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Abstract

In order to cope with the exponential growth in wireless capacity demands, network operators

will deploy a large number of small cells to improve spatial spectrum reuse. Compared

with conventional sparse cellular networks, small-cell networks (SCNs) have much shorter

transmission links, and therefore the height difference between base stations (BSs) and users

has a significant impact on the network performance with respect to coverage and capacity.

However, most existing works have modelled SCNs on a two-dimensional plane, which

may be highly inaccurate. Moreover, the coexisting of small cells and regular macrocells,

and the application of emerging technologies such as large antenna arrays and millimeter

wave (mmWave) communications have brought new research challenges in the deployment

of small cells. To address these challenges, this thesis develops new tractable models using

stochastic geometry for three three-dimensional (3D) SCN scenarios: 3D mmWave SCNs, 3D

heterogeneous networks (HetNets) and indoor multi-storey SCNs.

Communication in mmWave spectrum is one key enabler to provide high data rates. In

the first paper, we propose a 3D system model for outdoor mmWave SCNs, capturing the 3D

nature of the deployment environment and characterizing antenna array gains in both elevation

and azimuth dimensions. We analytically derive the downlink (DL) coverage probability and

area spectral efficiency (ASE). Our results reveal that when other network parameters are fixed,

the joint optimization of BS height and BS antenna downtilt can maximize the DL coverage

probability and ASE.

In the second paper, we model and analyze an outdoor K-tier 3D HetNet where different

tiers have potential different BS density, BS height, transmit power, number of antennas per BS,

path loss exponent and cell association bias. Based on the proposed model, the expressions of
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the DL ergodic rate, ASE and energy efficiency are derived under both the strongest received

signal and the closest BS cell-association strategies. We observe that in an ultra-dense HetNet,

under both cell-association strategies, SBSs should be deployed at the same height as users’

antennas to achieve high ergodic rate, ASE and energy efficiency.

Finally, in the third paper, we develop an indoor multi-storey SCN model, incorporating the

storey height and ceiling penetration loss. We analytically derive the DL coverage probability,

spectral efficiency and ASE. Simulation results show that there exist certain values of storey

height and BS density that degrade the DL coverage probability. The results can shed new

insights into the deployment of indoor small cells and the design of a new multi-storey building

from the perspective of enhancing indoor wireless coverage.

The analytical and numerical results presented in this thesis provide guidelines for the

planning and deployment of 3D mmWave SCNs, 3D HetNets and indoor multi-storey SCNs,

and the proposed analytical frameworks based on stochastic geometry can be extended to the

modelling and analysis of other 3D cellular network scenarios.
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Chapter 1

Introduction

1.1 Background

1.1.1 Small-cell Networks

Based on recent predictions of Cisco [1], the number of global mobile subscribers will grow

to 5.7 billion and the number of global mobile devices will grow to 13.1 billion by 2023.

Along with the tremendous increase of connections, mobile data traffic demand is surging

exponentially due to the emergence of data-hungry applications such as remote surgery, internet

of things (IoT), virtual and augmented reality, and autonomous vehicles [2]. It is expected

that the traffic demand will keep increasing at an annual rate of 47 percent by 2030 [3]. To

accommodate this galloping demand for data traffic, a large quantity of small cells are required

to be deployed to improve network capacity and save energy consumption. In accordance

with [4], from 1950 to 2000, a 2700 × network capacity gain was achieved from network

densification, while only 15 × gain from a larger bandwidth, 5 × gain from the medium access

control (MAC) and modulation schemes, and 5 × gain through better coding techniques. From

this data, we can see that the deployment of small-cells is the most promising approach towards

the 1000 × increase of network throughput required by the fifth generation cellular networks

(5G) and beyond. The current 5G network standardization efforts also suggest that small-cell

deployment will remain the main driving force of cellular networks in the coming years [5].
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1.1.2 Millimeter-wave Small-cell Networks

Millimeter wave (mmWave) communication has been regarded to be a promising solution to

provide ultra-high data rates up to several Gbps owing to the large bandwidth of mmWave bands

(from 30 GHz to 300 GHz) [6]. It has found wide applications in scenarios with short-range

transmission and low mobility, such as wireless local area network (WLAN) and wireless

personal area network (WPAN) [7]. Moreover, it can also be applied in scenarios with high

mobility, such as cellular networks and industrial IoT scenarios. For instance, 3rd Generation

Partnership Project (3GPP) has initiated 5G new radio standardization operating at mmWave

frequency bands [8].

Fig. 1.1 An illustration of a typical mmWave SCN.

However, the deployment of mmWave base stations (BSs) requires new strategies that take

into account the distinguished features of mmWave bands. In accordance with the channel

measurements [9], mmWave frequency bands are vulnerable to high free space path loss and

atmosphere absorption, and poor penetration through blockages such as walls, vehicles and

pedestrians. One feasible solution is the deployment of small-cell network (SCN) which

reduces the transmission distance between BSs and users, and increases the line-of-sight

(LOS) probability of communication links [10]. Although the increase of BS density improves

the spatial reuse, it may lead to excessive interference and deteriorate the performance of
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the networks. Fortunately, the very short wavelength of mmWave enables the deployment

of massive antenna arrays, which can be employed to generate directional beamforming to

augment the received power and mitigate the inter-cell interference [11]. A typical mmWave

SCN is shown in Fig. 1.1.

Fig. 1.2 An illustration of a typical HetNet.

1.1.3 Heterogeneous Networks

The deployment of small cells brings about the heterogeneity of cellular networks, inevitably.

As shown in Fig. 1.2, a typical HetNet comprises the macrocells overlaid with small cells,

where the macrocells provide an umbrella coverage for the users and the small cells contribute

most of the capacity as well as complement the dead zones. The macrocell BSs (MBSs)

and small-cell BSs (SBSs) may differ in transmit power, BS height and BS density, and the

macrocell tier and small-cell tier may differ in cell association bias and path loss exponent. To

be specific, MBSs provides a wide area coverage in range of few kilometers with a transmit

power up to 46 dBm. Small cells feature BSs with a low transmit power and a small coverage

area, e.g., picocells and femtocells [12]. Generally, picocells are deployed in indoor and

outdoor hotspots, e.g., shopping malls, stadiums and airports, with a coverage area in range of

100 meters and a transmit power between 23 and 30 dBm; while femtocells are installed for
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indoor coverage within tens of meters, with a transmit power no more than 23 dBm. Due to the

diversity of BS types, the network performance of the HetNets with regard to coverage and

capacity, may be different from the single-tier macrocell network or small-cell network [13],

calling for a different SBS deployment strategy. Moreover, the per-tier association bias, which

can control the offloading of users from the macrocells to small cells, needs to be designed for

a better quality-of-service (QoS).

1.1.4 Indoor Small-cell Networks

In accordance with [14], approximately 80 percent of the data-traffic is generated indoors,

indicating the importance of indoor wireless coverage. Nevertheless, outdoor-to-indoor commu-

nication suffers from high penetration losses through building walls. It is therefore anticipated

that indoor mobile traffic demands are mainly served by indoor deployed small-cell network.

Over the years, indoor small cells have largely been deployed for residential, and have been

expanded to cover enterprise scenarios [5]. Conventionally, indoor small cells, e.g., femtocells,

have been user-deployed following a “plug-and-play” way. However, the unplanned deploy-

ment may lead to severe inter-cell interference, as the number of small cells increases rapidly.

In line of this, some studies have suggested a more centralized deployment by network operator

to maximize the overall network performance [15]. Different from outdoor SCN deployment,

when deploying indoor SCNs, the effects of blockages such as interior walls and ceilings need

to be taken into account.

1.1.5 3D Small-cell Networks

For convenient deployment, SBSs are usually deployed on the walls, lampposts and trees

abutting the street, with an height higher than the user height. However, most of the previous

work has not considered the height difference between the SBSs and the users [16–19]. Recently,

the authors in [20][21] have involved the height difference into their network model and found

that there exists a limit of network densification: when the user density is sufficiently larger than

the BS density, both the coverage and capacity degrade towards zero with the increase of BS
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density, even if directional antennas are employed. This indicates that there exist densification

limits for 3D SCNs and that it is important to incorporate the heights of BSs, users, or even

blockages into the network modeling.

As far as we know, the systematical performance analysis of 3D mmWave SCNs, 3D

HetNets and indoor multi-storey SCNs has not been carried out yet, which will be the main

topics in the three papers presented in this thesis.

1.2 Motivation and Objectives

The previous work has largely modelled SCNs on a 2D plane, ignoring the heights of BSs

and users, which may lead to inaccurate results of network performance analysis. The aim

of the thesis is to model 3D SCNs and analytically derive tractable expressions of network

performance metrics, e.g., coverage probability and spectral efficiency. The analytical results

can provide insight into the deployment strategy of 3D SCNs. We focus on the following three

application scenarios: 3D mmWave SCNs, 3D HetNets and indoor multi-storey SCNs. With

the aforementioned aim, the following research questions are investigated:

Q1: How to model 3D SCNs and evaluate their network performance e.g., coverage probability

and ASE, in a tractable way?

Q2: What are the crucial network parameters that mostly affect the performance of 3D SCNs?

Q3: How to optimize the crucial network parameters to enhance the network coverage and

capacity in 3D SCNs?

Q4: What is the impact of network densification on the network coverage and capacity in 3D

SCNs? Can network capacity gains always be obtained by network densification?
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1.3 Contributions

1.3.1 Papers Included in the Thesis

Paper I: Performance Analysis for 3D Millimeter-wave Small-cell Networks, co-authored

with M. Zhou, J. Zhang, X. Chu, F. Naessens and J. Zhang. This paper has been submitted to

IEEE Transactions on Wireless Communications.

Paper II: On the Deployment of Small Cells in 3D Heterogeneous Networks, co-

authored with J. Zhang, X. Chu and J. Zhang. This paper has been submitted to IEEE

Transactions on Wireless Communications.

Paper III: On the Performance of Indoor Multi-Story Small-Cell Networks, co-

authored with Y. Zhang, J. Zhang, X. Chu and J. Zhang. This paper has been published

on IEEE Transactions on Wireless Communications, 2021.

1.3.2 Papers not Included in the Thesis

• C. Chen, S. Yang, J. Zhang, X. Chu and J. Zhang, “Tractable performance analysis of

small-cell networks with a novel bounded path loss model,” Electron. Lett., vol. 56, no.

2, pp. 105-107, Jan. 2020.

• C. Chen, Y. Jiang, J. Zhang, X. Chu and J. Zhang, “Parameter optimization for energy effi-

cient indoor massive MIMO small cell networks”, 2020 IEEE 91st Vehicular Technology

Conference (VTC2020-Spring), 2020, pp. 1-5.

• C. Chen, J. Zhang, X. Chu and J. Zhang, “On the optimal base-station height in small-

cell networks considering blockage effects,” IEEE Trans. Veh. Technol., accepted as a

correspondence with minor revisions.

• C. Chen, Z. Zhang, J. Zhang, X. Chu and J. Zhang, “Multi-agent deep reinforcement

learning-based trajectory optimization for energy efficient UAV CoMP,” under preparation

for submitting to IEEE Transactions.
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• Y. Zhang, C. Chen, S. Yang, J. Zhang, X. Chu and J. Zhang, “How friendly are building

materials as reflectors to indoor LOS MIMO communications?,” IEEE Internet Things J.,

vol. 7, no. 9, pp. 9116-9127, Sept. 2020.

• Y. Wang, H. Zheng, C. Chen and X. Chu, “The effect of wall blockages on indoor small

cell networks with LOS/NLOS user association strategies,” 2021 IEEE 93rd Vehicular

Technology Conference (VTC2021-Spring), 2021, pp. 1-6.

1.3.3 Contributions of the Thesis

The thesis models 3D SCNs and analyzes their network performance using stochastic geometry.

In each paper, we address research questions Q1-Q4 for a specific 3D SCN scenario. The main

contributions of this thesis are summarized as follows:

• In the first paper, we propose an outdoor 3D mmWave SCN model which characterizes

the 3D BS antenna radiation pattern and the effects of blockages in 3D space. We consider

different heights of BSs, users and blockages, and model the horizontal locations of

mmWave BSs and blockages as two independent Poisson point processes (PPPs). We

decompose the 3D antenna gain into the BS antenna downtilt gain and beamforming gain,

and propose a simple exponential expression to approximate the BS antenna downtilt

gain with a high level of accuracy. Based on the proposed model, we derive the 3D LOS

probability and provide rigorous mathematical derivations of the DL coverage probability

and ASE. Subsequently, we analyze the effects of BS antenna downtilt, BS height and BS

density on the coverage and capacity, and shed novel insights into the actual deployment

of mmWave small cells and the configuration of BS antenna parameters.

• In the second paper, we extend the single-tier 3D SCN model in the first paper to an

outdoor K-tier 3D HetNet, taking into account potentially different BS density, BS height,

number of antennas per BS, transmit power, path loss exponent and cell association

bias for each tier. We derive the per-tier LOS probability and the expressions of the

per-tier association probability, DL ergodic rate, ASE and energy efficiency under both

the strongest received signal and the closest BS cell-association strategies. We focus on
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sub-6GHz frequencies and adopt digital beamforming for multi-antenna transmission.

The numerical results show the effects of SBS height, SBS density, number of antennas

per BS and small-cell bias on various performance metrics, and can shed novel light on

the actual small cell deployment and the optimal offloading strategy in a 3D HetNet.

• Finally, in the third paper, we turn our attention to indoor networks and develop a 3D

SCN model for a multi-storey building where single-antenna BSs on each storey are

distributed following a PPP and BSs on the same storey have the same height. This SCN

can be considered as a special 3D HetNet where the transmission link from a user to each

tier experiences a specific ceiling penetration loss. We analytically derive the expressions

of the DL coverage probability, spectral efficiency and ASE for a building with 2M+1

storeys, which are simplified to numerically tractable integral expressions for the M = 1

case. We show that the M = 1 case has similar coverage probability as the M > 1 cases,

and thus can be used to evaluate the SCN performance in a multi-storey building. The

numerical results show the effects of the BS density per storey, storey height and ceiling

penetration loss on the indoor wireless coverage performance, and provide guidelines

for the indoor small cell deployment and the design of a new building for a better indoor

wireless coverage.

1.4 Structure of the Thesis

The thesis is composed of two parts. In Part I, we provide a general introduction to the concepts

of various SCNs including mmWave SCNs, HetNets, indoor SCNs and 3D SCNs. In Chapter

2, we introduce the main mathematical tool used in this thesis: stochastic geometry, and its

application in modeling SCNs. In Chapter 3, we draw the conclusions and identify some

potential future research directions. In Part II, we present three research papers on 3D mmWave

SCNs, 3D HetNets and indoor multi-storey SCNs, respectively.



Chapter 2

Mathematical Modeling and Analytical

Tools

2.1 Stochastic Geometry

Stochastic geometry based modeling for SCNs is extensively employed by both academia and

industry owing to its tractability and its ability to capture the random distribution of SBSs

[16, 18]. Stochastic geometry models the locations of BSs in the Euclidean space by a stochastic

point process, e.g., PPP, Poisson hard-core process (PHCP), and binomial point process (BPP)

[16]. It has been shown in [19] that compared to the actual BS distribution, the PPP model

and the grid model provide lower and upper bounds of the coverage probability, respectively,

with the same accuracy. More sophisticated point processes, i.e., PHCP and Strauss process

(SP) can better model the locations of actual BSs than PPP [17]. Compared to the grid model,

stochastic geometry enables more tractable derivations of mathematical expressions for network

performance with regard to the coverage probability, ASE, error probability, delay, etc. In

some special cases, even closed-form expressions are available. These tractable mathematical

expressions can be used to study the effects of crucial network parameters, thereby shedding

insights on the deployment of SCNs and the design of network parameters, which are quite

time-consuming to obtain in Monte Carlo simulations.
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In the modeling with point process, there is a tradeoff between realism and tractability.

A point process capturing the actual BS locations may impair the tractability of derivations.

In this thesis, we adopt homogeneous PPP due to its higher tractability compared with other

point processes [19]. PPP is a kind of point process that in an arbitrary bounded region of

the process’s underlying space, the point number is a Poisson random variable, and that in

disjoint bounded subregions, the point numbers are completely independent [22]. According

to Slivnyak’s theorem[23], the statistical characteristics observed in a homogeneous PPP is

location-independent, and therefore the network performance metrics of an arbitrary user can

represent the average network performance metrics of all users.

2.2 Modeling Small-cell Networks Using Stochastic Geome-

try

2.2.1 Modeling of Small-cell Networks

We adopt a baseline 2D single-tier downlink (DL) SCN to introduce basic stochastic geometry

analysis. The locations of BSs and users are modelled as two independent homogeneous PPPs

ΦB and ΦU with densities λB and λU, respectively. All the BSs and users are equipped with

single antenna. Each user is connected to its nearest BS providing the strongest average received

signal strength in the considered single-tier SCN. We adopt orthogonal resource partitioning to

eliminate intra-cell interference. Therefore, interference comes from the received powers of all

other BSs other than the serving BS.

Denoting the distance between a BS and the typical user by d and the path loss exponent by

α , the path loss of the link between the BS and the typical user is computed by [24]

l(d) = βd−α , (2.1)

where β is the path loss at reference distance. Note that l(d) can also be called a path gain, but

is less than unity. Moreover, LOS and NLOS links may have different path loss exponents,
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and the path loss model can be expressed as lL/N(d)=

 βd−αL
, with prob. PL(d)

βd−αNL
, with prob. PNL(d)

, where

αL and αNL are the path loss exponents of LOS and NLOS links, respectively, and PL(d) and

PNL(d) are the LOS and NLOS probabilities, respectively. In this chapter, we use l(d) for

clearer clarification. We adopt Rayleigh fading to model the small-scale fading, and denote its

power gain by g, which is exponentially distributed with unit power, i.e., g ∼ exp(1).

Denoting the distance between the serving BS and the typical user by x, the signal-to-

interference-plus-noise (SINR) of the typical user is expressed as

SINR(x) =
Pg0l(x)

∑Bi∈ΦB\B0 Pgil(Ri)+δ 2 , (2.2)

where P is the BS transmit power, g0 is the small scale fading power gain between the serving

BS B0 and the typical user, gi is the small scale fading power gain between the interfering BS

Bi and the typical user, Ri is the distance between the interfering BS Bi and the typical user,

and δ 2 is the power of additive white Gaussian noise. Then we derive the coverage probability

of the typical user, which is defined as the probability that the SINR of the typical user is higher

than a given threshold T in the following Lemma.

Lemma 1. The coverage probability of the typical user is given by

Pc(λB,T,α) = 2πλB

∫
∞

0
xexp

{
− T δ 2

Pl(x)
−πλB (K +1)x2

}
dx, (2.3)

where K = 2T
α−2 2F1

[
1,1− 2

α
;2− 2

α
;−T

]
, 2F1 [·] denotes the Gauss hypergeometric function.
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Proof.

Pc(λB,T,α) = P [SINR(x)> T ]

= P

[
g0 > ∑

Bi∈ΦBS\B0

T gil(Ri)

l(x)
+

T δ 2

Pl(x)

]
(a)
= Ex,ΦBS

[
exp(− T δ 2

Pl(x)
) ∏

Bi∈ΦBS\B0

Eg

[
exp
{
− T gil(Ri)

l(x)

}]]
(b)
= Ex

[
exp
{
− T δ 2

Pl(x)
−2πλB

∫
∞

x
t
(

1− 1
1+ sl(t)

)
dt
}]

(c)
= Ex

[
exp
{
− T δ 2

Pl(x)
−πλBx2T

2
α

∫
∞

T− 2
α

1

1+u
α

2
du
}]

=
∫

∞

0
exp
{
− T δ 2

Pl(x)
−πλBKx2

}
f (x)dx

= 2πλB

∫
∞

0
xexp

{
− T δ 2

Pl(x)
−πλB (K +1)x2

}
dx,

where f (x) = 2πλBexp(−πλBx2) is the probability density function (PDF) of x, (a) is due to

g0 ∼ exp(1), (b) is obtained from the probability generating functional (PGFL) of homogeneous

PPP, and (c) comes from a variable transition u = T− 2
α t

x2 .

In a dense SCN, the impact of noise on the network coverage performance can be ignored

[19], and (2.3) can be simplified as

Pc(T,α) = 2πλ

∫
∞

0
xexp

{
−πλ (K +1)x2

}
dx =

1
K +1

. (2.4)

From (2.4), we can see that the network coverage performance in an interference-limited

network does not depend on λB. This conclusion explains the linear increase of network

throughput during the past decades obtained by the deployment of SBSs. However, more

practical factors needs to be further integrated, which are introduced in the following works.

