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Abstract

This thesis studies two classes of semigroups, given by presentations, with regard
to weak regularity properties. Since its introduction by Fountain in the late 1970s,
the study of abundant and related semigroups has given upward thrust to this
fruitful and deep research area. The class of abundant semigroups extends that of
regular semigroups in a natural way and is itself contained in the class of weakly
abundant semigroups. We are interested in the properties of abundance and weak
abundance as not only do they arise from a number of different directions and
there are many natural examples, but also (weakly) abundant semigroups have
enough structure to allow for the development of a coherent theory.

The study of the free idempotent generated semigroup IG(E) over a biordered
set £ began with the seminal work of Nambooripad in the 1970s. Given the
universal nature of such semigroups, it is natural to investigate their structure.
In 2016 Gould and Yang [16] showed that IG(B), where B is a band, is always
a weakly abundant semigroup, but is not necessarily abundant. Moreover, they
constructed a 10-element normal band B for which IG(B) is not abundant. Fol-
lowing these discoveries another interesting question comes out very naturally:
what kind of normal bands are such that IG(B) is abundant? Our main result
shows that if B is an iso-normal band, then IG(B) is an abundant semigroup.

The above considerations of the structure of IG(B) led us to introduce the
notion of graph product of semigroups. We first consider the special case of
free product and show that the free product of (weakly) abundant semigroups
is (weakly) abundant. To answer the questions of whether the graph product of
(weakly) abundant semigroups is (weakly) abundant we introduce a special form
for the elements of graph products, and use this to answer the foregoing questions
in the positive.
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Preface

Motivated by Fountain’s definition of abundant semigroup in [40], we study in
this thesis a (weak) abundancy of two different constructions of semigroups. The
concept of (weakly) abundant is a natural generalization of the concept of regular.
We say a semigroup S is regular if each L-class and each R-class of S contains
an idempotent, whereas a semigroup S is abundant if each L£L*-class and R*-class
contains an idempotent. Weak abundancy is weaker property than abundancy. A
semigroup is weakly abundant if each £-class and R-class of S contain an idempo-
tent. A binary relation R* on S is defined by the rule that a R* b if the elements a
and b are related by Green’s relation R in some oversemigroup of S. The relation
L* is defined dually. A third set of relations, were introduced in[68], extending
the stander version of Green’s relations and used to define the weakly abundant
semigroup. From the definition of the relations R*, £*, R and L, it easily deduced
that R C R* C R and £ C L* C L. The first main theorem in this thesis prove
that if B is an iso-normal band, then the free idempotent generated semigroup
IG(B) is abundant.

Now we explain what we mean by the notation IG(B) over a band B. Let S
be a semigroup with a set of idempotents E = E(S). In 1979, Nambooripad [72]
described the structure of E as a biordered set £, a notion arising as a generaliza-
tion of the semilattice of idempotents in inverse semigroups. Conversely, Easdown
[31], in 1984, proved the significant result that every biordered set £ occurs as
E(S) for some semigroup S. Hence we lose nothing by assuming that a biordered
set £ is of the form E(S) for a semigroup S.

The subsemigroup of S generated by the set of idempotents E of S is denoted
by (E). If S = (FE), then we say that S is idempotent generated. The importance
of idempotent generated semigroups was evident in 1966, Howie [62] showed that
every semigroup may be embedded into one that is idempotent generated.

One of the central construction of this thesis is the free idempotent generated
semigroup IG(E), where £ is biordered set. This is built from £ via a presentation.
Specifically,

IG(E)=(E:eo f=cef, (e, f) basic pair, e, f € E)

where eo f is the word of length 2 with letters e and f. Note that if (e, f) is a basic
pair, then ef, fe € E. It is important to understand IG(E) if one is interested in
understanding an arbitrary idempotent generated semigroup with a biordered set



One popular approach to investigating the structure of the free idempotent
generated semigroup IG(€) was studying the behavior of its maximal subgroups.
From the 1970s, it was conjectured that the maximal subgroups of IG(&) are al-
ways free [70]. In 2009, Brittenham, Margolis, and Meakin provided a counter
example [6]. However, in 2011 McElwee [71] declared a non-free example of max-
imal subgroup of IG(£). Prompted by this significant result, in 2012, Gray and
Ruskuc [54] showed that any group occurs as the maximal subgroup of some
IG(E). In 2014, Gould and Yang [48] found direct proof of the same result, aris-
ing from a natural biordered set.

However, little was known about the overall structure of IG(E), other than
that it not always regular, even where £ is a semilattice. In 2016, Gould and
Yang [16] investigated the free idempotent generated semigroups IG(E), where
£ is a biordered set with trivial products. They proved that for such an £ the
semigroup IG(&) is abundant. Moreover, if £ is a finite biordered set with trivial
products, then IG(€) has a solvable word problem. Further, they proved that if
B is a band with a biordered set B, then IG(B) is always endowed with significant
property, namely, weakly abundant with the congruence condition. This led them
to the conjecture that if B is a normal band, then IG(B) is abundant. However,
they disproved this conjecture by a counter-example [16]. They gave an example
of a 10-element normal band B for which IG(B) is not abundant. Motivated by
this counter example we would be interested to determine, which special bands B
have biordered set B, such that the free idempotent generated semigroup 1G(B)
is abundant?

The above question led us to the concept of an iso-normal band. Simply put
an iso-normal band is isomorphic to a direct product of semilattice and a rect-
angular band. This is equivlent to B = A(Y, B, ¢q,3), where each ¢, 3 is an
isomorphism. We suppose that B = B(Y, By, ¢q,3) is an iso-normal band and
we start by looking at two special cases: one of them is the case where Y is a
diamond and the other is the case where Y is a fan. A semilattice Y is called a
diamond if Y = {«, 8,7, 0}, where a and ¢ are the upper and the lower bounds of
Y and $ is incomparable with . A semilattice Y is called a fan if Y has a lower
bound ¢ and for any «, 8 € Y, where o # § #  # «, o and 8 are incomparable.
With two different strategies, we prove that IG(B) is abundant, where B is an
iso-normal band over a diamond semilattice and a fan semilattice. Then we put
these together, with additional techniques, to show that IG(B) is always abundant



for an iso-normal band B.

During our work to prove the abundancy of the free idempotent generated
semigroup IG(B) over an iso-normal band B, we show that the free product of
abundant semigroups is an abundant semigroup. It is known that the free prod-
uct and the (restricted) external direct product of semigroups are special cases of
graph products. Following these results, another interesting question comes out
very naturally: is the graph product of abundant semigroups always abundant?

In 1990, graph products of groups were introduced by Green in her thesis [55].
This concept was studied by many authors, such as Hermiller and Meier [60].
The graph product of monoids is defined in the same way as the graph product
of groups and has been studied specifically by Veloso da Costa, Fohry and Kuske
[13], [12], [38]. In 2008, Fountain and Kambites [42] were able to show that the
graph product of cancellative monoids is cancellative. All these previous works
have only focused on the graph product of monoids. However, the graph product
of semigroups is a somewhat different construction. Therefore, it is valuable to
introduce this notation and to consider its structure. In 2021, Gould and Yang
[17] showed that the graph product of semigroups can always be embedded into a
graph product of monoids. The second main theorem of this thesis shows that the
graph product of abundant semigroups is always abundant. In addition, it has
proved that the graph product of weakly abundant semigroups is weakly abun-
dant.

The rest of this thesis is devoted to working on the description of the rela-
tions R*, £* and R and £ on the graph product of semigroups 4 &?. We succeed
in giving a complete characterization of these relations on the graph product of
semigroups.

Now let me explain the main content of each chapter of this thesis:

Chapter 1: We will present some basic definitions and results of semigroup
theory. We end this chapter by providing a brief introduction to classes of bands
such as semilattices, rectangular bands, and normal bands, which will be fre-
quently used in the whole thesis.

Chapter 2: We give some preliminaries of semigroup constructions. Empha-
sis is made on exploring the structure of external direct products, free products,
and graph products of semigroups.



Chapter 3: In this chapter, we briefly recall the definitions of the binary
relations R*, L£*, R and £ and corresponding to these binary relations, the con-
cepts of abundant semigroups, weakly abundant semigroups and their one-sided
versions. These are introduced in a very natural way, as a generalization of the
notion of a regular semigroup.

Chapter 4: In Section 4.1, we prove that the external direct product of
(left-right) abundant semigroups is always (left-right) abundant. Further, we
prove that the external direct product of (left-right) weakly abundant semigroups
is (left-right) weakly abundant. In Section 4.2, we show that the classes of left
abundant semigroups and left weakly abundant semigroups are closed under graph
products of semigroups.

Chapter 5: In Section 3.1, we give the abstract definition of the concept of a
biordered set £ and show that £ is the generating set of the free idempotent gen-
erated semigroup IG(E). Moreover, we present the significant results obtained by
Nambooripad [72] and Easdown [32]. By these results, we lose nothing by assum-
ing that a biordered set £ is of the form E(S) for some semigroup S. In Section
3.2, we recall the idempotent generated semigroups and present the importance
of these semigroups. Section 3.3 is divided into four subsections. In Subsection
5.3.1, we give an overview of free idempotent generated semigroups IG(E), basic
definitions, preliminary results, and several pleasant properties, particularly with
respect to Green’s relations. In Subsection 5.3.2, we define a special form of the
elements of IG(B), where B is a band, called normal form. Note that this form is
unique for the elements of IG(E) if £ is a biordered set with trivial basic products
[16]. In Subsection 5.3.3, we recall further results that have been obtained so
far in the current research direction of the free idempotent generated semigroup
IG(B) over a normal band B. In Subsection 5.3.4, we present the results of the
word problem of the free idempotent generated semigroup IG(B), where B is finite
and has trivial basic products.

Chapter 6: One of the main results in this thesis is proven in this chapter.
In 2014, Gould and Yang [80] gave an example of a 10-element normal band for
which IG(B) is not abundant, so our goal in this chapter is to find some special
classes of band B for which IG(B) is abundant. This chapter is organised as fol-
lows. In Section 6.1, we give an alternative proofs of some known results about
the free idempotent generated semigroup 1G(B), where B is a normal band. In
Section 6.2, we introduce a special kind of normal band, called an iso-normal



band. Then we prove that an iso-normal band B = #(Y; By, ¢q,3) is isomorphic
to the direct product B, x Y for any chosen 7 in Y. Moreover, any direct product
R x Z, where R is a rectangular band and Z is a semilattice is isomorphic to an
iso-normal band. In Section 6.3, we investigate the general structure of IG(B)
over an iso-normal band where Y is a diamond or a fan semilattice. We show
that in each case the free idempotent generated semigroup IG(B) is abundant.
Unlike the case of semilattices and rectangular bands, we may lose the uniqueness
of normal forms of the elements in IG(B), where B is an iso-normal band. To
overcome this problem, the concepts complete form and double normal form are
introduced. These forms are used in our whole work in this chapter. The main
result is obtained in Section 6.5, that the free idempotent generated semigroup
IG(B) over an iso-normal band is always abundant. Further, the word problem
of IG(B) is solvable if B is a finite iso-normal band.

Chapter 7: In this chapter, our main concern is the graph product of semi-
groups. In Section 7.1, we recall the notation of the graph product of semigroups
and describe the universal nature of this construction. In Section 7.2, we show
that every element in the graph product of semigroups may be represented by re-
duced form. Further, we introduce important forms of the elements of the graph
products of semigroups, called left complete reduced forms and complete reduced
forms. To prove the abundancy of the graph product ¥4 of abundant semi-
groups, we give a characterization of idempotents in ¢ & in Section 7.3. At the
beginning of Section 7.4, we obtain three maps of the graph product of semigroups
947, which we need to prove the main result in this chapter, together with the
special forms for the elements of 4% that mentioned earlier. The main result
is that the graph product of left abundant semigroups is always left abundant.
Dually result holds of right abundant. Hence we get that the graph product of
abundant semigroups is abundant. In Section 7.5, we prove that the graph prod-
uct of weakly abundant semigroups is weakly abundant. We end this chapter by
giving a complete characterization of the relation R*, £*, R and £ on a graph
product of semigroups.

Chapter 8: Our results in this thesis throw up many questions in need of
further investigation. We will give a brief proposal for our further work.
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Chapter 1

Preliminaries I: Semigroup
fundamentals

In this chapter, we recall some basic definitions and results of semigroup theory
which will be frequently used in the whole thesis. The results and definitions are
taken from a number of introductory text books including [64] and [72].

Throughout this thesis, mappings are written on the right of their arguments.
Hence the composition of mappings is from the left to the right.

1.1 Basic definitions and results

A semigroup (S,-) is a non-empty set S together with an associative binary
operation - defined on S, that is for all z,y,z € S

(- y)-z=2-(y-2)

We follow the usual convention of denoting the product z - y by juxtaposition
xy, and we call the binary operation - a multiplication on S. We will write a
semigroup (S, ) often more simply by S. Throughout this thesis, we will denote
an arbitrary semigroup by S.

An element f € S is called a left identity for S if fs = s for all s in 5, and it
is called a right identity if sf = s for all s in S. An element e in S is called an
identity (2-sided identity) if it is both a right and a left identity. Moreover, if S
has a right identity e and a left identity f, then e = f is an identity of S.

A monoid M is a semigroup with an identity, usually denoted by 1 or 1,
when M is not clear. The identity will be unique if it exists.
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A group G is defined to be a monoid in which every element is a unit, that
means for every a in G, there is an element b in G with ab = 1 = ba, where 1 is
the identity of G.

By the above, it is clear that every group is a monoid, and every monoid is a
semigroup.

Example 1.1.1. The natural numbers N, the integers Z and the rationals Q,
are all semigroups with respect to both addition and multiplication. The sets Z
and Q are monoids with respect to both addition and multiplication, whereas N
is a monoid with respect to multiplication but not addition. The integers form a
group with respect to addition.

Definition 1.1.2. A subsemigroup of a semigroup S is a non-empty subset 1" of
S which is closed under the multiplication of S.

For any semigroup 5, the set consisting of all units of S is a subsemigroup of
S. This subsemigroup is a group, called the group of units, or the unit group of

S.

Let A and B be subsets of a semigroup S. We define the product of A and B
by the rule

AB ={ab: a € A,b € B}.

If A= {a} we can write AB as aB and we follow the same convention in other
situations. If T C S, we write T2 = T'T. Therefore, T is a subsemigroup if and
only if T # () and T? C T. If T also forms a group under the restriction of the
operation of S to T', then T is called a subgroup of S. The set of all subsets of
S, P(S) = {A]A C S}, equipped by the above-defined operation, is a semigroup,
called the power semigroup of S.

A submonoid of a monoid M is a subsemigroup 1" of M such that 1 € T,
where 1 is the identity of M.

Example 1.1.3. The set of positive rational numbers {z € Q : z > 0} is a
subsemigroup of the semigroup of real numbers under addition. (R, +).

The intersection of two (or more) subgroups is always subgroup and the in-
tersection of two (or more) submonoids is always submonoid. However, the inter-
section of two (or more) subsemigroups of a given semigroup S may be empty, as
illustrated by the following easy example.
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Example 1.1.4. For the semigroup (R, +). The sets

P={xeR:xz>0}
and
Q={reR:z<0}
are subsemigroups of the semigroup (R, +), but PN Q = §.

Notice that if the intersection of finitely many subsemigroups of S is non-
empty, then it forms a subsemigroup of S.

A semigroup, monoid or group is said to be trivial if it has exactly one element.
Note that a trivial semigroup or monoid is, in fact, a group. If S is a semigroup
we can add an element 1 to S, and extend the multiplication to SU{1} by defining

s-1l=s5s=1-s,
for all s in S, and
1-1=1.

Hence S U {1} becomes monoid with identity 1, as the operation - is associative
in SU {1} [64]. The monoid S! is defined by

1 )S if S is a monoid
~ | SuU{1} if S is not a monoid

with multiplication as above. We called S' the semigroup with adjoined identity.

By the above we can see that every semigroup S can be embedded into a monoid
St

Example 1.1.5. Let I, J be non-empty sets and let T = I x J, with binary
operation defined on T by

(i7j)(k7 l) = (i7 l)

where (i,7),(k,l) € T. Then T is a semigroup, called the rectangular band on
IxJ.

16



An element z € S is called a left zero of S if zs = z for all s in S, and it is
called a right zero of S if sz = z for all s in S. An element z € S is called a zero
of S if it is both a right and a left zero. It is clear that a zero element is unique
if it exists.

Further, if .S has no zero, it is easy to adjoin an element 0 to S and extend the
multiplication to S U {0} by defining

s0 =0s =00 =0,

for all s in S. It is clear that the operation is associative in SU{0}. We write the
semigroup S U {0} as

o S if S has a zero element
~ | SuU{0} if S is no zero element.

We called SY the semigroup obtained from S by adjoining a zero if necessary.

In any set X if we define a multiplication by the rule
ab = a,

for any a,b € X, then X is a semigroup. This kind of semigroup is called a left
zero semigroup. Dually, we may define right zero semigroups. Note that if S is a
left zero semigroup (or a right zero semigroup), then any non-empty subset of S
is a subsemigroup of S.

In the following definition we collect some properties of semigroups.

Definition 1.1.6. (i) A semigroup S is commutative if ab = ba for all a,b in
S;

(ii) S is left cancellative if for all a,b,c € S, ab = ac implies b = ¢;
(iii) S is right cancellative if for all a,b,c € S, ba = ca implies b = ¢;
(iv) S'is cancellative if it is both left and right cancellative.

It is clear that groups are cancellative.
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Example 1.1.7. Let X be a non-empty set. The full transformation semigroup
on X, Tx, is the set of all mappings from X into X. Note that (7x,o) is non-
commutative semigroup if |X| > 2, where here o is the composition of functions.
The symmetric group (Sx,o), the set of all bijections from X onto X, is a sub-
group of Tx. The group Sx is the unit group of Tx. If |[X| =1 or 2, then Sx is
commutative.

The associative law enables us to drop brackets from any product. So we can
unambiguously define powers of elements: if x € S and n € N, then

We are now going to define the special elements in semigroups called idempo-
tents. The study of idempotents pervades this thesis. We will see in Chapter 5
that the set of idempotents of a semigroup possesses an inherent structure, called
a biordered set.

Definition 1.1.8. An element e in S is called an idempotent if e? = e.

The set of all idempotents in a semigroup S is denoted by E(S). In any
semigroup zeroes and identities are always idempotents. Moreover, if e € S is
an idempotent, then {e} is a subsemigroup (indeed, subgroup) of S. In a group
the identity is the only idempotent. However, semigroups can consist of entirely
of idempotents. If E(S) = S, then we say S is a band. A commutative band is
called a semilattice. Note that any rectangular band is indeed a band since any
(i,7) € T is an idempotent, as (i,3)? = (i,5)(i,j) = (i,;). However, a rectangular
band is not commutative if it has more than one member. We will see shortly an
alternative order theoretic approach to semilattices.

A binary relation p between two sets A and B is a subset of Ax B. If (a,b) € p,
we say a and b are p-related, and write a p b. If A= B, wesay p C Ax Aisa
binary relation on A.

The relation A x A and () are called the universal relation and empty relation
on A, respectively. The set {(a,a) : a € A} is called the equality or diagonal
relation. We denote this relation by 14 or simply I where A is understood. For
any relation p on A we define the relation p~!, the converse of p, as the set

p~ ' ={(a,b) € Ax A: (b,a) € p}.

The set of all binary relations on A is denoted by B4 and forms a monoid with
identity I and a zero () under the multiplication given by the rule
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poX={(a,b) € Ax A: (Jc € A)(a,c) € p and (c,b) € \}.

In the following we will review the basic properties of relations. For a given
relation p on a set A we say that:

(i) p is reflexive, if for all a € A, (a,a) € p;

(ii) p is symmetric, if for all a,b € A, (a,b) € p implies (b, a) € p;

(iii) p is anti-symmetric, if for all a,b € A, (a,b), (b,a) € p implies a = b;
(iv) pis transitive, if (a,b), (b,c) € p implies (a,c) € p.

Next we define some different kinds of relations:

(i) A relation p is called pre-order (quasi-order) on a set A if it is reflexive and
transitive. We often denote p by <.

(ii) A relation p on a set A is a partial order if it is reflexive, antisymmetric and
transitive. We often denote a partial order p by <. If < is a partial order,
the pair (A, <) is called a partially ordered set.

(iii) A relation p is an equivalence relation on a set A if it is reflexive, symmetric
and transitive. The equivalence class of the element a is defined by

ap={be A:apb}.

We often denote the equivalence class of the element a by [a].

Note that if < is a pre-order on a set A, then we can define a relation p by
apbifa X band b <X a, for any a,b € A. Clearly that p is an equivalence rela-
tion. Moreover, we define a relation < on a set A/p by [a] < [b] if a < b, for any
[a], [b] € A/p. 1t is clear that < is a partial order on A/p.

A family m = {A; : i € I} of subsets of a set A is said to form a partition of
Aif:

(Py) each A; is non-empty;
(Py) for all i,j € I, either A; = Aj or A; N Aj = 0;
(P3) U{A;:iel}=A.
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It is easy to see that an equivalence relation p on a set A partitions A into
equivalence classes. Conversely, corresponding to any partition of A, there exists
an equivalence relation p on A having the elements of the partitions as its equiv-
alence classes.

In the following we define the kernel relation.

Definition 1.1.9. Let a: X — Y be a map. Define a relation p on the set X
by

a pb<— aa =ba,
where a, b € X. We call p the kernel of a, denoted by ker a.
It is clear that ker a is an equivalence relation.

Lemma 1.1.10. The intersection of equivalence relations on a set A is an equiv-
alence relation on A.

An equivalence relation generated by some relation o on A is the smallest
equivalence relation containing the relation o. It is the intersection of all equiv-
alence relations containing o on A, usually denoted by ¢¢. Note that o€ always
exists as the set of all equivalence relations containing o on A is not empty, since
A x A is one of them.

The next result gives us a useful way to find p© for any relation p on a set A.
Let p be an arbitrary reflexive relation on a set A. Then we say that

p =U{p":n=1}

is the transitive closure of the relation p. It is known that p™ is the smallest
transitive relation on A containing p.

Lemma 1.1.11. Let p be any binary relation on A. Then the smallest equivalence
relation on A containing p is given by

pP=(pUp~tULa)®.
For two binary relations p and o on a set A we denote (pU0)€ by pV o.

Lemma 1.1.12. Let p and o be two equivalence relations on a set A such that
poag=cgop. Then

pVo=poo=ocop.
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In the following we will define some special kinds of binary relations on semi-
groups.

Let p be a binary relation on a semigroup .S. We say that p is left compatible
if for any a,b and c¢ in .S, we have that

apb= ca p cb.

We say that p is right compatible if for any a,b and ¢ in S we have that
apb= acp bc.

A relation p said to be compatible if it is both left and right compatible.

Definition 1.1.13. We say that a left (right) compatible equivalence relation is
a left (right) congruence on S, and a compatible equivalence relation is called a
congruence on S.

Notice that an equivalence relation p on S is a congruence if and only if for
any a,b,c,d € S, if a p b and ¢ p d, then ac p bd.

Lemma 1.1.14. Let p be a congruence on a semigroup S. Then (S/p,-) forms a
semigroup where the set S/p is given as

S/p={ap:a € S},
and the multiplication - is defined by the rule that
(ap) - (bp) = (ab)p.

The semigroup in the above lemma is called a quotient semigroup. It is clear
that if S is a monoid, then so is S/p, with identity [1].

Lemma 1.1.15. The intersection of a non-empty family of congruences on a
semigroup S is a congruence on S.

For any relation p on S there is a unique smallest congruence p’ on S contain-
ing p, which is the intersection of all the congruences on S containing p.

The following result gives us a characterization of the smallest congruence p
on a semigroup S containing p.

Lemma 1.1.16. For any fized binary relation p on a semigroup S, the smallest
congruence p° containing p is defined by p? = (p©)¢, where
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p° = {(zay, xby): z,y € S*, a p b}.

Now it is time for us to give the alternative order theoretic approach to semi-
lattices. If Y is a non-empty subset of a partially ordered set X, we say that an
element c of X is a lower bound of Y if ¢ <y for every y € Y. If the set of lower
bounds of Y is non-empty and has a maximum element d, we say that d is the
greatest lower bound or meet of Y. The element d is unique if it exists, and we
write

d:/\{y:yEY}.

If Y = {a,b}, we write d = a A b. We say that (X, <) is a lower semilattice if
a A\ b exists for all a,b € X. In any lower semilattice (X, <), for any a,b € X, we
have

a<b ifandonlyif aAb=a.

Proposition 1.1.17. Let (E,<) be a lower semilattice. Then (E,N\) is a com-
mutative semigroup consisting entirely of idempotents, and for any e, f € K

e<f ifandonlyif enf=e.

Conversely, suppose that (E,-) is a commutative semigroup of idempotents. Then
the relation < on E defined by

e<f if and onlyif ef =e.

is a partial order on E, with respect to which (E, <) is a lower semilattice.
In (E, <), the meet e \ f of e and f is their product ef.

In the following we define a binary relation < on E(S), in Section 1.2 we
will return to define this binary relation on arbitrary semigroup S. The binary
relation < on E/(S) is defined by the rule

e< f ifand onlyif ef = fe=c¢e.

We show that the binary relation < is a partial order on E(S). For any e, f,g € F
we have e < e and if e < f and f <e, then ef = fe = e = f. Moreover, if e < f
and f < g, then

ef =fe=e and fg=gf=Ff,

so that

eg=cfg=ef =e¢ and ge=gfe= fe=ce
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and hence e < g. Therefore, (F, <) is a partially ordered set. In fact, E(S) has
much richer structure that we will explain in the following sections.

We say that an element a in S is regular if there exists an element b in S such
that aba = a. It is clear that an idempotent is regular. A semigroup is called
regular if every element of S is regular. It is obvious that every band is regular.

For an element a of a semigroup S we say that a’ is an inverse of a if

a=ada and a =dad.

It is clear that an inverse element is regular. Conversely, any regular element
has an inverse, since if a is a regular element, then there exists b € S such that
a = aba. Then a’ = bab is an inverse of a, as

aa’a = a(bab)a = (aba)ba = aba = a
and
a'aa’ = (bab)a(bab) = (bab)(aba)b = (bab)(a)b = b(aba)b = b(a)b = d’.

For each a in S we denote the set of all inverses of a by V(a). A semigroup
S is inverse if every element has a unique inverse. Every group is inverse as for
each a in a group G, V(a) = {a~ '}, where a! is the usual group inverse of a in G.

For any non-empty subset X of a semigroup S there is at least one subsemi-
group of S containing X, namely S itself. Let {P; : i € I} be the collection of all
the subsemigroups of S containing the set X. Then

P=\P
i€l

is called the subsemigroup genmerated by X, denoted by (X). Note that (X) is
the smallest subsemigroup of S containing X. We say that X generates (X). If
S = (X), then we say X a generating set for S. A semigroup is finitely generated
if there exists a finite set X C S such that S = (X). It is easy to see that
(X) = {zizo...2p : n €N, z; € X for all 1 < ¢ < n}. For example, any
semigroup is generated by itself. If X = {z} is a singleton set, then

(x) = {x, 2%, 23,--- }.

We say that (z) is a monogenic subsemigroup of S generated by x.
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Example 1.1.18. The semigroup of natural numbers N under addition is gener-
ated by the element 1.

Let S be a semigroup and let A be a subset of S. Then

S'A={sa:sc S ac Al =SAUA.

If A= {a} is a singleton subset of S, then we simply write S'A = S'a, with
similar conventions for other products. We have three key subsets of S which are
given by:

(i) Sta = SaU {a};
(i) aS! = aS U {a};
(iii) S'aS! = SaS U SaUaSU{a}.

Notice that S satisfies S'a = Sa if and only if a € Sa if and only if a = ua for
some u € 5. We give three examples of cases where this occurs:

(i) if S is a monoid, so that a = la;
(i) if a € E(S), since aa = q;
(iii) if a is a regular, then there exists x € S such that axa = a and a = (xza)a.

Let T be a non-empty subset of a semigroup S. Then T is a left ideal of S if
for all s € S and t € T, we have st € T. We call T a right ideal of S if for all
se€ SandteT, wehavets € T. We call T a (two-sided) ideal of S if it is both
a left ideal and a right ideal of S.

Lemma 1.1.19. Let S be a semigroup and a € S. Then aS' (S'a, S'aS!) is the
smallest right (left, two-sided) ideal containing a.

Definition 1.1.20. Let S be a semigroup, a € S. We call aS' the principal right
ideal generated by a.

Similarly, we call S'a the principal left ideal generated by a. Moreover, S'aS" is
called the principal ideal generated by a.

Example 1.1.21. Let I x J be a rectangular band and let ¢ € I. For any
(m,n) € I x J and (i,7) € {i} x J we have that (i,7)(m,n) = (i,n) € {i} x J.
Then {i} x J is a principal right ideal of I x J.
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Lemma 1.1.22. The following statements are equivalent:

(i) Sta C Stb;

(ii) a € S1b;

(iii) a = tb, where t € S1;

(iv) a ="b or a=tb for somet e S.
We remark here that a dual result holds for principal right ideals.

Notice that S is an ideal of itself and if S is semigroup with 0, then {0} is an

ideal of S. An ideal A of S is proper if A # S and if S has 0, then an ideal A is
proper if A # S and A # {0}. A semigroup S without 0 is called simple if S is

the only ideal of S. A semigroup with 0 is called 0-simple if S and {0} are the
only ideals of S and S% # {0}.

We know that homomorphisms of algebraic structures preserve all the basic
operations, which we now explicitly define. The same is true for semigroup and
monoid homomorphisms.

Definition 1.1.23. Let S and T be semigroups. A map ¢ : S — T is called a
(semigroup) morphism if for all z,y € S, we have that

(zy)p = (z0)(yp).
Note that a morphism ¢ from S into itself is called an endomorphism. The

set of all endomorphisms is a monoid under composition, denoted by End S.

If S and T" are monoids, ¢ : S — T is a semigroup morphism and if in addition,

15'90 = 1T7

then we say ¢ is a (monoid) morphism.

If a morphism ¢ is onto (surjective), we call it an epimorphism. An injective
morphism is called a monomorphism. If ¢ is bijective morphism, then ¢ is called
an isomorphism and we say that S and T are isomorphic, denoted by S = T.
Notice that two isomorphic semigroups (or monoids) have exactly the same alge-
braic properties.

Before giving some examples of semigroup morphisms, we fix the following
standard notation for maps.
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(i) Let 0 : S — T be a map from S to T. Let S’ be a subset of S. We denote
the restriction of 6 to S’ as 0

(ii) Let S and T be sets and let {S; : ¢ € I} be a partition of S. Let 6; : S; — T
be a map from S; to T', for each i € I. Let 6 = J,c; 0; bethemap ¢ : S — T'
which is given by

sh = s0;, if s € S5;.

(iii) Let S be a semigroup. The identity map Ig : S — S defined by slg = s, for
all s of S.

Example 1.1.24. Let S be a semigroup and let e € E(S). Define the constant
map

Ce:S5— S
by s — e for all s of S. Then the map C, is a morphism.
Let S and T be semigroups and « : S — T be a morphism. Then the set
Ima={sa:seS}

is a subsemigroup of T'. If « is a monoid morphism, then Im « is a submonoid of
T. We say S is embedded in T if « is an injective morphism. Let ¢ : S — T be
an epimorphism. We say that 1" is a homomorphic image of S.

The following result is an essential lemma of the morphism for semigroups
[64].

Lemma 1.1.25. Let p be a congruence on a semigroup S. The mapping
P S —S/p,
defined by
av— ap
is an epimorphism.
The next result is the Fundamental Theorem of Morphisms for semigroups.

Theorem 1.1.26. Let 0 : S — T be a semigroup morphism. Then ker6 is a
congruence on S. Moreover, S/ker 8 isomorphic to Im 6.
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1.2 Green’s relations

We introduce an important tool for analyzing the ideals of a semigroup S and
related notions of structure, introduced by J.A. Green and subsequently called
Green’s relations. These relations R, £, H, D and J are equivalences, that
characterize the elements of S in terms of the principal ideals they generate.

We first define the binary relations <, <z and <7 on a semigroup S by the
rule, for any a,b € S

a < b= StaC S,
a <r b<= aS* C bS*,
a <7 b<= S'aS' C S1bS*.

We called these relations Green’s left, right and two sided quasi-orders, respec-
tively. All of these relations are quasi-orders. Also, it is easy to see that </ is
right compatible and similarly the relation <g is left compatible.

It is easy to see from Lemma 1.1.17 that if e and f are idempotents, then
e < f<=ef=cande <p f<= fe=e.
Now we are in a position to define Green’s relations as follows:
(i) a Lb if and only if Sta = S'b ;
(i) aRb if and only if aS' = bS*;
(iii) a# b if and only if a£Lb and a R b;
(iv) aDb if there exists ¢ € S with a R c Lb;
(v) a J b if and only if S'aS! = S'bS1.

The relations £ and R and J are the equivalence relations associated with
the quasi-orders <g, <r and <7, respectively. It is easy to check that L is a
right congruence on S and R is a left congruence on S. Moreover, it is clear by
the definition of H that H = LNR.

Lemma 1.2.1. Let a, b be elements of a semigroup S. Then a Lb if and only if
there exist x,y € S' such that

ra=>b, yb =a.

27



Dually, aR b if and only if there exist ',y € S' such that
ar’ = b, by = a.
Example 1.2.2. (i) In the commutative semigroup (N,+) we have that

L=R=H=D=J=1={(a,a):a€N}.

(ii) In any group G, we have £ = R = H. Since for any a,b € G we have aG' =
G =bG" and G'a =G =G'b. Then aRb, aLband R=L=w =G x G.
AsH=LNR, then H =G x G. Moreover, we have w =D = J.

The following result showing that £ and R commute [64].
Lemma 1.2.3. For any semigroup S we have Ro L =LoR.

From the above lemma and from the definition of the relation D, it is clear
that D = R o L and D is an equivalence relation. Moreover, the relation D is the
smallest equivalence relation containing £ and R.

For an element a € S, we denote the L-class, the R-class, the D-class, the H-
class and the J -class of a by L, Ry, Do, Hy and J,, respectively. Since H = LNR,
we have H, = L, N R,. Also, it is clear that every D-class of S is a union of the
L-classes, and also a union of R-classes. By Lemma 1.2.3 and the definition of D
relation we have

aDb< L,NRy#0 <> R,NLy #0.

It is useful to visualize a D-class D of a semigroup S as an eggbox diagram,
[10]. An eggbox is a grid whose rows represent R-classes of D, columns represent
L-classes of D, and cells of the grid represent H-classes of D, as depicted by the
figure below.

Figure 1.1: The egg-box of a typical D-class.
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Since £, R C J and D is the smallest equivalence relation on S containing
both £ and R, we have D C J. We may depict the relations between Green’s
relations by the following Hasse diagram.

F

Figure 1.2: Hasse diagram of Green’s relations

Lemma 1.2.4. A semigroup S is simple if and only if it has a single J-class,

J=8x§8.

