
Exploring Local Information for Graph

Representation Learning

Li Zhang

Department of Computer Science

University of Sheffield

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements. This

dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Li Zhang

April 2022

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Dr. Haiping Lu, for

his consistent guidance, support, patience. I want to thank him for giving me the opportunity

to do this PhD under his supervision.

I would like to thank Dr Nikolaos Aletras, Dr. Jun Ma and Yan Ge for their invaluable

advice, guidance and close research collaboration. I sincerely thank my panel: Mark and

Eleni for their invaluable suggestions and guidance of my PhD progress. I also thank the

China Scholarship Council and University of Sheffield PhD program for providing financial

supports.

Special thanks to my friends in the Machine Learning group who have been great

colleagues: Shuo, Xianyuan, Chao, Lawrence, Johanna, Chunchao, Peizhen, Juan, Tianqi,

Wenwen, Fariba, Wil.

Finally, I want to thank my love, my parents for their endless love and support.

Abstract

Graphs are important data structures that can capture interactions between individual entities.

The primitive graph representation is usually high-dimensional, sparse, noisy, and in irregular

forms, which is challenging for direct usage in downstream tasks (e.g., node or graph

classification). Various graph representation learning (GRL) techniques have been developed

to convert the raw graph data into low-dimensional vector representations while preserving

the intrinsic graph properties. Graph neural networks (GNNs) are currently the most popular

paradigm that can utilize nodes’ local information to assist their representation learning.

Local neighborhood information in graphs varies greatly for different nodes. Therefore,

direct neighborhood aggregation in GNNs is not an optimal choice. This thesis aims to

develop new GNNs by exploring and modeling different types of local information to

tackle the weaknesses of current GNNs in both algorithms and applications. We first

propose three new models: 1) node feature convolution for graph convolutional network

(NFC-GCN) to consider feature-level attention of local information; 2) learnable aggregator

for GCN (LA-GCN) to generalize NFC-GCN further by lifting constraints on the input

data format; and 3) hop-hop relation-aware GNN (HHR-GNN) to incorporate hop-level

attention of local information. Moreover, we apply HHR-GNN to two industrial graphs for

personalized video search and cross-domain recommendation tasks. Experimental studies

show that the proposed methods have outperformed related state-of-the-art methods in both

standard tasks of node/graph classification as well as application-specific tasks of search and

recommendation.

Important Notations and Abbreviations

Symbol Definition

A Adjacency matrix

Ar Adjacency matrix for r-th type edge

Â Normalized adjacency matrix

αi j Weight between node i and node j

Conv Convolution operation

di Node degree of node i

dd Document d′ embedding

d′
d Learned document d′ embedding

D Diagonal degree matrix

D(x,y) Discriminator

f (k)ag Aggregation function in the k-th layer of a model

G= (V,E ,X) Graph, nodes, edges, node feature

h,r,t Head entity, relation, tail entity

h, r, t Head, relation, tail embedding

h(k)r
i r−hop representation

h(l)
i Hidden representation of node i

H(l) Hidden output of l − th layer

IN Identity matrix

gw A function of eigenvalues

xii Important Notations and Abbreviations

IS Source domain

IT Target domain

k Filter size

L Laplacian matrix

Λ Diagnose matrix

λ0, ...,λN−1 Eigenvalues of laplacian matrix

Ni Neighborhood of node i

p The number of hops

qq Query q′ embedding

q′
q Learned query q′ embedding

rSus Predict score for source domain

rTut Predict score for target domain

s Stride

simi j Cosine similarity between node i and node j

uu User u′ embedding

u′
u Learned user u′ embedding

W(l) Weight matrix in the l − th layer

X′
i Local feature map

ŷc Click score

ŷr Correlation score between query and document

Yl f Label indicator matrix

xiii

Abbreviation Description

CDR Cross-Domain Recommendation

CF Collaborative Filtering

CG Click Graph

CMF Collective matrix factorization

CNN Convolutional Neural Network

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

GNNs-He GNNs for heterogeneous graphs

GNNs-Ho GNNs for homogeneous graphs

GRL Graph Representation Learning

HeG Heterogeneous Graph

HoG Homogeneous Graph

HHR-GNN Hop-Hop Relation-aware Graph Neural Network

IR Information Retrieval

KG Knowledge Graph

KG-NeuCMF KG-aware Neural Collec-tive Matrix Factorization

LA-GCN Learnable Aggregator for GCN

MI Mutual Information

MF Matrix Factorization

MLP Multilayer Perceptron

NCF Neural Collaborative Filtering

NA Neighborhood Aggregation

NFC Node-Feature Convolution

NLP Natural Language Processing

PVS Personalized Video Search

RNN Recurrent Neural Network

RS Recommender Systems

Table of contents

Important Notations and Abbreviations xi

List of figures xxi

List of tables xxvii

1 Introduction 1

1.1 Motivation and Research Questions . 3

1.2 Structure and Contributions . 4

2 Background 11

2.1 Graphs . 11

2.2 Graph Representation Learning . 13

2.2.1 Matrix Factorization-based GRL 13

2.2.2 Random Walk-based GRL . 14

2.2.3 Neural Network-based GRL . 15

2.3 Graph Neural Networks . 15

2.3.1 Convolution on Graphs . 16

2.3.2 GNNs for Homogeneous Graph Representation Learning 18

2.3.3 GNNs for Heterogeneous Graph Representation Learning 21

2.3.4 Comparison of Different GRL Methods 22

2.4 Knowledge Graph Embedding . 24

2.5 Personalized Video Search . 26

xvi Table of contents

2.5.1 Video Search . 26

2.5.2 Personalized Search . 26

2.5.3 Graphs based Information Retrieval 27

2.6 Knowledge Graph for Recommendation 28

2.6.1 Knowledge Graph for Recommendation 28

2.6.2 Cross-Domain Recommendation 29

I Algorithms 31

3 Node-Feature Convolution for Graph Convolutional Network 33

3.1 Introduction . 33

3.2 Methodology . 35

3.2.1 Problem Definition . 35

3.2.2 Neighbor Selection and Ordering 36

3.2.3 Node-Feature Convolution Layer 38

3.2.4 Graph Convolutional Layer . 39

3.2.5 Computational Complexity . 42

3.2.6 Differences with Existing GNNs 42

3.3 Experiments . 44

3.3.1 Datasets . 44

3.3.2 Baselines . 45

3.3.3 Hyperparameters Setting . 46

3.3.4 Performance for Node Classification 47

3.3.5 Effectiveness of NFC aggregation 49

3.3.6 Node Bandwidth Study . 51

3.3.7 Model Depth Study . 52

3.3.8 Discussion . 53

3.4 Summary . 54

Table of contents xvii

4 Learnable Aggregator for Graph Convolutional Network 57

4.1 Introduction . 57

4.2 Methodology . 60

4.2.1 Problem Definition . 61

4.2.2 Framework of LA-GCN . 61

4.2.3 Theoretical Studies of Aggregator 62

4.2.4 Mask Aggregator . 65

4.2.5 Auxiliary Model . 67

4.2.6 Computational Complexity . 68

4.2.7 Differences with Existing GNNs 68

4.3 Experiments . 70

4.3.1 Datasets . 70

4.3.2 Baselines . 71

4.3.3 Hyperparameters Setting . 71

4.3.4 Performance for Node Classification 73

4.3.5 Performance for Graph Classification 74

4.3.6 Parameter Sensitivity . 74

4.3.7 Effectiveness of Mask Aggregator 75

4.3.8 Interpretability Study . 76

4.3.9 Robustness Study . 77

4.4 Summary . 79

5 Hop-Hop Relation-aware Graph Neural Network 81

5.1 Introduction . 81

5.2 Methodology . 85

5.2.1 Problem Definition . 86

5.2.2 Theoretical Studies . 86

5.2.3 A Personalized Receptive Field 89

5.2.4 Hop-aware Projection . 90

5.2.5 Relation-score Learning . 90

xviii Table of contents

5.2.6 Hop-aware Aggregation . 92

5.2.7 Computational Complexity . 93

5.2.8 Differences with Existing GNNs 94

5.3 Experiments . 96

5.3.1 Datasets . 96

5.3.2 Baselines . 97

5.3.3 Hyperparameters Setting . 97

5.3.4 Performance for Node Classification 98

5.3.5 Interpretability Study . 100

5.3.6 Efficiency Study . 103

5.3.7 Different KGE Model Study . 104

5.4 Summary . 104

II Applications 107

6 Multi-Task GNN for Personalized Video Search 109

6.1 Introduction . 109

6.2 Methodology . 112

6.2.1 Problem Definition . 113

6.2.2 Semantic Representation Learning 114

6.2.3 Graph Representation Learning 115

6.2.4 Incorporating User Meta Information 118

6.2.5 Ranking Score Generation . 119

6.2.6 Model Training and Optimization 121

6.3 Experiment . 121

6.3.1 Datasets . 121

6.3.2 Baselines . 123

6.3.3 Hyperparameters Setting . 125

6.3.4 Performance for Click and Relevance Tasks. 125

Table of contents xix

6.3.5 Trade-off between Two Tasks. 126

6.3.6 Effectiveness of Graph Information. 126

6.3.7 Case Study. 128

6.4 Summary . 128

7 KG-aware Cross-Domain Recommendation 131

7.1 Introduction . 131

7.2 KG Construction for CDR . 134

7.3 Methodology . 135

7.3.1 Problem Definition . 136

7.3.2 Entity Embedding . 137

7.3.3 NeuCMF Module . 138

7.3.4 Model Training and Optimization 139

7.4 Experiment . 140

7.4.1 Datasets . 140

7.4.2 Baselines . 141

7.4.3 Hyperparameters Setting . 141

7.4.4 Performance for CDR . 143

7.4.5 Different Ways to Incorporate KG Information 144

7.4.6 Performance in Cold-Start Item Scenarios 144

7.5 Summary . 145

8 Conclusions and Future Directions 147

8.1 Conclusions . 147

8.2 Discussion . 149

8.3 Future Directions . 150

References 153

List of figures

1.1 The general GRL framework. The key idea of GRL is to encode the original

high-dimensional and sparse representation of each node (input) into a low-

dimensional space, which can preserve the information of the original graph

as much as possible. Then the learned embeddings can be used in downstream

tasks such as node/graph classification and so on. 2

1.2 The structured contributions of this thesis is that exploring different local

information for graph representation learning, which is applied to both stan-

dard tasks (node/graph classification) and application-specific tasks (search

and recommendation). 5

2.1 Homogeneous Graph and Heterogeneous Graph. 12

2.2 An example of a knowledge graph that contains entities and relations. . . . 23

3.1 A six-node subgraph from the Cora dataset [132]. Each node corresponds

to a machine learning paper, with a bag-of-words feature vector xi (i =

0,1,2, ...,5). Nodes 0–3 belong to Class A (Neural Networks), and nodes

4–5 belong to Class B (Probabilistic Methods). Individual features in xi are

not equally important for representing the central node 0. 34

xxii List of figures

3.2 NFC-GCN architecture. NFC-GCN consists of three main steps: (1) Neigh-

bor selection and ordering; (2) Node-feature convolution operating on node-

feature maps to obtain a flattened first-level node representation; and (3)

GCN: the first-level NFC representation is passed through an L-layer GCN

model (L is a hyperparameter) to learn a second-level node representation is

passed to a classifier. The figure is best viewed in color/on screen. 35

3.3 Convolution on sentence and node feature map. The node feature corresponds

to the word list, and the number of neighbors corresponds to the dimension

of each word vector. 38

3.4 Comparison with different layers. Take the red node as an example, the

red node’s first-order and second-order neighbors are respectively green

and purple nodes, as shown on the left. After a two-layer GCN, the central

node contains information from all first-order neighbors and second-order

neighbors as shown in (b) GCN-GCN. After one NFC and one GCN layer,

each node contains information from all its first-order (directly) and part

of its second-order neighbors’ information (indirectly) as in (c) NFC-GCN.

After two NFC layers ((d) NFC-NFC), the central node only contains the

two most similar first-order neighbors and part (less than in NFC-GCN) of

second-order neighbors’ information. 41

3.5 Differences between GCN, GAT, and NFC-GCN. In the aggregation process,

both GCN and GAT aggregate all the neighbors with different weights. The

weights β j, for each neighbor related to node degree are fixed in GCN. While

α j is learnable in GAT. But all the features in each feature vector share

the same weights β j, or αi, i, j ∈ (1,5). In contrast, our method performs

convolution operation on the selected node-feature map to assign different

weights (such as a11,a12, ...,a33) to different features in different neighbors. 43

3.6 Comparison of training accuracy with respect to the training epochs. 47

3.7 Comparison of training loss with respect to the training epochs. 48

List of figures xxiii

3.8 Visualization of the embeddings on the Cora dataset. We map the embeddings

learned from GCN, GAT and NFC aggregation to the 2-D space using t-SNE.

Node colors denote classes. 51

3.9 Effect of node bandwidth n on accuracy and time per epoch. 52

3.10 Performance comparison on deeper models. On the Cora, Citeseer and

PubMed datasets, we employ the same experimental setups and increase

layers of GCN and NFC-GCN to up to five. GCN-NFC has a better overal

performance for deeper models and its test accuracy is more steady than

GCN when we increase the number of layers. 53

4.1 LA-GCN framework. The key idea is to utilize an auxiliary model to as-

sist the aggregator to deal with different neighborhood information in a

customized schema. 61

4.2 LA-GCNMask consists of three steps: 1) train an auxiliary model with a

given node and the feature vectors of its neighbors; 2) generate the mask

for each neighbor from the auxiliary model; 3) aggregate the neighbors

(after multiplying the corresponding mask) to get a new representation of the

central node. 62

4.3 Visualization of the learned mask. The proposed aggregator can focus on

important neighborhood information (e.g. the neighbors from the same class,

or some highly relevant features) with the learned mask. The values showed

in the heat map are the real values of the weights. 76

4.4 Robustness studies: (a) and (b) show the node classification accuracy on

structure noisy graphs, and (c) and (d) show the node classification accuracy

on node feature noisy graphs. 78

xxiv List of figures

5.1 HHR-GNN architecture (the first layer): HHR-GNN first calculates its repre-

sentations at different hops, e.g., h(1)p
i is p-hop representation that aggregates

neighbors in the p-hop. Ar
i is the i-th row of r-th power of adjacency ma-

trix. Then the central node’s representation h(1)0
i and its representations at

different hops (h(1)1
i ,h(1)2

i , ...,h(1)p
i) will be fed to a NTN model to learn the

relation-scores. Finally, we concatenate each node’s embedding with its rep-

resentations at different hops weighted by their corresponding relation-scores

to get the new embedding. 86

5.2 (a) 0−1 relation-scores and 0−2 relation-scores of 21 nodes on Cora. (b)

MA, MD and MM relation-score of 21 nodes on IMDB. 101

5.3 Node classification results on Cora (a) and IMDB (b) by aggregating a central

node with a specific hop or type of neighbors. 102

5.4 Performance over training time on DBLP and IMDB. 103

6.1 Example top ranked results for the query “diy furniture from wood": the first

and third videos are not relevant to the query, but may still be interesting to

the user. 110

6.2 User-query graph and query-document click graph. In user-query graph,

nodes are users and queries, and edges mean users issued queries. Query-

document graph contains two types of nodes: queries and documents and

links mean clicks for query-document pairs by any user. 113

6.3 Query-Title Matching Model: train BERT with the triplet loss to get query

text embedding qq_t and video title embedding dd_t 114

List of figures xxv

6.4 An illustration of our GNN-based multi-task framework. Given the triple

<uu, qq, dd>, we first apply the QTMM and I3D to learn the semantic

representations of qq and dd . Then, we sample fixed-size neighbors for uu, qq,

dd from the u-q and q-d graphs and leverage the graph information with the

proposed hierarchical GNN architecture simultaneously capturing both local

and higher-order interactions among nodes to enhance their representation.

Finally, we combine representations learned from text, video and graph for

the click task and query-video relevance task for personalized video search. 115

6.5 β ’s influence to the prediction results. 126

6.6 Effectiveness of each graph module: (a) and (b) show the nDCG@1 of click

task and relevance task. NN-PVS is the baseline, only considering the user’s

meta information. GNN-AB means only A-B graph information is used in

the training process, such as GNN-UU means only the user’s neighboring

users (user-user graph information) are used in the learning process. 127

7.1 Knowledge graph is a natural bridge that connects items from different

domains. For example, “Lord of the Ring” in movies can get connected

with “Harry Potter” in books via related genre Fantasy. Such inter-domain

knowledge can reveal similar semantic relations among items from different

domains to further improve cross-domain recommendation. We construct a

new dataset and propose a new model to achieve this goal. 132

7.2 KG construction for Amazon products. 134

7.3 The framework of our model: KG-aware NeuCMF. It learns item representa-

tions from both KG (left) and user-item interaction matrices (right). Entity

(item) representations learned from KG contain both domain-specific and

domain-general information by utilizing graph autoencoding strategy, which

can help assist the CDR task. Item embeddings are learned by a neural CMF

model. To ensure the two types of embeddings are highly correlated, we

maximize their MI by the neural mutual information estimator (middle). . . 137

7.4 Different ways to incorporate KG information for CDR. 143

xxvi List of figures

7.5 Comparison of different models in cold-start items scenarios. 145

List of tables

3.1 Overview of the three datasets with standard splits as in the Fast-GCN [36]

(Val. means Validation). 44

3.2 Node classification accuracy (%) (mean ± 95% confidence interval over 100

runs). (Best; Second best) . 47

3.3 Node classification accuracy for different aggregation methods with five

neighbors and only one aggregation step (%) (mean ± 95% confidence

interval over 100 runs). 50

3.4 The effectiveness of NFC aggregation. Cen: central node (without convolu-

tion operation); Cov(C): central node with convolution operation; Cov(CN):

node-feature map (containing central node and neighbors’ features) with

convolution operation (%) (mean ± 95% confidence interval over 100 runs). 50

3.5 Node degree statistics. 51

4.1 Comparisons of the traditional aggregators and our proposed aggregator.

Outline of related work in term of fulfilled (
√

) and missing (×) desirable

characteristics (D3-n means node-level attention and D3-f means feature-

level attention in Desirable 3). 60

4.2 Overview of datasets for graph classification. 70

4.3 Node classification accuracy (%) (mean ± 95% confidence interval over 100

runs) . 72

4.4 Graph classification accuracy (%) (mean ± 95% confidence interval over

100 runs) . 73

xxviii List of tables

4.5 Node classification with different label size (%). The best results are in bold

and the second best ones are underlined. 73

4.6 Node structure and feature statistics. (H.Nd.: Highest Node degree, L.Nd.:

Lowest Node degree, M.Nd.: Median Node degree, and A.Nd: Average node

degree. Fea.De. means feature density). 75

4.7 Different aggregators for node classification (%). 76

5.1 Comparisons of other GNNs and our model: HHR-GNN. Outline of related

work in term of fulfilled (
√

) and missing (×) desirable characteristics. . . . 83

5.2 Comparison of Space Complexity . 94

5.3 Overview of the heterogeneous graphs. 97

5.4 Node classification for homogeneous graph (%) (mean ± 95% confidence

interval over 100 runs) . 99

5.5 Node classification for heterogeneous graph (F1-score) (mean ± 95% confi-

dence interval over 100 runs) . 99

5.6 Node classification results of different KGE models. No_rs means no relation-

score (%) (mean ± 95% confidence interval over 100 runs). 104

6.1 Overall performance of all models (%) (mean ± 95% confidence interval

over 20 runs) . 122

6.2 Overall performance of all models (%) (mean ± 95% confidence interval

over 20 runs) . 123

7.1 Statistics of the dataset. 140

7.2 Comparison of recommendation performance in Movie-Music (%) (mean

± 95% confidence interval over 100 runs). Best results: bold, second best

ones: underlined. 142

7.3 Comparison of recommendation performance in Movie-Book(%) (mean ±

95% confidence interval over 100 runs). Best results: bold, second best ones:

underlined. 142

Chapter 1

Introduction

Graphs, such as social networks, knowledge graphs and citation networks, are ubiquitous

data structures that can capture interactions (edges) between individual entities (nodes).

Except the structure (connectivity or topology) information, nodes in a graph are typically

associated with feature vectors [73, 240]. For example, in a citation network, nodes represent

documents, edges represent citations between documents, and node features represent textual

information, often as bag-of-words, i.e., sparse vectors of weighted word frequencies in a

document. Graphs can be broadly divided into homogeneous graphs (HoG, one type of nodes

and edges) and heterogeneous graphs (HeG, multiple types of nodes and edges) [218, 233].

Effective graph analysis can help us to understand various and complex graphs in a

systematic manner [113]. For example, by analysing graphs, we can recommend new friends

to a user in a social network and classify the role of a protein in the biological interaction

graph [72]. There are two general approaches for inference on graph datasets [154]. The

first is statistical relational learning (SRL) that develops statistical methods to model graph

datasets. Some representative methods include Probabilistic Relational Models (PRM),

Relational Dependency Networks(RDNs) Bayesian Logic Programming (BLP),Markov logic

networks (MLN)[64]. Generally, these methods model the dependency of objects (nodes)

using conditional random fields [108], however the inference of these models are quite

challenging due to the complicated relational structures among objects (nodes). Another

line research is based on the graph representation learning (GRL) methods, the key is to

2 Introduction

GRL

❖ Standard tasks

❏ Node Classification

❏ Graph Classification

❏ Link Prediction

❖ Application-specific tasks

❏ Search

❏ Recommendation

Downstream tasks OutputInput

Fig. 1.1 The general GRL framework. The key idea of GRL is to encode the original high-
dimensional and sparse representation of each node (input) into a low-dimensional space,
which can preserve the information of the original graph as much as possible. Then the
learned embeddings can be used in downstream tasks such as node/graph classification and
so on.

learn graph representations that map nodes, or entire (sub)graphs to another low-dimensional

space, which can reflect the information of the original graph as much as possible. Graph

representation learning (GRL) can automatically learn to encode graph structures into low-

dimensional embeddings, which has been widely recognized as an effective approach to graph

analysis. The learned representation can be used in downstream machine learning systems

and aid in standard tasks such as node classification [103], graph classification [215], link

prediction [161], or application-specific tasks such as search [179, 169], recommendation

[77, 106]. Figure 1.1 shows the GRL framework that takes a high-dimensional and sparse

graph as an input in downstream tasks.

GRL methods can be categorized into four groups: matrix factorization based approaches

[157, 16, 5, 26, 145], random walk based approaches [151, 152], neural network based

approaches and graph neural networks (GNNs) approaches [103, 73]. The former three

types of methods are limited to transductive settings and cannot incorporate node features in

the learning process [225]. Different from previous methods, GNNs are currently the most

popular paradigm, largely owing to their efficiency, inductive learning capability and their

ability to combine graph structure and node features simultaneously in the learning process

[72, 191].

1.1 Motivation and Research Questions 3

The GNN framework mainly consists of two key steps: neighborhood aggregation and

feature transformation, where nodes aggregate and transform the local neighborhood in-

formation in each layer [72, 215]. By stacking multiple GNN layers, information can be

propagated further through the graph structure and we can embed nodes into low-dimensional

representations, which naturally combines graph structure and node features in the learning

process. This schema iteratively updates the representation of a node by aggregating repre-

sentations from its local neighborhood and transformation, which can also be treated as a

general neural message-passing process [65]. The obtained representation can be fed into

down-stream tasks. GNNs have been successfully applied in various tasks, such as node

classification [103, 191, 72], link prediction [238], recommender system [189, 201, 205],

knowledge graph completion [161, 9].

1.1 Motivation and Research Questions

The key of GNNs is to utilize a node’s local neighborhood information to assist its represen-

tation learning. Local neighborhood information in graphs varies greatly for different nodes.

Therefore, direct neighborhood aggregation in GNNs is not an optimal choice. This thesis

aims to develop new GNN algorithms that can learn better node or graph representations

by exploring and modeling different types of local information. Before describing research

questions, I will give a brief background about them and detailed one will be presented in

Chapter 2.

• Current GNN models are designed with the homophily assumption that connected

nodes are likely to share the same label. However, real-world graphs are noisy and

adjacent nodes do not necessarily imply similarity. Some strategies have been proposed

that allow for node-level attention of local neighborhood information, however all

individual features in a node feature vector are still treated equally. Each feature

within a neighbor feature vector may play a different role for the central node’s

representation learning. Therefore, the first research question (Q1) is how to design

4 Introduction

the GNN architecture that can consider both node-level and feature-level attention of

the adjacent neighbors in the learning process?

• For node representation learning, only the first-order neighborhood information may

be not enough, which is caused by the sparsity or heterophily. Instead of only utilizing

adjacent neighbors, GNNs can also leverage multi-scale neighborhood information to

assist a given node’s representation learning. Intuitively, neighbors from different hops

show different importance for the central node’s representation learning. However,

existing methods usually aggregate the central node with different hops of neighbors

directly, the real meaningful relations between central node and neighbors from differ-

ent hops have not been explored by current models. Therefore, the second research

question (Q2) is how to design the GNN architecture that can incorporate hop-level

attention of local neighborhood information in the learning process?

• Industrial graphs, such as click graphs (CGs), knowledge graphs (KGs), are usually

large-scale, sparse, and heterogeneous (containing different types of nodes and edges),

which are quite challenging to deal with. The goal of GRL is to encode the intrinsic

structural and semantic properties of the input graph into the low-dimensional latent

embedding vectors, thus can benefit application-specific tasks (personalized video

search and cross-domain recommendation). Therefore, the third research question

(Q3) is how to apply the proposed GNN for application-specific tasks by leveraging

the local neighborhood with rich semantic information?

1.2 Structure and Contributions

This section outlines the structure of this thesis, alongside presenting the key novel contribu-

tions as shown in Fig. 1.2. The first chapter introduces the overview of GNNs based graph

representation learning and our motivation. Chapter 2 presents a survey of the literature

relating to the topics explored in this thesis. After that, this thesis is organized into two parts

largely. Part I contains three chapters that present three new GNN algorithms and Part II

1.2 Structure and Contributions 5

NFC-GCN

LA-GCN

HHR-GNN

MGCN-PVS

KG-aware
CDR

Node
Classification

Graph
Classification

Video Search

Recommendation

TasksMethodsLocal Information

Feature-level

Node-level

Hop-level

Exploring Local Information for Graph Representation Learning

Fig. 1.2 The structured contributions of this thesis is that exploring different local information
for graph representation learning, which is applied to both standard tasks (node/graph
classification) and application-specific tasks (search and recommendation).

contains two chapters that present how to apply the proposed GNN to industrial graphs (click

graphs, knowledge graphs) and applications (personalized video search and cross-domain

recommendation). Finally, Chapter 8 summarises the findings and contributions of this thesis.

This chapter also presents future research directions in the area based on the work presented

in the prior chapters. The major contents of Chapters 2-7 are summarized as follows.

Chapter 2: Background presents a survey of the literature relating to the topics explored

in this thesis. This chapter begins with describing definitions of homogeneous graphs,

heterogeneous graphs, graph representation learning, and graph neural networks. It then

presents representative GNN extensions for both homogeneous and heterogeneous graphs,

which will help to describe the motivation of works in Part I. Additionally, this chapter

reviews related technical skills: convolution operation and knowledge graph embedding that

6 Introduction

will be used in Part I. Finally, two industry tasks: personalized video search and cross-domain

recommendation are introduced, which will help to describe the motivations of works in Part

II.

In Part I: Algorithms, we introduce three new GNN models on node and graph classifica-

tion, which are important and standard graph mining tasks.

• Chapter 3: Node-Feature Convolution for Graph Convolutional Networks presents

a new node-feature convolutional (NFC) layer for GCN. The NFC layer first constructs

a feature map using features selected and ordered from a fixed number of neighbors. It

then performs a convolution operation on this feature map to learn the node representa-

tion. In this way, we can learn the usefulness of both individual nodes and individual

features from a fixed-size local neighborhood. This chapter also introduces experi-

ments on node classification task to show the superior performance of our algorithms

over existing methods.

• Chapter 4: A Feature-Importance-Aware and Robust Aggregator for GCN extends

the NFC-GCN model to a more flexible and general framework by lifting constraints

on the input data format. Specially, we unify current learnable aggregators in a general

framework: Learnable Aggregator for GCN (LA-GCN). Under this framework, this

chapter presents a new model called LA-GCNMask that learns a specific mask for

each neighbor of a given node, allowing both node-level and feature-level attention

of local neighborhood information. Additionally, experiments on seven graphs for

node classification and graph classification tasks in this chapter show the superior

performance of our algorithm over existing models.

1.2 Structure and Contributions 7

Contribution 1: We propose two new GNN models: NFC-GCN and LA-

GCNMask to solve Q1. NFC-GCN performs a convolution operation on the

fix-sized feature map constructed by the central node and selected neighbors,

and LA-GCN learns a specific mask for each neighbor of a given node, which

allows the two models can consider both node-level and feature-level attention

of local neighborhood information in the learning process.

Chapter 5: Hop-Hop Relation-aware Graph Neural Networks proposes to leverage

knowledge graph embedding (KGE) methods to automatically learn the relationship

(relation-score) between a given node and its different hops of neighbors, which

allows for hop-level attention of local neighborhood information. This is a more

flexible and general local neighborhood aggregation framework that can be applied

to both homogeneous and heterogeneous graphs representation learning. Finally,

experimental results in this chapter for node classification on both types of graphs show

the competitive performance on both accuracy and efficiency of our model compared

to state-of-the-art GNNs models.

Contribution 2: We propose a new aggregation framework: HHR-GNN to solve

Q2. HHR-GNN leverages KGE models to learn the relation-scores between a

given node and its different hops of neighbors, and this mechanism can achieve

the hop-level attention of local neighborhood information in the learning process.

In Part II: Applications, we apply and modify HHR-GNN proposed in Chapter 5 for two

real-world applications: personalized video search and cross-domain recommendation.

• Chapter 6: A GCN-based Multi-task Learning Framework for Personalized

Video Search proposes to apply GNNs to enhance the user, query and document

representation learning by utilizing their local neighboring nodes from the user-query

graph and click graph. We apply the hop-aware projection strategy as in HHR-GNN to

capture a given node’s first-order (i.e., user-query) and second-order (i.e., user-user)

8 Introduction

interactions in the graphs. Considering the real-industry graphs with millions of nodes

and edges, this chapter also presents an efficient, localized convolution by sampling

fixed-size neighbors from graphs. Finally, we conduct extensive experiments on a large-

scale real dataset obtained from a well-known video search platform. Experimental

results show that our proposed model can significantly outperform most state-of-the-art

personalized search methods.

• Chapter 7: Knowledge-aware Cross-Domain Recommendation proposes to apply

knowledge graph (KG) to assist the cross-domain recommendation. To this end, we

first construct a new dataset AmazonKG4CDR from the Freebase and a subset of

Amazon in three domains: movies, books, and music. Then, this chapter presents a

new framework, KG-aware Neural Collective Matrix Factorization (KG-NeuCMF)

by leveraging KG to enrich item representations. It first applies the relation-specific

projection as in HHR-GNN to learn item embeddings to capture both domain-specific

and domain-general knowledge from adjacent and higher-order neighbors in the KG.

To further improve KG-aware item embeddings, we maximize the mutual information

between representations learned from the KG and user-item matrix. Finally, we conduct

extensive experiments on the newly constructed dataset and demonstrate that our model

significantly outperforms the best-performing baselines.

