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Abstract

The Johnson graphs J(n, k) and Hamming graphs H(d, q) are well-known families

of finite graphs with strong symmetry properties, such as distance-transitivity. In

this thesis we explore the model theory of these graphs and their infinite limits. A

major focus is on Vapnik-Chervonenkis dimension and density, these are invariants

of set systems historically of importance in statistical learning theory and extremal

combinatorics, and highly relevant to first order structures which do not have the

independence property. We show that the edge relation has VC-dimension 4 and

VC-density 2 in the class of Johnson graphs and VC-dimension 3 and VC-density

2 on the class of all Hamming graphs. We also consider the limit theory TJ of the

Johnson graphs as min(n, k, n−k)→∞. We show that TJ is complete, describe the

infinite models and prove that it is ω-stable of Morley rank ω, but not monadically

dependent. When k is fixed, the limit theory of J(n, k) is totally categorical of

Morley rank k.

We also explore how certain graph operations affect the VC-dimension of the

edge relation.
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1 Introduction

In recent years the areas of model theory and graph theory have found a common

interest in the topics of Vapnik-Chervonenkis dimension (VC-dimension) and

Vapnik-Chervonenkis density (VC-density). VC-dimension and VC-density are

closely linked and for convenience we will refer to them jointly as VC-characteristics.

They give a way to measure the complexity of set systems which can be defined from

first order logical formulae in structures such as graphs.

First introduced in the context of statistical learning theory [47], VC-dimension

also plays a key role in computational learning [46, 28, 25] as well as in model

theory [3], and it has applications in numerous areas, including graph theory [10],

computational geometry [12], database theory [41], and graph algorithms and com-

plexity [11, 19].

For fixed k,m ∈ N with k ≤ m, the Johnson graph J(m, k) has vertices that

correspond to k-element subsets, of an underlying universe set of cardinality m,

where two vertices are adjacent if their corresponding sets intersect in k−1 elements.

Figure 1 shows the Johnson graph J(4, 2). We let J := {J(m, k) | k,m ∈ N, k ≤ m}

denote the class of all finite Johnson graphs, and Jk := {J(m, k) | m ∈ N}, and we

let J denote the closure of J under the induced subgraph relation. A first study of

induced subgraphs of Johnson graphs has been done in [37].

Hamming graphs arise from Hamming schemes and they naturally model Ham-

ming distance. For fixed d, q ∈ N, let S be a set with |S| = q. The Hamming

graph H(d, q) has vertex set Sd, where two vertices are adjacent if they differ in

precisely one coordinate. Figure 2 shows the Hamming graph H(3, 2). We let

H := {H(d, q) | d, q ∈ N} denote the class of all Hamming graphs, and we let H

denote the closure ofH under taking induced subgraphs. The classH has been char-

acterized in [32] via certain edge labellings. The classes J and H admit arbitrarily
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{1, 2}

{1, 3}{1, 4}

{2, 3}{2, 4}

{3, 4}

Figure 1: The Johnson graph

J(4, 2).

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

Figure 2: The Hamming

graph H(3, 2).

Figure 3: The rook’s

graph R(5.4).

large cliques as subgraphs.

Johnson graphs and Hamming graphs are graphs of high regularity. They origi-

nally arise as the graph-theoretic analogue to the association schemes bearing their

name. The relations of the association schemes correspond to fixed distances in

the graphs. They feature in different areas of computer science and mathematics,

including coding theory, algebraic graph theory and model theory. Johnson graphs

also appear in László Babai’s algorithm for solving the graph isomorphism problem

in quasipolynomial time [5], where they constitute the ‘hard case’.

Our motivation for this work is multifaceted largely stemming from algorithmic

graph theory, permutation group theory, and model theory as mentioned below. In

algorithmic graph theory structural tameness is often linked to good algorithmic

properties.

Many problems on graphs, that are algorithmically hard (e.g. NP-hard) in gen-

eral, can be solved efficiently on classes of graphs having a tame structure, such as

graphs of bounded tree-width [15], planar graphs, graphs excluding a fixed minor,

and nowhere dense classes of graphs [38]. Nowhere dense classes of graphs generalise

the previously mentioned classes, and in [24] it was shown that on nowhere dense

classes of graphs, every problem expressible in first-order logic is fixed-parameter

tractable. All of these classes are sparse. In particular, they cannot contain arbi-
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trarily large cliques. However, intuitively, cliques contain about as much information

as independent sets. In [16], clique-width was introduced to address this (the class

of all cliques has clique-width 2), and this was further generalised to graph classes of

bounded local clique-width. That allowed fixed-parameter tractability for first-order

logic [23]. Nowhere dense classes of graphs are closed under taking subgraphs, i. e.

if C is a nowhere dense class of graphs, then the class obtained by closing C under

subgraphs is also nowhere dense. Graph classes of bounded (local) clique-width are

closed under taking induced subgraphs.

So-called dependent graph classes, i.e. graph classes where every first-order for-

mula has bounded VC-dimension, are a common generalisation of both nowhere

dense classes of graphs [1] and classes of bounded local clique-width [26]. We will

discuss dependent classes below and we view dependence as an interesting notion of

tameness. The classes J ,Jk,J ,H, and H are clearly somewhere dense, as arbitrar-

ily large cliques occur as subgraphs, and they have unbounded local clique-width.

Indeed, the open neighbourhood of any vertex of J(m, k) induces a rook’s graph

R(m − k, k), cf. Figure 3, and the class of all rook’s graphs has unbounded clique-

width. Moreover, the open 2-neighbourhood in a Hamming graph H(d, 2) induces

the 1-subdivision of the complete graph on d vertices, see Corollary 6.1.5, and it is

known that the class of 1-subdivisions of complete graphs has unbounded clique-

width (cf. e. g. [2]).

Hamming graphs and Johnson graphs are regular and have large vertex transi-

tive automorphism groups making them of particular interest in permutation group

theory. The symmetric group Sm is the full automorphism group of the Johnson

graph J(m, k) whenever m ̸= 2k, and the wreath product SqwrSd is the full au-

tomorphism group of the Hamming graph H(d, q). In both cases these groups act

distance-transitively: if (u, v) and (u′, v′) are pairs of vertices with d(u, v) = d(u′, v′)

then there is an element g in the group with g(u) = u′ and g(v) = v′. This symmetry
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is exploited in some of our proofs to reduce the number of cases that need to be

checked.

This has also caused Johnson graphs and Hamming graphs to crop up in various

areas of model theory. E.g. in [13, IVB] Gregory L. Cherlin, Gary A. Martin, and

Daniel Saracino give an upper bound on the arity of a relation symbol needed to

get quantifier elimination in Jk, and in the theory of Hamming graphs H(d, q) for a

fixed d.

Stability theory is one of the major research themes in model theory. Originating

in the 1960’s with the seminal work of Michael Morley [36] and continuing on to

this day it aims to classify first order theories according to their logical complexity.

Stability is a strong tameness condition which has been generalized in various ways

to give different weaker tameness conditions. A major research area of stability

theory is classifying theories according to which tameness conditions they satisfy.

Many of the results in this area can be found on [21].

Straddling both the graph-theoretic and the model-theoretic aspects of VC-

characteristics we will be looking at graphs and graph classes from the perspective

of their first order theory. The simplicity of the language of graphs, i.e. a language

with a single binary relation, gives credence to the notion of a canonically "simplest"

formula, namely ϕ(x, y) := Exy. It can therefore be illuminating to look in detail

at that formula e.g. computing its VC-dimension and VC-density.

Graph theory and model theory find themselves at odds when it comes to finitism.

In graph theory, graphs are usually assumed to be finite, possibly arbitrarily large

but finite. Model theory by contrast is primarily concerned with structures, of which

graphs are a special case, that are infinitely large. The first order theory of a finite

structure is often seen as simplistic since their entire structure can be captured in a

single formula. In this thesis we will reconcile this in two ways.

Firstly we will look at infinite classes of finite graphs, and extend the definitions
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of VC-characteristics to apply to such classes rather than a single infinite model.

Secondly we will extend the definition of Johnson graphs to the infinite. The

natural definition of infinite Johnson graphs will give rise to an additional defini-

tion of infinite graphs that behave like Johnson graphs, but fall outside the formal

definition. We then unite those definitions in what we call Generalized Johnson

graphs.

Some results are already known e.g. that in the limit theory of Jk a formula

ϕ(x̄; ȳ) has VC-density at most 2k|ȳ| [4, 1.1]. This is similar to a result on nowhere

dense graph classes where it has been shown that the VC-density of a formula ϕ(x̄; ȳ)

is at most |ȳ| [39].

It is also known the limit theory of H(ℵ0, 2) is ω-stable [3, 4.10]. These results

focus on cases where one of the parameters is fixed. Our work however, for the most

part, doesn’t have such a restriction and works on the entirety of J and H.

1.1 Main results

The main results of this thesis can be split into two areas. First we compute the VC-

dimension and VC-density of the edge relation on classes of finite Johnson graphs.

Theorem (4.2.2 and 4.3.1)

The edge relation has VC-dimension 4 and VC-density 2 on the class of Johnson

graphs.

Theorem (6.2.2 and 6.3.1)

The edge relation has VC-dimension 3 and VC-density 2 on the class of Hamming

graphs.

Secondly, in a deeper dive into the model theory of Johnson graphs, this work

focuses on infinite graphs. First we look at the limit theory of J(n, k) for a fixed k

and prove:
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Theorem (5.2.1 and 5.2.4)

The limit theory of J(n, k) for some fixed k and n → ∞ is a complete theory with

Morley rank k.

We also show:

Theorem (5.2.6)

The Johnson graph J(ℵ0, 2) is not monadically dependent.

A corollary to this, which is relevant to recent research, is that the class J2, and

therefore J , does not have bounded twin-width. This is due to [44, 8.4].

We then let k loose and working toward a grand unified theory of all infinite

Johnson graphs. First we prove:

Theorem (5.3.3)

The theory of J(n, k) stabilizes as n and k approach ∞. I.e. for every sentence σ

in the language of graphs there exists a kσ ∈ N such that if k, k′, n, n′, n − k, and

n′ − k′ are all greater than kσ then J(n, k) |= σ ⇐⇒ J(n′, k′) |= σ.

From this result we define TJ to be the theory of all sentences that are true in

J(n, k) as n, k, n− k →∞, which by Theorem 5.3.3 is a complete theory.

In Definition 5.1.6 we introduce the notion of generalized Johnson graph and

in Chapter 5.4 we give a set of axioms Σ satisfied by all models of TJ and prove the

following result.

Theorem (5.4.3)

A model M has M |= Σ if and only if M is a generalized Johnson graph.

Armed with the knowledge of what all models of TJ look like, namely that they

are generalized Johnson, graphs we then go on to prove the following.
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Theorem (5.5.8 and 5.5.7)

1. TJ has Morley rank ω.

2. TJ is ω-stable.

3. TJ is dependent.

Parts (2) and (3) follow directly from (1) but are important enough to merit

their own mention.

1.2 Structure of thesis

In this section we will give an outline of the thesis explaining where each piece of

work is carried out.

In Chapter 2 we will introduce the technical definitions required for our work

along with the relevant theorems and lemmas from the literature.

In Chapter 3 we will start by exploring the VC-dimension of the edge relation

and how it changes under the common graph operations i.e. vertex deletion, edge

deletion, edge contraction, local complement, and complement. The results are given

by a series of examples, rather than formal theorems, and are summarised in Table

1. We will then move on to looking at the VC-dimension of the edge relation on

particular graph classes. We begin by looking at trees and graphs that are close to

being trees and give a connection between the VC-dimension of the edge relation and

tree-width. The results in this chapter closely mimic those by Stéphan Thomassé

and Nicolas Bousquet in [10].

In Chapter 4 we will introduce the notion of Johnson graphs and give techni-

cal lemmas on how VC-dimension and VC-density behave on the class of Johnson

graphs. We will then move on to compute the VC-dimension and VC-density of the

edge relation on the class of all Johnson graphs giving us our first main results.
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In Chapter 5 we generalize the definition of Johnson graphs to include infinite

graphs defined by infinite sets. It is here where we delve deeper into the first order

theory looking beyond just the formula ϕ(x, y) := Exy and prove that as n and

k approach ∞ the theory of Johnson graphs J(n, k) stabilizes, so we have a single

complete theory TJ that describes all Johnson graphs. We give axioms for this

theory first by giving axioms for any J(n, k) that can be obtained and then focusing

on the infinite case. We also define special types of graphs J ′(κ, λ) which emerge

as the connected components of infinite Johnson graphs and finally unify them in

the concept "generalized Johnson graphs" which captures all graphs that satisfy TJ .

We then show that TJ is an extremely tame theory, showing that any generalized

Johnson graph has Morley rank ω.

That concludes the work on Johnson graphs and in Chapter 6 we move on to

Hamming graphs. The chapter is in many ways analogous to Chapter 4 and follows

a similar structure but focuses on Hamming graphs rather than Johnson graphs.

Note that our work on Hamming graphs focuses on the VC-characteristics of the

edge relation and we do not prove general results about the full theory of Hamming

graphs.

Finally in Chapter 7 we get into a discussion of possible directions further re-

search could take.
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2 Preliminaries

In this chapter we will introduce our notation and present the basic definitions of

graph theory and model theory. We will also cover some basic results relating the

VC-dimension and VC-density.

2.1 Clarification on notation

In this section we will clarify some notation used throughout this thesis. All of the

concepts introduced are basic and notation given without full definitions.

For a set A we will use P (A) to denote the powerset of A.

For a function f we will use f−1 to denote the inverse of f , if it exists.

Let f be a function X → Y and A ⊆ X. We then denote f [A] := {f(a)|a ∈ A}.

In all cases log(k) stands for the base 2 logarithm.

We use the symbols ω = ℵ0 = |N| interchangeably.

For sets A and B will use A ⊔B to mean the disjoint union of A and B.

2.2 Model-theoretic preliminaries

In this thesis we will be looking at graphs from a model-theoretic perspective. In this

section we will give the basic definitions required for our work. In interest of brevity,

this is not going to be a complete introduction to model theory. Rather we focus on

those parts that are essential to our focus on the model theory of graphs, primarily

finite graphs. For a more complete overview, we point the reader to standard model

theory text books [34, 45, 29].

Definition 2.2.1

A language L is a set of relation symbols and function symbols, each equipped with

an arity, and of constant symbols.

15



We note that function symbols and constant symbols are in fact short hands for

relation symbols satisfying certain axioms. In the case of a constant symbol c we

have a unary relation symbol Rc which is always satisfied by exactly one element.

Similarly for an n-ary function symbol f we have a n + 1-ary relation symbol Rf

such that for any n-tuple x̄ there exists a unique y such that Rf (x̄, y).

The simple notion of a logical formula can be quite complicated to pin down

giving rise to the following three definitions.

Definition 2.2.2

We define a term in a language L, also known as an L-term, inductively as one

of

• x a variable.

• c for some constant symbol c in L.

• f((ti)
n
i=1) for some function symbol f of arity n in L and some family (ti)

n
i=1

of L-terms.

Definition 2.2.3

An atomic formula in a language L is either

• t1 = t2 or

• R((ti)
n
i=1) for some relation symbol R of arity n in L and some family (ti)

n
i=1

of L-terms.

Definition 2.2.4

A formula in a language L, also known as an L-formula is one of

• An atomic formula in L.

• ¬ϕ for some L-formula ϕ.
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• ϕ ∧ ψ for some L-formulae ϕ and ψ.

• ϕ ∨ ψ for some L-formulae ϕ and ψ.

• ∀xϕ for some L-formula and some variable x.

• ∃xϕ for some L-formula and some variable x.

In the last two cases we say the quantifier, ∀ or ∃, binds variable x in ϕ. We say

that a variable that is not bound by any quantifier is a free variable.

This is a common definition found in textbooks, although some definitions omit

one of the logical connectives and one of the quantifiers defining the others as short-

hand. We allow ourselves to be a little vague with the concepts of free and bound

variables. There we defer the common practice of only binding free variables and

never having a variable occur free in a formula ϕ if it is bound in some subformula of

ϕ. In addition to disjunction and conjunction we will use the following connectives

• p→ q := ¬p ∨ q

• p← q := p ∨ ¬q

• p↔ q := (p ∧ q) ∨ (¬p ∧ ¬q)

• p⊕ q := (p ∨ q) ∧ ¬(p ∧ q)

We will sometimes split the free variables of a formula ϕ into two tuples repre-

sented by ϕ(x̄; ȳ). We then call ȳ the parameters and x̄ the variables.

17



Definition 2.2.5

The quantifier depth of a formula is defined inductively on its structure as follows:

QD(ϕ) = 0 if ϕ is atomic

QD(¬ϕ) = QD(ϕ)

QD(ϕ ∨ ψ) = max(QD(ϕ), QD(ψ))

QD(ϕ ∧ ψ) = max(QD(ϕ), QD(ψ))

QD(∀xϕ) = QD(ϕ) + 1

QD(∃xϕ) = QD(ϕ) + 1

Definition 2.2.6

A sentence in language L, also referred to as an L-sentence, is a formula with no

free variables.

In this work the primary role of sentences will be as axioms.

We now give a definition of models that is much simpler than what can be found

in standard texts but is adequate for this thesis.

Definition 2.2.7

Let L be a language. A L-model M consists of a universe of objects along with an

interpretation of every relation, function and constant symbol in L by a relation on

M , function on M , and constant in M respectively.

For the purpose of this thesis the universe can be considered to be a set (rather

than a proper class), although in general this need not be the case, e.g. when

considering models of set theory. We use abuse of notation throughout making no

distinction between a model and its universe.

Models are also referred to as structures and for the purposes of this thesis

the terms "model" and "structure" will in almost all cases be interchangeable with

"graph" introduced in the next section.
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Definition 2.2.8

Let M be a model and A ⊆ M . We say that the set A is definable if there is a

formula ϕ(x̄; ȳ) and a tuple b̄ from M such that x̄ ∈ A if and only if M |= ϕ(x̄; b̄).

Definition 2.2.9

An L-theory is a consistent set of L-sentences. We say that an L-theory T is

complete if for any L-sentence ϕ either ϕ ∈ T or ¬ϕ ∈ T .

In this thesis we do not require theories to be closed under logical implication.

Since our work primarily deals with complete theories, making such assumptions

would not affect the results of this thesis. If we have a complete L-theory T and

M |= T then T is in essence everything that can be said about M using L.

For a graph class C we call the set of all sentences true in all but finitely many

models in C the limit theory of C.

Definition 2.2.10

Let M and N be two L-structures. We say that M and N are elementarily equiv-

alent if for every L-sentence ϕ we have M |= ϕ⇔ N |= ϕ.

Definition 2.2.11

Let M be an L-structure and N ⊆M . We say that N is an elementary substruc-

ture of M if for every L-formula ϕ(x̄) and every ā ∈ N we have:

M |= ϕ(ā)⇔ N |= ϕ(ā)

We say that M is an elementary extension of N if N is an elementary substruc-

ture of M .

Definition 2.2.12

Let T be an L-theory and A ⊆ M |= T . Let LA be the language L expanded with

an additional constant symbol for each element of A. An n-type over A of T is a
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maximal set S of LA-formulae with n free variables such that there is an n-tuple x̄

of elements from some elementary extension M ′ of M such that M ′ |= ϕ(x̄) for all

ϕ ∈ S.

A type over A is an n-type over A for some n.

A type over a set A in a model M is the model-theoretic analogue to the notion

of orbits of the pointwise stabilizer of A in the automorphism group of M .

Definition 2.2.13

Let λ be an infinite cardinal, T be a theory and M |= T . We say that T is λ-stable

if the number of 1-types of T over any set A ⊆ M such that |A| = λ is λ. We say

that T is stable if it is λ-stable for some infinite cardinal λ.

Stability, in a sense, restricts the possible complexity of a theory. Assuming L

has countably many symbols and T is a λ-stable theory, the number of types over a

set of size λ is at least λ and at most 2λ. Stability theory is an active research area

of model theory. Stability has been identified as a strong notion of tameness and as

such a desirable property for first order theories.

Definition 2.2.14

Let T be a theory. A formula ϕ(x̄; ȳ) has the independence property if there exists

a model M |= T containing (āi)i∈N and (b̄S)S⊂N such that i ∈ S ⇔ M |= ϕ(ai; bS)

for all i ∈ N and S ⊂ N. Otherwise we say that ϕ is dependent. We say that a

theory T is dependent if no formula in T has the independence property.

Dependent theories are also commonly known as NIP (Not the Independence

Property). It is another tameness condition from stability theory albeit a weaker

one than stability.

