue En + ~ω. Similarly, a |n〉 is also an eigenstate of H except with

eigenvalue En − ~ω. Therefore, we refer to a† and a as creation and annihilation

operators, respectively.

For a given |n〉, we can construct other eigenstates by acting integer products

of either creation or annihilation operators on this state. In particular, since H

is a positive operator, there must be a state, |0〉, that has the property a |0〉 = 0.

Otherwise, there would be a m ∈ Z such that H(am |n〉) = E(am |n〉) where

E < 0. We call |0〉 the vacuum state. From Eq. (2.16) we see that this state has

energy 1
2
~ω, and we refer to this energy as the vacuum energy.

We can now construct our eigenstates by acting integer multiples of a† on the

vacuum and define

|n〉 =
(a†)n√
n!
|0〉 . (2.21)

to be the orthonormal eigenstates of H. It will be useful to define the number

operator

N = a†a, (2.22)

which has the useful property N |n〉 = n |n〉. In other words, its eigenvalues are

the numbers of “energy quanta” in the Hamiltonian’s eigenstates. With this it is

easy to see that the eigenstates of H satisfy H |n〉 = ~ω(n+ 1
2
) |n〉 .

Lastly, the Hamiltonian of a collection of N uncoupled harmonic oscillators is

H =
N∑
i=1

~ωi
(
a†iai +

1

2

)
, (2.23)

where

[ai, a
†
j] = δij, [ai, aj] = 0, [xi, pj] = i~δij , (2.24)

and ωi =
√
Ki/m, where Ki is the restoring force constant of the ith oscilla-

tor. Therefore, we refer to the ith creation/annihilation operator pair as a cre-

ation/annihilation operator pair for the ωi mode. The operators xi and pi are

position and momentum operators, respectively, of the ith oscillator.

Interestingly, although neither a nor a† are Hermitian, and so are not observ-

ables, their sum and product are Hermitian and are therefore observables. This
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is in contrast to x and p where both are Hermitian, but their product is not. For

example, the commutator [x, p] = i~ is not an observable.

We introduce the so-called wave function of a state

ψ(x) = 〈x|ψ〉 , (2.25)

where ∫ ∞
−∞

dx|ψ(x)|2 = 1 , (2.26)

because the probability to find the state anywhere along the x-axis must be equal

to 1. The vacuum state wave function is given by ψ−(x) = exp
(
−1

4
ωx2

)
(Bender

& Turbiner, 1993).

Figure 2.2: Above is the complex

x-plane. Shaded regions show where

ψ−(x) = exp
(
−1

4
ωx2

)
is normalised and

the un-shaded regions show where ψ+(x) =

exp
(

1
4
ωx2

)
is normalised (Bender & Tur-

biner, 1993).

Suppose we make the substitu-

tion ω → −ω. The Hamiltonian

remains the same yet the eigenval-

ues are now negative and so the

ground state wave function is not

normalisable. How can this be?

To address this, it was pointed out

in Bender & Turbiner (1993) that

in order to replace ω by −ω and

obtain the correct analytic contin-

uation one must also extend x into

the complex plane and let x = ir

where r ∈ R. This is because if

one simply negates ω then the nor-

malised ground state wave func-

tion is now the different solution

ψ+(x) = exp
(

1
4
ωx2

)
where ω < 0,

see Fig. 2.2, and so we must rotate

x onto the complex axis to obtain

a correct analytic continuation.

We point out that we could re-

peat the above analysis with the substitution

i→ −i , (2.27)
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without changing any expectation values of observable quantities. This is be-

cause any physical expectation value or probability will be a real quantity, C.

Complex conjugating C will leave it unchanged; therefore, complex conjugating

the operator and states of an expectation value will leave the value unchanged.

With this substitution, we have

[x, p] = i~ → −i~ = [x∗, p∗] ,

[a, a†] = 1 → 1 = [a∗, a† ∗] . (2.28)

From the first line, we point out that just because an operator is Hermitian, it

does not mean that it is the complex conjugate of itself.

Coherent states

We now ask what states of the single quantised harmonic oscillator minimise the

uncertainty principle. To do so, we rearrange Eq. (2.17) to find

x =

√
~

2mω

(
a+ a†

)
,

p = −i
√

~mω
2

(
a− a†

)
, (2.29)

which leads to

x2 =
~

2mω
(aa+ a†a† + 2a†a+ 1) ,

p2 = −~mω
2

(aa+ a†a† − (2a†a+ 1)) . (2.30)

Therefore, we can guess that states that will minimise the uncertainty principle

between position and momentum are the eigenstates of the annihilation operator.

To see this, if we assume a |α〉 = α |α〉, where α ∈ C, we can calculate

〈α|x2|α〉 − 〈α|x|α〉2 =
~

2mω
,

〈α|p2|α〉 − 〈α|p|α〉2 =
~mω

2
. (2.31)

Then, using Eq. (2.5), we find

∆x∆p =
~
2
, (2.32)
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which is the minimum value the uncertainty relation in Eq.(2.12) can be.

We define the following state

|α〉 = e−
|α|2
2 eαa

† |0〉 , (2.33)

where α = |α|iθ is a complex number. We call these states coherent states. For

these states we have a |α〉 = α |α〉 so that they are indeed eigenstates of the

annihilation operator with eigenvalue α. To see this, suppose that two operators

A and B have commutator c such that [A, c] = [B, c] = 0. This means

[A, eαB] = αceαB , (2.34)

Setting A = a and B = a† we can now calculate

a |α〉 = e−
|α|2
2 aeαa

† |0〉 = e−
|α|2
2 αeαa

† |0〉 = α |α〉 . (2.35)

Furthermore, the inner product between two coherent states, |α〉 and |β〉, is

〈β|α〉 = exp

(
−1

2

(
|β|2 + |α|2 − 2αβ∗

))
. (2.36)

So, although they are normalised, they are not orthogonal to each other. We

expected this as coherent states are not eigenstates of a Hermitian operator.

Nevertheless, we have

1

π

∫
dα2 |α〉 〈α| =

∞∑
n=0

|n〉 〈n| = 1 , (2.37)

which means coherent states provide an over-complete basis.

Calculating the uncertainty in position and momentum we find

∆x|α〉 =

√
~

2mω
,

∆p|α〉 =

√
~mω

2
, (2.38)

so that ∆x∆p = ~
2

for coherent states. Thus they have minimum uncertainty for

position and momentum.

Calculating the evolution of coherent states, we find

U(t) |α〉 = |e−iωtα〉 = |α(t)〉 . (2.39)
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where α(t) = e−iωtα. Therefore, under time evolution coherent states remain co-

herent states and so keep their minimum uncertainty in position and momentum.

Calculating the position and momentum expectation values themselves we find

〈x〉|α(t)〉 =

√
2~
mω
|ω| cos(θ − ωt) ,

〈p〉|α(t)〉 =
√

2~mω|α| sin(θ − ωt) , (2.40)

which oscillate sinusoidal like a classical system. Because of this classical sinu-

soidal oscillation property, coherent states will appeal to us when we ask what

states produce classical-like EM field expectation values in free space.

This concludes our discussion of the quantised harmonic oscillator; we will

use the introduced concepts throughout this thesis.

2.2 Biorthogonal quantum mechanics

Systems possessing curious non-Hermitian structure, with respect to the con-

ventional inner product, have gained much interest in recent years (Bender &

Boettcher, 1998; Mostafazadeh, 2010). We have seen this in quantum optics,

where certain systems have been modelled using biorthogonal quantum physics

(El-Ganainy et al., 2018; Hawton & Debierre, 2017; Smith & Raymer, 2007).

Later in this thesis, we will equip our EM field Hilbert space with an inner prod-

uct using the help of biorthogonal quantum mechanics. In this subsection, we

therefore review some properties of biorthogonal quantum mechanics, which are

closely related to pseudo-Hermitian Hamiltonians. We refer to non-Hermitian

operators as operators that are non-Hermitian with respect to the conventional

inner product1, and reserve the dagger notation, †, to denote the adjoint of an op-

erator with respect to the conventional inner product. For clarity, we work in an

N -dimensional Hilbert space but will discuss the extension to infinite-dimensional

Hilbert spaces.

Suppose a set of N linearly independent states, {|αn〉}n=N
n=1 , spans a Hilbert

space, H, which aren’t necessarily orthonormal with respect to the conventional

1This does not mean they are not Hermitian with respect to a different inner product!
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inner product. It is possible to obtain a set of states {|βn〉}n=N
n=1 such that 〈βi|αj〉 =

δij Brody (2013, 2016). For a state

|ψ〉 =
∑
n

an |αn〉 , (2.41)

its associated state, |ψ̃〉 ∈ H∗, is defined by1

|ψ̃〉 =
∑
n

an |βn〉 , (2.42)

and the inner product by

〈|ψ1〉 , |ψ2〉〉bio = 〈ψ̃2|ψ1〉 . (2.43)

Operators that are Hermitian with respect to this inner product are of the form

A =
∑
n,m

anm |αn〉 〈βm| , (2.44)

where a∗nm = amn.The set {|βn〉}n=N
n=1 is called the biorthonormal basis associated

with {|αn〉}n=N
n=1 and {|αn〉 , |βn〉}n=N

n=1 is a biorthonormal system. For the case

where {|αn〉}n=N
n=1 is already orthonormal, selecting |βn〉 = |αn〉 reduces the system

to conventional Hermitian physics.

Biorthogonal quantum physics is related to pseudo-Hermitian physics. A

Hamiltonian is pseudo-Hermitian if it is of the form

H† = ηHη−1 , (2.45)

where η = η†. This H is Hermitian with respect to the inner product

〈|ψ1〉 , |ψ2〉〉η = 〈ψ2| η |ψ1〉 . (2.46)

We see this by calculating

〈H |ψ1〉 , |ψ2〉〉η = 〈|ψ1〉 , H |ψ2〉〉η . (2.47)

1Here an asterisk is using to denote the dual Hilbert space as this is how it is usually

denoted. In this thesis, when we use an asterisk on anything other than a Hilbert space it

denotes complex conjugation.
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Because H is Hermitian with respect to this η inner product, its set of (nor-

malised) eigenstates, {|φn〉}n=N
n=1 , is an orthonormal basis for the whole Hilbert

space and its eigenvalues are real. The eigenstates of H can be used to construct

an identity operator

Id =
∑
n

|φn〉 〈φn| η , (2.48)

in the sense that when it acts on a state it leaves the state unchanged. To see this,

we first point out that because {|φn〉}n=N
n=1 is an orthornomal basis for the Hilbert

space we can represent any state in this Hilbert space as |ψ〉 =
∑

n an |φn〉. With

this we calculate

Id |ψ〉 =
∑
n

|φn〉 〈φn| η
∑
m

am |φm〉

=
∑
n

∑
m

am |φn〉 〈φn| η |φm〉

=
∑
n

∑
m

am |φn〉 δnm

=
∑
n

an |φn〉

= |ψ〉 . (2.49)

Now, if we define

|γn〉 = η |φn〉 , (2.50)

we see that {|φn〉 , |γn〉}n=N
n=1 is a biorthonormal system. So the identity operator

can also be represented as

Id =
∑
n

|φn〉 〈γn| . (2.51)

These |γn〉 states are the eigenstates of H† as

H† |γn〉 = an |γn〉 , (2.52)

where an is the eigenvalue of H with corresponding eigenstate |φn〉. These states

are orthonormal with respect to the η−1 inner product defined by

〈|ψ1〉 , |ψ2〉〉η
−1

= 〈ψ2| η−1 |ψ1〉 . (2.53)
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2.2 Biorthogonal quantum mechanics

So, if {|φn〉 , |γn〉}n=N
n=1 is a biorthonormal system equipped with the η inner prod-

uct, then {|γn〉 , |ηn〉}n=N
n=1 is a biorthonormal system equipped with the η−1 inner

product.

However, the |γn〉 states are not in general orthonormal with respect to the η

inner product defined above. To see this, simply compute

〈|γn〉 , |γm〉〉η = 〈φm| η3 |φn〉 6= δnm . (2.54)

This is true for general η. For example, we can set η and η−1 (Mostafazadeh,

2010)

η =
∑
n

|γn〉 〈γn| ,

η−1 =
∑
n

|φn〉 〈φn| . (2.55)

However, they are orthonormal for the case η = 1. In this case, the η inner prod-

uct Eq. (2.46) reduces to the conventional inner product of quantum mechanics

and |φn〉 = |ψn〉.
Eq. (2.54) is not a problem if the only states in the Hilbert space, H, are states

of the form in Eq. (2.41) that are normalised with respect to the η inner product

in Eq. (2.46) and the observables are of the form in Eq. (2.44). In this case, one

can select the η inner product for the Hilbert space and find that the biorthogonal

QM is indistinguishable to conventional Hermitian QM (Brody, 2016). Likewise,

if the Hilbert space only contains states that belong to H∗, where the states are

all normalised with respect to the η−1 inner product, and the observables are

Hermitian with respect to the η−1 inner product in Eq. (2.53), one can simply

select the η−1 inner product for the Hilbert space. Again, this is indistinguishable

to conventional Hermitian physics.
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2.3 Summary

2.2.1 Infinite dimensional systems

Figure 2.3: If something is nonphysical

with part of the mathematics, it might be

that that part doesn’t belong in our physical

quantum theory.

We kept the preceding discussion

to N -dimensional systems for clar-

ity. However, when we quantise

the EM field in free space, we have

an infinite-dimensional system. It

is possible to carry over our analy-

sis of N -dimensional systems into

infinite-dimensional systems; how-

ever, one needs to be careful with

how η behaves (Kretschmer & Szy-

manowski, 2004; Mostafazadeh,

2013) and also that basis states

are actually orthonormal (Brody,

2013). We show that we do not

run into these potential issues with the EM field. In any case, at the forefront

of our minds is making sure we can use the theory we present to make physical

predictions, see Fig. 2.3. In the next section, we quantise the EM field in free

space in a very standard way. We do this as the standard way of quantising the

EM field has been very successful in predicting phenomena (Gerry & Knight,

2004). So we use it as a starting point to help make sure our theory is consistent

with what is already known.

2.3 Summary

• We gave a brief whistle-stop tour of the beginnings of quantum theory, to

help introduce concepts of quantum theory.

• We reviewed the Hilbert space structure of quantum theory, and how we

can use postulates to relate this theory to reality.

• We reviewed the uncertainty principle, and how it will be used later in this

thesis.
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2.3 Summary

• We reviewed a simple quantum harmonic oscillator. In particular, we looked

at coherent states of this system and the position and momentum expecta-

tion values of these states oscillate sinusoidally and have minimum uncer-

tainty in these expectation values.

• We reviewed standard biorthogonal quantum physics, and how it relates to

pseudo-Hermitian physics.
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Chapter 3

The standard description of the

quantised EM field

This chapter describes the quantised EM field in free space with the help of a fairly

recent paper by Bennett et al. (2015). Here, we use a bottom-up approach that

starts with the system’s energy eigenstates, monochromatic photons. We then

review states of the EM field that exhibit the most classical behaviour and call

these states the coherent states of the EM field. These states will be important

later when we ask how to produce classical dynamics of the EM field near a mirror

from a fully quantum setting.
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3.1 The quantised EM field in free space

3.1 The quantised EM field in free space

This section looks at the quantised EM field in one-dimensional free space. By

free space we mean a homogeneous, non-dispersive, non-absorbing medium with

permittivity ε0 and permeability µ0. Here, the speed of light is equal to

c = 1/
√
ε0µ0 . (3.1)

The most fundamental equations in EM theory are Maxwell’s equations that

relate the electric and magnetic field vectors. In free space they are

∇× E(x, t) = −∂B(x, t)

∂t
,

∇×B(x, t) = ε0µ0
∂E(x, t)

∂t
,

∇ · E(x, t) = 0 ,

∇ ·B(x, t) = 0 , (3.2)

where x ∈ R3 (Jackson, 1975). The classical energy of the EM field is the Hamil-

tonian

Heng =

∫
dV

[
ε0E(x, t)2 +

1

µ0

B(x, t)2

]
, (3.3)

where V denotes the volume that contains the EM field. In the following, we

have a closer look at this system’s Hilbert space, Hamiltonian and the local EM

field operators E(x) and B(x). We take a bottom-up approach by starting with

defining the excitations of this system, defining the EM field operators in terms of

these excitations and then showing that they satisfy the free space Maxwell equa-

tions1. We then describe the states whose EM field expectation values oscillate

like a classical sinusoidal wave.