In [25], the authors revisited the path loss model, especially the near-field path loss. In

accordance with the practical channel measurement that the path loss in proximity with the

receiver is lower than that of other slopes. Based on this observation a multi-slope path loss

model was proposed. The distribution of BSs was modelled as a PPP and the numerical results
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showed that the network coverage performance first grows and then degrades with the increasing

BS intensity. The increase of coverage probability is attributed to the improved desired signal

power, while the coverage probability decay results from the higher near-field interference. In

addition, it was observed that as long as the near-field path loss exponent is smaller than 2, both

the network coverage and capacity degrade to zero when the BS density increases to infinity.

This result means an end of the linear scaling of network capacity, indicating that the dense

small-cell network need to be designed considering the practical channel models.

For the modeling of dense small-cell networks, another type of channel model, i.e, the

bounded channel model, was investigated in [26][27]. To address the energy non-conservation

problem at short transmission distances smaller than 1 m, the authors in [26] used the bounded

path loss models to analyze the network performance with regard to coverage and capacity. The

results showed that for a interference-limited network, the coverage probability monotonically

degrades with the BS density, and that the ASE first grows to a peak and then degrades

towards zero. In [27], a simplified bounded model was proposed, with which both the coverage

probability and ASE were derived in closed-form. Moreover, the expression of the optimal BS

density that maximizes the ASE was obtained.

In [28], the authors integrated the non-line-of-sight (NLOS) transmission into the channel

modeling, in which a LOS probability function was employed to distinguish between LOS

and NLOS links. The NLOS links were assumed to experience higher path loss than the LOS

links. Moreover, the multi-slope path loss model was adopted to make the channel model more

practical. It was revealed that network coverage performance first grows to a peak value and

then degrades with the BS intensity. This is because the BSs in proximity are more likely to

be LOS BSs, a denser network brings more LOS BSs, but on the other hand increases the

Interference. The increase of ASE will also undertake a slowdown after a particular BS density.

To investigate the blockage effects of practical buildings, stochastic geometry was used to

model urban buildings in [29] where the distribution of BSs and blockages were modelled as

two independent PPPs. The shapes of buildings were modelled to be rectangles with random

sizes and orientations and the LOS probability was derived as a distance dependent function.

Subsequently, the expressions of connectivity and coverage probability were derived and the
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numerical results showed that the network coverage performance first grows and then degrades

with the BS intensity, indicating that an appropriate density of blockages is beneficial through

reducing part of the interference. However, excessive blockages will degrade the coverage

probability since the closest transmission BS may be blocked. This work can also be extended

to 3D networks considering the heights of BSs and buildings.

2.2.2 Modeling of Millimeter-wave Small-cell Networks

MmWave SCNs are different with conventional networks in terms of channel characteristics

and antenna patterns, which need to be incorporated into the analysis of coverage and capacity.

Firstly, mmWave channels are sparse with regard to multipath components due to the poor

scattering environments [30]. Therefore, the modeling of small-scale fading by Rayleigh fading,

which is widely used in sub-6 GHz systems, is no longer applicable. Instead, Nakagami-m

fading is commonly adopted to model small-scale fading in mmWave channels. Secondly,

since signals at mmWave frequencies experience severe penetration loss through a variety of

materials, e.g., concrete, bricks, and even human bodies, the effects of blockages have to be

considered. A feasible way is to model the locations of blockages by PPP, and the shape, size,

and orientation of blockages using random shape theory. The LOS probability of a link, i.e.,

the probability that no blockage lies across a link, is a monotonically decreasing function of

the transmission distance [29]. A simplified LOS-ball model was proposed to approximate the

LOS probability function in [31], where a link is considered to be LOS within a fixed distance

RL, and NLOS outside the distance, as shown in Fig. 2.1. This model enables tractable analysis

of network performance and has been widely adopted in the previous work [32, 33]. Last but

not least, it is not practical to have one RF chain per antenna element due to the excessive

power consumption of RF chain components at mmWave frequencies [31]. Therefore, most

work adopts analog beamforming architectures where analog phase shifters are used to control

the phase of each antenna element. A simplified sectored pattern was proposed to approximate

the actual analog beamforming pattern [31], where the antenna gains of the main-lobe direction

and side-lobe direction are characterized by two constants GM and Gm, respectively, as shown
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Fig. 2.1 An illustration of LOS-ball model and beamforming pattern.

in Fig. 2.1. The main-lobe gain can only be achieved when the user is located in the main-lobe

area with half-power beam width θ .

There has been some work investigating more practical modeling of analog beamforming.

In [34], a multi-lobe model was proposed to provide a step-wise approximation of the actual

antenna radiation pattern, which is an extended version of the sectored model. This model

was proved to be accurate by performing numerical simulations. However, the impact of

the number of antennas on the antenna radiation pattern was not characterized. In [32], the

actual antenna pattern when aligning the beam direction exactly with the angles of departure

(AoD) was characterized as a function of the number of antennas, and was approximated by a

sinc function and a cosine function. These two approximated antenna patterns were tractable

for the analysis of coverage probability with a high level of accuracy. In [35], the authors

adopted the approximated antenna patterns proposed by [32] to analyze the coverage of a

mmWave device-to-device (D2D) network where different devices may have different number

of antennas. In [35], the authors compared multiuser multiple-input multiple-output (MIMO)

enabled by hybrid beamforming with single-user analog beamforming, and showed that hybrid

beamforming performs better regarding coverage and rate.

Nevertheless, all the aforementioned works modelled and analysed mmWave SCNs on a

2D plane.
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2.2.3 Modeling of Heterogeneous Networks

HetNets are usually modelled as multi-tier networks where the network parameters are mutually

independent across tiers. Consider a K-tier HetNet, in which the locations of BSs in the kth tier

follow a PPP Φk with density λk. The transmit power of BSs, path loss at the reference distance

and path loss exponent in the kth tier are Pk, βk and αk, respectively. Each tier is allocated with

an association bias for traffic offloading, and the association bias for the kth tier is denoted

by Bk. It is usually assumed that each user connects to the BS offering the strongest biased

received signal strength. Denoting the distance between the nearest BS in the kth tier and the

typical user by rk, the index of the tier the typical user connected to is argmax
k

PkBkβkr−αk
k .

The coverage probability of the typical user in the HetNet is given by PH
c = AkPc,k, where Ak

denotes the probability that the typical user connects to the kth tier, and Pc,k is the coverage

probability when the typical user connects to the kth tier. More details of derivations with

regard to coverage and rate can be found in [36], and more issues in the modeling of HetNets

are introduced in the following works.

The synergy of multi-antenna transmission and HetNet was modelled and the optimal per-

tier bias that maximises the DL coverage was given in [37]. This work assumed Multiple-input

single-output (MISO) transmission, where the BSs have multiple antennas and the users have a

single antenna. The number of antennas and number of users served per-BS may differ across

tiers. The numerical results revealed that the number of antennas can serve as a kind of bias

that offloads the macrocell users to small cells, reducing the artificial design of cell association

bias.

Considering the multi-slope path loss model and directional antenna gain, the authors in

[38] extended the HetNet model to millimeter wave networks and analysed the DL coverage

performance. More specifically, the multi-slope path loss model was employed to analyze the

effects of NLOS links and an approximated sectored model was used to model the directional

antenna gain. Moreover, the energy efficiency (EE) was derived and the results showed that

there exists an optimal cell association bias maximizing the EE. This work can also be extended

to the modeling of the microwave (µWave)-mmWave hybrid network.
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In [39], a framework was given for the modeling of a device-to-device (D2D) enabled Het-

Net with dynamic time-division duplex (TDD). The network performance regarding coverage

probability and capacity were evaluated and the effects of network parameters, e.g., the BS

density, per-tier bias and uplink (UL)/DL configuration were analysed. Based on the numerical

results, the authors proposed a guideline for the optimal design of D2D networks.

In [40], the authors investigated coordinated multipoint (CoMP) transmission in HetNets, in

which each user is simultaneously served by a set of BSs selected on the basis of their average

received signal strength levels. The joint transmission reduces the interference level, and hence

enhances the coverage and rate. It was shown that the network coverage performance does not

depend on the transmit power and BS intensity when the HetNet becomes interference-limited.

However, all of these works modelled the HetNets on a 2D plane.

2.2.4 Modeling of Indoor Small-cell Networks

Due to the complex built environment, there is little literature found on tractable modeling

of indoor wireless networks using stochastic geometry. In [41], the authors investigated the

performance of an urban cellular network. A two-tier HetNet with indoor SBSs and outdoor

MBSs was modelled to analyze the coverage performance of indoor users, where the outdoor-

to-indoor penetration loss was considered. However, this work assumed that one building is

served by only one BS, which may not be sufficient to handle high indoor traffic demands.

Several works have studied the effects of interior walls. In [42], the authors modelled

the interior walls by random object process (ROP), where the center points of walls are PPP

distributed, and each wall has uniformly distributed length and orientation. The locations of

BSs were modelled by PPP and the coverage probability and ASE were derived. The results

revealed that more walls and higher penetration loss of walls enhance the network performance

since more interference is blocked. However, this work adopted the closest BS association

strategy, which underestimated the indoor network performance. In [43], we modelled the

interior walls following the assumptions in [42] and derived the expression of the coverage

probability under the condition that each user is connected to its nearest LOS BS. The results

revealed that there is an optimal BS intensity maximizing the network coverage performance.
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Nevertheless, the random assumption of walls in terms of length and orientation in the above

two studies is not practical in general. In [44], the authors analyzed different wall generation

models: ROP, Manhattan grid model where the walls modelled as two Manhattan line processes

(MLP), and regular wall model where the walls are oriented perpendicular to the coordinate

axes with infinite length and the distance between arbitrary two walls is fixed. These tractable

wall generation models were compared with the walls generated according to practical floor

plans regarding signal-to-interference-ratio (SIR) performance. The results showed that the

Manhattan grid model best matches the practical floor plan.

However, these works focused on the modeling of buildings or walls on a 2D plane.

2.2.5 Modeling of 3D Small-cell Networks

In dense SCNs, BSs and users communicate in proximity, and hence the BS height significantly

affects the network performance regarding coverage and rate. Assume that the height of all

BSs is HB, the height of all users is HU and the height difference between BSs and users is

H = HB −HU. Out of practical considerations, it is assumed that H ≥ 0. Following the steps in

Lemma 1, the DL coverage probability of a one-tier 3D SCN is computed by

P3D
c (λB,T,α,H) = Ex

[
exp
{
− T δ 2

Pl3D(x)
−2πλB

∫
∞

x
t
(

1− 1
1+ sl3D(t)

)
dt
}]

= Ex

[
exp
{
− T δ 2

Pl3D(x)
−πλB

(
x2 +H2)T

2
α

∫
∞

T− 2
α

1

1+ v
α

2
du
}]

=
∫

∞

0
exp
{
− T δ 2

Pl3D(x)
−πλBKx2

}
f (x)dx

= 2πλB

∫
∞

0
xexp

{
− T δ 2

Pl3D(x)
−πλB

[
K
(
x2 +H2)+ x2]}dx, (2.5)

where l3D(x) = β
(
x2 +H2)−α

2 and v =
T− 2

α (t+H2)
(x2+H2)

. In an interference-limited SCN, (2.5) can

be simplified as

P3D
c (λB,T,α,H) = 2πλB

∫
∞

0
xexp

{
−πλB

[
K
(
x2 +H2)+ x2]}dx =

e−πλBH2

K +1
. (2.6)
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It is observed from (2.6) that the coverage probability monotonically degrades with λB and H,

and that the coverage probability decays to zero when λB goes to infinity. For more issues in

the modeling of 3D SCNs, please refer to the following works.

The effects of blockages and BS height on the network coverage and throughput were

studied in [21]. The results revealed that the coverage probability first grows to a peak and then

degrades with the BS height in a sparse network. This is because an approximate BS height

improves the LOS probability of the desired signals, while an excessive BS height leads to

severe interference. Moreover, it was shown that if the BS height exceeds the user height, both

the network coverage and capacity degrade to zero when the BS density increases to infinity. In

[45], a multi-slope path loss model was employed to analyze the effect of the height difference

between BSs and users on the ASE. It was shown that even if the directional antennas are

equipped, the ASE decrease to zero when the BS density increases to infinity.

Some studies have employed 3D PPP to model the distribution of BSs with density in

BSs/m3 in high-rise buildings. The authors of [46] adopted the free space path loss channel

model to analyze the coverage probability of a SCN where the BSs are 3D PPP distributed.

The results showed that the coverage probability will degrade to zero if the path loss exponent

is lower than 3. In [47], the dual-slope path loss model was adopted in a SCN modelled by a

3D PPP. When the density of BSs tends to infinity, the asymptotic analysis revealed that the

network coverage would degrade to zero. However, despite its tractability, 3D PPP assumes a

Poisson distributed random BS height. This assumption cannot be applied to outdoor SCNs,

where BSs in the same tier are usually deployed at similar heights. Even in indoor SCNs, BSs

on the same floor are usually deployed at similar heights as well. Therefore, in this thesis, we

assume that BSs in the same tier or on the same floor have the same height.





Chapter 3

Conclusions and Future Research

3.1 Concluding Remarks

In this thesis, we have proposed novel and tractable stochastic geometry frameworks for the

performance evaluation of 3D mmWave SCNs, 3D HetNets and indoor multi-storey SCNs.

For each SCN scenario, we have analytically derived the expressions of network performance

metrics, e.g., coverage probability and ASE, the accuracy of which is verified by simulations.

In outdoor 3D mmWave SCNs, we have shown that a larger antenna array leads to a higher

DL coverage probability, and that the DL coverage probability first grows to a peak and then

degrades with the BS antenna downtilt. Thanks to the BS antenna downtilt gain, 3D mmWave

SCNs can provide higher coverage probability than 2D mmWave SCNs where BSs have the

same height as users. The optimal BS antenna downtilt corresponding to the maximum DL

coverage probability is higher when the BS density and BS height increase. Furthermore, for

given BS density and blockage distribution, the BS height and BS antenna downtilt can be

jointly optimized to maximize the DL coverage probability and ASE. The ASE can increase

linearly with the BS density when BSs have the same height as users, and can be further

improved when the BS height and BS antenna downtilt are jointly optimized.

In outdoor 3D HetNets, we have shown that for given MBS deployment, at low to medium

SBS densities, the closest BS cell-association strategy leads to low DL ergodic rate when no

bias is used; while the closest BS cell-association strategy can achieve similar ergodic rate as
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the strongest received signal cell-association strategy by properly tuning the small-cell bias.

At high SBS densities, under both cell-association strategies, SBSs should be deployed at

the same height as users to achieve high ergodic rate, ASE and energy efficiency. Different

from single-tier SCNs, the ergodic rate monotonically decreases with the SBS density since

the HetNet is interference-limited in the presence of MBSs. Since antennas are deployed in

horizontal linear arrays, the ergodic rate decreases with the SBS height at high SBS densities.

Moreover, in the absence of vertical beamforming, the ASE increases linearly with the SBS

density only when SBSs have the same height as users. Therefore, it is necessary to deploy

vertical antenna arrays at high SBS densities. Although deploying more antennas always leads

to a higher ergodic rate, it impairs the energy efficiency when excessive antennas are deployed.

It has been observed that when other system parameters are fixed, the energy efficiency can be

maximized by a joint optimization of the number of antennas per SBS and the SBS density. It

will be of interest to investigate 3D HetNets with 2D antenna arrays in the future.

In indoor multi-storey SCNs, we have shown that the single-storey indoor SCN overesti-

mates the DL coverage probability of an actual multi-storey SCN, ignoring the interference

from other storeys. A novel theoretical discovery has been presented, i.e., the problem of

Coverage Probability Valley. The coverage probability first decreases and then increases with

the increase of the storey height and the BS density. Due to the Coverage Probability Valley,

certain values of storey height and BS density should be avoided for a high coverage probability.

Furthermore, we have shown that a higher penetration loss of the ceiling leads to a higher DL

coverage probability by reducing the interference of BSs on other storeys. These numerical

results demonstrate that the indoor small cell deployment and the building structure can be

jointly optimized for a better indoor wireless coverage. Similar to the observations in 3D

HetNets, we have observed that in the presence of single-antenna BSs, the maximum coverage

probability in multi-storey SCNs is achieved when the BS height is the same as the user height.

This conclusion may be different when vertical antenna arrays are deployed on BSs.
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3.2 Future Research Directions

The potential areas for future research are summarized as follows:

• User mobility and blockage mobility are critical issues in mmWave network as the

transmission links are sensitive to blockages and the narrow antenna beams rely on

efficient beam alignment. It is more challenging to handle mobility in 3D space due to

higher overhead in channel estimation and beam training for 3D beamforming. Thus, it

would be interesting to analyze the impact of mobility on 3D mmWave SCNs.

• The coexisting of mmWave and conventional microwave networks makes it necessary to

systematically evaluate the performance of multiband 3D heterogeneous SCNs, where

BSs in different tiers may have potentially different antenna array sizes and beamform-

ing techniques. Moreover, the beam misalignment due to the imperfect channel state

information can be incorporated into the analysis.

• The proliferation of the number and use cases of unmanned aerial vehicles (UAVs)

requires reliable and high-throughput links. It is of interest to examine the network

performance of UAVs served by 3D SCNS, taking into account the coexisting of UAVs

and ground users, and different propagation conditions for these two types of users.

• Indoor mmWave SCN equipped with massive MIMO is a promising solution to address

high indoor traffic demands. The deployment of indoor mmWave small cells and the

configuration of massive MIMO are still open problems. Hence, it is of interest to model

indoor 3D mmWave SCNs, considering actual indoor built environments with walls and

stochastic blockages.

• Other system performance aspects such as backhaul capacity, uplink communication

performance, delay and energy efficiency need to be further investigated to provide a

comprehensive understanding of 3D SCNs. Moreover, considering realistic distributions

of traffic load and user locations may yield interesting results.
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• The application of emerging technologies for the sixth generation cellular networks (6G),

e.g., terahertz communication and intelligent reflective surface (IRS) in 3D SCNs, will

introduce new research opportunities.
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Abstract

Millimeter-wave (mmWave) small-cell networks (SCNs) have been a promising solution to

enhancing network capacity. However, most existing works modelled mmWave SCNs on a

two-dimensional (2D) plane, which does not capture the three-dimensional (3D) nature of

deployment environments. In this paper, we present a 3D system model for mmWave SCNs,

where the potentially different heights of base stations (BSs), users and blockages are modeled,

and the locations of BSs, users and blockages follow three independent Poisson point processes.

Moreover, we characterize the 3D BS antenna radiation pattern and decompose it into the

antenna downtilt gain and beamforming gain to facilitate the performance analysis. Based on

the 3D system model, we drive the integral-form approximate expressions for the downlink

(DL) coverage probability (CP) and the area spectral efficiency (ASE), and their closed-from

expressions for special cases such as ultra-dense 3D mmWave SCNs. Our numerical results

reveal that the DL CP first grows to a peak and then degrades with the BS antenna downtilt,

and that the optimal BS antenna downtilt maximizing the DL CP increases with the BS density

and BS height. Furthermore, we observe that for given BS density, blockage density, user

height and distribution of blockage heights, the DL CP and ASE can be maximized by jointly

optimizing the BS height and BS antenna downtilt.
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1 Introduction

Mobile traffic demand has been increasing in an exponential fashion due to the emerging

data-hungry applications such as Internet of Things, virtual reality, and autonomous vehicles

[1, 2]. In this light, the use of millimeter-wave (mmWave) bands in conjunction with massive

antenna arrays and small-cell networks (SCNs) has been regarded to be a key driver of network

capacity gains for the fifth-generation (5G) mobile cellular networks [3–7].

Most existing works modeled mmWave SCNs on a two-dimensional (2D) plane, ignoring

the height difference between base stations (BSs) and users. Nevertheless, recent studies [8, 9]

revealed that the elevated BS has a prominent negative impact on the coverage probability (CP)

and area spectral efficiency (ASE), especially when the SCN becomes ultra-dense. It is worth

noting that the height difference between BSs and users can be exploited to improve network

performance. On the one hand, a properly configured BS antenna downtilt brings a vertical

antenna gain. On the other hand, 3D beamforming techniques can achieve antenna array gains

in both the elevation and the conventional azimuth dimensions [10].

In this paper, we develop a novel mathematical framework to model the features of 3D

mmWave SCNs, including the 3D antenna radiation patterns for BSs and the potentially

different heights of BSs, users and blockages, as well as their spatial distributions. Based on

the 3D framework, we derive the analytical expressions of the downlink (DL) CP and ASE,

and use them to evaluate the effects of the BS height, BS density, and BS antenna downtilt on

the DL CP and ASE.

