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Abstract

With the ever-increasing demands for wireless communications from vehicles, vehicle-to-
everything (V2X) communications have emerged to enable vehicle user equipment (V-UE)
to communicate with other vehicles, pedestrians, and communication infrastructures. In
addition, V-UEs are able to offload their computation-intensive applications to a cloud
centre or a fog node for processing via a vehicle-to-infrastructure (V2I) link or vehicle-
to-vehicle (V2V) link. In this case, resource management and offloading optimisation
of V2X communications in conjunction with other advanced technologies, such as social
networking and cloud/fog computing technologies, are the main paramount challenges for
V2X communications underlaying cellular networks. In this thesis, we focus on two different
vehicular system models related to the resource allocation and/or the offloading decisions
optimisation.

The thesis presents three main research contributions. In the first contribution, we
investigate how the social attributes of V-UEs in a vehicular network may affect the radio
resource allocation mechanism, and the performance of V2X communications. We propose
a social-aware clustering-based resource allocation mechanism for V2X communications,
which maximises the sum V2I links capacity while guaranteeing the reliability of all V2V
links.

In the second contribution, we study a vehicular network supported by a mixed cloud
and fog computing system, where the queues at the fog node and the cloud centre are
modelled following the M/M/1 and M/M/C queueing models, respectively. To minimise the
maximum service delay (which includes the transmission delay, the queueing delay and the
processing delay) among the V-UEs, we propose to jointly optimise the offloading decisions
of all V-UEs and the computation resource allocation at the fog node while considering
the V-UEs’ mobility and queueing delays at the fog node and the cloud centre. This is
achieved by devising a fireworks algorithm-based offloading decision optimisation algorithm
in conjunction with a bisection method-based fog node computation resource allocation
scheme.

In the third contribution, vehicle-carried fog nodes (V-FNs) are deployed in the fog
layer and uplink communication resource blocks (RBs) are allocated among all cloud/fog



x

processing V-UEs. We jointly optimise the offloading decisions of all V-UEs, the computation
resource allocation at all V-FNs, and the allocation of RB and transmission power for all
V-UEs while considering the mobility of V-UEs and V-FNs. The joint optimisation is then
solved by devising a fireworks algorithm-based offloading decisions optimisation scheme, in
conjunction with a bisection method-based V-FNs computation resource allocation scheme
and a clustering-based communication resource allocation scheme.
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Chapter 1

Introduction

The utilisation of V2X communications technologies for ITS is regarded as one of the
most promising solutions to meet the ever-increasing cellular traffic and future demands.
Accordingly, V2X communications, which are expected to enable reliable and low-latency
communication services for vehicles, are attracting a great amount of interest from both
industry and academia. In this thesis, there will be a focus on optimal radio resource
allocation, computation resource allocation and application offloading decisions in different
system models based on V2X communication technologies. In this chapter, the related work
will be introduced followed by a conclusion of the background and the motivation, then a
summary of personal achievements. Finally, the thesis structure is outlined.

1.1 Background and Motivation

1.1.1 Related Works

In this thesis, there is a focus on the development of new resource allocation optimisation
algorithms for V2X communications, along with optimisation algorithms that include appli-
cation offloading decisions making. In this section, a summary of the latest research work in
these areas is provided.

As presented in previous works [1–4], the problem of resource allocation and power
control for V2X communications as well as including offloading decisions optimisation can
be modelled as a MINLP problem, which is an NP-hard problem. Therefore, the analysis
and performance enhancement of resource allocation optimisation algorithms, as well as
including application offloading optimisation algorithms, has attracted attention and research
in both academia and industry, which consists of two aspects (i.e., social-aware resource
allocation; the joint optimisation of resource allocation and offloading decision making).
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Social-aware resource allocation:

Early works include [5–7], in which the authors consider simplified radio resource allocation
schemes for V2X communications under a vehicular network system. Generally, social-aware
resource allocation schemes were only considered for D2D communications in [8–12]. In
[5], many-to-one matching game based proximity-aware resource allocation scheme was
proposed for V2V communications, where all V-UEs were first grouped into different zones
according to their traffic patterns and proximity information. Afterwards, the resources
were allocated to each V2V link within each zone. In [7], the authors proposed hypergraph-
based resource allocation to enhance the throughput of V-UE, while in [6] the authors
proposed a resource allocation for V2V communications based on the latency and reliability
requirements of V2V links. The authors in [8] proposed a distributed resource allocation
scheme for D2D communications which improves the system rate by considering interference
graph in the physical domain and social domain. In [9], the authors proposed a social-aware
D2D resource allocation scheme based on the bipartite graph matching theory to increase the
D2D transmission rate. Where D2D links are formed according to the proximity between
users in the physical domain, they correspond to user social relationships in the social
domain. The authors in [10] proposed social-aware spectrum sharing [11] and caching
helper selection scheme by adopting a genetic algorithm (GA) to maximise the capacity
of D2D based multicast. The authors in [12] maximised the social-aware rate for D2D
communications by exploiting the physical-social centrality in cluster formation and cluster
head selection. However, the resource allocation schemes for V2X communications have
ignored the influence of the social domain and the proposed social-aware resource allocation
algorithms for D2D communications cannot be rapidly applied to high mobility vehicle users
in V2X communications.

Joint optimisation of resource allocation and offloading decisions:

Resource allocation (including the allocation of transmit power, RB and computation re-
source) optimisation has been considered to reduce the latency and save energy for V2X
communications systems [13, 14]. Earlier works, such as: [15–19], presented different
cloud/fog/MEC based simplified offloading systems for V2X communications. In [15], the
authors introduced a VFC system to reduce the average offloading latency of V-UEs while
satisfying the application-specific requirements. In [16], the authors proposed a computation
offloading scheme to minimise the utility of the MEC servers in a vehicular network while
guaranteeing the quality of experience for the vehicular terminals, where the utility is a
designed function of the latency and computation resources required for processing the tasks.
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In [17], the authors proposed a distributed iterative scheme to minimise task completion delay
and energy consumption at each UE side, while satisfying the constraints of task offloading
deadline in a MEC system. The authors in [18] proposed a branch-and-bound algorithm to
minimise the average response time for V-UEs in a fog-enabled real-time traffic management
system. In [19], the authors introduced a mixed fog/cloud system for mobile applications
offloading and proposed to minimise the maximum delay among all mobile devices by jointly
optimising the offloading decisions, resource allocation and energy consumption. Despite
their thoroughness, the above existing works have not sufficiently considered the mobility of
vehicles that may increase the delay and energy consumption of computation offloading.

Considering the high mobility of vehicles, the authors in [20] proposed a one-to-many
matching-based task offloading algorithm to minimise the total offloading delay of all the
V-UEs in a vehicular edge computing system. In [21], the authors suggested a computation of-
floading algorithm based on ellipsoid method to jointly minimise the sum computation delay
and the energy consumption of V-UEs in an MEC enabled vehicular network. Furthermore,
the authors considered a non-dominated genetic scheme to minimise the total offloading
delay of all V-UEs by jointly optimising the computation resource utilisation of multiple
edge nodes in [22]. However, the queueing delay in their offloading models have been
ignored because tasks may need to wait in queues at the computing servers before they can
be processed, which is a limitation of the above existing works. Advanced offloading system
models for V2X communications were considered in [23–26]. In [23], the authors suggested
a greedy heuristic based computation offloading scheme to minimise the total latency of
all tasks in a VFC system. In [24], the authors proposed a cloud-MEC based collaborative
computation offloading scheme to maximise the system utility by jointly optimising the
offloading decisions and computation resource allocation. In [25], a contract-matching-based
task assignment algorithm was presented to minimise the total delay of all V-UEs by optimis-
ing the computation resource utilisation. The authors in [26] proposed a priority-aware task
offloading strategy to minimise the total offloading time and waiting time of all tasks, where
the computation offloading decisions were made according to the priority of each task. Since
all offloaded tasks have to be transmitted over a wired or wireless channel to the cloud or fog
servers in order to be processed, where the communication resource allocation should be con-
sidered to reduce the transmission delay for all tasks. However, in [23–26], communication
resource allocation has been neglected in their computation offloading models, which may
affect the offloading decisions for all V-UEs in the proposed system models. More complex
scenarios were considered in [27–29] to jointly optimising the offloading decisions of all
V-UEs and resource allocation (i.e., communication resource and computation resource).
In [27], the authors designed a mixed cloud/fog computing system for mobile applications
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offloading and proposed to minimise the maximum cost of delay and energy consumption
among all UEs by jointly optimising the offloading decisions and resource allocation. The
authors in [29] advocated a scheme to maximise the utility of an edge computing system by
jointly optimising the offloading decisions and computation resources of all the UEs, where
the utility is designed as a sub-modular set function of the offloading decisions and resources
required for processing the tasks. However, the interference management in multiple V-UE
scenarios were not considered, which are limitation of these existing works.

1.1.2 Motivation

Based on the above research we identify the following V2X communications research
challenges in respect to VSN and VFC systems, respectively.

Research Challenges for VSNs

Based on the previous research works, challenges in VSN can be broadly classified into three
categories:

• Network Management: VSNs are dynamic in nature, not only are they all mobile
users in the process, but V-UEs may actively subscribe to different online social
networking services [30]. VSNs need to generate, collect, and share different contents
rapidly. Taking account into share and forward similar contents according to the
corresponding V-UEs over the imitated network bandwidth is still open issue, which
may affected by the requirements, diversity, and selfishness variability of users, etc
[31]. Furthermore, based on different subscribed services of users, VSNs may allow
different third parties to utilise users’ information, such as location, diversity, and
mobility, which may lead to some potential security issues, like malicious attacks [32].

• Mobility Management: Mobility modelling is one of the important challenges in
VSNs, which impacts connectivity links among nodes to share contents. The authors in
[33, 34] investigated the network performance in VSNs, where the mobility of vehicles
is restricted around specific social sports. In addition, as mentioned in [35], different
mobility models in vehicular networks were proposed, i.e., car-following models and
queue models, which have neglected to consider the social characteristics of users. It
can be noted that, new mobility models should be designed for V2X communications in
order to consider social attributes of users and make it compatible for future vehicular
networks [36, 37].
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• Application and Resource Management: Previous studies on social networks [38]
identified that the connections among users are created based on their social attributes,
such as friends, family members and so on. The VSN modelling and the corresponding
performance can be evaluated according to the relevant social connections. Once
connections among users have been established, interference management and resource
allocation become the most significant problem for V2X communications in VSNs.
Therefore, proper resource management for V2X communications in VSNs is the most
effective solution to this problem [7, 39].

Research Challenges for VFC Systems

Using the above research work as a foundation, challenges in VFC systems can be broadly
classified into two categories:

• Performance Evaluation: Many studies have evaluated application processing latency
in a cloud/edge mixed computing system model, however, in most of the above works,
the performance analysis is based on simulation results which neglect the queuing
latency of the system model. The performance evaluation should consider the queuing
delay of the FNs. In addition, a mobility model for V-UE should be applied to the
VFC system models, which would enhance the effectiveness of the offloading scheme.
The mobility model was also considered to analyse the performance in [40], however,
the model is too simplified to track and update all information such as location and
requirements for all V-UEs.

• Performance Optimisation: Previous research on offloading schemes have shown
that it is not always optimal. Various improvement of offloading schemes under a
VFC system have been proposed through the modified matching algorithm or genetic
algorithm [21, 28]. However, all of the above works have concentrated on considering
different features on VFC systems, such as service prices, while neglecting communica-
tion and computation resource allocation. Furthermore, in [24] performance evaluation
and offloading optimisation scheme was based only on computation resource alloca-
tion. In [13, 21, 27], optimisation problems, which were formulated as several MINLP
problems with different objectives (e.g., minimal latency, minimal energy consumption,
etc), are NP-hard.
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1.2 Contributions

In Chapter three, the thesis studies communication resource allocation in a social-aware
cellular vehicular network scenario, which is in conjunction with V2X communications
technologies. This research extended the radio resource allocation schemes for D2D commu-
nications to evaluate the impact of social attributes and high mobility of V-UEs in terms of
resource allocation. Most existing works are aimed at improving the performance of D2D
communications, and proposed radio resource allocation optimisation algorithms, while the
high mobility of V-UEs has not been studied [8–12]. Then, we derive explicit expressions for
the relationship between the physical layer and the social layer. Based on these expressions,
we developed a two-step optimisation algorithm to maximise the sum V2I links capacity
while guaranteeing that all V2V links are above a threshold. The first step is a clustering
scheme whereby all V2V links are grouped into different clusters, and the second step is a
resource allocation scheme based on a many-to-one matching algorithm to maximise the sum
capacity of V2I links. Simulation results reveal that a stronger social relationship between
vehicles in the same social community would result in a higher total V2I links capacity of
the community.

In Chapter four, there is a focus on computation resource allocation and application
offloading problems in a cloud/fog computing mixed vehicular networks system, where each
V-UE may process its application by itself or offload its application to the fog node or a
cloud centre. This is the first instance of the formulation of a multi-objective optimisation
(i.e., the computation resource allocation and the offloading decisions) in conjunction with
considering the high mobility of V-UEs and the queueing delays at the fog node and the
cloud centre. Some of the previous works [15–19, 29] on cloud/fog based offloading of delay-
sensitive applications neglected the mobility of vehicles, which may lead to increased latency
and energy consumption. Other existing works [20–22, 25] have not adequately considered
queuing latency and an application may need to wait at a fog node or a cloud server until all
previous applications in the same queue have been processed by the corresponding server.
Whereas in this chapter, the mobility of all V-UEs, as well as the queuing delays at the
fog node and the cloud centre, are taken into account when investigating the offloading
optimisation problem. The aim in this chapter is to minimise the maximum service delay
(including the transmission delay, the queueing delay and the processing delay) among all
V-UEs. To solve this problem, an optimisation algorithm is developed to find the optimal
offloading decisions for all V-UEs, combined with a bisection method-based algorithm to
optimise the computation resource allocation of fog node for all fog processing V-UEs. The
performance of the proposed algorithms is evaluated through simulations in comparison
with benchmarks, including pure local processing, fog processing, cloud processing and
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random processing. The simulation results have demonstrated that the maximum service
delay is further reduced according to the proposed algorithms, which enables its potential
implementation in real vehicular communications systems.

In Chapter five, there is a prioritisation of resource allocation and intensive-application
offloading problems in a mixed cloud/VFC three-layer scenario, where each application could
be either processed locally or offloaded to a V-FN or a cloud server for processing. Different
from the most existing works have considered static fog nodes only, e.g., those embedded in
RSUs, but fog nodes can be carried by moving vehicles in IoV systems, which can relieve
pressure on stationary fog nodes at the roadside, provide more diverse services and extra
computation resources for smart vehicles. Thus, in this chapter, all V-FNs are deployed in
the fog layer instead of static fog nodes, while the offloading problem is studied with respect
to each application of V-UE. It is intent of this part to minimise the maximum service delay
(which includes the transmission delay, the queueing delay and the processing delay) of all
V-UEs, thus guaranteeing the fairness among V-UEs. To solve this optimisation problem,
we propose a novel iterative algorithm which decouples the joint optimisation problem
into three sub-problems that optimise the offloading decisions for all V-UEs, the uplink
communication resource allocation for all cloud/fog-computing V-UEs, and the computation
resource allocation at each V-FNs, separately. This chapter demonstrates the optimality
and convergence of the proposed fireworks-based algorithm and evaluate its performance
through simulations. Simulation results show that our proposed schemes achieve a much
lower maximum service delay than the benchmarks.

1.2.1 List of Publications

Publications

[1] B. Hu, and X. Chu, “Social-aware resource allocation for vehicle-to-everything commun-
ications underlaying cellular networks,” in 2021 IEEE 93rd Vehicular Technology Confe-
rence (VTC2021-Spring). Apr. 2021, pp. 1–6.

Accepted

[2] B. Hu, J. Du, and X. Chu, "Enabling Low-latency Applications in Vehicular Networks
Based on Mixed Fog/Cloud Computing Systems," in 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC). Apr. 2022.
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[3] Hu, Bintao, Du, Jianbo, and Chu, Xiaoli, "Computation Offloading and Resource All-
ocation in Mixed Cloud/Vehicular-Fog Computing Systems," in 2022 IEEE

1.3 Thesis Organisation

The thesis is organised as follows: Chapter two reviews the existing works on LTE-V2X
communications technologies, vehicular social networks technologies, fog computing tech-
nologies and the methodologies used in this thesis. Chapter three studies the radio resource
management problems in a vehicular social network scenario. Social-aware clustering-based
algorithm and matching-based algorithm are developed to optimise the RB utilisation and
energy consumption for each V2V link. Chapter four focuses on the offloading decisions
optimisation for all V-UEs, which is combined with the computation resource allocation
optimisation for a fog node. Various queuing models are considered in a VFC system model
in order to establish an effective low-latency offloading optimisation scheme. Chapter five
extends the work in Chapter four, which involves the joint optimisation of offloading deci-
sions, communication, and computation resource allocation for all V-UEs in a VFC system.
A summary of the thesis, and discussion of future directions, is provided in Chapter six.



Chapter 2

Literature Review and Methodology

2.1 LTE-V2X Communications Technologies

In recent years, the emergent issues of road safety, urban congestion, traffic efficiency and
environmental protection, due to the dramatic increase in the number of vehicles have become
increasingly prominent [41]. In this context, V2X technology, which enables the connection
of humans, vehicles, infrastructures and cloud/networks, has been proposed. Due to the
lack of high rate and low latency internet connectivity on roadways (e.g., real-time road
planning services), the use of existing low-cost communication links (i.e., V2V and V2I
communications) to create, share, transmit information and manage resources, especially
on motorways and in rural areas, remains one of the critical issues for 5G based vehicular
cellular networks. The idea of LTE-V2X is first proposed by Datang Telecom Technology
[42]. In 2005, Datang, Huawei and LG were driving the development of the LTE-V2X
international standard under the auspices of 3GPP, which was adopted in the standardisation
of 3GPP Rel. 14 and Rel. 15 [43]. Moreover, with the development of the 5G, the new radio
V2X (NR-V2X) technology has been proposed, which is adopted in the standardisation of
3GPP Rel. 16, Rel. 17 and its evolution [44].

Compared with IEEE 802.11p technology, C-V2X as the core technology of LTE-V2X
has attracted worldwide attention to meet the low latency, efficient resource utilisation,
transmission rate and so on, which can be explained as follows [45–49]:

• Low latency: At low densities, IEEE 802.11p could satisfy transmissions with delay
requirement of less than 100ms. However, at high densities, IEEE 802.11p cannot
guarantee a low latency transmission service, while LTE-V2X Rel. 14 supports 20ms
and LTE-V2X Rel. 15 can meet the service requirements with a latency of 10ms.
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In addition to this, NR-V2X can support service latency requirements of 3ms in the
future.

• Efficient resource utilisation: IEEE 802.11p only supports the TDM method in
the time domain, while LTE-V2X may offer the TDM method and FDM method.
Furthermore, compared with IEEE 802.11p, LTE-V2X supports multiple antenna
technology, which further improves resource utilisation.

• Transmission range: IEEE 802.11p can support transmission services within a range
of 100 meters, while LTE-V2X Rel.14 supports transmission within a range of 320
meters and LTE-V2X Rel.15 supports services within a range of 500 meters.

• Transmission rates: Between IEEE 802.11p and LTE-V2X, IEEE 802.11p can reach
6Mbit/s, LTE-V2X Rel.14 offers 31Mbit/s on a single carrier, while LTE-V2X Rel.15
can reach 300Mbit/s on multiple carriers.

The details of the comparison between IEEE 802.11p and LTE-V2X can be found in
Table 2.1 [45–49].