Using Eqs. (3.2) and the vector identity

∇×∇×V = ∇(∇ ·V)−∇2V , (3.4)

1We are not aiming to give a comprehensive derivation of the quantised EM field here, just

one that works and agrees with standard results. In doing so we take inspiration from Bennett

et al. (2015).
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3.1 The quantised EM field in free space

we see that

∂2

∂t2
E(x, t) = c2∇2E(x, t) ,

∂2

∂t2
B(x, t) = c2∇2B(x, t) , (3.5)

and so the E and B fields separately obey the wave equation. Suppose we are

only interested in waves that propagate along one axis in an Euclidean coordinate

system. To model this, we denote a position vector here by (x, y, z) ∈ R3 and

label the unit vectors along each axis by ei for i = x, y, z, respectively. These

unit vectors satisfy ei · ej = δij. Without loss of generality, we choose the x-axis

to be the propagation axis so that the EM fields depend on x and t. This means

the EM wave equations (3.5) reduce to

∂2

∂t2
E(x, t) = c2 ∂

2

∂x2
E(x, t) ,

∂2

∂t2
B(x, t) = c2 ∂

2

∂x2
B(x, t) . (3.6)

This is useful as the solution to the equation

∂2

∂t2
f = c2 ∂

2

∂x2
f , (3.7)

is

f = Af(x− ct) +Bf(x+ ct) , (3.8)

where A and B are constants. Therefore, we can assign to the EM fields two

directions of propagation: in the positive x direction, E(x, t) = E(x − ct, 0), or

in the negative x direction, E(x, t) = E(x + ct, 0). The EM field operators will

therefore need to account for these two directions of propagation. Lastly, we

have two orthornomal polarisations for the E field propagating along the x-axis

and without loss of generality we choose them to be ey and ez. In one spatial

dimension, Eq. (3.3) reduces to

Heng =
A

2

∫ ∞
−∞

dx

[
ε0E(x, t)2 +

1

µ0

B(x, t)2

]
, (3.9)

where A is the area around the x-axis that contains the EM field. This is an

integral over the whole x-axis, and is invariant under spatial translations of the
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3.1 The quantised EM field in free space

x-axis, so we assume that, when quantised, eigenstates of this Hamiltonian will

not be x-dependent, i.e. fully nonlocal, and so can have complete certainty in

momentum, which is characterised by their wave number k and direction of prop-

agation. The two possible directions of propagation being either in the positive

x direction or in the negative x direction. Unlike quantising in a box of finite

length where k takes discrete values related to the length of the box, we expect k

to take a continuum of values in the range (0,∞). The x values in Eq. (3.9) are in

the range (−∞,∞). If we wanted k to characterise the direction of propagation,

it would also take in values in the range (−∞,∞), so that the sign of k would

direction of propagation. However, later in this thesis, we introduce negative fre-

quencies, and it is our preference to associate negative frequencies with negative

wave numbers. To denote the direction of propagation, we will use a parameter

s, which we go into more detail shortly.

To describe our quantised EM field, we know from experiments that light can

have bosonic properties (Hong et al., 1987). It will therefore be convenient to

represent states using a bosonic Fock basis (Fock, 1932; Lancaster & Blundell,

2014) as this allows us to construct observables using the same operators used in

describing states, thus simplifying calculations. So we want to describe a single

excitation of this system by a creation operator acting on the normalised vacuum

state of the system

|1sλ(k)〉 = b†sλ(k) |0〉 , 〈0|0〉 = 1 , (3.10)

and we call these states single monochromatic photon states or just single photon

states. We denote photon annihilation operators by bsλ(k), which annihilate the

vacuum state above. We have chosen b instead of a to prepare for following

sections. The commutator between the creation and annihilation operators needs

to take into account the two polarisations of the system, λ = H,V , the two

directions of propagation, s = ±1, and of course the distinct wave number that an

excitation can have k ∈ (0,∞). This notation is slightly different from standard

notation where k can be negative but also denotes direction of propagation. We

have done this to prepare for later sections. To be sure, momentum is a vector. If

we had to account for photons propagating in 3-d then using the s = ±1 notation

would not be possible. It is only possible here as the photons we are using only
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3.1 The quantised EM field in free space

propagate along the x-axis in either the positive x direction or the negative x

direction. The photons satisfy the Fock bosonic commutation relations[
bsλ(k), b†s′λ′(k

′)
]

= δss′ δλ,λ′ δ(k − k′) ,
[
bsλ(k), bs′λ′(k

′)
]

=
[
b†sλ(k), b†s′λ′(k

′)
]

= 0 .

(3.11)

If we choose our inner product so that bsλ(k) is the hermitian conjugate of b†sλ(k)

then we find

〈1sλ(k)|1s′λ′(k′)〉 = 〈0|
[
bsλ(k), b†s′λ′(k

′)
]
|0〉

= δss′ δλ,λ′ δ(k − k′) , (3.12)

so the single photon states are indeed orthonormal in the continuous variable

sense1. To be sure, these excitations are not normalised states — take the overlap

of two identical states and it is equal to δ(0). However, we can still use them to

construct normalised states by taking appropriate integrals over them (Eisaman

et al., 2011). For example, if we define

|ψ〉 =

∫ ∞
0

dkf(k)b†1H(k) |0〉 , (3.13)

where ∫ ∞
0

dk|f(k)|2 = 1 , (3.14)

then

〈ψ|ψ〉 = 1 . (3.15)

We now want the EM field Hilbert space of the quantised EM field to contain

the normalised vacuum state |0〉 and all superpositions of normalised states we

can get by applying the creation operators b†sλ(k) multiple times to the vacuum

state. Therefore, it includes the states

|nsλ(k)〉 =
1√
n!

(
b†sλ(k)

)n
|0〉 , (3.16)

1Regarding the creation/annihilation operator commutator, when going from a discrete

number of modes to a continuum of modes we can roughly think of it as taking [bi, b
†
j ] = δij →

[b(x), b†(x′)] = δ(x−x′) for some continuous variable x, as well as turning any summations over

the discrete set into an integral over the variable x.
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3.1 The quantised EM field in free space

which contain exactly n photons in the (k, s, λ) mode. We call these states number

states. A general basis state of our system is a tensor product state of the form

N∏
i=0

∏
s=±1

∏
λ=H,V

|nsλ(ki)〉 , (3.17)

for some N , which could be infinity, and where |nsλ(ki)〉 denotes a number state in

the (ki, s, λ) mode. We call this state a Fock state generated by the b†sλ(k) creation

operators. Next, experiments have shown that the electromagnetic field’s energy

increases by ~ck whenever a photon of wavenumber k is added (Bennett et al.,

2015). Combining this with the photon number states, the Hamiltonian of the

quantised electromagnetic field is such that

Heng |nsλ(k)〉 = (~cknsλ(k) +HZPE) |nsλ(k)〉 , (3.18)

where HZPE is the zero point energy term, so that Heng |0〉 = HZPE |0〉. Using

the fact that this Hamiltonian has the same energy level structure as a harmonic

oscillator, we can also use the creation and annihilation operators to write the

above Hamiltonian in the form

Heng =
∑
s,λ

∫ ∞
0

dk ~ck b†sλ(k)bsλ(k) +HZPE . (3.19)

We have described what we want our Hilbert space and Hamiltonian to be,

but can we construct EM field operators that satisfy Maxwell’s equations where

the time evolution is generated by the Hamiltonian in Eq. 3.19? The answer is:

yes, we can! Furthermore, we can do it all using the conventional inner product

of quantum physics, which makes life easier. We mentioned that the Hamiltonian

would generate the dynamics of the EM field operators, but in section 2.1.3 we

described how states evolve. We therefore describe the Heisenberg picture where

it is the operators that evolve and states remain stationary.

Working with the conventional inner product, with an observable, A, Hamil-

tonian H(t) and state |ψ〉, the expectation value is equal to

〈A〉|ψ〉 = 〈ψ(t)|A |ψ(t)〉 = 〈ψ|U(t)†AU(t) |ψ〉 = 〈ψ|A(t) |ψ〉 , (3.20)

where A(t) = U(t)†AU(t). So we see that if we allow states to remain stationary

and operators to evolve as described above, we get the same expectation value.
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3.1 The quantised EM field in free space

The Heisenberg equation describes the dynamics of operators in the Heisenberg

picture and, using the above equation, it is

d

dt
A(t) = − i

~
[
A(t), H(t)

]
, (3.21)

if the original observable A has no explicit time-dependence.

Now, if we define our EM field observables, E(x) and B(x) by (Bennett et al.,

2015)

E(b)(x) =
∑
s,λ

∫ ∞
0

dk

√
~ck

4πε0A
ei(skx+φ) bsλ(k) eλ +H.c. ,

B(b)(x) =
∑
s,λ

∫ ∞
0

dk
s

c

√
~ck

4πε0A
ei(skx+φ) bsλ(k) ex × eλ +H.c. , (3.22)

where φ ∈ [0, 2π) is a free parameter and we have added the (b) superscript for

convenience, and then substitute these field operators into (3.9) we have

Heng =
∑
s,λ

∫ ∞
0

dk ~ck b†sλ(k)bsλ(k) +
∑
s,λ

∫ ∞
0

dk
~ck
2
δ(0) . (3.23)

This Hamiltonian is equal to the Hamiltonian in Eq. (3.19) where the second

term is the zero-point energy term and so we denote

HZPE =
∑
s,λ

∫ ∞
0

dk
~ck
2
δ(0) . (3.24)

The zero-point energy term is infinite; however, it does not contribute to dy-

namics in the Heisenberg equation. We, therefore, remove this term when this

Hamiltonian is used to calculate dynamics and denote

Hfree =
∑
s,λ

∫ ∞
0

dk ~ck b†sλ(k)bsλ(k) , (3.25)

because this Hamiltonian generates dynamics in free space.

Furthermore, we see that Eq. (3.23) looks a lot like the Hamiltonian of a set

of N harmonic oscillators Eq. (2.23)! The expectation being that we now have a

continuum of oscillators, rather than a discrete set, with the summation replaced

with an integral. For example, in the N case we had ωi ∈ {ωj}Nj=0, whereas in
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3.1 The quantised EM field in free space

the continuum case we have ωk ∈ {ck : 0 < k <∞}. This suggests we can define

the hermitian operators

xsλ(k) =

√
~

2ck

(
bsλ(k) + b†sλ(k)

)
,

psλ(k) = −i
√

~ck
2

(
bsλ(k)− b†sλ(k)

)
, (3.26)

where

[xsλ(k), psλ(k
′)] = i~δ(k − k′) , (3.27)

so that we can write Eq. (3.23) in the form

Heng =
∑
s,λ

∫ ∞
0

dk
1

2

(
(ck)2x2

sλ(k) + p2
sλ(k)

)
. (3.28)

We call xsλ(k) and psλ(k) the canonical position and momentum operators, re-

spectively, of the s, λ, k mode.

It is easy to check that the photon number states |nsλ(k)〉 are eigenstates of

the energy observable Heng with their eigenvalues given by n~ck + HZPE. These

states evolve in the Schrödinger picture as |nsλ(k, t)〉 = e−inckt |nsλ(k)〉. Creation

and annihilation operators evolve in the Heisenberg picture as

bsλ(k) = e−icktbsλ(k)

b†sλ(k) = eicktbsλ(k) . (3.29)

Using the above equations, the EM field operators Eq. (3.22) evolve, in the

Heisenberg picture, as

E(b)(x, t) =
∑
s,λ

∫ ∞
0

dk

√
~ck

4πε0A
ei(sk(x−sct)+φ) bsλ(k) eλ +H.c. ,

B(b)(x, t) =
∑
s,λ

∫ ∞
0

dk
s

c

√
~ck

4πε0A
ei(sk(x−sct)+φ) bsλ(k) ex × eλ +H.c.

(3.30)

These satisfy Maxwell’s equations and E(x, t) = E(x − sct, 0) where s = ±1,

which is exactly what we were looking for.
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3.2 Coherent states of the EM field

3.2 Coherent states of the EM field

Clearly, we have

〈nsλ(k′)|E(b)(x, t) |nsλ(k)〉 = 0 , (3.31)

which means the number states have zero electric field expectation value. A clas-

sical mode of the EM field with a well-defined frequency travels with a sinusoidal

shape. Therefore, we construct states such that their E field expectation value

will behave like these classical mode. Building on the coherent states of a single

harmonic oscillator we described in section 2.1.5, we define a single mode coherent

state of the EM field by

|αsλ(k)〉 = e−
|α|2
2 eαb

†
sλ(k) |0〉 , (3.32)

where α = |α|eiθ is a complex number. These states have the properties

bs′λ′(k
′) |αsλ(k)〉 = δss′δλλ′δ(k − k′)α |αsλ(k)〉 ,

〈αs′λ′(k′)|αsλ(k)〉 = δss′δλλ′δ(k − k′) . (3.33)

Using these properties, we find

〈αsλ(k′)|E(b)(x, t)|αsλ(k)〉 = δ(k−k′)Amp|α|
√
k cos(k(x−sct)+φ+θ)eλ , (3.34)

where

Amp =

√
~c

4πε0A
, (3.35)

which oscillates like a classical travelling wave.

Similar to the number states, these cannot correspond to physical states,

because || |αsλ(k)〉 || 6= 1, but we can still use them to construct normalised states

whose EM field expectation values will oscillate like classical waves. For example,

if we define the state

|ψα,f〉 =

∫ ∞
0

dk f(k) |αsλ(k)〉 , (3.36)

where ∫ ∞
0

dk |f(k)|2 = 1 , (3.37)
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3.2 Coherent states of the EM field

then || |ψα,f〉 || = 1 and

〈E(b)(x, t)〉|ψα,f 〉 = 2Amp

∫ ∞
0

dk |f(k)|2|α|
√
k cos (k(x− sct) + φ+ θ) eλ , (3.38)

which is just an integral over a collection of frequencies k with |f(k)|2 acting like

a weight function.

To be sure, we cannot quite call these coherent wave packets classical like

yet as we still need to make sure it has minimum electric field fluctuations. In

other words, we need to check that the electric field fluctuations for these |ψα,f〉
states, ∆E|ψα,f 〉, is the same as the vacuum fluctuations, ∆E|0〉. However, we have

∆E|ψα,f 〉 6= ∆E|0〉. This makes sense because the |ψα,f〉 states are not eigenstates

of E+(x, t), where

E+(x, t) =
∑
s,λ

∫ ∞
0

dk

√
~ck

4πε0A
ei(sk(x−sct)+φ) bsλ(k) eλ . (3.39)

Therefore, to find our most classical EM field states, we do not just want

a superposition of single-mode coherent states, but a coherent superposition of

single-mode coherent states. We define the state

|αksλ〉 = exp

(
−1

2

∫ ∞
0

dk|αk|2
)

exp

(∫ ∞
0

dk αkb†sλ(k)

)
|0〉 , (3.40)

where αk = |αk|eθk maps each k onto a complex number such that the above

integrals are well-defined (Zhang, 1999). These states satisfy 〈αksλ|αksλ〉 = 1 as

〈βksλ|αksλ〉 = exp

(
−1

2

∫ ∞
0

dk|βk|2 − 1

2

∫ ∞
0

dk|αk|2 +

∫ ∞
0

dkβk
∗
αk
)
, (3.41)

and are eigenstates of E+(x, t). To see this, we can compute directly

E+(x, t) |αksλ〉 = Amp

∫ ∞
0

dk′
√
k′αk

′
ei(sk

′(x−sct)+φ)eλ |αksλ〉 , (3.42)

where we have applied the commutator identity

[A,Bn] = nBn−1[A,B] if [B, [A,B]] = 0 , (3.43)

to find[
bs′λ′(k

′),

(∫ ∞
0

dkαkb†sλ(k)

)n]
= n

(∫ ∞
0

dkαkb†sλ(k)

)n−1

αk
′
δss′δλλ′ . (3.44)
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3.3 Summary

The E field expectation value of these states is therefore

〈E(x, t)〉|αksλ〉 = 2Amp

∫ ∞
0

dk
√
k|αk| cos(k(x− sct) + φ+ θk)eλ , (3.45)

which looks a lot like Eq. (3.38); they are in fact equal if we set αk = |f(k)|2α.

However, unlike the |ψα,f〉 states, we have ∆E|αksλ〉 = ∆E|0〉. We therefore call the

|αksλ〉 states: coherent states of the EM field. We will come across these coherent

states later in the paper when we describe how a mirror device locally changes

the EM field.

3.3 Summary

• We reviewed a quantisation of the free space EM field propagating in free

space. In this case, the EM field Eq. (3.30) total energy observables in

Eq. (3.30) and Eq. (3.28), respectively, are represented by Hermitian oper-

ators. We reviewed the energy eigenstates of this system – monochromatic

photons, which are fully nonlocal and states of well-defined momentum.