Example 1.2.5. For any rectangular band 7" we always have that D = J =T xT
and for all a,b € T we have that

aRabLb.
We end this section with some useful results of semigroups.

Lemma 1.2.6. For any idempotent e in S. The element e is the left identity of
its R-class R, and a right identity of its L-class Le.

Lemma 1.2.7. For each idempotent e in S, H. is the mazimal subgroup of S
containing identity e.

The following is one of the important theorems of semigroups, usually called
Green’s Theorem.

Theorem 1.2.8. For each H-class H of a D-class D in S, we either have H is
a subgroup or H?> N H = (. Moreover, H is a subgroup if and only if H contains
an idempotent of S, so that no H-class can contain more than one idempotent.

Lemma 1.2.9. Let a and b be elements of S such that a D b. Then |H,| = |Hp|.
Moreover, any two group H-classes within the same D-class are isomorphic.
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1.3 Semilattices and strong semilattices of semigroups

In the following we introduce an important semigroup construction used in
this thesis. Let Y be a semilattice and S be a semigroup. We say that S is a
semilattice Y of subsemigroups S, o € Y, if the following hold:

(i) S is a disjoint union of subsemigroups S,, where a € Y
(ii) for any o, 8 €Y, SqS5 C Sap-

The semilattice Y is called the structure semilattice of S.
For an element a of S, if a € S,, we may denote this by writing a as a,. Let
S = Uqey Sa be a semilattice of semigroups. The map

c: 85 —Y,

defined by the rule
400 = @,

is an epimorphism.

Let S be a semilattice Y of subsemigroups S,, a € Y. Then for any a € S,,
b € Sg, by definition, ab € S,g, but there is no clear location of ab within S,3.
To determine this we need the notion of strong semilattice of semigroups.

Suppose that we have a semilattice Y and a family of disjoint semigroups S,
where a € Y, and suppose that, for all & > £ in Y, there exists a morphism
©Pa,3: Sa — Sp such that:

(i) foralla € Y, oo = 1s,;
(ii) for all o, B,y € Y such that a > 5 > ~, we have v, g5y = Ya,y-

We define a multiplication on the set S = J,cy Sa by the rule that for each
x € S, and each y € S,

2y = (2Pa,08)(YP8.08);

where the multiplication on the right hand side is S,z.

It is clear that the operation extends the multiplication in each S,, a € Y.
The set S = |J,ey Sa, with the multiplication defined above, forms a semigroup,
called a strong semilattice Y of semigroups So,a € Y. We denote this semigroup
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by S = .7(Y;Sa, ¢ap). Note that the multiplication extends that in each S,.

It is important to note that if S = 7 (Y’; Sa, ¢a ) is a strong semilattice of Y’
of semigroups S,, @ € Y, then it is certainly a semilattice Y of semigroups S,
«a € Y. However, the converse is not always true, as we see in the next example.

Example 1.3.1. Any non normal band B is a semilattice Y of rectangular bands
Ba, a € Y, but it can not be a strong semilattice of any semigroups, as we will
see in Section 1.5.

1.4 Regular semigroups and completely simple semi-
groups

Recall that a € S is regqular if there exists x € S such that ¢ = aza and a
semigroup S is called a regular semigroup if all its elements are regular. Groups
and rectangular bands are examples of regular semigroups.

Recall that if a is regular element of S, then we have that S'a = Sa. Hence,
if S is regular, Green’s relations can be expressed in terms of S rather than S?.
That is we can define the Green’s relations on S by the rules

alb<= Sa= Sb;
aRb<= aS =bS;
aJb<= SaS = SbS.

Lemma 1.4.1. If a is a regular element of a semigroup S, then every element of
D, is regular.

Thus for every D-class D in S, either all elements of D are regular or none
of them are regular. We say that a D-class is D-regular if it contains one regular
element (consists entirely of regular elements). Note that this is not true for J
[64, Exercise 26 Chapter 5|. Any idempotent e € S is a regular, we have that
any D-class containing an idempotent is regular. Moreover, every regular D-class
contains at least one idempotent, since if a in a regular D-class with a = azxa, we
know that az,za € E(S5).

It is easy to see that if a is a regular element with aza = a, then ax R a L za.
Also both ax and xa are idempotents. Hence we have the following result.

Lemma 1.4.2. In a regular D-class, each R-class and each L-class contains an
idempotent.
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Let S be a semigroup and let (E, <) be a partially ordered set, where E =
E(S). We say an idempotent e € S is a primitive if it is a minimal non-zero
element of the set E(S). If e is primitive, and 0 # f € E(S) with f < e, then

f=e

Definition 1.4.3. A semigroup S is called a completely simple (completely 0-
simple) if S is simple (0-simple) and contains a primitive idempotent.

Lemma 1.4.4. FEvery completely 0-simple semigroup S is a reqular semigroup
with exactly two D-classes, namely {0} and D = S\{0}.

Let G be a group, let I and A be non empty index sets and let P = (p ;) be
an A x I matrix with entries in G U {0}. Suppose that P is regular, which means
there is no row or column of P consists entirely of zeros,

(Vie I)(IX € A)py; # 0 and (VA € A)(Fi € I)py; # 0.
Let S = (I x G x A) U {0}, and define multiplication on S by

. . Z.7 p,'7h’7 lfp: 0
(5,9 M) (o ) = { (IR o) i 2 (11)
0 else

and (i,a,A)0 = 0(i,a,A) = 00 = 0. We denoted S under this multiplication by
MPO[G, I, A, P], called the I x A Rees matriz semigroup over G with reqular sand-
wich matrix P.

We end this section by these results which taken from [78], in 1940 by Rees.

Theorem 1.4.5. The semigroup M°[G, I, A, P] constructed in the above manner
is a completely 0-simple semigroup; conversely, every completely 0-simple semi-
group is tsomorphic to one constructed in this way.

Corresponding to completely simple semigroups, we have the following sim-
plified version of the Rees Theorem.

Theorem 1.4.6. Let G be a group, let I and A be non-empty sets and let P =
(pa,i) be a A x I matriz with entries in G. Let S = I x G x A, and define a
multiplication on S by

(7:7 a, )‘)(.77 b7 N) = (7’7 ap)\,jby ,U,)

Then S is a completely simple semigroup. Conversely, every completely simple
semigroup is isomorphic to a semigroup constructed in this way.
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The completely simple semigroup S = I x G x A, with the multiplication in
the above result, denoted by

M(G;1,A,P).

For further details, we refer readers to [78].

1.5 Bands

The main goal of this section is to introduce some special kinds of bands that are
frequently mentioned in this thesis such as left normal bands, right normal bands,
and normal bands. Recall that a semigroup S is a band if it consists entirely of
idempotents. Usually, we denote a band by B.

In the previous section of this chapter, we have already defined a partial
order < on the set of idempotents E(S) of a semigroup S by the rule that, for
any idempotents e, f € S

e< f<=ef=fe=e.
Certainly this relation can be used to partially order any band B.
Bands have the following useful property.

Theorem 1.5.1. For any band B we have D = J.

The following figure contained some special kinds of bands which are required
for our work. In fact, all of these classes are varieties of bands; for further details
see [44].
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ReB regular band : zzyz = zaxzyz

LRB left regular band : zy = zyx
RRB right regular band : zy = yxy
NB normal bands : zxyz = zyxz
LNB left normal bands : zzy = zyx
RN B right normal bands : zyz = yxz
RB rectangular bands : zyxr = x
LZ left zero semigroups : zy = =
RZ right zero semigroups : xy =y
B bands (idempotent semigroups) : 22 =

Z null semigroup : xy = z

C commutative semigroup : xy = yx

SLC semilattices : 2% = z, 2y = yx
T trivial semigroups : x =y

Yz = ZXzyz

Figure 1.3: Lattice of varieties of regular bands

The following useful result from [66], illustrates a necessary and sufficient
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condition for any band to be a rectangular band.

Lemma 1.5.2. A band B is rectangular if and only if for any e, f,g € B, we
have efg = eg.

The above lemma means in bands the identities (or equations) efe = e and
efg = eg are equivalent.

Now we are in the position to give the well known decomposition theorem of
bands in terms of semilattices of semigroups.

Lemma 1.5.3. Let B be a band. Then B is a semilattice Y of rectangular bands
B,, a €Y. Further, Y = B/D is a semilattice and each By, is a D-class of B.

Note that a band B is a semilattice if and only if each B, is trivial.

In this thesis we focus on a special kind of band called a normal band. It is
clear from the figure above that a normal band B is a left normal band and right
normal band.

We end this section with the important result of normal bands.

Lemma 1.5.4. A band B is normal band if and only if it is a strong semilattice
B(Y; Ba, pa,p), whereY = B/D and each By is a D-class of B.

Let B = A(Y; Ba, ¢a,3) be a normal band. We say B is pliant (trivial normal
band) if for every a € Y, there exist an a, € B, such that for all 5 > « and each
u € Bg, we have upg o = aq.

A band B = |J,cy Ba is Y-basic (simple band) if it is a semilattice ¥ of
rectangular bands B,, a € Y, where B, is either a left zero band or a right zero
band. For example any left or right regular band (that is, where every B, is left
zero, or every B, is right zero) is Y-basic.
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Chapter 2

Preliminaries II: Semigroup
constructions

In this chapter, we outline some basic semigroup constructions required in this
thesis such as direct product, free product, and graph product. The definitions
and results are taken from the standard books on introductory semigroup theory

[55], [64], [65] and [81].

2.1 Semigroup and monoid presentations

Let A be a non-empty set. Let AT be the set of non-empty finite sequences
(strings) ajoasgo. . .oa, formed from A. We call the sequences of AT words. Denote
a binary operation on A™ by o, that is, for all ajoaso...0a,, byobyo...ob,, € AT

(agoago...oan)o(byobeo...oby)=ajo0az0...0a,0by0byo...0by,.

The set A* with respect to the above operation forms a semigroup, call the free
semigroup on A. An element a in A is called a generator and A is the generating
set of AT. We say that two words ajoaso...0a, and bjobso...ob,, are equal if
m =n and a; = b; for every 1 < i < n. By adjoining an empty word (containing
no letters) denoted by 1, into A™, we obtain the free monoid A* = AT U{1} on A.

An abstract way to define a free semigroup on A can be given as follows. A
semigroup F' is called a free semigroup on A if we have the following;:

(F1) there is a map a: A — F};

(F2) for every semigroup S and every map ¢: A — S there exists a unique
morphism : F' — S such that the following diagram commutes:
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[a%

A——F

1.4

S
Figure 2.1: The commutative diagram for a free semigroup

It is easy to prove that A" is a free semigroup by using the above abstract
definition of free semigroups. Let a: A — A" be a map defined by aa = a, for
any a in A. Then for any given semigroup S and an arbitrary map ¢: A — S, we
define ¢: AT — S by

(al 0az0...0 anW = (a1¢)(a2¢> t (an¢)

It is easy to check that 1) is the unique morphism from A™* to S such that ay) = ¢.
Then we have the following commuting diagram:

4% At

Py
1]

1/

S

»,

Figure 2.2: The commutative diagram for the free semigroup A™*

By taking A = S it is easy to see that the following result is true.

Lemma 2.1.1. [64] Every semigroup may be expressed up to an isomorphism as
a quotient of a free semigroup.

In the following we define a semigroup presentation.

Definition 2.1.2. A semigroup presentation is an ordered pair (A|R), where R
is a binary relation on A*. The pair (u,v) € R is called a defining relation. The
semigroup defined by a presentation (A|R) is AT /p, where p is the smallest con-
gruence generated by R.
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2.2 External direct products of semigroups

There are numerous ways of building new structures from the already existing
ones. One of the most well known ways is direct product of algebraic structures
such as groups and semigroups.

Definition 2.2.1. [64] Let S1, Sa,..., S, be semigroups and let

Six oo x S, ={(s1,...,8n) 18 €8 forall 1 <i<n}.

Define a binary operation on §' x --- x S, by

(817 .. .,Sn)(tl, . ,tn) = (Sltl, . ,Sntn),

where (s1, ... ,8n),(t1, ... ,ty) € S1 X -+ X Sp. The set S1 X --- x S, forms a
semigroup with respect to the above operation, called the (external) direct product
of the semigroups S1, S2, ..., S,—1 and S,,, denoted by

H S; = {(81,82,...,8n)2 S; € Sl}
=1

If 51, S9,..., S, are monoids with identities 11, 1o, ..., 1,, respectively, then
the external direct product Sy x --- x S, has identity (11, ...,1,).

Let M = S x T and M; = 57 x 11 be two external direct products of semi-
groups, and let

P1: S — 51
and
o T — T
be morphisms. Define a map ¢: M — M; by
(s,t)p = (s¢n, teha).

This map is a morphism. Moreover, if ¥); and 15 are injective, then ¢ is injective.
Similarly, if ¢ and 1o are surjective, then ¢ is surjective .
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2.3 Free products of semigroups

In this section we study a different way to building a new semigroup from
existing ones, called the free product of semigroups.

Let {S;: i € I} be a set of pairwise disjoint semigroups. If
SESZLJ{Si:iEI}7

then there is a unique k in I such that s € S; and we write o(s) = k.

Let .# 2 be the set of all finite strings s = (s1, s2, ..., S,), where n € N, and
sp € S for all 1 < r < n, such that o(s,) # o(sp41), forall 1 <r <n —1. Let
s = (81,82,...,8,) and t = (t1,t2,...,tyn) be elements of #Z?. We define the
product of s and ¢ in F#Z by

e {(sl, 825y Suytisto, ooy t) i 0(s,) # o(th) 1)

(81,82, Snt1,tay .. ty) if o(sy) = o(ty).

It is easy to check that the above operation is associative. The set .# &2 with
respect to this operation forms a semigroup, called the (semigroup) free product
of the family {S;: i € I}, denoted by

F P =11"{S;: i€ I}.

We may write # & more simply as #% = 1I*S;. If I = {1,2,...,n}, we can
write F P = S1 %S x---x S,. We say an element s = (s1,82,...,8y) of F&
has length m and this is denoted by |s| = m.

We end this section by giving an alternative approach to define free products
of semigroups, using a universal property.

Proposition 2.3.1. Let # = 11*{S;: i € I} be the free product of a set {S;: i €
I} of disjoint semigroups. Then for each i in I there exists a monomorphism
0;: S; — FZP given by

$i0; = (Si), s; € 5;.

Further, if T is a semigroup and there is a morphism ;: S; — T for each 1,
then there is a unique morphism ~v: F P — T such that the diagram
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Y;

Figure 2.3

commutes for every i in 1.

It is clear that for any s; € S;, where ¢ € I, the element (s;) of .# & has length
equal 1.

The property that given in Proposition 2.3.1 is uniquely defines free product
as we see in the following result.

Proposition 2.3.2. Let {S;: i € I} be a family of semigroups, and let H be a
semigroup such that

(i) there exists a monomorphism o;: S; — H for each i € I,

(ii) if T is a semigroup and if there exists a morphism B;: S; — T for every i
in I, then there exists a unique morphism 6: H — T such that the diagram

S i H

Figure 2.4

commutes for every i in I.

Then H is isomorphic to F 27 =11I"{S;: i € I}.
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As we will see later, the free product of the semigroups {S;: i € I'} can defined
as a quotient
FP = X+/p17

where X = [J{S;: i € I}, and

p1={(zxoy,ay):x,y € S;iel}).

2.4 Graph products

In this section, we outline the basic definitions and results concerning graphs
and graph products of semigroups. These results and definitions are required for
this thesis.

2.4.1 Graphs

In this subsection, we define graphs and recall some basic properties associated
with graphs which are all essential in this thesis. The results and definitions of
graphs are taken from some references, including [65] and [55].

Definition 2.4.1. A graph T' = (V, E) is a non-empty set V' of vertices together
with a set F, of 2-element subsets of V', whose elements are called edges.

Every element of E' contains exactly two elements. For convenience we may
write (o, 8) € E rather that {o, 8} € E. Notice that in our graphs no multiple
edges allowed, that means they have no loops. We called the graph with no loops
a simple graph. We are identifying (a, 8) with (8, ). Throughout this thesis, we
assume that V' is a finite set, and so is E.

Two graphs I'y = (V1, Ey) and T'y = (Va, Ey) are isomorphic if there exists a
matching between their vertices so that two vertices are connected by an edge in
I'y if and only if corresponding vertices are connected by an edge in I's.

A graph TV = (V' E') is a subgraph of T' = (V, E) if
V' CV,and B CV' xV'CE.
The subgraph IV = (V' E') is called a full subgraph of T if

(a,B) € E <= (a,p) € E', forall a,8 € V.
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A graph ' = (V| E) is a discrete graph (null graph) if E is empty. On the
other hand, if (o, 8) € E for all a,, 8 € V, then the graph I' is called complete. A
connected graph is a graph I' = (V, E)) such that for any «, 8 € V, there is a path
which connects a and 5. A path is a sequence of edges. Therefore, it is clear that
any complete graph is connected graph but the converse is not true.

We say a graph I' = (V| E) is disjoint union of subgraphs I'; = (V;, E;), 1 <
i<m,if V=UV;, and E = UE;.

2.4.2 Graph products of semigroups

The graph product is an operator mixing direct and free products. Graph
products of groups were introduced by Green in 1990 in her thesis [55]. This con-
cept was studied by many authors, such as Hermiller and Meier [60]. The graph
product of monoids is defined in the same way as the graph product of groups and
has been studied specifically by Veloso da Costa, Fohry and Kuske [13], [12], [38].
Fountain and Kambites in 2008 [42] were able to show that the graph product of
cancellative monoids is cancellative.

In this section we define the graph product of semigroups, this is a different
concept than the graph product of monoids and groups. For this purpose, we
introduce some relations.

Let I' = I'(V, E) be a graph. Let S, be a semigroup for each a € V. We
assume that S, NSz =0 for each a # S € V.
Let . = ./ (V) ={S4 : @« € V}} and put

X=XT,7)= ] Sa

aeV

We write a word in the free semigroup X+ as x1 0 ... o x, and also use o for the
operation in X .
We define some congruences on the free semigroup X,

p=pl,7)=(H)
and

H=H(T,¥)=HUH,,

where

H=HIY) ={(zroy,zy) :x,y € Sq,aa € V}
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and
Hy =Hy(T',) ={(zoy,yox):x € Sy,y € S, (a, ) € E}.

We also let p1 = (Hy). It is clear from the above notations that ., X, H; and
p1 depend only on V.

Definition 2.4.2. Let I' = (V, E) be a graph and let S = {S, : « € V} be a
set of semigroups. The (semigroup) graph product 4 = G P2(T',.7) of S with

respect to I' is defined by
G2 =X"/p.

We say the graph T is the underlying of 4 =94 2(I",.7). Throughout this
thesis, as we only consider semigroup graph products, we will drop (semigroup)
and just say graph products. The semigroups S, are called the components of

GP =9G4PT,) or, the vertex semigroups, as we will show a component S,
a € V embeds naturally in 4 =9 2(T',.7).

Note that if V' = {a}, is a singleton, then the graph product ¥ & is isomorphic
to Sq. It is also worth remarking that if the semigroups S, are all monoids, then
similarly to the case for free products, unless V' is a singleton, the resulting graph
product is not a monoid, since the identities remain distinct.

If T is null, then the graph product of the semigroups {S, : @ € V'} is exactly
the free product IT*S,, of the given semigroups and we write # % = % P (T, .).
However, if the underlying graph is complete, then the graph product is the direct
product of the given semigroups.

Note 2.4.3. Let H), = H)(T', ) = {(zp1,yp1) : (x,y) € Ha} and pl, = (HL). We
have that 4 P ~ F P [{pl).

We use the convention
[x10...0omy]| =21 %...xxp
and * for the multiplication in the graph product, so that
[T10...0xp]*[y10...0yn] =[r10... 0T 0y1 0...0 Y]
can be written as

(1o k) % (Y1 oo *Ym) = T1 koo kT kYL ¥ o Yy

43



For any element w = z10...0x, € X1, we say x; and x;;1 can be squashed
in w if x;, ;41 € Sk, for some k. Then we can write as €1 0 £;T;j+1 0 ...0 Xp.

We say a word w1 0...0x, € Xt is a reduced form for [w] € F 2 if [w] =
[x10...0x,] and o(x,) # o(zr41), for all 1 < r < n — 1, that means no more
squashed can do. It is obvious that the reduced form of [w] is the shortest length
and unique form as (o(z;),0(zr41)) ¢ E for 1 <r <n—1. In Chapter 7, we will
generalize this concept and define this form of [w] € ¥ also we will give more
special forms of the elements of the graph product.

Example 2.4.4. Let ¥ = 9P (T, ) be a graph product underlying the graph
I'=(V,E), where V ={1,2,3,4,5,6}, and

E=1{(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4), (4,5), (5,6) }.

The graph I" is given by the following figure:

1 2 6
5
3
4
Figure 2.5

Let u,v € S1, w,x € So, y € S3, 2 € Sy, s € S5 and t € Sg. Let
[woyozovoxouosot] e 4.

We write this element in a reduced form as follows

[woyozovoxouosot]=[woyozoxovouosot] (as (2,1) e E,zov=vox)
=[woyoxozovouosot] (as (2,4) e B, z0z=2zox)
=[woxoyozovouosot] (as (2,3) € E,zoy=youx)

[

[

[
=[(wox)oyozo(vou)osot

[(wz)oyozo(vou)osot (as x, w € S)

[

=|wxoyozovuosol] (as u, v € 57).
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The above form is the reduced form as there are no more elements that can be
squashed.

We will prove in Chapter 7 that the reduced form of any word w of X is the
shortest form of [w] in ¥ 2.

The graph product of some semigroups in the following example can be written
as free product of direct products.

Example 2.4.5. Let I'1 = (V1, Eq), Vi = {1,2,3}, By = {(1,2),(2,3),(1,3)},
FQ = (VQ,EQ), V2 = {4, 5}, E2 = {(4,5)}, and P3 = (V;),,Eg) where V3 =
{6,7}, E5 ={(6,7)}. Let 471, 4 P9 and 4 P53 be the graph products of semi-
group underlying the graphs I'y, I's, I's, respectively. Then the graph product of
semigroup ¥ & = G Z(I',.) which corresponds to the graph I' = (V| E), where

V=vuWVuV;, E=FE UEFEsU Es,

is given by the following figure,

Figure 2.6

which can be written as
(GP1) % (9 P3) x (9 P3).

This means that the above graph product is the free product of the graph
products ¥ ¥, Y5 and Y H3.
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Chapter 3

Preliminaries II1: (Weakly)
abundant semigroups

In this chapter, we introduce two sets of binary relations, as analogues of
the well known Green’s relations. The notion of a (weakly) abundant semigroup
is introduced using these relations. More details related to the content of this
chapter can be found in [41], [39], [40] and [68].

3.1 Green’s x-relations and abundant semigroups

Let S be a semigroup and F = E(S) be the set of all idempotents of S. Fountain
in [40] defined the relation £* on S by the rule that for any a,b € S, a £* b if and
only if a £Lb in some oversemigroup of S. The relation R* is defined dually. By
the definitions of £* and R*, it is clear that

LCLand R CR*

The relations £* and R* are equivalence relations on S. Moreover, L* is a
right congruence and R* is a left congruence. The D* relation is the join of L*
and R*, while their intersection is denoted by H*. It is worth pointing out that
L*oR* # R*o L*, [40, Example 1.11]. For details about the relations H*, D*
and J* we refer the reader to [40]. We denote the L*-class, R*-class, D*-class
and H*-class of an element a of S by L}, R, D} and H, respectively.

Let a, b be regular elements of S. Then a £* b if and only if a £ b, dually for the

relation R*. Hence if S is a regular semigroup, we get that £ = £* and R = R*
[40].
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In 1976, Fountain [41] introduced another characterization of L£*, given as
follows.

Lemma 3.1.1. Let S be a semigroup with a,b € S. Then the following conditions
are equivalent:

(i) a L*b;
(ii) for all z,y € S*, ax = ay if and only if bx = by.
The next result is a useful consequence of the above lemma.

Lemma 3.1.2. [40] Let S be a semigroup with a € S and e € E. Then the
following statements are equivalent:

(i) aL*e;
(ii) ae = a and for any x,y € S, ax = ay implies ex = ey.

By the above lemma it is clear that an idempotent e € E acts as a right
identity within its £*-class L}. Both the above results have duals for R*.

It is well known that a semigroup S is regular if and only if each £-class and
each R-class of S contains an idempotent of S. Corresponding to the relations £*
and R*, we introduce the concept of an abundant semigroup, as a generalization
of the concept of a regular semigroup [40].

Definition 3.1.3. (i) A semigroup S is right abundant if each L*-class of S
contains an idempotent of S

(ii) S is left abundant if each R*-class of S contains an idempotent of S;
(iii) S is abundant if it is both left and right abundant.

Note that a semigroup may be left but not right abundant, as it is easily seen
by considering a right but not left cancellative monoid. We say a semigroup S is
abundant if each L£*-class and R*-class contain an idempotent, unlike the case of
L and R in a regular semigroup, where if every £-class of a semigroup S contains
an idempotent, then so does every R-class of S and vice versa. It is not the case
for abundance.
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We say that an element a in S is abundant if e R* a L* f for some e, f € E(S).
It is clear that any regular element is abundant. It is obvious that a semigroup is
abundant if every element of S is abundant.

In view of the definition of abundant semigroups, regular semigroups are abun-
dant, whereas not all abundant semigroups are regular. For example, any can-
cellative monoid is abundant but not necessary regular. Moreover, a semilattice
of abundant semigroups need not be abundant, [40, Example 1.3].

3.2 Green’s ~-relations and weakly abundant semi-
groups

In this section we present a third set of relations. These are £ and 71 which
were introduced by Lawson [68]. These relations extend the starred versions of
Green’s relations.

For any a,b € S we define the relations £ and R by
aLlb< (Ve € E)(ae = a < be = b)
and
aRb < (Ve € E)(ea = a < eb=1b).

For details about the associating relations 7—~[,~ D and J , we refer the reader to
[68]. Tt follows from the definitions of £, £*, £, R, R* and R that

LCLCL
and
RCR*CR.
If S is abundant then £ = £* and R = R*.
We end this section with some results which will be used later in this thesis.

The following results follow immediately from the definition of L. Both the fol-
lowing results have duals for R.

Lemma 3.2.1. [68] Let S be a semigroup with a € S and e € E. Then the
following statements are equivalent:
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(i) aLle;
(i) ae = a and for any f € E, af = a implies ef = e.
An easy observation for the above result gives the following useful lemma.

Lemma 3.2.2. Let S be a semigroup with e, f € E. Then e L f if and only if
el f.

From the above result it is clear that if S is regular, then £ = £* = £ and
R=R*"=TR.

Corollary 3.2.3. Let S be a semigroup and let a € S, f € E be such that aEf
but a is not L*-related to f. Then a is not L*-related to any idempotent of S.

Proof. Let aZf and a be not L*-related to f. Suppose that aL*e for some
idempotent e € E. Then a Le, as L* C L. By assumption we get that e £ f, and
by Lemma 3.2.2 it is clear that e £ f. As £ C L*, we get a L* f, a contradiction.

O

An abundant semigroup is generalization of a regular semigroup in terms of
the relations R* and £*. Similarly, we define a weakly abundant semigroup, which
is generalization of an abundant semigroup in terms of the relations R and L.

Definition 3.2.4. (i) A semigroup S is right weakly abundant if each L-class
of S contains an idempotent of S;

(ii) S is left weakly abundant if each R-class of S contains an idempotent of S;

(iii) S is weakly abundant if it is both left and right weakly abundant.

It is known that the relations R* and L£* on S are always left and right
congruences, respectively. However, this is not always true for the relations R and
L. Hence we say that a weakly abundant semigroup S satisfies the congruence
condition if R is a left congruence and Lisa right congruence on .S. Therefore,
any regular or abundant semigroup satisfies the congruence condition, but not all
weakly abundant semigroups satisfy this condition, [80, Example 2.2.4]. It is clear
that if S is a semigroup with no idempotents, then S is not weakly abundant.

Yang in [80, Example 2.2.4.], gives an example show that R # R*.

We end this section by the following result which is taken from [16].

Lemma 3.2.5. Let S be a weakly abundant semigroup with a € S and e € E
such that a Le. Then a L* e if and only if for any x,y € S, ax = ay implies that
ex = ey.

49



Chapter 4

Abundancy and weak
abundancy of external direct
and free products

This chapter aims to prove some straightforward results that will be frequently
used in the whole thesis. In the first section, we show the abundance of external
direct products of abundant semigroups. In the second section, we show the
abundance of free products of abundant semigroups.

4.1 Abundancy of external direct products

In this section, we show that the external direct product of finitely many
abundant semigroups is always an abundant semigroup. Moreover, the external
direct product of finitely many weakly abundant semigroups is a weakly abundant
semigroup. These results are used in the proof of our main theorems in this thesis.

Let S and T be semigroups. Let (e, f) be an element of the external direct
product E(S) x E(T). Then

(e.f)? = (e. N)e. ) = (%, %) = (e, f)-
Hence (e, f) € E(S xT). Let (z,y) € E(S x T), then
(2,9)” = (z,9)(z,9) = (@%,y%) = (2,y).
Hence x € E(S) and y € E(T). This proves that
E(SxT)=E(S) x E(T).
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Note that for any semigroups S and 7" that are not monoids, it is clear that
Stx Tl #£ (S xT)Y, as (1g,17) € St x T, where 15 is the identity adjoined to
S, and 17 is the identity adjoined to T, but (1g,17) ¢ (S x T)!. However, if S
and T are monoids, then so is S x T' with identity (1g,17), where 1g and 17 are
the identities of S and T, respectively, and indeed S x T' = S! x T' = (S x T)?.

Lemma 4.1.1. Let S and T be semigroups. Then the external direct product,
ST, of S and T is a left abundant semigroup if and only if S and T are left
abundant semigroups.

Proof. Let S and T be left abundant semigroups. Let (s,¢) be an element of SxT'.
It is enough to prove that (s,t) is R*-related to an idempotent of E(S x T').

Since S and T are left abundant semigroups, we have
sR*e in S, for some e € FE(S),
and
tR* fin T, for some f € E(T).

This means es = s and the equality s = z’s implies that ze = 2’e for any
z,2' € S'. Also, ft =t and the equality yt = 3t implies that yf = ¢/ f for any
y,y’ € T'. Then it is clear that

(evf)(svt) = (esvft) = (Svt)'

Our aim is to show that (s,t) R* (e, f) in S x T. Let (z,y), («/,v') € S x T.
Suppose (z,y)(s,t) = (2/,y')(s,t), which implies

xs=212's and yt=1y't.
As sR*e and t R* f, ze = 2’e and yf = ¢/ f so that (x,y)(e, f) = (', ) (e, f).

Let (z,y) € S x T, and suppose that (x,y)(s,t) = (s,t). Then xs = s and
yt =t, so that ze = e in S and yf = f in T, and so (z,y)(e, f) = (e, f). There-
fore, by Lemma 3.1.2, we get that (s,t) R* (e, f).

Conversely, let S x T be left abundant. Our aim is to show that S is left
abundant. Fix ¢t € T, let s € S and choose (e, f) € E(S) x E(T) such that
(s,t) R* (e, f). Then we get that (e, f)(s,t) = (s,t), which implies es = s and
ft =t. Now let z, y € S be such that zs = ys. Then (z, f)(s,t) = (y, f)(s,1),
which implies (z, f)(e, f) = (y, f)(e, f), hence xze = ye.
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Suppose now that xs = s for some x € S. Then (x, f)(s,t) = (s,t), this implies
that (x, f)(e, f) = (e, f). Hence ze = e, this proves that s R* e in S. Therefore,
S is a left abundant semigroup. Similarly, we prove that T is a left abundant
semigroup. O

As a generalisation of the above lemma we have the following result.

Corollary 4.1.2. Let S1,..., S, be semigroups. Then the direct product,
S1 X ... X Sy,
of S1,..., Sp is a left abundant semigroup if and only if Si,..., S are left

abundant semigroups.

It is clear that left-right dual of Lemma 4.1.1 and Corollary 4.1.2, and hence
we have the following result.

Lemma 4.1.3. Let S and T be semigroups. Then the external direct product,
ST, of S and T is an abundant semigroup if and only if S and T are abundant
Semigroups.

As a generalisation of the above Lemma 4.1.3 we have the next result.

Corollary 4.1.4. Let S1,..., S, be semigroups. Then the direct product,

S1 X ... xSy,
of S1,..., Sp is an abundant semigroup if and only if S1,..., S, are abundant
SeMigroups.

In the following result we show that the external direct product of any two
semigroups is left weakly abundant if and only if these semigroups are left weakly
abundant.

Lemma 4.1.5. Let S and T be semigroups. Then S and T are left weakly abun-
dant semigroups if and only if the external direct product, S x T, is a left weakly
abundant semigroup.

Proof. Let S and T' be left weakly abundant semigroups. Let (s,t) € S x T It is
enough to show that (s,t) is R-related to some idempotent of E(S x T'). For any
s € S there is some e € F(S) such that

sRe in S,
and for any ¢t € T there is some f € FE(T) such that
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tﬁfinT.

The above imply es = s and for any ¢ € E(S), the equality ¢’s = s implies
e'e = e. Also, ft =t and for any f' € E(T), the equality f't =t implies f'f = f.
Hence it is clear that (e, f)(s,t) = (es, ft) = (s,t), and for any (¢/, ') € E(S xT)
such that

(€, f)(s,t) = (s, f't) = (s,1),

we get that (¢/, f/)(e, f) = (e, f) in S x T. Therefore, (s,t)R (e, f) as required.

Conversely, let S x T be a left weakly abundant semigroup. Our aim is to
show that S is a left weakly abundant semigroup. Fix t € T, let s € S such that
(s,t) R (e, f), where (e, f) € E(S x T). Hence we get that (e, f)(s,t) = (s,t), this
implies es = s and ft = t. Let ¢/ € E(S) such that ¢’s = s. Then (€, f)(s,t) =
(s,t). As (s,t) R (e, f) and (e, f) € E(S xT), we get that (¢, f)(e, f) = (e, f),

this implies €’e = e. Then s R e. Therefore, S is a left weakly abundant semigroup.
Similarly, we prove that T is left weakly abundant. O

As a generalisation of the above lemma we have the following result.

Corollary 4.1.6. Let S1,..., S, be semigroups. Then the external direct product,
S1 X ... xSy, of S1,..., Sy is a left weakly abundant semigroup if and only if
S1,..., Sp are left weakly abundant semigroups.

It is clear that left-right dual of Lemma 4.1.5 and Corollary 4.1.6 and hence
we have the following result.

Lemma 4.1.7. Let S and T be semigroups. Then S and T are weakly abundant
semigroups if and only if the external direct product, S X T, is a weakly abundant
SemMigroup.

As a generalisation of the Lemma 4.1.7 we have the next result.

Corollary 4.1.8. Let Sy, ..., S, be semigroups. Then the external direct product,
S1 X ... xSy, of S1,..., Sn is a weakly abundant if and only if S1,..., Sy are
weakly abundant.

