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Abstract

Whenever we, as humans, need to learn a complex task, our learning is usually or-

ganised in a specific order: starting from simple concepts and progressing onto more

complex ones as our knowledge increases. Likewise, Reinforcement Learning agents

can benefit from structure and guidance in their learning. The field of research that

studies how to design the agent’s training effectively is called Curriculum Learning,

and it aims to increase its performance and learning speed.

This thesis introduces a new paradigm for Curriculum Learning based on pro-

gression and mapping functions. While progression functions specify the complexity

of the environment at any given time, mapping functions generate environments of

a specific complexity. This framework does not impose any restriction on the tasks

that can be included in the curriculum, and it allows to change the task the agent

is training on up to each action.

The problem of creating a curriculum tailored to each agent is explored in the

context of the framework. This is achieved through adaptive progression functions,

which specify the complexity of the environment based on the agent’s performance.

Furthermore, a method to progress each dimension independently is defined, and

the progression functions derived from our framework are evaluated against state-

of-the-art Curriculum Learning methods.

Finally, a novel variation of the Multi-Armed Bandit problem is defined, where

a target value is observed at each round, and the arm with the closest expected

value to the target is chosen. Based on this framework, we define an algorithm to

automate the generation of a mapping function.

The end result of this thesis is a method that is learning algorithm agnostic,

is able to translate domain knowledge into an increase in performance (providing

similar benefits if such domain knowledge was not available), and can create a fully

automated curriculum tailored to each learning agent.
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Chapter 1

Introduction

Whenever we, as humans, need to learn a complex task, our learning is usually

organised in a specific order: starting from simple concepts and progressing onto

more complex ones as our knowledge increases. The order in which concepts are

learnt is often referred to as curriculum, and it is not a concept limited to human

learning. Curricula are also used to teach animals very complex tasks, like in Skinner

(1951), where a pigeon was trained to recognise the suits in a pack of cards. Likewise,

machines can benefit from structure and guidance in their training. This guidance

can take various forms, one of which is to organise the learning process in a similar

way to the human educational system: progressively introducing more concepts and

more complex examples. This is the principle behind Curriculum Learning (CL),

the field of research that studies how to maximise the efficiency of the training of

Machine Learning models. While Curriculum Learning can be used with different

types of learners, this thesis will focus on its application to Reinforcement Learning.

Reinforcement Learning is the area of Machine Learning that deals with the prob-

lem of teaching agents to make decisions in order to maximise the expected reward.

While Reinforcement Learning’s potential has been shown even before the turn of

the millenium, for instance when Tesauro et al. (1995) (TD-Gammon) achieved

super-human play in the game of Backgammon, it is not until more recently that

the field has become increasingly popular. This rise in popularity can be attributed

to Deep Reinforcement Learning, a field that was introduced by Mnih et al. (2013),

and that has resulted in Reinforcement Learning methods beating the world cham-

pion in the game of Go (Silver et al., 2016), creating a revolution in the world of

chess engines (Silver et al., 2017), and achieving Grandmaster level in the game of

StarCraft (Vinyals et al., 2019).
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Despite these impressive feats, Reinforcement Learning agents require a signif-

icant amount of time and experience for their training: TD-Gammon played 1.5

million games of Backgammon, whereas Alpha Zero played 19.6 million games of

Chess. In order to obtain the same amount of experience, a human player would

need to play about 11 consecutive years of Backgammon and 74 consecutive years

of Chess respectively (with the conservative estimate of two minute per Chess game

and four minutes per Backgammon game). Furthermore, the more complex and

high dimensional the problem is, the more samples are needed to learn, which is one

of the main reasons RL’s poor sample efficiency is its limiting factor to being scaled

to more complex applications (Narvekar et al., 2020).

One way to increase the sample efficiency of Reinforcement Learning is the pre-

viously introduced Curriculum Learning, a technique that revolves around training

an agent on a sequence (or a DAG) of intermediate tasks, intending to increase the

performance and learning speed on a target task. While Curriculum Learning for

Reinforcement Learning is a relatively young field of research, three distinct classes

of methods have emerged: single task (Section 2.3.2.1), with restrictions (Section

2.3.2.2) and no restrictions (Section 2.3.2.3). The former generates a curriculum

by only training on the target task and organising the agent’s experience to max-

imise sample efficiency. On the other hand, Curricula with restrictions impose a

limitation, often deriving from the way the curriculum is generated, on the type of

intermediate task that can be part of the curriculum. Finally, as the name suggests,

methods with no restrictions do not impose any limitations on the nature of the

tasks.

The motivation behind this thesis exploring Curriculum Learning is both Rein-

forcement Learning’s potential and Curriculum Learning being aimed at mitigating

its weaknesses. Furthermore, this thesis can be placed in the area of no restrictions

Curriculum Learning, as one of our aims is to allow any MDP1 to be part of the

curriculum. The research hypothesis that governs this thesis is the following:

High-level domain knowledge can be used to support the generation of an informed

curriculum that can train an RL agent more efficiently than other state-of-the art

Curriculum Learning methods.

In an effort to either prove or disprove this hypothesis, this thesis initially sought to

address the following research question:

1Markov Decision Process, defined in Section 2.1.1
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1. How can high-level domain knowledge be leveraged in the creation of a

curriculum?

An example of such domain knowledge would be: increasing the reaction time of

an agent learning to drive a car will result in the problem being harder to solve.

The answer to the former question resulted in the following questions presenting

themselves:

2. How can the complexity of the environment be selected for a given learning

agent?

3. How can the complexity of an environment be assessed for a given learning

agent?

1.1 Contributions

In an effort to answer the three research questions mentioned above, this thesis makes

the following contributions to the field of Curriculum Learning in Reinforcement

Learning:

Defines a novel Curriculum Learning framework In order to address the

questions posed above, we introduce a novel framework for curriculum generation

based on two components: progression functions that specify the environment’s com-

plexity, and mapping functions that generate environments of a specific complexity.

(Addressed in Chapter 3, relevant to research questions 1 and 2 )

Defines a way to exploit high-level domain knowledge This framework

allows for simple yet significant knowledge about the environment to be used in the

generation of a curriculum tailored for each agent. This is a problem that no other

Curriculum Learning algorithm from the literature addresses to the same extent.

(Addressed in Chapter 3, relevant to research question 1 )

Determines how long should be spent on each task This thesis also im-

plicitly answers an open question in the Curriculum Learning literature: how long

should be spent on each task. Progression functions specify this within the frame-

work defined in this thesis.

(Addressed in Chapter 3, relevant to research question 2 )
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Builds an online curriculum tailored to the agent This thesis defines several

methods to automatically build a curriculum tailored to the agent’s ability. These

methods are all online and result in the possibility to change the target task up to

every time step.

(Addressed in Chapter 4, relevant to research question 2 )

Automates the generation of a mapping function This thesis automates the

generation of a mapping function, therefore answering the question of how complex

different environments are for each agent. Answering this question allows us to select

tasks of the appropriate complexity based on the agent’s specific ability.

(Addressed in Chapter 5, relevant to research question 3 )

Defines a new variation of the Multi-Armed Bandit problem In order to

automate the generation of a mapping function, this thesis also defines a new varia-

tion of the Multi-Armed Bandit2 (MAB) problem. This variation, named Dynamic

Value Bandits, requires the agent to pull the arm whose expected payoff is closest to

a target value that changes each round. In this thesis, three MAB algorithms were

also adapted to solve this new problem.

(Addressed in Chapter 5, relevant to research question 3 )

1.2 Thesis Outline

The structure of this thesis, as well as the dependency between chapters, can be seen

in Figure 1.1. This chapter introduced the questions this thesis seeks to answer and

outlined the contributions made to the field of Curriculum Learning while trying to

answer these questions.

Chapter 2 covers the necessary background information concerning Reinforce-

ment Learning, Curriculum Learning as well as some related paradigms. In this

chapter, Curriculum Learning methods are also separated into three categories based

on the type of restriction they impose on the tasks in the curriculum.

Chapter 3 defines our Curriculum Learning framework, as well as two separate

progression functions that result in a pre-determined curriculum. This chapter also

addresses the problem of adapting our framework to parallel workers, and how often

the complexity of the environment should be changed during the curriculum.

2This problem is explained in detail in Section 5.2.1
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Figure 1.1: Chart representing the relationship between chapters. An arrow between
two chapters represents a dependency of a chapter from another.

Chapter 4 introduces adaptive progression functions that change the complexity

of the environment based on the performance of the agent. This new class of func-

tions allows us to generate an online curriculum tailored to the agent’s ability. This

section also discusses how to progress each dimension of complexity independently.

Finally, this section performs several ablation studies on our methods and compares

them against state-of-the-art Curriculum Learning algorithms.

Chapter 5 addresses the automatic generation of mapping functions by first ac-

curately specifying the problem and then formalising a new Multi-Armed Bandit

problem. After specifying a principled way of adapting existing methods to solve

this problem, three Multi-Armed Bandits algorithms are adapted to this new varia-

tion. Their performance is evaluated on a range of domains, and the best performing

algorithm is adapted to the problem of generating a mapping function. The newly

generated algorithm is finally evaluated against a manually defined mapping func-

tion.

Finally, Chapter 6 gives a summary of the work presented in this thesis and

addresses the contributions and limitations of the work. The chapter will end with

ideas on how to address these limitations in future work.
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Chapter 2

Background and Context

This chapter presents the background information that is relevant to the research

undertaken in this thesis. It will also put my work in the broader context of Cur-

riculum Learning by providing an overview of the existing literature in the area.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a popular field in Machine Learning used to solve

tasks requiring an agent to take actions in an environment. Unlike Supervised Learn-

ing, where the goal is to minimise a loss function relative to a pre-labelled training

set, RL aims to maximise the reward gathered by an agent in an environment. The

environment is modelled as a Markov Decision Process1 (MDP), that is defined by

a state space, an action space, a transition function and a reward function. The

agent-environment interaction takes place over discrete time steps t ∈ N, and it

starts with the agent receiving an observation of the environment’s state st. Based

on this observation and its internal parameters, the agent chooses an action at and

executes it in the environment. This results in a change in the environment’s state

according to its transition function P , that specifies the probability of state st+1

occurring when taking action at in state st. After acting in the environment, the

agent receives a reward rt+1 and observes the state st+1, a cycle that will repeat

throughout the agent’s training.

In this setting, the agent’s goal is to perform actions that maximise the reward

received, resulting in RL algorithms trying to solve a challenging optimisation prob-

lem where the reward is often delayed. An environment where this property is

1Defined more formally in Section 2.1.1
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Figure 2.1: Agent-environment interaction.

evident is the NES game “Super Mario Bros”: if the agent jumps and falls into the

lava, it receives a negative reward upon dying, not jumping; it is up to the agent

to learn the correlation between the two. However, this example also highlights an-

other challenge posed by RL: the agent’s actions directly affect the data it receives.

Furthermore, this environment poses an additional hurdle to a learning agent by

naturally having a “sparse” reward function, a quality shared by many complex

environments and one of the sources of the scalability issues behind standard RL

methods. Sparsity in the reward function implies that in a given environment, only

a small subset of states provide the agent with a reward signal; for Super Mario

Bros, the agent would receive a positive reward for completing a level and a neg-

ative reward for dying, with all other states providing a constant reward (usually

0 or -1). To learn in such an environment, the agent needs to move towards the

goal over obstacles before experiencing a positive reward signal. The risk is for the

agent to get stuck in a dangerous local optimum where it stays stationary to avoid

the negative reward caused by the obstacles on the way to the goal. This simple

example motivates the need for additional techniques such as Curriculum Learning

to supplement RL algorithms in learning more complex environments.

2.1.1 Terminology and Bellman Equations

In this thesis, tasks are modelled as Markov Decision Processes (MDPs). An MDP

is formally defined as a tuple 〈S,A, P,R, γ〉, where S is the set of states, A is the

set of actions, P : S×A×S → [0, 1] is the transition function, R : S×A→ R is the

reward function and γ ∈ [0, 1] is the discount factor. Episodic tasks have absorbing

states, which cannot be left and from which the agent only receives a reward of 0.

An example of an absorbing state would be the state in which Mario completes the

level in the previously mentioned Super Mario Bros environment. By definition,
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MDPs also need to satisfy the Markov property, whose principle is that “the future

is independent of the past given the present” (Silver, 2015). The following equation

defines this property:

P (st+1|st, at) = P (st+1|s[0,t], a[0,t]) (2.1)

This implies that any state contains all the relevant information for a given MDP,

rendering the history of the task superfluous. Some domains can be modelled using

MDPs, but do not allow the agent to have direct access to the state; an example of

this is poker, where the agent is not allowed to know the opponent’s hand. In order

to model such problems, Partially Observable MDPs (POMDPs) were introduced

by Jaakkola et al. (1994). The principle behind POMDPs is that the agent only has

access to an observation of the state, which is provided by the environment.

As mentioned above, the agent-environment interaction requires the agent to

select an action after observing the environment’s state; given a state, an action

is selected according to the agent’s policy. A policy π : S × R → A is a function

that maps a state s and a time step t to an action a. A policy π is regarded

stationary if π(s, t) is independent of t (Papadimitriou and Tsitsiklis, 1987). In order

to evaluate and improve the agent’s policy, two distinct value functions are used in

Reinforcement Learning: the state-value function and the action-value function.

Given a certain policy π and state s, the state-value function, denoted Vπ(s), is the

expected return when starting in s and following policy π thereafter. The action-

value function Qπ(s, a), on the other hand, is the expected return starting from s,

taking action a, and thereafter following policy π (Sutton and Barto, 1998). The

equations that define Vπ(s) and Qπ(s, a) are the foundations of RL and are called

the Bellman equations:

Vπ(s) = Eπ[rt+1 + γVπ(st+1)|st = s] (2.2)

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a] (2.3)

The relevance of these equations lies in the fact that they can be optimised to find

the optimal policy π∗. The optimisation can either happen on Vπ or Qπ resulting in

the value iteration method, or directly on the policy resulting in the policy iteration

method. The value iteration algorithm consists of iteratively refining the estimate

of Q or V in order to derive either one of the below:
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V ∗(s) = maxπVπ(s) ∀ s ∈ S (2.4)

Q∗(s, a) = maxπQπ(s, a) ∀ s ∈ S, a ∈ A (2.5)

V ∗ and Q∗ are described as the optimal value functions, and the value iteration

method is guaranteed to converge to the optimal value function in a discrete envi-

ronment (Sutton, 1988). On the other hand, the policy iteration method starts with

a randomly initialised policy, uses one of the value functions to evaluate the policy,

and improves the policy by using the information gathered during the evaluation

phase. This improvement is achieved by modifying the policy to maximise the value

function for each state (or state-action pair). Given a finite MDP, policy iteration is

also guaranteed to converge to the optimal policy in a finite number of steps (Santos

and Rust, 2004).

2.1.2 From discrete to continuous variable space

The methods outlined above assume that the MDP they are applied on is discrete,

both with respect to the state space and the action space, which allows for a lookup-

table to store the policy or value function (depending on the method). An example

of an environment satisfying these assumptions would be a Grid World maze with

a limited set of squares. Nevertheless, numerous domains in RL have continuous

state and action spaces, which would require an infinite lookup table, as one entry

is reserved for each state. Domains with these properties include ATARI games,

robotics simulations, financial portfolio management etc. As an infinite lookup table

cannot exist, continuous policies and value functions are represented using function

approximators, with the drawback of losing the guarantees of optimality mentioned

previously.

A possible solution to dealing with a continuous variable space is to turn it into a

discrete one using Tile Coding (Sutton and Barto, 1998). A tiling involves dividing

the space in n-dimensional tiles, making it possible to define a point in space by

the tile it is contained in. Tile coding approaches often use multiple tilings offset

from one another, turning a continuous space into a binary vector. However, one

drawback of this technique is that it is sensitive to parameter selection, like the

number of tilings to be used, the size of the tiles and offset between different tilings.

For this reason, algorithms to automate the parameter choice of tile coding were

designed (Sherstov and Stone, 2005), although the reliance on lookup tables results
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in tile coding not being practical for very complex high dimensional environments,

such as when learning from images.

An alternative to tile coding is to use another function approximator, the most

widely used being neural networks. The first attempts at applying neural networks

to Reinforcement Learning aimed to approximate the value function and use value

iteration as a learning algorithm. However, Boyan and Moore (1995) concluded that

function approximators, neural networks included, were too unreliable for the task

and focused on trying to increase their reliability. Tsitsiklis and Van Roy (1997) on

the other hand, found that when using a non-linear function approximator, Temporal

Difference learning tends to have diverging behaviour. Since then, the computational

power available has vastly increased, and with it, the size of the neural networks used,

mainly due to the amount of time and computational power required to train them.

In more recent years, this has caused a renewed interest in the application of deep

neural networks to RL, with algorithms like Deep Q-Networks (DQN) (Mnih et al.,

2015). This algorithm uses a deep neural network to model the Q function and

addresses the instability issues reported in the past by utilising experience replay.

This technique, first introduced by Lin (1992), involves storing the agent’s experience

and letting the network learn it randomly to reduce the correlation between samples.

DQN’s update rule used makes the target values that the Q function is adjusted

towards change periodically instead of changing at every time step, resulting in a

further increase in the stability of the method.

A popular class of learning algorithms used in conjunction with neural networks

are Actor-Critic methods. They incorporate principles from both value and policy

iteration methods and are composed of an actor (a policy) and a critic (a value

function). The actor’s task is to act in the environment, whereas the critic evaluates

the policy and is used to derive the gradient update for the policy. An example of

an algorithm in this class of methods is A3C (Mnih et al., 2016), which uses the

critic in order to estimate the advantage function A(s, a) = Q(s, a) − V (s) which

is in turn utilised in the policy gradient update. The peculiarity of this algorithm

is that it allows for parallel learners to perform gradient updates independently. A

synchronous version of this algorithm, named A2C, was also developed in order to

avoid the possibility of different threads overwriting updates. While these algorithms

perform linear gradient-descent, TRPO (Schulman et al., 2015) uses Trust Region

optimisation in order to update the policy. This method involves defining a region

constrained by KL divergence, in which a local search is performed for an improved

policy. Wu et al. (2017) (ACKTR) improves the scalability of this method by using
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Kronecker-factored approximation, which has the effect of reducing the computa-

tional complexity of TRPO. The downside of trust policy methods is that they are

hard to implement, and their sample efficiency can be further improved upon. These

limitations are addressed by PPO (Schulman et al., 2017), which defines a clipped

objective function that penalises large policy updates. This function is optimisable

with gradient descent (first-order optimisation) algorithms while still retaining some

of the benefits of TRPO and ACKTR, resulting in an easily implementable state-of-

the-art RL algorithm which will be used extensively in the experimental evaluation

in this thesis.

2.2 Transfer Learning

Before introducing Curriculum Learning, it is necessary to consider the closely re-

lated area of Transfer Learning. During a curriculum, the agent is trained on a

sequence of tasks, and Transfer Learning defines how various types of information

regarding one task can be transferred to another. However, before talking about

Transfer Learning, another closely related method worth mentioning to introduce

this area is Multi-Task Learning.

2.2.1 Multi-Task Learning

Multi-task Learning is a Machine Learning paradigm that enables the learning of

multiple tasks simultaneously. This method requires using the same (or very similar)

model to solve multiple tasks, achieved through parameter sharing. There are two

types of parameter sharing: hard and soft. Hard parameter sharing is the most

commonly used form of Multi-task Learning (Ruder, 2017), and it was introduced

by Caruana (1993). It involves using a model with some task-specific layers and

other layers which are in common between tasks. Hard parameter sharing can

be beneficial, as it reduces the chance of over-fitting the samples (Baxter, 1997),

encouraging the hidden layers in common to learn high-level level features rather

than to solve a task. On the other hand, soft parameter sharing does not have

any shared layers, but it requires a separate neural network for each task. Each

network shares the same structure, and their parameters are encouraged to be similar

throughout the training (Ruder, 2017).

The concept of hard parameter sharing can also be found in modern Reinforce-

ment Learning, where it is often the case that in actor-critic algorithms, the networks
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used for the policy and value function have some layers in common, with the aim

of learning high-level features, as mentioned above. However, in Curriculum Learn-

ing, the tasks are not learnt simultaneously but rather in a sequence, which can be

achieved using Transfer Learning.

2.2.2 Terminology and Basic Principles

Transfer Learning is the field that studies how information that was learnt in a

task can be transferred to another task. This principle can also be found in human

learning, where in order to learn complex tasks, like riding a motorbike, we often

rely on previous knowledge on related activities, like riding a bicycle. In Transfer

Learning, there are two types of tasks: source and target. The agent learns source

tasks to acquire some form of domain knowledge, which is then transferred to the

target task. In the example mentioned above, the source task would be riding a

bicycle, whereas the target task would be riding a motorbike. Unlike Multi-task

Learning, Transfer Learning is solely focused on improving the performance on the

target task, regardless of the final performance on the source task. Relating this to

the example above, it is immaterial if we cannot ride a bicycle after learning how to

ride a motorbike.

In Transfer Learning, there are three main problems to solve: what to transfer,

how to transfer, and when to transfer. It is the way that one goes about solving

them that will then define the method used. What to transfer determines what

knowledge should be learnt in the source task to transfer to the target task. This

“knowledge” could be as simple as a policy, action value, or state value function

or more high-level information such as the general structure of an MDP. Once the

information to transfer has been identified and learnt, the next step is to define

a method to transfer it from one task to another. The transfer method is a core

part of the algorithm and depends entirely on what is transferred. One point that

is often overlooked is: when to transfer (Pan and Yang, 2010), which poses the

question of when it is appropriate to transfer between tasks. It could be when an

arbitrary criterion is met, like a certain performance threshold was reached or after a

certain number of time steps. Note that in some instances, the answer could be that

the transfer should not happen at all. This question is also related to Curriculum

Learning, as a critical issue in the field is how long to spend on each source task, as

will be seen later.
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Figure 2.2: On the left a representation of the source task where a policy is learnt.
Transferring this policy to the task in the center would result in positive transfer,
whereas transfering it to the task on the right would result in negative transfer.

2.2.3 Types of transfer

As previously mentioned, Transfer Learning is a valuable approach as it allows

knowledge acquired from solving source tasks to be leveraged in order to better

solve a related task. Transfer Learning is particularly relevant when a solution to

the source tasks is already known or when the target task is too complex to be solved

independently. On the other hand, Transfer Learning can also hinder the agent’s

training on the target tasks depending on the choice of source tasks. There are, in

fact, two types of transfer that can occur: positive and negative. Positive transfer

is the desired effect of Transfer Learning, and as suggested by the name, it results

in the knowledge transferred positively impacting the learning on the target task.

On the other hand, a negative transfer can be experienced when the knowledge is

transferred from “highly irrelevant sources” (Ge et al., 2014) and is detrimental to

the agent’s learning. An example is presented below to better highlight positive

transfer and negative transfer and how each might arise.

For this example, the Transfer Learning algorithm used is the one defined by

Taylor et al. (2007) which includes four steps. Firstly, the learner is trained on the

source task using policy iteration methods. A partial mapping is then performed

between “very similar” action/state variables, leaving novel ones unmapped. Next,

the policy obtained on the source task is transformed based on this mapping. Finally,

the resulting policy is used as a starting policy to learn the target task.

Assume that the task involves solving one of the mazes in Figure 2.2. The

possible actions are to move North, South, East or West, and the aim is to get

from the initial state S to the goal state G. The squares filled with a pattern are

blocked, and if the agent performs an illegal move (towards a blocked square or out

24



of bounds), its position will be unchanged. Finally, the agent experiences a reward

of -1 per action plus any reward indicated in the square and a reward of 10 for

reaching the goal.

As mentioned earlier, the chosen transfer method will be to learn a policy for

the source task and apply it to the target tasks as a starting point for the training.

The optimal policy for the source task is shown in each figure as a series of blue

arrows. If this policy is transferred to the target task in the centre of Figure 2.2, it

will have a positive effect on the training (positive transfer), as the agent will start

with an already optimal policy. On the other hand, if the optimal policy for the

source task is used as a starting point for the target task on the right in Figure 2.2,

it will result in the agent getting stuck on the top right state. As there is still a

degree of exploration involved in the training, the agent will eventually find its way

to the goal; however, this will happen at a much slower rate than when not using

Transfer Learning.

As Curriculum Learning uses Transfer Learning whenever transferring informa-

tion between tasks, the concept of positive and negative transfer is relevant when

choosing which tasks to include in a given curriculum and their order. This is es-

pecially relevant because negative transfer could result in a lower performance than

plain RL, as shown in the example above. Furthermore, as a curriculum transfers

information from one task to the next until the target task is reached, an instance

of negative transfer in the middle of a curriculum could result in the benefits of

applying a curriculum being lost altogether. For this reason, Svetlik et al. (2017)

tries to estimate “transfer potential”, a measure of how beneficial it would be to

transfer information between two tasks.

2.2.4 Performance evaluation

As Transfer Learning tries to solve a problem which is different to that of standard

RL, it also needs some specific metrics to evaluate the performance of a method.

Performing transfer between two tasks can, in fact, have a lot of different effects on

the behaviour of the learner on the target task. Some of the common metrics used

in Transfer Learning can be seen in Figure 2.3, and include: jump-start, asymptotic

performance, total reward and time to threshold (Taylor and Stone, 2009). A jump-

start occurs whenever there is an increase in the performance of the agent at the

start of the training as a result of transfer. On the other hand, the asymptotic

performance achieved by a method is defined as the final performance achieved by
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Figure 2.3: Transfer Learning metrics visualised. The x axis represents the number of
time steps the agents are trained for, whereas the y axis represents their performance.

the agent, where the asymptote represents the performance which the agent is bound

by. The total reward metric measures the total reward obtained by the agent during

the training. Finally, time to threshold measures the number of time steps required

for an agent to reach a set performance threshold.