Theorem 2.2.15 ([40, 7.3.0])

Let T be a theory. If T has the independence property then T is unstable
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Dependence is particularly important due to its direct link to VC-dimension.

Namely, a formula ϕ(x̄; ȳ) has the independence property if and only if the family

of sets it defines has infinite VC-dimension. That makes it important in algorithmic

and extremal graph theory and statistical learning theory as well. In the latter

VC-dimension has been found to be highly related to the sample complexity in

PAC (Probably Approximately Correct) learning algorithms [26, 31]. The sample

complexity of a concept is an indication of how hard it is to learn.

We define the following special terms to deal with monadic second order expan-

sion of theories.

Definition 2.2.16

Let T be a theory. We say that T is monadically stable if any expansion of T

by uniary predicates is stable. We say that T is monadically dependent if any

expansion of T by uniary predicates is dependent.

Definition 2.2.17

Let M be a model and X ⊆ M be a definable set defined by formula ϕ. We define

the Morley rank of X, or ϕ, recursively with the following steps:

• The Morley rank is at least 0 if X ̸= ∅.

• The Morley rank is at least α+1 for some ordinal α if X contains ℵ0 disjoint

definable subsets of Morley rank at least α.

• The Morley rank is at least κ for a limit ordinal κ if it is at least α for all

α < κ.

• The Morley rank is α for some ordinal α if it is at least α and not at least

α + 1.

For a type p the Morley rank MR(p) is the minimal Morley rank of any formula in

p.
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We will employ a slight abuse of notation writing MR(a) for an element a to

mean the Morley rank of the type of a.

Definition 2.2.18

Let M |= T be a model and X ⊆ M be a definable set with Morley rank α. The

Morley degree of X is the largest d ∈ N such that we may write X as the union

of d disjoint definable sets each of Morley rank α. If p is a type with MR(p) = α,

then its Morley degree is the minimal Morley degree of a formula ϕ of p having

MR(ϕ) = α.

Lemma 2.2.19 ([45, 6.2.3])

Let X and Y be definable sets. Then MR(X ∪ Y ) = max(MR(X),MR(Y )).

Lemma 2.2.20 ( [45, 6.2.11])

Let A be a definable set and T (A) the set of types over A Then MR(A) = max{MR(p)|p ∈

T (A)}.

Definition 2.2.21

Let κ be a cardinal. A theory T is κ-categorical if it has a model of size κ and all

models of T of size κ are isomorphic. We say that T is totally categorical if it is

κ-categorical for all κ ≥ ω.

Theorem 2.2.22 (Morley’s theorem)

Let κ be an uncountable cardinal and L a language with countably many symbols.

Then an L-theory T is ℵ1-categorical if and only if T is κ-categorical.

It is important to note a few connections between categoricity and stability

conditions.

Theorem 2.2.23 ( [36, 3.8])

Let T be a totally categorical theory. Then T is ω-stable.
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Theorem 2.2.24

Let T be a complete L-theory, where L is a language containing countably many

symbols. Then T is ω-stable if and only if every definable set has ordinal valued

Morley rank. I.e. there is some, possibly infinite, bound on the Morley rank of any

definable set.

We will use a type of argument from finite model theory known as Ehrenfeucht-

Fraïssé games. Ehrenfeucht-Fraïssé game arguments are a way to determine if a

concept is expressible in first order logic, or if two structures satisfy the same sen-

tences.

The game is played between two players, usually named Spoiler and Duplicator.

Definition 2.2.25

Let L be a language with no function symbols, n ∈ N, and M and M ′ be L-models.

The Ehrenfeucht-Fraïssé game EFn(M,M ′) is a 2 player game played in follow-

ing way.

In each round first Spoiler plays one element from either M or M ′, then Du-

plicator plays one element from whichever model Spoiler did not play in. We call

the element played in M on the i-th round ai and the element played in M ′ we call

bi regardless of which player plays them. After n rounds have been played we have

(ai)
n
i=1 and (bi)

n
i=1.

Duplicator has won if for any atomic L-formula ϕ and any sequence (ij)
k
j=1 with

k ≤ n we have M |= ϕ((aij)
k
j=1)⇔M ′ |= ϕ((bij)

k
j=1), otherwise Spoiler has won.

Ehrenfeucht-Fraïssé games are a finite analogue to so called back and forth ar-

guments common in model theory.

Ehrenfeucht and Fraïssé showed that:

Theorem 2.2.26 (Ehrenfeucht-Fraïssé [18, 2 and 3])

If Duplicator has a winning strategy in EFn(M,M ′) then for all L-sentences ϕ of
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quantifier depth at most n, M |= ϕ⇔M ′ |= ϕ.

We note that if Duplicator has a winning strategy in EFn(M,M ′) for all n ∈ N

that means that the models M and M ′ are indistinguishable from the perspective

of first order logic. This means that any characteristic that M has and M ′ does not

have cannot be expressed in first order logic.

Example Connectivity in graphs is not first order expressible. See [33, 3.19] for

details.

Theorem 2.2.27 (Tarski-Vaught test[45, 2.1.2]))

A substructure N of M is an elementary substructure of M if and only if for every

formula ϕ(x; ā) with ā ∈ N we have M |= ∃x(ϕ(x; ā)) if and only if there exists

some b ∈ N such that M |= ϕ(b; ā).

It is immensely useful to be able to talk about what it means for two structures

to "be the same". This is commonly referred to as being isomorphic. In the interest

of simplicity we will restrict our definition of isomorphisms to graph isomorphism

as that is sufficient for our work.

Definition 2.2.28

Let G and H be graphs. An isomorphism between G and H is a bijective function

f : G 7→ H such that for all vertices v, u ∈ G we have G |= Evu ⇐⇒ H |=

Ef(v)f(u). We say that G and H are isomorphic if there exists an isomorphism

between them. An automorphism on G is an isomorphism between G and G.

The collection of automorphisms on a given graph G form a group with function

composition. This group describes the symmetries of G.

Definition 2.2.29

Let G be a graph. The group whose elements are the automorphisms of G with com-

position as the group operation is called the automorphism group of G denoted
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Aut(G). Let A ⊆ G we then call the set {f ∈ Aut(G)|f [A] = A} the setwise

stabilizer of A. We also call the set {f ∈ Aut(G)|∀a ∈ A(f(a) = a)} the point-

wise stabilizer of A. We note that for any A ⊆ G both the pointwise and setwise

stabilizer of A form subgroups of Aut(G).

2.3 Graph-theoretic preliminaries

In this section we will give the basic definitions and lemmas from graph theory for

our work. This is not meant as a complete introduction to graph theory but rather

a brief introduction and clarification on notation. For a more in-depth introduction

to graph theory we point the reader to some standard postgraduate texts on the

subject [17, 9, 27, 22]. The notation of graph theory can vary a lot from scholar to

scholar, textbook to textbook. We have chosen our notation such that it fits nicely

with conventions of model theory.

Definition 2.3.1

The language of graphs L is a language with a single binary relation symbol E.

Throughout this thesis we will be using L to mean the language of graphs unless

we specify otherwise.

Definition 2.3.2

A graph G is a model of L satisfying the following axioms:

∀v¬Evv

∀v∀u(Euv → Evu)

We note for graph-theoretic audiences that our graphs are undirected and have

no multiple edges or loops. We will commonly refer to the universe of a graph G as

the vertex set of G denoted VG in accordance with graph-theoretic convention. We
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will also, to keep with convention, use EG to denote the edge relation as interpreted

by G i.e. EGvu⇔ G |= Evu.

Definition 2.3.3

Let v be a vertex in a graph G. The neighbourhood of v denoted N(v) is:

N(v) := {u ∈ G|Evu}

If u ∈ N(v) we say that u is a neighbour of v.

Note Since we have no loops we have for all vertices v ̸∈ N(v).

The nomenclature for describing two vertices u and v satisfying Euv is vast and

the following phrases are equivalent.

• Euv

• u and v are neighbours.

• u and v are adjacent.

• there is an edge between u and v.

Definition 2.3.4

A set A ⊆ VG is a clique if for all pairwise distinct u and v in A we have Euv. If

VG is a clique then we say that G is a complete graph. The complete graph with

|VG| = n is denoted Kn.

Definition 2.3.5

Let G be a graph and k ∈ N. A path is a sequence (vi)
k
i=0 of pairwise distinct

vertices such that vi is adjacent to vi+1, and we say that k is the length of the

path. The graph that contains k vertices which form a path and has no other edges

is denoted Pk.
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We note that in our definition the indices start at 0 so the length of the path in

Pk is k − 1.

Definition 2.3.6

The distance from vertex v to u in a graph G, denoted d(v, u), is the minimum

length of a path from v to u in G.

Definition 2.3.7 ([8])

A graph G is distance-transitive if for any two pairs of vertices (u, v) and (a, b)

such that d(u, v) = d(a, b) there exist an automorphism f ∈ Aut(G) such that f(u) =

a and f(v) = b.

Definition 2.3.8

Let v be a vertex in a graph G. The ball of radius r around v is the set

of vertices at distance at most r from v. We say that G has radius r if r :=

min{xv|v ∈ G ∧ xv := max{d(u, v)|u ∈ G}}. We say that G has diameter k if

k := max{d(u, v)|u, v ∈ G}.

Definition 2.3.9

Let G and H be graphs with edge relations EG and EH respectively and vertex sets VG

and VH . We say that H is a subgraph of G if VH ⊆ VG and ∀v, u ∈ VH(EHvu→

EGvu). If EG and EH agree on VH then we say that H is an induced subgraph

of G or is the subgraph induced by VH . If H is an induced subgraph of G we write

G[VH ] := H and say that VH induces H as a subgraph of G.

It is important to note for model-theoretic audiences that a subgraph H of G is

a substructure of G if and only if it is an induced subgraph of G.

The concepts of subgraphs and induced subgraph of G correspond to those of:

graphs that can be obtained from G by using repeated applications of vertex deletion

and edge deletion.
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A graph H is an induced subgraph of G if H can be obtained by starting with

G and then using only the operation of vertex deletion. Similarly H is a subgraph

of G if you can obtain H from G by using vertex deletion and edge deletion. There

is one more operation common in graph theory which is that of edge contraction.

When an edge is contracted the vertices incident at the edge are merged into one

vertex, which is adjacent to all the neighbours of both of the original vertices. For a

more detailed description of these graph operations see Chapter 3. Edge contraction

gives rise to the concept of graph minor.

Definition 2.3.10

Let H and G be graphs. We say that H is a minor of G if there is a subgraph

U ⊆ G and an equivalence relation ∼ on VU such that each equivalence class is a

connected subgraph of U and H ∼= U/ ∼. Note that in U/ ∼ two vertices u and v

are adjacent if and only if there are vertices u′ ∈ u and v′ ∈ v adjacent in U . I.e.

there is at least one edge between a member of u and a member of v.

We say that H is a depth r minor of G if each equivalence class of ∼ has radius

at most r as an induced subgraph of G.

Definition 2.3.11

A cycle is a path of length k > 2 from u to v where u and v are adjacent. The graph

which contains k vertices and contains a cycle and no other edges is called the cycle

of length k denoted Ck.

Definition 2.3.12

A tree is a connected graph that contains no cycles.

Definition 2.3.13

We say that a set A of vertices in a graph G is connected if for any pair of

vertices u, v ∈ A there exists a path in G from u to v. We say that G is connected
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if VG is connected. A maximal connected set in a graph G is called a connected

component of G.

Definition 2.3.14

Let S be a set of vertices in a graph G and k ∈ N. We say that S is a distance k

dominating set if for all vertices v in G, min{d(u, v)|u ∈ S} ≤ k. We simply say

that S is a dominating set if it is a distance 1 dominating set.

Definition 2.3.15

Let G be a finite graph with vertex set V . A tree decomposition of G is a tree T

whose vertex set is U ⊆ P (V ) such that the following holds:⋃
U = V

∀v∀u ∈ V (Euv → (∃A ∈ U(u ∈ A ∧ v ∈ A)))

and for every v ∈ V we have that the set {A ∈ U |v ∈ A} is connected.

The width of T is the largest size of a set in U . The tree-width of a graph G

is the minimum width among all possible tree decompositions.

Definition 2.3.16

Let n and k be natural numbers n ≥ k. The Johnson graph J(n, k) is the graph

whose vertices are the k-element subsets of a set X of size n, where two vertices

are adjacent if their corresponding sets intersect in all but one element. i.e. their

symmetric difference has size 2. We call X the underlying set of J(n, k).

It is important to note the distance in a Johnson graph is directly related to the

size of the symmetric difference between sets.

Lemma 2.3.17 ([14, §2])

Let u and v be vertices in a Johnson graph. Then the distance d(u, v) = |u∆v|
2

.
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This fact will be leveraged heavily in our proofs.

A special class of graphs shows up in our work as the subgraphs induced by N(v)

for any vertex v in a Johnson graph.

Definition 2.3.18

Let m,n ∈ N. The rook’s graph R(m,n) is the cartesian product of Km and Kn.

We can represent every vertex by a pair from R × C where |R| = m and |C| = n

and two vertices (i, j), (k, l) are adjacent if and only if i = k or j = l.

The name of these graphs comes from the intuition that if we take a m by n

chessboard and place a vertex on each tile then there is an edge between two tiles if

a rook can legally be moved from one to the other.

Definition 2.3.19

Let d and q be natural numbers and S a set with |S| = q. The Hamming graph

H(d, q) is a graph whose vertices correspond to ordered d-tuples of elements from S

and two vertices are adjacent if they agree in all but one coordinate.

Note that R(n, n) = H(2, n).

Definition 2.3.20 ([38, 2.1])

A class C of graphs is somewhere dense if there exists an integer τ such that the

largest clique that is a depth τ minor of some graph in C is unbounded. Otherwise,

if the largest clique that is a depth i minor of some graph in C is bounded for each

integer i, the class C is nowhere dense.

2.4 Set systems and Vapnik-Chervonenkis characteristics

In this section we will give definitions of set systems and relevant notions required

to define VC-dimension and VC-density.
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Definition 2.4.1

A set system is a pair (X,S) consisting of a universe set X and a family S of

subsets of X.

When the underlying universe X is clear we often refer to the family S as the

set system (X,S).

Definition 2.4.2

Let ϕ(x̄; ȳ) be a formula. We call x̄ the object variables and ȳ the parameter vari-

ables of ϕ(x̄; ȳ). A set system for a formula ϕ(x̄; ȳ) with m object variables and n

parameter variables in a model M is a set system (Mm, Sϕ) where:

Sϕ = {{ā ∈Mm :M |= ϕ(ā; b̄)} : b̄ ∈Mn}

Example The set system for Exy in a graph G is (V (G),SE) where

SE :=
{
{x | G |= Exy} | y ∈ V (G)

}
= {N(v) | v ∈ V (G)}.

Throughout this thesis we will attribute to a formula ϕ all the characteristics of

the set system for ϕ. Furthermore we will attribute to the edge relation all the

characteristics of of the formula ϕ(x, y) := Exy. We will illustrate this better once

we have defined some characteristics of set systems.

Definition 2.4.3

Let (X,S) be a set system and A ⊆ X be a set. We say that A is shattered by S

if the class of intersections of sets in S with A is the full powerset of A i.e.

∀B ⊆ A ∃S ∈ S B = A ∩ S

To illustrate our previous point about attributing to formula the characteristics

of their set systems, we say that a set A in a model M is shattered by ϕ if A is

shattered by the set system for ϕ in M . More specifically we say that a set A in a
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graph G is shattered by the edge relation if it is shattered by the set system for

the formula "Exy" on G. Namely {N(v) : v ∈ G}. This is an important concept in

this thesis and gets used heavily throughout.

Lemma 2.4.4

For any formula ϕ and model M we have:

V C((M,Sϕ)) = V C((M,S¬ϕ))

Proof. We will prove a stronger statement, namely that any set shattered by ϕ is

also shattered by ¬ϕ. We note that Sϕ = {S̄ : S ∈ S¬ϕ Assume A ⊆ M is a set

shattered by ϕ. So for any B ⊆ A there is an S ∈ S such that B = A∩S. But then

we know that A \ B = A ∩ S̄ and S̄ ∈ S¬ϕ. Since this holds for any B ⊆ A we see

that for any B ⊆ A there is a set S ∈ S¬ϕ such that B = S ∩ A. So A is shattered

by ¬ϕ.

Definition 2.4.5

Let (X,S) be a set system. We define the shatter function πS : N→ N as:

πS(n) := max{|{S ∩ A : S ∈ S}| : A ⊆ X ∧ |A| = n}

Definition 2.4.6

Let (X,S) be a set system with S ≠ ∅. The VC-Dimension of (X,S) is:

V C((X,S)) = sup{n ∈ N ∪ {∞} : X has a subset of size n shattered by S }

If S = ∅ then we say that V C(X,S) = −∞.

Lemma 2.4.7

Every set system (X,S) satisfies:

V C((X,S)) < n⇔ πS(n) < 2n
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The following result by Norbert Sauer [42] and independently by Saharon Shelah

[43] states that the shatter function is exponential up to the VC-dimension and if

the VC-dimension is finite it behaves like a polynomial of degree at most the VC-

dimension after that.

Lemma 2.4.8 (Sauer-Shelah)

If S has finite VC-dimension d then we have for all n:

πS(n) ≤
d∑

i=0

(
n

i

)
Definition 2.4.9

Let (X,S) be a set system. Then the VC-density of (X,S) is:

vc(X,S) =

inf{r ∈ R+ : πS(n) ∈ O(nr)} if V C(S) <∞

∞ otherwise

VC-density is often regarded as a better measure of complexity than VC-dimension.

The two concepts are closely linked. Not only is VC-density bounded from above by

VC-dimension, but we also have that VC-dimension is finite if and only if VC-density

is finite.

2.5 Classes of finite set systems

Part of the work in this thesis focuses on classes of finite graphs, but the defini-

tions of VC-dimension and VC-density given above define the concepts for a single

structure. In particular the definition of VC-density given above assumes the struc-

ture to be infinite. In this section we give definitions that extend the definitions of

VC-dimension, shatter function, and VC-density in a natural way to classes of finite

models.
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Definition 2.5.1

Let C be a class of finite set systems. The VC-dimension of C is then said to be:

V C(C) = sup{V C(X,S) : (X,S) ∈ C}

Definition 2.5.2

Let C be a class of finite set systems. The shatter function of C is then said to be:

πC(n) = max{πS(n) : (X,S) ∈ C}

Definition 2.5.3

Let C be a class of finite set systems. Then the VC-density of C is:

vc(C) =

inf{r ∈ R+ : πC(n) ∈ O(nr)} if V C(C) <∞

∞ otherwise

In order to give the reader a better intuition on how VC-dimension of the edge

relation works on classes of graphs we will now give a few theorems in increasing

generality, i.e. each is a corollary to it’s successor.

Recall that the set system for the edge relation on a given graph is (VG, {N(v) :

v ∈ VG}).

Theorem 2.5.4

The VC-dimension of the edge relation on the class of all finite trees is 2.

Proof. We note that P6 is a tree and has a shattered set of size 2 as shown in Figure

4. So it is sufficient to show that in no tree does there exist a set of size 3 that can

be shattered by ϕ. Assume G is a tree whose vertex set has a subset A = {a, b, c}

shattered by ϕ. Then there exists a vertex v such that N(v) ∩ A = A i.e. v is a

neighbour of each of the vertices a, b and c. Since A is shattered there also exists

a w ̸= v such that N(w) ∩ A = {a, b} but then the subgraph {a, v, b, w} induces a

cycle in G in contradiction with G being a tree.
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{A} A {A,B} B {B} ∅

Figure 4: P6 with the vertices of a shattered set marked green

Black vertices are labeled with the subsets of {A,B} that are obtained by intersect-

ing with their neighborhoods.

Theorem 2.5.5

The VC-dimenension of the edge relation on a class of finite graphs with tree-width

at most k is at most k + 1.

Proof. A complete graph Kn has tree-width n − 1 so by [17, 12.3.6] we have that

a class of graphs with tree-width at most k has Kk+2 as a forbidden minor. It is

sufficient to show that for n ≥ 3, if a graph G contains a set of n vertices which is

shattered by ϕ then G has Kn as a minor.

Let G be a graph in C with vertex set V and A ⊆ V be a vertex set of size n

shattered by ϕ.

Then for any a, b ∈ A there exists a v ∈ V such that N(v)∩A = {a, b}. Now we

have two cases either v ∈ V \ A or v ∈ A.

If v ∈ V \ A then by contracting either the edge from a to v or the edge from b

to v we get a minor of G where a and b are neighbours.