Table 2.1 An overview of comparison between IEEE 802.11p and LTE-V2X

IEEE 802.11p LTE-V2X
Low latency 100ms (low density) Rel. 14: 20 ms; Rel. 15: 10 ms
Reliability Cannot guarantee Rel. 14: >90%; Rel. 15: >95%
Coding Convolution code Turbo
Resource utilisation TDM TDM and FDM
Multiple antennas Based on UE Rel. 14: Not supported; Rel. 15: 2Tx/2Rx
Transmission range 100 m Rel. 14: 320 m; Rel. 15: 500 m
Transmission rate 6 Mbit/s Rel. 14: 30 Mbit/s; Rel. 15: 300 Mbit/s

Through the above analysis, it can be seen that LTE-V2X is better than IEEE802.11p
in terms of system performance, larger communication range and less system interference
for V-UEs moving at high speeds while ensuring low latency, high reliability and high
transmission rate of large data volumes.

2.1.1 Types of LTE-V2X Application

3GPP TS 22.185 proposed that LTE-V2X contains four different types (i.e., V2P, V2I, V2V
and V2N), which is shown in Fig. 2.1 [50]. V2V is the communication link between
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two different V-UEs, V2I is the communication link between a V-UE and a RSU or other
infrastructures, V2P is the communication link between a V-UE and a pedestrian, and V2N
is the communication link between a V-UE and an application server.

Vehicle (OBU)

Vehicle (V-UE)

Infrastructure 
(RSU)

Pedestrian

Cloud/Network 
Centre

V2I

V2P

V2V

V2N

Fig. 2.1 Types of LTE-V2X application

RSU V-UE Pedestrian

SL SL SL

Fig. 2.2 Sidelink communication scenarios

BS

UL

V-UE(Tx)

DL

V2P/V2N/V2V(Rx)

Fig. 2.3 Cellular communication scenarios
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In addition, as shown in Fig. 2.2 and Fig. 2.3, there are two different communication
mechanisms based on different V2X links or services, i.e., SL communication and cellular
communication [51, 52]. SL communication is a direct communication between two ter-
minals, without a BS involved in the transmission and reception of data traffic. Therefore,
it can support the demand for low latency, high reliability V2X communication over short
distances. In the case of the cellular communication mechanism, a V-UE transmits data to a
BS via UL with the BS and forwards this data via DL between the BS and the receiver, thus
allowing long-distance, large data size task and latency insensitive V2X communications.

2.1.2 Strengths of LTE-V2X

• Frame Structure: LTE-V2X frame structure is illustrated in Fig. 2.4, the hyperframes
period is 10240ms and consists of 1024 frames of 10ms length. Each frame is made
up of 10 sub-frames, each lasting 1 ms, and each sub-frame is made up of two 0.5 ms
slots. The spectrum resources can be further divided into RBs, each of which has a
bandwidth of 180 KHz and consists of 12 sub-carriers (i.e. a sub-carrier = 15 KHz)
and 7 symbols. Continually LTE-V2X transmissions are scheduled over RBs among
multiple V-UEs [53, 54].

• Resource Allocation Scenario: LTE-V2X has two resource allocation schedules,
a decentralised resource allocation schedule and a centralised resource allocation
schedule. For a decentralised resource allocation schedule, a V-UE selects resources
from the RP while not allocating resources via the BS. Therefore, it supports V2X
services with low latency and high-reliability requirements. For a centralised resource
allocation schedule, a V-UE sends a request to the BS, which only allocates resources
to the corresponding V-UE without sending information about the RP. It therefore
increases the reliability of data transmission and the efficiency of resource allocation
[49, 55, 56].
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Fig. 2.4 Frame structure for 15kHz sub-carrier spacing

2.2 Vehicular Social Networks Technologies

By 2040, as vehicles are self-driving, it is expected that vehicle operators will not need a
driving licence and that they will no longer be involved in controlling the speed, position,
or direction of the vehicle [57]. In future, the efficient collection and allocation of network
resources (i.e., communication and computation resources) from neighbouring V-UEs, based
on a group of federated infrastructure providers cooperating to provide VSN services, will
remain one of the key issues for VSNs.
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2.2.1 Social Characteristics

VSNs are one of the main applications of mobile social networks (MSNs), which can
be considered as a system for providing communication services involving social contact
between V-UEs. And it is characterised as online social networks formed on Internet
platforms such as Facebook and Twitter. As shown in Fig. 2.5, the social behaviours and
structures of V2X-based VSNs include characteristics of social ties, social communities,
degree centrality and bridges.

• Social Ties: In VSNs, social ties represent weak or strong relationships between
different individuals (i.e., V-UEs, UEs, etc.) that are related to each other. Each
social tie can be established between individuals through kinship, friendship, collegial
cooperation and common behaviours or interests initiated by human users [58, 59].

• Social Communities: Social community is formed based on social relations among
human users, and it defines clusters of V-UEs sharing the common social attributes (i.e.,
interests, behaviours and so on.). In VSNs, social communities may indicate different
clusters by contents of locations, weather information, interests, or backgrounds . Thus,
social community clustering for V-UEs may improve data transmission efficiency.
Social communities are formed based on social relationships among human users,
which define clusters of V-UEs with common social attributes (i.e. interests, behaviours,
etc.) [60]. In VSNs, social communities represent different clusters through locations,
weather information, interests, backgrounds, or other different contents, which in turn
improves the efficiency of data transmission among all connected V-UEs [59].

• Degree Centrality: Degree centrality is a quantification of the relative structural
importance of a central node in a social network [61]. A central node is a node that has
a high capability to connect other nodes in the same social network. According to VSNs,
selecting a node with a high degree of centrality can improve the chances of transmitting
relative data to its corresponding destination. The most widely used measures are
closeness centrality, betweenness centrality and bridging centrality [62, 63].

• Bridges: A bridge structure is a connection between two neighbouring social com-
munities. In VSNs, each social community may have a large group of V-UEs, and a
bridge is the edge of interaction between two social communities, which provides a
potential way to connect these two social communities for information exchange.
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Fig. 2.5 Illustration of social-aware V2X communication underlay cellular system

2.3 Fog Computing Technologies

Internet-connected devices will triple in the next decade, from 11 billion in 2019 to 30 billion
by 2030. This growth will also mean significant bandwidth consumption and higher latency
for data processing [64]. Fog computing is a new technology released by Cisco in 2012 that
can effectively overcome problems such as low latency and high bandwidth requirements
[65].

2.3.1 The Concept of Fog Computing

Fog computing is defined as an extension of cloud computing and provides computation,
data storage and application services closer to the end-user [66]. As shown in Fig. 2.6
fog computing acts as an arbitrator between the end-users and could centre which provides
extra computing services, storage services and other networking services. In the fog layer, it
includes various fog nodes which have less processing facilities and temporary storage. Based
on using these fog nodes, end-users might obtain a real-time response for latency-sensitive
applications. In addition, fog computing, like cloud computing, offers two computing
mechanisms, namely infrastructure or platform as a service (I/PaaS) and software as a service
(SaaS).

2.3.2 Characteristics of Fog Computing

• Security: Due to the current complex and dynamic wireless communication environ-
ment, i.e., bandwidth limitations and interference strength, distant backend servers



16 Literature Review and Methodology

Cloud Centre
(Cloud Computing)

Fog Nodes

(Fog Computing)

Fog Nodes

(Fog Computing)

Edge Devices

(IoT Devices)

Edge Devices

(IoT Devices)

Edge Devices

(IoT Devices)

Fig. 2.6 Illustration of fog computing structure

are extremely susceptible to network security attacks. Fog computing can therefore
configure optimal routing paths across the entire network based on different fog nodes
to rapidly update the software security information and send it to the wireless sensors.

• Cognition: Fog computing enables clients to awareness of their customers’ objectives
to support autonomous decision-making in the deployment of compute and storage
functions and network control functions. This advantage of fog computing changes
the role of IoT devices from passive devices to active smart devices that can meet the
requirements of clients without relying on distant cloud centres.
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• Efficiency: Fog computing enables gateway devices to collect and redistribute com-
puting and storage resources while processing most tasks, which reduces unnecessary
communication bandwidth costs, energy consumption, and so on.

• Agility: Fog computing enhances the agility of IoT system deployment. Compared to
traditional cloud computing, fog computing opens up more opportunities for individuals
and small business parties to innovate, develop, deploy, and provide new services using
overwhelmingly open software platforms.

• Latency: The proximity of fog nodes to edge devices reduces waiting latency when
processing applications for edge devices. Moreover, fog computing delivers a highly
flexible platform for the rapid reconfiguration of IoT devices as far as its softwarisation
is concerned. As a result, fog computing provides better synchronous communication
and real-time services than cloud computing.

2.3.3 Fog Computing in IoV Systems

Based on the advantages of fog computing, IoV-based ITS can be classified into three
application scenarios as follows [67–69]:

• Autonomous Driving: By applying fog computing to autonomous driving systems,
latency can be reduced via collecting information and processing tasks at a lower
level in the fog layer. Conserve limited and expensive resources (e.g., bandwidth
and storage). Furthermore, data applications, extraction and analysis are set up and
performed closer to the V-UE to minimise the amount of raw data transferred to the
cloud centre.

• Cooperative Driving: Cooperative driving based on fog computing enables a group
of vehicles to update useful information or alerts, such as road conditions, congestion,
traffic updates and weather information, from the leading vehicle via V2X connections.
All this information can be collected and shared from multiple vehicles, which saves
energy consumption and expensive cellular network connections.

• Share Vehicles: Shared vehicle services with fog computing allow data to be shared
among different commercial companies that provide real-time services to respond to
the V-UE’s requests and allocate a potential parking space to the V-UE. In addition,
the shared vehicle service provides real-time emergency traffic information, enabling
incident reports to be sent immediately and securely to the required authorities.



18 Literature Review and Methodology

2.4 Methodology

In this section, social networks theory, queueing theory, matching algorithm theory and
fireworks algorithm theory are briefly introduced. In Chapter three, social attributes or
interests similarity and social link duration are quite powerful to generate the performance of
V2V links in the social domain, including the social community assignment and so forth. In
addition, matching-based frameworks are developed to solve the resource allocation problems
between all clusters and V2I links. In Chapters four and five, queuing theory affects the
performance of offloading decisions for all V-UEs. For example, applications may need
to wait in queues at the computing servers before they can be processed, which increases
the offloading latency of V-UEs. Furthermore, fireworks algorithm-based frameworks are
developed to solve resource allocation for all cloud/fog-computing V-UEs and optimise the
offloading decisions for all V-UEs, which are NP-hard to solve. The resource allocation and
offloading decisions obtained by using the modified fireworks algorithms are proved to be
stable and optimal.

2.4.1 Basics of Social Theory

Social Attribute Similarity

In VSNs, common social attribute similarity quantifies the relative importance of a V-UE to
other V-UEs. The higher the social attribute similarity, the more likely two V-UEs will be
socially connected [32, 70].

Let Hi denotes the social attributes of a V-UE vi, where each item in Hi is a binary
variable representing whether vi is interested in the corresponding item or not. For example,
assuming the following social attributes {News, Music} and Hi = {1,0}. It indicates that vi

likes reading news, rather than listening to music. Based on the vector space model (VSM)
[71], let Hi = {Si,x}, where x ∈ 1, ...,V and S{i,x} ∈ {0,1} are the social attributes profile of
vi. Therefore, the social attributes similarity between two V-UEs vi and v j can be given as
follows [59, 72]:

SAHi, j =

V
∑

c=1
Si,cS j,c√

V
∑

a=1
S2

i,a

√
V
∑

b=1
S2

j,b

(2.1)

where SAHi, j = 1 indicates that the V-UEs vi and v j have exactly the same social attributes
and they are more likely to form a social connection in the VSNs. Otherwise, SAHi, j = 0
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indicates that both V-UEs do not share any common social attributes and they are less likely
to form a social connection in VSNs.

Social Link Duration

Once the communication link between two V-UEs is connected, the social link duration
between the two V-UEs depends on the communication link duration. Therefore, the social
link duration TSL(t) at time t can be calculated as follows:

TSL(t) =
R−θ1

√
(xi(t)− x j(t))2 +(yi(t)− y j(t))2

|(si−θ2s j(t)|
(2.2)

where R is the wireless transmission range; xi(t),x j(t),yi(t),y j(t) are the locations of two V-
UEs; si(t),s j(t) denote the velocities of two V-UEs; θ1 = 1,θ2 = 1 denote vi moves forward
in front of v j; θ1 =−1,θ2 = 1 denote v j overtakes vi; θ1 = 1,θ2 =−1 denote vi and v j are
moving away from each other; θ1 =−1,θ2 =−1 denote vi and v j are moving toward each
other.

2.4.2 Queueing Theory

Queueing theory is the mathematical study of queueing systems which is composed of
customers who arrive at a service facility for service or waiting for service [73]. A birth-and-
death M/M/1 example is shown in Fig. 2.7, which is a simple Markovian birth-and-death
queueing model and consisted of Poisson-input, exponential-service, single-server.

Fig. 2.7 A birth-and-death M/M/1 example

For M/M/1 queueing systems, the arrival rate is λ which follows a Poisson distribution,
and the service rate is µ which follows an exponential distribution. Once an arrival occurs,
the state of the system is changed from n to n+1, similarly, if a departure occurs, the system
is in state n changes the system down one to n− 1, where for all n,λn = λ and µn = µ .
Therefore, a steady-state solution exists and can be determined as
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0 =−(λ +µ)pn +µ pn+1 +λ pn−1 (n≥ 1),

0 =−λ p0 +µ p1,
(2.3)

where pn,{n = 0,1,2, ...} is the steady-state probability.
To solve the steady-state difference equations for pn according to (2.3), an iterative

method is considered to obtain a sequence of state probabilities, p1, p2, p3, ..., each in terms
of p0. It follows that

p1 =
λ

µ
p0,

p2 =
λ +µ

µ
p1−

λ

µ
p0

=
λ +µ

µ

λ

µ
p0−

λ

µ
p0

=
λ 2

µ2 p0,

p3 =
λ +µ

µ
p2−

λ

µ
p1

=
λ +µ

µ

λ 2

µ2 p0−
λ

µ

λ

µ
p0

=
λ 3

µ3 p0.

(2.4)

The pattern which can be emerging is given by

pn = p0

n

∏
i=1

(
λ

µ

)
(n≥ 1)

= p0

(
λ

µ

)n

.

(2.5)

As the sum of the probabilities of every state being steady is 1, we have

∞

∑
n=0

(ρ)n p0 = 1, (2.6)
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where ρ =
λ

µ
indicates the utilisation for single-server queues, and

∞

∑
n=0

(ρ)n converges if and

only if ρ < 1. Based on the sum of the terms of a geometric progression, we have

∞

∑
n=0

ρ
n =

1
1−ρ

, ρ < 1. (2.7)

Thus, the solution of the steady-state for the M/M/1 queueing model can be expressed as
a geometric probability function,

pn = (1−ρ)ρ
n,ρ =

λ

µ
< 1. (2.8)

Based on the steady-state probability distribution, two measures of effectiveness, the
mean queue length Lq and the expected waiting time Wq, can be calculated. Let Nq is the
random variable number in steady-state, then we have

Lq = E[Nq] =
∞

∑
n=1

(n−1) pn

=
∞

∑
n=1

npn−
∞

∑
n=1

pn

= (1−ρ)
∞

∑
n=1

nρ
n− (1− p0) .

(2.9)

According to (2.5) and the summation of
∞

∑
n=1

nρn, we have

∞

∑
n=1

nρ
n−1 =

d[1/(1−ρ)]

dρ

=
1

(1−ρ)2 .

(2.10)

Substituting (2.10) into (2.9), the expect queue length is Lq given by

Lq =
ρ

1−ρ
−ρ =

ρ2

1−ρ
. (2.11)

Based on Little’s formulas and (2.11), the expected waiting time Wq can be given by

Wq =
Lq

λ
=

ρ

µ−λ
. (2.12)

Similarly, the expect waiting time in M/M/S queueing system can be given by
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Wqs =
αs p0

s!sµ(1−ρ)2 . (2.13)

where α =
λ

µ
and λ denotes the arrival rate; µ denotes the service rate; s denotes the number

of servers and ρ =
λ

sµ
< 1 defined as the traffic intensity for the system [74].

2.4.3 Matching Theory

The matching theory was published in 1962 and was first applied to economics research
works [75]. Based on past research work, matching theory can be fairly classified into the
following three types: bipartite matching problems with two-sided preferences, bipartite
matching problems with one-sided preferences, and non-bipartite matching problems with
preferences [76]. The classical stable marriage (SM) problem and the capacitated house
allocation (CHA) problem are the central matching problems in bipartite matching problems
with two-sided preferences and bipartite matching problems with one-sided preferences,
respectively [77].

• SM problem: This is a typical one-to-one matching problem consisting of two sets of
the same size (i.e., male and female) in which each member has its own preference
list which includes all members of the opposite gender in order of preference. A pair
is considered stable if no two members of the opposite gender would have both each
other rather than their current partner [78]. Based on the algorithm was given by Gale
and Shapley, the description of the procedure and general structure of the algorithm to
solve the SM problem is detailed in Algorithm 2.1.

Algorithm 2.1 SM matching algorithm [75, 78].
1: To initialise sets of the same size for men and women;
2: To collect the information of the preference list of all individuals;
3: while All men and women are paired do
4: All free men propose to their favourite women according to their preference lists,

and remove the rest women from the list;
5: A woman accepts the most preferred man according to their preference list and

rejects the other men on the list;
6: end while
7: Output: Matching µSM;

• CHA problem: CHA problem is the variant of SM problem and extends as a many-to-
one problem in which the houses do not have their preference lists over the applicants
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[79, 80]. Each applicant has preference list of the houses that can choose from, while
the houses have a preference list for applicant-house pairs. The maximum number of
applicants can be allocated to each house is limited and is denoted as the quota [81].
The Gale and Shapley based algorithm for CHA problem is detailed as follows:

Algorithm 2.2 CHA matching algorithm [76, 81].
1: To initialise sets for houses and applicants;
2: To collect the information of the preference list of all individuals;
3: while Each applicant is allocated to a house do
4: All free applicants propose their favourite house according to their preference lists,

and remove the rest houses from the list;
5: Each house accepts the limited numbers of the most preferred applicants according

to its preference list and rejects the other applicants on the list;
6: end while
7: Output: Matching µCHA;

The basic graph method is the foundational method for proposing different matching
algorithms, whether it is used to solve SM or CHA problems. Let G = (V,E) is a given
undirected hypergraph which includes a set V of vertices and a set E of edges. A matching
in G is a subset M0 ⊆ E of edges such that for any distinct edges e1,e2 ∈M0,e1∩ e2 = /0.
Inspired by the CHA problem, social-aware radio resource allocation problem in vehicular
cellular networks can be transformed into a 3-dimensional matching which is to find a
matching in a 3-partite hypergraph with the maximum number of edges.

The CHA algorithm is modified according to the above similarities in Chapter three.

2.4.4 Fireworks Algorithm

The fireworks algorithm theory was first published of International Conference on Sustain-
able Infrastructure conference in 2010 [82]. The simple fireworks algorithm (FWA) for
optimisation is stated as follows: randomly generate fireworks in the feasible space, where
each firework represents a solution for the optimise function. Calculate fitness value of each
firework according to the fitness function. Based on the optimisation problem and to keep
the diversity of the population, sparks and mutations fireworks are generated, where each
spark and mutation firework is a solution in the feasible space. Finally, if the best fitness has
been found, stop the algorithm. Otherwise, keep doing the iteration process until the best
value is met.
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Explosion Strength

For each firework, the number of sparks can be calculated by

Si = m
Fmax− f (xi)+ ε1

N
∑

i=1
(Fmax− f (xi))+ ε1

. (2.14)

where m is given constraints for the total number of sparks; Fmax is the worst individual
fitness value among N fireworks; function f (xi) denotes the fitness value of the firework xi,
while ε1 is an extremely small number to avoid zero division errors.