While these metrics are helpful to highlight the effects of different Transfer Learn-

ing algorithms, they are also applicable to Curriculum Learning. When applying

these metrics to Curriculum Learning, each metric is calculated on the target task

and compared between the methods to evaluate.

2.3 Curriculum Learning

Whenever we, as humans, need to learn a complex task, we usually organise our

learning in a specific order: starting from simple concepts and progressing onto

more complex ones as our knowledge increases. This method of learning in humans

was explicitly evaluated by McCandliss et al. (2002), where the aim was to teach

Japanese adults to distinguish between the r and l consonants in spoken English (e.g.

rock lock). The study found that the most successful way to teach the participants

was to start with examples where the difference between the two consonants was

exaggerated and later learn more complex samples. The order in which concepts

are learnt is often referred to as curriculum, which is not limited to human learning.

Curricula are, in fact, also necessary to teach animals complex tasks, like in Skinner

(1951) where a pigeon was trained to recognise the suits in a pack of cards. Besides
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being an efficient way to learn, curricula of progressively increasing complexity also

seem to be the natural way humans teach a task. Khan et al. (2011) explored

this by observing the method used by human participants to teach the concept of

graspability to a robot. In this experiment, participants were presented with objects

ranging from a toothbrush (easily graspable) to a building (impossible to hold),

with some objects being at a boundary between graspable and non-graspable. The

experiment aimed to observe how participants would choose a sequence of training

examples to maximise the learning of the robot. All of the contestants started by

showing examples of either clearly graspable objects or clearly non-graspable objects

to avoid ambiguity in the initial phases of training. As the training progressed, the

examples became less evidently graspable or non-graspable, and as a result, the

complexity increased.

While Curriculum Learning is a method that was used before its formalisation

(Elman, 1993; Tesauro et al., 1995), it was officially introduced by Bengio et al.

(2009) in the context of Supervised Learning. It was then formalised in the context

of Reinforcement Learning by Narvekar et al. (2016) and has evolved over time with

the goal to automate the generation of curricula as much as possible. A more detailed

history and general review of the Curriculum Learning literature can be found in

survey papers such as Narvekar et al. (2020), Wang et al. (2021) and Soviany et al.

(2021).

This section will first discuss how the concept of a curriculum evolved in Super-

vised Learning and then discuss the relevant literature in Reinforcement Learning.

In particular, three classes of Curriculum Learning algorithms for Reinforcement

Learning are identified based on the type of restrictions they impose on the tasks

that can be added to the curriculum.

2.3.1 Curricula in Supervised Learning

The idea of applying a curriculum to Supervised learning dates back to Elman (1993)

where it is suggested that whenever training a neural network, it might be advan-

tageous to expose it to an increasingly complex subset of the training data. This

idea was then formalised by Bengio et al. (2009) and named Curriculum Learn-

ing. In particular, they framed curriculum generation as a continuation method,

where a smoothed objective function is optimised first, and the level of smoothing

decreases over time (Allgower and Georg, 1980). For Curriculum Learning, the aim

is to minimise a cost function Cλ, where C1 is the target cost function, and C0 is
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the most easily optimisable (or smoothed) cost function. The approach described in

the paper requires a human expert to provide a set of probability distributions Qλ,

which define the probability of a sample being chosen. Given a sequence of λ values,

a curriculum is defined as a sequence of probability distributions (Qλ0, ..., Qλn) of

increasing entropy (resulting in an increased complexity).

Khan et al. (2011) aimed to observe the way humans are naturally inclined

to teach a task by performing the experiment outlined in the introduction to this

chapter (teaching a robot graspability), to then use this as the basis for a novel

Curriculum Learning framework aimed at minimising the learner’s error at each

iteration.

Kumar et al. (2010) defines an alternative paradigm, Self-paced Learning, aimed

at automatically generating a curriculum, where the curriculum is learnt alongside

the weights for the network. As the generation of the curriculum is added to the

objective function as a regularisation term, any loss function can be used. The cur-

riculum generation is parametrised by K, which determines the number of samples

to be considered. K is decreased over time, resulting in a smaller set of “easy”

samples being selected at the start of the training (large value of K), with the whole

set being selected as K = 0.

Jiang et al. (2015) expands on this concept by observing the fact that Self-paced

Learning is prone to overfitting and is not able to account for any prior knowledge.

On the other hand, Curriculum Learning is compared to instructor-driven human

learning, where the curriculum is pre-defined and does not consider each learner’s

ability. Therefore, they define a new framework that encompasses both paradigms

and aims to combine the benefits of each approach. They assume that a “total order

curriculum” is provided by an oracle, specifying the order in which samples should

be learnt. This ordering is then used to define a curriculum region that bounds the

space of tasks included in the creation of a curriculum, which is generated using a

self-paced function that selects the learning scheme within the bounds imposed by

the region.

More recent work in the field of CL for Supervised Learning has focused on

learning a curriculum rather than generating one manually. In particular, Graves

et al. (2017) aims to minimise the loss function as quickly as possible by formulating

the problem of curriculum creation using the dynamic Multi-Armed Bandits frame-

work. While measuring the effect of pulling an arm (selecting a state) on the target

objective is often unfeasible, to provide a reward for selecting a state, two factors

are considered: learning progress and complexity of the neural network. The Exp3.S
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algorithm (Auer et al., 2002b) is used in this setting in order to select training sam-

ples that maximise the reward. This method results in an automatic curriculum

generation without any prior knowledge.

As mentioned in the introduction to this thesis, Chapter 5 will apply the Multi-

armed bandit framework to curriculum generation in Reinforcement Learning. While

Graves et al. (2017) formulates the problem of selecting a task as maximising a

heuristic meant to estimate the utility of adding it to a curriculum, our approach

consists of selecting the task whose complexity is closest to a given value. Using the

framework for curriculum generation that will be defined in the next chapter allows

us to separate selecting the appropriate complexity (progression) from generating

the task of the closest complexity to the desired one (mapping). This implies that

no heuristic estimating the benefit of adding a task to the curriculum is needed,

which could be hard to define for Reinforcement Learning.

2.3.2 Curricula in Reinforcement Learning

Curriculum Learning applied to Reinforcement Learning is the principal area of

focus of this thesis, and it builds on the same principles of its Supervised Learning

counterpart. Whilst the principles are similar, generating a curriculum for an RL

agent introduces its specific issues. In particular, while in Supervised Learning the

aim is to minimise a loss function over a set of samples, in RL, the curriculum is

aimed at maximising various metrics on a single MDP: the target task. Moreover, in

Supervised learning, a curriculum usually has the effect of modifying the probability

of the learner being exposed to each sample in a well-defined training set. In RL, on

the other hand, defining the set of source tasks that can be included in the curriculum

is a problem that each algorithm needs to tackle. Generating a curriculum for an

RL agent can be divided into three distinct sub-problems: task generation, task

sequencing, and transfer method used (Narvekar et al., 2020). The former addresses

how the tasks included in a curriculum are generated; task sequencing refers to the

method used to determine in which order tasks should be learnt; finally, different

algorithms will transfer different knowledge from task to task during the curriculum,

such as a policy or a reward function. This section describes how algorithms in the

Curriculum Learning literature solve one or more of the problems outlined above.

It then concludes by describing the novelty of the proposed framework with respect

to the existing literature.

Curriculum Learning methods can be classified based on the restrictions imposed
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on the MDPs included in the curriculum. In particular, we divide algorithms into

three distinct classes: single task, with restrictions and with no restrictions. Single

task methods only train on the target task and focus on organising the agent’s

experience as efficiently as possible. On the other hand, curricula with restrictions

impose a constraint on the MDPs that are part of the curriculum, such as that only

the starting state distribution or the reward function can be changed. Finally, as the

name suggests, curricula with no restrictions have complete control over the MDPs

in the curriculum, allowing any MDP to be a source task.

2.3.2.1 Single task curricula

Single task Curricula, as previously mentioned, include all methods that generate a

curriculum on the target task alone. As these methods only act on one task, Transfer

Learning techniques are not needed. The principle behind single task Curricula is to

organise the agent’s experience in the target task to maximise the sample efficiency

of RL algorithms.

The first method to generate a Single task curriculum was Prioritised Experience

Replay (Schaul et al., 2016), which aims to increase the frequency at which critical

transitions are presented to the agent by the replay buffer. The metric chosen for

prioritising samples in the buffer is the TD error2, which prioritises unexpected tran-

sitions. If the prioritisation were to be implemented greedily, the algorithm would

be prone to overfitting, and tasks with stochastic rewards would pose a significant

challenge. For these reasons, the method used to select samples to be replayed is

stochastic, interpolating between greedy selection and uniform sampling while main-

taining monotonicity with respect to the priority of a sample and the probability of

it being selected. Subsequent work defined more sophisticated metrics of prioritising

samples, such as Ren et al. (2018), where a combination of a self-paced function and

a coverage penalty is used to define the priority of each sample. This work addresses

the issues of using TD error to determine priority, as a noisy reward function, boot-

strapping, and replaying unnecessary transitions can negatively affect the agent’s

training.

Other approaches, such as Hindsight Experience Replay (HER) (Andrychowicz

et al., 2017), address the problem of over-engineered reward functions being needed

when learning in complicated domains. Creating such a reward function often needs

both Reinforcement Learning and domain knowledge, whereas using a sparse and

2The Temporal Difference (TD) error is the difference between the estimated and the discounted
value of a transition.
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binary reward function allows for learning in environments where this knowledge

might not be available. Thus, the HER algorithm was developed in order to learn

from such sparse rewards, building on the idea of Universal Value Function Approx-

imators (UVFA) (Schaul et al., 2015). UVFAs differ from standard Value Function

Approximators by needing a state and a goal as input and evaluating the utility of

being in a state when aiming to reach a specific goal. HER uses this framework

by adding the agent’s experience to the replay buffer, replacing the agent’s actual

goal with one that was achieved in the episode3 (pseudo goal). While vanilla HER

randomly samples experiences from the replay buffer, (Fang et al., 2019) recognises

that not all experience is equally valuable (reminiscent of experience replay versus

Prioritised Experience Replay) and defines a method, curriculum-guided HER, that

prioritises samples based on two main factors. The first factor is goal diversity,

which encourages a higher variation of the goals to be replayed. On the other hand,

the second criterion is proximity to the goal, calculated (alongside the first criterion)

using a distance metric between states.

The advantage of the algorithms described in this section over other methods is

that no additional MDPs need to be defined when generating a curriculum, and as

such, no Transfer between tasks is needed. However, the following sections describe

algorithms that can tailor the MDPs in the curriculum based on the agent’s ability.

2.3.2.2 Curricula with restrictions

A popular category of methods in the Curriculum Learning literature imposes re-

strictions on the elements of the environment that can be modified when generating

source tasks. The restrictions imposed by these methods reduce the search space

over MDPs whenever automatically generating a curriculum, usually focusing on

modifying a specific aspect of the target task. This section categorises each method

based on the type of restriction imposed on MDPs in the curriculum.

Starting state distribution The earliest work in Curricula with restrictions can

be traced back to at least Asada et al. (1996), where the principle of Learning from

Easy Missions (LEM) was introduced when training a robot to shoot a ball into a

goal utilising visual inputs. While previous work (Connell and Mahadevan, 1993)

focused on using a divide and conquer approach to decompose the problem in in-

dependent sub-tasks (find the ball, dribble, shoot), LEM starts with initialising the

3The absorbing state reached by the agent.
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agent close to the goal and then moving it further away in “steps” as the training ad-

vances. The experimental evaluation of this early approach showed the potential of

Curricula created by modifying the starting state distribution; however, this method

required a handcrafted set of tasks. The idea of a curriculum where the starting

state progressively moves away from the goal as the agent’s ability increases was

also explored by (Florensa et al., 2017). The algorithm, named “Reverse Curricu-

lum Generation” (RCG), assumes that a goal state is provided and gradually moves

the start state away from the goal using a uniform sampling of random actions. The

agent’s performance from the given start states is then assessed to determine which

states should be used to generate starts in the algorithm’s next iteration, with the

aim to initialise the agent in states that are neither solved nor unsolvable by the

agent. In order to increase the stability of the algorithm, starts from previous itera-

tions are stored in a buffer and re-used in later iteration (provided their performance

is within certain bounds). This method automatically generates a curriculum that

modifies the starting state distribution according to the agent’s ability.

Goal generation Other methods instead focus on modifying the set of terminal

states, in particular, Florensa et al. (2018) generates a curriculum by using the Gen-

erative Adversarial Networks (GAN) framework. This framework was introduced

by Goodfellow et al. (2014), and it entails training two networks: a generator and

a discriminator with opposite goals. The discriminator aims to distinguish between

training samples and samples generated by the generator, which in turn aims to gen-

erate samples that the discriminator cannot distinguish from the training samples.

The algorithm starts by utilising the generator network to set “Goals of Intermediate

Difficulty” for the agent to reach, that is, goals that have an expected return between

a minimum and a maximum threshold under the agent’s current policy. The agent

is then trained to achieve different goals on different episodes, made possible by

the use of Universal Value Function Approximators (Schaul et al., 2015) (described

in Section 2.3.2.1 when discussing HER). The goals the agent trained on are then

labelled based on whether they are of intermediate difficulty and are used to train

the GANs on both positive and negative examples, aiming to train the generator

to output appropriate goals. This loop is repeated throughout the training and re-

sults in an automatically generated curriculum. Racaniere et al. (2019) introduces

an alternative method for generating a goal-based curriculum centred around three

components: a solver, a setter and a judge. The solver is simply the Reinforcement

Learning agent, which is given a goal to reach at the start of each episode, and a
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reward of 0 or 1 based on whether the goal was reached. The judge has the task to

predict the probability of success of the solver on a given goal. Finally, as the name

suggests, the setter generates goals for the solver based on an estimated probabil-

ity of success. The setter is trained with three loss functions, each encouraging a

different quality in the goals: validity, feasibility and coverage. The first loss func-

tion encourages the setter to select goals that the solver has already achieved. The

second loss function ensures that the probability of success estimated by the judge

matches the setter’s estimation for the selected goals. Finally, the last loss function

encourages variety in the selected goals.

Self-play Other methods for creating a curriculum with restrictions exist, such as

self-play, where the general goal is to implicitly generate a curriculum by modifying

the skill of the opponent faced by the agent. Early implementations of this kind

of curriculum, like TD-Gammon (Tesauro et al., 1995), relied on the agent play-

ing against itself; however, this method results in overfitting when applied to more

complex domains. On the other hand, when using self-play on Go (Silver et al.,

2016), the agent was matched against a randomly selected previous iteration in or-

der to stabilise the training. Finally, more complex environments such as Starcraft

(Vinyals et al., 2019) required more sophisticated self-play methods, such as intro-

ducing leagues of agents with different goals, such as exploiting weaknesses in the

main agent’s play.

Other paradigms Sukhbaatar et al. (2017) introduces a novel method of auto-

matically generating a curriculum aimed at aiding exploration of environments with

sparse reward functions. Agents are split into two entities: “Alice” and “Bob”. Al-

ice’s role is to set a task, while Bob aims to learn by solving the task. Tasks are

set by Alice performing a sequence of actions, and if the environment is reversible,

Bob’s goal is to reverse Alice’s task by reaching the state Alice was initialised in,

from the final state reached by Alice. If the environment can be reset to an arbitrary

state, on the other hand, Bob aims to solve the task by reaching the same final state

as Alice from the same initial state. Bob is rewarded by minimising the time taken

to complete a task, while Alice is rewarded based on the difference of time taken

to set the task against the time Bob takes to solve it. This type of curriculum,

named “asymmetric self-play”, enables the agent to learn about the environment’s

mechanics without a reward function. Pinto et al. (2017) on the other hand, aims

to improve the robustness and stability of the training by using “Robust Adversar-
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ial Reinforcement Learning”. This method entails training an agent that aims to

maximise a reward function while also training an adversary that aims to minimise

it. The adversary acts in the environment by applying “destabilising forces”, for

example, if the goal is to keep a pendulum upright, the adversary will be able to

push the pendulum in either direction; an alternative approach for developing an

adversary could also focus on perturbating the agent’s actions. As the adversary

learns the task alongside the agent and becomes more skilled, the complexity of

the tasks to solve increases, resulting in a curriculum being generated. (Riedmiller

et al., 2018) introduces the “SAC-X” algorithm that aims to aid the environment’s

exploration by only changing the reward function in the final task. This is achieved

by learning a scheduler that selects the sequence of auxiliary tasks to be learnt, and

a set of policies or “intentions” to execute. Self-Paced Contextual Reinforcement

Learning (Klink et al., 2020a) applies the same principles behind Self-paced Learn-

ing to Reinforcement Learning. This framework uses a contextual variable c ∈ Rn

to define a Markov Decision Process in a given domain, similar to a parameter vec-

tor in (Narvekar et al., 2016), although in this specific case limited to MDPs where

transfer is not necessary between tasks. Assuming that the target context distri-

bution is known, the agent is tasked with learning a policy and updating a context

distribution, seeking to balance the current reward with the proximity to the tar-

get distribution. The work in Klink et al. (2020a) is then extended by Klink et al.

(2020b), where the context distribution is updated separately from the policy (in a

“block-coordinate ascent manner”), resulting in any RL algorithm being usable for

learning. Finally, Milano and Nolfi (2021) defines a Curriculum Learning method to

be used in conjunction with evolutionary algorithms. Their method divides different

environmental conditions in various subsets based on the normalised performance

of recently evolved agents. During the training, the agents will be presented with

a randomly sampled task from each subset, ensuring the variety of the conditions

experienced by the agents, and preventing overfitting. The curriculum is defined by

a “difficulty function”, that influences the composition of the subsets by changing

the range of performance they represent. In the paper, difficulty functions are de-

fined using power functions4, as a way to increase the number of subsets at lower

performances, biasing the selection of environmental variables towards tasks that

are hard for the current population of learners.

4The paper uses xn for n ∈ [1, 4]
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2.3.2.3 Curricula with no restrictions

Whilst the methods discussed so far were designed with a specific set of restrictions

in mind, this class of methods allows any MDP to be a source task in the curriculum.

This is also the class of methods the work in this thesis belongs to. Not imposing

restrictions on the MDPs to be included in the curriculum complicates the generation

of a curriculum as the space of possible source tasks increases; however, it also results

in a more flexible curriculum often needing Transfer Learning between different

tasks.

Curricula with no restrictions can be traced back to at least Karpathy and Van

De Panne (2012), where an Acrobot5 is trained to perform various skills, such as

hopping, flipping, rolling or a combination of the previous. This training is struc-

tured using a two-level curriculum, where the highest level specifies the order in

which the skills are learnt, and the lowest level controls how each skill is learnt. The

low-level curriculum includes three phases: “achieve”, aimed at completing a skill;

“explore”, where the agent explores the neighbourhood of the successful experience

by varying initial conditions and actions; and “generalise” aimed at generalising the

experience collected in the exploration phase. However, it was not until Narvekar

et al. (2016) that a general framework for Curriculum Learning in RL was outlined.

This framework defines a domain D as a set of MDPs with various degrees of freedom

(or parameters) f and a generator τ that generates an MDP given a specific domain

and parameter vector. In this setting, a curriculum was defined as a sequence of

MDPs to be learnt by the agent in a specific order before learning the target task.

Whilst Narvekar et al. (2016) set out a framework for Curriculum Learning, the set

of source tasks, their ordering and the amount of time to train on each task in the

curriculum are assumed to be provided by a domain expert. Recent work by Manela

and Biess (2022) showed how this type of pre-determined curriculum can be aug-

mented with task-level curriculum methods, more specifically HER (Andrychowicz

et al., 2017). In particular, they observed the poor performance of HER in tasks

that require multiple sub-goals to be achieved before being successfully completed.

They show the benefits of applying HER to each individual task within a higher

level curriculum in domains that require reaching an object and throwing it towards

a target, with the curriculum being composed of two tasks: reaching and throwing.

While this section has so far only discussed curricula with a given set of source tasks

5“Planar, physically-simulated articulated figure that consists of two rigid bodies (links) con-
nected by one actuated joint and an attached, fixed foot.” (Karpathy and Van De Panne, 2012)
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with a specified order, other work in no restrictions Curriculum Learning aims to

further automate the generation of a curriculum.

The first part of curriculum generation that was automated (and the main fo-

cus of a considerable proportion of the literature in this field) is task sequencing.

(Narvekar et al., 2017) aims to tackle the problem of automatically sequencing a pre-

defined set of source tasks by defining the generation of a curriculum as an MDP.

The state-space includes all the policies that can be represented by the agent, the

action space is the set of all tasks that the agent can train on at any given time step,

the transition function represents the change in the agent’s policy before and after

learning a task, and the reward function is formulated as to reward the lowest time to

threshold. Once the curriculum generation is defined as an MDP, it is possible to use

an RL technique to learn a solution. In this case, the algorithm, named Monte Carlo

Approximation, learns all the source tasks until a computational budget is exceeded

and adds the one that modifies the agent’s policy the most to the curriculum. As

such, it needs access to the agent’s function approximator, which might not always

be possible. This concern is addressed by Teacher-Student Curriculum Learning

(Matiisen et al., 2017) which is based on a Partially Observable MDP formulation.

The teacher component selects tasks for the student whilst learning, favouring tasks

in which the student is making the most progress or that the student appears to

have forgotten. The aim is for the agent to be able to solve all the tasks in the

curriculum. The progress is measured through a change in reward on a task-by-task

basis, thus not needing special access to the agent.

Sequencing a curriculum can also be formulated as a combinatorial optimisation

problem, where the goal is to find the optimal sequence of tasks; as such, classic meta-

heuristic algorithms can be used in this setting. Foglino et al. (2019b) compared

four meta-heuristics on two domains concluding that trajectory-based methods6,

such as Filtered beam search (Ow and Morton, 1988) and Tabu search (Glover

and Laguna, 1998) performed better than population-based methods7, such as Ant

colony optimisation (Dorigo et al., 2006) and Genetic Algorithms Goldberg and

Holland (1988). Later, Foglino et al. (2019a) introduced a Curriculum Learning

specific heuristic for task sequencing: Heuristic Task Sequencing for Cumulative

Return (HTS-CR). This is a complete anytime algorithm converging to the optimal

curriculum of a pre-defined maximum length. The algorithm starts by evaluating all

curricula of length 2, and uses the information gathered in order to estimate which

6Heuristics that guide the search to certain areas of the search space.
7Methods that use multiple independent entities to search the search space.
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tasks are better “heads” and which are better “tails” for the curriculum. Based

on this initial estimate different curricula up to a maximum length are generated.

The guarantee of optimality is derived from this algorithm eventually exploring all

possible curricula up to the maximum length.

Another approach to automatic curriculum generation is to consider a curricu-

lum as a Directed Acyclic Graph (DAG) where tasks are represented as nodes, and

an edge from node a to node b represents task a being a source task for task b.

Svetlik et al. (2017) defined a way to automatically generate a curriculum graph

that relies on a metric named “transfer potential”, aimed at evaluating the benefit

of transferring knowledge from a given source task to a target task. This metric

eliminates the need to learn each task individually before choosing which one should

be added to a curriculum (like in Narvekar et al. (2017)). The first step for automat-

ically generating a curriculum graph using this method is eliminating tasks whose

transfer potential is below a given threshold and group them based on a (coarser)

binary representation of a parameter vector. Once tasks with the same descrip-

tor are grouped, they are connected within their respective group based on their

transfer potential. Finally, edges between different groups are added, resulting in

a completed curriculum graph. This framework lays the foundations to be able to

have a further layer of automation in the creation of a curriculum by using Object-

Oriented MDPs (OOMDPs), like in Silva and Costa (2018). OOMDPs introduce

the concept of class to add a layer of abstraction to the state representation. Like in

Object-Oriented Programming, a class has different attributes, each one with a dif-

ferent domain. Therefore, a particular state can be represented as a set of instances

of different classes or the value of the attributes of each instance of the classes. This

makes it possible to automate the creation of source tasks by randomly selecting ob-

jects from the target task to build a set of source tasks. It is assumed that a source

task obtained using this process is easier to solve than the target task because it

has fewer objects, and therefore the task should be less complex. While in Svetlik

et al. (2017) transfer potential is defined as a function of the size of the state space

and the applicability of the source task’s value function to the target task, Silva and

Costa (2018) expresses it as a comparison between the objects present in the source

and target task.

While this class of methods gives the most amount of freedom in the source tasks

that can be included in a curriculum, it also requires the definition of a Transfer

Learning method to be used when applying the knowledge learnt in one source task

to the next. The transfer method can be as simple as directly using the policy
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or value function trained in one task to the following one. There are however some

curricula where a simple transfer method is not applicable, such as whenever there is

a difference in the state and/or action spaces of the MDPs in the curriculum. These

cases require the use of more complex Transfer Learning algorithms, that might

require additional domain knowledge (such as mappings between states and actions

between different MDPs), and extensive testing for their fine-turning. In practice,

this might result in more time and effort being used to define (and fine-tune) the

Transfer Learning method rather than the Curriculum Learning method to be used.