If v ∈ A then there exists a vertex w such that N(w) = A \ {v}. Since N(v) ̸=

N(w) and w ̸∈ N(w) we have w ∈ V \ A. By contracting either the edge from a to

w or the edge from b to w we get a minor of G where a and b are neighbours.

Note that contracting each of the edges as described above does not contract an

edge between two vertices of A so we just need to confirm that all of our selected

vertices are pairwise distinct. We observe that pairwise they have distinct neigh-

borhoods and therefore must be distinct. So we end up with a graph minor G′ of G

where every pair of vertices in A are neighbours i.e. A induces a clique of size n in
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G′ so Kn is a graph minor of G

The proof of the following theorem closely mimics the work of Stéphan Thomassé

and Nicolas Bousquet [10]. This was an independent discovery and the focus of the

theorems is slightly different. We specify the depth at wich Kn appears as a minor

whereas Thomassé and Bousquet look at formulae specifying greater distance than

1. In addition they are looking at 2-VC-dimension which is a strictly weaker notion

than VC-dimension.

Theorem 2.5.6

Let G be a graph whose edge relation has VC-dimension at least n. Then G has Kn

as a depth 1 minor.

Proof. Let G be a graph in C with vertex set V and A ⊆ V be a vertex set of size n

shattered by ϕ. We will show that A ∪
⋃

a∈AN(a) admits Kn as a depth 1 minor.

We will do this by finding, for all pairs of vertices a, b ∈ A an edge in G such

that if it is contracted a and b become neighbours.

We start by observing that for any a, b ∈ A there exists a v ∈ V such that

N(v) ∩ A = {a, b} now we have two cases either v ∈ V \ A or v ∈ A

If v ∈ V \ A then by contracting either the edge from a to v or the edge from b

to v we get a minor of G where a and b are neighbours.

If v ∈ A then there exists a vertex w such that N(w) = A \ {v}. Since N(v) ̸=

N(w) and w ̸∈ N(w) we have w ∈ V \ A. By contracting either the edge from a to

w or the edge from b to w we get a minor of G where a and b are neighbours.

Note that contracting each of the edges as described above does not contract an

edge between two vertices of A so we just need to confirm that all of our selected

vertices are pairwise distinct. We observe that pairwise they have distinct neigh-

borhoods and therefore must be distinct. So we end up with a graph minor G′ of G
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where every pair of vertices in A are neighbours i.e. A induces a clique of size n in

G′ so Kn is a depth 1 graph minor of G.

At first glance the proof of Theorem 2.5.6 is very different than presented in [10]

but at closer inspection they follow the same steps in their reasoning.
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3 Graph Operations and VC-dimension of the edge

relation

In this section we will explore the effects certain graph operations have the VC-

dimension of the edge relation. Notably we show that vertex deletion can never

increase the VC-dimension of the edge relation but the other operations explored

can either increase or decrease the VC-dimension. The results are summarized in

Table 1. The chapter is split into several subsections where each subsection contains

the discussion about how one of the graph operations affects the VC-dimension of

the edge relation.

Operation Can Increase Can Decrease

Vertex Deletion ✘ ✔

Edge Deletion ✔ ✔

Edge Contraction ✔ ✔

Complement ✔ ✔

Local Complement ✔ ✔

Table 1: Different graph operations and what effect they can have on the VC-

dimension of the edge relation.

3.1 Vertex deletion

Deleting a vertex u from a graph G gives us the induced subgraph of G on VG \{u}.

Vertex deletion is a very basic operation on graphs that is equivalent to taking a

substructure in the model-theoretic sense.

Lemma 3.1.1

Let G be a graph and G′ := G[VG \ {u}] be the graph obtained from G by deleting a
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single vertex u. Then V C(G′) ≤ V C(G).

Proof. For the edge relation we have S = {N(v)|v ∈ VG} if we delete a vertex u the

edge relation on the resulting subgraph G′ will give us the class S ′ = {N(v)\{u}|v ∈

VG\{u}}. Now assume that V C(G) < V C(G′). Then there exists a set A ⊆ VG\{u}

such that |A| > V C(G) and A is shattered by S ′. Since u ̸∈ A we have that

∀S ⊆ VG, A∩S = A∩ (S \{u}). So P (A) = {A∩S|S ∈ S ′} ⊆ {A∩S|S ∈ S} which

means that S shatters A in contradiction with |A| > V C(G).

We note that deleting vertices can reduce the V C-dimension of the edge relation.

For example observe that on a graph on three vertices and just one edge the edge

relation has VC-dimension 1 but removing either of the non-isolated vertices gives

us a graph where the edge relation has VC-dimension 0.

→

Figure 5: A graph on three vertices and one edge and the result of deleting the

vertex coloured green.

3.2 Edge deletion

Deleting an edge from a graph G gives us a subgraph which is not a substructure of

G; we simply remove two tuples (u, v) and (v, u) from the edge relation.

In Figure 6 we see an example of a graph where the edge relation has VC-

dimension 1 but deleting the edge in green gives us a graph where the edge relation

has VC-dimenison 2.

We observe that on a graph on three vertices and just one edge the edge relation

has VC-dimension 1 but removing the edge gives us a graph where set system for

the edge relation only contains ∅ and thus has VC-dimension 0.
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→

Figure 6: A graph and the result of deleting the edge coloured green.

→

Figure 7: A graph and the result of deleting its edge.

3.3 Edge Contraction

When we contract an edge (u, v) in a graph G we merge the end vertices into one

i.e. we remove u and v from G and add in a new vertex w and edges between w

and all the neighbours of v, and w and all the neighbours of u. This can result in a

substructure of G but will not necessarily do so.

→

Figure 8: A graph and the result of contracting the edge marked in green.

In Figure 8 we see an example of a graph where the VC-dimension of the edge

relation is 2. We can see that it is at most 2 since any set shattered by the edge
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relation must be contained in the neigbourhood of some vertex, there is only one

vertex with degree greater than 2 namely the blue vertex, and his neighbourhood

is not shattered since the two yellow vertices have no other neighbours in common.

After contracting the edge in green we get a graph where the vertices marked red

form a shattered set of size 3, so the edge relation has VC-dimension 3.

We observe that on a graph on three vertices and just one edge the edge relation

has VC-dimension 1 since a singleton set containing either of the connected vertices

will be shattered, but contracting the edge gives us a graph where the edge relation

has VC-dimension 0 since it’s set system only contains ∅. So contracting an edge

can also decrease the VC-dimension of the edge relation.

→

Figure 9: A graph and the result of contracting the edge drawn in green.

3.4 Complement

The operation of taking a graph complement is self inverse so if it can increase

the VC-dimension it must also be able to decrease it so it is sufficient to show one

direction. At first glance it may seem strange that taking the complement of a graph

can change the VC-dimension of the edge relation since by, Lemma 2.4.4, negating

a formula doesn’t. There is however subtle difference between a graph complement

and negating the edge relation.

The key difference is that for any graph G and its complement G′ we have that

G and G′ are both simple undirected graphs without loops so for any vertex v ∈ VG
we have that G |= ¬Evv and G′ |= ¬Evv. In Figure 10 we see an example of a

graph and its complement in which the edge relation has differing VC-dimension.
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In the graph on the left the bottom two vertices form a shattered set of size 2. In

the graph on the right there is no shattered set of size 2.

→
←

Figure 10: A graph and its complement.

3.5 Local Complement

To take a local complement around a vertex v in a graph G we take the neigh-

bourhood of v, N(v) as an induced subgraph and replace it with its complement

[30].

Much like complement taking the local complement is self inverse so it is sufficient

to show that a change can occur; we need not worry about its direction.

→
←

Figure 11: A graph and the result of taking a local complement around the vertex

coloured green.

In Figure 11 we see two graphs obtained from one another by taking a local

complement. The left one has a VC-dimension of 2 for the edge relation and the

one on the right has a VC-dimension of 1 for the edge relation showing that taking

local complements can indeed change the VC-dimension of the edge relation.
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4 Johnson Graphs

In this chapter we will introduce the notion of a Johnson graph and give a bound

on the VC-dimension and VC-density of the edge relation in such graphs. Johnson

graphs are a large class of highly symmetrical graphs that arise in a great many

applications. For example they provide a good example of a vertex transitive regular

graph. The study of Johnson graphs has become more important in recent years

as they are recognized as the only barrier to an effective canonical partitioning in

László Babai’s algorithm for resolving graph isomorphism in quasi-polynomial time

[6][5].

4.1 Introduction to Johnson graphs

In this section we will give an introduction to Johnson graphs. We restate their

definition and give some lemmas about their local structure to get an intuition

about what they look like.

Definition 4.1.1

Let n and k be natural numbers n ≥ k. The Johnson graph J(n, k) is a graph

whose vertices correspond to the k-element subsets of a set X of size n and two

vertices are adjacent if their corresponding sets intersect in all but one element. i.e.

their symmetric difference has size 2. We call X the underlying set of J(n, k).

Johnson graphs are highly symmetric for example they are distance transitive,

and their automorphism group is the full symmetric group on their underlying set.

Lemma 4.1.2 ([14, §2])

Let u and v be vertices in a Johnson graph. Then the distance d(u, v) = |u∆v|
2

.
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Definition 4.1.3

Let k be a fixed constant. We call the class {J(n, k)|n ∈ N} the class of Johnson

graphs on k-sets, denoted Jk.

In [1] it is shown that the theory of a nowhere dense class of graphs can never have

the independence property and thus every formula will have finite VC-dimension.

In any Johnson graph J(n, k) consider a k − 1 subset S of the underlying set

and observe that vertex set {v ∈ VJ(n,k)|S ⊂ v} forms a clique of size n − k + 1.

Therefore it is clear that the class of Johnson graphs on k-sets is somewhere dense

for any fixed k.

It is however known that for any fixed k the class of Johnson graphs on k-sets

lacks the independence property[3, 1.1]. This is obtained by biinterpretability with

a pure set. This relies on a fixed k but most results in this work do not require k to

be fixed.

Being somewhere dense and without the independence property makes them

particularly interesting classes of graphs to study with regard to V C-dimension and

V C-density. Their theory lies somewhere between the notion of nowhere dense and

having infinite V C-dimension for some formula.

The following three lemmas give us an insight into what the intersections of

neighbourhoods look like. As we have noted before any set shattered by the edge

relation must be contained the neighbourhood of some vertex and thus any subset

of a set shatterd by edge relation is an intersection of two neighbourhoods.

Lemma 4.1.4

Let v be a vertex in the Johnson graph J(n, k). Then N(v) induces the rook’s graph

R(k, n− k) as a subgraph of J(n, k).

Proof. Let v be a vertex in the Johnson graph J(n, k) with the underlying set

[1, n]∩N and without loss of generality assume v = [1, k]∩N. Every vertex in N(v)
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(v \ {0}) ∪ {0}

(v \ {1}) ∪ {0}

(v \ {2}) ∪ {0}

(v \ {3}) ∪ {0}

(v \ {0}) ∪ {1}

(v \ {1}) ∪ {1}

(v \ {2}) ∪ {1}

(v \ {3}) ∪ {1}

(v \ {0}) ∪ {2}

(v \ {1}) ∪ {2}

(v \ {2}) ∪ {2}

(v \ {3}) ∪ {2}

(v \ {0}) ∪ {3}

(v \ {1}) ∪ {3}

(v \ {2}) ∪ {3}

(v \ {3}) ∪ {3}

(v \ {0}) ∪ {4}

(v \ {1}) ∪ {4}

(v \ {2}) ∪ {4}

(v \ {3}) ∪ {4}

Figure 12: The neighbourhood of {1, 2, 3, 4} in J(10, 4).

has the form (v \ {a}) ∪ {x} where a ∈ v and x ∈ [k + 1, n] ∩ N. The mapping

(v \ {a}) ∪ {x} 7→ (a, x− k) is a graph isomorphism J(n, k)[N(v)]→ R(k, n− k).

Lemma 4.1.5

Let v and w be vertices in a Johnson graph with d(v, w) = 1. Let a and x be such that

w = (v\{a})∪{x}. Then we have u ∈ N(v)∩N(w) if and only if u = (v\{c})∪{z}

with exactly one of c = a or z = x.

Proof. Assume u ∈ N(v) ∩ N(w). Then since d(v, u) = 1 we must have u =

(v \ {c}) ∪ {z} for some c and z. Now assume c ̸= a and z ̸= x. Then we have

u△w = {a, c, x, z} so |u△v| = 4 contradicting that d(u,w) = 1. So we must have

either c = a or z = x.

Conversely assume u = (v \ {a}) ∪ {z} with x ̸= z. Then u ∩ v = v \ {a} which

has size k − 1 so u ∈ N(v). Also u ∩w = v \ {a} which has size k − 1 so u ∈ N(w).

Thus we have u ∈ N(v) ∩N(w).

Assume u = (v \ {c}) ∪ {x}. Then u ∩ v = v \ {c} which has size k − 1 so

u ∈ N(v). Also u ∩ w = (v \ {a, c}) ∪ {x} which has size k − 1 so u ∈ N(w). Thus

we have u ∈ N(v) ∩N(w).

Note that if we have both c = a and z = x then u = w in contradiction with

Euw.
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Lemma 4.1.6

Let v and w be vertices in a Johnson graph with d(v, w) = 2. Let a, b, x, and y be

such that w = (v \ {a, b}) ∪ {x, y}. Then we have u ∈ N(v) ∩ N(w) if and only if

u = (v \ {c}) ∪ {z} with c ∈ {a, b} and z ∈ {x, y}.

Proof. Assume u ∈ N(v) ∩ N(w). Then since d(v, u) = 1 we must have u =

(v \ {c}) ∪ {z} for some c ∈ v and z ̸∈ v.

Now assume c ̸∈ {a, b}. Then we have u△w ⊇ {a, b, c} contradicting that

|u△w| = 2.

Similarly z ∈ {x, y} as otherwise we have u△w ⊇ {x, y, z} in contradiction with

|u△w| = 2. So we must have c ∈ {a, b} and z ∈ {x, y}.

Conversely assume u = (v \ {c}) ∪ {z} with c ∈ {a, b} and z ∈ {x, y}. Assume

without loss of generality u = (v \ {a}) ∪ {x}. Then u ∩ v = v \ {a} which has size

k− 1 so u ∈ N(v). Also u∩w = (v \ {a, b})∪{x} which has size k− 1 so u ∈ N(w).

Thus we have u ∈ N(v) ∩N(w).

We now gather a key insight obtained from lemmas 4.1.4, 4.1.5, and 4.1.6 into

the following lemma.

Lemma 4.1.7

Let u and v be vertices in the Johnson graph J(m, k) then

|N(u) ∩N(v)| =



k(m− k) if d(u, v) = 0

m− 1 if d(u, v) = 1

4 if d(u, v) = 2

0 if d(u, v) ≥ 3

Proof. When d(u, v) = 0 then u = v so N(u)∩N(u) = N(u) which by Lemma 4.1.4

is the k by m− k rook’s graph which has k(m− k) vertices. When d(u, v) = 1 then
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by Lemma 4.1.5 N(u) ∩N(v) is the union of a single row and a single column from

the rook’s graph that is N(u). They contain k and m − k vertices and intersect in

exactly one vertex so their union contain k+(m−k)−1 vertices. When d(u, v) = 2

then by Lemma 4.1.6 there are exactly four vertices in N(v)∩N(u). Finally, in the

case when d(u, v) ≥ 3, by the definition of distance and neighbourhood in graphs

we have that N(u) ∩N(v) = ∅.

4.2 VC-dimension of the edge relation

In this section we will prove our main results regarding the VC-dimension of the

edge relation on finite Johnson graphs. We start by introducing a lemma that helps

us greatly cut down on cases we need to check.

Lemma 4.2.1

Let A be a set of vertices in a Johnson graph shattered by the edge relation and

assume |A| ≥ 4. Then there do not exist three vertices in A pairwise at distance 2

from each other.

Proof. Let v be a vertex such that A ⊆ N(v) and A contains three vertices that are

pairwise of distance 2 from each other. That is to say we have (v \ {a}) ∪ {x} ∈

A,(v \ {b}) ∪ {y} ∈ A,(v \ {c}) ∪ {z} ∈ A where a, b, c, x, y, z are all distinct.

Let w be a vertex such that N(w) ∩ A = {(v \ {a}) ∪ {x}, (v \ {b}) ∪ {y}, (v \

{c}) ∪ {z}}.

If d(v, w) = 1 we can write w = (v \ {a1})∪{x1}. By Lemma 4.1.5 we have that

(v \ {a}) ∪ {x} ∈ N(w) gives us a1 = a or x1 = x.

Assume a1 = a. Then since (v \ {b}) ∪ {y} ∈ N(w) we must have x1 = y, so

we have w = (v \ {a}) ∪ {y}. However (v \ {c}) ∪ {z} ̸∈ N((v \ {a}) ∪ {y}) in

contradiction to N(w) ∩ A = {(v \ {a}) ∪ {x}, (v \ {b}) ∪ {y}, (v \ {c}) ∪ {z}}.

Alternatively assume x1 = x. Then since (v \ {b})∪ {y} ∈ N(w) we have a1 = b
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so we have w = (v \ {b}) ∪ {x}. However (v \ {c}) ∪ {z} ̸∈ N((v \ {b}) ∪ {x}) in

contradiction to N(w) ∩ A = {(v \ {a}) ∪ {x}, (v \ {b}) ∪ {y}, (v \ {c}) ∪ {z}}.

So we must have d(v, w) = 2 and write w = (v \ {a1, a2})∪ {x1, x2}. By Lemma

4.1.6 we know that since (v\{a})∪{x} ∈ N(w) we have a ∈ {a1, a2} and x ∈ {x1, x2}.

Without loss of generality we assume a1 = a and x1 = x.

Similarly, since (v \ {b}) ∪ {y} ∈ N(w), we have b ∈ {a, a2} and y ∈ {x, x2} so

we have w = (v \ {a, b})∪ {x, y}. But then (v \ {c})∪ {z} ̸∈ N(w), a contradiction.

Theorem 4.2.2

The VC-dimension of the edge relation in a Johnson graph is at most 4.

Proof. The proof goes through a series of cases demonstrating that no vertex set of

size 5 in a Johnson graph can be shattered. We rely on the fact that every set A

shattered by the edge relation must have A ⊆ N(v) for some vertex v and that every

subset of a shattered set is also shattered which allows us to drastically reduce the

number of cases we need to check.

Observe that in J(m, k) we can pick an element of the underlying set and the

set of all vertices not containing that element induces J(m− 1, k) as a subgraph of

J(m, k) and the set of all vertices containing that element induces J(m− 1, k − 1).

Thus we can assume m and k to be arbitrarily large and since by Lemma 3.1.1

taking induced subgraphs can only decrease the VC-dimension, our argument then

holds for all m and k.

We will start by computing the number of configurations that can be obtained

by picking 4 vertices out of N(v). Formally the configurations, which we label Case

I - Case XV I, are the orbits of the group of automorphisms of J(m, k) fixing v in its

action on 4-element subsets of N(v). There are 16 such orbits and out of those 8 are

shattered by the edge relation and 8 are not. We will then go through them one by

one. For those cases that are not shattered by the edge relation we will give a proof
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of why they are not shattered, and in the shattered cases, we will demonstrate that

whichever way we choose a fifth vertex to add to those collections we will always

end up with a set that is not shattered by the edge relation.

Let A be a set of vertices in a Johnson graph with |A| = 4, and v be a vertex

such that A ⊆ N(v).

Let vi = (v \ {ai})∪ {xi} for i ∈ {1, 2, 3, 4} be the four vertices of A . Let ∼x be

the equivalence relation vi ∼x vj if and only if xi = xj and ∼a be the equivalence

relation vi ∼a vj if and only if ai = aj. Note that if we have vi ∼x vj and vi ∼a vj

then vi = vj and by our assumption that the four vertices are distinct we have i = j.

There are 5 ways, up to permutation, to split a set of size 4 into equivalence

classes. These correspond to the ways of summing up to 4. Not every combination

of equivalence classes for ∼a and ∼x is possible. We will now look at each of the

ways ∼x can split A and give the available ways for ∼a to split A. Note that the

equivalence classes of ∼a and ∼x correspond to the columns and rows of the rook’s

graph induced by N(v). We now look at each of the different ways of summing up

to 4.

4 In this case we have x1 = x2 = x3 = x4 and we therefore must have ai ̸= aj

whenever i ̸= j. This means ∼a has 4 equivalence classes of size 1. This gives

us Case IX.

3 + 1 Without loss of generality we assume x1 = x2 = x3 ̸= x4. Then there are two

ways for ∼a to split A into equivalence classes. It can either have 2 + 1 + 1

or 1 + 1 + 1 + 1 as the partition. In the former case we can assume without

loss of generality that a1 = a4 and this yields Case X. In the latter we have

ai ̸= aj whenever i ̸= j and this gives us Case I.