Contribution 3: It is the first time to apply GNNs to two industry tasks: person-

alized video search (PVS) and cross-domain recommendation (CDR), where

the user relationship, click graphs for PVS and knowledge graphs for CDR

can be utilized to assist the two tasks. Considering the industry graphs are

heterogeneous and contain millions of nodes and edges, we apply the sampling

strategy and hop-aware (relation-specific) projection to efficiently and effec-

tively leverage the local neighborhood information to assist the central node’s

representation learning (Q3).

Chapter 8: Conclusion and Future work summarises our findings and contributions of

this thesis. We also present future research directions in the area based on the work presented

1.2 Structure and Contributions 9

in the prior chapters. The contents of this thesis are based on the following publications

and papers that are currently under review, for which I am a leading author. The technical

contents of Chapters 4 has appeared in ACM copyright materials, with the permission to

preprint granted by ACM.

1. Li Zhang, Heda Song, Nikolaos Aletras, and Haiping Lu. "Node-Feature Convolution

for Graph Convolutional Networks." Pattern Recognition (2022).

2. Li Zhang, and Haiping Lu. "A Feature-Importance-Aware and Robust Aggregator for

GCN", in Proceedings of the 29th ACM Conference on Information and Knowledge

Management (CIKM 2020), Galway, Ireland, pp. 1813-1822, (2020).

3. Li Zhang, Yan Ge, and Haiping Lu. "Hop-Hop Relation-aware Graph Neural Net-

works.".

4. Li Zhang, Lei Shi, Jiashu Zhao, Juan Yang, Tianshu Lyv, Dawei Yin and Haiping

Lu. "A GCN-based Multi-task Learning Framework for Personalized Video Search".

in Proceedings of the 15th ACM International Web Search Data Mining Conference,

2022.

5. Li Zhang, Ge Yan, Jun Ma, Jianshu Zhao, Jianmo Ni, Lei Shi, Dawei Yin and Haiping

Lu. "Knowledge-aware Neural Collective Matrix Factorization for Cross-domain

Recommendation." .

Chapter 2

Background

In Chapter 1, we have shown the importance of graph representation learning and the most

effective approaches: GNNs. Therefore, in this chapter, we start with definitions of different

types of graphs and classical GRL models. After that, we introduce graph neural network

and representative GNN extensions for both homogeneous and heterogeneous graphs to gain

insights of the shortcomings of current GNNs. Additionally, this chapter reviews related

technical skills: convolution operation and knowledge graph embedding that will be used in

Part I. Finally, two application-specific tasks: personalized video search and cross-domain

recommendation are introduced for Part II.

2.1 Graphs

Definition 2.1.1. Graph. A graph with N nodes can be represented as G= (V,E ,X), where

node vi ∈ V , edges (vi,v j) ∈ E (i, j = 1, ...,N), and a feature matrix X ∈ RN×D containing N

D-dimensional feature vectors. An adjacency matrix A is commonly used to represent the

structure of a graph and matrix entries indicate the relationships among nodes.

Graphs, such as social networks, knowledge graphs and citation networks, are ubiquitous

data structures that can capture interactions between individual nodes as defined in Definition

2.1.1. In a citation network, nodes represent documents, edges represent citations between

documents, and node features represent textual information often as bag-of-words, i.e., sparse

12 Background

Homogeneous Graph Homogeneous Graph

Fig. 2.1 Homogeneous Graph and Heterogeneous Graph.

vectors of weighted word frequencies in a document. Graphs can be broadly divided into

homogeneous graphs (HoG) and heterogeneous graphs (HeG) [218, 233] defined as follows:

Definition 2.1.2. Homogeneous Graph [218]. Homogeneous graph is a graph with one

types of nodes and links.

Definition 2.1.3. Heterogeneous Graph [218]. Heterogeneous graph is a graph with multiple

types of nodes and links, each node is associated with a node type, and each link is associated

with a link type. It is worth noting that the type of a link Ei j automatically defines the types

of nodes vi and v j on its two ends.

As shown in Fig .2.1, in the homogeneous graph (citation graph), there is only one type

of node (Paper) and edge (Citation), and there exists three types of nodes (Author, Paper,

Conference) and two types of edges (AP, PC) in the heterogeneous graph.

Heterogeneous graph is associated with a node type mapping function fv: V → Tv and a

link type mapping function fe: E → Te, where |Tv| + |Te| > 1. If both Tv =1 and Te =1, it

is a homogeneous graph with the same type of nodes and edges. The heterogeneous graph

can be represented by a set of adjacency matrices {Ar}R
r=1 (R=|Te|), and Ar ∈ RN×N is an

adjacency matrix where Ar[i, j] is non-zero when there is a r-th type edge from v j to vi. In

homogeneous graphs, the adjacency matrix is simplified to A ∈ RN×N (R=1).

Nodes or edges affiliated with various attributes are commonly observed in graphs besides

the topological structure, such as the node features and edge types information [40, 57, 134].

2.2 Graph Representation Learning 13

In this view, both the homogeneous graphs (with node features) and the heterogeneous graphs

can be both called attributed graphs.

2.2 Graph Representation Learning

Definition 2.2.1. GRL [218]. Given a graph denoted as G= (V,E ,X), GRL is a mapping

function f : vi → hi ∈ Rd ,where d ≪ |V|. The objective function is to make the similarity

between hi and h j explicitly preserve the connectivity information of vi and v j.

Graph representation learning (GRL) aims to represent each node in a graph or a graph

into low dimensional vector(s), meanwhile preserve the graph structure and the inherent

properties of the graph, as defined in Definition 2.2.1. The learned embeddings can be

used in various down-stream tasks such as node classification, link prediction, clustering

[103, 161, 223]. Fig. 1.1 shows a general GRL pipeline that takes high-dimensional and

sparse connectivity information as input to learn the low-dimensional and dense vectors,

which can be used in different downstream tasks.

Graph representation leaning methods can be categorized into the factorization-based,

random walk-based and neural network-based approaches [73].

2.2.1 Matrix Factorization-based GRL

Early methods for learning representation for nodes mainly focus on matrix factorization (MF)

approaches. They are directly inspired by classic techniques for dimensionality reduction

[16, 5, 157, 98].

In adjacency matrix, a row vector or column vector can be used as the vector repre-

sentation of a node, but the formed representation space is N-dimensional, where N is the

total number of nodes. Matrix factorization-based GRL aims to learn a low-dimensional

vector space for each node, in contrast with the N-dimensional space, meanwhile preserves

the pairwise similarity. For vi and v j, the pairwise node similarity of hi and h j should

14 Background

approximate the original pairwise similarity and the loss function can be defined as:

L= ∑
(vi,v j)∈V

∥hT
i h j −d(vi,v j)∥2. (2.1)

d(vi,v j) is the original similarity of vi and v j. There are a large number of GRL methods,

such as Laplacian Eigenmaps (LE) [16], Graph Factorization (GF), GraRep [5], and HOPE

[145] all fall firmly within this class and they differ primarily in the used pairwise similarity

measure d(vi,v j). GF defines d(vi,v j) based on the adjacency matrix Ai j. GrapRep is based

on the powers of the adjacency matrix, and HOPE is based one neighborhood overlaps.

2.2.2 Random Walk-based GRL

The adjacency matrix A contains the topology of graph and every node’s representation,

however each node representation is usually a sparse, discrete, and high-dimensional vector

due to the nature of sparseness in large-scale networks, which is very similar with the

word representation in the natural language processing (NLP) [151]. The development of

Word2Vector [135, 136], significantly improves the effectiveness of word representation

by transforming sparse, discrete and high-dimensional vectors into dense, continuous and

low-dimensional vectors.

Inspired by Word2Vec, DeepWalk [151] generates random paths over a graph. It regards a

node as a word, a random path as a sentence, and the neighborhood as the context. Word2Vec

applies the SkipGram model that maximizes the co-occurrence probability among the words

that appear within a window size in a sentence [135]. Given the representation hi of vi,

DeepWalk aims to maximize the average logarithmic probability of its neighbors in the walk,

It can be described as following:

L= ∑
(vi∈V)

∑
v′i∈Wvi

−log(P(h′
i | hi)). (2.2)

Wvi is a uniformly random walk taking vi as the root. P(h′
i | hi) can be calculated as following:

2.3 Graph Neural Networks 15

P(h′
i | hi) =

exp(hT
i h′

i)

∑vk∈V exp(hT
i hk)

. (2.3)

The success of DeepWalk motives many subsequent studies [153]. DeepWalk relies on

simple unbiased random walks over the graph, while Node2vec [70] adopts a more flexible

walk strategy by introducing two hyper-parameters to determine depth versus breadth of the

walk. LINE explicitly models the first-order and second-order graph proximity instead of

a fixed-length random walks [181]. Besides, [153] learns node embeddings with truncated

random walks that skip some nodes in a window size. [34] measures the similarity by using

a hyperbolic rather than Euclidean, distance measure.

2.2.3 Neural Network-based GRL

Given the huge success of deep learning techniques, efforts have been made to generalize

them to graphs, which have opened a new chapter of graph representation learning. In [116],

gated recurrent units are introduced in the propagation step. The neural graph fingerprints

method [50] further introduces a convolution-like propagation rule. PATCHY-SAN [143]

selects and normalizes a fixed-size neighborhood for a given node, then CNNs can be

applied to learn the neighborhood structure information. Structure Deep Network Embedding

(SDNE) [198] extends the traditional deep autoencoder [193] to learn from the node structure

information to get a low-dimensional embedding for each node. Besides these mentioned

methods, graph neural networks (GNNs) are currently the most popular methods and we will

introduce GNNs in Sec. 2.3 specially.

2.3 Graph Neural Networks

The matrix factorization-based, random walk-based and neural network-based methods (such

as PATCHY-SAN, SDNE) only utilize graph structure (without node features or attributes) to

learn new node representations. Graph neural networks (GNNs) have been first introduced

in [68]. They consist of an iterative process which propagates the node states until the

16 Background

node representation reaches a stable fixed point. In recent years, convolutional neural

networks (CNNs) [109] have been successfully applied to tackle problems such as image

classification[107], [99] semantic segmentation [66] or machine translation [63]. Inspired

by this, there is an increasing interest in generalizing CNNs to the graph domain. These

convolutional networks on graphs are now commonly known as Graph Convolutional Neural

Networks (GCNNs) or simply GNNs.

2.3.1 Convolution on Graphs

The convolution operation in CNN is only defined for regular grids, thus it requires special

designs of localized convolutional filters on graphs due to the irregular connectivity of nodes

in a graph. Convolution on graphs fall into two categories, spectral-based and spatial-based.

Spectral-based approaches define graph convolutions by introducing filters from the perspec-

tive of graph signal processing [168] where the graph convolutional operation is interpreted as

removing noises from graph signals. Spatial-based approaches inherit ideas from information

propagation. In this section, we will introduce the spacial convolution, spectral convolution

on graphs, then the representative GNN extensions for both homogeneous and heterogeneous

graph representation learning.

Spacial Convolution. Analogous to the convolutional operation of a conventional CNN

on an image, spatial-based methods define graph convolutions based on a node’s spatial

relations [50, 143, 138]. One of the challenges of these approaches is to define an operator

which works with different sized neighborhoods and maintains the weight sharing property

of CNNs. In [50], the authors used five different weights at each hidden layer for nodes

with different node degree. The local message-passing architecture works well for the

low degree of organic molecules, but it can not be applied to large graphs with wide node

degree distributions. [11] extends CNN to graphs by introducing "diffusion-convolution"

operation, and it defines the neighborhood by using the power of a transition matrix and

learns the weights for each input channel and neighborhood degree. [143] constructs a

fixed neighborhood, which can be treated as the receptive field for a node, then the CNN

2.3 Graph Neural Networks 17

architecture can be used. [138] presents mixture model CNNs (MoNet), a spatial approach

which provided a unified generalization of CNN architectures to graphs.

Spectral Convolution. The spectral convolutions on graphs [25] can be defined as the

multiplication of a signal x ∈ RN with a filter gw parameterized by w ∈ RN in the fourier

domain as following:

gw ⋆x = Ugw(Λ)UT x. (2.4)

gw can be seen as a function of eigenvalues of the graph laplacian matrix L, and L is defined

as

L = IN −D− 1
2 AD− 1

2 = UΛUT , (2.5)

where IN is an identity matrix, D is a diagonal degree matrix with Dii =∑ j Ai j. U is the matrix

of eigenvectors of the L. Λ = diag([λ0, ...,λN−1]) ∈ RN×N and λ0, ...,λN−1 are eigenvalues

of L. Eq. (2.4) incurs expensive computation of the laplacian eigenvectors (O(N2)).

To circumvent this problem, Chebyshev Spectral CNN (ChebNet) [42] applies a polyno-

mial function to approximate gw(Λ). The Chebyshef polynomial is recursively defined as

Tk(x) = 2xTk−1(x)−Tk−2(x), with T0(x) = 1 and T1(x) = x. Then a filter can be parameter-

ized as the truncated expansion with order K as following:

gw(Λ)≈
K

∑
k=0

wkTk(Λ̃), (2.6)

where Λ̃ = 2Λ/λmax − IN is a diagonal matrix of scaled eigenvalues in [-1,1]. The filter

operation can be written as:

gw ⋆x ≈
K

∑
k=0

wkTk(L̃)x, (2.7)

where L̃ = 2L/λmax − IN . Tk(L̃) can be calculated using the recurrence relation: Tk(L̃) =

2L̃Tk−1(L̃)−Tk−2(L̃), and the entire filter operation cost is O(KN).

GCN [103] further simplifies Eq. (2.7) and limits K = 1, and the filter parameter wk is

shared over the whole graph. GCN bridges the gap between spectral-based approaches and

spatial-based approaches, which has developed rapidly recently due to its attractive efficiency,

18 Background

flexibility, and generality. For signal X ∈ RN×D with D input channels (i.e., a D-dimensional

feature vector for every node) and D1 filters, Eq. (2.7) (the convolved signal matrix) can be

written as:

H(1) = σ

(
ÂXW(0)

)
, (2.8)

where Â = D̃− 1
2 ÃD̃− 1

2 is a normalized adjacency matrix of the undirected graph G with

added self-connections Ã = A+ IN, D̃ is defined with its diagonal entries as D̃ii = ∑ j Ãi j,

W(0) ∈ RD×D1 is a trainable input-to-hidden weight matrix, σ(·) denotes an activation

function, such as the ReLU(·) = max(0, ·), and H(1) ∈ RN×D1 is the matrix of activation in

the first layer. Thus, the propagation rule can be written as:

H(l+1) = σ

(
ÂH(l)W(l)

)
, (2.9)

where W(l) ∈ RDl−1×Dl is a layer-specific trainable weight matrix and H(l) ∈ RN×Dl is the

matrix of activation in the l-th layer. H(0) = X is the node feature matrix.

In Eq. (2.9), a GCN layer can be divided into two steps: (1) aggregating the given node

and its neighbors’ feature vectors with different weights (according to the node degrees):

ĥ(l)
i = h(l)

i + ∑
j∈Ni

1√
did j

h(l)
j (j ∈Ni), (2.10)

where di and d j are the node degrees of node vi and node v j respectively, and h(l)
i , h(l)

j are

the representations of vi, v j of the l-th layer, Ni is the neighborhood of vi in the graph; (2)

feeding the averaged feature vector to a fully-connected neural network.

2.3.2 GNNs for Homogeneous Graph Representation Learning

The majority of current GNNs focus on homogeneous graphs (GNNs-HO), and we review

two types of GNN extensions that are closed related to our model in Chapter 3, 4 and 5.

Sampling-based methods. Eq. 2.10 shows that GCN learns a new node representation

from features of all its neighbors. In real-world graphs, the number of neighbors for a given

node can range from one to hundreds or even thousands. Therefore, some nodes may not have

2.3 Graph Neural Networks 19

sufficient number of neighbors to aggregate information, while some other nodes may have

their own features h(l)
i being “washed out” due to aggregating information from too many

neighbors [115]. Moreover, varying number of neighbors can lead to neighborhood explosion

which subsequently causes computational problems, e.g., excessive space (memory) [103]

and time complexity [72, 36].

Instead of considering all neighbors, some methods apply sampling strategies to only

aggregate a part of neighbors [123]. GraphSAGE [72] uniformly samples a fixed number

of neighbors and aggregates them with a sum, mean, LSTM or maxpooling aggregator as

follows:

ĥ(l)
i ≈ h(l)

i +aggregator(h(l)
j , j ∈ N̂i), (2.11)

where N̂i is the neighborhood generated by a fixed-length random walk, and they can come

from a different number of hops, or search depth, away from a given node. FastGCN

[36] interpretes graph convolutions as integral transforms of embedding functions and

directly sampled the nodes in each layer independently. JP-networks [216] samples learned

intermediate representations for a given node to get the final node representation. LLC [209]

proposes to learn layer-wise connections instead of using all the intermediate representations

as in JP-networks. PASS [224] proposes to choose the best sampling policy, e.g., the

dot product similarity measure, or concatenation-based measure, or random choice, by

propagating gradients through the non-differentiable sampling operation. [37] provides the

a theoretical analysis for sampling-based models and also proposes a generic and efficient

doubly variance reduction schema.

Besides sampling strategies, some dropout tricks are proposed. DropEdge [156] randomly

removes a set of edges. Graph DropConnect (GDC) [75], and GeniePath [124],learns the

connections in a graph, jointly with GNN model parameters. PTDNet [127] prunes the graph

edges by penalizing the number of task-irrelevant edges in the graph with parameterized

networks. [148] shows analyze the theoretical properties of dropout-based GNN in details.

These sampling-based methods mainly focus on how to select neighbors, but do not treat

the selected neighbors differently in the latter aggregation step.

20 Background

Neighbor weighting-based methods. GCN aggregates neighbors with fixed weights

inversely proportional to the central node and neighbors’ node degrees. Once the graph

structure is given, the weights are fixed. Many algorithms have been proposed to treat the

neighbors differently in neighborhood aggregation process. Disentangled graph convolutional

network (DisenGCN) [129] proposes a neighborhood routing mechanism to identify the

factor that may have caused the link from a given node to one of its neighbors, and accordingly

send the neighbor to the channel responsible for that factor. Then each channel can perform

an aggregation independently, which means each cluster of neighbors are treated differently

in DisenGCN. Inspired by attention mechanisms [190], Graph Attention Networks (GAT)

introduces an attention mechanism to dynamically assign weights to different neighbors

[191] as:

ĥ(l)
i = h(l)

i + ∑
j∈Ni

αi jh
(l)
j , (2.12)

where αi j is the learned weights with a shared attention mechanism. GATv2 [24]further

extends GAT to a more expressive dynamic attention mechanism and structure learning

graph attention Networks (SLGAT) [231] attentions both the directly linked and higher-order

neighbors.

Although each node is treated differently, all individual features in a feature vector share

the same weight, without considering their individual importance. Masked GCN [219]

learns a diagonal mask matrix that can determine which attributes can be propagated to

the central node, LA-GCN [235] and GNN-Film respectively introduce an auxiliary model

and “feature-wise linear modulations” (FiLM) [150] for a feature-wise modulation in the

neighborhood aggregation process. The two methods considered all neighbors, which is not

necessary and directly learning the mask or FiLM need a very huge model, especially for

graphs with high-dimensional node features. Learnable Graph Convolutional Layer (LGCL)

[58] applies CNN on the reorganized embeddings (learned from GCN) of the central node

and its neighbors, rather than the original features. The reorganization of node embeddings

breaks the original correspondence between node representations.

2.3 Graph Neural Networks 21

2.3.3 GNNs for Heterogeneous Graph Representation Learning

Learning models on heterogeneous graphs requires different considerations to effectively

represent their node and edge heterogeneity. Recently, some works have attempted to model

the heterogeneous graph by using GNNs [55, 86, 47, 218]. RGCN [161] and HetGNN [233]

use either distinct linear projection weight or type-specific RNN to encode features for each

type of adjacent neighbors. Based on RGCN, R-HGNN [226] adds a cross-relation message

passing module to improve the interactions of node representations across different relations.

Some methods [244, 118] propose to learn the heterogeneous graph structure and model

parameter simultaneously. However, these models do not consider central nodes’ high-order

neighbors. Another type of algorithms utilize meta-paths to model higher-order proximity

and the mata-path is defined as:

Definition 2.3.1. Meta-path [178]. A meta-path is a path defined on the network schema in a

form of v1
r1−→ v2

r2−→ ...
rp−→ vp+1, where v and r are node types and link types, respectively.

Definition 2.3.1 defines a composite relation R = r1 ◦ r2...◦ rp between node v1 and vp+1.

Given the composite relation R, the adjacency matrix of the meta-path can be obtained by

multiplications of adjacency matrices as:

AR = Ar1Ar2 ...Arp . (2.13)

For example, two Authors can be connected by the meta-path Author-Paper-Author (APA)

via the meta path A AP−→ P PA−→ A (a two-step walk), and the co-author (AA) graph can be

obtained by the multiplication of AAP and APA.

Given the manually defined meta-paths, Heterogeneous Graph Attention Network (HAN)

[206] only aggregates two end nodes along the meta-path, which results in information loss.

Moreover, this is a two-stage approach and requires hand-crafted meta-paths, which will

significantly affect the performance of downstream tasks. Some models propose to learn the

meta-path, Graph Transformer Networks (GTN) [164] learns a soft selection of edge types for

generating multiple meta-paths, RMS-HRec [144] trains a reinforcement learning (RL) based

policy network to identify the high-quality meta-paths, but these learned meta-paths are still

22 Background

general rules and may not be suitable for every node in a graph. Besides, the intrinsic design

and implementation (e.g., sampling neighbors based on the manually defined meta-paths, or

recalculate the new adjacency matrix in each training epoch) in GNNs-HE make them very

slow when modeling large-scale heterogeneous graphs.

2.3.4 Comparison of Different GRL Methods

In this subsection, we compare the advantages and disadvantages of the mentioned GRL

methods.

MF-based models view the graph representation learning as a low-dimensional approxi-

mation of the pairwise (node-node) similarity, these models usually assume that connected

nodes should learn similar embeddings in the embedding space. Many classical dimension-

ality reduction methods can be applied, which are mathematically transparent. However,

they failed to capture higher-order relationships among nodes. The key difference between

random walk-based and MF-based models is how they define the notion of node similarity.

Random walk-based methods propose more flexible ways to define the node similarity and

two nodes have similar embeddings if they tend to co-occur on short random walks over the

graph, which can simultaneously preserve both local and higher-order node similarities.

MF-based and random walk-based methods have achieved many successes in the past

decade, however these models suffer from some drawbacks. (1) No parameters are shared

between nodes in the learning process. The learned model can be seen as an an embedding

lookup table based on the node ids, and it means the model’s parameters grow with the

number of nodes in a graph, which is computationally inefficient. (2) These models are

inherently transductive and can not deal with unseen nodes, unless additional rounds of

optimization are performed to optimize the embeddings for these nodes. This is highly

problematic to generalize to new graphs after training. (3) These methods fail to leverage

the node feature information in the learning process, which is often highly informative with

respect to the node’s structure information in the graph, such as the textual information of

the papers in the paper citation graph.

2.4 Knowledge Graph Embedding 23

fiction

fil
m

.fi
lm

.c
ou

nt
ry genre

book.w
ritten_w

ork.author

born in
J.K. Rowling

genre

Fig. 2.2 An example of a knowledge graph that contains entities and relations.

In the past years, many research works have applied deep learning approaches for

graph data, and GNNs are currently the most popular paradigm. Compared with the MF-

based, random-walk based models, GNNs are more efficiency, due to the parameter sharing

mechanism among nodes. Different with MF-based, random-walk based models, GNNs

are inductive algorithms and can leverages node feature information (e.g., text attributes)

to efficiently generate node embeddings for previously unseen data. Finally, GNNs can

combine graph structure and node features simultaneously in the learning process.

The key of GNNs is to utilize a node’s local neighborhood information to assist its

representation learning. Local neighborhood information in graphs varies greatly for different

nodes and how to leverage the local neighborhood information to assist both classical graph-

related tasks and application-specific tasks have rarely been exploited by current GNNs.

Thus, this thesis aims to develop new GNN algorithms that can learn better node or graph

representations by exploring and modeling different types of local information.

24 Background

2.4 Knowledge Graph Embedding

Knowledge graphs (KGs) contain rich knowledge in the form of heterogeneous graphs

where nodes correspond entities and edges correspond to relations. Recent years have

witnessed rapid growth in KG construction and application. A large number of KGs, such

as Freebase [18], DBpedia [112], YAGO [175], and NELL [28], have been created and

successfully applied to many real-world applications, from recommendation system (RS)

[200, 205], semantic parsing [80], to information extraction [80] and question answering

[19, 22]. Knowledge in KGs is presented as in the form of the triple (head entity, relation,

tail entity), also called a fact [204]. For example, in Fig. 2.2, (J.K. Rowling, born in, UK)

indicates that J.K. Rowling was born in the UK.

KGE methods aim to model the relationship between head entity and tail entity in

knowledge graph (KG) and assign a score of how likely it is that two entities are in a

certain relationship [171, 204]. KGE models can be roughly divided into three groups:

translational distance models [21, 208, 121, 93]) and semantic matching models (RESCAL-

based [142, 217, 141, 187] and neural network-based methods [171, 44, 20]).

Translational models are popular to exploit distance-based energy functions and a relation

is regarded as a translation in the embedding space. TransE [21] is the most representative

translational distance model. Given a fact (h,r,t), the embedded entities h and t can be

connected by r with low error and the scoring function is defined as the distance between

h+ r and t:

f (h, t) = ||e+ r− t||. (2.14)

However, TransE has flaws in dealing with 1-to-N, N-to-1, and N-to-N relations. To overcome

the disadvantages of TransE, TransH [121] and TransR [93] introduce the relation-specific

hyperplane and relation-specific spaces respectively. The entitie embeddings h and t are

first projected to the hyperplane or the space specific to relation r, and the scoring function

follows the general idea of TransE.

Semantic matching models exploit similarity-based scoring functions. They measure

plausibility of facts by matching latent semantics of entities and relations embodied in their

2.4 Knowledge Graph Embedding 25

vector space representations [204]. In RESCAL [142], each relation is represented as a

matrix which models pairwise interactions between latent factors. The score of a fact (h,r,t)

is defined

f (h, t) = hT Mrt, (2.15)

where h and t are representations of the head and tail, and Mr is a matrix associated with the

relation. DistMult [217] is actually simplified from RESCAL by restricting Mr to diagonal

matrices.

Neural network-based models conduct semantic-matching using neural network architec-

tures. MLP is a simpler approach and the head, tail, relation vectors (h, r, t) are concatenated

and fed to the MLP and mapped to a non-linear hidden layers. The score is then generated

by a linear output layer shown as follows:

f (h, t) = W(T)MLP(||(h,r, t)). (2.16)

where W(T) is the learnable weight matrix in the linear output layer, || denotes concatenation.

Neural Tensor Network (NTN) [171] is more expressive that can relate two input entities

vectors across multiple dimensions and each slice of the tensor is responsible for one type

of entity pair. In the recent years, new emerging research areas are focusing on applying

GNN based models to the entity embeddings in the knowledge graph [199, 207, 48, 252, 39].

RGCN [161] uses nodes’ neighborhood information for learning entity representations.

[165, 117] leverages relation information to compute different weights to the neighboring

nodes for learning embeddings of entities and relations. However, the GNN-based methods

are limited to the transductive setting, GraIL [185] proposes an inductive way that can

generalize to unseen entities after training. Considering most of current methods are designed

for static graphs, some papers extent GNN-based models to dynamic knowledge graphs

[213, Xu et al.].

26 Background

2.5 Personalized Video Search

2.5.1 Video Search

Traditional solutions for video search are based on matching the query with the video title

[228]. The title-based matching is a text-to-text matching problem, which has been well

solved through existing information retrieval algorithms. Nevertheless, the title-based search

relies on high-quality video titles, which are not always available in real applications. To

alleviate the issues caused by low-quality video titles, an alternative solution is to understand

the visual content of the video. With the success on both visual and textual representation

learning, many cross-model methods have been proposed to calculate the relevance between

a textual search query and a visual content, which is much more challenging than the intra-

modal text-to-text search task [51]. They can be coarsely divided into two groups based

on their architectures: one-stream model [176, 6] that text and video are together feed into

an encoder and two-stream model [248, 59, 56, 228] that one encoder encodes the text

information and another encoder encodes the video (or segments of the video) information.

Then the relevance between the query and the video is determined by the similarity between

their global features [8, 67, 27, 90, 246].

Different from Web search, video search is mainly for entertainment and users’ pref-

erences could be very diverse because of their different backgrounds. For example, when

issuing the query “Welcome to New York", a music fan may want to find the music video

from Taylor Swift, while a film fan may want to watch the film directed by Abel Ferrara.

Similar to many other vertical search areas, there is a strong need to return personalized

search results to different users for the same query in video search.

2.5.2 Personalized Search

Search engine has become a common tool for people to obtain information from the web.

Due to differences in individual preferences, the same query often represents different query

intents. For example, when issuing the query Welcome to New York, a music fan may want to

find the music video from Taylor Swift, while a film fan may want to watch the film directed

2.5 Personalized Video Search 27

by Abel Ferrara. There is a strong need to return personalized search results to different users

for the same query. Existing personalized search methods (PSMs) achieve personalization

by building user profiles with their meta information or search history to refine the original

ranking.

The main idea of traditional static personalized search algorithms in [49, 183, 184] is

that they evaluate the click probability by counting the number of documents clicked by

the same user under the same query. Some studies attempt to extract the topics features

by utilizing open directory project (ODP) [169, 210] or latent semantic analysis(LSA) or

latent dirichlet allocation (LDA) techniques [29, 74, 194, 195]. But these topic-based models

are often trained in an unsupervised manner, thus the performance of these models on

personalized search is not as good as expected. Recently, deep learning methods have been

successfully applied to a variety of language and information retrieval applications. One

category of DL-based PSMs mainly follow the general framework of traditional DL search

methods [89], meanwhile incorporate more personal information. [88] encodes both textual

information of the query, and users’ social connections [221] or location [87] to represent

the query. Another category methods aim to learn the user profile from users’ long-term

or short-term search history by bi-LSTM, RNN, GRU or transformer to learn users’ search

intents [4, 60, 126, 249].

One of the biggest concerns in personalized video search is the data sparsity issue, where

each user only has a handful of queries in their search histories and therefore limits the

learning capability of the personalization algorithms. Besides, current PSMs learn the query

and document representation only from their textual content. When queries are short and

vague, it is difficult for current PSMs to learn accurate representations. What’s more, current

PSMs only use the click signal to train their models and this manner is not suitable in our

scenario, because the real industry video platform exists much noisy click information.

2.5.3 Graphs based Information Retrieval

Graph-based information has been widely studied and exploited in information retrieval

(IR) [146]. Click graph is a bipartite graph extracted from click-through data. It contains

28 Background

two types of nodes: queries and documents and edges in the graph means click for query-

document pairs by any user [14]. Click graph can enrich the current query and document and

provide more search context to help disambiguation, which has been successfully applied in

query-to-document retrieval, query/document clustering and classification [96, 38, 3]. For

personalized search, users perform as the most important role. Click graph only reveal the

connections among queries and documents. The relationship among users should not be

ignored, which can be extremely helpful to overcome the sparsity problem of users’ history.

Different users can issue the same queries, so the user-query graph can be extracted from

click-through data. Incorporating both query-document graph and user-query graph in the

learning process can greatly benefit the personalized video search task.