2.3.2.4 Curriculum Learning with a Progression Function

The framework for Curriculum Learning that is proposed by this thesis looks at the

problem of curriculum creation from a new angle: focusing on the complexity of

the task the agent trains on and its evolution as the agent’s abilities change during

the training. The framework is placed in the class of curricula with no restrictions,

and it splits the problem of curriculum generation in two sub-problems: defining the

complexity of the environment, and generating tasks of the appropriate complexity.

Unlike existing algorithms in the literature, this key division within the framework

allows the introduction of high level domain knowledge in the task generation, while

still having an online curriculum tailored to the agent’s ability. Moreover unlike

other curriculum learning algorithms, that tend to either fully automate all aspects

of curriculum generation or require significant expert knowledge (e.g. manually

constructed tasks), our framework can generate curricula that are either fully auto-

mated, manually generated, or a hybrid between the two. As will be discussed in

Chapter 5, our method also introduces a new8 version of the Multi-armed Bandit

problem, and uses it to automate the generation of tasks of a required complexity.

8to the best of our knowledge
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Algorithm Restrictions Task generation Task selection Task sequencing

Schaul et al. (2016)
Can only train

on target task

Automatic (based on
agent’s experience)

All tasks within
buffer are selected

Prioritising transitions
based on TD error

Ren et al. (2018)
Can only train
on target task

Automatic (based on
agent’s experience)

All tasks within
buffer are selected

Prioritising transitions
based on self-paced

function and coverage

Andrychowicz et al. (2017)
Can only train
on target task

Automatic (based on
agent’s experience)

All tasks within
buffer are selected

Random

Fang et al. (2019)
Can only train
on target task

Automatic (based on
agent’s experience)

All tasks within
buffer are selected

Goal diversity and
proximity to the goal

Asada et al. (1996)
Can only change
the initial state

Domain experts Domain experts Domain experts

Florensa et al. (2017)
Can only change
the initial state

Uniform sampling
of random actions

Based on agent’s
performance

Random

Florensa et al. (2018)
Can only change

the goal state
GAN GAN GAN

Racaniere et al. (2019)
Can only change

the goal state
Setter Setter Setter

Tesauro et al. (1995)
Can only change

the opponent
Automatic Automatic Automatic

Silver et al. (2016)
Can only change

the opponent
Automatic Automatic Automatic

Vinyals et al. (2019)
Can only change

the opponent
Automatic Automatic Automatic

Sukhbaatar et al. (2017)
Can only change

the goal state
Automatic (Alice) Automatic (Alice) Automatic (Alice)

Pinto et al. (2017)
Can only oppose

the agent
Adversary Adversary Adversary

Riedmiller et al. (2018)
Can only change

the reward function
Scheduler Scheduler Scheduler

Klink et al. (2020b)
Can only train
on target task’s

domain
Automatic Automatic Automatic

Milano and Nolfi (2021)
Can only train

one domain
Domain experts

Based on
difficulty function

Cycle through
each subset
and repeat

Karpathy and Van De Panne (2012) No restrictions Domain experts Domain experts Domain experts

Narvekar et al. (2016) No restrictions Domain experts Domain experts Domain experts

Manela and Biess (2022) No restrictions Domain experts Domain experts Domain experts

Narvekar et al. (2017) No restrictions Domain experts CMDP CMDP

Matiisen et al. (2017) No restrictions Domain experts Teacher agent Teacher agent

Foglino et al. (2019a) No restrictions Domain experts Automatic Automatic

Svetlik et al. (2017) No restrictions Domain experts Automatic Automatic

Da Silva and Costa (2018) No restrictions OOMDP Automatic Automatic

This thesis No restrictions Mapping functions Progression functions Progression functions

Table 2.1: This table contains all the algorithms mentioned in this chapter that are
aimed at creating a curriculum in a RL setting. They appear in the same order they
are discussed and the type of restriction imposed on the tasks that can be part of
the curriculum, alongside the method used for generation, selection and sequencing
are reported.
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Chapter 3

Curriculum Learning

Framework

As discussed in the background section, previous work has focused on gradually mod-

ifying the agent’s experience within a given restricted set of MDPs (Sections 2.3.2.1

and 2.3.2.2) or scheduling sequences of different and increasingly complex tasks (Sec-

tion 2.3.2.3). This chapter introduces a framework for Curriculum Learning that

encompasses both paradigms, centred around the concept of task complexity and its

progression as the agent becomes increasingly competent. The framework enables

ample flexibility as the tasks can be selected from an infinite set without restrictions,

and, most significantly, the task difficulty can be modified at each time step. Fur-

thermore, this framework is learning-algorithm agnostic, as it focuses on modifying

the environment according to the agent’s ability and does not need access to the

agent’s internal state. The framework is based on two components: a progression

function calculating the appropriate complexity of the task for the agent at any given

time, and a mapping function modifying the environment according to the required

complexity. The progression function encompasses task selection and sequencing,

while the mapping function is responsible for task generation. Generation, selection

and sequencing are the central components of Curriculum Learning (Narvekar et al.,

2016), seamlessly integrated into the proposed framework.

Unlike previous work (discussed in Section 2.3.2), our method can directly lever-

age simple high-level domain knowledge in generating a curriculum for the agent.

Even in highly complex domains, defining how the environment’s complexity could

be modified over individual dimensions is often straightforward. For example, if an

agent’s objective is to learn how to drive a car on the road, decreasing the friction
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between the wheels and the ground, simulating slippery conditions will result in the

environment becoming more complex. Likewise, adding a delay to the execution of

actions to simulate a human’s reaction time would also make the environment harder

to solve. Our framework can leverage this simple domain knowledge to generate a

curriculum for the agent over multiple dimensions of complexity.

This chapter starts with a formal definition of a curriculum, and then discusses

the details of the proposed framework. Progression functions are then discussed

in more detail, and the linear and Exponential progression are introduced. After

explaining the details behind the generation and properties of mapping functions,

some additional properties of our framework are introduced: progression in a set-

ting where multiple parallel workers are present and curriculum granularity (how

often the intermediate task is updated). Some special cases of our framework are

also discussed, such as progression in a task-based setting, and using our framework

in conjunction with reward shaping. Finally the details of the setting of the ex-

periments used to evaluate approaches derived from the framework is clarified, and

some preliminary experiments are undertaken in order to assess the potential of the

proposed framework.

3.1 Curriculum

Before defining the specific elements of our framework, we first formally define a

curriculum and the core components needed to generate one.

LetM be a possibly infinite set of MDPs that are candidate tasks for the curricu-

lum, and mf ∈M, be the target task. The target task is the task the designer wants

the agent to learn more efficiently through the curriculum. We define a curriculum

as a sequence of tasks in M:

Definition Given a set of tasks M, a curriculum over M of length l is a sequence

of tasks C = 〈m1,m2, . . . , ml〉 where each mi ∈M.

The tasks in the curriculum are called the intermediate tasks. Each task in a cur-

riculum is part of a family of MDPs called a domain D, in which a specific task is

defined by a parameter vector ψ ∈ Rn. As our framework does not impose restric-

tions in the generation of a curriculum, intermediate tasks can be from any domain,

provided that an appropriate transfer method is used when necessary. The curricu-

lum aims to achieve the highest performance possible within the number of learning
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Figure 3.1: Visualisation of the Point Mass Maze domain. The red area in the top
right of the maze represents the goal, and the curriculum is built by changing the
starting position of the agent in the maze.

steps1 allocated. Another aim of using a curriculum is to achieve this performance

as quickly as possible. The specific performance metric optimised normally depends

on the Curriculum Learning algorithm; however, to keep our framework as flexible

as possible, we allow the optimisation of both environment-specific metrics (such as

success rate in a navigation domain) and more traditional metrics such as cumulative

reward. This will be expanded in Chapter 4.

3.2 Framework Details

As previously introduced, our Curriculum Learning framework comprises two ele-

ments: a progression function, and a mapping function. The role of the progression

function is to specify the appropriate complexity vector at each time step, each com-

ponent being between 0 and 1. The mapping function takes as input the complexity

vector and generates an MDP with the desired complexity. A curriculum is gener-

ated over one or more dimensions of complexity, where each dimension corresponds

to one or more parameters of a domain.

The Point Mass Maze domain2 will be used as a running example for the rest of

the chapter. The agent is required to navigate through a G-shaped maze, shown in

Figure 3.1, to reach the goal in the top right corner of the maze. In this domain, the

complexity of the environment is a one-dimensional vector representing the starting

position of the agent in the maze, where the easiest possible task (of complexity [0])

has a starting position right next to the goal. In contrast, the most challenging task

(of complexity [1]) has a starting position as far as possible, along the maze, from

1Refers to the computational budget, expressed as the number of actions, allocated for the
training of the RL algorithm.

2Domain previously introduced by Florensa et al. (2017)
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the goal. In this case, the first (and only) dimension of complexity corresponds to

two parameters: the agent’s initial x and y coordinates.

A progression function Π over n dimensions is defined as follows:

Π : N+ × P→ [0, 1]n (3.1)

where ~ct = Π(t,P), is the complexity vector at time t, and P is a set of parameters

specific to each progression function. The vector ~ct reflects the difficulty of the MDP

relative to each dimension where the agent trains at time t. The MDP corresponding

to ~ct = ~1 is the final task, whereas the MDP corresponding to ~ct = ~0 is the least

complex task in the set of candidate tasks M (where ~x is the vector of length n

where each element is x).

To generate tasks of a specific complexity, we introduce the mapping function,

which maps a specific value of ~ct to a Markov Decision Process m created from the

set M:

ΦD : [0, 1]n →M (3.2)

The co-domain of ΦD contains the set of all possible intermediate tasks. The

mapping function encodes some high-level knowledge about the domain, such as, in

the Point Mass Maze domain: the further from the goal, the more complex the task.

This knowledge is then used to generate a task of the desired complexity, mapping a

complexity vector (e.g. [0.3]) to the MDP with the corresponding parameter vector

(e.g. distance = 0.3 * maximum distance). Assuming that the learning time of an

MDP is defined as the number of actions needed to converge to the optimal policy

from a randomly initialised policy; for each dimension i ∈ [0, n] an ideal mapping

function generates the MDP with the lowest learning time when the complexity

vector is ~1 − ~ei
3 and the MDP with the highest learning time when the required

complexity is ~1. Moreover, given two MDPs with complexity vectors ~1−~ei·(1−a) and

~1− ~ei · (1−b) with a, b ∈ [0, 1], the difference between a and b should be proportional

to the difference in their learning time. Complexity is defined on each dimension

independently, and it is up to the progression function to specify a curriculum in all

dimensions.

At any change of the value of ~ct according to the progression function, a new

intermediate task is added to the agent’s curriculum. Given a mapping function Φ,

the value of ~ct at time t corresponds to a new intermediate task:

3~ei is the vector of length n where the ith element is 1 and all other components are 0.
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Algorithm 1 CL with a progression function

Inputs: RL algorithm, Progression function Π, Parameter set P, performance func-
tion p, domain knowledge, transfer learning method

1: Generate mapping function Φ using domain knowledge
2: history := new list
3: t := 1
4: i := 0
5: m0 := Φ(0)
6: ~current c := ~0
7: while learning do
8: st, rt := result of RL algorithm’s action in mi

9: insert (st, rt) in history
10: if p(history) is valid then
11: ~ct := Π(t, p(history),P)
12: if ~ct 6= ~current c then
13: ~current c := ~ct
14: mi+1 := Φ(~ct)
15: use transfer learning method from mi to mi+1 on RL algorithm
16: i := i + 1
17: end if
18: update mapping function Φ if necessary
19: remove all elements from history
20: end if
21: t := t + 1
22: end while

mi = Φ(~ct) (3.3)

where i is the number of updates to the value of ~ct since the start of the progression;

specifying the way ~ct changes over time through a progression function selects which

tasks are added to the curriculum and in which order, resulting in the curriculum:

C = 〈m0, ...,mi〉 (3.4)

Algorithm 1 shows how our approach is integrated with the agent’s learning (line 8

is where the agent solves the MDP), and it considers all the extensions to the core

framework described in Chapters 4 and 5. For the purpose of this chapter the reader

can assume that: the condition at line 10 is always true, p(history) does not have

any influence on the complexity vector at line 11, and that line 18 can be ignored.
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Figure 3.2: Example of different progression functions on an environment with one
dimension of complexity. The figure on the left shows the effect of changing the
value of te in a Linear progression. The figure on the right, on the other hand shows
the effect of changing the value of s in an Exponential progression.

3.3 Progression functions

As mentioned above, progression functions determine how the complexity of the

environment changes throughout the training, and in doing so, they generate a

curriculum. The first class of progression functions introduced in this thesis is called

fixed progression, and it includes progression functions that define the curriculum

before execution. The most basic example of one such progression function is the

linear progression. The only parameter in this function is the time step in which

the progression ends, te. The equation of this progression function is as follows:

Πl(t, te) := (
t

te
)>1 ·~1 (3.5)

where a>b is equivalent to the minimum value between a and b. Whilst in principle,

each dimension of complexity could have its distinct value of te, this would make

the parameter selection process difficult for environments with multiple dimensions

of complexity. Therefore, this chapter defines fixed progression functions as only

selecting tasks where each dimension has the same complexity. When using a Linear

progression function, as the name suggests, the complexity of the environment will

increase linearly until reaching a value of ~1 at t = te.

We also introduce a second progression function, the exponential progression,

with equation:
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Πe(t, {te, s}) = (

(
e

t
te

)α
− 1

eα − 1
)>1 ·~1 (3.6)

α :=
1

s
(3.7)

Like the Linear progression, it includes a parameter to indicate when the progression

should end, te, and a parameter s, which influences the progression’s slope. A

positive value of s results in the progression being initially steeper and slower towards

the end of the training. On the other hand, a negative value of s results in the

initial progression being slower. Figure 3.2 shows how different values of s affect

the progression for one dimension by plotting the complexity over the course of the

curriculum for several values of s.

In Equation 3.6 the numerator is responsible for the progression, starting at ~0

when t = 0 and increasing as t increases. On the other hand, the denominator serves

to guarantee that the value of ~ct is equal to ~1 as t = te.

Theorem An Exponential progression converges to a Linear progression as s tends

to infinity

Proof The statement above can be expressed by the following limit

lim
s→∞

Πe(t, {te, s}) = Πl(t, te) (3.8)

By substituting the equations of the two progression functions and accounting for

the fact that α = 1
s we get the following equation:

lim
α→0

((

(
e

t
te

)α
− 1

eα − 1
)>1 ·~1) = (

t

te
)>1 ·~1

In this equation, the clipping ( >1) is used only to ensure that the value returned by

the progression functions is always in the [0, 1] interval, however, if we prove that the

left hand side equals to the right hand side without clipping their value, the proof

will also be valid after the clipping is added. Moreover as the vector ~1 multiplies

both sides of the equation it can be simplified. These considerations result in the

equation above becoming:

lim
α→0

(

(
e

t
te

)α
− 1

eα − 1
) =

t

te

As the limit converges to the indeterminate form 0
0 , l’Hôpital’s rule can be applied:
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lim
α→0

(

t
te

(
e

t
te

)α
eα

) =
t

te

The above equation converges to:

t

te
=

t

te

therefore proving Equation 3.8 and in turn the statement in the Theorem.

�

As a Linear progression function can be approximated by an Exponential pro-

gression function with a large value of s, our evaluation will only include the latter.

However on more simple applications of a curriculum, a Linear progression might

still be useful as it is easier to implement and only has one parameter.

3.4 Mapping functions

Alongside progression functions, our framework also relies upon mapping functions

in order to generate a curriculum. As previously mentioned, mapping functions

cover the task generation aspect of a curriculum. In fact, once the progression

function specifies the desired complexity, the role of the mapping function in our

framework is to generate the MDP associated with that complexity. This can be seen

in Algorithm 1 at line 12, where mi is the ith MDP in the curriculum. As mapping

functions deal with each dimension of complexity separately, we will discuss the

details in the generation of a mapping function only with respect to one dimension.

Mapping functions are also how high-level domain knowledge can be leveraged

in creating a curriculum: to demonstrate this, we expand on the example previously

introduced in Section 3.2, which dealt with creating a mapping function for a nav-

igation domain. Let us assume the domain in question requires two parameters to

define an MDP: the x and y coordinates at which the agent should be initialised. Let

the domain knowledge we want the mapping function to represent be: the further

away from the goal the agent is initialised, the more complex the MDP. Assuming a

one dimensional complexity vector ~ct = [dt] this knowledge can be encoded by this

simple mapping function:

Φ(dt) = Mdt∗10 (3.9)

where Mx is the MDP where the agent’s initial distance from the goal is x. It is
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therefore sufficient to define a function converting distance from the goal to x and y

coordinates in order to generate a mapping function for this domain. This is also an

example where one dimension of complexity affects multiple parameters. This tech-

nique is useful, especially when there are parameters whose correlation, like x and y

coordinates, simplifies the generation of a mapping over considering each dimension

individually. In this example, there is also a linear correlation between complexity

and distance, although this does not need to be the case. In the next chapter we

will show that when progressing the complexity of the environment while taking into

account the agent’s performance, as long as the proposed mapping function does not

violate the domain knowledge, the specific way the mapping function is defined does

not greatly affect the learning speed of the agent.

If the monotonicity of a parameter’s complexity can be assumed, the value of this

parameter relative to the environment’s complexity can be easily calculated using

one of the two equations below, assuming i ∈ [1, |ψ|] is the index representing a

dimension in the parameter vector ψ:

ψhi > ψei → ψti = ψei + (ψhi − ψei ) ∗ cit (3.10)

ψei > ψhi → ψti = ψei − (ψei − ψhi ) ∗ cit (3.11)

where ψhi is the value of parameter ψi corresponding to the most complex environ-

ment, ψei is the value of parameter ψi corresponding to the least complex environ-

ment, ψti is the value of parameter ψi at time t, and cit is the component relative

to dimension i in the complexity vector at time t. The advantage of generating

mapping functions using the equations above is that if the assumption holds, the

only thing that needs to be ascertained is whether the minimum value of a param-

eter amin results in an easier or harder environment compared to the maximum

value of the same parameter amax. If the assumption does not hold naturally for

a domain, for example, if the domain requires to specify the x and y coordinates,

we would introduce distance as an abstraction of the coordinates of a state, sat-

isfying the constraint above. If a domain did not allow for such an abstraction,

the mapping function could still be generated not to violate the domain knowledge,

although without using Equations 3.10 and 3.11. It is worth noting that the two

simple equations defined above were used to generate all of the mapping functions

in our domains and are applied independently to each dimension of complexity (or

abstraction).
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3.5 Progression with parallel environments

If it is possible to train with multiple instances of the domain simultaneously, such

as whenever using a parallel implementation of an RL algorithm, each instance of

the domain should have its own independent progression function. Having multi-

ple progression functions allows for varying their parameters, resulting in the agent

training on a range of complexities of the environment simultaneously. This also

varies the experience of different learners and results in a higher stability of the

training process, as the correlation of the updates between different learners is re-

duced.

When using the Exponential progression, all learners use the same te but vary the

value of s, as in Figure 3.2. Once the number of processes is specified, a minimum and

a maximum value for s are defined; firstly, two processes are assigned s corresponding

to the minimum and the maximum. The rest of the processes then are assigned a

value of s that ensures even spacing from the line x = y. For example, the four

lines with s > 0 in Figure 3.2 would result from this parameter selection method

using 4 processes. This technique also has the effect of requiring less variance in the

parameter selection process. In fact, in all of the domains where multiprocessing is

applicable, we used the same parameters for selecting s: the minimum value of s

was always 0.1, and the maximum value of s was 2.

3.6 Curriculum granularity

Granularity is a key feature of a curriculum generated within our framework, and it

is defined as the maximum frequency with which the complexity of an environment

is changed during the curriculum. This is one of the factors that distinguishes the

framework outlined in this chapter from the typical definition of a curriculum in

the area of curricula with no restrictions. Our approach of defining a progression

function as a continuous function generates a curriculum that can change the MDP

up to every time step, resulting in a fine-grained curriculum. A coarse curriculum,

on the other hand, would be the one defined by (Foglino et al., 2019a), where a task

is trained for several episodes until convergence, resulting in a curriculum composed

of a limited amount of source tasks. As curriculum granularity is a property that

can be specified, our framework can be applied to both fine-grained and coarse

curricula. While Algorithm 1 showcases a curriculum where a new intermediate

task is generated up to every time step, line 9 could be modified in order to enforce
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Figure 3.3: The figures show how the complexity of the task the agent is training
on changes over time in curricula with different granularity. The curricula are gen-
erated by the linear (left) and exponential (right) progression functions, with the
“continuous” one being the standard fine-grained curriculum defined by our frame-
work. The legends report the number source tasks in each curriculum, where a jump
in the value of ct results in a new task being added.

a specific number of tasks by updating the intermediate tasks at set thresholds of

complexity. This technique can be seen in Figure 3.3, where the complexity vector

over a single dimension is plotted for curricula of different granularity generated by

the linear and Exponential progression.

3.7 Special Cases

This section will discuss some special cases of this framework, in particular applying

it to a task-based setting, and also how it can make non-potential reward shaping

viable in an environment.

3.7.1 Progression in a task-based setting

The idea of a progression function can be applied to a“task-based” setting, where a

curriculum is not created by a mapping function. By task-based setting we mean the

kind of no restriction Curriculum Learning approach formalised in Narvekar et al.

(2016), and continued by (Narvekar et al., 2017; Foglino et al., 2019a; Svetlik et al.,

2017; Da Silva and Costa, 2018), where a curriculum is defined on a set of tasks that

were meant to be learnt until convergence. However Narvekar et al. (2020) suggests

that this is in fact unnecessary, and that a higher performance can be achieved by

stopping the training early. An open question in this type of curriculum is therefore

how long the agent should train on each source task before progressing to the target
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task. Our framework, in particular progression functions, can be used to tackle

this issue. Once a curriculum is known, one can use a one-dimensional progression

function to specify when it’s appropriate to switch the task the agent trains on. The

range of a complexity vector ~ct with only one dimension of complexity can in fact be

divided into l parts, l being the number of source tasks in the pre-defined curriculum

to execute. This would generate a set of thresholds, for example in a curriculum

of four tasks the thresholds would be [0.25, 0.5, 0.75, 1], that once reached cause a

change in the source task the agent is trained on. Once the complexity reaches one,

the agent is trained on the target task for a pre-defined length of time, like in other

methods. This approach also allows for the value of ~ct to be used to perform a

progression within the task itself, only modifying a limited set of parameters.

Using this approach with fixed progression functions, that do not take into ac-

count the performance of the agent, is equivalent to specifying the amount of time

steps to train on for each task. However, this approach can be used with the class

of progression functions introduced in the next chapter (adaptive progression func-

tions), that aim to tailor the curriculum to the agent’s ability by using its perfor-

mance when calculating the complexity of the environment. However, some source

tasks might never converge to a performance that is sufficient to progress to the

following task, such as when there is negative transfer. This would result in this

approach paired with adaptive progression functions to never change the source task

in this setting. One solution to this problem is to use this approach in conjunction

with expert knowledge of the domain: one can still impose an upper bound on the

number of episodes to spend in a specific environment, and move to the next task

when either the limit has been reached or the progression function reached a thresh-

old. If an upper bound was not available for each individual task, the upper bound

for all tasks could be set to be the amount of time the target task is trained for,

not needing any additional domain knowledge and still mitigating the issue of the

curriculum never terminating.

3.7.2 Reward shaping

Another special case where our framework can be utilised is its application to reward

shaping, in particular (but not limited to) non-potential based shaping. Reward

shaping is a popular technique used to guide the agent by encoding domain knowl-

edge in the form of a shaping function F : S × A× S. While the agent is training,

the shaping function is added to the standard reward function of the MDP.
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Potential-Based Reward Shaping (Ng et al., 1999) is a special case of reward

shaping where the shaping function is obtained from the difference between the

potentials of two states. If there exists a function φ : S ⇒ R , called potential

function, such that

F (s, a, s′) = γφ(s′)− φ(s)

then F is a Potential-Based Shaping Function. If F is potential based, then Ng et al.

(1999) proves that “every optimal policy in M ′ will also be an optimal policy in M

(and vice versa)”.

Whilst previous work in this area focuses on defining a type of shaping that does

not alter the optimal policy in an environment, our framework can also be used

in conjunction with non-potential based shaping functions in order to make them

viable. A shaping function can in fact be seen as another parameter that can be

altered by the curriculum and that decreases the complexity of the environment

(by providing guidance for the agent). As the main concern whenever non-potential

shaping functions are used is a change in the optimal policy as a result, our frame-

work can be used to annihilate the shaping function over time. This can be achieved

by treating the coefficient of the shaping function as an independent dimension of

complexity:

R′(s, a, s′) = R(s, a, s′) + ~ct[d] · F (s, a, s′)

assuming that ~ct[d] is the value of the complexity vector relative to the shaping

dimension, F is a shaping function, R is the environment’s reward function and R′

is the reward function the agent will try to optimise. This allows for any shaping

function to be used and integrated within a curriculum, by mitigating the risk of

the shaping function potentially altering the best policy in a given domain.

3.8 Experimental setting

This section discusses the details behind our evaluation process. Firstly the six

domains used for the evaluation of the work in this thesis will be introduced, then

the learning algorithm used and the experimental method will be briefly discussed.

5Figure for the HFO environment edited from https://github.com/LARG/HFO/blob/master/

img/hfo3on3.png
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Figure 3.4: Visualisation of each one of the domains used in our testing. (From top
left to bottom right: Grid World Maze, Point Mass Maze, Directional Point Maze,
Ant Maze, Predator Prey and HFO5).