2 + 2 Without loss of generality we assume x1 = x2 ̸= x3 = x4. Note that this

implies a1 ̸= a2 and a3 ̸= a4. We now have three ways that ∼a can split A
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into equivalence classes.

2+ 2 We assume without loss of generality a1 = a3 and a2 = a4, giving us

Case II.

2+ 1+ 1 We assume without loss of generality a1 = a3 ̸= a2, a1 ̸= a4 and

a2 ̸= a4. This gives us Case XI.

1+ 1+ 1+ 1 We have ai ̸= aj whenever i ̸= j, yielding Case XII.

2 + 1 + 1 Without loss of generality we assume x1 = x2 ̸= x3 ̸= x4 and additionally

assume x4 ̸= x1. We can have four ways for ∼a to split A into equivalence

classes.

3+ 1 Without loss of generality we can assume a1 = a3 = a4 ̸= a2. This is

Case XIII.

2+ 2 Without loss of generality we can assume a1 = a3 and a2 = a4. This is

Case XIV .

2+ 1+ 1 In this instance we have two ways of grouping the vertices with ∼a

that are not equivalent with relabeling.

By making a1 = a3 we get Case III.

By making a3 = a4 we get Case IV .

1+ 1+ 1+ 1 We have ai ̸= aj whenever i ̸= j, giving us Case V .

1 + 1 + 1 + 1 Here we have x1, x2, x3, x4 all distinct. We can have four ways for ∼a

to split A into equivalence classes.

4 Here we have a1 = a2 = a3 = a4 which is Case XV .

3+ 1 Without loss of generality we may assume a1 = a2 = a3 ̸= a4, giving us

Case V I.
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2+ 2 Without loss of generality we can assume a1 = a2 ̸= a3 = a4 which

yields Case XV I.

2+ 1+ 1 Without loss of generality we can assume a1 = a2 ̸= a3 ̸= a4 and

a1 ̸= a4 which gives us Case V II.

1+ 1+ 1+ 1 We have ai ̸= aj whenever i ̸= j. This gives us Case V III.

We now have 16 cases and will go through them one by one demonstrating that

in each case either A can not be shattered or that adding a fifth vertex to A will

always result in a set that cannot be shattered. When proving a configuration does

not shatter we have to prove that there exists a subset B ⊆ A such that there exists

no w for which N(w)∩A = B. In all cases we will have B ̸= A so we have to check

the cases d(v, w) = 1 and d(v, w) = 2.

When we have to add a fifth vertex we will have to check every possible combi-

nation of ∼a and ∼x between the fifth vertex and the previous four vertices, up to

a relabeling of the xi and ai. In these subcases we will often simply observe that

the fifth vertex along with 3 of the original 4 vertices is identical to a case which is

separately proved not to shatter.

We will for each case give a diagram showing those vertices of N(v) we are taking

to be in A arranged in rows and columns as they would be in the rook graph induced

by N(v). In those cases where we do not give a proof that the four vertices selected

cannot form a shattered set we will have a choice of how to pick our fifth vertex to

add to A. The fifth vertex we will label with the associated subcase rather than v5

to avoid confusion and save space on the diagrams. Note that row permutations just

correspond to relabeling of the equivalence classes of ∼x and column permutations

correspond to relabeling of equivalence classes of ∼a.
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Case I

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a4}) ∪ {x2}

v1 v2 v3

v4

Let w be such that N(w) ∩ A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since we have to exclude v1 from N(w) we must

by Lemma 4.1.5 have that a ̸= a1 and x ̸= x1. So in order to have

v2 ∈ N(w) we must have a = a2 and in order to have v3 ∈ N(w) we must

have a = a3. But then a2 = a3 in contradiction with v1 ̸= v2.

(b) w = (v \{a, b})∪{x, y}. From Lemma 4.1.6 we get that v2 ∈ N(w) yields

a2 ∈ {a, b} and x1 ∈ {x, y}; v3 ∈ N(w) yields a3 ∈ {a, b} and x1 ∈ {x, y};

v4 ∈ N(w) yields a4 ∈ {a, b} and x2 ∈ {x, y}. Thus {a2, a3, a4} ⊆ {a, b},

contradicting that a2, a3, a4 are all distinct.

Case II

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a2}) ∪ {x2}

v1 v2

v3 v4

Let w be such that N(w) ∩ A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since v4 ∈ N(w) we have w ̸= v1. Since we have

to exclude v1 from N(w), by Lemma 4.1.5 we must have that a ̸= a1
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and x ̸= x1. So in order to have v2 ∈ N(w) we must have a = a2 and

in order to have v3 ∈ N(w) we must have x = x2. But then w = v4 in

contradiction with v4 ∈ N(w).

(b) w = (v \{a, b})∪{x, y}. From Lemma 4.1.6 we get that v3 ∈ N(w) yields

a1 ∈ {a, b} and x2 ∈ {x, y}; v2 ∈ N(w) yields a2 ∈ {a, b} and x1 ∈ {x, y};

hence w = (v \ {a1, a2}) ∪ {x1, x2}, contradicting that v1 ̸∈ N(w).

Case III

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x3}

v1 v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 4.2.1 A

is not shattered.

Case IV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x3}

v1 v2

v3

v4

Let w be such that N(w) ∩ A = {v2, v3, v4}. We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since we have to exclude v1 from N(w) by Lemma

4.1.5 we must have that a ̸= a1 and x ̸= x1. So in order to have v2 ∈ N(w)

we must have a = a2 and in order to have v3 ∈ N(w) we must have x = x2.
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But then w = (v \ {a2}) ∪ {x2} in contradiction with v4 ∈ N(w).

(b) w = (v \{a, b})∪{x, y}. From Lemma 4.1.6 we get that v2 ∈ N(w) yields

a2 ∈ {a, b} and x1 ∈ {x, y}; v3 ∈ N(w) yields a3 ∈ {a, b} and x2 ∈ {x, y}.

Thus w = (v \ {a2, a3}) ∪ {x1, x2} in contradiction with v4 ∈ N(w).

Case V

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a4}) ∪ {x3}

v1 v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 4.2.1 A

is not shattered.

Case VI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a1}) ∪ {x3}

v4 = (v \ {a2}) ∪ {x4}

v1

v2

v3

v4

Let w be such that N(w) ∩ A = {v2, v3, v4}.

We have 2 cases.

(a) w = (v \ {a}) ∪ {x}. Since we have to exclude v1 from N(w) by Lemma

4.1.5 we must have that a ̸= a1 and x ̸= x1 so in order to have v2 ∈ N(w)

we must have x = x2 and in order to have v3 ∈ N(w) we must have

x = x3. But then x2 = x3, in contradiction with v1 ̸= v2.
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(b) w = (v \ {a, b}) ∪ {x, y}. From Lemma 4.1.6 we get that v2 ∈ N(w)

yields a1 ∈ {a, b} and x2 ∈ {x, y}; v3 ∈ N(w) yields a1 ∈ {a, b} and

x3 ∈ {x, y}; v4 ∈ N(w) yields a2 ∈ {a, b} and x4 ∈ {x, y}. Thus we have

{x2, x3, x4} ⊆ {x, y}, in contradiction with x2, x3, x4 all being distinct.

Case VII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a2}) ∪ {x3}

v4 = (v \ {a3}) ∪ {x4}

v1

v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 4.2.1 A

is not shattered.

Case VIII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x2}

v3 = (v \ {a3}) ∪ {x3}

v4 = (v \ {a4}) ∪ {x4}

v1

v2

v3

v4

The vertices v2, v3, v4 are at distance 2 from each other so by Lemma 4.2.1 A

is not shattered.

The remaining cases shatter, so we look at the different ways a fifth vertex can

be added to the collection and demonstrate that the result cannot be a shattered

set.
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Case IX

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a4}) ∪ {x1}

v1 v2 v3 v4 a

b c

This case shatters so we take a closer look at what configurations are obtainable by

adding a fifth vertex.

a v5 = (v \ {a5}) ∪ {x1}. Let w be such that N(w) ∩ A = {v1, v2, v3}. Observe

that w ̸= v4 since v5 ∈ N(v4) so we will need an alternative w. We have 2

cases: either d(v, w) = 1 or d(v, w) = 2.

Let w = (v \ {a}) ∪ {x}. Since we have to exclude v5 from N(w) then by

Lemma 4.1.5 we cannot have x = x1. So in order to have v1 ∈ N(w) we must

have a = a1 but then in order to have v2 ∈ N(w) we must have x = x1, a

contradiction.

Let w = (v \ {a, b}) ∪ {x, y}. In order to have v1 ∈ N(w), v2 ∈ N(w) and

v3 ∈ N(w), Lemma 4.1.6 gives us {a1, a2, a3} ⊆ {a, b}, a contradiction.

b v5 = (v \ {a1}) ∪ {x2}. Here v2, v3, v4, v5 form case I.

c v5 = (v \ {a5}) ∪ {x2}. Here v1, v2, v3, v5 form case I.
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Case X

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x1}

v4 = (v \ {a1}) ∪ {x2}

v1 v2 v3

v4

a

b c

d e f

a v5 = (v \ {a4}) ∪ {x1}. Then v2, v3, v4, v5 forms case I.

b v5 = (v \ {a2}) ∪ {x2}. Then v1, v2, v4, v5 forms case II.

c v5 = (v \ {a4}) ∪ {x2}. Then v1, v2, v3, v5 forms case I.

d v5 = (v \ {a1}) ∪ {x3}. Then v2, v3, v4, v5 forms case IV .

e v5 = (v \ {a2}) ∪ {x3}. Then v1, v3, v4, v5 forms case III.

f v5 = (v \ {a4}) ∪ {x3}. Then v1, v2, v4, v5 forms case III.

Case XI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a3}) ∪ {x2}

v1 v2

v3 v4

a b

c d e

a v5 = (v \ {a3}) ∪ {x1}. Here v1, v3, v4, v5 form case II.

b v5 = (v \ {a4}) ∪ {x1}. Here v1, v2, v4, v5 form case I.

c v5 = (v \ {a1}) ∪ {x3}. Here v2, v4, v5 all have distance 2 from each other and

thus by Lemma 4.2.1 A is not shattered.
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d v5 = (v \ {a2}) ∪ {x3}. Here v1, v4, v5 all have distance 2 from each other and

thus by Lemma 4.2.1 A is not shattered.

e v5 = (v \ {a4})∪ {x3} In this case v1, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

Case XII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a3}) ∪ {x2}

v4 = (v \ {a4}) ∪ {x2}

v1 v2

v3 v4

a b

c d

a v5 = (v \ {a3}) ∪ {x1}. Then v1, v2, v4, v5 form case I.

b v5 = (v \ {a5}) ∪ {x1}. Then v1, v2, v3, v5 form case I.

c v5 = (v \ {a1}) ∪ {x3}. In this case v1, v3, v4, v5 form case IV .

d v5 = (v \{a5})∪{x3}. In this case v1, v3, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

Case XIII

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a1}) ∪ {x3}

v1 v2

v3

v4

a

b c

d e f

a v5 = (v \ {a3}) ∪ {x1}. Then v2, v3, v4, v5 form case IV .

b v5 = (v \ {a2}) ∪ {x2}. Then v1, v2, v3, v5 form case II.
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c v5 = (v \{a3})∪{x2}. In this case v2, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

d v5 = (v \ {a1}) ∪ {x4}. Here v2, v3, v4, v5 form case V I.

e v5 = (v \ {a2}) ∪ {x4}. In this case v1, v3, v4, v5 form case V I.

f v5 = (v \{a3})∪{x4}. In this case v2, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

Case XIV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a2}) ∪ {x1}

v3 = (v \ {a1}) ∪ {x2}

v4 = (v \ {a2}) ∪ {x3}

v1 v2

v3

v4

a

b c

d e

a v5 = (v \{a3})∪{x1}. In this case v3, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

b v5 = (v \ {a2}) ∪ {x2}. Then v1, v2, v3, v5 form case II.

c v5 = (v \{a3})∪{x2}. In this case v1, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.

d v5 = (v \ {a1}) ∪ {x4}. In this case v1, v3, v4, v5 form case V I.

e v5 = (v \{a3})∪{x4}. In this case v3, v4, v5 all have distance 2 from each other

and thus by Lemma 4.2.1 A is not shattered.
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Case XV

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a1}) ∪ {x3}

v4 = (v \ {a1}) ∪ {x4}

v1

v2

v3

v4

a

b c

a v5 = (v \ {a2}) ∪ {x1}. Here v2, v3, v4, v5 form case V I.

b v5 = (v \ {a1}) ∪ {x5}. Let w be such that N(w) ∩ A = {v1, v2, v3}. Observe

that w ̸= v4 since v5 ∈ N(v4) so we will need an alternative w. We have 2

cases: either d(v, w) = 1 or d(v, w) = 2.

Let w = (v\{a})∪{x}. Since we have to exclude v5 from N(w) then by Lemma

4.1.5 we cannot have a = a1. So in order to have v1 ∈ N(w) we must have

x = x1 but in order to have v2 ∈ N(w) we must have x = x2, a contradiction.

Let w = (v \ {a, b}) ∪ {x, y}. In order to have v1 ∈ N(w), v2 ∈ N(w) and v3 ∈

N(w) Lemma 4.1.6 gives us we must have {x1, x2, x3} ⊆ {x, y}, a contradiction.

c v5 = (v \ {a2}) ∪ {x5} Here v2, v3, v4, v5 form case V I.

Case XVI

v1 = (v \ {a1}) ∪ {x1}

v2 = (v \ {a1}) ∪ {x2}

v3 = (v \ {a2}) ∪ {x3}

v4 = (v \ {a2}) ∪ {x4}

v1

v2

v3

v4

a b

c d

a v5 = (v \ {a2}) ∪ {x1}. Here v2, v3, v4, v5 form case V I.
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b v5 = (v \ {a3}) ∪ {x1}. Here v2, v3, v5 all have distance 2 from each other and

thus by Lemma 4.2.1 A is not shattered.

c v5 = (v \ {a1}) ∪ {x5}. In this case v1, v2, v3, v5 form case V I.

d v5 = (v \ {a3}) ∪ {x5}. Here v1, v3, v5 all have distance 2 from each other and

thus by Lemma 4.2.1 A is not shattered.

Theorem 4.2.3

The VC-dimension of the edge relation in the Johnson graph J(m, k) is 4 if and only

if 1 < k < m− 1 and |VJ(m,k))| =
(
m
k

)
≥ 16.

Proof. If |VJ(m,k)| < 16 = 24 then the set system induced by the edge relation has

fewer than 16 sets. Thus by the pigeonhole principle the VC-dimension of the edge

relation is less than 4.

Assume
(
m
k

)
≥ 16 and 1 < k < m − 1. Here we again rely on J(m − 1, k − 1)

and J(m− 1, k) being induced subgraphs of J(m, k). We also observe that J(m, k)

is isomorphic to J(m,m − k). So since
(
m
k

)
≥ 16 then either J(7, 2) or J(6, 3) are

induced subgraphs of J(m, k).

Since removing vertices from a graph can only decrease VC-dimension it now

suffices to show that the edge relation has VC-dimension 4 in J(7, 2) and J(6, 3).

In Figure 13 we show choices for vertices v1, v2, v3, v4 such that A = {v1, v2, v3, v4}

is shattered by the edge relation, along with how each subset of A can be obtained.

So the VC-dimension of the edge relation is at least 4 in both J(6, 3) and J(7, 2).

This shows that the VC-dimension of the edge relation is at least 4 in all Johnson

graphs J(m, k) where
(
m
k

)
≥ 16 and 1 < k < m − 1. Theorem 4.2.2 shows us that

the edge relation has VC-dimension at most 4 in all Johnson graphs so this bound

is tight whenever
(
m
k

)
≥ 16 and 1 < k < m− 1.
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J(7, 2)

v1 = {1, 3}

v2 = {1, 4}

v3 = {1, 5}

v4 = {1, 6}

A ∩N({2, 7}) =∅

A ∩N({3, 7}) ={v1}

A ∩N({4, 7}) ={v2}

A ∩N({5, 7}) ={v3}

A ∩N({6, 7}) ={v4}

A ∩N({3, 4}) ={v1, v2}

A ∩N({3, 5}) ={v1, v3}

A ∩N({3, 6}) ={v1, v4}

A ∩N({4, 5}) ={v2, v3}

A ∩N({4, 6}) ={v2, v4}

A ∩N({5, 6}) ={v3, v4}

A ∩N(v4) ={v1, v2, v3}

A ∩N(v3) ={v1, v2, v4}

A ∩N(v2) ={v1, v3, v4}

A ∩N(v1) ={v2, v3, v4}

A ∩N({1, 2}) =A

J(6, 3)

v1 = {2, 3, 4}

v2 = {1, 3, 4}

v3 = {1, 3, 5}

v4 = {1, 2, 5}

A ∩N({4, 5, 6}) =∅

A ∩N({2, 3, 6}) ={v1}

A ∩N({v1}) ={v2}

A ∩N({v4}) ={v3}

A ∩N({1, 2, 6}) ={v4}

A ∩N({3, 4, 6}) ={v1, v2}

A ∩N(v2) ={v1, v3}

A ∩N({2, 4, 5}) ={v1, v4}

A ∩N({1, 3, 6}) ={v2, v3}

A ∩N(v3) ={v2, v4}

A ∩N({1, 5, 6}) ={v3, v4}

A ∩N({3, 4, 5}) ={v1, v2, v3}

A ∩N({1, 2, 4}) ={v1, v2, v4}

A ∩N({2, 3, 5}) ={v1, v3, v4}

A ∩N({1, 4, 5}) ={v2, v3, v4}

A ∩N({1, 2, 3}) =A

Figure 13: Examples of shattered sets of size 4 in J(7, 2) and J(6, 3).
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4.3 VC-density of the edge relation

Recall that the VC-density is bounded above by the VC-dimension so we know that

the VC-density of the edge relation on Johnson graphs is at most 4. In this section

we will improve on that bound and give an exact value for the VC-density of the

edge relation on Johnson graphs.

Theorem 4.3.1

The VC-density of the edge relation on J is 2.

Proof. First we show that the VC-density is at least 2. Assume without loss of

generality that m > 2k and let X be the underlying set of J(m, k). Fix a vertex

v = {ai|1 ≤ i ≤ k} in J(m, k), and let (xi)
k
i=1 be distinct elements of X such

that xi ̸∈ v for all i. Define A := {(v \ {ai}) ∪ {xi}|1 ≤ i ≤ k}. Then for any

pair of vertices vi := (v \ {ai}) ∪ {xi} and vj = (v \ {aj}) ∪ {xj} we have that

N((v \ {ai}) ∪ {xj}) ∩A = {vi, vj}. There are |A|
2−|A|
2

such pairs so the VC-density

of the edge relation on J is at least 2.

Now we show that the VC-density of the edge relation on J is at most 2. Let A

be a set of vertices in J(m, k), and π(n) be the shatter function for the edge relation

on J(m, k). Let |A| = n and A be maximally shattered by the edge relation for sets

of size n. Let

S(A) = {N(u) ∩ A|u ∈ VG},

C1(A) = {N ∈ S(A) : N is a clique}, and

C2(A) = {N ∈ S(A) : N is not a clique}.

By our assumption that A is maximally shattered we have |S(A)| = π(n). Note also

that S(A) = C1(A) ∪ C2(A) so we deal with those two cases separately.

|C1(A)| ≤ 5|A|2+3|A|
2

: There are at most |A|
2+|A|
2

cliques of size 2 or less in S(A).

There are at most |A| cliques C in S(A) such that C = A ∩N(v) for some v ∈ A.
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Now assume we have C = A ∩ N(v) for some v ̸∈ A and further assume that

|C| ≥ 3. We want to show that then the clique C is of the form A ∩ Q for some

maximal cliqueQ of J(m, k). We then argue that there can be at most 2|A|2 maximal

cliques of J(m, k) that intersect A in more than one vertex.

Note that in any graph G a maximal clique Q of G is contained in N(u) ∪ {u}

for all u ∈ Q so Q \ {u} is a maximal clique in G[N(u)]. It is easy to see that

the maximal cliques of the rook’s graph R(m, k) are the rows and columns. So

by Lemma 4.1.4 we find that for every vertex u in J(m, k) the maximal cliques of

J(m, k) that u belongs to are of the form Z ∪ {u} where Z is a row or a column of

the rook’s graph J(m, k)[N(u)].