4.2 Abundancy of free products

The aim of this section is to show that the free product of abundant semigroups
is abundant. Further, we show that the free product of weakly abundant semi-
groups is also weakly abundant.
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We start this section with the following result that gives the characterisation
of the idempotents in the free product, # % = II*{S;: i € I}, of a set of pairwise
disjoint semigroups {S;: i € I'}.

Lemma 4.2.1. Let {S;: i € I} be a set of pairwise disjoint semigroups. Let [e]
be an element of the free product F P = 11*{S;: i € I}. Then [e] € E(FZ) if
and only if e € E(S;) for some i € I.

Proof. Let e € E(S;) for some ¢ € I. Then [e] € .F . As e is an idempotent, we
get that [e] € E(F2).

Conversely, let [e] € E(F ). If |e|] > 2 and [e] ends in an element of S; and
begins with an element of S; where i # j, then e o e is reduced, and |e o e| =
2|e| > |e|, a contradiction, as [e] = [eoe]. If |e] > 2 and [e] has form [ej o...0¢e,]
where ey, e, € S;, then if f is a reduced form of e o e we have |f| = 2|e|] — 1 > |e],
a contradiction. Therefore, the length of e must equal 1, that implies e € E(S;)

for some 7 € I.
O

Lemma 4.2.2. Let {S;: i € I} be a set of pairwise disjoint semigroups. Then the
free product of these semigroups, F & = II*{S;: i € 1}, is left abundant if and
only if S; is left abundant for all i € 1.

Proof. Suppose that .S; is left abundant for all ¢ € I. Our aim is to prove that
the free product of these semigroups, # & = I1*{S;: ¢ € I}, is left abundant. Let
w be a reduced form of [w] € .F 2, where w begins with an element s; € S; for
some ¢ € I, s; € S, for all 2 < j <n and w has the form

W=810820...0 8.

As S; is a left abundant semigroup, there is some e € E(S;) such that e R* 5.
Let x =xj0...02y and y = yj 0...0y, be reduced forms of the elements [z] and
[y] of F2, respectively. Suppose that [z] * [w] = [y] * [w]. Our aim is to prove
that [z] * [e] = [y] * [e]. We check the possible cases:

1. Let [z] and [y] end in elements z,, y, of S;, which implies

[T10...0Tm_10xy]*[s10s20...08,] =[y10...0yp_10y,|*x[s10s20...
giving
[£10...0%ym—102,510820...08,] =[y10...0Yp_10YpS1 0820...05y].
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Hence we get that

Z10...0%m ] =Y10...0Yp 1, (4.1)
and
Tm S1 = Yp S1-

As s1R*e, Tm,yp € S; and x,,, 51 = yp S1, we get that x,,e = ype. Now we
have

[x] x[e] =[r10...0Tm_1 0 x| *[e]
=[r10...0Zm_1 0 Tpe]
=[y10...0yp—10Yype] (by 4.1, and as x;,e = ype)
= [y x [e].
Therefore, in this case we get that [z] * [e] = [y] * [e].

. Let [z] end in an element z,, of S, for h # i and [y] end in y, of S, for
k # i, which implies

[Z10...0xy|x[s10820...08,] =[y10...0yp|*x[s10820...08,],
giving
[£10...0%y—1021, 0810820...08,] =[y10...0Yp_10Yp0S10820...05y].

Hence we get that
Z10...0%pm—10Tm =Y10...0Yp—10Yp, (4.2)
which implies that h = k, and [z] = [y]. Therefore, [x] x [e] = [y] * [e].

. Let [z] end in an element z,, of S; and [y] ends in y, € Sk, for k # i, which
implies

[Z10...0Zm_10Ty|*x[s10820...08,] =[y10...0yp| *x[s10820...08,],
giving
[£10...0%ym—1021,510820...08,] =[y10...0Yp08]0820...05y].

Hence we have

T10...0Ty_10TmS1 =Y10...0%p0 51,
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which implies
Z10...0%ym_1 =Y10...0Yp, (4.3)
and

Ty S1 = S1.

As s1 R*e, xy € S; and x,,, 81 = S1, we have x,,e = e. Therefore,

[x] * [e] = [z10...0Xm—1 0 Xp] * [€]

= [x10...0Zm_1 0 Tppe]
Y10...0yp0€ (by 4.3, and as e =€)

1
y)* [e].

4. Let [z] end in an element z,, of S;, so we get that
[T10...0Zp_10X,,810820...08,] =[s;j0s20...05,],
giving
10...0Lm—-1°0TmM,S1 = S1.
This implies that £ must be an element of length 1, x = x,, and z,,51 = 1.
It is clear that z,,e = e. Hence [z] % [¢] = [e].

Note that we have one remaining case that is impossible.

5. Let [z] end in an element z,, of Sy and k # i, so we get that
[x10...0Lpy_ 102,08 0820...08,] =[s10820...08,].
This case is impossible as w is in a reduced form of [w].

From the above discussion, we can deduce that [w] R* [e]. Note that in the
four above cases we focused on the beginning letter of [w] and the ending letter of
[z] and [y], as the rest of these words never affect our work. Moreover, [z] starts
with an element of S, i € I if and only if [y] does.

Conversely, let #Z be left abundant. Our aim is to show that S; for all
i € I is left abundant. Let s € S; for some i € I, then [s] € F . As F P is left
abundant, there is some idempotent [e] of .# & such that [s] R* [e]. As [s] R* [e],
we get [e] x [s] = [s] which implies that [e o s] = [s]. By Lemma 4.2.1, we get that
e € E(S;) and es = s.
Now let z, y € S} such that zs = ys. Hence [7], [y] € FZ and

[xs] = [2] % [s] = [y] % [s] = [ys].
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As [s]R*[e], and s, e € S;, [x] * [e] = [xe] = [y] x [e] = [ye]. This implies that
xe = ye, as required. Therefore, S;, ¢ € I is a left abundant semigroup.
O

It is clear that left-right dual of the above lemma where we show that [w] £* [¢],
where w, L* e in .S,,. Hence we get the following result.

Lemma 4.2.3. Let {S;: i € I} be a set of pairwise disjoint semigroups. Then the
free product of these semigroups, F 7 = II*{S;: i € I}, is abundant if and only
if S; is abundant for all i € I.

It is worth pointing out that the corresponding result does not hold for regular
semigroups, for example the free semigroup product of two trivial groups (which
is a free idempotent generated semigroup) is not always regular.

In the following result we show that the free product of finitely many pairwise
disjoint semigroups is weakly abundant if and only if the semigroups {S;: i € I}
are weakly abundant.

Lemma 4.2.4. Let {S;: i € I} be a set of pairwise disjoint semigroups. Then the
free product of these semigroups, F & = 11*{S;: i € I}, is left weakly abundant if
and only if S; is left weakly abundant for all i € 1.

Proof. Let S; be left weakly abundant semigroup for all ¢ € I. Let w = wy ows o

.. owy, be a reduced form of [w] € FZ, where w; € S;, for all 1 <i < n. We
aim to show that [w] is R-related to some idempotent of E(.Z2?). As S; is left
weakly abundant for all 1 <4 < n, there is some e € E(S1) such that e Rw;. It
is clear that

[e] % [w] = [e] x [wy ows0...0wy,] = [ewjowgo...0w,] = [wyowso...0ow,] = [w].

Let [f] € E(% &) such that [f] *x [w] = [w]. By Lemma 4.2.1, we get that

f € E(S;) for some i € I. As [w] begins with an element w; € Sy, the equality

[f] x [w] = [w] happens only if f € E(S1) and fw; = wi. This implies that
[f] x [e] = [e]. Hence [w] R [e].

Conversely, Let the free product of the semigroups {S;: i € I}, FZ, be left
weakly abundant. Let s € S; for some ¢ € I. We aim to show that s is R-related
to some idempotent of E(S;). As .# 2 is left weakly abundant and [s] € .# 2,
then [s] R [¢] for some [¢] € E(.Z ), which implies that [¢] x [s] = [s]. This equal-
ity happens only if e € E(S;) and es = s in 5.

* %
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Moreover, for any [f] € E(# ) such that [f]  [s] = [s], then we get that
[f] x [e] = [e]. It is clear that f € E(S;), then we get fe = e in S;. Therefore,
we get that sRe in 5;, for any 7 € I. Therefore, S; is a left weakly abundant
semigroup for all ¢ € I.

Dually, we prove that [w] £ [e], where e € E(S,,) and e £ wy,.

O]

We remark here that a dual result holds for right weakly abundant semigroups.
Hence we get the following result.

Lemma 4.2.5. Let {S;: i € I} be a set of pairwise disjoint semigroups. Then
the free product of these semigroups, F & = 11"{S;: i € I}, is weakly abundant if
and only if S; is weakly abundant for all i € 1.
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Chapter 5

Free idempotent generated
semigroups

Nambooripad in the early 1970s began the study of the free idempotent gen-
erated semigroup IG(€) over a biordered set £ in his seminal work [72]. In 2014,
Gould and Yang [80] investigated the general structure of the free idempotent
generated semigroup. In 2015, they investigated the structure of IG(B) over a
band B. They showed that the free idempotent generated semigroup 1G(B), over
a biordered set with trivial products, is always abundant. This chapter aims to
present all the results and properties of IG(E), which will be frequently used in
our work.

This chapter is divided into three sections. In Section 5.1, we define a biordered
set £, which is the generating set of the free idempotent generated semigroup
IG(€). In Section 5.2, we define idempotent generated semigroups and present
the importance of these semigroups. We divide Section 5.3 into four subsec-
tions. In the first subsection, we define the free idempotent generated semigroups
and present properties of the general structure of IG(E) with respect to Green’s
relations. In Subsections 5.3.2 and 5.3.3 we focus on the recent results of the
free idempotent generated semigroups over bands and normal bands, respectively.
Moreover, we describe the form of the elements of IG(5), where B is a band and
a normal band, respectively. In the last subsection of this chapter, we investigate
the word problem of the free idempotent generated semigroup.

Throughout the following chapters we will use the notation £ = E(S) for

the set for all idempotents in some semigroup S and £ = £(.S) for the biordered
set that is associated with E = E(S).
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We recommend [80], [72], [16], [75] and [29] as references for Chapter 5.

5.1 Biordered sets

In 1979, Nambooripad introduced the concept of a biordered set [72]. The study
of biordered sets of idempotents of any semigroup is closely related to the study
of idempotent generated semigroups [29]. The importance of biordered sets is
to describe the structure of the set of idempotents of semigroups. Nambooripad
defined a biordered set as a partial algebra with some binary relations, satisfy-
ing six axioms. This section aims to recall these axioms that define biordered sets.

Let £ = (E, *) be a partial algebra, that is a set with a partial binary operation,
and Dg be the domain of this partial binary operation, so that

(e,f) € D <= ex f is defined in E.

Now we define two binary relations w” and w! on € by the following rules. For
any e, f € F:

ew' f<=(e,f) € Dpand fxe=c¢
and
ew fe=(e,f)eDpandexf=e.

Then we define three binary relations w, R and L on &£ by using the above
relations,

R=uw N, L=wnW)™ w=uw nu
Next we introduce the simple notation w”(e) and w'(e) where e € E:
W)= {f € B[ e},
We)={feE: fuw e}
We can now define a biordered set.

Definition 5.1.1. [80] A partial algebra £ with the five binary relations w”, w!,
w, R and L, defined as above, is called a biordered set if it satisfies axioms (1),
(2), (3), (4), (5) and (6) and their duals, for any e, f, g, h € E:
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1) w" and w' are pre-orders on & such that Dp = (w” Uw!) U (w" Uw!)~L

(1)
(2) f€w(e) implies f R f*e w e.

(3) f,g€w'(e) and g W' fimply gxe w fxe.

(4) gwr f o e implies gx f = (g ) * f.

(5) f,g €w'(e) and g ' f imply (f xg)xe=(f*e)(gxe).

Let M(e, f) = w'(e) Nw"(f), for any e, f € E. The quasi-order relation < on
M (e, f) is defined by the rule

g=<h<=exgw exh and gx fuw hxf.

The definition of < gives that (M (e, f), <) is a quasi-ordered set. The sandwich
set of e and f in that order is the set

S(e,f)={he Mle, f):g=<h forall ge M(e, f)}.
(6) f,g € w'(e) implies S(f,g)e = S(f xe,g*e).

A regular biordered set £ is a biordered set such that for any e, f € E, we have

that S(e, f) # 0.

Let £ and F be biordered sets. A map 0: £ — F is called a biordered set
morphism if for any e, f € E and (e, f) € Dg, then

(i) (eb, f0) € Dr,
(i) (ed)(f0) = (ef)o.

If the morphism is bijective, then we say 6 is a biordered set isomorphism.

We now explain how (regular) biordered sets are precisely sets of idempotents
of (regular) semigroups.
Let S be a semigroup with a set E = E(5) of idempotents. A pair (e, f) of Ex E
satisfying the condition {e, f} N {ef, fe} # 0 is called basic pair; we call fe and
ef basic products. It is worth noting that if (e, f) € E x E is a basic pair, then
the basic products ef and fe are idempotents. As if ef = e, we get that

(fe)* = flef)e = fle)e = fe.

We say that the biordered set £ has trivial basic products if for any basic pair
(e, f) of E, we have ef, fe € {e, f}.
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Note 5.1.2. Let S and T be semigroups and let @ be a morphism from S to T.
If (a,b) is a basic pair in S, then (ap,by) is a basic pair in T, as any morphism
preserve the Green’s relations.

Nambooripad in [72] showed that the set of idempotents E of any semigroup
S forms a partial algebra with domain

Dr ={(e, f): (e, f) is a basic pair, }

where for any (e, f) € Dg, e x f is defined to be the product ef in S. It is clear
ef € E. Furthermore, there are two pre-orders <, and < defined on S.

It is easy to check that with w” and w! being the notation of <z and <, to
E x E, the set FE forms a biordered set, under this partial operation, we denote
this by £(5) = (E(9), %).

In 1979, Nambooripad gave a sufficient condition for any biordered set to be
regular in [72].

Theorem 5.1.3. Let £ = (E, ) be regular biordered set with associated domain
Dg and operations w” and «'. Then there is a regqular semigroup S such that
E = E(9).

In 1985, Easdown [31] showed that every biordered set £ occurs as E(S) for
some semigroup S. Hence we lose nothing by assuming that a biordered set £ is
of the form E(S) for a semigroup S.

Theorem 5.1.4. Let £ = (E, *) be a biordered set with associated domain Dg
and operations w" and w'. Then there is a semigroup S such that E = E(S).

We end this section by fixing some notation. The following is the explanation
of this notation, which will be frequently used in the whole thesis.

(1) We use B to denote a band and B to denote the biordered set of B; in
particular, we use Y for a semilattice and ) for the associated biordered set.

(2) We use B = [, ey Ba to denote a band which is a semilattice Y of rect-
angular bands B, (a € Y).

(3) We use B = #A(Y; By, ¢o,3) to denote a normal band which is a strong
semilattice Y of rectangular bands Bs(d € Y'), with connecting morphisms ¢;
for all 9,0 € Y with § > o.

(4) Let Y be a semilattice and let o, 3 € Y. We use a M 3 to denote the set
of all common upper bounds of o and 3; of course, o 'l 5 may be empty.
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(5) Let Y be a semilattice and let «, 5 € Y. We use the notation a« L 3 to
denote the situation where o« and S are incomparable, that is, neither o < 3 nor
«a > [ hold.

Note that for any a, 5 € Y, if « M =0, then a L 3, asif « < 8 (or a > ),
a M =0 (ora).

At times we will use this notation without specific comment.

5.2 Idempotent generated semigroups

Let S be a semigroup and denote by (F) the subsemigroup of S generated by
the set of idempotents of S, E = E(S). If S = (E), then we say that S is an
idempotent generated.

The significance of such semigroups was evident when J.M. Howie in 1966
[62], showed that every semigroup may be embedded into one that is idempotent
generated. Moreover, he proved that any finite semigroup is embeddable in a
finite regular idempotent generated semigroup. Then many authors extended this
result when they have studied the structure of idempotent generated semigroups
in many different ways.

5.3 Free idempotent generated semigroups

One of our main goals in this thesis is to study the general structure of a free
idempotent generated semigroup. The study of this semigroup began with the
seminal work of Nambooripad in the 1970s. Given a biordered set £, that is a set
of idempotents of some semigroup S, the free idempotent generated semigroup, is
an initial object in the category of semigroups that are generated by &, denoted
by IG(E).

In the following sections, we give an overview of IG(€) and several pleasant
properties, particularly with respect to Green’s relations. Moreover, we recall the
results that have been obtained so far in the current research direction of this
area.
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5.3.1 Basic definitions and preliminary results

Let S be a semigroup and E = E(S). Let S' = (E) be the idempotent generated
semigroup with biordered set of idempotents £. It is an important step towards
understanding the class of semigroups with a fixed biordered set of idempotents
€ is to study the initial object IG(E).

Throughout this thesis, we denote an element w in IG(E) by w = e7...ey,,
while w = ejoey...0e, is a word in a free semigroup ET. We denote the length
of a word w by |w|.

The free idempotent generated semigroup over £, where £ is a biordered set
of F, is the initial object in the category of all idempotent generated semigroups
whose biordered set of idempotents is isomorphic to the biordered set £. In
particular, the biordered set of IG(E) is exactly the given biordered set £. In fact,
it is remarkable that IG(E) exists. We obtain IG(€) via a presentation as follows:

IG(€) =(E:eo f=exf, (e, f) basic pair, e, f € E)

where e o f is the word of length 2 with letters e and f, while e x f denotes
the partial multiplication in E considered as a partial algebra. Thus IG(E) is
a quotient semigroup of the free semigroup ET over the congruence pg on ET
generated by {(eo f,ex f): e, f € E, (e, f) basic pair}. So we can write

IG(&) = B /pp.

There is a (natural) morphism from the free semigroup £ to IG(€), where
W is the image of w € €T in IG(E). Clearly, € f = eo f holds for any e, f € £T.
We remark that caution is required in &, since for e, f € £ we write e o f for the
image in IG(&) of the two letter word eo f € £T. In our work we supposed that
£ is a set of idempotents of some semigroup S, then we have e x f = ef. Hence
we obtain IG(€) via a presentation as follows:

IG(E)=(E:eo f=ef, (e, f) basic pair, e, f € E).

If (e, f) is basic, then we have e f = eo f = ef in IG(&). However, if (e, f) is not
basic but ef is an idempotent, then we do not necessarily have ef = eo f. We
say that e;oeyo...0e, € ET is in normal form if (e;,e;11) is not basic, for all
1<i<n—-1.

For any two words w,u € ET we write w ~g u if the word w can be obtained
from the word u by single splitting step or squashing step, these are applications
of a defining relation of IG(€). For example
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w=z(eo fly, u=x(ef)y

or

w = z(ef)y, u=xz(eo f)y,

where (e, f) is a basic pair. So the relation pg is the reflexive, transitive closure
of ~g. Where F is clear we write ~ and p for ~g and pg, respectively.

Let e be an idempotent of a semigroup S. The set eSe is a submonoid of S
and is the largest submonoid whose identity is e. The group of units G, of eSe, is
the group of elements of eSe that have two-sided inverses with respect to e is the
largest subgroup of S whose identity is e. We called this subgroup the mazimal
subgroup of S containing e.

Maximal subgroups of free idempotent generated semigroups have been of in-
terest for some time. The investigation of the maximal subgroups of IG(E) was a
popular theme to study the structure of IG(E).

It was thought from the 1970s that all subgroups of a free idempotent gener-
ated semigroup would be free, but this conjecture was not true. Although this
conjecture had been believed for more than 30 years, it has been disproved in
2009 by a counter-example provided by Brittenham, Margolis and Meakin in [6].

If € has trivial basic products, then from [73, Theorem 3|, and [6, Theorems
3.6 and 4.2], the maximal subgroups of IG(£) are all free groups. Moreover, if B
is a band, then every maximal subgroup of IG(B) is free [26].

In the following lemma we list some classical properties of IG(E), with respect
to Green’s relations, taken from [37],[72], [32], [19], [54]. These properties will be
used frequently in this thesis.

Lemma 5.3.1. Let S be a semigroup, E = E(S), £ be a biordered set of E,
S" = (E) be any idempotent generated semigroup with biordered set of idempotents
E = E(S), and IG(E) be the free idempotent generated semigroup.

(IG1) There is a natural morphism

p: IG(E) — S,

where
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ep =e.

The morphism ¢ is onto on S’.

(IG2) The restriction of ¢ to the set of idempotents of IG(E) is an isomorphism
onto the given biordered set £.

v: E(IG(€)) — &

(IG3) The morphism ¢ induces a bijection between the set of all R-classes (respec-
tively L-classes) in the D-class De of an element € of IG(E) and the set of
all R-classes (respectively L-classes) in the D-class D of an element e in

S’

(IG4) The restriction of ¢ to the maximal subgroup of IG(E), containing e € £
(the H-class of € in IG(S)) Hz, is a morphism onto the maximal subgroup
of S" containing e, H,, that is,

p: Hg — He'

The assertion (IG1) is obvious and follows directly from the definition of
IG(E); (IG2) is proved in [72] and [32]; (IG3) is a corollary of [37]. The property
(IG4) follows from (IG2).

Nambooripad in [72], proved that the restriction of ¢ to the set of idempotents
set of IG(E) is an isomorphism onto E = E(S) in the case when E is regular. This
was done for arbitrary biordered sets by Easdown in [31].

If S is a regular semigroup with the set of idempotents E = E(S), then we
know that £ is a regular biordered set and for any pair (e, f) of E, we get that
S(e, f) # 0 by Theorem 5.1.3. The free reqular idempotent generated semigroup
on E is the homomorphic image of IG(E) obtained by adding to the presentation
of IG(E), the following relation

ehf=eof, foralle, fe& heS(e,f).

We denote the free reqular idempotent generated semigroup on E by RIG(E).
There is a natural morphism from IG(E) to RIG(E). It is easy to see that RIG(E)
satisfies the above properties of IG(£). There is more important properties of
RIG(E)
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(RIG1) The semigroup RIG(E) is regular.

(RIG2) The natural morphism from IG(E) to RIG(E) induces an isomorphism be-
tween the maximal subgroups of any e € £ in IG() and RIG(E).

(RIG1) is taken from [72] and in [6, Theorem 3.6]. (RIG2) is taken from [72] and
[6, Theorem 3.6].

A popular approach to investigating the structure of the free idempotent gen-
erated semigroup IG(E) was studying the behavior of its maximal subgroups.
From the 1970s, it was conjectured that the maximal subgroups of IG(€) are al-
ways free [70]. In 2009, Brittenham, Margolis, and Meakin provided a counter
example [6]. Prompted by this significant result, in 2012, Gray and Ruskuc [54]
showed that any group occurs as the maximal subgroup of some IG(E).

Theorem 5.3.2. [54] Every group is a maximal subgroup of some free idempotent
generated semigroup.

In 2014, Gould and Yang [80] gave an alternative proof in a rather transparent
way.

In the same paper [6] of Gray and Ruskuc they obtain the following significant
result.

Theorem 5.3.3. [5/] Every finitely presented group is a mazximal subgroup of
some free idempotent generated semigroup arising from a finite semigroup.

The theorem above provides a complete characterisation of groups appearing
as maximal subgroups of free idempotent generated semigroups arising from finite
semigroups. The structure of maximal subgroups of free idempotent generated
semigroup IG(E) is still an open area of investigation.

5.3.2 Free idempotents generated semigroups over bands

In this section, we define some special forms of the elements of IG(B), where
B is a band, and we present some useful results about this semigroup. All the
definitions and the results in this section are taken from [16].

Let B be a band. We write B = |J,cy Ba as a semilattice Y of rectangular
bands B,. Then we have the following morphisms.

(IG4) There is a morphism
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0:B—Y
defined by the rule
T — aQ,

where x € B,. This is an onto morphism with the kernel classes which are
the rectangular bands B,,.

(IG5) There is a morphism
Y: By — B,
defined by
el =e,

for all e € B,.

(IG6) There is a morphism

defined by

GO =
for any e7...¢, € IG(B,), and for all « € Y.

(IG4) is proved in [16]; (IG5) is obvious as B, is subsemigroup of B; (IG6)
is clear from the presentations of IG(B,) and IG(B).

Recall that the biordered set £ has trivial basic products if for any basic pair
(e, f) of E, we have ef, fe € {e, f}.

In the rest of this section we focus on the properties of the structure IG(E)
over a biordered set £ that has trivial basic products.
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Example 5.3.4. Any semilattice Y is an example of biordered set with trivial
basic products as for any e, f € Y where (e, f) is a basic pair, we get that

ef =fee{e [}

Moreover, let B be a rectangular band and (e, f) be a basic pair in B. Then
{e, f}n{ef, fe} #0. If ef = f, then by multiplying both sides by e we get that

e=(ef)e = fe.
Similarly, if ef = e, then by multiplying both sides by f we get that
f=flef)=fe

Therefore, a rectangular band B is an example of biordered set with trivial basic
products.

Theorem 5.3.5. Let £ be a biordered set with trivial basic products. Then every
element of IG(E) has a unique normal form.

The above shows that if B is a semilattice or a rectangular band, then every
element of IG(B) has a unique normal form. However, that is not be true for an
arbitrary band B, nor normal band, [16, Example 4.6].

For a semilattice Y, and ) the biordered set of Y, any element @ = a7 ...,
of IG(Y) is in normal form if and only if o; L aj1, for all 1 <i < n —1, by the
uniqueness of normal forms in IG(Y). It is clear that any two elements of IG(Y)
are equal if and only if the corresponding normal forms of them are identical word
in Y.

The following result says that IG(€) is abundant for any biordered set £ with
trivial products. Moreover, it gives us exactly how R* and L*-classes in IG(E)
behave for any e € F.

Theorem 5.3.6. Let £ be a biordered set with trivial basic products. Then the
free idempotent generated semigroup 1G(E) is abundant.

If B is a rectangular band, then it has trivial basic products, and by Theorem
5.3.6 we get that IG(B) is abundant. Early investigations of Pastijn [75] showed
that if B is a rectangular band, then the corresponding IG(B) is a completely
simple semigroup.

Theorem 5.3.7. [75] Let B be a rectangular band. Then IG(B) is a completely
simple semigroup.
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Theorem 5.3.7 tells us if 77...7, € IG(B) where B is a rectangular band,
then we have 771 RT1...T, LT,. However, this result is not true for semilattices
[16, Example 3.3]) is an example of semilattice Y such that IG()) is not regular.

The next result is clear, as the elements of Bs for any § € Y generate a
completely simple subsemigroup of IG(B).

Corollary 5.3.8. Let B be a semilattice Y of rectangular bands B, a € Y. Then
for any x1,...,x, € By, we have Ty R Ty ... Ty L Ty, in IG(B). Consequently,
T1...%n 18 a reqular element of IG(B).

In the following we define the left to right significant indices of the elements
of IG(B) as the following.

Let z10...0x, € Bt with x; € B,,, for all 1 <4 < n. Then a set of numbers
{i1,...,ir} C€{1,...,n} with ¢y < ... < i, is called the left to right significant
indices of T1 ...T,, if these numbers are picked out in the following manner:

e i : the largest number such that ay,...,q; > ay;
e ki : the largest number such that o;;, < o, 04,41, .., 0.

Remark that a;,, g, +1 are incomparable, since if o;; < oy, 41, then we add 1
to k1, contradicting the choice of ky; also if aj; > ag,+1, thenaq, ..., 04, ...,a >
oy, +1, contradicting the choice of 7;. Now we continue our process:

® iy : the largest number such that og,+1,..., iy > Qy;

o ko : the largest number such that a;, < a4y, Qigy1,.. ., Oy

e i, : the largest number such that oy, ,41,..., o > ay;
e k. =n: here we have «o;, < «y,, @, 41,..., an. We may have i, =k, = n.
The following Hasse diagram depicts the relationship among «;,, ..., ;.
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s - 1 “11+1 c Oy Oy gqe v gy Q1+ Qp

A Y
\ / Y

”11 ul, ceeQy,

Figure 5.1: Hasse diagram illustrating significant indices

Dually we define the right to left significant indices as the following. Let
r10...0x, € Bt with z; € B,,, for all 1 < i < n. Then a set of numbers
{1, € {1,...,n} with 51 < ... < j; is called the right to left significant
indices of T1 ... %, if these numbers are picked out in the following manner:

e ji : the smallest number such that o, ..., a5 > aj;;

e ky : the smallest number such that o, < aj,, 05, -1,..., 0.

Note that o, , oy, —1 are incomparable. Now we continue our process:

e jo : the smallest number such that oy, _1,..., o, > aj,;

e ko : the smallest number such that o, < aj,, ajy—1,..., py;

e j; : the smallest number such that ax, ,—1,..., o > aj;

e k; =1: here we have o, < o, j,—1,..., a1. We may have j; = k; = 1.

Let w=zj029...0x, € BT where z; € B,,, for all 1 <14 <n. Suppose that

w has left to right significant indices i1,...,%.. The natural number r is called
the Y -length of the word w. We denote the Y -length of w by |w|y. The ordered
Y -components of w in IG(B) is the sequence «;,, ..., «;., this sequence is depends

on w, not on w. This follows from the next result.

Lemma 5.3.9. Let B = |J,cy Ba be a band. Then there is a well defined epi-
morphism T from 1G(B) onto 1G()) given by

T1...Tp Q1 ...0n, if x; € By, foralll <i<n.

In [18], Gould and Yang introduced another notion called almost normal form
and its associated with Y -trace.
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In the following we present the definition of almost normal form for any word
in BT,

Definition 5.3.10. A word x1 oxs...0x, € BT is said to be in almost normal
form if there exists a sequence

1<iyi<io<. ... <11 <n

such that
{z1,... 24} C Bays {Tiy+1,- - s Ziy } € Bagy -+ {®i, 415+, Zn} C Ba,
where a; L a1, for all 1 <i <r — 1. Further, we call the n-triple (aq,...,a;)
the Y-trace of z10 ... oxy,.
Let w = z10---0ox, € BT be in almost normal form with Y-trace (a1,..., o).

Then we can write w = wy o - - - o w,., where
W1 =X10-0Tjy, W2 =Tj;410 " OTjgy evvy, Wpr =Tj,_1 9" 0Tp.

It is clear that w, € B:{p, foralll1 <p<r.

The next result shows that every element of IG(B) can be written in almost
normal form.

Lemma 5.3.11. [16] Let B = |J,cy Ba be a band. Then every element of 1G(B)
can be written as some wy ... w, € 1G(B), where wio ... ow, is in almost normal
form.

It is worth noting that a word in almost normal form need not be in normal
form, as we do not insist in the above expression that the pair (x;,x;41) is not
basic for xz;,zj41 € By, 1 <4 < r. On the other hand, a word being in normal
form does not imply that it is in almost normal form. For example, if z € B,
y € Bg where a > (8 and (x,y) not a basic pair, then x o y is in normal form but
not almost normal form [16]. However, as « = aj o...0a, € YT is the normal
form of @ in IG(Y) if a; L aj41, for all 1 < ¢ < n—1, then it is clear that the nor-
mal form of @ is also an almost normal form of @. Also, any almost normal form
of @ € IG(Y) is a normal form of this element. In general, an almost normal form
of an element w € IG(B) is still not necessarily unique, but any almost normal
form of w has the same Y-trace.
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Lemma 5.3.12. Let B = J,cy Ba be a band. Let
U1 ©...0Up, V10...0Uy

be two almost normal forms in BY with u; € Bg;_ foralll <i<n andv; € B;:
foralll1 <i<m. Thenuj...Up, =701...0n in IG(B) implies that

o they have the same Y -length, that is, n = m;
e they have the same ordered Y -components, a; = B; for all 1 <i <mn.
Consequently, any element of 1IG(B) is associated with a unique Y -trace.

Note that any two words in almost normal forms in B* may have different
significant indices.

Let (A;);er be a family of pairwise disjoint rectangular bands, and let the index
I be linearly order by some relation <. Define a multiplication on A = J;o; A;
as follows: in each A;, if a; € A; and a2 € A;, where 7 < j, then

aijag = aza1 = aj.

Hence A become a band. Such semigroups said to be a special kind of chain of
rectangular bands, [1]. Tt is easy to see that a band A is a chain of rectangular
bands if and only if for any x,y € A

TYTr = I Or Y.
In general, a chain is a special case of a semilattice.

Proposition 5.3.13. Let B = |J,cy Ba be a chain'Y of rectangular bands B,
a €Y. Then IG(B) is a reqular semigroup.

Theorem 5.3.14. Let B be a band. Then I1G(B) is a weakly abundant semigroup
with the congruence condition.

Notice that for a band B, IG(B) is not always abundant, [16, Example 4.14].

5.3.3 Free idempotent generated semigroups over normal bands

In the previous section, we present the result which shows that the free idem-
potent generated semigroup IG(B) over a band B is not always abundant. Gould
and Yang in [80], gave an example of a normal band B, where IG(B), is not abun-
dant. All the definitions and the results in this section are taken from Gould and
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Yang [16].

It is known that if B is a semilattice or a rectangular band, then every el-
ement of IG(B) has a unique normal form, but this is not true in general for an
arbitrary band B, even if B is a normal band.

Let B be a strong semilattice of rectangular bands. We define the equality of
two words in BT and IG(B) as the following. Let ey, €2,..., en, f1, fo,---s fm
be elements of B, so e;oego...0e, and fio fao...o f,, are two words of BT.
Now we say these two words are equal in BT and write

e10e20...0e, = f1ofao...0fy

if n =m and ¢; = f;, for each 1 <7 < n in B. However, the equality of any two
elements w and @ of IG(B) is much more complicated to determine, where the
equality in IG(B) of w and T means that w p u.

Lemma 5.3.15. Let B = B(Y; Ba, ¢a,p) be a normal band and let Ty ... T, €
IG(B) with x; € By, and a; > « for all 1 < i <n. Suppose thaty, ...y, € IG(B)
with y; € Bg, for all1 <i<m and

1. . Ty ~Tp- Ty

Then B; > «, for all 1 <i < m and in IG(By) we have

T1Pag,a -« + » TnPan,a = Y1PB1,a -+ - - YmP B,

The next result is key in understanding IG(B) for a band B, and it is related
to Lemma 5.3.11.

Proposition 5.3.16. Let B = A(Y'; By, ¢a,p) be a normal band and let Ty ... T, €
IG(B) be such that x; € Bq,, for all1 <i < n. Lety € Bg with B < oy, for all
1 <i<mn. Then in IG(B) we have

T1...Ty y - $1¢a1,6 ce xn¢anaﬁ y’

and

YT .Tn =7 T10ay,8 - - - Tnan -

Note 5.3.17. If B = B(Y; Ba, o) is a normal band, x € By, y € Bg and
(x,y) is a basic pair, then o and B are comparable. In addition, if « > 3, then we
have yx Ry, as there exist x,y € B such that (yx)y = y and (y)r = yx. Hence
(y,yzx) is a basic pair.
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Let w=m10...0z, be a word of BT, where z; € B,,, for all 1 <i < n, and
{i1,...,ir} C{1,...,n} be the left to right significant indices of w,

“11 1 “11+1 - Oy “}\1+1 (‘12 1 Q10+ Qp

(111 “ig e 0y,

By the definition of the left to right significant indices of w, we get that a;, <
Qp, QG —1, s QG 41, - - -, Qk,, similarly until o, < ag,_,41,..., an. Hence by
Proposition 5.3.16 we write

= $1¢a1,ai1 Lyt Ty ¢04k1704i1’

= xk7-71+1¢akr,1+170¢ir c L Ty ¢an,ai,. .