In order to limit the number of sparks for each firework, which can be given as

ŝi =


round(am), i f Si < am

round(bm), i f Si > bm,a < b < 1

round(Si), otherwise

(2.15)

where ŝi is the number of explosion sparks that generated by the ith firework; round(·) is the
rounding off function; a and b are given constraints.

Explosion Amplitude

The explosion amplitude of each spark is defined by

Ai = Â
f (xi)−Fmin + ε2

N
∑

i=1
( f (xi)−Fmin)+ ε2

. (2.16)

where Â is the given maximum amplitude constraints; Fmin denotes the best individual fitness
value among N fireworks; ε2 is an extremely small number to avoid zero division errors.

According to the results of the explosion amplitude of each spark, to make displacement
on each dimension of a firework and it can be defined by

∆xk
i = xk

i + rand(0,Ai). (2.17)

where rand(0,Ai) denotes the uniform random number within the amplitude Ai.
Based on (2.14) - (2.17), the description of the procedure and general structure of the

sparks generation algorithm is detailed in Algorithm 2.3.
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Algorithm 2.3 Sparks generation algorithm [83].
1: Randomly generate N fireworks in the feasible space, and calculated their fitness values

f (xi);
2: Calculate the number of explosion sparks for each firework by (2.14)-(2.15);
3: Calculate the explosion amplitude of each spark by (2.16);
4: Randomly choose z = rand(0,dimension) dimensions;
5: for k = 1 : dimensions do
6: if k ∈ z then
7: Displacement operation by (2.17);
8: end if
9: end for

Mutation Sparks

To guarantee the diversity of a population, Gaussian mutation is adopted into fireworks
algorithm. Thus, the mutation sparks of Gaussian explosion are given by

xk
i = xk

i g. (2.18)

where k indicates the current dimension; g is a random number follows Gaussian distribution,
g = N (1,1).

The description of the procedure and general structure of the mutation sparks generation
algorithm is detailed in Algorithm 2.4.

Algorithm 2.4 Mutation Sparks generation algorithm [83].
1: Randomly generate N fireworks in the feasible space, and calculated their fitness values

f (xi);
2: Calculate Gaussian coefficient by g = N (1,1);
3: Randomly choose z = rand(0,dimension) dimensions;
4: for k = 1 : dimensions do
5: if k ∈ z then
6: Gaussian mutation sparks generation by (2.18);
7: end if
8: end for

Fireworks Algorithm (FWA)

Based on the results of fireworks, explosion sparks and sudden change sparks, selection
strategy is determined based on Euclidean distance measurements [84] and the roulette
method [82].
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• Euclidean distance measurements : In FWA, the Euclidean distance can be calcu-
lated by

R(xi) =
K

∑
j=1

d(xi,x j) =
K

∑
j=1
∥ xi− x j ∥ . (2.19)

where d(xi,x j) denotes the Euclidean distance between any two individuals xi and x j;
K denotes a combined set of explosion and mutation.

• Roulette wheel method : In FWA, under each iteration, the probability for choosing
individual can be calculated by

p(xi) =
R(xi)

∑
j∈K

R(x j)
. (2.20)

Based on (2.19) - (2.20) and Algorithms 2.3 and 2.4, the description of the procedure and
general structure of the FWA is detailed in Algorithm 2.5.

Algorithm 2.5 Fireworks Algorithm (FWA) [83].
1: Randomly generate N fireworks in the feasible space;
2: while current iteration < maximum allowed iteration do
3: Set off N fireworks;
4: for all fireworks xi do
5: Calculate the number of sparks of each fireworks;
6: Calculate the amplitude of sparks;
7: end for
8: Calculate the number of mutation sparks, m̂;
9: for k = 1→ m̂ do

10: Randomly select a firework xi and generate a mutation spark;
11: end for
12: Select the best firework and other sparks according to the selection strategy;
13: end while

Inspired by the FWA, the offloading decisions optimisation problem in vehicular networks
can be transformed into a fireworks algorithm based optimisation problem. However, our
offloading decisions optimisation differs from the basic fireworks algorithm in the following
aspects:

• Total service delay as the fitness function: The offloading decisions for all V-UEs
are first initialised as a swarm of fireworks. After the procedure of explosion, mutation
and selection is repeated until the algorithm reaches convergence, or the maximum
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iteration index is reached. The best fitness value is selected as the solution to the
constructed problem.

• Resource management: In each iteration, some explosive sparks are generated for
each firework, followed by some variant sparks due to maintaining the diversity of the
population. Meanwhile, communication and computation resource are allocated under
each firework, explosion spark and mutation spark, which are potential offloading
decisions for all V-UEs. Afterwards, the fireworks, explosion sparks and mutation
sparks with the best fitness values are selected for the next iteration.

The basic fireworks algorithm is modified according to the above differences and similar-
ities in Chapters four and five.





Chapter 3

Social-Aware Resource Allocation
Algorithm for V2X Communications

3.1 Introduction

In this chapter, we present social-aware resource allocation schemes for V2X communications.
We start with designing a V2X communications system that includes both the physical and
social domains, and further consider the optimal resource allocation schemes for V2X
communications underlaying cellular networks.

As we mentioned in Chapter 1, social-aware resource allocation schemes enable to
enhance the performance of D2D communications while guaranteeing the QoS requirements
of conventional cellular communications. In addition, profound studies have been developed
in order to propose an optimal resource allocation scheme in the physical domain for V2X
communications. However, we note that, before our work [59] has been published, only
few works have considered resource allocation schemes for V2X communications, where
the social domain is commonly considered. As the ever-increasing for wireless connections
from vehicles, and most communication demands are initiated by human users, whose social
activities would influence their communication demands and requirements, as discussed in
[85]. In existing works for D2D communications [86–89], authors assumed all devices to be
either stationary or with a pedestrian speed, which cannot be readily applied to high mobility
vehicular users in V2X communications.

In our work, we formulate the resource allocation problem based on the social and the
physical domains, and aim to maximise the total capacity of V2I links while guaranteeing
the reliability (in terms of outage probability) of all V2V links by jointly optimising the
resource allocation and transmission power for all the links. To solve this problem, we
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propose a two-step optimisation scheme, i,e., social-aware clustering resource allocation
(SACRA) algorithm. The first step aims to group all V-UEs into different social communities
according to their social attributes, and all V2V links in the same social community are
divided into different clusters based on the minimised intra-cluster interference between
different V2V links. The second step is designed to allocate different RBs to each cluster
obtained in step one, aiming to maximise the sum V2I capacity based on a k-Dimensional
many-to-one matching [90]. The stability and convergence of each step are proved. The
proposed SACRA algorithm is evaluated through simulations and outperforms nonsocial-
aware resource allocation schemes with relatively smaller computational complexity.

The rest of the chapter is organised as follows. The system model is introduced in section
3.2. In section 3.3 we present the problem formulation. In section 3.4, a description of the
procedure and general structure of the optimisation algorithms for resource allocation among
all V2V and V2I links. In section 3.5, the performance in terms of the total capacity of V2I
links is analysed based on the simulation results. Finally, section 3.6 concludes the chapter.

3.2 System Model

Social
Domain

Physical
Domain

V2V Link

V2I Link

Interference
Link

Social community

Fig. 3.1 Illustration of V2X communications
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As shown in Fig. 3.1, we consider a single BS based cellular network for a V2X
communication system, where the V2X system is divided into the physical domain and
the social domain. In the physical domain, the total uplink bandwidth is divided into M
orthogonal RBs which are assigned to F V2I links. The corresponding sets are denoted by
M = {1, ...,M} and F = {1, ..,F}, respectively. To avoid severe interference and reduce
the high complexity of the system model, each V2I link uses a single RB and there is
no interference between V2I links, i.e., F = M. In addition, V V2V links reuse the uplink
resources of V2I links to improve spectrum utilisation, and the set is denoted by V = {1, ..,V}.
It is noted that the number of V2V links is larger than the number of V2I links, i,e., V ≫ F ,
and all V-UEs are deployed on the road randomly.

In the social domain, the social behaviors of V-UEs reflect their social connections,
which can be obtained from different social medias (i.e., Facebook, Twitter and so on).
Therefore, all V-UEs have to be grouped into Q social communities (i.e., the set is denoted
by Q = {1, ...,Q}) based on their social attributes. Due to the V-UEs in the same social
community are more likely to communicate with one another than those in different social
communities, two V-UEs of each V2V link are belong to the same social community and
there is no V2V link across two different social communities.

3.2.1 Physical Domain

In the physical domain, as Fig. 3.1 shows, the channel gain from the transmitter of the f -th
V2I link to the BS over the m-th RB is given by

gm
f ,B = α

m
f ,B|hm

f ,B|2, (3.1)

where αm
f ,B is the large-scale fading of the channel from the transmitter of the f -th V2I link

to the BS, which includes distance dependent path-loss and log-normal shadowing [91];
hm

f ,B is the Raleigh fading channel coefficient that follows the complex Gaussian distribution
CN(0,1). Similarly, the channel gain from the transmitter of the f -th V2I link to the receiver
of the v-th V2V link, and the channel gain of the v-th V2V link can be expressed as gm

f ,v

and gm
v , respectively. Moreover, the interfering channel from the transmitter of the v-th V2V

link to the BS over the m-th RB, and the interfering channel from the transmitter of the v′-th
link to the receiver of the v-th V2V link over the m-th RB can be expressed as gm

v,B and gm
v′,v,

respectively.
The received SINR of the f -th V2I link at the BS over the m-th RB is given by
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γ
m
f ,B =

Pf gm
f ,B

∑
v∈V

av,mPvgm
v,B +σ2 , (3.2)

where Pf and Pv are the transmit powers of the f -th V2I transmitter and the v-th V2V link
transmitter, respectively; σ2 is AWGN power; and av,m is the spectrum allocation indicator
function, defined as

av,m =

1 if the v-th V2V link is transmitting over the m-th RB,

0 otherwise.
(3.3)

Similarly, the received SINR of the v-th V2V link at the receiver over the m-th RB is
given by

γ
m
v =

Pvgm
v

∑
f∈F

a f ,mPf gm
f ,v + ∑

v′ ̸=v,v′∈V
av′,mPv′gm

v′,v +σ2 , (3.4)

where Pv′ is the transmit power of the v′-th V2V transmitter; a f ,m and av′,m are the spectrum
allocation indicator functions, and they are similarly defined as av,m.

In order to maximise the sum capacity of V2I links, according to Shannon theorem
[92], and guarantee the minimum reliability of all V2V links which according to the outage
probabilities, the sum capacity of all V2I links is given by

r = ∑
f∈F

∑
m∈M

log2

(
1+ γ

m
f ,B

)
. (3.5)

3.2.2 Social Domain

In the social domain, according to the vehicular social networks theory [93], social community
is defined as a set of V-UEs who have the same or similar social attributes or are interested
in the same/similar information or contents (i.e., road traffic, weather information, video
games, etc.). Based on the common interests or the shared social attributes between V-UEs,
the V-UEs in the same social community more likely to communicate with one another or
share contents via V2I link and V2V links than V-UEs in the completely different social
communities.

According to the cosine similarity function [93], the similarity of between the v-th V-UE
and the q-th social community is given
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SHq,v =

Q
∑

k1=1
Zq,k1Sv,k1√

Q
∑

k2=1
Z2

q,k2

√
Q
∑

k3=1
S2

v,k3

, (3.6)

where Zq,k1,Sv,k1,Zq,k2,Sv,k3 are indicator functions, defined as

Zq,k1 =

1 if content k1 is involved in the q-th community,

0 otherwise,
(3.7)

Sv,k1 =

1 if the v-th V-UE is interested in content k1,

0 otherwise.
(3.8)

And Zq,k2,Sv,k3 are similarly defined as Zq,k1,Sv,k1. Based on the result of the social
similarity, each V-UE is allocated into the corresponding social community that has the
highest value with it. For example, V-UE v is allocated into the q-th social community
if SHq,v > SHq′,v∀q,q′ ∈ Q and q ̸= q′. Moreover, the strength of the social relationship
between the v-th V2V link and the f -th V2I link is defined by δ f and the value is chosen in
the range [0,1] [93], where δ f = 1 indicates that the strongest social connection between V2I
link f and V2V link v, and δ f = 0 indicates that the weakest social connection.

The notations used in this chapter can be found in Table 3.1.
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Table 3.1 General Notation

Notation Definition
V /V The set/number of V2V communication links
F/F The set/number of V2I communication links
M /M The set/number of uplink RBs
Q/Q The set/number of social communities
N The total number of clusters
gm

f ,B The channel from the f -th V2I Tx to the BS over RB m
gm

v The channel of the v-th V2V link over RB m
gm

v,B The interfering channel from the v-th V2V Tx to the BS over RB m
gm

f ,v The channel from the f -th V2I Tx to the v-th V2V Rx over RB m
gm

v′,v The interfering channel from the v′-th V2V Tx to the v-th V2V Rx
over RB m

αm
f ,B The large-scale fading of V2I link f

hm
f ,B The Raleigh fading channel coefficient

γm
f ,B SINR of the f -th V2I link at the BS over the m-th RB

γm
v SINR of the v-th V2V link at the receiver over the m-th RB

Pf ,Pv The transmit power of the f -th V2I/v-th V2V transmitter
av,m Equals 1 if v-th V2V link reuses the same spectrum with the f -th V2I

link
σ2 The additive white Gaussian noise power
r The sum capacity of all V2I links
SHq,v The social similarity between the v-th V-UE and the q-th social com-

munity
Zq,k1 Equals 1 if some V-UEs in the q-th community has cached content k1
Sv,k1 Equals 1 if the v-th V-UE is interested in content k1
ψn The total intra-cluster interference
Pmax

f ,Pmax
v The maximum transmission power of V2I/V2V transmitter

δ f The social connection between V2I link f and V2V link v
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3.3 Problem Formulation

The purpose of the work aims to maximise the sum V2I capacity to support contents sharing
over the vehicular social networks. Therefore, the optimisation problem includes the physical
domain and the social domain, and we formulated the communication resource allocation
optimisation problem as

max
{Pf ,Pv}

M

∑
m=1

F

∑
f=1

a f ,mδ f log2(1+ γ
m
f ,B) (3.9)

s.t. av,mPr{γm
v ≤ γ0} ≤ p0, ∀v ∈ V ,∀m ∈M (3.9a)

0 < Pf ≤ Pmax
f , ∀ f ∈F (3.9b)

0 < Pv ≤ Pmax
v , ∀v ∈ V (3.9c)

a f ,m,av,m ∈ {0,1}, ∀ f ∈F ,∀v ∈ V ,∀m ∈M (3.9d)
M

∑
m=1

a f ,m = 1, ∀ f ∈F (3.9e)

M

∑
m=1

av,m = 1, ∀v ∈ V (3.9f)

F

∑
f=1

a f ,m = 1, ∀m ∈M (3.9g)

δ f ≥ δ0, ∀ f ∈F (3.9h)

where constraints (3.9a) is the minimum reliability requirements for all V V2V links, γ0 is the
minimum SINR to guarantee the reliability of an arbitrarily V2V link, and p0 is the maximum
tolerable outage probability, Pmax

f and Pmax
v in (3.9b) and (3.9c) are the maximum transmit

powers of the V2I and V2V transmitters, constraint (3.9d) is the spectrum indicator with
a f ,m = 1 sharing the V2I link is transmitting over the m-th RB and a f ,m = 0 otherwise. And
the spectrum indicator for v-th V2V link is av,m, which is similarity defined; constraints (3.9e)
and (3.9f) ensure an arbitrarily V2I link and V2V links can access single RB, constraint (3.9g)
restricts orthogonal spectrum to be allocated among F V2I links. Constraint (3.9h) ensures
that the social relationship between V2V link and V2I link f is no less than a threshold δ0.
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3.4 Algorithms of Matching under Preferences

3.4.1 The Proposed SACRA Algorithm

In this section, we propose the two-step SACRA algorithm to solve the problem (3.9). In
the first step, all vehicular users are grouped into different social communities according to
their social attributes. We assume that each V2V link is formed of two vehicles belonging
to the same social community and each vehicle can be part of at most one V2V link. The
different V2V links in the same social community are divided into different clusters in a way
that the resulting intra-cluster interference between V2V links is minimised (which we will
present in section 3.4.2). In the second step, based on the clustering results, we will adopt the
matching theory [94] to solve the resource allocation problem in (3.9) under the constraints
of maximum allowed transmission powers (which we will present in section 3.4.3).

m

q

Social
community

V2V 
cluster

V2V link

RB

V2I link

Social communities (Q)
V2V Cluster (N)

RBs (M) V2I Links (F)

f

Fig. 3.2 Spectrum sharing between V2I link and V2V cluster of SACRA algorithm.

3.4.2 Social-Aware V2V Clustering

We first group all vehicular users into different social communities based on their social
attributes, which can be calculated by using (3.6). Vehicular user v will be grouped into
the q-th community that gives the largest value of similarity SHq,v(q ∈ Q) among all the
communities. We assume that the two vehicles of each V2V link belong to a same community,
and there is no V2V link across two different social communities.

In order to guarantee the minimum interference among different V2V links in the same
social community, we propose a social-aware V2V clustering algorithm to divide the V2V
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links of each community into different clusters based on their mutual interference. This
algorithm is given in Algorithm 3.1, which extends the simple heuristic algorithm [95],
and is explained in the following. As shown in Fig.3.2, we assume that in the q-th (where
q ∈Q) social community, there are Vq V2V links, which are divided into Nq clusters, where
Vq≫ Nq. For Q social communities, we have N clusters and V V2V links in total, where

Q
∑

q=1
Nq = N,

Q
∑

q=1
Vq = V , and V ≫ N. For simplicity, we assume that the total number of

V2V clusters is equal to the total number of V2I links in the system, i.e., N = F . Thus,
in the q-th social community, we divide Vq V2V links into Nq clusters which are denoted
as SCq,1, ...,SCq,Nq . In order to avoid severe co-channel interference between different
V2V links within the same cluster, for the vq-th V2V link (vq ∈ {1, ...,VQ},q ∈ Q), we
approximate the total intra-cluster interference that it may experience in the n-th cluster
(n∈ {1, ...,Nq},q∈Q) by ψvq,n = ∑

v′q∈SCq,n,vq ̸=v′q

(αvq,v
′
q
+αv′q,vq

), where αvq,v
′
q

is the large-scale

fading of the interference channel from the v
′
q-th V2V transmitter to the vq-th V2V receiver

in the q-th social community. Then, the vq-th V2V link is grouped into the cluster that gives
the smallest value of ψvq,n(n ∈ {1, ...,Nq},q ∈ Q) among all clusters in the q-th community.

According to the above, the social-aware V2V clustering scheme can be considered as a
three partite graph, which is a NP-hard problem [96]. Algorithm 3.1 (lines 8-17) solves this
NP-hard graph partitioning problem.