• We reviewed coherent states of the EM field and some of their properties. Of

particular use is that their electric field expectation values have minimum

uncertainty and oscillate like a classical sinusoidal mode.
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Part II

New results
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Chapter 4

The EM field as a biorthogonal

system

Until now, we have considered the EM field a conventional quantum system.

States evolve according to the usual Schrödinger equation, and the inner prod-

uct used is the conventional one. In this chapter, we describe how to model the

EM field using local bosonic operators, using biorthogonal physics (Brody, 2013)

and complex conjugated time evolution operators. We discuss locality theorems

in QFT and how they relate to our theory. Local modes of the EM field have

been discussed before (Bialynicki-Birula, 1996; Hawton & Debierre, 2017; Smith

& Raymer, 2007). What is new is that our system’s inner product provides a

unitary transformation between the local bosonic operators and monochromatic

photon operators, and our local bosonic operators comprise operators that evolve

according to the Heisenberg equation and complex conjugated Heisenberg equa-

tion. What is also new is that the biorthogonal system we shall use to model the

EM field contains states that belong to the intersection of the Hilbert space and

dual Hilbert space. We discuss the implications of this, and we describe how to

compute the dynamics of our system.
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4.1 The position space representation

4.1 The position space representation

In classical electrodynamics, we often employ a local description of the EM field

when modelling experiments. Similarly, this thesis establishes a local description

of electrodynamics but for the quantised EM field. To do so, we first have a closer

look at the local EM field operators in Eq. (3.22). We can write these operators

in the more compact form

E(x) =
∑
s,λ

√
~c

2εA
asλ(x) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

2εA
asλ(x) ex × eλ +H.c. , (4.1)

where

asλ(x) =

∫ ∞
0

dk

√
k

2π
eiskx bsλ(k) . (4.2)

This operator contains all the position dependence of the EM field operators

and so is the obvious candidate for a locally acting annihilation operator of the

EM field. A pair of local creation and annihilation operators of the EM field is

desirable as it will allow us to construct Hamiltonians that locally alter the EM

field. In the Heisenberg picture and using Eq.(3.25), the time dependence of these

operators is

asλ(x, t) = U †free(t)asλ(x)Ufree(t) = asλ(x− sct, 0) . (4.3)

This equation means that the above operator can correspond to wave packets

that move at the speed of light in the s direction.

Unfortunately, there is a problem. The operators asλ(x) and a†sλ(x) do not

obey bosonic commutator relations. To see this, suppose

|1sλ(x)〉 = a†sλ(x) |0〉 , (4.4)

is the state of a single field excitation associated with the asλ(x) operator. One

can show that

〈1sλ(x)|1s′λ′(x′)〉 = 〈0|
[
asλ(x), a†s′λ′(x

′)
]
|0〉 , (4.5)
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where [
asλ(x), a†s′λ′(x

′)
]

= δss′ δλλ′

∫ ∞
0

dk
k

2π
eisk(x−x′) . (4.6)

Therefore, single excitation states in Eq. (4.4) are not pairwise orthogonal. There-

fore, the asλ(x) and the a†sλ(x) are not the bosonic annihilation and creation op-

erators of highly localised field excitations we want them to be and so we need

to adjust our theory.

4.2 A description of the quantised EM field in

position space using local bosonic operators

In this section, we construct annihilation operators of highly localised excitations.

To do so, we identify operators, ãsλ(x), such that

[ãsλ(x), a†s′λ′(x
′)] = δss′ δλλ′ δ(x− x′) . (4.7)

We use a tilde here to emphasise that ãsλ(x) 6= asλ(x). To achieve this identifi-

cation, we use Eq. (4.6) as a starting point so that, when s = s′ and λ = λ′, we

want Eq. (4.7) to be the delta function

δ(x− x′) =
1

2π

∫ ∞
−∞

dk eik(x−x′) . (4.8)

Comparing the two equations, we see there are effectively two things we need to

do: decrease the lower k integral limit from 0 to −∞, and remove the k factor

inside the integral of Eq. (4.6). Getting an ãsλ(x) that does this requires doubling

the degrees of freedom of the EM field to get our desired k range.

4.2.1 Doubling the degrees of freedom of the quantised

EM field

A closer look at the EM field operators shows we can reproduce any E or B

expectation value satisfying Maxwell’s equations by complex conjugating both the
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operator and state within that expectation value. For example, if 〈ψ(t)|E(x)|ψ(t)〉
is real then it is equal to its complex conjugate

〈ψ(t)|E(x)|ψ(t)〉 = (〈ψ(t)|E(x)|ψ(t)〉)∗

= 〈ψ(t)|∗E∗(x)|ψ(t)〉∗ . (4.9)

Therefore, it is tempting to think that these complex conjugate states, |ψ(t)〉∗ =

U∗(t) |ψ(0)〉∗, and operators, E∗(x), are redundant as they seem to give us no

new, or changing of, information that we extract from a system. Here we show

that they have a use: they can extend our k range from 0 to −∞ in Eq. (4.6),

which will allow us to construct Hamiltonians that locally alter the EM oper-

ators at specific locations. Furthermore, one often associates complex conju-

gation of states or operators with parity-time, or PT, physics (Barnett et al.,

2000; Vaccaro, 2011, 2016). Time reversal in quantum physics is, after all, an

anti-unitary operator. For example, a classical E-wave, cos(kx− ωt+ φ), is in-

distinguishable if we make the substitutions x → −x, t → −t and φ → −φ as

cos(−kx+ ωt− φ) = cos(kx− ωt+ φ). However, we do not dwell on the philo-

sophical implications or origins of these complex conjugate states, as this is not

the purpose of this thesis – this thesis shows how we can use them. In partic-

ular, how we can use them to construct bosonic Fock operators that have local

commutation relations.

More concretely, we now define additional bosonic photon annihilation and

creation operators, csλ(k) and c†sλ(k), that commute with the original photon

operators. So that [csλ(k), c†s′λ′(k
′)] = δss′δλλ′δ(k− k′), where s and λ still denote

direction of propagation and polarisation, respectively. However, in contrast to

the original photon states, these states evolve according to the complex conjugate

Schrödinger equation. If a state, |ψ〉, evolves according to the complex conjugate

Schrödinger equation then its time evolution is governed by the equation

d

dt
|ψ(t)〉 =

i

~
H∗ |ψ(t)〉 . (4.10)

where H∗ is the complex conjugate of the systems Hamiltonian. Using H∗ has

important consequences when we model systems that are more complex than free

space, where H∗free = Hfree. We will see examples of such Hamiltonians in the
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next section. We refer to these photons that evolve according to the complex

conjugate Schödinger equation as c photons.

Using this notation, we introduce additional terms to the free space Hamilto-

nian

H
(c)
free =

∑
s,λ

∫ ∞
0

dk ~ck c†sλ(k)csλ(k) , (4.11)

and EM field observables

E(c)(x) =
∑
s,λ

∫ ∞
0

dk

√
~ck

4πεA
e−i(skx+φ) csλ(k) eλ +H.c. ,

B(c)(x) =
∑
s,λ

∫ ∞
0

dk
s

c

√
~ck

4πεA
e−i(skx+φ) csλ(k) ex × eλ +H.c. . (4.12)

An observable A, which acts only on the c photon states, in the Heisenberg

picture now satisfies a complex conjugate Heisenberg equation,

A(t) = U † ∗(t)AU∗(t) ,

⇒ d

dt
A(t) =

i

~
[
A(t), H∗

]
, (4.13)

if A has no implicit time-dependence so that

∂

∂t
A = 0 . (4.14)

Hence, in contrast to the dynamics of the b photons in Eq. (3.29), the c operators

evolve such that

csλ(k, t) = eickt csλ(k, 0) ,

c†sλ(k, t) = e−ickt c†sλ(k, 0) , (4.15)

in the Heisenberg picture.

We set the free space Hamiltonian and EM field operators equal to the sum

of the b and c terms

Hfree = H
(b)
free +H

(c)
free ,

E(x) = E(b)(x) + E(c)(x) ,

B(x) = B(b)(x) + B(c)(x) . (4.16)
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We now have an over-complete description of real EM field expectation values in

the sense that for every b photon state we can find a c photon state such that

they both produce the same EM field expectation values. However, this over-

completeness allows us to construct annihilation operators for highly localised

field excitations that remain local under time evolution. In the following, we

denote

|1sλ(k)〉b = b†sλ(k) |0〉 ,

|1sλ(k)〉c = c†sλ(k) |0〉 , (4.17)

and we shall use the b, c subscripts on a state or operator to denote the same

operator except with its c or b photon operators set to zero, respectively. For

example, if |ψ〉 = |1sλ(k)〉b + |1sλ(k)〉c then |ψ〉b = |1sλ(k)〉b. Likewise, Hfree,b =

H
(b)
free and Hfree,c = H

(c)
free. We have essentially taken a vector sum of two copies of

the total Hilbert space, the difference between the two copies is that they have

different time evolution equations.

As we now have two time evolution equations, we define the time evolution

operator of a system with Hamiltonian H to be

U(t) = exp

(
− i
~

∫ t

0

dt(Hb −H∗c )

)
. (4.18)

By using the Baker-Campbell-Hausdorff formula (Gerry & Knight, 2004), we also

have

U(t) = Ub(t)U
∗
c (t) . (4.19)

Therefore, in the Schrödinger picture the time derivative of a state, |ψ(t)〉, that

is initially |ψ〉 is

d

dt
|ψ(t)〉 =

d

dt
U(t) |ψ〉

= − i
~
Hb |ψ(t)〉+

i

~
H∗c |ψ(t)〉 (4.20)

Therefore, the time derivative of an initial operator with no explicit time
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dependence operator, A, in the Heisenberg picture is

d

dt
A(t) =

d

dt

(
U
†
(t)AU(t)

)
= U

†
(t)

(
− i
~

[A,Hb]

)
U(t) + U

†
(t)

(
i

~
[A,H∗c ]

)
U(t)

= − i
~

[A(t), Hb] +
i

~
[A(t), H∗c ] . (4.21)

From this we conclude that the time derivative of such an operator is 0 if

[A,Hb]− [A,H∗c ] = 0 . (4.22)

4.2.2 Local bosonic operators of the EM field

In this section we adjust a†sλ(x) and asλ(x) so that they form bosonic operators.

Taking the electric field observable E(x) in Eq. (4.16), we write it in the form

E(x) =
∑
s,λ

√
~c

2εA
asλ(x) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

2εA
asλ(x) ex × eλ +H.c. , (4.23)

which looks a lot like Eq. (4.1) except we now have

a†sλ(x) =

∫ ∞
0

dk

√
|k|
2π

[
e−iskx b†sλ(k) + eiskx c†sλ(k)

]
, (4.24)

which we call a local bosonic creation operator.

We can also write the electric field operator as

E(x) =
∑
s,λ

Esλ(x)eλ , (4.25)

where

Esλ(x) =

√
~c

2εA
asλ(x) +H.c. (4.26)

This representation will be useful for later. However, to justify this name we still

need an operator that commutes with the local bosonic operator to a δ function –
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this will be its corresponding annihilation operator. We call this operator abio
sλ (x)

and define it by

abiosλ (x) =

∫ ∞
0

dk

√
1

2π|k|
[
eiskx bsλ(k) + e−iskx csλ(k)

]
. (4.27)

Clearly, we have [
abiosλ (x), a†s′λ′(x

′)
]

= δss′ δλλ′ δ(x− x′) , (4.28)

which is the desired bosonic commutation relation. Therefore, a†sλ(x) and abiosλ (x)

are a local bosonic creation and annihilation operator pair. We have added the

absolute symbol for convenience as it will be useful for comparing to the negative

frequency case later, it does not affect the local commutator above. Computing

the time evolution of these local operators we find

U
†
(t)a†sλ(x)U(t) = a†sλ(x− sct) ,

U
†
(t)asλ(x)U(t) = asλ(x− sct) . (4.29)

However, different from conventional quantum theory, the creation operator

a†sλ(x) is no longer the Hermitian conjugate with respect to the usual inner prod-

uct of its corresponding annihilation operator. In other words, asλ(x, t) is not the

annihilation operator corresponding to the creation operator a†sλ(x). By taking

the Hermitian conjugate of Eq. (4.28), we get a second pair of operators, asλ(x)

and abio †
sλ (x), that also have a local bosonic commutator relation[

asλ(x), abio †
s′λ′ (x

′)
]

= δss′ δλλ′ δ(x− x′) . (4.30)

In the following, we refer to the second pair as the bio-local operators. So a

single mode EM field operator contains two local bosonic operators where each

operator belongs to a different creation/annihilation operator pair. We therefore

define the bio local states

|1sλ(x)〉bio = abio †sλ (x) |0〉 , (4.31)

as the EM field operators contain the annihilation operator corresponding to this

excitation.
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We can represent the monochromatic photons in terms of the local bosonic

operators and bio local bosonic operators via the transformations

b†sλ(k) =

∫ ∞
−∞

dx
1√

2π|k|
eiskx a†sλ(x) =

∫ ∞
−∞

dx

√
|k|
2π

eiskx a†biosλ (x) ,

bsλ(k) =

∫ ∞
−∞

dx

√
|k|
2π

e−iskx abio
sλ (x) =

∫ ∞
−∞

dx
1√

2π|k|
e−iskx asλ(x) .

c†sλ(k) =

∫ ∞
−∞

dx
1√

2π|k|
eiskx a†sλ(−x) =

∫ ∞
−∞

dx

√
|k|
2π

eiskx a†biosλ (−x) ,

csλ(k) =

∫ ∞
−∞

dx

√
|k|
2π

e−iskx abiosλ (−x) =

∫ ∞
−∞

dx
1√

2π|k|
e−iskx asλ(−x) .

(4.32)

Photons, local states and bio local states, share the same counting operator

N =

∫ ∞
0

dk (a†sλ(k)asλ(k) + b†sλ(k)bsλ(k))

=

∫ ∞
−∞

dx a† biosλ (x)asλ(x)

=

∫ ∞
−∞

dx a†sλ(x)abiosλ (x) . (4.33)

With this number operator it is easy to see that the following state

|nsλ(x)〉 =
1√
n!

(
a†sλ(x)

)n
|0〉 , (4.34)

contains n local bosons in the s, λ, x mode, since N |nsλ(x)〉 = n |nsλ(x)〉. There-

fore, we call N the boson number operator of the EM field, as opposed to just

the photon number operator.

We can represent the local bosonic operators in terms of their bio operators,

and vice-versa, by

asλ(x) =

∫ ∞
∞

dx′
∫ ∞

0

dk
|k|
π

cos(k(x− x′)) abio
sλ (x′) ,

abio
sλ (x) =

∫ ∞
∞

dx′
∫ ∞

0

dk
1

π|k|
cos(k(x− x′)) asλ(x′) . (4.35)
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We can use these representations to write the free space free space Hamiltonian

in Eq. (4.16) in terms of the local and bio-local operators

Hfree =

∫ ∞
−∞

dx

∫ ∞
−∞

dx′
∫ ∞

0

dk
~ck
π

cos(sk(x− x′))a†sλ(x)abiosλ (x′)

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′
∫ ∞

0

dk
~ck
π

cos(sk(x− x′))a† biosλ (x)asλ(x
′) . (4.36)

We only write the above forms of the Hamiltonian to be complete, the original one

written in terms of monochromatic photon operators works fine for our purposes.

For the energy Hamiltonian, we take the classical expression for energy of the

electromagnetic field in 1-d (Jackson, 1975)

Heng =
A

2

∫ ∞
−∞

dx

[
ε0E(x, t)2 +

1

µ0

B(x, t)2

]
, (4.37)

and substitute into it our field observables from Eq. (4.23). We find that the

energy observable is now

Heng =
∑
s, λ

∫ ∞
−∞

dx ~cξ†sλ(x)ξsλ(x)

=
∑
s, λ

∫ ∞
0

dk ~c
k

2

(
b†sλ(k)bsλ(k) + c†sλ(k)csλ(k) + 2b†sλ(k)c†sλ(k) + H.c.

)
,

(4.38)

where

ξsλ(x) = asλ(x) + a†sλ(x) . (4.39)

Since this is a positive operator, both b and c photons have only positive energy

expectation values. We need the additional interference terms between the b and

c modes as both modes can produce real EM fields on the x-axis. The interference

between these real fields will, of course, affect the total energy. As a state can

evolve according to one of two dynamical equations, we are not thinking of the

energy observable as the operator that generates dynamics, since both types of

states will contribute to the systems’ total energy. However, when we consider

either only the b photons or only the c photons, the free space Hamiltonian and

energy observable are the same as we only have one dynamical equation of motion.