3.8.1 Evaluation domains

Our testing domains include two Grid World environments, three MuJoCo (Todorov

et al., 2012) environments and Half Field Offense (Hausknecht et al., 2016). A

visualisation for each domain is available in Figure 3.4.

Grid World Maze The first test domain used in this paper is a grid-world domain

previously used by Foglino et al. (2019a), where the agent needs to reach a treasure

while avoiding fires and pits. The agent can navigate this domain by moving North,

East, South or West, and the actions taken in this domain are deterministic. This

domain’s reward function is as follows: 200 for reaching the cell with the treasure,

-2500 for entering a pit, -500 for entering a fire, -250 for entering one of the four

adjacent cells to a fire and -1 otherwise. In this domain, the episodes terminate

when the agent reaches the treasure, falls into a pit or performs 50 actions. The

combination of fires and pits used can be seen in Figure 3.4, where F represents a

fire, orange squares represent a cell next to a fire, P represents a pit, S represents the

starting position for the target task, and T represents the position of the treasure.
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The state space for this environment is a 5 by 5, four channel image, where one

channel is reserved for fires, one for pits, one for the treasure and one for the squares

next to a fire. Finally, the action space is comprised of the four cardinal directions.

MuJoCo Mazes Three additional domains are MuJoCo (Todorov et al., 2012)

environments where the agent needs to navigate a maze to reach a goal area. The

environment’s complexity is determined by two factors: the model the agent con-

trols and the maze the agent needs to solve. We use two configurations from

Florensa et al. (2017) and introduce a new configuration as a further domain.

The first model, Point Mass, is a sphere controlled by modifying its acceleration

on the x and y-axis. The second model, Directional Point, is a sphere with a cube

added to one end of the point as a directional marker. The point has two degrees

of freedom: it accelerates in the marker’s direction and rotates around its own axis.

Finally, the third model, Ant, is a sphere with four limbs, with a joint each, attached

to it. This results in the model having 8 degrees of freedom and the navigation task

being very challenging. Each of these models, when used, requires its own state space

to be defined. The state space associated with the Point Mass model is simply the

x and y coordinates, the Directional Point Maze also specifies the orientation of the

model, whereas the state space corresponding to the Ant Maze model is comprised

of 15 values that specify its position and the angle of its joints.

We used two different mazes in our testing process, the more simple one shaped

like an inverted C, with the goal in the top left corner, the second one being a

G shaped maze with the goal in the top right corner. As previously mentioned,

we used three distinct configurations of maze shape and agent models: like in

Florensa et al. (2017), the Point Mass model was paired with the G shaped maze,

and the Ant model was paired with the C shaped maze. We also introduced a new

combination, the Directional Point model paired with the G shaped maze, to add a

navigation task of intermediate complexity to our testing environments.

In these environments, the agent receives a reward of 1 when entering the goal

area and 0 otherwise. The episodes terminate when the agent reaches the goal or

after 300 (Point Mass and Directional Point) or 2000 (Ant) time steps.

A visualisation of these environments can be seen in Figure 3.4, where the agent is

shown in the initial position associated with the target task, and the area highlighted

in red is the goal the agent learns to reach.
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Predator Prey A further domain is a grid-world domain where the agent needs

to survive by eating stationary food sources while escaping a predator. The agent

starts with 100 health points and loses one health point per time step and a further

100 health points if a predator attacks the agent (if they are on the same square).

Eating food restores 10 health points and spawns a new food source at a random

location, and the agent reaching 0 health points terminates the episode. The reward

function used is the difference between the agent’s health before and after each

action. The state space is as an 11 by 11 three-channel array, and the action space

is comprised of the four cardinal directions. An agent taking an action that would

result in an out of bounds position results in the agent being stationary for that time

step. If the agent can survive for 300 time steps, the episode terminates without

further positive or negative reward. This domain can be observed in Figure 3.4,

where A represents the agent, P represents the predator, and F represents a food

source.

Half Field Offense The final testing domain is Half Field Offense, a sub-task in

RoboCup simulated soccer (Hausknecht et al., 2016). In this domain, the agent con-

trols the closest player to the ball and belonging to the attacking team on a football

pitch to score a goal against the defending team. The playing area is restricted to half

of the pitch, and the number of players on each team is set to two. The state-space

for this environment is the “High level” state space described in Hausknecht et al.

(2016), which is composed of 24 features. The action space includes five discrete

actions: shoot, pass, dribble, move and go to the ball. A further layer of complexity

is added because if the agent tries to pass, dribble or shoot without being near the

ball, the agent will take no action for that time step. The reward function awards

the agent a utility of 1 for scoring a goal and -1 when the ball goes out of bounds, is

captured by the defending team, or the episode lasts for longer than 500 time steps.

This domain can be seen in the bottom right corner of Figure 3.4.

3.8.2 Curriculum implementation details

The Exponential progression was evaluated on each one of our testing domains, and

as mentioned in Section 3.5, in an effort to highlight the robustness of our method,

whenever using multiprocessing (in all domains except for HFO) our parameters

were the same. The value of te (the time at which the progression ends) was always

80% of the total training time, and the minimum and maximum values of s were
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always 0.1 and 2 respectively. Section 3.5 provides more information on how to

translate the minimum and maximum value of s to a set of values given a certain

number of processes. In the HFO environment, as multiprocessing was not used, the

value of s was equal to 1, whereas te was still 80% of the total training time.

The mapping function used for all of our four navigation domains mapped a

one dimensional complexity vector [c0] to the MDP where the normalised distance

of the agent’s starting state from the goal was c0. In the case of the Grid World

Maze domain this distance was measured using the Manhattan distance, whereas

in the MuJoCo navigation domains it was measured as a simple approximation of

the distance to the goal following the maze. The domain knowledge used in the

creation of these mapping functions is: the further from the goal the more complex

the environment. The mapping function for these domains does not modify the state

space of the MDPs but simply the starting state.

The mapping function in the Predator Prey domain contained two separate di-

mensions of complexity: the number of time steps the predator would stay sta-

tionary after attacking the agent, and the amount of food sources available. The

domain knowledge in this environment is that the more food sources there are the

less complex the environment, and that increasing the amount of time the predator

is stationary for after attacking the agent decreases the complexity. The mapping

function for these domains modifies the state space (number of food sources) and

transition function (predator being stationary) of the MDPs in the curriculum.

Finally the HFO domain contained three dimensions of complexity: the starting

distance of the ball from the goal, the starting distance of the ball from the sidelines,

and whether the offending team started with the ball. The mapping function was

generated by observing that; the closer to the goal the ball is the less complex the

environment, the closer to the side line the more complex the environment, and

finally that starting with the ball results in an environment of lower complexity.

The mapping function for these domains does not directly modify the state space

of the MDPs, however some parts of the state-space might not be reachable from

every parameter setting.

It is worth noting that while our algorithm allows for more control over the

environment, in the navigation domains only the starting position was modified

in order to make the curriculum generated by our approach directly comparable

to Reverse Curriculum Generation (Florensa et al., 2017). This comparison will

take place in Chapter 4 once all of the progression functions generated using our

framework will have been introduced.
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3.8.3 Learning algorithm

All the domains in this paper use the same learning algorithm: Proximal Policy

Optimisation (Schulman et al., 2017), in particular, the implementation contained

in the “Stable-baselines” package (Hill et al., 2018). Moreover in all the domains

except for HFO, the parallel implementation of the method was utilised, where

multiple independent workers collect experience which is used to update the model

in batches.

3.8.4 Experimental method

To provide statistically reliable results, each algorithm was executed 50 times for each

domain except for Predator Prey, where each algorithm was executed 20 times. The

results section will report the mean and 95% confidence interval for each algorithm’s

performance.

The metric of comparison chosen for the Grid World domain was the probability

of the agent reaching the goal without falling in a pit or being on or next to a

fire from the designated starting coordinates. In contrast, the metric of comparison

chosen for the MuJoCo navigation domains was the probability of success from a

uniform sampling of the states in the maze, previously used by Florensa et al. (2017).

In the Predator Prey domain, the survival time was chosen as the evaluation metric;

finally, in HFO, the metric used was the probability of scoring a goal.

The experiments were conducted using Python on a computer with a 16 core

AMD Ryzen 9 3950X CPU, 32 GB of RAM and an NVIDIA GeForce RTX 2080 Ti

GPU.

3.9 Results

In order to showcase the potential of the proposed framework we perform an ini-

tial evaluation on the Exponential progression, comparing it against a coarse 5 task

curriculum generated using the technique described in the section above. We also

compare our method to standard PPO in order to highlight the benefits of Cur-

riculum Learning as a whole. Finally we perform an in-depth evaluation on the

Point Mass Maze domain, being the MuJoCo navigation domain with the lowest

training time, in order to precisely explore the relationship between granularity and

performance.

57



Figure 3.5: Performance of the Exponential progression, the Exponential progression
limited to 5 tasks and PPO on six test domains. In these plots each time step
represents an action made by the agent in the environment.

3.9.1 Comparison on all domains

The aim of this comparison is to motivate our approach of a curriculum without

restrictions where the source task is continuously changing, by comparing two cur-

ricula generated using the same method, but differing only in the number of tasks

allowed (coarseness of the curriculum). Comparing against standard PPO is also

informative, as it shows that the domains used for our evaluation are indeed too com-
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plex to be learnt outright. This comparison also shows the necessity of Curriculum

Learning to make learning possible in complex domains, which is increasingly rele-

vant in order to broaden the range of real world problems where RL can successfully

be applied.

The first domain used for our testing was Grid World Maze, where standard Re-

inforcement Learning fails to learn a viable policy to reach the goal from the starting

position. This result can be attributed to the same issue discussed in Section 2.1,

where in order to reach the goal, the agent must successfully navigate past obstacles

that yield a negative reward if encountered. While in principle this should not be a

limiting factor for RL, as the observations received by the agent are in the form of

a picture of the surrounding squares, a function approximator is necessary to act in

the environment. With the introduction of a function approximator the guarantees

of optimality of tabular RL are lost, and the agent’s policy converges to one that

avoids the obstacles rather than one that aims to reach the goal. In this domain the

Exponential progression where the source task is allowed to change at every episode

performs marginally better compared to its less granular counterpart. The standard

Exponential progression outperforms the more granular one in the first third of the

training, however afterwards their 95% confidence intervals overlap (albeit the mean

of the standard Exponential progression always outperforms the more granular cur-

riculum). This is the domain where having a fine-grained curriculum seems to have

the least benefit over a coarser grain curriculum, which could be caused by the fact

that being this a Grid World domain the distance to the goal is a discrete parameter

between 1 and 15. Even the more granular curriculum therefore is limited to 15

source tasks.

The experiments in the MuJoCo navigation domains are consistent with respect

to the performance of standard PPO, in that it only marginally improves over a

randomly initialised policy. The Point Mass Maze domain is the one where the

difference between a fine-grained curriculum and a coarse curriculum is the most

evident, resulting in the fine-grained curriculum converging to a near-optimal per-

formance, whereas the coarser curriculum does not significantly improve over a ran-

domly initialised policy. The difference between the two curricula is reduced in

the Directional Point Maze domain, where the coarser curriculum provides an im-

provement over standard PPO, however is clearly outperformed by the finer-grained

curriculum. Finally in the Ant Maze domain the best performance of the fine-grained

Exponential progression is higher compared to its coarser counterpart; whereas there

is a considerable difference in performance over the first part of the training, the
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two methods get closer in performance in the later stages.

It is worth noting that in both the Point Mass Maze and Directional Point Maze

domains the performance of the finer grained curriculum drops in the final stages of

the training. This is attributed to the progression being sometimes too fast for the

agent: the drop in performance always happens at 80% of the total training time,

when the progression is set to end and the agent trains only on the target task. If

this shift happens too quickly, it might result in the agent not being able to get to

the goal and slowly forgetting how to solve the maze. This is one of the motivations

behind the need of a curriculum that is not pre-determined, but that can adapt to

the agent’s performance.

In the Predator Prey domain, PPO’s performance is initially higher compared to

the two curricula, however it converges to a survival time of 100 almost immediately.

This behaviour can be easily explained by observing the properties of the domain:

the agent starts with 100 health points and one hp is deducted after every action.

PPO is once again stuck in a local optimum where it learns to evade the predator,

but does not learn to collect food sources to prevent the agent from starving. In

this domain, the two curricula’s confidence intervals overlap at the end of the train-

ing, with the fine-grained curriculum outperforming the coarser grained curriculum

initially.

Finally in the HFO domain both PPO and the more granular Exponential pro-

gression fail to learn a viable policy, resulting in the fine-grained Exponential pro-

gression outperforming both in this environment.

Both types of curriculum analysed in this experimental section perform a change

in the intermediate task up to the end of every episode, with the ”5 tasks” version

being even more limited. This implies that the complexity value needs to be cal-

culated at most after each episode, which adds a negligible computational time to

the training. Given that the exponential progression can be calculated using Equa-

tion 3.6, no values need to be stored in memory (besides the parameter s). The

only environment where there is a time penalty for changing the parameters in the

environment is HFO, although this is again negligible when compared to the total

training time.

The initial evaluation performed on the Exponential progression shows the po-

tential of the novel framework introduced in this chapter, in particular the fine-

grained curriculum outperformed the coarser curriculum in 4 out of 6 testing do-

mains with respect to the final performance, but in all domains with respect to the

area under the performance curve. This is a key metric especially in critical tasks
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Figure 3.6: Performance of the Exponential progression on the Point Mass Maze
domain varying the granularity of the curriculum. The plot on the left reports the
best performance achieved by each method, whereas the plot on the right represents
the area under the performance curve for each method (normalised with respect to
the best performing method plus its confidence interval).

(Foglino et al., 2019a) where sub-optimal exploration is costly.

3.9.2 In depth analysis

In order to better establish the relationship between complexity and performance,

we tested curricula of 1 to 10 tasks on the Point Mass Maze domain and reported

the results in Figure 3.6. The performance of PPO without a curriculum is also

reported in these two plots as a “0 task curriculum”. The plot on the left shows

a strong correlation between the amount of source tasks in the curriculum and the

best performance achieved by the agent on the target task, the highest difference

being between 6 and 7 source tasks. In this environment the fine-grained curriculum

converges to almost the optimal performance (97.5 %), and with no time penalty or

memory overhead introduced compared to its coarser counterpart. An interesting

aspect of this plot is the curricula with a very low amount of source tasks actu-

ally hurting the agent’s performance, probably a result of the sudden change in

complexity between the tasks themselves.

The plot on the right reports the area under the performance curve for each

curriculum, again showing a correlation between number of tasks and increase in this

metric. We chose this metric as a substitute of the “total reward” metric introduced

in Section 2.2.4, as in our case we always test on the target task, even when training

on other tasks. The area under the performance curve is therefore representative of

the performance of the agent throughout the training without the limitation of only

being measurable when training on the target task. It should be noted that while
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the final performance of PPO was higher when compared to curricula with a low

amount of tasks, the area underneath the performance curve was lower; this can be

explained by the plot Figure 3.5 (top right), where the performance of PPO falls to

zero in the initial part of the training, unlike the curricula. As PPO needs to learn

to solve the maze starting from the center, the initial performance dropping could

be a result of it not ever reaching the treasure and therefore not knowing how to

act in the last part of the maze. The plot on the right also shows an almost linear

increase in the area under the performance curve in curricula with 7 to 10 tasks,

whereas the increase in final performance was more pronounced between 8 and 9

tasks. Overall these experiments highlight the benefit of being able to generate a

fine-grained curriculum by using our framework.
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Chapter 4

Adaptive progression

While the last chapter introduced our framework and a way to generate pre-determined

curricula, it does not consider that each time a randomly initialised agent learns in

an environment, its performance will be different. A fixed progression function can

only modify the complexity of the environment without any information about the

agent’s ability. This limitation can lead to the agent’s learning being halted and even

reversed if the progression is too fast. This problem is especially highlighted in the

MuJoCo maze domains, where the agent needs to learn to turn corners to reach the

goal. If the agent does not learn how to turn a corner, but the fixed progression keeps

increasing the complexity of the environment, it might lead to the agent reaching an

MDP it cannot solve with its current knowledge. A further increase in complexity

would result in the agent eventually forgetting what it already learned, as it would

always receive a reward of zero (not reaching the goal) for all episodes. A practical

example of this phenomenon can be seen in the Directional Point Maze domain with

the Exponential progression (Figure 3.5), where the agent’s performance drops in

the later parts of the training.

In order to overcome this flaw, this thesis introduces the concept of adaptive pro-

gression functions, that are generated online and adapt to the agent’s performance

in order to generate a curriculum. Such progression functions aim to keep the agent

in tasks at the edge of its ability, a well-established concept in human learning called

“zone of proximal development” Vygotsky (1980). Setting the complexity of the en-

vironment at the edge of the agent’s ability causes the agent not always to succeed

and not always fail, allowing for learning from both positive and negative examples.

This chapter starts with the definition of performance functions used to assess

how well the agent can solve the current task. Then, two adaptive progression func-
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Figure 4.1: Integration of adaptive progression functions within RL. After taking
an action the performance is calculated if possible, and passed on to the progression
function. The reward and observation are then provided to the agent. Finally, the
complexity vector is passed onto the mapping function that generates the updated
environment if the environment needs to be modified.

tions are introduced, the Friction-based progression and the Rolling Sphere progres-

sion. The latter also allows to progress each dimension independently, which results

in more control in the curriculum generation process. Finally, the experimental set-

ting is discussed. An extensive experimental evaluation is performed to evaluate the

benefits of adaptive progression functions and compare the methods derived from

our framework against current state-of-the-art Curriculum Learning algorithms.

4.1 Performance functions

As mentioned in the introduction to this chapter, adaptive progression functions

use information about the agent’s performance to automatically determine the com-

plexity of the environment. However, this performance can be expressed through

a range of different metrics. For example, in the Predator Prey domain, one met-

ric that could be used to assess the agent’s performance is survival time, whereas

another is the reward gathered by the agent. Because of the reward function used,

which is the difference between the agent’s health before and after an action, any

64



agent that can escape the predator but starves will gather a total reward of -100

during the episode. As this occurs regardless of whether its survival time is 100

or 299, it is not a good indication of the agent’s ability in this domain. Motivated

by this example, various domain-specific metrics can be used to assess the agent’s

performance in progression functions, such as survival time or whether the agent

reached the goal in a maze domain; more traditional metrics can also be chosen,

such as the reward, or total reward over an episode. We, therefore, define the per-

formance function p as the metric used to evaluate the agent’s performance in a

given MDP.

Needing to calculate the value of the relevant performance function adds another

element to the core framework described in Chapter 3. It also influences the time

frame with which a progression function changes the complexity vector: some per-

formance functions such as survival time can only be calculated at the end of an

episode, whereas if the chosen performance was the reward, the complexity vector

could be updated up to every time step while the episode is evolving. This was made

explicit in the previous Chapter in Algorithm 1 (line 10), and it was referred to as

the validity of the performance function. Algorithm 1 represents performance func-

tions as functions of the history of states and rewards gathered by the RL algorithm

while acting in the environment. However, in practice, the amount of information

from the history used by the performance function will vary on a case-by-case basis.

Accounting for this and in an effort to simplify the notation, for the rest of this

thesis I will refer to the value of the performance function at time t as pt, instead of

explicitly stating p(historyt). This is also consistent with what happens in practice,

where if values of the performance function at different times are needed only the

values themselves are stored, and not the whole history at each time-step.

The key role played by performance functions within the framework defined in

this thesis can be seen in Figure 4.1, where a change in the complexity vector only

happens if the performance function can be calculated.

4.2 Friction-based progression

The first adaptive progression function that was created as part of the research in

this thesis is the Friction-Based progression. Being an adaptive progression function,

it changes the complexity of the environment according to the agent’s performance

(defined by a performance function as seen above). This process, illustrated in Figure

4.2, starts by measuring the change in the agent’s performance in the last i time
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Figure 4.2: Plot representing the Friction-based progression. The change in perfor-
mance of the agent is measured over an interval; this value is then used to calculate
Ff , the friction force that slows down the object as the agent improves. This, in
turn, results in the complexity of the environment increasing.

steps. This change is then divided by the magnitude of the interval i to get the rate

of change of the agent’s performance over the interval, µ. To utilise this information

in creating a curriculum, we introduce the model of a box sliding on a plane (Figure

4.2 right) and use its speed to calculate the environment’s complexity. The intuition

is that the relationship between speed and complexity is complexity = 1 − speed.

This model allows us to utilise µ as the friction coefficient between the body and

the plane, resulting in the object slowing down and the complexity increasing as the

agent’s performance increases.

The intuition behind this progression function is that the more skilled the agent

is at solving the current task, the quicker the agent should progress to a more difficult

task. The physical model used provides a convenient way to translate a change in

the agent’s performance to a change in the difficulty of the environment, as can be

seen in the equation below:

Πf (t,m, st−1, smin, pt−i, pt, i) = ~1 · (1− Uniform(st, smin)) (4.1)

st = (st−1 −m · g · µt)>1⊥0 (4.2)

µt =
pt − pt−i

i
(4.3)

where m is the mass of the object, g is the gravitational acceleration, st is the object’s

speed at time t, smin is the minimum speed reached by the object, pt is the agent’s

performance at time t, i is the time interval considered by the progression function,

a>b is equivalent to the minimum value between a and b and a⊥b is equivalent to
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the maximum value between a and b. Equations 4.2 and 4.3 describe our physical

model whose speed is adjusted according to the agent’s performance, while Equation

4.1 specifies the relationship between the speed of the model and the complexity

of the environment. To respect the constraint that ~ct ∈ [0, 1]n (posed in Section

3.2), the speed of the object is clipped to fall within that same interval, as seen in

Equation 4.2. The model used in our approach is not strictly physically accurate,

as it considers the possibility of a “negative friction” (the force is applied in the

direction of the object’s motion), where the speed of the object increases. This is

the desired behaviour because if the progression function cannot decrease the value

of any component of a complexity vector, the agent might reach environments that

are too difficult to solve. Without the possibility to revert to a solvable environment,

the agent’s policy or value function could deteriorate. In order to mitigate the risk

of this happening, we introduced a uniform sampling in Equation 4.1, which takes

place whenever the agent’s performance drops. A drop in performance would result

in the speed of the object increasing (st > smin), which in turn would decrease the

average complexity of the environment, but still allow the agent to train on a range of

different complexities. The effect of the uniform sampling can be observed in Figure

4.3, especially when i = 20, where the complexity of the environment oscillates as a

result of the performance decreasing. An example of the effect the value of i has on

the progression can also be seen in Figure 4.3 (left). In the same Figure, the plot

on the right shows the performance function used to generate the Figure on the left.

The performance function was chosen to have an underlying linearly increasing trend

but masked by adding a periodic function. This performance function was used to

showcase the behaviour of the Friction-based progression in a controlled (manually

generated performance function) but non-trivial scenario. This plot highlights how

progressions with small intervals tend to react quickly to a change in the agent’s

performance. On the other hand, progressions with larger intervals provide a more

constant increase in complexity.

Equation 4.3, used to calculate the friction coefficient µt, relies on the perfor-

mance function’s past values, which implies that Equation 4.1 is only defined when

t = i + 1. However, not changing the complexity vector for the first i time steps

would be highly detrimental to our approach, as the intervals used are often a not

negligible percentage of the total training time. This is the motivation behind our

choice to start the training at t = i+ 1 and to consider the agent’s performance for

t ≤ i to be equivalent to the performance the agent would have when not performing

any actions; this allows us to start the progression immediately. A further motiva-
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Figure 4.3: The figure on the left shows the effect of changing the magnitude of
the interval, i, on a Friction-based progression, where the performance used for the
progression is shown in the figure on the right.

tion behind this choice lies in the fact that the only values of p that influence when

a progression ends (~ct = ~1) are {p1, ..., pi} and {pt−i, ..., pt}. The following theorem

supports this statement:

Theorem Let p̄[x,y] be the average value of the performance function between t = x

and t = y. Then the Friction-based progression with mass of the object m ends when:

p̄[t+1−i,t] − p̄[1,i] =
1

mg
(4.4)

Proof. To find the necessary conditions in order for the Friction-based progression

to end we derive an alternative definition of Equation 4.2 where we expand st−1.

Firstly, combining Equations 4.2 and 4.3 results in the following equation:

st = st−1 +mg
pt−i − pt

i

As mentioned previously, to avoid big fluctuations in the complexity of the environ-

ment, we start the progression at time t = i + 1. This implies that at t < i + 1,

the object’s speed does not change as no progression is taking place, resulting in the

object’s speed before then being equal to 1. This information can be used to change

the equation above to:

st = 1 +

t∑
j=i+1

mg
pj−i − pj

i

This equation can then be rearranged in the following way:
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st = 1 +
mg

i

t∑
j=i+1

pj−i − pj

st = 1 +
mg

i
(
t−i∑
j=1

pj −
t∑

j=i+1

pj)

st = 1 +
mg

i
(
i∑

j=1

pj +
t−i∑

j=i+1

pj −
t−i∑

j=i+1

pj −
t∑

j=t−i+1

pj)

st = 1 +
mg

i
(

i∑
j=1

pj −
t∑

j=t−i+1

pj)

st = 1 +mg(

∑i
j=1 pj

i
−
∑t

j=t−i+1 pj

i
)

As mentioned in the proof statement above, we introduce the notation p̄[x,y] for

the average value of the performance function between t = x and t = y. We can

therefore use this notation on the equation above to simplify it to:

st = 1 +mg(p̄[1,i] − p̄[t−i+1,t])

By using this alternative formulation of Equation 4.2 we can finally assert that st = 0

(the progression ends) when:

p̄[t−i+1,t] − p̄[1,i] =
1

mg

�

The theorem above can also be used to simplify the parameter selection for our

algorithm. Equation 4.4 can be solved form and be used to determine its appropriate

value, resulting in the progression ending when a specific average performance is

reached for i time steps. This results in the Friction-based progression only having

two parameters in practice: the magnitude of the interval and the performance after

which the agent should start training on the target task. In fact, st−1 and smin are

initialised at one and kept in memory throughout the training, and pt is provided to

the progression function at every time step and stored in memory for i iterations.