2.6 Knowledge Graph for Recommendation

2.6.1 Knowledge Graph for Recommendation

Recommender systems (RS) have become a popular technique in many applications, e.g.,

Youtube (video sharing), Amazon (e-commerce), and Facebook (social networking), as they

provide suggestions of items to users so that they can avoid facing the information overload

problem [155]. In recent years, introducing recommendations with the KG as side information

has attracted considerable interest [200, 204, 205]. A KG is a heterogeneous graph, where

nodes represent as entities, edges represent relations between entities and a fact in KG is

usually represented in the form of a triple (head entity, relation, tail entity) [204]. KGs

contain rich semantic relatedness among items and incorporating KGs in RS can help explore

the latent connections and provide explanations for recommended items [71]. Recent years,

KG-aware RS models are mainly for the single-domain RS [31, 200, 182, 245, 204, 205].

SemStim [78] proposes to apply knowledge graph to the cross-domain recommendation. It

exploits the semantic links found in a knowledge graph (e.g. DBpedia), to find indirect paths

between the source and target domains. Then, these found products in the target domains

will be returned as the recommendations, ranked by their activation levels.

2.6 Knowledge Graph for Recommendation 29

2.6.2 Cross-Domain Recommendation

Current RS models, such as collaborative filtering (CF) [160], suffer from the sparsity issue

as the real-world datasets usually have a long tail of users and items with few feedbacks. To

address the data sparsity problem, cross-domain recommendation (CDR) [54] been proven

to be a promising method to alleviate the sparsity.

Different from conventional single-domain recommendation, CDR can leverage infor-

mation from source domain to improve the performance of target domain [17, 54], namely

single-target CDR, which is a powerful tool to deal with the data sparsity problem. These

approaches extend the single-domain recommendation models by utilizing same contents,

such as tags, reviews [53, 229], common items or users [170, 84, 119] as the bridge and

transferring information between domains [85, 125, 158, 159]. The single-target CDR

approaches only focus on how to leverage the source domain to help improve the recommen-

dation accuracy on the target one, but not vice versa. Recently, dual-target CDR mothods

[131, 250, 114] has been proposed to improve the performance on both source and target

domains simultaneously by leveraging dual-transfer learning strategies [241, 76]. However,

as referred in Negative Transfer [147], this idea does not work well, because, in principle,

the knowledge learned from the sparser domain is less accurate than that learned from the

richer domain, and thus the recommendation accuracy on the richer domain is more likely to

decline by simply and directly changing the transfer direction. Therefore, dual target CDR

models demand novel and effective solutions. In summary, none of current CDR models can

indeed improve the performance on both domains simultaneously, and they are significantly

hindered by limited information and connections between two domains.

Part I

Algorithms

Chapter 3

Node-Feature Convolution for Graph

Convolutional Network

3.1 Introduction

As described in Sec. 2.3.1, the GCN architecture represents a node by aggregating the

feature vectors of all its neighbors, analogous to the receptive field of a convolutional

kernel in Convolutional Neural Networks (CNNs) [110]. However, the number of neighbors

typically varies (e.g., from one to hundreds) across nodes. Directly aggregating all the

adjacent neighbors as in GCN (without considering the number of neighbors) may lead to

neighborhood explosion which subsequently causes computational problems, e.g., excessive

space (memory) [103] and time complexity [72, 36]. Besides, the importance of individual

neighbors of a node is fixed (depending on the node degree), lacking the flexibility to

characterize different relationships between nodes. Finally, individual features in a neighbor

feature vector may have different usefulness, while they share the same weight in GCN.

This may result important features can not obtain enough attention, and vice versa, which is

apparently not an optimal aggregation strategy. Figure 3.1 shows an example. The central

node 0 belongs to Class A (Neural Networks) and it can be cited (i.e., connected) by papers

from Class B (Probabilistic Methods). Node 5 from Class B may contain some common

features with the central node 0 from Class A, e.g., neuron, and also some features more

34 Node-Feature Convolution for Graph Convolutional Network

0

1
2

4
5

3

1 1 1
0 0 0
0 0 0
0 0 0
0 0 1

1 0
0 0
0 0
0 1
0 0

𝐱0 𝐱1 𝐱2 𝐱3 𝐱4 𝐱5

A A A A B B

1
0
0
1
0

Class:
Node features:
“neuron”

“posterior”

Central
node𝐱0

𝐱1

𝐱2

𝐱4
𝐱5

𝐱3

Fig. 3.1 A six-node subgraph from the Cora dataset [132]. Each node corresponds to a
machine learning paper, with a bag-of-words feature vector xi (i = 0,1,2, ...,5). Nodes
0–3 belong to Class A (Neural Networks), and nodes 4–5 belong to Class B (Probabilistic
Methods). Individual features in xi are not equally important for representing the central
node 0.

unique for Class B, e.g., posterior. Thus, the feature neuron should be more important than

posterior for representing the central node. However, these features are equally weighted in

existing GCN methods.

Some extensions, as introduced in Sec. 2.3.3, have been proposed to address the men-

tioned limitations: (1) sampling-based methods sample a fixed-size set of neighbors or learn

an adaptive receptive fields for the given node; (2) neighbor weighting-based methods learn

to treat different neighbors differently instead of simple aggregation. However, the sampling-

based methods can not treat different features within a feature vector differently and directly

weighting all neighbors may bring in too much noisy information and further influence the

result. Besides, weighting each neighbors will be time consuming and unnecessary, especially

for dense graphs. In summary, existing works do not solve all the limitations together.

In this thesis, we propose a novel method called Node-Feature Convolution for Graph

Convolutional Network (NFC-GCN) [237] to solve all the mentioned problems. Our method

learns to assign different weights to individual node features to get a new representation of a

given node in three steps and we summarise our contributions as follows:

• We apply the neighbor selection strategy to select the most important neighbors for

neighborhood aggregation, which alleviates the neighborhood explosion problem

caused by aggregating too many neighbors.

3.2 Methodology 35

1 0 1
0 1 0
0 0 0

0 0 0
1 0 1
0 1 0

1 1 0
1 0 1
0 1 0

0 1 0
0 1 0

Neighbor selection and ordering

Flatten
L-layer
GCN

Filter

Node-feature convolution

GCN （ L can be 0, 1, 2, … ）

Class

First-level
representation

Classifier

a11 a12 a13

a21 a22 a23

a31 a32 a33

al1 al2 al3

am1 am2 am3

an1 an2 an3

Feature map
Second-level
representation

Fig. 3.2 NFC-GCN architecture. NFC-GCN consists of three main steps: (1) Neighbor selec-
tion and ordering; (2) Node-feature convolution operating on node-feature maps to obtain a
flattened first-level node representation; and (3) GCN: the first-level NFC representation is
passed through an L-layer GCN model (L is a hyperparameter) to learn a second-level node
representation is passed to a classifier. The figure is best viewed in color/on screen.

• We propose a new architecture, the NFC layer for GCN-based models. It performs a

convolution operation on the feature map constructed by the central node and selected

neighbors, and can assign different weights to different features with the learned

parameters in convolution kernels, which enables both the node-level and feature-level

attention of the local neighborhood information in the learning process.

3.2 Methodology

3.2.1 Problem Definition

An undirected graph with N nodes can be represented as G= (V,E ,X), where node vi ∈ V ,

edges (vi,v j) ∈ E (i, j = 1, ...,N), an adjacency matrix A ∈ RN×N , and a feature matrix

X ∈ RN×D containing N D-dimensional feature vectors. A hidden representation of node

vi learned by the k-th layer of a model is denoted by h(k)
i ∈ Rdk(dk < D) and we initialize

h(0)
i = Xi.

Predictions on graphs are made by first embedding nodes X into a low-dimensional space

H, which is used for down-stream tasks, such as node classification, graph classification.

36 Node-Feature Convolution for Graph Convolutional Network

This chapter shows the proposed new GNN method called Node-Feature Convolution for

Graph Convolutional Network (NFC-GCN) that applies the neighborhood sampling strategy

and allows for feature-level attention during the neighborhood aggregation process. It mainly

consists three steps as shown in Fig. 3.2: (1) we first select a fixed-size set of neighbors

(Neighbor Selection) according to the similarity between the feature vectors of the given

node and its neighbors to construct a fixed-size feature map; (2) subsequently, we introduce

a convolutional layer (Node-Feature Convolution (NFC)), to learn a first-level representation

by assigning different weights to node features; (3) finally, we feed the output of the NFC

layer to a Standard GCN to obtain a second-level node representation.

3.2.2 Neighbor Selection and Ordering

To deal with varying node degrees in a graph, we select the most useful neighbors to obtain a

feature map with fixed size. In this chapter, we focus on the node classification task, therefore

we assume the useful neighbours should have relatively high similarity scores with the central

node. For example, if two documents describe similar topics (belong to the same class and

contain many similar keywords), the two documents are similar and their similarity measure

should be high. As for ordering, nodes can be ordered using common node centrality metrics

such as node degree, betweenness centrality [143], eigenvector centrality and PageRank.

Previous [146, 92] works mainly focus on selecting or ordering nodes without considering

node features.

We perform neighbor selection and ordering based on the node features. A variety of

distance and similarity measures can be applied to measure the similarity between the central

node and its neighbors, such as euclidean distance and cosine similarity. Euclidean distance

would include difference in magnitude. The euclidean distance is often not a desirable metric

for high-dimensional data mining applications, because of the concentration of distance in

high-dimensional spaces, the ratio of the distances of the nearest and farthest neighbors to

a given target is almost one [173, 2, 172, 32]. Since node feature vectors in citation graphs

usually represent textual information often as bag-of-words, i.e., sparse vectors of weighted

word frequencies in a document, which is often high-dimensional and sparse [163]. The

3.2 Methodology 37

cosine similarity looks at “directional similarity” rather than magnitude differences, and is

better at catching the semantic of each text, the direction the text points can be thought as

its meaning so texts with similar meanings will be similar. Therefore, we perform neighbor

selection and ordering based on the cosine similarity that has been commonly applied to

measure document similarities [10, 172, 122, 186, 188]. The cosine similarity between the

central node vi and its neighbors v j:

simi j =
xi ·x j

∥xi∥∥x j∥
, (3.1)

where xi ∈ RD and x j ∈ RD are the feature vectors of vi and v j respectively. By specifying a

hyperparameter feature map bandwidth n, we select the top n−1 neighbors with the highest

similarity with the central node.

In practice, sparsely connected nodes may have less than n−1 neighbors. In this case,

we select from the central node and all its neighbors based on probabilities proportional to

the similarity simi j to get the desired feature map bandwidth n. For each node vi, we obtain a

local feature map X′
i ∈ RD×n

X
′
i =

{
xi,{x j′ , j′ ∈N ′

i}
}
, (3.2)

consisting of the feature vectors of the given node i and its selected neighbors j′ ∈ N ′
i,

where N ′
i represents the selected neighbors of node vi. This feature map can be seen from

two dimensions: (1) the first dimension represents D node features, e.g., bag-of-words

features with a fixed order for citation networks; (2) the second dimension represents the n

nodes, including the central node and the n−1 selected neighbors. These nodes are ordered

according to the neighbors’ feature similarity with the central node from high to low.

Selecting a fixed number of neighbors can prevent neighborhood explosion and central

node being “washed out”. According to [216], the influence distribution of v j on vi can show

how much a change in a neighbor v j affects the final representation of the central node vi in

the last layer.

38 Node-Feature Convolution for Graph Convolutional Network

I

like

this

movie

very

much

word embeddings

1 0 1
0 1 0
0 0 0

1 1 0
1 0 1
0 1 0

Node-feature convolution

a11 a12 a13

a21 a22 a23

a31 a32 a33

feature map
𝐱0 𝐱1 𝐱2

X0 = Conv(𝐱0,𝐱1,𝐱2)

Convolution operation

sentence embedding

filter

filter

central node’s embedding

filter

‘posterior’

.

.

.

‘machine’

‘Neuron’

‘network’

Fig. 3.3 Convolution on sentence and node feature map. The node feature corresponds to the
word list, and the number of neighbors corresponds to the dimension of each word vector.

The influence score and distribution definition in [216] states that for a graph G= (V,E ,X),

h(0)
i is the input feature and h(l)

i is the learned hidden feature of vi at the l-th layer (Eq. (2.9)).

The influence score I(i, j) of vi by any v j is the sum of the absolute values of the entries of

the Jacobian matrix ∂h(l)
i

∂h(0)
j

. After O(log |N|) iterations of neighborhood aggregation using all

neighbors, the representation of each node is “influenced almost equally by any other node”

[81]. Thus, the final node representation captures mainly the global graph, with limited

information about individual nodes. Performing neighbor selection for each GCN layer can

alleviate the neighborhood explosion.

3.2.3 Node-Feature Convolution Layer

As a representation learning method, CNN works on fixed-size grids (e.g., images) or

sequences (e.g., sentences) to tackle various problems such as image classification [220],

machine translation [12], text or sentence classification [101] successfully. The Neighbor

Selection and Ordering step enables us to apply a convolution operation on the node-feature

map X′
i obtained.

In the citation graph, nodes usually represent documents, edges represent the citation

links between documents, and node features represent textual information often as bag-of-

words. The 0/1-valued feature vector of a node corresponds to an ordered word list from a

dictionary, which is analogous to the ordered words in a sentence or document of an NLP task

3.2 Methodology 39

[101]. For example, a part of the ordered word list of Cora includes “Machine”, “Markov”,

“Monte-Carlo”, “Neural”, “Network”, then the local feature pattern “11100” could be highly

related to the category of ’Reinforcement Learning’ and “10011” could be related to the

category of “Neural Networks”. The adjacent features in a node feature vector are related.

Therefore, we can use convolutions to find the potential local patterns that indicate a category.

As shown in Fig. 3.3, a fixed-size convolutional kernel scans over ordered words to

obtain the representation of a sentence. Each 0/1-valued feature of our citation datasets (e.g.

Cora, Citeseer) indicates the absence/presence of a corresponding word from a dictionary,

which naturally inspires us to use 1-D convolution to scan over the feature vector of a node.

We perform convolution with C filters of size k and stride s on the local feature map

X′
i ∈ RD×n of each node as

X⃗i =Conv(X
′
i). (3.3)

The number of input channels is n. The output X⃗i is of dimension D′×C, where D′ is

determined by k, s, and C, the hyperparameters of NFC. Then, we flatten the output as

following:

h(0)
i = f latten(⃗Xi), (3.4)

which is the first-level node representation.

3.2.4 Graph Convolutional Layer

Nodes with sparse connectivity (few first-order neighbors) may have insufficient informa-

tion and need higher-order neighbors’ information to obtain better representations. Better

representation of a given node can be obtained by considering L-order neighbors, where the

best value for L depends on the data. Therefore, we pass the NFC representation through L

additional GCN layer(s) to enable a central node aggregating information from higher-order

neighbors. An aggregation operator works on the first-level node representation (Eq. (3.4))

to learn another new representation of node i, as in Eq. (2.9).

After L GCN layers, the final representation h(L)
i will be passed to a fully-connected layer

with a so f tmax activation function. For multi-class classification, the loss function is defined

40 Node-Feature Convolution for Graph Convolutional Network

Algorithm 3.1 NFC-GCN

Input: G= (V,E ,X) with N nodes;

1: Adjacency matrix A ∈ RN×N ;

2: Feature matrix X ∈ RN×D;

3: Labeled nodes Vl;

4: Label indicator matrix Yl f ∈ R|Vl |×F ;

5: The number of selected neighbors is (n-1);

6: The parameters in the node-feature convolution process: filter size k, stride s, the number

of filters: C, the convolution operation Conv(·).
7: for each vi ∈ Vl do

8: if di > n−1 then

9: choose n−1 neighbors according to similarity from high to low

10: else if then

11: select (n−1−di) nodes based on probabilities proportional to the similarity

12: end if

13: feature map construction: X′
i =

{
xi,x j′, j′ ∈N ′

i
}

n

14: node feature convolution: X⃗i = Conv(X′
i)

15: flatten the embeddings: h(0)
i = f latten(⃗Xi)

16: for each layer l, l=1,...,L do

17: feature transformation: h(l)
i = σ(W(l)(h(l−1)

i +∑ j∈Ni h(l−1)
j));

18: end for

19: end for

as the cross-entropy error over all labeled examples:

L=− ∑
l∈Vl

F

∑
f=1

Yl f lnh(L)
l , (3.5)

where Vl is the set of node indices that have labels and F is the dimension of output features

equaling to the number of classes. Yl f ∈ R|Vl |×F is a label indicator matrix. Algorithm 5.1

summarizes the general framework of NFC-GCN.

Figure 3.4 demonstrates the neighbor selection achieved via different models (GCN-GCN,

NFC-GCN, NFC-NFC). Considering a two-layer GCN (i.e., GCN-GCN) in Fig. 3.4(b), after

3.2 Methodology 41

(a) before any propagation (b) GCN-GCN (c) NFC-GCN (d) NFC-NFC

Fig. 3.4 Comparison with different layers. Take the red node as an example, the red node’s
first-order and second-order neighbors are respectively green and purple nodes, as shown on
the left. After a two-layer GCN, the central node contains information from all first-order
neighbors and second-order neighbors as shown in (b) GCN-GCN. After one NFC and one
GCN layer, each node contains information from all its first-order (directly) and part of its
second-order neighbors’ information (indirectly) as in (c) NFC-GCN. After two NFC layers
((d) NFC-NFC), the central node only contains the two most similar first-order neighbors
and part (less than in NFC-GCN) of second-order neighbors’ information.

the first propagation (first GCN layer), each node (e.g., the red node) only contains the

first-order neighbors’ information (green nodes). After the second propagation (second

GCN layers), each node aggregates information from all its first-order and second-order

neighbors (purple nodes). Figure 3.4 (c) shows NFC with one GCN layer (i.e., NFC-GCN).

In the first propagation, each node (the red node) only aggregates information of the top

two most similar first-order neighbors (two green nodes with red circles). After the first

propagation (NFC layer), each green node’s representation also contains information from its

two most similar neighbors as well (the dash green curve in (c) NFC-GCN). After the second

GCN layer, the central node’s representation contains information from all the first-order

neighbors (green nodes) but only part of (selected) second-order neighbors (pink nodes).

Therefore, NFC-GCN only selects part of the neighbors for the central node’s representation

learning even after adding GCN layers. Compared with NFC-GCN, each node contains less

information from its first-order and second-order neighbors after two NFC layers. Because

the central node (red node) aggregates two green nodes with the red circle, each green node

contains information of its two most related neighbors (pink nodes) after the first NFC layer.

In the second propagation (after the second NFC layer), the central node still aggregates two

first-order neighbors who already contain two of their own first-order neighbors’ (pink nodes)

42 Node-Feature Convolution for Graph Convolutional Network

information. Therefore, after two NFC layers, each node contains two first-order neighbors

and part of second-order neighbors information (indirectly).

Compared to the standard GCN model (GCN-GCN - · · ·), NFC-GCN and NFC-NFC

can alleviate the neighborhood explosion (over smoothing problem) and help avoid the

central node being “washed out” due to aggregating too many neighbors. A pure NFC model

(NFC-NFC-· · ·) can reduce the considered neighbors further. But how much information (the

number of neighbors) should be considered for the best representation learning of a given

node has no precise answer.

3.2.5 Computational Complexity

A key part in our method is the NFC-layer, and the filters are shared by all nodes in a graph.

Therefore, the computation of the parameters in the filters can be parallelized across all nodes.

The computational complexity of a GCN layer as shown in Eq. (2.9) is O(N ×Dl−1 ×Dl),

while an NFC-layer (Eq. (3.3)) is O(N ×C× k× n). In GCN, the models’ complexity is

related to the node feature dimension (W(0) ∈ RD1×D) and this may lead to many parameters

in the model if the dimension of the original node feature is high. It should be emphasized

that the NFC layer inherits the advantage of CNN whose parameters are not related to the

image size, so the complexity of NFC layer is not influenced by the node feature (C,k,n are

hyperparameters).

3.2.6 Differences with Existing GNNs

Sampling-based methods. Our method selects the neighbors according to their similarities

with the central node from high to low. In contrast, GraphSAGE [72] and DropEdge

[156] select the neighbors randomly with random work or drop out some edges in a graph.

FastGCN [36] directly sampled the nodes in each hidden layer independently and JP-networks

[216] sampled learned intermediate representations for a given node to get the final node

representation. Graph DropConnect (GDC) [75] and GeniePath [124] automatically learn

the connections in a graph.

3.2 Methodology 43

1 0 1
0 1 0
0 0 0

1 1 0
1 0 1
0 1 0

Learnable
parameters
for each feature

Node-feature convolution

a11 a12 a13

a21 a22 a23

a31 a32 a33

Feature map
𝐱0 𝐱1 𝐱2

X0 = Conv(𝐱0,𝐱1,𝐱2)

𝐱0 = 𝐱0+ ⅀𝛽𝑗𝐱𝑗 (j = 1,...,5)

𝐱0 = 𝐱0+ ⅀𝛼𝑗𝐱𝑗 (j = 1,...,5)

GCN aggregation:

GAT aggregation: NFC aggregation:

Filter

1 0 1
0 1 0
0 0 0

1 1 0
1 0 1
0 1 0

0 1
1 0
0 0

1 0
0 1
1 0

𝐱0 𝐱1 𝐱2 𝐱3 𝐱4 𝐱5

1
0
0

0
1
0

→

→ →

Fig. 3.5 Differences between GCN, GAT, and NFC-GCN. In the aggregation process, both
GCN and GAT aggregate all the neighbors with different weights. The weights β j, for each
neighbor related to node degree are fixed in GCN. While α j is learnable in GAT. But all the
features in each feature vector share the same weights β j, or αi, i, j ∈ (1,5). In contrast, our
method performs convolution operation on the selected node-feature map to assign different
weights (such as a11,a12, ...,a33) to different features in different neighbors.

Neighbor weighting-based methods. In DisenGCN and GAT, all the features within

a feature vector still shared the same weight. In contrast, our method selects part of the

neighbors and learns to assign different weights to different features in different neighbors.

Masked GCN, GNN-Film can do a feature-level attention, but they consider all neighbors in

the learning process, which may introduce much noisy information. Besides, the complexity

of their models is related to the node feature, which can be time-consuming for high-

dimension input. Our model only selects the most related neighbors before aggregation

and applies CNN in the aggregation. Our model inherits the advantage of CNN and its

model size is not related to the input data. LGCL used CNN after a GCN layer, so it

inherited the limitations of GCN as we mentioned above. In contrast, our method uses

CNNs in the first step to extract useful information from raw node features. Besides, LGCL

constructed the feature map by selecting the k-largest values for each feature from all

44 Node-Feature Convolution for Graph Convolutional Network

Table 3.1 Overview of the three datasets with standard splits as in the Fast-GCN [36] (Val.
means Validation).

Dataset Nodes Edges Features Classes Train/Val./Test

Cora 2,708 5,429 1,433 7 1,208/500/1,000
Citeseer 3,327 4,732 3,703 6 1,827/500/1,000
PubMed 19,717 44,338 500 3 18,217/500/1,000

neighbors’ embeddings (learned from one GCN layer), which broke the correspondence in

the original node embedding. In our method, the feature map is constructed from the central

node and neighbors’ (selected and ordered) raw node features. Therefore, the constructed

feature map has a consistent structure, which is suitable for CNNs to perform on.

3.3 Experiments

In this section, we conduct extensive experiments on three real-world benchmark datasets to

evaluate our proposed model from three main aspects: 1) the node classification performance

in terms of accuracy and convergence; 2) the effectiveness of NFC aggregation; 3) parameter

sensitivity. Finally, we analyze the limitations and advantages of our method.

3.3.1 Datasets

We use three citation network benchmark datasets, Cora, Citeseer and PubMed, that have

been widely used in previous related work. We use the same train/validation/test splits as in

[36]. Table 3.1 shows an overview of the datasets.

• Cora. The Cora dataset contains 2,708 documents (nodes) classified into seven classes

(i.e., Neural Networks, Rule Learning, Probabilistic Methods, ..., Reinforcement

Learning) and 5,429 citation links (edges). We treat the citation links as (undirected)

edges and construct a binary, symmetric adjacency matrix. Each document has a 1,433

dimensional sparse bag-of-word feature vector and a class label.

3.3 Experiments 45

• Citeseer. The Citeseer dataset contains 3,327 documents classified into six classes

(i.e., Agents, AI, ..., ML) and 4,732 links. Each document has a 3,703 dimensional

sparse bag-of-word feature vector and a class label.

• PubMed. The PubMed dataset contains 19,717 documents classified into three

classes (Diabetes Mellitus Type Experimental, Diabetes Mellitus Type 1, Diabetes

Mellitus Type 1) and 44,338 links. Each document has a 500 dimensional sparse

bag-of-word feature vector and a class label.

3.3.2 Baselines

We compare NFC-GCN against nine competing methods in total. We consider four represen-

tative non-GCN methods: Locally Linear Embedding (LLE) [157], Laplacian Eigenmaps

(LE) [16], Graph Factorization (GF) [5] and DeepWalk [151] that only utilise graph structure

in the node representation learning. We use the implementation provided by authors of [69]

with standard settings used in their paper. In order to ensure the baselines have sufficient

diversity, we compare against seven state-of-the-art models: GCN,1 two sampling based

methods (FastGCN,2 GraphSAGE3) and four neighbor weighting-based methods (Disen-

GCN,4 GAT,5 LGCL6). We all use the publicly available implementation and report the mean

accuracy of 100 runs with random weight initializations.

• GCN. Graph Convolutional Networks [103] is the standard baseline. In our experi-

ments, we use a two-layer GCN model. For the key hyperparameters, we swept the

number of hidden units in the set {16, 32, 64, 128}, L2 regularization {5×10−3,5×

10−4,5×10−5}, dropout rate {0.2, 0.4, 0.6}, learning rate {0.01, 0.001, 0.0001}. We

set the max training epoch to 1000 and early stopping to 10.

1https://github.com/tkipf/gcn
2https://github.com/matenure/FastGCN
3https://github.com/williamleif/GraphSAGE
4https://jianxinma.github.io/disentangle-recsys.html
5https://github.com/PetarV-/GAT
6https://github.com/HongyangGao/LGCN

46 Node-Feature Convolution for Graph Convolutional Network

• Sampling-based methods. We compare our method with FastGCN [36] and Graph-

SAGE [72]. We split the train/validation/test as [36], so we use the same hyperparame-

ters as in their paper. For FastGCN, we use two hidden layers, the batch size is 256

for Cora, Citeseer and 1024 for PubMed, the sample sizes are 400, 400 and 100 for

Cora, Citeseer and PubMed, the learning rate is 0.001, and dropout is set as zero. For

GraphSAGE, we apply the mean aggregator (GraphSAGE-mean usually gets the best

results) and use two layers with neighborhood sample sizes 25 (for the first layer) and

10 (for the second), and the batch size is the same with FastGCN.

• Neighbor weighting-based methods. For these methods, we swept the common key

hyperparameters: hidden units, L2 regularization, dropout rate and learning rate, as in

GCN. Graph attention networks [191] learns to assign different weights to different

neighbors. In the experiment, we apply two GAT layers and the number of attention

heads are in the set {2,4,8}. Learnable Graph Convolutional Layer (LGCL) [58]

performs convolution on the reconstructed node embeddings after one GCN layer. K

ranges between {8,16,32} for the K-component feature vectors and dropout ∈ {0.2,

0.4, 0.6, 0.8 } is applied on both input feature vectors and adjacency matrices in LGCN.

We apply two LGCL layers for Cora and Citeseer, one LGCL layer for PubMed and

stop the training within 10000 epochs. DisenGCN [129] can treat different cluster

of neighbors differently and we set the number of channels ∈ {4,8,16,32}. The max

training epoch is set to 1000 for DisenGCN.

3.3.3 Hyperparameters Setting

Hyperparameters for NFC-GCN. We swept the common key hyperparameters: hidden

units, L2 regularization, dropout rate and learning rate, as in GCN. Other key hyperparameters

for NFC layer are set as: the number of neighbors ∈ {1,2,3,4,5}, the filter size ∈ {32, 64,

128}, the number of filters ∈ {8,16,32, 64}, the number of stride ∈ {16, 32, 64}. We employ

the early stopping strategy based on the validation accuracy and train 200 epochs at most.

As mentioned earlier, Compared with GCN layer, NFC layer is a more powerful tool, but it

3.3 Experiments 47

Table 3.2 Node classification accuracy (%) (mean ± 95% confidence interval over 100 runs).
(Best; Second best)

Methods Cora Citeseer PubMed

LLE 30.5 ± 0.390 20.5 ± 0.137 39.8 ± 0.190
LE 29.6 ± 0.980 21.2 ± 0.190 39.8 ± 0.109
GF 30.7 ± 0.180 20.9 ± 0.590 39.9 ± 0.190
DeepWalk 55.2 ± 0.157 44.1 ± 0.980 77.6 ± 0.590

GCN 88.1 ± 0.235 77.8 ± 0.216 86.8 ± 0.176
Fast-GCN 85.0 ± 0.470 77.6 ± 0.1235 88.0 ± 0.627
GraphSAGE 82.2 ± 0.135 71.4 ± 0.165 87.1 ± 0.921
GAT 80.4 ± 0.255 75.7 ± 0.431 85.0 ± 0.390
LGCL 86.9 ± 0.216 77.5 ± 0.392 84.1 ± 0.118
DisenGCN 87.4 ± 0.333 77.0 ± 0.588 87.2 ± 0.400

NFC-GCN 88.7 ± 0.255 79.4 ± 0.431 89.7 ± 0.137
NFC-NFC 89.6 ± 0.274 78.9 ± 0.470 90.4 ± 0.157

0 50 100 150 200
Cora: training epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
ac

cu
ra

cy

0 50 100 150 200
Citeseer: training epoch

0.2

0.4

0.6

0.8

1.0

GCN GAT LGCL NFC_GCN

0 50 100 150 200
 Pubmed: training epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3.6 Comparison of training accuracy with respect to the training epochs.

is more time consuming when the number of filters or neighbors is high. Considering both

accuracy and efficiency, we use different combinations: NFC-GCN, NFC-NFC to learn the

final node embeddings. Our code are available online. 7

3.3.4 Performance for Node Classification

In this section, we compare the node classification accuracy with baselines, besides we

compare the convergence with three mostly related methods: GCN, GAT, and LGCL.

7https://github.com/LiZhang-github/NFC-GCN

48 Node-Feature Convolution for Graph Convolutional Network

0 50 100 150 200
Cora: training epoch

0.5

1.0

1.5

2.0

2.5

Tr
ai

n
lo

ss

0 50 100 150 200
Citeseer: training epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

GCN GAT LGCL NFC_GCN

0 50 100 150 200
 Pubmed: training epoch

0.4

0.6

0.8

1.0

1.2

Fig. 3.7 Comparison of training loss with respect to the training epochs.

• Node classification. Results in classification accuracy are summarized in Table 3.2.

For the first four non-GCN methods, they do not perform well for they only utilise

the structure information. FastGCN and GraphSAGE focus on improving the training

efficiency so they have slightly poorer results than GCN. GAT utilize neural networks

to learn attention scores for a given node’s neighbors. It is time consuming especially

for Cora and Citeseer with high-dimensional node features. DisenGCN applies neigh-

borhood routing mechanism to cluster a given node’s neighbors, which is more suitable

for dense graphs. While Cora, Citeseer and PubMed are relatively sparse and their

median node degrees are 4, 3, 3 respectively. LGCL can get competitive results on

Cora and Citeseer, while it does not perform well on PubMed. Two possible reasons

are 1) it inherits the limitation of GCN and 2) it reorganises the original embedding in

the process of constructing feature maps as mentioned in Section 3.2.6.