Nevertheless, Heng is still the operator that gives energy expectation values.
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Using Eq. (3.26), we define

xbsλ(k) =

√
~

2ck

(
bsλ(k) + b†sλ(k)

)
,

pbsλ(k) = −i
√

~ck
2

(
bsλ(k)− b†sλ(k)

)
,

xcsλ(k) =

√
~

2ck

(
csλ(k) + c†sλ(k)

)
,

pcsλ(k) = i

√
~ck
2

(
csλ(k)− c†sλ(k)

)
. (4.40)

Here we have assumed that [xcsλ(k), pcsλ(k
′)] is the complex conjugate of [xbsλ(k), pbsλ(k

′)]

so that

[xbsλ(k), pbsλ(k
′)] = i~δ(k − k′) ,

[xcsλ(k), pcsλ(k
′)] = −i~δ(k − k′) . (4.41)

Using the above operators, we can write the energy Hamiltonian in the form

Heng =
∑
s,λ

∫ ∞
0

dk
1

2

(
(ck)2xbsλ(k)2 + pbsλ(k)2 + (ck)2xcsλ(k)2 + pcsλ(k)2

)
+
(
(ck)2xbsλ(k)xcsλ(k) + pbsλ(k)pcsλ(k)

)
. (4.42)

The first line is the sum of all the independent harmonic oscillator Hamiltonians

corresponding to the b and c photons, see Eq. (3.28), and the second line cor-

responds to the interference between a b oscillator with wave number k and a c

oscillator with wave number k, for all k.

Computing the time evolution of the energy operator with respect to the free

space Hamiltonian, we find

U
†
(t)HengU(t) = Heng , (4.43)

because

[Heng, Hfree b]− [Heng, H
∗
free c] = 0 . (4.44)

The energy observable is therefore invariant under time translations1 and so the

1It would be interesting to derive the Lagrangian of this system apply Noether’s theorem

(Peskin & Schroeder, 1995) to deduce conserved quantities. However, this is beyond the scope

of this thesis.
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energy expectation values of states are conserved because

〈ψ|U †(t)HengU(t)|ψ〉 = 〈ψ|Heng|ψ〉 . (4.45)

We point out that Hfree = H∗free. This means that instead of using complex

conjugate dynamical equations, we could have introduced negative frequencies

instead for this case. We will discuss negative frequencies in more detail later in

this thesis.

So, for each creation operator asλ(x) and annihilation operator a†sλ(x) within

the EM field observable we have identified a corresponding annihilation and cre-

ation operator, respectively. However, under the standard inner product, the

inner product between two local states, |1sλ(x)〉 and |1s′λ′(x′)〉, is

〈1s′λ′(x′)|1sλ(x)〉 = δss′δλλ′
1

2π

∫ ∞
−∞

dk|k|eik(x−x′) 6= δss′δλλ′δ(x− x′) . (4.46)

Not only can this equation be non-zero when x 6= x′, but due the the |k| term in

the integral it also does not have the right units if the overlap between a local state

at x and a local state at x′ is to be considered as a probability density. However,

we could still construct states that are an integral over these local states such

that their overlap is a unit-less number. For example, the state

|ψ〉 =

∫ ∞
−∞

dx f(x) |1sλ(x)〉 , (4.47)

can be normalised to the unit-less number 1 if f(x) has units m
1
2 .

Furthermore, in contrast to the local operators in Eq. (4.2), there exists one-

to-one transformations between the momentum space Fock operators and the

position space Fock operators. However, these transformations are non-unitary

with respect to the standard inner product. Therefore, although the |1sλ(k)〉
states form an orthonormal basis, the |1sλ(x)〉 states will not form an orthonormal

basis, and so we need to adjust our inner product to make these local states

pairwise orthogonal.

We make this adjustment by identifying the quantised EM field as a biorthogo-

nal system (Brody, 2013; Mostafazadeh, 2010). This identification will generalise

our Hilbert space’s scalar product to manage exact calculations, i.e. compute ex-

pectation values, with systems that locally alter EM fields. However, we still want
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to include monochromatic modes in our Hilbert space, so we need to make sure

that |1sλ(k)〉 states remain pairwise orthogonal with respect to the generalised

inner product. So we want an inner product where the transformation between

the local bosonic states and monochromatic photon states is unitary. We describe

this in detail in the next section. However, before we do, we describe another

way to obtain local bosons of the EM field.

Using negative frequencies and a scaling operator R to construct local

modes of the EM field

Earlier, we alluded to using negative frequencies monochromatic photons in-

stead of monochromatic photons that evolve with respect to a complex conjugate

Schrödinger equation. In this scenario, states only evolve according to the con-

ventional Schrödinger equation, but we introduce monochromatic photon states

that have negative eigenvalues so that k in bsλ(k) can be a value in (−∞,∞).

We refer to those bsλ(k) modes where k ∈ (−∞, 0) as negative frequency modes.

When we take these negative frequencies into account, the free space Hamiltonian

is

Hneg
free =

∑
s,λ

∫ ∞
−∞

dk ~ck b†sλ(k)bsλ(k) , (4.48)

where the lower integral limit has been extended from 0 to −∞.

Suppose instead we defined the EM field operators by (Cook, 1982a,b; Hodg-

son et al., 2021)

E(x) =
∑
s,λ

√
~c

2εA
R(Asλ(x)) eλ +H.c. ,

B(x) =
∑
s,λ

s

c

√
~c

2εA
R(Asλ(x)) ex × eλ +H.c. , (4.49)

where

Asλ(x) =

√
1

2π

∫ ∞
−∞

dk eiskx bsλ(k) . (4.50)

and R is a super operator such that

R(bsλ(k)) =
√
|k|bsλ(k) . (4.51)
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We could just show the square root term when needed instead of using the R

operator, however, we have included it here to be consistent with Hodgson et al.

(2021). We therefore see that the EM fields in this case

E(x) =
∑
s,λ

∫ ∞
−∞

dk

√
~ck

4πε0A
eiskx bsλ(k) eλ +H.c. ,

B(x) =
∑
s,λ

∫ ∞
−∞

dk
s

c

√
~ck

4πε0A
eiskx bsλ(k) ex × eλ +H.c. , (4.52)

so that they are equal to the usual EM field operators except with the lower

integral limit extended from 0 to −∞ (Bennett et al., 2015). This was the route

taken in Hodgson et al. (2021).

Therefore, in the context of negative frequencies, the energy operator is

Hneg
eng =

∑
s, λ

∫ ∞
−∞

dk ~c
|k|
2

(
b†sλ(k)bsλ(k) + b†sλ(k)b†sλ(−k) + H.c.

)
, (4.53)

which we found by substituting EM field operators in Eq. (4.49) into Eq. (3.9).

We see that negative frequency photons still have positive energies.

Here we have

[Asλ(x), A†s′λ′(x
′)] = δss′δλλ′δ(x− x′) , (4.54)

so that the creation operator corresponding to Asλ(x) is its Hermitian conjugate.

Therefore, when the option is available, it might be more desirable to work with

the Asλ(x) as opposed to the R(Asλ(x)) operators, as it could lead to simpler

calculations. For example, when we examine the effect of the time evolution

operator generated by the free space Hamiltonian in Eq. 4.48 we find

U †free(t, 0)R(Asλ(x))Ufree(t, 0) = R (Ufree(t, 0)Asλ(x)Ufree(t, 0)) , (4.55)

where

Ufree(t, 0) = exp

(
− i
~
Hneg

free

)
. (4.56)

In fact, Eq. (4.55) holds for any transformation that couples bsλ(k) modes to

bs′λ′(k) or bs′λ′(−k) modes (Hodgson et al., 2021). However, any transformation

that does this has to be wholly delocalised in position space. An example of this

is a Hamiltonian that couples a k mode to a k mode. Additionally, scattering
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operators of locally acting Hamiltonians can also simply couple k to k (Southall

et al., 2021). In these scenarios, it might be straightforward to use the asλ(x)

operators, as opposed to the Asλ(x), operators, as we can apply the R super

operator at the end of the calculation rather than during it.

Unfortunately, Eq. (4.55) does not apply when U(t, 0) is a transformation

with local properties, i.e. when it does not couple bsλ(k) modes to an bs′λ′(k)

or bs′λ′(−k) mode. For example, a time evolution operator corresponding to

a Hamiltonian with a locally acting term. Perhaps this is because the Asλ(x)

operators relate to the R(Asλ(x)) operators via the equation

Asλ(x) =
1

2π

∫ ∞
−∞

dx′
∫ ∞
−∞

dk
1√
|k|
eisk(x−x′)R(Asλ(x

′)) . (4.57)

Therefore, the Asλ(x) and R(Asλ(x)) operators are not locally connected in the

sense that Asλ(x0) is equal to a superposition of the R(Asλ(x)) operators at

places other than x0. This relationship means if we have a transformation that

alters the asλ(x) operators only at a position x0, this transformation will alter the

Asλ(x) operators at multiple places. In other words, a transformation that couples

Asλ(x1) only to Asλ(x2) won’t necessarily couple R(Asλ(x1)) only to R(Asλ(x2)).

A novel result in Southall et al. (2021) was using the Asλ(x) to construct

locally acting mirror Hamiltonians and states that reproduce the dynamics of the

classical mirror image method. However, the results in Southall et al. (2021) was

not enough to reproduce the dynamics of the classical mirror image method for

the EM field operators themselves. We discuss the details of such Hamiltonians

in the next chapter and how they relate to Hamiltonians that reproduce the

dynamics of the classical mirror image method for the EM field operators.

To finish this section, we point out that we could identify an operator Ã†sλ(x)

such that

[R(Asλ(x)), Ã†sλ(x)] = δss′δλλ′δ(x− x′) , (4.58)

to help us obtain local transformations of the EM field using negative frequencies.

However, later in this thesis, we explain why using the concept of negative fre-

quencies is more restrictive than using modes that evolve using complex conjugate

equations.
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4.2.3 The inner product

Defining a suitable inner product on our Hilbert is of vital importance. Quantum

theory is, after all, an abstract probability space that we can use as a tool to

predict experimental outcomes. If we cannot extract probabilities from the theory

we present in this thesis, it is not very helpful. We construct an orthonormal basis

out of the local states |1sλ(x)〉 so that if we have a local state at x, then we have

a 0 probability of measuring it to be at x′ 6= x. This orthogonal property will

make it easier for us to construct Hamiltonians that act on the EM field only at

specific locations.

Adjusting the inner product from the conventional one is something that many

have done in the context of local quantum theories of light (Hawton & Debierre,

2017; Smith & Raymer, 2007). In particular, Bialynicki-Birula (1996) used an

inner product for photon wave functions in coordinate representation. This is

fine for states that are normalised with respect to this adjusted inner product,

but in our case we need to be careful so that we preserve the normalisation of

monochromatic photons. Preserving the normalisation of monochromatic photons

is something we wish to retain as they can be used, for example, to construct

coherent states of the EM field.

We take the standard inner product as a starting point, where we define the

inner product between two states |ψ〉 , |φ〉 by

〈|ψ〉 , |φ〉〉 = 〈φ|ψ〉 . (4.59)

Clearly, 〈|1sλ(x)〉 , |1sλ(x′)〉〉 6= δ(x − x′). To address this, we point out that for

every |1sλ(x)〉 there is a |1sλ(x′)〉bio such that

〈|1sλ(x′)〉 , |1sλ(x)〉bio〉 = δ(x− x′) . (4.60)

Therefore, it would be useful to identify our Hilbert space as a biorthogonal

system where the |1sλ(x′)〉bio are the biorthogonal basis states to the |1sλ(x)〉
states; as we have local creation operators in the EM field observables. Likewise,

we have that for every |1sλ(x)〉bio there is a |1sλ(x′)〉 such that

〈|1sλ(x′)〉bio
, |1sλ(x)〉〉 = δ(x− x′) . (4.61)
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Therefore, it would be useful to identify our Hilbert space as a biorthogonal

system where the |1sλ(x′)〉bio are the biorthogonal basis states to the |1sλ(x)〉
states; as we have bio-local annihilation operators in the EM field observables.

From section 2.2, we know that pseudo-Hermitian Hamiltonians are related

to biorthogonal systems and satisfy the condition

H† = η−1Hη . (4.62)

Considering only single excitation states1, we define η and η−1 operators by

(Mostafazadeh, 2010)

η =
∑
s,λ

∫ ∞
−∞

dx |1sλ(x)〉bio 〈1sλ(x)|bio ,

η−1 =
∑
s,λ

∫ ∞
−∞

dx |1sλ(x)〉 〈1sλ(x)| . (4.63)

Using Eq. (4.24) and Eq. (4.27), we can write the above η and η−1 operators in

the forms

η =
∑
s,λ

∫ ∞
0

dk
1

|k|
(|1sλ(k)〉b 〈1sλ(k)|b + |1sλ(k)〉c 〈1sλ(k)|c) ,

η−1 =
∑
s,λ

∫ ∞
0

dk|k| (|1sλ(k)〉b 〈1sλ(k)|b + |1sλ(k)〉c 〈1sλ(k)|c) . (4.64)

From this we can see why η−1 is the inverse of η as we have

ηη−1 =
∑
s,λ

∫ ∞
0

dk (|1sλ(k)〉b 〈1sλ(k)|b + |1sλ(k)〉c 〈1sλ(k)|c) , (4.65)

which acts as an identity for single excitation states. With these η operators, we

can define an inner product so that the local states are pairwise orthonormal. For

example, if we define an η inner product by

〈|ψ〉 , |φ〉〉η = 〈ψ| η |φ〉 , (4.66)

1A primary goal of this thesis is to describe how to alter the free space EM field operators

locally, and these operators are just linear equations of the local creation operators and bio-local

annihilation operators. For simplicity, we therefore consider single excitation states.
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then

〈|1sλ(x′)〉 , |1sλ(x)〉〉η = δ(x− x′) . (4.67)

From Eq. (4.64) we can see that η is a positive operator as when it acts on a state

it scales each |1sλ(k)〉b and |1sλ(k)〉c by a positive |k|−1 factor. If, in addition,
√
η and

√
η−1 are bounded, this η inner product is related to a Hermitian inner

product by

〈|ψ〉 , |φ〉〉η = 〈√η |ψ〉 ,√η |φ〉〉 . (4.68)

However, if we decide to use the conventional Hermitian inner product we will

have to use Hermitian Hamiltonains and so make it very difficult to construct

Hamiltonians that locally act on the |1sλ(kx)〉 states.

Furthermore, the η inner product does not work if we apply it to photon states

as

〈|1sλ(k′)〉 , |1sλ(k)〉〉η 6= δ(k − k′) , (4.69)

for the same reason that the local states under the standard inner product are

not orthonormal – the transformation relating the photon and local states is

non-unitary (with respect to either the η or standard inner product!). This η

inner product will therefore change expectation values of Hermitian observables

with respect to photon states. Not good. Further still, if we define an η−1 inner

product by

〈|ψ〉 , |φ〉〉η
−1

= 〈ψ| η−1 |φ〉 . (4.70)

then we find that the bio-local states are orthonormal with respect to this η−1

inner product, but the local states and monochromatic photon states are not.

Let us pause for a moment. We said earlier that we are interested in locally

transforming the EM field operators. It is tempting to think that if we use these

transformed operators to calculate expectation values with respect to photonic

states, we only need the standard inner product because this calculation will not

involve any initial local states or bio local states from Eq. (4.31). However, in

the next section, we will use non-Hermitian1 Hamiltonians to locally alter the

1The Hamiltonians that we later define will still be Hermitian with respect to the generalised

inner product and so will generate unitary dynamics with this inner product.
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EM field operators. This use of non-Hermitian Hamiltonians means that in the

Schrödinger picture photon states evolving according to these Hamiltonians will

not remain normalised under the standard inner product as the time evolution

operator acting on it will be non-unitary with respect to the standard inner

product. We cannot use any of the η inner products either, as using these will

mean that the photon state is not initially normalised. We want the local states

and monochromatic states to be excitations of the same vacuum state of the

EM field’s Hilbert space – by definition we must have only one inner product.

Therefore, we shall define a generalised inner product, 〈,〉bio, such that

〈|1sλ(x)〉 , |1sλ(x′)〉〉bio
= δ(x− x′) ,

〈|1sλ(x)〉bio , |1sλ(x′)〉bio〉
bio

= δ(x− x′) ,

〈|1sλ(k)〉 , |1sλ(k′)〉〉bio
= δ(k − k′) . (4.71)

We cast our minds back to the definition of the local creation operator Eq. (4.24)

and replace the
√
|k| term with a f(k) to define the operators

A†sλ(x) =

∫ ∞
0

dk
f(k)√

2π

[
e−iskx b†sλ(k) + eiskx c†sλ(k)

]
,

A† bio
sλ (x) =

∫ ∞
0

dk
1

f(k)
√

2π

[
e−iskx b†sλ(k) + eiskx c†sλ(k)

]
, (4.72)

where f(k) is such that the equations

b†sλ(k) =

∫ ∞
−∞

dx
1

f(k)
√

2π
eiskxA†sλ(x) ,

c†sλ(k) =

∫ ∞
−∞

dx
1

f(k)
√

2π
e−iskxA†sλ(x) , (4.73)

are well-defined. We refer to f(k) as the Fourier weight function.