Now the word w = wy o - -+ o w,, where r < n is in an almost normal form of .

The following results will be useful in our later work.

Lemma 5.3.18. Let B = B(Y; Ba, ¢a,3) be a normal band, and let x € Bg, y €
By with B, v > a. Then (z,y) is a basic pair implies (xdg o, Ydy.a) i a basic
pair and

(,0) (Ybr,0) = (2Y) P50
where § is the minimum of S and v, that is 6 = [~.

Lemma 5.3.19. Let B = B(Y; Bq, ¢a,) be a normal band and let x,y € B
where x € B, and y € Bg. Then o < 3 implies that

TY=T Ypga andy T = ydga T
The following result is not true for arbitrary bands [16, Example 6.4]

Corollary 5.3.20. Let B = B(Y; Ba, ¢a,3) be a normal band and let x1, ..., xy,
Y1, .-, Ym be elements of By. Then T1... Ty =1 ...Ym in IG(By) if and only
if the equality holds in 1G(B).
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In the following we define a condition (P), then present some results about
the free idempotent generated semigroup which satisfies this condition.

Definition 5.3.21. We say that the semigroup IG(B) satisfies Condition (P) if
for any two almost normal forms u = uj o ---owu,, v10---0v, = v € BT of
u =71 € IG(B) with Y-length r, left to right significant indices i1, ...,4, = n and
li,...,l, = m, respectively, then the following statements (with i9 = lp = 0) hold:

e w;, L v, implies @ ...u;, =v;...7;, , for all s € [1,7];
® uj,+1 R vj,41 implies Ui, ... Up = Vyyq1 ... U, for all ¢ € [0,7 —1].

The following result gives the condition on IG(B) over a normal band to be
abundant.

Proposition 5.3.22. [16] Let B = B(Y; Ba, o) be a normal band for which
IG(B) satisfies Condition (P). Then 1G(B) is an abundant semigroup.

We end this section with the following table that lists the properties of IG(E)
over different kinds of biordered sets. The results are taken from [16], [75] and
[80].
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Table 5.1: Idempotent generated semigroups 1G(B)

Semigroup Biordered set £ | Idempotent generated semigroup IG(E) | Ref
Finite - Weakly abundant [75]
- Satisfies the congruence condition.
-Weakly abundant [16]
Band -Satisfies the congruence condition.
t -Any w € IG(B) can be written in
almost normal form.
& with trivial - Abundant [16]
basic products | - Any w € IG(B) has a [16]
Semilattice unique normal form.
- If IG(B) satisfies the condition (P)
then IG(B) is abundant.
- Weakly abundant [16]
Normal band - Satisfies the congruence condition. [16]
- - Abundant [80]
Trivial normal band - Satisfies condition condition (P). [16]
. - Abundant [80]
Simple normal band - Satisfies condition condition (P).
- Any w € IG(B) has a normal form.
- regular. [16]

Chain Y of rectangular bands

5.3.4 The word problem for free idempotent generated semi-
groups

Let S be a semigroup presented by (A|R), where A is a set of letters and R is a
set of pairs (u;,v;),i € I, of words over A. Let S = A" /pp, where AT is the free
semigroup of A and pg is the congruence generated by R.

Note that, if IG(E) = ET/p, we can write this as a presentation,
IG(E) =( E: (eo f,ef) whenever (e, f) is a basic pair).

There is a natural morphism ¢: ET — IG(€), defined by w¢ = w. The kernel
relation of ¢ is precisely p. Therefore, the word problem for IG(E) asks: given
two words u,v € ET decide if u = v holds in IG(E). We say the word problem of
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IG(E) is decidable if for any v = v in ET, we get that w = v in IG(E).

We end this section with the word problem in IG(E), if E is finite.

Theorem 5.3.23. [18] Let £ be a biordered set with trivial basic products. If E
is finite, then IG(E) has decidable word problem.

We refer the reader to Dolinka and Ruskuc work [29] for further details of the
word problem for IG(E).
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Chapter 6

Free idempotent generated
semigroups over iso-normal

bands

In 2014, Gould and Yang [80] showed that for an arbitrary band B, the free
idempotent generated semigroup IG(B) is a weakly abundant semigroup with the
congruence condition, but not necessarily abundant. Moreover, they constructed
a 10-element normal band B for which IG(B) is not abundant. Following this
example of Gould and Yang, an interesting question was asked by Gould: what
kind of normal bands are such that IG((B) is abundant? The aim of this chapter
is to investigate the general structure of IG(B) for a special kind of normal band B.

We proceed as follows. In Section 6.1, we show some specific basic properties
concerning the structure of the free idempotent generated semigroup IG(B) over
a normal band B and describe the general structure of IG(B). In Section 6.2, we
introduce a class of bands, called iso-normal bands and define some morphisms
on IG(B) over an iso-normal band B, which we use to prove our main result.
In Section 6.3, we prove two special cases of the main result in this chapter.
We prove that if B = Z(Y, Ba, ¢a,) is an iso-normal band, where Y is a fan
semilattice or a diamond semilattice, then IG(B) is always abundant. We use
two different strategies to prove these cases. In Section 6.4, it is known that the
normal form of any element of IG(B), where B is semilattice or rectangular band,
is unique. However, we may lose the uniqueness of normal forms of IG(B) if B
is not semilattice nor rectangular band. To overcome this problem, the concepts
of the complete form and double normal form are introduced. Further, we show
that the word problem of IG(B) is solvable if B is a finite iso-normal band. In
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Section 6.5, we prove our main result that for an arbitrary iso-normal band B,
IG(B) is an abundant semigroup.

6.1 Properties of free idempotent generated semigroups
over normal bands
A subsemigroup S of a semigroup 7' is a retract of T (via ) if there exists an

epimorphism 6 from T onto S such that 0‘ ¢ = Ig, where Ig is the identity map
on S.

It is known that if S is a subsemigroup of a semigroup 7" with F = E(S)
and F' = E(T), then there is a natural morphism from IG(€) to IG(F) [80].

Corollary 6.1.1. [19] Let S be a retract of T via 0, with E = E(S) and F =
E(T). Then 1G(E) is a subsemigroup of 1G(F). Further, 1G(E) embeds into
IG(F).

Definition 6.1.2. Let &£, £ be biordered sets and 6: £ — £’ be a map. Then 6
is called a bimorphism if it satisfies the following

(M) (e, f) € Dg, then (ef, f0) € Der and (ef)8 = (e6)(f0).
The map 0 is called a regular bimorphism if, furthermore,
(RM1) S(e, £)0 C /(b 6)

(RM2) S(e, f) # 0 < S'(ef, f0) # 0, for all e, f € £, where S'(ef, f6) denotes
the sandwich set in &’.

It is worth pointing out here if £ is a regular biordered set, then the bimor-
phism 6: & — &’ is regular if 6 satisfies (RM1). Further, if (e, f) is a basic pair
in &, then (e, f0) is basic in &'.

If 6; and 65 are two bimorphisms, then 6765 is also bimorphism. Moreover, if
they are regular bimorphisms, then 6165 is a regular bimorphism.

In the following result we prove that, in general, for any two biordered sets
& and &’ if there is a bimorphism 6 between £ and &', then there is a morphism
from IG(E) to IG(E').

Lemma 6.1.3. [80] Let £ and &' be biordered sets. Then any bimorphism from
E to & induces a morphism from 1G(E) to IG(E").
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Figure 6.1: the commutative diagram of Lemma 6.1.3

Proof. Let 0 : £ — &' be a bimorphism. We define a morphism
7:& — 1G(&') by e ef.

So we can define
7T — 1G(&)
by

(e1o...0e,)T =e10...e,0.

A basic pair (g, h) in £ induces a basic pair (g6, hf) in £'. To see this let go h be
a word of length 2 in £,

(goh)T = (goh)d (by the definition of 7)
= (g0) o (hB) (as 0 is a bimorphism)
= (¢96)(ho) (as (g0, h) is a basic pair)
= (gh)T (by the definition of 7).

Then we get that (goh, gh) € ker 7. Hence pg C ker 7, where p¢ is the congruence
determining the quotient semigroup IG(£). Therefore, there exists a morphism

0: IG(E) — IG(E")
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define by the rule

O]

In the following we prove the isomorphism between two free idempotent gen-
erated semigroups.

Lemma 6.1.4. Let £ and &' be biordered sets. Let
0: & —¢&
be an bijective bimorphism. Then there is an isomorphism
0: 1G(E) — 1G(&).

Proof. Let € and &£’ be biordered sets. Let #: £ — £’ be an bijective bimorphism.
Then there exists an bijective bimorphism #~!: & — £. Define a morphism

p: & —IG(&)
by

e = ed.
Then we can define a morphism p : EY — IG(E’) by

(e10...0e,)p=(e10...0¢e,)0
— (e10) ... (exD),
where e; o...0e, € ET. By Lemma 6.1.3, there is a morphism
0: IG(€) — 1IG(&)
defined by
(Er...en)0

Il
—
)
S

o

o

o
3
=

)
= (e1p)o...0(epp) (as p is a bimorphism)

Similarly define a morphism v: & — IG(E) by

(fio...ofp)v=fro...0 fn)f~1
= (67D ... (fa07D).

By Lemma 6.1.3, there is a morphism
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0—1: 1G(&) — 1G(€)
defined by

(Fr- Ja)071 = (HO71) . (fa070).
Let €1 ---€, € IG(E), we get that

(er...en)(@ob7t) =

Hence fof—1 =T 16(¢), where I1q(g) is the identity morphism on IG(E). Similarly,
we get that =T o0 =1 16y Therefore, 0 and 6—1 are isomorphisms. O

A biordered subset £ of a biordered set £ is a biordered set which is a partial
subalgebra in the usual. For further details, we refer the reader to [72].

Note 6.1.5. Let S be a subsemigroup of T and let e, f € S. Then (e, f) is basic
in S if and only if (e, f) is basic in T. Since if (e, f) is basic in S (or T), then
one of the following equalities hold

ef =eef=f fe=e, fe=.
Hence (e, f) is basic in T (or S). So if B = B(Y,Ba, ¢a) is a normal band,

then any normal form w = xy0...0x, € BY of w in 1G(Ba) is a normal form

of w in IG(B).

If S and T are semigroups and @: .S — T is a morphism, then from the
morphism 0 = Placs)’ E(S) — E(T), it is easy to define a bimorphism

0: £(S) — E(T).

Consequently, it is easy to deduce the following result from Lemma 6.1.3. How-
ever, we prefer to give a direct proof.
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Lemma 6.1.6. Let S and T be semigroups and 0: S — T be a morphism. Let
E=E(S), F=E(T),E=£&(S) and F = F(T). Then there is a morphism

01 1G(E) — IG(F)

Proof. Let S and T be semigroups and let #: S — T" be a morphism. We write
the free idempotent generated semigroup IG(E) as

IG(E)=(E:eof=cef, e, f€FE,ef) basic pair ) = E*/pp.

Let w be the pg-class of w € £1, where pg is the congruence determining the
quotient semigroup IG(E). Also, we write IG(F) as

IG(F)=(F:eop f=ef, e,f €F, (e, f) basic pair ) = F*/pp.

Let w be the pp-class of w € FT, where pp is the congruence determining the
quotient semigroup IG(F). Define the map : & — IG(F) by by = bf. So we
can define v: £7 — IG(F) by

(blo...obn)d}:bl bn

<

where by o...0b, € £T. Then the map 1 is a morphism, as for any basic pair
(e, f) in €, we have

€§Rf, egﬁfa fS'ReorfS,Ce-

As 0 is a morphism, 6 preserves R and £. Then we get
el <r f0, el <, fO, fO0 <r el or fO <, eb.
Hence (ef, f0) is a basic pair in F. Therefore, in IG(F) we can write that

e op fO =elfb. (6.1)

Now let (e, f) be a basic pair in £, which implies that (ef,eo f) is a generator of
pE and (ef, f0) is a basic pair in F. We can write

=eff6 (by 6.1)
= (ef)0 (as 6 is a morphism)
(ef)v (by the definition of 1, ef word of length 1 in £7).
This implies that (ef,eo f) € ker 1. Hence pg C ker 1. Therefore, there exists

a morphism
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given by (EE)@Z b10...b,0, where by ...b, € IG(E).

IG(E) — » IG(F)
[

Figure 6.2: The commutative diagram of Lemma 6.1.6

O]

If S is a subsemigroup of 7', then S is embedded into 7. Hence from Lemma
6.1.6, there is a morphism

¥: IG(E) — IG(F),
where £ = £(S) and F = E(T).

Lemma 6.1.7. Let Y be a semilattice, and let Yy be a subsemigroup of Y. Then
IG()) embedded into 1G(Y).

Proof. Define a map
p: 1G(Q0) — IG(),
foragay...a, € IG(Q)), by

(1ag...an)p =071 z...0n.

By Lemma 6.1.6, the map above is a morphism. Now for any a7 as...an,
B1P2...0m of IG()y), where aj o... 0y and By o ... 0 3, are words in the
normal form of Y0+. Suppose that

W ... = (@02 T = (B1P2.. . Bu)p = B1 Pa-.. B
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in IG()). As both a;o...0a, and 81 0...0 3, are words in the normal form
of Y0+, then oy Lao L... Loy, and 51 LBy L ... L3, in Yy. This also true in Y.
Hence we get that m =n and a; = §; for all 1 < ¢ < n. Then we get the equality
W@ =P P2 B
in IG(:)}())
O

Lemma 6.1.8. Let B = A(Y, By, ¢a,p) be a strong semilattice of rectangular
bands B,, o € Y, where & is the lower bound of Y. Then the map fs: B — Bs
defined by

by —tuPus,
where t, € By, and € Y, is a morphism.

Proof. First, it is clear that the map fs is well defined. To prove that f5 is a
morphism, let ¢,,s, € B, where t, € B, and s, € B,. Then

,ud)u uv SV¢V,,U,V)) Is

= ((

( ud’u /u/ SV¢V,,U,I/))¢uy§ (by the definition of f(;)
( ud)u Qv (z),uzz 5)(3u¢r/,uy ¢'u,1/ 5) (aS (b'u,/’(s is IIlOI‘phiSHl)
(t
(t

(tusv) f.

1o ) (509, 5)
wfs)(sufs)-

Therefore, fs is a morphism.

O]

Corollary 6.1.9. Let B = #A(Y, Ba, ¢a,3) be a strong semilattice of rectangular
bands B,, a € Y, where § is the lower bound of Y. Then a bimorphism

f(;: B — 85.
The following results are immediate from using 6.1.9 and 6.1.6.

Lemma 6.1.10. Let B = AB(Y, By, ¢a3) be a strong semilattice of rectangular
bands B,, a € Y, where § is the lower bound of Y. Then the map

Fs5: 1G(B) — 1G(Bj)
defined by
(T1 ... Tn) Fs = (21f5) . (2nf5)

is a morphism, where Ty ... T, € IG(B).
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The next result is clear by using Corollary 6.1.1 and Lemma 6.1.9.

Lemma 6.1.11. Let B = B(Y, Ba, ¢a3) be a strong semilattice of rectangular
bands B,, o € Y. Let § be the lower bound of Y. Then there is an embedding of
IG(Bs) into 1G(B).

Proof. By Lemma 6.1.9 we get that there is a morphism fs: B — Bs defined by

by — tudus,
where ¢, € B,,, and pp € Y. It is clear that 6 is an onto morphism and G‘B =1Ip,.

Hence B, is a retract of B via 6. Therefore, by Corollary 6.1.1, IG(Ba)aembeds
into IG(B). O

6.2 Basic definitions and properties of free idempo-
tent generated semigroups over iso-normal bands

In this section, we introduce the concept of an iso-normal band. We give some
properties of this special kind of normal band.

Recall that a band B = |J,cy Ba is called normal if for all «, in Y with
a > 3 there exists a morphism ¢, g : B, — Bg such that:

(i) forall @ €Y, ¢po0 = 1B,;
(ii) for all o, B,y € Y with a > 8>, ¢pagdgy = Panyi
(iii) for all o, f € Y and = € B,,y € Bg,

Y = (Pa,a8)(YPp,a8)-

We consider a stronger condition on a strong semilattice of semigroups to
obtain an iso-normal band, is defined by the following.

Definition 6.2.1. A normal band B = #(Y; By, ¢a,g) is an iso-normal band if
¢a,3 : Bo — Bpg is an isomorphism for all o, 8 € Y with a > 3.

We now work towards an alternative description of an iso-normal band. For
an iso-normal band B = ZA(Y'; By, ¢q,3), we may define an isomorphism between
any two rectangular bands B, and Bg, ¢4 g, by the following:

¢a,ﬁ = ¢a,a,6’(¢,3,aﬁ)_l- (62)
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For all & € Y we have
¢o¢,a = (z)a,a(b;,la‘
If a < 3, then
¢a,5 = ¢a,a¢§i¥
= Ve
Let v be a common lower bound of o and 8 in Y and let v = af. Then

Pa,p = ¢a,'y¢5’£¥ = (¢a,w¢%V)(¢y_,1y¢E;) = (¢a,7¢'y,l/)(¢5,7¢%l’)_l = ¢a,u¢§,}/'

For the remainder of this section we assume that B = Z(Y; Bq, ¢a,g) is an
iso-normal band.
The following result show that transitivity holds in the set of connecting mor-

phisms in any iso-normal band.

Corollary 6.2.2. Let B be an iso-normal band. Then for any a,B,v € Y, we
have that

(Zsa,ﬂgbﬁ,v = (boz,'y-
Proof. Let k € Y be a common lower bound of «, 3,7 in Y. Then
(ﬁaﬁd)ﬁﬁ = (¢a7ﬁ¢gjﬁ)(¢ﬁa/€¢’;}{) = (ba,’i(b’;,}i = (bav/y'
O

Notice that B = B, x Y, a € Y, under the mapping © — (2¢gq, ), where
T e Bg.

Proposition 6.2.3. Let B = #A(Y; B, ¢a,g) be an iso-normal band. Then B is
isomorphic to the direct product B; XY for any chosen T in Y.

Conversely, any direct product R X Z, where R is a rectangular band and Z
is a semilattice is isomorphic to an iso-normal band.

Proof. Suppose that B = #(Y'; Ba, ¢q,p) is an iso-normal band. For any a and
B of Y, recall that ¢, g = (;Sa,ygbglw for any lower bound v of o and S.
Moreover, it is known that the map v : B — Y which is defined by

ba = o, by € B,

is well defined morphism.
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Now choose 7 € Y and define a map ¢ : B — B, X Y by

ba¢ = (b¢a,7—7 baw)a ba S Ba-

As both 9 and ¢, -, for all 7 € Y are well defined maps, ¢ is a well defined map.
Let by € B, and bg € Bg. We get that

(bab5)¢ = ((ba¢a,7)(bﬁ¢ﬂ,‘r)v Ck/)’)
= (bada,r @) (bgdp,r B)
= (ba®)(bge).

Hence ¢ is a morphism.

Second, let z,y € B, where x € B, y € Bg and suppose that x¢ = y¢. Then
we get that

2 = (2har, @) = (Yop,r, B) = yo,
which implies o« = 5. If 7 = o« = 3, then
TaPa,;r = Tas
and
Yadar = Ya-

So we get that
xafbaﬂ' =Tr =Yr = ya¢a,r-

As for any o, 7 € Y, we have B, = B.. Hence z = y. Therefore, ¢ is an injective
morphism.

Finally, it is clear that ¢ is a surjective morphism, as for any (b,a) € B; x Y,
where b € B, and o« € Y we have

bp = (bpa,r, ).

From the above we get that ¢ is an isomorphism.

Conversely, consider the direct product R x Z, where R is a rectangular band
and Z is a semilattice.
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For any a € Z, let R, = R x {a}. Note that each R, is a rectangular band,
as it is clear that R, = R.

For any o, 8 € Z, where a > 8 we define 9 3 : Ro — Rg by

(’l“, a)wa,ﬂ = (Tv 5)

The map v, is well defined map as for any (ri,a),(r2, ) € Ry, where
(ri,a) = (re, ), which means that r; = ro. Then

(rlaa)d]a,ﬁ = (7"176) = (T2vﬁ) = (T27O‘)¢Oé,/3‘

Moreover, for any (r1,a), (r2, ) € Ry, where

(7‘1, a)qpa,ﬁ = (7'2, O‘)wa,ﬁa

which means that (r1,3) = (r2,3), then 71 = r9 in R. Hence (ri,a) = (rg, ),
which proves that 1, g is an injective. Also, 1, g is a morphism as

((7’1, a)(ra, O‘))"vba,ﬁ = (1172, )wa,ﬁ
= (r1r2,8)
= (r1,B)(r2, B)
= ((r1, a)va,8) ((r2, @)t p).-

Finally, it is clear that 1, g is an onto morphism. Therefore, 1, g is an isomor-
phism for any o, 8 € Z.

Now we have C' = #(Z; Ra,a,p) is an iso-normal band as

e Tor all o € Z, the morphism v, o : Ry — R, is the identity map on the
rectangular band R, hence ¥q o = 1g,,

e for any «, 3,7 € Z such that a > 8 > 7. Let (r,«) we have

(ry ) Yap gy = ((T @), 5)@%,7
= (r,B)¥s
= (r,7)

= (r,a)Yq,y-

This proves that ¥ g 15y = Yay-

e For all a, 8 € Z, the map 1), g is an isomorphism, as we proved above.
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It is clear that C' = |J,cz Ra, note that C = R x Z as a set. Our aim is
to show that the multiplication on R X Z is equal the multiplication on C'. Now
defineamap [ : R x Z — C by

(r,a)I = (r,a),

where (r,a) € R x Z. For convenience, denote the multiplication in C' by *. Let
(r,a),(s,B) € R x Z, we have

((r,)(s,B))I = (rs, ap),

on the other side we have

(T7 a)I * (87/8)[ = (Tv a) * (Svﬁ) = (rva)wa,aﬂ(svﬁ)d]ﬁ,aﬁ'

Therefore, I is an isomorphism.
O

In the following result we show that Lemma 6.1.11 is true for any o € Y,
where B is an iso-normal band.

Lemma 6.2.4. Let B = A(Y, By, ¢a,8) be an iso-normal band. Then for any
a €Y, there is an embedding of IG(B,) into IG(B).

Proof. Define a map
0: B — Bg,

by b0 = bgg o, where b € Bg. This map is a morphism as for any x, y € B, where
x € Bg and y € By

(zy)f = ((xqbg ﬁv)(?ﬂb'y ,37))
( Tdp,6v) (YPr, /37))¢5’Y a

= (208,67 Dpv.0) (YP~,6Ppv.0)
= (20)(y0)

It is clear that 6 is an onto morphism and H‘B = Ip,. Hence B, is a retract of
B via 6. Therefore, by Corollary 6.1.1, IG(B,) embeds into IG(B).

by the definition of the multiplication on B)
by the definition of 6)

as ¢gy,q is a morphism)

by the definition of ).

o~ o~ o~ o~

O]

In Lemma 6.1.7 we proved that if Y is a semilattice and Yy C Y is a subsemi-
group of Y, then there is embedding of IG()y) into IG(Y). However, the following
example shows that even if By is an ideal of an iso-normal band B, there does
not always exists a monomorphism from IG(By) to IG(B).
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Example 6.2.5. Let B = #(Y, B/Ja¢/,t,,z/) be an iso-normal band, where Y =
{a,B,7,0}, and let By = B(Yo, By, ¢u) be a strong semilattice Yy, where Y =
{B,7,0}. See the figure below

ta | by

, Ca | d,
[ Y (ba N6

a"( bﬁf ag bﬁ

Bg

Y
Cy d”/ Cp dd

d)\ / Bss
as| by ‘

cs | ds

B;

Figure 6.3: The semilattice decomposition structure of example 6.2.5

Let ¢ : IG(By) — IG(B), defined as above. Now we consider an element
ag d, € IG(B), then we have

ap dy =ag dg d, (6.3)
in IG(B), as
&, =4, 4,
= dy dy
:a_

In IG(B) we have

Now a5 # a5 dg in IG(Bg) by the uniqueness of the normal form in 1G(Bg), so
in IG(By) by Lemma 5.3.20. Then az d, # @z dg d, in IG(By). Hence ¢ is not
injective morphism.

The following corollary is a special case of Lemma 6.1.9, where if B is an
iso-normal band, then Lemma 6.1.9 is true for any § € Y.
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Corollary 6.2.6. Let B = #B(Y, Ba, ¢a,p) be an iso-normal band. For each o €
Y, there is a bimorphism fo from B to By, :

fo:B— B,,

defined by
= Tfa =20y 0, ifxEb,.

We show that fq is a bimorphism. Let (g, h) be a basic pair in B with g € B,
and h € Bs. If 6 < o, then (gfs,h) is a basic pair in By, and hence (¢fa, hfa)
is a basic pair in B. Similar arguments hold for the case when § > o. Therefore,
the mapping f, is a bimorphism.

We will show that for every w € B* there is a word v € BT having a very
particular almost normal form which we will define, and such that w = v.

By Lemma 6.1.3, we have the following result.

Proposition 6.2.7. For each o € Y, there is an epimorphism fq : B — By given
by
egfa = €3Pp,a, whereeg € Bg

and consequently an epimorphism Fq, from 1G(B) onto 1G(B,)
F, : 1G(B) — IG(B,),

defined by
€3 — egfa, where eg € Bg.

Proof. The map f, is a bimorphism as for any eg, e, € B, where eg € Bg and
ey € B, we get that

(egey) Fa = ((e308,8v)(e4Dy,8y)) fa by definition of the multiplication on B)

(
= (eﬂqbﬁﬁW efygbﬂ/,ﬁfy)d)ﬁma (by definition of fq)
= (eﬂﬁbﬁ,ﬂv ¢ﬁ%a)(e'y¢7,ﬁ'y QSB’y,oz) (as ®By,a 18 @ morphism )
= (egdp,a)(eyPy,a) ( by Corollary 6.2.2)
= (esfa)(eyfa)-
By Lemma 6.1.6 we get that Fy, is a morphism from. The surjectivity of both,
fo and F, are clear. O
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It is worth noting that f,|p, is the identity morphism, with a similar statement
for Fy, for any a € Y. Further

f8 = fafs and so FoFg = Fg for all o, f € Y. (6.4)

Thus the sets {fo : @ € Y} and {Fy : @ € Y} of all such morphisms form right
zero bands under composition of mappings (from left to right). Hence, for any
w,p € 1G(B), wFy = pF, implies that wFg = pFg, by the equation 6.4. Further,
it follows from Lemma 5.3.19 that, for any =,y € B and o, € Y with 8 > «, we
have

Tfo yfﬁ =2 fo Yfa and yfﬁ Tfa =Yfa Tfa-

6.3 Special cases

It is known that IG(B) over an iso-normal band is not necessarily regular; for
example when B is a semilattice {e, f, g} with g < e, f and e L f, IG(B) is not
regular [6, Example 2]. As we stated at the beginning of this chapter that our
main aim is to show the abundance of IG(B), where B = #(Y, By, ¢q,5) is an
iso-normal band. The proof of this result involved several steps. To help the
reader to understand the main proof we are going to present two special cases
in this section. One is the case where Y is a diamond and the other is the case
where Y is a fan. A semilattice Y is called a diamond if Y = {«a, 3,7,d}, where
« and § are the upper and the lower bounds of Y, respectively, and 5 L -, see the
figure below.

4

Figure 6.4: Diamond Semilattice

A semilattice Y is called a fan if Y has a lower bound ¢ and for any o;, oj € Y
we have o; L o, @ # j, see the figure below.
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Figure 6.5: Fan Semilattice

An iso-normal band B = A(Y, By, ¢a,3), where Y is a diamond semilattice,
is called a diamond iso-normal band. Similarly, if Y is a fan semilattice we called
B a fan iso-normal band.

In order to prove the abundancy of the free idempotent generated semigroup
IG(B) over a fan iso-normal band B, we introduce the concept of a complete
almost normal form, where B is a normal band.

Definition 6.3.1. Let B = A(Y, By, ¢a,5) be a normal band. Let
w=wjo...ow, € BT

be an almost normal form with w; € Bofz, for 1 <i <nand «; L a;rq for all
1<i<n—-1. Wesay w =wyo...0w, is a complete almost normal form of
w in IG(B), if it satisfies the condition that for each 1 <i < n, w; € B isin a
normal form of w; € IG(B,,).

In the above definition we call w; € B:{i for all 1 <4 <n the block of w.

By Note 6.1.5, it is clear that w; is a normal form of w; in IG(B). From
Theorem 5.3.5, we get that a normal form of w; € By, is unique in IG(B,,), as
B, is a rectangular band, for all 1 <14 < n. It is clear that the complete almost
normal form always exists. Note that we are not saying this form is unique, as the
expression of a word over BT as an almost normal form may have different blocks.

The following result show that the uniqueness of the the complete almost nor-
mal form of any element w of IG(B) over a fan iso-normal band B = #A(Y, By, ¢a3)-
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Lemma 6.3.2. Let B = A(Y, Ba, ¢a3) be a fan iso-normal band, where 6 is a
lower bound of Y. Then any element w € 1G(B), has a unique complete almost
normal form which is one of the following

° w:xlo...owneB;;

ew=wo...ow, € BT, wiEB;ti, where a; # 6§, for all 1 < i < n and
; # aiqq foralll <i<n-—1.

Proof. Let w = Z1...Zy, € 1G(B), where z; € Bs for all 1 < i < m, then
W= 210...02y, € Bg’. As Bs is a rectangular band, by Lemma 5.3.5 there is
a unique normal form z10...0x, € By of w in IG(Bs). Hence this form is the
unique complete almost normal form with one block of @ in IG(B).

Pick W = Z1---Zm € 1G(B), where z; € B;s for some 1 < j < m. Then
by Lemma 6.1.10, we get that w = wWFs = (21f5)...%; ... (znf5) in IG(Bs). By
Lemma 5.3.5, there is a unique normal form z; ...z, of w in IG(Bs), where
x; € By, for all 1 <i <n. Hence z1 ...z, is the unique complete almost normal
form of w € IG(B).

Therefore, any w of IG(B), that contains at least one letter from Bjg, has a
unique complete almost normal form.

Now let W =, - --w; in IG(B), where w =wy o...ow; € BY, w; € Bf, and
a; # 6 for all 1 < i < t, is a complete almost normal form of w € IG(B). Let
W=7u="u- Us in [G(B), where u =ujo...ous € BT, u; EB[Z and (; # ¢ for
all 1 <7 < s, be another complete almost normal form of w € IG(B). Since both
wio...0ows and ug o...oug are two almost normal forms in B* of w = w, then
by Lemma 5.3.12, we get that s =t and o; = §; for all 1 < ¢ <¢. Our aim is to

show that w; = u; in B, for all 1 <i <t. As w =, we have
W1 0...0WPUL O ...OU.

If we apply a single relation (z oy, zy) to wy o...owy, then we get that z,y € w;
for some 1 <4 <t, as a; L ayqq for all 1 <¢ <t —1 and there is no upper bound.
This implies that w; pu;, then w; = @, for all 1 <4 < t. Now by the definition
of the complete almost normal form we have that w; and u; are normal forms of
w; = u; of IG(B,,). Since B,, is a rectangular band, then w; = w; has a unique
normal form, so w; = u;, as required.

O

Theorem 6.3.3. Let B = B(Y, By, 9o 3) be a fan iso-normal band, where 0 is
the lower bound of Y. Then 1G(B) is abundant.
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Proof. Let w = wy wy...w, € IG(B), where w; € By, for all 1 < i < n and
suppose that there is some 1 < j < n such that w; € Bs. Hence

w = wFs = wifs wofs ... w,fs,

as § < qy, for all 1 < i < n. By the regularity of IG(Bs), then
wifs R wFs L wyfs

in IG(Bjs), so in IG(B), by Corollary 5.3.8. Then any word that contains at least
one letter of By, is regular, so certainly an abundant element of IG(B).

To prove IG(B) is abundant, by Lemma 3.2.5 it is enough to show that for
any word W = Wy W3 ... w, of IG(B) and any 7,z of IG(B), if T w = Z w, then
T w; =z wy. Let T, zZ € IG(B), where

T=T1%2...77 and Z=7212%22...Zm,

be the complete almost normal form of T, Z, respectively, where x; € B;; for all
1<i<l, and z; € BZ_{J_ for all 1 < j < m and suppose that T w = Z w.

Suppose that w = wy o ... 0w, € B*, where wy = wi1 ... win,, w; € BY,
a; # 6, for all 1 < i < n, be the complete almost normal form of w € 1G(B),
which means that @ does not contain any letter from Bjs. Note that T contains a
letter from By if and only if Z contains a letter from Bjs. Suppose first that both
T and Z contain letters from Bj. Since T w = Z w, we write

@1 72...7) (W1 w2...Wn) = (21 22- - - Zm) (W1 W2 ... Wn).

As § < ay, v, Bj, forall1 <k <n,1<i<land 1< j<m, wecan write the
above equality as

(z1f5 xofs ... xifs) (wifs wofs. .. wpfs) = (21f5 2085 . .. 2ifs) (wifs wofs ... w,fs)

in IG(B;), so in IG(B), by Corollary 5.3.20. As Bj is rectangular band, IG(Bs) is
a regular semigroup, so wifs R wifs ... w,f5. Then we get that

(x1f5 zofs ... aifs) wifs = (2165 zofs ... 2 f5) wifs.

Hence (Z)Fs wifs = (2)F5 wifs, in IG(Bs), and by Corollary 5.3.20 we have

Twy = (TF5)(wif5) = (ZFs)(wifs,) = z w1,
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in IG(B). We have shown that if @ contain a letter from Bs or T (and hence z
does), then the equality T w = Z w, implies Tw; = Zwy.

Next, let a; # 9, forall 1 <i<n, y; #6, forall 1 <i <[, and 5; # ¢, for all
1 < j < m, which means that w, T and z do not contain any letter form Bs. Our
aim is to show that T w17 = Z wi1;. We have three possible cases:

(i)

(iii)

If vy = a1 = B, then we have
TW=7T1T2...(Tjowy)... W, =%1Z2...(Zmowy)... W, =ZW.