1.1 Related Works

MmWave SCNs have been extensively investigated using the tools from stochastic geometry

[11–14]. Due to the higher penetration loss through blockages at mmWave frequencies than

at micro-wave frequencies, Non-Line-Of-Sight (NLOS) links need to be integrated into the

modelling. In [11], the authors adopted a sectored model to approximate the antenna array

gain and a Line-Of-Sight (LOS) ball model, where the LOS region is assumed to be a ball

with a fixed radius centered at the receiver of interest, to approximate the effect of blockages
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in single-tier mmWave cellular networks. The similar analytical methods were applied to

heterogeneous mmWave cellular networks in [12]. Although these approximations render

the analysis tractable, they sacrifice the accuracy of the analytical results. In [14], two 2D

antenna patterns were proposed to characterize the actual antenna array gain, but the effects

of blockages were still analyzed using the simple LOS ball model. Moreover, all these works

modeled mmWave SCNs on a 2D plane.

Several recent works have studied 3D cellular networks, involving the modeling of 3D

antenna patterns [15–17]. In [15], the joint impact of the BS antenna arrays and antenna

downtilt on the DL CP was investigated via simulations in a hexagonal cellular network.

Based on stochastic geometry, in [17], the expression of CP was derived and the optimal BS

antenna downtilt that maximizes the DL CP was obtained numerically. However, none of the

aforementioned works considered the distinct features of mmWave SCNs such as the sensitivity

to blockages and the use of large antenna arrays.

There are few works on system-level performance evaluation of 3D mmWave SCNs using

stochastic geometry. In [18], the authors characterized the impact of human bodies on mmWave

signal propagation by modeling the human bodies as cylinders, and derived the LOS probability

and the received signal strength as functions of transmitter-receiver distance, user density and

user height. In [19], transmitters and receivers were modeled as cylinders and were assumed

to be blockages that may block the interfering signals. Although both vertical and horizontal

directivities of the BS antenna array were characterized, the relationship between the BS

antenna array gain and the number of BS antennas was not given. Note that neither [18] nor

[19] provided network performance analysis in terms of CP or spectral efficiency.

So far, the performance of 3D mmWave SCNs has not been analyzed in conjunction with

3D modeling of blockages and antenna radiation patterns, which will be studied in this paper.

1.2 Contributions

The main goal of this paper is to analyze the performance of 3D mmWave SCNs regarding the

DL CP and ASE. Our main contributions are listed as follows:
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• We develop a tractable mathematical framework for the performance analysis of 3D

mmWave SCNs using stochastic geometry, capturing the effects of the height difference

between BSs and users, 3D blockages, and 3D radiation patterns of large antenna arrays

deployed at BSs. To facilitate fast numerical analysis, we propose a simple exponential

expression to approximate the BS antenna downtilt gain with a very high level of accuracy.

• Based on the analytical framework, we derive the LOS probability of a link as a function

of network parameters such as the BS density, the blockage density, the link distance,

and the height difference between BSs and users.

• Leveraging the derived BS antenna downtilt gain and link LoS probability, we derive an

integral-form expression of the DL CP for general 3D mmWave SCNs, and obtain its

closed-form expression for ultra-dense 3D mmWave SCNs with isotropic BS antennas.

The numerical results show that there will be an optimal BS antenna downtilt maximizing

the DL CP and that for given BS density, blockage density, user height and distribution

of blockage heights, the DL CP and ASE can be maximized by jointly optimizing the BS

height and BS antenna downtilt.

1.3 Paper Organization

This paper is structured as follows. Section 2 introduces the system model. The expressions

of the DL CP and ASE are derived in Section 3 and 4, respectively. The numerical results are

presented in Section 5, with remarks providing novel guidelines on the joint optimization of

BS height and BS antenna downtilt. The conclusions of this paper are drawn in Section 6.

2 System Model

2.1 Network Model

Our proposed outdoor 3D mmWave SCN model is illustrated in Fig. 1. The locations of the

BSs, blockages and users are modeled following three independent homogeneous Poisson
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Table 1 Summary of Notations

Notation Meaning

ΦB, Φb, ΦU
Homogeneous PPPs modeling the

locations of BSs, blockages and users
λB, λb, λU Densities of BSs, blockages and users
H, Hb, h Heights of BSs, blockages and users
ℓ, ω , θb Length, width and orientation of blockages

M, W
Mean values of blockage length and

blockage width

µ
Parameter of the exponential distribution

for blockage height
β Path loss at reference distance
α Path loss exponent
P Transmit power of BSs
g Power gain of Nakagami-m fading
m Shape parameter of Nakagami-m fading
T CP threshold

D
Horizontal distance from the typical

user to its serving BS
θtilt BS antenna downtilt

φa, φe
Half-power beamwidths in the azimuth

plane and the elevation plane

GM
A , Gm

A
Main-lobe gain and side-lobe gain of

the BS antenna array

PM, Pm
Probabilities of main-lobe gain and

side-lobe gain

NB
Number of BS antennas for
the square BS antenna array

N0 Additive white Gaussian noise
B0 Serving BS for the typical user
ΦL Set of LOS BSs

point processes (PPPs) ΦB, Φb and ΦU with densities λB, λb and λU, respectively, on a 2D

ground plane. It is assumed that the typical user is located at the origin O of the 2D ground

plane. Assume that all the BSs are of the same height H and all the users are of the same

height h with H ≥ h. Each blockage is modeled as a cuboid, with a uniformly distributed

length ℓ∼U(0,2M), where M is the mean value of blockage length, a uniformly distributed
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Fig. 1 An illustration of a 3D mmWave network.

width ω ∼U(0,2W ), where W is the mean value of blockage width, a uniformly distributed

orientation θb ∼U(0,2π), and a height Hb that follows Rayleigh distribution with mean value

µ [20, 25]. We assume that each cell adopts orthogonal time/frequency division multiple access

to eliminate the intra-cell interference in the DL. The used notations are listed in Table 1.

2.2 Channel Model

The channel model comprises path loss and Nakagami-m fading [21]. Denoting the horizontal

distance between the typical user and a BS by d, the path loss of the link between the BS and

the typical user is given by

l(d) = β
[
d2 +(H −h)2]−α/2

, (1)

where β is the path loss at the reference distance 1 m and α is the path loss exponent.

Denote the power gain of Nakagami-m fading by g, which is a random variable following

the normalized Gamma distribution, i.e., g ∼ Γ(m, 1
m) with probability density function (PDF)

fg(x) = mmxm−1e−mx

Γ(m) , where m is the shape parameter of Nakagami-m fading. For tractability, m

is assumed to be an integer [11].
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Fig. 2 An illustration of BS antenna array and antenna downtilt.

2.3 3D BS Antenna Pattern

As shown in Fig. 2, we assume that each small-cell BS adopts a uniform planar square array

comprising NB identical directional BS antennas and each user adopts an isotropic antenna.

Each directional BS antenna consists of multiple vertically stacked radiating elements and the

gain of each antenna depends on the number, the patterns and the relative positions of radiating

elements [15]. Due to the excessive power consumption of RF chain components at mmWave

frequencies, we adopt analog beamforming to provide directional beams, i.e., only one RF

chain is used. The 3D BS antenna radiation pattern consists of two parts: the directional antenna

radiation pattern and the antenna array radiation pattern [22], as described in the following.

1) Directional Antenna Radiation Pattern: Assuming that each radiating element at a

directional BS antenna is an identical dipole, the radiation pattern of a directional BS antenna

in dBi is given by [17, 23]

GD(θB,θtilt)
dBi = GdBi

h +Gv(θB,θtilt)
dBi +GdBi

m , (2)

where GdBi
h = 0 dBi is the horizontal gain of a directional BS antenna, Gv(θB,θtilt)

dBi is the

vertical gain of a directional BS antenna, which is referred to as the BS antenna downtilt gain

hereafter, θB = arctan(H−h
rB

) is the elevation angle between the horizon and the line from BS B
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Fig. 3 BS antenna downtilt gain.

to the typical user, rB is the horizontal distance from BS B to the typical user, θtilt ∈ (0, π

2 ) is

the BS antenna downtilt, which is assumed to be of the same value for all the antennas, and

GdBi
m is the maximum directional BS antenna gain [23]. The actual BS antenna downtilt gain is

sin2
[

πNdipole
2 (sinθB−sinθtilt)

]
Ndipolesin2[ π

2 (sinθB−sinθtilt)]
, where Ndipole is the number of dipoles per directional BS antenna. For

analytical tractability, we adopt the widely used approximate BS antenna downtilt gain given in

linear scale by [23]

Gv(θB,θtilt) = max
{

cosi(θB −θtilt),100.1FV
}
, (3)

where FV is the vertical side-lobe level with respect to the main-lobe level of the directional BS

antenna. If the directional BS antenna consists of two half-wave dipoles, i = 11.73, FV =−10

dB and GdBi
m = 5.15 dBi; if the directional BS antenna consists of four half-wave dipoles,

i = 47.64, FV =−12 dB and GdBi
m = 8.15 dBi [23].

We note that the power of a cosine function in (3) will hinder the subsequent analysis. To

remove the power of a cosine function from (3), we give the following remark.
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Remark 1. For the typical user, the BS antenna downtilt gain from BS B can be approximated

by

Gexp(θB,θtilt) = max
{

exp
{
−p(θB −θtilt)

2
}
,100.1FV

}
, (4)

where the value of p can be obtained by curve fitting to (3).

Fig. 3 compares the approximate BS antenna downtilt gain in (3) and the approximation in

(4), from which we can see that the gap between them is negligible.

2) Antenna Array Radiation Pattern: We adopt the 3D sectorized antenna array model

[24], where the beamforming gains of a uniform planar square array comprising NB isotropic

antennas are considered to be a constant GM
A in the main-lobe direction and a constant Gm

A in

the side-lobe direction. We suppose that each BS knows the location information of all its

associated users through dedicated beam training methods [14], and can align their beams to

the users connected to them. Hence, the typical user obtains the main-lobe gain GM
A from its

serving BS. The beamforming gain from an interfering BS to the typical user can be calculated

in linear scale as follows,

GA(φa,φe) =

 GM
A , PM = φa

2π
sin
(

φe
2

)
,

Gm
A , Pm = 1−PM,

(5)

where φa and φe are half-power beamwidths generated by the antenna array in the azimuth

direction and that in the elevation direction, respectively, PM and Pm are the probabilities that

the typical user is in the interfering BS’s main-lobe direction or side-lobe direction, respectively.

The values of parameters in (5) are dependent on NB and are listed in Table 2 [24].

To sum up, when BS B is the serving BS, the 3D BS antenna gain between BS B and the

typical user is expressed in linear scale as GS(θB,θtilt) = GD(θB,θtilt)GM
A ; and when BS B is

an interfering BS, the 3D BS antenna gain between BS B and the typical user is expressed in

linear scale as GI(θB,θtilt,φa,φe) = GD(θB,θtilt)GA(φa,φe).
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Table 2 Antenna Array Parameters [24]

Number of directional BS antennas NB 16,36,64,100
Half-power beamwidth φa = φe

√
3√

NB

Main-lobe gain GM
A NB

Side-lobe gain Gm
A

√
NB−

√
3

2π
NBsin

( √
3

2
√

NB

)
√

NB−
√

3
2π

sin
( √

3
2
√

NB

)

2.4 LOS Probability

Firstly, we analyze the horizontal LOS probability from a BS located at X with a horizontal

distance r to the typical user located at the origin O on the 2D plane. The horizontal LOS

probability is the probability that no blockage crosses OX. In line with [25], the number

of blockages lying across OX is a Poisson random variable with a mean ηr+p, where η =

2λb[E(ℓ)+E(ω)]
π

= 2λb(M+W )
π

and p = λbE(ℓ)E(ω) = λbMW . Following the properties of Poisson

distribution, the horizontal LOS probability can be computed as P(ηr+p = 0) = e−(ηr+p).

Next, we analyze the 3D LOS probability between the BS located at X and the typical

user. As shown in Fig. 4, for a blockage lying across OX at a horizontal distance t from the

typical user, only if Hb > ht , where ht =
hr+(H−h)t

r , it will effectively block the 3D LOS path

between the BS and the typical user. The conditional probability that a blockage blocks the

path between the BS located at X and the typical user under the condition that it lies across OX

can be derived following [25] as

ε =
1
r

∫ r

0
P [Hb > ht ]dt

=
1
r

∫ r

0

(
1−

∫ hr+(H−h)t
r

0
fH(Hb)dHb

)
dt

= 1− 1
r

∫ r

0

∫ hr+(H−h)t
r

0

πHb

2µ2 e
−

πH2
b

4µ2 dHbdt

=
µ

[
erf
(√

πH
2µ

)
− erf

(√
πh

2µ

)]
H −h

, (6)
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Fig. 4 An illustration of 3D blockage and array beamforming.

where fH(Hb) is the PDF of Hb and erf(·) is the error function. The number of blockages that

effectively block the 3D LoS path can be obtained by thinning the number of blockages lying

across OX by a factor ε , which is a Poisson random variable with a mean ε(ηr+p). Hence, the

3D LOS probability of the link between the BS at X and the typical user is given by e−ε(ηr+p).

Note that the analysis of the 3D LOS probability under the exponential distribution of blockage

heights can be extended to other distributions of blockage heights following similar steps.

2.5 BS Association and SINR

The blockages are assumed to be impenetrable as mmWave signals experience very high

penetration losses [14]. Under this assumption, both the desired signals and interfering signals

come from the LOS BSs. For analytical tractability, we assume that each user connects to the

nearest LOS BS.

Lemma 1. Denoting the distance between the typical user and its serving BS by D, the PDF of

D is given by fD(x) = 2πλBxe−[ε(ηx+p)+2πλBF(x)], where F(x) = e−ε p

(εη)2 [1− (εηx+1)e−εηx].
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Proof. The complementary cumulative distribution function (CCDF) of D is given by

P(D > x)
(a)
= exp

{
−2πλB

∫ x

0
e−ε(ηr+p)rdr

}
= e−2πλBF(x), (7)

where (a) is obtained using the void probability of PPP. Then the PDF of D can be derived as

fD(x) =
d(1−P(D > x))

dx
= 2πλBxe−[ε(ηx+p)+2πλBF(x)]. (8)

For a given D = x, the signal-to-noise-plus-interference ratio (SINR) of the typical user is

given by

SINR(x)=
g0Pl(x)GS(θB0,θtilt)

∑ j∈ΦL\B0 g jPl(D j)GI(θB j ,θtilt,φa,φe)+N0

=
g0Pl(x)GD(θB0,θtilt)GM

A

∑ j∈ΦL\B0 g jPl(D j)GD(θB j ,θtilt)GA(φa,φe)+N0
, (9)

where P is the transmit power of BSs assuming all BSs transmit the same power, g0 and g j are

the Nakagami-m fading power gains from the serving BS B0 and the interfering BS B j to the

typical user, respectively, D j is the transmission distance between the typical user and B j, ΦL

is the set of LOS BSs to the typical user, GD(θB0 ,θtilt) = 100.1GD(θB0 ,θtilt)
dBi

, GD(θB j ,θtilt) =

100.1GD(θB j ,θtilt)
dBi

, and N0 is the power of additive white Gaussian noise.

By substituting (2) and (4) into (9), we have

SINR(x)≈
g0l(x)Gexp(θB0,θtilt)

∑ j∈ΦL\B0 g jl(D j)Gexp(θB j ,θtilt)GI
A+δ 2 , (10)

where GI
A =

GM
A PM+Gm

APm

GM
A

, δ 2 = N0

GM
A P100.1GdBi

m
.
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3 Coverage Probability

In this section, we first derive the DL CP for a general 3D mmWave SCN and then give the

expressions of DL CP for some special cases.

3.1 General 3D MmWave SCNs

The definition of CP is the probability that the SINR of the typical user is greater than a given

threshold T , i.e.,

PCOV = P(SINR > T ), (11)

Theorem 1. The DL CP of a general 3D mmWave SCN is given by

PCOV(H,λB,θtilt,T )≈
m

∑
n=1

(−1)n+1(m
n

)∫ ∞

0
exp
{

−ζ nT
SNR(x)

−2πλB

∫
∞

x
Q(x, t)e−ε(ηt+p)tdt

}
fD(x)dx,

(12)

where 

SNR(x) = l(x)Gexp(x)
δ 2 ,

Q(x, t) = 1−
[

1+ ζ nT GI
AGexp(t)

mGexp(x)

(
x2+(H−h)2

t2+(H−h)2

)α

2
]−m

,

Gexp(t) = max
{

exp
{
−p
(
arctan

(H−h
t

)
−θtilt

)2
}
,100.1FV

}
,

Gexp(x) = max
{

exp
{
−p
(
arctan

(H−h
x

)
−θtilt

)2
}
,100.1FV

}
,

(13)

and ζ = m(m!)−
1
m .

Proof. See Appendix A.
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Corollary 1. The DL CP of a 3D mmWave SCN monotonically increases with the number of

BS antennas NB. When NB → ∞, the asymptotic DL CP is given by

P̂COV(H,λB,θtilt,T )≈
m

∑
n=1

(−1)n+1(m
n

)∫ ∞

0
e−

ζ nT
SNR(x) fD(x)dx, (14)

Proof. Recall that GI
A =

GM
A PM+Gm

APm

GM
A

. Using (5), GI
A can be rewritten as a function of NB

as GI
A(NB) =

3
2NBπ2 +

1−
√

3NB
2π

sin
( √

3
2
√

NB

)
NB−

√
3NB
2π

sin
( √

3
2
√

NB

) (1− 3
2NBπ2

)
. It can be computed that GI

A

′
(NB)< 0

for NB ≥ 1, i.e, GI
A(NB) monotonically decreases with NB. From (10), it can be obtained

that SINR(x) monotonically increases with NB. Following the definition of CP in (11), it is

straightforward that the CP monotonically increases with NB. It can be seen that GI
A → 0 as

NB → ∞, and the expression of SINR(x) in (10) will reduce to SNR(x), which has been given

in (12).

To facilitate fast numerical evaluation, we derive a closed-form approximation of (12) using

Gauss–Chebyshev integration in the next corollary.

Corollary 2. The DL CP of a general 3D mmWave SCN can be approximated as

∼
PCOV(H,λB,θtilt,T )≈

m

∑
n=1

(−1)n+1(m
n

) πL
2N2

N2

∑
q=1

∆(ϕq)
√

1−ϕ2
q , (15)

where ϕq = cos
(

2q−1
2N2

π

)
is the Gauss-Chebyshev node, L and N2 are the parameters of Gauss-

Chebyshev integration set to large numbers, and ∆(ϕq) is given by

∆(ϕq) = exp

{
−ζ nT

SNR
(

Lϕq
2 + L

2

) −
π2λB

(
L
2 −

Lϕq
2

)
N1

×
N1

∑
k=1

Λ

(
Lϕq

2
+

L
2
,ψk

)√
1−ψ2

k

}
fD

(
Lϕq

2
+

L
2

)
, (16)
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where ψk = cos
(

2k−1
2N1

π

)
is the Gauss-Chebyshev node, N1 is the parameter of Gauss-Chebyshev

integration set to a large number, and

Λ(y,z)=Q
(

y,
L−y

2
z+

L+y
2

)
exp
{
−εη

(
L− y

2
z+

L+ y
2

)
−ε p

}(
L−y

2
z+

L+y
2

)
. (17)

Proof. The approximation in (15) is derived following the Gauss–Chebyshev integration [26]

and the integral transformation
∫ b

a f (x)dx = b−a
2
∫ 1
−1 f

(b−a
2 t + b+a

2

)
dt.

3.2 Ultra-dense 3D MmWave SCNs

When the SCN becomes ultra-dense, it is considered that the BS density is much greater than

the blockage density. We assume that there is no self-blockage caused by BSs or human bodies,

so all the BSs are LOS BSs to the typical user and the SCN becomes interference-limited

[11, 27].

Theorem 2. The DL CP of an ultra-dense 3D mmWave SCN is given by

PCOV_U(H,λB,θtilt,T )≈
m

∑
n=1

(−1)n+1(m
n

)∫ ∞

0
exp
{
−2πλB

∫
∞

x
(1−F(x, t)) tdt

}
fd(x)dx,

(18)

where fd(x) = 2πλBxe−πλBx2
, and

F(x, t) =

[
1+

ζ nT GI
AGexp(t)

mGexp(x)

(
x2 +(H −h)2

t2 +(H −h)2

)α

2
]−m

, (19)

where ζ , Gexp(t), and Gexp(x) have been given in Theorem 1.

Proof. When the SCN becomes ultra-dense, the LOS probability from an arbitrary BS to the

typical user will be 1, i.e., ε = η = 0 in Lemma 1. Plugging ε = η = 0 into (12), the expression

of DL CP can be reduced to (18).



52 Paper I

3.3 Ultra-dense 3D MmWave SCNs with BS Arrays formed of Isotropic

Antennas

In this section, we consider the special case that each BS is equipped with a uniform planar

square array comprising NB identical isotropic antennas, i.e., GD(θB,θtilt)
dBi = 0 dBi, and

present the following theorem to simplify the DL CP in (18) to a closed-form expression.