We define a function, S, that, for a given f(k), takes any operator or state and

sends any Fourier weight term to its reciprocal. This means that if an operator

or state has Fourier weight terms contained within, A(f(k)) or |ψ(f(k))〉, then

S (A (f(k))) = A

(
1

f(k)

)
,

S (|ψ (f(k))〉) =

∣∣∣∣ψ( 1

f(k)

)〉
. (4.74)
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Clearly, we have that S−1 = S. Applying this to A†sλ(x), b†sλ(k), c†sλ(k), A†sλ(x) |0〉,
|1sλ(k)〉b and |1sλ(k)〉c we find

S
(
A†sλ(x)

)
= A†bio

sλ (x) , S
(
A†sλ(x) |0〉

)
= A† bio

sλ (x) |0〉 ,

S
(
b†sλ(k)

)
= b†sλ(k) , S (|1sλ(k)〉b) = |1sλ(k)〉b ,

S
(
c†sλ(k)

)
= c†sλ(k) , S (|1sλ(k)〉c) = |1sλ(k)〉c . (4.75)

With this operator we henceforth define the bio of an operator by Abio = S(A),

and the bio of a state by |ψ〉bio = S(|ψ〉). Suppose, for a given f(k), we define an

inner product by

〈|ψ〉 , |φ〉〉∗ = S (〈φ|) |ψ〉 . (4.76)

Under this inner product, we have

〈|1sλ(k′)〉 , |1sλ(k)〉〉∗ = δ(k − k′),

〈A†sλ(x) |0〉 , A†sλ(x) |0〉〉∗ = δ(x− x′),

〈A† bio
sλ (x) |0〉 , A† bio

sλ (x) |0〉〉∗ = δ(x− x′) . (4.77)

We define the inner product where f(k) =
√
|k| by1

〈|ψ〉 , |φ〉〉bio = S (〈φ|) |ψ〉 . (4.78)

In the following, we refer to the above scalar product as the biorthogonal, or

bio, or generalised inner product to distinguish it from the conventional one.

The generalised inner product includes the standard inner product as a special

case. For example, |1sλ(k)〉bio = |1sλ(k)〉 as a†sλ(k) is the Hermitian conjugate of

its annihilation operator. Therefore, if we are only interested in using photonic

states, photonic Hamiltonians, and Hermitian observables, there is no need to use

the generalised inner product since it is equivalent to the standard inner product.

The bio of |1sλ(x)〉 is |1sλ(x)〉bio, hence we used the bio superscript to denote bio

1We used a general f(k) for motivation and for the purpose of this thesis we only need a S

operator that works for f(k) =
√
|k|.
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local states earlier. Using the generalised inner product, we have

〈|1sλ(k′)〉 , |1sλ(k)〉〉bio = δ(k − k′) ,

〈|1sλ(x′)〉 , |1sλ(x)〉〉bio = δ(x− x′) ,

〈|1sλ(x′)〉bio , |1sλ(x)〉bio〉
bio

= δ(x− x′) , (4.79)

so each of the photon, local and bio local states are separately pairwise orthonor-

mal. We can conclude that the one-to-one transformation between the photon

and local operators is indeed unitary with respect to the generalised inner prod-

uct. But not with respect to the standard or η inner products. We shall therefore

use this generalised inner product for the Hilbert space we use to model local

interactions of the EM field.

Before we use these operators to compute expectation values, we still need

to define how they evolve with respect to time. States contained in H evolve

according a time evolution operator that is generated by H, states contained in

H∗ evolve according to a time evolution operator that is generated by H† Brody

(2013). In conventional Hermitian physics, all states evolve according to one

Hamiltonian. Suppose our total Hilbert space of states is

HT = H ⊕H∗ . (4.80)

It is interesting to ask how do we compute calculations with a system whose

states may belong to H ∩H∗ 6= ∅, and, if so, how do we compute calculations

on such a system? We address this in the next section where we look at time

evolution of expectation values. It turns out that we need to use both H and H†

in calculating the dynamics of expectation values.

To finish this subsection, we point out that if it were not for the
√
|k| term in

the EM field operators, there would be no need to invoke biorthogonal quantum

physics. This term seems to behave as a “Fourier weight” term in the momentum

space representation of the a†sλ(x)’s. Hodgson et al. (2021) and Southall et al.

(2021) studied the same operators in detail except with complex conjugate dy-

namical equations replaced by negative frequencies and the Fourier weight term

set to one. These certainly have their uses; however, we want to transform the

EM operators locally, so we need to include the
√
|k| as the EM field operators
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include the
√
|k|. Also, unlike the free space Hamiltonian, we will use Hamilto-

nians that are not the complex conjugate of themselves, but are bio Hermitian,

so that H 6= H∗ and H† bio = H. We therefore need the complex conjugate

dynamical equations.

4.2.4 The dynamics of the biorthogonal EM field

This section’s primary aim is to describe our biorthogonal system’s dynamics,

which differ from a conventional quantum system and a conventional biorthogonal

system. This will give us the tools required to model more complex scenarios than

free space where we have Hamiltonians that locally alter the EM field operators.

However, we recover the conventional dynamics as a particular case.

In this thesis we use Hamiltonians, that are potentially time-dependent H(t),

that we construct using creation/annihilation operators. In order for our time

evolution operators generated by these Hamiltonians, U(t) as described earlier, to

be unitary we must make sure that when acting on a quantum state, |ψ〉, it will

preserve the state’s normalisation, i.e. bio 〈ψ(t)|ψ(t)〉 = bio 〈ψ|ψ〉. This means

that we require

bio〈ψ|U † bio(t)U(t) |ψ〉 = 1

⇒ U
† bio

(t)U(t) = I d , (4.81)

which is true if

H† bio = H . (4.82)

We therefore work with Hamiltonians of this form, as they will generate unitary

dynamics. Taking the Hermitian conjugate of each side of this equation gives us

Hbio = H†. So we see that the bio of a bio Hermitian Hamiltonian is equal to

its Hermitian conjugate. The free space Hamiltonian Eq. (4.16) is bio Hermitian

and Hermitian; thus, it generates unitary dynamics, with respect to both the

standard inner product and generalised inner product.
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The dynamics of state vectors

In biorthogonal quantum physics, if a state evolves using a Hamiltonain, H, its

associated state evolves using H† (Brody, 2013). Therefore, in our case states in

H evolve using H and states in H∗ evolve using Hbio.

|ψ(t)〉 = U(t) |ψ(0)〉 ,

|ψ(t)〉bio = U
bio

(t) |ψ(0)〉bio . (4.83)

If the Hamiltonian is not Hermitian, then U(t) 6= U
bio

(t). It is therefore important

to differentiate what form of the Hamiltonian generates time dynamics for a

particular state. We say that if a state evolves with respect to H, it belongs to

the Hilbert space of states, H. Whereas, if a state evolves with respect to Hbio,

it belongs to the bio Hilbert space of states, H∗.

For a state with at most one excitation in a mode1, |φ〉, we say that it belongs

to H if it is normalised with respect to to the η inner product Eq. (4.66); and

it belongs to H∗ if it is normalised with respect to the η−1 inner product as

described by Eq. (4.70). For example, the states

|ψ〉 =

∫ ∞
−∞

dx f(x) |1sλ(x)〉 ,

|φ〉 =

∫ ∞
−∞

dx g(x) |1sλ(x)〉bio , (4.84)

are normalised with respect to the η and η−1 inner product, respectively, so long

as ∫ ∞
−∞

dx |f(x)|2 =

∫ ∞
−∞

dx |g(x)|2 = 1 . (4.85)

Clearly, we have |φ〉 ∈ H ⇐⇒ |φ〉bio ∈ H∗. If a general state remains unchanged

by the operator S, so that S(|ψ〉) = |ψ〉), then we say it belongs to the intersection

of H and H∗, H∩H∗. For example, the monochromatic photon states. We explain

why shortly.

With this understanding, a state in H evolves using H, whereas a state in

H∗ evolves using Hbio. It turns out that, when a state and Hermitian operator

1The difficultly in generalising this to a general tensor product state with N excitations

is defining a suitable N . However, this is fine for our purposes as we are interested locally

transforming the EM field operators, which are single excitation operators.
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Figure 4.1: A schematic diagram of a typical biorthogonal system. If a state |ψ〉
evolves with respect to H, where H = H†bio, then it belongs to the Hilbert space

H of states and its bio state |ψ〉bio evolves with respect to Hbio and belongs to

the bio Hilbert space H∗.

are equal to their bio state and bio operator, |ψ〉bio = |ψ〉 and Abio = A, then

calculating the corresponding expectation value using H is indistinguishable to

using Hbio. We refer to states and operators of this form as photonic. We see

this in the following theorem:

Theorem 4.2.1. If a Hamiltonian is bio Hermitian but not Hermitian, so that

for its corresponding time evolution operator U(t) 6= U
bio

(t), whereas an operator,

A, is both Hermitian and bio Hermitian, A = A† = Abio, and a state, |ψ〉, is equal

to its bio state, so |ψ〉 = |ψ〉bio, then 〈A |ψ(t)〉 , |ψ(t)〉〉bio = 〈A|ψ(t)〉bio, |ψ(t)〉bio〉
bio

where |ψ(t)〉 = U(t) |ψ〉.

Proof.

〈A |ψ(t)〉 , |ψ(t)〉〉bio = 〈ψ|U † bio(t)AU(t) |ψ〉
= (〈ψ|U † bio

(t)AU(t) |ψ〉)†

= 〈ψ|U †(t)AU bio
(t) |ψ〉

= 〈A |ψ(t)〉bio, |ψ(t)〉bio〉
bio
. (4.86)
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Figure 4.2: A schematic diagram of our EM Hilbert space. In contrast to the

previous figure, we have here that the intersection between the Hilbert space of

states and its bio space of states is non-empty and contains photonic excitations.

Shown above are the single excitation building blocks of H∗, H ∩H∗ and H.

In the second line we have used the property that A has real expectation values

being bio Hermitian and with this value being a scalar it is therefore equal to

its Hermitian conjugate. In the third line we have used the property that A is

Hermitian. �

This theorem is why we say H ∩H∗ contains states satisfying |ψ〉bio = |ψ〉.
When we take into account that c photons evolve to the complex conjugate

Schrödinger equation, we find that the time evolution of local states is

|1sλ(x, t)〉 = Ub(t) |1sλ(x)〉b + U∗c (t) |1sλ(x)〉c ,

|1sλ(x, t)〉bio = U bio
b (t) |1sλ(x)〉b + U∗bioc (t) |1sλ(x)〉c . (4.87)

We will need to take this into account if we work with Hamiltonians, H, such

that H∗ 6= H or H† 6= H.
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To understand other cases, i.e. where A is bio Hermitian but not Hermitian,

we have to look at how operators evolve.

The dynamics of operators

To work out what dynamical equation states evolve according to, we looked at

what subspace contained them. Similarly, to determine what dynamical equation

operators evolve according to, we look at what subspace they act on. This is

perhaps easier to see in our quantised EM field, where we construct our states by

acting creation operators on the vacuum state. For example, as a†sλ(x) |0〉 evolves

using H in the Schrödinger picture, then its corresponding creation and anni-

hilation operators, a†sλ(x) and abiosλ (x), should evolve using H in the Heisenberg

picture. Likewise, as a†biosλ (x) |0〉 evolves using Hbio in the Schrödinger picture,

its corresponding creation and annihilation operators should evolve using Hbio in

the Heisenberg picture.

Suppose we consider an operator of the form

A =
∑
i

Ai , (4.88)

where each Ai either maps states from the Hilbert space to itself, from the bio

Hilbert space to itself, or from the intersection of the two spaces to itself, i.e.

Ai : H → H, Ai : H∗ → H∗ or Ai : H∗ ∩H → H∗ ∩H, respectively. As always,

we assert that expectation values in the Heisenberg picture must be equal to

expectation values in the Schrödinger picture and so an expectation value 〈A〉|ψ(t)〉

will only be valid if |ψ(t)〉 and Ai evolve using the same form of the Hamiltonian.

With this we can define how to calculate time dependent expectation values

〈A〉|ψ(t)〉 with system Hamiltonian H and initial photonic state |ψ(0)〉.
If Ai maps states from H to H we use H to generate its dynamics, which

gives the Heisenberg equation

d

dt
Ai(t) = − i

~
[Ai(t), Hb] +

i

~
[Ai(t), H

∗
c ] . (4.89)

Whereas, if it maps states from H∗ to H∗ we use Hbio to generate its dynamics,

which gives the Heisenberg equation

d

dt
Ai(t) = − i

~
[
Ai(t), H

bio
b

]
+
i

~
[
Ai(t), H

bio ∗
c

]
. (4.90)
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This means that the local Fock operators, abiosλ (x) and a†sλ(x), evolve according to

Eq. (4.89), and the bio local Fock operators, asλ(x) and a†biosλ (x), evolve according

to Eq. (4.90). If Ai maps states from H∗ ∩H to H∗ ∩H then from the theorem

above, you can use either if the state it acts on also evolves using the same form

of the Hamiltonian.

Furthermore, what this also means is that for certain expectation values we

may also need to use H and Hbio in our calculations. For example, suppose we

have a photonic state, |ψ〉, and the Hermitian operator A = asλ(x)+a†sλ(x). Here

we have

〈A〉|ψ(t)〉 = 〈ψ(t)|asλ(x)|ψ(t)〉+ 〈ψ(t)|a†sλ(x)|ψ(t)〉

= 〈ψ|U †(t, 0)asλ(x)U
bio

(t, 0)|ψ〉+ 〈ψ|U †bio(t, 0)a†sλ(x)U(t, 0)|ψ〉 .

What this means is that Hermitian, but not bio Hermitian, operators can give

real expectation values with respect to photonic states. For example, the quantity

U
†bio

(t, 0)a†sλ(x)U(t, 0) + U
†
(t, 0)asλ(x)U

bio
(t, 0) , (4.91)

is Hermitian for all t. This only works for photonic states and does not apply to

local or bio local states as in that case the Heisenberg and Schrödinger pictures

would not be consistent.

Suppose we have an operator

B =
∏
i

Bi , (4.92)

where each Bi is of the form described by Eq. (4.88). We say that the time

dependence of this B operator is

B(t) =
∏
i

Bi(t) . (4.93)

To the best of our knowledge, there is nothing in the literature concerning

mathematical structures of the form in Fig. 4.2, where we have a biorthogonal

system with a non-zero intersection between its Hilbert space and bio or dual

Hilbert space so that we need both H and H† to calculate the dynamics of

expectation values. To be sure, just because there is nothing in the literature
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4.3 Addressing the locality no-go theorems in QFT

does not mean that such a system can exist. Conversely, it also does not mean

that it cannot exist. In any case, in the next chapter, we show that if one follows

the rules set out in this chapter, one can use the local and bio local bosonic

Fock operators to construct mirror Hamiltonians that affect the EM field only at

strictly local points.

4.3 Addressing the locality no-go theorems in

QFT

One can find various detailed discussions of particle localisation in quantum field

theory, particularly on the non-localisation of monochromatic photons, through-

out the literature (Bialynicki-Birula, 1996; Halvorson & Clifton, 2002; Keller,

2005; Knight, 1961; Lamb, 1995; Newton & Wigner, 1949). We are not trying to

localise monochromatic photons. What we have done is constructed two pairs of

local bosonic Fock operators[
abiosλ (x), a†sλ(x)

]
= δ(x− x′) ,[

asλ(x), a† biosλ (x)
]

= δ(x− x′) . (4.94)

As far as we know, Titulaer & Glauber (1966) were the first to study local op-

erators of the EM field, and these operators have since received much attention

in the literature (Bialynicki-Birula, 1996; Chan et al., 2002; Sipe, 1995; Smith

& Raymer, 2007). For example, Smith & Raymer (2007) introduced dual oper-

ators and adjusted their Hilbert space’s inner product so that their wave-packet

modes are orthonormal. However, their Hamiltonian that governs dynamics has

its eigenvalues bounded from below, so their wave packets cannot remain strictly

local throughout all time (Hegerfeldt, 1974, 1998a,b), which is what we want.

They also construct their wave-packet modes out of photonic modes that propa-

gate in all directions in a 3-D system and so do not have the property Eq. (4.3).