If the environment or the curriculum were to require the progression to be mono-

tonic, such as if some forms of transfer are involved, Equation 4.1 can be modified

in the following way:
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Πfm(t,m, st−1, smin, pt−i, pt, i) = ~1 · (1− smin) (4.5)

An example of a transfer learning algorithm that might require this monotonic

progression is policy transfer using reward shaping (Brys et al., 2015). This method

trains a randomly initialised policy using a potential based shaping function influ-

enced by the policy to be transferred. If this method of transfer was necessary

once a complexity threshold was reached and the agent’s performance decreased,

the uniform sampling in Equation 4.1 could result in the complexity decreasing be-

low this threshold. This, in turn, would result in having to train a new randomly

initialised agent, making it inefficient to reset the agent’s weights potentially every

episode. As mentioned above, Equation 4.5 mitigates this problem by not allowing

the complexity of the environment to decrease.

The space complexity of the Friction-based progression is Θ(i), as every value

of the performance function in the interval needs to be stored. Moreover, the time

complexity of one iteration of the Friction-based progression is Θ(1), as the value

of smin is stored after every iteration and does not need to be re-computed. To

accurately analyse our approach’s time complexity, one also needs to consider the

complexity of the mapping function, which is domain dependent.

4.3 Rolling Sphere progression

Whilst the Friction-based progression considers the value of the performance func-

tion over an interval, we also created the Rolling Sphere progression, whose aim is

to change the complexity of the environment only using the last two values of the

performance function. The main benefit of this progression function is that it is a

lot more sensitive to sudden changes in the agent’s performance. This property will

later be helpful, especially when progressing on multiple dimensions simultaneously.

The Rolling Sphere progression is based upon yet another physical model: a

sphere rolling without sliding on an inclined plane. As can be observed in Figure

4.4, the angle of the plane changes based on the difference between the two latest

values of the performance function. The sphere then accelerates on the inclined

plane for a pre-defined amount of time, and its x coordinate on the plane is used

to derive the complexity vector for the environment. This progression function has

a different set of properties compared to the Friction based progression: while in

the former, a steady performance would result in the complexity not changing, the
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Figure 4.4: Plot representing the Rolling Sphere progression. The change in perfor-
mance of the agent is measured over one step; this value is then used as the angle
in radians of the plane the sphere is rolling on. The sphere’s position is then used
in order to specify the complexity vector.

Rolling Sphere would not be accelerated in any direction as the plane would be flat,

resulting in preservation of the current speed.

The sphere is initialised with both a speed and x coordinate on the plane of

zero. As complexity is bound between 0 and 1 by definition (Equation 5.1), if the

sphere’s x coordinate is less than one, its speed and position are set to zero. On the

other hand, if the sphere’s x coordinate exceeds one, its position is set at one, but

its speed is preserved.

This progression function requires a normalised performance function between 0

and 1 to be effective. This requirement is imposed by the difference in performance

being used to calculate the plane’s angle. It also will allow for some approximation of

the model to increase the stability of the progression. In practice, once the minimum

and maximum values of the performance function are provided, the normalisation

happens within the progression itself.

While the Friction-based progression’s core concept was directly applicable to

a practical scenario, the Rolling Sphere progression presents some additional chal-

lenges. Firstly, using a more physically accurate formula to calculate the acceleration

of the sphere could result in the complexity being reduced even if the agent were to

achieve the highest performance on the environment. This behaviour is undesired,

as it could make progressing to the target task an impossibility. This behaviour is

a direct result of the acceleration given ∆p not being an additive function. In order

to be additive, a function needs to satisfy the following equation:

f(x+ y) = f(x) + f(y) (4.6)
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Given that the acceleration of a sphere rolling (whilst not sliding) on a plane for a

certain difference in performance ∆p can be calculated using the following formula:

acc(∆p) =
5

7
g sin(tan−1(∆p)) =

5

7
g

∆p√
1 + ∆2

p

(4.7)

It is evident that the function is not additive (the condition in Equation 4.6 does

not hold):

5

7
g

x√
1 + x2

+
5

7
g

y√
1 + y2

6= 5

7
g

x+ y√
1 + (x+ y)2

(4.8)

To illustrate why this might be an issue preventing a stable progression, assume

the agent’s performance keeps following the pattern 0, 0.5, 1, 0, 0.5, .... Assuming the

acceleration is applied to the sphere over one second of simulation, the sphere’s speed

would start at 0, then increase to 3.13 as the performance reaches 0.5, then increase

again to 6.26 as the performance reaches one. However, when the performance goes

back to zero and ∆p = −1 the speed will only drop to 1.32. For each cycle, the speed

when the performance is zero will increase by that amount, and as the performance

is bounded between zero and one, no lower speed value would be achievable (unless

the loop was reversed). This is an issue as the complexity of the environment should

not keep increasing whenever the agent cannot solve the current one. On the other

hand, if the pattern was reversed, the speed would decrease by 1.32 every iteration,

eventually making it impossible to progress to a more complex environment even if

the agent’s performance is one (the maximum value). This problem is preventable by

substituting Equation 4.7 with an approximation that is additive, while not deviating

far from the original model. The approximation used is linear and is defined by the

following equation:

acc(∆p) = 4.95 ∆p (4.9)

which is clearly additive:

4.95 x+ 4.95 y = 4.95 (x+ y) (4.10)

while also being a close fit for Equation 4.7 in the [0, 1] range, as evidenced by Figure

4.5 (right).

While using a linear function to approximate the acceleration of the physical

model eliminates the instability in the progression, it poses a new problem: the
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Figure 4.5: The figure on the left shows the effect of changing the simulation time,
t, on a Rolling Sphere progression, where the performance used for the progression
is shown in the figure on the center. The figure on the right shows the linear
approximation (in red) of the physically accurate function (in blue) used to derive
acceleration from a certain ∆p (with a 2:1 ratio of the x axis w.r.t the y axis).

impossibility of backwards progression. As the speed and position of the object are

initialised at zero, and the first value of the performance function is also assumed to

be zero, this is the lowest speed achievable. This might not be desirable: a backwards

progression is helpful, especially if the agent forgot what it has already learnt. A

solution to this problem is making the rolling sphere more sensitive to accelerating

in the direction opposite to its velocity. More specifically, whenever the sphere’s

velocity and acceleration have opposite signs, the acceleration is multiplied by a

coefficient to allow for a “backwards” progression to occur. In order to ensure that

the additional energy introduced in the system does not have the same destabilising

effect of the issue discussed above, the speed resulting from this increase in the

acceleration is tracked and released back into the system over a more extended

period of time.

As previously mentioned, whenever using this progression function the perfor-

mance function is normalised between zero and one. As such, the maximum and

minimum values of the performance function are required as an input of the Rolling

Sphere progression. Only one other parameter is necessary: the simulation time,

which influences how quickly the complexity of the environment is changed due to

a change in performance. The effect of changing t can be seen in Figure 4.5 (left),

where the complexity of four different Rolling Sphere progressions is plotted, using

the performance function in the Figure in the centre. This is the same performance

function used for the Friction-based progression (Figure 4.3)
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4.4 Progression on multiple dimensions

Up until this point, progression functions considered complexity a vector where all

components were equal; however, as mentioned previously in Section 3.4 when dis-

cussing mapping functions, complexity can be independently specified over multiple

dimensions.

Progressing multiple dimensions simultaneously poses several challenges and de-

sign choices in order to deal with multi-dimensionality. Firstly while our definition

of mapping function assumes a certain degree of independence between dimensions,

orthogonality cannot be assumed. Take as an example the previously mentioned

problem of teaching an agent to drive a self-driving car with two dimensions of com-

plexity: delay between actions and slippery road conditions. Adding one-tenth of a

second of reaction time in good road conditions might not change the complexity

of the environment, whereas adding the same amount of reaction time in slippery

conditions might significantly increase the complexity of the environment. These

inter-dependencies should not be addressed by over-engineering the mapping func-

tion but by the progression function specifying the appropriate complexity vector.

Previously our approach consisted in progressing each dimension simultaneously,

therefore this was not a concern. However, the approach to progress on multiple

dimensions would need to consider this possibility and react to a sharp change in

complexity over a relatively small change in the complexity vector. This motivates

our choice of the Rolling Sphere progression to progress over multiple dimensions.

As the progression only happens based on the last difference in performance and

not over a larger interval, the Rolling Sphere progression will be more responsive to

interactions between different dimensions of complexity, especially wherever discrete

parameters are present.

One necessary design choice is how to deal with trying to calculate the speed of

the rolling sphere in each dimension. Three options were considered: progressing

all dimensions simultaneously, progressing one dimension at a time, and calculating

the gradient in each dimension and progressing afterwards. The first option would

be the most attractive, as it is the only case where all dimensions are progressed

at all times. However, in order for this option to be viable, a method to estimate

each dimension’s accountability in the difference in performance needs to exist. As

this method also needs to quickly adjust to inter-dimensional dependencies and be

accurate even over several dimensions, the research efforts were focused on other

methods instead. Nevertheless, the potential benefits of this technique make it an
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Figure 4.6: Rolling Sphere progression on multiple dimensions. A line search is
performed in each dimension, as a result of which the sphere’s velocity is updated.
Finally the new velocity is used to determine the new position of the sphere.

exciting avenue for future work in this area. Progressing one dimension at a time

would be a valid method if dimensions could be assumed to be orthogonal to each

other; however, this is rarely the case, and it could result in sharp changes in the

environment’s complexity whenever progressing a large number of dimensions. The

last option that was explored was calculating a partial gradient in each dimension

of complexity and then progressing all dimensions simultaneously. This was found

to be the most stable option, as it can address very complex dependencies between

dimensions while still having a reliable measure of how modifying each dimension’s

complexity influences the overall complexity of the environment.

The algorithm used for progression in multiple dimensions starts with changing

the simulation time of the Rolling Sphere progression (t) based on the number of

dimensions to consider. The new value of t is selected such that for n dimensions,

the new simulation time t′ will allow for a maximum speed of the sphere in one

direction n times that of t. This is necessary as simply multiplying t by the number

of dimensions would not yield the required result (see Figure 4.5, left). As the

progression happens over multiple dimensions, the speed and position are expressed

as vectors rather than single numbers. This is also valid for the tracking of the extra

speed introduced in the system (mentioned in Section 4.3). The algorithm starts

with a line search in each direction to estimate a partial gradient of the performance

function. This line search is executed by calculating the sphere’s position in that

dimension after the simulation time. The reason behind using the current speed for

the line search rather than a constant value such as the maximum speed is that this
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method acts as a “lookahead” step for each dimension to address inter-dimensional

dependencies before they arise. Based on the performance experienced by the agent,

the sphere’s velocity in that direction is modified, the position of the sphere is reset,

and the next dimension is considered. After all the dimensions have been evaluated

and the speed in each dimension has been changed due to the progression, the sphere

progresses to its new position, and the loop is restarted.

4.5 Experimental Setting

This section describes the reasoning behind the choice of baselines, and the imple-

mentation details for each baseline. As the evaluation domains, learning algorithm

and experimental method are the same as in Chapter 3, refer to Section 3.8 for

details regarding these.

4.5.1 Baseline choice

While our framework poses no restrictions on the MDPs generated by the map-

ping function, it also has some properties typical of Curriculum Learning algorithms

with restrictions, such as a continuously changing task. As such, in order to vali-

date our approach, our experimental section compares against one state-of-the-art

algorithm from the no-restriction category (Section 2.3.2.3), and one that generates

a curriculum while imposing restrictions on the source tasks (Section 2.3.2.2).

From the no-restriction class of Curriculum Learning algorithms, HTS-CR (Foglino

et al., 2019a) was chosen as it guarantees to converge to the optimal curriculum for

a given set of intermediate tasks; this removes the need to compare against other

sequencing algorithms using a pre-defined set of intermediate tasks. One limitation

of HTS-CR, and any other task sequencing algorithm, is that it cannot use the com-

plete set of intermediate tasks used in our approach. This is because the first step

of HTS-CR is to evaluate all curricula of length 2 to determine which tasks should

be learnt first (heads) and which should be learnt at the end of a curriculum (tails).

Assuming n is the number of source tasks to order, the number of curricula to be

evaluated in this stage is:

n!

(n− 2)!
(4.11)

Considering that the number of source tasks used by our approach is often infinite,

and when it is not, it is composed of many tasks, using the same set of source tasks
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would result in an evaluation only containing Curricula of length 2. To provide a

fair comparison, the set of intermediate tasks was selected from a subset of the tasks

used by our approach. More specifically, the set of source tasks considered by HTS-

CR is < ΦD(0),ΦD(0.25),ΦD(0.5),ΦD(0.75) >, with the target task being ΦD(1).

This comparison helps to ascertain whether our approach of using a continuously

changing intermediate task can outperform what is achievable with a limited set of

tasks.

The second baseline chosen was Reverse Curriculum Generation (RCG) (Florensa

et al., 2017), as the algorithm requires the same limited access to the environment

and agent as our approach, and the pace of the curriculum created by this algorithm

is akin to our progression functions. Furthermore, as RCG creates a curriculum by

only modifying the agent’s starting state, in the domains where RCG is applicable

our algorithm’s mapping function only modifies the agent’s starting state in order

to provide a direct comparison.

As a random curriculum was shown to be directly outperformed by at least

one of our chosen baselines in their respective paper, we deemed this comparison

unnecessary.

4.5.2 Implementation details

Reverse Curriculum Generation The version of the Reverse Curriculum Gen-

eration used as a baseline for our approach generates a curriculum via a random

sampling of actions from starting states solvable by the agent but that have not

been yet mastered. This algorithm also includes a replay buffer that considers the

agent’s performance over the course of the training to propose starting states to be

replayed. Our implementation of this baseline is based on the author’s original code.

As this algorithm generates a curriculum by modifying the starting state and

assumes that given two states a and b in a certain MDP, you can get from a to

b using a uniform sampling of random actions, it could not be applied to two of

our testing domains: HFO and Predator Prey. They both contain an AI that plays

against the agent with a specific policy that defends the goal (HFO) or chases the

agent (Predator Prey). This violates the assumption mentioned above: in HFO, let

state a be a normal starting state for the domain, where the agents are initialised

next to the halfway line, and the defense team is initialised next to the goal. Let

state b be the state where the agents are next to the goal, and the defenders are next

to the halfway line. The agents can take no sequence of actions that will result in
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state b occurring when the environment is initialised in state a, as whilst the agents

might get close to the goal, the defense team would never abandon their task and

go next to the halfway line. Likewise, in the Predator Prey domain, a similar issue

arises where the predator would keep following the agent, limiting the portion of the

state space that can be reached from a certain starting state.

HTS-CR Using HTS-CR (Foglino et al., 2019a) as one of our baselines, we used

transfer between tasks; the transfer method consisted of directly transferring the

neural network from one task to the next, using it as a better initialisation on the

next task. One limitation of HTS-CR is that it cannot use the full set of intermediate

tasks used in our algorithm, like any other task sequencing algorithm. In fact,

this set is often infinite and, if used in its entirety, would result in an evaluation

only containing Curricula of length 2. As previously mentioned, to provide a fair

comparison, the set of intermediate tasks was selected from a subset of the tasks

used by our approach. More specifically, the set of source tasks considered by HTS-

CR is < ΦD(0),ΦD(0.25),ΦD(0.5),ΦD(0.75) >, with the target task being ΦD(1).

Four tasks were included to ensure HTS-CR had enough time to complete the head

and tail selection process and evaluate some longer curricula within the time limits.

HTS-CR was modified to optimise the performance on the final task rather than

the cumulative return; this does not violate the guarantee of optimality and is the

more appropriate metric to be optimised for this comparison. HTS-CR was trained

10 times longer compared to the other algorithms in all of our test domains. In the

plots provided in the results section, the final performance of HTS-CR is reported as

a dashed line. As at every iteration, HTS-CR starts training on the final task only

after having trained on the full curriculum; when plotting the performance of this

algorithm, its curve will not start until later in the training. Our implementation of

this baseline is a direct translation of the author’s code from Java to Python.

Hardware specifications The experiments were conducted using Python on a

computer with a 16 core AMD Ryzen 9 3950X CPU, 32 GB of RAM and an NVIDIA

GeForce RTX 2080 Ti GPU.

4.6 Results

This section presents the results on the six testing domains. First we perform an

ablation study to establish the properties of several components of the framework:
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uniform sampling of the Friction-based progression, parallelism among learners, and

correctness of the mapping function. We aim to verify experimentally that uniform

sampling is beneficial to the agent’s performance; that parallel learning does not

result in a (possibly faster) convergence to a worse behaviour than with single-

process learning; and that adaptive progression functions are robust to errors in the

mapping function. Finally, with the last experiment we evaluate our framework by

comparing the Exponential, Friction-based and Rolling Sphere progression functions

to other state-of-the-art Curriculum Learning algorithms.

4.6.1 Friction-based progression

This section seeks to verify that uniform sampling in the Friction-based progression

has a positive effect on the agent’s performance.

In order to verify whether the uniform sampling introduced in Equation 4.1

is advantageous, we compared this formulation of the Friction-based progression,

referred to as uniform from here onward, to the monotonic formulation introduced

in Equation 4.5. We also developed an alternative formulation aimed at modelling

the more simple case where there is a direct correlation between the speed of the

object and the complexity of the environment, specified by the following equation:

Πfu(t,m, st−1, pt−i, pt, i) = ~1 · (1− st) (4.12)

Given the direct relationship between the speed of the object and performance of

the agent, this formulation will be referred to as speed from here onward.

Experimental results We compared the three formulations described above on

all our six testing domains to find the best performing one and explore each for-

mulation’s properties. The plots for these experiments can be found in Figure A.1,

with Table 4.1 reporting the highest performance achieved on each domain by each

formulation.

Variant GW Maze Point Maze Dir. P. M. Ant Maze 2v2 HFO Pred. Prey

Speed 89.4 ± 6.0 100 ± 0.0 98.5 ± 0.6 95.0 ± 1.5 65.7 ± 6.1 216.8 ± 13.3
Sampling 94.4 ± 3.9 99.7 ± 0.4 97.8 ± 1.2 95.1 ± 1.4 75.8 ± 1.4 249.8 ± 8.5

Monotonic 94.0 ± 3.6 99.1 ± 0.7 98.2 ± 0.7 94.6 ± 1.0 68.0 ± 5.0 238.2 ± 15.6

Metric Treasures Goals reached Goals reached Goals reached Goals scored Survival time
out of 100 out of 100 out of 100 out of 100 out of 100 in actions

Table 4.1: Best performance on each domain. All the methods within a 95% confi-
dence interval from the best performing method are in bold.
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Our experimental results show that in the Point Mass Maze environment, there

is a clear benefit when using the speed formulation, as it results in a significant

increase in performance during the initial part of the training and also results in

a much quicker convergence to the optimum. In this domain, the sampling and

monotonic formulations perform similarly, with the sampling formulation resulting

in slightly higher performance at the start of the training and converging within the

confidence interval of the best performing formulation.

In both the Directional Point Maze domain and the Ant Maze domain, all three

formulations perform equally both throughout the training and as far as the best

performance achieved is concerned.

When analysing the results in the Grid World Maze, HFO and Predator Prey

domains, the benefits of the sampling formulation are highlighted over the speed

formulation. Firstly in the Grid World Maze domain, the sampling and monotonic

formulations perform equally throughout the training, whereas the speed formula-

tion has a lower probability of solving the maze in the initial part of the training.

Moreover, the speed formulation converges to a considerably lower average value,

although still within a 95% confidence interval to the other two formulations. More-

over, in the HFO domain, the speed formulation results in a lower initial performance

compared to the other two. This is significant as the discrete parameter included

in this domain, whether the offending team starts with the ball, is changed towards

the start of the progression. In the Predator Prey domain, on the other hand, the

performance of the speed formulation drops significantly in the later stages of the

training, unlike the other two formulations. This is due to instability in the agent’s

performance as the progression gets to the target task, resulting in the progression

quickly lowering the complexity of the environment. Not being able to train on the

hardest complexity directly, in turn, hurts the testing performance of the agent on

the target task, which is particularly evident when looking at Figure A.1. This is

mitigated by the monotonic formulation by having the agent train on the target task

directly whenever the progression finishes; however, the experimental results suggest

that the sampling technique is the most effective. This pattern is also present in the

HFO domain, where the sampling formulation performs significantly better than the

monotonic progression.

Based on our experiments, we hypothesise that the definition of the Friction-

based progression in Equation 4.12 results in the algorithm having a weakness in

domains with discrete parameters that can significantly increase its difficulty. In

fact, if the agent’s performance drops significantly in the harder environment, the
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progression would immediately decrease the complexity, and the agent would not

have enough time to learn this new and more complex environment. This could,

in turn, result in the progression being halted. This is supported by the fact that

whenever an environment has a discrete parameter, the performance of the speed

formulation was inferior compared to when using a uniform sampling.

Overall our experimental results highlight the benefits of the higher stability

provided by the sampling formulation, which was always either the best performing

one or within the confidence interval of the best performing formulation. The speed

formulation seems to be best suited for less complex domains and seems to be less

effective whenever there are discrete parameters in the domain. Finally, the mono-

tonic formulation seems to be more stable than the speed formulation and would be

useful if a monotonic increase in complexity was needed. As the sampling formula-

tion was found to be the best performing one, from this point onward, whenever we

refer to the Friction-based progression, the sampling formulation is implied.

4.6.2 Effects of Multiprocessing

In this experiment, we seek to verify whether the use of multiprocessing hinders our

approach’s performance. Further to this, we also want to verify if multiprocessing

has any added benefits aside from speeding up the learning process.

In order to verify the hypothesis stated above, we tested the Exponential, Friction-

based and Rolling Sphere progression on our testing domains. All progression func-

tions were tested with and without multiprocessing in order to be able to compare

their performance and draw some more general conclusions on the effects of mul-

tiprocessing on our method. The multiple processes were set up as independent

workers, each with an independent curriculum, as described in Section 3.5. After a

certain number of time steps, the experience gathered by all the workers was com-

bined in a single update for the PPO algorithm. The number of workers used was 4

for the Grid World Maze domain, 8 for all MuJoCo navigation domains, and 16 for

the Predator-prey domain. Because of the instability of the code used in the HFO

domain, it was not practical to use multiprocessing in this case; thus, we will only

be performing this test on the remaining five domains.

Experimental results Our experimental results reported in Table 4.2 (with the

full plots available in Section A.2) show a clear increase in performance over the

first half of the training when using multiprocessing for both the Exponential and
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Friction-based progression functions on the Grid World Maze domain. This in-

crease in performance is sustained throughout the training for the Friction-based

progression; however, the best average performance achieved by the Exponential

progression is achieved without multiprocessing. It is worth mentioning that this

performance’s confidence interval intersects the confidence interval relative to the

method with multiprocessing. On the other hand, when using the Rolling Sphere

progression, no multiprocessing results in a higher initial performance but lower

asymptotic performance (but still within the confidence interval).

Variant GW Maze Point Maze Dir. P. M. Ant Maze Pred. Prey

F. B. P. multi 94.4 ± 3.9 99.7 ± 0.4 97.8 ± 1.2 95.0 ± 1.4 249.8 ± 8.5
F. B. P. single 74.6 ± 11.5 99.4 ± 0.5 97.6 ± 2.0 95.0 ± 1.4 239.6 ± 10.2
R. S. P. multi 93.5 ± 5.6 100.0 ± 0.0 98.8 ± 0.5 94.2 ± 1.1 250.6 ± 7.5
R. S. P. single 90.6 ± 6.2 100.0 ± 0.0 99.1 ± 0.3 91.2 ± 1.2 234.2 ± 7.7

Exponential multi 77.5 ± 10.1 97.5 ± 1.7 79.3 ± 2.9 92.0 ± 2.0 239.3 ± 7.9
Exponential single 88.9 ± 7.8 75.3 ± 1.0 51.6 ± 1.5 91.0 ± 2.5 224.2 ± 8.3

Metric Treasures Goals reached Goals reached Goals reached Survival time
out of 100 out of 100 out of 100 out of 100 in actions

Table 4.2: Best performance on each domain with and without multiprocessing,
divided by method. If the algorithm with and without multiprocessing perform
within a 95% confidence interval, both performances are in bold, otherwise the
highest of the two is in bold.

In the Point Maze and Directional Point Maze domains, using multiprocessing

in conjunction with the Friction-based progression results in increased average per-

formance, although within a confidence interval of the Friction-based progression

without multiprocessing. On the other hand, in these domains multiprocessing re-

sulted in a significant increase in the performance of the Exponential progression

throughout the training. The Rolling Sphere progression tends to have a higher

initial performance without multiprocessing, but tends to have a higher final perfor-

mance with multiprocessing in these domains.