3.4.3 SACRA Algorithm

Based on the results of Algorithm 3.1, we consider to each V2I link share the same spectrum
with all V2V links in the same cluster of each social community, while V2V links from
different clusters cannot share spectrum resource. Thus, the RB sharing for the V2V links in
the same cluster is also an NP-hard problem which has been proven in [96]. For simplicity,
we assume M = F so that there is no spectrum resource sharing among V2I links, and to
reduce the complexity of the algorithm

Accordingly, the resource allocation problem in (3.9) is rewritten as follows,

max
{Pm,Pv}

Q

∑
q=1

M

∑
m=1

F

∑
f=1

Nq

∑
nq=1

a f ,mcnqδ f log2(1+ γ
m
f ,B) (3.10)

s.t. (3.9a)∼ (3.9h)
Q

∑
q=1

cnq = 1, ∀nq ∈ {1, ...,Nq} (3.10i)
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Algorithm 3.1 Social-Aware V2V Clustering Scheme
1: for q = 1 : Q do
2: for v = 1 : V do
3: Use (3.6) to calculate the social similarity among vehicles and social communi-

ties;
4: end for
5: To assign the vth V2V link to the q-th social community with arg max (3.6);
6: end for
7: Return the social community result;
8: for q = 1 : Q do
9: Randomly assign one V2V link to each of the Nq clusters in the q-th social commu-

nity;
10: for vq ∈Vq do
11: for n = 1 : Nq do
12: To calculate the intra-cluster interference by using ∑

v′q∈SCq,n,vq ̸=v′q

(αvq,v
′
q
+

αv′q,vq
)

13: end for
14: To assign the v-th V2V link into nq

∗-th cluster in the q-th social community with
nq
∗ = arg min ∑

v′q∈SCq,n,vq ̸=v′q

(αvq,v
′
q
+αv′q,vq

).

15: end for
16: end for
17: Return the social-aware V2V clustering result.

where constraint (3.10i) ensures that each cluster belongs to one social community.
The problem in (3.10) is solved by Algorithm 3.2.

3.4.4 3-Dimensional Matching Problem

As we mentioned in Section 3.4.3, inspired by the CHA problem and the k-dimensional
matching game in [90], the k-dimensional matching problem is to find a matching in a
k-partite hypergraph with the maximum number of edges. Therefore, we model the radio
resource allocation problem in (3.9) as a weighted 3-dimensional matching problem, where
each possible resource allocation sharing pattern is considered as V2I-RB-V2V. The 3-
dimensional resource allocation matching problem in our work can be defined as follows:

Definition 3.1. Let H = (A,E) denotes a 3-partite hypergraph.

• A is a set of vertices, where A = {[ f ,0,0],1 ≤ f ≤ F} ∪ {[0,m,0],1 ≤ m ≤ M} ∪
{[0,0,n],1≤ n≤ N};
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Algorithm 3.2 SACRA for V2X Communications
1: According to the cluster results of Algorithm 1.
2: for f = 1 : F do
3: for q = 1 : Q do
4: for nq = 1 : Nq do
5: for m = 1 : M do
6: To calculate the capacity of V2I link by using formula (3.9).
7: end for
8: end for
9: end for

10: end for
11: To construct a three-partite graph, where the vertices are formed in term of V2I links,

RBs and Nq clusters in q-th social community.
12: To modify the k-Dimensional matching algorithm [90] and adopt Hungarian algorithm

[97] to find matching solutions.
13: Return the corresponding resource allocation results.

• E is a set of edges and each edge is a non-empty subset of A, where E = {( f ,m,n),1≤
f ≤ F,1≤ m≤M,1≤ n≤ N};

• ω( f ,m,n) is defined as the weight function, where ω( f ,m,n)= log2(1+γm
f ,B), ∀ f ,m,n,1≤

f ≤ F,1≤ m≤M,1≤ n≤ N.

Based on the definition 3.1, the weighted 3-dimensional matching problem can be
converted to an integer program as follow:

max ∑
e∈E

ωexe (3.11)

s.t. ∑
e∈∆(a)

xe ≤ 1, ∀a ∈ A (3.11a)

xe ∈ {0,1}, ∀e ∈ E, (3.11b)

where ∆(a) is the set of edges containing a, and the integer problem can be solved by
Algorithms 3.3 and 3.4, which are obtained from the weighted 3-dimensional matching
algorithm and the local ratio algorithm, respectively [90]. Let M[e] be the set of edges
H having non-empty intersection with e, e ∈M[e]. Based on Algorithms 3.3 and 3.4, the
solution x of the linear program (3.11) can be obtained, and produce a maximal matching in
H.
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Algorithm 3.3 Iterative 3-Dimensional Matching Algorithm [90]

1: Input H = (A,E).
2: Let B⊆ E with initialisation B = /0.
3: repeat
4: Find a hyperedge e ∈ E−B with x(M[e])≤ 2.
5: Let B = B∪{ei}.
6: Let i = |B|+1, and ei = e.
7: until E−B = /0.
8: To find a matching M0 by using Local-Ratio algorithm in Algorithm 3.4 with input B

and the weight ω .
9: Return M0 is the maximal matching.

Algorithm 3.4 Local Ratio Algorithm [90]

1: Input hypergraph H = (A,E),B⊆ E, and an ordering of the edges in E.
2: Let B′ = {e ∈ B : ωe > 0}.
3: if B′ = /0 then
4: Return /0
5: end if
6: Choose hyperedge e′ from B′ with the smallest index.
7: Decompose the weight function ω = ω1 +ω2, where

ω1(e) =

{
ω(e′), i f e ∈M[e′],
0,otherwise.

8: M′← Local-Ratio (B′,ω2). (Note: this is a recursion.)
9: if M′∪{e′} is a matching in H then

10: Return M′∪{e′}.
11: else
12: Return M′.
13: end if
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3.4.5 Complexity Analysis

In Algorithm 3.1, the social community assignment has a complexity of O(QV ), and the
V2V clustering has a complexity of O(QV F). Therefore, the complexity of Algorithm 3.1 is
O(QV (1+F)).

In Algorithm 3.2, the computational complexity mainly comes from the weighted 3-
partite graph construction, where the complexity is O(QF3). In Step 12, the complexity can
be obtained from Algorithms 3.3 and 3.4. Therefore, the complexity of Algorithms 3.3 and
3.4 is detailed as follows: In Sections 3.4.4, we have a 3-partite hypergraph with |A|= n and
|E|= f . In Algorithm 3.3, the complexity mainly comes from Step 3 to Step 7, where the
total number of iterations of the loop is f . In each iteration, an edge e can be searched with
x(M[e]) ≤ 2, where the complexity in each iteration is O(n2log2n). Thus, the complexity
from Steps 3 to 7 is O( f n2log2n). In Step 8, the complexity can be obtained from Algorithm
3.4, which can be implemented O( f n2).

Based on the above analysis, the total complexity of Algorithm 3.2 is O(QV (1+F)+

QF3 +F5logF).

3.5 Numerical Results and Analysis

In this section, we present the simulation results. We consider a single cell scenario covering
a 500m × 500m highway area, with one BS located in the centre of the area. We assume that
there are four lanes and each lane has a width of 6 meters. Without loss of generality, we
suppose that there are three social communities in our scenario, i,e., Q = 3. We assume that
all the vehicles are deployed on the road randomly and the total number of V2V clusters is
equal to the number of V2I links. All the parameters used in the simulation are shown in
Table 3.2.
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Table 3.2 Simulation Parameters

Parameters Value
Carrier frequency 2 GHz
Bandwidth 20 MHz
BS antenna height 15 m
Vehicle antenna height 1.5 m
BS Rx noise figure 5 dB
BS antenna gain 8 dBi
Vehicle antenna gain 3 dBi
Vehicle Rx noise figure 9 dB
Absolute vehicle speed v 60 km/h
Average inter-vehicle distance 2.5∗ v
SINR threshold for V2V γ0 5 dB
Maximum transmit power of V2I Tx 23 dBm
Maximum transmit power of V2V Tx 20 dBm
Noise power N0 -174 dBm/Hz
Path-loss model (V2V link) LOS in WIN-

NER+B1
Path-loss model (V2I link) 128.1 +

37.6log10d,d
in km

Shadowing distribution (V2I/V2V link) Log-normal
Shadowing standard deviation (V2I link) 8 dB
Shadowing standard deviation (V2V link) 3 dB
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Fig. 3.3 The sum V2I links capacity for all the V2I links versus vehicle velocity for different
values of the strength of the social relationship δ .

Fig. 3.3 shows the V2I links sum rate v.s. speed with different social relationship
thresholds. To compare the impacts of the social relationships, we set the threshold of
the strength of the social relationship values as δ f = 0.5,δ f = 0.8, and δ f = 1, when the
threshold δ f increases, the performance is getting better. The reason is when the threshold is
lower, the more links with the weak intensity of social relationships can be satisfied, which
lead to more interferences to influence on the sum rate. In Fig. 3.3, it is also illustrates that
with the speeds increase, the performance also becomes worse, especially when the speed
starts to exceed to 110 km/h. This is because the network topology becomes more dynamic,
which leads to less reliable V2V links. Then the links are more vulnerable to be connected.

Fig. 3.4 illustrates that the sum capacity of V2I links decreases when the SINR thresholds
for V2V link grows large, where δ f = 1 for the social-aware scenarios and non-social-aware
scenarios neglect the social similarities among all V-UEs. This is because with the increasing
of the SINR threshold, the interference tolerability of V2V link is reduced. It is also observed
that the performance of the social-aware systems are better than the non-social-aware systems.
With increasing of SINR threshold, the impact is getting smaller.
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3.6 Conclusions

In this chapter, we have studied the resource allocation problem of a social-aware V2X
communication system, where each V2I link shares its RB with multiple V2V links. A
V-UE is grouped into the social community that it has the strongest social interest similarity
with. Then we have proposed a social-aware V2V clustering algorithm to divide all V2V
links within each social community into different clusters according to the minimal intra-
cluster interference among different V2V links. We also proposed a social-aware clustering
resource allocation (SACRA) algorithm based on our social-aware V2V clustering algorithm
to maximise the sum capacity of V2I links while guaranteeing the reliability for all V2V links.
The simulation results demonstrate that a stronger social relationship between vehicles in a
same social community would lead to a higher sum V2I capacity for the community. A larger
SINR threshold for V2V link would lead to a lower sum V2I capacity for both social-aware
and nonsocial-aware scenarios. However, the sum V2I capacity of the social-aware scenario
is still higher than the one of nonsocial-aware scenarios.





Chapter 4

Collaborative Computation Offloading
and Computation Resource Allocation in
Vehicular Networks Based on Mixed
Cloud/Fog Computing Systems

4.1 Introduction

In sections 1.1.1 and 1.1.2 we have introduced existing works on different offloading schemes
for V2X communications while guaranteeing minimum offloading delays among all V-UEs.
The proposed algorithms require accurate channel state information resource configuration
for multiple channels and solve the MINLP problem, which is NP-hard. However, the impact
of the mobility of V-UEs and/or the queuing delays of cloud centres or fog servers has not
been fully studied.

In this chapter, we propose a three-layer (vehicle-fog-cloud) computation offloading
framework for V2X communications to model the service delays of V-UEs locally processing
or offloading their computationally intensive applications (e.g. online video games) to the
cloud or fog servers, where the queues at the fog node and the cloud centre are modelled
following the M/M/1 and M/M/C queueing models, respectively. We first identify the key
constraints (i.e., the mobility of V-UEs, the maximum number of servers, the transmission
distance and so on.) so that the QoS of V-UEs can be guaranteed. Since we aim to minimise
the maximum service delay (which includes the transmission delay, the queueing delay and
the processing delay) among all V-UEs in the proposed system. Then we propose a mobility
and queueing-based offloading decisions optimisation algorithm, which jointly optimises
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the computation offloading decisions of all the V-UEs while considering their mobility and
potential queueing delays at the fog node and the cloud centre in conjunction with a bisection
method-based algorithm that optimises the fog node computation resource allocation for the
fog-processing V-UEs. Finally, we discuss the performance of the proposed algorithms in
comparison with the benchmarks, including pure local processing, fog processing, cloud
processing, and random processing.

The rest of the chapter is organised as follows. The system model is introduced in section
4.2. In section 4.3 We first present the problem formulation, followed by a description of the
procedure and general structure of the optimisation algorithms for offloading decisions and
fog computation resource allocation. In section 4.4, complexity of the proposed schemes is
analysed. In section 4.5, the performance in terms of total service latency is analysed based
on the simulation results. Finally, section 4.6 concludes the chapter.

4.2 System Model

In this section, we first introduce a vehicle-fog-cloud three-layer networks, then derive the
total service delay of the local, fog and cloud processing modes, respectively.

4.2.1 Vehicle-fog-cloud Architecture

As shown in Fig. 4.1, we consider a three-layer network model. The vehicle layer is
composed of V V-UEs, the fog layer is composed of a fog node collected with a RSU, and
the cloud layer mainly is distant cloud centre with C cloud servers. Denote the set of V-UEs
and cloud servers as V = {1,2, ...,V} and C = {1,2, ...,C}, respectively. All V-UEs in the
coverage are connected to the fog node by V2I wireless links, while the fog node is connected
to the cloud centre by a wired link.

For simplicity, we assume that each V-UE has only one application to process at the
same time, and the RTT can be ignored. Within the communication coverage of the fog
node, each V-UE may process its application by itself (i.e., local processing) or offload the
application to the fog node or a cloud server for remote processing. Firstly, each V-UE
sends an offloading request (including the information about its application size, location,
velocity, heading direction and channel conditions) to the manager in the fog node [98]. After
receiving the request from the V-UE, the manager optimises the offloading decisions of all
V-UEs considering the offloading requests of other V-UEs and the available computational
resources in the fog node and in the cloud centre.
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Fig. 4.1 System architecture of a three-layer computing system

The offloading decision for V-UE v is denoted by the offloading decision indicators,
xv,yv,zv ∈ {0,1}, we have

xv + yv + zv = 1, ∀v ∈ V . (4.1)

where xv = 1,yv = 1,zv = 1 indicate that the application is processed by V-UE v itself, by the
fog node, or by a cloud server, respectively; otherwise, xv = 0,yv = 0,zv = 0.

For all V-UEs, the offloading decisions matrix, i.e., O, can be given by

O=

x1, y1, z1
...

...
...

xV , yV , zV


V×3

. (4.2)

4.2.2 Transmission Delay

If the application of a V-UE is processed locally, there is no transmission delay of the
application; If the application of a V-UE is for cloud/fog processing, then the transmission
delay for uploading the input data of the application to the fog node or a cloud computing
server can be calculated according to the offloading decision.

Fog Processing

If an application is to be processed by the fog node, the maximum achievable transmission
rate (in bit/s) from V-UE v to the fog node under a selected RB can be given by
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rv, f =Wf log2

(
1+

Pvgv, f

σ2

)
, (4.3)

where Wf is the bandwidth of a selected RB (in Hz) between V-UE v and the fog node, in
order to avoid severe interference, we assume that each V2I link is allocated an orthogonal
RB, i.e., there is no interference between V2I links; Pv is the transmission power of a V-UE
that is assumed to be the same for all V-UEs [26]; gv, f is the channel power gain from V-UE
v to the fog node [99]; and σ2 is the AWGN power at the fog node.

The transmission delay from V-UE v to the fog node is given by

T trans
v, f =

Dv

rv, f
, (4.4)

where Dv is the data size (in bits) of V-UE v’s application.

Cloud Processing

If the application is to be processed by a cloud server, then the application is forwarded by
the fog node to the cloud centre by a high-speed wired link, where the transmission rate from
the fog node to the cloud centre is denoted by r f ,c (in bit/s). The transmission delay from the
fog node to the cloud centre is given by

T trans
v, f ,c =

Dv

r f ,c
. (4.5)

The total transmission delay from V-UE v to a cloud server can be calculated by

T trans
v,c = T trans

v, f +T trans
v, f ,c . (4.6)

4.2.3 Queueing Delay

We consider a time-slotted model, where t = {0,1, ..., t} denotes the set of time slots and the
length of each time-slot is η . When t < 0, both the queues at the fog node and the cloud
centre are empty.

Fog Processing

We assume the queue at the fog node follows the M/M/1 queueing model. Applications arrive
at the queue of the fog node are assumed to follow a Poisson process with rate λ f . It means
that the number of fog processing applications, V1, arriving at the fog node during a time slot
has a Poisson distribution which is given by
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P
(
V1|t,λ f

)
=

(
λ f t
)V1

V1!
exp(−λ f t) (4.7)

Moreover, the inter-arrival delays and the service delays have an exponential distribution
with probability density as follow

a(t) = λ f exp(−λ f t), t > 0. (4.8)

b(t) = µ f exp(−µ f t), t > 0, (4.9)

where µ f is the service rate of the fog node.
According to (4.7) - (4.9), the inter-arrival delays and the service delays can be calculated

by

E [inter−arrival delay] =
1

λ f
. (4.10)

E [service delay] =
1

µ f
. (4.11)

In addition, the utilisation rate of the fog node is given by

ρ f =
λ f

µ f
. (4.12)

M/M/1 is one of simple general birth and death model, the generator matrix is given by

A =


−λ f λ f

µ f −(λ f −µ f ) λ f

µ f −(λ f −µ f ) λ f
. . .

 . (4.13)

Based on Kolmogorov equations [100] for PV1(t) (V1 = 0,1,2, · · ·), we have

P
′
0(t) =−λ f P0(t)+µ f P1(t) (4.14)

P
′
V1
(t) =−(λ f +µ f )PV1(t)+λ f PV1−1(t)+µ f PV1+1(t), V1 = 1,2,3, ... (4.15)
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Theorem 4.2.1 If the Markov process is irreducible (all states communicate), then the
limiting distribution lim t→∞PV1(t) = pV1 exists and is independent of the initial condi-
tions of the process. The limits {pV1,V1 ∈ S} are such that they either vanish identically
(i.e., pV1 = 0, ∀V1 ∈ S) or are all positive and form a probability distribution (i.e., pV1 >

0,∀V1 ∈ S, ∑
V1∈S

pV1 = 1).

Theorem 4.2.2 The limiting distribution {pV1,V1 ∈ S} of an irreducible recurrent Markov
process is given by the unique solution of the equation pA = 0 and ∑

V ′1∈S
pV ′1

= 1, where

p = (p0, p1, p2, ...).
For the limiting probabilities lim t→∞PV1(t) = pV1 , the state balance equations can be

expressed by

λ f P0 = µ f P1. (4.16)

(λ f +µ f )PV1 = λ f PV1−1 +µ f PV1+1, V1 = 1,2,3, ... (4.17)

As the sum of the probabilities of every state being steady is 1 (i.e.,
∞

∑
0

PV1 = 1), we have

PV1 = (1−ρ f )(ρ f )
V1, V1 = 1,2,3, ... (4.18)

where ρ f = λ f /µ f < 1.
When there are V1 applications in the queue system at the fog node, the total queueing

delay time of V1 applications is Erlang with probability density is given by[73]

fV1(x) = exp(−µ f x)
(µ f )

V1(x)V1−1

(V1−1)!
. (4.19)

Let Ff og(t) = P(Tf og ≤ t), we have

Ff og(0) = P(Tf og = 0) = 1−ρ f . (4.20)

Thus, for t > 0, we have
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dFf og(t) = P(t < Tf og < t +dt)

=
∞

∑
V1=1

PV1exp(−µ f t)
(µ f )

V1(t)V1−1

(V1−1)!
dt

= (1−ρ f )
∞

∑
V1=1

(ρ f )
V1exp(−µ f t)

(µ f )
V1(t)V1−1

(V1−1)!
dt

= λ f (1−ρ f )exp[−µ f (1−ρ f )t]dt.

(4.21)

The distribution of Tf og with the discontinuity at 0 can be expressed by

Ff og(t) = P(t = 0)+
∫ t

0
dFf og(t)

= 1−ρ f exp[−µ f (1−ρ f )t].
(4.22)

Let E(Tf og) = T wait
f and based on (4.21) and (4.22), the average queueing delay of an

application in the fog node queue is given by

T wait
f = E(Tf og) =

ρ f

µ f (1−ρ f )
=

λ f

µ f (µ f −λ f )
(4.23)

Cloud Processing

The queue at the cloud centre follows the M/M/C model [73]. We assume the same service
rate for each cloud server, i.e., µc. The applications arrive at the cloud centre also following
a Poisson process with the rate of λc. Then, the utilisation rate of the cloud centre is given by
ρc = λc/(Cµc)< 1, where it is assumed that each of the C cloud servers has enough capacity
to process the received applications.