Since |C| ≥ 3 we know by Lemma 4.1.5 the only vertices connected to all vertices

in C are v and those vertices that share that row or column with all of C, in the

rook’s graph induced by N(v), and therefore lie in N(v). It follows that C = A∩Q

for some maximal clique Q of J(m, k).

For every vertex u ∈ A we have that A intersects at most |A| rows and at most

|A| columns of the rook’s graph induced by N(u). So u can be a member of at most

2|A| maximal cliques of J(m, k) that intersect A in more than two vertices. So the

number of maximal cliques of J(m, k) that intersect A in more than two vertices is

at most 2|A|2.

|C2(A)| ≤ 4|A|2: This holds since every pair of vertices at distance 2 from each

other can by Lemma 4.1.7 be contained in the neighbourhood of at most 4 vertices

and there are at most |A|2 such pairs.

So we get that |S(A)| ≤ |C1(A)| + |C2(A)| ≤ 5|A|2+3|A|
2

+ 4|A|2 = 13|A|2+3|A|
2

∈

O(|A|2).
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5 Theory of Johnson Graphs

In this chapter we will explore the first order theory of Johnson graphs. We start by

showing that the limit theory of Johnson graphs J(n, k) as k ≤ n
2

goes to infinity is

a complete theory TJ . We then expand our definitions of Johnson graphs to infinity

and beyond, defining some useful related class of graphs as well. We will also give

axioms for TJ and prove it is ω-stable.

5.1 Introduction to infinite Johnson graphs

In this section we will expand the definition of Johnson graphs to include those

having infinite underlying sets. We will introduce some related graphs and give

some lemmas that will be helpful when working with them.

Definition 5.1.1

Let κ and λ be cardinals such that ω ≤ λ ≤ κ. The Johnson graph J(κ, λ) is a

graph whose vertices are all the size λ subsets of an underlying set of size κ with

complement of size κ such that two vertices u and v are adjacent if and only if

|u \ v| = |v \ u| = 1.

In the above definiton we fix the size of the complements of vertices in order

to make sure that all of the vertices have an equivalently size complements. An

equivalent definition is obtained by fixing the size of the vertices to be κ and the

complementns of vertices have size λ. The choice between the two definitions is

arbitrary, and our choice is equivalent to using the isomorphims between J(n, k) and

J(n, n − k) to assume n ≥ 2k. This means that fixing the size of the complements

to be κ rather than having a seperate parameter to specify their size can be without

loss of generality for what graphs are being defined.
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To gain a deeper understanding of the infinite Johnson graphs we will be looking

at what their individual connected components look like.

Definition 5.1.2

Let κ and λ be cardinals such that κ ≥ λ. Take sets A ⊆ X such that |A| = λ,

|X| = κ and |A| ≤ |X \ A|. We define a graph J ′(κ, λ) in the following way. There

are vertices for each set of the form (A \ B) ∪ C where B ⊂ A, C ⊂ X \ A and

|B| = |C| ∈ N. Note that by choosing B = C = ∅ we have a vertex for A which we

call the central vertex of J ′(κ, λ). Two sets u, v are adjacent if and only if |u△v| = 2.

From the definition of J ′(κ, λ) one would be inclined to think that the set A

holds a special significance in its structure. It is however important to note that

any vertex will have the same characteristics. To demonstrate this we prove the

following.

Lemma 5.1.3

The relation R such that aRb if and only if |a \ b| = |b \ a| ∈ N is an equivalence

relation.

Proof. For finite sets on one hand this relation is equivalent to equinumerosity, which

in know to be an equivalence relation. For infinite sets on the other hand R is more

restrictive than equinumerosity so we have some work to do.

R is reflexive: |a \ a| = |a \ a| = 0.

R is symmetric: |a \ b| = |b \ a| if and only if |b \ a| = |a \ b|.
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R is transitive: Assume |a \ b| = |b \ a| ∈ N and |b \ c| = |c \ b| ∈ N. We have

|a \ b| = |(a \ b) \ c|+ |(a \ b) ∩ c| = |a \ (b ∪ c)|+ |(a \ b) ∩ c|

|b \ a| = |(b \ a) \ c|+ |(b \ a) ∩ c| = |b \ (a ∪ c)|+ |(b \ a) ∩ c|

|b \ c| = |(b \ c) \ a|+ |(b \ c) ∩ a| = |b \ (a ∪ c)|+ |(b \ c) ∩ a|

|c \ b| = |(c \ b) \ a|+ |(c \ b) ∩ a| = |c \ (a ∪ b)|+ |(c \ b) ∩ a|

|a \ c| = |(a \ c) \ b|+ |(a \ c) ∩ b| = |a \ (b ∪ c)|+ |(a \ c) ∩ b|

|c \ a| = |(c \ a) \ b|+ |(c \ a) ∩ b| = |c \ (a ∪ b)|+ |(c \ a) ∩ b|

|a \ b| = |b \ a| and |b \ c| = |c \ b| gives us

|b \ a| − |b \ c| = |a \ b| − |c \ b|

If we expand the left hand side of the equation we get.

|b \ a| − |b \ c| = |b \ (a ∪ c)|+ |(b \ a) ∩ c| − |b \ (a ∪ c)| − |(b \ c) ∩ a|

= |b \ (a ∪ c)| − |b \ (a ∪ c)|+ |(b \ a) ∩ c| − |(b \ c) ∩ a|

= |(b \ a) ∩ c| − |(b \ c) ∩ a|

= |(c \ a) ∩ b| − |(b \ c) ∩ a|

Doing the same on the right hand side gives us.

|a \ b| − |c \ b| = |a \ (b ∪ c)|+ |(a \ b) ∩ c| − |c \ (a ∪ b)| − |(c \ b) ∩ a|

= |a \ (b ∪ c)| − |c \ (a ∪ b)|+ |(a \ b) ∩ c| − |(c \ b) ∩ a|

= |a \ (b ∪ c)| − |c \ (a ∪ b)|+ |(a ∩ c) \ b| − |(a ∩ c) \ b|

= |a \ (b ∪ c)| − |c \ (a ∪ b)|
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So we now have

|(b \ a) ∩ c| − |(b \ c) ∩ a| = |a \ (b ∪ c)| − |c \ (a ∪ b)|

|(b \ a) ∩ c|+ |c \ (a ∪ b)| = |a \ (b ∪ c)|+ |(b \ c) ∩ a|

|(c \ a) ∩ b|+ |c \ (a ∪ b)| = |a \ (b ∪ c)|+ |(a \ c) ∩ b|

|c \ a| = |a \ c|

Lemma 5.1.4

Any vertex in J ′(κ, λ) can act as the central vertex.

Proof. Let M = J ′(κ, λ) with central vertex A and underlying set X and B be any

other vertex of M . Then let M ′ be J ′(κ, λ) with central vertex B and underlying set

X. By Lemma 5.1.3 we have that M and M ′ have the same vertex set namely the

equivalence class of R that includes A and B. The interpretation of the edge relation

does not depend on the selection of central vertex in any way so it’s identical in M

and M ′.

Similar to our defintion of J(κ, λ) for infinite κ and λ, the condition |A| ≤ |X \A|

is added to the above definition to avoid the ambiguity on the size of X \ A that

arises when κ = λ. This condition is in alignment with the convention of assuming

that 2k ≤ n in the finite case.

Corollary 5.1.5

The Johnson graph J(κ, λ) is a disjoint union of κλ copies of J ′(κ, λ).

We want a more general definiton of infinite graphs that behave like Johnson

graphs.
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Definition 5.1.6

Let µ be some ordinal. We say that a graph G is a Generalized Johnson Graph

if and only if G =
⊔

i∈µ J
′(κi, λi) where (κi)i∈µ and (λi)i∈µ are sequences of infinite

cardinals such that λi ≤ κi for all i ∈ µ.

We will show that generalized Johnson graphs are indistinguishable from Johnson

graphs from the perspective of first order logic and more importantly that any

infinite graph that is indistinguishable from a Johnson graph is a generalized Johnson

graph.

5.2 Limit theory of J(n, k) for a fixed k

In this section we will take our first steps working with theories of infinite Johnson

graphs. We fix some constant k and observe the limit theory of Johnson graphs on

k-sets. As we note in the introduction of this thesis some results are already known

for this theory, such as Theorem 5.2.4, and Theorem 5.2.2, but they may not appear

explicitly in published literature. They stem from the fact that theory of J(n, k)

for a fixed set is biinterpretable with that of a pure set. Here we present them with

explicit proofs without relying on biinterpretability with a pure set.

Theorem 5.2.1

For any constant k and infinite cardinal κ, duplicator has a winning strategy in the

Ehrenfeucht-Fraissé game EF⌊n
k
⌋(J(n, k), J(κ, k)).

Proof. We will call the vertex played on turn i in J(κ, k), ai regardless of which

player plays it. Likewise we will call the vertex played on turn i in J(κ, k), bi

regardless of which player plays it.

Duplicator will be building up a partial bijection f from X, the underlying set

of J(n, k), to Y the underlying set of J(κ, k). We do this by creating a sequence

(fi)
log t
i=1 where f1 is the empty map, flog t = f and fi+1 extends fi. It is through this
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sequence of functions that duplicator is able to avoid any traps set by spoiler and is

guaranteed a move on every turn of the game.

Now we are ready to play the game. By vertex transitivity, the first move of the

game is arbitrary both by spoiler and duplicator.

Base case: Duplicator sets f1 to be a bijection between a1 and b1.

For every subsequent move we have:

Induction hypothesis: After m − 1 moves by both players which grant us the

sequences, (ai)m−1i=1 , (bi)
m−1
i=1 in J(n, k) and J(κ, k) respectively, duplicator has formed

the function fm−1 in such a way that fm−1[ai] = bi for any i < m.

Inductive step: Assume spoiler plays am. Duplicator then chooses I ⊆ Y \

img(fm−1) such that |I| = |am \ dom(fm−1)|. Such an I always exists since |Y \

img(fm−1)| = κ > k. He then sets fm to be an extension of fm−1 such that fm[am \

dom(fm−1)] = I. He then plays bm = fm[am].

Assume spoiler plays bm. Duplicator then chooses I ⊆ X \ dom(fm−1) such

that |I| = |bm \ img(fm−1)|. Such an I always exists due to m ≤ ⌊n
k
⌋ giving us

|X \ dom(fm−1)| ≥ n− (m− 1)k ≥ k. He then sets fm to be an expansion of fm−1

such that fm[I] = bm \ img(fm−1). He then plays am such that fm[am] = bm.

At the end of the game the induction hypothesis is satisfied at ⌊n
k
⌋ that is to

say we have for any 1 ≤ i ≤ j ≤ ⌊n
k
⌋ that f⌊n

k
⌋[ai] = bi. Recall that in a Johnson

graph d(u, v) = 2|u△v| so we have d(ai, aj) = d(bi, bj) in particular this means that

Eaiaj if and only if Ebibj so the substructures A = {ai|1 ≤ i ≤ ⌊n
k
⌋} in J(n, k) and

B = {bi|1 ≤ i ≤ ⌊n
k
⌋} in J(κ, k) are isomorphic.

Corollary 5.2.2

The limit theory of J(n, k) for a fixed k and n → ∞ is a complete theory and is

satisfied by J(κ, k) for any infinite cardinal κ.
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The following lemma is folklore amongst Model theorists, and to some extend

considered obvious from the intuition that Morley rank should be the model theoretic

notion of dimension. So obvious in fact that it is somewhat difficult to find a proof

in literature so we present it here with proof.

Lemma 5.2.3

Let X be an infinite set interpreted as a model of the empty language. Note that

equality ′ =′ is still interpreted in the empty language. The set Xk has Morley rank

k.

Proof. The proof is by induction on k.

Base case: Since any definable subset of X is either finite or cofinite so it has

Morley rank 1.

Inductive hypothesis: Xk−1 has Morley rank k − 1.

Inductive step: For each a ∈ X let Xa = {(xi)ki=1|x1 = a}. The set Xa is in

bijection with Xk−1 so by our induction hypothesis Xa has Morley rank k−1. Then

{Xa|a ∈ X} is a definable family in bijection with X so it has Morley rank 1. So

Xk has a uniformly definable, Morley rank 1, family of disjoint Morley rank k − 1

subsets. Thus Xk has Morley rank k.

Theorem 5.2.4

The theory of J(ℵ0, k), for some fixed k, has Morley rank k.

Proof. Let X be the underlying set of J(ℵ0, k). Now let Yk = {(xi)ki=1|
∧

1≤i<j≤k xi ̸=

xj}. Yk ⊆ Xk so Yk has Morley rank at most k, in fact exactly k since we have

removed sets of smaller Morley rank. We can define an equivalence relation Sk on

Yk as (xi)
k
i=1Sk(yi)

k
i=1 ⇔ {xi|1 ≤ i ≤ k} = {yi|1 ≤ i ≤ k}. We can treat the set V
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of equivalence classes of Sk as a set of "imaginary elements" of X, for further detail

see [45, 8.4]. Each equivalence class of Sk has finite size, namely k!, so the set V has

Morley rank exactly k.

But V is exactly the vertex set of J(ℵ0, k) taking X as the underlying set. We

note that the edge relation of J(ℵ0, k) is definable in X so J(ℵ0, k) has Morley rank

k.

Recall that a theory is monadically stable if any expansion of any model of T by

unary predicates is stable.

Theorem 5.2.5

The Johnson graph J(ℵ0, 2) is not monadically dependent.

Proof. We view the Johnson graph as a structure in the language L of graphs (with

a single binary relation E).

Let N be the underlying set of J(ℵ0, 2). We define the following sets of vertices.

A = {{2n+ 1, 0} : n ∈ N},

B = {{2n+ 2, 0} : n ∈ N},

C = {{2n+ 1, 2m+ 2} : m,n ∈ N}.

Let ψ(x, y, z) be the formula ‘x, y, z are distinct and form a maximal clique of

J(ℵ0, 2)’.

Ψ(x, y, z) := Exy ∧ Exz ∧ Eyz ∧ ¬∃w(Exw ∧ Eyw ∧ Ezw)

This holds precisely of triangles of the form {a, b}, {b, c}, {a, c}.

Let LA,B,C be the expansion of L by unary predicates interpreted by A,B,C.

Let χ(x, y, z) be the LA,B,C-formula ψ(x, y, z) ∧ A(x) ∧B(y) ∧ C(z).

Thus, χ determines a bijection A × B → C, with χ holding precisely of the

triples ({2n+1, 0}, {2m+2, 0}, {2n+1, 2m+2}). It follows that each element of C

72



determines via χ a bipartite graph on A∪B with a single edge, and each subset C ′

of C determines a bipartite graph on A ∪ B, all bipartite graphs arise in this way.

In particular, we can define a bipartite graph witnessing the independence property

(i.e. the random bipartite graph).

Corollary 5.2.6

The Johnson graph J(ℵ0, 2) is not monadically stable.

5.3 Generalized Johnson Graphs

In this section we will begin by showing that we have a complete theory for Johnson

graphs J(n, k) as n, k, n − k approach ∞. We then show that generalized Johnson

graphs satisfy this theory giving credence to the claim that they generalize the

notion of Johnson graphs, justifying our choice of naming them generalized Johnson

graphs.

Lemma 5.3.1

J(n, k) with 2 < 2k ≤ n does not have a distance log(k) dominating set of size

log(k).

Proof. J(n, k) has diameter k. Take two vertices v, u such that d(v, u) = k then

the shortest path between v, u has k + 1 vertices and each ball of radius log(k) can

intersect the path in at most 2 log(k) + 1 vertices, since such a ball cannot contain

vertices at distance more than 2 log(k) + 1 apart. Since (2 log(k) + 1) log(k) < k+1

this means that the path can not be covered with log(k) balls of radius log(k). In

particular J(n, k) can not be covered with log(k) balls of size log(k).

Lemma 5.3.2

J(n, k) with 1 < k ≤ n
2

can not be covered by a collection (Bi)
⌊log(k)⌋
i=1 of balls where

Bi has radius ⌊ k
2i+1 ⌋ − 1.
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Proof. J(n, k) has diameter k. Take two vertices v, u such that d(v, u) = k then the

shortest path between v, u has k+1 vertices. Since it is a shortest path each ball of

radius ⌊ k
2i+1 ⌋−1 can only intersect it in k

2i
elements. So the total number of vertices

intersected is:
⌊log(k)⌋∑

i=1

k

2i
= k

⌊log(k)⌋∑
i=1

1

2i
≤ k + 1

This is in essence a graph-theoretic analogue to Zeno’s dichotomy paradox of

motion [20] which along with the uniformity of Johnson opens up a winning strategy

for Duplicator in Ehrenfeucht-Fraïssé games between two Johnson graphs. The

strategy relies on keeping track of distances between played vertices, but ignoring

those pairs of vertices that are too far to feasibly interact.

Theorem 5.3.3

Duplicator has a winning strategy in the Ehrenfeucht-Fraissé game EF⌊log t⌋(J(n, k), J(n′, k′))

where t = ⌊min(k,n−k,k′,n′−k′)
2

⌋.

Proof. Since J(n, k) ∼= J(n, n− k) we can assume without loss of generality n ≥ 2k

and n′ ≥ 2k′. Moreover let us assume that k′ ≤ k. This means that t = ⌊k′
2
⌋.

As a clarification on notation we will call the vertex played on turn i in J(n, k),

ai regardless of which player plays it. Likewise we will call the vertex played on turn

i in J(n′, k′), bi regardless of which player plays it.

Duplicator will be building up a partial bijection f from X, the underlying set

of J(n, k), to Y the underlying set of J(n′, k′). We do this by creating a sequence

(fi)
⌊log t⌋
i=1 where f1 is the empty map, flog t = f and fi+1 extends fi. It is through

this sequence of functions that duplicator is able to avoid any traps set by spoiler

and is guaranteed a move on every turn of the game.

Now we are ready to play the game.
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Base case: By vertex transitivity, the first move of the game is arbitrary both by

spoiler and duplicator. Duplicator sets f1 to be the empty map.

For the second move if spoiler plays a2 duplicator starts by looking at a1△a2. If

|a1△a2| ≤ t then duplicator plays a b2 such that |a1△a2| = |b1△b2| then duplicator

forms a bijection f2 from a1△a2 to b1△b2 such that x ∈ a1 ⇐⇒ f2(x) ∈ b1 and

x ∈ a2 ⇐⇒ f2(x) ∈ b2. If |a1△a2| > t then duplicator plays a b2 such that

min(|a1△a2|, 2t) = |b1△b2| and sets f2 = f1 to be the empty map.

Induction hypothesis: After m − 1 moves by both players which grant us the

sequences (ai)m−1i=1 , (bi)
m−1
i=1 in J(n, k) and J(n′, k′) respectively, duplicator has formed

the function fm−1 in such a way that if |ai△aj| ≤ t
2m−1 or |bi△bj| ≤ t

2m−1 then

ai△aj ⊆ dom(fm−1) , bi△bj ⊆ img(fm−1) and

x ∈ ai \ aj ⇐⇒ fm−1(x) ∈ bi \ bj

Note that this implicitly means that for all i, j < m if d(ai, aj) ≤ t
2m

or d(bi, bj) ≤ t
2m

then d(ai, aj) = d(bi, bj).

Inductive step:

Assume spoiler plays am. Let M ⊆ [1,m − 1] ∩ N be such that i ∈ M if and

only if d(ai, am) ≤ t
2m

.

If M = ∅ then duplicator sets fm = fm−1 and plays a bm such that d(bi, bm) > t
2m

for all i < m. Such a vertex always exists due to Lemma 5.3.2.

Assume M ̸= ∅. Duplicator has to extend fm−1 to fm with domain

dom(fm−1) ∪
⋃
i∈M

am△ai

in such a way that if x ∈ ai ∩ dom(fm) then fm(x) ∈ bi and every element in

(am \ (
⋃

i<m ai)) ∩ dom(fm) gets mapped to an element that is in the complement

of
⋃

i∈M bi.
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For every i, j ∈ M we have that d(ai, aj) ≤ 2t
2m

so by induction hypothesis

ai△aj ⊆ domfm−1. So

(
⋃
i∈M

am△ai) \ dom(fm−1) ⊆ (am \
⋃
i∈M

ai) ∪ ((
⋂
i∈M

ai) \ am)

that is to say, every element that duplicator is adding to the domain of fm is either

in only am or in every other ai for i ∈M . So the elements in the domain of fm that

aren’t in the domain of fm−1 will be in either (
⋂

i∈M ai) \ am or am \
⋃

i∈M ai and

thus need to be mapped to (
⋂

i∈M bi) and Y \ (
⋃

i∈M bi) respectively. In each case

we need to show that the domain contains at most as many elements as the image.