These wave-packet modes certainly have their merits, however, and for a recent

review see Raymer & Walmsley (2020).
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4.4 Summary

Using the above commutators, the inner product between a local state at x

and a local state at x′, evolving in free space is

〈U free |1sλ(x′)〉 , U free |1sλ(x)〉〉bio = 〈|1sλ(x′ − sct)〉 , |1sλ(x− sct)〉〉bio

= δ(x− x′) , (4.95)

so we see that states remain local throughout time evolution in the sense that

they remain pairwise orthogonal. Therefore, we comment that these operators

do not violate the following QFT locality no-go theorems: Knight’s theorem,

Malament’s theorem, and Hegerfeldt’s theorem (Hegerfeldt, 1998a; Knight, 1961;

Malament, 1996). Knight’s theorem asserts that a state, |ψ〉 cannot be strictly

local if it contains a finite number of the system’s harmonic oscillator Hamiltonian

eigenstates, as described by de Bièvre (2006); Hawton & Debierre (2017). We do

not have that here as a†sλ(x) |0〉 currently contains all b†sλ(k) and c†sλ(k) in the

range k ∈ (0,∞). A condition for both Malament’s and Hegerfeldt’s theorem

is that all states evolve according to the Schrödinger equation and the system’s

Hamiltonian eigenvalues are bounded from below. Our local states comprise

photon states that evolve according to the Schrödinger equation and states that

evolve according to the complex conjugate Schrödinger equation and so do not

satisfy the Hegerfeldt or Malament theorems conditions.

4.4 Summary

• We represented the EM field in terms of local bosonic operators, which we

did by introducing the c photon operators that evolve according to the com-

plex conjugate Heisenberg equation. Introduction of the c photons ensured

that we did not violate the Hegerfeldt and Malament theorems.

• Due to Eq. (4.38), both the b and c photons have positive energy expectation

values.

• We generalised the inner product on our Hilbert space with the help of

biorthogonal quantum physics, so that the photon, local and bio-local Fock

states are now all pairwise orthonormal, respectively. This means that the
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4.4 Summary

transformations between these states in Eq. (4.32) is now unitary. This is a

new result and is important so that we can construct locally acting mirror

Hamiltonians with exactly solvable dynamics, as we will see in the next

section.

• We described how different states and operators evolved using H, Hbio, or

either. In particular, from theorem 4.2.1 a photonic state may evolve using

H or Hbio, the operator a†sλ(x) evolves using H and the operator asλ(x)

evolves using Hbio. This new result has implications when we look at how

the electric field expectation value of a EM field coherent state evolves near

locally acting mirror Hamiltonian.
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Chapter 5

Modelling light scattering

experiments with local bosonic

operators

This chapter begins by looking at exactly solvable bosonic systems where the

Hamiltonians of interest are coupling Hamiltonians between different bosonic

modes. Building on these Hamiltonians, we construct locally acting Hamilto-

nians that couple between different local bosonic modes and exactly solve the

dynamics of a local operator in the presence of such a Hamiltonian. Following

this, we use an interaction picture to show how we can examine the scattering

dynamics of monochromatic photons. Next, we construct mirror systems that

reproduce the classical behaviour of light in free space near a mirror. Mirrors

are a popular topic in the literature as they are often used in optical experi-

ments (Agarwal, 1975; Carniglia & Mandel, 1971; Dawson et al., 2020). What

is new in our approach is that we construct locally acting mirror Hamiltonians

with exactly solvable dynamics that distinguishes between incoming and outgo-

ing wave-packets. Finally, we show that the electric field expectation values of

EM field coherent states in the presence of a mirror reproduce the appropriate

dynamics of a classical sinusoidal electric wave near a mirror.
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5.1 Exactly solvable bosonic quantum systems

5.1 Exactly solvable bosonic quantum systems

In this section, we reverse engineer the question: “How does a Hamiltonian, H(t),

evolve an operator A?” and ask instead “If an operator evolves as A(t), then what

must the systems Hamiltonian be?”. This question is helpful to ask since we often

know what we want our outcome to be in physics or that we know from classical

physics how expectation values should evolve. For example, for a wave packet

travelling towards a mirror, we might want the outcome to be a wave packet

travelling away from the mirror. In this case, if we can deduce the Hamiltonian

from the outcome, we can construct that Hamiltonian and apply it to our system.

Suppose we want a coupling Hamiltonian for N modes that gives the following

operator transformation:

A†(t) =
1

(
∑N

j=1 fj(t)
2)

1
2

N∑
i=1

eiφifi(t)a
†
i . (5.1)

Here the f(t)i’s are any real differentiable functions, there is no T such that

fi(T )=0 for all i, and [ai, a
†
j] = δij. We have [A(t), A†(t)] = 1. The same A†(t)

can be given by different fi(t)’s, i.e. the fi(t)’s are not unique. For example,

comparing the 2-mode case f1(t) = cos(t), f2(t) = sin(t) with f1(t) = 1, f2(t) =

tan(t), both with φ1 = φ2 = 0, we find that both lead to

A†(t) = cos(t)a†1 + sin(t)a†2 . (5.2)

The Hamiltonian that satisfies Heisenberg’s equation of motion here is

H(t) =
i~∑N

j=1 (fj(t)
2)

N∑
k=1

N∑
m>k

(
ei(φk−φm)(fk(t)ḟm(t)− ḟk(t)fm(t))a†kam

)
+H.c. ,

(5.3)

where the dot notation denotes the derivative with respect to time. This is so,

because in this case we have

d

dt
A†(t) =

1(∑N
j=1 fj(t)

2
) 3

2

N∑
i=1

N∑
k=1

fk(t)
(
ḟi(t)fk(t)− fi(t)ḟk(t)

)
eiφia†i

= − i
~

[A†(t), H(t)] . (5.4)
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5.2 Modelling scattering experiments with locally acting interaction
Hamiltonians

Here we are applying a time-dependent coupling between each mode so that the

maximum number of terms in (5.3) is N(N + 1)/2. The above transformation is

a novel result.

Suppose we want to know how the initial operator A†(0) = a†1 evolves under

the Hamiltonian

H(t) = i~g(t)(eiφa†1a2 − e−iφa†2a1) , (5.5)

where g(t) is any integrable and continuous function. One can then show that

the operator

A†(t) = cos

(∫ t

0

g(t′)dt′ + c1

)
a†1 + e−iφsin

(∫ t

0

g(t′)dt′ + c1

)
a†2 , (5.6)

where c1 = arctan(b2/b1), satisfies Heisenberg’s equation. Suppose g(t) has dis-

continuities, but is still integrable. Let {tdi }, where ti < ti+1, be the set of the

times at which it is discontinuous. Then the relevant A†(t) is

A†(t) = cos (G(t)) a†1 + e−iφsin (G(t)) a†2 . (5.7)

Here G(t) is

G(t) =

{∫ t
0
g(t′)dt′ + c0, if 0 < t ≤ td1∫ t

tdj
g(t′)dt′ + cj, if tdj < t ≤ tdj+1

(5.8)

with cj = G(tdj ) and tdj+1 =∞ if it does not exist.

5.2 Modelling scattering experiments with lo-

cally acting interaction Hamiltonians

We now construct a system that locally transforms the free space E and B field

operators from left moving to right moving, anywhere on the x-axis. To do so,

we take the free space Hamiltonian and add a locally acting static Hamiltonian,

Hloc(x). While the free space Hamiltonian term propagates wave packets at the

speed of light, the interaction Hamiltonian will couple local modes at x, with

s = 1, to local modes at −x, with s = −1 where λ remains the same, subject to

a local potential Ω(x)1. When the interaction term represents a mirror at x = 0,

1Instead of coupling x to −x we could couple x to −x + r where r is a real constant.

However, it is unnecessary for this thesis.
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5.2 Modelling scattering experiments with locally acting interaction
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the local potential will be non-zero only when x is close to 0. We define Hloc(x)

by

Hloc(x) =
∑
λ

∫ ∞
−∞

dx i~Ω(x)
[
eiφ a†−1λ(−x)abio

1λ (x)− e−iφ a†1λ(x)abio
−1λ(−x)

]
.

(5.9)

Here Ω(x) is a locally integrable function, φ is a free parameter that determines

what phase factor modes accumulates during this interaction.

This Hamiltonian is bio Hermitian, but not Hermitian. Its Hermitian conju-

gate, with φ = −π
2

for simplicity, is

H†loc(x) =
∑
λ

∫ ∞
−∞

dx ~Ω(x)
[
a† bio

1λ (x) a−1λ(−x)− a† bio
−1λ(−x)a1λ(x)

]
. (5.10)

The local mode operators have become bio mode operators and vice-versa. To

show that Eq. (5.10) is not equal to Eq. (5.9), we calculate the commutator of

each with b−1(k1), followed by the commutator of each result with b†1(k2) where

k1 6= k2. The two results are not the same. Using Eq. (4.24), we find[
[b−1(k1), Hloc(x)] , b†1(k2)

]
=

1

2π

√
|k1|√
|k2|

∫ ∞
−∞

dxΩ(x)e−ix(k1−k2) . (5.11)

We repeat this except with Hloc(x) replaced by H†int(x) to find[[
b−1(k1), H†loc(x)

]
, b†1(k2)

]
=

1

2π

√
|k2|√
|k1|

∫ ∞
−∞

dxΩ(x)e−ix(k1−k2) . (5.12)

Therefore, the equality H†loc(x) = Hint(x) requires

|k1| = |k2| , (5.13)

which gives us a contradiction as k1 6= k2. So we can confidently say that we have

a non-Hermitian Hamiltonian that gives us exact dynamics here.

However, as Eq. (5.9) is bio-Hermitian, it generates unitary dynamics with

respect to the generalised inner product. Calculating the dynamics of local cre-

ation operators under the above Hamiltonian is straightforward since the true

Hermitian conjugate of a†sλ(x) with respect to the generalised inner product is
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5.2 Modelling scattering experiments with locally acting interaction
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abio
sλ (x) and not asλ(x). It is the former that is in the above Hamiltonian and not

the latter.

The same Hamiltonian except where † denotes the true Hermitian conjugate

with respect to the generalised inner product, so that the Hermitian conjugate of

an operator A is A† such that 〈|ψ〉 , A† |φ〉〉bio
= 〈A |ψ〉 , |φ〉〉bio, is

Hloc(x) =
∑
λ

∫ ∞
−∞

dx i~Ω(x)
[
eiφ a†−1λ(−x)a1λ(x)− e−iφ a†1λ(x)a−1λ(−x)

]
.

(5.14)

So, with respect to the generalised inner product, we have

[asλ(x), a†s′λ′(x
′)] = δss′δλλ′δ(x− x′) . (5.15)

However, to be consistent we reserve † to denote the conventional Hermitian

adjoint.

Our total Hamiltonian is the sum of the free space Hamiltonian and theHloc(x)

Hamiltonian above:

H = Hfree +Hint(x) . (5.16)

We can calculate the dynamics of local state initially at x0, polarisation λ and

propagating in the s = 1 direction, |11λ(x0)〉, with respect to this Hamiltonian.

Using Eq. (4.20), the full time dependent solution, with no approximations, is

U(t) |11λ(x0)〉 = cos (Θ(x0, t)) |11λ(x0 + ct)〉

+sin (Θ(x0, t)) |1−1λ(−(x0 + ct), φ)〉 , (5.17)

where

Θ(x0, t) =

∫ t

0

Ω(x0 + ct′)dt′ , (5.18)

and

|1sλ(x, φ)〉 =

∫ ∞
0

dk

√
|k|
2π

e−iskxeiφ b†sλ(k) |0〉+

∫ ∞
0

dk

√
|k|
2π

eiskxe−iφ c†sλ(k) |0〉 .

(5.19)

The bio of this state is

U
bio

(t) |11λ(x0)〉bio = cos (Θ(x0, t)) |11λ(x0 + ct)〉bio

+sin (Θ(x0, t)) |1−1λ(−(x0 + ct), φ)〉bio . (5.20)
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The φ in the second line represents the eiφ and e−iφ phases that the b and c

modes have accumulated respectively. Therefore, the interaction above transfers

the same real phase to real E and B field expectation values produced separately

by b and c photon coherent states. Intuitively, this makes sense as the c photons

are the “complex conjugate” b photons. The same solution can be obtained using

negative frequencies but there φ has to be restricted to 0 or π as eiπ = e−iπ. We

explain why shortly.

As we have solved the Schrödinger equation for local states in the presence of

a local coupling Hamiltonian, we have an exact description of their dynamics in

this system. Dependent on what the coupling Ω(x) is we can faithfully transfer

a s = 1 local state, initially at x = x0, into a s = −1 state at a time t if∫ t
0

Ω(x0 + ct′)dt′ = π/2 + nπ where n ∈ Z. We utilise this in the next section.

Last, we solved the dynamics of single excitation local and bio local states as

an example to motivate the strictly local properties of the local coupling Hamil-

tonian in Eq. (5.9). Even if we have no local states in an EM field calculation,

we still have a local operator, a†sλ(x), and a bio local operator, abio
sλ (x), in the EM

field operators. If we were to construct wave packets using the local modes, such

as |ψ〉 = A†sλ |0〉 where

A†sλ =

∫ ∞
−∞

dxf(x)a†sλ(x) , (5.21)

we immediately know how it transforms in the presence of Eq. (5.9) since we

know how each a†sλ(x) transforms. For example,

|ψ(t)〉 =

∫ ∞
−∞

dxf(x) |11λ(x, t)〉 , (5.22)

where |11λ(x, t)〉 is given by Eq. (5.17).

5.2.1 The interaction on photons and scattering operator

We can also solve exact dynamics for an initial single monochromatic photon

state, |ψ(0)〉 = |11λ(k0)〉a. As the monochromatic photon is a fully non-local

state, but the Hamiltonian is locally acting, this transformation will couple k
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modes to k′ where k 6= k′. Using equation (4.32), we have

|ψ(t)〉 =

∫ ∞
−∞

dx
1√

2π|k|
eikxU(t) |11λ(x0)〉

=

∫ ∞
−∞

dx
1√

2π|k|
eikx
(

cos (Θ(x0, t)) |11λ(x0 + ct)〉

+sin (Θ(x0, t)) |1−1λ(−(x0 + ct), φ)〉
)
. (5.23)

However, as mentioned previously, photons can evolve with respect to H or Hbio

– which one it is will depend on the other operators within the states of the inner

product that you are calculating. As shown in theorem 4.2.1, if all these operators

are photonic then for expectation values it does not matter.

From equation (5.23), it is clear that photons undergoing a transformation due

to the local Hamiltonian are now not photonic as |ψ(t)〉 6= |ψ(t)〉bio. However,

we ask the question “Can we make the whole of the monochromatic photon

experience the local transformation, so that the overall transformation is non-

local?”. To answer this question we go into an interaction picture with respect

to the free space Hamiltonian.

The interaction picture

Our mirror system Hamiltonian is of the form

H = Hfree +Hloc(x) . (5.24)

We define the state vector in the interaction picture as

|ψI(t)〉 = U
† bio

free (t) |ψ(t)〉 , (5.25)

where |ψI(t)〉 and |ψ(t)〉 denote the state vectors of wave packets in the interac-

tion and in the Schrödinger picture, respectively. Using this definition, one can

show that |ψI(t)〉 evolves with the usual Schrödinger equation with respect to the

potentially time-dependent interaction Hamiltonian, HI(x, t),

d

dt
|ψI(t)〉 = − i

~
HI b(x, t) |ψI(t)〉b +

i

~
H∗I c(x, t) |ψI(t)〉c . (5.26)
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where

HI(x, t) = U
† bio

free (t)Hloc(x)U free(t) . (5.27)

The solution to this equation, where the state is initially equal to |ψI(0)〉, is

|ψI(t)〉 = U I(t)|ψI(0)〉 , (5.28)

where U I(t) is the interaction picture time evolution operator

U I(t) = T

[
exp

(
− i
~

∫ t

0

dt′HI b(x, t
′)

)
× exp

(
− i
~

∫ t

0

dt′H∗I c(x, t
′)

)]
, (5.29)

and T indicates that the exponential is time ordered. This is because in general

an interaction Hamiltonian does not commute with itself at different times, i.e.

[HI(x, t), HI(x, t
′)] 6= 0. However, in this thesis we have [HI(x, t), HI(x, t

′)] = 0

and so for simplicity will drop the time ordering symbol.