Similarly as M/M/1 model, according to the transform methods [101] and the solutions
of Kolmogorov equations [100], we have

λcP0 = µcP1, (4.24)

(λc +Vcµc)PVc = λcPVc−1 +(Vc +1)µcPVc+1, 0 <Vc <C (4.25)
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(λc +Cµc)PVc = λcPVc−1 +CµcPVc+1, C ≤Vc < ∞ (4.26)

where Vc = V1−V2 is the number of cloud-computing V-UEs, and V2 is the number of
remote-processing V-UEs.

A recursive procedure that used in the model of M/M/1, we have,

VcµcPVc = λcPVc−1, Vc = 1,2,3, ...,C (4.27)

CµcPVc = λcPVc−1, Vc =C+1,C+2,C+3, ... (4.28)

(Also see (4.18)). Therefore,

PVc =
1

Vc!
(Cρc)

VcP0, 0≤Vc <C

=
1

C!
(Cρc)

C(ρc)
Vc−CP0, C ≤Vc < ∞, (4.29)

where ρc =
λc

Cµc
< 1 and under the condition

∞

∑
0

PVc = 1, we have

P0 =

[
C−1

∑
Vc=0

(Cρc)
Vc

Vc!
+

(Cρc)
C

C!(1−ρc)

]−1

(4.30)

PVc =
(Cρc)

Vc

Vc!
P0, 0≤Vc <C

=
(C)C(ρc)

Vc

C!
P0, C ≤Vc < ∞,

(4.31)

When the number of applications in the system is Vc ≥C, let Fcloud(t) = P[Tcloud ≤ t],we
have,
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Fcloud(0) = P[Tcloud = 0]

=
C−1

∑
Vc=0

PVc

= P0

C−1

∑
Vc=0

(αc)
Vc

Vc!
,

(4.32)

where Ωc =Cρc, according to (4.30) we have,

C−1

∑
Vc=0

(Ωc)
Vc

Vc!
=

1
P0
− (Ωc)

C

C!
(1−ρc)

−1 (4.33)

Following the arguments for the M/M/1 queue model, in the C servers model we have,

dFcloud(t) =
∞

∑
Vc=C

PVcexp(−Cµct)
(Cµct)(Vc−C)!

(Vc−C)!
Cµcdt

= PCexp(−Cµct)
∞

∑
Vc=C

ρ
(Vc−C)
c

(Cµct)(Vc−C)

(Vc−C)!
Cµcdt

=CµcPCexp(−Cµc(1−ρc)t)dt

(4.34)

The distribution of Tcloud can be solved according to (4.32) and (4.34), we have,

Fcloud(t) = Fcloud(0)+
∫ t

0

Cµc(Ωc)
C

C!
P0exp(−Cµc(1−ρc)t)dt

= 1− (Ω)CP0

C!(1−ρc)
exp(−Cµc(1−ρc)t).

(4.35)

Let E(Tcloud) = T wait
c and based on (4.34) and (4.35), the average queueing delay of an

application in the cloud queue is given by

T wait
c = E(Tcloud) =

(Ωc)CP0

C!Cµc(1−ρc)2 . (4.36)
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4.2.4 Processing Delay

The application being processed by the V-UE locally, the fog node, or a cloud server will
lead to a different processing delay.

Local Processing

Denote the local processing capability of V-UE v by f local
v (in CPU cycle/s) , then the

processing delay of local processing can be expressed as

T proc
v =

Av

f local
v

, (4.37)

where Av represents the total number of CPU cycles are required to process the application of
V-UE v and it is given by Av = DvΛv, where Λv is the processing density (in CPU cycles/bit)
of the application.

Fog Processing

If the application of V-UE v is processed by the fog node, given the fog processing capability
of V-UE v as f f og

v (in CPU cycles/s), the fog-processing delay is given by

T proc
v, f =

Av

f f og
v

. (4.38)

Cloud Processing

If the application is processed by a cloud server, denoting the cloud processing capability for
V-UE v by f cloud

v (in CPU cycles/s), then the cloud-processing delay can be expressed as

T proc
v,c =

Av

f cloud
v

. (4.39)

4.2.5 Service Delay

The service delay of an application may include the transmission delay, the queueing delay
and the processing delay according to the offloading decision. Thus, the service delay of an
application of V-UE v is given by

Tv = xvT local
v + yvT f og

v + zvT cloud
v , (4.40)
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where T local
v is given in (4.37) as the application does not need to be transmitted to any

remote server, and

T f og
v = T trans

v, f +T proc
v, f +T wait

f , (4.41a)

T cloud
v = T trans

v,c +T proc
v,c +T wait

c . (4.41b)

The notations used in this chapter can be found in Table 4.1.

Table 4.1 General Notation

Notation Definition
V/V The number/set of V-UEs
V1/V1 The number/set of fog-processing V-UEs
V2/V2 The number/set of remote-processing V-UEs
C/C The number/set of cloud servers
t The set of time slots
O The offloading decisions matrix
xv,yv,zv The offloading decision of V-UE v
rv, f The transmission rate between V-UE v and the fog node
r f ,c The transmission rate of the wired link
Wf The bandwidth of a selected RB
Pv The transmission power of each V-UE
gv, f The channel power gain between V-UE v and the fog node
σ2 The additive white Gaussian noise power
Dv The data size of application v
T trans

v, f ,c The transmission delay from the fog node to the cloud centre
T trans

v, f /T trans
v,c The transmission delay from V-UE v to the fog node/cloud centre

T wait
f /T wait

c The average queueing delay at the fog node/cloud centre queue
λ f /λc The application arrival rate at the queue of the fog/cloud server
µ f /µc The service rate at the fog node/cloud server
Av Total required number of CPU cycles of V-UE v’s application
Λv Processing density of V-UE v’s application
τv The service delay threshold of V-UE v for remote-processing
sv The velocity of V-UE v
dv The distance between V-UE v and the fog node’ s coverage edge
ŝ The number of explosion sparks
m̂ The number of mutation sparks
f f og Total computation capability of the fog node
I The number of fireworks



58
Collaborative Computation Offloading and Computation Resource Allocation in Vehicular

Networks Based on Mixed Cloud/Fog Computing Systems

T proc
v /T proc

v, f /T proc
v,c / The processing delay of local/fog/cloud processing

T local
v /T f og

v, f /T cloud
v,c /The service delay of local/fog/cloud processing

f local
v / f f og

v / f cloud
v / Processing ability of V-UE v in local/fog/cloud processing

η The length of each time slot
L Total number of iterations of MQA

4.3 Problem Formulation and Proposed Algorithm

In this section, we first formulate the min-max service delay problem, then propose a
mobility and queueing based offloading decision optimisation algorithm, in conjunction with
a bisection method based fog node computation resource allocation algorithm to solve the
min-max problem.

4.3.1 Problem Formulation

We propose to minimise the maximum service delay among all V-UEs by jointly op-
timising the offloading decisions O and the fog node computation resource allocation
f f og = { f f og

1 , ..., f f og
V }. To reduce the computation complexity, we offload applications

via selected channels to neglect the communication resource allocation issue [26] and assume
that the cloud computation resources for each V-UE are constant at the cloud centre [98].
Accordingly, we formulate the optimisation problem as follows,

P1 : min
O,f f og

max
v∈V

Tv (4.42)

s.t. xv,yv,zv ∈ {0,1}, ∀v ∈ V , (4.42a)

xv + yv + zv = 1, ∀v ∈ V , (4.42b)

∑
v∈V

yv f f og
v ≤ F f og, (4.42c)

0≤ f local
v ≤ f f og

v ≪ f cloud
v , ∀v ∈ V , (4.42d)

yvT f og
v + zvT cloud

v ≤ τv, ∀v ∈ V , (4.42e)

where F f og is the total computation capability in the fog node and τv is the estimated service
delay threshold for V-UE v; (4.42a) and (4.42b) are the constraints on the binary offloading
decision indicators for each V-UE; (4.42c) requires that the total allocated computation
resources at the fog node cannot exceed its computation capability; (4.42d) indicates that for
each V-UE, the amount of computation resource available at the cloud centre is the largest,
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followed by that at the fog node, while that available for local processing is the smallest but
should be non-negative; and (4.42e) indicates that the service delay should be kept below the
estimated threshold for each V-UE.

4.3.2 Mobility and Queueing Based Offloading Decision Optimisation
Algorithm

For any given allocation of computation resources at the fog node, we propose a mobil-
ity and queueing based offloading decision optimisation algorithm (MQA), based on the
traditional fireworks algorithm [83], to solve the formulated problem (4.42). The MQA is
summarised in Algorithm 4.1. Firstly, we initialise I random offloading decisions for all
V-UEs (O(0)

1 , ...,O(0)
I ) in the solution space. In the meantime, we calculate the service delay

threshold of V-UE v for remote processing based on its information (i.e., its position with
respect to the fog node, its moving direction and velocity) as follows,

τv =
dv

sv
, ∀v ∈ V , (4.43)

where dv is the distance between V-UE v and the coverage edge of the fog node in its direction
of moving, and sv is the velocity of V-UE v.

For all v ∈ V and i = 1, ..., I, the estimated service delay of V-UE v based on the corre-
sponding initial offloading decision in O(0)

i for remote-processing, i.e., T f og
v in (4.41a) and

T cloud
v in (4.41b), will be compared with its service delay threshold τv. If max{T f og

v ,T cloud
v }≤

τv, then the smallest estimated service delay between T f og
v and T cloud

v will be selected and
the offloading decision for V-UE v in O(0)

i will be updated accordingly. If T f og
v ≤ τv and

T cloud
v > τv (T cloud

v ≤ τv and T f og
v > τv), then T f og

v (T cloud
v ) will be selected and the offload-

ing decision for V-UE v in O(0)
i will be updated to be fog processing (cloud processing).

Otherwise, V-UE v can only process its application locally and the offloading decision for
V-UE v in O(0)

i is updated accordingly. After the all the initial offloading decision matrices
(O(0)

1 , ...,O(0)
I ) have been updated, they become the initial fireworks, O(1)

i , i = 1, ..., I.
In the lth iteration (l = 1, ...,L, where L is the maximum allowed iteration), each firework

O(l)
i generates ŝ(l)i new offloading decision matrices, which are called explosion sparks

[82]. Each explosion spark of firework O(l)
i is generated by randomly choosing j rows

(where j ∈ [1,V )) of O(l)
i and performing left circular shift by 1 position on each chosen

row, while the other (V − j) rows of the explosion spark are the same as the corresponding
ones of firework O(l)

i . We take the objective function of (4.14) as the fitness function, i.e.,
F(O(l)

i ) = max
v∈V

Tv(O
(l)
i ), and the number of explosion sparks generated by firework O(l)

i is

given by
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ŝ(l)i = ceil

S
Fmax−F(O(l)

i )+ ε1
I
∑

i=1
(Fmax−F(O(l)

i ))+ ε1

 , (4.44)

where ceil(·) denotes the ceiling function, S is a constant parameter for constraining the
number of explosion sparks, Fmax = max

i
(F(O(l)

i )), and ε1 is an extremely small number to

avoid zero division errors.
In addition to the explosion sparks, m̂ (1 ≤ m̂ ≤ I) mutation sparks are generated by

randomly selecting m̂ fireworks from the I fireworks (O(l)
1 , ...,O(l)

I ) and randomly resetting
some offloading decisions therein.

For each firework, explosion spark and mutation spark, the fog node computation resource
allocation is obtained by using the bisection method [102] (which will be presented in Section
III-C), and accordingly the fitness function value is calculated. Among all the fireworks,
explosion sparks and mutation sparks, the one with the smallest fitness value is selected as
firework O(l+1)

1 for the next iteration. Denoting the set of all fireworks, explosion sparks
and mutation sparks excluding O(l+1)

1 in the lth iteration by R(l)
est (i.e., O(l+1)

1 /∈ R(l)
est), the

other (I - 1) fireworks (O(l+1)
2 , ...,O(l+1)

I ) are selected from R(l)
est according to the roulette

wheel selection method [83], where the probability of A(l)
n (A(l)

n ∈ R(l)
est ,n = 1, ..., |R(l)

est |) being
selected is determined based on the Manhattan distance [84] as follows,

p(A(l)
n ) =

R(A(l)
n )

|R(l)
est |
∑

m=1
R(A(l)

m )

, (4.45)

where R(A(l)
n ) is the sum of Manhattan distances between matrix A(l)

n and all the other
matrices in set R(l)

est , which is given by

R(A(l)
n ) =

|R(l)
est |

∑
m=1,m ̸=n

∥ A(l)
n −A(l)

m ∥ . (4.46)

When the iteration converges or reaches the maximum allowed iteration, among all the
fireworks, explosion sparks and mutation sparks, the one with the smallest fitness value is
chosen as the optimal offloading decision O∗ and the corresponding computation resource
allocation at the fog node returns the optimal fog computation resource allocation ffog∗.
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Algorithm 4.1 Mobility and Queueing Based Offloading Decision Optimisation Algorithm
(MQA)

1: Generate I random fireworks {O(0)
1 , ...,O(0)

I }.
2: For each firework, randomly allocate fog computation resources.
3: for v = 1 : V do
4: Calculate the service delay threshold of V-UE v using (4.43).
5: for i = 1 : I do
6: Calculate the estimated service delay of V-UE v using (4.40).
7: if min{T f og

v ,T cloud
v }> τv then

8: The (v,1)th element of O(0)
i is substituted by xv = 1.

9: else if T f og
v < T cloud

v then
10: The (v,2)th element of O(0)

i is substituted by yv = 1.
11: else
12: The (v,3)th element of O(0)

i is substituted by zv = 1.
13: end if
14: end for
15: end for
16: Return: The updated fireworks as {O(1)

1 , ...,O(1)
I }.

17: Input: l = 1,F(0) = 0,ε = 10−6.
18: while l ≤ L do
19: for i = 1 : I do
20: For firework O(l)

i , run Algorithm 4.2 and calculate its fitness value.
21: Calculate ŝ(l)i according to (4.44).
22: Generate ŝ(l)i explosion sparks from firework O(l)

i .
23: For each explosion spark, run Algorithm 4.2.
24: Calculate the fitness value of each explosion spark.
25: end for
26: Generate m̂ mutation sparks.
27: For each mutation spark, run Algorithm 4.2.
28: Calculate the fitness value of each mutation spark.
29: The firework, explosion spark or mutation spark with the smallest fitness value is

chosen as O(l+1)
1 , and the smallest fitness value is denoted by F(l).

30: if |F(l)−F(l−1)|< ε then
31: break;
32: else
33: Fireworks (O(l+1)

2 , ...,O(l+1)
I ) are selected according to (4.45), (4.46).

34: l = l + 1;
35: end if
36: end while
37: Return: The optimal offloading decision O∗ =O(l+1)

1 if l < L, otherwise O∗ =O(L+1)
1 ,

and the corresponding fog computation resource allocation ffog∗ .
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4.3.3 Fog Computation Resource Allocation

In the lth iteration, for each offloading decision matrix (O(l)
1 , ...,O(l)

I ), the problem in (4.42)
reduces to the optimisation of computation resource allocation at the fog node, i.e.,

P2 : min
ffog

max
v∈V1

Av

f f og
v

+∆v (4.47)

s.t. (4.42c),(4.42d),

where V1 denotes the set of fog-processing V-UEs, for ∀v ∈ V1,xv = zv = 0,yv = 1, and
∆v = Dv/rv, f +T wait

f is a constant. Letting Θ = max
v∈V1
{Av/ f f og

v +∆v}, the problem P2 is

converted to

P3 : min
ffog,Θ

Θ (4.48)

s.t. (4.42c),(4.42d),
Av

f f og
v

+∆v ≤Θ, ∀v ∈ V1. (4.48a)

Since Av/ f f og
v ≥ 0 and based on (4.42c) and (4.48a), we have ∑

v∈V1

Av/(Θ− ∆v) ≤

∑
v∈V1

f f og
v ≤F f og. As Av/(Θ−∆v) is a monotonically decreasing function of Θ, the maximum

service delay among all the fog-processing V-UEs is minimised when ∑
v∈V1

Av/(Θ−∆v) =

∑
v∈V1

f f og
v = F f og, and P3 can be converted to

P4 : min
Θ

Θ (4.49)

s.t. ∑
v∈V1

Av

Θ−∆v
= F f og. (4.49a)

We adopt the bisection method to solve problem P4 as summarised in Algorithm 4.2,
where V1 is the number of fog-processing V-UEs; Θ∗ denotes the minimum value of Θ, and
the optimal fog computation resource allocation for V-UE v is given by f f og∗

v = Av/(Θ
∗−∆v).
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Algorithm 4.2 Fog Computation Resource Allocation
1: Initialise the precision ε2 > 0, Θdown = max

v∈V1
∆v

2: and Θup = ∑
v∈V1

(AvV1/F f og +∆v)

3: Repeat
4: Θ = (Θup +Θdown)/2.
5: if ∑

v∈V1

(Av/Θ−∆v)> F f og then

6: Θdown = Θ.
7: else
8: Θup = Θ.
9: end if

10: until |Θup−Θdown| ≤ ε2.
11: Θ∗ = |Θup−Θdown|/2.
12: Output: ffog∗

4.4 Complexity Analysis

In Algorithm 4.1, the computational complexity mainly comes from the resource (which
including the computation resource) allocation procedures in Steps 20, 23 and 27 and the
number of sparks (which including the explosion sparks according to each fireworks and
the mutation sparks) in Steps 21 and 26. We first describe the complexity from resource
allocation procedures then discuss the complexity from sparks, respectively.

In each computation resource allocation procedure under Algorithm 4.2, the time com-
plexity can be given by O(log2(Θup +Θdown/2)), which based on the iterations for the
bisection method to converge [102].

According to Steps 9, the number of explosion sparks under each iteration has a com-

plexity of O(
O
∑

o=1
oŝo). Similarly, the number of mutation sparks under each iteration has a

complexity of O(m̂). Therefore, the total complexity of the total number of explosion and

mutation sparks is O(
O
∑

o=1
oŝo + m̂).

Based on the previous discussion, the complexity of MQA under L times iteration is

O(LV I(
O
∑

o=1
oŝo + m̂)(log2(Θup +Θdown/2))) = O(LV I(

O
∑

o=1
oŝo + m̂)).
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4.5 Simulation Results

In this section, we present the simulation results. We assume a single cell scenario with
one fog node located in the centre of a 500 m × 500 m urban area as illustrated in Fig.4.1.
There is a straight two-lane road (with one lane in each direction) passing through the middle
of the considered square area, dividing the area into two equal rectangles. The width of
each lane is 6 metres. Moreover, we assume that all the V-UEs are uniformly distributed
in the rectangular area of 12m x 500m spanned by the two-lane straight road, where the
movement direction of each V-UE is determined by the direction of the line that it locates
in, and the local processing capability f local

v is uniformly distributed in [50,400] M cycles/s.
All parameter values used in the simulation are given in TABLE 4.2 [27, 98, 99], unless
otherwise specified.

Table 4.2 Simulation Parameters

Parameters Value
Transmit bandwidth, Wf 180 kHz
Transmit power of V-UE v, Pv 200 mW
The noise power density at the fog node, N0 -174 dBm/Hz
Data size of an application of V-UE v, Dv 0.42 MB
Processing density of the application of V-UE v, Av 297.62 cycles/bit
Total computation capability of the fog node, F f og 2 G cycles/s
Cloud processing capability for V-UE v, f cloud

v 5 G cycles/s
The service rate of the fog node/cloud server, µ f /µc 6
Wired link rate between the fog node and the cloud, r f ,c 1 Mb/s
The number of cloud servers, C 2
The average vehicular velocity 70 km/h
The number of fireworks, I 6
The number of total explosion sparks, M 4
The number of mutation sparks, m̂ 1
The maximum number of iterations of FA, L 100
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Fig.4.2 plots the maximum service delay Tservice versus the iterations of the outer loop in
Algorithm 4.1. We can see that Algorithm 4.1 converges after the third iteration.