Case 1: Mapping (
⋂

i∈M ai) \ am to (
⋂

i∈M bi) is possible since: We know that for

all i ∈M |ai \ am| ≤ t
2m

so we get:

|(
⋂
i∈M

ai) \ am| ≤
t

2m
≤ t

and

|(
⋂
i∈M

bi)| ≥ k′ − |M |t
2m
≥ k′ − tm

2m
≥ k′ − t ≥ t

Case 2: We can map am \
⋃

i∈M ai to Y \ (
⋃

i∈M bi) due to the following: Since for

i ∈M |am \ ai| ≤ t
2m

we get

|am \
⋃
i∈M

ai| ≤
t

2m
≤ t

and

|Y \ (
⋃
i∈M

bi)| ≥ n′ − (k′ + |M | t
2m

) ≥ (n′ − k′)−m t

2m
≥ k′ − mt

2m
≥ k′ − t ≥ t

Duplicator then plays bm = fm[am ∩ dom(fm)]∪
⋂

i∈M bi. Note that the set bm is

a vertex, i.e. a set of size k′, by the definition of fm. Note that then we have for all

i ∈ M that d(am, ai) = d(bm, bi). So by induction hypothesis we have for i, j ≤ m

that if |ai△aj| ≤ t
2m

or |bi△bj| ≤ t
2m

then ai△aj ⊆ dom(fm) , bi△bj ⊆ img(fm) and

x ∈ ai \ aj ⇐⇒ fm−1(x) ∈ bi \ bj
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Assume spoiler plays bm. Let M ⊆ [1,m − 1] ∩ N be such that i ∈ M if and

only if d(bi, bm) ≤ t
2m

.

If M = ∅ then duplicator sets fm = fm−1 and plays an am such that d(ai, am) >
t

2m
for all i < m. Such a vertex always exists due to Lemma 5.3.2.

Assume M ̸= ∅. Duplicator then extends fm−1 to fm with image

img(fm−1) ∪
⋃
i∈M

bm△bi

in such a way that if x ∈ ai then fm(x) ∈ bi and every element in bm \ (
⋃

i<m bi) gets

mapped to by an element that is in the complement of
⋃

i<m ai.

In this case the elements in the image of fm that aren’t in the image of fm−1

will be in either (
⋂

i∈M bi) \ bm or bm \
⋃

i∈M bi and thus need to be mapped onto

by (
⋂

i∈M ai) and X \ (
⋃

i∈M ai) respectively. In each case we need to show that the

image contains at most as many elements as the domain.

Case 1: Mapping (
⋂

i∈M ai) to (
⋂

i∈M bi) \ bm is possible since:

|(
⋂
i∈M

bi) \ bm| ≤
t

2m
≤ t

and

|(
⋂
i∈M

ai)| ≥ k − |M |t
2m
≥ k − tm

2m
≥ k − t ≥ t

Case 2: Mapping X \ (
⋃

i∈M ai) to bm \
⋃

i∈M bi is possible since

|bm \
⋃
i∈M

bi| ≤
t

2m
≤ t

and

|X \ (
⋃
i∈M

ai)| ≥ n− (k + |M | t
2m

) = (n− k)−m t

2m
≥ k − t m

2m
≥ k − t ≥ t

Duplicator then plays am = f−1m [bm ∩ img(fm)] ∪
⋂

i∈M ai. Note that the set am

is a vertex, i.e. a set of size k, by the definition of fm. Note that then we have for all
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i ∈ M that d(am, ai) = d(bm, bi). So by induction hypothesis we have for i, j ≤ m

that if [|ai△aj| ≤ t
2m

or |bi△bj| ≤ t
2m

then ai△aj ⊆ dom(fm) , bi△bj ⊆ img(fm)

and

x ∈ ai \ aj ⇐⇒ fm−1(x) ∈ bi \ bj

So after m moves by both players, duplicator has formed the function fm in

such a way that if |ai△aj| ≤ t
2m

then x ∈ ai \ aj ⇐⇒ fm(x) ∈ bi \ bj and

x ∈ aj \ ai ⇐⇒ fm(x) ∈ bj \ bi. This concludes the inductive step.

At the end of the game we have for any i, j ≤ ⌊log t⌋ that if d(ai, aj) ≤ ⌊ t
2log t ⌋ = 1

or d(bi, bj) ≤ ⌊ t
2log t ⌋ = 1 then d(ai, aj) = d(bi, bj). In particular this means that

Eaiaj if and only if Ebibj so the substructures A = {ai|1 ≤ i ≤ log(t)} in J(n, k) and

B = {bi|1 ≤ i ≤ log(t)} in J(n′, k′) are isomorphic with isomorphism ai 7→ bi.

We now obtain the following definition of a limit theory of J .

Definition 5.3.4

Let TJ be the set of sentences σ such that there is a kσ such that if n ≥ k ≥ kσ and

n− k ≥ kσ then J(n, k) |= σ.

Corollary 5.3.5

TJ is a complete theory.

Proof. By Theorem 2.2.26 and Theorem 5.3.3 we have that for every sentence σ,

that all Johnson graphs J(n, k) with n, k, and n − k all greater than 2QD(σ) agree

on σ.

This tells us that as n and k grow every sentence σ in the language of graphs

eventually becomes true for all arbitrarily large J(n, k) or it eventually becomes

false for all arbitrarily large J(n, k).

Now that we have a unified theory TJ that holds for all arbitrarily large Johnson

graphs we would like to explore what infinitetly large models of TJ look like.
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Theorem 5.3.6

Let (κi)i∈I and (λi)i∈I be families of infinite cardinals. Duplicator has a winning

strategy in the Ehrenfeucht-Fraïssé game EF⌊log t⌋(J(n, k),
⊔

i∈I J
′(κi, λi)) where t =

⌊min(k,n−k)
2

⌋.

Proof. Duplicator’s strategy is more or less identical to the one he uses in the proof

of Theorem 5.3.3.

It is worth noting that for the purposes of that strategy there is no difference

between two vertices in
⊔
J ′(κi, λi) being in different connected components and

merely being further than distance t
2m

apart. Thus the following proof is similar to

what we have already presented.

Since J(n, k) ∼= J(n, n − k) we can assume without loss of generality n ≥ 2k.

This means that t = ⌊k
2
⌋.

As a clarification on notation we will call the vertex played on turn i in J(n, k),

ai regardless of which player plays it. Likewise we will call the vertex played on turn

i in
⊔

j∈I J
′(κj, λj), bi regardless of which player plays it.

Without loss of generality we can assume that each of the graphs J ′(κi, λi), i ∈ I

have underlying sets Yi, i ∈ I that are pairwise disjoint. We call their union
⋃

i∈I Yi =

Y . Duplicator will be building up a partial bijection f from X, the underlying set

of J(n, k), to Y . We do this by creating a sequence (fi)
⌊log t⌋
i=1 where f1 is the empty

map, f⌊log t⌋ = f and fi+1 extends fi.

Now we are ready to play the game.

Base case: By vertex transitivity, the first move of the game is arbitrary both by

spoiler and duplicator.

Duplicator sets f1 to be the empty map.

For the second move if spoiler plays a2 duplicator starts by looking at a1△a2. If

|a1△a2| ≤ t then duplicator plays a b2 such that |a1△a2| = |b1△b2| then duplicator
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forms a bijection f2 from a1△a2 to b1△b2 such that x ∈ a1 ⇐⇒ f2(x) ∈ b1 and

x ∈ a2 ⇐⇒ f2(x) ∈ b2. If |a1△a2| > t then duplicator plays a b2 such that

min(|a1△a2|, 2t) = |b1△b2| and sets f2 = f1 to be the empty map.

Induction hypothesis: After m − 1 moves by both players which grant us the

sequences, (ai)m−1i=1 , (bi)
m−1
i=1 in J(n, k) and

⊔
i∈I J

′(κi, λi) respectively duplicator has

formed the function fm−1 in such a way that if |ai△aj| ≤ t
2m−1 or |bi△bj| ≤ t

2m−1

then ai△aj ⊆ dom(fm−1), bi△bj ⊆ img(fm−1) and

x ∈ ai \ aj ⇐⇒ fm−1(x) ∈ bi \ bj

Note that this implicitly means that for all i, j < m if d(ai, aj) ≤ t
2m

or d(bi, bj) ≤ t
2m

then d(ai, aj) = d(bi, bj).

Inductive step:

Assume spoiler plays am. Let M ⊆ [1,m − 1] ∩ N be such that i ∈ M if and

only if d(ai, am) ≤ t
2m

. If M = ∅ then duplicator sets fm = fm−1 and plays a bm such

that d(bi, bm) > t
2m

for all i < m. Such a vertex always exists since each connected

component of
⊔

i∈I J
′(κi, λi) has infinite diameter.

Assume M ̸= ∅. For every i, j ∈ M we have that d(ai, aj) ≤ 2t
2m

so by induction

hypothesis ai△aj ⊆ domfm−1. Note that by our induction hypothesis, for all i, j ∈

M we have that d(bi, bj) is finite and thus bi and bj are in the same connected

component. Without loss of generality assume it is the y-th component. Duplicator

has to extend fm−1 to fm with domain

dom(fm−1) ∪
⋃
i∈M

am△ai

in such a way that if x ∈ ai ∩ dom(fm) then fm(x) ∈ bi and every element in

(am \ (
⋃

i<m ai)) ∩ dom(fm) gets mapped to an element that is in Yy \
⋃

i∈M bi.
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(
⋃
i∈M

am△ai) \ dom(fm−1) ⊆ (am \
⋃
i∈M

ai) ∪ ((
⋂
i∈M

ai) \ am)

that is to say, every element that duplicator is adding to the domain of fm is either

in only am or in every other ai for i ∈M . So the elements in the domain of fm that

aren’t in the domain of fm−1 will be in either (
⋂

i∈M ai) \ am or am \
⋃

i∈M ai and

thus need to be mapped to
⋂

i∈M bi and Yy \ (
⋃

i∈M bi) respectively. In each case we

need to show that the domain contains at most as many elements as the image.

Case 1: Mapping (
⋂

i∈M ai) \ am to (
⋂

i∈M bi) is possible since: We know that for

all i ∈M |ai \ am| ≤ t
2m

so we get

|(
⋂
i∈M

ai) \ am| ≤
t

2m
≤ t

and

|(
⋂
i∈M

bi)| = λ ≤ t

Case 2: Mapping am \
⋃

i∈M ai to Yy \ (
⋃

i∈M bi).

Since for i ∈M |am \ ai| ≤ t
2m

we get

|am \
⋃
i∈M

ai| ≤
t

2m
≤ t

and since

|Yy \ (
⋃
i∈M

bi)| = κ ≥ t

Duplicator then plays bm = fm[am∩dom(fm)]∪
⋂

i∈M bi. By our definition of fm,

and the fact that |
⋂

i∈M bi| we get that bm is in fact a vertex. Note that then we have

for all i ∈M d(am, ai) = d(bm, bi). So by induction hypothesis we have for i, j ≤ m

that if |ai△aj| ≤ t
2m

or |bi△bj| ≤ t
2m

then ai△aj ⊆ dom(fm) , bi△bj ⊆ img(fm) and

x ∈ ai \ aj ⇐⇒ fm(x) ∈ bi \ bj
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Assume spoiler plays bm. Let M ⊆ [1,m − 1] ∩ N be such that i ∈ M if and

only if d(bi, bm) ≤ t
2m

.

If M = ∅ then duplicator sets fm = fm−1 and plays an am such that d(ai, am) >
t

2m
for all i < m. Such a vertex always exists due to Lemma 5.3.2.

Assume M ̸= ∅. Duplicator then extends fm−1 to fm with image

img(fm−1) ∪
⋃
i∈M

bm△bi

in such a way that if x ∈ ai then fm(x) ∈ bi and every element in bm \ (
⋃

i<m bi) gets

mapped to by an element that is in the complement of
⋃

i<m ai.

In this case the elements in the image of fm that aren’t in the image of fm−1

will be in either (
⋂

i∈M bi) \ bm or bm \
⋃

i∈M bi and thus need to be mapped onto

by (
⋂

i∈M ai) and X \ (
⋃

i∈M ai) respectively. In each case we need to show that the

image contains at most as many elements as the domain.

Case 1: Mapping (
⋂

i∈M ai) to (
⋂

i∈M bi) \ bm is possible since:

|(
⋂
i∈M

bi) \ bm| ≤
t

2m
≤ t

and

|(
⋂
i∈M

ai)| ≥ k − |M |t
2m
≥ k − tm

2m
≥ k − t ≥ t

Case 2: Mapping X \ (
⋃

i∈M ai) to bm \
⋃

i∈M bi is possible since

|bm \
⋃
i∈M

bi| ≤
t

2m
≤ t

and

|X \ (
⋃
i∈M

ai)| ≥ n− (k + |M | t
2m

) = (n− k)−m t

2m
≥ k − t m

2m
≥ k − t ≥ t

By our definition of fm, we get f−1m [bm ∩ img(fm)] has size k− |
⋂

i∈M ai|. Dupli-

cator then plays am = f−1m [bm ∩ img(fm)] ∪
⋂

i∈M ai. Note that then we have for all
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i ∈M d(am, ai) = d(bm, bi). So by induction hypothesis we have for i, j ≤ m that if

|ai△aj| ≤ t
2m

or |bi△bj| ≤ t
2m

then ai△aj ⊆ dom(fm) , bi△bj ⊆ img(fm) and

x ∈ ai \ aj ⇐⇒ fm(x) ∈ bi \ bj

So after m moves by both players, duplicator has formed the function fm in

such a way that if |ai△aj| ≤ t
2m

then x ∈ ai \ aj ⇐⇒ fm(x) ∈ bi \ bj and

x ∈ aj \ ai ⇐⇒ fm(x) ∈ BJ \BI . This concludes the inductive step.

At the end of the game we have for any i, j ≤ ⌊log t⌋ that if d(ai, aj) ≤ ⌊ t
2log t ⌋ = 1

or d(bi, bj) ≤ t
2log t = 1 then d(ai, aj) = d(bi, bj). In particular this means that Eaiaj

if and only if Ebibj so the substructures A = {ai|1 ≤ i ≤ log(t)} in J(n, k) and

B = {bi|1 ≤ i ≤ log(t)} in
⊔

i∈I J
′(κi, λi) are isomorphic.

5.4 Axiomatic theory of Johnson graphs

In this section we will give axioms for TJ . We will first give the axioms that are

satisfied by any Johnson graph. We then give the axiom schemas that specify the

size of the graph i.e. they specify n and k for J(n, k). We are primarily interested

in the axiom schemas where n and k are left unbounded. We will then show that

a connected graph M is isomorphic to J ′(κ, λ) for some κ and λ if and only if it

satisfies those axioms.

Before we begin we will discuss the shorthands we use in the definitions below.

Definition 5.4.1

Let L be the language of graphs i.e. a language with a single binary symbol E.

Let Lc be the language of graphs with 3 additional constant symbols v, a, and b.

We will first give our axioms in Lc. This is done for convenience, and allows us

to give the axioms in an intuitive manner that describes what Johnson graphs look

like locally. We will later on argue that the axioms apply for any 3 pairwise adjacent
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vertices so we interpret the constant symbols of Lc as variables in L and get axioms

for the theory of Johnson graphs.

We then give the axiom schemas that are specific to each Johnson graph, first

the finite ones then J ′(κ, λ) for infinite cardinals κ and λ and finally generalized

Johnson graphs.

5.4.1 Definable language extensions

Function symbols Let ϕ(x, y) be a formula satisfying

∀x∃yϕ(x, y)

and

∀y∀z(∃xϕ(x, y) ∧ ϕ(x, z))→ y = z

Then ϕ(x, y) defines a function fϕ :M →M so we can use the shorthand "fϕ(x) = y"

for the formula ϕ(x, y). We can say that fϕ is a bijection by a dual condition (this

essentially says the inverse exists).

∀y∃xϕ(x, y)

and

∀x∀z(∃yϕ(x, y) ∧ ϕ(z, y))→ x = z

We can change the domain of fϕ to a definable subset of M . Let A ⊆M be a subset

defined by ψ. Then we have

∀x(ψ(x)→ ∃yϕ(x, y))

∀y∀z(∃xϕ(x, y) ∧ ϕ(x, z))→ y = z

Note that by restricting the domain of the inverse we can talk about bijections

between definable subsets of our model.
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Sets We can define what it means for a n-tuple to be an ordered set of size n i.e.

it contains n distinct elements.

Setn((xi)
n
i=1) :=

n∧
i=1

n∧
j=i+1

xi ̸= xj

Note that this defines ordered sets. Defining an equivalence between two tuples

(xi)
n
i=1 and (yi)

n
i=1 representing the same set is also possible.

SetEquivn((xi)
n
i=1, (yi)i=1) := Setn((xi)

n
i=1) ∧ Setn((yi)ni=1) ∧ (

∨
p∈Sn

n∧
i=1

(xi = yp(i)))

Similarly we can define a formula which holds if and only if the tuples (xi)
n
i=1 and

(yi)
n
i=1 represent sets of size n and their intersection has size m.

Intersectn,m((xi)
n
i=1, (yi)i=1) := Setn((xi)

n
i=1) ∧ Setn((yi)ni=1)∧

(
∨
p∈Sn

∨
q∈Sn

SetEquivm((xp(i))
m
i=1, (yq(i))

m
i=1) ∧ Set2n−m((xp(i))ni=m+1, (yq(i))

n
i=m+1))

For a fixed n ∈ N the set of all n-element subsets of a definable set is definable. Let

A be a set defined by ϕ. Then the set of all n-element subsets of A is defined by

ψ((xi)
n
i=1) := (

n∧
i=1

ϕ(xi)) ∧ Set((xi)ni=1)

Note that this formula is is satisfied by every permutation of every n-element subset

of A.

Distance For every n ∈ N we define a relation dn which is satisfied by exactly

those vertices that are at distance n from each other.

d0(x, y) := x = y

d1(x, y) := Exy

dn+1(x, y) := ¬dn−1(x, y) ∧ ¬dn(x, y) ∧ ∃z(Eyz ∧ dn(x, z))

We give a special name to the sets of vertices of a given distance from the constant

vertex v.

Dn := {u|dn(v, u)}
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Rook graph structure Recall that in a Johnson graph, for every vertex v, the

neighbourhood N(v) induces a rook’s graph as a subgraph. We work with the

intuitive notions of row and column in the rook graph. We use the constants a and

b to identify the difference between two adjacent vertices in N(v) sharing a row on

one hand and sharing a column on the other. We say a and b are to be in the same

column and the members of that column are representatives of their respective rows.

The row that a belongs to is used as the set of representatives for columns.

Rep(x) := Evx ∧ (Exa ∨ x = a)

RRep(x) := Rep(x) ∧ (Exb ∨ x = b)

CRep(x) := Rep(x) ∧ (¬RRep(x) ∨ x = a)

We then say that two vertices belong to the same row (column) if they are

adjacent to the same row (column) representative.

Col(x, y) := (Evx∧Evy)∧(Exy∨x = y)∧∃z(CRep(z)∧(Exz∨x = z)∧(Eyz∨y = z))

Row(x, y) := (Evx∧Evy)∧(Exy∨x = y)∧∃z(RRep(z)∧(Exz∨x = z)∧(Eyz∨y = z))

Underlying sets We will now give formulae in Lc that we use to capture the

underlying set structure of the Johnson graph. Recall that in the rook graph sur-

rounding a vertex A in a Johnson graph with underlying set X, each row contains

those vertices that are missing the same element of A and each column those that

include the same element from outside A or the inverse. Armed with that knowledge
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we define

ϕ1(x, u, w) := CRep(u) ∧RRep(w)∧

((¬Rep(x) ∧ Exu ∧ Exw ∧ Exv)∨

(CRep(x) ∧ x = u ∧ Exw) ∨ (RRep(x) ∧ Exu ∧ x = w))

ϕn(x, (ui)
n
i=1, (wi)

n
i=1) := dn(v, x) ∧ Setn((ui)ni=1) ∧ Setn((wi)

n
i=1)∧

n∧
i=n

(CRep(ui) ∧RRep(wi))∧

∀y(dn−1(v, y)→ (Exy ↔ (
n∨

i=1

n∨
j=1

ϕn−1(y, (u
′
i)
n
i′=1
i′ ̸=i

, (w′j)
n
j′=1
j′ ̸=j

))))

We want ϕn to be a formula defining a bijective function Dn →
(
RRep
n

)
×
(
CRep

n

)
. For

simplicity’s sake we call that function fn × gn where fn(x) := {ui|1 ≤ i ≤ n} and

gn(x) := {wi|1 ≤ i ≤ n}. To explain the intuition behind this notation, vertex x

represents the set (v \ fn(x)) ∪ gn(x). I.e. for all vertices x we have:

ϕn((v \ fn(x)) ∪ gn(x), fn(x), gn(x))

5.4.2 Common Axioms

Here we get into the axioms themselves. We start with the basic axioms of simple

undirected graphs

∀x¬Exx (1)

∀x∀y(Exy → Eyx) (2)

We also need an axiom stating that our choice of constants v, a, and b form a clique.