Theorem 3. The DL CP of an ultra-dense 3D mmWave SCN where each BS adopts a uniform

planar square array comprising NB identical isotropic antennas is expressed as

PCOV_U(H,λB,T )≈
m

∑
n=1

(−1)n+1(m
n

)e−πλBK(m,n)(H−h)2

K(m,n)+1
, (20)

where K(m,n) = 2F1

[
− 2

α
,m;1− 2

α
;−ζ nT GI

A
m

]
−1, and 2F1 [·] denotes the Gauss hypergeomet-

ric function.

Proof. See Appendix B.

Corollary 3. The DL CP of an ultra-dense 3D mmWave SCN where each BS adopts a uniform

planar square array comprising NB identical isotropic antennas is lower-bounded by

P̂COV_U(H,λB,T ) =
e−πλBK(1,1)(H−h)2

K(1,1)+1
, (21)

which monotonically decreases with λB and H(H > h).

Proof. It has been shown in [9] that the CP monotonically increases with m, and there-

fore P̂COV_U(H,λB) can be obtained by substituting m = 1 into (20). The first derivative of

P̂COV_U(H,λB) with regard to λB can be computed as dP̂COV_U(H,λB)
dλB

= −πK(H−h)2e−πλBK(1,1)(H−h)2

K(1,1)+1 <

0. Likewise, dP̂COV_U(H,λB)
dH = −2πλBK(1,1)(H−h)e−πλBK(1,1)(H−h)2

K+1 < 0.

(20) is based on the property that the CDF of a gamma random variable g with parameter

m is tightly approximated by P(g < x) >
(

1− e−ζ x
)m

, where x > 0 and ζ = m(m!)−
1
m [28].

Next, we derive the exact expression of the DL CP for an ultra-dense 3D mmWave SCN where

each BS adopts a uniform planar square array comprising NB identical isotropic antennas.
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Theorem 4. The exact DL CP of an ultra-dense 3D mmWave SCN where each BS is equipped

with a uniform planar square array comprising NB identical isotropic antennas is given by

PCOV_U(H,λB,T ) =
m−1

∑
k=0

∫
∞

0

(−s)k

k!
eρ(s,x)Bk

(
d
ds

ρ(s,x),
d2

ds2 ρ(s,x) . . .
dk

dsk ρ(s,x)
)

fd(x)dx,

(22)

where s = T GI
A/l(x), fd(x) = 2πλBxe−πλBx2

, Bk(·) is the kth complete Bell polynomial,

ρ(s,x) =−2πλB

∫
∞

x

(
1−
(

1+
s
m

l(t)
)−m

)
dt, (23)

and

dk

dsk ρ(s,x) =−2πλB

∫
∞

x

dk

dsk τ(s, t)dt, (24)

where

dk

dsk τ(s, t) = (−1)k−1 Γ(m+ k)
Γ(m)mk

(
1+

s
m

l(t)
)−m−k

lk(t). (25)

Proof. See Appendix C.

4 Area Spectral Efficiency

In this section, we analyze the performance of the 3D mmWave SCN with respect to ASE,

which is defined as the average spectral efficiency per unit area. As per [29], the expression of

ASE in bps/Hz/m2 is given by

A(λB) = λBlog2(1+T )PCOV(H,λB,θtilt,T ), (26)

where log2(1+T )PCOV(H,λB,θtilt,T is the average throughput per cell.
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Corollary 4. The ASE of an ultra-dense 3D mmWave SCN with isotropic BS antennas is

lower-bounded by

ÂU(λB) =
λBlog2(1+T )e−πλBK(1,1)(H−h)2

K(1,1)+1
, (27)

which first grows and then degrades with λB, and the optimal λB that maximizes ÂU(λB) is

λ ∗
B = 1

πK(1,1)(H−h)2 .

Proof. Substituting P̂COV_U(H,λB) into (26), ÂU(λB) can be obtained. The first derivative of

ÂU(λB) can be computed as dÂU(λB)
dλB

=
log2(1+T )e−πλBK(1,1)(H−h)2(1−πλBK(1,1)(H−h)2)

K(1,1)+1 . When λB <

1
πK(1,1)(H−h)2 , dÂU(λB)

dλB
> 0, and When λB > 1

πK(1,1)(H−h)2 , dÂU(λB)
dλB

< 0. Hence, ÂU(λB) first

grows and then degrades with λB, and the optimal λB that maximizes ÂU(λB) is 1
πK(1,1)(H−h)2 .

5 Numerical Results

In this section, numerical results for the DL CP and the ASE in the 3D mmWave SCN are

presented. Before system analysis, we verify the analytical results through Monte-Carlo

simulations on a 1km×1km area with 105 random trials. The default numerical simulation

parameters are given in Table 3 [12, 23, 25].

5.1 Validation of the Analytical Results

In Fig. 5, we show the effects of the number of BS antennas. For the analytical results, we

analyze the DL CP using Theorem 1 with our proposed exponential expression of the BS

antenna downtilt gain. It can be observed that our analytical results match with Monte-Carlo

simulation curves exactly, which verifies the accuracy of our analytical results. Moreover, we

can see that a larger number of antenna array elements leads to a higher DL CP, which is in line

with our conclusion in Corollary 1. In Fig. 6, we can see that 3D mmWave SCNs can provide

higher CP than 2D mmWave SCNs due to the BS antenna downtilt gain.
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Table 3 Values of Parameters

Parameter Default Value
Height of BSs H 5 m
Height of users h 1 m

Density of BSs λB 10−3 BS/m2

Density of blockages λb 10−3 blockage/m2

Path loss exponent α 2
Number of BS antennas for the

square BS antenna array NB
36

Parameters of the directional BS
antenna i, FV, GdBi

m

47.64, −12 dB,
8.15 dBi

Transmit power of BSs P 33 dBm
Additive white Gaussian noise N0 −74 dBm

CP threshold T 10 dB
Mean value of blockage length M 15 m
Mean value of blockage width W 15 m
Mean value of blockage height µ 10 m
Parameters of Gauss-Chebyshev

integration L, N1, N2
3000, 600, 600

Path loss at the reference distance β −61.4 dB
Shape parameter of small scale fading m 3

BS antenna downtilt θtilt π/6

5.2 Effects of BS Height and BS Antenna Downtilt

In Fig. 7, we show the DL CP against the BS height for different values of λb. When the SCN

is ultra-dense, the number of blockages is negligible, and the DL CP first grows to a peak and

then degrades with the BS height. This is because for the BS antenna downtilt (θtilt = π/6) in

our evaluation, the directional BS antenna gain first grows to a peak and then degrades with the

BS height. Moreover, the decrease of DL CP is also due to more inter-cell interference caused

by the larger BS height, which has been demonstrated in [8]. From the λb = 5λB, λb = 10λB

and λb = 15λB curves, we can see that the optimal BS height that maximizes the directional

BS antenna gain increases with the increasing blockage density. However, for the λb = 30λB

case, the DL CP falls victim to excessive blockages. The DL CP first grows with the BS height

because a larger BS height provides a higher LOS probability for the desired signal.
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Fig. 5 CP versus T . Lines and markers denote analytical results and simulation results,
respectively.
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Fig. 6 CP versus T for 3D and 2D mmWave SCNs.

In Fig. 8, we show the DL CP against the BS height for different values of θtilt. From (3),

the BS height that maximizes the directional BS antenna gain increases with θtilt. Specifically,

for the θtilt = 0 case, the BS height that maximizes the directional BS antenna gain is 1 m,

and therefore, no DL CP gain can be obtained through increasing the BS height. The DL CP

monotonically decreases with the BS height since a larger BS height leads to a larger inter-cell
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Fig. 8 CP versus H for different values of θtilt.

interference. For the θtilt = π/2 case, the DL CP monotonically decreases because the BS

height that maximizes the directional BS antenna gain goes to infinity, and the loss resulted

from the larger BS height always exceeds the directional BS antenna gain. For other cases, the

DL CP first decreases and then increases with the BS height.



58 Paper I

0 /16 /8 3 /16 /4

BS Antenna Downtilt

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v

er
ag

e 
P

ro
b

ab
il

it
y

H = 3 m

H = 4 m

H = 5 m

H = 6 m

Fig. 9 CP versus θtilt for different values of H.
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In Fig. 9 and Fig. 10, we depict the DL CP against the BS antenna downtilt. From Fig. 9,

we can observe that the DL CP first grows to a peak and then degrades with the BS antenna

downtilt, and that a larger BS height brings a larger optimal BS antenna downtilt that maximizes

the DL CP. From Fig. 10, it is observed that the optimal BS antenna downtilt that maximizes
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the DL CP increases with λB. This is because a larger λB results in a smaller distance between

the serving BS and the typical user.

Fig. 11 shows the joint effects of BS height and BS antenna downtilt on the DL CP. For

given BS density, blockage density, user height and distribution of blockage heights, the BS
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Fig. 13 CP versus λB for different values of θtilt.

height and the BS antenna downtilt can be jointly optimized to maximize the DL CP using

Theorem 1.

5.3 Effect of BS Density

In Fig. 12, we display the effect of the BS density on the DL CP for different values of H.

When H = 1 m, the directional BS antenna gain remains unchanged, and the DL CP first grows

to a peak and then degrades with the BS density. This is because excessive blockages degrade

the DL CP by blocking the desired signal, while moderate blockages improve the DL CP by

reducing the inter-cell interference. For the H > 1 m cases, two peaks can be observed. The

first peak can be explained for the same reason as in the H = 1 m case, and the second peak is

due to the increase of directional BS antenna gain.

In Fig. 13, we display the effect of the BS density on the DL CP for different values of θtilt.

When θtilt = 0, the directional BS antenna gain is negligible and the DL CP first grows to a

peak and then degrades with the BS density, which can be explained for the same reason as in

the H = 1 m case in Fig. 11. When θtilt > 0, the DL CP shows the second peak or a slower

decrease due to the increase of directional BS antenna gain.
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5.4 Area Spectral Efficiency

In Fig. 14, we show the ASE for different values of H. The dashed line represents the ASE

with jointly optimized H and θtilt, while the solid lines represent the ASE with the default θtilt.

From the solid lines, we can see that the ASE scales linearly with the BS density when the

BS height equals to the user height. However, when H > 1 m, the ASE first grows to a peak

and then degrades with the BS density, which matches the trends of coverage probabilities in

Fig. 12. The dashed line always exceeds the solid lines, indicating the importance of the joint

optimization of H and θtilt.

6 Conclusions

In this paper, we have proposed a novel and tractable stochastic geometry framework for the

performance evaluation of 3D mmWave SCNs. The effects of 3D blockages and the 3D BS

antenna radiation pattern were characterized. We have analytically derived the integral-form

expressions of the DL CP and ASE, and obtained the closed-form expressions in some special

cases. The numerical results show that 3D mmWave SCNs can provide higher DL CP than

2D mmWave SCNs thanks to the BS antenna downtilt gain. Moreover, for given BS density,
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blockage density, user height and distribution of blockage heights, the BS height and the BS

antenna downtilt can be jointly optimized to obtain the maximum DL CP and ASE. These

findings provide valuable insights into the deployment of 3D SCNs in mmWave bands.

In the future, we will extend the proposed framework to heterogeneous mmWave SCNs and

investigate more sophisticated interference management techniques.

Appendix A

Plugging (10) into (11), we have

PCOV(H,λB,θtilt)

≈Ex

[
P

[
g0l(x)Gexp(θB0,θtilt)

∑ j∈ΦL\B0 g jl(D j)Gexp(θB j ,θtilt)GI
A+δ 2 > T

]]

=
∫

∞

0
P
[

g0>T l−1(x)G−1
exp(θB0,θtilt)

(
δ

2 + ∑
j∈ΦL\B0

g jl(D j)Gexp(θB j ,θtilt)GI
A

)]
fD(x)dx.

(28)

Defining ∑ j∈ΦL\B0 g jl(D j)Gexp(θB j ,θtilt)GI
A = I, we have

P
[
g0>T l−1(x)G−1

exp(θB0,θtilt)
(
δ

2 + I
)]

(a)
< 1−E

[(
1− e−ζ T l−1(x)G−1

exp(θB0 ,θtilt)(δ 2+I)
)m]

(b)
=

m

∑
n=1

(−1)n+1(m
n

)
E
[
e−ζ nT l−1(x)G−1

exp(θB0 ,θtilt)(δ 2+I)
]
, (29)

where (a) is achieved using the approximation that for a gamma random variable g with

parameter m, P(g > x) is tightly approximated by P(g > x) <
(

1− e−ζ x
)m

, in which x >

0 and ζ = m(m!)−
1
m [28]. (b) is derived following Binomial series expansion. Denoting
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Gexp(θB0,θtilt) as Gexp(x)=max
{

exp
{
−p
(
arctan

(H−h
x

)
−θtilt

)2
}
,100.1FV

}
, we have

E
[
e−ζ nT l−1(x)G−1

exp(θB0 ,θtilt)(δ 2+I)
]

= e−ζ nT l−1(x)G−1
exp(x)δ

2
E
[
e−ζ nT l−1(x)G−1

exp(x)I
]
, (30)

where

E
[
e−ζ nT l−1(x)G−1

exp(x)I
]

= E
[
e−ζ nT l−1(x)G−1

exp(x)∑ j∈ΦL\B0
g jl(D j)Gexp(θB j ,θtilt)GI

A
]

(a)
= exp

{
−2πλB

∫
∞

x

(
1−Eg

[
e
− ζ nT gl(t)Gexp(t)GI

A
l(x)Gexp(x)

])
e−εηttdt

}
(b)
= exp

{
−2πλB

∫
∞

x

[
1−
[

1+
ζ nT l(t)GI

AGexp(t)
ml(x)Gexp(x)

]−m]
e−εηttdt

}
, (31)

where Gexp(t) = max
{

e−p(arctan(H−h
t )−θtilt)

2

,100.1FV

}
, (a) comes from the probability gener-

ating functional of homogeneous PPP and (b) comes from the MGF of the gamma random

variable g.

Appendix B

For ultra-dense SCNs with isotropic BS antennas, GD(θB,θtilt)
dBi =GdBi

m . Substituting Gexp(x)=

Gexp(t) = 1 into (18), the DL CP can be computed as

PCOV_U(H,λB)≈
m

∑
n=1

(−1)n+1(m
n

)∫ ∞

0
exp
{
−2πλB

∫
∞

x
(1−Z(x, t)) tdt

}
fd(x)dx, (32)

where

Z(x, t) =

[
1+

ζ nT GI
A

m

(
x2+(H−h)2

t2+(H−h)2

)α

2
]−m

. (33)
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By employing the integral
∫

∞

a

(
1−
(

1+ s
y−α

)−m
)

ydy = a2

2

(
2F1
[
− 2

α
,m;1− 2

α
;− s

aα

]
−1
)
,

we have

∫
∞

x
(1−Z(x, t)) tdt =

x2+(H−h)2

2

(
2F1

[
− 2

α
,m;1− 2

α
;−

ζ nT GI
A

m

]
−1
)
. (34)

Plugging (34) into (32), (20) can be obtained through simple integral calculation.

Appendix C

For ultra-dense SCNs where each BS adopts a uniform planar square array comprising NB

identical isotropic antennas, (28) reduces to

PCOV_U(H,λB)

= Ex

[
P

[
g0l(x)

∑ j∈ΦL\B0 g jl(D j)GI
A
> T

]]

=
∫

∞

0
P
[

g0>T l−1(x) ∑
j∈ΦL\B0

g jl(D j)GI
A

)]
fd(x)dx

(a)
=

m−1

∑
k=0

∫
∞

0

[
(−s)k

k!
dk

dsk eρ(s,x)
]

fd(x)dx, (35)

where ρ(s,x) = −2πλB
∫

∞

x

(
1−
(
1+ s

m l(t)
)−m

)
dt and s= T GI

A/l(x). (a) comes from the

CCDF of the gamma random variable g0, which is expressed as C(x) = e−mx
∑

m−1
k=0

(mx)k

k! [14].

The k-th derivative of eρ(s,x) can be expressed as a special case of Faà di Bruno’s formula [30],

i.e.,

dk

dsk eρ(s,x) = eρ(s,x)Bk

(
d
ds

ρ(s,x),
d2

ds2 ρ(s,x) . . .
dk

dsk ρ(s,x)
)
. (36)

Defining τ(s, t) = 1−
(
1+ s

m l(t)
)−m, we have

dk

dsk ρ(s,x) =−2πλB

∫
∞

x

dk

dsk τ(s, t)dt, (37)



Paper I 65

where

dk

dsk τ(s, t) = (−1)k−1 Γ(m+ k)
Γ(m)mk

(
1+

s
m

l(t)
)−m−k

lk(t). (38)
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Abstract

With the dense deployment of small cells, the impact of height difference between base stations

(BSs) and user equipments (UEs) on the performance of heterogeneous networks (HetNets)

becomes significant. The traditional two-dimensional models are no longer sufficient to capture

the three-dimensional (3D) features of dense HetNets. In this paper, we propose a 3D model for

a K-tier HetNet, where different tiers may differ in BS height, BS density, number of antennas

per BS, transmit power, association bias, and path loss exponent. We analytically derive the

per-tier association probability under both the strongest received signal and the closest BS

cell-association strategies. Based on that, we derive the expressions for the downlink ergodic

rate, area spectral efficiency (ASE) and energy efficiency. The numerical results reveal that in

the presence of macrocell BSs, for low to medium small-cell BS (SBS) densities, the closest

BS cell-association strategy leads to low ergodic rate, ASE and energy efficiency regardless of

the SBS height; while at very high SBS densities, under both cell-association strategies, SBSs

should be deployed at the same height as UEs to achieve high ergodic rate, ASE and energy

efficiency. Moreover, we find that for a given SBS height, there exists an optimal combination

of SBS density and number of antennas per SBS that maximizes the system energy efficiency.

1 Introduction

The 1000× network capacity gain of 5G is fueled by the dense deployment of small cells [1–4].

A typical heterogeneous network (HetNet) comprises macrocells overlaid by various types of
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small-cells like picocells, femtocells, and relays [5]. The reported research on HetNets was

mainly conducted on a two-dimensional (2D) plane, ignoring the height difference between the

base stations (BSs) and the UEs [6–8]. In dense HetNets, where small-cell BSs (SBSs) can

be very close to the UEs, the heights of BSs and UEs need to be considered in the calculation

of link ranges and will affect the network performance with respect to coverage probability

and area spectral efficiency (ASE) [9]. Therefore, given the existing macrocell network, the

deployment of SBSs needs to be studied in three dimensions, i.e., to consider BS heights in

addition to the BS locations on the 2D ground plane. On the other track, deploying more

antennas on BSs is playing an important role in addressing the rapid growth of wireless capacity

demands [10]. In this paper, we propose a three-dimensional (3D) HetNet model where each

BS is equipped with multiple antennas, and develop an analytical framework to evaluate the

network performance with regard to the downlink ergodic rate, ASE and energy efficiency for

both the strongest received signal cell-association strategy and the closest BS cell-association

strategy.

1.1 Related Works

HetNets have been extensively investigated using stochastic geometry [11–15]. In [11], the

downlink signal-to-interference-plus-noise-ratio (SINR) and outage probability were character-

ized for a K-tier HetNet where each tier is allocated with a particular association bias and each

UE is connected to the BS providing the strongest biased average received power. The optimal

per-tier bias that maximizes the downlink coverage was obtained in a multi-antenna HetNet in

[13]. Considering a realistic path loss model and directional antenna gains, the authors in [12]

analyzed the downlink coverage performance of millimeter-wave HetNets. In [14], the latency

and deployment cost were characterized taking into account both wired and wireless backhauls

for a two-tier HetNet. In [15], the authors explored coordinated multipoint transmission in

HetNets in the presence of user mobility. However, all of these works modeled the HetNets on

a 2D plane.

Several studies have modeled HetNets using 3D stochastic geometry due to its tractability

[16, 17]. In [16], the millimeter-wave HetNet was modeled using a 3D Mátern Hard-Core
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Process with a BS density in BS/m3 and the downlink coverage probability was derived. An

indoor 3D HetNet was studied in [17], where the picocells and femtocells were distributed

following two independent 3D Poisson point processes (PPPs). These works modelled BS

locations as 3D point processes where the BS height is randomly distributed in the third

dimension without any bound, which may be suitable for the indoor small-cell networks in

high-rise buildings. Nevertheless, in outdoor networks, BSs of the same type usually have

similar heights within a certain range.