0 5 10 15 20 25 30 35 40 45 50

Number of iteration

6

6.5

7

7.5

8

8.5

9

9.5

10

O
b

je
c
ti
v
e

 v
a

lu
e

 (
s
)

Fig. 4.2 Convergence of Algorithm 4.1, where V = 5.

Fig. 4.3 shows the maximum service delay versus the number of V-UEs, where ’MQA’
denotes our proposed Algorithm 4.1, ’Local-Processing’, ’Fog-Processing’ and ’Cloud-
Processing’ denote the cases where all applications of the V-UEs are processed locally, by
the fog node, or by the cloud servers, respectively, and ’Random-Processing’ denotes the
case where each V-UE’s application has the equal probability of being processed by itself
locally, the fog node, or a cloud server. We can see that the maximum service delay increases
with the number of V-UEs in all the considered cases, among which MQA performs the
best for any given number of V-UEs due to the joint optimization of offloading decisions
for all the V-UEs while considering their mobility and queueing delays at the fog node and
cloud centre. When the number of V-UEs is lager than 7, fog-processing leads to the highest
maximum service delay. This is due to the long queueing and processing delays caused by
many applications sharing the limited computation capacity of the fog node.

Fig. 4.4 and Fig. 4.5 show how the individual application’s data size Dv and processing
density Av affect the maximum service delay, respectively, where V = 5. We can see that
the larger the data size or the higher processing density of each application, the higher the
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Fig. 4.3 Maximum service delay versus the number of V-UEs.

maximum service delay in each considered case. MQA always performs the best among all
the considered cases. Moreover, local-processing is most significantly affected by a large data
size or a high processing density of an application, due to the limited computation capability
at each V-UE.
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Fig. 4.4 Maximum service delay versus the data size of the application.
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4.6 Conclusion

In this chapter, we have proposed a mobility and queueing-based offloading decision opti-
misation algorithm, in conjunction with a bisection method-based fog node computation
resource allocation algorithm to minimise the maximum service delay of all V-UEs in an IoV
system, where each V-UE may offload its task to a fog or cloud computing server or process
it locally. The simulation results demonstrate that the proposed algorithms achieve a much
lower maximum service delay than local-processing, fog-processing, cloud-processing, and
random-processing.



Chapter 5

Computation Offloading and Resource
Allocation in Mixed Cloud/Vehicular-Fog
Computing Systems

5.1 Introduction

In this Chapter, we extend the offloading decisions optimisation problem in Chapter 4 from
the computation resource allocation based offloading decisions optimisation problem to
communication and computation resource allocation based offloading decisions optimisation
problem, where V-UE applications can be offloaded to a movable V-FN for processing,
instead of a static fog node. A primary objective of developing V-FNs in a mixed cloud/VFC
system is to relieve the pressure on roadside fixed fog nodes, make the computing system
more flexible, reduce the response latency of vehicle applications and provide more diverse
services for smart vehicles.

We aim to minimise the maximum service delay (which includes the transmission delay,
the queueing delay and the processing delay) of all V-UEs, thus guaranteeing the fairness
among all V-UEs. Accordingly, we formulate a multi-objective optimisation problem, which
is further decoupled into three sub-problems that optimise offloading decisions for all V-
UEs, the communication resource allocation for all cloud/fog-computing V-UEs, and the
computation resource allocation for all fog-computing V-UEs at V-FNs. In contrast to
Chapter 4, we jointly consider the communication resource allocation for all cloud/fog
computing V-UEs through a cluster-based algorithm. The efficiency and convergence of
the proposed algorithms are proved. The effectiveness of the proposed fireworks algorithm-
based algorithm is validated by comparing with the pure local-processing, fog-processing,
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cloud-processing, and random-processing schemes, and is further used to evaluate the impact
of different parameters such as data size and V-UE mobility on system performance.

The remainder of this Chapter is organised as follows. The system model is introduced
in section 5.2. The problem formulation is introduced in section 5.3. In section 5.4, we
first describe the procedure and the general structure of the offloading decision optimisation
algorithm, i.e., the fireworks algorithm based offloading optimisation and resource allocation
algorithm (FORA). Then, followed by the details of the computation resource allocation
algorithm and the communication resource allocation. In section 5.5, complexity of the
proposed schemes is analysed. Simulation results are presented in section 5.6. Finally, the
paper is concluded in section 5.7.

5.2 System Model

In this section, we first introduce a VFC architecture, then derive the service delay for local,
fog and cloud processing, respectively.

5.2.1 Vehicle-fog-cloud Architecture

As shown in Fig. 5.1, we consider a VFC system with one RSU located in the centre of a
square urban area, where a straight two-lane road (with one lane in each direction) passing
through the middle of the considered square area, and the width of each lane is same. The
VFC system consists of three layers, i.e., the V-UE layer, fog layer, and cloud layer. The
V-UE layer is composed of V V-UEs, the fog layer includes K V-FNs, and the cloud layer
is mainly a distant cloud centre. Denote the sets of V-UEs and V-FNs by V = {1,2, ...,V}
and K = {1,2, ...,K}, respectively. All V-UEs and V-FNs are connected to a RSU via V2I
wireless links, while the RSU is connected to the cloud centre by a fiber link.

Without loss of generality, we assume that the time is divided into equal-length time slots,
each of a duration η , and each V-UE has one application to be either processed locally or
offloaded to a V-FN or a cloud server for processing through the following procedure. At the
beginning of each time slot, each V-UE sends an offloading request (containing information
about its location, velocity and local processing capacity, etc. [29]) to the RSU [103]. After
the offloading requests of all V-UEs and the instantaneous V2I wireless channel gains have
been collected by the RSU [27], the RSU decides where the application of each V-UE should
be processed, i.e., at the V-UE locally, at a V-FN, or at the cloud centre. Then, the offloading
decisions will be sent to the corresponding V-UEs. For simplicity, we assume that the delay
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consumption of computation outcome transmission from a V-FN or a cloud server to a V-UE
can be neglected [104].

V2V communication

V2I communication

Intereference

Fiber link

RSU

Cloud Centre

Fog vehicle

Vehicular User

Fig. 5.1 System architecture of a three-layer computing system.

The offloading decision for V-UE v at the t-th time slot is denoted by xv(t),yv(t),zv(t) ∈
{0,1}, where t = 1,2, ...;xv(t) = 1,yv(t) = 1,zv(t) = 1 indicate that the application is pro-
cessed by V-UE v itself, by a V-FN, or by the cloud, respectively; otherwise, xv(t) = 0,yv(t) =
0,zv(t) = 0; and we have

xv(t)+ yv(t)+ zv(t) = 1,∀v ∈ V . (5.1)

The offloading decisions of all V-UEs at time slot t are denoted by a V ×3 matrix O(t),
where the v-th row contains the offloading decision of V-UE v, i.e.,

O(t) =

x1(t), y1(t), z1(t)
...

...
...

xV (t), yV (t), zV (t)


V×3

. (5.2)

The application of V-UE v is described by Appv = {Dv,Λv,sv,dvR},v ∈ V , where Dv

denotes the input data size (in bits) of the application, Λv is the required processing density
(in CPU cycle/bit), sv is the velocity (in km/h) of V-UE v, dvR is the distance (in km) between
V-UE v and the coverage edge of the RSU in its direction of movement [105]. The total
required number of CPU cycles to process the application is given by Av = DvΛv [4].

5.2.2 Local Processing

Let f local
v denote the local computation capability (in CPU cycles/s) of V-UE v. Since the

application does not need to be sent to any server, the service delay at the t-th time slot only
consists of the processing delay, and we have
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T local
v (t) =

Av

f local
v

. (5.3)

5.2.3 Fog Processing

In fog processing mode, V-UE v will offload it application to a nearby V-FN k, and the input
data of Appv should be transmitted from V-UE v to V-FN k. Thus, the transmission delay
and the energy consumption incurred during transmission have to be considered.

Divide the total available uplink bandwidth into M RBs, which are denoted by M =

{1, ...,M}, where the bandwidth (in Hz) of the m-th RB is denoted by Wm. The channel
power gain from the v-th V-UE to the k-th V-FN at the t-th time slot over the m-th RB is
given by

gm
v,k(t) = α

m
v,k(t)|h

m
v,k(t)|

2 (5.4)

where αm
v,k(t) is the large-scale fading of the channel from the v-th V-UE to the k-th V-FN,

which consists of the distance dependent path-loss and log-normal shadowing [106]; hm
v,k(t)

denotes the Rayleigh fading, which follows the complex Gaussian distribution CN(0,1) [99].
The channel power gain from the v-th V-UE to the RSU at the t-th time slot over the m-th RB
is denoted by gm

v,R(t) = αm
v,R(t)|hm

v,R(t)|2. A summary of the channel model for V2I/V2V link
is given in TABLE 5.1 [99], [106]

Table 5.1 Channel Models for V2I/V2V link

Parameter The type of a link
Pathloss model - V2I 128.1+37.6log10dvR (dvR in km)
Pathloss model - V2V LOS in WINNER + B1
Shadowing distribution Log-normal
Shadowing standard deviation - V2I 8 dB
Shadowing standard deviation - V2V 3 dB
Fast fading Rayleigh fading

Then, the received SINR from the v-th V-UE to the k-th V-FN over the m-th RB at the
t-th time slot can be expressed as

γ
m
v,k(t) =

Pm
v (t)gm

v,k(t)

σ2 +β m
v,k(t)

, (5.5)
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where Pm
v (t) denotes the transmission power of V-UE v at the t-th time slot; σ2 is the AWGN

power; β m
v,k(t) is the sum interference caused by other V2V and/or V2I links which share the

same RB with V-UE v, and it can be formulated as

β
m
v,k(t) = ∑

v′∈V2

[yv′av′,mPm
v′ (t)g

m
v′,k(t)+ zv′av′,mPm

v′ (t)g
m
v′,R(t)], (5.6)

where V2 is the set of remote-processing V-UEs; av′,m is the binary spectrum allocation
indicator, where av′,m = 1 if the v′-th V2V/V2I link shares the same RB with the v-th V2V
link, otherwise av′,m = 0; gm

v′,k(t) is the channel power gain from the v′-th V-UE to the k-th
V-FN at the t-th time slot over the m-th RB; gm

v,R(t) is the channel power gain from the v-th
V-UE to the RSU at the t-th time slot over the m-th RB.

Then, the corresponding transmission rate from V-UE v to the k-th V-FN at the t-th time
slot over the m-th RB can be expressed as

rm
v,k(t) =Wmlog2(1+ γ

m
v,k(t)), (5.7)

and the transmission delay of application Appv at the t-th time slot can be given by

T trans
v,k (t) =

Dv

rm
v,k(t)

. (5.8)

Due to the limited computation capacity at each V-FN, the queueing delay at the V-FN
cannot be ignored. At the t-th time slot, assume the application of V-UE v is assigned to
be processed at the k-th V-FN, the application arrival rate at the transmission queue in the
transmission channel of V-FN k is assumed to follow a Poisson process with rate λk, and a
Poisson distribution during a time slot can be given by

P(V1,k|t,λk) =
(λkt)V1,k

V1,k!
exp(−λkt), (5.9)

where V1,k is the number of fog processing applications at the k-th V-FN, and the total number

of fog processing applications is V1 =
K
∑

k=1
V1,k.

In addition, the corresponding service rate is µk = ηrm
v,k(t)/Dv, which is assumed to

follow a exponential process, and an exponential distribution during a time slot can be given
by

P(r) = µkexp(−µkr), (5.10)
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where r is the time between service completions. To ensure the steady state of the system,
the utilisation rate is required to be lower than 1, i.e.,

ρk =
λk

µk

=
λkDv

ηrm
v,k(t)

< 1.
(5.11)

According to the traditional FCFS M/M/1 queueing model, we have

(λk +µk)PV1,k−λkPV1,k−1−µkPV1,k+1 = 0, V1,k ≥ 1 (5.12)

λkP0−µkP1 = 0. (5.13)

To consider the steady state flow rates at the boundary between two states, we have

λkPV1,k−1 = µkPV1,k . (5.14)

Thus, according to (5.11), (5.12), (5.13) and (5.14), we have

P0 = 1−ρk. (5.15)

PV1,k = (ρk)
V1,k(1−ρk). (5.16)

Based on Little’s theorem [100], the average queueing delay of application Appv in the
transmission channel is given by [107]

T wait
v,k (t) =

ρk

µk−λk
. (5.17)

After all the input data of application Appv has been received by the k-th V-FN, it starts
to process the application, and the corresponding processing delay can be expressed as

T proc
v,k (t) =

Av

f f og
v,k

. (5.18)

Therefore, the total service delay of processing application Appv at the k-th V-FN can be
given by

T f og
v (t) = T trans

v,k (t)+T wait
v,k (t)+T proc

v,k (t). (5.19)
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5.2.4 Cloud Processing

When there is no available V-FNs for task offloading, applications will be offloaded to the
cloud centre for processing, where application Appv is first transmitted from V-UE v to the
RSU via a V2I link, similarly defined as (5.4), and the corresponding channel power gain
from the v-th V-UE to the RSU is given by

gm
v,R(t) = α

m
v,R(t)|hm

v,R(t)|2, (5.20)

where αm
v,R(t) and hm

v,R(t) are similarly defined as αm
v,k(t) and hm

v,k(t), respectively.
The SINR at the RSU and the transmission rate from V-UE v to the RSU at the t-th time

slot over the m-th RB are given by

γ
m
v,R(t) =

Pm
v (t)

σ2 +β m
v,R(t)

, (5.21)

rm
v,R(t) =Wmlog2(1+ γ

m
v,R(t)), (5.22)

where β m
v,R is the total interference caused by other V2V and V2I links that share the same

RB, and it can be similarly defined as (5.6).
After the whole application is cached at the RSU, and it then is transmitted from the RSU

to the cloud centre via a high-speed fibre wired link. Therefore, the total transmission delay
of application Appv at the t-th time slot for processing at the cloud centre includes two parts,
i.e., T trans

v,R (t) and T trans
R,C (t), and it can be obtained by

T trans
v,c (t) = T trans

v,R (t)+T trans
R,C (t), (5.23)

T trans
v,R (t) =

Dv

rm
v,R(t)

, (5.23a)

T trans
R,C (t) =

Dv

rR,C(t)
. (5.23b)

where rR,C (in bits/s) denotes the transmission rate of the high-speed wired fibre link.
Cloud servers at the cloud centre usually have sufficient computation resources, energy

and processing ability, we ignore the queueing delay and the energy consumption at the cloud
centre [108], [109]. We assume the propagation delay, i.e,. Tpd , in the backbone network
cannot be neglected, which is incurred for a longer response delay of cloud processing [40].
Similar to the local-processing and fog-processing, the processing delay of application Appv

at the cloud centre at the t-th time slot is given by
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T proc
v,C (t) =

Av

f cloud
v

, (5.24)

where f cloud
v (in CPU cycles/s) denotes the cloud processing capability for V-UE v. Then,

the total service delay of processing application Appv at the cloud centre can be expressed as

T cloud
v (t) = T trans

v,C (t)+Tpd(t)+T proc
v,C (t). (5.25)

5.3 Problem Formulation

For each time slot t ∈ {0,1, ...,T}, we formulate the problem of jointly optimising computa-
tion offloading decision and resource allocation for a three-layer VFC system and show that
it is NP-hard. Based on the delays in local, fog, and cloud processing, the service delay of
V-UE v at the t-th time slot is given by

Tv(t) = xv(t)T local
v (t)+ yv(t)T f og

v (t)+ zv(t)T cloud
v (t). (5.26)

where T local
v (t),T f og

v (t), and T cloud
v (t) are given in (5.3), (5.19) and (5.25), respectively.

We aim to minimise the maximum service delay consumption among all V-UEs by
jointly optimising the computation offloading decision O(t), the transmission power P =[
Pm

1 , · · · ,Pm
v
]
, the RB assignment a= [av,1, · · · ,av,m], the V-FN assignment b=

[
bv,1, · · · ,bv,k

]
,

and the computation resources allocation f f og =
[
f f og
1 , · · · , f f og

k

]
. For local processing V-UE

v, we let Pv = 0 and av,m = 0. Note sets V1 and V2 denote applications are processed among
V-FNs or among remote servers including V-FNs and the cloud centre, respectively. Then,
the joint optimisation problem can be formulated as follows

P1 : min
O,a,P,b,f f og

max
v∈V ∑

k
Tv(t), (5.27)

s.t. xv(t),yv(t),zv(t) ∈ {0,1}, ∀v ∈ V , (5.27a)

xv(t)+ yv(t)+ zv(t) = 1, ∀v ∈ V , (5.27b)

0≤ bk
v(t) f f og

v,k (t), ∀v ∈ V1, (5.27c)

∑
v∈V1

bk
v f f og

v,k (t)≤ F f og
k (t), ∀k ∈K , (5.27d)

bk
v(t) ∈ {0,1}, ∀v ∈ V1, ∀k ∈K , (5.27e)
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K

∑
k=1

bk
v(t) = 1, ∀v ∈ V1, (5.27f)

0≤ Pm
v (t)≤ Pmax

v , ∀v ∈ V2, (5.27g)

∑
m

av,m = 1, ∀v ∈ V2, (5.27h)

∑
m

ak,m = 1, ∀k ∈K , (5.27i)

Tv(t)≤ τv(t), ∀v ∈ V , (5.27j)

yvT f og
v (t)< bk

v(t)τk(t), ∀v ∈ V1, (5.27k)

where F f og
k is the available computation capacity of the k-th V-FN, and τv,τk are the maximum

tolerable latency threshold for V-UE v and V-FN k, respectively; (5.27a) and (5.27b) are
the constraints on the binary offloading decision indicators for each V-UE; (5.27c) indicates
that the computation resource allocated to each fog-processing V-UE v should be non-
negative; (5.27d) shows that the allocated computation resources cannot exceed the available
computation capability of each V-FN; (5.27e) is the constraints on the binary computation
allocation indicator for each V-UE; (5.27f) guarantees each application can be allocated to
only one V-FN for processing at the t-th time slot; (5.27g) is the constraints on transmit
power of each V-UE, respectively; (5.27h) and (5.27i) indicate each of the V2I link accesses
a single RB; (5.27j) indicates that the service delay should be kept below the maximum
tolerable latency threshold for each V-UE; and (5.27k) indicates that the service delay at a
V-FN should be kept below its maximum tolerable latency threshold.