Eva ∧ Evb ∧ Eab (3)
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Next we want to give the additional axioms that give us the rook graph structure

of N(v).

∀x(d1(v, x) ∧ ¬Rep(x)→ ∀y∀z((CRep(y) ∧ CRep(z) ∧ Exy ∧ Exz)→ y = z) (4)

∀x(d1(v, x) ∧ ¬Rep(x)→ ∀y∀z((RRep(y) ∧RRep(z) ∧ Exy ∧ Exz)→ y = z) (5)

Row is an equivalence relation on the set of neighbours of v:

∀x(d1(v, x)→ Row(x, x)) (6)

∀x∀y(Row(x, y)→ Row(y, x)) (7)

∀x∀y∀z((Row(x, y) ∧Row(y, z))→ Row(x, z)) (8)

Column is an equivalence relation on the set of neighbours of v:

∀x(d1(v, x)→ Column(x, x)) (9)

∀x∀y(Column(x, y)→ Column(y, x)) (10)

∀x∀y∀z((Column(x, y) ∧ Column(y, z))→ Column(x, z)) (11)

Adjacent vertices share a row or a column:

∀x∀y(d1(v, x) ∧ d1(v, y))→ (Exy → (Column(x, y) ∨Row(x, y))) (12)

Two distinct vertices can share a row or column but never both:

∀x∀y((Column(x, y) ∧Row(x, y))→ x = y) (13)

Every pair of non-adjacent vertices are the opposing corners of a rectangle. This

guarantees that all rows are equinumerous and all columns are equinumerous and

they interact in the desired way.

∀x∀y((d1(v, x) ∧ d1(v, y) ∧ ¬Exy)→

(∃u∃w(Row(x, u) ∧Row(y, w) ∧ Column(x,w) ∧ Column(y, u)))) (14)
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The above axioms fully characterize the neighbourhood of v. We now want to

give axiom schemas to characterize vertices further away from v. For this purpose

we will be relying on the functions fn and gn as defined by ϕn.

The function fn × gn := Dn →
(
RRep

n

)
×
(
CRep

n

)
is bijective. (15)

In Lc we can express this as:

∀x(dn(v, x)→ (∃(ui)ni=1∃(wi)
n
i=1(

n∧
i=1

(CRep(ui) ∧RRep(wi))∧

Setn((ui)
n
i=1) ∧ Setn((wi)

n
i=1)

ϕn(x, (ui), wi) ∧ ∀(u′i)∀(w′i)(ϕn(x, (u
′
i), (w

′
i))→ ((ui) = (u′i) ∧ (wi) = (w′i))))))

∧

∀(ui)∀(wi)((
n∧

i=1

(CRep(ui) ∧RRep(wi)) ∧ Setn(ui) ∧ Setn(wi))→ (∃x(dn(v, x)

ϕn(x, (ui), (wi)) ∧ ∀y(ϕn(y, (ui), (wi))→ (x = y)))))

Let hn(x) := fn(x) ∪ gn(x). When x and y are both at distance n from v then

Exy if and only if |hn(x)△hn(y)| = 2. In Lc we can express this by

∀x∀y((dn(v, x) ∧ dn(v, y))→

(Exy ↔

(∃u∃u′∃(ui)ni=2∃w∃w′∃(wi)
n
i=2

(u ̸= w′ ∧ w ̸= u′ ∧ (w ̸= w′ ⊕ u ̸= u′)∧

(ϕn(x, u, (ui), w, (wi)) ∧ ϕn(y, u
′, (ui), w

′, (wi)))))))

But for simplicity we will write it as

∀x∀y((dn(v, x) ∧ dn(v, y))→ (Exy ⇔ |hn(x)△hn(y)| = 2)) (16)
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The above condition fully specifies the distance n vertices so inductively present-

ing them for each n will give us a full axiomatization of the radius n balls in Johnson

graphs.

5.4.3 Size axioms

Here we give the axiom schemas required to specify the size of our Johnson graphs.

They interact with our previous axioms namely (15), in such a way that we can give

the size of the radius r-ball around v by just how many vertices satisfy RRep and

CRep. Thus we say for J(m, k):

(∃xi)mi=1(
m∧
i=1

m∧
j=i+1

xi ̸= xj) ∧RRep(xi) (17)

(∃xi)ki=1(
k∧

i=1

k∧
j=i+1

xi ̸= xj) ∧ CRep(xi) (18)

For now we focus our attention instead on J ′(κ, λ) which we claim is axiomatized

by the above axioms leaving m and k unbounded.

We quickly note that for
(
m
k

)
< 3 the Johnson graphs J(n, k) don’t satisfy

the above axioms as our assumption that the constant symbols v, a and b can be

interpreted in our model is false in those cases. This only applies to a couple of very

small models whose theory can easily be described by specifying the interpretation

of E.

Definition 5.4.2

Let Σ be the set of Lc-axioms (1) through (16), along with the axiom schemas (17)

with m→∞, and (18) with k →∞.

Theorem 5.4.3

Let κ and λ be infinite cardinals and M be a connected graph. Then M |= Σ if and

only if M ∼= J ′(κ, λ).
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Proof. First we show that J ′(κ, λ) |=
∑

. We then show that a connected model

that satisfies the above axioms fits our definition of J ′(κ, λ).

Assume we have J ′(κ, λ) with underlying set X and central vertex A. First we

choose vertices for our constant symbols v, a, b. We let v = A and a, b be any two

neighbours of A such that a = (A \ {x})∪{y} and b = (A \ {x})∪{z} where x ∈ A

and y ̸= z ∈ X \ A.

Second we want to show how the formulas definingRep, CRep,RRep,Row,Column,

and dn will be interpreted. We have for any n ∈ N that dn(x, y) holds if x and y are

at distance n from each other and Dn is the set of those vertices that are at distance

n from v. Note that since J ′(κ, λ) is a connected graph we have for any vertex u

that there exists an i ∈ N such that di(v, u) holds.

We now observe that the sets of vertices satisfying Rep,RRep, CRep are

{(A \ {i}) ∪ {j}|i = x ∨ j = y}

{(A \ {x}) ∪ {j}|j ∈ X \ A}

{(A \ {i}) ∪ {y}|i ∈ A}

respectively. Note that each of these sets has size at least ω so (17) and (18)

hold. This gives us that Row((A \ {i}) ∪ {l}, (A \ {j}) ∪ {k}) ⇐⇒ l = k and

Column((A \ {i}) ∪ {l}, (A \ {j}) ∪ {k}) ⇐⇒ i = j. Note that this means that

Row(x, y) and Column(x, y) align with our intuition of x and y sharing a row and

column in the rook’s graph respectively.

We can now go through the axioms in
∑

and show that J ′(κ, λ) satisfies each of

them with the above interpretations. J ′(κ, λ) is a graph so it satisfies (1) and (2).

Since Row and Column are equivalence relations on the rook graph induced by

the neigbourhood of v, J ′(κ, λ) satisfies (6) through (11).

Likewise since the rook’s graph has all edges within any given row and all edges

within any given column and no other edges (12) holds in J ′(κ, λ).
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Since a row and a column always meet in exactly one vertex we have J ′(κ, λ)

satisfies (13).

If we take any two such vertices (A \ {i}) ∪ {l} and (A \ {j}) ∪ {m} with i ̸= j

and l ̸= m we have that they have exactly two neighbours in D1 in common, namely

(A \ {i}) ∪ {m} and (A \ {j}) ∪ {l}. So J ′(κ, λ) satisfies (14).

Finally we check that the axiom schemas hold for J ′(κ, λ).

We write any vertex of J ′(κ, λ) at distance n from v in the form (A \ B) ∪ C

where B ⊆ A, C ⊆ X \A and |B| = n = |C|. Recall that fn and gn are components

of a bijective function Dn →
(
RRep
n

)
×
(
CRep

n

)
. We say that

fn((A \B) ∪ C) = {(A \ {x}) ∪ {j}|j ∈ C}

and

gn((A \B) ∪ C) = {(A \ {i}) ∪ {y}|i ∈ B}

We note that for any n, fn×gn is a bijection Dn →
(
RRep
n

)
×
(
CRep

n

)
so the schema

(15) holds.

We also note that if we have 2 vertices (A\B)∪C and (A\D)∪F adjacent to each

other then |((A\B)∪C)△((A\D)∪F )| = 2 which implies |(B∪C)△(D∪F )| = 2.

If both are at distance n from v then |B| = |C| = |D| = |F | which gives us

|hn((A \B) ∪ C)△hn((A \D) ∪ F )| = 2 so the schema (16) holds.

We have now shown how each of the axioms in Σ is satisfied and conclude that

J ′(κ, λ) |= Σ.

Conversely, assume we have a connected modelM that satisfies the above axioms.

We want to show that M is isomorphic to J ′(κ, λ) for some κ and λ. To do this we

will first define a bijection f from sets interpretable in M to X the underlying set

of J ′(κ, λ). We will then use f to construct an isomorphism g from M to J ′(κ, λ)

as Lc structures.

Since M satisfies the axioms of graph theory M is a graph with E as the edge

relation.
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We check the cardinality of the sets of representatives, that is {x ∈M |RRep(x)}

and {x ∈ M |CRep(x)}. By (17) and (18) we know that |{x ∈ M |RRep(x)}| ≥ ω

and |{x ∈ M |CRep(x)}| ≥ ω. If |{x ∈ M |RRep(x)}| ≤ |{x ∈ M |CRep(x)}| we

say |{x ∈ M |RRep(x)}| = λ and |{x ∈ M |CRep(x)}| = κ, otherwise we say |{x ∈

M |RRep(x)}| = κ and |{x ∈M |CRep(x)}| = λ. We assume |{x ∈M |CRep(x)}| ≤

|{x ∈ M |RRep(x)}|, this assumption can not a priori be taken without loss of

generality, but the argument when |{x ∈ M |RRep(x)}| > |{x ∈ M |CRep(x)}| is

identical with the roles of the two sets reversed. This is justified a posteriori by

the observation that it is analogous to swapping J(n, k) and J(n, n − k). In fact

the graph J ′(κ, λ) with underlying set X is isomorphic to the graph obtained by

replacing each vertex A with X \ A and having two vertices adjacent if and only if

their symmetric difference has size 2.

We take two disjoint sets A and B in bijection with {x ∈ M |RRep(x)} and

{x ∈ M |CRep(x)} respectively and we then say that X = A ⊔ B. We can think of

A and B as being the set of ’rows’ and ’columns’ respectively.

So we now have sets X and A with |X| = κ and |A| = λ just as in the definition

of J ′(κ, λ). We then say that v is the vertex corresponding to the set A from the

definition of J ′(κ, λ).

We now want a bijection f from representatives to rows and columns: RRep to

A and CRep to B. This requires some finessing since a satisfies RRep and CRep

and A and B are disjoint but we can simply say that the domain of f is

RRep ⊔ CRep := {(x, y) ∈ Rep× {0, 1}|(RRep(x) ∧ y = 0) ∨ (CRep(x) ∧ y = 1)}

since every vertex u ̸= a satisfying Rep only appears in one such pair. We abuse

the notation and use u to mean the pair, and for a we use ar and ac to distinguish
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between (a, 0) and (a, 1). We can now define our mapping f as

f(ar) :=CRep

f(ac) :=RRep

f(u) :={x ∈M |x = u ∨ (Evx ∧ (¬Rep(x) ∧ Eux))}

We note that f−1[A] = {x ∈M |RRep(x)}.

We can now start constructing the isomorphism g. We start with g(v) = A

and g(a) = (A \ {f(ar)}) ∪ {f(ac)}. For any vertex x ̸= a satisfying RRep we say

g(x) = (A \ {f(ar)}) ∪ {f(x)} and any vertex x ̸= a other than a that satisfies

CRep(x) corresponds to the set (A \ {f(x)}) ∪ {f(ac)}.

Our definition of the Row and Column relations and the axioms stating that

they are reflexive on the neighbours of v gives us that every neighbour u of v has

both a row- and column-representative denoted ru and cu respectively. So we have

g(u) = A \ {f(ru)} ∪ {f(cu)}.

Any vertex u in M that has distance n from v satisfies dn(v, u) so by (15) we

can define g(u) := (A \ f [gn(u)]) ∪ (f [fn(u)]).

We have now defined a full function g from M to J ′(κ, λ). We note that g is a

bijection by our choice of A, B and (15). We now just need to check that it preserves

the edge relation to prove that it is an isomorphism.

Consider two adjacent vertices u and w at distance n from v. Then by our axiom

about edges at distance n we have that |(fn(u)△fn(w)) ∪ (gn(u)△gn(w))| = 2 and

since f is bijective that gives us that:

|(A \ f [fn(u)]) ∪ (f [gn(u)] \ A)△(A \ f [fn(w)]) ∪ (f [gn(w)] \ A)| = 2

So the sets corresponding to u and w are adjacent in J ′(κ, λ).

Consider two adjacent vertices u and w at distance n and n−1 respectively from

v. Then by our axiom about edges at distance n we have that fn−1(w) ⊂ fn(u).
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Since f is bijective that gives us that:

|((A \ f [gn(u)]) ∪ f [fn(u)])△((A \ f [gn−1(w)]) ∪ f [fn−1(w)])| = 2

So the sets corresponding to u and w are adjacent in J ′(κ, λ).

So g is an isomorphism M → J ′(κ, λ).

So we know Σ describes Johnson graphs locally around a vertex v. We now view

Σ as a set of formulae ϕ(v, a, b) in L, the language of graphs, by taking v, a, and b

to be variables. Then if we bind each variable with a quantifier we obtain a set of

sentences in L rather than Lc.

Definition 5.4.4

Σ′ := {∀v∀a∀b((Eva∧Evb∧Eab)→ ϕ(v, a, b))|ϕ ∈ Σ}∪{∀x∃y∃z(Exy∧Exz∧Eyz)}

is a set of sentences in L.

For simple referencing we give a number to the new axiom.

∀x∃y∃z(Exy ∧ Exz ∧ Eyz) (19)

Theorem 5.4.5

Let M be a connected model and κ and λ be infinite cardinals. Then M |= Σ′ if and

only if M ∼= J ′(κ, λ).

Proof. First assume M ∼= J ′(κ, λ). We know by Theorem 5.4.3 that there exist

v, a, b pairwise adjacent such that ϕ(v, a, b) holds for all ϕ ∈ Σ. We have for any

triangle v′, a′, b′ ∈M that there exists automorphism F on M such that F (v) = v′,

F (a) = a′ and F (b) = b′. So M |= ϕ(v′, a′, b′) for all ϕ ∈ Σ. For any vertex u in

J ′(κ, λ), let x ∈ u, y ∈ X \ u, and z ∈ X \ u(y ̸= z). We have that u \ {x} ∪ {y}

and u \ {x} ∪ {z} are two adjacent neighbours of u so (19) holds in J ′(κ, λ). Thus

M |= Σ′.
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Now assume that M is a connected model such that M |= Σ′. Take v ∈ M .

Then (19) gives us that v has two adjacent neighbours a and b. Then by taking

v, a, b as witnesses for the formulae in Σ′, 5.4.3 gives us that M ∼= J ′(κ, λ).

Corollary 5.4.6

M |= Σ′ if and only if M is a generalized Johnson graph.

Proof. (19) guarantees that every connected component has a triangle and then by

Theorem 5.4.5 we have that each connected component is isomorphic to J ′(κ, λ).

Corollary 5.4.7

Σ′ is a complete set of axioms for TJ .

This gives us a nice description of the models of TJ , namely that they are exactly

the generalized Johnson graphs. This is particularly useful since it tells us that an

elementary extension of a generalized Johnson graph is also a generalized Johnson

graph. In the next section we will leverage this fact to prove the stability of TJ .

5.5 Stability of TJ

In this section we will prove general results about TJ . We know that TJ is a complete

theory and we know what every model of TJ looks like, namely that by theorems

5.4.6 and 5.4.7 they are the generalized Johnson graphs.

Lemma 5.5.1

Let M |= TJ , and ϕ((ci)ni=1, x) a formula with (ci)
n
i=1 ∈Mn. Then there is r = r(ϕ)

such that for any d1, d2 ∈M such that they have distance greater than r from each

ci then M |= ϕ(c̄, d1)↔ ϕ(c̄, d2).

Proof. We will prove this by playing an Ehrenfeucht-Fraïssé game EFn+⌊log(r)⌋(M,M).

As before we will refer to the move made in the left copy of M in the i-th round
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as ai and the move made in the right copy of M as bi. Assume that for the first n

moves ai = bi = ci and an+1 = d1 and bn+1 = d2. Now duplicator forms a partial

function fn+1 such that for any two ci, cj such that d(ci, cj) < r we have that ci△cj
is in the domain and image of fn+1. This can be achieved by having fn+1 be the

identity map everywhere it is defined. We now note that (ai)
n+1
i=1 , (bi)n+1

i=1 and fn+1

satisfy the induction hypothesis used to prove Theorem 5.3.3. Note that d1△ci and

d2△ci are not explicitly added to the domain and image of fn+1 for any i. This is

due to the fact that if duplicator would be playing the strategy from Theorem 5.3.6

then the set of played vertices sufficiently close to d1 and d2 to warrant an update

would be empty by our assumption that the distance from either d1 or d2 to any ci

is greater than r.

So this is a possible intermediate state of the game where the game is played for

n + ⌊log(r)⌋ rounds. So by Theorem 5.3.3 duplicator has a winning strategy. If we

now say that n+ ⌊log(r)⌋ is at least the quantifier depth of ϕ we know by Theorem

2.2.26 M |= ϕ(c̄, d1)↔ ϕ(c̄, d2).

Corollary 5.5.2

If M is a generalized Johnson graph then all vertices of M have the same 1-type.

Proof. This is the case where there are no ci so a1 = d1 and b1 = d2.

Theorem 5.5.3

Let M be a generalized Johnson graph, let N be a non-empty union of connected

components of M . Then N is an elementary substructure of M .

Proof. Let ϕ and c̄ := (ci)
n
i=1 be such that M |= ∃x(ϕ(x, c̄)). Let d be a witness i.e.

M |= ϕ(d, c̄). If d ∈ N we are done. Assume d ̸∈ N then by Lemma 5.5.1 there is an

rϕ such that for any e such that min(d(e, ci)) ≥ r we have M |= ϕ(d, c̄) ⇐⇒ ϕ(e, c̄).

Since N has infinite diameter there is such an e in N .
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Thus any existential formula with parameters in N has a witness in N . So by

the Tarski-Vaught test N is an elementary substructure of M .

Definition 5.5.4

We say that a set of vertices in a generalized Johnson graph is small if it is contained

in a finite union of balls of finite radius. We say that a set is large if it is not small.

Lemma 5.5.5

Let B be a ball of radius r in a generalized Johnson graph M . Then B has Morley

rank 2r.

Proof. Since parameters in a different component than B are irrelevant we can

assume that M = J ′(κ, λ) for some infinite cardinals κ and λ. Let v be the center

of our ball B and a, b ∈ N(v) such that Eab. From Section 5.4 we know that using

those parameters we can define the column containing a in N(v) as a set C and

similarly the row containing a is a definable set R. We also know that for all n ∈ N

we have a definable set Dn := {u ∈ M |d(u, v) = n}. Finally we know that we can

define a bijective map fn × gn for each n ∈ N such that Dn 7→
(
C
n

)
×

(
R
n

)
. More

importantly both components i.e. fn and gn are definable.

Since the domains of the fn for each n are pairwise distinct and have the same

image we define f =
⋃

i∈N fn a mapping
⋃

n∈NDn 7→ P (C). Similarly g =
⋃

i∈N gn is

a mapping
⋃

n∈NDn 7→ P (R).

Let G be the pointwise stabilizer of v, a and b in Aut(M). We then have that G

fixes R and C and induces at least Sym(C \ {a, b})× Sym(R \ {a, b}).

Let F ⊆M be a set of parameters and D be a F -definable subset of C.

Let X =
⋃

c∈F f(c) and Y =
⋃

c∈F g(c). Now take the pointwise stabilizer GX∪Y

of X ∪ Y . Note that since each element of F has coordinates from X ∪ Y we have

that GX∪Y fixes F pointwise and therefore fixes D setwise. We also have that GX∪Y

is transitive on C \ (X ∪ {a, b}). Thus D is finite or cofinite.
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Thus C has Morley rank 1 and Morley degree 1, i.e. C is strongly minimal.