Our models NFC-GCN and NFC-NFC achieved state-of-the-art performance across

all the datasets. This suggests that applying the NFC layer to work on the most related

and fixed-size neighbors can be beneficial for learning node representation. NFC-GCN

can aggregate more neighborhood information, and it may be more suitable for sparse

graph (NFC-GCN gets better result on Citeseer.) NFC-NFC can further alleviate the

over-smoothing problem and may be more suitable for dense graph. Considering

efficiency, NFC-GCN is faster. For Cora, Citeseer and PubMed, times for each training

epoch are 9, 9.4, and 14 seconds respectively, while they are around 18, 18 and 28

3.3 Experiments 49

seconds in NFC-NFC. We can flexibly combine NFC layer and GCN layer, depending

on the requirement of downstream tasks.

In addition, our method achieves better performance in fewer training epochs (less

than 100 epoch) on all the datasets. However, we should note that the training time per

epoch for our method is more than GCN, GAT, Fast-GCN, possibly due to the larger

number of parameters in our model. In future, we can investigate ways to improve the

per-epoch computational efficiency.

• Accuracy, loss over training epochs. Figures 3.6 and 3.7 show how the training

accuracy, training loss change with respect to the number of training epochs. We do not

use early stopping in our model for a better comparison with GCN, GAT and LGCL.

Our method achieves a good performance in a few training epochs, while GCN, GAT

and LGCL need more than a hundred training epochs. Moreover, training accuracy/loss

of NFC-GCN change in a more stable way with the same optimization parameters on

the same training data as GCN, GAT and LGCL. This confirms that the first-level node

representation learned from the node-feature convolution improves the subsequent

classification tasks.

On the whole, Table 6.2, Figs. 3.6 and 3.7 show that our method has a better performance

on both node classification accuracy and convergence.

3.3.5 Effectiveness of NFC aggregation

We further present studies of three different aggregation methods: GCN aggregation, GAT

aggregation, and NFC aggregation. And we also illustrate the effectiveness of CNNs on the

ordered node features.

To show the effectiveness of NFC (our key contribution), we compare GCN and GAT

aggregation methods with NFC using a fixed-size set of neighbors.8 Then we feed the

aggregated representation of each node to a classifier directly without adding additional

GCN layers. We carry out this experiment over all datasets and choose 5 neighbors for each
8LGCL uses GCN aggregation over the raw node features while its first layer is the same as GCN.

50 Node-Feature Convolution for Graph Convolutional Network

Table 3.3 Node classification accuracy for different aggregation methods with five neighbors
and only one aggregation step (%) (mean ± 95% confidence interval over 100 runs).

Aggregation Cora Citeseer PubMed

GCN 64.8 ± 0.2918 74.1 ± 0.5939 80.0 ± 0.1626
GAT 64.2 ± 0.4508 74.2 ± 0.4508 82.2 ± 0.6272
NFC 86.0 ± 0.1705 78.9 ± 0.3175 89.7 ± 0.1155

Improvement 21.2 4.8 7.5

Table 3.4 The effectiveness of NFC aggregation. Cen: central node (without convolution
operation); Cov(C): central node with convolution operation; Cov(CN): node-feature map
(containing central node and neighbors’ features) with convolution operation (%) (mean ±
95% confidence interval over 100 runs).

Dataset Cen Cov(C) Cov(CN)

Cora 54.7 ± 1.9180 72.9 ± 1.0035 86.0 ± 0.1705
Citeseer 69.9 ± 2.2530 73.1 ± 1.5915 78.9 ± 0.3175
PubMed 80.9 ± 0.2918 85.7 ± 1.0038 89.7 ± 0.1155

aggregation methods. The results are summarized in Table 3.3. Our method increases the

testing accuracy greatly over GCN/GAT, demonstrating that NFC-based aggregation can

learn a more effective node representation for subsequent tasks. It should also be emphasized

that only the NFC can achieve competitive performance without additional GCN layers.

Besides the quantitative evaluation, we also investigate the effectiveness of different

aggregation methods qualitatively. We provide t-SNE [130] visualizations to map the embed-

dings obtained from GCN, GAT and NFC aggregation on the Cora dataset in 2D space. In

Fig. 3.8, all the embeddings exhibits discernible clustering in the projected 2D space. The

GAT visualization is poorer than the GCN visualization, which is consistent with the results

in Table 3.3. NFC aggregation obtains the best visualization with nodes clustered into the

most compact clusters.

A further evaluation is conducted to illustrate how NFC works on node-feature maps. We

feed the central node’s feature vector to the classifier directly (Cen), which is treated as a

baseline. For comparison, we first perform a convolutional operation only on the given node’s

feature vector (one channel) and feed the new representation to the classifier (Conv(C)). This

3.3 Experiments 51

30 20 10 0 10 20 30

30

20

10

0

10

20

30

(a) GCN aggregation

20 10 0 10 20

15

10

5

0

5

10

15

20

(b) GAT aggregation

30 20 10 0 10 20 30
30

20

10

0

10

20

30

(c) NFC aggregation

Fig. 3.8 Visualization of the embeddings on the Cora dataset. We map the embeddings
learned from GCN, GAT and NFC aggregation to the 2-D space using t-SNE. Node colors
denote classes.

Table 3.5 Node degree statistics.

Dataset Highest Lowest Average Median
Cora 168 1 4.9 4
Citeseer 99 1 3.7 3
PubMed 171 1 5.5 3

is used to illustrate how the convolution works on the node feature dimension. Next, we

perform a NFC operation on the feature map comprised of the given node and five neighbors

(six channels), and feed the new representation to the classifier (Conv(CN)). The experimental

results are shown in Table 3.4. The main finding is that the NFC not only operates effectively

on the node feature dimension, but also extracts more useful information from different

channels in the node-feature map.

This study shows that the advantage of NFC (aggregation assigning different weights to

different features for different neighbors), as shown in Table 3.3 and Fig 3.8. Besides, apply-

ing the convolution operation on the ordered features and including neighbors information

can both benefit to the central node’s representation learning, as shown in Table 3.4.

3.3.6 Node Bandwidth Study

We first study the effect of varying the node bandwidth n in the node-feature convolution

process. Table 3.5 shows the distribution of node degrees over the three datasets. The node

degree varies from one to 171, which illustrates that there is a need to select the neighbors

52 Node-Feature Convolution for Graph Convolutional Network

0.88

0.89 Cora

0.780

0.785

Te
st

 a
cc

ur
ac

y

Citeseer

2 3 4 5 6 7 8 9 10 11
Node-feature bandwidth n

0.880

0.885 PubMed

(a) Test accuracy.

8

10
Cora

2 4 6 8 10
10

15

20

Tr
ai

ni
ng

 ti
m

e
fo

r o
ne

 e
po

ch
 (S

ec
on

d)

Citeseer

2 3 4 5 6 7 8 9 10 11
Node-feature bandwidth n

4

6 PubMed

(b) Time per epoch.

Fig. 3.9 Effect of node bandwidth n on accuracy and time per epoch.

for a given node. The average node degree is three or four, and we vary n from two to 11.

The results in Fig 3.9 (a) show consistent improvement in accuracy with increasing n from

two to seven. A higher n implies more feature diversity, and this can be especially helpful for

the representation learning of nodes with sparse connectivity and features. However, for n

greater than seven, performance drops. A possible explanation is that aggregating too many

neighbors has a negative influence (the central node’s own information being washed away)

on the given node’s representation learning. Note that the computation time per training

epoch also increases with n, therefore, there is a trade-off between the classification accuracy

and computational time when choosing n.

3.3.7 Model Depth Study

We study the influence of model depth (number of GCN layers) on classification performance

in the data splits in [103]. We change the GCN layers from one to five and the results are

summarised in Fig. 3.10. Our method is less sensitive to the number of hidden layers. This

indicates that the NFC-GCN representation is more robust to model depth. It performs well

even when a higher-order neighborhood is considered. Note that the best test accuracy for

our method is not better than GCN on PubMed. One possible reason is that this data splits

in [103] have only 60 labeled training nodes that is too small for NFC-GCN. Another possible

reason is that we did not tune NFC-GCN hyperparameters (set as 3.3.3) for different layers.

3.3 Experiments 53

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of layers

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

GCN_Cora
GCN-NFC_Cora
GCN_Citeseer
GCN-NFC_Citeseer
GCN_PubMed
GCN-NFC_PubMed

Fig. 3.10 Performance comparison on deeper models. On the Cora, Citeseer and PubMed
datasets, we employ the same experimental setups and increase layers of GCN and NFC-
GCN to up to five. GCN-NFC has a better overal performance for deeper models and its test
accuracy is more steady than GCN when we increase the number of layers.

With further tuning and optimisation, NFC-GCN has the potential to get better results in

classification accuracy for deeper models.

3.3.8 Discussion

NFC-GCN embodies the ideas from GCN and its extensions such as sampling-based methods

and GAT. NFC-GCN applies convolution layer on a fixed-size node-feature map to assign

different weights to different features in different neighbors. In the following, we discuss the

limitations and new opportunities for this new architecture.

• Limitations. The main limitation is that NFC-GCN requires more training samples and

the computation cost for each epoch is higher than GCN. Nonetheless, deep learning

models are known to work well on larger datasets and be computationally expensive.

One future work will aim to improve the performance of our method on the small

training datasets and also the computational efficiency. The key step of our model is

neighbour selection. We select the neighbours based on the assumption that useful

neighbours should have a relatively high similarity score with the central node for the

54 Node-Feature Convolution for Graph Convolutional Network

node classification task. While this assumption may not be suitable for other tasks,

such as link prediction, and network reconstruction. Two nodes can be linked even

if they have a lower similarity score, for example, papers (nodes) from the medical

domain can cite (connect) papers (nodes) from the computer science domain, which

would be conflict with the assumption.

• Representation learning ability. When we only use one NFC layer to learn nodes’

new representations and feed them directly to a classifier layer, we can obtain a

competitive performance compared to GCN and its extensions. One potential future

direction is to get rid of the GCN layer totally.

• New architectures and deeper models. The NFC layer can be used in conjunction

with any of the competing methods (not only GCN). In particular, NFC-GCN allows

for a deeper model, and has the potential to get better classification accuracy with

well-tuned hyperparameters. Furthermore, deeper models can enable other powerful

machine learning techniques to be better applied to graphs, such as transfer learning.

3.4 Summary

In this chapter, we proposed a novel model: Node-Feature Convolution for Graph Convolu-

tional Network (NFC-GCN) to solve the first research question: node-level and feature-level

attention of local neighborhood information. We constructed a new node-feature convolu-

tional (NFC) layer to work on a fixed-size feature map that contains features from selected

neighbors, and the learned parameter of the convolutional kernels can assign different weights

to different features, which allows the proposed model can consider both node-level and

feature-level attention of local neighborhood information in the learning process. Mean-

while, the neighbor selection step can also alleviate neighborhood explosion problem. Thus

NFC-GCN addresses the two main limitations of existing GCN models. Experimental results

showed that NFC-NFC outperforms current competing GCNs on three benchmark datasets in

node classification. In addition, the NFC layer can be a plug-in module and integrated with

3.4 Summary 55

other GCN extensions, e.g., FastGCN [36], jumping knowledge networks [216], GMWW

[154] and MixHop [1], enabling these methods to have a feature-level attention. However,

the number of neighbors varies greatly and the NFC layer can not operate on the graphs

directly, the neighbor selection and ordering step would be time consuming, especially for

large-size graphs, which is the main limitation of NFC-GCN.

Chapter 4

Learnable Aggregator for Graph

Convolutional Network

4.1 Introduction

In Chapter 3, NFC-GCN considers feature-level attention of the local neighborhood infor-

mation in the learning process, but it can not directly operate on graphs due to the irregular

connectivity and lack of orderliness of nodes in a graph. In this chapter, we extend NFC-GCN

to a more flexible and general framework by lifting constraints on the input data format

As pointed in Sec. 2.3.3 and Sec. 3.1, edges in real graphs are often noisy or defined

via user-defined thresholds [105]. Therefore, edges may not clearly correspond to label

agreement uniformly across the graph [174]. In Cora, Citeseer and PubMed, 19%, 26%,

and 20% of the edges, respectively, connect with nodes from different classes. Besides,

each feature within a neighbor feature vector may play a different role for the central node’s

representation learning [243, 111, 73]. In such cases, mean, pooling, or sum aggregators are

not optimal choices in learning useful representations from the noisy neighborhood of the

central node. It is necessary to filter both node and feature information before aggregation,

especially for graphs with node features.

There are also learnable aggregators proposed to automatically filter the neighborhood

information. Graph Attention Network (GAT) borrows the idea of attention mechanisms

58 Learnable Aggregator for Graph Convolutional Network

[190] to learn to assign different weights to different neighbors in aggregation [191]. However,

all individual features in a feature vector are treated equally. Learnable Graph Convolutional

Layer (LGCL) performs convolution operation in the aggregation process, which can assign

different weights to different features [58]. But, using regular convolution operation on

graphs requires the number of neighboring nodes for each node remains the same, and

these neighboring nodes are ordered. LGCL transforms the graph into grid-like structure by

selecting the top-d values in each feature dimension from all the neighbors. The covolutional

operator mixes or reorganizes neighborhood information, which makes it difficult to interpret

the learned representation because we can not distinguish which node and feature have

a salient influence on the prediction result. MaskedGCN [219] only propagates a certain

portion of each neighbor (v′j) attributes (features) to the central node (vi) via a mask vector,

however the mask vector is learned independent to the central node vi, and depends on the

consistencies of each feature between v j and v′j neighbors. This mechanism, only considering

the attribute distributions in local neighbourhoods, is still influenced by neighbors from

different class with the central node. Thus, a more straight way is to model the vi and v j

relationship directly to learn the mask indicator.

In this chapter, we aim to design a more adaptive and interpretable aggregator satisfying

the following five Desirables.

• D1 & D2: To deal with graph structures, the aggregator should 1) be able to handle

variable-sized neighbors [191, 139], and 2) be invariant to the ordering of neighbors

[139]. Unlike images and sentences, graphs usually have no regular connectivity and

neighboring nodes have no natural ordering.

• D3 & D4: To enhance the discriminating power, the aggregator should 3) be discrimi-

native to node-level and feature-level neighborhood information [191, 58], 4) be able

to discriminate graph structures in the embedding space [215]. Real-world graphs are

noisy and the aggregator should automatically identify the important information from

the neighborhood.

4.1 Introduction 59

• D5: For practical applications where interpretability is needed, the aggregator should

5) be able to explain learned representations in relation to the prediction and robust to

structure and feature noise. Real-world data are often noisy so aggregating information

from noisy graph structures and node features can cause significant difficulties in accu-

rate prediction and useful interpretation [222]. An explainable and robust aggregator

can increase the trustworthiness and real-world performance.

To this end, we unify current learnable aggregators in a general framework: learnable ag-

gregator for GCN (LA-GCN). This framework introduces an auxiliary model that can extract

customized high-level knowledge from a given node’s neighbors to guide the aggregation

process. Under this framework, we propose a new model called LA-GCNMask consisting

of a new aggregator function, mask aggregator, and a carefully designed auxiliary model

shared by all nodes in a graph that satisfies D1 and D2. Firstly, a given node and its neighbors

are fed into the auxiliary model to get a specific mask for each neighbor. Then the mask

aggregator performs a Hadamard product between the feature vector of each neighbor and its

corresponding mask before aggregation. In this way, the mask aggregator can learn to assign

different weights to different features in different neighbors, which leads to better discrimina-

tiveness to node and feature information (D3) and also enables better interpretation of the

learned representation (D5). The proposed aggregator sums up all the filtered neighbors of

the central node as its learned representation, meeting D4. Finally, we compare our proposed

aggregator and the mentioned aggregators in Table 4.1 to show our novelty. Our aggregator

satisfies all desideratas, enabling a leap in model capacity.

We evaluate LA-GCNMask on three popular citation graphs and one large social graph

for node classification, and three bioinformatics graphs for graph classification. Our results

confirm that node-level and feature-level attention of neighborhood information in aggrega-

tion can lead to significant performance gains. In addition, we visualize the learned mask

to show that it can identify important features and nodes, which provides an interpretable

explanations for prediction. Finally, we study the robustness of our model on graphs with

structure and node feature noise. In both structure-noisy and feature-noisy graphs, LA-

GCNMask consistently outperforms popular baselines (GCN, GAT and LGCL), with up to

60 Learnable Aggregator for Graph Convolutional Network

Table 4.1 Comparisons of the traditional aggregators and our proposed aggregator. Outline of
related work in term of fulfilled (

√
) and missing (×) desirable characteristics (D3-n means

node-level attention and D3-f means feature-level attention in Desirable 3).

DesirableMean MeanwSum SumlwConv Mask

D1
√ √ √ √

×
√

D2
√ √ √ √

×
√

D3-n ×
√

×
√ √ √

D3-f × × × ×
√ √

D4 × ×
√ √ √ √

D5 × × × × ×
√

9.82% (Cora) and 15.05% (Citeseer) improvement on structure-noisy graphs and 10.67%

(Cora) and 3.60% (Citeseer) improvement on node feature-noisy graphs, in terms of node

classification accuracy.

In summary, our contributions of this chapter are threefold:

• We unify several existing methods in a LA-GCN framework and propose a new mask

aggregator, a new attention mechanism allowing both node-level and feature-level

attention.

• We comprehensively evaluate the superiority of the proposed LA-GCNMask on seven

graphs with different sizes and types for both node and graph classification tasks.

• We demonstrate that the proposed model can provide interpretable explanation for the

prediction, also study the robustness of our model on both structure and node feature

noisy graphs.

4.2 Methodology

This chapter unify current learnable aggregator in one framework: LA-GCN, that utilizes an

auxiliary model to guide the aggregation process, which enables the aggregator to satisfy

all the desirables. In this section, we first describe the framework, followed by theoretical

4.2 Methodology 61

Fig. 4.1 LA-GCN framework. The key idea is to utilize an auxiliary model to assist the
aggregator to deal with different neighborhood information in a customized schema.

motivation for our model: LA-GCNMask. Then, we compare our model with prominent GCN

based methods.

4.2.1 Problem Definition

An undirected graph with N nodes can be represented as G= (V,E ,X), where node vi ∈ V ,

edges (vi,v j) ∈ E (i, j = 1, ...,N), an adjacency matrix A ∈ RN×N , and a feature matrix

X ∈ RN×D containing N D-dimensional feature vectors. A hidden representation of node

vi learned by the k-th layer of a model is denoted by h(k)
i ∈ Rdk(dk < D) and we initialize

h(0)
i = Xi.

Predictions on graphs are made by first embedding nodes A with Xinto a low-dimensional

space H, which is used for down-stream tasks, such as node classification, graph classification.

4.2.2 Framework of LA-GCN

A key challenge is how to design an efficient aggregator that suits for each node in a graph

since each node has different neighbors no matter the numbers or categories, and satisfies

the mentioned desirables. Intuitively, this requires each node with a specific model, which is

quite impossible, for real-world graphs can contain millions or billions nodes [70].

Inspired by the weight sharing property of CNNs [110] and attention mechanism [190],

we use a shared auxiliary model to extract high-level knowledge or rules from the given

graph information, and the learned rules are used to assist the aggregation process as shown

in Fig 7.3. It is a flexible and general framework that can unify mentioned GAT [191] and

LGCL [58], and we give a detail comparison in Section 4.2.7.

62 Learnable Aggregator for Graph Convolutional Network

Fig. 4.2 LA-GCNMask consists of three steps: 1) train an auxiliary model with a given node
and the feature vectors of its neighbors; 2) generate the mask for each neighbor from the
auxiliary model; 3) aggregate the neighbors (after multiplying the corresponding mask) to
get a new representation of the central node.

4.2.3 Theoretical Studies of Aggregator

Under this framework, we carefully design our auxiliary model and propose a new aggre-

gation function: mask aggregator. Our ultimate goal is to design an aggregator that can

satisfy all the disirables. We start from the oretical study of the aggregator function, which

enables the formulation of our aggregator that simultaneously satisfies our desirables. In this

subsection, we mainly study the aggregator function from graph datasets’s perspective and

the aggregator’s expressive capacity.

In generic graphs, the numbers of neighboring nodes usually differ for different nodes

in a graph, and there is no order information based on which we can order them to ensure

the output is deterministic. These special characters of graph datasets require the aggregator

should be a permutation-invariant function that can deal with variable-sized and unordered

neighbors (D1, D2).

Permutation invariant study. Permutation invariance is an important property for

aggregator since there is no natural order in most real graphs. The neighborhood aggregation

scheme iteratively updates the representation of a node by aggregating representations of it

neighbors. To mathematically formalize the above insight, the aggregation process can be

generically written as follows:

s(k−1)
i = f (k)ag (h(k−1)

j , j ∈Ni), (4.1)

4.2 Methodology 63

where f (k)ag is the predefined aggregation function (aggregator) in the k-th layer of a model.

The aggregator f (k)ag can be seen as a function over the full multiset of node neighbors.

Following [215], a multiset is a generalized concept of a set [232] that the same element can

appear multiple times since different nodes can have identical feature vector. Recall that

one of the desiderata is that the aggregator f (k)ag should be a mutiset permutation invariant

function. Following [232], a permutation invariant function on multiset can be defined as:

Definition 4.2.1. A function f is permutation-invariant if

f (
{

h1,h2, ...,h|Ni|
}
) = f (

{
hπ(1),hπ(2), ...,hπ(|Ni|)

}
) (4.2)

for any permutation π and |Ni| is the length of the sequence.

We will use Π|Ni| to represent the mutiset of all permutations of the integers 1 to |Ni| and

hπ , π ∈ Π|Ni|, represents a reordering of the mutliset according to π . The following theorem

in [232] shows the relation between set and permutation invariant function.

Theorem 4.2.1. [232] A function operating on a multiset
{

h1,h2, ...,h(|Ni|)
}

having elements

from a countable universe, is a valid set function. It is invariant to the permutation of

instances in the multiset, if it can be decomposed in the form ρ(∑π∈Π|Ni|
φ(hπ)), for suitable

transformations φ and ρ .

The structure of permutation invariant function in Theorem 4.2.1 hints a general strategy

for inference over mutiset. In other words, the key is to add up all representations and then

apply nonlinear transformation.

Sum, mean, pooling aggregators and aggregators in GCN and GAT can be formulated as

the format in 4.2.1, while CNN and LSTM can not.Thus our aggegator function can follow

the sum, mean or pooling format. GCN and GAT add up all neighborhood neighbors with

fixed weights or learnable weights, as shown in Eq. 4.3 and Eq. 4.4, respectively.

s(k−1)
i = f (k)agg(h

(k−1)
j) = ∑

j∈Ni

h(k−1)
j /

√
did j. (4.3)

64 Learnable Aggregator for Graph Convolutional Network

where di and d j are the node degrees of node vi and node vi respectively.

s(k−1)
i = f (k)aga(h

(k−1)
j) = ∑

j∈Ni

αi jh
(k−1)
j , (4.4)

where αi j is a learnable attention coefficient that indicates the importance of v j to vi. But

convolution aggregator in LGCL is not permutation-invariant function, for the output of the

aggregator will change if the inputs are reordered, and it can not deal with variable-sized data

directly.

Discriminative power study. From the aggregator’s expressive capacity, there are mainly

three tasks: One is to learn the interactions between self node and its neighborhood (node-

level distinguish); The second one is to learn the interactions between different dimensions of

the node features, which will extract useful combinatory features automatically (feature-level

distinguish). The final one is to discriminate graph structures (structure-level distinguish)

(D3, D4).

Sum aggregator is an injective function in the structure level, while mean and pooling

aggregators are not, which has been proved in [215]. Thus, we can design our aggregator

function by extending the sum aggregator. Notice that this property may suit better for graph

classification task where graph structure plays a key role. Adding up all neighbors’ feature

vectors may change the scale of the feature, which may not be good for node classification

task. However, they all can not treat the neighborhood information differently in both

node-level and feature-level.

The aggregation process in GCN and GAT, as shown in Eq. 4.3 and Eq. 4.4, can

discriminate the neigborhood information in node-level, however all the features are treated

equally within the feature vector h(k)
j , for each feature shares the same weight (did j)

−1/2 or

αi j. The convolution aggregator in LGCL allows for feature-level attention, but it is not an

optimal choice to deal with variable size inputs and unordered graph datasets.

4.2 Methodology 65

Algorithm 4.1 LA-GCNMask (one iteration)

Input: G= (V,E ,X) with N nodes;

1: Adjacency matrix A ∈ RN×N ;

2: Feature matrix X ∈ RN×D;

3: Auxiliary model f ;

Output: The learned representation for each node h(k)
i (i = 1,2, ... N).

4: for each vi ∈ V do

5: for j ∈Ni do

6: calculate v′j mask: m(k−1)
j = f (∥h(k−1)

i , h(k−1)
j)

7: end for

8: mask aggregator: s(k−1)
i = ∑ j∈Ni h(k−1)

j ∗m(k−1)
j

9: feature transportation: h(k)
i = σ(W(k)(h(k−1)

i + s(k−1)
i))

10: end for

4.2.4 Mask Aggregator

Based on the theoretical study and analysis, we design our aggregator function by extending

sum aggregation function. Besides, the expected aggregator could do feature-wise and

node-wise modulation of the neighborhood information in the aggregation process, which

naturally inspires us to filter the neighborhood information before aggregation and the mask

aggregator are shown as following:

s(k−1)
i = f (k)agm(h

(k−1)
j) = ∑

j∈Ni

h(k−1)
j ∗m(k−1)

j , (4.5)

where h(k−1)
j ∈ Rdk−1 , m(k−1)

j ∈ Rdk−1 is a specific mask for each neighbor, produced by the

auxiliary model. Then we Hadamard product to multiply each neighbor and its corresponding

mask before summation (D3, D4).

Theorem 4.2.2. f (k)agm is a permutation-invariant function acting on finite but arbitrary length

sequences h(k−1)
j , j ∈Ni.

Proof. Given H =
{

h(k−1)
1 ,h(k−1)

2 , ...,h(k−1)
(|Ni|)

}
, a finite multiset, and h(k−1)

j ∈ Rdk−1 , our

aggregator aims to fuse it into a fixed output s(k−1)
i ∈ Rdk−1 as follows:

66 Learnable Aggregator for Graph Convolutional Network

s(k−1)
i = f (k)agm(h

(k−1)
j) = ∑

j∈Ni

h(k−1)
j ∗m(k−1)

j , (4.6)

where m(k−1)
j ∈ Rdk−1 is a specific mask for each neighbor, produced by the auxiliary model.

We first feed the graph information to an auxiliary model to get a mask m(k−1)
j for each node

h(k−1)
j . For a trained auxiliary model, m(k−1)

j is a specific and fixed mask (vector) for each

neighbor’s latent vector h(k−1)
j .

There exists a mapping function φ : Rdk−1 → Rdk−1 that can formulate h(k−1)
j ∗m(k−1)

j to

φ(h(k−1)
j), and Eq. 4.6 can be written as:

s(k−1)
i = f (k)agm(h

(k−1)
j) = ∑

j∈Ni

φ(h(k−1)
j), (4.7)

and ρ can be seen as ρ = 1. Eq. 4.8 can be seen as a permutation of H, according to [232].

Next, we prove there exist an injective mapping function φ , so that f (k)agm(h
(k−1)
j) is unique

for each finite multiset H.

Since H is countable, each h(k−1)
j ∈ H can be mapped to a unique element to prime num-

bers p(H): RM → P by a function p(h(k−1)
j). We can choose φ(h(k−1)

j) = − log p(h(k−1)
j).

Therefore,

f (k)agm(h
(k−1)
j) = ∑

j∈Ni

φ(h(k−1)
j) = log p(h(k−1)

j) (4.8)

takes a unique value for each distinct H.

Besides, the dimension dk−1 of the latent space should be at least as large as the maxi-

mum number of input elements |Ni|, which is both necessary and sufficient for continuous

permutation-invariant functions [196].

For the universal approximation theorem [82], any continuous function can be approxi-

mated by a neural network, we can use mutlti-layer perceptrons (MLPs) to model and learn

φ and ρ = 1.

Besides the provement, we state the derivatives with regard to our aggregator. Assume

parametrizations Wφ for φ , we have

4.2 Methodology 67

∂Wφ
(∑

j∈Ni

φ(h′
j
(k−1))) = ∑

j∈Ni

∂Wφ
φ(h′

j(k−1)),

this result shows the ordering is also irrelevant for the optimization process.

Theorem 4.2.2 shows that f (k)agm of the multiset is a permutation-invariant function (D2).

The learned mask can shows which features or neighbors are important, and filter the noisy

information, which makes the aggregation results easier to explain and robust (D5).

4.2.5 Auxiliary Model

A natural follow-up question is how to get the mask m(k−1)
j . Under our framework, mask is

learned from an auxiliary model and we hope the auxiliary model can 1) extract useful and

high-level knowledge (e.g., focusing on important nodes and features) from neighborhood

information to guide a better aggregation for the central node’s representation learning; 2)

deal with different sized and unordered input datasets without reorganization.

Motivated by this, we feed both central node and its neighbors into the auxiliary model.

The auxiliary model can be an arbitrary neural network that has no requirement for size

or order of the input datasets. The most commonly used RNN and CNN architecture can

not be used as the auxilary model, because the input of CNN and RNN should be fix-sized

and ordered, and they can not directly operate on graphs due to the irregular connectivity

and lack of orderliness of nodes in a graph. On the contrary, the input of MLPs does not

have such constrains, e.g., the order or number of the input data. Thus, we choose MLPs as

the auxilarty model to learn the mask. Considering the trade-off between performance and

efficiency, we apply an MLP with a single hidden layer.

Given node and its neighbors ({ h(k−1)
i , h(k−1)

j , j ∈ Ni}), we feed each node-neighbor

pair to an auxiliary model, defined as following:

m(k−1)
j = MLP(k)(∥h(k−1)

i ,h(k−1)
j)

= σ(W(k)
m (∥h(k−1)

i ,h(k−1)
j)),

(4.9)

68 Learnable Aggregator for Graph Convolutional Network

where σ is the activation function, e.g., sigmoid, RELU, W(k)
m ∈ R2dk−1×dk−1 is the weight

matrix and ∥ denotes column-wise concatenation. The update rule for vi is

h(k)
i = σ(W(k)(h(k−1)

i + s(k−1)
i)), (4.10)

where W(k) ∈ Rdk×dk−1 is the learnable weight matrix. After K iterations/layers, the final

representation h(K)
i ∈ RdK .

For multi-class node classification, h(K)
i will be passed to a fully-connected layer with a

so f tmax activation function. The loss function is defined as the cross-entropy error over all

labeled examples:

L=− ∑
l∈Vl

F

∑
f=1

Yl f lnh(K)
l , (4.11)

where Vl is the set of node indices that have labels and dK is the dimension of output features

equaling to the number of classes. Yl f ∈ R|Vl |×F is a label indicator matrix.

For graph classification, adding up all h(K)
i or more sophisticated graph-level pooling can

be applied to get the entire graph’s representation.

4.2.6 Computational Complexity

A key part in our method is the auxiliary model, and it is a shared model by all nodes in a graph.

So, the computation of the mask can be parallelized across all nodes, which is highly efficient.