The impact of the height difference between BSs and UEs on network performance has been

studied recently [9, 18–20]. In [9], a single-tier small-cell network was analyzed considering

a multi-slope path loss model incorporating both line-of-sight (LoS) and non-line-of-sight

(NLoS) transmissions as well as the height difference between SBSs and UEs. It was shown

that even when the SBSs are equipped with directional antennas, both the downlink coverage

and ASE degrade to zero as the SBS density increases to infinity. The effect of LOS/NLOS path

loss model with random placed buildings was integrated in a single-tier small-cell network with

elevated BSs in [18]. The results revealed that the coverage probability would monotonically

decrease for the closest BS association, while the monotonicity would not hold for the strongest

BS association. In [19], the authors analyzed the effect of vertical beamforming on the

coverage probability and obtained the optimal antenna downtilt numerically. In [20], the

authors investigated the optimal BS height for a single-tier mmWave network, where the

blockages were modelled as cylinders with an exponentially distributed height. However, none

of these works captured the heterogeneity of current cellular networks.

Unmanned aerial vehicle (UAV) assisted wireless networks can be considered as a type

of 3D HetNets. In [21], the aerial BSs were modeled as a 2D PPP at a particular height and

the terrestrial BSs were modelled as a 2D PPP on the ground. In [22], the authors studied

UAV-assisted cell-edge offloading for ground HetNets. In [23], a general K-layer UAV network

model was proposed, in which the coverage probability and throughput were derived for the

closest node and the strongest received pilot signal node association strategies. Although the

heights of UAVs were considered in [21–23], the heights of terrestrial BSs on the ground were

ignored. In [24], the height difference between terrestrial BSs and UEs was considered, but the
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closest BS cell-association strategy did not include the cell-association bias, which would be

necessary for load balancing across different tiers in a HetNet. Moreover, the aforementioned

works only considered single-antenna BSs and UAVs, while the the analysis of HetNets with

multi-antenna BSs is much more challenging [13]. It is worth noting that UAVs usually have a

much higher height than UEs [25], while SBSs can be deployed at the similar height of UEs,

which requires a different deployment strategy than UAV deployment.

To the best of our knowledge, the performance analysis of a multi-tier 3D HetNet with multi-

antenna transmission and LOS/NLOS path-loss attenuation has not been fully investigated,

which will be the focus of this paper.

1.2 Contributions

In this paper, we study the deployment of small cells in a 3D HetNet taking into account the

potentially different BS height, number of antennas per BS and cell-association bias for each

tier. The main contributions of this paper are summarized as follows:

• We develop a novel stochastic geometry framework for a K-tier 3D HetNet, where

different tiers have potentially different BS densities, BS heights, number of antennas per

BS and cell-association biases. Moreover, we incorporate the LOS/NLOS transmission

into both the large-scale path loss and small-scale fading.

• Based on the framework, we derive the LOS probability of a link as a function of system

parameters such as the BS density, the blockage density, the link distance, and the height

difference between BSs and UEs. Furthermore, the per-tier association probability is

newly derived for both the strongest received signal and the closest BS cell-association

strategies.

• The per-tier association probability is then used to obtain the downlink ergodic rates

for both the strongest received signal and the closest BS cell-association strategies. Our

analytical and numerical results show the effects of the SBS density, SBS height, number

of antennas per SBS and SBS bias on the ergodic rate. We find that in the presence of

macrocell BSs (MBSs), the ergodic rate monotonically decreases with the SBS density
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Fig. 1 An illustration of a 3D heterogeneous network.

regardless of the SBS height, which is different from the observation in a single-tier

small-cell network [9].

• We also derive the expressions for the ASE and energy efficiency. We observe that under

both cell-association strategies, SBSs should be deployed at the same height as UEs in

an ultra-dense HetNet for good network performance in terms of the ergodic rate, ASE

and energy efficiency.

1.3 Paper Organization

The remainder of this paper is structured as follows. Section II describes the system model.

The expressions of downlink ergodic rate are derived in Section III. In Section IV, we extend

our analysis to ASE and energy efficiency. The numerical results are presented in Section V,

with remarks shedding new light on the deployment of multi-antenna SBSs in 3D HetNets.

Finally, the conclusions are drawn in Section VI.
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2 System Model

2.1 Network Model

We consider downlink transmission in an outdoor K-tier 3D HetNet, where the horizontal

locations of the BSs in the kth tier are modelled following a homogeneous PPP Φ̃k with density

λ̃k on a 2D ground plane, in the absence of blockages. Each BS in the kth tier has transmit power

Pk with Mk antennas deployed in a horizontal linear array. We assume that BSs in the kth tier

are deployed at a fixed height Hk for analytical tractability. This assumption can be extended

to the case where the BS height of each tier follows a specific distribution, which will be

investigated in our future work. The set of indices of the tiers is denoted by K = {1,2, . . . ,K}.

The horizontal locations of single-antenna UEs are also modelled following a homogeneous

PPP ΦU with density λU, which is independent of {Φk}k∈K . λU is assumed to be sufficiently

large so that each BS can have at least one served UE [9, 18]. The UEs are of the same height

HU and Hk ≥ HU for k ∈ K . Blockages are assumed to be cuboids [26] with a uniformly

distributed length Lb ∼U(0,2Lb), a uniformly distributed width Wb ∼U(0,2W b), a uniformly

distributed orientation θb ∼ U(0,2π), and a Rayleigh-distributed height Hb with mean Hb.

The centers of the blockages on the ground plane are distributed following a homogeneous

PPP Φb with density λb. In the presence of blockages, the actual horizontal locations of the

BSs in the kth tier form a Poisson hole process Φ̂k = Φ̃k\Φk,b, where Φk,b denotes the set

of the kth tier BSs located in the blockage regions. Assuming that BSs and blockages are

independently distributed, Φ̂k can be well approximated by a homogeneous PPP Φk with

density λk = λ̃kexp(−λbLbW b) [27]. Without loss of generality, we consider that the typical

UE under study is located at the origin of the ground plane. We assume that all the tiers share

the same frequency band, and that orthogonal resource partitioning is adopted in each cell to

eliminate intra-cell interference. A two-tier 3D HetNet scenario is shown in Fig. 1, and the

used notations are listed in Table 1.
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Table 1 Summary of Notations

Notation Meaning

Φk,Φb,ΦU
Homogeneous PPPs modeling the horizontal locations

of the kth-tier BSs, blockages and UEs, respectively
λk, λb, λU Densities of the kth-tier BSs, blockages and UEs, respectively
Hk,Hb,HU Heights of the kth-tier BSs, blockages and UEs, respectively

Ĥk Hk −HU
Lb, Wb, θb Length,width and orientation of blockages,respectively

Lb,W b,Hb
Mean values of blockage length, blockage
width and blockage height, respectively

β L
k , β NL

k
Path loss of LOS and NLOS transmission links at the reference

distance in the kth tier,respectively

αL
k , αNL

k
Path loss exponents of LOS and NLOS transmission

links in the kth tier, respectively
Pk Transmit power of BSs in the kth tier
Mk Number of antennas per BS in the kth tier
Bk A BS in the kth tier with horizontal distance rBk from the origin

hL
k , hNL

k
Small-scale fading power gains of serving LOS and
NLOS transmission links in the kth tier, respectively

gL
k , gNL

k
Small-scale fading power gains of interfering LOS and

NLOS transmission links in the kth tier, respectively
mk Shape parameter of Nakagami-m fading in the kth tier

RL
k , RNL

k
Horizontal distances from the typical UE to its nearest

LOS BS and NLOS BS in the kth tier, respectively
Ck Cell-association bias for the kth tier

PL,k(x),
PNL,k(x)

LOS and NLOS probabilities of a transmission link
with horizontal distance x in the kth tier, respectively

PL
r,k(x),

PNL
r,k (x)

Average biased received power of LOS and NLOS transmission links with
horizontal distance x in the kth tier, respectively

Tk(x)
Biased transmission distance from a BS to the typical UE

with horizontal distance x in the kth tier

RS,RC
Downlink ergodic rates under the strongest received signal and

closest BS cell-association strategies, respectively
δ 2

k Additive white Gaussian noise power in the kth tier

ηk,PC,k,ρk
Power amplifier efficiency, circuit power per antenna, and parameter related

to DC-DC converter, current supply and cooling in the kth tier

2.2 LOS Probability

For a BS Bk with horizontal distance rBk from the origin in the kth tier, the horizontal LOS

probability between Bk and the typical UE is a function of rBk given by e−ξ rBk , where ξ =

2λb(E(Lb)+E(Wb))
π

=
2λb(Lb+W b)

π
[20, 26].
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The conditional probability that a blockage blocks the transmission link between Bk and

the typical UE in the vertical dimension under the condition that it blocks the transmission link

in the horizontal dimension is computed following [26] by

µk = 1− 1
rBk

∫ rBk

0

∫ HUrBk
+Ĥkt

rBk

0
fHb(x)dxdt

=
Hb

[
erf
(√

πHk
2Hb

)
− erf

(√
πHU

2Hb

)]
Ĥk

, (1)

where Ĥk=Hk −HU, fHb(x) =
πx

2H2
b
e
− πx2

4H2
b is the probability density function (PDF) of Hb and

erf(·) is the error function. Then, the 3D LOS probability of the transmission link between Bk

and the typical UE is given by

PL,k(rBk) = e−ξ µkrBk . (2)

Correspondingly, the 3D NLOS probability is given by PNL,k(rBk) = 1−PL,k(rBk). From (2),

we can see that the LOS probability monotonically decreases with the horizontal distance of a

transmission link and increases with the BS height.

2.3 Channel Model

The channel model is composed of path loss and small-scale fading. A transmission link can

be either an LOS or NLOS link, and the path loss from Bk to the typical UE can be expressed

as follows

lk(rBk)=


β L

k

(
r2

Bk
+Ĥ2

k

)−αL
k
2
, with prob. PL,k(rBk)

β NL
k

(
r2

Bk
+Ĥ2

k

)−αNL
k
2
, with prob. PNL,k(rBk)

(3)

where β L
k and β NL

k are the path loss of LOS and NLOS transmission links at the reference

distance, respectively, and αL
k and αNL

k are the path loss exponents of LOS and NLOS transmis-
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sion links in the kth tier, respectively. For analytical tractability, the modelling of multi-slope

path loss [9] has not been included, which will be investigated in our future work.

For single-input single-output transmission in the kth tier, i.e., Mk = 1, we characterize the

small-scale fading of LOS and NLOS transmission links by Nakagami-m fading with shape

parameter mk and Rayleigh fading, respectively [18]. Notice that when the shape parameter

is set to 1, Nakagami-m fading reduces to Rayleigh fading. The channel power gain of the

transmission link from a multi-antenna BS to the typical UE depends on the multi-antenna

transmission technique and whether the BS is a serving BS or an interfering BS. In this paper,

we focus on sub-6GHz frequencies. We adopt maximal ratio transmission (MRT) precoding

and assume perfect channel state information. If Bk is a serving BS, we denote the channel

power gain of the link from Bk to the typical UE by hL
k ∼ Γ(Mkmk,

1
mk
) and hNL

k ∼ Γ(Mk,1),

when the link is in LOS and NLOS conditions, respectively [28]. If Bk is an interfering BS, we

denote the channel power gain of the link from Bk to the typical UE by gL
k ∼ Γ(mk,

1
mk
) and

gNL
k ∼ Exp(1), when the link is in LOS and NLOS conditions, respectively.

2.4 Cell Association

We consider both the strongest received signal and the closest BS cell-association strategies,

where one UE can only connect to one BS. In the Lemma below, we give the PDFs of the

distances from the typical UE to its nearest LOS and NLOS BSs in the kth tier, respectively,

which will be useful when we develop expressions of cell association probabilities.

Lemma 1. Denoting by RL
k and RNL

k the horizontal distances from the typical UE to its nearest

LOS BS and NLOS BS in the kth tier, respectively, the PDFs of RL
k and RNL

k are given by

fRL
k
(x) = 2πλkxPL,k(x)exp{−2πλkEk(x)} , (4)

fRNL
k
(x) = 2πλkxPNL,k(x)exp

{
−πλkx2 +2πλkEk(x)

}
, (5)

where Ek(x) = 1
(ξ µk)2

[
1− (ξ µkx+1)e−ξ µkx

]
.
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Proof. The cumulative distribution function (CDF) of RL
k is computed by

FRL
k
(x) = 1−P(RL

k > x)

(a)
= 1− exp

{
−2πλk

∫ x

0
e−ξ µkRL

k RL
k dRL

k

}
= 1− e−2πλkEk(x), (6)

where (a) is obtained using the void probability of PPP. Then the PDF of RL
k is computed by

fRL
k
(x) =

dFRL
k
(x)

d(x)
= 2πλkxe−[ξ µkx+2πλkEk(x)]. (7)

The PDF of RNL
k can be derived following the similar steps.

Under the strongest received signal cell-association strategy, a UE connects to the BS

providing the strongest downlink average biased received power. Denoting the bias factor for

the kth tier by Ck, the downlink average biased received power at the typical UE from Bk is

computed by

Ps
r,k(rBk) = PkCkβ

s
k
(
r2

Bk
+Ĥ2

k
)−αs

k
2 , (8)

where s takes the form of L and NL when the transmission link from Bk to the typical UE is

in LOS and NLOS conditions, respectively. The typical UE connects to a BS with channel

condition s in the kth tier if

k,s = argmax
j∈K ,t∈{L,NL}

Pt
r, j
(
Rt

j
)
. (9)

Then we characterize the cell association probability under the strongest received signal cell-

association strategy in the following Lemma.

Lemma 2. Under the strongest received signal cell-association strategy, the probabilities that

the typical UE is associated with an LOS BS and an NLOS BS in the kth tier, denoted by A L
S,k
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and A NL
S,k , respectively, are given by

A L
S,k =

∫
∞

0
fRL

k
(x) ∏

j∈K , j ̸=k
e−2πλ j

∫ FL
S,k, j,L(x)

0 PL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FNL

S,k, j,L(x)

0 PNL, j(u)ududx, (10)

A NL
S,k =

∫
∞

0
fRNL

k
(x) ∏

j∈K , j ̸=k
e−2πλ j

∫ FNL
S,k, j,NL(x)

0 PNL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FL

S,k, j,NL(x)

0 PL, j(u)ududx, (11)

where

F t
S,k, j,s(x) =


0, x < Dt

S,k, j,s,√(
Ωt

k, j,s

)− 2
αt

j
(
x2 + Ĥ2

k

)αs
k

αt
j −Ĥ2

j , x ≥ Dt
S,k, j,s,

(12)

where s, t ∈ {L,NL}, Ωt
k, j,s =

Pkβ s
kCk

Pjβ
t
jC j

, and

Dt
S,k, j,s =


0, Ĥ

αt
j

αs
k

j

(
Ωt

k, j,s

) 1
αs

k < Ĥk,√
Ĥ

2αt
j

αs
k

j

(
Ωt

k, j,s

) 2
αs

k −Ĥ2
k , Ĥ

αt
j

αs
k

j

(
Ωt

k, j,s

) 1
αs

k ≥ Ĥk.

(13)

Proof. See Appendix A.

Under the strongest received signal cell-association strategy, let XL
S,k and XNL

S,k be the

distances from the serving LOS BS and NLOS BS to the typical UE, given that the typical UE

is associated with an LOS BS and an NLOS BS in the kth tier, respectively. We characterize the

PDFs of XL
S,k and XNL

S,k in the following Lemma.

Lemma 3. Under the strongest received signal cell-association strategy, the PDFs of the

distances from the serving LOS BS and NLOS BS in the kth tier to the typical UE, denoted by
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fXL
S,k
(x) and fXNL

S,k
(x), respectively, are given by

fXL
S,k
(x) =

fRL
k
(x)

A L
S,k

∏
j∈K , j ̸=k

e−2πλ j
∫ FL

S,k, j,L(x)

0 PL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FL

S,k, j,NL(x)

0 PNL, j(u)udu, (14)

fXNL
S,k
(x) =

fRNL
k
(x)

A NL
S,k

∏
j∈K , j ̸=k

e−2πλ j
∫ FNL

S,k, j,NL(x)

0 PNL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FL

S,k, j,NL(x)

0 PL, j(u)udu. (15)

Proof. Denoting the event that the typical UE is associated with an LOS BS in the kth tier by

V L
S,k, the CDF of XL

S,k is computed by

P
[
XL

S,k < x
]
= P

[
RL

k < x|V L
S,k
]
=

P
[
RL

k < x,V L
S,k

]
P
[
V L

S,k

] , (16)

where P
[
V L

S,k

]
= A L

S,k, and

P
[
RL

k < x,V L
S,k
]
=
∫ x

0
P
[

PL
r,k(u)> max

j∈K , j ̸=k
PL

r, j
(
RL

j
)]

×P
[

PL
r,k(u)>max

j∈K
PNL

r, j
(
RNL

j
)]

fRL
k
(u)du, (17)

where P
[

PL
r,k(u)> max

j∈K , j ̸=k
PL

r, j

(
RL

j

)]
and P

[
PL

r,k(u)>max
j∈K

PNL
r, j

(
RNL

j

)]
can be found in Ap-

pendix A. With these insights, fXL
S,k
(x) is computed by

fXL
S,k
(x) =

dP[XL
S,k < x]

dx
. (18)
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Under the closest BS cell-association strategy, the typical UE connects to the BS with the

shortest biased transmission distance. The biased transmission distance from Bk to the typical

UE is given by

Tk(rBk) = (r2
Bk
+ Ĥ2

k )
1
2Ck. (19)

The typical UE connects to a BS with channel condition s in the kth tier if

k,s = argmin
j∈K ,t∈{L,NL}

Tj
(
Rt

j
)
. (20)

Then we characterize the cell association probability under the closest BS cell-association

strategy in the following Lemma.

Lemma 4. Under the closest BS cell-association strategy, the probabilities that the typical

UE is associated with an LOS BS and an NLOS BS in the kth tier, denoted by A L
C,k and A NL

C,k ,

respectively, are given by

A L
C,k =

∫
∞

0
fRL

k
(x) ∏

j∈K , j ̸=k
e−2πλ j

∫ FC,k, j(x)
0 PL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FC,k, j(x)

0 PNL, j(u)ududx, (21)

A NL
C,k =

∫
∞

0
fRNL

k
(x) ∏

j∈K , j ̸=k
e−2πλ j

∫ FC,k, j(x)
0 PNL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FC,k, j(x)

0 PL, j(u)ududx, (22)

where

FC,k, j(x)=


0, x < DC,k, j,√(

Ck
C j

)2 (
x2+Ĥ2

k

)2−Ĥ2
j , x ≥ DC,k, j,

(23)
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and

DC,k, j =


0, Ĥ j

C j
Ck

< Ĥk,√(
C j
Ck

)2
Ĥ2

j − Ĥ2
k , Ĥ j

C j
Ck

≥ Ĥk.
(24)

Proof. It follows similar proof as in Lemma 2.

Under the closest BS cell-association strategy, let XL
C,k and XNL

C,k be the distances from the

serving LOS BS and NLOS BS to the typical UE, given that the typical UE is associated with

an LOS BS and an NLOS BS in the kth tier, respectively. We characterize the PDFs of XL
C,k and

XNL
C,k in the following Lemma.

Lemma 5. Under the closest BS cell-association strategy, the PDFs of the distances between

the serving LOS BS and NLOS BS in the kth tier and the typical UE, denoted by fXL
C,k
(x) and

fXNL
C,k
(x), respectively, are given by

fXL
C,k
(x) =

fRL
k
(x)

A L
C,k

∏
j∈K , j ̸=k

e−2πλ j
∫ FC,k, j(x)

0 PL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FC,k, j(x)

0 PNL, j(u)udu, (25)

fXNL
C,k
(x) =

fRNL
k
(x)

A NL
C,k

∏
j∈K , j ̸=k

e−2πλ j
∫ FC,k, j(x)

0 PNL, j(u)udu

× ∏
j∈K

e−2πλ j
∫ FC,k, j(x)

0 PL, j(u)udu. (26)

Proof. It follows similar proof as in Lemma 3.
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3 Downlink Ergodic Rate

In this section, the downlink ergodic rates of the typical UE in a 3D HetNet with muti-antenna

BSs are derived for both the strongest received signal and the closest BS cell-association

strategies.

3.1 Ergodic Rate Under the Strongest Received Signal Cell-association

Strategy

Under the strongest received signal cell-association strategy, when the typical UE connects to

an LOS BS BL
S,k in the kth tier, the signal-to-noise-plus-interference ratio (SINR) is given by

SINRL
S,k =

Pkβ L
k hL

k

[(
RL

k

)2
+Ĥ2

k

]−αL
k
2

IL
S,k,L + INL

S,k,L +δ 2
k

, (27)

where IL
S,k,L = ∑ j∈K ∑i∈ΦL

j \BL
S,k

Pjβ
L
j gL

j

(
r2

i, j + Ĥ2
j

)−αL
j

2 denotes the interference from LOS

BSs, INL
S,k,L = ∑ j∈K ∑i∈ΦNL

j
Pjβ

NL
j gNL

j

(
r2

i, j + Ĥ2
j

)−αNL
j
2 denotes the interference from NLOS

BSs, δ 2
k is the noise power in the kth tier, ΦL

j and ΦNL
j denote the sets of LOS BSs and NLOS

BSs in the kth tier, respectively, and ri, j is the horizontal distance from BS i in the jth tier to the

typical UE.