It is clear that both sides of the above equality are complete almost normal
forms. By the uniqueness of this form, then both sides have the same number
of blocks |+ n—1=m+n—-1,sol=m,7; =Z foralll1 <i<[-1
and T; W1 = Z, wy in IG(B,, ). By the regularity of IG(B,, ), we know that
wi; R wyp in IG(By,), so in IG(B) by Corollary 3.2.2. Then w; R* wy; in
IG(B) (as R € R*), and as Tjwy = Zpwi. Then we get that

T; W11 = Zm W11, (6.5)

Hence we get that Twi; = Zw1;.
If vy = a1 # B, then we have

TW=7T1T2...(Tjowy)... Wy, =Z1Z2...2mW1 ... Wy, = Z 0.

Both sides of the above equality are complete almost normal forms. As this
form is unique, both sides have the same number of blocks [+n—1 = m+n,
sol—1=m,x; =2z foralll <i<Il—1and zjw; = w; in IG(B,,). By
the regularity of 1G(B,,), we know that w; R w;;, hence w; R* Wy, in
IG(Ba,), so in IG(B) by Corollary 5.3.8. Then the equality z;w7 = wy,
implies T; w11 = w11. Hence we get that Twi; = Zw1;.

If a1 # v and aq # By, then we write

TW=21T2... W] ... Wy, = 2122 ...2mW71 ... W, = ZW.

Both sides of the above equality are complete almost normal forms. As
this form is unique, we get that both sides have the same number of blocks
l+n=m+n,sol =m, v; =z for all 1 < i < [. Hence it is clear that
TWi1 = ZW11-

O]
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As a generalisation of Theorem 6.3.3, we have the following result.

Corollary 6.3.4. Let Y1 and Yo be fan semilattices, where dg is the lower bound
of both Y1 and Ya. Let Y =Y, UYs, and Y1 NYy = {00}. Let By and By be fan
iso-normal bands, where

By = #B(Y1, Ba, $a.8);
and
By = #(Y2, Bs,1bs5,).
Then 1G(B) is abundant, where B = A(Y, B,,,0,,,) is an iso-normal band.

Proof. 1t is clear that B = #(Y,B,,0,,) is a fan iso-normal band. Hence by
Theorem 6.3.3 we get that IG(B) is an abundant semigroup. O

With a different strategy, we also prove, as another special case, that IG(B) is
abundant, where B is a diamond iso-normal band. Unlike the case of semilattices
and rectangular bands [80], here we lose uniqueness of normal forms in IG(B). So
we introduce a new special form of the elements of IG(B), where B is a diamond
iso-normal band. Then we prove the uniqueness of this special form.

Lemma 6.3.5. Let B = A(Y, Ba, ¢a3) be a diamond iso-normal band, where Y
has an upper bound o. Then any element W = T1 ... T, of IG(B), where x; € By,
and 1 < i <n, can be written as

w = (x1fn, xofn, ... xnfa,)(@nfa, Tnfa, .. xnfs,).
Proof. By induction on n. If n = 1, then it is clear the statement is true as

w=x = (Ilfal)(ﬂflfal).

Suppose the statement true for n — 1, then we can write

T1X9...Tp—1 = Zleal ngal ce xn_lfal (xn_lfal xn_lfa2 .. .xn_lfanfl). (66)

Now we can write w, by applying the statement to <3Un_1fa2 . xn_lfan71ﬁ>, as
the following

99



W=71T3.. .Tn_1 Tn

=(T1 T2...Tn-1)Tn

= (mlfal oo p_1fo, (Tn—1fay Tn_1fa, .. xn_1fa, ))E (by 6.6)
= xlfal c. a:n_lfal (($n_1fa1 xn_lfOQ . :cn_lfa )
=x1fy, ... zp_1fy, ((xn_lfa2 e xn_lfan_l)ﬁ) (as xp—1fa; Tn_1fa; = xn_1fs,)

=z1fs, o opo1fo, ( (Tn—1fa,) (@nfa, - znfa, | l’nfan)> (as xpfa, Tpfa, = znfs,)

=x1fy, .. xn_afy,

(
(
(Zn1E) @by - - Tnfa xnfan)> (a8 (Tn_1Fay)a = Tn_1fa)
(
(

=x1fo, - op1fo, ((Xnfa, - znfa, | l‘nfan)>

as Tp— lfal Tp— lfa1 = Tn— lfal)

=x1fy, .. op_1f, | (@nfs znfo, o xnfa, xnfan))

—~

= wlfal e .I'n_lfal

(
(

tnfa, Tpfa, . anfa,_ anfa,) (as zpfofn, = xnfs,)
(

=x1fy, .. xn_1fy, xnfy, (xnfoé1 Tnfa, - Tnfa, xnfan)

So the statement is true for any natural number n. Therefore, any element w
of IG(B) can be written as

W=7 Z3...Tn = T1to, ... xn_1fa, Tnfa, (:cnfa2 oo xnfa, xnfan).

O

Example 6.3.6. Let B = #A(Y, By, o) be a diamond iso-normal band (see the
figure below),
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Figure 6.6: The semilattice decomposition structure of Example 6.3.6

and ¢, ,: B, — B, is defined by

e,u¢u,u = €y,
for any u > v, u,v € Y and e € {a,b,c,d}.

The element W = @, bs a3 ¢, of IG(B), can be written as

W = Qg bgagcy

= (anfy bstn apfs ey ) (cyfo e fs ey 5 i fy)
= (aq 0 by 0 Gq © o) (C5 Cﬂa)
= (aa0¢q)(csCa¢y) (as apbaan = ay)

a(c(; C3Cy). (as ag L co in By).

If B=2%(Y,Ba, ¢q,) is a diamond iso-normal band, then any almost normal

form w =xz;0...0x, € BT of w € IG(B), where z; € B,,, for all 1 <i <n, can
be written as

1...%n

xr
( 1fa1 x2fo¢1"'xnfoﬂ)(xnfoéz"'xnfan)
= (P1---Pm)Pmfa, - Pmfan)s

w =
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where p1o...opy, € B(;"l is the normal form of the head z; fo, z2f0, ... Znfa, in
IG(B). It is clear that the order (o, ag,...,ay) is the Y-trace of the element w
in IG(B).

In the following we prove the abundancy of the free idempotent generated
semigroup over a diamond iso-normal band B.

Theorem 6.3.7. Let B = B(Y, Ba, ¢a,p) be a diamond iso-normal band, where Y
has an upper and a lower bounds o and §, respectively. Then 1G(B) is abundant.

B,

By B,

B;

Figure 6.7: The Diamond Semilattice

Proof. To prove the abundance of the free idempotent generated semigroup IG(B),
it is enough to prove that IG(B) is isomorphic to an abundant semigroup.

By Theorem 5.3.6, we know IG(Bs) and IG()) are both abundant, where Bs
and Y are rectangular band and semilattice, respectively. Hence the external di-
rect product of them is abundant by Lemma 4.1.3.

Define a map
Fs5: 1G(B) — IG(Bs)

by WFs = z1f5 ... x,f5, for w = 71 73 ... T, € IG(B), where w = x10...0x, € Bt
and each x; € B,,, for all 1 <¢ <n. Also, define a map T’

T: 1G(B) — IG(Y)
by w1l = a7 ...a,. Now define a map
v: IG(B) — IG(Bs) x IG(Y).
by

102



(w)p = (WFs,wT).

It is clear that ¢ is a morphism, as F5 and T are both morphisms by Lemma
6.1.10 and Lemma 5.3.9, respectively. Our aim here is to show that ¢ is an
isomorphism.

e By Lemma 5.3.9 and Lemma 6.2.7 we get that T and Fjs are onto morphisms.
Then ¢ is an onto morphism,

e To prove that ¢ is an injective morphism. Let w = z10... 02y, u =
Y10...0Yym € BT be the almost normal forms of w, u € IG(B), respectively.

Let
W=71... 7
= (z1fn, zofo, ... xnfoy) (znfa, znfa, - xnts,),
where (aq, ag,...,a,) is the Y-trace of w, and

U=Y1..-Ym

= (ylfﬂl y2f51 .- 'ymfﬁl)(ymf51 ymfﬂz s ymfﬂm)a

where (81, B2, ..., Bm), is the Y-trace of w.
Suppose

wp = (Wks,wT) = (uFs,ul) = up,
which implies
Wl =a1 0g... 00 =1 Bo...Bm =1ul.
Hence w and @ have the same Y-trace. As «; and o441 are incomparable,
then w7 is in normal form in IG(Y). Similarly, for w7". Then by uniqueness

of normal form in IG()) (as Y is a semilattice), we get that n = m, and
o; = B, forall 1 <i < n.

As the following equality

wlhs = x1f5 ...z, 15

=yfs...ynbs
= uky
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holds in IG(B;), so in IG(B) by Corollary 5.3.20. Further, wF, = uF), in
IG(B,), and so in IG(B), for all 4 €Y.

As IG(B,) is a regular for all ;1 € Y, then

xnto, L WEF,, =ukF,, L ymfa,, forall 1<i<n.

w = x1fy, vafar ... xpfy, <$nfa1 Tnfo, Tnfas ... xnfan>

= y1fa, yofa, - Ymfa, (ﬂ:nfal Tnfay Tnfag .- xnfan) (as WF,, =uFy,,)
=yi1fa, yofa, ... (ymfa1 :L'nfa1> (xnfa2 Tnfos - .. :L'nfan>

= yifa, yofa, ... (ymfal) (:lznfoé2 Tnfoy .. .xnfan) (as ymfa, L xnfa,)

= y1fy, yofa, ... (ymfa1 ymfa> (xnfa2 Tnfog ... :cnfan> (as Ymfa, = Ymfa, Ymia)

S TS A (ymfal ymfa2> (mnfOQ =5 .xnf%) (YmEa) by = YmEag)

=yifo, vofa, .- ymfa, ymfa, (:z:nfa2 Tnfos ... a:nfan)

= yifa, yofo, .. ymfa, (ymfa2 xnfa2>xnfa3 .. .xnfan)

= y1fa, yofa, - Ymfa, (ymfa2>xnfa3 .. .xnfan) (as ymfay, L xnfs,)

= yfa, vofa, - ymfa, (ymfa1 Ymfay - - .ymfan)

I
S|

Hence ¢ is an one-to-one morphism. Therefore, IG(B) is isomorphic to an
abundant semigroup, which gives that IG(B) is abundant.

O]

We remark here that Theorem 6.3.3 and Theorem 6.3.7 can also be obtained
as a corollaries of Theorem 6.5.10, but for the sake of our readers, we have proved
this special case to outline our strategy in a simple case.
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6.4 The forms of the elements of IG(B) over iso-normal
bands

Unlike the case of semilattices and rectangular bands, we may lose the unique-
ness of normal forms of the elements in IG(B), where B is an iso-normal band.
To overcome this problem, the concepts complete form and double normal form
are introduced. These forms are used in our whole work in this chapter.

The following results show that any element of IG(B) can be written in these
forms, which generalises the result about the forms of IG(B) over a diamond
iso-normal band in Lemma 6.3.5.

Lemma 6.4.1. Let w =71 ...T, € IG(B), where z; € By, for all 1 <i <n and
a;iMNai1 #0 foralll1 <i<n-—1. Then

T1...Tp = (1fay - Tpfoy ) (Tnfay - - Tnfa,,)-
Proof. We argue by induction on n. Clearly the statement is true for n = 1, as
T1 = Z1fon = T1fas T1fay- Suppose now that the result is true for all k£ < n.
Pick o € a1 M. We have

(xn—1far - - Tn-1fa,_,) Tn (by induction)

= .’/Ulfal ...:L‘n_lfal
= xlfou "-xnflfal

= a:lfal e :L‘nflfal

(-fnfl.faz $nfocg) (-Tn.faz .- xn.ftxn)

(xn—lfag cee xn—lfan_l ﬁ) (as $n—1fa1 xn—l.fal = xn—lfal)
(tn—1fasz - - Tn-1fas Tnfaz)(@nfas - Tnfa,) (by induction and (6.4))

= xlfal Ce xn—l.fal

<$n—1fo¢ xnfag) (xn.faz e xnfan) (aS xn—lfag xnfog = xn—lfa xn.fa2)

R T S N e G T o e e

(zn-1fa) (Tnfosz - Tnfan) (as nfas Tnfaz = Tnfas)
= (@1for - Tn-1far) Tn-1for (@nfos - Tnfan) (as Zn-1fay Tn-1fa = Tn-1far Tn-1fay)
= (#1far - n-1fa1) (@nfaz - Tnfan) (as n—1fay Tn—1far = Tn—1fas)
= (@1for -+ Tn-1fa1) Tnfas (Tnfos - Tnfan) (as Znfos = Tnfoas Tnfas)
= (21for -+ Tn-1far) Tnfa (Tnfas - Tnfas) (a8 Tnfaz Tnfaz = Tnfa Tnfas)
=(t1fay - - Tn-1far) Tnfas (@nfos - Tnfan) (as Tp—1foq Tnfa = Tn-1fay Tnfas)

(
(
(
(
(
(
=(z1fay - - Tn-1fas
(
(
(
(
(
(

T1faq - Tnfas)(@nfas - - Tnfan,)-
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For an element w = 71 @3 ... T, of IG(B), where z; € B,,, the form

(xlfal .- -xnfal)(xnfal .- xnfan)

is called the complete form of w. The part

(znfaq - - Tnfan,)

is called the tail of the complete form of w.

Note that any word w = z10...0z, € B*, where x; € By, and «; M a1 # 0,
not necessarily w in almost normal form, we always can find a complete form of
w of IG(B) with the above procedure.

Corollary 6.4.2. Let w =1 ...%T, € IG(B) be an element defined as in Lemma
6.4.1. Then

Ty...Tp = (ﬁ---@)(psfa1---psfan)a

where p1o...opg € Bofl is a normal form of x1fay - Tnfoq 0 IG(By,).

Proof. First, as p1...Ds = T1fay - - - Tnfay 10 IG(B,,), then from Corollary 5.3.8
we get that

l'nfou L xlfal ~--xnfa1 :ZTIITS‘CITS

in IG(B,,), so in IG(B). By the definition of iso-normal bands, ¢4 g is an iso-
morphism for all o, 8 € Y, so that from the above we get that ps fo, £ =, fa;, in
IG(B,,), for all 1 <i < n. We now have

Tn

T1far - Tnfor)(@nfar Tnfas - - - Tnfa,) (by Lemma 6.4.1)

g|
I
5

(
= (P1---Ps)(@nfor Tnfas - Tnfan)
= (1 P3)Ps tnfaz - Tnfean) (as Ps £ nfas)
=(P1-..-P5)(Psfar Tnfas - Tnfa,) (as ps = psfas)
= (p1---Ps)(Psfor Psfa Tnfos - Tnfan) (@S Psfar = Psfas Psfa, @ € a1l ag)
= (P1-..Ds)(Psfor Psfazr Tnfoas - Tnfan) (88 psfa Tnfas = Psfas Tnfas)
= (P1-..Ds)(Psfar Psfaz Tnfas - Tnfay,) (as psfaz £ znfas)
=P1...05)(sfar - Psfan)
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In the above proof, notice that psfa, © ... 0 psfa, € BT is a normal form of
Psfay -+ Psfa, in IG(B) if and only if aj o...0a, € YT is a normal form of
ar...a, in IG(D).

Definition 6.4.3. Let B be an iso-normal band. Let

w=zx10x90...0x, € BT,

be an almost normal form of w € IG(B), where x; € By, ;M a;41 # 0, the form

w = (1T1 . -E)(psfa1 .- ~psfan)

is called a double normal form of w, if pyo...ops € B;rl is the normal form of
T1fay - Tnfay in IG(Ba,), and psfay © .. 0 psfa,, € BT is an almost normal
form of (psfay ---Psfa,) in IG(B). The parts

(psfoq .- 'psfan) and p1...DPs
are called the tail and the head of the double normal form of w, respectively.
It is clear from the above definition that (ai,..., ;) is the Y-trace of w of
IG(B).
In the following we prove the uniqueness of the double normal form of the

elements of IG(B), where B is an iso-normal band.

Lemma 6.4.4. Let w =77 ...T, € IG(B), where z; € By, for all 1 <i <n and
a;MNajrr # 0 for all1 < i <n—1. Then the double normal from of W is unique.

Proof. Let w € IG(B) and

w = (171 . ']TS)(psfal .. -psfan)
= (ﬁ . -@)(QSfal .- -Qt.fan) (6.7)

be double normal forms of w. As there exists a morphism fo, : B — Ba,, so by
Proposition 6.2.7, there is a morphism

Fo,: 1G(B) — IG(Ba,).

As the equality in (6.7) holds in IG(B), then the following equality holds in
IG(By,)

((pil . ~]TS)(psfa1 . '-psfan))Fal =P1---Ds
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Aspio...ops,quo...oq EB;Z are the normal forms of p1...ps and @7 ... in

IG(Ba, ), and by the uniqueness of the normal form in IG(B,, ), we get that s = ¢
and pj = @j, for all 1 < j < s in IG(B,,), so in IG(B) by Corollary 5.3.20. In
particular, we have ps; = gs. As B is an iso-normal band, then p;fo; = ¢sfa;, in
IG(B,,) for all 1 <i < n. Therefore, we get

Psfay -+ Psfan = Asfor - - Qs fan-

This proves the uniqueness of the double normal form of any w of IG(B), where
B is an iso-normal band. O

Lemma 6.4.5. Let W=wW;... Wy, P=D1...Pm € IG(B). Let
W10...0Wy, PLO...0py € BT

be almost normal forms of w and p, respectively, where w; € B;FZ, foralll <i<n,
a; L oajpq foralll <i<n—1, (ar,...,ay) is the Y-trace of W and p; € ng
foralll1 < j <m, B; L Bjp1 foralll <j<m—1, (B1,...,0Bm) is Y-trace of
P. Suppose that o; T p1 # 0 for alll1 <i<n—1andp; M Bjr1 #0 for all
1 <j<m—1. Then the following statements are equivalent:

(i) w =p in IG(B);

(ii) Wy ... Wy, =P1 -..Pm in IG(B);

(iii) n =m, o; = B; for all1 <i<n and (Wi...Wn)Foy = (P1-..Pm)Fa, in
IG(Ba,)-

Proof. The equivalence of (i) and (i) is by definition.

(73) = (1) follows from Lemmas 5.3.9, 6.2.7 and 5.3.6.

To show (iii) = (i4), let ujo...ou; € BF, be the normal form of (wy ... W) Fa, (=
(P1-..-Pm)Fa,y). Then, by Corollary 6.4.2

Wi... Wy = (ur... W) (Wfar - Wwfan) = @1...w) (wfe - - wfs,) =Di-- Pm.
O

In the proof of the abundancy of IG(B) over a diamond iso-normal band B we
proved that
IG(B) = 1G(Bs,) x IG(Y),

where g is the least of Y. In the following we show that if B is an iso-normal
band and for all 5,6 € Y, we have 8 M § # (). Then for any o € Y, we have

IG(B) 2 IG(B,) x IG(Y).
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Proposition 6.4.6. Let B = A(Y; B, ¢a,8) be an iso-normal band such that
B M 6#0 forany 8,6 €Y. Let « €Y be fized. Then

IG(B) 2 1G(By) x IG(Y).
Proof. We define a mapping 1 from IG(B) to IG(B,) x IG()) as follows:
P IG(B) — IG(B,) x IG(Y), W+ (WFq,wT).

It follows immediately from Lemmas 5.3.9 and 6.2.7 that v is a well defined
morphism. We now show that % is a bijection. Let uy... U, 01 ...7, € IG(B).
Then, by Lemma 5.3.11, we may assume that both of ujo...ou,, vio...ov, € BT
are almost normal forms of uy ... %, and 77 ...0,, respectively, in IG(B), with
u; € Bﬁ forall 1 <i <mnandv; € BJr for all 1 < j < m such that 8; L B;41 for
alll<i<n-—1and~vy; L vj1 fora111<]<m—1

To show that 1 is one-one, let (U ...%U,)Y = (V1 ...0p)%. Then we have

(Ur...Up)Fo=(01...0m)Faand B1...80 =71 .. Fm

Notice that both sides of the second equality are in normal form, giving n = m
and 3; =, for all 1 <i <n. By (6.4),

(@ - - Tn) Fg, = (01 ... Um) Py,

so that by Lemma 6.4.5 we have uy ... U, =771 ...70,, in IG(B).
To show ) is onto, let (T1...Ty,,01...0m) € IG(B,) x IG(Y), where z; € B,
for all 1 < ¢ < n. Using the remark following Proposition 6.2.7, if n > m, then

(@1for - Tmfom Tmt1fom - Tnfon ) = (T1... T, 01. .. ).

On the other hand, if n < m, then

(m1f0'1 '-'xn.fan l'nfa'n_H . . ~5L'n.fa'm)7vb = (Tl . ﬁ>0-71ﬁ)

Therefore, 1 is an isomorphism from IG(B) onto IG(B,) x IG(D).
O

Definition 6.4.7. Let B = (J,cy Ba be a band and let wy o...0w, € B
be an almost normal form with w; € B;“i for 1 <i < nand a; L ayqq for all
1 <i<n—1. Then the set of numbers

{ir, ... iy} C{1,...,n} with i) < ... <1,
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is called the set of breakpoints of wq o ... o w, if these numbers are picked out in
the following manner:

i1: the largest number such that a; M aj11 # 0 for all 1 < j < i1 —1 but
iy M a1 =0

i2: the largest number such that a; M aj41 # fforallig +1<j <ip—1
but a;, M1 = @;

ir—1: the largest number such that a;; M aj1 # @ for all iy _o+1 < j <4, — 1
but a;,._, M ;. +1 = 0;
ir(=mn): here we have oj M ajp1 # 0 for all 4,1 +1 < j <4, — 1.

Notice that the breakpoints of any almost normal form are determined by
the Y-trace, so for any two almost normal forms representing the same element
in IG(B), their breakpoints must be the same. Moreover, since any two almost
normal forms representing the same element w of IG(B) have the same Y-trace,
the breakpoints are uniquely determined by w.

Corollary 6.4.8. Let W = Wwy... Wy, D = P1---Pm € 1G(B), where wyo...o0
Wy, P1O...0pm € BT are in almost normal form, w; € BO‘Z foralll <i<n,
a; L ajyq foralll <i<n—1 and p; GB;], foralll1 < j <m, B; L Bjq1 for
all1 <j<m-—1. Letiy,...,i.(=n) and ji,...,j:(= m) be the breakpoints of
W1 0...0W, and P1 © ... O P, respectively. Then the following statements are
equivalent:

(i) Wi ... Wy, =P1...0m i IG(B);

(ii) m=mn, a; =0 forall1 <i<n,r=t,ir=jg forallk € {1,...,r} and

wiu+1 e ’wiu+1 = piu-i-l .. .piu+1
for all 0 < u < r —1, where we put ig = 0;
(iii) m =mn, a; = B foralll <i<n,r=t,ip=ji forallk € {1,...,r} and
(Wi 41 - Wiy ) Fogy o = Digt1 - Dinyr ) Fovgy 11
for all0 <u <r—1, where we put ig = 0.

Proof. (ii)=(iii). Let m = n, a; = B; for all 1 < i < n, r = t, i = ji for all
ke{l,...,r} and let

W = Wiy+1 -+ Wiy = Piy+1---Diyyr =P

for aliO §7u <r—1, where we put ¢9 = 0. As oy L agy1 for all i, +1 < iy <y
and w’ = p/ in IG(B), from Lemma 6.4.5 we get that

(W)Faiu+1 = (H)Faiu+1
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forall0 <u<r-—1.

(iii)=(ii). By Lemma 6.4.5, as

Wiy +1 - - 'wiu+1Faiu+1 = Piy+1 -+ ‘piu+1Faiu+1

forall 0 <wu <1 —1, we get that

Wiy4+1 -+« Wiy 1 = Piy+1 -+ Diyya

forall 0 <u<pr-—1.

(i)=(ii). It follows from Lemma 5.3.12 that m =n, a; = §; for all 1 <i < n.
To show the rest, we put

Ly,={2€ ET :z=mw}.

Since w is an almost normal form, we have that aq, ..., «a, is the unique Y-trace
of w with breaking points i; = j1,...,4 = j-(=n). For each fixed 0 <u <r—1,
we define a map

0. : L, — IG(B)

as follows. Let x = 1 0...0x, € L. Suppose that x; € Bs, for all 1 < i < v.
Notice that we are not assuming that x is in almost normal form. Recall from
[16] that the left to right significant indices of x1 o ... o x, is defined as a set of
numbers

{li,..., L} CA{L,...,vo} with l; <--- <,

where these numbers are picked out in the following manner:
l; : the largest number such that d1,...,6d, > d;,;
k1 : the largest number such that 6, < d;,,0;,+1,..., 0k -
lo : the largest number such that g, 4+1,...,9, > d,;
ko : the largest number such that d;, < d;,, 01,41, ..., Ok,-

l,, : the largest number such that 6, ,41,...,6;, > 01,3
kn = v: here we have 9;, < ¢;,,,01,+1,-..,0y. Of course, here we may have
l, =k, = .

Notice that for all 1 < s <n —1, §;, and J;,,, are incomparable. We can use
the following Hasse diagram to depict the relationship among é;,,...,d;, :

We call the set of numbers {ki,...,k,} the adjoint indices of xj o ... 0 x,.
Notice that here we have §;;, = «a; for all 1 < ¢ < n and we can use the above
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Figure 6.8: Hasse diagram illustrating significant indices

decomposition to obtain an almost normal form ¢ for z by Lemma 5.3.19. We
now define

20y =Tk, 31--- Thiy

Ty

where we put ig = 0. We now claim that
0, : W — why,

is well defined.

Let T = Z = w. We know Z may be obtained from T by finitely many steps
of squashing or splitting in terms of basic products, but to show z6, = z60,, it is
sufficient to assume that z is obtained from z by just a single step of squashing
(or splitting). Let

=21 "Tj—1 Tj Tj41 :Uj+2---xisand§::71---:nj,1 TjOXj41 Tj42 *Ts

where (xj,xj41) is basic. It is impossible that j = k;, and j +1 = k; 41 for
some 1 < s <n — 1, for, if this occurred then d, ,dy, ,, would be comparable so
that o, Mo, 7 0 a contradiction. It follows that we have 26, = z6,. Now
considering the two almost normal forms w and p of the elements w and p we are
concerned with, we have

Wi, 11 Wi,y = W0y = POy = Diy51 -+ Pinir

forall 0 <u<r-—1.
O

Theorem 6.4.9. Let B = B(Y; B, ¢a,p) be a finite iso-normal band. Then the
word problem of 1G(B) is decidable.

Proof. 1t follows from [18] that there is an algorithm to get an almost normal
form for any element in IG(E). By Corollary 6.4.8 the word problem of IG(B) is
equivalent to that of IG(B,), @ € Y, and IG(Y), which are decidable by Lemma
5.3.23, and hence IG(B) has decidable word problem. O

112



6.5 Abundancy of free idempotent generated semi-
groups over iso-normal bands

The article [16] begins the study of those bands B such that IG(B) is abundant.
As regards normal bands, Proposition 5.3.22 shows that if a normal band B
satisfies the technical Condition (P) for IG(B), then IG(B) is abundant. To see
that not every iso-normal band satisfies Condition (P), let Y be the diamond
semilattice {a, 8,7,0}, where v L 8, a and 0 are the upper and the lower bounds
of Y, respectively. For each p € Y, let B, = {ay,,by,cu,d,} be a four-element
rectangular band with (ay,d,) not basic. For the connecting morphisms simply
take u, to u, for any u € {a,b,¢,d} and 7 > v in Y. Let @, dgag be an element
of IG(B). By Lemma 6.3.5, we can write

in IG(B). It is clear that the first and last expressions in the above equality are in
almost normal form, with Y-length 2, left to right significant indices iy = 1,49 = 3
and l; = 3,y = 4, respectively. We have a;, = aq La;, = a, but

ay # @y dyay,

in IG(B,) by the uniqueness of normal forms, so by Corollary 5.3.20, we have
@, # aydy @y in IG(B). This shows that IG(B) does not satisfy condition (P).
Moreover, an example is given in [16, Example 6.5] of a normal band B such that
IG(B) is not abundant.

Given an iso-normal band B = #(Y; B, ¢a), so that B = B, x Y, by
Proposition 6.2.3, one might hope that IG(B) is isomorphic to IG(B,) x IG(Y).
If this were to be the case, then since IG(B,) is completely simple, by Theorem
5.3.7, and IG()) is abundant, by Theorem 5.3.6, then by Lemma 4.1.3 we get
that IG(B) is abundant. However, it is only in a special case that we can show
IG(B) 2 1G(B,) x IG(Y); in general the situation is more complex, as we show.

The next lemma is needed to determine those bands B such that IG(B) is
isomorphic to C' x IG(Y) for some completely simple semigroup C and semilattice
Y.

Lemma 6.5.1. For any semilattice Y, Green’s relations L, R, H and D are trivial

on IG(Y).

113



Proof. We need only give the argument for R. Let @ = a7 - - - @, and B iE - Bm
be normal forms of IG()) and suppose that @R 5. Then either @ =  or there
exist normal forms &7 -+ -0y, A1--- A, € IG()) such that

@ @) 5) =B B (i B) () = a1

giving

Q1 Qp =01 Ty 01Oy A - Ay

Let 616y A1+ Ay = i1 - - Jlw, where [i] --- iy is a normal form. Notice that
for any 1 <4 < wu we must have §; > p; for some 1 <! < w and for any 1 < j < v,
we must have A\; > puy for some 1 < k <w. Then

O[lO[in: 1...anul...'ulw‘

By the uniqueness of normal forms in IG()), we must have v, is comparable to
(1. We have the following cases.

Case (i) ap < pi,--+ s and oy L pgy1 or s = w. In this case, we have
normal forms

Q1 Qp =01 Qp flst1 = flw

giving s = w by the uniqueness of normal forms in IG()’). Notice that, since for
any 1 < i < u we have §; > py; for some 1 <[ < w. Then we have a,, < py < 65,
for any 1 <4 < u, and hence

ai- Q=01 0n 010y =051 Pm.
Case (i) p1 < ag,--+ ,apn and as—1 L pg or s = 1. In this case, we have
normal forms

implying n =s— 14w and a5 = p1 < as41, -+, ay. To avoid contradiction, we
must have s = n, so that n = n — 1 + w, and so w = 1. Therefore, @7 ---a;, =
Q1 Q1 i1, So that u1 = a,. As w = 1, we have §; > py for all 1 < ¢ < wu, so
that §; > u1 = an, giving

O

The next lemma is needed to describe the regular D-classes of IG(B), where
B is a band.
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Lemma 6.5.2. Let B = B(Y; Ba, ¢a,8) be a semilattice of rectangular bands By .
The regular D-classes of IG(B) are IG(B,), where a € Y.

Proof. 1t is known that as B, is rectangular band, o € Y/, IG(B.,) is regular semi-
group, by Theorem 5.3.7. Hence for any e, f € IG(B,), wegeteRef L f,soeD f.

Let w be a regular element of IG(B). Our aim is to show that the Y-trace of
any regular element w of IG(B), is (a), for some a € Y. Let w = z10...0x, € BT,
where z; € B, a; € Y, is an almost normal form of @ € IG(B). Then the word
ajo...oq, € YT is an almost normal form of wT = a7 ...q, in IG(Y). AsY is
a semilattice, wT is regular. Hence a7 ... ay, is regular element. By Lemma 6.5.1,
we have that @ = a7...q;,, some « € Y. This implies that n =1 and a1 = «, as
required.

O

Note that the regular D-classes of 1G(B), where B = #(Y; Ba, ¢a,8) is an
iso-normal band, are IG(B,), o € Y, by the above result. By Lemma 6.5.1,
the regular D-classes of IG(Y) are {\}, A € Y. Hence the regular D-classes of
IG(Ba) x IG(Y) are IG(By) x {\}, where A € Y. Notice that a semilattice is
always an iso-normal band.

Corollary 6.5.3. Let B = B(Y; Bq, ¢a,8) be normal band. Then any element w
of IG(B) has a single Y-trace if and only if W is reqular.

Proof. Let w be an element of IG(B) with single Y-trace, that means w € 1G(B,,),
some a € Y. Hence by Lemma 5.3.7, we get that w is a regular element of IG(B).

Conversely, by Lemma 6.5.2, proved that any regular element has a single
Y-trace, (a), for some o € Y.

O]

Proposition 6.5.4. Let B = B(Y; Ba, ¢a,p) be an iso-normal band such that B,
1s non-trivial for all o € Y. Then

IG(B) =2 1G(B,) x IG(Y)
if and only if for all 8,0 €Y, B T § # 0, where « is (any) fized element in'Y .

Proof. Suppose that for all 3,6 € Y, 8 M § # (). Then by Lemma 6.4.6, there is
an isomorphism from IG(B) onto IG(B,) x IG()).
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Conversely, assume that ¢ : IG(B) — IG(B,) x IG(Y) is an isomorphism.
Suppose that there exists 5,0 € Y such that g M § = 0. Since IG(Bg) and IG(B;)
are distinct regular D-class of IG(B), so they must be mapped by ¢ to different
regular D-classes IG(B,) x {A\} and IG(B,) x {f} by Lemma 6.5.1. Also, since
B M 6=10, wehave A\ M pu = (. We pick g,h € B, with g # h. As ¢ is an
isomorphism, it takes idempotents to idempotents, so that there exists e, f € Bg
and u,v € Bs with e # f and u # v such that

ep = (§7X)7 TQZ) = (E,X), up = (?aﬁ)a vp = (Evﬁ)

Notice that

(€ fu)g = (g, \)(h,N)(9,7)
=(ghg, A \n)
= (ghg,\p) (as AX=))
(Ghg, \im) (as i = i)
= (9, M) (h 1) (9, 7)
= (e v u)o.

As ¢ is an isomorphism. Then we get that € f @ =€ © . Since 8 M § = (), hence
B L § and by Lemma 6.4.8 we get that
eflu=¢(vu)<=ef=candu="7 .

Notice that as IG(Bg) is completely simple and e f = ein IG(Bg),e Re f =€ L f,
would imply e £ f and so g £ h; similarly, @ = v @ would imply © R v and so
g R h. Hence g H h. As B, is rectangular band, g = h, contradiction. O

The above result is always true if B, is trivial, since IG(B,) is then trivial.

Corollary 6.5.5. For any iso-normal band B = B(Y; By, ¢a,p) satisfying the
property that « M B # 0 for all o, B € Y, we have that 1IG(B) is abundant.

Proof. By Proposition 6.5.4, IG(B) = IG(B,) xIG(Y) where « is any fixed element
in Y. Since both IG(B,) and IG(Y) are abundant by Theorem 5.3.6, it follows
from Lemma 4.1.3 that IG(B,) xIG()) is abundant and hence IG(B) is abundant.

O

Example 6.5.6. Let B be an iso-normal band, B = #(Y, Ba, ¢q ), where Y is
a net semilattice(see the figure below),
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Figure 6.9: Net semilattice

Then IG(B) is abundant.

Corollary 6.5.7. For any iso-normal band B = #(Y; By, ¢a.8), where Y has an
upper bound. Then 1G(B) is abundant.