There is no measurable difference between the Friction-based progression with

or without multiprocessing on the Ant maze domain. On the other hand, using

multiprocessing with the Exponential progression results in an increase in perfor-

mance over the first half of the training but results in convergence to a similar

value compared to the method without multiprocessing. The Rolling Sphere pro-

gression’s behaviour on this domain is the opposite: initially there is no difference

in performance, but when training without multiprocessing the final performance is

considerably lower.
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Finally, both the Exponential and Friction-based progression converge to a higher

average value using multiprocessing in the Predator Prey domain but converge just

within the confidence interval of the same method without multiprocessing. The

Friction-based progression without multiprocessing results in a higher average per-

formance in the first half of the training but has a lower average performance for

the rest of the training. On the other hand, the Exponential progression without

multiprocessing results in a lower performance from the first third of the training

onward, although usually within the confidence interval of the Exponential progres-

sion with multiprocessing. One final detail that should be mentioned is that both

the Friction-based progression and the Exponential progression without multipro-

cessing experienced a significant drop in performance at some point in the training,

which is not present in their counterpart when using multiprocessing. This coincides

with the time where the progression is set to end with the Exponential progression

and is likely also linked to a transition to the target task in the Friction-based pro-

gression. This is a crucial time of the progression, and in this specific domain, this

drop highlights that more stability is needed. In the case of multiprocessing, this

stability is provided by having different processes end the progression at different

times (Friction-based) or progressing to more complex environments with differ-

ent schedules. The Rolling Sphere progression without multiprocessing results in

a significantly higher performance over the first third of the training, however its

convergence is outside of the confidence interval of the version with multiprocessing,

indicating a clear benefit of the technique in this domain.

In order to quantify the speedup experienced when using multiple parallel work-

ers, we timed the execution time of each run and the results can be seen in table 4.3.

It is worth noting that the execution time might not be a good representation of the

difference in speed of each method. This is motivated by the fact that run timings

are influenced by other experiments and programs running on the same machine.

This could be mitigated by running experiments one at a time, however it would

also result in a considerable amount of time being needed, such as more than 16

continuous days of experiments for each method in the single process Predator Prey

domain. This domain is also the one that best highlights the low reliability of execu-

tion time as a metric: the Friction-based progression averages an execution time of

just under 40 hours, whereas the Rolling Sphere and Exponential Progression seem

to be twice as fast. This however is not a pattern found anywhere else, and given

the high memory requirements of the predator-prey domain due to using a convo-

lutional neural network, our hypothesis is that the machine was running several of
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these experiments in parallel1, and was forced to use its swap as well as its RAM

during the training, greatly reducing its performance. Adding to the uncertainty

of the execution time metric is the use of Precision Boost Overdrive on the AMD

Ryzen 9 3950x processor; this technology boosts the processor’s clock speed based

on its load and temperature, resulting in an increased dependency of execution time

on external factors. Taking the unreliability of the metric into account, we can still

conclude that there is a significant time advantage in using multiple parallel workers

over only a single one.

Variant GW Maze Point Maze Dir. P. M. Ant Maze Pred. Prey

F. B. P. multi 2:30 9:01 15:31 2:15:26 2:19:51
F. B. P. single 5:51 35:04 1:03:26 10:12:33 39:36:07
R. S. P. multi 2:30 9:18 16:51 2:10:29 4:06:48
R. S. P. single 7:09 32:09 1:03:02 8:25:25 20:00:43

Exponential multi 2:29 9:14 17:19 3:39:03 3:45:36
Exponential single 6:52 33:48 1:02:22 11:09:39 19:16:06

Table 4.3: Average execution time on each domain with and without multiprocess-
ing, divided by method.

Our results suggest that as well as providing a lower execution time, utilising

multiprocessing does not hurt the performance on the agent, and it can, at times,

result in an increase in performance. Concerning the Friction-based progression, we

did not observe an instance in our testing where it was detrimental to use multi-

processing. Whenever using the Rolling Sphere progression, the performance was

always higher in the initial stages without multiprocessing, but the performance

later in the training was often noticeably higher when using multiprocessing. On

the other hand, when using an Exponential progression, the version without mul-

tiprocessing resulted in a higher best performance in the grid world maze domain,

albeit still within the confidence interval of the version with Multiprocessing. This

is offset by the Exponential progression benefiting from the use of Multiprocessing

in our other four testing domains.

4.6.3 Robustness of adaptive progression functions

As progression functions rely on mapping functions in order to generate a curricu-

lum, we consider whether the Friction-Based and Rolling Sphere progression are

1Our code for running experiments has a list of experiments to run, and it runs an experiment
whenever enough cpu cores are freed by other experiments. This results in an unpredictability on
which experiment is ran alongside other experiments.
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Figure 4.7: Examples of the three different types of noise: Local (left), Global

(center) and Random (right). The blue dashed line represents ~c′t = ~ct, i.e. no noise.

resilient to a badly formulated mapping function. This section is specific to adap-

tive progression functions as they are generated online and therefore can adapt to

noise in the progression. Since the Exponential progression is determined before

execution, in the case of a badly formulated mapping, its parameters would need to

be modified on a case by case basis.

In order to assess the robustness of our method, we modelled a badly formulated

mapping function as noise in the creation of a curriculum. This noise takes the form

of a function N : [0, 1]n → [0, 1]n that maps the complexity vector ~ct to its noisy

counterpart ~c′t. This value will then be used in the generation of the MDPs to be

added to the curriculum, resulting in the noisy curriculum C ′ being defined by the

following two equations:

M ′t = Φ(N (~ct)) (4.13)

C ′ = 〈M ′0, ...,M ′i〉 (4.14)

We identified two possible cases of mistakenly creating a mapping function. The

first case is when the mapping function correctly identifies the domain knowledge

that should be represented but encodes it incorrectly. For example, in a navigation

domain, one such mapping function would correctly assume that a state closer to

the goal would be at least as easy to solve as a state further away from the goal;

however, the difference in complexity of these two states would be random. On the

other hand, the second case is a random mapping function, modelling whenever even

the domain knowledge encoded in the mapping function is incorrect. In a navigation

domain, this would result in a state closer to the goal being potentially considered

more complex than a state further from the goal.

The first case results in the noise function being monotonic, implying that given

two values a and b, if a > b then N (a) ≥ N (b). In this evaluation we defined two
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possible noise functions belonging to this class: local and global. The first type of

noise is useful to assess how robust the Friction Based progression is to a sharp but

localised perturbation, whereas the second type of noise tests the algorithm’s ability

to react to smoother but greater noise. These two types of noise can be seen in

Figure 4.7. These two noise functions still need to respect the constraints below

with respect to each component of a complexity vector.

a > b→ N (a) ≥ N (b) ∀ a, b ∈ [0, 1] (4.15)

N (0) = 0 (4.16)

N (1) = 1 (4.17)

with the constraints in eq. 4.16 and 4.17 being necessary to ensure that all com-

plexity vectors are still reachable. The algorithm used to generate N starts with

the creation of a list L = {l0, ..., ln} of n random values sampled from a truncated

normal distribution bounded between 0 and 1 with a mean of 0.5. This list is then

converted in a series of x and y coordinates, where for a given value of the list li

the corresponding coordinates are x = i; y =
∑i

k=0 lk. The coordinates are then

normalised such that (x0, y0) = (0, 0) and (xn, yn) = (1, 1). To convert this series

of points to a function and satisfy the constraints mentioned above, we use mono-

tone preserving cubic interpolation (Hyman, 1983), and normalise the interpolated

function with respect to y. Our noise generation process has two parameters: the

number of points used and the standard deviation of the normal distribution. By

setting these parameters accordingly, we generated the two types of noise previously

introduced: short and long (Figure 4.7).

In order to model noise that does not respect the domain knowledge encoded in

the mapping function, on the other hand, the only two constraints to be respected

were those in Equations 4.16 and 4.17. This type of noise, referred to as random, is

generated by defining a set of coordinates that were equally spaced on the x axis,

and whose y coordinate was a random value between 0 and 1. In order to generate

N , we performed standard cubic interpolation and normalised the function between

0 and 1.

In order to isolate the effect of the noise on the progression, in our experimen-

tal evaluation, the set of parameters used for both progression functions was not

changed.
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Experimental results Our experimental result shows that in the Grid world

Maze environment, the local and global noise have a limited influence on the perfor-

mance of the agent for both progression functions, as their best performance falls

within the confidence interval of the noise-less method. On the other hand, while

the random noise doe not affect the Rolling Sphere progression, it negatively af-

fects the Friction-based progression by resulting in lower performance in the initial

part of the training and also a lower best performance. It should be noted that the

Friction-based progression’s performance was steadily increasing, suggesting that if

given more time, this form of noise would converge to a similar value compared to

the noise-less method, albeit slower. Moreover, in this domain, the performance of

the Friction-based progression with random noise is still superior to RCG.

In the MuJoCo maze environments, applying either local or global noise does

not significantly affect the agent’s final performance, as all the confidence intervals

for different types of noise and progressions overlap. Figure A.3 in Appendix A, in

the Point Mass Maze and Directional Point Maze, shows how applying short noise

to the Friction-based progression results in a marginal increase in the average per-

formance in the first half of training. We hypothesise this occurs because the local

perturbations caused by the short noise cause the progression to quickly increase the

complexity of the environment, which could be beneficial in less complex environ-

ments, but detrimental in more complex ones. When applying random noise to the

Friction-based progression in the same domains, a slight drop in performance can

be observed in the Point Maze domain; however, no significant drop in performance

can be observed in the directional Point Maze or Ant Maze domains. While no

significant difference was observed for the Rolling Sphere progression in the Point

Maze or Ant Maze domain for any type of noise, the global and random noise result

in a lower performance (albeit with overlapping confidence intervals for the best per-

formance) in the second half of the training in the Directional Point Maze domain

(figure A.4).

In the HFO environment, the best performance achieved by the local noise falls

within the confidence interval of the best performance for the Friction-based pro-

gression. However, the deviation between the runs is increased. On the other hand,

applying global noise to the Friction-based progression results in a drop of 8.8%

in the final average probability to score and a noticeable increase in the standard

deviation between different runs. When looking at Figure A.3, the average scor-

ing probability is always higher when no noise is present, although the local noise

is always within the confidence interval. Applying random noise has an extremely
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detrimental effect on this specific domain, resulting in a severe drop in performance.

It should be noted that this is the only domain where this phenomenon can be ob-

served, so it is hypothesized that this is due to this being the only domain that does

not include multiprocessing. The Rolling Sphere progression on the other hand, has

a more clear separation between different kinds of noise, as can be seen in Figure

A.4. While local noise falls within the confidence interval of the best performance for

the Rolling Sphere progression, the plot shows the detrimental effects of the noise on

the progression. The global noise’s performance is just below the confidence interval

for the local noise throughout the training whereas the random noise results in a

sharp decrease in performance for the Rolling Sphere progression.

Finally, in the Predator Prey domain, the performance seems unaffected by ei-

ther local and global of noise until 2/3 of the training time for the Friction-based

progression. Both local and global noise cause an increased confidence interval and

a loss of average performance after this point. This effect is more pronounced when

adding global noise, although the best performance achieved by both types of noise

falls out of the confidence interval relative to the noise-less method. Applying ran-

dom noise in this domain with the Friction-based progression results in a slower but

steadier increase in performance, with its best value falling within the confidence

interval of the other two types of noise. The Rolling Sphere progression on the other

hand has a similar behaviour for local and global noise in this domain, both being

within the same confidence interval for the whole training. The random noise on

the other hand has a more noticeable effect on this domain, resulting in a lower

performance throughout the training, although with the best performance achieved

intersecting the confidence interval noiseless method’s best performance.

Our results show that even without changing the parameters of our algorithms,

the Friction-based and Rolling Sphere progressions are highly resilient to both the

local and global types of noise. Moreover, the local noise is found to have a lesser

impact on the training compared to the global noise. This is an expected result as

whilst local perturbations in the complexity of the environment can be addressed

by our algorithms, more pronounced perturbations result in the progression func-

tions with a higher interval to not keeping up with the agent’s ability to solve the

environment. On the other hand, the Friction-based progression is more vulnerable

to random noise, which is also expected, as this noise results in little correlation

between how difficult an MDP is and its complexity. While the Rolling Sphere

progression has shown resilience on this type of noise, when progressing multiple di-

mensions simultaneously its resilience is significantly impacted. This is likely due to
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the partial gradient calculation, which results in noisy estimations and a less precise

progression.

Variant Alg. GW Maze Point Maze Dir. P. M. Ant Maze 2v2 HFO Pred. Prey

Standard
FBP 94.4 ± 3.9 99.7 ± 0.4 97.8 ± 1.2 95.1 ± 1.4 75.8 ± 1.4 249.8 ± 8.5
RSP 93.5 ± 5.6 100.0 ± 0.0 98.8 ± 0.5 94.2 ± 1.1 76.7 ± 1.3 250.6 ± 7.5

Short Noise
FBP 92.5 ± 5.4 100 ± 0.0 98.6 ± 0.7 94.3 ± 1.3 75.2 ± 3.6 225.7 ± 14.0
RSP 90.8 ± 5.7 100.0 ± 0.0 98.9 ± 0.6 95.3 ± 0.8 74.2 ± 3.3 242.5 ± 8.9

Long Noise
FBP 94.8 ± 4.3 99.8 ± 0.2 98.0 ± 1.0 94.6 ± 1.0 67.0 ± 7.2 218.9 ± 14.1
RSP 94.9 ± 4.3 100.0 ± 0.0 97.0 ± 1.3 94.1 ± 1.9 63.0 ± 8.0 235.7 ± 10.2

Random Noise
FBP 77.4 ± 10.8 97.9 ± 1.3 99.2 ± 0.4 93.1 ± 1.4 21.6 ± 9.6 181.0 ± 38.0
RSP 95.1 ± 4.5 99.4 ± 0.7 98.5 ± 0.7 94.0 ± 1.8 31.4 ± 10.2 222.5 ± 21.7

Metric Treasures Goals reached Goals reached Goals reached Goals scored Survival time
out of 100 out of 100 out of 100 out of 100 out of 100 in actions

Table 4.4: Best performance on each domain. All the variants of each algorithm
within a 95% confidence interval from the method without noise are in bold.

4.6.4 Comparison with the state of the art

This section seeks to verify whether the approaches derived from our framework can

outperform state-of-the-art Curriculum Learning algorithms.

In this experimental evaluation, we compare the Friction-based progression, the

Rolling Sphere progression and the Exponential progression to two state-of-the-art

Curriculum Learning techniques on our testing domains. As the assumptions of

Reverse Curriculum Generation are not met by two of our testing domains, as pre-

viously discussed, the comparison to this algorithm will take place on the remaining

four. The results of this comparison are plotted in Figure,4.8 and the best perfor-

mance of each algorithm on each domain is reported in Table 4.5.

Experimental results In the Grid World Maze domain, the Friction-based, Rolling

Sphere progression and HTS-CR all converge to similar performance, whereas the

best performance achieved by the Exponential progression and RCG falls within

the confidence interval from each other. It is worth noting that the difference in

the success rate of these two methods is about 10% in favour of the Exponential

progression, although RCG did not have enough time to converge, suggesting that

if given more time, its final performance would be higher.

In the Point Mass Maze domain, the Friction-based and Rolling Sphere pro-

gressions are the best performing methods, with the Exponential progression’s best

performance being just outside of their confidence interval. RCG is the third-best

performing method, keeping up with the progression functions in the first third of

the training but resulting in a lower best performance. Finally, HTS-CR is the worst
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Figure 4.8: Performance of different progression functions, Reverse Curriculum and
HTS-CR on six test domains, with the dashed line representing the final performance
for HTS-CR. In these plots each time step represents an action made by the agent
in the environment.

performing method in this environment, achieving an average success rate of 79.3%

on the target task.

In the Directional Point Maze domain, our results show a clear advantage to

using the Friction-based and Rolling Sphere progression over all other methods, re-

sulting in a convergence close to the optimal policy already at three-quarters of the
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training. The Rolling Sphere progression has a slightly better average performance

at times, although always with overlapping confidence intervals. On the other hand,

RCG produces a curriculum with a much higher deviation between different runs

and a significantly slower increase in performance. The Exponential progression is

clearly outperformed by RCG in this domain, as whilst in the first three-quarters

of the training the two methods perform similarly, RCG’s performance keeps im-

proving whereas the Exponential progression’s performance falls off slightly. As the

Exponential progression does not take into account the agent’s performance, it will

progress to a more complex environment regardless of whether the agent can solve

the current one. As a lot of the environments where Curriculum Learning is useful

have a sparse reward function, this could potentially result in the agent not expe-

riencing any reward for several epochs, resulting in the deterioration of the agent’s

policy. Out of the six testing domains, this is the only one where this phenomenon

can be clearly identified by looking at the agent’s performance over time. It should

also be noted that the best performance achieved by the Exponential progression in

this domain is equal to the performance achieved by HTS-CR.

In the Ant maze domain, the Friction-based and Rolling Sphere progressions

were the best performing methods, with the Exponential progression being within

their confidence interval for most of the training. Reverse Curriculum Generation

resulted in a lower performance throughout the training and an increased deviation

between runs. Finally, HTS-CR’s final performance was the lowest of the algorithms

tested on this domain.

As mentioned in Section 4.5.2, RCG was not applicable in both the HFO and

Predator Prey domains.

The results in the HFO domain are generally consistent with our other test-

ing domains, where the Friction-based and Rolling Sphere progressions are the best

performing algorithms in this domain (with the Rolling Sphere’s mean performance

being slightly higher), followed by the Exponential progression and finally by HTS-

CR. In this domain, the final performance of HTS-CR was within the confidence

interval of the best performance of the Exponential progression, although the Ex-

ponential progression resulted in a 12% increase in the average probability to score.

Finally, in the Predator Prey domain the advantages of being able to progress

in multiple dimensions using the Rolling Sphere progression are highlighted. This

method in fact converges to its final performance by half of the training, clearly

outperforming the Friction-based progression in the time-to-threshold metric, but

converging to a similar performance. The Friction-based progression was the second
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best performing method, although the Exponential progression’s highest survival

time was within its confidence interval. On the other hand, HTS-CR’s final survival

time was within the confidence interval of the Exponential progression but not within

the confidence interval of the Friction-based progression.

Overall our experimental results show that the Rolling Sphere and Friction-based

progressions were consistently the methods with the highest average performance;

moreover, the Exponential progression’s performance was either on par with other

state-of-the-art Curriculum Learning algorithms or greater. This clearly highlights

the benefits of using any of the three progression function and also shows the po-

tential of the framework defined in this paper as more progression functions are

created.

Algorithm GW Maze Point Maze Dir. P. M. Ant Maze 2v2 HFO Pred. Prey

F. B. Pr. 94.4 ± 3.9 99.7 ± 0.4 97.8 ± 1.2 95.1 ± 1.4 75.8 ± 1.4 249.8 ± 8.5
R. S. Pr. 93.5 ± 5.6 100.0 ± 0.0 98.8 ± 0.5 94.2 ± 1.1 76.7 ± 1.3 250.6 ± 7.5
Exp. Pr. 77.5 ± 10.1 97.5 ± 1.7 79.3 ± 2.9 92.0 ± 2.0 62.0 ± 7.9 239.3 ± 7.9
HTS-CR 92.4 ± 4.3 79.3 ± 3.0 79.3 ± 2.0 78.3 ± 2.0 50.8 ± 7.0 230.4 ± 5.2

Rev. Curr. 66.8 ± 13.3 90.8 ± 3.7 90.8 ± 4.5 88.2 ± 4.0 n/a n/a

Metric Treasures Goals reached Goals reached Goals reached Goals scored Survival time
out of 100 out of 100 out of 100 out of 100 out of 100 in actions

Table 4.5: Best performance on each domain. All the methods within a 95% confi-
dence interval from the best performing method are in bold.

92



Chapter 5

Automatic mapping functions

The algorithms presented in this thesis so far focus on automating the creation

of a curriculum assuming some domain knowledge is available in order to build a

mapping function. However, this might not always be the case, as some environments

might contain parameters that do not have a direct and obvious correlation with

the complexity of the environment. Moreover, it should be noted that up until this

point mapping functions were assumed to be static: complexity was in fact defined

as being related to the learning time of each MDP. This definition does not take into

account that complexity is not only dependent on the environment itself, but also

on the agent’s internal parameters. In order to account for this, in this chapter we

change the intuition behind complexity from “how complex a task would be for a

randomly initialised agent” to “how complex a task is for the current agent at this

point in time”. This requires a degree of automation in the generation of mapping

functions, as it would be unrealistic for a domain expert to foresee the agent’s

ability at different points during its training. However, automating the generation

of the mapping function also presents the opportunity to better tailor a curriculum

to each individual agent by leveraging the information on its ability. As up until

now our methods for generating a curriculum have always been learning algorithm

and function approximator agnostic, our aim is to preserve these properties when

automating the generation of mapping functions. Therefore, we model the problem

of selecting a task of appropriate complexity as a modified version of the Dynamic

Multi-Armed Bandit problem (Whittle, 1988). Each task is modelled as an arm and

the aim of the problem is to pull the arm (select the task) as close to the desired

complexity as possible.

This chapter starts by specifying the problem it is trying to solve, to then in-
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troduce the literature that is relevant to our intended approach. Following this, a

new variation of the Dynamic Multi-Armed Bandit problem is introduced, and three

algorithms from the literature are adapted to solve this problem. We then discuss

how to generate mapping functions with algorithms that solve this new formulation.

Following which we perform an initial evaluation in order to choose which of the

three algorithms to fine tune for the generation of the mapping function. Finally an

evaluation is conducted against a manually generated mapping function.

5.1 Problem Specification

In Chapter 3 we define a mapping function as a function ΦD : [0, 1]n → M that

maps a complexity vector between 0 and 1 to an MDP of the corresponding com-

plexity. As this section will look to generate mapping functions automatically and

to condensate the complexity of an MDP over a single dimension, we define the

complexity value ct as being the first and only component of a one dimensional

complexity vector ~ct. As such, given the set of potential intermediate tasks M , the

problem of automatically generating a mapping function entails selecting the task

in M whose complexity is closest to the desired value. Posing the problem in these

terms requires a new definition of complexity: as mentioned in the introduction to

this chapter our previous definition did not take into account the agent’s individual

ability. We therefore define complexity as a function of the agent’s performance on a

given MDP. In particular, given an agent with inner state θ and a performance func-

tion P, let p−θ = min
m∈M

P̄ (θ,m) be the lowest average performance the agent (given its

state) achieves on an MDP in the set M , and let p+θ = max
m∈M

P̄ (θ,m) be the highest.

The complexity of an MDP can then be defined as:

Comp(θ,m) = 1−
P̄ (θ,m)− p−θ
p+θ − p

−
θ

(5.1)

Assuming that the set of MDPs M stays stationary throughout the training, the

problem of generating a mapping function is specified by a sequence of agent states

[θ0, ..., θT ] and a sequence of complexity values [c0, ..., cT ]. Given both sequences, a

mapping function generates a sequence [m0, ...,mT ] of MDPs in M whose error can

be defined as:

Error =
T∑
t=0

(Comp(θt,mt)− ct)2 (5.2)
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Algorithm 2 Automatic mapping function

Input: Set of MDPs M , DVB algorithm, RL algorithm, progression function Π,
performance function p

1: t := 1
2: mt := random element of M
3: while learning do
4: RL algorithm executes an episode on mt

5: Calculate performance pt based on the observed states and rewards
6: Update DVB algorithm based on mt → pt
7: ct := Π(t, pt)
8: Vt := p−θ + (p+θ - p−θ ) ·ct
9: mt+1 := Result of DVB algorithm with target = Vt

10: t := t + 1
11: end while

It is the aim of the mapping function to minimise the error defined in the equa-

tion above by selecting the appropriate arm given the agent’s state and required

complexity.

While this definition might suggest that the agent’s state needs to be known in

order to determine the complexity of the environment, we assume that that is not

the case. Our assumption is that the agent’s performance can be observed, however

it is up to the algorithm generating a mapping function to both estimate P̄ (θ,m)

as well as p−θ and p+θ if needed.

The way an algorithm that automates the generation of a mapping function

interacts with our framework can be seen in Algorithm 2. In particular, the similarity

between Algorithm 2 and the Contextual Multi-Armed Bandit problem (Lu et al.,

2010) is what prompted us to use the Multi-Armed Bandit framework to address our

problem. In order to further demonstrate this similarity and provide the necessary

background information on the wider Multi-Armed Bandit framework, the next

section will give a brief introduction to the area.

5.2 Background

This section will first introduce the Multi-Armed Bandit problem and some of the

methods that are used in order to approach it. It then discusses the special case

of the problem when each arm’s payoff changes over time. While this case is more

complex, it is also more widely applicable. Finally we will discuss the problem of

Contextual Bandits, where the decision of which arm to pull is influenced by what
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context is observed. Later in this chapter we will introduce our specific version of

Contextual bandits, where the desired complexity value is modelled as a context

5.2.1 Multi-Armed Bandits

The Multi-Armed Bandits (MAB) problem was introduced by Robbins (1952), and

it is often used to study the exploration and exploitation dilemma. The problem

revolves around a slot machine (or bandit) with multiple arms A = [a0, ..., aK ], where

each round an arm is pulled a reward is received, and no prior information on each

arm’s reward is available. Each arm has its own fixed probability distribution over

rewards D = [d0, ..., dK ] (unknown to the player), and rewards are independent and

identically distributed. The goal of the player is to maximise the reward gathered

over all rounds.

The most simple approach to solving a MAB problem is to employ an ε greedy

strategy: playing the arm with the highest mean reward with probability 1 − ε,

and a random arm with probability ε ∈ (0, 1). While this strategy always has a

degree of exploration, and is therefore guaranteed to eventually identify the arm with

the highest average reward, it doesn’t take into account the exploration disparity

between arms.