Similarly, when the typical UE connects to an NLOS BS BNL
S,k in the kth tier, the SINR is

given by

SINRNL
S,k =

Pkβ NL
k hNL

k

[(
RNL

k

)2
+Ĥ2

k

]−αNL
k
2

IL
S,k,NL + INL

S,k,NL +δ 2
k

, (28)

where IL
S,k,NL = ∑ j∈K ∑i∈ΦL

j
Pjβ

L
j gL

j

(
r2

i, j + Ĥ2
j

)−αL
j

2 denotes the interference from LOS BSs

and INL
S,k,NL =∑ j∈K ∑i∈ΦNL

j \BNL
S,k

Pjβ
NL
j gNL

j

(
r2

i, j + Ĥ2
j

)−αNL
j
2 denotes the interference from NLOS
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BSs. Based on the SINR expressions in (27) and (28), the ergodic rate of the typical UE can be

expressed as

RS =
K

∑
k=1

(
E
[
log
(
1+SINRL

S,k
)]

A L
S,k +E

[
log
(

1+SINRNL
S,k

)]
A NL

S,k
)
. (29)

This performance metric can be used to evaluate the average downlink cell throughput with

orthogonal multiple access techniques. With the analysis mentioned above, the expression of

the ergodic rate is represented in the following Theorem.

Theorem 1. Under the strongest received signal cell-association strategy, the downlink ergodic

rate of the typical UE in nats/s/Hz is given by

RS =
K

∑
k=1

(
RL

S,kA
L

S,k +RNL
S,k A NL

S,k

)
, (30)

where A L
S,k and A NL

S,k have been given in Lemma 2, RL
S,k and RNL

S,k are the ergodic rates of the

typical UE when it is associated with an LOS BS and an NLOS BS in the kth tier, respectively.

The expressions of RL
S,k and RNL

S,k are given by

RL
S,k=

∫
∞

0

∫
∞

0

1−
(

1+ z
mk

)−Mkmk

z
exp

{
− z

SNRL,k(x)
−

K

∑
j=1

ZL
S,k, j,L(x,z)−

K

∑
j=1

ZNL
S,k, j,L(x,z)

}
× fXL

S,k
(x)dzdx, (31)

RNL
S,k =

∫
∞

0

∫
∞

0

1− (1+ z)−Mk

z
exp

{
− z

SNRNL,k(x)
−

K

∑
j=1

ZL
S,k, j,NL(x,z)−

K

∑
j=1

ZNL
S,k, j,NL(x,z)

}
× fXNL

S,k
(x)dzdx, (32)
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where SNRL,k(x) =
Pkβ L

k (x2+Ĥ2
k )

−
αL

k
2

δ 2
k

, SNRNL,k(x) =
Pkβ NL

k (x2+Ĥ2
k )

−
αNL

k
2

δ 2
k

,

Zt
S,k, j,s(x,z) = 2πλ j

∫
∞

Ft
S,k, j,s(x)

Qt
k, j,s(x,z,u)Pt, j(u)udu, (33)

where s, t ∈ {L,NL},

QL
k, j,s(x,z,u) = 1−

1+
zPjβ

L
j
(
x2 + Ĥ2

k

)αs
k/2

m jPkβ s
k

(
u2 + Ĥ2

j

)αL
j /2


−m j

, (34)

and

QNL
k, j,s(x,z,u) = 1−

1+
zPjβ

NL
j
(
x2 + Ĥ2

k

)αs
k/2

Pkβ s
k

(
u2 + Ĥ2

j

)αNL
j /2

 . (35)

Proof. See Appendix B.

Corollary 1. Suppose ΦK is the small-cell tier with the minimum BS height and largest BS

density, i.e., ĤK < Ĥ j,λK > λ j, j ∈ K , j ̸= K, and ĤK > 0, the downlink ergodic rate under

the strongest received signal cell-association strategy approaches to zero when λK → ∞.

Proof. See Appendix C.

Corollary 1 reveals that the ultra-dense deployment of SBSs will significantly impair the

transmission rate in the presence of the height difference between SBSs and UEs.

3.2 Ergodic Rate Under the Closest BS Cell-association Strategy

In this subsection, we present the expression of the ergodic rate under the closest BS cell-

association strategy.
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Theorem 2. Under the closest BS cell-association strategy, the downlink ergodic rate of the

typical UE in nats/s/Hz is given by

RC =
K

∑
k=1

(
RL

C,kA
L

C,k +RNL
C,kA

NL
C,k

)
, (36)

where A L
C,k and A NL

C,k have been given in Lemma 4, RL
C,k and RNL

C,k are the ergodic rates of the

typical UE when it is associated with an LOS BS and an NLOS BS in the kth tier, respectively.

The expressions of RL
C,k and RNL

C,k are given by

RL
C,k=

∫
∞

0

∫
∞

0

1−
(

1+ z
mk

)−Mkmk

z
exp

{
− z

SNRL,k(x)
−

K

∑
j=1

ZL
C,k, j,L(x,z)−

K

∑
j=1

ZNL
C,k, j,L(x,z)

}
× fXL

C,k
(x)dzdx, (37)

RNL
C,k =

∫
∞

0

∫
∞

0

1− (1+ z)−Mk

z
exp

{
− z

SNRNL,k(x)
−

K

∑
j=1

ZL
C,k, j,NL(x,z)−

K

∑
j=1

ZNL
C,k, j,NL(x,z)

}
× fXNL

C,k
(x)dzdx, (38)

where

Zt
C,k, j,s(x,z) = 2πλ j

∫
∞

Ft
C,k, j,s(x)

Qt
k, j,s(x,z,u)Pt, j(u)udu, (39)

SNRL,k(x), SNRNL,k(x) and Qt
k, j,s(x,z,u) have been given in Theorem 1.

Proof. It follows similar proof as in Theorem 1.

Corollary 2. Suppose ΦK is the small-cell tier with the minimum BS height and largest BS

density, i.e., ĤK < Ĥ j,λK > λ j, j ∈ K , j ̸= K, and ĤK > 0, the downlink ergodic rate under

the closest BS cell-association strategy approaches to zero when λK → ∞.

Proof. It follows similar proof as in Corollary 1.
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4 Other Performance Metrics

In this section, we evaluate other important performance metrics of 3D HetNets with multi-

antenna BSs using the ergodic rate expression developed in the previous section. First, we

extend our analysis to the ASE metric. Then, we formulate the expression of energy efficiency.

4.1 Area Spectral Efficiency

The ASE is a performance metric used to evaluate the network throughput and the potential

gain of deploying more SBSs, which is defined as the product of the BS density and the average

data rate per cell [10].

Under the strongest received signal cell-association strategy, the ASE of a 3D HetNet with

multi-antenna BSs in nats/s/Hz/m2 is given by [24]

ASES =
K

∑
k=1

λkRS. (40)

Under the closest BS cell-association strategy, the ASE of a 3D HetNet with multi-antenna

BSs in nats/s/Hz/m2 is given by

ASEC =
K

∑
k=1

λkRC. (41)

4.2 Energy Efficiency

On the one hand, network densification improves the network capacity. On the other hand,

the deployment of SBSs and multi-antenna systems requires more hardware infrastructure,

resulting in higher power consumption of cellular networks. Hence, energy efficiency is another

important performance metric. The energy efficiency is defined as the ratio of the ASE and the

power consumption per unit area. The total power consumption per unit area in a 3D HetNet
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with multi-antenna BSs is computed in W/m2 by [29]

Ptotal =
K

∑
k=1

λkρk

(
MkPC,k +

Pk

ηk

)
, (42)

where PC,k is the circuit power per antenna in the kth tier, ηk is the power amplifier efficiency of

the kth-tier BSs, and ρk is a parameter related to the power loss rate of the DC-DC converter,

current supply and cooling.

Combining (40) and (42), under the strongest received signal cell-association strategy, the

energy efficiency of a 3D HetNet with multi-antenna BSs can be formulated in nats/s/Hz/W as

follows

EES =
ASES

Ptotal
=

∑
K
k=1 λkRS

∑
K
k=1 λkρk

(
MkPC,k +

Pk
ηk

) . (43)

Similarly, combining (41) and (42), under the closest BS cell-association strategy, the

energy efficiency of a 3D HetNet with multi-antenna BSs can be formulated in nats/s/Hz/W as

follows

EEC =
ASEC

Ptotal
=

∑
K
k=1 λkRC

∑
K
k=1 λkρk

(
MkPC,k +

Pk
ηk

) . (44)

5 Numerical Results

In this section, we present numerical results for the ergodic rate, ASE and energy efficiency

in 3D HetNets with multi-antennas and then study the deployment of SBSs in 3D HetNets.

We consider a two-tier HetNet where the 1st tier is the macrocell tier and the 2nd tier is the

small-cell tier. The default numerical simulation parameter values are listed in Table 2 unless

otherwise stated, which are set according to Table A.2.1.1.2-3 of [30] and [26, 31–33]. We

verify the analytical results through Monte-Carlo simulations on a 2km×2km area with 105

random trials.
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Table 2 Values of Parameters

Parameters Default Values
H1, H2, HU 30 m, 5 m, 1.5 m
Lb, W b, Hb 15 m, 15 m, 10 m
λ1, λ2, λb 2×10−6, 10−3, 10−3 (1/m2)

C1, C2 1, 1
αL

1 , αNL
1 2.42, 4.28

αL
2 , αNL

2 2.09, 3.75
β L

1 ,β
NL
1 10−10.34, 10−13.11

β L
2 ,β

NL
2 10−10.38, 10−14.54

M1, M2 64, 4
P1, P2 53 dBm, 33 dBm
δ 2

k ∀k −95 dBm
mk ∀k 3

PC,1, PC,2 20.7 W, 2.1 W
η1, η2 0.388, 0.08
ρ1, ρ2 1.25, 1.21

5.1 Effect of the Number of Antennas per SBS

In Fig. 2, we show the ergodic rate against the number of antennas per SBS for H2 = 5 m

and H2 = 15 m, respectively. First of all, the analytical expressions match with simulation

curves exactly, which implies the accuracy of our analytical results. In the following, two

interesting insights can be obtained. For one thing, regardless of the SBS height, the ergodic

rate of the 3D HetNet always increases when deploying more antennas per SBS. For another,

the strongest received signal cell-association strategy provides higher ergodic rate than the

closest BS cell-association strategy and the gap expands as the number of antennas increases.

Moreover, we can see that for the default SBS density, 2D cases overestimate the network

performance in terms of the ergodic rate, indicating the importance of considering BS heights.

Notice that the conclusion may be different when the BS antennas are deployed in 2D arrays

and vertical beamforming is performed.

Fig. 3 shows the impact of the number of antennas per SBS on the energy efficiency. It can

be observed that regardless of the SBS height, the energy efficiency first increases rapidly with
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the increment of number of antennas per SBS until reaching a peak, after which the increase

turns into a decline. This is because adding more antennas at the beginning significantly

improves the ergodic rate, while the gain of deploying more antennas decreases with M2.

However, the energy consumption scales linearly with M2. Moreover, we observe that the

critical number of antennas per SBS, i.e., the optimal M2 that maximizes the energy efficiency

increases with the increment of SBS height.
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Fig. 2 Ergodic rate versus M2. For 3D cases, lines and markers denote analytical results and
simulation results, respectively.

5.2 Effects of SBS Density

In Fig. 4, we show the ergodic rate against the SBS density for H2 = 1.5 m, H2 = 5 m and

H2 = 15 m, respectively. We can see that the ergodic rate monotonically decreases with the

increasing SBS density regardless of the cell-association strategy and SBS height. This is

different from the observation in a single-tier network where the network coverage probability

first increases and then decreases with the BS density [9]. In the presence of MBSs with high

transmission power and large antenna arrays, the HetNet is already interference-limited. Hence,

adding more SBSs only leads to more LOS interference links that deteriorate the ergodic

rate. We also find that when SBSs are higher than UEs (H2 > 1.5 m), the ergodic rate decays
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towards zero with the network densification, which coincides with the conclusions of Corollary

1 and Corollary 2. This is because as λ2 → ∞, when H2 > 1.5 m, the desired received power

approaches to a constant while the extremely high aggregated interference becomes dominant,

leading to extremely low SINR and ergodic rate.

In Fig. 5, we show the ASE for different values of SBS height. We note that for both

cell-association strategies, when H2 = 1.5 m, the ASE monotonically increases with the SBS

density. However, when H2 = 5 m and H2 = 15 m, the ASE first increases linearly with the SBS

density and then shows a slow growth caused by the height difference between SBSs and UEs.

The H2 = 15 m curve even suffers from a rapid decay under large SBS densities. Moreover,

for a small value of SBS density, the ASE of the strongest received signal cell-association

significantly outperforms that of the closest BS cell-association while the effect of BS height is

negligible. In contrast, when the BS density becomes sufficiently large, the ASE is dominated

by the SBS height. These observations highlight that SBSs should be deployed at the height

of UEs in an ultra-dense HetNet for a high ASE. Fig. 4 and Fig. 5 show the tradeoff between

ergodic rate and ASE. Although in most cases deploying more SBSs increases the ASE, it

impairs the ergodic rate at the same time.

Fig. 6 shows the impact of the SBS density on the energy efficiency. It is interesting to

observe that although the ergodic rate monotonically decreases with respect to the SBS density,

the energy efficiency first increases rapidly with the SBS density, which indicates that in the

presence of MBSs, the deployment of SBSs with low transmission power and circuit power

can improve the system energy efficiency. However, when the SBS density exceeds a critical

threshold, the energy efficiency begins to decrease since excessive SBSs significantly degrade

the ergodic rate and cause high network energy consumption.

The results in Fig. 4, Fig. 5 and Fig. 6 reveal that at low to medium SBS densities, the

closest BS cell-association strategy should be avoided regardless of the SBS height, and that at

high SBS densities, under both considered cell-association strategies, SBSs should be deployed

at the same height as UEs to obtain good network performance. Moreover, we can see that

for most SBS densities, the network performance in terms of the ergodic rate, ASE and energy

efficiency in traditional 2D network models is overestimated. In the practical deployment of
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Fig. 3 Energy efficiency versus M2 for different values of H2.
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Fig. 4 Energy efficiency versus M2 for different values of H2.

SBSs, the tradeoff among ergodic rate, ASE and energy efficiency needs to be addressed by

designing an optimization problem, e.g., maximizing the ASE while ensuring a certain ergodic

rate and energy efficiency.

Fig. 7 shows the joint effects of SBS density and the number of antennas per SBS on the

energy efficiency under the closest BS cell-association strategy. We can see that for given MBS

configuration and SBS height, the SBS density and the number of antennas per SBS can be

jointly optimized to maximize the energy efficiency.



Paper II 97

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
S

E
 (

n
at

s/
s/

H
z/

m
2
)

Strongest, H
2
 = 1.5 m

Strongest, H
2
 = 5 m

Strongest, H
2
 = 15 m

Closest, H
2
 = 1.5 m

Closest, H
2
 = 5 m

Closest, H
2
 = 15 m

Fig. 5 ASE versus λ2 for different values of H2.
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5.3 Effect of SBS Height

In Fig. 8, we analyze the effect of SBS height on the ergodic rate. Clearly the SBS height

has a significant effect on the ergodic rate, which cannot be captured using traditional 2D

HetNet models. Under the strongest received signal cell-association strategy, the ergodic rate

monotonically decreases with the SBS height regardless of the SBS density. This is because

elevated BSs lead to more LOS interference links. However, under the closest received signal
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cell-association strategy, the trend of ergodic rate depends on the SBS density. More specifically,

when λ2 = 10−5 BS/m2, the ergodic rate always increases with the increment of SBS height,

because when λ2 approaches λ1, the typical UE is more likely to be associated with the MBS

providing the strongest received signal. As λ2 increases to λ2 = 10−4 BS/m2, the ergodic rate

monotonically decreases with the SBS height as the loss caused by LOS interference links

from elevated SBSs exceeds the gain of connecting to the best BS that provides the strongest

received signal. When λ2 = 4×10−5 BS/m2, the ergodic rate almost remains unchanged due

to the tradeoff between the aforementioned loss and gain.

5.4 Effect of Bias Factor

Fig. 9 presents the effect of SBS bias on the ergodic rate. Under the strongest received signal

cell-association strategy, with the increase of SBS bias, the ergodic rate monotonically decreases

with the SBS bias since each UE is more likely to miss the BS providing the strongest received

signal, which reduces the SINR. In contrast, for the closest BS cell-association strategy, the

ergodic rate first increases and then decreases with the SBS bias. This is because the increase of

SBS bias first improves and then reduces the probability of associating with the BS providing
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the strongest received signal for each UE. We can also note that the critical SBS bias, i.e., the

optimal C2 that maximizes the ergodic rate decreases with the increment of SBS height.

6 Conclusions

In this paper, we have proposed a novel stochastic geometry framework for a K-tier 3D

HetNet incorporating the potentially different BS height, number of antennas per BS and
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cell-association bias for each tier. Under both the strongest received signal and the closest

BS cell-association strategies, we have derived the per-tier association probability, downlink

ergodic rate, ASE and energy efficiency, the accuracy of which is verified by simulations. Our

numerical results show that in an ultra-dense 3D HetNet, under both cell-association strategies,

SBSs should be deployed at the height of UEs for achieving high ergodic rate, ASE and energy

efficiency. We have also shown that increasing the number of antennas per SBS results in

higher ergodic rate and energy efficiency, while excessive antennas impair the energy efficiency.

Additionally, it has been observed that when other system parameters are fixed, the energy

efficiency can be maximized by a joint optimization of the number of antennas per SBS and

SBS density. The effect of cell-association bias has also been quantified. In our future work,

we will extend the proposed 3D analytical model to mmWave HetNets while considering the

effects of different beamforming techniques.

Appendix A

Under the strongest received signal cell-association strategy, denoting RL
k = x, the probability

that the typical UE is connected to a LOS BS in the kth tier is computed by

A L
S,k = Ex

[
P
[

PL
r,k(x)> max

j∈K , j ̸=k
PL

r, j
(
RL

j
)]

P
[

PL
r,k(x)> max

j∈K
PNL

r, j
(
RNL

j
)]]

= Ex

[
∏

j∈K , j ̸=k
P
[
PL

r,k(x)> PL
r, j
(
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j
)]

∏
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P
[
PL
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r, j
(
RNL

j
)]]

, (45)

where

P
[
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r, j
(
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j
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= P
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j
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(
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j
(
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j − Ĥ2
j
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k, j,L(x)< 0,

e−2πλ j
∫√IL

k, j,L(x)

0 PL, j(u)udu, IL
k, j,L(x)≥ 0,
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where ΩL
k, j,L=

Pkβ L
k Ck

Pjβ
L
j C j
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k

)αL
k

αL
j − Ĥ2
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(
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greater than 0, if IL
k, j,L(x)< 0, (a) will be equal to 1; otherwise, (a) can be computed using the

void probability of PPP. When IL
k, j,L(x)< 0, we have x < DL
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Defining that
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(46) can be rewritten as
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Similarly, we have
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(52)

Plugging (49) and (50) into (45), (10) is obtained. A NL
S,k can be derived following the similar

steps, which concludes our proof.

Appendix B

Recall that the ergodic rate under the strongest received signal cell-association strategy is

computed by

RS =
K
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log
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Before further derivation, we introduce an important Lemma [34] as follows. For indepen-

dent random variables X and Y (X ≥ 0 and Y ≥ 0), we have

EX ,Y

(
log
(

1+
X
Y

))
=
∫

∞

0
(1−LX(z))LY (z)

dz
z
, (55)
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where LX(z) denotes the Laplace transform of X at z. Applying (55) into (54), we have
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Defining that ∆L(x,z,u) =
Pjβ

L
j (x2+Ĥ2
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where (a) comes from the probability generating functional of PPP, in which the lower bound

of the integral is the minimum horizontal distance between the interfering LOS BS in the jth

tier and the typical UE, and (b) comes from the moment generating function of the gamma

random variable gL
j .



104 Paper II

Similarly, LINL(z) can be derived as
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j∈K
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where (a) comes from the moment generating function of the exponential random variable gNL
j .

Plugging (56), (58) and (59) into (54), (31) can be obtained. RNL
S,k can be derived following the

similar steps, which concludes our proof.