Similarly R is strongly minimal.

Note that by Lemma 2.2.20 we have MR(B) = max{MR(e)|e ∈ B}. Now

consider a vertex e such that d(e, v) = r and asume that (f(e) ∪ g(e)) ∩ {a, b} = ∅.

Let ū and v̄ be the tuples from Rr and Cr representing coordinates of e i.e. ū is a

tuple representing f(e) and v̄ is a tuple representing g(e).

Then e is definable from ūv̄ and ūv̄ has finitely many conjugates over e. So by

[45, 6.4.1] we have that MR(e) =MR(ūv̄).

So we must showMR(ūv̄) = 2r. We do this by showing thatMR(Ct×Rs) = t+s

by strong induction on t+ s.

Base case: We have already shown that C and R are strongly minimal soMR(R×

C) = 2.

Induction hypothesis: For all 1 ≤ t′ ≤ t and 1 ≤ s′ ≤ s such that t′ + s′ < t+ s

we have:

MR(Ct′ ×Rs′) = t′ + s′

Inductive step: We want to describe the definable subsets of Ct ×Rs.

Any definable subset of Ct ×Rs is a finite union of sets of the form:

{(xi)ti=1(yi)
s
i=1|ϕ(x̄ȳ)}

where ϕ is a formula in disjunctive normal form where the atoms are of the form

xi = α for some α ∈ C, xi = xj, yi = yj yi = β for some β ∈ R. This follows from

quantifier-elimination for the structure induced by C∪R together with the fact that

any parameter definable subset of Ct × Rs can be defined using parameters from

within C ∪R since parameters not in C ∪R can be defined from parameters inside

C ∪R using the formula defining f and g.
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If some literal of ϕ is positive then it defines a set in bijection with some subset

of Ct′×Rs′ where t′+ s′ < t+ s. By our induction hypothesis such a set has Morley

rank at most t′ + s′. Moreover the collection

{{(xi)ti=1(yi)
s
i=1|x1 = α}|α ∈ C}

is a disjoint collection of sets each in bijection with Ct−1 × Rs and thus by our

induction hypothesis has Morley rank r+ s− 1 so Ct×Rs has Morley rank at least

t+ s.

Assume X and Y are two subsets of Ct × Rs defined by ϕ and ψ respectively,

where ϕ and ψ only have negative literals. Let P be the set of all parameters in ϕ

and ψ. Then C \ P, and R \ P are infinite sets, in particular they have size greater

than t + s. Therefore there is a tuple (αi)
t
i=1(βi)

s
i=1 such that αi ̸∈ P for all i ≤ t,

xi ̸= xj for all i, j ≤ t, βi ̸∈ P for all i ≤ s, yi ̸= yj for all i, j ≤ s. Then ᾱβ̄ ∈ X ∩Y

so any two sets defined by only negative literals intersect.

Therefore there do not exist infinitely many disjoint definable subsets of Ct×Rs

with Morley rank at least t + s. So the Morley rank of Ct × Rs is exactly t + s, in

particular the Morley rank of Cr ×Rr is 2r. Hence the Morley rank of B is 2r.

Lemma 5.5.6

Let ϕ define a small set. Then ϕ has finite Morley rank.

Proof. Let C be the set defined by ϕ. Since C is small we have C ⊆
⋃n

i=1Bi where

Bi are balls of finite radius. Let ri be the radius of Bi. Then by Lemma 5.5.5 Bi

has Morley rank 2ri. Then 2.2.19 gives us that the Morley rank of C is at most

max((2ri)
n
i=1).

Theorem 5.5.7

The Morley rank of a generalized Johnson graph is ω.
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Proof. We note that generalized Johnson graphs contain a ball of radius r for any

r ∈ N. So by Lemma 5.5.5 such a graph has Morley rank at least ω.

To show that the Morley rank is ω we need to show that there do not exist ω

disjoint definable sets each of Morley rank ω. By Lemma 5.5.6 we know that such

a collection would need to consist of large sets. So it is sufficient to show that there

does not exist such a collection.

Let A and B be large definable sets defined by ϕ((ai)i∈I , x) and ψ((bi)i∈J , x)

respectively. Since A and B are large we get by Lemma 5.5.1 that there are some

ra and rb such that ϕ(ā, x) holds for any x such that min{d(x, ai)|i ∈ I} ≥ ra and

ψ(b̄, x) holds for any x such that min{d(x, bi)|i ∈ J} ≥ rb. Let r = max(ra, rb)

and note that the set C := {x|min(x, ai) ≥ r ∧ min(x, bi) ≥ r} is a large set such

that C ⊆ A ∩ B. As this holds for any large definable sets any two large definable

sets intersect. In particular there does not exist a collection of ω pairwise disjoint

definable large sets.

Having shown that any generalized Johnson graph has Morley rank ω we get the

following important results about TJ .

Corollary 5.5.8

The theory TJ is ω-stable so in particular TJ is dependent.
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6 Hamming Graphs

In this chapter we will introduce the notion of a Hamming graph and give a bound

on the VC-dimension and VC-density of the edge relation in such graphs.

6.1 Introduction to Hamming Graphs

Hamming graphs much like Johnson graphs are a highly symmetrical class of graphs

that arise from association schemes. Their definitions are almost identical except

Hamming graphs deal with ordered tuples instead of subsets. They are used exten-

sively in coding theory, most notably in the development of error correcting codes.

Definition 6.1.1

Let d and q be natural numbers and S a set with |S| = q. The Hamming graph

H(d, q) is a graph whose vertices correspond to ordered d-tuples of elements from S

where two vertices are adjacent if they agree in all but one coordinate.

We note that Hamming graphs are distance transitive like Johnson graphs. The

automorphism group of H(d, q) is the wreath product SqwrSd [35], for more details

about wreath products see Chapter 8.4 in [7]. They have primarily been looked at in

the case where either d or q are kept constant but our results are obtained allowing

both parameters to vary.

Lemma 6.1.2

Let u and v be vertices in the Hamming Graph H(d, q) with d(u, v) = 1.

Let 1 ≤ i ≤ d be such that u and v agree on all but the ith coordinate.

Then w ∈ N(u) ∩ N(v) if and only if w agrees with u and v in all but the ith

coordinate.

Proof. Since u and v are neighbours we know that they agree in all but but one
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coordinate the i-th. All vertices that agree with u and v on all coordinates except

the i-th will be in N(u) ∩N(v).

Take any vertex w neighboring u that agrees on all coordinates except the j-th

for a j ̸= i. Now we know that w and u agree on the i-th coordinate but since u and

v disagree on this coordinate we get that w and v disagree on the i-th and the j-th

coordinate and therefore do not have an edge between them. Similarily any vertex

neighboring v that agrees with v on the i-th coordinate will not be adjacent to w.

Lemma 6.1.3

Let u and v be vertices in the Hamming graph H(d, q) with d(u, v) = 1. Then

N(u) ∩N(v) induces a clique of size q − 2.

Proof. Since u and v are neighbours we know that there is an i such that u and

v agree on all but the i-th coordinate. By Lemma 6.1.2 we know that all of the

vertices in N(u) ∩ N(v) will also agree with u and v on those coordinates. By the

definition of H(d, q) there are q vertices that agree on all but one coordinate and

those form a clique. Neither u nor v are in N(u)∩N(v) and therefore N(u)∩N(v)

induces a clique of size q − 2.

Lemma 6.1.4

Let u and v be vertices in the Hamming Graph H(d, q) with d(u, v) = 2. Let 1 ≤

i < j ≤ d be such that ui ̸= vi, uj ̸= vj and ∀k((k ̸= i ∧ k ̸= j) → uk = vk). Then

w ∈ N(u) ∩N(v) if and only if

((wi = vi ∧ wj = uj) ∨ (wi = ui ∧ wj = vj)) ∧ ∀k((k ̸= i ∧ k ̸= j)→ wk = vk = uk)

Proof. Let w be a vertex in N(u).

Since u and v disagree on both the j-th and the i-th coordinates any vertex

w ∈ N(u)∩N(v) will have to agree with u on either the i-th or the j-th coordinate

and with v on the other one of those.
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Lemma 6.1.4 implies the following.

Corollary 6.1.5

The open 2-neighbourhood in the Hamming Graph H(d, 2) induces the 1-subdivision

of the complete graph Kd.

Since H(d, 2) is an induced subgraph of H(d, q) for q ≥ 2 it follows that H has

unbounded local clique-width as mentioned in the introduction.

Lemma 6.1.6

Let u and v be vertices in the Hamming graph H(d, q) with d(u, v) = 2. Then

N(u) ∩N(v) contains 2 non-adjacent vertices.

Proof. Let u and v be vertices in the Hamming graph H(d, q) with d(u, v) = 2 and

1 ≤ i < j ≤ d be such that ui ̸= vi and uj ̸= vj. By Lemma 6.1.4 we know that

vertices w ∈ N(u) ∩N(v) satisfy

((wi = vi ∧ wj = uj) ∨ (wi = ui ∧ wj = vj)) ∧ ∀k((k ̸= i ∧ k ̸= j)→ wk = vk = uk)

Without loss of generality assume i = 1 and j = 2. It is now sufficient to show

that only two vertices can satisfy this formula and that they are not adjacent. Note

that (xi)
d
i=1 with x1 = u1 and ∀i > 1(xi = wi), and (yi)

d
i=1 with y1 = w1 and

∀i > 1(yi = ui) satisfy the formula. They disagree in the first two coordinates so

they are not adjacent.

Lemma 6.1.7

Let u and v be vertices in the Hamming graph H(d, q) then

|N(u) ∩N(v)| =



d(q − 1) if d(u, v) = 0

q − 2 if d(u, v) = 1

2 if d(u, v) = 2

0 if d(u, v) ≥ 3
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6.2 VC-dimension in Hamming graphs

Theorem 6.2.1

Let A be a set of vertices in a Hamming graph shattered by the edge relation. Then

|A| ≤ 3.

Proof. Assume there is a set A′ with |A′| > 3 which is shattered by the edge relation.

Then there is a set A ⊆ A′ with |A| = 4 which is shattered by the edge relation.

Let A = {v1, v2, v3, v4}, let v be such that N(v)∩A = A and w be a vertex such

that N(w) ∩ A = {v1, v2, v3}.

Since v ̸= w and |N(v) ∩ N(w)| > 2 we have that d(v, w) = 1 but then the

intersection of N(v) and N(w) is a clique.

Now we have two cases, either v4 = w or v4 ̸= w.

Assume v4 = w. Then A induces a clique. Let u be such thatN(u)∩A = {v1, v2}.

Since A is a clique we know that u ̸∈ A. More importantly d(u, v) = 2 but then

N(v)∩N(u) by Lemma 6.1.6 has two vertices that are not adjacent in contradiction

with A being a clique.

Assume v4 ̸= w. Then we know that v4 ̸∈ N(v)∩N(v1) since otherwise it would

be in N(w) in contradiction with N(w) ∩ A = {v1, v2, v3}. Then d(v4, v1) = 2 and

similarly d(v4, v2) = 2. Let u be a vertex such that N(u) ∩ A = {v1, v2, v4}. Since

u ̸= v and |N(u)∩N(v)| > 2 we have by Lemma 6.1.3 that N(u)∩A ⊆ N(u)∩N(v)

is a clique in contradiction with d(v4, v1) = 2.

Corollary 6.2.2

The VC-dimension of the edge relation in a Hamming graph H(d, q) is 3 if and only

if d ≥ 2 and qd ≥ 10.

Proof. It is clear that the VC-dimension is less than 3 whenever qd < 8. Since

H(1, q) = Kq, it follows that the VC-dimension is 1 when d < 2.
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We note that for d′ ≤ d and q′ ≤ q we have that H(d′, q′) is an induced subgraph

of H(d, q). It is therefore sufficient to show that H(2, 3) and H(3, 2) have no shat-

tered set of size 3, and H(2, 4), H(3, 3), and H(4, 2) do have a shattered set of size 3

as shown in Figure 14. Note that a set A shattered by the edge relation must have

A ⊆ N(v) for some vertex v. Moreover since Hamming graphs are vertex transitive

we have that for any vertex u there is an automorphism f such that u = f(v) and

f [A] ⊆ N(u). In other words, if there is a shattered set A of size 3 then for any

vertex u there is some shattered set A′ of size 3 such that A′ ⊆ N(u). It is therefore

sufficient to show that for a given vertex v, no subset of N(v) of size 3 is shattered.

H(2, 3) The neighbourhood of a vertex v in H(2, 3) has 4 vertices each adjacent

to exactly 1 other vertex in N(v). Thus a 3 element subset A of N(v) contains

two adjacent vertices u,w and one vertex connected to neither of them. By Lemma

6.1.4 we get that |N(u) ∩ N(w)| = 1 which gives us N(u) ∩ N(w) = {v}. Since

N(v) ∩ A = A there is no vertex v′ such that N(v′) = {u,w}.

H(3, 2) Since for any vertex v in H(3, 2) we have |N(v)| = 3 then a set A of size 3

shattered by the edge relation must have the form A = N(v) for some v. It is there-

fore sufficient to show that N(v) is not shattered for some v. Without loss of gen-

erality assume v = (a, a, a). Observe that N((a, a, a)) = {(a, a, b), (a, b, a), (b, a, a)}

and any neighbour of (a, a, b) is also a neighbour of (a, b, a) or (b, a, a) thus there

does not exists a vertex u such that N(u) ∩N((a, a, a)) = {(a, a, b)} so N((a, a, a))

is not a shattered set, and thus H(3, 2) has no shattered set of size 3.
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6.3 VC-density in Hamming graphs

In this section we compute an exact value for the VC-density of the edge relation

on Hamming graphs.

Theorem 6.3.1

The VC-density of the edge relation on the class of all Hamming graphs is 2.

Proof. We need to show that the shatter function for the edge relation π(n) ∈ O(n2).

First we observe that for d < 1 a set such that all vertices agree on all but 2

coordinates has the property that ∀u, v ∈ A ∃w(A ∩ N(w) = {u, v}) and since the

number of pairs grows quadratically in n, the VC-density is at least 2.

We prove it is at most two by giving a bound on a recursive formula for π(n)

and showing that it has a O(n2) closed form.

Let A be a maximally shattered set of size n in the Hamming graph H(d, q). Let

v ∈ A. Let S1 = {A ∩ S|S ∈ S ∧ v ∈ S} and S2 = {A ∩ S|S ∈ S ∧ v ̸∈ S}. Note

that |S1 ∪ S2| = π(n) and |S2| ≤ π(n− 1).

Note that every member of S1 is a neighborhood of neighbour of v. We also note

that N(v) induces a disjoint union of d copies of Kq−1 with no edges between them.

Let

D0 = {v}

D1 = A ∩N(v)

D2 = {u ∈ A|d(u, v) = 2}

D3 = {u ∈ A|d(u, v) > 2}

D3 intersects no member of S1 by definition of D3. Every element of D2 can be

a member of at most 2 sets of S1 thus the total number of distinct sets containing

v and intersecting D2 is 2|D2| < 2n.

107



Since we have counted all members of S1 that intersect D2, and no members of

S1 intersect D3 we only have left to count those members of S1 that are subsets of

D0 ∪D1. As mentioned earlier H(d, q)[N(v)] is a disjoint union of d copies of Kq−1.

Let (Qi)
d
i=1 be such that for each i Qi is all those vertices u ∈ D1 that disagree with

v in the i-th coordinate. Note that D1 =
⋃d

i=0Qi and any element of S1 which is a

subset of D0 ∪D1 is a subset of D0 ∪Qi for some i.

Moreover every subset of D0 ∪Qi that is an element of S1 is either:

D0 ∪Qi \ {u} for some u ∈ Qi, or D0 ∪Qi, or {v}, thus the number of distinct

elements of S1 contained in D0 ∪D1 is at most

d∑
i=1

|Qi|+min(d, n) + 1 = |D1|+min(d, n) + 1 ≤ n+min(d, n) + 1

So we have

π(n) = |A|

= |S1|+ |S2|

≤ |S1|+ π(n− 1)

≤ 2|D2|+ |D1|+min(d, n) + 1 + π(n− 1)

≤ 2n+ n+ n+ 1 + π(n− 1)

≤ 4n+ 1 + π(n− 1)

Solving the recurrence relation we get π(n) ≤ 4n2 + n and thus π(n) ∈ O(n2).

This tells us that the V C-density is at most 2.

We have thus demonstrated that the V C-density of the edge relation on the class

of all Hamming graphs is at least 2 and at most 2 and conclude it must be 2.

We do not in this thesis provide a complete model-theoretic account of the limit

theory of Hamming graphs but remark that some things are known.
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Theorem 6.3.2 ([3, 4.10])

H(ℵ0, 2) is a ω-stable with Morley rank 1.
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H(2, 4)

A = {(a, a), (a, b), (a, c)}

A ∩N((d, d)) = ∅

A ∩N((b, a)) = {(a, a)}

A ∩N((b, b)) = {(a, b)}

A ∩N((b, c)) = {(a, c)}

A ∩N((a, a)) = {(a, b), (a, c)}

A ∩N((a, b)) = {(a, a), (a, c)}

A ∩N((a, b)) = {(a, a), (a, b)}

A ∩N((a, d)) = A

H(3, 3)

A = {(a, a, b), (a, b, a), (b, a, a)}

A ∩N((b, b, b)) = ∅

A ∩N((a, a, c)) = {(a, a, b)}

A ∩N((a, c, a)) = {(a, b, a)}

A ∩N((c, a, a)) = {(b, a, a)}

A ∩N((a, b, b)) = {(a, a, b), (a, b, a)}

A ∩N((b, b, a)) = {(a, a, b), (b, a, a)}

A ∩N((b, a, b)) = {(a, a, a), (a, a, b)}

A ∩N((a, a, a)) = A

H(4, 2)

A = {(a, a, a, b), (a, a, b, a), (a, b, a, a)}

A ∩N((a, a, a, a)) = A

A ∩N((b, a, a, b)) = {(a, a, a, b)}

A ∩N((b, a, b, a)) = {(a, a, b, a)}

A ∩N((b, b, a, a)) = {(b, b, a, a)}

A ∩N((a, a, b, b)) = {(a, a, a, b), (a, a, b, a)}

A ∩N((a, b, a, b)) = {(a, a, a, b), (a, b, a, a)}

A ∩N((a, b, b, a)) = {(a, a, b, a), (a, b, a, a)}

A ∩N((b, b, b, b)) = ∅

Figure 14: Examples of shattered sets of size 4 in H(2, 4), H(3, 3) and H(4, 2).
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7 Future work

In this chapter we will give a brief recap of the results of this thesis along with

suggestions of research questions that arose from the work and would be natural

direction to take further research.

In this thesis we have given values for VC-dimension and VC-density of the

edge relation in Johnson and Hamming graphs. We also looked at the limit theory

of Johnson graphs, both for a fixed k and letting both parameters vary. Work

analogous to what is presented in Chapter 5 can be carried out for Hamming graphs.

An interesting thing to note is that for Hamming graphs H(d, q) we can choose to

keep either d or q constant and let the other vary to get a limit theory, in addition

to the general case where both d and q tend to infinity.

There is a third class of graphs that would be a natural next step to look at.

Definition 7.0.1

Let n, k ∈ N and q an integer that is a power of some prime. We define the graph

Fn,k,q by taking as vertices the k-dimensional subspaces of the n-dimensional vector

space V (n, q) over a finite field Fq. Two vertices are adjacent in Fn,k,q if and only if

their corresponding subspaces intersect in a k − 1-dimensional subspace.

All of the work done on Johnson and Hamming graphs in this thesis could be

carried out on these graphs as well.

First order model checking is known to be tractable on classes of finite twin-

width. As we noted in the introduction our Theorem 5.2.6 joined with [44, 8.4]

gives us that J does not have bounded twin-width. But by Theorem 5.5.7 TJ is

stable which is a strong tameness condition, this raises the question of tractability

for first order model checking on Johnson graphs.

Early on in this thesis we gave some preliminary results on how various graph

operations affect the VC-dimension of the edge relation. In most cases we concluded
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that the operations could, depending on circumstance, lead to an increase or decrease

in the VC-dimension. This work could be expanded, for instance to check if there

is a limit on how much the VC-dimension can change after each operation.

Due to the simplicity of the language of graphs it would also be interesting

to research if it is possible to compute the VC-dimension of a formula from its

subformulae. Such an arithmetic would be a powerful tool to assess whole theories

just from understanding the VC-dimension of the edge relation.
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