The computational complexity of Eq. (4.10) is O(| E | ×dk × dk−1+ | E | ×2dk−1 × dk−1)

and is in par with GCN (O(| E | ×dk × dk−1)). As for the memory requirement, it grows

linearly in the size of the dataset and we perform mini-batch training to deal with this issue.

4.2.7 Differences with Existing GNNs

We compare our model with prominent GCN based models and we study all these model

from three aspects:

• Aggregator Sum [215] and mean [72] are two most commonly seen aggregators.

The aggregator in GCN [103] can be seen as a weighted mean aggregator (meanw),

and the weight is (did j)
−1/2, where di, d j are the node degree of central node vi and

4.2 Methodology 69

neighbor v j. In GAT [191], the aggregator is a learnable weighted summation (sumlw).

Convolutional operation (Conv) is used to aggregate the neighborhood information

in LGCL [58] and NFC-GCN in Sec. 3.1. Our aggregator function can be seen

as an extention of sumlw, which applies learnable masks to filter the neighborhood

information before summation. We summarize the relationship between desiderata and

mentioned aggregator in Table 4.1. Our aggregator satisfies all desiderata, enabling a

leap in model capacity. Furthermore, analyzing the learned mask may lead to benefits

in interpretability.

• Auxiliary model. GCN, GraphSAGE [72] and GIN [215] do not use any auxiliary

model to guide the aggregation process, and sum or mean the neighborhood directly.

while a shared convolutional layer and a shared single-layer feed forward neural

network are used in Sec. 3.1, LGCL and GAT respectively. Considering the limitation

of CNN and RNN whose input data should be ordered and fixed-size, we use a shared

single-layer feed forward neural network. Both our model and MaskedGCN aim to

learn the mask. While, there are two main differences between our auxiliary model and

MaskedGCN. First, MaskedGCN actually does not use any auxiliary model to learn the

mask, and the mask is a learnable vector that contains the learnable parameters directly.

There is no parameter sharing among nodes, and model’s parameters grow with the

number of nodes in a graph, which is computationally inefficient. While, our model

applies a shared MLP among all nodes to learn the mask and it is highly efficient.

Second, our model applies MLP to model the node-neighbor (vi-v j) pairs directly to

learn the mask. While the mask vector in MaskedGCN is learned independent of the

central node vi, and depends on the consistencies of each feature between v j and v′j

neighbors.

• Input and output of the auxiliary model. For GAT, the input is node-neighbor pairs

(input), and the auxiliary model learns from them to get coefficients (output) between

nodes, which allows the aggregator to focus on most relevant nodes. The aggregator

adds up each neighbor corresponding to the learned weight to get the aggregation

70 Learnable Aggregator for Graph Convolutional Network

Table 4.2 Overview of datasets for graph classification.

Datasets Graphs Classes Avg. nodes

MUTAG 188 2 18
PROTEINS 1,113 2 39

PTC 344 2 26

output. However, GAT only learns node-level attention. LGCL uses the reorganized

neighbor’s embedding (input) that selects the d-largest values for each feature from

neighbors to calculate the convolutional filter’s weights (output). NFC-GCN selects

and orders a fixed-size neighbors as input and learns the convolutional filter’s weights

(output). LGCL and NFC-GCN allow for feature-level attention, but they can not deal

with variable size inputs (the number of adjacent nodes usually varies for different

nodes in a graph), due to the limitation of convolution operation. While we concatenate

the central and neighbor before feed in the auxiliary model, which can be viewed as

a simple form of a “ skip connection ” between different search depths and get the

learned mask for each given node’s neighbor.

4.3 Experiments

We perform evaluation on node classification and graph classification, and study our model’s

interpretability and robustness.

4.3.1 Datasets

We conduct node classification on three citation graphs (Cora, Citeseer and PubMed) and one

social network (Reddit), which have been widely used in [103, 36, 216, 72, 191, 58, 1, 242]

and graph classification on 3 bioinformatics datasets summarized in Table 4.2.

• Node classification. We use the citation graphs as mentioned in Sec. 3.3.1. Reddit is a

large online discussion forum where users post and comment on content in different

topical communities. The node label is the community, or “subreddit”, that a post

4.3 Experiments 71

belongs to. The link means the same user comments on both posts. Hamilton et al.

[72] concatenates the average embedding of the post title, the average embedding of all

the post’s comments, the post’s score, and the number of comments made on the post

as node features. Reddit contains 41 discrete labels, 232,965 nodes, 11,606,919 links,

and node features, a 602-dimensional vector for each node, are learned from user’s

text information: post title, post comments, post score and the number of comments.

Following Hamilton et al. [72], we divide the train/validation/test as 152K, 23K and

55K respectively.

• Graph classification. We use 3 bioinformatics datasets [215]. MUTAG is a dataset of

188 mutagenic aromatic and heteroaromatic nitro compounds with 7 discrete labels.

PROTEINS is a dataset where nodes are secondary structure elements (SSEs) and there

is an edge between two nodes if they are neighbors in the amino-acid sequence or in

3D space. It has 3 discrete labels, representing helix, sheet or turn. PTC is a dataset of

344 chemical compounds that reports the carcinogenicity for male and female rats and

it has 19 discrete labels.

4.3.2 Baselines

Node classification. We compare against 6 strong baselines: GCN [103], GAT [191],

FastGCN [36], GraphSAGE-mean [72], LGCL [58] and MixHop [1] using the publicly

released implementations. We split the train/validation/test as in 3.3.1.

Graph Classification. Following [215], we compare our model with the following

baselines:WL subtree [166], DCNN [11], PATCHYSAN [143], DGCNN [239], AWL [91]

and GIN with its variants.

4.3.3 Hyperparameters Setting

Node classification. In our model, we first utilize one GCN layer to reduce the dimension

of the node feature to 64-dimension for Cora, PubMed and 128-dimension for Citeseer and

Reddit. Then we apply a one-layer neural network as the auxiliary model to learn masks

72 Learnable Aggregator for Graph Convolutional Network

Table 4.3 Node classification accuracy (%) (mean ± 95% confidence interval over 100 runs)

. The best results are in bold and the second best ones are underlined.

Methods Cora Citeseer PubMed Reddit

GCN 88.1 ± 0.235 77.8 ± 0.216 86.8 ± 0.176 93.0 ± 0.261
GAT 80.4 ± 0.255 75.7 ± 0.431 85.0 ± 0.039 –
LGCL 86.9 ± 0.216 77.5 ± 0.392 84.1 ± 0.118 –
FastGCN 85.0 ± 0.470 77.6 ± 0.124 88.0 ± 0.627 93.7 ± 0.365
GraphSAGE 82.2 ± 0.135 71.4 ± 0.165 87.1 ± 0.921 94.6 ± 0.217
MixHop 88.3 ± 0.446 – 85.6 ± 0.329 –
NFC-GCN 88.7 ± 0.255 79.4 ± 0.431 89.7 ± 0.137 94.9 ± 0.517

Ours 89.1 ± 0.321 78.7 ± 0.352 89.1 ± 0.252 95.1 ± 0.264

for neighbors, whose input dimension is 128×64 (Cora, PubMed) and 256×128 (Citeseer

and Reddit). Hyperparameters are optimized with the validation set [36]. Throughout the

experiments, we use the Adam optimizer [102] with learning rate 0.05 for Cora and PubMed,

0.002 for Citeseer, and 0.01 for Reddit. We fix the dropout rate to 0.5 for the hidden layers’

inputs and add an L2 regularization of 0.0001. We employ the early stopping strategy based

on the validation accuracy and train 200 epochs at most. For Reddit, we use the mini-batch

training and the batch size (512) is set to be the same as FastGCN and GraphSAGE.

For a fair comparison, we also use the hidden layer size of 64 units for GCN on Cora,

PubMed and 128 for Citeseer, which ensures the architecture is the same with ours model

(except the auxiliary model part). We use the same architecture as in the original papers for

GAT, LGCL, FastGCN, GraphSAGEMixHop and NFC-GCN. We report results over 100

runs with random weight matrix initialization.

Graph classification. We report the mean accuracy of 100 runs with random weight

initialization for all of our experimental results. We use the following hyperparameters for

MUTAG, PTC and PROTEINS: 0.005 (learning rate), 16 (the number of hidden units), 0.5

(dropout ratio), 32 (batch size). We replace the sum aggregator in GIN with our learnable

aggregator and MLPs with two layers are applied after aggregation. Batch normalization

[102] is applied on each hidden layer.

4.3 Experiments 73

Table 4.4 Graph classification accuracy (%) (mean ± 95% confidence interval over 100 runs)

. The best results are in bold and the second best ones are underlined.

Methods MUTAG PROTEIN PTC

WL subtree 90.4 ± 2.93 75.0 ± 1.76 59.9 ± 2.66

B
as

el
in

es

DCNN 67.0 61.3 56.6
PATCHYSAN 92.6 ± 2.25 75.9 ± 1.94 60.0 ± 3.29
DGCNN 85.8 75.5 58.6
AWL 87.9 ± 4.77 – –

GIN 89.4 ± 2.55 76.2 64.6 ± 3.98

G
N

N
va

ri
an

ts Sum-1-Layer 90.0 ± 4.83 76.2 ± 2.03 63.1 ± 4.13
Mean-MLP 83.5 ± 4.25 75.5 ± 2.03 66.6 ± 4.76
Mean-1-Layer 85.6 ± 3.60 76.0 ± 1.79 64.2 ± 4.19
Max-MLP 84.0 ± 4.39 76.0 ± 1.83 64.6 ± 4.73
Max-1-Layer 85.1 ± 4.57 75.9 ± 2.77 63.9 ± 5.03

LA-GCNMask (Ours) 90.0 ± 3.06 80.5 ± 2.03 72.2 ± 4.88
Improvement - 4.30 5.60

Table 4.5 Node classification with different label size (%). The best results are in bold and
the second best ones are underlined.

Datasets Methods 1% 2% 3% 4% 5% 10% 20% 30% 40% 50% Average

GCN 58.41 71.70 75.83 79.27 82.28 85.50 85.57 86.93 87.00 86.27 79.87
Cora GAT 45.31 58.79 68.12 71.23 77.49 85.20 85.90 86.70 87.10 86.20 74.66

LGCL 60.58 71.25 75.55 79.28 82.53 84.85 86.03 86.58 86.85 87.13 80.06
Ours 63.50 73.61 76.70 79.49 81.11 84.34 85.58 86.58 87.68 87.72 80.60

GCN 42.76 69.29 71.66 72.50 73.32 76.90 77.77 77.93 77.83 78.17 70.93
Citeseer GAT 47.78 63.57 54.38 50.48 72.10 75.40 74.60 75.20 77.00 77.02 64.95

LGCL 57.80 66.92 72.32 71.28 73.10 76.34 76.38 76.86 77.07 77.02 72.51
Ours 57.35 69.52 71.02 72.03 72.16 76.48 78.49 78.12 79.29 79.35 73.26

GCN 79.92 80.46 79.18 79.28 79.62 82.47 84.30 83.40 84.70 85.07 81.48
PubMed GAT 78.56 79.48 78.02 78.62 78.64 81.60 83.00 83.20 83.20 83.20 80.48
- LGCL 81.95 82.70 83.10 82.93 81.30 82.50 85.37 84.60 85.46 85.74 83.32

Ours 80.00 82.44 81.35 83.13 82.67 85.50 86.70 87.50 87.50 87.30 84.09

4.3.4 Performance for Node Classification

Results for node classification and graph classification are summarized in Table 4.3 and Table

4.4. We observe that LA-GCNMask outperforms all the mentioned methods across all datasets

except MUTAG.

74 Learnable Aggregator for Graph Convolutional Network

For node classification, GCN outperforms GAT, which is consistent with the results

reported in [216, 1]. FastGCN and GraphSAGE focus on improving the training efficiency

so they have slightly worse results than GCN. LGCL reorganizes the original embedding

in the process of constructing feature maps and it does not perform well particularly on

PubMed. MixHop utilizes different hop neighbors information and gets the second best

performance on Cora, but does not perform well on Citeseer and PubMed. One possible

reason is that it does not filter the neighborhood information, which may aggregate some

noisy information from higher-order neighbors. NFC-GCN allows for feature-level attention

of the local neighborhood information and gets slightly better results. One possible reason

is that NFC-GCN only selects most related neighbors, and has many convolutional kernels,

which could be more expressive than LA-GCN.

4.3.5 Performance for Graph Classification

For graph classification, Table 4.4 compares LA-GCNMask with GIN, other GNN variants, as

well as other strong baselines. In general, GNN variants perform better than the mentioned

baselines, and the main reason is that they can not combine node features, which might limit

the models’ capacity. GNNs with sum aggregator tend to fit the training sets better than mean

and max-pooling aggregators. Further, we can see that replacing the sum aggregator in GIN

can significantly improve the accuracy on PROTEIN and PTC datasets by 4.5% and 5.6%,

excluding MUTAG. One possible reason for the poor performance on MUTAG is that our

model may not be fully trained due to the small training sample size.

4.3.6 Parameter Sensitivity

We also compare our method with closely related methods, GCN (meanw aggregator), GAT

(sumlw aggregator) and LGCL (Conv aggregator), in two scenarios: small training size (1%,

2%,..., 5% for Cora and Citeseer, 0.5%, 0.6%, 0.7%, 0.8%, 0.9% for PubMed 1) and large

training size (10%, 20%,..., 50%) for Cora, Citeseer and PubMed. Results are summarized in

1Compared with Cora and Citeseer, PubMed has more nodes. So, we choose the training size with smaller
percentages.

4.3 Experiments 75

Table 4.5. Note that Reddit is too large for GAT, so we only report results on three citation

graphs and accuracy of 100 runs with random weight initialization for all of them.

Table 4.5 shows node classification results with different training sample sizes. The 95%

confidence interval belongs to (0-1.0) and we did not show this in Table 4.5 for a better view.

On the whole, our model has achieved competitive performance in small training sample

size and got better performance, especially with more training data. The main reason is

that our model has more parameters than GCN, and we briefly summarized the number of

parameters of GCN, GAT and LA-GCN. GCN’s parameter is less than ours on Cora, Citeseer

and PubMed 8.16%, 6.46% and 20.0%, respectively. Compared with GCN, our model need

more training samples. For a more intuitive comparison, we average these results for each

method under different training size. LGCL and LA-GCNMask outperform GCN and GAT,

which indicates that being discriminative to feature-level is crucial for node classification.

4.3.7 Effectiveness of Mask Aggregator

To show the effectiveness of our aggregator, we compare our aggregator with three fun-

damental aggregators: mean, sum and maxpooling2. Results are summarized in Table

4.7.

Table 4.6 Node structure and feature statistics. (H.Nd.: Highest Node degree, L.Nd.: Lowest
Node degree, M.Nd.: Median Node degree, and A.Nd: Average node degree. Fea.De. means
feature density).

Dataset H.Nd. L.Nd. M. Nd. A.Nd Fea.De.

Cora 168 1 4 4.9 1.26%
Citeseer 99 1 3 3.7 0.84%
PubMed 171 1 3 5.5 1.00%

Table 4.7 shows that our aggregator works better on Cora and PubMed than other

aggregators, but not on Citeseer. The main reason is that Citeseer is more sparse in both

graph structure and node feature, as shown in Table 4.6. The median of the neighbors’

2We use the same model architecture, besides the aggregator, and we name them as: GCNmean, GCNsum
and GCNpooling.

76 Learnable Aggregator for Graph Convolutional Network

Table 4.7 Different aggregators for node classification (%).

Dataset Cora Citeseer PubMed

GCNmean 87.7 ± 0.216 77.7 ± 0.276 86.0 ± 0.133
GCNsum 85.5 ± 0.540 77.1 ± 0.552 85.2 ± 0.535
GCNpooling 84.7 ± 0.324 79.1 ± 0.579 86.2 ± 0.324
Ours 89.1 ± 0.175 78.7 ± 0.260 89.1 ± 0.216

Fig. 4.3 Visualization of the learned mask. The proposed aggregator can focus on important
neighborhood information (e.g. the neighbors from the same class, or some highly relevant
features) with the learned mask. The values showed in the heat map are the real values of the
weights.

number is 3 and the feature density is 0.84% (3703 is divided by 18, the average number

of “1” in a feature vector). So, max-pooling may be the best way that can collect most

information from the neigborhood, which benefits the later feature transformation stage. But

the result of pooling aggregator may not be very stable, and the standard deviation (3.26%)

is almost ten times higher than other aggregators on Cora. As for mean and sum aggregator,

mean aggregator performs better both in accuracy and stability in general. Adding up all

neighbors’ feature vectors may change the scale of the feature, which may not be good for

node classification task.

4.3.8 Interpretability Study

Sum, mean, pooling and Conv aggregators mix or reorganize neighborhood information,

which makes it difficult to interpret the learned representation because we can not distinguish

which node and feature have a salient influence on the prediction result. While our aggregator

provides a learned mask for each neighbor, which provide a qualitative and quantitative

understanding of the relationship between input nodes and the prediction. In this subsection,

4.3 Experiments 77

we aim to answer the following Questions: (1) what we expected, (2) what we learned and

(3) what we concluded.

For Q1, the expectation intuitively is that the learned mask should assign more weights

to important neighbors and features.

In order to answer Q2, we visualize the learned masks for a representative node: Node 4

in Cora with neighbors from different classes, as shown in Fig. 4.3. Central node 4 and its

neighbors 1016, 1025 and 2176 belong to the same class, while neighbors 1761, 2175 belong

to another class (class 2). From Fig. 4.3, we see that neighbors (1016, 1025, 2176) from the

same class are assigned more weights (the values in the learned mask) than the other two

neighbors (1761, 2175) on the whole. Besides, the mask gives high importance scores to

some specific feature dimensions. We also analyze how GCN and GAT aggregate node 4’s

neighbors. GCN assigns weights - 0.2, 0.16, 0.16, 0.17, 0.2 to nodes 1016, 1025, 2176, 1761,

2175 respectively, depending on node 4 and its neighbors’ node degree. The neighbors are

treated differently in node-level, but it is not as we expected. It is reasonable to expect that

node 1025 and 2176 (from the same class with central node) should be given higher scores

than node 1761 and 2175. For GAT, the learned attention weights are all around 0.17, and

the neighbors are not treated significantly differently.

This indicates that the auxiliary model learns the expected rules (focusing on the important

neighbors and features), which is used to assist our aggregator to jointly consider node-level

as well as feature-level modulation of neighborhood information in the aggregation process

(Q3). However, all features in one feature vector share the same weights in both GCN and

GAT.

4.3.9 Robustness Study

Because real-world graphs are noisy, an essential criterion is that the model should be robust.

As shown in [253], permutations to both graph structures and node features are harmful. To

study the robustness of LA-GCNMask, we test our model on both structure noisy graphs, i.e.,

changes to adjacency matrix, and node feature noisy graphs, i.e., changes to node feature

matrix.

78 Learnable Aggregator for Graph Convolutional Network

(a) Cora with structure noise (b) Citeseer with structure noise

10 20 30 40 50 60 70
how many node feature dimension attacked

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

GCN
GAT
LGCL
LA-GCN

(c) Cora with feature noise

10 20 30 40 50 60 70
how many node feature dimension attacked

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y

GCN
GAT
LGCL
LA-GCN

(d) Citeseer with feature noise

Fig. 4.4 Robustness studies: (a) and (b) show the node classification accuracy on structure
noisy graphs, and (c) and (d) show the node classification accuracy on node feature noisy
graphs.

We follow [41] to utilize the simplest attack methods. Given a target node, we randomly

delete or add edges to the graph. For structure attack, the budget for each node is from one

to five, which means that we are allowed to randomly add or delete one to five neighbors

for each node. Following [255], per-node changes to the node attributes are at most 5% of

the node feature dimension. The node feature vector in Cora and Citeseer only contains 0

or 1, so we randomly flip the features for feature attack. We compare our model with GCN,

GAT and LGCL on both structure and node feature noisy graphs. Considering the unstable

4.4 Summary 79

problem caused by the noisy data for these models, we report the average of top 10 results

over 40 runs for each method, as shown in Fig 4.4.

Figure 6.6a and Fig. 4.4b shows that the performance gets worse with the attack budget

increasing. Our model gets the best performance, especially with more structures changed.

When the structure permutation is 5, the second best can only achieve 62% and 54 %

classification accuracy on Cora and Citeseer respectively, while ours are 72% and 68%. In

this case, the feature vector of the central node is still well preserved and our aggregator can

effectively identify those features good for the classification of the central node from noisy

neighborhood information.

For node feature noisy graphs, as shown in Figs. 4.4c and 4.4d, GAT and LGCL

degrades significantly and our method shows strong robustness. Compared with GCN, the

improvement is not as significant as in structure attack experiments. In this scenario, the

central node’s feature is also polluted in some extend, which may mislead the learned mask

in the neighborhood aggregation process.

4.4 Summary

Considering most real-world graphs with no regular connectivity and order, we further

extends NFC-GCN by lifting constraints on the input data format and proposed a new

model to solve the first research question in this chapter. We unified current aggregators

in a framework: LA-GCN, with an auxiliary model to guide the neighborhood aggregation

process. We carefully designed the auxiliary model under this framework and proposed

a new aggregator: mask aggregator that learns a specific mask for each neighbor, which

allows end-to-end training and both node-level and feature-level attention for neighborhood

information. LA-GCNMask provides a variety of benefits, from an easy implementation with

a much better performance, to interpretability, to robustness in noisy graphs. We evaluated

LA-GCNMask against six state-of-the-art methods on variable type and size graphs for node

classification and six strong baselines on graph classification. Experimental results showed

the superior performance of LA-GCNMask over other methods on the whole, particularly a

80 Learnable Aggregator for Graph Convolutional Network

remarkable improvement on noisy graphs. Furthermore, analyzing the learned mask provided

a straightforward interface for make sense out of prediction and quantified understanding

of the relationship between input nodes and prediction. In addition, the proposed mask

aggregator can be integrated with other GCN variants such as FastGCN [36], jumping

knowledge networks [216], GMWW [154] and MixHop [1].

Chapter 5

Hop-Hop Relation-aware Graph Neural

Network

5.1 Introduction

Real-world objects and interactions are often heterogeneous (e.g., movies, actors and directors

in knowledge graph (KGs), authors, papers, venues in a publication network [167]). To

capture and exploit such node and link heterogeneity, heterogeneous graphs have been

proposed and widely used in many real-world graph mining scenarios [218]. For node

representation learning, only the first-order neighborhood information may be not enough,

which is caused by the sparsity or heterophily [62, 61, 214]. To learn a better representation,

it would be better to leverage multi-scale neighborhood information, which enables the model

to leverage more information or to explore the same type of nodes at various distances. In

Chapter 3 and Chapter 4, we mainly focus on how to design new GNN models for feature-

level and node-level attentions of first-order neighborhood information. In this chapter, we

mainly focus on how to design the GNN model to leverage different hops of neighbors,

meanwhile incorporate hop-level attention of local neighborhood information.

The majority of current GNNs focus on homogeneous graphs, and the aggregator aggre-

gates a central node’s one-hop neighbors [103, 191], neighbors sampled from fixed-length

random walks [72] or multi-scale neighbors [1, 120, 11] in the neighborhood aggregation

82 Hop-Hop Relation-aware Graph Neural Network

step. In recent years, there are some attempts to apply GNNs to heterogeneous graphs

[161, 206], in which different types of nodes are connected under unique relations [218].

Most existing GNNs-HE aggregate the neighbors from manually designed or automatically

learned meta-paths [206, 164]. However, it remains unclear which hops or types of neighbors

is crucial for the central node’s representation learning? GNNs-HO only aggregate the neigh-

bors directly and fail to exploit the relationship between central node with different hops of

neighbors. GNNs-HE only aggregate two end nodes in the manually defined meta-path and

discard all intermediate nodes along the meta-path, which could lead to information loss and

the real meaningful relations for each node can not be explored.

Based on the above analysis, the key is to design a new neighborhood aggregation

framework that can automatically learn the relationship between central node with different

hops or types of neighbors. Meanwhile, we also need to consider two key differences of

GNNs-HO and GNNs-HE in the neighborhood aggregation process. 1) How to define the

receptive field, which is determined by the powers of adjacency matrix and meta-paths in

GNNs-HO and GNNs-HE respectively. 2) How to aggregate the neighbors. Most GNNs-HO

aggregate all neighbors in the receptive field and GNNs-HE only aggregate two end nodes in a

meta-path. In summary, the new aggregation process should satisfy the following Desirables:

• D1: A personalized (learnable) receptive field. GNNs-HO and GNNs-HE use

different ways to define their receptive fields. A common issue is that the receptive

fields are more or less hand-designed based on the powers of adjacency matrix or

meta-paths. Besides, considering the connectivity for each node varies greatly in a

graph [191, 139], previous mechanism may not be suitable for each node and limit

GNNs to discover meaningful receptive fields from a graph. Therefore, we need an

automated way of learning the receptive field for each node.

• D2: Hop-aware projection. Different hops or types of neighbors have different traits

and their embeddings should be mapped in different feature spaces [161]. Different

types of neighbors along a meta-path in heterogeneous graph can be treated as different

5.1 Introduction 83

Table 5.1 Comparisons of other GNNs and our model: HHR-GNN. Outline of related work
in term of fulfilled (

√
) and missing (×) desirable characteristics.

Desirables GCN GAT GraphSAGE GinePath HAN GTN GTN

D1 × × ×
√

× ×
√

D2
√ √

×
√

×
√ √

D3 × × × ×
√ √ √

D4
√

×
√

×
√

×
√

D5 ×
√

× × ×
√ √

hops of neighbors in homogeneous graphs. Hop-aware projection is an important

requirement before the aggregation for the two types of graphs.

• D3: Hop-aware aggregation. In GNNs-HO, different hops or types of neighbors

show different importance for central node’s representation learning. For example, the

directly linked (one-hop) neighbors have a closer relationship with the central node

than indirectly linked (higher-order) neighbors in homogeneous graph, while it could

be the opposite for heterogeneous graphs with a high probability, e.g., two papers can

be connected by the meta-path Paper-Author-Paper (PAP) in a citation graph, and the

two-hop neighbors (P-type nodes) have a closer relationship (papers written by the

same author) than one-hop neighbors (A-type nodes) with the central node (P-type

nodes). Therefore, the aggregation process should be smarter and GNNs should be

able to model different relationships between a central node and its different hops or

types of neighbors during aggregation.

• D4 & D5: Efficiency and interpretability. For practical applications where efficiency

and interpretability are needed [222], the model should be able to explain which hops

or types of neighbors play important roles for the central node’s representation learning.

Moreover, the model should deal with the complex neighborhood in an efficient way,

especially for large-sized and heterogeneous graphs [47, 206].

To this end, we propose a general approach that can satisfy the above desirables for both

homogeneous and heterogeneous graphs, Hop-Hop Relation-aware Graph Neural Network

(HHR-GNN), which mainly contains three modules: GNN, Knowledge Graph Embedding

84 Hop-Hop Relation-aware Graph Neural Network

(KGE) and aggregation. In GNN module, we first utilize different mapping matrices (D2) for

different hops (types) of neighbors to learn hop-specific representations. 1 In order to model

the relationship between the central node and its different hops or types of neighbors, we

introduce a complementary module: KGE which can capture the interaction between head

and tail entities by learning their relation-score in knowledge graphs (KG) [204]. We feed

the embeddings learned from GNNs to the KGE module to model the relationship between

a central node and its different hops or types of neighbors. In this chapter, we utilize four

representative KGE methods: RESCAL [142], DistMult [217], MLP [44], NTN [171] to

learn the relation-scores 2 between central node and its different hops’ representations. This

will enable the central node to softly aggregate neighborhood information at different hops

(D1). The relation-scores are learned from the low-dimensional and fix-sized embeddings 3,

so the learning process can be done efficiently (D4). Finally, we apply six commonly used

aggregators: sum, mean, max pooling, concatenation, LSTM, GRU [72] to aggregate the

central node and its different hops’ embeddings weighted by their corresponding relation-

scores (D3) to get the central node’s final embedding, which allows our model to automatically

aggregate latent information from neighbors at various distances and types. Analyzing

the learned relation-scores can show which hops or types of neighbors are important and

this benefits interpretability (D5). Finally, we compare our proposed aggregator and the

mentioned aggregators in Table 5.1 to show our novelty. Our proposed model, HHR-GNN,

satisfies all desiderata, enabling a leap in model capacity.

We evaluate HHR-GNN on two popular homogeneous graphs and three heterogeneous

graphs for node classification. Our results confirm that our model performs well on both

types of graphs. In addition, we visualize the learned relation-scores to show that our model

can automatically identify which hops or types neighborhood information is important for

the central node’s representation learning, which provides an interpretable explanation for

the prediction. We further compare the efficiency of our model with others and our model

outperforms state-of-the-art GNNs-HO and GNNs-HE, with up to 13K faster in term of time

1 p-hop representation contains all neighbors’ information at p-hop (p = 0,1,2...).
2For a given node, we assume neighbors in the same hop have the same relation-score.
3The size is decided by the number of hops, not the number of neighbors.

5.2 Methodology 85

cost. Finally, we explore the application of different KGE models in HHR-GNN and find

different problems favor different KGE models depending on training dataset size.

In summary, the key contributions of this chapter are:

1. We propose Hop-Hop Relation-aware Graph Neural Networks (HHR-GNN), a new

framework of GNNs, that can model the relationship between central nodes with their

different hops or types of neighbors.

2. HHR-GNN is suitable for both homogeneous and heterogeneous graphs representation

learning, meanwhile it solves some issues of current models, such as fix-sized receptive

fields, no hop distinction or information loss in the neighborhood aggregation process.

3. We comprehensively evaluate the superiority of our model on both homogeneous and

heterogeneous graphs for the popular node classification tasks. Besides, HHR-GNN

can both ensure the accuracy and efficiency (up to 13K faster in terms of time cost)

while providing an interpretable explanation for the prediction.

5.2 Methodology

This section presents our proposed HHR-GNN as shown in Figure 5.1. Borrowing ideas from

knowledge graph embedding methods, HHR-GNN is a general neighborhood aggregation

framework that can manage the relationship of central node and its different hops or types of

neighbors during the neighborhood aggregation. After the notation and problem definition,

we first start from theoretical study of homogeneous and heterogeneous graphs and their

neighborhood aggregation in GNNs-HO and GNNs-HE. This enables us to derive a general

framework that is suitable for both homogeneous and heterogeneous graphs representation

learning and satisfies all the desirables mentioned above. Finally, we analyze our model’s

complexity and differences with existing GNNs.

86 Hop-Hop Relation-aware Graph Neural Network

KGE
ModelsAi

1Xі

Ai
p

Ai
0

...

𝐡i
(1)0

...

W0

𝐡i
(1)1

𝐡i
(1)p

W1

Wp

𝛼i1

𝛼ip

... 𝐡i
(1)

powers of
adjacency matrix

GNN module

Hop-aware
projection

KGE module

relation-scores

node
feature

new node
embedding

trainable
weight matrix

Hop-aware
aggregation

𝛼i0

Aggregation
function

Fig. 5.1 HHR-GNN architecture (the first layer): HHR-GNN first calculates its represen-
tations at different hops, e.g., h(1)p

i is p-hop representation that aggregates neighbors in
the p-hop. Ar

i is the i-th row of r-th power of adjacency matrix. Then the central node’s

representation h(1)0
i and its representations at different hops (h(1)1

i ,h(1)2
i , ...,h(1)p

i) will be fed
to a NTN model to learn the relation-scores. Finally, we concatenate each node’s embedding
with its representations at different hops weighted by their corresponding relation-scores to
get the new embedding.