Appendix C

When λK → ∞, the typical UE almost always connects to the Kth tier and the signals from other

tiers can be omitted. Moreover, as λK → ∞, both the desired and strong interfering signals

almost certainly come from LOS BSs, and the effects of noise and NLOS interferers can be

omitted [35]. Hence, the ergodic rate can be approximated by

RS ≈
∼
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[
log
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S,D,K
)]
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Combining (60) and (61), and applying (55), we have
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where K (z,αL
K,mK) = 2F1

[
− 2

αL
K
,mK;1− 2

αL
K

;− z
mK

]
−1, and 2F1 [·] denotes the Gauss hyper-

geometric function. From (62), we can obtain that when λK → ∞,
∼

RS → 0, which completes

our proof.
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Abstract

Mobile data traffic has been largely generated indoors. However, indoor cellular networks

have been studied either on a two-dimensional (2D) plane or as an intractable optimization

problem for a multi-storey building. In this paper, we develop a tractable three-dimensional

(3D) small-cell network (SCN) model for a multi-storey building. On each storey, the small-cell

base stations (BS) are distributed following a 2D homogeneous Poisson point process (PPP). We

analytically derive the downlink coverage probability, spectral efficiency (SE) and area spectral

efficiency (ASE) for the indoor network as functions of the storey height, the penetration loss

of the ceiling and the BS density. Our tractable expressions show that a higher penetration

loss of the ceiling leads to a higher coverage probability and a higher SE. Meanwhile, with

the increase of the storey height or the BS density, the downlink coverage probability first

decreases and then increases after reaching a minimum value, indicating that certain values of

storey height and BS density should be avoided for good indoor wireless coverage.

1 Introduction

The fifth generation (5G) of mobile networks is predicted to support 1000× mobile data traffic

in the next decade[1]. According to [2][3], approximately 80% of the mobile data is generated

indoors, while over 70% of the indoor traffic is carried by the outdoor cellular networks. Since

outdoor-to-indoor coverage is prone to suffer from the high penetration loss of walls and other

physical obstacles, it is of high necessity to deploy indoor small-cell base stations (BS)[4][5].
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While the modelling and analysis of outdoor networks has been widely studied in recent

years [6–11], there are still open questions regarding the performance of indoor cellular

networks. The existing works mainly focus on the modelling of blockages including walls

and random blockages on two-dimensional (2D) planes [12–17]. However, the study of indoor

cellular networks in multi-storey buildings should not be limited to a 2D BS deployment.

In this paper, we present for the first time a tractable three-dimensional (3D) small-cell

network (SCN) model for the multi-storey indoor environment by incorporating the storey

height and the penetration loss of the ceiling. Then we derive the expressions for the coverage

probability, spectral efficiency (SE) and area spectral efficiency (ASE) where the user associ-

ation and inter-cell interference are considered. We analyze the effects of the storey height

and the penetration loss of the ceiling on the coverage probability and SE, and provide useful

guidelines for the indoor small-cell deployment and the design of a new building from the

perspective of wireless communications [37].

1.1 Related Works

Stochastic geometry has been widely used to analyze the performance of cellular networks due

to its mathematical tractability [18–22]. It was also employed to model networks for the indoor

built environment, e.g. in [14], where the authors modeled the BSs and the center points of

the walls as two independent homogeneous Poisson point process (PPP). The results showed

that higher interior-wall attenuation values can provide higher coverage probability due to the

reduced inter-cell interference. In [13], a binomial point process was adopted to model a finite-

sized indoor network. Considering the larger antenna arrays and shorter transmission distances

of millimeter wave (mm-Wave) networks, the authors assumed a triangle transmitter-receiver

radiation area involving the effects of random blockages and calculated the bit error rate and

outage probability. However, these works only considered a 2D BS deployment.

The authors of [23] extended the 2D PPP distribution of BSs to the 3D space with BS

density in BSs/m3 and employed the free space path loss channel model. It was shown that

the 3D cellular network achieved a lower coverage probability compared with the traditional

2D models, but the influence of the BS density was not analyzed. In [24], the dual-slope path
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loss model was applied in a 3D PPP model. The asymptotic analysis showed that the coverage

probability would diminish to zero when the density of BSs goes to infinity. In [25], a 3D

Poisson building model was proposed to model the correlated indoor shadowing. However,

these 3D models cannot be applied to SCNs in the multi-storey in-building scenarios, where

BSs on the same storey usually have the same height for the sake of simple deployment.

Most existing works on multi-storey BS deployment focused on some specific optimization

problems [26–28]. For instance, the authors of [26] optimized the BS placement taking into

account the power control. After reformulating the mixed-integer nonconvex problem into a

convex problem, the optimal number and locations of the BSs were obtained. Nevertheless, no

tractable models have been proposed to analyze SCNs in the multi-storey building scenarios.

Dense deployment of SCN is considered as one of the key techniques of 5G networks [32].

The traditional understanding of network densification is that the increase of BS density does

not change the coverage probability of the typical user in an interference limiting scenario

[18][29]. This conclusion indicates that the area spectral efficiency scales linearly with the

BS density, namely the capacity gain can always be obtained. However, it is worth noting

that this result is based on the simplified free space propagation channel model. Considering

the short-range propagation in dense SCNs, the authors in [30][31] proposed a bounded path

loss model and showed that the ultra dense network degrades the spatial throughput. In [33],

a multi-slope path loss model was employed to study the effect of non-line-of-sight (NLoS)

transmission on the coverage probability. Their results showed that when the BS density

increases above a certain value, the coverage probability starts to decrease and the increase in

ASE slows down. In [34], the authors studied the effect of the height of BS antennas on the

coverage probability and the ASE, which decrease to zero with the BS density when the BSs

are higher than the users.

1.2 Contributions

In this paper, we study the performance of a 3D SCN in a multi-storey building. The main

contributions of this paper are summarized as follows:
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• We propose a novel 3D SCN model for a multi-storey building where BSs on each storey

follow PPP distribution. Using tools from stochastic geometry, we derive the analytical

expressions of coverage probability and SE for a building with 2M+1 storeys, where

M ≥ 1.

• Based on the results above, the numerically tractable integral expressions for the M = 1

case are obtained and validated by simulation results. The numerical results show that

the M = 1 case shows similar performance in terms of coverage probability and SE as

the M > 1 cases, therefore our analytical expressions for the M = 1 case can be used to

numerically predict the coverage probability and SE of a SCN in a building with 2M+1

storeys, where M ≥ 1.

• With our analytical results, we find that both the coverage probability and SE first

decrease and then increase with the increasing storey height. Accordingly, we identify a

range of storey heights associated with poor network performance that should be avoided

in the design of a new building. Moreover, our results show that both the coverage

probability and SE first decrease and then increase with the BS density on each storey.

This new finding is different from previous results obtained under the 2D scenarios

[18][19]. It indicates that the setting of BS density per storey in a multi-storey building

should avoid the values that result in poor coverage.

1.3 Paper Organization

The remainder of this paper is structured as follows. Section 2 introduces the system model.

Section 3 gives the analytical results on the coverage probability. Section 4 presents the

analytical results on the spectral efficiency. The numerical results are discussed in Section

5, with remarks shedding some new light on the deployment of dense SCN. Finally, the

conclusions are drawn in Section 6.
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Fig. 1 An illustration of the small-cell network in a multi-storey building.

2 System Model

Consider 2M+1 storeys of a multi-storey building, where M ≥ 1. Table 1 presents a summary

of notations used. As shown in Fig. 1, all the storeys from the ground storey to the top storey

are numbered from −M to M, respectively, and we assume that the typical user is located on

the 0th storey. Assume that on each storey, BSs and users have the same height h and the height

for each storey is H. Notice that H includes the ceiling height and the ceiling thickness. For

the jth storey, the small-cell BSs are randomly distributed following a homogeneous PPP Φ j

with intensity λ BSs/m2 and users are also PPP distributed with a density of ρ users/m2. For

simplicity, we assume that the values of λ and ρ do not change across different storeys. In this

work, we adopt PPP to model the BSs on each storey mainly for its higher analytical tractability

as compared with other point processes (such as binomial point process and Poisson cluster

process).

For the downlink cellular network, we assume that the desired and interference signals

experience the distance dependent path loss, where the same path loss exponent α is used for

all the storeys. Small scale fading is modeled as Rayleigh fading with an unit average power

for all the channels [33, 35].

The simulation results in Fig. 3 in Section 5 will show that the maximum coverage

probability is obtained when the BS height is the same as the UE height. For analytical
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Table 1 Summary of Notations

Notation Meaning

m
Index of the storey where m ∈

{−M, · · · ,0, · · · ,M}
Φ j Set of BSs on the jth storey
λ Density of BSs on each storey
h Height of BSs and users on each storey
H Height of each storey
P Transmit power of BSs
α Path loss exponent of each storey
T Coverage probability threshold
w Penetration loss of one ceiling
N Additive white Gaussian noise power
β0 Path loss at the reference distance

Rm
Horizontal distance from the typical user

to the nearest BS on the mth storey

lm
Distance from the typical user

to the nearest BS on the mth storey

Pr,m
Average power of the strongest received

signal from a BS on the mth storey

Bm
Probability that the typical user is

associated to a BS on the mth storey

Cm
Coverage probability when the typical

user is served by a BS on the mth storey

Am
Average ergodic rate when the typical

user is served by a BS on the mth storey
C,Rate Coverage probability and average ergodic rate

tractability in the following, we assume that on each storey, hB = hU. Note that under this

assumption, the value of hB and hU has no effect on the coverage probability.

One user can only be associated to one BS. We use m ∈ {−M,−(M−1), · · · ,0,1, · · · ,M}

as the index of the storey that contains the serving BS for the typical user. Let Rm denote the

horizontal distance from the nearest BS on the mth storey to the typical user, and then the

distance from the nearest BS on the mth storey to the typical user is given by

lm =
√
(mH)2 +R2

m. (1)
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The user is associated to the BS providing the strongest downlink received signal. The

average power of the strongest received signal from a BS on the mth storey is given by [12][36]

Pr,m = Pβ0l−α
m w|m|, (2)

where P is the transmit power of a BS, β0 is the path loss at the reference distance of 1 m, α is

the path loss exponent , w(0 < w < 1) is the penetration loss of one ceiling, and the power of

the small scale fading is averaged to be 1.

We denote the probability that the typical user is associated to a BS on the mth storey as Bm,

and denote the horizontal distance from the typical user to its serving BS as Xm. The following

lemma gives the expression for the probability density function (PDF) of Xm, which will be

useful for the derivations of the coverage probability in Section 3. In our system model as

defined in Fig. 1, the PDF for the mth storey is the same as that for the −mth storey. In the

following, we will focus on 0 ≤ m ≤ M.

Lemma 1. The PDF of the distance Xm between a typical user and its serving BS is

fXm(x) =



fXm,m(x), 0 < x ≤ Im,(m+1),

· · ·

fXm,k(x), Im,k < x ≤ Im,(k+1),

· · ·

fXm,M(x), Im,M < x < ∞,

(3)

where Im,k is formulated as

Im,k =


√
(kH)2w

2(m−k)
α − (mH)2, m ≤ k ≤ M

∞, k = M+1
(4)

and fXm,k(x) is

fXm,k(x) =
2πλ

Bm
xexp

{
−πλ (Fm +Fm,k)

}
, (5)

where Fm and Fm,k are given in (6), (7).
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Fm=2

(m2H2+x2) w−2
α

(
1−w−2(m−1)

α

)
1−w− 2

α

− (m−1)m(2m−1)
6

H2

+
(
m2H2+x2)w−2m

α +2x2,

(6)

Fm,k=2

(m2H2+x2) w
2
α

(
1−w

2(k−m)
α

)
1−w

2
α

− k(k+1)(2k+1)−m(m+1)(2m+1)
6

H2

 , (7)

Proof. See Appendix A.

3 Coverage Probability

The coverage probability C is the probability that the SINR of the typical user is higher than

a target threshold. The typical user can be connected to at most one BS, so the coverage

probability is given by

C =
M

∑
m=−M

CmBm, (8)

where Bm is the probability that the typical user associates to a BS on the mth storey, and Cm is

the corresponding coverage probability. Since Cm =C−m, for clarity, we consider 0 ≤ m ≤ M,

C will be

C =C0B0 +2
M

∑
m=1

CmBm. (9)

The typical user is in coverage when its SINR from its associated BS is larger than the

given threshold T , when the typical user associates to the BS on the mth storey, the coverage

probability averaged over the plane is

Cm = Ex [P [SINRm(x)> T ]] , (10)
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where x is the horizontal distance from the typical user to its serving BS and SINRm is denoted

as

SINRm =
Pgm,0(m2H2 + x2)−

α

2 wm

∑
M
j=−M ∑i∈Φ j\Bm0 Ph j,i|Yji|−αw| j|+ N

β0

, (11)

where gm,0 is the Raleigh fading with an unit average power, Bm0 denotes the serving BS, h j,i

is the Raleigh fading power gain with unit mean from the interfering BS i on the jth storey, and

|Yji| is the distance between the interfering BS i on the jth storey and the typical user, and N is

the additive white Gaussian noise with a constant mean power.

3.1 General Case and Main Result

We first give the general result of the coverage probability and then analyze the special case of

M = 1.

Theorem 1. The coverage probability of the typical user associated to the BS on the mth storey

Cm can be computed as

Cm =
M

∑
k=m

Cm,k, (12)

where

Cm,k =
2πλ

Bm

∫ Im,(k+1)

Im,k

xexp
{
− T

SNRm
−2πλ

(
m2H2 + x2) M

∑
n=1

Qm,n,kw
2
α
(n−m)

−πλ
(
Fm +Fm,k

)
−πλQ

(
m2H2 + x2)w− 2m

α

}
dx, (13)

in (13), Im,k, Fm, Fm,k are defined in (4), (6), (7), SNRm is

SNRm =
Pwmβ0

(
m2H2 + x2)−α

2

N
, (14)

and

Q =
2T

α −2 2F1

[
1,1− 2

α
;2− 2

α
;−T

]
, (15)
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Qm,n,k=

 Q, n≤k
2T B2/α−1

m,n,x
α−2 2F1

[
1,1− 2

α
;2− 2

α
;− T

Bm,n,x

]
, n>k

(16)

where Bm,n,x = (nH)αwm−n(m2H2 + x2)−
α

2 .

Proof. See Appendix B.

3.2 Special Case: M = 1

Fig.2 shows the coverage probability versus the SINR threshold under the setting of λ = 10−3

BS/m2 and H = 3 m, it can be observed that the difference between the coverage probability

of the M = 1 case and M > 1 cases is negligible. Therefore, the coverage probability of the

M = 1 case can be used to predict that of cases with M > 1.

Proposition 1. When M=1, the coverage probability of the typical user is

CM=1 = B0C0 +2B1C1, (17)

where B1C1 and B0C0 are

B1C1=2πλ

∫
∞

0
xexp

{
− T

SNR1
−πλQ

(
H2 + x2)(w−2

α +2
)
−πλ

(
H2+x2

w
2
α

+2x2
)}

dx

=
exp
{
− T

SNR1
−πλH2

(
Qw− 2

α +2Q+w− 2
α

)}
(

w− 2
α +2

)
(Q+1)

, (18)
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B0C0 =2πλ

∫ Hw− 1
α

0
xexp

{
− T

SNR0
−πλx2

(
Q+2Q0,1w

2
α +1

)}
dx

+2πλ

∫
∞

Hw− 1
α

xexp
{
− T

SNR0
−πλx2

(
Q+2Qw

2
α +2w

2
α −2

H2

x2 +1
)}

dx

=2πλ

∫ Hw− 1
α

0
xexp

{
− T

SNR0
−πλx2

(
Q+2Q0,1w

2
α +1

)}
dx

+
exp
{
− T

SNR0
−πλH2

(
Qw−2

α +2Q+w− 2
α

)}
(Q+1)

(
2w

2
α +1

) , (19)

where

Q0,1 =
2T H−2w

2
α x2

α −2 2F1

[
1,1− 2

α
;2− 2

α
;− T

Hαw−1x−α

]
. (20)

Proof. The expression can be easily obtained by plugging M = 1 into (9).

Lemma 2. For an interference-limited network (where N=0), when λ → 0, CM=1 =CM=0, i.e.,

the coverage probability for a 3-storey 3D SCN will be identical to that for a single-storey 2D

SCN.

Proof. From (17), it is clear that when λ → 0, B1C1 =
1(

w− 2
α +2

)
(Q+1)

, B0C0 =
1(

2w
2
α +1

)
(Q+1)

,

and thus CM=1 = B0C0 +2B1C1 =
1

Q+1 =CM=0.

Lemma 3. For an interference-limited network (where N=0), when H → 0 or H → ∞, CM=1 =

CM=0, i.e., the coverage probability for a 3-storey 3D SCN is identical to that for a single-storey

2D SCN.

Proof. In (17), when H → 0, B1C1 =
1(

w− 2
α +2

)
(Q+1)

, B0C0 =
1(

2w
2
α +1

)
(Q+1)

, and thus CM=1 =

1
Q+1 =CM=0. When H → ∞, B0C0=2πλ

∫
∞

0 xexp
{
−πλx2 (Q+1)

}
dx = 1

Q+1 , B1C1 = 0, and

thus CM=1 = 1
Q+1 =CM=0.
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4 Spectral Efficiency

The spectral efficiency can be calculated using the average ergodic rate of the typical user as

follows

Rate =
M

∑
m=−M

AmBm, (21)

where Bm is the probability that the typical user is associated to the BS on the mth storey.

Similar to (9), (21) can be further rewritten as

Rate = A0B0 +2
M

∑
m=1

AmBm, (22)

Am is the average ergodic rate when the typical user connects to the mth storey. Am can be

derived as

Am = ESINRm [log2 (1+SINRm)] , (23)

Theorem 2. The average ergodic rate of the mth storey can be derived as

Am =
M

∑
k=m

Am,k, (24)

where

Am,k=
2πλ

Bm

∫
∞

0

∫ Im,(k+1)

Im,k

xexp
{
− 2t−1

SNRm
−2πλ

(
m2H2+x2) M

∑
n=1

Qm,n,k,tw
2
α
(n−m)

−πλ
(
Fm +Fm,k

)
−πλQt

(
m2H2 + x2)w− 2m

α

}
dxdt, (25)

in which

Qt =
2(2t −1)

α −2 2F1

[
1,1− 2

α
;2− 2

α
;1−2t

]
, (26)
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Qm,n,k,t =

 Qt , n≤k
2(2t−1)B2/α−1

m,n,x
α−2 2F1

[
1,1− 2

α
;2− 2

α
; 1−2t

Bm,n,x

]
, n>k

(27)

where Bm,n,x = (nH)αw−n(m2H2 + x2)−
α

2 .

Proof. See Appendix C.

The area spectral efficiency in bps/Hz/m2 can be computed as [34]

RateASE = λRate, (28)

where λ is the density of the BSs in BSs/m2 and Rate is given in (21).

Table 2 Values of Parameters

Parameter Default Value
Path loss at reference distance β0 −38.5 dB

AWGN average power N −104 dBm
Coverage probability threshold T 0 dB

Transmit power of BSs P 33 dBm
Path loss exponent α 4

Height of BSs and users h 1.2 m
Storey height H 3 m

BS density on each storey λ 10−2 BS/m2

Ceiling penetration loss w −10 dB

5 Numerical Results

In this section, we evaluate the accuracy of our analytical expressions and further analyze the

performance of our multi-storey SCN model.
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Fig. 2 Coverage probability vs. the SINR threshold for M = 0,1,2 and 3.

5.1 Validation of the Analytical Results

For numerical evaluation and simulations, the default values of parameters are listed in Table

2 [20] unless otherwise stated. We set α = 4 as most indoor transmission links are in NLOS

conditions. As shown in Table 3 of [36], the penetration loss of one ceiling ranges from −4 dB

to −22 dB, depending on the carrier frequencies (0.9-5.8 GHz) and building environments. We

set the default ceiling penetration loss as −10 dB. We verify the analytical results through 105

Monte Carlo simulations for a building with a floor area of 60m×60m.

In Fig. 2, we compare the coverage probability of the proposed SCN model for M = 0,1,2

and 3. The analytic curves match well with those simulated by Monte Carlo methods, which

demonstrates the accuracy of our mathematical derivations. In Fig. 2(a)-(d), we can observe that
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Fig. 3 Coverage probability vs. the absolute value of the height difference between BSs and
UEs for different values of w and λ (BS/m2).

the M = 0 case provides the upper bound of the coverage probability where the BS deployment

follows the traditional 2D PPP distribution [18]. From Fig. 2(a) and Fig. 2(b), it is obvious that

when w =−5 dB, the coverage probability of the M = 0 case is much higher than that of the

M ≥ 1 cases. However, the performance of the M = 1 case is close to M = 2 and M = 3 cases,

the gap between them is up to 0.02 and thus negligible. Additionally, when w =−10 dB, the

M = 1 case shows nearly the same coverage probability as the M = 2 and M = 3 cases. Similar

phenomenon can be observed in Fig. 2(c) and Fig. 2(d), where different values of H and λ are

included in the comparison.

Based on the results in Fig. 2, it is reasonable to approximate the proposed multi-storey

SCN model for M = 2, 3 using the M = 1 case, the expressions of which can be found in

Proposition 1. Accordingly, we will adopt the analytical results of the M = 1 case in the

discussions hereafter.