A summary of the used notations is presented in TABLE 5.2

Table 5.2 Notation Definitions

Notation Definition
V ,V The set/number of all V-UEs
K ,K The set/number of all V-FNs
V1/V1 The number/set of fog-processing V-UEs
V2/V2 The number/set of remote-processing V-UEs
xv,yv,zv Offloading decisions of V-UE v
O Matrix of offloading decisions for all V-UEs
Dv Input data size of Appv
Λv Processing density Appv
Av Total required number of CPU cycles of Appv
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sv The velocity of V-UE v
M ,M The set/number of RBs
Wm The bandwidth of each RB
gm

v,k(t) The channel power gain from V-UE v to V-FN k
αm

v, f (t) The large-scale fading of the channel from V-UE v to V-FN k
hm

v, f (t) The Rayleigh fading of the channel from V-UE v to V-FN k
λk Application arrival rate at the k-th transmission channel
µk Application service rate at the k-th transmission channel
ρk The utilisation rate
N The toal number of clusters
η The length of each time slot
sk The velocity of V-FN k
dvR The distance between V-UE v and the RSU
σ2 The additive white Gaussian noise power
Pm

v Transmit power of V-UE v
Tpd Propagation delay in cloud processing
rR,C Transmission rate between the RSU and the cloud centre
I The number of fireworks
ŝ The number of explosion sparks
m̂ The number of mutation sparks
γm

v,k,r
m
v,k,β

m
v,k SINR/Transmission rate/Interference between V-UE v and V-FN k

γm
v,R,r

m
v,R,β

m
v,k SINR/Transmission rate/Interference between V-UE v and the RSU

f local
v , f f og

v,k , f cloud
v Processing ability of V-UE v in local/fog/cloud processing

T local
v ,T f og

v ,T cloud
v Service delay of V-UE v in local/fog/cloud processing

5.4 Proposed Algorithm

In this section, we propose a fireworks algorithm based offloading optimisation and resource
allocation algorithm (FORA), in conjunction with a bisection method based V-FN computa-
tion resource allocation algorithm and a clustering method based communication resource
allocation algorithm to solve the min-max problem.

5.4.1 Fireworks Algorithm based Offloading Optimisation and Resource
Allocation Algorithm

Since problem P1 is difficult to solve, we propose a fireworks algorithm based offloading
optimisation and resource allocation algorithm (FORA), based on the traditional fireworks
algorithm [82], to solve the formulated problem (5.14). The FORA is summarised in Algo-
rithm 5.1. Firstly, we initialise I random offloading decisions for all V-UEs (O(0)

1 , ...,O(0)
I ),
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and they become the swarm of initial fireworks in the solution space. Then, in the l-
th iteration (l = 1, ...,L, where L is the maximum allowed iteration), we take the objec-
tive function of (5.20) as the fitness function, and the fitness value can be calculated by
f (O(l)

i ) = max
v∈V

∑
k

Tv(O
(l)
i ), i = 1, ..., I. In the meantime, each firework O(l)

i generates ŝ(l)i new

offloading decisions matrices which are called explosion sparks, and the number of explosion
sparks of each firework is given by [82]

ŝ(l)i = ceil

S
fmax− f (O(l)

i )+ ε1
I
∑

i=1
( fmax− f (O(l)

i ))+ ε1

 , (5.28)

where ceil(·) denotes the ceiling function, S is a constant parameter used for constraining the
total number of explosion sparks, fmax = max

i
( f (O(l)

i )), and ε1 is an extremely small number

to avoid zero division errors. In order to avoid each firework generates too many or too less
explosion sparks, the number of explosion sparks of the i-th fireworks can be constrained by

s̃(l)i =


round(θ1S), i f ŝ(l)i < θ1S

round(θ2S), i f ŝ(l)i > θ2S,θ1 < θ2 < 1

round(ŝ(l)i ), otherwise

(5.29)

where s̃(l)i is the number of explosion sparks that generated by the i-th firework, round(·) is
the rounding off function, ψ1 and ψ2 are given constraints. After ŝ(l)i has been confirmed,
each explosion spark of firework O(l)

i can be generated by first randomly choosing z rows
(where z ∈ [1,V )) from firework O(l)

i , and then perform left circular shift by one position on
each chosen row, while the rest of rows (V − z) of the explosion spark are kept the same as
the corresponding ones of firework O(l)

i .
To guarantee the spark diversity and the searching capability, in the l-th iteration, m̂(l)(0≤

m̂(l) ≤ I) mutation sparks are generated by randomly selecting m̂(l) fireworks from the I
fireworks (O(l)

1 , ...,O(l)
I ) and randomly resetting some offloading decisions therein.

For each firework, explosion spark and mutation spark, the V-FN assignment and the
corresponding computation resource allocation are obtained by using the bisection method
[102], which will be presented in section 5.4.2. The communication resource allocation
is obtained by the clustering method [106], which will be introduced in section 5.4.3, and
accordingly the fitness function value is calculated. Among all the fireworks, explosion
sparks and mutation sparks, the one with the smallest fitness value is selected as a new
firework O(l+1)

1 for the upcoming iteration. Denoting the set of all fireworks, explosion
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sparks and mutation sparks excluding O(l+1)
1 in the l-th iteration by R(l)

est (i.e., O(l+1)
1 /∈ R(l)

est),
the other (I - 1) fireworks (O(l+1)

2 , ...,O(l+1)
I ) are selected from R(l)

est according to the roulette
wheel selection method [82], where the probability of A(l)

y (A(l)
y ∈ R(l)

est ,y = 1, ..., |R(l)
est |) being

selected is determined based on the Manhattan distance [84] as follows,

p(A(l)
y ) =

R(A(l)
y )

|R(l)
est |
∑

m=1
R(A(l)

y′ )

, (5.30)

where R(A(l)
y ) is the sum of Manhattan distances between matrix A(l)

y and all the other
matrices in set R(l)

est , which is given by

R(A(l)
y ) =

|R(l)
est |

∑
y′=1,y′ ̸=y

∥ A(l)
y −A(l)

y′ ∥ . (5.31)

When the iteration converges or reaches the maximum allowed iteration, among all the
fireworks, explosion sparks and mutation sparks, the one with the smallest fitness value is
chosen as the optimal offloading decision O∗ and the corresponding RB assignment, V-FN
assignment , transmit power of each V2I link transmitter and the computation resource
allocation at each V-FN returns the optimal results a∗,b∗,P∗ and ffog∗

k , respectively.

5.4.2 Computation Resource Allocation

When computation offloading decision I has been obtained, in problem P1, the commu-
nication resource allocation which includes the uplink transmission power P and the RB
assignment a, and the computation resource allocation (including the V-FN assignment b and
the computation resources ffog) are decoupled from each other in both the objective and the
constraints. Thus, problem P1 can be solved by optimising communication and computation
resources independently. Moreover, for analytical tractability, we assume each application of
a V-UE cannot be partitioned into sub-applications, and at each time slot, RSU can receive
global information of all applications, V-UEs as well as V-FNs. In this section, we discuss
the computation resource allocation, while the communication resource assignment will be
presented in the next section.

For computation resource allocation among all V-UEs in V1, assuming that the RB
assignment a and the transmission power control P are given, we have

P2 : min
b,f f og

max
v∈V1

∑
k

Tv(t), (5.32)
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Algorithm 5.1 Fireworks Algorithm based Offloading Optimisation and Resource Allocation
Algorithm (FORA)

1: N,K,F f og,B,OE,OM,θr,θ1,θ2.
2: Initialise l = 1,F(0) = 0,ε1 = 10−6.
3: for t = 1 : T do
4: Generate I random fireworks at each time slot {O(0)

1 , ...,O(0)
I }.

5: while l ≤ L do
6: for i = 1 : I do
7: For firework O(l)

i , perform resource allocation by Algorithm 5.2 and Algo-
rithm 5.3.

8: Calculate the fitness value of firework O(l)
i by using (5.27).

9: Calculate the number of explosion sparks ŝ(l)i according to (5.28) and (5.29).
10: Generate ŝ(l)i explosion sparks from firework O(l)

i .
11: For each explosion spark, run Algorithm 5.2 and Algorithm 5.3.
12: Calculate the fitness value of each explosion spark.
13: end for
14: Generate m̂(l) mutation sparks.
15: For each mutation spark, run Algorithm 5.2 and Algorithm 5.3.
16: Calculate the fitness value of each mutation spark.
17: The firework, explosion spark or mutation spark with the smallest fitness value is

chosen as I(l+1)
1 , and the smallest fitness value is denoted by f (l).

18: if | f (l)− f (l−1)|< ε then
19: break;
20: else
21: Fireworks (O(l+1)

2 , ...,O(l+1)
I ) are selected according to (5.30), (5.31).

22: l = l + 1;
23: end if
24: end while
25: end for
26: Return: The optimal offloading decision O∗ =O(l+1)

1 if l < L, otherwise O∗ =O(L+1)
1 ,

and the corresponding RB assignment a∗, V-FN assignment b∗, transmit power allocation
P∗ and the fog computation resource allocation ffog∗ =

[
ffog∗
1 , ..., ffog∗

k

]
.
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s.t. (5.27c)− (5.27 f ),(5.27 j)− (5.27k)

To obtain the sub-optimal solution to problem P2, we propose a bisection method based
application and computation resource allocation algorithm (BACA). We first construct a
V-by-K matrix H to assign a V-FN for each V-UE to process its application. Each element in
H records the service delay thresholds difference at the t-th time slot between V-UE v and
V-FN k (i.e., τv(t)− τk(t)), and they can be calculated as follows,

τv(t) =
dvR(t)
sv(t)

, ∀v ∈ V1, (5.33)

τk(t) =
dkR(t)
sk(t)

, ∀k ∈K , (5.34)

where τv(t) indicates the service delay threshold of V-UE v for remote processing, τk(t)
indicates the maximum tolerable latency threshold of V-FN k; and dkR(t) is the distance
between V-FN k and the coverage edge of the RSU in its direction of motion, and sk(t) is the
velocity of V-FN k.

In the l-th iteration, comparing all the results of V-UE v in matrix Hl , the k-th V-FN is
chosen for processing the application of V-UE v according to the smallest non-zero value
among V-UE v and all V-FNs. Based on assignment b for all V-UEs, for the k-th V-FN,
problem P2 is converted to

P3 : min
f f og
k

max
v∈V1,k

Av

f f og
v,k (t)

+Bv(t), (5.35)

s.t. (5.27c)− (5.27 f ),

where V1,k denotes the set of fog-processing V-UEs shares the computation resources of

V-FN k, and V1,1
⋂

V1,2, . . . ,
⋂

V1,k =∅; Bv =
Dv

rv,R(t)
+

Dv

rR,k(t)
+

λkD2
v

δ rR,k(t)(δ rR,k(t)−λkDv)

is a constant; Letting ∆B(t) = max
v∈V1,k

{ Cv

f f og
v,k (t)

+Bv(t)}, and problem P3 is converted to

P4 : min
f f og
k ,∆B(t)

∆B(t), (5.36)
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s.t. (5.27c)− (5.27d),
Av

f f og
v,k (t)

+Bv(t)≤ ∆B(t), ∀v ∈ V1,k. (5.36a)

Since
Cv

f f og
v,k (t)

≥ 0 and based on (5.27d) and (5.36a), we have

∑
v∈V1,k

Av

(∆B(t)−Bv(t))
≤ ∑

v∈V1,k

f f og
v,k (t)≤ F f og

k (t). (5.37)

After few iterations until all the computation resources of the k-th V-FN will be distributed

among all v ∈ V1,k. Then we have ∑
v∈V1,k

Av

(∆B(t)−Bv(t))
= ∑

v∈V1,k

f f og
v,k (t) = F f og

k (t) and

problem P4 can be converted to

P5 : min
∆B(t)

∆B(t), (5.38)

s.t. ∑
v∈V1,k

Av

(∆B(t)−Bv(t))
= F f og

k (t). (5.38a)

We utilise the bisection method to deal with problem P5 as summarised in Algorithm
5.2, where V1,k is the number of fog-processing V-UEs at the k-th V-FN. And ∆∗B indicates
the minimum value of ∆B and the optimal computation resource allocation for V-UE v at the

k-th V-FN can be obtained by f f og∗
v,k (t) =

Av

(∆∗B(t)−Bv(t))
and the V-FN assignment b∗.

5.4.3 Communication Resource Allocation

After computation resource allocation f f og and V-FN assignment b are obtained, problem of
P5 degrades to the joint optimisation of RB assignment am and transmit power allocation
among all remote-processing V-UEs Pm, then the communication resource allocation sub-
problem can be converted to

P6 : min
a,P

max
v∈V2

Tv(t), (5.39)

s.t. (5.27g)− (5.27 j).

In remote-processing mode, each application will be sent to the RSU first, after the
assignment of V-FN for all v ∈ V1, the application will be sent to the corresponding V-
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Algorithm 5.2 Bisection Method based Application and Computation Resource Allocation
Algorithm (BACA)

1: for k = 1 : K do
2: Initialise the precision ε2 > 0, ∆Bdown(t) = max

v∈V1,k
Bv(t)

3:
4: and ∆Bup(t) = ∑

v∈V1,k

(AvV1,k/F f og
k +Bv(t))

5: Repeat
6: Θ = (Θup +Θdown)/2.
7: if ∑

v∈V f og
(Bv/Θ−∆v)> F f og then

8: Θdown = Θ.
9: else

10: Θup = Θ.
11: end if
12: until |Θup−Θdown| ≤ ε2.
13: Θ∗ = |Θup−Θdown|/2.
14: Return: ffog∗

k .
15: end for
16: Return: ffog∗ = [ f f og∗

1 , ..., f f og∗
K ], b∗.

FN for processing. Therefore, a fog-processing application may use two different RBs,
and all remote-processing applications may need V2 RBs, where V2 is the total number of
remote-processing V-UEs. To this end, we propose a cluster-based communication resource
allocation algorithm (CCAA) to solve problem P6 as summarised in Algorithm 5.3. We
first calculate the required total number of RBs according to the total number of remote-
processing V-UEs, V2. Then we degrade the communication resource allocation problem into
two cases (which detailed in section 5.4.3), basing on the total number of RBs M and the
total required number of RBs V2.

The Case of V2 ≤M

If the total required number of RBs V2 is less than the total number of RBs M, each V-UE may
be allocated with at least one for data transmission, and there is no interference among all
remote-processing applications during the transmission period. Then, problem P6 degrades
to a power allocation problem for each V2I/V2V link. To solve this problem, each V2I link
has to guarantee the minimum SINR threshold γ0, such as γm

v,k(t)≥ γ0 and γm
v,R(t)≥ γ0, and

the transmission power for the v-th V-UE can be formulated as,
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Algorithm 5.3 Cluster-Based Communication Resource Allocation Algorithm (CCAA)
1: Initialise V2. Set l = 0.
2: if V2 ≤M then
3: Arbitrarily assign one V2I/V2V link to one RB.
4: Allocate transmit power Pm

j according to (5.33) and (5.34).
5: else
6: Arbitrarily assign one V2I/V2V link to each of the N clusters.
7: for j ∈ V2 do
8: for n = 1 : N do
9: To calculate the intra-cluster interference according to ψ j,n = ∑

j′∈Cn, j
′ ̸= j

(α j′ , j+

α j, j′ ).
10: end for
11: To assign the j-th V2I link into n∗-th cluster with ψ j,n∗ =

arg min ∑

j′∈Cn, j
′ ̸= j

(α j′ , j +α j, j′ ).

12: end for
13: Return: V2I/V2V clustering result.
14: for n = 1 : N do
15: Randomly select a target V2I/V2V link and marked it as V2I link i in the n-th

cluster.
16: for j = 1 : Cn do
17: Allocate transmit power Pm

j,i according to (5.41).
18: Update Lagrange multipliers ω j,ϕ j according to (5.42) and (5.43), respec-

tively.
19: end for
20: end for
21: Return: Pm

j,i,∀ j ∈Cn,n ∈ N.
22: end if
23: Return: a∗, P∗.
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Pm
v,k(t)≤min{Pmax

v,k ,
γ0σ2

gm
v,k(t)

} (5.40)

Pm
v,R(t)≤min{Pmax

v,R ,
γ0σ2

gm
v,R(t)

} (5.41)

The Case of V2 > M

If the total required number of RBs V2 is lager than the total number of RBs M, we first
need to group the V2 V2I links into N clusters, which are denoted as C1, ...,CN , meanwhile,
we need to minimise the intra-interference across all clusters (i.e., ∑

n
( ∑

v′ ,v∈Cn

αv′ ,v), where

αv′ ,v is the large-scale fading from the v
′
-th V2I transmitter to the v-th V2I receiver) [106].

For simplicity, we approximate the total intra-cluster interference that it may experience
in the n-th cluster by ψv,n = ∑

v′∈Cn

(αv′ ,v +αv,v′ ). The v-th V2I link can be grouped into the

cluster that gives the smallest value of ψv,n among all clusters in the system. In addition, we
assume that the total number of clusters is equal to the total number of RBs in the system,
i.e., N = M. If there is only one V2I link in a cluster, the power resource allocation follows
rules as shown in section the case of V2 ≤M. Based on the result of the clustering, in each
cluster, we randomly select a V2I/V2V link (i.e., v′ ∈Cn,n = 1, ...,N) and re-marked it as
V2I/V2V link i, its corresponding SINR and the transmit power can be re-marke as γm

i (t)
and Pm

i (t), respectively. For simplify, the rest of V2I/V2V links in the same cluster which
share the same RB with the target user can be re-marked as j(i ̸= j, j ∈Cn). Thus, problem
P6 can be degraded as a power allocation problem in each cluster as follows

P7 : max
P
{Wmlog2(1+ γ

m
i, j(t))+Wmlog2(1+ γ

m
j,i(t))} (5.42)

s.t. (5.27g)− (5.27 j),

γ
m
i, j(t)≥ γ0, ∀ j ∈ Cn (5.42a)

γ
m
j,i(t)≥ γ0. ∀i ∈ Cn (5.42b)

Substituting (5.5) and (5.21) into (5.42a) and (5.42b), we have

Pm
i, j(t)≤ {Pmax

v ,

γ0(σ
2 + ∑

j∈Cn

pm
j,i(t)g

m
j,i(t))

gm
i, j(t)

}, (5.43)
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Pm
j,i(t) = min{Pmax

v ,
Pm

i, j(t)g
m
i, j(t)

γ0gm
j,i(t)

− σ2

gm
j,i(t)

− ∑
j′∈Cn, j′ ̸= j

Pm
j′,i(t)g

m
j′,i(t)

gm
j,i(t)

}.
(5.44)

Then, in each cluster, problem P7 can be converted as the transmit power control for all
j ∈Cn, and we have

P8 : max
Pm

j,i
∑
j∈Cn

Wmlog2(1+ γ
m
j,i(t)) (5.45)

s.t. (5.42a),(5.42b),(5.43),(5.44).