5.2.1 Problem Definition

The problem we consider in this chapter is semi-supervised node classification task on

graphs. A graph with N nodes can be represented as G= (V,E ,X), where node vi ∈ V , edges

(vi,v j) ∈ E (i, j = 1, ...,N), and a feature matrix X ∈ RN×D containing N D-dimensional

feature vectors. The hidden representation learned by the k-th layer of a GNN model is

denoted by H(k) and we initialize H(0) = X. The goal of GNNs is to learn meaningful and

low-dimensional node embeddings, which can be used for down-stream tasks, such as node

classification, link prediction or other tasks.

This chapter focuses on the semi-supervised node classification task. Vl is the set of

nodes with labels Yl f ∈ R|Vl |×F , a label indicator matrix, F is the number of classes, the rest

of the nodes Vu are unlabeled. We aim to predict the labels for a subset of unlabeled nodes.

5.2.2 Theoretical Studies

In this subsection, we mainly reveal the relationship between neighborhood aggregations in

GNNs-HO and GNNs-HE.

5.2 Methodology 87

Homogeneous and Heterogeneous Graphs

This section first introduces how to represent the two types of graphs and the relationship

between hops in homogeneous graph and types in heterogeneous graph.

As defined in Definition. 2.1.3, heterogeneous graph is associated with a node type

mapping function fv: V → Tv and a link type mapping function fe: E → Te, where |Tv| +

|Te| > 1. If both Tv =1 and Te =1, it is a homogeneous graph with the same type of nodes

and edges.

The heterogeneous graph can be represented by a set of adjacency matrices {Ar}R
r=1

(R=|Te|), and Ar ∈ RN×N is an adjacency matrix where Ar[i, j] is non-zero when there is a

r-th type edge from v j to vi. In homogeneous graphs, the adjacency matrix is simplified to

A ∈ RN×N (R=1).

In heterogeneous graph, two nodes can be connected via different semantic paths, which

are called meta-paths. Meta-path defines a composite relation R = r1 ◦ r2...◦ rp between node

v1 and vp+1. Given the composite relation R, the adjacency matrix of the meta-path can be

obtained by multiplications of adjacency matrices as:

AR = Ar1Ar2 ...Arp . (5.1)

For example, two Authors can be connected by the meta-path Author-Paper-Author (APA)

via the meta path A AP−→ P PA−→ A (a two-step walk), and the co-author (AA) graph can be

obtained by the multiplication of AAP and APA. In homogeneous graph, Eq. 5.1 can be

written as

AR = Ap, (5.2)

because Ar1 = Ar2...= Arp = A.

The adjacency matrix AAA can be viewed as the two-hop connectivity matrix for A-

type nodes, because AAA = AAPAPA in heterogeneous graph is analogous to A2 = AA

in homogeneous graph. Equations 5.1 and 5.2 illustrate the relation between types in

heterogeneous graph and hops in homogeneous graph. Therefore, we can view a meta-path

as high-order proximity between two nodes.

88 Hop-Hop Relation-aware Graph Neural Network

Theoretical Studies of Neighborhood Aggregation

This section mainly studies the neighborhood aggregation in GNNs-HO and GNNs-HE. A

general GNN layer can be defined as:

H(k) = σ(ApH(k−1)W(k)), (5.3)

where σ can be any activation function, H(k−1) ∈RN×dk−1 and H(k) ∈RN×dk is the input and

output for layer k, W(k) ∈ Rdk×dk−1 is the trainable transformation matrix.

The neighborhood aggregation iteratively updates the representation of a node by aggre-

gating its neighbors’ representations. To mathematically formalize the above insight, the

aggregation process can be generically written as follows:

s(k)i = f (k)ag (h(k−1)
j , j ∈Ni), (5.4)

where f (k)ag is the predefined aggregation function in the k-th layer of a model, Ni is the

defined neighborhood and s(k)i is the aggregation result.

One key problem is how to define the neighborhood Ni. In GNNs-HO, Ni is mainly

based on the powers of adjacency matrix Ap. Ni means one-hop neighbors (p = 1) or

high-order neighbors (p > 1). Once p is fixed, the receptive fields will also be fixed and

GNNs-HO aggregates all neighbors within p-hop. In GNNs-HE, neighborhood is defined by

the manually defined meta-path as Eq. 5.1. If the meta-path is defined as APA, A-type nodes

only aggregate A-type nodes (second-order neighbors), while the P-type (one-hop) neighbors

are discarded, resulting in information loss. GTN learns the meta-path by multiplications of

softly selected adjacency matrices:

AR = (α1Ar1)(α2Ar2)...(αpArp), (5.5)

where α1,α2, ...,αp are learnable parameters who have to be updated in each training epoch,

and AR in Eq.5.5 also needs to be recalculated in each training epoch. This process is very

5.2 Methodology 89

time consuming, especially for large scale graphs. Eq.5.5 in GTN defines a general meta-path

(receptive field) for all nodes in a graph, which may not be suitable for each node.

5.2.3 A Personalized Receptive Field

For a better neighborhood aggregation, the first desirable is to learn a personalized receptive

field (D1), then each node can combine information from different hops of neighborhood

to assist its representation learning. Based on the theoretical study and analysis, we need a

smarter way to combine neighborhood information from different hops. Instead of learn-

ing the combination of adjacency matrices Eq. 5.5, we learn a soft combination of the

low-dimensional and fix-sized (decided by p) embeddings learned from different hops of

neighbors as follows:

h(k)
i = f (k)ag (αirh

(k)r
i ,r ∈ (0,1, ..., p)) (5.6)

where αir are learnable parameters and h(k)r
i is vi’s r-hop representation, αi0 = 1. Note that

h(k)r
i contains all information from vi’s r-hop neighbors, not a single neighbor’s embedding.

Eq. 5.6 is analogous to the popular receptive module [180] for classic Convolutional

Neural Networks (CNN) [107] architectures: it consists of convolutional filters of different

sizes determined by the parameter p, where p = 0 (equivalent to transformations of the

features in each node without diffusion across nodes in GNN) corresponds to 1 × 1 convolu-

tions in the receptive module in CNN. The difference is that the convolution filter in CNN

convolves all within the p× p receptive field, and we use αir to combine different hops of

information to define a flexible receptive field for each node (D1) within p-hop neighborhood.

For example, vi only aggregates its one-hop and three-hop neighbors, when p = 3 and the

learned parameters αi0,αi1,αi3 > 0,αi2 = 0.

Two natural follow-up questions are how to learn h(k)r
i and αir. We will give more details

in the two following sections.

90 Hop-Hop Relation-aware Graph Neural Network

5.2.4 Hop-aware Projection

Considering different types or hops of neighbors have different traits and their embeddings

should fall in different feature space, we design a hop-specific transformation matrix (Wr) to

project the node features for each hop (or type) of nodes (D2). The r-hop representation can

be expressed as:

h(k)r
i = σ(Ar

i h
(k−1)
i W(k)

r), (5.7)

where σ can be any activation function, W(k)
r ∈ Rdk×dk−1 is the trainable transformation

matrix, h(k−1)
i ∈ Rdk−1 is the hidden representation of the (k−1)-th layer and Ar

i is the i-th

row or line of r-th power of adjacency matrix A. h(k)r
i is the r-hop representation.

As for heterogeneous graph, r-hop representation can also be interpreted as a certain

type of neighbors’ representation. Because Ar can be seen as the r-th step in the meta-path,

as defined in Def 2.3.1, which also automatically defines the node type (or edge type),

as we defined in Def 2.1.3. So, Eq. 5.7 is a general expression and can be used in both

homogeneous and heterogeneous graphs to represent a certain hop or type of representation.

Note, if there are different types of nodes in the same hop in heterogeneous graph, we use

different transformation matrices to learn the embeddings. For example, there are two types

of nodes in the one-hop neighbors, and we will use W(k)
11 and W(k)

12 to transform the two types

of neighbors.

5.2.5 Relation-score Learning

After obtaining different hops’ embedding, we will illustrate how to calculate αi1,αi2, ...,αip

that can define a personalized receptive field as shown in Eq. 5.6. αir(r = 1, .., p) should be

high if the r-hop representation has a close relationship with central node in homogeneous

graphs, or r-type neighbors should be considered more. In other words, αi1,αi2, ...,αip reflect

the relationship of central node and its different hops neighbors. Therefore, we transfer

this problem to how to model the relationship between h(k)0
i and h(k)r

i (r = 1,2,...,p), which

inspires us to apply Knowledge Graph Embedding (KGE) method to solve this problem.

5.2 Methodology 91

KGE methods aim to model the relationship between head entity and tail entity in

knowledge graph (KG) and assign a score of how likely it is that two entities are in a certain

relationship [171, 204]. In our scenario, we define the relation-score as:

Definition 5.2.1. Relation-score. Relation-score is to model the relationship between central

node’s embedding and a certain hop or type representation, such as αir = fr(h
(k)0
i ,h(k)r

i) is

the relation-score of vi with its r-hop representation.

We want to model the relationship between central node with its p types of representations

and usually p > 1. We choose four representative KGE models: RESCAL[142], DisMult

[217], MLP [44] and NTN [171] with different complexity and expressive powers, which

can roughly satisfy different types of datasets. We will introduce them as the complexity

from low to high.

In DisMult, each relation is represented as a vector rr while it is a matrix Wr
R in

RESCAL[142] to model pairwise interactions between latent factors. For simplicity, we

unify the scoring function as:

αir = h(k)0
i Wr

Rh(k)r
i , (5.8)

where Wr
R = diag(rr) in DisMult. 4

The other two methods MLP [44] and NTN [171] conducts semantic matching using

neural network architectures. MLP is a simpler approach and the head entity, tail entity,

relation vectors are concatenated in the input layer and mapped to a non-linear hidden layers.

The score is then generated by a linear output layer:

αir = W(k) f ([h(k)0
i ||h(k)r

i]), (5.9)

where f is the MLP layer and W(k) is the learnable weight matrix in the linear output layer,

|| denotes concatenation.

4DistMult is actually simplified from RESCAL by restricting Wr
R to diagonal matrices.

92 Hop-Hop Relation-aware Graph Neural Network

NTN is more expressive that can relate two input entities vectors across multiple dimen-

sions and each slice of the tensor is responsible for one type of entity pair. We compute the

relation-scores by the following functions:

α
(k)
ir = σ(h(k)0

i W[1:m]
R h(k)r

i), (5.10)

where σ is a nonlinear activation function, W[1:m]
R ∈ Rdk×dk×m is a tensor and each slice of

the tensor is responsible for instantiation of a relation. α
(k)
ir ∈Rm is the learned relation-score

vector for each relation type, where each entry is computed by on slice of the tensor W[1:m]
R ,

such as α
(km)
ir = σ(h(k)0

i W[m]
R h(k)r

i).

Eq. 5.8, Eq. 5.9 and Eq. 5.10 only need to calculate the relation-scores of h(k)0
i and

h(k)1
i ,h(k)2

i , ...,h(k)p
i , these low-dimensional embeddings, not central node with all the nodes

(Np is the number of nodes and generally Np ≫ p) within p-hop neighborhood, which is

very efficient (D4).

5.2.6 Hop-aware Aggregation

After learning the relation-score, we multiply different hops of representations with their

corresponding relation-scores, then aggregate them with central node’s embedding to get the

new embedding h(k+1)
i . This allows for a hop discrimination when central node aggregates

different hops’ embeddings (D3) and can be generally written as:

h(k)
i = f (k)ag (αirh

(k)r
i ,r = 0,1, .., p), (5.11)

where f (k)ag is the predefined aggregation function (aggregator) in the k-th layer of a model,

αir is the relation-score for r-hop embedding of vi, αi0 = 1. Analysing αir can show which

hops have an important influence on central node, and this leads to benefits for interpretability

(D5).

The aggregator in GNNs operates over an unordered set of vectors, because a node’s neigh-

bors have no natural ordering. So, the aggregator should be permutation invariant (invariant

to permutations of its inputs). Sum, mean, max pooling and concatenation are commonly

5.2 Methodology 93

used to aggregate the neighbors [72, 215]. While the input, (αi0h(k)0
i ,αi1h(k)1

i , ...,αiph(k)p
i), of

our aggregator is fixed and ordered (from zero-hop to p-hop), and more complex aggregation

functions can be applied here. Besides the four mentioned aggregation functions, we also

apply LSTMs [79] in this chapter who are good at dealing with sequential data. Exploring

more types of aggregation functions is one of our important future works.

After applying each component introduced in the previous section, we obtain the final

node representation, which can be used in different downstream tasks. For multi-class node

classification, H(k) will be passed to a fully-connected layer with a so f tmax function. The

loss function is defined as the cross-entropy error over all labeled examples:

L=− ∑
l∈Vl

F

∑
f=1

Yl f lnH(K)
l f , (5.12)

where Vl is the set of node indices that have labels and dK is the dimension of output equaling

to the number of classes. Yl f ∈ R|Vl |×F is a label indicator matrix. With the guide of labeled

data, we can optimize our model via back propagation and learn the embeddings of nodes

and relation-score. The overall process of HHR-GNN in shown in Algorithm 5.1.

5.2.7 Computational Complexity

Two key parts are p-hop representation (Eq. 5.7) learning and relation-score learning (Eq.

5.8, Eq. 5.9 or Eq. 5.10). The powers of the adjacency matrix in Eq. 5.7 can be easily

precomputed, because they do not depend on the learnable model parameters, and this

effectively reduces the computational complexity of the overall model. Each type or hop of

neighbors share the same projection weights and the KGE model is also shared by all nodes

in a graph. So, the computation can be parallelized across all nodes. The computational

complexity based on different KGE models are summarized in Table 5.2. As for memory

requirement, it grows linearly with the size of the dataset and we perform mini-batch training

to deal with this issue.

94 Hop-Hop Relation-aware Graph Neural Network

Table 5.2 Comparison of Space Complexity

Methods Space Complexity
HHR-GNNDisMult O(N × p×dk ×dk−1 +N × p×dk)
HHR-GNNRESCAL O(N × p×dk ×dk−1 +N × p×dk ×dk)
HHR-GNNMLP O(N × p×dk ×dk−1 +N × p×2×dk)
HHR-GNNNT N O(N × p×dk ×dk−1 +N × p×m×dk ×dk)

5.2.8 Differences with Existing GNNs

Our model generalizes existing GNNs-HO and GNNs-HE, meanwhile solves some of their

remaining issues, such as fix-sized receptive fields, no hop distinction or information loss in

the neighborhood aggregation process. We mainly compare our model with GNNs-HO and

GNNs-HE from two aspects:

• The receptive filed. The general aggregation process and ours are defined in Eq.

5.4 and Eq. 5.11 respectively. The receptive field (Ni) is determined by powers of

adjacency matrix (GNNs-HO) or meta-paths (GNNs-He) in Eq. 5.4 and fixed. Some

methods also propose more flexible ways to define the receptive filed. GraphSAGE [72]

uniformly samples a fixed number of neighbors, FastGCN [36] applies the important

sampling with Monte Carlo approaches. Some dropout tricks are proposed. DropEdge

[156] randomly removes a set of edges. Instead of random, fixed or important sampling

strategies, Graph DropConnect (GDC) [75] jointly learns the edge drop rate at each

layer with model parameters, however GDC only models the relationship between

the central node with its first-order neighbors without considering the higher-order

neighbors. GeniePath [124] adaptively selects a set of significant important one-hop

neighbors with adaptive breadth function (attention operator) and filters higher-order

neighborhood information with adaptive depth function (LSTM). However, GeniePath

does not model the receptive field implicitly, since the predefined p-hop neighbors

are all aggregated in the LSTM and it is unclear which hops or types of neighbors are

important for the central node’s representation learning. Our receptive field in Eq. 5.11

is determined by two factors: p and αir. p roughly determines the maximum size (how

many hops or types) of neighborhood, but which hops or types of neighbors will be

5.2 Methodology 95

Algorithm 5.1 The overeall process of HHR-GNN

Input: G= (V,E ,X) with N nodes;

1: A set of adjacency matrices {Ar}p
r=1;

2: Feature matrix X ∈ RN×D;

3: Labeled nodes Vl;

4: Label indicator matrix Yl f ∈ R|Vl |×F ;

5: The number of hops: p;

6: The number of layers K

Output: The final node embeddings and p-hop relation-scores α
(K)
i .

7: Calculate different powers of adjacency matrix.

8: for k = 1,2,...,K do

9: for each vi ∈ Vl do

10: Calculate different hops’ representation: h(k)0
i , h(k)1

i ,..., h(k)p
i .

11: Calculate the relation-scores: αi1,αi2, ...,αip.

12: Aggregate different hops representation: αi0h(k)0
i , αi1 h(k)1

i , ..., αip h(k)p
i .

13: end for

14: end for

15: Calculate loss: L=−∑l∈Vl ∑
F
f=1 Yl f lnh(K)

l f .

16: Back propagation and update parameters in HHR-GNN.

aggregated is determined by the learnable parameter αir. For example, p = 3 means

the aggregator allows to aggregate neighborhood information within three-hops. If

the final learned relation-scores are αi0,αi1,αi3 > 0,αi2 = 0, the central node actually

only aggregates its one-hop and three-hop neighbors. So, the receptive field in our

model is automatically learned in an end-to-end fashion for each node, which is more

flexible and applicable for both homogeneous and heterogeneous graphs.

• Aggregation process. Our aggregation operation differs from others in two aspects,

aggregation input and aggregation function. 1) As for the aggregation input, GNNs-

HO and GNNs-HE normally aggregate the hidden embeddings of each neighbor

h(k−1)
j , j ∈Ni, in the predefined receptive field. These embeddings are unordered and

their size is not fixed usually. GeniePath orders these neighbors’ hidden representation

96 Hop-Hop Relation-aware Graph Neural Network

as their distance to the central node. While, ours is different hops’ representations

with their corresponding relation-scores (αir h(k)r
i , r ∈ (0,1, ..., p)), which are fixed

and ordered (from zero to p-hop). 2) Considering the input data’s properties, the

aggregation function in GNNs-HO and GNNs-HE should be permutation invariant

(invariant to permutations of its inputs), because it operates over a set of unordered

vectors. This restricts the application of many powerful tools, such as CNNs [107],

LSTMs [79]. On the contrary, there is no restriction of the aggregation function in our

model.

5.3 Experiments

5.3.1 Datasets

We conduct semi-supervised node classification experiments on both homogeneous and

heterogeneous graphs, which have been widely used in [103, 36, 216, 72, 191, 58, 1, 242].

Homogeneous graphs. We consider two commonly used homogeneous graphs: Cora and

Citeseer as in Sec. 3.3.1. For heterogeneous graphs, we use two citation network datasets

DBLP and ACM, and a movie dataset IMDB. DBLP contains three types of nodes (papers

(P), authors (A), conferences (C)), four types of edges (PA, AP, PC, CP), with research areas

of Authors as labels. ACM includes three types of nodes (papers(P), authors (A), subject

(S)), four types of edges (PA, AP, PS, SP), with categories of Papers as labels. Each node

in DBLP and ACM is represented as bag-of-words of keywords. IMDB consists of three

types of nodes (movies (M), actors (A), and directors (D)), and four types of edges (MA,

AM, MD, DM) and labels are genres of Movies. Node features are given as bag-of-words

representations of plots.

Following [103, 164], we split the Train/Validation/Test for heterogeneous of graphs as

shown in Table 5.3. We report the mean accuracy (for homogeneous graphs) and F1-score

(for heterogeneous graphs) of 100 runs with random weight initialization for all of our

experimental results.

5.3 Experiments 97

Table 5.3 Overview of the heterogeneous graphs.

Dataset Nodes Edges Features Classes Train Validation Test Edge type
DBLP 18,405 67,946 334 3 800 400 2,857 4
ACM 8,994 25,922 1,902 3 600 300 2,125 4
IMDB 12,772 37,288 1,256 3 300 300 2,339 4

5.3.2 Baselines

For homogeneous graphs, we compare our model with four most related methods, GCN

[103], GAT [191], GraphSAGE-mean [72] and MixHop [1]. we keep the same architecture

as the original papers. We use the results from Chapter 3 and Chapter 4 for NFC-GCN and

LA-GCN.

For heterogeneous graphs, we compare with conventional network embedding methods:

DeepWalk [151], metapaht2vec [46], and GNN-based methods: GCN [103], GAT [191],

HAN [206] and GTN [164], following [164].

• Conventional methods. We apply DeepWalk directly to the heterogeneous graphs

and ignore the node (edge) types. metapath2vec applies the meta-path guided random

walks to model the context of a a given node.

• GNN-based method. GCN and GAT are originally designed for homogeneous graphs.

To apply them on heterogeneous graphs, we ignore node (edge) types and directly

perform these methods. HAN aggregates the neighbors from the meta-path and applies

both node-level and semantic-level attentions. GTN learns a soft selection of edge

types for generating multiple meta-paths and applies the neighborhood aggregation

stratety to learn a given node’s representation.

5.3.3 Hyperparameters Setting

We model the central node’s representation with its one-hop and two-hop neighbors for Cora

and Citeseer. Throughout experiments, we use the Adam optimizer [102] with learning rate

in the set {0.002, 0.004, 0.006, 0.008}, regularization parameter ∈ {5×10−3,5×10−4,5×

10−5}, the dropout rate {0.2, 0.4, 0.6}. We train all models for a maximum of 500 epochs

98 Hop-Hop Relation-aware Graph Neural Network

and apply early stopping with a patience of 20. We use two HHR-GNN layers for Cora, in

which the dimension of two GNN projection layers is 32 and 8 respectively, and two NTN

(32× 32 × 4, 8 ×8 ×4) are incorporated to learn the relationships between central node with

its one-hop and two-hop neighbors respectively. For Citeseer, we use one HHR-GNN layer

and set the projection dimension as 32. We try different aggregators (concatenation, sum,

average, max pooling, LSTM and GRU with hidden dimension of 16). As for the GCN, GAT,

GraphSAGE and MixHop baselines, we keep the same architecture as the original papers. 5

The selected three heterogeneous graphs include three types of nodes and neighbors

within two-hop covers all three types. Thus, we model the relationships between a central

node with its one-hop and two-hop neighbors: AP, AC (A-P-C), AA (A-P-A) for DBLP; PA,

PS, PP (P-A-P, P-S-P) for ACM; MA, MD, MM (M-A-M, M-D-M) for IMDB, based on the

tasks. It should be emphasized that in heterogeneous graphs, we use different weight matrices

to learn embeddings for different types of nodes in the same hop. For example, in ACM,

P has two types of neighbors (A and S) in one-hop neighborhood and we use two weight

matrices to learn their respective node embeddings. We employ the same aggregators as those

for homogeneous graph and the hidden layer dimension is 32. The other parameters, such as

dropout rate, weight decay and learning rate, follow the same setting as for homogeneous

graphs.

5.3.4 Performance for Node Classification

Results of node classification on homogeneous and heterogeneous graphs are summarized in

Table 5.4 and Table 5.5 respectively. We observe that our model achieves the best performance

on all the datasets. This indicates that our method is very competitive on both homogeneous

and heterogeneous graphs.

For homogeneous graphs, our method leverages an enlarged (two-hop) neighborhood

and meanwhile learns an personalized receptive field for each node, which can provide more

useful information for learning central node’s representation. This is especially beneficial

5With no specific notification, we will use NTN and concatenation as our KGE models and aggregation
function.

5.3 Experiments 99

Table 5.4 Node classification for homogeneous graph (%) (mean ± 95% confidence interval
over 100 runs)

. The best results are in bold and the second best ones are underlined.

Methods Cora Citeseer

B
as

el
in

es GCN 88.0 ± 0.235 77.8 ± 0.316
GAT 80.4 ± 0.255 75.7 ± 0.431
GraphSAGE 82.2 ± 0.135 71.4 ± 0.605
MixHop 88.3 ± 0.446 -

H
H

R
-G

N
N

N
T

N Con 88.84 ± 0.280 77.28 ± 0.318
Sum 87.59 ± 0.204 76.60 ± 0.416
Aveg 88.45 ± 0.204 75.72 ± 0.311
Max pooling 87.84 ± 0.335 78.54 ± 0.302
LSTM 85.39 ± 0.280 74.74 ± 0.233
GRU 85.63 ± 0.335 75.34 ± 0.318

Table 5.5 Node classification for heterogeneous graph (F1-score) (mean ± 95% confidence
interval over 100 runs)

. The best results are in bold and the second best ones are underlined.

Methods DBLP ACM IMDB

B
as

el
in

es

DeepWalk 63.2 ± 0.235 67.4 ± 0.329 32.1 ± 0.229
M2vec 85.5 ± 0.195 87.6 ± 0.555 35.2 ± 0.367
GCN 87.3 ± 0.335 91.6 ± 0.305 56.9 ± 0.329
GAT 93.7 ± 0.370 92.3 ± 0.140 58.1 ± 0.487
HAN 92.8 ± 0.127 90.9 ± 0.191 52.3 ± 0.194
GTN 94.2 ± 0.762 92.7 ± 0.381 60.9 ± 0.623

H
H

R
-G

N
N

N
T

N Con 94.7 ± 0.167 94.8 ± 0.217 60.7 ± 0.334
Sum 92.1 ± 0.163 93.3 ± 0.203 61.09 ± 0.325
Aveg 94.3 ± 0.211 93.6 ± 0.270 59.8 ± 0.297
Max pooling 94.8 ± 0.403 92.1 ± 0.386 58.7 ± 0.529
LSTM 95.1 ± 0.277 93.2 ± 0.335 59.2 ± 0.359
GRU 95.3 ± 0.309 93.4 ± 0.410 59.1 ± 0.379

for sparse graphs. 6 Graph-SAGE and Mix-Hop can leverage higher-order neighborhood

information, but they can not treat different hops of neighbors differently. NFC-GCN and

LA-GCN get better results, because they can utilize the feature-level local information

6The average node degree for Cora and Citeseer are 4.9 and 3.7 respectively.

100 Hop-Hop Relation-aware Graph Neural Network

sufficiently, and this mechanism is suitable for homogeneous graph representation learning,

especially for graphs with node attributes.

For heterogeneous graphs, the results of other methods come from [164]. 7 The results

of DeepWalk, GCN and GAT reveal that treating heterogeneous graphs as homogeneous

graphs is not an optimal choice. It can be seen in Table 5.5, our method achieves the best

performance on all datasets. Our model outperforms GTN by about 1.1%, 0.98 %, 1.5% and

HAN by around 2.3%, 2.7%, 9.3% on DBLP, ACM and IMDB respectively. We think the

improvement is caused by that our model provides a personalized context for each node and

utilizes different types of neighbors to learn the new representation for a central node. HAN

utilizes manually designed meta-paths to transform a heterogeneous graph to a homogeneous

graph, so that the information from some types of nodes would be lost. This could damage

the central node’s representation learning and make the performance unstable. The key idea

of GTN is to learn a general meta-path, while this path is not suitable for every node in the

graph. Our method considers all types of nodes within a fixed-hop neighborhood, meanwhile

treats different types of nodes differently in aggregation. Compared with HAN and GTN, our

method can provide a customized receptive field for each node and absorb useful information

from all types of nodes.

5.3.5 Interpretability Study

A key part of our model is the learned relation-score that can be used to determine each

node’s receptive field (D1) and guide the hop-aware aggregation (D2), meanwhile provide

a qualitative and quantitative understanding of the relationship between a central node and

its different hops or types of neighbors. In this section, we aim to answer the following

Questions: (1) what we expected, (2) what we learned and (3) what we concluded.

For Q1, the expectation intuitively is that the important hops or types’ representation

should have higher relation scores.

In order to answer Q2, we first visualize the leaned one-hop (0-1) and two-hop (0-2)

relation-scores of the first 21 nodes on Cora, as shown in Fig. 5.2a. On IMDB, we show

7Following [164], we do not show the standard deviation of our results.

5.3 Experiments 101

(a) Cora.

(b) IMDB

Fig. 5.2 (a) 0−1 relation-scores and 0−2 relation-scores of 21 nodes on Cora. (b) MA, MD
and MM relation-score of 21 nodes on IMDB.

the learned relation-scores of the first 21 nodes for different types of neighbors, including

MA, MD (two types of one-hop neighbors) and MM (two-hop neighbors formed by M-A-M

and M-D-M) in Fig. 5.2b. For a better comparison, we use the 100% stacked column chart

and a larger proportion means a higher relation-score in each bar. Fig. 5.2a shows that 0-1

relation-scores are generally higher than 0-2 relation-scores, which means directly linked

(one-hop) neighbors have a closer relationship than indirectly connected (two-hop) neighbors.

Compared with Fig. 5.2a, the relation-scores in Fig. 5.2b look much more complex, due to

the intrinsic fact of heterogeneous graphs that each central node is connected with different

types of neighbors. From Fig. 5.2b, we can observe that each node has their respective

102 Hop-Hop Relation-aware Graph Neural Network

0 0+1 0+2
50

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y

Cora

(a) Cora

M+M M+A M+D
50

52

54

56

58

Te
st

 a
cc

ur
ac

y

IMDB

(b) IMDB

Fig. 5.3 Node classification results on Cora (a) and IMDB (b) by aggregating a central node
with a specific hop or type of neighbors.

preference for the different types of nodes, e.g., Node 11 has a much closer relationship with

D (the red part takes a big proportion in the bar), while Node 10 with M.

The above observations indicate that our model learns distinct relation-scores as expected

and can help the aggregation process focus on important hops or types of neighbors (Q3).

To further verify the relation-scores are reasonable in Fig. 5.2a and Fig. 5.2b, we conduct

node classification tasks on Cora and IMDB without learning relation-scores. Concretely, we

equally aggregate a central node’s representation with a specific hop or type of neighbors.
8 The results are summarized in Fig. 5.2. By analyzing the results from Fig. 5.3a, we can

conclude that one-hop neighbors are generally more important than two-hop neighbors on

central node’s representation learning, which explains well why our learned 0-1 relation-

scores are generally higher than 0-2 scores in Fig. 5.2a. Fig. 5.3b shows that M+D 9

obtains the similar accuracy with M+M, which confirms that different types of neighbors

in heterogeneous graphs also benefit central nodes’ representation learning and should not

be discarded as done in previous GNNs-HE. Instead, our method considers all types of

neighbors based on leaned adaptive relation-scores as shown in Fig. 5.2b, which is more

reasonable.

80+1 means a central node h(k)0
i only aggregates its one-hop representation h(k)1

i .
9M+D mean M-type nodes only aggregate D-type of neighbors, M+M, M+A are with the similar definitions.

5.3 Experiments 103

GCN
0.41×

Ours
1×

GAT
12k ×

GTN
13k ×HAN

1.5k ×

Te
st

 a
cc

ur
ac

y
(%

)

Relative Training Time (per epoch)

(a) DBLP

GCN
0.33×

Ours
1×

GAT
286×

GTN
2517×

HAN
38×

Te
st

 a
cc

ur
ac

y
(%

)

Relative Training Time (per epoch)

(b) IMDB

Fig. 5.4 Performance over training time on DBLP and IMDB.

5.3.6 Efficiency Study

In Fig. 5.4a and Fig. 5.4b, we plot the performance of state-of-the-art GNNs-HE and our

method over their training time on two large graphs: IMDB and DBLP. Our model achieves

competitive performance in both accuracy and efficiency.