This weakness is addressed by the UCB method (Auer et al., 2002a), with the

intuition of estimating an upper confidence interval for each arm’s expected reward.

This is achieved by using the Chernoff-Hoeffding bound, and it provides an implicit

way to balance exploration and exploitation. At each round an arm a is chosen

based on the following equation:

max
a∈A

x̄a +

√
2 ln n

na
(5.3)

where x̄a is the mean reward of arm a, n is the total number of rounds, and na is the

number of rounds arm a was pulled. It is evident that this method always explores

different arms, therefore not being negatively impacted by an incorrect estimate of

an arm’s value. However, unlike ε greedy, its exploration adapts to an arm’s value

and reduces over time without having to change the algorithm’s parameters.

Another popular method for solving the MAB problem is Thompson sampling,

that originates from Thompson (1933). The idea behind this algorithm is to model

each arm’s underlying reward distribution. At each round, all distributions are

sampled, and the arm corresponding to the highest sample is played. Once a reward

is received the distribution is then updated. While the idea behind this algorithm
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is straightforward, an assumption needs to be made on the nature of the underlying

distribution from which the rewards are sampled. This is why Thompson Sampling

is a popular algorithm when rewards are binary (Bernoulli trials), as a binomial

distribution can be assumed. It is also worth mentioning that a prior for each arm

also needs to be provided.

These assumptions are relaxed by BESA (Baransi et al., 2014), an algorithm

based on sub-sampling. Given two arms a and b, that were played in na and nb

rounds respectively, this algorithm compares their value by averaging min(na, nb)

samples without replacement from the arm’s past rewards. This approach is based

on the intuition that the more an arm is played, the more its potential is known,

and it boasts state-of-the-art performance with no prior assumptions on the problem,

and without needing parameter tuning.

5.2.2 Dynamic Multi-Armed Bandits

While the Multi-Armed Bandit problem is an interesting case-study for the ex-

ploration and exploitation dilemma, its assumption of a static reward distribution

cannot always be satisfied. The Dynamic Multi-Armed Bandit (DMAB) problem,

first introduced by Whittle (1988), extends the classic MAB problem by allowing the

reward distribution of each arm to change over time. More formally, given a family

of probability distributions D(µ) with expectation µ ∈ [0; 1], the reward for playing

arm i at time t is a random sample from the distribution D(µi(t)). The change in re-

ward distributions is modelled in different ways, for example Garivier and Moulines

(2008) assumes the distributions are static but are changed a set amount of times,

whereas Gupta et al. (2011) models the expectation for each arm i, µi, as following

Brownian Motion. In our case we make the latter assumption.

Whenever solving the Dynamic MAB problem, the aim is to minimise the regret,

defined as:

Regret =
T∑
t=0

r∗t − rt (5.4)

where r∗t is the reward gathered by playing the optimal arm at time t and rt is the

reward obtained by the algorithm sampling an arm at time t.

Algorithms to solve the DMAB problem are usually adapted versions of existing

MAB algorithms. An example is Sliding-Window UCB (SWUCB), introduced by

Garivier and Moulines (2008), which is a version of UCB that only uses the last τ
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Algorithm 3 Dynamic Thompson Sampling

Input: Threshold C, Number of arms n

1: t := 0
2: αa−1 := 2 ∀a ∈ N<n
3: βa−1 := 2 ∀a ∈ N<n
4: loop
5: For each arm a sample µ̂at := Beta(αat−1, β

a
t−1)

6: Pull arm k such that µ̂kt := max{µ̂1t , ..., µ̂nt } and receive reward rt
7: αkt := αkt−1 + rt
8: βkt := βkt−1 + (1− rt)
9: if αkt + βkt > C then

10: αkt := αkt · C
C+1

11: βkt := βkt · C
C+1

12: end if
13: t := t+ 1
14: end loop

rounds whenever estimating the arm with the highest expected reward. Other vari-

ations of UCB for Dynamic Multi-Armed Bandits exist, such as UCBf (Slivkins and

Upfal, 2008), that accounts for possible variance in each arm’s reward distribution,

or Discounted UCB (Kocsis and Szepesvári, 2006) that calculates the discounted

mean for each arm, increasing the impact of recent samples.

Finally, Dynamic Thompson Sampling (DTS) (Gupta et al., 2011) is an extension

to the Thompson Sampling algorithm mentioned in the previous section, and it

aims to minimise the regret by estimating the reward distribution for each arm

as accurately as possible. For each arm a, DTS stores two values: αa and βa.

These are the parameters of a Beta distribution and are updated according to the

reward received from pulling each arm. The difference between standard Thompson

Sampling and DTS is that αa and βa are bounded by a constant C such that

αa + βa ≤ C. This constraint, combined with the update rule used for αa and βa

(lines 7 to 11 in Algorithm 3) results in an exponential weighting in favour of more

recent samples, as proven by Gupta et al. (2011). The way DTS selects the arm

that should be played next is by sampling the Beta distribution for each arm, and

then choosing the arm with the highest sample.
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5.2.3 Contextual Bandits

Contextual Bandits are the last variation of the classic Multi-Armed Bandit we will

discuss, however they are also the most relevant to the problem of automating the

generation of a mapping function. Each round a context is observed, based on this

context the algorithm picks an arm and receives a reward. The interesting property

of this problem is that the reward is dependent on the context, and no assumption

is made on the relationship between the two. An example of a problem that can be

solved by using Contextual Bandits is user recommendation (ads, products, videos,

etc.), where the context is the user’s profile.

If the number of contexts is small, known algorithms for the MAB problems can

be used, where one copy of the algorithm can be used for each context (Slivkins,

2019). Another case to be considered is when the number of contexts satisfies the

Lipschitz-continuity with a known Lipschitz constant (Hazan and Megiddo, 2007).

In this case, the context space can be discretised and the same method described

above can be used (Slivkins, 2019) (this intuition will be used in the next section).

5.3 Dynamic Value Bandits

After briefly discussing the relevant Multi-Armed Bandit literature, it is evident

that the problem of generating a mapping function closely resembles the Contextual

Bandits problem. As seen in Algorithm 2, each round a complexity value is observed,

an MDP is selected, and the agent’s performance is observed. The complexity value

could be equated to the context, the MDP to an arm, and the reward could be

the proximity of the selected MDP to the desired complexity. However, while no

assumption can be made on the relationship between context and reward in the

Contextual Bandits framework, the problem of generating a mapping function has a

clear relationship between the two. In order to model this problem we define a novel

(to the best of our knowledge) formulation of the Multi-Armed Bandit problem:

Dynamic Value Bandits (DVB).

When solving a DVB problem, the agent is provided a target value V at each

time step t ∈ [0, T ]. The agent then selects an arm (it) whose value is believed to be

the closest to Vt, and receives the value of the arm vt,it . In this problem, the agent

seeks to minimise the regret, that can be defined as:
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Regret =

T∑
t=0

(Vt − vt,it)2 (5.5)

We assume that the value of each arm changes over time, however, we make no

assumption on the process that modifies the arm’s value.

In principle, this new definition of regret could be optimised within the standard

DMAB framework, where the reward for pulling arm i at time t could be modified

to be −(Vt − vt,it)2. This however would make it impossible for the algorithm to

know the required value of Vt, which would be modelled as an additional factor

that changes the reward of pulling an arm. In the case where Vt is stationary

this is not a concern, in fact any upper bound of any algorithm’s regret in DMAB

would be upheld. However, in the worst case scenario, that is if Vt was randomly

sampled, this strategy would be equivalent to always pulling a random arm. Simply

modifying the reward is therefore not the best strategy when no assumptions can

be made on the process that generates Vt. As such, we first try to define a possible

way algorithms designed for DMAB can be applied to DVB without modifying the

underlying algorithm. Later in this section we will modify existing algorithms from

the literature in order to specifically optimise the regret metric defined in Equation

5.5.

5.3.1 Using out of the box DMAB methods

In order to define a coherent and principled way to apply algorithms that solve the

DMAB problem to DVB, we first define a new variable regret metric. We then prove

that a linear combination of these metrics can be created in order to derive Equation

5.5. We finally use this theoretical result to motivate our approach which will be

discussed later in this section.

Let v be a real number in the interval [0, 1] and vt,it be the expected payoff of

the arm played at time t, then the new family of regret functions is defined as:

Regv =
T∑
t=0

(v − vt,it)2 (5.6)

Minimising this regret is equivalent to trying to minimise the difference between v

and the value of the arm played. Assuming that v∗t is the highest value achievable

by an arm at time t, minimising Regv∗t is equivalent to minimising Equation 5.4.

The only difference between the two is in fact that one represents the squared error
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whilst the other the absolute error. As such, we consider DMAB to be a special

case of DVB. However, the aim behind defining this family of regret functions is to

define a set of coefficients [c0, ..., cN ] that can be used to linearly combine the set of

regret functions [Regv0 , ..., RegvN ] in order to derive Equation 5.5.

Theorem Given a DVB problem with a stationary target value Vt = Ṽ ∀t ∈ [0, T ]

and assuming that the following three constraints are satisfied:

N∑
j=0

(cjvj) = Ṽ (5.7)

N∑
j=0

(cjv
2
j ) = Ṽ 2 (5.8)

N∑
j=0

(cj) = 1 (5.9)

Then its regret can be expressed by the following equation:

N∑
j=0

cjRegvj (5.10)

Proof As the regret for a DVB problem is defined by Equation 5.5, we aim to prove

the equality between Equation 5.10 and Equation 5.5 assuming the three constraints

mentioned in the theorem are valid. We therefore need to prove that the following

equation holds:

N∑
j=0

cjRegvj =
T∑
t=0

(Ṽ − vt,it)2

We start by substituting Equation 5.6 instead of Regvj to then expand the square.

N∑
j=0

T∑
t=0

cj(vj − vt,it)2 =

T∑
t=0

Ṽ 2 + v2t,it − 2Ṽ vt,it

N∑
j=0

T∑
t=0

cj(v
2
j + v2t,it − 2vjvt,it) =

T∑
t=0

Ṽ 2 + v2t,it − 2Ṽ vt,it

N∑
j=0

T∑
t=0

cjv
2
j + cjv

2
t,it − 2cjvjvt,it =

T∑
t=0

Ṽ 2 + v2t,it − 2Ṽ vt,it

101



We then utilise the commutative property of summations.

T∑
t=0

(
N∑
j=0

(cjv
2
j ) + v2t,it

N∑
j=0

(cj)− 2vt,it

N∑
j=0

(cjvj)) =
T∑
t=0

Ṽ 2 + v2t,it − 2Ṽ vt,it

Finally we substitute the constraints in Equations 5.7, 5.8 and 5.9 where appropriate,

therefore proving the equality and the theorem.

T∑
t=0

Ṽ 2 + v2t,it · 1− 2vt,it Ṽ =
T∑
t=0

Ṽ 2 + v2t,it − 2Ṽ vt,it

�

Following this theorem, we develop an approach to adapt any algorithm that

solves a DMAB problem to a DVB problem. The idea behind our method is to have

a set of N algorithms trying to minimise the regret defined as [Reg0, ..., RegN ]. We

then use the constraints in Equations 5.7, 5.8 and 5.9 in order to calculate a set of

coefficients [c0, ..., cj ]. In order to find the set of coefficients, we solve a minimisation

problem with constraints, where the target function is the sum of the absolute values

of the coefficients. While Equation 5.9 requires all the coefficients to sum to 1, the

three constraints don’t restrict the sign of the coefficients. Minimising the sum of

the absolute value of the coefficients will in turn minimise any negative component

that might be needed in order to respect the constraints with the given values of v.

In an actual DVB problem the target value changes at every time step, as such

a new set of coefficients needs to be calculated. In practice, the coefficients are pre-

calculated up to a desired precision and stored in a hash map. This is to decrease

the time complexity of the algorithm. Once a set of coefficients has been defined, a

method to choose which arm needs to be played next needs to be defined. The most

straightforward and general way to choose the next arm is to clip the coefficients

between 0 and 1 and ensure they sum to one. They can then be used as a probability

distribution over methods, specifying the probability of each algorithm’s output to

be chosen. Otherwise, if there is a way to combine the output of different algorithms

it can be explicitly defined on a case-by-case basis. This step is where the theorem

is not fully respected, and it is also the reason why this method is inspired by the

theorem but not strictly theoretically accurate.
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Algorithm 4 Dynamic Value Best Empirically Sampled Average

Input: Discount factor γ

1: t := 0
2: Vi := {} ∀i ∈ {1, 2}
3: Pi := {} ∀i ∈ {1, 2}
4: loop
5: Receive target value Vt
6: n := mini |Vi|
7: S̄i := sample and avg. n elements with replacement from Vi with prob. Pi

|Pi|
8: Play arm a with lowest (S̄i − Vt)2, or lowest |Vi| if tied
9: Observe arm’s value va

10: Va := Va ∪ {va}
11: Pi := Pi · γ ∀i ∈ {1, 2}
12: Pa := Pa ∪ {1}
13: t := t+ 1
14: end loop

5.3.2 Custom DVB algorithms

While it might be useful to discretise the context space and combine the output of

different instances as described in the last section, we also adapted three algorithms

(SWUCB, BESA and DTS) to solve the full DVB problem. This is in an effort to

increase the sample efficiency (therefore decreasing regret), compared to our previous

method.

5.3.2.1 Dynamic Value Thompson Sampling

The algorithm whose adaptation was most natural and straightforward was Dynamic

Thompson Sampling. This is because the algorithm is already equipped to address

a change in the reward distribution. Moreover, most of the algorithm is centred

around estimating the value of each arm as accurately as possible, requiring a minor

modification of only one line (line 6 in Algorithm 3) in order for the conversion to

take place. As the aim of DVB is to play the arm with the value closest to a desired

value, Dynamic Value Thompson Sampling (DVTS) produces one sample per arm,

however it only pulls the arm whose sample is closest to the desired value.

5.3.2.2 Dynamic Value BESA

While adapting Thompson Sampling to solve the DVB problem only required a small

adjustment, BESA required a more significant deviation from the original method.
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In particular two challenges need to be separately addressed: being able to specify

the target value and dynamic reward distributions. The former is the easiest to

address, as BESA is a sampling based algorithm it again requires a single line to be

modified. In particular instead of selecting the sample with the highest value, the

sample with the value closest to the target is selected. On the other hand, addressing

the issue of dynamic reward distributions required a way to give more weight to more

recent samples, while not changing the nature of the algorithm altogether. This was

achieved by introducing a vector P used to derive the probability of sampling each

value from the history. Whenever a new sample is observed, all values in each P

vector are multiplied by the discount factor, and a one is added to the corresponding

P vector. Assuming an arm has been played in rounds [r1, .., rn] and that the current

round is t, then the vector P will be [γt−r1 , ..., γt−rn ]. In order to utilise this vector

in the sub-sampling, we sample with replacement (unlike the original algorithm). If

this was not the case and two arms had the same number of samples, then sampling

without replacement would be equivalent to not sampling. Each sample s from the

history has a probability Ps
|P | of being sampled; coupled with the way P is calculated,

it results in recent samples being exponentially more likely to be selected compared

to less recent ones.

The novel proposed algorithm, named Dynamic Value BESA (DVBESA), can

be seen in Algorithm 4. Like its original counterpart, the algorithm can only com-

pare the value of two arms, and if multiple arms are present, a single elimination

tournament is played between them.

5.3.2.3 Value Sliding Window UCB

The last algorithm we adapt to the DVB problem is UCB. In order to address the

dynamic nature of reward distributions, UCB has several variants, three of which

were mentioned in Section 5.2.2. Out of these variants we choose SWUCB, as it

is able to adapt better than UCBf to a change in reward distribution, given that

UCBf considers the average of all rewards for each arm without giving more weight

to recent samples. Furthermore, as SWUCB and Discounted UCB were shown to

have a similar performance (Garivier and Moulines, 2008), we chose the former as

its parameter selection is more simple.

In order to encourage the algorithm to choose values close to the target value Vt,
instead of choosing the arm with the highest mean we choose the algorithm where

the mean is closest to the target value. As the target value has no influence on the
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confidence bound, the second term was not modified. Intuitively, out of the arms

whose mean value is lower than the target value, the arm with the highest mean

plus confidence interval will be prioritised. On the other hand out of the arms with

a mean value greater than the target value, the one with the lowest mean minus the

confidence interval will be prioritised. Out of the two arms that were prioritised,

the arm chosen will be the one whose confidence interval extends the furthest from

the target value. Given a window size τ , this selection policy is expressed by the

following equations:

max
a∈A
−|Vt −

1

Nt(τ, i)

t∑
s=t−τ

vs1{as=i}|+

√
log(min(t, τ))

Nt(τ, i)
(5.11)

Nt(τ, i) =

t∑
s=t−τ

1{Is=i} (5.12)

5.4 DVB generated mapping functions

In Chapter 3 we define a mapping function as a function ΦD : [0, 1]n → M that

maps a complexity vector with components between 0 and 1 to an MDP of the

corresponding complexity. In order to solve this problem over one dimension we

first define a fixed and finite set of MDPs,M, that can be either randomly sampled

or provided by an expert. We then model each MDP as an arm in a DVB problem,

and aim to select the MDP of the appropriate value by translating complexity to

target value using Equation 5.1. This however poses a challenge, in particular p+θ =

max
m∈M

P̄ (θ,m) and p−θ = min
m∈M

P̄ (θ,m) need to be estimated. As each method estimates

the value of arms in a different way, this estimate might be natural for some methods

while complex for others.

For Dynamic Value Thompson Sampling, after each round of sampling p−θ is

estimated to be the sample with the minimum value and p+θ the sample with the

highest value. On the other hand, for DVBESA, each sample’s latest empirical

average is saved to memory, calculated in Algorithm 4, line 7. Finally VSWUCB

estimates p−θ and p+θ to be respectively the minimum and maximum value of the

following expression:

1

Nt(τ, i)

t∑
s=t−τ

vs1{as=i} (5.13)
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While the problem of estimating the maximum and minimum value of the agent’s

performance could seem like a trivial extension of existing methods, in a practical

scenario with a progression function, most of the sampled MDPs should be of a

similar complexity, resulting in a potentially inaccurate estimate of either bound.

5.5 Initial Evaluation

This section reports the initial evaluation performed on the different methods we

introduced in this chapter. We will first test the performance of the methods on

the DMAB problem, to then report their performance on the DVB problem with

a randomly selected value. We then introduce an adversarial setting for the DVB

problem, where the adversary selects the target value with the aim of maximising

the regret. Finally we introduce a model of the agent’s learning based on real

data gathered by training the agent on the Grid World Maze environment. This

preliminary evaluation serves to select one of the three methods introduced in Section

5.3.2, based on its performance and robustness, in order to be applied to generate a

mapping function for a learning agent.

5.5.1 DMAB and DVB testing environments

DMAB The first setting in which all algorithms were tested was a DMAB envi-

ronment inspired from the existing literature in the field (Gupta et al., 2011). The

environment consists of 10 arms which were randomly initialised to random values

[v0,1, .., v0,10] in the interval [0, 1]. Each arm’s value corresponds to the probability

of success of the Bernoulli trial associated with each arm. Every round each arm’s

value changes over time according to Brownian motion with cutoff boundary, defined

by the following equation:

vt+1,i = (vt,i +N(0, σ2))>1⊥0 ∀ i ∈ {1, ..., 10} (5.14)

where N(a, b) is a normal distribution with mean a and standard deviation b, a>b

is equivalent to the minimum value between a and b and a⊥b is equivalent to the

maximum value between a and b. In this setting, the regret is defined by Equation

5.4, where the value of the arm (rather than the result of the Bernoulli trial) is

considered.

106



DVB The second problem where each algorithm was tested is an adaptation of the

previously mentioned environment to DVB. In particular, each arm’s value changes

over time according to Equation 5.14. At each round t, the target value Vt is set

to be the value of a random arm vt,ii ∈ {1, ..., 10}. The regret for this problem is

defined by Equation 5.5, and it is going to be the metric of comparison between

methods on this environment.

Adversarial DVB While the DVB testing environment defined in the last para-

graph will provide some insight on each algorithm’s ability to adapt to changes in

each arm’s value, the target value being chosen as a random arm might reduce the

complexity of the problem. If a random sampling is performed the algorithms will

have the opportunity to track the value of each arm more easily, compared to other

possible target value selection policies. For this reason we introduce the Adversarial

DVB environment, where the adversary’s aim is to select the target value that will

maximise the agent’s regret.

At each round t the adversary selects an arm i, the target value is then set to

be Vt = vt,i. The algorithm selects the arm a deemed to be the closest in value to

Vt, and receives the output of a Bernoulli trial with probability of success vt,a. The

algorithm’s regret for the round is then calculated as (vt,i− vt,a)2 and it is provided

to the adversary as reward for selecting arm i. While the algorithm is in a DVB

environment, the adversary is essentially solving a DMAB problem with the reward

being the algorithm’s regret. This adversarial setting will test each algorithm’s

robustness to the order in which the target values are selected, which is a key factor

in assessing which algorithm should be used to generate a mapping function for a

learning agent.

5.5.2 Data driven environment

In the existing literature on the DMAB problem, the assumptions on the process

that changes the value of the arms are either minimal (Auer et al., 2002b) or of a

more general nature (such as Brownian Motion (Gupta et al., 2011)). We followed

the latter approach when creating the testing environments mentioned in the last

section, however in the practical problem of generating a mapping function the

underlying cause of a change in the value of each arm is known. It is in fact the

agent’s learning that changes its performance on each MDP, and its expected value

as a result. For this reason we generate a novel testing environment, aimed at
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assessing each algorithm’s ability to generate an accurate mapping function.

The data for this model was collected by training an agent on the Grid World

Maze environment 200 times using the Friction-based progression. After each one of

the 125 epochs, its probability of reaching the goal from each state was assessed 100

times. This extensive assessment of the agent’s performance enabled us to track the

way its ability evolves over time, and therefore to use the data as an approximation

of a learning agent’s behaviour when learning with a curriculum. This has the

advantage of being both a lot faster and more repeatable than training an agent

on an environment, and allows us to isolate the variable of the agent’s learning

performance and focus on assessing the accuracy of the mapping function produced

by each algorithm over 200 separate runs.

At the start of each round, a progression function specifies the complexity of the

environment. The algorithm then converts the complexity value to a target value

(as described in Section 5.4) and returns the arm believed to be closest to the target.

The algorithm then observes the result of a Bernoulli trial with the probability of

success being the probability of the agent reaching the goal from that state based on

the data. The error of the algorithm’s choice is then calculated, and the progression

function is updated with the new performance (if needed). Each arm’s probability

of success is initialised according to the agent’s ability in the first epoch, and every

80 rounds it is modified to match the agent’s performance in the following epoch.

The way each algorithm’s accuracy is assessed for this environment is the error

calculated using the following formula:

Error = |Comp(θt,mt)− ct| − min
m∈M

|Comp(θt,m)− ct| (5.15)

Note that this definition of error differs from the one in Equation 5.2. This variation

is necessary in order to prevent the complexity value chosen by the progression

function influencing the error term. To better illustrate this, assume there is only

one task with complexity 0, and all other tasks are of complexity 0.5 and above. If the

complexity required by the progression function is 0.4 and a task of complexity 0.5

is chosen, Equation 5.2 would result in an error of 0.1. However if the complexity

required was 0.3, choosing the same task would result in an error of 0.2. As in

our example the task which is closest to the desired complexity is the one chosen

(of complexity 0.5), the only difference between the two error terms resides in the

progression function. On the other hand, calculating the error with Equation 5.15

would result in both errors being equal to zero (as the task chosen was the one closest
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Figure 5.1: The figure on the left shows the regret of different methods on the DMAB
problem. The figure in the center, on the other hand, reports the regret on the DVB
environment. Finally, the figure on the right reports the regret on the adversarial
DVB setting against the most effective adversary. Note that the higher the regret,
the worse the performance.

to the desired complexity). While this metric does not reflect the actual proximity

of the chosen tasks to the desired complexity, it is the appropriate one for comparing

different algorithm’s performance without any influence from external factors.

5.5.3 Experimental results

This section will present the experimental results of each method on all of the en-

vironments mentioned above. The goal of this evaluation is to determine the most

robust and highest performing algorithm for the automatic generation of mapping

functions.

5.5.3.1 DMAB

Our evaluation begins by comparing each algorithm’s performance on the DMAB

environment. This is useful to ascertain their ability to adapt to a change in the arm’s

value over time. Like in Gupta et al. (2011), we test each algorithm’s performance

on different settings of the environment by changing the standard deviation (σ2) of

the Brownian motion (see Equation 5.14). In particular, we test the performance

of each algorithm on σ2 ∈ {0, 0.001, 0.005, 0.008, 0.01, 0.02}, by averaging its regret

over 100 random seeds. Besides evaluating the three methods we defined, we also

evaluate their static counterpart in order to highlight the benefits of giving more

weight to recent samples.

When observing Figure 5.1 (left), all algorithms except for UCB and VSWUCB

have a similar performance on the standard Multi-Armed Bandit problem (when

σ2 = 0), however, when increasing the standard deviation of the Brownian motion,

Thompson Sampling and BESA have the highest regret out of all methods. Surpris-
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ingly, UCB is amongst the best performing algorithms in this setting, despite not

accounting for dynamic reward distributions. Moreover, DVBESA’s regret increases

at a pace not dissimilar to the one of standard BESA. DTS, on the other hand, is

clearly the best performer for values of σ2 below 0.01, however it is outperformed

by VSWUCB and UCB on higher values of σ2.