Proof. As « is an upper bound of Y. Hence for any 8,6 € Y, we get that
a € B M §. Then by Corollary 6.5.5, IG(B) is abundant. O

The free idempotent generated semigroup I1G(B) over a diamond iso-normal
band B is an example of the above result.

Proposition 6.5.8. Let B = |J,c,; Ba be a normal band satisfying the property
that IG(B) =2 C x 1G(Y), where C is a completely simple semigroup and Y is a
semilattice. Then Z =Y and B is an iso-normal band.

Proof. We first note that for any each o € Z,
IG'(B,) = {w € IG(B) : W = Uy - - U, u; € By, for all 1 <i < m}
is a completely simple subsemigroup of IG(B), as it is morphic image of IG(B,).

Let
Y 1IG(B) — C x IG(Y)

be an isomorphism. Since ¥ must take regular D-classes of IG(B) to regular
D-classes of C' x IG(Y), from Lemma 6.5.1 there is a bijection from Z onto Y,
a > Yo, induced by IG'(B,)Y = C x {Ua}, as the regular D-classes of IG(B) are
IG(B,) where a € Z, and 1G'(B,,) is isomorphic to IG(B,) by Theorem 5.3.20, we
get that IG'(B,) is a regular D-classes of IG(B). Also, the D-classes of C' x IG(Y),
are C' x {7, }, as C is a completely simple and the D-classes of IG()) are trivial.
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We show that B is an iso-normal band by the following 4 steps.
Step (1) We claim Z =Y as semilattices. Let b, € By, bs € Bg. Then

a < B by bg €1G (By)

& (ba bp)Y = (u,Va) ( for some u € C)

& (ba)¥ (bg)Y = (u,Ta) (‘as 1) is a morphism )

& (u1,Ya)(u2,98) = (¥, Ya) ( where u = ujug, u,uz € C)
< Ya Yg = Ya

< Yo S Yp

so that Z = Y, and hence, in the remaining proof, we may take ¥ = Z and
without loss of generality assume y, = « for all « € Z.

Step (2) We claim that B, = Bg, for all a, § € Z.

Let «, 8 € Z, we define an isomorphism

Tap: C x {a} — C x {B}, (¢,a) — (¢, B).
Put B = {b:b € B} CIG(B) and define
k:B— B,b—b.

Note that « is the restriction to B of the natural map from IG(B) to B. With
the above preparations, we define a map

Pap : Ba — Bg, by — bathTa g k.
As ), Ta g, w_l,iand r are all one-one, we deduce ¢, g is one-one. Let bg € Bg.
Then bgtp = (u, B) for some idempotent u € C. By putting by, = (u,@)y~1, it is

easy check that b,p. g = bg, so that ¢, g is onto, and hence it is bijective. To
show ¢, g is a morphism, we let by, co € By with

bat) = (u,@), Catp = (v,@) and (baca)t) = (w, @)

for some u,v, w € C. Since by R baca L Ty and 1 is an isomorphism, we deduce
uR w L v. Let

(wag)d}il = Ea (U7B)1/)71 = hfﬁ and (’U,B)w*l = %
for some lg, hg, kg € Bg. Then hg R lg L kg, implying g = hgkg. We now have

(baca)a,p = baCaZZ)Taﬁﬂ}_lli = (w,B)@ZJ_lfi =l
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and

(baPa,p)(Caap) = (bat¥Ta st K) (@aTasb k) = ((u, B)Y k) ((v, B)p k) = hgks =I5

so that
(baca)@a,b’ = (bawa,ﬂ)(ca@a,ﬁ)

and hence ¢, g is an isomorphism from B, onto Bg.
Step (3) We claim that ¢ .o = 1p, and pa 898, = @a,y for all a, 5,7 € Z.
Let b, € B,. Then

ba@a,a = Elb'ra,aw_lﬁ = EH = by

so that o o = 1p,. Further, by putting both = (u, @) and (u, B)y~! = bg, where
bg = ba@Z)Taﬁq/)_lli, we have

ba@a,ﬁ@ﬁ,w = (E@Z}Ta,ﬁd)_l’i)wﬁﬁ = bﬁ‘ﬁﬁ,v = %7/)7_,8,7@&_1“ = (u’ﬁ)qﬁ_l/{

and o
ba@a,’y = bo/‘/”’oe,vwilﬂ = (Uvﬁ)wil"i
so that ¢, sY8~ = Pa,y-

Step (4) We claim that for all b, € B, and bg € Bg, babg = (baPa,0p)(baPa.as)-
Let cop = babg € B,g. Suppose that

batp = (u, @), bptp = (v, B) and Capth = (w, af)
for some idempotents u, v, w € C. Suppose that
(u,aB)y ™" = 2ap, (v,aB) ™" = fag
for some eng, fop € Bag. Then
(bata,a8) (b9s,08) = (ba¥Ta,apt ™ k) (bs¥T5,0a59 " k) = (€apk)(fapk) = eapfap.
We now show that e,gfag = cop. It is easy to see that ba Caf = CaB, implying
(b)) (Capth) = Captp, namely, (v, @)(w, af) = (w,af), so that vw = w. A similar

argument gives us w = wv, and so v R w £ v. Again, as v is an isomorphism,
we have e R cag L fop, 50 that eqagfas = cap. Now we have

(ba@a,aﬁ)(bﬁSOﬁ,a,B) = eaﬁfoaﬁ = Cap = babﬁ-

Therefore, B is an iso-normal band, as required. O
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Clearly, in general, the converse of the above result is not true, as shown in
Proposition 6.5.4.

Before stating the abundancy result in the general case, we need a simple
lemma.

Lemma 6.5.9. Let B = A(Y; Ba, ¢a,p) be an iso-normal band and let Wy w; €
IG(B) be such that wy € B} and ws € Bg‘ with o < 3. Then

[ W3 = Wi (W2Fa) and w3 w1 = (03Fa) W1

where the right hand sides of both equalities are almost normal forms of wy wy in
IG(B) and waFy is regarded as an element in IG(B).

Proof. Suppose that wy € Bl and ws € B; with a < 8. Then we can write

wi(waFo) = wy(wafy) (by the definition of F)
= W1 (w2¢8,a) (by the definition of f, and wq € BE)
= Wy Wy (by Lemma 5.3.19).

Now we are at the position of stating our main theorem in this chapter.

Theorem 6.5.10. Let B = AB(Y; Ba, $a,3) be an iso-normal band. Then 1G(B)
is abundant.

Proof. Let w = wy - - - w, € IG(B) be such that wy o...ow, € B" is an almost
normal form with w; € BOJ[Z_ forall 1 <i<mnanda; L a1 foralll <i<n-—1.
We show that

e R* wi---wy, L* f,

where e is the first letter of w; and f is the last letter of w,. It suffices to give
the proof for R*, that for £* being dual.

We note first that clearly ew = w. Thus, if we can show that Tw = yw, then
this implies Ze = ye for all 7,7 € IG(B). Hence it is easy to deduce that Zw = w
implies Ze = €, for any z € IG(B), and then we get that wWR*e.

To the above end, we now suppose that pw = gw where p, g € IG(B). Without

loss of generality we write p = pyo---0pm, ¢ = q 0 ---0qs € BT are almost
normal forms of p = py---p,, and ¢ = q1 - - - G5, respectively, so that p; € Bg‘j for
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alllﬁjﬁmandﬁjJ_BjHforalllgjgm—landqleBgl'foralllglgs
and 0; L 641 forall 1 <1 < s—1. Since € R wy by Lemma 5.3.8, the statement
that p1---Dm € =q1 - G5 € is equivalent to p1-- P, W1 =1 -+ - @5 wy. We prove
the latter, on a case-by-case basis.

Case (i) B L aq and 65 L aq. By Lemma 5.3.9, we have

B1-Bmai - 0y =201-05 a1y,

in IG(Y). Notice that both sides of this equality are in normal forms and the
normal form in IG(Y) is unique, implying m = s and §; = §; for all 1 < i < m.
We consider the following two subcases:

(1) B M ag = 0 (so that 65 M a3 = (). Then by Corollary 6.4.8 we must
have p1-+Pm =q1 - G5, and hence p1 -+ Pp, W1 = G1 -+ * G5 W1.

(2) B M ay # 0 (so that 65 M a3 # 0). Let j be the largest such that
a; M ajp #0foralll <i<j—1,but oy M ajy1 = 0. Let ¢t be the smallest
such that 8, M B4 # O for all t <1 < m, but ;1 M By = 0 where we put
Bm+1 = ai. Then by (ii) Corollary 6.4.8 we have

Dt Dm wl...ﬁj:@...@m...ﬁjandﬁ... —1 =q1" " Q—1
so that, by (iii) Corollary 6.4.8 we get that
(@%WW])FBt = (G Qs Wl"‘Wj)Fﬁt

As (wy ---wj) Fg, R* wiFg, in 1G(Bg,), and IG(Bg,) is completely simple, then
by Corollary 5.3.8, we have

(@%W)Fﬁt = (@%W)Fﬁta

so that p;-- P, W1 = @ ---¢s w1, and both sides have the same Y-trace, by
Lemma 6.4.5. Therefore,

D1 "Pt—1Dt " "Pm W1 =@q1" " qt—1 G¢t* - (Gs W1.
Case (ii) B < a1, 05 L ;. In this case, there must exist a unique 1 < v < n+1
such that 8,, < ay, -+ ,a,—1 and B, L ay, or v =n+ 1. Then, by Lemma 6.5.9,
we now have

Pr- Pm—1 (Pm W1 Wy—1)Fp,, Wy Wy =q1-+ Qs W1+ Wy

both sides are in almost normal forms and have the same Y-trace. By Lemma
5.3.9,

Bl Pm Qg =01--0s Q1 - Oy
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It follows from the uniqueness of normal form in IG()) that a,—1 = B < -2,
and hence v = 2 (and so B, = a1), to avoid contradiction. Note that s =m — 1
and §; = 3; for all 1 <7 < s. Let j be the largest such that a; M ;11 # 0 for all
v<i<j—1,but a; M ajy1 =0. Let ¢t be the smallest such that 5 M Fj41 # 0
forallt <l <m—1,but Bi_1 M B =0. Then as B, < a1, (pm w1)Fg,, = Pm W1
and by Corollary 6.4.8,

and hence, by Lemma 6.2.7

namely,

by the remark after Lemma 6.2.7. As (wy - - - w;)Fg, R w1 Fp, in IG(Bg,), we have
(Pt~ Pm—1 Pm W1)Fp, = (@~ - s w1) F,

By Lemma 6.4.5,
Dt Pm W1 =Gt s W1

so that

Case (iii)) B < a1 and ds < 3. In this case, there must exist a unique
1 <u <n+1such that 8, < a1, - ,0u_1 and B, L «y, or u =n+ 1; a unique
1 <v <n+1such that 053 < ay, -+ ,a,-1 and o, L s, or v =n+ 1. By Lemma
6.5.9, we have two almost normal forms in IG(B)

PrePm—1 (P W1+ Wy—1) Fp,, Wy - Wn =1+ Gs—1 (G5 W1 -+~ Wy—1) Fs, Wy - - Wy

implying two normal forms in IG()) by Lemma 5.3.9,

Bl B Gy 0y = 0105 O -+ - Oy
If v > u, then a,_1 = ds < ay_9; to avoid contradiction, we must have v = 2,
implying » < 1, impossible. Similarly, we cannot have v < wu, so that v = wu,
giving m = s and §; = ¢; for all 1 < ¢ < m. Let j be the largest such that
a; M a1 #0forallu<i<j—1,but oj M aojp; =0. Let ¢ be the smallest
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such that 8, M Biaq1 # 0 for all t <1 < m, but f_1 M B = ) where we put
/Bm-i-l = Oy Then7

Dt D1 (D W1~ Wy 1) Fp,, Wy W; = G-+ Gs—1 (@5 W1 - - - Wy—1) F5, W0, - - W5
and pr--Pr—1 = q1-- - q—1. Hence, by Lemma 6.2.7
(Pt Pm—1 (Pm W1+ Wu—1) Fg,, Wy - - - Wj) Fg, = (Gt Gs—1 (¢ W1 - - - Wy—1) Fs, Wy, - - - W) Fg,

namely,

(Pt P11 Dm W1 -+ Wy—1 Wy -~ W;) Fg, = (G- @o—1 @5 W1+ - - Wy—1 Wy - - - Wy ) Fg,

by the remark after Lemma 6.2.7. Again, as (w7 - --w;)Fg, R wi1Fg,, we have

(Pt - - Dm—1 Dm w1)Fp, = (Gt - - Gs—1 G5 w1)Fp,

as Bm,0s < aj namely,

(ITt " Pm—1 (% m)Fﬁm)Fﬁt = (@ " s—1 (@ Wl)Fés)Fﬁt'

By Lemma 6.4.5,

Pm—1 Pm W1 =Gt (ds—1 s W1

e
Wy =q1 - Gs—1 qs W1-

so that o1« Dm_1 Pm

Case (iv) B < a1 and 05 > «a3. There must exist a unique 1 < u < n+1
such that 8, < aj, -+ ,ay_1 and By, L ay, or u = n+1; a unique 1 < v < s
such that §,,---,ds > a1 and §,_1 L a1, or v = 1. Then, by Lemma 6.5.9, we
have two almost normal forms in IG(B)

Pr Pmt (Pm W1 Wy 1) g, Wy Wn =@+ Qo1 (o G W1) Foy Wa -+ W

This gives two normal forms in IG()) by Lemma 5.3.9

B Bt B Qa0 =01+ 0y_1 Of g - - Oy,

implying ay,—1 = Bm < qyu_9, so that u = 2, to avoid contradiction, and hence
Bm = a1. Note this gives v = m and §; = §; for 1 <i < wv—1. Let j be the largest
such that o M ;41 # P forall 1 <i<j—1, but o;j M aj1 =0. Let ¢ be the
smallest such that 8; M By # O forallt <l <m—1,but f_1 M B =0. Then

Pi Pt (Pm 1) Fp,, W2 W; =G Qo1 (Qv " qs W1)Fa, W2~ W
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and p1---Pr_1 =q1- - G_1. Hence, by Lemma 6.2.7
(Pt -+ Pm—1 (Pm w1) Fp,, W03 - - W0;) Fg, = (G- Go—1 (Gv - G5 W1) Fouy W2 - - - W) Fg,

namely,

(Dt - Pt Dm W1 Wa -+ w;)Fg, = (@ Qo1 QoG5 w1 W3- --w;)Fp,

Again, as (wy - - -w;)Fg, R wiFg,, we have

(Dt Pm—1 Pm W1)F, = (@ GQo—1 Q-+~ G5 W1) Fa,
as B < a1, Pm W1 = (Pm w1)Fp,. Hence we can write the above equality as follow
(ZTt Pm—1 (pirn W)Fﬁm)Fﬁt = (@ GQu—1 (qTJ : '@W)Fal)Fﬁt

so that
Dt "Pm—1DPm W1 =Gt Qu—1 Qv qs W1
and both sides have the same Y-trace, by Lemma 6.4.5, and hence

Case (v) Bm > a1 and ds > «3. There must exist a unique 1 < u < m such
that By, -+ ,8m > a1 and By_1 L a1, or v = 1; a unique 1 < v < s such that
Oy, ,0s > a1 and 0,1 L aq, or v = 1. Then, by Lemma 6.5.9, we have two
almost normal forms in IG(B),

PrePu-1 (Pu Pm W) Foy Wy W =G+ Qo1 (Gu- - s 1) Foy W -+ - Wy

giving two normal forms in IG(Y), by Lemma 5.3.9,

B Bu—1 Oy =01+ 0y_1 Q1 - Qi
so that u = v and §8; = §; for all 1 < i < v — 1. Let j be the largest such that
a; Majpr #Qforalll <i<j—1and a; Majy =0. Let ¢ be the smallest such

that B; M Bre1 # 0 forallt <1 <wu—1and B;—1 MNP =0 where we put 8, = ;.
Then by Lemma 6.4.5 we have

Pe- Pt (Pu-Pon ®1) Foq W3- W5 = G-~ Gomi (@u- -~ G 1) Foy W3---70

and

pl“'ptfl :ﬁ"‘(b‘fl- (68)



Again, by Lemma 6.4.5 we get that
(ZTt“'piu—l (ﬁ-‘-WW)Falﬁz"'Fj)Fﬁt = (@...7%_1 (%"'@W)Falm“'Wj)Fﬁt

namely,

(}Tt"-qu mﬁm@ﬁj)}%t — (@"'Qvfl Qo+ Qs W1 @."W)Fﬁt

Now, as (wq - - ‘@)th R wiFg, in IG(Bﬁt),

(Pt -+ Pu—t Pu " Pm W1)Fg, = (G Qo1 Qv qs 1) Fp,

namely,

(Pt Pu—1 (PuPm W1)Foy ) Fp, = (G- Qo1 (qu - G5 W1)Foy ) Fp,,
inIG(Bg,), m+1=s+1,0,=0=oqandu=wvand §; =0, t<i<u-—1,
then by Lemma 6.4.5 we get that

Dt *Pu—1DPu’"Pm W1 =Gt GQu—1 Qv qs W1, (6.9)
where both sides have the same Y—trace. So by the equations 6.8 and 6.9 we get
thatﬁ...%m:ﬁ...@m.

Case (vi) By, > a1 and 65 L. There must exist 1 < uw < m such that
ay < Bm,+ .0y and a1 L By—1, or w = 1. Then we have two almost normal
forms in IG(B) by Lemma 6.5.9

DL Pa1(Pa+ P 1) Fay W2 Wy = Q14501 - Wy,

leading to two normal forms in IG()) by Lemma 5.3.9

Bi--Bu1ai-Cp=201-05 00 -0n

giving s = u— 1 and B; = §; for all 1 < i < s. Let j be the largest such that
a; Majpr #Dforall 1 <i<j—1ando; Majpr =0. Let ¢t be the smallest such
that 8y M By # 0 forallt <l <wu-—1and i1 MpB; =0 where we put 8, = .
Then we have

Dt Pu1(Pu " Dm Wi)Foy W W; =G+ Qs W1 -+ Wj
and p1--Pi—1 =q1 - G—1, so that
(P~ Pu=1(Pu P 1) Fooy W2+ Wj) Fg, = (G-~ G w1 - - wj) F,
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by Lemma 6.2.7, namely,
P+ Pu1(Pu - P W1) W2 - - W)) Fg, = (@ - - G w1 - - w;) Fg,
As (wy - 'Wj)Fﬂt R wiFp, in IG(Bﬁt)a
Pt - Pui(Pu - - Pm @1)) F, = (@~ T w1) F,
namely,
(Dt Pu—1(Pu P W1) Fay) F, = (@~ G5 wr) Fp,

so that
where both sides above have the same Y-trace, by Lemma 6.4.5, and hence

It follows from the above discussion that in any of the possible cases pwy =

g wi which from earlier remarks suffices to show that wy - - - w,, R* €. Together with
the dual we have shown that IG(B) is an abundant semigroup, as required. [

We deduce that Theorem 6.3.3 and Theorem 6.3.7 are corollaries of Theorem
6.5.10.

The next example use Theorem 6.5.10 to show the abundancy of IG(B), over an
iso-normal band B, where Y is a combination of a fan semilattice and a diamond
semilattice.

Example 6.5.11. Let By = #(Y1, Ba, ¢a3) be a diamond iso-normal band,
where Y1 = {o, 5,7,00}. Let By = B(Ys, B, ¢a,) be a fan iso-normal band,
where Yo = {0,,01,02,...,0n}. If B = B(Y,Ba,¢a) be a strong semilattice
Y = Y1 UY>, where Y1 NYs = {dp}, then it is clear that B is an iso-normal band.
Therefore, by Theorem 6.5.10 we get that IG(B) is an abundant semigroup.

o

Figure 6.10: The combination of Fan and Diamond Semilattices
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Chapter 7

Abundancy of the graph
product of abundant
semigroups

The notion of a graph product of groups was introduced by Green [55]. Graph
products of monoids are defined in the same way as for groups [12]. Much of the
existing work in graph products of monoids and groups has been to show that
various algorithmic or algebraic properties are preserved under graph products.
Our work of this chapter follows this stream. During our work to prove the abun-
dancy of the free idempotent generated semigroup IG(B) over an iso-normal band
B, we have proved in Lemma 4.1.3 that the external direct product of semigroups
preserves the abundancy property. Moreover, in Lemma 4.2.3 we have proved that
the free product of abundant semigroups is an abundant semigroup. It is known
that the free products and the (restricted) external direct products are special
cases of graph products. Another question comes out very naturally: is the graph
product of abundant semigroups abundant? The main result of this chapter is
that the graph product of abundant semigroups is always abundant. Moreover,
the graph product of weakly abundant semigroups is always weakly abundant.

This chapter is organised as follows. In Section 7.1, we define specific mor-
phisms of the graph product of semigroups which will be frequently used in this
chapter. Furthermore, we describe the universal nature of the graph product of
semigroups. In Section 7.2, we introduce important forms of the elements of the
graph products of semigroups. These forms are used to prove our main result
for this chapter. In order to prove the abundancy of the graph product of semi-
groups, we present a characterization of the idempotents in the graph product
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of semigroups 4% in Section 7.3. In Section 7.4, we construct three main maps
in Lemmas 7.4.1 and 7.4.5, which are used to prove our main result that shows
the graph product of abundant semigroups is always abundant. In Section 7.5,
we show that the graph product of weakly abundant semigroups is always weakly
abundant.

The last two sections of this chapter give the description of the relations, R*,
L* R and L on ¥ 2.
7.1 Universal nature of graph products

This section aims to define some useful morphisms of the graph product of
semigroups, ¥ &. Further, we describe the universal nature ¥ 4.
Recall that if I' = T'(V, E) is a simple graph, S, is a semigroup for each o € V'
and we assume that S, N Sz =0 for each a # f € V. Let

S =ST)={Sq:a eV}
and put

X=XT,2)=J Sa

agV
The graph product ¢ P =G 2 (I',.7) is defined as

9P =X"/p,
where the congruence p is given by
p=p(l,7) = (H),
where
H=H{I,¥)=H UHy, H = H|(I',.) ={(xoy,zy) : z,y € Sy, € V'}

and
Hy=H(T, ) ={(zoy,yox): 2z € Sy,y € Ss,(a,B) € E}.

The following result is a special case of a general isomorphism theorem.
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Lemma 7.1.1. Let S be a semigroup and let Hy,Ho C S x S. Let H= H{ U H»
and p = (H). Let p1 = (Hy) and o = (H}), where

Hy = {(ap1,bp1) : (a,b) € Ha} C (S/p1) x (S/p1).

Then
S/p=(S/p1)/o

Proof. Define a map
v :S/p— (S/p1)/o, ap— (api)o.

We first claim that i is well defined. Assume ap = bp for some a,b € S. Then
there exists n € N, s;,t; € S' and (¢;,d;) € H = Hy U Ho, for all 1 < i < n, such
that

a = slcltl, Sldltl = 8262t2, ey Sndntn = b,

so that
ap1 = (s1c1t1)p1, (s1dit1)p1r = (s2c2t2)p1, - - ., (Spdntn)p1 = bpr1.

Notice that, for all 1 < i < n, ¢;p1 = dip1 if (¢;,d;) € Hy and (¢;p1,dip1) € Hb if
(¢i,d;) € Ha, and hence the above sequence gives (ap1) o (bp1), namely,

(ap1)o = (bp1)o,

so that 1 is well defined. Clearly, v is an epimorphism. To show v is one-one,
suppose that (ap1)o = (bp1)o. Then exists n € N, (u;p1,vip1) € Hj (and so
(ui,v;) € Ha) and s;p1,t;p1 € (S/p1)t for all 1 <4 < n such that

ap1 = (s1p1)(u1p1)(t1p1), (51p1)(v1p1)(t1p1) = (s2p1)(uzp1)(t2p1); - - - ($np1)(vnp1)(tnp1) = bp1

namely,
a p1 s1uily, s1vity p1 Sausta, ..., SpUntn p1 b,

where if s;p1(or t;p1) is the adjoined identity of S/p1, we take s; (or t;) to be the
adjoined identity of S. As (u;,v;) € Ho C H, u; p v;. So s;ut; p sjvit; for all
1 <i < n, we have

a p (siuity) p (s1vit1) p (s2ustz) p...p (Sptntn) p b,
so that ap = bp, as required. O

As an application of Lemma 7.1.1, we have the following result.
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Corollary 7.1.2. We have that & = F P /(H)), where
Hy = Hy(T,.7) = {([zoyl,[yoa]) : x € Sa,y € S, (a, ) € E},
and [w] denotes the pi-class of w € XT.
We now explain the universal nature of graph products of semigroups.

Definition 7.1.3. Suppose that T is a semigroup and we have a collection of
morphisms

0={0y:S0 =T |aecV}.
We say that 0 satisfies the I'-condition if

(8a0a)(s888) = (s585)(saba),
for all (o, B) € E.

Definition 7.1.4. For each a € X, we write C(a) = aif a € S,. The support s(z)
of an element z = z1 0...0x, € X7 is defined to be the set {C(x;) : 1 <i < n}.

For each fixed a € V, we define a monoid S3* = S, U {1,} with the multipli-
cation - given by

ab ifa,b € Sy;
e b_4 0 ifb=1,;

b ifa=1,;

1, fa=b=1,.

Notice that we add the identity 1, to S, even if S, already has its own identity.
Lemma 7.1.5. For any o € V' there is a morphism 7, : Y7 — Si—“ given by
[X10...02,|Tq = i, Tiy . .. Ty, where C(x;) =a & j =1y for some 1 < h <k.
We interpret the empty product above as being 1,.
Proof. For each a € V, define a map

To i XT > SclTa
by

(X10...0%p)Ta = T Tiy - .. T, Where C(xj) = o & j = ip, for some 1 < h < k.

130



We first claim that 7, is well defined. Assume
L=1210...0%y, Yy=Yy10...0Yy € X
and x = y. Hence both x and y have the same support, which means
s(2) = {Clai) 11 <0 < n} = {Cly) : 1 <7 < m) = s(y).
Let C(x;,) = «, forall 1 < h <k, then x;,, xi,, ...,z € S,. Hence x; zi, ... x5, €
SiTa. Similarly, C(y;,) = C(z;,) = «, for all 1 < h <k, then yi,, iy, - - -, Yi, € Sa-

Hence i, Yi, - - - yiy, € Sé—“. This implies that (x10...02,)7q = (y10...0Yn)Ts in
1
S~

To prove that 7, is a morphism, assume z and y are elements of X+ as above.
Let z; € S, for all i € {iy,--- i} and y; € S, for j € {j1, -+ ,jn}. Then we get
that

(x10...02p)Tq =X, O+ 0T,

and
(ylo--‘oym)Ta:yjlO"'Oyjh'

Also we have that
(£10...02,0Y1 0 ...0Ym)Tq = &j; O+ 0Ly OYj O---0Yj,
=(z10...02p)Ta(Y10...0Ym)Ta-
This proved that 7, is a morphism.

We now claim that p C ker 7, for which it is sufficient to show that H C ker 7.
For generators with a form (s ot, st) where s,t € S, and a € V,

(sot)Ty = st = (st)Tq.

For generators with a form (s ot,tos) where s € S,, t € S, (o, 8) € E, then
o # 3. Hence we get that

(sot)Tq =5 = (to$)T,.
Therefore we get that p C ker 7,. Then there exists a morphism
Ta 4P = S&*
defined by

[T10...0x,]Ta = (x10...02,)T4.
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The proof of the following result is similar to that of [17, Proposition 2.3]

Lemma 7.1.6. Let V! CV and let T' = T'(V', E’) be the resulting full subgraph
of U. Let 99" be the corresponding graph product of the semigroups 8’ = {Sq :
a€V'}. Then 9P is a retract of 4 2.

The next result is analogous to [42, Proposition 1.6]
Proposition 7.1.7. For each o € V,

(i) there is an embedding

la:Sa = 9P, Sata = [Sal;

(i) the morphism v = {iq : So = 9GP | a« € V'} satisfies the I'-condition;
(iii) the graph product 9 % is generated by {[sa]: @ € V)54 € Sy }.

Proof. (i) Clearly, 1o is a morphism. Let sq,ts € S be such that [sq] = [ta].
Then

Sa = [Sa]ﬁ = [ta]i = tq,

where T, : ¥ — S’;Ta is the morphism that defined in Lemma 7.1.5. So
that ¢, is one to one and hence an embedding morphism.

(ii) For all o, f € V with (a, 8) € E and all s, € Sy, s € Sg, we have
(sata)(sptp) = [sallsp] = [sa © 55] = [s5 0 sa] = [s][sa] = (s825) (sata)-
Then ¢ = {14 : So = Y P | a € V} satisfies the I'-condition.
(iii) It is clear that any element [s] = [sj0...0s,] of ¥ we can write
[s] =[s10...08,] =[s1]...[sn)-

Therefore, 4 % generated by {[sa] : @ € V54 € Sy}

A subset U of a semigroup S is right unitary in S if
MueU) (VseS)suelU = seU.

The notation of a left unitary is dually, and U is unitary in S if it is both right
and left unitary.
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Corollary 7.1.8. Each S,, where o € V', is isomorphic to unitary subsemigroup

of Y.

Proof. Let [a] € S!, where S/, = {[a] : a € S,} and suppose [w] € 4P with
[w][a] € S!,. Then s(w o a) = . This implies s(w) = {a}, so w € S,. Therefore,
S/, is a right unitary in ¢ 2. Similarly, S/, is a left unitary. Hence S, is a unitary
in 2. Tt is clear that S, is isomorphic to S/,. Therefore, S, is isomorphic to an
unitary subsemigroup of ¥ Z. O

Proposition 7.1.9. Let T be a semigroup and
YV={0n:5 —T|aecV}

be a collection of morphisms satisfying the I'-condition. Then there is a unique
morphism

0:92 T

X

such that 1,0 = 04 for alla € V.

Figure 7.1: The commutative diagram of graph product

Proof. Define a map
0: Xt — T, So— Saba

for each a € V and each s, € S,. We now claim that p C ker6, for which we
need show that H C kerf. For generators with a form (s ot,st), where s, t € S,
and a €V,

(sot)d = (s0)(th) = (s04)(t0y) = (st)b, = (st)0.

For generators with a form (sot,tos), where s € S,, t € Sg, (o, 8) € E, by the
I'-condition

(s0t)0 = (s0)(t0) = (50a)(t05) = (t05)(s0) = (t0)(s0) = (t o 5)0.
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Hence p C ker 0, this implies that there is a morphism
0:92 T, [w]— wb,
where [w] € 4. Further, for all & € V and all s, € S,
Satal = [84]0 = 540 = 5404
so that to0 = 6. If there is another morphism
0:92 T
such that 1,0 = 0,, for all o € V, then for each o € V and s, € Sa, we have

[50]0) = Satald = 5400 = 5a8 = [54]0.

Therefore, § = @', by (iii) of Proposition 7.1.7.

We now show that the conditions of Proposition 7.1.7 characterise 4 Z2.
Proposition 7.1.10. Let U be a semigroup and
v=Ava:Sa = U|aeV}

be a collection of embeddings satisfying the I'-condition and U be generated by
{saVa : @ € V, 8o € S4}. Suppose that U satisfies the condition that for any
semigroup T and collection of morphisms

0={0n:S0a—>T|acV}

satisfying the I'-condition and there is a unique morphism

v:U—T
such that vatp = 0, for all a € V. Then there is an isomorphism
v:9P U
such that 1,7 = v, for alla € V.
S(I
Lo 0(1
‘VOC
G P S U -
v (4

Figure 7.2: The commutative diagram of graph product
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Proof. The collection of embeddings
b : S 9P

satisfies the I'-condition by Proposition 7.1.7 (ii). Then by the assumption, there
is a unique morphism ¥ : U — ¢4 & such that

Vo) = Lo

for each a € V.
On the other hand, by Proposition 7.1.9, there is a unique morphism

vV:9Y U
such that
LoV = Vgy
for each o € V.
For any s, € S, we have
(a7 = sqtaTY (as [Sa) = Sata)
= SalVa¥ (as vq = Lo D)
= Sala (as lag = Vaw)

and as 4 7 is generated by {[sq]| : @ € V, 54 € S, }, we have that 7y is the identity
on 4. The same argument gives that ¢v is the identity on the subsemigroup
of U generated by {sqaVq : @ € V54 € Sy}, but this is U, so we conclude that v
and 7 are isomorphisms. O

Note that Proposition 7.1.9 and Proposition 7.1.10 are justifying the universal
nature of graph products of semigroups.

In the following we explain the relation between the graph product of semi-
groups and the graph product of monoids.

Let &1 = .4 T) = {Sa® : a € V} and put

Yy =YT,s) =] S

acV
Then the monoid graph product $ P .M =G P4 (T',.71) is defined by
GPM =Y o,
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where o = (L) is such that L = Ly U Lo U L3 with
Ly ={(zoy,ay) : 2,y € S}

ng{(:xoy,yoa:):xeSé“,yeSéﬁ,(a,ﬁ) € £}
L3 ={(1,,15) s, B € V}.

For each xy0...0x, € YT, we use |x1 0...0x,]| to denote the o-class of

x10...0T, MYGPM.

In 2021, Gould and Yang [17], showed that the graph product of semigroups
S =S (T) = {Sy : a € V} embedded into the graph product of monoids .91 =
SUD) = {Sa ta e V).

Proposition 7.1.11. Let 4.2 be the graph product of semigroups . = (') =
{Sa : @ € V} with respect to I' = (V,E). Let G P .M be the graph product of
monoids .St = 1) = {Sé“ ca € V'} with respect to I'. The map

0. 9P —GP M, [x10...0Ty|— |T10...0Ty]

is an embedding.

Note that in general, a monoid graph product is much more complicated than
a semigroup graph product, as in a semigroup graph product, the identities remain
distinct, which results that if [w], [v] € ¥ & with length m and n, respectively,
such that 1 < m < n, then the length of the product of [w] and [v] is maximal
m + n, or minimal n. However, in the monoid graph product (of monoids),
all the identities of the individual monoids are identified, which results that if
|lw], |v]| € #YGP with length m and n, respectively, such that 1 < m < n, then
the length of the product of |w] and |v] maybe equal m or less.

7.2 Special forms

The aim of this section is to introduce important forms of the elements of the
graph products of some semigroups. These forms are used to prove our main
result for this chapter.

Definition 7.2.1. An element z = z10...0x, € X' is a reduced form for
] € 92 if [x] = [xr10...0x,] and for any 1 < 4,5 < n with ¢ < j and
C(x;) = C(xj), there must exist ¢ < k < j with (C(x;),C(xy)) € E.
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Note that we denote the length of the reduced form of [z] by |z| = n.

The proof of the following result follows directly from the definition of the
reduced form of the elements of a graph product.

Lemma 7.2.2. For anyx =210...0%Tp, Yy=¥Y10...0Ym € X T,

(i) [x] = [y] in 97 implies that s(x) = s(y);

(i) if s(x) is a complete subgraph of T'(V, E), then there exists z € Xt such
that [x] = [z] in 9P, where z = z10...02z and C(z) # C(z;) for all i # j,
1 <i,5 <I; clearly z is a reduced form.