As shown in Fig. 5.4a and Fig. 5.4b, GCN is the most efficient method, but can not

ensure the accuracy. This is because simply aggregating the neighbors is not suitable for

heterogeneous graphs that contain more complex neighborhood information than homoge-

neous graphs. Compared with other methods, GTN has an obvious advantage in accuracy,

while does not perform well in efficiency. We think the reason is that GTN aims to learn an

optimal meta-path by utilizing a 1 × 1 convolution to softly select adjacency matrices, which

makes the final adjacency matrix very dense and the later computations (multiplication of

the selected matrices and GCN operation) very time-consuming, especially for large graphs.

While our method learns the meta-path by utilizing the low-dimension hidden representations

and a light-weight NTN model, which is very efficient, especially for heterogeneous graphs

with a few types of nodes. For heterogeneous graphs with more types of nodes and relations,

our model needs more mapping matrices and slices of the NTN model, and this will slow the

computation, which we will explore in the future works.

104 Hop-Hop Relation-aware Graph Neural Network

Table 5.6 Node classification results of different KGE models. No_rs means no relation-score
(%) (mean ± 95% confidence interval over 100 runs).

No_rs DisMult RESCAL MLP NTN

Cora 81.59±0.22 84.17±0.53 82.66±0.47 83.32±0.34 83.84±0.29
Citeseer 70.24±0.39 72.51±0.42 73.16±0.34 70.56±0.41 72.28±0.32

IMDB 57.65±0.43 61.14±0.33 60.93±0.24 60.8±0.32 60.67±0.41
ACM 90.75±0.32 93.52±0.26 94.60±0.27 93.78±0.24 94.83±0.30
DBLP 89.81±0.22 94.22±0.19 95.03±0.33 93.89±0.41 94.65±0.42

5.3.7 Different KGE Model Study

Different KGE models can be applied to learn the relation-scores between a central node

and its different hops’ embeddings. The complexity of four mentioned models: DisMult,

RESCAL, MLP, NTN, are show in Table 5.2. DisMult is the simplest KGE method and NTN

is the most expressive model with the most parameters to learn. We compare the performance

of these methods in downstream node classification tasks. We fix the aggregation function as

concatenation and try different KGE models to learn the relation-scores for node classification

tasks. Results are summarized in Table 5.6

Table 5.6 reveals that more expressive models (RESCAL and NTN) do not lead to better

performance. A possible reason is that the training samples are quite limited, especially

for Cora and Citeseer, there are only 140 and 120 training samples respectively. In these

scenarios, DisMult with less parameters to learn could be a good choice. With more training

samples (DBLP and ACM with 800 and 600 training samples), NTN or RESCAL could be

considered first.

5.4 Summary

In this chapter, we proposed Hop-Hop Relation-aware Graph Neural Networks (HHR-GNN)

[234], a new class of Graph Neural Networks, to solve the second research question: hop-level

attention of local information. HHR-GNN leveraged knowledge graph embedding techniques

5.4 Summary 105

to learn the relation-score between central node and its different hops or types of neighbor.

The learned relation-score can be used to define a personalized receptive field for each node

and hop-aware aggregation to distinguish different hops or types of neighbors. What’s more,

our proposed framework is very flexible and applicable and different KGE methods and

aggregation functions can be applied based on different datasets. We evaluated HHR-GNN

against state-of-the-art GNNs on node classification task. Experimental results showed that

HHR-GNN is competitive no matter in accuracy and efficiency. Besides, it can identify the

useful and personalized context for each node, which leads to benefits in interpretability and

provides insights on the effective hops or types of neighbors for prediction. Different from

NFC-GCN and LA-GCN in Chapter 3 and Chapter 4, HHR-GNN can explore higher-order

neighborhood information and is suitable for both homogeneous and heterogeneous graphs,

meanwhile solves some of their remaining issues of current GNNs-HO and GNNs-HE, such

as fix-sized receptive fields, no hop distinction or information loss in the neighborhood

aggregation process.

Part II

Applications

Chapter 6

Multi-Task GNN for Personalized Video

Search

6.1 Introduction

With the popularity of smart phones and advancement of communication technologies, people

can easily record and edit videos. Everyday, billions of new videos are created, shared and

watched [227]. Video search provides a convenient entry point for customers to browse and

watch videos from numerous videos. Different from Web search, video search is mainly

for entertainment and users’ preferences could be very diverse because of their different

backgrounds. For example, when issuing the query “Welcome to New York", a music fan may

want to find the music video from Taylor Swift, while a film fan may want to watch the film

directed by Abel Ferrara. Similar to many other vertical search areas, there is a strong need

to return personalized search results to different users for the same query in video search.

The user click information is often used to train personalized search models (PSMs),

while the click signal in video search may not necessarily indicate relevancy between the

query and video [247]. Statistics show that clicks of irrelevant videos can be as high as

30% of all clicks in our system. This may be due to the characteristics of video search,

including: users tend to have more time when they are browsing videos; videos serve more

entertainment purpose than non-video documents; videos contain richer information than non-

110 Multi-Task GNN for Personalized Video Search

Fig. 6.1 Example top ranked results for the query “diy furniture from wood": the first and
third videos are not relevant to the query, but may still be interesting to the user.

video documents. Therefore, users can be easily attracted to interesting but irrelevant videos.

Figure 6.1 shows a list of top videos returned from YouTube given the query “diy furniture

from wood". We can see that the first video (showing the wall decoration) and the third video

(showing the woodworking tools) are not very relevant to the query. Given this list of videos,

however, a user who is currently doing some home improvement projects, may also be

interested in furnishing the walls and clicking on the first video, or be interested in checking

out the tools and clicking on the third video. Therefore, we propose that both customized

search results and query-document relevance should be considered in personalized video

search, which have rarely been exploited by current PSMs.

The most common paradigm of existing PSMs is to apply deep learning to learn the

semantic similarity of query-document pair and personalize the search results by considering

users’ information, i.e., users’ location, meta information, social connections [221, 87, 88] or

search history [4, 60, 126, 249]. While, the data in the video search is usually too sparse to

6.1 Introduction 111

train a good PSM [83, 197]. Especially when queries are short and vague, it is more difficult

for PSMs to learn accurate representations. Additional information such as the relationship

among users, queries in user-query, click graphs respectively can provide rich information

beyond textual and video content [38, 128, 23], which have rarely been exploited by current

PSMs.

While intuitively useful to integrate similar users and click graph information into

personalized video search, and graph neural networks (GNNs) [103, 73] can be applied to

model the topological information of graph datasets. However, two unique challenges arise

in achieving this goal in our scenario. (i) The graphs are heterogeneous and contain millions

of nodes and edges. How to design an efficient GNN architecture for real-world graphs

is the first obstacle we need to overcome. (ii) The user-query graph and query-document

click graph in the real industry system are stored as user-query and query-document pairs,

rather than entire graphs used in typical GNNs, which could prevent the message passing

between different hops of neighbors. For a given user, both the local information (issued

queries) and higher-order neighbors, such as similar users from the second-hop neighbors

(user-query-user) in the user-query graph are important for the user’s representation learning.

Hence, how to jointly capture the local as well as the higher-order neighborhood information

remains a significant challenge.

In light of the aforementioned motivations and challenges, we propose a GNN-based

multi-task learning framework for personalized video search [236] where two bipartite graphs:

user-query graph and query-document 1 click graph are integrated into the learning process,

in addition to the semantic representations learned from text (query and video title) and video

content with BERT [43] and Two-Stream Inflated 3D ConvNet (I3D) [30]. To efficiently

utilize the graph information, we perform the graph convolution by sampling fixed-size

neighbors from graphs and alleviate the need to operate GNN on the entire graph during

training. To utilize different hops of neighbors, we propose a hierarchical GNN architecture

to simultaneously capture both local and higher-order interactions among nodes. It learns

user representations from their issued queries (users’ first-hop neighbors), neighboring users

1In our section, document equals to video.

112 Multi-Task GNN for Personalized Video Search

(user’s second-hop neighbors) in the user-query graph. Query representations are learned

from clicked videos and neighboring queries in the query-document click graph. Document

representations are learned from their associated queries and neighboring videos in the

query-document click graph. Considering the heterogeneity of the used information, we

design a hop-specific transformation strategy, which enables nodes to treat different hops of

neighbors differently. Assuming the click task and query-video relevance task are closely

related, therefore we propose to model the two tasks in a commonly used multi-task learning

framework.

In summary, our main contributions are summarized as follows:

• We design an efficient GNN-based multi-task learning framework for real industry

personalized video search. We utilize two bipartite graphs: user-query and query-

document graphs to enrich the representation for users, queries and videos. To the best

of our knowledge, this is the first attempt to apply graph information and GNN for

personalized video search.

• In real industry system, we identified that the click signal may indicate attractiveness

but not necessarily indicate relevance. Different from other PSMs trained only by click

label, our model also considers the relevance between queries and videos.

• We conduct extensive experiments on a large-scale real dataset obtained from a well-

known video search platform. Experimental results show that our proposed model can

significantly outperform most state-of-the-art PSMs.

6.2 Methodology

In this section, we introduce our GNN-based multi-task learning framework for personalized

video search, which mainly consists of two key part: 1) semantic representation learning

that focuses on text representation learning (query and video title) and video representation

learning; 2) graph representation learning that utilizes the hierarchical GNN architecture to

6.2 Methodology 113

u1

u2

Workout

Pilates

Yoga

Easy
breakfast u4

u3

Workout

Pilates

Yoga

Easy
breakfast

30 min full body
pilates workout

Simply the best
yoga workout

Morning yoga flow

Breakfast in
under 10 minutes

u-q graph u-d graph

Fig. 6.2 User-query graph and query-document click graph. In user-query graph, nodes are
users and queries, and edges mean users issued queries. Query-document graph contains two
types of nodes: queries and documents and links mean clicks for query-document pairs by
any user.

leverage user-query graph and query-document graph to learn better user, query and video

representations.

6.2.1 Problem Definition

For the personalized video search task, we first formulate our problem as follows. When a

user u issues a query q, the video search engine is required to retrieve the most relevant videos

as a ranking list. Through re-ranking the unpersonalized list for different users according to

their interests, backgrounds, the video search engine finally provides a personalized ranking

list to each individual user.

Considering the sparsity of users’ search history, vague and short queries, we leverage

extra information from the click-through data to learn their better representations. The

click-through data contains both the user search behaviours and user click-through behaviors,

thus we utilize these information to construct two bipartite graphs: user-query graph Guq and

query-document graph Gqd , as shown in Fig. 6.2. In addition to the text and video information,

our goal is to leverage graph information Guq and Gqd to learn high-quality embeddings. We

assume that the click task and the query-video relevance task are closely related. Thus for

a given triple (user, query, video), we share the query and video’s representations for the

two tasks and apply two independent neural networks for the click score and query-video

relevance score estimation respectively.

114 Multi-Task GNN for Personalized Video Search

Shared

Parameters
BERT

[cls] [Tok N][Tok 1]

BERT BERT
Shared

Parameters

distance distance

triplet loss

... [cls] [Tok N][Tok 1] ... [cls] [Tok N][Tok 1] ...
Positive title Query Negative title

Video title
embedding

Query’s text
Embedding

qq_tdd_t d’
d_t

Fig. 6.3 Query-Title Matching Model: train BERT with the triplet loss to get query text
embedding qq_t and video title embedding dd_t .

6.2.2 Semantic Representation Learning

For a given triple <uu, qq, dd>, we firstly utilize text (query and video title) and video

information to learn the semantic representations of qq and dd .

Inspired by the great success achieved by the large-scale pre-trained transformer-based

language models, such as BERT [43], we design a BERT_based Query-Title Matching Model

(QTMM) to obtain the embeddings of queries and video titles, as shown in Fig. 6.3. The

input of the model includes three components: a query, a positive title, and a negative title,

where positive title is the title of a clicked video given the query qq and negative title is

chosen randomly from the unclicked videos for qq. A special token [CLS] is attached at

the beginning of each input component, which can aggregate the sequence information to

generate embeddings during learning. Then, three multi-layer Transformer BERT with shared

parameters are adopted to capture the contextual information in the text and generate the

embeddings of query, positive title and negative title (qq_t , dd_t , d′
d_t). We train QTMM with

the triplet loss [162] as following:

Lt = max(dqp −dqn +margin,0), (6.1)

where dqp is the euclidean distance of qq_t , dd_t and dqn is the distance of qq_t , d′
d_t.

6.2 Methodology 115

query
understanding

MLP MLP

ID embedding:

uum uud

uuq uuu

first-hop
neighborhood aggregation

second-hop
neighborhood aggregation

user representation

concatenation

second-hop
neighborhood aggregation

query representation

concatenation

qqqqqd

QTMM

qq_t

text

first-hop
neighborhood aggregation

 Multi-task Framework

meta
information

clicked
videos

MLP aggregator

uu

ddd

QTMM

dd_t

title video

I3D

dd_v

video representation

concatenation

qq

user profile
learning video representation

learning

predicted click score predicted relevance scoreClick Task Query-Video Relevance Task

target user target query target video
user query video

neighborhood sampling neighborhood sampling

neighborhood sampling

Fig. 6.4 An illustration of our GNN-based multi-task framework. Given the triple <uu, qq, dd>,
we first apply the QTMM and I3D to learn the semantic representations of qq and dd . Then,
we sample fixed-size neighbors for uu, qq, dd from the u-q and q-d graphs and leverage the
graph information with the proposed hierarchical GNN architecture simultaneously capturing
both local and higher-order interactions among nodes to enhance their representation. Finally,
we combine representations learned from text, video and graph for the click task and query-
video relevance task for personalized video search.

To learn the video representation dd_v, we apply the similar strategy as in the text

representation learning. Given the triple <video, positive query, negative query>, we feed the

query to BERT and video to Two-Stream Inflated 3D ConvNet (I3D) [30], a popular model

for video representation learning and train them with the triplet loss. To learn better semantic

representations of queries and videos, both QTMM and I3D are trained on billions of the

construct triples.

6.2.3 Graph Representation Learning

Beyond text and video information, we aim to apply GNNs to leverage graph information to

alleviate the sparsity issue, as shown in Fig. 7.3. There are mainly two steps: 1) neighborhood

sampling which samples fixed-size neighbors (from different hops in a graph) for a given

node; 2) hierarchical aggregation that utilizes different hops of neighborhood information to

enrich a given node’s representation learning.

116 Multi-Task GNN for Personalized Video Search

Neighborhood Sampling. GNN consists of two key steps: neighborhood aggregation

and feature transformation. So, we start from how we define the neighborhood Ni in the real

industrial graphs, an important innovation of our approach.

For example, users’ information demand can be clearly revealed by their issued queries

(first-hop neighbors from Guq). Besides, the relationship among users (second-hop neighbors

from Guq who issued the similar set of queries) should not be ignored, which can be extremely

helpful to overcome the sparsity problem of users’ history. Thus both the first and second-

hops of neighbors should be considered in the neighborhood aggregations process.

Conventional GNNs can leverage k-hop neighborhood information by stacking k GCN

layers or perform random walks on the graph [103, 73, 216, 105]. However, the user-query

graph and query-document click graph in the real industry system are stored as user-query

and query-document pairs, rather than the entire graphs used in typical GNNs, which

prevents the message passing between different hops of neighbors and the utilization of

random-walk strategy. Besides, some hot queries and documents have tons of neighbors.

Considering the memory and efficiency problem, we sample a fixed-size neighbors for each

user, query and video from their first-hop (user-query pairs) and second-hop ((user-user

pairs) neighborhood. For uu, the sampled neighbors are issued queries (first-hop neighbors)

Nuu_q = [qu1,qu2, ...,quK] and similar users Nuu_u = [uu1,uu2, ...,uuK]. Considering similar

queries and clicked videos for a given query in the query-document graph can be exploited to

enrich the current query and provide more search context to help disambiguation, especially

for short and ambiguous queries, we sample K clicked videos Nqq−d = [dq1,dq2, ...,dqK]

and similar queries Nqq−d = [qq1,qq2, ...,qqK] from Gqd . Videos sharing many co-clicked

queries should also be close in the vector space and we sample a fixed-size videos Ndd−d =

[dd1,dd2, ...,ddK] from dd’s second-hop neighbors (clicked videos with same queries).

Hierarchical Aggregation. After getting sampled neighbors for users, queries and videos,

a natural idea is to aggregate their neighborhood information to enrich their representations.

The conventional neighborhood aggregation in GNNs is

h
′
i = fa(h j, j ∈Ni), (6.2)

6.2 Methodology 117

where fa is a predefined aggregation function (aggregator) and Ni is the neighborhood. In

feature transformation stage, the central node hi first combines with h′
i, followed by a linear

mapping or MLPs to get its new representation.

Different from conventional GNNs, the sampled neighbors (Ni) contain both homoge-

neous and heterogeneous neighbors for users and queries. Such as Nuu_q and Nuu_u are

heterogeneous and homogeneous neighbors for uu respectively. A naive approach is to

ignore the node/edge types and treat them as in a homogeneous graph. 2 This, apparently,

is suboptimal since different types of neighbors have different traits and their embeddings

should fall in different feature spaces. Thus we design a hierarchical aggregation strategy and

apply different aggregation functions to aggregate a given node’s first-hop and second-hop

neighbors respectively.

Take user uu in the user-query graph as an example, we apply two different aggregation

functions: fuq fuu to learn user’s representations by leveraging its first-hop (queries) and

second-hop (similar users) neighborhood information respectively, as shown:

uuq = fuq(qui,ui ∈Nuu_q). (6.3)

uuu = fuu(uui,ui ∈Nuu_u), (6.4)

where fuq and fuu are query-type and user-type aggregators that focus on aggregating homo-

geneous and heterogeneous information respectively. A natural follow-up question is how to

design the aggregation function.

Ideally, the aggregation function would be symmetric (i.e., invariant to permutations of

its inputs), which ensures our model can be applied to arbitrarily ordered neighbors [215, 73].
3 Take fuq as an example, candidate aggregation functions can be sum (fuqs), mean (fuqm),

maxpooling, (fuqmp) 4 and attention (fuqatt) aggregation [190, 191] as shown:

2A graph with one type of nodes and edges
3There is no order between uu1, uu2... uuK . A user issued queries, qu1,qu2, ...,quK can be sequential

datasets if we have their timestamp information.
4 fuqs means summation of the embeddings of neighbors, fuqm means average of these embeddings. fuqmp

applies max-pooling operator to each of the computed feature.

118 Multi-Task GNN for Personalized Video Search

uuq = fuqatt (qui) =
K

∑
i=1

αniqui(ui ∈Nuu_q), (6.5)

where αni can be learned from

αni =
exp(LeakyReLU(Wu[uu ∥ qui]+bu))

∑
K
d=1 exp(LeakyReLU(Wu[uu ∥ qud]+bu)

, (6.6)

where Wu and bu are trainable parameters in the attention network, ∥ denotes concatenation.

Similarly, for a given query qq, we apply the hierarchical aggregation strategy and utilize

different aggregation functions fqd and fqq to aggregate its first-hop neighbors Nqq_d (clicked

videos) and second-hop neighbors Nqq_q (similar queries) in the query-document graph to

obtain qqq and qqd respectively. This can provide more search context to help disambiguation,

especially for short and ambiguous queries.

Videos sharing many co-clicked queries should also be close in the vector space. For the

given video dd , We apply fdd as the aggregator to aggregate its second-hop neighbors Ndd_d

as following:

ddd = fdd(ddi,di ∈Ndd_d). (6.7)

6.2.4 Incorporating User Meta Information

Besides the user-query graph information, we also have users’ additional features and search

history information. To better characterize users and retrieve personalized search results,

we augment our model with additional user features which are represented in a multi-field

multi-hot encoding form. Each field contains multiple discrete categorical features, such as

gender, job, position, which are translated into several high-dimensional sparse features via

one-hot encoding. For example, [gender=female, job=teacher] can be represented as:

[1,0,0]︸ ︷︷ ︸
gender

[0,1, ...,0]︸ ︷︷ ︸
job

. (6.8)

6.2 Methodology 119

Then the raw sparse feature uums is fed into the MLPs to generate low-dimensional real-valued

dense vector uum:

uum = MLP(uums). (6.9)

User clicked videos can directly reflect users’ preference, such as preferred video type,

watching habits (prefer long or short video) and so on. Applying the similar way as learning

uuq and uuu, we get uud as following:

uud = fud(dui, i = 1,2, ...,K), (6.10)

where dui is the ID embedding from video ID embedding matrix D ∈ RNq×D.

6.2.5 Ranking Score Generation

Finally, we concatenate uu’s ID embedding uu, embeddings learned from meta-information

uum, u-q graph uuq, uuu and clicked videos uud to get its new embedding u′
u

u
′
u = uu ⊕uum ⊕uuq ⊕uuu ⊕uud, (6.11)

where ⊕ is the operation of vector concatenation.

For query qq, we concatenate its ID embedding qq, text embedding qq_t and embeddings

qqd and qqq learned from q-d graph to get its new embedding q′
q

q
′
q = qq ⊕qq_t ⊕qqd ⊕qqq. (6.12)

For video dd , we concatenate its ID embedding dd and, semantic embeddings learned

from text and video dd_t , dd_v and ddd learned from neighboring videos in q-d graph to get it

new representation d′
d

d
′
d = dd ⊕dd_t ⊕dd_v ⊕ddd. (6.13)

After we got the new embeddings for user, query and videos, we need to further refine

the query representation by injecting more personalized information. Instead of directly

120 Multi-Task GNN for Personalized Video Search

matching q′
q and d′

d , we first combine u′
u with q′

q to get the personalized query embedding as

following:

qp
q = fu(u

′
u)⊕ fq(q

′
q), (6.14)

where fu and fq are MLPs and map u′
u and q′

q to the same vector space. Meanwhile, d′
d will

be also projected to the same space with qp
q by an MLPs fd

dp
d = fd(d

′
d). (6.15)

The click probability of <uu,qq,dd> is calculated as the inner product of qp
q and dp

d ,

ŷc = (qp
q)

T dp
d . (6.16)

Besides, our model also considers the relevance between queries and videos and we

calculate their correlation ŷr by the inner product of q′
q and d′

d

ŷr = (f0(q
′
q))

T f1(d
′
d), (6.17)

where f0, f1 are MLPs to map q′
q and d′

d to the same embedding space. The final ranking

score can be obtained as following

y = ŷc
β ŷ(1−β)

r , (6.18)

where β ∈(0,1) is a hyper-parameter. We use the final ranking score y to rank the candidate

videos.

6.3 Experiment 121

6.2.6 Model Training and Optimization

The training objective of our model consists of two terms. The first one is the binary

cross-entropy loss

L1 =− 1
M

M

∑
j=1

o j × logp(d j|qq)+(1−o j)× log(1− p(d j|qq)), (6.19)

where M denotes the number of training pairs and o j represents binary click label for d j. The

second term is the mean squared error

L2 =
1
M

M

∑
j=1

(y j − ŷ j), (6.20)

where y j and ŷ j are respectively the real and predicted relevance score. The final objective is

L= αL1 +(1−α)L2, (6.21)

where α is the hyper-parameters to control the balance.

6.3 Experiment

6.3.1 Datasets

To evaluate the effectiveness of our proposed framework, we collect the online search logs of

a major commercial video search engine to construct a personalized search dataset, which

could be a proper test bed to evaluate personalized search models. We collect a total of 21

days’ search logs, which are split into 3 parts. Graphs are constructed based on the first part,

i.e., search logs from the first 15 days. The constructed graphs have millions of nodes and

tens of millions of edges. When constructing the two bipartite graphs, we only preserve five

first-order and five second-order neighbors for each node. The next five days’ logs are used

to construct the training set and the logs from the last day are used as testing data. There

are totally 1,289,314 unique users, 1,315,851 unique queries and 5,368,904 unique videos,

122 Multi-Task GNN for Personalized Video Search

Table 6.1 Overall performance of all models (%) (mean ± 95% confidence interval over 20
runs)

. The best results are in bold and the best ones of other baselines are underlined.

Click Task

Methods AUC nDCG@1 nDCG@3 nDCG@5

DSSM 67.82 ± 0.19 20.8 ± 0.24 35.0 ± 0.16 40.6 ± 0.13
NCF 72.48 ± 0.27 21.8 ± 0.27 37.4 ± 0.22 45.1 ± 0.19
CDL 73.02 ± 0.09 22.7 ± 0.17 37.6 ± 0.16 44.5 ± 0.18

Pclick 60.8 15.9 26.9 35.0
NN-PVS 70.63 ± 0.12 23.3 ± 0.36 38.9 ± 0.27 46.2 ± 0.14
RNN-PVS 68.33 ± 0.22 21.6 ± 0.19 37.0 ± 0.16 39.3 ± 0.18

G
N

N
-P

V
S Mean 76.93 ± 0.20 27.6 ± 0.28 44.0±0.15 51.6 ± 0.10

Sum 76.00 ± 0.09 25.3 ± 0.16 42.9±0.09 49.8 ± 0.04
MaxPooling 78.87 ± 0.16 27.8 ± 0.14 44.4 ± 0.10 51.7 ± 0.12
Attention 78.18 ± 0.12 27.9 ± 0.22 45.0 ±0.21 51.9 ± 0.09

M
G

N
N

-P
V

S Mean 75.52 ± 0.21 27.2 ± 0.32 42.9 ± 0.14 50.6 ± 0.11
Sum 74.67 ± 0.22 24.8 ± 0.17 40.5 ± 0.12 48.6 ± 0.09
MaxPooling 77.03 ± 0.30 27.5 ± 0.36 43.4 ± 0.28 50.6 ± 0.25
Attention 76.00 ± 0.11 26.8 ± 0.22 43.2 ± 0.14 50.7 ± 0.10

Improvement% +7.94% +19.74% +15.38% +13.04%

where the training set consists of 10,802,573 samples, and testing set consists of 3,335,752

samples. For users, besides the user ID features, we also include users’ meta information,

such as age, education level, gender, profession and city, for better user representation.

For the click task, we formulate it as a binary classification task and collect the online

user click feedback as the click label. Click means one and not click means zero. For

the query-video relevance task, we formulate it as a regression task. The relevance labels

are collected using an internal tool which could automatically tag the relevance label of a

query-document pair. 5 The relevance labels range from zero to four, where four indicates

the highest relevance level and zero means irrelevant.

5We could also get manual labels based on crowdsourcing platforms, such as Amazon Mechanical Turk.

6.3 Experiment 123

Table 6.2 Overall performance of all models (%) (mean ± 95% confidence interval over 20
runs)

. The best results are in bold and the best ones of other baselines are underlined.

Relevance Task

Methods nDCG@1 nDCG@3 nDCG@5

DSSM 67.0 ± 0.19 69.5 ± 0.17 72.4 ± 0.15
NCF 66.8 ± 0.17 68.9 ± 0.13 71.7 ± 0.18
CDL 68.6 ± 0.12 70.0 ± 0.09 72.3 ± 0.09

Pclick 64.4 66.4 69.4
NN-PVS 66.8 ± 0.14 67.6 ± 0.09 71.6 ± 0.09
RNN-PVS 66.6 ± 0.17 67.3 ± 0.10 70.8 ± 0.07

G
N

N
-P

V
S Mean 70.5 ± 0.09 71.8 ± 0.07 74.0 ± 0.09

Sum 70.2 ± 0.13 72.4 ± 0.07 73.8 ± 0.09
MaxPooling 70.3 ± 0.34 71.8 ± 0.22 74.2 ± 0.20
Attention 70.6 ± 0.13 72.2 ± 0.09 74.9 ± 0.10

M
G

N
N

-P
V

S Mean 72.2 ± 0.18 73.3 ± 0.11 75.6 ± 0.12
Sum 71.7 ± 0.09 73.5 ± 0.11 74.1 ± 0.07
MaxPooling 72.3 ± 0.30 72.9 ± 0.24 75.0 ± 0.20
Attention 71.9 ± 0.20 73.8 ± 0.10 75.3 ± 0.11

Improvement% +5.12% +5.43% +4.42%

6.3.2 Baselines

We compare our model with two categories of baseline methods: classical information

retrieval and semantic matching methods (NCF [77], DSSM [89], DNN) and three represen-

tative personalized search models: P-Click model (traditional statistic model) [49], two types

of DL-based models: NN-PVS (neural ranking model with personalized information [88])

and RNN-PVS (RNN based sequential models to mining sequential information to learn

users’ search intents [4]). We evaluate above methods on the click task and the relevance

task. In both tasks, we use AUC and a commonly used evaluation metric, i.e., nDCG@k

(k=1, 3, 5), to evaluate these models and report results over 20 runs with random parameter

initialization.

124 Multi-Task GNN for Personalized Video Search

• NCF [77]. Neural Collaborative Filtering (NCF) is a neural network architecture to

model latent features of users and items for top-K recommendation. In our scenarios,

we feed it with the query IDs and video IDs instead of users and items.

• DSSM [89]. Deep Structured Semantic Model (DSSM) is proposed for web search

semantic matching. We measure the similarities of query and videos’ representations

learned from their text information with BERT.

• CDL. Content-enhanced deep learning model (CDL) feed query ID embeddings

concatenated with text embedding and video ID embeddings concatenated with text

and video embeddings into the MLP layers.

• P-Click model [49]. P-Click model predicts the probability of clicking by counting

the number of historical clicks. It focuses on the user’s re-finding behavior.

• NN-PVS [88]. It is a neural ranking model with personalized information introduced

in [88]. In this section, NN-PVS utilizes users’ meta information to refine the query

representation. We concatenate the user embedding learned from users’ meta informa-

tion with the query embedding and use the MLPs to map the concatenated vector to

the same embedding space with the video for the final matching.

• RNN-PVS. This is an RNN based sequential model that learns users’ profile with

their history information [4]. We concatenate the user profile embedding with query

embedding for the final matching.

• GNN-PVS. Our proposed model, where only click labels are used for training. We

utilize four different aggregation functions: Mean, Sum, MaxPooling and Attention. 6

• MGNN-PVS: It is a variant of GNN-PVS, where a multi-task learning framework is

incorporated to simultaneously learn the click and relevance task. Likewise, we also

utilize mean, sum, maxpooling and attention four different aggregation functions in

our model.
6Considering accuracy, efficiency and stability, we use mean as our aggregation function if there is no

specification.

6.3 Experiment 125

6.3.3 Hyperparameters Setting

The the dimension of text embedding is 128 and 256 for the video embedding. The other main

hyper-parameters are set as: , the dimension of ID embedding ∈ {16, 32, 64}, the dimension

of learned user profile ∈ {16, 32, 64}, the batch-size: 512, the dropout rate ∈ {0.2,0.4,0.6},

learning rate ∈ {0.01, 0.001, 0.0001}. These hyper-parameters are finally selected according

to the performance on the validation dataset. We use the Adam optimizer [102] and apply

the early stopping strategy based on the validation accuracy to avoid overfitting. Considering

both accuracy and efficiency, we choose the mean aggregation function in our framework. α

is set as 1 for GNN-PVS which only learns the click label and set as 0.5 for MGNN-PVS to

jointly model click and relevance.

6.3.4 Performance for Click and Relevance Tasks.

The experimental results are summarized in Table 6.2. Our proposed GNN-based models

(GNN-PVS and MGNN-PVS) significantly and consistently outperform all other baselines on

both click and relevance tasks. Compared with the best baselines, our model outperforms the

best baselines by 7.94%, 9.74%, 15.38%, 13.04% for the click task and 5.12%, 5.43%, 4.42%

for the relevance task, which illustrates that utilizing graph information greatly benefits the

representation learning for users, queries and videos. Compared with GNN-based models,

MGNN-based models get better performance on the relevance task, but not the click task.