In this thesis, we wish to represent states by operators acting on the vacuum

state, for example |ψI(t)〉 = A†I(t) |0〉, so we need to expand on equation (5.28)

where |ψI(0)〉 = A†I(0) |0〉. We find

|ψI(t)〉 = U I(t)|ψI(0)〉

= A†I(t) |0〉 , (5.30)

whereA†I(t) = U I(t)A
†
I(0)U

† bio

I (t). Here we have used the fact that 1 = U
† bio

I (t)U I(t)

and that HI(x, t) annihilates the vaccum. From this we also find

d

dt
|ψI(t)〉 =

dA†I(t)

dt
|0〉

=

(
i

~
[A†I(t), HI,b(x, t)]−

i

~
[A†I(t), H

∗
I c(x, t)]

)
|0〉 . (5.31)

To go back into the Schrödinger picture we use

|ψ(t)〉 = U free(t) |ψI(t)〉

= A†S(t) |0〉 , (5.32)

where A†(t) = U free(t)A
†
I(t)U

†bio

free (t).
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Monochromatic photon transformation in the interaction picture

Using equation (5.27) to take Hloc(x) in (5.9) into the interaction picture with

respect to the free space Hamiltonian Hfree yields

HI(x, t) =
∑
λ

∫ ∞
−∞

dx~Ω(x+ ct) i(eiφa†−1λ(−x)abio
1λ (x)− e−iφa†1λ(x)abio

−1λ(−x)) .

(5.33)

This looks a lot like the Hloc(x) in Eq. (5.9), except now the potential Ω(x) is

moving at the speed of light.

The interaction picture scattering operator is

SI = exp

[
− i
~

∫ ∞
−∞

dtHI(x, t)b

]
× exp

[
i

~

∫ ∞
−∞

dtH∗I(x, t)c

]
. (5.34)

The first part on the R.H.S. is the familiar scattering operator. However, we have

the addition of the second term because the c monochromatic photons evolve

with respect to a different dynamical equation to the b monochromatic photons.

We calculate the interaction picture scattering operator, and not the Schrödinger

picture scattering operator, as in this picture we can visualise the t = ±∞ integral

limits in (5.34) moving the local potential along the whole x-axis. We keep

the scattering operator name by convention. However, it is not a scattering

operator in the usual sense when calculating its effect on monochromatic photons.

The usual sense being that if we go back and forward far enough in time, the

Hamiltonian will have “turned off”. As the photons exist across the whole x-axis,

this will never happen. Indeed, we only get a non-local transformation by strictly

using the limits t = ±∞. However, if our initial states were local states, we could

think of the scattering operator in the usual sense.

Substituting (5.33) into (5.34) we find

SI = exp

[∑
λ

∫ ∞
0

dkΩx(e
iφb†−1λ(k)b1λ(k) + e−iφc†−1λ(k)c1λ(k)−H.c.)

]
, (5.35)

where Ωx = 1
c

∫∞
−∞ dxΩ(x), i.e. it is a constant for a given Ω(x) that is integrable

across the whole x-axis. To calculate the effects of this scattering operator, we

introduce an effective Hamiltonian, Heff , and time interval, (0, teff), such that its

corresponding time evolution operator is equal to the scattering operator above.
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However, we stress that the only information we can infer from this effective

Hamiltonian is the effect of the scattering operator and not any exact dynamics.

For simplicity, we choose our effective Hamiltonian to be

Heff =
∑
λ

i~
∫ ∞

0

dkΩx((e
iφb†−1λ(k)b1λ(k)−H.c.) + (e−iφc†−1λ(k)c1λ(k)−H.c.)) ,

(5.36)

and the effective time interval to be (0, 1). Clearly, the time evolution opera-

tor corresponding to this Hamiltonian is equal to the scattering operator above,

Ueff(0, 1) = SI where Ueff(0, 1) is generated by the standard Schrödinger equation.

This means we also only need to use one equation of motion for this effective

Hamiltonian, as the crux is Ueff(0, 1) = SI here.

We point out that this effective Hamiltonian is Hermitian, whereas the lo-

cally acting Hamiltonian that gives exact dynamics is not Hermitian (but is bio

Hermitian). Indeed, infinitely many effective Hermitian Hamiltonians give the

same scattering operator and infinitely many effective bio Hermitian, but not

Hermitian, Hamiltonians that give the same scattering operator. For example,

instead of using HI(x, t) in the scattering operator, we could have easily just used

Hbio
I (x, t) as they give the same scattering transformation. This is good because

the goal here is to provide a non-local transformation between photons, so we

need the scattering operator to be unitary with resepct to the conventional inner

product.

Suppose we have initial states |11λ(k)〉b and |11λ(k)〉c. The effect of the above

scattering operator above on these states is

SI |11λ(k)〉b = Ueff(0, 1)b†1λ(k)U †eff(0, 1) |0〉

= cos(Ωx) |11λ(k)〉+ eiφ sin(Ωx) |1−1λ(k)〉 .

SI |11λ(k)〉c = Ueff(0, 1)c†1λ(k)U †eff(0, 1) |0〉

= cos(Ωx) |11λ(k)〉+ e−iφ sin(Ωx) |1−1λ(k)〉 . (5.37)

From this we see that the s = 1 photon will have made a full transfer to an

s = −1 photon if Ωx = π
2

+ nπ where n ∈ Z.

However, in this case the scattering operator does not distinguish between

incoming and outgoing local states. If we want this distinction, and to calculate
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5.3 Using the concept of negative frequencies only is not enough

exact dynamics, we calculate the effect of the time evolution operator generated

by the Hamiltonian in Eq. (5.16).

Finally, as the effective Hamiltonian commutes with the energy observable

Eq. (4.38), i.e. [Heff , Eeng] = 0, and we have that this interaction Hamiltonian

conserves energy.

5.3 Using the concept of negative frequencies

only is not enough

Suppose we take the same locally acting Hamiltonian in Eq. (5.9) except with

the operators, Asλ and A†sλ(x), defined as in Eq. (4.50) in section 4.2.2

Hneg
loc (x) =

∑
λ

∫ ∞
−∞

dx i~Ω(x)
[
eiφA†−1λ(−x)A1λ(x)− e−iφA†1λ(x)A−1λ(−x)

]
.

(5.38)

Then, using Eq. (4.48), we define the total Hamiltonian to be

H = Hneg
free +Hneg

loc (x) . (5.39)

The time evolution of the state A†1λ(x0) |0〉 under the above Hamiltonian with

φ = 0 is

U(t)A†1λ(x0) |0〉 = cos (Θ(x0, t))A
†
1λ(x+ ct) |0〉

+sin (Θ(x0, t))A
†
−1λ(−(x+ ct)) |0〉 . (5.40)

We state this as this was a key result in Southall et al. (2021), as we had re-

produced the classical mirror image effect for the A†1λ(x0) |0〉 states with exactly

solvable dynamics. This novel result did not require biorthogonal quantum me-

chanics and used the conventional Schrödinger equation.

Suppose we then take this Hamiltonian into the interaction picture with re-

spect to the free space Hamiltonian in Eq. (4.48), it becomes

HI(x, t) =
∑
λ

∫ ∞
−∞

dx~Ω(x+ ct) i(eiφA†−1λ(−x)A1λ(x)− e−iφA†1λ(x)A−1λ(−x)) .

(5.41)
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5.3 Using the concept of negative frequencies only is not enough

When we calculate the scattering operator corresponding to this interaction Hamil-

tonian we find

SI = exp

[∑
λ

∫ ∞
−∞

dkΩx(e
iφb†−1λ(k)b1λ(k)−H.c.)

]
. (5.42)

This scattering operator is equal to the effective time evolution operator U(0, 1)

with the effective Hamiltonian

Heff =
∑
λ

i~
∫ ∞
−∞

dkΩx(e
iφb†−1λ(k)b1λ(k)−H.c.). (5.43)

Look familiar? It should, we followed the same method we used to calculate the

effective Hamiltonian in Eq. (5.36), which was the effective Hamiltonian we used

that corresponded to the scattering operator of Eq. (5.33).

Now, this effective Hamiltonian still looks like a trivial coupling Hamiltonian

that only couples between modes of the same energy and so it is tempting to think

that this must preserve energy. When we examine the effect of the scattering

operator on a photon which is an energy eigenstate we find

SI |11λ(k)〉 = Ueff(0, 1)b†1λ(k)U †eff(0, 1) |0〉

= cos(Ωx) |11λ(k)〉+ eiφ sin(Ωx) |1−1λ(k)〉 ,

SI |11λ(−k)〉 = Ueff(0, 1)b†1λ(−k)U †eff(0, 1) |0〉

= cos(Ωx) |11λ(−k)〉+ eiφ sin(Ωx) |1−1λ(−k)〉 , (5.44)

which looks a lot like the bsλ(k) and csλ(k) scattering transformations in Eq. (5.37).

The exception being that the negative frequency states accumulate the same

phase, eiφ, as the positive frequency states upon reflection, whereas the c photon

states accumulate the complex conjugate phase, e−iφ. The former property is

problematic as it allows for energy to not be conserved. To show this, we cal-

culate the commutator between the effective Hamiltonian Eq. (5.43) and energy

operator Eq. (4.53) because if this is non-zero then

U(0, 1)HengU(0, 1) 6= Heng , (5.45)

so that energy is not conserved. Our energy observable now includes the double

annihilation and creation terms bsλ(k)bsλ(−k) + H.c. It is the commutation re-

lationship with these operators that we turn our attention to. Calculating this
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5.3 Using the concept of negative frequencies only is not enough

directly, and setting ~ = c = Ωx = 1 and r = 0 for convenience, we find

[Heng , Heff ] = 2 cos
(
φ+

π

2

)∫ ∞
−∞

dk|k| b1λ(k)b−1λ(−k) +H.c. , (5.46)

where it is only the double creation and annihilation operator terms in the energy

Hamiltonian that contribute to the non-zero terms in the above commutator. This

commutator is zero if φ = nπ where n ∈ Z, which corresponds to eiφ being real.

With this choice of φ = nπ, the c and negative frequency monochromatic photons

both gain the same real phase upon reflection. However, in general φ ∈ R.

To see this non-energy preserving property in action, we set φ = 3π
2

and

examine the change in electric fields of the single mode coherent states |α1λ(k0)〉
and |−α∗1λ(−k0)〉 and the tensor product state |α1λ(k0)〉 |−α∗1λ(−k0)〉 where α =

|α|eiθ. Setting c
2

√
~c
εAπ

√
|k0||α| = 1 for convenience, the free space electric field

expectation values of these states are

〈α1λ(k
′
0)|E(x, t)|α1λ(k0)〉 = δ(k0 − k′0) cos(k0x− k0ct+ θ)Eλ ,

〈−α∗1λ(−k′0)|E(x, t)| − α∗1λ(−k0)〉 = δ(k0 − k′0) cos(−k0x+ k0ct− θ + π)Eλ ,

= −〈α1λ(k
′
0)|E(x, t)|α1λ(k0)〉 , (5.47)

and

〈α1λ(k
′
0)| 〈−α∗1λ(−k′0)|E(x, t) |α1λ(k0)〉 |−α∗1λ(−k0)〉 = 0 , (5.48)

where the time evolution is due the free space Hamiltonian only so that E(x, t) =

U †free(t)E(x)U(t) with H in Eq. (4.48). A similar story holds for the mag-

netic field also, the magnetic field expectation value of the tensor product state

|α1λ(k0)〉 |−α∗1λ(−k0)〉 is zero etc. This means that the energy expectation value

of this state is 0, as it should be. However, setting φ = 3π
2

in (5.43) and denoting

|ψ〉S = SI |ψ〉 we find that

〈α1λ(k
′
0)|SE(x, t)|α1λ(k0)〉S = δ(k0 − k′0) cos(−k0x− k0ct+ θ +

π

2
)Eλ ,

〈−α∗1λ(−k′0)|SE(x, t)| − α∗1λ(−k0)〉S = δ(k0 − k′0) cos(k0x+ k0ct− θ + π +
π

2
)Eλ ,

= 〈α1λ(k
′
0)|SE(x, t)|α1λ(k0)〉S . (5.49)

This means that

〈α1λ(k
′
0)|S 〈−α∗1λ(−k′0)|S E(x, t) |α1λ(k0)〉S |−α∗1λ(−k0)〉S

= 2 〈α1λ(k
′
0)|SE(x, t)|α1λ(k0)〉S 6= 0 , (5.50)
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5.4 The electric field near two-sided semi-transparent mirrors

and a similar story holds for the magnetic field. We therefore do not have energy

conservation. But we should expect this as the energy and scattering operators

do not commute with each other. However, we do have energy conservation here

if eiφ ∈ R. This is why we use the complex conjugate Schrödinger and Heisenberg

equations, to account for mirror Hamiltonians where it is possible for reflected or

transmitted waves to obtain a phase φ that need not be 0 or π.

5.4 The electric field near two-sided semi-transparent

mirrors

In this section, we give a concrete application of the theory presented in this

thesis. We ask the question; “How does the electric field behave in the presence

of a localised mirror?”. Suppose that, before introducing the mirror, our E-field is

a collection of classical sinusoidal frequencies that are polarised in the λ direction,

travelling in the positive x direction, and have the same phase Θ

E(x, t) =

∫ ∞
0

dkg(k) cos(k(x− sct) + Θ)eλ , (5.51)

where g(k) is a real function. To model this scenario, we shall use coherent states

of the EM field described in Section 3.2:

|αksλ〉b = exp

(
−1

2

∫ ∞
0

dk|αk|2
)

exp

(∫ ∞
0

dk αkb†sλ(k)

)
|0〉 , (5.52)

because if we set

αk =
g(k)

2Amp
√
k
eiΘ , (5.53)

we have

〈E(x, t)〉|αksλ〉b =

∫ ∞
0

dkg(k) cos(k(x− sct) + Θ)eλ . (5.54)

with φ = 0 in the EM field operators. Additionally, this expectation value has

minimum uncertainty.

Furthermore, we could also use the c photon coherent state

|αksλ〉 = exp

(
−1

2

∫ ∞
0

dk|αk|2
)

exp

(∫ ∞
0

dk αkc†sλ(k)

)
|0〉 , (5.55)
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5.4 The electric field near two-sided semi-transparent mirrors

because if, in this case, we set

αk =
g(k)

2Amp
√
k
e−iΘ , (5.56)

with g(k) = g(−k), then we have

〈E(x, t)〉|αksλ〉c =

∫ ∞
0

dkg(k) cos(k(x− sct) + Θ)eλ . (5.57)

For the mirror Hamiltonian itself, we start with a toy model given by the local

Hamiltonian given earlier in equation (5.9) with φ = 0 for simplicity.

Hloc(x) =
∑
λ

∫ ∞
−∞

dx i~Ω(x)
[
a†−1λ(−x)abio

1λ (x)− a†1λ(x)abio
−1λ(−x)

]
. (5.58)

For now there is no need to fix Ω(x) so we leave it general until later as this helps

for explanation purposes. We do not discuss the origin of this Hamiltonian much;

for example, if it derives from an atom-field interaction, etc.

We introduce our mirror Hamiltonian so that our total system Hamiltonian is

Hsys = Hfree +Hloc(x) . (5.59)

We can use this to reproduce the classical mirror image method, but from a fully

quantum foundation. Now, when calculating the E field expectation value of this

state under Hsys we end up with

〈E(x, t)〉|αksλ〉b =
∑
s′,λ

c

√
~c

2εA
(〈αksλ|b as′λ(x, t) |α

k
sλ〉b + 〈αksλ|b a

†
s′λ(x, t) |α

k
sλ〉b)eλ .

(5.60)

Using Section 4.2.4, the time dependence of each operator is

asλ(x, t) = U
†
(t)asλ(x)U

bio
(t)

= cos

(∫ t

0

Ω(x− sct′)dt′
)
asλ(x− sct)

−(s) sin

(∫ t

0

Ω(x− sct′)dt′
)
a−sλ(−(x− sct)) , (5.61)
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5.4 The electric field near two-sided semi-transparent mirrors

and

a†sλ(x, t) = U
† bio

(t)a†sλ(x)U(t)

= cos

(∫ t

0

Ω(x− sct′)dt′
)
a†sλ(x− sct)

−(s) sin

(∫ t

0

Ω(x− sct′)dt′
)
a†−sλ(−(x− sct)) . (5.62)

These transformations ensure that the EM field operators remain Hermitian.

However, this operator is not Hermitian with respect to the generalised inner

product we use for our Hilbert space. So we have a non-Hermitian operator that

gives real expectation values. This only applies because the states we used here

belong to H∩H∗ as S(|αksλ〉b) = |αksλ〉b. Combining the above equations with the

electric field representation in Eq. (4.25), we see that the time evolution of the

electric field operator is

E(x, t) =
∑
s,λ

(
cos

(∫ t

0

Ω(x− sct′)dt′
)
Esλ(x− sct, 0)

−(s) sin

(∫ t

0

Ω(x− sct′)dt′
)
E−sλ(−(x− sct), 0)

)
eλ . (5.63)

Therefore, a left moving electric field at x can transform into a right moving

electric field depending on the initial location x and coupling parameter Ω(x). In

Southall et al. (2021), we showed how to apply this transformation to the local

operators

asλ(x) =

∫ ∞
−∞

dk
1√
2π
eiskx bsλ(k) , (5.64)

which are bosonic with respect to the conventional scalar product. However,

in this thesis, we have showed how to achieve a mirror transformation for the

physically observable electric field itself.