Note that by Lemma 7.2.2 any [y; 0 -0y, of 4, with C(y;) = v, 7 €V,
for all 1 <4 < m, can be written in the shortest form [z10---02,] with C(z;) = £;,
for all 1 <i < n,and C(z) # C(zit+1), forall 1 <i<mn—1,and n < m. So it is
clear that {81, -+ ,6n} S {7, ,Ym}-

The next result will be used frequently to prove some results in this chapter.

Lemma 7.2.3. [17] Let [x] = [y], where x = x10---0xy and y =y10--- 0y,
are reduced and let 1 < m <n. Then [x10---0xy]| = [y1 0 0yn] if and only if
[Zm41 0 0zn] = [Ymi1 0+ 0 ynl.

For an element © = 1 0...0x, € X1, if (C(xj),C(xj11)) € E for some
J, then we may obtain a different expression for x by replacing x; o x;11 by
zjt1 0 x;. We call this move a shuffle. Two words of X are shuffle equivalent
if one can be obtained from the other by a sequence of shuffles. However, if
C(z;) = C(zit1) = a, for some a € V, then by reduction we can write

T=T10...0T;Tj4+10Tj420...0Tp,

where ;2,11 € S,. For more details see [42].

The following result captures how we may shuffle a word to re-order it.
Lemma 7.2.4. Let x =x10---0x, € XT. Then we can shuffle x to
CClzxilO"'O%n
if and only if for all 1 < j <k <n, if iy, < ij then (C(xy;),C(x;,)) € E.

Proof. Suppose that we can shuffle z to /. If 1 < j < k < n and 4 < ij, then
in the process we must have changed the order of z;, and z;;, then we must have
(C(zy;),C(z,)) € E.
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Conversely, let ' have the property that for all 1 < j < k < n, if i, < i}, then
(C(zi;),C(z4,)) € E. If n =1 the result is clear. Suppose for induction that the
result is true for words of shorter length. Then for 1 < j < i; we have z; = Tip ;)
where 1 < k(j) but iyj) < i1. By assumption (C(z;,), C(zi,;,)) € E so we may
shuffle z;, in

L =T10x2 " 0Lj;—10T3; OL4j410 """ Ty

to the left to obtain

" =wj omomy 0Ty 10T 410 Ty
Considering now the word xj o xg---0x;,_1 0% 410 -z, and applying our
inductive hypothesis (with suitable relabelling) we obtain that  shuffles to 2/. [

Note 7.2.5. Let x = 10+ 0Zp, Yy = Y100 Yy € X1 be reduced forms.
Then x oy s not reduced exactly if there exist i,5 with 1 < i < n,1 < j<m
such that C(x;) = C(y;) and we have (C(z;),C(xy)) € E, for alli < h < n, and
(C(zi),C(yx)) € E, for all1 <k < j.

The following result is the semigroup version of the monoid result [17, Lemma
3.7], and the proof of it is similar to the monoid version.

Lemma 7.2.6. Let x € XT. Applying reductions and shuffles leads in a finite
number of steps to a reduced word T with [x] = [Z].

We now recall the definition of rewriting systems and their properties [5].

Let X be an alphabet and — a binary relation on X. The structure (X, —) is
called a rewriting system and the relation — a rewriting relation. The reflexive,
transitive closure of — is denoted by — while <— denotes the smallest equiv-
alence relation on X that contains — . We denote the equivalence class of an
element x € X by (z). An element x € X is said to be irreducible if there is
no y € X, y not equal to x such that x — y; otherwise, x is reducible. For any
z,y € X, if 2 = y and y is irreducible, then y is a normal form of z. In the
following we define two kinds of a rewriting system (X, —):

(i) (X,—) is called confluent if whenever z,v, 2 € X are such that 2 —— y and
z —> z, then there is a v € X such that y — v and z — v, as described
by the figure below,
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/ x \

Yy z

\ | /
Figure 7.3: Confluence

(ii) (X,—) is called noetherian if there is no infinite sequence zg,z1, -+ € X
such that for all i > 0, z; = z;41.

The next result was originally proven for graph products of monoids in [55].
The argument for semigroups is much simpler, and worth stating.

Proposition 7.2.7. Fvery element of the graph product 4% is represented by a
reduced form. Two reduced forms represent the same element of 42 if and only
if they are shuffle equivalent. An element w € [x] is of minimal length if and only
if it is reduced.

Proof. Tt follows from Lemma 7.2.6 that for any [z] € ¥ we have [z] = [Z] for
some reduced word 7.

Next, we show that the set of all shuffle equivalence classes forms a confluent
rewriting system, where the rewriting rules are as follows. For convenience we
denote by (z) the shuffle equivalence class of z € X+ and we have rewriting rule
() — (y) if y is obtained from 2’ € () by applying a reduction.

Let x =z10---0x, € X1 and pick 2/ =z, 0-+-0ox;, and 2’ =z, 0---0xj,
in (z). Suppose that C(xz;,) = C(w;,_,) so that we may perform a reduction to
obtain

/ _— . .« o . . . . . P .
Y =Tiy © O Fiy_q O TigLigyq © Ligyo © 0" O T -

Then by Lemma 7.2.4, 3/ is shuffle equivalent to

where p = iy and ¢ = i, 1; notice we must have that p < q. Applying the same
process to z” results in a word

Z =210 0%y | OXpLyOXLyy] O OLy_1OLy41 0 0Ty
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where 7 < t.
Therefore, () — (y) and () — (z). We now need show that (y) — (v)
and (z) — (v) for some v € X, as depicted by the following figure

VN
AN

Figure 7.4

Without loss of generality we may assume that p < r. If p = r then from
Lemma 7.2.4 (note that our graphs have no loops), we cannot have p =r < ¢ < ¢
or p=r <t < q; we deduce that in this case ¢ = t so that (y) = (2). If p < r,
then again we cannot have that r < ¢, so that either ¢ =7 or ¢ < r.

If g =, then (y) = (y”) where y” is the word

1O+ 0Xp 1 0LpLg O Tt O XLy 10+ O Xge] OLgy] O+ OL4_1 O Ty410 =0Ty
and then (y”) — (v) where v is the word
10" 0Tp_10TpLgXt OLp4y1 0 - 0Lg—10Lg410 - OTLt—10TLt410 "0 Tp.

Similarly, (2) — (v).
If ¢ < r, then by shuffling and applying a reduction in each case we have
(y) — (u) and (z) — (u) where u is the word

L10: 0L p_10TLpLgOxp410" * "OLg—10Lg410" * * Lp—10LyTOXLy4 10"+ *OL—10Lt410" * O

We have shown that the set of all shuffle equivalence classes forms a conflu-
ent rewriting system. It follows that any two reduced forms represent the same
element of 4.7 if and only if they are shuffle equivalent.

Let w € [z] for some words w,x € XT. It is clear that if w is of minimal
length in [z], then it must be reduced. Finally, if w is reduced then as certainly
[w] = [2] for some word z of minimal length in [z], then z is also reduced, giving
that w and z are shuffle equivalent, so that they have the same length.

O
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Definition 7.2.8. If x = z10... 02 € X1 is a reduced form, where s(z) is
complete, we say x is a complete reduced form of [z] in ¥ P2, with letters x; € X
foralll1 <i<k.

In the following definition we are going to further refine the notation of reduced
form.

Definition 7.2.9. Let w = wyo...ow, € X be a reduced form, where each
€ X7 is given by
wW; =Ti1°©...0 xzp(z)
We say that w is a left complete reduced form, of [w] of 422, with blocks w; € X,
1< <k, if:
(i) for all 1 <i <k, w; is complete reduced form;
(ii) for i < k and any j € s(wj11), there is some ¢ € s(w;) such that (j,¢) ¢ E.

Dually we may define the notation of a right complete reduced form of an element
in X*. Note that a complete reduced form is precisely a word in left complete
reduced form with one block.

It is obvious from the definitions of a left complete reduced form, that the
blocks w;, 1 < i < k of a left complete reduced form w = wjo...ow, € X are
words of X, and x;, are letters of X, for all 1 < i < kand 1 < g < p(i). At
times we will use this concept without specific comment.

Note 7.2.10. (i) A word w = wy o--- 0wy, is a complete reduced form if and
only if s(w) is complete and C(w;) # C(wj) for all1 <i < j <mn.

(ii) Ift =x10- 0wy andy =y1 0oy, € X1 are complete reduced forms,
then [x] = [y] if and only if  and y are shuffle equivalent if and only if
Yi = Tig, 1 < i < mn, for some permutation o of {1,--- ,n}; in particular,
n=m and s(z) = s(y).

The fact that every element in ¢ & has a complete left reduced form is stated
in our paper [50]. The result was known for graph monoids [13] and proven
via a technique involving cancellation, which we do not have here. We give a
full proof in the case of an arbitrary graph product of semigroups; it is essentially
the same as that for an arbitrary graph product of monoids, which appears in [17].

The next result shows that any element of ¢ %2 may be represented by a left
complete reduced form.
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Lemma 7.2.11. Every element in 422 may be represented by a left complete
reduced form in XT.

Proof. Let [w] € 92 such that w is a reduced form in X*. Let |w| = n. Then
for any v’ € Xt with [w] = [w'], v is a reduced form if and only if |w| = |w/'|.
Let

Y ={y e Xt :[w] = [yoya], s(y) is a complete graph, yo € X and yoys is reduced}.

We pick a wy € Y with maximum length [ say; certainly we can do this, since [ is
bounded by |w|. Then [w] = [w; o ys] for some y, € X . Notice that as wy o ys is

reduced, n = |wi| + |y2|. We then do the same for yo, obtaining [ys] = [w2 o y3],
where |y2| = |wa| + |y3], so that n = |w1| + |wa| + |y3|. Continuing this process,
we obtain

[x] = [w1 cwgo...0wg]
where [y;] = [w; o yj41] for 2 < j < k. We now claim that wy o...owy is a

complete reduced form. By the choice of each w;, we know s(w;) is a complete
subgraph. Also, it is easy to check that n = |wyi| + |wa| + ... + |wg]|, so that
wy 0 ...0wy is a reduced form. Suppose that there exists some 2 < j7 < k and
some z; € w; with C(z) = u € s(w;) such that (u,v) € E for all v € s(wj_1).
Notice that u € s(w;j—1) as I' has no loops. Then

[yj] = [(wj—102) owjo... 0wl

where w; is w; with z; deleted. But s(wj_j0z;) is complete and (wj_lozl)ow;o. ..0
wy, is reduced, since it is shuffle equivalent to the reduced word w;_jow;jo...owy.
But we have |s(w;_1 0 2)| = [s(wj—1)| + 1, contradiction, and hence wy o...owy
is a left complete reduced form. O

In the following result we show that a left complete reduced form is unique.

Theorem 7.2.12. Let w; o y1 and w) o yy be left complete reduced forms of
w € X1 such that both wy and w' are the first components. Then s(wy) = s(w})
is complete, [w1] = [u}] and [in] = [1]]

Proof. We first make the following observation. Let z10...0x, and z10...02,
be reduced forms of w € X*. Pick u € s(w). Let ¢ be the smallest such that
C(z;) = uw and | be the smallest such that C(z;) = u. Suppose that there exists
some 1 < j < i such that C(x;) = v with (v,u) € E. Then, as 1 0... 0z, and
z1 0...0 z, are shuffle equivalent, there must also exist some 1 < k < [ such that
Zk = Xj.
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Let wqoy1, wioy) be reduced forms of w € X defined in the above statement.
By the definition of the left complete reduced form we get that s(wq), s(w}) are
complete. We claim that s(wq) = s(w}). Let

W] =G10...00y, Yy1 =b10...0by, w’l:clo...ocsandyi:dlo...odt.

Suppose that there exists some u € s(w;) but not in s(wj)). Let k be such
that C'(ag) = w. Then we must have u € s(y}). Let j be the smallest such
that C(d;) = u. By definition of left complete reduced form there exists some
1 <i < s with (C(¢;),u) € E or some 1 < [ < j with (C(d)),u) ¢ E. By
the above observation, we deduce that there exists 1 < r < k with a, = ¢; or
d;, but (C(a;),u) ¢ E, and (C(d;),u) ¢ E, contradiction. Therefore, we have
s(wy) = s(w)).
We now show that [w;] = [w]] and [y1] = [v}]. Put

K,, = {all reduced forms in [w]}.

Notice that all elements in K, must be shuffle equivalent. For each [ € s(w), we
define two maps

0K —9P p=x10...0xy—[pland g : K — bGP p=m0...0m, > [14]
as follows. Let ¢ be the smallest such that C'(z;) = [. We define

pb; = [p] and py = [z;]

where p’ is obtained by deleting z; from p. Let p,q € K,. Then p and ¢ must
be shuffle equivalent; g is obtained from p by finitely many steps of shuffle moves.
We now show that [p'] = [¢/]. For this, it is sufficient to assume that ¢ is obtained
from p by exactly one shuffle move. Let

pP=210...02;-102;0Xij4+10Xj420...0Tp
and
q=210...02;-10Zj4+10X;0Tj420...0Tp

Considering p, pick the smallest j such that C(z;) = 1. If 1 < j <i—1 or
1+ 2 < j < n, then, clearly, p’ = ¢’. If j = 1, then p’ is obtained by deleting the
letter x; in the i-th place of p whereas ¢’ is obtained by deleting the letter x; in
the (i + 1)-th place of ¢, so that p’ = ¢/. A similar argument holds for the case
when j =i+ 1. Therefore, we have well defined maps

0 {[w]} — G2, [w] > 20, and 7 : {[w]} — G2, [w] — 2y
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where z € K. Let s(wy) = {l1,- -+ ,l;n}. Then as s(wy) = s(w)),

[y1] = (w1 o]0y, ... 0, = [w) o]0, ... 01, = [y1]

and

[wi] = [wioy]my ... [wi oy, = [wiowlmy ... [wh oy, = [w)]
as required. O

Note that if w = wy o---ow, € X1 is in left complete reduced form with
blocks w;, 1 < i < k, then for any 1 < j < 5/ < k we have Wj O Wjq1 00 Wy is
also in left complete reduced form, with blocks wy,, 7 < h < j'.

Corollary 7.2.13. Let w = wyo...owy and w = wio...ow, of XT be left
complete reduced forms of (w] € 9. Then [w;] = [w}] for all 1 <i < k.

Proof. Use Theorem 7.2.12 and by induction on the number of the blocks k. [

In the following we introduce the concept of disjoint form of the elements of

G

Definition 7.2.14. Let ¥4 be a graph product of semigroups associated to a
graph I' = (V| E), where T is the disjoint union of subgraphs I'; = (V;, E;), i € 1.
Let w =wjo...0w, € XT be a reduced form, where each w; € X is given by
W; = W1 0...0 wlp(l)

We say that w is a disjoint form of [w] in 42 with D-blocks w; € X+, 1 <i <k,
if:

(i) for all 1 < i <k, the support s(w;) C V; for some [ € I,

(ii) if s(w;) €V}, then s(w;iy1) C Vi, where I # k for all 1 <i <k —1.

The next result shows that any element of any graph product ¥4&7 as above,
may be represented by a disjoint form.

Lemma 7.2.15. Every element in a graph product as above, may be represented
by a disjoint form in XT.

Proof. Let w=wj0...ow; € X be the left complete reduced form of [w], with
blocks w;, 1 <1i < k. As s(w;) is complete, s(w;) C V;, for some [; € I. Let t; be
the maximum such that

‘/h: lz:...:‘/}tl,andvltl#vl

t1+1°
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Put 21 =wjo...owy, € X and z; =wy,_,110...0wy, € X1, for all 2 <i < n,
so we get that
W=210...02,,

where n <k, s(z;) C V;,, and z; for all 1 <14 <mn, is the D-blocks of w. Hence
W=210...02y

is a disjoint form of [w].
O

Lemma 7.2.16. Let Y& be a graph product associated to some disjoint union
graph T'. Let w = wyo...owy be disjoint form. If w' is another reduced form and
[w] = [w'], then w' = w| o...ow), and [w}] = [w;] for all 1 <i <k.

Proof. Suppose w' is obtained from w by n shuffles. If n = 0, then it is clear that
the result is true. Suppose the result is true for n — 1, and let w” be the word
obtained from w using the first n — 1 shuffles, we write

1 iz i
w' =wj o...0w.

By induction w” is in disjoint form with [w;] = [w/] for all 1 < ¢ < k. Now we
obtain w’ from w” by single shuffle. This shuffle must be of two elements from w;’
for some 4, since w” = w{ o...ow} is in disjoint form. Let w] be the result of this

shuffle in w}, then [w;] = [w]] = [w]], and for j # 4, w; = w}. Hence certainly
[wp] = [wy,] = [wp] for all 1 < p < k and w' = wj o... 0w, is a disjoint form of
[w].

O

In the following we define the concept of left disjoint form.

Definition 7.2.17. Let Y.< be a graph product of semigroups associated to a
graph I' = (V| E), where T is the disjoint union of subgraphs I'; = (V;, E;), i € 1.
Let w = wyo...ow, € X be a disjoint form with blocks w;, where each w; € XZ-+
is in left complete reduced form, for all 1 < i < k. We say that w is a left disjoint
form of [w] in ¥ 2.

The following result proves the uniqueness of the left disjoint form.

Corollary 7.2.18. Let 92 be a graph product associated to disjoint union graph
', defined as in Definition 7.2.17. Let wio...owy and wio...owy, be left disjoint
forms of w € X with blocks w; € X;r and w} € Xf, forall1 < i < k. Then
[w]] = [w;] for all 1 <i<k.

Proof. By Lemma 7.2.16, as w) o...owy, is a reduced form, we get that [w;] = [w]],
for all 1 < ¢ < k. As each w; and w} are in the left complete reduced form,
[w;] = [w}] for all 1 <i <k, by Corollary 7.2.13,. O
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7.3 Idempotents of graph products of abundant semi-
groups

In order to show the abundancy of the graph product of abundant semigroups,
our first step is giving a characterization of the idempotents in the graph product
of semigroups ¥ <.

The next result can be deduced from the work of Da Costa for monoids in
[12], and Proposition 7.1.11, but here we give a direct argument.

Lemma 7.3.1. Let x = z10...0Zy, Yy =410...0y, € X, where C(z;) = C(y;)
for all1 <i<n and C(x;) # C(x;) (and so C(y;) # C(y;)) for all1 <i,j <n
with i # j. Then

[T1o...omp]=[y10...0yy] <= x; =y; for all1 <i<n.

Proof. We define a map
Po: XT — G20

for each o € V' by

vy = {z if z € S, (7.1)

1, otherwise.

We now claim that p C ker ¢4, for which we need to show that H C ker ¢. For
generators with form (g o h, gh) where g,h € Sz, f € V, if § = «, then

(90 h)¢a = (9¢a)(hda) = gh = (gh)a.
If 8 # «, then g, h, gh € S,, and so
(9o h)pa = (90a)(hda) = 1, = (gh)Pa.

For generators with form (goh,hog) with g € Sz, h€ Sy, B#, (8,7) € E, if
B # v = a, then we have

(goh)pa = (9¢a)(hda) = Loh = h = (h¢a)(99a) = (ho g)da

and similar arguments hold for the case @« = 8 # v. If a # 8 # v # «, then

(g0 h)pa = (90a)(hda) = 1, = (ho g)¢a-
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Hence we have p C ker ¢, and so there is a morphism
ba 9P — Sao, [1] = 2a.

Let [z10...0x,) =[y10...0y,] € 92 be elements defined in the statement. We
have

r; = [2]Pc(@,) = WPC(z) = yis forall 1 <i < n.

The converse of the statement is clear. O
In fact, for any [z] € 92, where x = x1 0...0zy,, if o € s(x), then
[T)bo = T4, T4y . .. T4,
and {i1,172,...,0mn} is the set of indices such that C(z;,) = a, for all 1 <k < m.

Lemma 7.3.2. Let x = z10...0z, € X' be a reduced form. Then [x] is
an idempotent in G2 if and only if s(x) is a complete subgraph of T'(V, E) and
xi:a:?foralllgign.

Proof. The sufficiency is clear. To show the necessity, let z = x10...02, € X be
such that [z] is an idempotent in ¢ Z?. Suppose that C(z;) = a; for all 1 <i <mn,
a; € V. If s(x) is not a complete subgraph of I', then there must exist 1 <i,j < n,
a; # aj such that (a;,a;) € E. Let ({i} * {j})! be the free product of trivial
semigroups of {i} and {j} with identity adjoined. We define a map

0: X" — ({i}« {3}
by
i ifz€ 8,

20 =<7 ifze8,, (7.2)

1 otherwise.

We now show that p C ker 8, for which we need to show that H C ker6. For
generators with form (g o h, gh) where g, h € Sg, € V, it is clear that gh € Sg,
if 8 = «;, then

(90 h)8 = (g0)(hb) = ii =i = (gh)0;

similar arguments hold for the case 8 = «;. If 8 & {4, a;}, then

(goh)d = (gf)(hh) =11 =1 = (gh)#.
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For generators with form (g o h,ho g), where g € Sg, h € S, 8 # v, (B,7) € E,
if a; = B, then v & {a;, a}, so that,

(goh)f = (90)(h0) = il = 1i = (h0)(g0) = (h o g)b;
similar arguments hold for the case o;j = (3 (and so v & {ay,a;}); if 5,7 &
{ci, a;}, then
(90 h)8 = (90)(h0) = 11 = (hO)(g0) = (g o h)0.
Hence p C ker 0, giving a morphism

0:92 — ({id+ {41, [z10...02n] > (210...20)0.

By assumption [z] = [2?], so that 20 = (26)(x6). Notice that 26 must contain
letters ¢ and j, so that, if the length of the reduced form of x6 is [, then [ > 2,
so that the length of the reduced form of (z6)(x6) is either 21 — 1 or 2[. By the
uniqueness of the length of reduced form of z6 = (x6)(x6), we must have [ = 2]
or | = 2] — 1, contradiction, and hence s(x) is a complete subgraph of I', so that

r10...0Tp| = $2O...O.CU2.
1 n

Since z1 0 ... 0z, is a reduced form, we have C(z;) # C(x;) for all 1 <i,5 <n

with i # j by earlier comments, so that x; = xlz for all 1 < ¢ < n by Lemma

7.3.1. =

Let ¥ be a graph product of semigroups associated to a complete graph
I'=(V,E), where V = {~1, -+ ,vm}. Then any element [w] € 42 in a reduced
form can be written as [w] = [z1 0 -+ o x], where 1 0 - -+ 0z, is a reduced form
and C(z;) = ;,, for all 1 <i <k, and j; < jj1, forall 1 <i <k —1.

Lemma 7.3.3. Let 9% be a graph product of semigroups associated to a complete
graph I' = (V, E), where V= {y1,...,v}. Let

T, ={[z10---0xy): C(z;) =vi,1 <i<n}.
Then T, is a subsemigroup of ¢ and
T, =285, XSy X=X 8,,.

Proof. 1t is obvious that the set T,, C 4% is not empty. For any [x] 0 --- 0 x,]
and [yy o ---oyy] of T),, then

[xlooxn][ylooyn]:[xlylooxnyn] ETn

Thus T, forms a subsemigroup of ¥4 4.

Define a map
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@: Ty — 8y XSy X - X8,
by
[$10"'Oxn]§0:(ﬂfl,"' 7xn)a

where C(x;) = ~;. Let [z10---0xy,] = [y10- - -0oyn] € Ty, where C(z;) = C(y;) = v,
then by Lemma 7.3.1 we get that x; = y; for all 1 <7 < n. Hence it is clear that
[£10---0xple = [y1 0 0yylp, that implies ¢ is well defined. For [z 0--- 0 xy]
and [y o---oyy] of Tp,, as I is a complete graph, and C(z;) = C(y;) = i, for all
1 <17 < n, we can write

[T10 - 0Zpoy1 0 oynlp = [T1Y1 0+ 0 Tnynle

T1Y1, s TnYn) ( by the definition of ¢)
Trs s Za) (Y Yn)

(w10 oxale) ([yr o onlp).

= (
= (

Then the map ¢ is a morphism. It is clear for any [z10---ox,] and [y; 0+ 0y,
of T}, such that

(10 ozplo= (1, ,Zn) = (Y1, Yn) = [Y1 0+ 0 Yn]e,
then z; = y;, for all 1 <14 < n, so that

[x1 0 oxy] =y 0 0ynl

Hence ¢ is one to one map. The morphism ¢ is clearly onto. Therefore, ¢ is an
isomorphism.

O

Lemma 7.3.4. Let 9% be a graph product of semigroups associated to a complete
graph T' = (V. E), where V.= {~y1,...,7m}. For each v; € V, for all1 <i <mn
1

and for any semigroup S, let M., = S5]". Then
P, ={(s1,82,...,8n): 8i € M,,,1 <i<n and not all s; = 1;}

is a subsemigroup of M., x M., x ---x M, and

Proof. 1t is obvious that the set P, C M,, x M,, x --- x M,, is not empty. For
any ($1,82,...,5n) and (t1,te,...,t,) of P,, then

(51,52,...,5n)(t1,t2, ..., ty) = (s1t1, S22, ..., Sptp) € Py,
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since if s; (or ¢;) is not 1;, then s;t; # 1;. Thus P, forms a subsemigroup of
M’Vl X M'YQ XX M'Yn'

Define a map
p: 9P — P,
by
(2] = (2], [2]bass - - - [2]Dy,),

where qbi%., for all 1 < ¢ < n is the morphism defined in Lemma 7.3.1. Hence the
map ¢ is a morphism.

To prove that ¢ is injective, let [x] = [z10...0xp] and [y] = [y10--- 0 y,] are
elements of ¢ %7 and both in reduced forms, where C(zy) = v;,, forall1 <k <p
and C(y;) =y, forall 1 <1 <gq. Let

[zl = ([2]y, - [2]69,) = (Wl - - -, W]y) = Wl
Hence we get that [z]¢,, = [y]¢,,, for all 1 <i < n. Since

[2] = [[2]dp, o+~ o [2]dy, ]

where s(z) = {1, ..., ptp}. Then we have that

(2] = [[2] @y, 0+ 0 [2]dy, ]
= “y]gbm ©---0 [y]¢up] (aS [:C]d)% = [y]gb'yw for all 1 <1< n)
= [yl
This proves that ¢ is injective as required. Moreover, it is clear that any (x1, x2, -+ , xy)
of P,, there is an element [z] = [xj0- - -oxy] € 92 such that [z]p = (21,22, -+ , Zp).

Therefore, the morphism ¢ is an isomorphism.

O]

Lemma 7.3.5. Let 9 be a graph product of semigroups associated to a graph
I' = (V,E), where I' is the disjoint union of subgraphs I';, 1 < i < m. Then the
graph product 4% is a free product of the graph products 4 Z; corresponding to
I, 1<t <m.

Proof. Let X =J", X;, where

Xi=XTy,%) =] Sa

acV;
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Let S; = {Sq : a € V;}. Define a map
0: X - F2P,

where # & is the free product of the graph products ¥ £?; that is the graph
product of S; with respect to I';, 1 <7 < m, by

zf = [x];,

where C'(z) € V;, and [z]; is the equivalence class of x in 4 Z;, for some 1 < i < m.
Then there is a morphism

0: Xt > F»

by
wh = (w1 owz 0...0wy)0 = [wi]p, * [Walp, * ... % [Wy]p,,

where wiowso...ow, € X7 is in disjoint form with D-blocks w; € X;r, 1<i<n.
We now claim that p C ker 8, where p is the congruence determining the quotient
semigroup ¥4 &, for which we need to show that H C ker . For generators with
a form (sot,st), where C(s) = C(t) € Vi for some 1 < k < m,

(sot)d = [sot]y = [st]x = (st)b.

For generators with a form (s ot,t o s), where C(s) = 8, C(t) = o, (B,a) € E,
we must have that a, 8 € Vi for some 1 < k < m. Hence we get that

(sot)d =[sot]y=[tos|y=(tos)b.
Therefore, we get that p C ker . Then there exists a morphism
0.9 ~ FP
defined by

[w]0 = w8,

so that if w = wy o--- 0w, is in disjoint form, with D-blocks w; € X;;, p; €
{1,2, --- ,m}, for all 1 < i <mn, and we have

[wy 0 ...0wpy|0 = [wi]p, * [Walp, * ... * [Wn]p,-
It is clear that the map 6 is an onto morphism. Let

[W]0 = [wi]p, * [walp, % - x [wnlp, = [ur]g, * [ualgy * - * [w]g, = [u]6),
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where w = w0+ ow, and u = uq o--- o u,, are in disjoint forms with D-blocks
w;, uj, respectively, 1 <i <mn, 1 <j <[ Since [wilp, * [Walp, * ... * [wy]p, and
[1]g, * [U2]ge * . . . % [1ug]4, are reduced elements of a free product, we get that n =1,
pi = qi, 1 <1 <nand [w], = [wp,, 1 <i<n. Clearly then [w] = [u] and % is
an injective morphism. This proves that the morphism 6 is an isomorphism.

O]

7.4 Abundancy of graph product of semigroups

As we stated at the beginning of this chapter, our main aim is to show the
abundance of the graph product ¢ <. In the previous section, we gave the char-
acterization of the idempotents in ¥ 2. In this section, we construct three maps
in Lemmas 7.4.1 and 7.4.5, which are the key for the proof of the abundancy of
G7.

We begin this section by setting up some notation. For each («, ) ¢ E, where
a # 3, and for any z € X, we obtain the word z(a, 8) € X by deleting certain
zy from z, where C(z,) = a by the rule that starting from the right, we delete z,
as long as

(1) there is at least one z; with ¢ < uw such that C'(z) = 3;
(2) there are no zs with u < s such that C(zs) = 3,
Let L be the binary relation on X+ defined by
L={(xouoy,xovoy):xz,y€ X, (u,v) € H}.
Note that p is the transitive closure of L.
Lemma 7.4.1. For each (o, ) ¢ E, where o # 3 we define the map
Oap Xt 592 2+ 2005 = [2(a, B)).

Then L _
bop: 9P - 9GP, [wbap = whyg,
s well defined.

Proof. We need show that p C ker,3. Since p is the transitive closure of L, to
show p C ker 6,3, we just need show that L C kerf,3. We consider the following
cases.
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Case (i) (u,v) = (s ot,st) where s,t € Sy. If B € S(y), then clearly
(zouoy)lap = [xou] (ybag) =[x o] (Ybas) = (z o voy)bas.
If 8 ¢ s(y) and B ¢ s(z), then
(zouoy)lag =[zouoy]=[rovoy] = (zovoy)las.
If B ¢ s(y) but 8 € s(z), then
(zouoy)bas = (x0y)bas = (xovoy)las
Case (i) (u,v) = (s ot,st) where s,t € Sg. We have
(xouoy)bus = [rou] (ybag) = [z 0] (ybap) = (x 0 v o Y)hap.
Case (iii) (u,v) = (sot,st) where s,t € Sy and v # a, 5. It is clear that
(xouoy)bas = (xovoy)bys.

Case () (u,v) = (sot,tos) where s € Sy, t € Sy, v # «, and (a,v) € E. If
B € s(y), then clearly

(@ouoy)lag = [z ou] (ybas) = [z 0 v] (y0ap) = (x 0 v o Y)lap.
If B ¢ s(y) and 8 ¢ s(x), then
(2010 y)as = [rouoy] = [10v0y] = (2000 y)fus.
If B ¢ s(y) but 8 € s(z), then
(xouoy)las = (xotoy)lus = (xovoy)fus.
Case (v) (u,v) = (sot,tos) where s € Sg,t € S,, (8,7) € E, v# a. We have

(zouoy)fap =[x ou] (Ybas) = [z 0v] (y0as) = (x 0 v 0 Y)0ap.

Case (vi) (u,v) = (sot,tos) where s € Syt € Sy, (v, pu) € E, v,p & {a, f}. It is
clear

(20 w0 y)fas = (000 y)fap.

The above arguments show that p C ker 0,3, so that there is a map

9(15 9P — g@, [w]@ag = w@ag.
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The following example justifies the claim that the map 0,3 is not a morphism.

Example 7.4.2. Let (a,3) ¢ E, 2 € Sy, y € Sz and z=yox =2 € XT. We
have
2005 = (Yo x)0ap = [y] = Z/Haﬂv
this implies
257 Oap = (y 0 2)bas (y © 2)0as = [Ylly] = [v]

)

but
(20 )05 = (yowoyoa)ias = [yoz oy,
Therefore,
20087 005 # (20 2')045.

Definition 7.4.3. For each o € V and each w = z10...0x, € X, we define a
set

No(w) ={ke{l,...,n} : C(xy) = o and for all j > k, either C(z;) = a or (o, C(z;)) € E}.
Of course, N, (w) may be empty.

Lemma 7.4.4. Let « € V and w = x10...0x, € Xt. Suppose that N,(w) =
{li,...; b} with1 <1y <...<l. <n. Then

[w] = [w'][zy, 0...0m],
where w' is obtained by deleting all z;,, 1 < i <r, from w.

Proof. Let p = xyo0...0x;,_1 and ¢ = 2,0, 410. . .ox,. Suppose that ¢’ is obtained
by deleting all z;,, 1 < ¢ < r, from ¢q. By the way [; is chosen, we must have
C(z) # a and (C(2),«) € E for any z € ¢/, implying that [q] = [¢][z;, ... 0y, ],
and hence

Lemma 7.4.5. For each a € V, the maps
o XT — 9GP o XT — @ P!
defined by

Woa = [, 0... 02 ], Wiy = [0],
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forallw=z10...02, € X1, where No(w) ={l1,...,l,} withly <...<l, and
w' is the obtained by deleting xy,, ..., x;, from w, induce maps

V0GP —YGP, oGP — GP!

defined by

Proof. For this purpose, we need show that p C ker ¢, and p C ker¢,. Since p is
the transitive closure of L, to show p C ker ¢, and p C ker v, we just need show
that L C ker ¢, and L C ker v,

Let z =x10...02p, y=y10...0y, € X' and (u,v) € H. We consider the
following cases.

Case (i) (u,v) = (sot,tos), where s € Sg, t € S, with (B,7) € E and 3,7 # o.

It is easy to see that Ny(xouoy) = Ny(xovoy)and p+1,p+2 & Ny(zouoy)
nor Ny (x ovoy), so that

(zouoy)éa = (wovoy)de and (rouocye=(wovoy)a.  (7.3)

Case (i) (u,v) = (sot,tos) where s € Sg,t € Sq with (B,a) € E and B # o.
We have the following 2 subcases.
(a) No(zouoy) = 0. If a & s(y), then there exists y; with (C(y;),a) & E,
and hence Ny (zovoy) = 0; if o € s(y), then we pick j to be the greatest such
that C(y;) = a. As No(zowuoy) =0, there exists k with j < k < ¢ such that
C(yr) # « and (o, C(yx)) € E, so that Ny (x ovoy) = (). Therefore,

(xouoy)py =1=(xovoy)p,

and

(zouoy) =[zouoy]=[rovoy]=(zovoy)ya.
So the Equation 7.3 holds.
(b) No(zouoy)={l1,....,0;} where 1 <l1 <...<l, <p+2+4gq Ifp+2 <y,
then we have {l1,...,l,} € Ny(xovoy); ast € S,, there must exist 1 < k <
I/ =1 where I} =13 — (p+ 2) such that C(yx) # a and (C(yx), ) € E, so that
No(zovoy)={l,...,I;}, and hence

(zouoy)pa = (xovoy)da

and
(zouoy)ha = (xovoy)a.
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so the Equation 7.3 holds.