For the j-th V2I/V2V link, we assume Pm
j,i = exp(ξ m

j,i) and substituting it into (5.45) we
have

∑
j∈Cn

Wmlog2

 exp(ξ m
j,i)g

m
j,i

σ2 +Pm
i, jg

m
i, j + ∑

j′∈Cn, j′ ̸= j
exp(ξ m

j′,i)g
m
j′,i


=

Wm

ln(2) ∑
j∈Cn

[
ξ m

j′,i

ln(10)
+ lg(gm

j,i)− lg

(
σ

2 + pm
i, jg

m
i, j + ∑

j′∈Cn, j′ ̸= j
exp(ξ m

j′,i + ln(gm
j′,i))

)]
(5.46)

Since P8 is convex, the problem could be solved by using typical constrained optimisa-
tion method, such as Karush-Kuhn-Tucker (KKT) conditions [110]. Then, the Lagrange dual
function of problem P8 is given by (5.47), where ω j ≥ 0,ϕ j ≥ 0 are Lagrange dual variables
corresponding to (5.44) and (5.42b), respectively, and T m

j,0 =Wmlog2 (1+ γ0) ,∀ j ∈Cn.
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L (ξ m
j,i,ω j,ϕ j) =

Wm

ln(2) ∑
j∈Cn

ln

 exp(ξ m
j′,i)g

m
j,i

σ2 +Pm
i, jg

m
i, j + ∑

j′∈Cn, j′ ̸= j
exp(ξ m

j′,i)g
m
j′,i


− ∑

j∈Cn

ω j

(
exp(ξ m

j′,i)−Pmax
v

)

+
Wm

ln(2) ∑
j∈Cn

ϕ j

ln

1+
exp(ξ m

j′,i)g
m
j,i

σ2 + pm
i, jg

m
i, j + ∑

j′∈Cn, j′ ̸= j
exp(ξ m

j′,i)g
m
j′,i

−T m
j,0

 ,
(5.47)

Pm
j,i =

 ϕ j

Wm
ln(2)+

1+ω j

∑
j′∈Cn

[
gm

j′,i(1+ϕ j′)/(σ2 +Pm
i, jg

m
i, j + ∑

j′′∈Cn, j
′′ ̸= j′

Pm
j′′ ,i

gm
j′′ ,i

)

]

+

, (5.48)

ω
l+1
j =

ω
l
j +φ1

T m
j,0−Wmlog2

 Pm
j,ig

m
j,i

σ2 +Pm
i, jg

m
i, j + ∑

j′∈Cn, j′ ̸= j
Pm

j′,ig
m
j′,i




+

, ∀ j ∈Cn,

(5.49)
By differentiating L (ξ

f
j,i,ω j,ϕ j) with respect to ξ m

j,i, j ∈ Cn, and letting it equal to 0,
we have the optimal transmit power allocation for the transmitter of the j-th V2I/V2V link,
which is given by (5.44), where [x]+ ≜ max(0,x). Then, we use the gradient method to
update the values of the Lagrange multipliers as follows,

ϕ
l+1
j =

[
ϕ

l
j−φ2

(
pmax− p f

j,i

)]+
, ∀ j ∈Cn, (5.50)

where l is iertation index; φ1 and φ2 are the positive step sizes of the associated constraints
and they need to be properly initialised for guaranteeing the convergence and optimality. In
this paper, we set the step size as φ1 = φ2 = 10−5 for the Lagrange multipliers update.
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5.5 Complexity Analysis

In Algorithm 5.1, the computational complexity mainly comes from the resource (which
including the computation resource and the communication resource) allocation procedures in
Steps 7,11 and 15 and the number of sparks (which including the explosion sparks according
to each fireworks and the mutation sparks) in Steps 9 and 14. We first describe the complexity
from resource allocation procedures then discuss the complexity from sparks, respectively.

In each computation resource allocation procedure under Algorithm 5.2, based on the
iterations for the bisection method to converge [102], the time complexity can be given by
O(log2(Θup +Θdown/2)). Similarly, in each communication resource allocation procedure
under Algorithm 5.3 in Steps 7 - 13, the V2I clustering has a complexity of O(V N), where
V2 =V because there are at most remote-processing V-UEs. In Steps 14 - 21 of Algorithm
5.3, it has a complexity of O(LNV ), where L is the total number of iterations. Therefore, the
total complexity of each communication resource allocation procedure under Algorithm 5.3
is O(V N(L+1)).

According to Steps 9, the number of explosion sparks under each iteration has a com-

plexity of O(
O
∑

o=1
oŝo). Similarly, the number of mutation sparks under each iteration has a

complexity of O(m̂). Therefore, the total complexity of the total number of explosion and

mutation sparks is O(
O
∑

o=1
oŝo + m̂).

Based on the previous discussion, the complexity of FROA under L times iteration is

O(L(
O
∑

o=1
oŝo + m̂)(V N(L+1)+ log2(Θup +Θdown/2))) = O(L(

O
∑

o=1
oŝo + m̂)(V N(L+1))).

5.6 Simulation Results

In this section, we present the simulation results. We assume a single cell scenario with one
BS located in the centre of a 500 m × 500 m urban area as illustrated in Fig. 5.1. There is a
straight four-lane road (with one lane in each direction) passing through the middle of the
considered square area, dividing the area into two equal rectangles. The width of each lane is
6 metres. Moreover, we assume that all the V-UEs and the V-FEs are uniformly distributed
in the rectangular area of 24 m × 500 m spanned by the four-lane straight road, where the
movement direction of each V-UE or V-FN is determined by the direction of the line that it
locates in, and the local processing capability f local

v is uniformly distributed in [50,400] M
cycles/s. All parameter values used in the simulation are given in TABLE 5.3 [99, 27, 19],
unless otherwise specified.
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Table 5.3 Simulation Parameters

Parameters Value
Transmit bandwidth, Wm 180 kHz
Transmit power of V-UE v, pv,R 23 dBm
The noise power density at the BS, σ2 -114 dBm
Cell radius, 500 m
BS antenna height, 25 m
BS antenna gain, 8 dBi
BS receiver noise figure, 5 dB
Vehicle antenna height, 1.5 m
Vehicle antenna gain, 3 dBi
Vehicle receiver noise figure, 9 dB
Reliability for V2I p0, 0.01
Data size of an application of V-UE v, Dv 0.42 MB
Processing density of the application of V-UE v, Λv 297.62 cycles/bit
Total computation capability of each V-FN, F f og 2 G cycles/s
Cloud processing capability for V-UE v, f cloud

v 5 G cycles/s
Wired link rate between the BS and the cloud, rR,C 15 Mb/s
The average vehicular velocity of each V-UE sv 60 km/h
The average vehicular velocity of each V-FN sk 60 km/h
The number of V-FN 3
The number of fireworks, I 2
The number of total explosion sparks, M 4
The number of mutation sparks, m̂ 1
The maximum number of iterations of FA, L 100

Fig. 5.2 plots the maximum service delay Tservice versus the iterations of the outer loop in
Algorithm 5.1. We can see that Algorithm 5.1 converges after the third iteration.

Fig. 5.3 shows the maximum service delay versus the number of V-UEs, where ‘FORA’
denotes our proposed Algorithm 5.1, ‘Local-Processing’, ‘Fog-Processing’, and ‘Cloud-
Processing’ denote the cases where all applications of the V-UEs are processed locally, by
a V-FN, by the cloud servers, respectively, and ‘Random offloading decisions’ denotes the
case where each V-UE’s application has the equal probability of being processed by itself
locally, a V-FN, or a cloud server. We can see that the maximum service delay increases with
the number of V-UEs in all the considered cases, among which FORA performs the best for
any given number of V-UEs due to the joint optimisation of offloading decisions for all the
V-UEs while considering their mobility, queueing delays, resources allocation at a V-FN and
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Fig. 5.2 Convergence of Algorithm 5.1, where V = 5.

cloud centre. When the number of V-UEs is lager than 3, fog-processing leads to a higher
maximum service delay than FORA case, cloud-processing and random offloading decisions
cases. This is due to the long queueing and processing delays caused by many applications
sharing the limited computation capacity of V-FNs.

Fig. 5.4 and Fig. 5.5 show how the individual application’s data size Dv and processing
density Λv affect the maximum service delay, respectively, where V = 6. We can see that
the larger the data size or the higher processing density of each application, the higher the
maximum service delay in each considered case. FORA always performs the best among all
the considered cases. Moreover, local-processing is most significantly affected by a large data
size or a high processing density of an application, due to the limited computation capability
at each V-UE.

Fig. 5.6 shows the channel state affects the total maximum service delay, especially the
wired transmission rate rR,C between the BS and the cloud centre. As the wired channel
state has no effect on local and fog processing, the total maximum service delay remains
unchanged. However, as the channel state becomes better, and data transmission becomes
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Fig. 5.3 Maximum service delay versus the number of V-UEs.
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Fig. 5.4 Maximum service delay versus the data size of the application.
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Fig. 5.5 Maximum service delay versus the processing density.
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more time efficient, the total maximum service delay becomes smaller and smaller for cloud-
processing, random-processing and optimisation case. In addition to this, we can also find
that FORA always performs the best among all cases.
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Fig. 5.6 Maximum service delay versus the wired-link rate between BS and cloud server
(Mbit/s).

Fig. 5.7 and Fig. 5.8 plot the impact of the fog processing capability F f og and cloud
processing capability f cloud

v on the total maximum service delay. It is easy to find that,
these two parameters have no effect on local-processing, and the total service delay for
local-processing always keeps still. However, when either of the two parameters increases,
the total maximum service delays of the rest algorithms decrease. Moreover, FORA still
performs the best in delay reduction and far outdistances other algorithms.

Fig. 5.9 shows the how the local processing capability f local
v affect the maximum total

service delay, where V = 6. When the value of f local
v increases, fog-processing and cloud-

processing still keep the same values. It means that the local processing capability has no
effect on fog or cloud processing. However, the maximum total service delay decrease quickly
with the increase of f local

v for local-processing, random-processing and FORA algorithms.
The local-processing algorithm decays more quickly than other algorithms (including random-
processing and FORA algorithms). It is because when the local processing capability of
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Fig. 5.7 Maximum total service delay versus the computation capability f cloud
v .
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Fig. 5.8 Maximum total service delay versus the computation capability F f og.
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each V-UE is large enough, the application of each V-UE can be processed locally with
good performance, and the application does not need to be offloaded to a remote server.
Compared between FROA and local-processing algorithms, when f local

v is very small (i.e.,
f local
v = 50∗106 cycles/s), FORA performs very well. However, FORA is only a little better

than local-processing algorithm when f local
v = 400∗106 (cycles/s). It indicates that FORA

still performs well in this case.
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Fig. 5.9 Maximum service delay versus the computation capability f local
v .

In Fig. 5.10 and Fig. 5.11, we evaluate the impact of the velocity of V-UE and V-FN on
application processing success rate, including FORA, fog-processing and random-processing
algorithms. As velocities of V-UEs and V-FNs barely have an effect on local-processing and
cloud-processing algorithms, the application processing success rates of these two cases have
been ignored with the comparison. We can find that when the velocity of V-UE increases
(where the velocity of V-FN is sk = 60km/h) or when the velocity of V-FN decreases (where
the velocity of V-UE is sv = 60km/h), the application processing success rate increases
for fog-processing algorithm. This is because when the V-FN maintains a relatively high
vehicle speed, it stays within the communication range of the BS for a relatively short
period of time. As a result, if the V-UE vehicle speed is under a very small value (i.e.,
sv = 20km/h), the application offloaded by the V-UE to the corresponding V-FN cannot be
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completely processed, and the corresponding V-FN has already driven out of communication
range. On the contrary, when the V-FN maintains a relatively low value of its velocity (i.e.
sk = 20km/h), it will stay in the communication range of the BS for a relatively enough time,
which the V-FN will have sufficient time to process the corresponding offloaded application
by a V-UE, and the application processing success rate is increased. Moreover, comparing
with other algorithms, FORA still performs the best in application processing success rate.
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Fig. 5.10 Application processing success rate versus the velocity of each V-UE.

Fig. 5.12 indicates the three different delay metrics Tmax,Tmin and Taverage as influenced
by the parameter (i.e., the number of fireworks I) of the fireworks algorithm. From Fig 5.12,
we can see that as the number of fireworks increases, the three delays decrease accordingly.
This is because each firework or spark is an offloading decision. Therefore, the increase
in the number of fireworks or sparks results in more different resource allocation schemes
accordingly, and it also increases the searching capabilities and opportunities to find the
optimal solution. However, the corresponding computation complexity will also be increased.
The Fig 5.12 shows that when the number of fireworks is set as I = 2, the complexity of
the computation and the searching capability to find the optimal solution can be relatively
balanced.
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Fig. 5.11 Task processing success rate versus the velocity of each V-FN.
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5.7 Conclusion

In this Chapter, we have proposed a mobility and queueing-based algorithm to optimise
computation offloading decision, in conjunction with a bisection method-based V-FN compu-
tation resource allocation algorithm, and a cluster-based communication resource allocation
algorithm to minimise the maximum service delay of all V-UEs in an IoV system, where
each V-UE may offload its application to a V-FN or cloud computing server or process it
locally. The simulation results demonstrate that the proposed algorithms achieve a much
lower maximum service delay than local-processing, fog-processing, cloud-processing, and
random-processing.



Chapter 6

Conclusions and Future Works

How we can provide the optimal resource allocation and offloading decisions for V2X
communications in different scenarios remains as an unanswered question. This thesis
studied two promising schemes in different scenarios: 1) an optimised resource allocation for
V2X communications in a VSN; 2) an optimised offloading decisions in conjunction with
resource allocation optimisation for V2X communications in a mixed cloud/VFC system.

This thesis has shown that optimised resource allocation for V2X communications can
significantly improve the performance of V2X communications. However, such optimisation
schemes are difficult to be achieved in many cases. For example, the algorithm for the joint
power control, RB allocation and/or computation resource allocation optimisation problem is
a MINLP problem that lacks a mathematical solution with low computational complexity
and requires careful design.

In Chapter three, it is presented that the social attributes/interests of V-UEs can affect the
performance of a conventional V2X communications system. To overcome this trade-off, we
can define a V2X communications system that includes both the physical and social domains.
We develop a two-step optimisation scheme to maximise the sum capacity of V2I links and
guarantee the reliability of all V2V links. The results demonstrate that optimal resource
allocation can be obtained by using a matching-based algorithm.

In addition, it is possible to successfully combine V2X communications with other tech-
nologies to enable low-latency applications to be offloaded to the cloud/fog servers in vehicle
networks and their corresponding resource allocation. The mixed cloud/fog computing
system proposed in Chapter four enables V-UEs to offload their intensive applications to a
fog/cloud server for processing. The results show that the mixed cloud/fog computing system
can significantly reduce the total service latency and optimise offloading decisions for all
V-UEs. In Chapter five, we consider the joint allocation of communication and computation
resources, along with the optimisation of offloading decisions for all V-UEs. We show that
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offloading strategies can effectively improve the efficiency of resource allocation and increase
the throughput of V2X communications.

In this chapter, we first summarise the main findings of this thesis. Then, we list future
research directions for V2X communications that are relevant to the scope of this thesis.

6.1 Main Findings of the Thesis

• Optimisation of resource allocation involving social attributes is effective in im-
proving throughput performance: As described in Section 2.2, most communication
demands are initiated by human users, whose social activities and attributes influence
their communication demands and requirements. Based on this definition, in Sec-
tion 3.2 we designed a vehicular social network system including both the social
and physical domains, where each V2V link is not only grouped into different social
communities according to their social attributes, but also with minimal internal in-
terference guaranteed among all clusters. In addition, we develop a matching-based
social-aware radio resource allocation optimisation scheme in Section 3.5 which shows
better performance than the non-social-aware scheme.

• Mixed cloud/fog computing systems are effective in reducing service latency for
V2X communications: Cloud computing and fog computing technologies have many
advantages in terms of improving network performance, such as providing additional
computing capabilities and sufficient transmission power. However, there is doubt
whether it is practical and efficient to mix cloud and fog computing in V2X communi-
cations. In this thesis, we design a mixed cloud/VFC offloading system in Sections
4.2 and 5.2. In Sections 4.3 and 5.4, the mixed cloud/fog computing system enables
significantly reduce the maximum service latency for processing V-UEs applications
by applying different joint optimisation schemes for V2X communication, including
resource allocation optimisation and offloading decisions optimisation.

• Fair and efficient radio resource allocation can be achieved by Matching-based
frameworks: The theory of matching algorithms has been developed for many years
since it was proposed for solving economic problems. Based on the similarities between
the resource allocation problems in wireless communications and the investment
problems in economics, we develop a matching-based scheme to achieve efficient
society-aware radio resource allocation for V2X communications underlaying cellular
networks in Chapter three. We note that based on the consideration of auxiliary
information (e.g., social attributes and mobility of V-UEs), we modify the classical
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matching algorithm with a clustering-based approach in Section 3.4, which may help us
to transform the NP-hard problem into a solution with low computational complexity.

• Fireworks algorithm is efficient to solve MINLP problem in V2X communica-
tions: In both Chapter four and Chapter five, it was possible to utilise improved
fireworks algorithms to solve MINLP problems that are joint optimisation problems,
including offloading decisions optimisation, radio resource allocation and/or computa-
tion resource allocation for V2X communications. In contrast to traditional approaches
to solving NP-hard MILNP problems, as mentioned in Section 2.4, fireworks algo-
rithm frameworks solve NP-hard MINLP problems with much lower computational
complexity. Note the modified conventional fireworks algorithm in Sections 4.3 and
5.4 to improve its search efficiency, and our proposed algorithms converge less than
five iterations.

6.2 Future Works

In this thesis, one focus was the optimised offloading schemes and resource allocation for
V2X communications in different scenarios and applying LTE for V2X communications. Part
of the future research directions related to the topics of the thesis were able to be summarised.

As evaluated in Chapter three, there remain many limitations in our research on social-
aware resource allocation for V2X communications.

• Radio resource allocation in 5G VSNs: As mentioned in Chapters one and two,
several advanced technologies have been proposed for next generation cellular commu-
nications [111]. For example, to study how Massive MIMO, mmWave and other new
technologies affect V2X communications in VSNs and thus propose relevant optimised
radio resource allocation schemes.

• Real-time messages dissemination in VSNs: In this piece only data transmission
under traditional network standards were considered such as Dedicated Short Range
Communication (DSRC) and 3G/4G cellular networks. This leads to more serious
problems such as network congestion due to broadcast storms and so on [112]. To cope
with these problems, an advanced real-time dissemination algorithm based on 5G/6G
VSNs should be investigated. For example, a recursive evolutionary algorithm [113]
is proposed to evaluate the performance of network parameters in terms of delivery
rate and message overhead for different vehicle densities and speed values based on
realistic vehicle movement trajectories. However, this scheme is complex and lack
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complexity analysis while requiring further research to develop different road network
typologies.

• Trustworthy transmission: In our current work, we assume that all V-UEs and V2X
links are reliable, which is a common assumption in existing works. As mentioned in
Chapter one, all services may be provided by different third parties, and therefore trust,
security, and privacy of communications between V2X V-UEs should be considered in
the future.

Chapters four and five focused on the offloading schemes in conjunction with resource
allocation for V2X communications in a cloud/fog mixed VFC system. We list the limitations
as follows.

• Machine learning for V2X resource allocation: One of the possible future studies
is to reduce the complexity of the proposed algorithm. It has been observed that the
computational complexity of the proposed algorithm is approaching a theoretical upper
limit due to the increasing number of input parameters and/or redundant iterations.
Machine learning frameworks, such as reinforcement learning and Q-learning are
promising solutions to improve convergence speed and learning efficiency by training
the system with raw inputs (i.e., application size, etc.) and outputs (offloading decisions
and resource allocation).

• Leverage communication-computation resources: Another improvement is devel-
oping a comprehensive offloading scheme which can be satisfied with different re-
quirements. For example, an offloading scheme can be divided into single-application
offloading and multi-application offloading based on the total number of offloading
applications. Similarly, it can also be based on static-dynamic, priority and other
aspects.

• V2X communications channel modelling: In our current works, it was considered
an ideal transmission channel with strong assumptions (e.g., the channel fading is
assumed as Rayleigh fading). However, in V2X communications, most transmitters
and receivers have high mobility characteristics, different from traditional mobile
cellular channels, which may lead to dealing with more complex Doppler shifts and
severe multipath fading. To remove the assumptions in our works, we should consider
more practical channel models in the future. Some related works and potential research
directions are listed in [114].
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Concludingly, the combination of V2X communications with other state-of-the-art tech-
nologies is promising and this has great potential in several emerging research directions,
such as ITS, IoV, etc.

• Big data in V2X: Big Data is a hot topic for cost reduction and decision making
[115, 116], and we can combine this with V2X communications to enable analysing
information and making decisions immediately, while reducing costs and conducting
business in more efficient ways.

• V2X communications with SDN: Combining V2X communications with SDN will
provide V2X communications with the capability to support different business mod-
els and enable efficient network configuration [117], which could improve system
performance.

• Business model in V2X communications: Business model, such as pricing strategies,
is a core point for a technology to achieve commercial success. Therefore, more
complex incentive algorithms involving requirements such as V2X user charging are
required in real-life communication systems.

There is great hope that continued research in V2X communications will improve its
usability and performance. advancement in V2X communications in terms of access design,
resource allocation schemes, offloading schemes, etc. can inspire researchers in wireless
communications and lead to new products and technologies that will benefit the entire human
society.
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