5.5.3.2 DVB

In order to assess the suitability of each method to be used in the generation of a

mapping function we also test each algorithm on the DVB problem, where the static

version of each algorithm is adapted using the method defined in Section 5.3.1 with

101 evenly spaced values of vj .

In Figure 5.1 (center), out of the algorithms using interpolation (TS, BESA and

UCB), the best performing one was UCB, with Thompson Sampling and BESA’s

confidence intervals intersecting for most values of σ2. DVBESA and VSWUCB’s

performance was similar across all values of σ2, whereas VDTS was the best per-

forming algorithm for value of σ2 lower than 0.005, however for larger values of σ2

the other methods had a clear advantage. This result is surprising, given DVBESA’s

comparably high regret in the DMAB setting.

5.5.3.3 Adversarial DVB

The Adversarial setting, as mentioned previously, aims to test the robustness of

different methods to how the target value is selected. In particular, the DVB version

of each algorithm was put against each DMAB algorithm, and the worst performance

was chosen to generate Figure 5.1. The full results are reported in a table format in

Section A.4.

While in the DVB problem the best performing algorithms were VDBESA and

SWUCB, the results change as the value is not randomly sampled from all arms.

VDTS, in fact, is the most resilient algorithm for values of σ2 up to 0.01, after which

SWUCB was the best performing method. Moreover, VDTS was the algorithm with

the lowest difference between the adversarial setting and whenever no adversary was

present. This highlgihts the robustness of the method, especially when compared

against DVBESA, which has a very wide confidence interval, suggesting that it is

either able to quickly adapt to the adversary’s strategy or its regret is considerably

higher compared to other methods.

110



Figure 5.2: Average error for each algorithm when the complexity is randomly
sampled (left), or specified by the Rolling Sphere progression (right). Each line
is the average of 200 runs smoothed with a Savitzky–Golay filter.

5.5.4 Data driven environment

The final environment used for our preliminary testing is the data driven model de-

scribed in Section 5.5.2, which simulates how a learning agent’s performance evolves

over time. As can be seen in Figure 5.2, two distinct settings for this environment

were considered: one where the target complexity was randomly sampled between

0 and 1, and one where the target complexity was specified by the Rolling Sphere

progression. Unlike the previous environments, where the performance of each al-

gorithm was evaluated based on their regret, the metric of comparison between

different methods was the one defined in Equation 5.15.

When the complexity is randomly sampled, DVBESA is the best performing

algorithm as can be seen in Figure 5.2 (left). This is due to its better performance

from 1000 to 4000 rounds; in the same time interval DVTS and VSWUCB both have

a spike in their error. Moreover DVTS has an initial spike in error not shared by the

other two methods. It is worth noting that after 5000 rounds, DVTS’s performance

is on par with DVBESA, while VSWUCB’s error is marginally higher in the later

rounds.

The results change when the complexity is controlled by the Rolling Sphere

progression. This is the setting we are more interested in, as it is representative of

the use case for this method. This setting is also more of a challenge as estimating the

environment’s complexity through Equation 5.1 also involves estimating the highest

(p+θ ) and lowest (p−θ ) value out of all tasks for the current agent’s state θ. While in

a setting with a random target complexity it is straightforward for methods to keep

an updated estimate of both values, if the target complexity is steadily increasing
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over time, these estimates will be increasingly outdated and will potentially limit

the performance of methods in this setting. This results in an increased error for

DVBESA and VSWUCB especially after the 4000th round, whereas DVTS’s error

decreases steadily. However, DVTS is the worst performing algorithm from round

2000 to round 3500, with DVBESA outperforming it until the 4000th round. It is

worth noting that both VDBESA and VSWMAB have a spike in error at around

1000 and 1500 rounds respectively, which VDTS does not share.

5.5.5 Initial evaluation summary

The goal of this extensive evaluation was to select an algorithm to be fine tuned

to the problem of generating mapping functions. Our initial results on the DMAB

problem highlighted the benefits of VSWUCB for high values of σ2 and DVTS for

lower values of σ2. Whenever testing on the DVB problem, both DVBESA and

VSWUCB performed similarly, with DVTS being the best performing algorithm

only for σ2 ∈ [0, 0.005]. However, whenever introducing an adversary that selects

the target value, DVTS was clearly the best performing algorithm until σ2 > 0.01,

with its performance never deviating significantly from its performance with a ran-

domly selected target value. DVBESA on the other hand was the algorithm that was

most affected by the introduction of an adversary, with its 95% confidence interval

being quite wide considering it was derived from 100 runs. It is evident that the

best algorithm in this case is dependant on the value of σ2: in general VSWUCB’s

performance seemed to be more reliable compared to DVBESA both with and with-

out an adversary. On the other hand, the results seem to suggest that DVTS is the

best algorithm for low values of σ2.

Whenever looking at a testing environment which is closer to the intended use

case, the DVTS algorithm seems to fall behind whenever the complexity is randomly

selected, but significantly outperform the other two algorithms from 4000 rounds

onward when the complexity is specified by the Rolling Sphere progression. This

seems to imply that initially the values of the arms change frequently, but later they

stabilise, resulting in the accuracy and robustness of DVTS being shown.

As a result of this evaluation, DVTS was chosen as the algorithm to be optimised

in order to generate a mapping function for learning agents.
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5.6 Fine-tuning VDTS

As VDTS has been shown to be the best suited algorithm to generating a mapping

function, we use our knowledge of the domain in order to fine-tune the algorithm.

Furthermore we aim to identify the flaws in the algorithm based on our previous

experimental evaluation and try to address them within the new method.

Based on the experimental results on the DVB problem, it is evident that this

algorithm’s weakness is reward distributions that change quickly. As such, we keep

track of the change in value of any given task over time, by performing an exponential

moving average on the first derivative of the values for each arm, and encourage the

algorithm to choose tasks with a higher rate of change in order to better update their

distribution. Furthermore a useful bias whenever generating a mapping function

(and even in the DVB problem) is to prioritise arms that have not been pulled in a

while; this could in fact help with keeping an up to date estimate of each task. As

DVTS is an algorithm that is based around choosing the sample with the smallest

distance to the target value, there is no clear way to enforce these priority rules, as

such we introduce a zone [c−m, c+m] around the target complexity c of magnitude

m. Any MDP whose complexity falls in this zone will be labelled as a candidate,

and a weighted random sampling will take place amongst the candidates in order to

choose the appropriate MDP. This will allow us to define a weight in order to bias

the selection of the MDP using the principles outlined above.

Another factor that is specific to generating a mapping function that needs to be

accounted for is that the target task is known. This is in fact an assumption made

by most Curriculum Learning algorithms, as the performance of the agent on the

target task is what Curriculum Learning ultimately wishes to optimise. As such, we

are not interested in learning tasks in the curriculum space that are more complex

than the target task; given a set of parameters for the agent, θ, and a target task t,

let the agent’s performance on the target task be ptθ, then the complexity of a task

with a known target task becomes:

Comp(a,m) = 1−
P̄ (θ,m)− ptθ
p+θ − ptθ

(5.16)

Another issue to consider when trying to generate a mapping function is the

number of MDPs to choose from can be quite large, and sometimes there are MDPs

that have a strong similarity. In order to improve the initial performance of this

algorithm, we employ the strategy of an automatically defining a similarity metric
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Algorithm 5 Indirect Thompson Sampling

Input: Threshold C, Number of tasks n, Threshold τ

1: t := 0
2: αa−1, β

a
−1, α̃

a
−1, β̃

a
−1 := 1 ∀a ∈ N<n

3: loop
4: For each arm a sample µat := Beta(αat−1, β

a
t−1)

5: For each arm a let cat :=
µat−µ1t

maxx∈[1,n] µ
x
t−µ1t

6: For each arm a sample µ̃at := Beta(α̃at−1, β̃
a
t−1)

7: For each arm a let c̃at :=
µ̃at−µ̃1t

maxx∈[1,n] µ̃
x
t−µ̃1t

8: For each arm a ĉat :=
αa
t−1+β

a
t−1

C · cat + (1− αa
t−1+β

a
t−1

C ) · c̃at
9: Get complexity value ct from the progression function

10: Define set of candidates C containing each arm a satisfying |ĉat − ct| < τ
11: Pull arm k by sampling from C and receive reward rt.
12: Update αkt , β

k
t like in Dynamic Thompson Sampling.

13: Normalise α̃kt , β̃
k
t such that their sum is ≤ C − 1

14: Update α̃kt , β̃
k
t like in Dynamic Thompson Sampling.

15: for a ∈ N<n − k do
16: sim := JensenShannon(Beta(αkt−1, β

k
t−1), Beta(αat−1, β

a
t−1))

17: α̃at := α̃at−1 + sim · rt
18: β̃at := β̃at−1 + sim · (1− rt)
19: end for
20: t := t+ 1
21: end loop

between MDPs based on the similarity between their estimated reward distributions.

The intuition is that in the initial stages of the training, this similarity metric can

be used to update the value of multiple tasks with similar expectations based on the

results from only one. The weight of this estimation will then be annihilated as more

information is available on each individual task. In order to put this idea in practice,

we introduce two different distributions for each task: a strict distribution and a

lenient distribution. Strict distributions, as the name suggests, only get updated

when a value is observed for the MDP relative to the distribution. On the other

hand, lenient distributions are updated any time a value is observed, and the amount

they are updated by depends on the Jensen-Shannon distance1 between the strict

distributions relative to the MDPs.

Combining the techniques mentioned above with Dynamic Thompson Sampling

1Square root of the Jensen-Shannon divergence (Lin, 1991), used to measure the distance between
two probability distributions.
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results in Algorithm 5, named Indirect Thompson Sampling, as the value of α̃ and

β̃ (lenient distribution) are mainly derived indirectly from similar MDPS. Initially

both the strict and lenient distributions are initialised, then the complexity according

to both distributions is calculated according to Equation 5.16. Line 10 defines the

previously mentioned set of candidates, whereas line 11 selects the appropriate arm.

The method of selection is a weighted sampling based on the last time an arm was

pulled and the momentum of the arm’s values (exponential moving average of the

first derivative of the values of the arm). Finally all the distributions are updated.

It is worth noting that in order to limit the influence of other arms on the value

of the lenient distributions, they are not normalised such that α̃at + β̃at ≤ C unless

a is the arm that was last pulled. This results in a much higher weight being given

to samples relative to that arm for lenient distributions. Another detail that was

omitted for simplicity is that in line 6, whenever the sampling takes place, α̃at−1
and β̃at−1 are normalised such as their sum is equal to their strict counterpart. This

accounts for the fact that the lenient distributions are not always normalised, and

that updating the distribution based on similar tasks does not actually change the

confidence in the value of that task. This normalisation ensures that if a limited

amount of data is available for a certain task its lenient distribution does not have

an unjustifiably (based on the amount of data available) small variance.

5.7 Experimental Evaluation

In order to validate our method we perform an evaluation of VDTS and ITS on our

testing domains. This evaluation has the aim to test the effectiveness of our approach

as well as whether our modification of VDTS to generate mapping functions was

more effective than their manually generated counterpart. The manual mapping

functions were the ones described in Section 3.8.2, which were also used for all

other experiments in this thesis. Details on the principles used to manually generate

mapping functions can be found in Section 3.4.

The results on the Grid World Maze environment show an initial rise in perfor-

mance when using both automatically generated mapping functions, however the

mean performance of the manually defined mapping function surpasses both auto-

matically defined ones later in the training. While the confidence intervals intersect

for much of the training, by looking at the performance of the three methods in this

environment we can estimate that the manually defined mapping function should

be the best performing method, followed by ITS and then by VDTS.
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Figure 5.3: Performance of a manually defined mapping function against VDTS and
ITS.

The Point Mass Maze domain provides a more clear distinction between the

methods, with ITS being the bet performing method for all but the first fifth of the

training. While VDTS has a better initial performance, its performance lags behind

in the later stages, being outperformed by both ITS and a manually defined mapping

function. Interestingly the automatic mapping functions are able to perform better

than a manually defined one in this environment, which is surprising given only the

x and y coordinates are modified by the mapping function.

In the Directional Point Maze domain, both automatic mapping functions out-
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perform a manually defined one, with ITS outperforming VDTS in the middle stages

of the agent’s training but converging to a similar value. Both automatic mapping

functions performing well in this task can be attributed to the manual mapping

function initialising the directional model in a random heading, whereas the auto-

matic mapping functions have control over the initial heading of the agent, which is

translated to an increase in performance.

The Ant Maze domain sees all three mapping functions perform in a similar way

until three quarters of the training, when VDTS’s performance converges, resulting

in a best performance outside of the confidence interval of ITS and a manually de-

fined Mapping. ITS, on the other hand performs better than DVTS, but marginally

worse than a manually defined mapping functions in the later stages of the training.

The Predator Prey domain, on the other hand, sees both automatically generated

mapping functions outperformed by the manually defined one. In this domain, ITS’s

mean performance is higher compared to DVTS, however they are still within the

same confidence interval throughout the training.

Finally, the HFO domain sees similar results compared to the Predator Prey do-

main, with DVTS being outperformed by the manually defined mapping function,

and ITS being within the same confidence interval as DVTS for the whole training.

Interestingly this is the only domain where the mean performance of DVTS outper-

forms ITS’s mean performance, however given the amount of overlapping between

the two confidence intervals (and their magnitude), this is not an accurate estimate

of which algorithm performs best in this domain.

Our experimental results show that there is indeed a benefit in using ITS over

VDTS, as the former outperforms or matches the latter in all the environments but

one (HFO), in which the magnitude of the confidence intervals prevents us from

making a prediction on which method outperforms the other. From this experimen-

tal evaluation we conclude that the performance of automatic mapping functions

created with no previous domain knowledge is domain dependent. In particular,

our approach performs well on navigation domains, where it can match or even out-

perform manually created mapping functions. On the other hand, our approach is

outperformed by manually defined mapping functions on both Predator Prey and

Half Field Offense. We hypothesize that this behaviour is caused by the environ-

ments being much harder to learn whenever the selected task is randomly sampled

compared to our navigation domains. As in ITS and VDTS all priors are initialised

to α = β = 1, the initial stage of the curriculum will be a random sampling in order

to ascertain which tasks are more complex and which tasks are less complex. This
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however could negatively impact the agent’s learning from the offset, potentially

resulting in the agent never scoring in HFO, and therefore all tasks being of max-

imum complexity, or the predator always catching up to the agent. Moreover, the

task’s parameters randomly changing at the end of each episode might not give the

agent enough time to learn a less complex parameter configuration even if given the

chance to train in one. This hypothesis is supported by our experiments on the ro-

bustness of the adaptive progression functions conducted in Chapter 4. Figures A.3

and A.4 are relevant to this problem, more specifically the effect of random noise

in the performance of both progression functions in the Predator Prey and HFO

domains. HFO was in fact the only domain where the best performance of both

progression functions with random noise was more than halved, similarly Predator

Prey was the domain where random noise has the second highest impact.
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Chapter 6

Conclusion and Outlooks

This chapter concludes the thesis by first outlining the contributions made to the field

of Curriculum Learning in Reinforcement Learning, to then discuss the limitations

of the work presented. Finally, a way in which the limitations could be addressed

will be discussed in the section dedicated to future work.

This thesis empirically proved the research hypothesis stated in the introduction:

High-level domain knowledge can be used to support the generation of an informed

curriculum that can train an RL agent more efficiently than other state-of-the art

Curriculum Learning methods.

in particular with the experimental evaluation in Chapter 4. Moreover it answered

the three research questions it set out to explore:

1. How can high-level domain knowledge be leveraged in the creation of a

curriculum?

2. How can the complexity of the environment be selected for a given learning

agent?

3. How can the complexity of an environment be assessed for a given learning

agent?

6.1 Contributions

Defined a novel Curriculum Learning framework Chapter 3 defined a novel

framework for curriculum generation based on two components: progression func-

tions that specify the environment’s complexity, and mapping functions that gener-

ate environments of a specific complexity. In doing so, it addressed research questions
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1 and 2. Various aspects of the framework were explored in Chapter 3, moreover

Chapters 4 and 5 deal with the automation of the components of this framework.

Defined a way to exploit high-level domain knowledge Chapter 3 also de-

fined a way to allow for simple yet significant knowledge about the environment

to be used in the generation of a curriculum, therefore directly answering research

question 1. This happens through mapping functions, whose manual generation via

domain knowledge is addressed in Chapter 3.

Determined how long should be spent on each task The framework defined

in Chapter 3 also answers an open question in the Curriculum Learning literature:

how long should be spent on each task. This is specified by progression functions

within the framework defined in this thesis. We addressed this in Chapter 3, in

particular Section 3.6 when discussing curriculum granularity. Granularity in fact

deals with how often the complexity of the environment is modified; our experimental

results strongly suggest that changing the task up to every episode is the most

beneficial. This contribution addressed research question 2.

Built an online curriculum tailored to the agent Chapter 4 defined several

methods to automatically build a curriculum tailored to the agent’s ability, therefore

addressing research question 2. In particular, the Friction-based and Rolling Sphere

progression functions were introduced. The Rolling Sphere progression was also

used to progress each dimension separately by performing a line search over each

dimension in order to estimate the gradient.

Automated the generation of a mapping function Our framework is not

limited to a manually defined mapping function, in fact Chapter 5 automates the

creation of mapping functions. A new algorithm for the generation of mapping

functions is defined, and our empirical results show that an automatic mapping

function can even outperform a manually defined one. In order to automatically

define a mapping function, the complexity of different tasks was assessed for different

agents, therefore answering research question 3.

Defined a new variation of the Multi-Armed Bandit problem In order to

automate the generation of a mapping function, Chapter 5 defined a new variation

of the Multi-Armed Bandit (MAB) problem. This variation, named Dynamic Value
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Bandits, requires the agent to pull the arm whose expected payoff is closest to an

observed value. Thompson Sampling, UCB and BESA were adapted to solve the

DVMAB problem, and an extensive evaluation was performed over several testing

domains. This contribution was vital in the automation of the generation of mapping

functions, therefore addressing research question 3.

6.2 Limitations

The most evident limitations posed by the framework in Chapter 3 are the need

for expert knowledge in order to generate a mapping function, and the need to

manually define how the complexity should be changed over time. These limitations

are addressed in Chapters 4 and 5, however the methods used to automatically

generate mapping and progression functions also have some limitations.

The first adaptive progression function defined, the Friction-based progression,

can only progress all dimensions of complexity simultaneously, a limitation that is

addressed by the rolling Sphere progression. However, the method used to progress

each dimension of complexity independently can only progress one dimension at a

time. Furthermore, as this approach is based on a gradient estimation it is suscep-

tible to noise in the mapping function.

On the other hand, the way we automatically generate mapping functions has an

inherent limitation stemming from the Multi-Armed Bandit framework: a fixed set

of tasks (or arms) needs to be provided at the start of the training. This is necessary

for each algorithm to keep track of the value of each arm. Another limitation, that in

certain cases could be an advantage, is the fact that we do not perform any generali-

sation over the parameter vector, for example by using a neural network to estimate

the complexity. This was a conscious choice and it has two motivations. Firstly,

similar parameter vectors can have a very different complexity which might not be

easily captured by a function approximator. Moreover using a function approxima-

tor would impose a limit on the set of MDPs that can be part of the curriculum,

whereas in our case any MDP can be used provided a valid transfer method is used

whenever needed. Finally, a limitation of our method of automating the generation

of mapping functions is that it under-performs in certain environments, requiring

further experimentation in order to identify any possible areas of improvement.

121



6.3 Future work

As previously mentioned, the field of Curriculum Learning for Reinforcement Learn-

ing is a relatively young field of research, having been formalised by Narvekar et al.

(2016). As such, many open questions are still unanswered and many different direc-

tions could be taken by future work in this field. This section will conclude the thesis

by mentioning some ideas for future work that are related to the work undertaken

in this thesis.

One possible research avenue for future work would be to define a method to

progress each dimension of complexity simultaneously. This would provide a more

fine-grained control over the progression itself and would also be potentially more

resilient to noise in the mapping function. In order to address this problem, existing

policy search methods could be used, with the aim to keep the agent in environments

where its performance is within given thresholds.

Another opportunity for future work would be to address both the second and

third limitation mentioned in the last section by using a model to estimate the

complexity of the environment. This would allow for a random set of MDPs to

be chosen whenever needed, and the way MDPs are generated could be further

expanded upon. In our current research MDPs are randomly sampled from the

parameter vector, although in principle any generation method could be used. We

performed preliminary experiments in trying to use the agent’s value function to

determine the complexity of different MDPs, however this would impose restrictions

in the set of MDPs that can be added to the curriculum. Moreover, this method is

dependent on the quality of the agent’s initial value function, as a bad initialisation

could result in the agent being stuck in more complex environments.

As mentioned in the previous section, our algorithm for the generation of map-

ping functions under-perform in some domains, as such future work could address

this limitation. A way this could be achieved is by limiting the amount of domain

knowledge necessary for the generation of the mapping function to only estimating

the priors for each task’s beta distribution in the ITS algorithm. This could result

in the problem of random exploration at the start of the training being overcome,

while relaxing the assumptions made on the generation of mapping functions, and

still being able to adapt the mapping function to each individual agent.

Furthermore, an interesting open question to answer would be whether it is

possible to define a universal agent that acts as a progression function, specifying

the desired complexity over time. Many challenges arise from this research idea, one
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being how to structure the reward function, another being how to train an agent

capable of accounting for temporal dependencies and changing environments. While

the idea of defining the generation of a curriculum as an MDP was already explored

by Narvekar et al. (2017), having an agent specify the complexity of the environment

could lead to a more streamlined algorithm.

Finally, a theoretical analysis of the DVB problem could be undertaken, in par-

ticular estimating an upper bound to the regret for each one of the newly defined

algorithms, and more algorithms for solving this problem could be defined.
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Appendix A

Additional Results

A.1 Friction Based progression variants

Figure A.1: Performance of the three formulations of the Friction-based progression
on six test domains.
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A.2 Effects of Multiprocessing

Figure A.2: Performance of the Friction-based progression, Rolling Sphere progres-
sion and Exponential progression on five test domains with (m.) and without (s.)
multiprocessing.
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A.3 Robustness of adaptive progression functions

Figure A.3: Performance of the Friction-based progression with local (sh), global
(lo) and random (rn) noise on six test domains.
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Figure A.4: Performance of the Rolling Sphere progression with local (sh), global
(lo) and random (rn) noise on six test domains.
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A.4 Adversarial DVB

This section reports the full results for the Adversarial DVB environment. The

algorithm on the left is the adversary, whereas the algorithm on the top of the table

is the one trying to match the target value. The highest regret, which was the one

used for the plots, was highlighted in bold.

VDTS VDBESA SWUCB

VDTS 55.18 ± 2.28 109.57 ± 6.90 99.59 ± 2.81

VDBESA 64.78 ± 2.87 227.29 ± 33.81 272.35 ± 9.59

SWUCB 45.58 ± 1.94 101.63 ± 4.30 80.06 ± 2.38

No adv. 44.21 ± 1.79 91.61 ± 3.06 74.09 ± 2.39

Table A.1: Results for adversarial DVB with σ2 = 0

VDTS VDBESA SWUCB

VDTS 58.06 ± 1.74 108.78 ± 3.74 99.39 ± 2.34

VDBESA 63.98 ± 2.67 324.31 ± 35.27 268.86 ± 8.72

SWUCB 48.16 ± 1.49 105.88 ± 3.08 81.06 ± 2.10

No adv. 46.24 ± 1.63 88.74 ± 2.59 75.82 ± 1.89

Table A.2: Results for adversarial DVB with σ2 = 0.001

VDTS VDBESA SWUCB

VDTS 113.46 ± 2.26 125.14 ± 4.11 106.51 ± 1.83

VDBESA 130.44 ± 7.03 344.22 ± 40.42 295.26 ± 7.85

SWUCB 106.35 ± 2.57 123.81 ± 4.23 100.33 ± 1.86

No adv. 99.92 ± 2.13 103.80 ± 1.74 91.60 ± 1.65

Table A.3: Results for adversarial DVB with σ2 = 0.005

VDTS VDBESA SWUCB

VDTS 192.21 ± 3.77 137.81 ± 2.88 129.30 ± 1.89

VDBESA 204.51 ± 7.06 354.89 ± 38.15 322.51 ± 7.39

SWUCB 195.37 ± 4.09 144.72 ± 2.33 135.89 ± 2.03

No adv. 171.55 ± 3.40 121.17 ± 1.69 117.66 ± 1.57

Table A.4: Results for adversarial DVB with σ2 = 0.008
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VDTS VDBESA SWUCB

VDTS 256.44 ± 5.04 149.13 ± 1.92 150.16 ± 2.01

VDBESA 270.57 ± 8.34 390.47 ± 37.23 323.52 ± 5.61

SWUCB 267.64 ± 5.19 164.15 ± 2.86 165.49 ± 2.19

No adv. 226.99 ± 3.89 135.58 ± 1.69 136.95 ± 1.67

Table A.5: Results for adversarial DVB with σ2 = 0.01

VDTS VDBESA SWUCB

VDTS 538.68 ± 10.22 254.74 ± 2.48 306.59 ± 3.07

VDBESA 519.80 ± 10.22 443.21 ± 30.07 411.58 ± 4.98

SWUCB 617.77 ± 9.10 303.93 ± 4.30 371.21 ± 4.03

No adv. 470.29 ± 5.80 238.26 ± 2.22 284.54 ± 2.98

Table A.6: Results for adversarial DVB with σ2 = 0.02
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