If i = p+ 2 (similarly if [; = p+ 1), then p+ 1 € Ny(z ovoy) and by the
definition of N (2 o u o y), we deduce that, for any 1 < j < p with C(z;) = a,
there exists k with j < k < p such that C(xy) # « and (C(zg), o) ¢ E. It follows
that Ny(zovoy)={p+1,la,...,I}, and hence

(Touoy)pa = (x0voy)da

and
(zouoy)ha = (zovoy)a.

Then Equation 7.3 holds.

If1<l; <p,thenp+2¢€ Ny(zxouoy),and so p+1 € N,(xovoy). Also, for any
1 < j <y with C(z;) = a, there must exist k with j < k <y such that C(xy) # o
and (C(z),a) € E, so that Ny(zovoy) = ({l1,l2,..., L ’\{p+2}) U{p+ 1},
and hence Equation 7.3 holds.

Case (iii) For the cases where (u,v) = (s ot,st) with s,t € Sz, # « or
(u,v) = (sot,st) with s,t € Sy, it is clear that Equation 7.3 holds.

The above arguments show that p C ker ¢, and p C kerv,, and hence there
are maps

bo GP — GP, [w]pa = Wha

and

Vo : 9P — GP, Wby = wipq.

Finally, it follows from Lemma 7.4.4 that [w] = (W) (Woa) = ([W]tha) ([W]da)-
O

With all the above preparations, we are finally at the stage of showing that
@4 P is left abundant when S, is left abundant for all & € V. We divide the proof
into two steps.

Lemma 7.4.6. Let w =wjo...ow, € X1 be a left complete reduced form with
blocks w;, 1 < i < k. Then, for any [z], [y] € 9P, [x][w] = [y] [w] implies that
[] [w1] = [y] [wi].

Proof. The idea of our proof is to delete letters from the end of w, in the expression
[z o w] = [y o w], until we end with [z o wi] = [y o wy], by using maps defined in
Lemma 7.4.1.

Suppose that each w; € X is given by w; = wy; 0...0 Wyp() SO that, for
1 <t <k {C(wn),..., Clwyy))} is a complete graph. Now suppose that
[x] [w] = [y] [w]. If [w] = [w1] we are done. Otherwise, let k& > 2 and let a € s(wy,)
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and let § € s(wy_1), for such that (o, 3) ¢ E. Then 6,5 act to remove a single
element of wy, wy;, where C(wy;) = «, repeat this strategy until we get rid of wy.
Notice that 8 ¢ s(wg) and o ¢ s(wg—1) 80 wg—1 is unaffected. Then start on wy_1,

and continue until we rid wy. Similarly for [y o w]f,s. Then from [z] [w] = [y] [w]
we obtain

((33 o w)@ag) =[zro w]@ = [yowlbap = ((y o w)Haﬁ).

Notice that if wy o- - -owy, is in a left complete reduced form, then so is wyo- - -owy,
where wj, is wy, with letters deleted.

By choosing the right (a, ) we can successively knock off the final elements
in [z ow| = [y ow| to obtain [x o wi] = [y o wy], namely, [z] [w1] = [y] [w1]. O

The following result follows immediately from Lemma 7.4.6.

Proposition 7.4.7. Let w =wio...ow, € X be a left complete reduced form
with blocks w; € X1 <i < k. Then [w] R* [w1].

Proof. Let w = wjo...ow, € X' be a left complete reduced form, where
w; € XT, for all 1 < i < k. For any [z],[y] € 92, [z] [w] = [y] [w] implies that
[z] [w1] = [y] [w1], by Lemma 7.4.6.

For any [z], [y] € 427", let [x] [w1] = [y] [w1]. By multiplying both sides in
[z] [w1] = [y] [w1] by [wao...owy]|, we get that [z] [w] = [y] [w]. O

In the following we establish a connection with the relation R* in ¥4 and
the relation R* in the vertex semigroups.

Lemma 7.4.8. Let 21,21 € X be such that 21 R* 21 in Sc¢(z,). Then [z1] R* [#]

ing.

Proof. Let t =x10---0xpy, y=y10---oyp € X be such that [z][z1] = [y][x1].
We now claim that [z][z]] = [y][z]]. Let C(z1) = a. It follows from Lemma 7.4.5
that

[$1o"'oxmozl]¢a:[ylo"'oykozl]¢a

and

[z10:0mm o] = [y1o---oyro 2]ty

Suppose that

No(z10--roxpmozy)={r, - ,m},No(yro---oypoz) ={s1, - ,s}.
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Then we must have r;=m+1, st = k+ 1 and

[xrl O+ 0Ty _4 Ozl] = [ysl O+ 0¥Ys 4 Ozl]'

By Proposition 7.1.7 we have x;, - - &y, 21 = Ys;, - - Ys,_, 21 and then since 23 R* z'l,
we deduce z,, -+ Ty, 2] = Ys, -+ Ys,_, 71, SO that

[x’l“l O--- 0557"1,1 ozi] = [ysl O-+-- Oyst—l OZi:I.

By using 1, we obtain [2/] = [y/], where 2’ is obtained by deleting all z,, from
x, where 1 < 57 < [ —1 and 3 is obtained by deleting all Ys; from y, where
1 < j <t—1. Using the final part of Lemma 7.4.5 we have

[l 0o an 0] = [y]lys; © - 0 Yy 0 2]

Notice that
Ny(wpo0--0xpmo02)) = Ny(w1 0024 021)

and
No(yro---oyroz)) = Na(yr0---0oygoz1)

so that, by Lemma 7.4.4,

Similarly,

so that [z][2]] = [y][}]-

Next, let [z][z1] = [y][z1]. We claim that [z][z]] = [y][z]]- Let C(z1) = . Tt
follows from Lemma 7.4.5 that

[.%‘1 O0-++0Ty O Zl]¢a = [Zl}d)a

and

[z10---0amoz]Y, = [21]da-

Suppose that
No(z10--0xmoz1) ={ry, - 1}, Na(21) = {s1}.
We must have r; = m + 1, and

[ry 0 0@y, 02] = [21].
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By Proposition 7.1.7 we have x,, ---x,,_,2z1 = 21 and then since z; R* zy, we
!
deduce z,, - --x,,_,2; = 2], so that

[xrl O--- Ox?"l—l ozll] = [ysl O-++0Ys 1 ozi].

By using 1,,, we obtain [2/] = 1, where 2’ is obtained by deleting all xp; from ,
where 1 < j <1—1 and 1 is the adjoin identity of ¥ 2. Using the final part of
Lemma 7.4.5 we have

@[y 00w, 0 2] = [21].

Notice that
No(x1 0 0xmo2)) = Ny(r10 0@, 0 21).

By Lemma 7.4.4,
(&), 0o an_, 0 2] = [x][21]

Therefore, we get that [x][z]] = [2]], as required.
O

Lemma 7.4.9. Let z = z10---02, € X be a complete reduced form. Suppose
that 2z, R* 2, in So(z,) for 1 <k <n and put 2’ = zy0---0z,. Then [2] R*['] in
G7.

Proof. We proceed by induction on the length n of z. Clearly, the result holds
for the case n = 1 by Lemma 7.4.8. Suppose that the result is true for all & < n.
Then

[210"'027171] R* [Zio...OZ;,L_l].

As R* is a left congruence and z is a complete reduced form,
[2] = [znoz10 0zp 1] R [snozjor 0z, 4]

On the other hand, since [z,] R* [2]] and R* is a left congruence,

[znozio-oz gl =[Fo 0z jom R [5o-0z, 4 0z] =[]
so that [z] R* [2/] in ¥ 2. O

The following result follows immediately from Lemma 7.4.9

Corollary 7.4.10. Let w =wjo...owg € X be a complete reduced form of [w]
in9P. Let wh = fwf‘ 0...0 w,":, where wl is an idempotent in the R*-class of

J
wj in S for all1 < j < k. Then
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(1) [wt] is an idempotent of 4 P;

(i) [w*] [w] = [w];
(iii) [wT]R* [w].
Proof. (i) Since w™ = w} o...ow; is a complete reduced form, and w;" is
an idempotent in S; for all 1 < i < k, it follows from Lemma 7.3.2 that
[wF] = [w] o...0w,] is an idempotent in ¥ 2.

(ii) Clearly

[wH[w] = [w o...ow!fwio...0owg] = [wiwio...owfwy] = [w]

(iii) As w; R* wj, by Lemma 7.4.9, we get that [w'] R* [w].

The main result now follows from Lemma 7.4.6 and Corollary 7.4.10.

Theorem 7.4.11. Let I' = T'(V, E) be a graph and let ¥ = {S, : v € V} be a
family of left abundant semigroups. Then the graph product ¢ P =GP (1,.7) is
also left abundant.

Proof. Tt is clear that if w = wjo...owy € X7 is a left complete reduced form

of [w] in 9% with blocks w;, 1 < k, then [w] R* [w;] by Proposition 7.4.7. Also,

we know that [w;] R* [w]] by Corollary 7.4.10. Hence we get that [w] R* [w]].
O

It is clear that the left-right dual of Theorem 7.4.11 holds, and hence we have
the following.

Corollary 7.4.12. Let T' = T'(V, E) be a graph and let ¥ = {S, : v € V} be
a family of abundant semigroups. Then the graph product 42 = G4 P2(1,.7) is
abundant.

7.5 Weak abundancy of graph product of semigroups

In this section, we show that a graph product of weakly abundant semigroups
is a weakly abundant semigroup.

The following result immediately from Proposition 7.4.7 and the fact that
R*CR.
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Corollary 7.5.1. Let w = wyo---ow, € X be a left complete reduced with
blocks w;, for 1 <i <mn. Then [w] R [wi].

Lemma 7.5.2. Let w = wio...ow, € XT be a complete reduced form, where
C(w;)) =i, 1 <i <k, of [w] in 9. Let v; € S;, viRw; in S; forall1 <i <k
and put [v] = [v1 o...0vg|. Then [v] R [w].

Proof. Let e =ejo...0ey be areduced word such that [e] € E(4 ). 1t is follows
from Lemma 7.3.2 that s(e) is complete and e; = e?, for all 1 < i < m. Suppose
that [e] [w] = [w]. Hence s(eow) = s(w), that implies that s(e) C s(w). Without
loss of generality, suppose C'(e1) = C(wy),...,C(em) = C(wy,). Then we write

le] [w]=[e10...0epowio...0wg] =[eqwi o...0enwyo...0w] = [w].
By (ii) of Note 7.2.10, for all 1 < i < m, we get e;w; = w;, so e;v; = v;, for all
1 <4 <m. Thus

le][v] =[e10...0emo0vi0...0v] =[e1v10...0€pnU, O ... 0 U] = [v].
Similarly, if [¢] [v] = [v], then [e] [w] = [w]. It follows that [v] R [w].

The next result is useful in our work.

Lemma 7.5.3. Let w = wyo---owy, be a complete reduced form of [w] in 4 2.
Let wtt = wa“ 0...0 w,jJr, where wj+Jr is an idempotent in the R-class of w; for
all1 < j <k. Then [wt*] is an idempotent of 4P and [wt*][w] = [w]; further,

[w™ R [w].
Proof. Since w™t = wto.. .ow,jJr is a complete reduced form and w;* € E(S;)
for all 1 <4 < k, then by Lemma 7.3.2 we get that [wt*] is an idempotent of

X wfr R w; for all 1 < i < k, then it is clear that

++

[wt+] [w]:[wf+o...owk oWy o...0wWg]

= [wi Twy o... 0w wy]

= [w].

By Lemma 7.5.2, we get that [w'*] R [w].

The main result in this section follows from Lemma 7.5.3.
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Theorem 7.5.4. Let I' = I'(V, E) be a graph, and let ¥ = {S, : v € V} be
a family of weakly left abundant semigroups. Then the graph product Y& =
G2 (1,.7) is also weakly left abundant.

Proof. 1t is clear that if w =wjo...ow, € X1 is a left complete reduced form
of [w] in ¥ &, by Proposition 7.4.7 we get that [w] R [w;]. From Corollary 7.5.3

we get that [w 7] R [wi]. Hence it is clear that [w*] R [w].
O

The left-right dual of Theorem 7.5.4 holds, resulting in the following.

Corollary 7.5.5. Let I' = T'(V, E) be a graph, and let ¥ = {S, : v € V} be a
family of weakly abundant semigroups. Then the graph product ¢ P = G4 P2(T,.7)
1s weakly abundant.

7.6 Description of the relations R* and L£* on graph
product of semigroups

We proved in Lemma, 7.4.9 that if w = wyo...0w;, € X is a complete reduced
form where w; € S;, and if v; € S; is such that v; R* w; for all 1 < ¢ < k, then
[v] R* [w], where [v] = [v1 0...0v].

This section gives more description of Green x-relations, R* (and L£*), on
graph products of semigroups. Note that if we say w € S,, a € V, is right can-
cellative, then we mean w is right cancellative in S,.

We start this section by defining the concept of i-right cancellative.

Definition 7.6.1. An element w of a semigroup S is i-right cancellative if it is
right cancellative and there is no u € S such that uw = w.

In other words an element w € S is i-right cancellative if it is right cancellative
in S and does not have left identities.

Lemma 7.6.2. Let w € S,, where o € V.. Then w is i-right cancellative if and
only if [w] is i-right cancellative in G 2.

Proof. Let w € S, be i-right cancellative. Let

(] =[z10 0wy, [y =y10- 0oym] €4 2.
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Suppose that [z] [w] = [y] [w], and let
No(zow)={r1,...,m}, and Ny(yow) = {s1,...,St}.
Thenr,=n+1,ss=m+1
[zow]ga = [z, 0. 0@ ow] = [ys; 0...0ys_, ow] = [y o w]da.

As w is right cancellative in S, and by the definition of the map ¢, we have
C(zr;) =a,forall 1 <j<l—-1,C(ys;) =, forall 1 <j <t—1, we get that

Ty Ty« o e Tyy W =Yg, Yso -+ - Yoy W,

in So. Hence we get xp Zpy ... T | = Ys1Ysy -+ - Ysy_1» SO

[2y 0. 0mpy ] =[ysy 0. 0ys, 1],
but o o
[x]qba = [$7‘1 ©...0 xT‘l—1] = [y81 ©...0 ySt—l] = [y]¢a' (7.4)
Moreover, as [z o w] = [y o w], then we have

[z 0 wltpa = [y © w]ta-

It is clear that [z o w]i, and [y o w]tb, do not contain w, then we get that

[2]¢pa = [z 0 w]tha = [y 0 Wa = [y]Ya- (7.5)
Now by Lemma 7.4.5 and by the equalities (7.4) and (7.5), we get that
(2] = 2]t [2]6a = [y]Ya [Y]da = ],

this proves that [w] is a right cancellative element in ¥ 2.

Conversely, let [w] be right cancellative in 4. Then for any [z],[y] in
4G % such that [z]| [w] = [y] [w], we have that that [z] = [y]. Let x4,ya € Sa, be
such that zow = yow. Then [zow] = [yow]. As [w] is right cancellative in ¥4 27,
[Za] = [ya]. Hence by Proposition 7.1.7 we get that z, = yo. Therefore, w is
right cancellative.

Now suppose that w does not have left identities but [w] has in ¥ %?. Then

there exists some [z] € 4 such that [z][w] = [w]. Without loss of generality,
we assume that z is reduced. It is clear that s(z) C s(w). Hence x must be in
Sc(w)y and we can write [rw] = [w]. By Proposition 7.1.7 we get that zw = w, a
contradiction. O
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Lemma 7.6.3. Let M be a monoid. Let w € M. Then w s a right cancellative
element in the monoid M if and only if wR* 1, where 1 s the identity in M.

Proof. Let w be a right cancellative in M, and zw = yw, where x, y € M' = M.
Then x = y, and it is clear that x1 = y1. It is obvious if z1 = y1, then zw = yw.
Therefore, w R* 1.

Conversely, let wR*1 and zw = yw, where x, y € M'. Then z1 = y1, so
x =y, which means that w is right cancellative. O

Lemma 7.6.4. Let S be a semigroup. Let w € S. Then the following conditions
are equivalence:

(i) wR*1 in SL;
(ii) w is a right cancellative element in SL;
(#ii) w is i-right cancellative in S.

Proof. (i) <= (ii) It is clear by Lemma 7.6.3.

(ii) = (i74) Let w be a right cancellative element in S*. Hence w is cancella-
tive in S and if there exists an element x € S such that xw = w, then we get that
x = 1, a contradiction.

(7i1) = (i1) Let w be an i-right cancellative. It is clear that w is a right
cancellative in SL. O

The following result follows immediately from Lemma 7.6.2.

Corollary 7.6.5. Let w € S, and v € Sg such that [w] R* [v] in 9. Then w is
i-right cancellative if and only if v is i-right cancellative.

Proof. Suppose that w € S, is not i-right cancellative, and v € Sg is i-right
cancellative, where «, 8 € V. As w € S, is not i-right cancellative, there exist
u, u' € S, such that u # v’ but uw = v'w in S, or w has a left identity. Let

uw = u'w

for some u, v’ € S, such that u # u’ in S,, then
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in 92. Since [w] R* [v], then we get

As v is i-right cancellative in Sg, by Lemma 7.6.2 we get [v] is i-right cancellative
in 2. Then we get that [u] = [«/]. By Proposition 7.1.7 we have that u =« a
contradiction.

If w has a left identity u in S, we write that uw = w and so

but [v] is an i-right cancellative element in ¢ 27, a contradiction.
O

Note that if w is not right cancellative in S,, and w™ is an idempotent in
the R*-class of w in S,, then w™ is not right cancellative. As w is not right
cancellative in S,, there is z # y and zw = yw, but wR*w™, so zw™ = yw™. If
w is right cancellative, then x = y, a contradiction.

It is worth remarking for a complete reduced form w = wy o---ow, € XT,
as s(w) is complete, [w] = [wis 0 -+ 0 Wy, for any permutation o of {1,--- ,n}.
Without loss of generality we may always assume the i-right cancellative elements
succeed the non-i-right cancellative elements in a complete reduced form.

Lemma 7.6.6. Let w = wy o---ow, be a complete reduced form of [w] in 4P
and let wy,--- ,wy, be i-right cancellative elements in the corresponding vertex
semigroups. Let wi, -+ ,wr_1 be elements that are not i-right cancellative. Then

[w} R* [wl O0---0 wk_l].

Proof. As wyg,--- ,w, are i-right cancellative in the corresponding vertex semi-
groups and by Lemma 7.6.2, we get that [wg],--- ,[wy] are i-right cancellative
elements in ¥2. Let [z], [y] be elements in 422!, Suppose that [z] [w] = [y] [w],
then

[z] [wy o owp][wk] - [wn] = [y] [wr o owpa][wh]- - [wn].

As [wg], - -+, [wy] are i-right cancellative elements in ¥ 2,

[] [wy 0 owg_1] = [y] w10 0cwg_1].
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Conversely, if [z][w; o -+ o wg_1] = [y][wy 0 -+ 0 w_1],, then by multiplying
both sides by [wg o -+ 0 w,] we get that

Let [z] € 4% and suppose that

[2] [w] = [z] [w1 o - - 0 wp ] [wg] - - [wn] = fw].
As [wg], - -, [wy] are i-right cancellative elements in ¢ .27,
[z] [wl O o> Owkj—l} — [wl O o> Owk—l]'

If [z][wy 0 - owg_1] = [wy 0+ 0wg_1], then by multiplying both sides by
[wg © -+ o wy] we get that [z] [w] = [w]. Therefore, [w] R* [wy 0 -+ 0 wk_1].
O

Lemma 7.6.7. Let w =wjo0---0ow,,v =v10---0v,,, € X be complete reduced
forms. Suppose that wiy1,- -+ ,Wn, V11, -+, Vm are i-right cancellative, for some
0<k<n,0<Ii<m, andwy,--- ,wg,v1,- - ,v; are not. Then [w|R*[v] in §P
implies s(wy o ---owy) = s(vyo---owy).

Proof. Suppose that [w] R* [v]. Then by Lemma 7.6.6, we get that
[wyo---owg] R* [vpo---ovy.

Suppose that s(wy o -+ owg) # s(vy o -+ o). Without loss of generality there
exists 1 < j < k such that C(w;) =y ¢ s(vi o---ov;). By assumption, we have
that either w; is not right cancellative or w; is right cancellative and has a left
identity.

If w; is not right cancellative, then there must exist u, z € S, with u # z but
uw; = zwj, giving [u][w;] = [2][w;], and so [u][w] = [z][w]. Since [w] R* [v], we
have [u][v] = [z][v], so that

[u][vi 0+ o] = [z][v1 00y

by Lemma 7.6.6. As vj o---ov;is reduced and C(u) = C(z) & s(vyo--- o), by
Note 7.2.5 we deduce that uowvjo---ov; and zowvjo---owv; are reduced. It follows
from Lemma 7.2.3 that [u] = [z] and so u = z by Proposition 7.1.7, contradiction.
Therefore, w; is right cancellative.

If wj is right cancellative and there exists z € SC(wj) such that zw; = wj, then
[z][w;] = [wj], and so [z][w] = [w]. Therefore, [z][v] = [v], implying that C(z) €
s(v). AsC(z) =7 ¢ s(vyo---0v;), zov reduces to v1 0+ -+ 0V;_102ZV;OV; 410+ Oy
for some [ < i < m. It follows from note 7.2.10(ii) that zv; = v;, and so v; has a
left identity, contradiction. Therefore, s(wy o« owy) = s(vy o---ovy). O]
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Note that if w = wy0---ow,,v =v10---01, € XT are complete reduced

forms with s(w) = s(v), so n = m, without loss of generality we may assume
C(w;) = C(v;) for all 1 <i < n.

In the following result we consider some sufficient conditions for any two com-
plete reduced forms w = wy o -+ ow, and v = vy 0 -+ o v,, where [w] R* [v], to
have equal support sets and be such that w; R* v; in S; for all 1 < ¢ < n. This
result proves the converse to Lemma 7.4.9.

Lemma 7.6.8. Let w = wjo---0ow, and v = vy o --- 0w, be complete reduced
forms of [w] and [v] in G, respectively such that no letters of w or of v are
i-right cancellative in the corresponding vertex semigroup. Then [w] R* [v] if and
only if s(w) = s(v), n =m and w; R*v; in S;, for all 1 <i <n.

Proof. Suppose that s(w) = s(v) and w; R* v; in S; for all 1 < ¢ < n. Then
[w] R* [v] by Lemma 7.4.9.

Conversely, let [w]R* [v]. By Lemma 7.6.7 we get that s(w) = s(v), n = m
and C'(w;) = C(v;) for all 1 <4 <n. Our aim here is to show that w; R* v; in S;,
for all 1 <4 < n. Suppose that for some 1 < i <n, x,y € Sé(
Then

w) and zxw; = yw;.

[x][w]:[wlo...owi,loxwioleo...own}
:[wlo...owi,loywiowiﬂo...own]

= [y [w],
As [w]R* [v], [x] [v] = [y] [v]. Then we write
[V10...0V_1 0TV OVi410...Up| =[U10...00;_1 OYV; OVj4]1 0 ...Up)

By Lemma 7.2.3 we get that [zv;] = [yv;]. Hence it is clear that xv; = yv;
Proposition 7.1.7. Since no letters of w are i-right cancellative, we cannot have
rw; = w; for any x € Sc(wi), it follows that w; R* v; for all 1 <4 < n.

O
Lemma 7.6.9. Let wio ---0 wy and v o --- 0 vy, be complete reduced forms
of [w] and [v] in 4P, respectively. Let wy,--- ,wy be i-right cancellative in the
corresponding vertex semigroups, and Vp,---, Uy be i-right cancellative in the
corresponding verter semigroups. Let wy,---, wgp_1, V1, -, Up_1 be elements

that are not i-right cancellative. Then [w] R* [v] if and only if s(wyo---owk_1) =
s(vio--rovp_q1), k=1 and w; R*v; in S;, for all1 <i<k—1.
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Proof. Let s(wy o ---owk_1) = s(vpo---owvp_q), k =1 and w; R* v; for all
1 <i < k—1. Hence by Lemma 7.4.9 we get that [wyo- - -owg_1] R* [v10- - -0vp_1].
By Lemma 7.6.6 we get

(W] R* [wyo--owg_1]R*[v10---0vp_1] R* [v].
Conversely, let [w] R* [v]. Then by Lemma 7.6.6 we get
[wy o owp_ 1| R* [w]R* [v] R* [vi 0+ -+ 0 vp—1].

This implies that s(wjo---owg_1) =s(vio---ovp_1), k—1=h—1and w; R* v;
forall 1 <¢<k—1, by Lemma 7.6.8.
O

The proofs of the following results follow immediately from Proposition 7.4.7
and Corollary 7.4.10, respectively.

Corollary 7.6.10. Let w = wjo...0w,, v =v10---0v, € X be left complete
reduced forms, with blocks w;, 1 < i < n and vj, 1 < j < m, of [w] and [v] in
G P, respectively. Then [w] R* [v] if and only if [w1] R* [v1].

Proof. From Proposition 7.4.7 we get that [w] R* [w1] and [v] R* [v1]. The result
is then clear.
O

Now we state the main result of this section.

Theorem 7.6.11. Let [w],[v] € 9. Let w,v have left complete reduced forms
with first blocks x = x10---0ox, andy =y10---0y, € X, respectively. Suppose
that i1, -+ ,%n and Y41, ,Ym are i-right cancellative, for some 0 < k <
n,0 <1 <m, but x1,--- ,xf and y1,--- ,y; are not. Then [u] R* [v] if and only
if s(xpo---oxg)=s(yro---oy), l =k and xz; R* y; for all 1 <i <k.

Proof. Suppose that [w] R* [v]. By Proposition 7.4.7 we get that
[z] R™ [w] R* [v] R* [y].

As z and y are in complete reduced form, where xpy1, -, 2, and Y11, , Ym
are i-right cancellative, for some 0 < k <n,0 <[ <m, by Lemma 7.6.6 we get

[z1o- o] R* 2] R* [y R [y 0 -+ o wi].

Then by Lemma 7.6.8 we have s(x10---oxy) = s(y10---0y), l =k and z; R* y;
foralll1 <i<k.

168



Conversely, let s(z10---oxg) = s(ypo---oy), | =k and x; R* y; for all
1 < i < k. Then by Lemma 7.6.8, Lemma 7.6.6 and Proposition 7.4.7 we get that

[w] R [z] R¥[w10---omp] R [yr 0+ o] R* [y] R™ [v].

O

7.7 Description of the relations R and £ on graph
product of semigroups

This section gives more description of the Green’s ~-relations, R and E, on
graph products of semigroups 4 4.

Corollary 7.7.1. Let w and v be elements of S,, for some a € V. Then
w R v in Sy if and only if [w] R [v] in ¥ 2.

Proof. Let wRv in S, Let [e] € E(92), such that [e]lw] = [w]. Then
s(eow) = s(w) = {a}, which implies C(e) = a. As [¢] € E(92), e € E(Sa),
wRv and ew = w, then ev = v. Hence it is clear that [e] [v] = [v]. Slmllarly, we
prove that if [e] [v] = [v], then [e] [w] = [w]. Therefore, [w] R [v].

Conversely, let [w] R [v] in 9P Let e € E(Sq) be such that ew = w. This
implies that [e][w] = [w]. As [w]R [v] and [e] [w] = [w], we get that [e] [v] = [v].
Hence by Proposition 7.1.7, we get ev = v in S,. Therefore, w R v in S,.

0

It follows from Corollary 7.5.1 that if w = wyo---ow, and v =wvy0---0v,, are
two left complete reduced forms with blocks w;,v; where 1 < ¢ <n,1 < j <m,
then [w] R [v] if and only if [w1] R [v1]. Therefore, to characterise R i in 97, we
just need consider the question of when two complete reduced forms are R-related.

Lemma 7.7.2. Let w = wio0---ow, € X be a complete reduced form. Sup-
pose that wy,--- ,wy have idempotent left identities in the corresponding vertex
semigroups but Wg41,- -+ , Wy do not, where 0 < k <n. Then [w] R [wio---owg].

Proof. Let e =ej 0---0ep, be a reduced word such that [e] € E(4 ). Suppose
that [e][w] = [w]. Then

[elo...oem][wlo...own]:[wlo...own].
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Then s(e) C s(w), and since both e and w are reduced we have
[e]lw] = [z10- -0 2],

where z; = w; for i € I and z; = e;,w; for j € J, with INJ =0, ITUJ = {1,--- ,n}

and i — 4; a bijection {1,--- ,m} — J. From Note 7.2.10(ii) we have that e;;w; =
wj for j € J, so that J C {1,--- ,k} and so [e][wio------ owy| = [wyo------ o wg).
The result follows. O

In the above result if £ = 0, we interpret this result as saying that [w] has no
idempotent left identity.

Lemma 7.7.3. Let w = w1 0---0Ww,,v =v10---0v,;, € X be complete reduced
forms. Suppose that wy, -+ ,wg,v1,- -, have idempotent left identities in the
corresponding vertex semigroups bul Wgi1, -+, Wn, V11, ,Um do not, for some
0<k<n,0<I<m. If[w] R [v] in9P, then s(wyo---owg) =s(vy0---0)
and so k =1.

Proof. By Lemma 7.7.2,

fwr o owy] R oo oul

Assume that s(wj o---owg) # s(vpo---ov). If k =1 = 0 we are done.
Otherwise, without loss of generality, let v = s(w;) € s(wy o--- o wy). Since w;
has an idempotent left identity, there must exist an idempotent u € S, such that
uw; = wj, so that

[u][wlo...owk]:[wlo...owj_lOuwjowj+1o...owk:|:[wlo...owk].
Since [wy o - -+ o wg] ﬁ[vlo--wvl],we have [u][vy0---ov] = [vi0-- 0] and so
v=C(u) € s(vy0---0vy), so we are done. O

Lemma 7.7.4. Let w =wi0---owy and v =v10 -0y, be a complete reduced
form of [w] and [v], respectively, in 4. Let the letters w;, 1 < i < n and vy,
1 <j < m, have idempotent left identities in the corresponding vertex semigroups.
Then [w] R [v] if and only if n =m, s(w) = s(v) and w; Rv;.

Proof. Let n = m, s(w) = s(v) and w; Rv;. Then by Lemma 7.5.2 we get that
[w] R [v].

Conversely, let [w] R [v] in ¥22. Then by Lemma 7.7.3 we have that n = m
and s(w) = s(v). Let for some 1 <i <n and u € E(S¢(y,)) such that uw; = w;.
Then

[u][w] = [wy0- - -ow;_1ouw;ow; 410 - -owp] = [wi0: - -oW;—10W;OW;t10- - -owy] = [w]



implying [u][v] = [v], so that
[V1 0+ 0V;_1 OUV; OVj41 O+ 0Vp] = [U1 O+ 0Vj_1 OV; OWVj;1 O+ 0y

By Note 7.2.10 (ii), we get that uv; = v;. Together with the dual arguments, we
have w; R v;.
O

Lemma 7.7.5. Let w = wy o --- o w, be left complete reduced form for [w] in
GP. Let wi = wig 0wy, where wiy, wie € X, all the letters of wi1 have
idempotent left identities in their vertex semigroups, and all the letters of wy 2 do
not have idempotent left identities in their vertex semigroups. Then [w] R [w11].

Proof. By Corollary 7.5.1, we get that [w] R [w]. Moreover, we have [wi] R (w1 1]

by Lemma 7.7.2. Therefore, [w] R [wi] R [w11].
O

In the above result if wy 1 is an empty word, which means w; does not contain
any letters that have idempotent left identities in their vertex semigroups, then
[w] R [wr].

Lemma 7.7.6. Let w =wjo---ow, and v =vy0---0v,, be left complete reduced
forms for [w] and [v] in 9P, respectively. Let wy = wy 0wy 2, and vy = v1,10012
defined as in Lemma 7.7.5. Then [w] R [v] if and only if [w11] R [v11].

Proof. By Corollary 7.5.1, we get that [w] R [w1]. It is clear that [w;] R (w1 1], by
Lemma 7.7.2. Similarly for [v]. Therefore, we get that

[7)1’1] R [?)1] R [1)] R [w] R [wl] R [w171].

Conversely, let [w 1] R [v1,1]. By Corollary 7.5.1 and Lemma 7.7.2 we get that

[U] R [’Ul] R [Ul,l] R [wl,l] R [wl] R [w]

Now we are in the position to give our characterisation of Ron¥YP.

Theorem 7.7.7. Let w = wy0---owy, and v = vy0---0v,, be left complete reduced
forms for [w] and [v] in 9P, respectively. Let wi = wy 0wy 2, and vi = V110012
defined as in Lemma 7.7.5. Let w11 =x10-- 0z and vy =yi10---0y;. Then
[w] R [v] if and only if s(wi) =s(vi1), k=1 and z; R y; for all1 <i<k.
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Proof. Let s(wy1) = s(v1,1), k=1 and z; R y; for all 1 <4 < k. Then by Lemma
7.7.4 we get that [wi1]R [v1,1]. By Lemma 7.7.2 we know that [w] R [wi,] and

[v] R [v1,1], this implies that

[w] R [wl,l] R [’0171] R [U]

Conversely, let [w] R [v]. Then by Lemma 7.7.2

[’le] R [w] R [U] R [1)171].
By Lemma 7.7.4 we have s(w;1) = s(v1,1), k =1 and z; R y; for all 1 < ¢ <k, as

all the letters of wy 1 and vy,; have idempotent left identities in the corresponding
vertex semigroups, [
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Chapter 8

A plan for further work

Let me finish the writing of my PhD thesis by giving a some open questions for
further work.

In this thesis, we considered a very special kind of biordered set, namely, iso-
normal band and it is proven that for any iso-normal band B, IG(B) is always an
abundant semigroup. In 2014, Gould and Yang [80], gave an example of a normal
band B, where IG(B), is not abundant. An interesting and valuable question
comes out naturally: for which normal bands is IG(B) abundant?

It is proven that if B is an iso-normal band, then IG(B) has decidable word
problem. Another interesting question: for which normal bands does IG(B) have
decidable word problem?

Let Y7 and Y5 be 0-direct union semilattices, where g is the lower bound of
both Y7 and Y5 (which means Y = Y] U Y5, and Y1 NYs = {dp}). Let By and Bs
be normal bands, where

Bl = %(}/173047 ¢O¢,6)7
and
B2 - '@(Y27 B§a ¢6,7)~

If IG(B1) and IG(B2) are abundant semigroups. Is IG(B) abundant, where
B=2(Y,B,,0,,) is a normal band.
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