Suppose our initial state is only in the s = 1 mode, the only non-zero terms

will then be from s = 1 operators in the E field operator. Therefore, equation

(5.60) reduces to

〈E(x, t)〉|αksλ〉b =

(
cos

(∫ t

0

Ω(x− ct′)dt′
)∫ ∞

0

dk g(k) cos(k(x− ct) + Θ)

+ sin

(∫ t

0

Ω(x+ ct′)dt′
)∫ ∞

0

dk g(k) cos(k(−x− ct) + Θ)

)
eλ ,

(5.65)
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5.4 The electric field near two-sided semi-transparent mirrors

with no approximations. We have now solved the electric field value of a coherent

state with the system Hamiltonian in Eq. (5.59) at any position x, time t ≥ 0

and locally integrable Ω(x). In the next section, we set Ω(x) to reproduce the

classical E field’s expected dynamics near a mirror. Before we do, however, we

make a remark regarding energy conservation.

Substituting the creation and annihilation operators above into the EM field

operators

E(x, t) =
∑
s,λ

√
~c

2εA
asλ(x, t) eλ +H.c. ,

B(x, t) =
∑
s,λ

s

c

√
~c

2εA
asλ(x, t) ex × eλ +H.c. , (5.66)

and then substituting these EM operators in the classical energy expression of

the EM field

Heng(t) =
A

2

∫ ∞
−∞

dx

[
ε0|E(x, t)|2 +

1

µ0

|B(x, t)|2
]
, (5.67)

we find

Heng(t) =
∑
s, λ

∫ ∞
−∞

dx ~c
(
asλ(x) + a†sλ(x)

)(
asλ(x) + a†sλ(x)

)
, (5.68)

which is exactly equal to the classical free space energy observable in Eq. (4.38).

This shows that the above EM field transformations preserve energy. However,

we point out here that

Heng(t) 6= U
† bio

(t)HengU(t) ,

Heng(t) 6= U
†
(t)HengU

bio
(t) , (5.69)

due the operator transformations in Eq. (5.61) and Eq. (5.62). In conventional

quantum physics where the Hamiltonian generates only one equation of motion

this would not be allowed.
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5.5 The mirror Hamiltonian

5.5 The mirror Hamiltonian

We want our mirror to have the properties that it is only non-zero for a finite,

but not point-like, distance around x = 0 and that it will fully turn around any

incoming E-field but will not affect any outgoing field. Therefore, we choose Ω(x)

such that

Ω(x) =

{
π
2

if − 1/2 ≤ x ≤ 1/2

0 otherwise.
(5.70)

We choose this Ω(x) because ∫ ∞
−∞

dxΩ(x) =
π

2
, (5.71)

and we know from the last subsection that coupling parameters with this property

fully transfer s local operators into −s local operators. Of course, there are

infinitely many other mirror type Hamiltonians we can create. We choose the

one here as it is simple and works as proof of concept. We set Θ = 0 and

g(k) = δ(k − 1) for simplicity. This means

〈E(x, t)〉|αksλ〉b =

(
cos

(∫ t

0

Ω(x− ct′)dt′
)

cos(x− ct)

+ sin

(∫ t

0

Ω(x+ ct′)dt′
)

cos(−x− ct)
)

eλ . (5.72)

Therefore, we see that the E field expectation value is the sum of a left travelling

wave and a right travelling wave, where the amplitude of each depends on the

coupling parameter Ω(x).

The following graphs show how the E field expectation value of the coherent

state changes in the presence of a mirror, as described above. The plots show

equation Eq. (5.72) with Ω(x) given by Eq. (5.70) for x in the range (−50, 50).

If x > π/2 then whilst x − ct > π/2 the E-field is exactly what it would be

without the interaction. Once x− ct < π/2 the amplitude of this wave decreases

continuously, because of integral over Ω(x − ct) in the cos term above, until

eventually x− ct = −π/2 and the amplitude becomes zero as
∫ t

0
Ω(x− ct′)dt′ =

π/2. The E-field will then remain zero at this location x. For any t > 0 at

x > π/2, there is no contribution from a left travelling wave as the sin term in

Eq. (5.72) remains zero.
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5.5 The mirror Hamiltonian

Figure 5.1: The E field at t = 0. Here it is just a travelling wave in free space.

Figure 5.2: The E field at t = π
c
. Here we see a standing wave forming on the

L.H.S. of the mirror.

However, suppose that x < −π/2. Here the amplitude contribution from a

right travelling wave does not change as the integral over Ω(x − ct′) in the cos

term above remains 0, which is good as any right moving wave here is arriving

from where there has been no interaction. However, once x + ct ≥ −π/2, the
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5.5 The mirror Hamiltonian

Figure 5.3: The E field at t = 19π
2c

. We chose this time so that the standing wave

has zero amplitude.

Figure 5.4: The E field at t = 10π
c

. We chose this time so that the standing wave

has a maximum amplitude.

left travelling wave contribution increases as the sin term monotonically increases

from 0 to eventually 1 when x + ct = π/2 and remains 1 after that. Once this

happens, the left and right travelling waves contributions interfere, creating a
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5.6 Summary

standing wave.

We have reproduced a classical sinusoidal electric wave’s behaviour in the

presence of a mirror from a purely quantum perspective. In doing so, we extended

conventional quantum theory and used no approximations nor any assumptions

once we understood the correct way to interpret the extended quantum theory.

Thus, we have shown how the local quantum theory of light we presented in

this thesis can model a system with local boundary conditions that alters the

EM field only at specific locations. This is important as a typical situation in

an experiment arises where the electric field is altered locally, so a theory that

accurately models this is critical.

5.6 Summary

• We derived what Hamiltonian satisfies the Heisenberg equation for the fol-

lowing bosonic mode transformation

A†(t) =
1

(
∑N

j=1 fj(t)
2)

1
2

N∑
i=1

eiφifi(t)a
†
i , (5.73)

where [ai, a
†
j] = δij, [ai, aj] = 0 and the f(t)i’s are any real differentiable

functions, there is no T such that fi(T )=0 for all i. The Hamiltonian itself

is

H(t) =
i~∑N

j=1 (fj(t)
2)

N∑
k=1

N∑
m>k

(
ei(φk−φm)(fk(t)ḟm(t)− ḟk(t)fm(t))a†kam

)
+H.c. ,

(5.74)

This is a new result. What it means is that if one has N bosonic modes

and wants a transformation of the the form in Eq. (5.73), they can readily

compute the Hamiltonian.

• We constructed locally acting Hamiltonians of the form

Hloc(x) =
∑
λ

∫ ∞
−∞

dx i~Ω(x)
[
eiφ a†−1λ(−x)abio

1λ (x)− e−iφ a†1λ(x)abio
−1λ(−x)

]
.

(5.75)
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5.6 Summary

We then used these Hamiltonians in conjugation with the free space Hamil-

tonian to construct mirror systems and solved the dynamics of local, bio-

local and photon states within these mirror systems. For the local and

bio-local states, these Hamiltonians coupled a state to its mirror image

state subject to a local potential Ω(x). The role of the free space Hamilto-

nian was to then to propagate these local and bio-local states at the speed

of light along the x-axis. This is a new result as it is the first time a locally

acting mirror Hamiltonian has been derived (Southall et al., 2021).

• We calculated the scattering operator in the interaction picture of these

mirror systems and computed its effect on monochromatic photons.

• For our final new result, we showed how these mirror systems alter the

electric field expectation values of coherent states and that it reproduces

the appropriate classical dynamics. This extended our results in Southall

et al. (2021) where we constructed states whose dynamics could be solved

in the presence of a mirror but the same could not be said for the electric

field operator itself.
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Chapter 6

Conclusions and outlook

This research aimed to introduce a formalism that allows us to model experiments

that alter the EM field only at specific locations. By using complex conjugated

Schrödinger and Heisenberg equations, modelling the EM field as a biorthogonal

system with a non-zero intersection between its Hilbert space and dual Hilbert

space, and then applying these techniques to model the transformation of a clas-

sical sinusoidal E wave near a mirror, it can be concluded that we have achieved

our aim. More work is needed to discuss the Lorentz transformations of the mir-

ror interactions we presented. However, to start this off we could look at proving

the Lorentz invariance of the commutators[
asλ(x), abio †

sλ (x′)
]

= δ(x− x′) ,[
abio
sλ (x), a†sλ(x

′)
]

= δ(x− x′) . (6.1)

That is, proving

δ(x− x′) = δ(∆x−∆x′) , (6.2)

where ∆ is a Lorentz transformation.

We presented our new results in part II of this thesis. In chapter 4, we con-

structed local bosonic operators out of the free space EM field operators such that

there exists a one-to-one and unitary transformation between these operators and

monochromatic photon operators. This was a novel result. To achieve this, we

modelled the field as a biorthogonal system with a non-zero intersection between

its Hilbert space and dual Hilbert space. To the best of our knowledge, before
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this research, no such system had been examined before. We also extended the

Hilbert space of the EM field to include monochromatic photon states that evolve

according to the complex conjugate Schrödinger equation. In chapter 5, we ap-

plied the theory from chapter 4 to model light in certain scattering descriptions.

In particular, we showed that this approach enables us to construct locally acting

mirror Hamiltonians that reproduce the well-known dynamics of wave packets in

the presence of two-sided semi-transparent mirrors. When analysing the dynam-

ics of the quantised EM field in the presence of a mirror interface in the interaction

picture, we found that the corresponding scattering operator in Eq. (5.35), which

maps the states of incoming onto the states of outgoing wave packets, couples

monochromatic photons to monochromatic photons of the same frequency and

is equal to an effective time evolution operator generated by a conventionally

Hermitian Hamiltonian. This showed that describing overall scattering transfor-

mations, in this case, does not require an extension of the standard description

of photonic wave packets. However, to compute the time evolution of a state at

a time t > 0, we required extending the standard description to include states

that evolve according the complex conjugate Schrödinger equation.

To be sure, until that point, we had only looked at how quantum states had

evolved in the presence of a mirror Hamiltonian. Therefore, to give a full flavour

of its utility, we computed how the expectation value of a physical observable,

the electric field operator, changes in the presence of a mirror Hamiltonian for

a coupling potential Ω(x) as described in the main text. We used a coherent

state, commonly referred to as “the most classical” quantum state, to highlight

the correspondence to classical physics. We calculated this computation exactly.

We found the results agreed with classical physics – any outgoing electric field

was not affected by the mirror, and any incoming electric field was reflected and

created a standing wave with the incoming electric field on the same side. In the

example, we used a fully reflecting mirror, i.e. with a reflective coefficient equal

to 1, and a phase accumulation upon reflection of 1 on one side and −1 on the

other. However, these values can be adjusted.

In this thesis, we showed how to utilise biorthogonal quantum mechanics as a

tool to model locally acting mirror Hamiltonians that reproduce the appropriate

dynamics of a classical electric field sinusoidal wave near a mirror. This is a novel
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result. To do so, it involved allowing part of the electric field operator to evolve

using H and the remaining part to evolve using Hbio, as well as stating that

the electric field operator can only be used as an observable for the states where

S(|ψ〉) = |ψ〉. In other words, we started with the quantised EM field, recognised

the utility of biorthogonal quantum mechanics, and so applied it accordingly.

However, we do not claim to know that, given a general biorthogonal quantum

mechanics system, what are its properties such that we can apply the results in

this thesis to it. This is something we would like to work on in the future.

The last chapter showed how using both b and c photons can make it easy for

us to construct locally acting Hamiltonians. However, we point out that, when

computing the electric field expectation values of a coherent state near the mirror,

the states we used were composed only of b photons. This means that when we

computed the full time-dependent expectation value, we could have commuted the

c photon operators in the state with the b photon operators in the time evolution

operator and electric field operator to move them to the vacuum bra/ket where

they annihilate the vacuum. Therefore, the electric field expectation value we

obtained is equal to the expectation value with the same state, operator and

Hamiltonian, except with the c photon operators removed.

Furthermore, we also know that

〈A |ψ(t)〉 , |ψ(t)〉〉 = 〈A |ψ(t)〉 , |ψ(t)〉〉∗ = 〈A∗ |ψ(t)〉∗ , |ψ(t)〉∗〉 , (6.3)

if 〈A |ψ〉 , |ψ〉〉 is real. This equation means that for any expectation value com-

prising only of b photons, we can construct an equivalent expectation value using

only c photons. It is, therefore, interesting to ask if the c photons1 are physically

distinguishable from b photons? Or do they just make computations easier and

allow us to construct local models? Perhaps the answers to these questions lie

in optical homodyne tomography, where Smithey et al. (1993) have succeeded

in measuring the Wigner distribution and density matrix of certain light modes.

For example, coherent states generated by b photons may rotate in the opposite

direction to c photons in phase space. Additionally, perhaps it will be possible

to interfere b and c photons to create novel effects. Last, if we can construct pro-

jectors for both the b photons and c photons, then we could distinguish the two

1Or equivalently negative frequency photons in free space.
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by applying projective measurements onto the b and c photon subspaces. This of

course assumes that the generation of both is possible. Optical phase conjugation

(He, 2002; Pepper, 1982) may hold the answers here.

In addition to constructing locally acting Hamiltonians, these operators natu-

rally lend themselves to the modelling of the quantised EM field in in-homogeneous

media, are likely to provide new insight into fundamental quantum effects (May-

bee et al., 2019) and quantum information processing with photonic wave packets

(Wang et al., 2019).
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Appendix A

Code

This is program will calculate the E-field expectation value described in chapter

5.5. We wrote in the python programming language.

# importing the required modules

import matplotlib.pyplot as plt

import numpy as np

#Calculating Omega(x) integrals

def int_omega_plus(x,t,height):

if x > 0.5:

int_omega_plus = 0

elif x > -0.5:

if x + t > 0.5:

int_omega_plus = (height)*(0.5-x)

else:

int_omega_plus = (height)*(t)

else:

if x + t < -0.5:

int_omega_plus = 0

elif x + t < 0.5:

int_omega_plus = (height)*(x + t + 0.5)

else:

int_omega_plus = height
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return int_omega_plus

def int_omega_minus(x,t,height):

if x < -0.5:

int_omega_minus = 0

elif x < 0.5:

if x - t < -0.5:

int_omega_minus = (height)*(x+0.5)

else:

int_omega_minus = (height)*(t)

else:

if x - t > 0.5:

int_omega_minus = 0

elif x - t > -0.5:

int_omega_minus = (height)*(0.5-(x-t))

else:

int_omega_minus = height

return int_omega_minus

#setting our initial time t=0

t = 0

#setting the height of our potential, pi/2\pm n*pi corresponds to

#full reflection.

#for this potential, the height is equal to it’s area under the

#curve, i.e. area= width x height and we have width=1 here.

#This parameter can be adjusted to see different reflective and

#transmissve rates.

height =(np.pi/2)

#creating our while loop, during each iteration it will print

#the <E(x,t)> values to the console, increase t, then wait

#for the users command to continue with the new t value

#To exit the loop will require the users input in the console,
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#i.e. crtl + c

while t > -1:

#creating our x-axis array

x = np.arange(-15*np.pi,15*np.pi,0.1)

#creating our empty omega minus and plus integrals

int_omega_plus_arr = []

int_omega_minus_arr = []

#appending our omega integral values for each x to our arrays

for x in x:

int_omega_plus_arr.append(int_omega_plus(x,t, height))

int_omega_minus_arr.append(int_omega_minus(x,t, height))

#Taking the cos and sin of each value in the arrays

int_omega_minus_cos = np.cos(int_omega_minus_arr)

int_omega_plus_sin = np.sin(int_omega_plus_arr)

x = np.arange(-15*np.pi,15*np.pi,0.1)

#creating our right moving wave terms

y = np.cos(x-t)*int_omega_minus_cos

#creating our left moving wave terms

z = np.cos(-x-t)*int_omega_plus_sin

#adding the two together

w = y + z

# Add title and axis names

plt.title(’E field of coherent state near a mirror’)

plt.xlabel(’x’)

plt.ylabel(’E field / Amp’)

#creating our plots
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#plot of right moving wave

#plt.plot(x,y)

#plot of left moving wave

#plt.plot(x,z)

#plot of the sum.

plt.plot(x,w)

plt.axes().set_aspect(12, ’datalim’)

plt.show()

#increasing t, can adjust this for smoother animations.

t += (np.pi/10)

#command to allow user to continue when enter is pressed

#hold down enter to see ’animation’

wait = input("PRESS ENTER TO CONTINUE.")
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