In Fig. 3, we evaluate the impact of the absolute value of the height difference between

BSs and UEs on the coverage probability for various values of the ceiling penetration loss and

the BS density on each storey through Monte Carlo simulations. We fix the UE height as 1.2

m and set the maximum BS height as 5 m following a practical upper bound of storey height

[38]. We can see that the maximum coverage probability is achieved when the BS height is the
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same as the UE height. Therefore, in the following, we assume that the BS height and the UE

height are identical to evaluate the optimal achievable network performance of our proposed

multi-storey SCN model.
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Fig. 4 Coverage probability vs. the SINR threshold for different values of P and λ .

In Fig. 4, we plot the coverage probability versus the SINR threshold for different values

of the BS transmit power, BS density on each storey, ceiling penetration loss, and height of

each storey. We can see that the coverage probability does not change with the BS transmit

power, for given BS density on each storey, ceiling penetration loss and height of each storey.
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Fig. 5 The coverage probability vs. the BS density.

This is mainly due to the relatively high indoor BS density that leads to an interference-limited

multi-storey SCN.

5.2 Effect of the BS density

To better demonstrate the performance of the multi-storey SCN, we ignore the thermal noise

and set w as −10 dB. It is well-known that the BS density does not affect the network coverage

probability in interference-limited networks and the area spectral efficiency scales linearly with

the network densification [18]. This is because the increased interference can be compensated

by the shrinked distance between the typical UE and the connected BS.

However, we observe a different scaling law in our proposed multi-storey SCN model. In

Fig. 5, we analyze the influence of the BS density per storey to the coverage probability for

H = 3 m, H = 4 m, H = 5 m [38, 39], respectively. Note that the M = 0 curve stands for the

2D scenario [18] and its coverage probability CM=0 remains unchanged with the increase of

the BS density. When M = 1, the coverage probability first decreases from CM=0 and then

increases back to CM=0 with the network densification. This phenomenon is referred to as the

Coverage Probability Valley hereafter. Intuitively, when λ approaches infinity, the typical UE

will hardly associate with any storey other than the 0th storey, and thus the coverage probability
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Fig. 6 The spectral efficiency vs. the BS density.

of the M > 1 cases is close to that of the M = 0 case. Moreover, the coverage probability as

λ → 0 is in accordance with Lemma 2. The minimum value of coverage probability and the

corresponding BS density per storey λ ∗ can be obtained when CM=1′(λ ∗) = 0. The solution

can be numerically found using Newton’s method, and details are given in Appendix D. The

numerical results are 10.476×10−3 BS/m2, 5.9×10−3 BS/m2, 3.8×10−3 BS/m2 for H = 3

m, H = 4 m, H = 5 m, respectively, and the minimum coverage probability is 0.4775. The

results reveal that the worst BS densities suffer from more than 8 percent loss of coverage

probability compared with the 2D model. Since the spectral efficiency is the integral of the

coverage probability, a SE Valley can also be found in Fig. 6, where the worst BS densities can

be similarly obtained with Newton’s method. The numerical results are 5.6×10−3 BSs/m2,

3.1×10−3 BSs/m2, 2×10−3 BSs/m2 for H = 3 m, H = 4 m, H = 5 m, respectively, and the

minimum spectral efficiency is 1.7826 bps/Hz/m2. To alleviate the performance loss, it is

necessary to avoid the Valley area in the practical deployment of BSs.

In Fig. 7, we show the area spectral efficiency of M = 0 and M = 1 cases. For the M = 0

scenario, the ASE increases linearly with network densification. Nevertheless, for the multi-

storey case, the ASE first increases linearly when the BS density per storey is low and then

exhibits a slowing-down in the ASE growth when the network becomes denser. When the
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network is ultra dense, the ASE returns to the linear growth again. Such a trend of the ASE

performance is not difficult to explain according to the SE trend in Fig. 6. Moreover, we

observe that for a given storey height, a higher penetration loss of the ceiling leads to a higher

ASE.

5.3 Effect of the storey height

In Fig. 8, we assume that the penetration loss of the ceiling w =−5 dB, and the threshold of

the coverage probability is 0 dB. We assume that the BS height and UE height are both 1.2

m, so the minimum storey height is 1.2 m. We plot the 3D figure to show the influence of the

storey height with different BS densities, where a conspicuous Coverage Probability Valley

can be observed. For most of the BS densities, the coverage probability of the typical UE

first decreases and then increases with the increasing storey height. The red bold line shows

the locations of the storey height H∗ corresponding to the lowest coverage probability, which

can be obtained by solving CM=1′(H∗) = 0 and numerically found using a standard bisection

searching [40]. Due to the existing of the Coverage Probability Valley, there is a worst storey

height that leads to the lowest coverage probability. The worst storey height is affected by the
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red bold line shows the storey height and ceiling penetration loss corresponding to the lowest
coverage probability.

BS density, as can be seen, when the BS density increases, the worst storey height decreases. It

is worth noting that the coverage probability monotonously increases when the worst storey

height is less than 1.2 m.
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In Fig. 9, the BS density per storey is set to be 10−2 BS/m2 and the threshold of the

coverage probability is 0 dB. A similar Coverage Probability Valley can be observed. The

coverage probability of the typical UE first decreases and then increases with the increasing

storey height for a particular penetration loss of the ceiling. The red bold line also indicates

the locations of the storey height H∗ with lowest coverage probability. Note that a smaller

value of w means a higher penetration loss of the ceiling, which indicates that the storey height

corresponding to the lowest coverage probability is smaller when the penetration loss becomes

higher.

In conclusion, the Coverage Probability Valley exists for any BS density and penetration

loss of the ceiling, which is in accordance with the conclusion in Lemma 3. Intuitively, when

the storey height is 0, all the BSs are on the same storey, that is the 2D BS deployment. When

the storey height becomes large enough, the probability of the typical UE being connected to

any storey other than the 0th storey is close to 0 and the coverage probability of the M > 1

cases is close to that of the 2D model. For the commercial success of future 5G networks, it is

crucial to avoid the Coverage Probability Valley in the design of new buildings. Actually, with

our tractable expressions, it is convenient to find the optimal storey height. With the acceptable

range of storey height, e.g. H1 ≤ H ≤ H2, the maximum coverage probability can be obtained

at either H1 or H2 due to the Coverage Probability Valley. Therefore, we only need to compute

the coverage probability at H1 and H2 respectively and choose the higher one.

5.4 Effect of the penetration loss of the ceiling

In Fig. 10 and Fig. 11, we analyze the influence of the penetration loss of the ceiling (in linear

scale). Larger w means smaller penetration loss. It is observed that the coverage probability and

spectral efficiency increase with stronger penetration loss, which indicates that the cross-storey

communication is harmful to the network performance when the BSs and UEs share the same

height. When w = 0, the typical UE only connects to the BSs on the 0th storey, so the network

performance is the same with the 2D model. According to this conclusion, we should choose

the materials with higher penetration loss for the ceilings of a new building.
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6 Conclusions

In this paper, we have proposed a new 3D stochastic geometry model for the small-cell networks

in the multi-storey built environment. A novel theoretical discovery has been presented, i.e., the

Coverage Probability Valley. The coverage probability first decreases and then increases with

the increase of the storey height and the network density. Moreover, we show that a ceilings
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with a higher penetration loss can provide a better network performance. The contributions of

this paper can shed insight on the design of new buildings and future indoor SCN deployments.

In the future, we will further consider a more practical indoor built environment with walls

and stochastic blockages. In addition, interference management techniques such as dynamic

power control, BS sleeping strategy, and directional antennas will be investigated.

Appendix A

Denote n as the index of the storey that the typical user connected to. Given the condition

that the typical user is associated to the BS on the mth storey, Xm > x is equal to Rm > x, the

probability of Xm > x can be computed as

P[Xm > x] = P[Rm > x|n = m] =
P[Rm > x,n = m]

P[n = m]
, (29)

where

P[n = m] = Bm = ERm

[
P
[

Pr,m(Rm)> max
j, j ̸=m

Pr, j

]]
, (30)

the joint probability of Rm > x and n = m is

P[Rm > x,n = m]

= P
[

Rm > x,Pr,m(Rm)> max
j, j ̸=m

Pr, j

]
=
∫

∞

x

M

∏
j=−M, j ̸=m

P
[
Pr,m(r)> Pr, j

]
fRm(r)dr, (31)

from (2), we have

P
[
Pr,m(r)> Pr, j

]
= P

[(
m2H2 + r2)−α

2 wm >
(

j2H2 +R2
j
)−α

2 w| j|
]

= P
[
R2

j >
(
m2H2 + r2)w

2(| j|−m)
α − j2H2

]
, (32)
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when | j| ≤ m,
(
(m2H2 + r2)w

2(| j|−m)
α − j2H2

)
is non-negative, while when | j|> m, it could be

a negative number. So P
[
Pr,m(r)> Pr, j

]
can be divided into two parts as

P
[
Pr,m(r)> Pr, j

]
=


P
[
Pr,m(r)> Pr, j

]
| j|≤m

, | j| ≤ m

P
[
Pr,m(r)> Pr, j

]
| j|>m

, | j|> m
(33)

since R2
j is always non-negative, so in the case of | j|> m, when (m2H2 + r2)w

2(| j|−m)
α < j2H2,

P
[
Pr,m(r)> Pr, j

]
is 1. With these analysis, (33) can be further derived as (34), (35).

P
[
Pr,m(r)> Pr, j

]
| j|≤m

= P
[

R j >

√
(m2H2 + r2)w

2(| j|−m)
α − j2H2

]
(a)
= P

[
No BS closer than

√
(m2H2+r2)w

2(| j|−m)
α − j2H2

]
= exp

{
−πλ

(
(m2H2 + r2)w

2(| j|−m)
α − j2H2

)}
, (34)

in (34), (a) can be derived from the null probability of a 2D Poisson point process in an area A

is exp(−λA) [18].

P
[
Pr,m(r)>Pr, j

]
| j|>m

=


1, r <

√
j2H2w

2(m−| j|)
α −m2H2

P
[

R j>

√
(m2H2+r2)w

2(| j|−m)
α − j2H2

]
, r ≥

√
j2H2w

2(m−| j|)
α −m2H2

=

 1, r <
√

j2H2w
2(m−| j|)

α −m2H2

exp
{
−πλ

(
(m2H2+r2)w

2(| j|−m)
α − j2H2

)}
, r ≥

√
j2H2w

2(m−| j|)
α −m2H2

(35)

fRm(r) is given from

fRm(r) =
d(1−P[Rm > r])

dr
= e−πλ r2

2πλ r. (36)
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Since P[Xm > x] is the CCDF of Xm, the PDF of Xm is

fXm(x) =
d(1−P[Xm > x])

dx

=
1

Bm

M

∏
j=−M, j ̸=m

P
[
Pr,m(x)> Pr, j

]
fRm(x), (37)

Combining (34), (35), (36), (37), we can obtain

fXm(x) =
2πλ

Bm
xexp

{
−πλx2

}
∏

−m≤ j<m
P
[
Pr,m(x)> Pr, j

]
| j|≤m

∏
m<| j|≤M

P
[
Pr,m(x)> Pr, j

]
| j|>m

(a)
=

2πλ

Bm
xexp

{
−πλFm

}
∏

m<| j|≤M
P
[
Pr,m(x)> Pr, j

]
| j|>m

(b)
=



2πλ

Bm
xexp

{
−πλ (Fm +Fm,m)

}
, 0 < x ≤ Im,(m+1)

· · ·
2πλ

Bm
xexp

{
−πλ (Fm +Fm,k)

}
, Im,k < x ≤ Im,(k+1)

· · ·
2πλ

Bm
xexp

{
−πλ (Fm +Fm,M)

}
, Im,M < x < ∞

(38)

where (a), (b) can be computed using the sum of a geometric series, Im,k, Fm, Fm,k are defined

in (4), (6), (7), which concludes our proof.

Appendix B

From (10), when the typical user is associated to the BS on the mth storey, the coverage

probability is

Cm =
∫

∞

x=0
P [SINRm(x)> T ] fXm(x)dx, (39)
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where fXm(x) is given in (38). Rewrite the SINRm(x) as γm(x) =
gm,0

P−1(m2H2+x2)
α
2 w−mQ

, where

Q = ∑
M
j=−M I j +N/β0. Then P [SINRm(x)> T ] can be derived as

P [SINRm(x)> T ]

= P
[
gm,0 > P−1 (m2H2 + x2)α

2 w−mT Q
]

=
∫

∞

0
exp
{
−P−1 (m2H2 + x2)α

2 w−mT Q
}

fQ(q)dq

= EQ

[
exp
{
−P−1 (m2H2 + x2)α

2 w−mT Q
}]

= exp
{
− T

SNRm

} M

∏
j=−M

LI j

(
P−1 (m2H2+x2)α

2 w−mT
)
, (40)

where SNRm is given in (14), define lm,x =
√

m2H2 + x2, l j,y =
√

j2H2 + y2,the Laplace trans-

form of I j is

LI j

(
P−1lα

m,xw−mT
)

= EI j

[
exp
{
−P−1lα

m,xw−mT I j
}]

= EΦ j

[
exp

{
−lα

m,xT ∑
i∈Φ j

h j,il−α

j,y w| j|−m

}]
(a)
= exp

{
−2πλ

∫
∞

z j

(
1−Lh j

(
lα
m,xT l−α

j,y w| j|−m
))

ydy
}

(b)
= exp

{
−2πλ

∫
∞

z j

(
1− 1

1+ lα
m,xT l−α

j,y w| j|−m

)
ydy

}

= exp

{
−2πλ

∫
∞

z j

y
1+ l−α

m,x T−1wm−| j|lα
j,y

dy

}
, (41)

where (a) comes from the probability generating functional (PGFL) of PPP [33], and (b) is

because h j ∼ exp(1). z j is the horizontal distance of the closest interfering BS on the jth storey,

similar with (33), it is derived as

z j =


z j

| j|≤m
, | j| ≤ m

z j
| j|>m

, | j|> m
(42)
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where

z j
| j|≤m

=

√
(m2H2 + x2)w

2(| j|−m)
α − j2H2, (43)

z j
| j|>m

=

 0, x < Im,| j|√
(m2H2 + x2)w

2(| j|−m)
α − j2H2, x ≥ Im,| j|

(44)

where Im,| j| can be computed using (4). Then LI j

(
P−1lα

m,xw−mT
)

can be derived as

LI j

(
P−1lα

m,xw−mT
)
=


LI j

(
P−1lα

m,xw−mT
)

| j|≤m
, | j| ≤ m

LI j

(
P−1lα

m,xw−mT
)

| j|>m
, | j|> m

(45)

employ a change of variable u =
(

l−α

j,y lα
m,xTw| j|−m

)−2/α

, we can obtain

LI j

(
P−1lα

m,xw−mT
)

| j|≤m
= exp

{
−πλQl2

m,xw
2(| j|−m)

α

}
, (46)

where

Q = T
2
α

∫
∞

T− 2
α

1

1+u
α

2
du

=
2T

α −2 2F1

[
1,1− 2

α
;2− 2

α
;−T

]
f or α > 2 (47)

here 2F1 [·] denotes the Gauss hypergeometric function. For | j|> m,

LI j

(
P−1lα

m,xw−mT
)

| j|>m

=

 exp
{
−πλQm,| j|l2

m,xw
2(| j|−m)

α

}
, x < Im,| j|

exp
{
−πλQl2

m,xw
2(| j|−m)

α

}
, x ≥ Im,| j|

(48)
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where

Qm,| j| = T
2
α

∫
∞

(| j|H)2

w
2(| j|−m)

α (m2H2+x2)T
2
α

1

1+u
α

2
du,

=
2T B2/α−1

m,| j|,x
α −2 2F1

[
1,1− 2

α
;2− 2

α
;− T

Bm,| j|,x

]
, (49)

where Bm,| j|,x = (| j|H)αwm−| j|(m2H2 + x2)−
α

2 . Plug (46), (48) into (40), we have

P [SINRm(x)> T ]

= exp
{
− T

SNRm

}
∏
| j|≤m

LI j

(
P−1lα

m,xw−mT
)

| j|≤m
∏

m<| j|≤M
LI j

(
P−1lα

m,xw−mT
)

| j|>m

= exp
{
− T

SNRm

}
exp

{
m

∑
j=−m

−πλQl2
m,xw

2(| j|−m)
α

}
∏

m<| j|≤M
LI j

(
P−1lα

m,xw−mT
)

| j|>m

=



exp
{
− T

SNRm
−πλQ

(
m2H2+x2)w− 2m

α −2πλ
(
m2H2+x2)Dm,m

}
, 0<x≤ Im,(m+1)

· · ·

exp
{
− T

SNRm
−πλQ

(
m2H2+x2)w− 2m

α −2πλ
(
m2H2+x2)Dm,k

}
, Im,k<x≤ Im,(k+1)

· · ·

exp
{
− T

SNRm
−πλQ

(
m2H2 + x2)w− 2m

α −2πλ
(
m2H2+x2)Dm,M

}
, Im,M <x<∞

(50)

in which Dm,k = ∑
M
n=1 Qm,n,kw

2
α
(n−m), Qm,n,k is given in (16). Combining (38), (39), (50), we

can get the coverage probability for the mth storey in (12).

Appendix C

From (23), the average ergodic rate of the typical user when it is associated to the BS on the

mth storey is

Am =
∫

∞

0
ESINRm [log2 (1+SINRm(x))] fXm(x)dx, (51)
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where fXm(x) can be found in Lemma 1. For a positive random variable X , E [X ] =
∫

∞

0 P [X > x]dx,

define lm,x =
√

m2H2 + x2,we obtain

ESINRm [log2 (1+SINRm(x))]

=
∫

∞

0
P [log2 (1+SINRm(x))> t]dt

(a)
=
∫

∞

0
P
[
gm,0 > P−1lα

m,xw−m(2t −1)Q
]

dt

=
∫

∞

0
e−

2t−1
SNRm

M

∏
j=−M

LI j

(
P−1lα

m,xw−m(2t −1)
)

dt, (52)

where (a) comes from employ T = 2t −1 in (40). Following the derivation in (50), (52) can be

further derived as

ESINRm [log2 (1+SINRm(x))] =

∫
∞

0 exp
{
− 2t−1

SNRm
−πλQt

(
m2H2+x2)w

−2m
α −2πλ

(
m2H2+x2)Dm,m,t

}
dt, 0<x≤ Im,(m+1)

· · ·∫
∞

0 exp
{
− 2t−1

SNRm
−πλQt

(
m2H2+x2)w

−2m
α −2πλ

(
m2H2+x2)Dm,k,t

}
dt, Im,k<x≤ Im,(k+1)

· · ·∫
∞

0 exp
{
− 2t−1

SNRm
−πλQt

(
m2H2+x2)w

−2m
α −2πλ

(
m2H2+x2)Dm,M,t

}
dt, Im,M <x<∞

(53)

in which

Qt =(2t −1)
2
α

∫
∞

(2t−1)−
2
α

1

1+u
α

2
du

=
2(2t −1)

α −2 2F1

[
1,1− 2

α
;2− 2

α
;1−2t

]
, (54)

and Dm,k,t = ∑
M
n=1 Qm,n,k,tw

2
α
(n−m), Qm,n,k,t is given in (27). Plug (53) into (51), we can get

the expression in (22).



142 Paper III

Appendix D

To obtain the minimum value of coverage probability and the corresponding BS density per

storey in (17), we employ the Newton’s method. Assume that λ is the only variable, the

coverage probability is

CM=1(λ ) = B0C0 +2B1C1, (55)

where B0C0 and B1C1 can be found in (18), (19). Take the first-order derivation of CM=1(λ )

and we have

CM=1′(λ ) =
−πPH2

1+Q
exp
{
−πλPH2}

+
∫ Hw− 1

α

0
2πx

(
1−πλKx2)exp

{
−πλKx2} , (56)

where P = Q
(

2+w− 2
α

)
+w− 2

α , K = 1+Q+ 2Q0,1w
2
α , Q and Q0,1 are defined in (15)

and (20). Then take the second-order derivation of CM=1(λ ) and we have

CM=1′′(λ ) =
π2P2H4

1+Q
exp
{
−πλPH2}

+
∫ Hw− 1

α

0

(
2λK2

π
3x5 −4Kπ

2x3
)

exp
{
−πλKx2} . (57)

Our objective is to find the λ ∗ when CM=1′(λ ∗) = 0. Choose a threshold ε which is close

to zero and an initial value λ0. In our simulation, we set ε = 10−6 and λ0 = 0. Compute λ1

according to

λn+1 = λn −
CM=1′(λn)

CM=1′′(λn)
, (58)

and continue the iteration until CM=1′(λn+1) < ε . Then we obtain the target BS density per

storey λ ∗ = λn+1 and the minimum coverage probability CM=1(λ ∗).
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