This is because MGNN-based models are trained with both click and relevance labels, while

GNN-based models are trained only with the click labels.

Besides, non-personalized baselines (DSSM, DCF, CDL) usually perform better than

personalized search models (Pclick, NN-PVS, RNN-PVS) on the relevance task, but not the

click task. The possible reason is that incorporating user’s information benefits the click task,

but may introduce some noisy information, such as users clicked the video only because

of attractiveness, but it may be not relevant to their issued queries. This also indicates the

necessity of training the model with both click and relevance labels.

126 Multi-Task GNN for Personalized Video Search

(a) nDCG of Click Task (b) nDCG of Relevance Task

Fig. 6.5 β ’s influence to the prediction results.

The P-Click model, the traditional statistical method, gets poor results, while other deep

learning based models have shown strong generalization ability by capturing the implicit

similarities among users, queries and documents. NN-PVS gets better results than RNN-

PVS. One possible reason is that RNN is more suitable for sequential data, but there is

no timestamp information for users’ history information in our scenario. Compared with

RNN-PVS, NN-PVS is a more general and easily applied PSM.

6.3.5 Trade-off between Two Tasks.

For MGNN-PVS, a key hyper-parameter is the trade-off parameter β . We would like to

explore the influence of β to the performance on the click task and relevance task by varying

the value of β from zero to one. Results are reported in Fig. 6.5. We found that MGNN-PVS

achieves better performance on the relevance task when β is small. When the value of β

increases, the performance of the click task increases while the performance of the relevance

task decreases. This observation matches our intuition since β controls the relative impacts

of click prediction score and relevance prediction on the final ranking score.

6.3.6 Effectiveness of Graph Information.

To validate the effectiveness of graph information, we add each component of the graph

to examine its relative importance as shown in Fig. 6.6. For example, GNN-UU means

6.3 Experiment 127
nD

C
G
@
1

0.20

0.21

0.22

0.23

0.24

0.25

NN-PVS GNN-UU GNN-UQ GNN-QQ GNN-QD GNN-DD

Click Task

(a) nDCG@1 of click task

nD
C
G
@
1

0.660

0.665

0.670

0.675

0.680

0.685

NN-PVS GNN-UU GNN-UQ GNN-QQ GNN-QD GNN-DD

Relevance Task

(b) nDCG@1 of relevance task

Fig. 6.6 Effectiveness of each graph module: (a) and (b) show the nDCG@1 of click task
and relevance task. NN-PVS is the baseline, only considering the user’s meta information.
GNN-AB means only A-B graph information is used in the training process, such as GNN-
UU means only the user’s neighboring users (user-user graph information) are used in the
learning process.

our model only leverages neighboring users’ information (user-user) from the user-query

graph, without considering other components of the two graphs. Several observations

can be made from Fig. 6.6. First, adding user-user and user-query information has more

improvements than adding query-query, query-documents information for the click task.

When uses’ history information is sparse, they may not be well represented. Hence, adding

their neighboring users and queries may assist our model to learn better representation.

Second, the improvement brought by second-order neighboring videos in the query-document

graph outweighs that brought by other graph information for the relevance task. One possible

reason is that videos can learn more accurate embeddings with considering their neighboring

videos. Finally, compared with other graph information, the improvement brought by query-

query and query-document graph information is not that obvious. We checked our dataset

and found that the connection is very sparse for query in the query-document graph, and this

may result that adding query-query and query-document graph information does not perform

as good as adding user-user or video-video information.

128 Multi-Task GNN for Personalized Video Search

6.3.7 Case Study.

To get deep insights on how the graph information assists the personalized search task. We

choose two triples <user, query, video> with the same query Shepherd of the Cocoa Sea

(SCS) and video Beautiful street performance of the Shepherd of the Cocoa Sea, but different

users with the ground truth labels zero for user47 (no-click) and one for user75 (click). We

compare the click results of NN-PVS and our model. NN-PVS predicts both user47 and

user75 click the video when issuing this query SCS, because the query and video title are

very relevant, containing both Shepherd of the Cocoa Sea. But our model predicts zero for

user47 and one for user75.

From the user-query graph, we find three related first-hop neighbors of user47: the

original singer of SCS, the complete and original SCS, Wang CSC 7, which illustrates that

user47 prefers the original song CSC much. Beyond the text information of the query and

video, our model can utilizes these information and discover people’s real interests, but NN-

PVS can not. Besides we also observe that the query Cocoa Shepherd, a wrong expression of

SCS, has three second-hop neighbors (similar queries): SCS, SCS orignal, Song of SCS in the

query-document graph, which contains more related and accurate expressions for the query

SCS. Aggregating these information can help the model learn a more accurate and robust

representation of queries, even with wrong expressions.

6.4 Summary

In this chapter, we proposed to utilize the user-query and query-video (click) graphs to assist

the personalized video search task. While the graphs are heterogeneous and contain millions

of nodes and edges, which are quite challenging to deal with. To overcome this problem

(Q3), we apply the hop-aware projection strategy as in HHR-GNN (Chapter 5) to capture a

given node’s first-order (i.e., user-query) and second-order (i.e., user-user) interactions in

the graphs, also present an efficient, localized convolution by sampling fixed-size neighbors

from graphs. Besides, considering the real data contains much noisy click information that

7Wang is the original singer of CSC

6.4 Summary 129

users’ click signals may indicate attractiveness but not necessarily indicate relevance, we

jointly model the user’s click behaviour and the relevance between queries and videos in our

algorithm. Experimental results on the real-world dataset showed that our proposed model

significantly outperforms state-of-the-art PSMs on both click task and relevance task, which

illustrates the effectiveness of our proposed framework.

Chapter 7

KG-aware Cross-Domain

Recommendation

7.1 Introduction

Cross-domain recommendation (CDR) [54] is a promising solution to the data sparsity prob-

lem in recommender systems. Conventional single-target CDR models leverage information

from a richer (source) domain to improve the recommendation performance in a sparser

(target) domain [85, 17]. For performance improvement in both domains, recent dual-target

CDR models [131, 250, 114] enable bidirectional transfer across domains with dual-learning

mechanism [241, 76].

Despite encouraging results from existing CDR models, several key issues remain [251].

Firstly, current models, including the dual-target ones, can not simultaneously improve the

performance in both source and target domains due to negative transfer [147]. In general,

the knowledge learned from the sparser domain is less accurate than that learned from the

richer domain. Thus, the recommendation performance in the richer domain tends to decline

if the transfer direction is simply inverted. The limited information, especially in the sparse

domain, is one of the bottlenecks. Secondly, current CDR models mainly use common users

[131, 250] or mapping functions [114] to build connections between domains. In real-life

scenarios, relationships between items within or across domains can characterize item-wise

132 KG-aware Cross-Domain Recommendation

film
.country

w
riter of

User-item interaction

Knowledge Graph

Source domain Target domain

directed by

born in

genre

fantasy

genre

directed by

Fig. 7.1 Knowledge graph is a natural bridge that connects items from different domains. For
example, “Lord of the Ring” in movies can get connected with “Harry Potter” in books via
related genre Fantasy. Such inter-domain knowledge can reveal similar semantic relations
among items from different domains to further improve cross-domain recommendation. We
construct a new dataset and propose a new model to achieve this goal.

semantic relatedness to help understand user-item interaction patterns [203]. SemStim

[78] exploits the semantic links found in a knowledge graph (e.g. DBpedia), to connect

domains and thus generate recommendations for the target domain. However, the knowledge

graph are usually very sparse and noisy, which may not an optimal choice to use the found

products directly in the KG as the recommendations. Besides, SemStim is a single-target

CDR approach that only focus on how to leverage the source domain to help improve the

recommendation accuracy on the target one, but not vice versa. How to leverage the KG

better to improve both the source and target domains’ recommendation is a key issue to solve.

In this chapter, we aim to address this gap by leveraging knowledge graph (KG), a natural

bridge for items from different domains [204]. KG can benefit the CDR task in multiple

ways [200]. First, rich and explicit connections among items in a KG can help improve the

recommendation performance in each domain, particularly the sparser domain. As shown

in Fig 7.1, a user who has watched “Harry Potter and the Deathly Hallows” is very likely

to have interest in the original novel, which can be recommended with the assistance of

cross-domain knowledge. Second, domains often share some domain-general information.

7.1 Introduction 133

For example, genre can characterize both book and movie domains. “Lord of the Ring” (from

movies), “Harry Potter” (from books), “J. K. Rowling” (from KG), and other entities from

different hops of neighbors can be closely connected in KG via the related genre Fantasy.

KG provides a natural way to leverage such inter-domain knowledge that can help models

understand target items by associating rich semantic relatedness among items, explore their

latent connections, and further improve recommendation performance.

To build KG-aware CDR, three unique technical challenges arise. (1) Though several

datasets exist for KG-aware single-domain recommendation, no publicly-available dataset

exists for KG-aware CDR. (2) To improve CDR, item (entity) embeddings (representations)

learned from KG should contain both domain-specific and domain-general information,

which typically comes from different hops of neighbors in KG. The second challenge is to

model both adjacent and higher-order relations in the item representation learning process. (3)

Item embeddings learned from KG and those from the user-item interaction matrix should be

closely related, e.g., highly correlated, so that cross-domain relationships can be effectively

established. This is the third challenge.

To address the challenges above, we construct a new dataset for KG-aware CDR and

propose a novel KG-aware Neural Collective Matrix Factorization (KG-aware NeuCMF)

model. More specifically, our contributions are:

• We construct a new dataset named Amazon product Knowledge Graph for CDR

(AmazonKG4CDR) using a subset (movie, book, and music) of the Amazon Review

Data (2018) [140] and the Freebase KG [33, 18]. To the best of our knowledge, this is

the first dataset that links KG information for CDR.

• We propose a two-step KG-aware NeuCMF framework for KG-aware CDR. We train

a shared autoencoder using a relational graph convolutional network (RGCN) on KG

following a contrastive learning-style [104, 161]. GCN-based encoders learn a node’s

embedding by aggregating information from its neighbors via non-linear transformation

and aggregation [103]. Long-range node dependencies can be captured by stacking

multiple GCN layers to propagate information for multiple hops [216]. This enables

capturing both domain-specific and domain-general information from different hops

134 KG-aware Cross-Domain Recommendation

Title:
Harry Potter

ID:
m.03176f

subgraph
(triples)

KG construction process: Item ID (Asin) → Subgraph from KG

Asin:
B00FFMG4VM

Fig. 7.2 KG construction for Amazon products.

of neighbors in KG. To establish cross-domain relationships, the embeddings learned

from KG should be highly coherent with those from the user-item interaction matrix.

Therefore, we incorporate the mutual information (MI) estimation [15] into the neural

collective matrix factorization (NeuCMF) framework to jointly learn the two cross-

domain rating matrices by sharing the user embeddings. This mechanism allows our

model to preserve both user-item interaction and KG information across items.

• Finally, we conduct extensive experiments on our newly constructed datasets and

demonstrate that our model significantly outperforms the best-performing baselines.

7.2 KG Construction for CDR

To develop a knowledge-aware CDR system, a key issue is how to obtain rich and structured

knowledge information for items. Existing research works use side information from the

original recommender system, such as tags and reviews. We argue that the KG information

will provide additional useful information to the CDR task, since the intra-domain relationship

among items can be captu. In this chapter, we present AmazonKG4CDR V1.0, a new dataset

linking KG information for CDR, which can be useful for researchers in the related areas to

explore possible approaches with the rich KG information.

We use the widely used dataset, Amazon Review Data (2018) [140], covering various

domains, from which we select a subset that includes two domain pairs: movie-music,

movie-book, which are being linked together through a common user ID identifying the same

user. On the KG side, we use the well-known KG: Freebase [18]. It stores facts by triples

7.3 Methodology 135

of the form < head >< relation >< tail >. Since Freebase shut down its services, we use

its latest public version. We map items into Freebase entities via title matching if there is a

mapping available. Fig.7.2 shows the whole linkage process. Since we only have item Asins

(IDs of Amazon products), we need to get items’ titles from the Amazon Review metadata

first1. These titles are later used to get KG entity IDs from The Knowledge Graph Search

API, which are used to extract the graph information from Freebase. We take triplets that

involve two-hop neighbor entities of items into consideration.

During the linkage process, we have dealt with several problems that will affect the

quality of the extract knowledge graph. First, the correctness of the extracted KG entity

IDs should be ensured. For example, a query is “Harry Potter” (a book name), returned

results can be both movies and books. So, we filter returned results by their type and name

to ensure extracted IDs are correct. To ensure the KG quality, we preprocess the extracted

KG by filtering out infrequent entities (e.g., lower than 10 in both datasets) and retaining the

relations appearing in at least 100 triplets.

7.3 Methodology

In this section, we present the technical details of our proposed CDR model, KG-aware

Neural CMF (KG-NeuCMF) that aims to improve the performance of CDR by leveraging

the KG. We first formulate the task, then present our proposed framework KG-NeuCMF that

aims to improve the performance of CDR by leveraging the KG. Fig.7.3 shows the overview

of the proposed framework. In the first stage, we propose to learn KG-level representations

by exploiting a multi-layer RGCN [161] through the encode-decode paradigm by minimizing

the reconstruction loss that follows a contrastive learning-style convention [104]. This

step aims to learn item embeddings containing both domain-specific and domain-general

information from different hops of neighbors in KG. In the second-stage, we learn item and

user embeddings by borrowing ideas from the CMF framework [170] and neural CF (NCF)

[77]. Instead of jointly factorizing the two user-item interaction matrices directly as in CMF,

1https://nijianmo.github.io/amazon/index.html

136 KG-aware Cross-Domain Recommendation

we propose to utilize neural networks to jointly learn the two matrices by sharing user latent

representations. Finally, item representations learned from KG and user-item interaction

matrix should be highly correlated. To quantify such correlation, we also exploit to maximize

MI [15] between the two types of representations.

7.3.1 Problem Definition

In this chapter, we study the problem of KG-aware CDR. Formally, we are given two

domains, a source domain S (e.g., movie recommendation) and a target domain T (e.g.,

book recommendation) that can be represented as two user-item interaction matrices RS and

RT , where rui = 1 indicates that user u engages with item i, otherwise rui = 0. In real online

shopping platforms (e.g., Amazon), users in domain S and domain T often overlap, meaning

that they have purchased items in both domains. The set of users in both domains are shared,

denoted by U (of size m = |U|). In our setting, there is no overlap of items between two

domains and each item only belongs to one single domain. Denote the set of items in S

and T by IS and IT with size nS = |IS |) and nT = |IT | respectively. Additionally, we also

have a knowledge graph G, a multi-relational graph, containing rich facts about items. Each

fact in the KG is represented as a triple (head entity,relation,tail entity) ((h,r, t)), also called

fact [204]. The KG can represent large-scale information from multiple domains [52]. In

recommendation scenarios, an item in the user-item interaction matrix corresponds to an

entity in KG.

Given RS and RT as well as the knowledge graph G, we aim to predict whether user u

will engage with item i with which the user has no interaction before. Our goal is to learn

a prediction function ŷui = f (u, i | Θ,RS ,RT ,G), where ŷui denotes the probability (or the

rating score) that user u will engage with item i and Θ denotes the model parameters of

function f .

7.3 Methodology 137

ei

Graph
auto-encoder

Domain-specific
knowledge for movie

Domain-specific
knowledge for book

KG
Domain-genera

l knowledge

Graph
decoder

Reconstruction
loss

ii

Max MI(ei,ii)

Item i

rSui

User u Item j

rTuj

Input: Items and users IDs

Items, users embeddings

MLP layers: fs , fu , ft

MLP layers for NCF: f0 , f1

Output: Estimated user ratings

Step1: Entity embedding learning Step2: NeuCMF based Item embedding learning with a mutual information-based neural estimator

Domain S (movie)

Domain T (book)

Entity
embedding

Item
embedding

Domain S Domain T

Fig. 7.3 The framework of our model: KG-aware NeuCMF. It learns item representations
from both KG (left) and user-item interaction matrices (right). Entity (item) representations
learned from KG contain both domain-specific and domain-general information by utilizing
graph autoencoding strategy, which can help assist the CDR task. Item embeddings are
learned by a neural CMF model. To ensure the two types of embeddings are highly correlated,
we maximize their MI by the neural mutual information estimator (middle).

7.3.2 Entity Embedding

To utilize KG in our task, we first need to learn entity representations. We do this by training

a graph autoencoder model in the unsupervised fashion and learn representations in an

encode-decode paradigm [104, 161]. We employ RGCN [161] as our encoder that learns

an entity embedding by aggregating information from its adjacent neighbors via non-linear

transformation and aggregation dependent on the connecting relation, which can be denoted

as

fen(e
(l)
i ,e(l)j) = σ(W(l)

0 e(l)i + ∑
r∈R

∑
j∈N r

i

1
ci j

W(l)
r e(l)j), (7.1)

where e(l)i e(l)i are the hidden state of node i and node j in the l−th layer of the encoder,

σ is an activation function such as ReLU, W(l)
0 , W(l)

r are (learnable parameters) relation-

specific transformation mapping matrix depending on the type of edge, ci j is problem-specific

normalization constant that can either be learned or chosen in advance, and N r
i denotes the

set of neighbors of node i under relation r ∈R. Through this operation, the local proximity

structure and related semantic information can be successfully captured and stored in the new

representation of each entity. Long-range node dependencies can be captured by stacking

138 KG-aware Cross-Domain Recommendation

multiple graph encoder layers and this mechanism ensures that distinct domains can be

connected via the information propagation.

The decoder can be any scoring function of KG embedding methods [204] that are used

to measure the plausibility of each fact (h,r, t). Following [161], we use DisMult [217]

factorization as the scoring function, which is well known for its simplicity and efficiency

and a triple (h,r, t) is scored as

fde(eh,r,et) = ehRret , (7.2)

where eh,et ∈ Rd are encoded features vector for entity h and t, and each relation r is

associated with a diagonal matrix Rr ∈ Rd×d .

We train the encoder and decoder with negative sampling. We construct an equal number

of negative samples by randomly replacing the head entity or tail entity of each positive

sample and the overall set of samples are denoted by M. Then we minimize the cross-entropy

loss of positive and negative node pairs

L= ∑
(eh,r,et ,y)∈M

(ylog fde(eh,r,et)))+(1− y)log(1− fde(eh,r,et)). (7.3)

7.3.3 NeuCMF Module

Typically the user-item interaction matrices are highly sparse and it is beneficial to learn them

simultaneously [170]. Collective matrix factorization (CMF) jointly factorizes two matrices

by sharing the user latent factors. Motivated by neural CF (NCF) [77], we propose to utilize

neural networks to jointly learn the two matrices by sharing user latent representations as

shown in Fig. 7.3. The predicted scores in two domains are

rSui = f0(fu(uu), fs(iSi), (7.4)

rTu j = f1(fu(uu)), ft(iTj)), (7.5)

7.3 Methodology 139

where uu, iSi and iTj are represented one-hot vectors of users, items from domain S and

domain T respectively, where only the element corresponding to that index is 1 and all others

are 0. fu, fs and ft can be multi-layer perceptron (MLP) that project the sparse representation

to dense vectors. The obtained embeddings are then feed into two separate multi-layer neural

architectures to map the latent vectors to predict scores rSus, rTut for the two domains. Given

RS and RT , we minimize the two reconstruction losses LS and LT with the predicted scores.

The NeuCMF module connects two domains only by the common users, and fails to

capture the relations among items. The item embedding learned from KG can capture

both domain-specific and domain-general knowledge, thus will be effective for both single-

domain and cross-domain recommendation. Intuitively, the learned item embedding from

user-item interaction matrices should be highly correlated to the KG-level embeddings.

Therefore, this motivates us to exploit to maximize MI [15] between the two types of

representations to guarantee their highly correlated relationship. We design our neural mutual

information estimator based on a discriminator D(x,y) for their pairwise relationships, to

provide probability scores for sampled pairs. To be specific, we generate positive samples

as (ei,ii) (i can come from domain S and domain T , half-half) and negative samples are

generated by associating sampled items with fake embeddings based on shuffling strategy

[192]. We define the loss function as:

Lmul =− 1
Npos +Nneg

(
Npos

∑
i=1

µ(ii,ei)logσ(ii,ei)+
Nneg

∑
i=1

µ(ĩi,ei)logσ(ĩi,ei)), (7.6)

where Npos,Nneg denotes the number of positive and negative samples, µ(·) is an indicator

function, e.g., ∑
Npos
i=1 µ(ii,ei) = 1 and ∑

Nneg
i=1 µ(ĩi,ei) = 1 corresponds to positive and negative

pair samples. We aim to minimize Lmul , which is equivalent to maximize the mutual

information, to jointly preserve the KG-level and user-item interaction information.

7.3.4 Model Training and Optimization

The final loss includes: the loss (LS) of source and loss (LT) of target recommendation with

the mutual information maximization loss Lmul . The objective is to minimize the overall loss

140 KG-aware Cross-Domain Recommendation

Table 7.1 Statistics of the dataset.

Domain: Music-Movie Domain: Book-Movie

Music Movie Book Movie
Users 4,196 4,196 3,977 3,977
Items 7,412 10,919 11,372 8,118
Interactions 21,986 49,027 22,214 29,245

Entities 85,612 387,178 258,999 990,141
Relations 155 340 127 295
Triples 288,731 610,314 522,814 1,787,190

L as follows:

L= LS(ΘS)+LT (ΘT)+Lmul(Θmul)+λ∥Θ∥, (7.7)

where Θ = ΘS ∪ ΘT ∪ ΘLmul . Note that ΘS and ΘT share user embeddings. The objective

function can be optimized by stochastic gradient descent (SGD) and its variants like adaptive

moment method (Adam) [102].

7.4 Experiment

7.4.1 Datasets

We use the Amazon Review Data (2018) [140] that is widely used for product recommen-

dation. It contains users’ rate (ranging from 1 to 5) for product from various domains. We

select a subset that includes two domain pairs: movie-music(MM), movie-book(MB), which

are being linked together through a common user ID identifying the same user. We construct

the knowledge graph for each item by utilizing Freebase and the basic statistics details are

presented in Table 7.1. The recommendation task can be formulate as the regression (rating)

or the binary classification (recommend or not) tasks. Following [155], we evaluate the

recommendation performance based MAE, F1_score (Threshold of positive rating is 4) for

the regression and classification performance, respectively.

7.4 Experiment 141

7.4.2 Baselines

To validate the performance of the proposed model, we compare the performance with five

representative models, in which two single-domain RS models (MF, NCF) and three CDR

models (CMF, CoNet, DDTCDR) using the publicly released implementations.

• MF [106]. Matrix Factorization (MF) is a classic latent factors CF approach which

learns the user and item factors via matrix factorization in each domain separately.

• NCF [77]. Neural Collaborative Filtering (NCF) is a neural network architecture to

model latent features of users and items using CF method. The NCF models are trained

separately for each domain without transferring any information.

• CMF [170]. Collective Matrix Factorization (CMF) jointly factorizes matrices of each

domains. In our scenarios, The shared user factors enable knowledge transfer between

cross domains .

• CoNet [84]. Collaborative Cross Networks (CoNet) enables dual knowledge transfer

across domains by introducing cross connections from one base network to another

and vice versa.

• DDTCDR [114]. Deep Dual Transfer Cross Domain Recommendation (DDTCDR)

learns latent orthogonal mappings across domains and provides cross domain recom-

mendations by leveraging user preferences from all domains.

7.4.3 Hyperparameters Setting

In the KG-pretrain step, we utilize a two-layer RGCN as the encoder to obtain entity

embeddings with hidden dimension 16. In the NeuCMF module, we apply one-layer neural

networks to project the one-hot vectors of users, and items to low-dimensional embedding

vectors and f0 and f1 are two one-layer neural networks to map the latent vectors to predict

scores. Throughout the experiments, the embedding size is tuned in the range of [8,16,32]

and we use the Adam optimizer [102] with learning rate 0.001, L2 regularization 0.0001. For

142 KG-aware Cross-Domain Recommendation

Table 7.2 Comparison of recommendation performance in Movie-Music (%) (mean ± 95%
confidence interval over 100 runs). Best results: bold, second best ones: underlined.

Movie-Music (MM)

Methods
Movie Music

MAE F1_Score MAE F1_Score

MF [106] 20.94±0.480 74.97±0.804 23.79±0.314 72.57±0.118
NCF [77] 19.01±0.018 88.93±0.009 15.25±0.627 93.05±0.078

CMF [170] 20.23±0.372 89.09±0.069 11.66±0.064 92.45±0.068
CoNET [84] 18.22±0.068 88.68±0.139 13.96±0.070 92.05±0.078
DDTCDR [250] 20.69±0.066 74.84±0.262 15.82±0.137 89.05±0.425

Ours 14.23±0.176 90.69±0.043 9.89±0.063 94.45±0.043
Improvement (%) 21.28 % 1.80 % 15.18 % 1.50%

Table 7.3 Comparison of recommendation performance in Movie-Book(%) (mean ± 95%
confidence interval over 100 runs). Best results: bold, second best ones: underlined.

Movie-Book (MB)

Methods
Movie Book

MAE F1_Score MAE F1_Score

MF [106] 24.17±0.239 73.64±0.139 23.83±0.225 69.01±0.421
NCF [77] 18.80±0.099 89.08±0.009 18.86±0.102 89.35±0.012

CMF [170] 14.53±0.296 89.32±0.001 13.22±0.147 89.07±0.045
CoNET [84] 17.46±0.119 89.59±0.276 17.18±0.106 89.22±0.145
DDTCDR [250] 20.17±0.104 82.60±0.496 17.15±0.104 90.06±0.066

Ours 13.17±0.025 90.60±0.060 13.01±0.021 90.80±0.0276
Improvement (%) 9.36 % 1.12 % 1.58 % 0.57%

each dataset, the ratio of training, evaluation, and test set is 6 : 2 : 2 [201]. We employ the

early stopping strategy based on the validation accuracy with a window size of 10 (we will

stop training if the validation loss does not decrease for 10 consecutive epochs) and train 200

epochs at most. We report results over 100 runs with random weight matrix initialization.

For a fair comparison, we set the same hyperparameters of the baselines as our model.

7.4 Experiment 143

F1
_s

co
re

0.86

0.88

0.90

0.92

0.94

Movie (in MM) Music (in MM) Movie (in MB) Book (in MB)

NCMF_KG NCMF_KG_T NCMF_KG_Mul

Fig. 7.4 Different ways to incorporate KG information for CDR.

7.4.4 Performance for CDR

We have conducted experiments on two cross domain tasks, movie-music (MM) and movie-

book (MB), and the corresponding results of our model and baselines are shown in Table

7.2 and Table 7.3. We can see that our proposed model can consistently obtain the best

performance across movie-music and movie-book recommendations in terms of MAE and

F1_score. In particular, our model improves over the strongest baselines w.r.t. MAE by 21%,

15.18% in movie, music (Table 7.2) respectively, which justifies the effectiveness of our

method in integrating items’ KG information. If we compare between these two tasks, MM

and MB, the improvement on music in MM is more remarkable compared to the performance

in MB. Possible reasons are 1) the data is more sparse in the user-music interaction matrix,

so leveraging KG information can greatly relieve the sparsity problem (we have verified this

in the later experiments: Comparisions for cold-start item scenarios); 2) the extracted KG

contains much useful information, especially for two closely related domains (movie and

music both belong to multi-media datasets). Besides, CDR models (CMF,CoNet,DDTCDR)

achieve better performance than SDR models (MF, NCF), indicating that utilizing extra

information from other resources benefits the performance of recommendation.

144 KG-aware Cross-Domain Recommendation

7.4.5 Different Ways to Incorporate KG Information

We explore different ways to combine item embeddings learned from KG and user-item

interaction matrices. NMF_KG takes KG-level embeddings as input, then incorporates

them with item embeddings learned from user-item interaction matrices via an aggregation

method, e.g., concatenation. NCMF_KG_T tries to refine item embeddings learned from

KG with a one-layer MLP and concatenates with embeddings learned from the user-item

interaction matrix. NCMF_KG_mul maximizes MI between the two types of representations

to guarantee the highly correlated relationship. The results are shown in Fig. 7.4. Generally,

refining the learned KG-level embeddings gets better performance than direct utilization.

This is because in real-world KGs (e.g., Freebase) some noises are inevitably introduced in

the process of automatically constructing large-scale KGs due to limited labour supervision

[211, 95]. NCMF_KG_mul gets the best performance. The possible reason is that item

embeddings jointly learn from the user-item rating matrix and entity embeddings from KG,

which contain both domain-general and domain-specific knowledge and the neural mutual

information estimator can ensure their correlation. Such design is more suitable for the

cross-domain recommendation task.

7.4.6 Performance in Cold-Start Item Scenarios

KG is a natural bridge for items from different domains, which can further alleviate the

item cold-start problem in RS. To validate this, we compare our methods with NCF, CMF

under the code-start scenario. We set up the cold-start environment by sampling a subset

of items for testing which are unseen in the training data. Results for cold-start items on

movie-music datasets are shown in Fig. 7.5. NCF (the SDR model) is greatly influenced and

gets the poorest performance, especially there are a large proportion new items. CMF (the

CDR model) can leverage information from two domains, thus it can alleviate the cold-start

problem in some extent. Our model goes further to learn representations for cold items from

the KG, offering additional information beyond user-item interaction matrices.

7.5 Summary 145

(a) Movie (in MM (b) Music (in MM)

Fig. 7.5 Comparison of different models in cold-start items scenarios.

7.5 Summary

In this chapter, we utilized the knowledge graph for the cross-domain recommendation task.

In order to learn both the domain-specific and domain-general knowledge from KG with

graph autoencoding strategy (Q3), we apply the relation-specific projection as in HHR-GNN

(Chapter 5) to learn item embeddings to capture both adjacent(domain-specific) and higher-

order(domain-general) neighborhood information in the KG. Besides, we also constructed a

new dataset AmazonKG4CDR, the first in the filed linking KG information for cross-domain

recommendation. Moreover, we proposed a KG-aware NeuCMF model that unified item

embeddings learned from user-item interaction matrices and KG with a neural collaborative

filtering framework under a mutual information-based neural estimator. Through extensive

experiments on real-world datasets, we demonstrated that KG-aware NeuCMF has achieved

substantial gains over state-of-the-art baselines. For future work, we will build a larger

dataset with more users, items, and domains, and explore the explainability of cross-domain

recommendation.

Chapter 8

Conclusions and Future Directions

This thesis has explored local neighborhood information for graph representation learning.

We summarise this thesis via the solved research questions as shown in Chapter 1 as below:

8.1 Conclusions

• Feature-level attention of local neighborhood information. Real-world graphs are

noisy and adjacent nodes do not necessarily imply similarity. Some strategies have

been proposed that allow for node-level attention of local neighborhood information,

however, all individual features in a node feature vector are still treated equally. Each

feature within a neighbor feature vector may play a different role for the central node’s

representation learning. To tackle this problem (Q1: node-level and feature-level

attention of the local neighborhood information), we propose two new models: NFC-

GCN (in Chapter 3) and LA-GCN (in Chapter 4). In Chapter 3, we proposed a new

node-feature convolutional (NFC) layer to work on a fixed-size and ordered feature map

that contains features from selected neighbors. Considering the irregular connectivity

and lack of orderliness of graphs, we further extend NFC-GCN and proposed a more

flexible and general framework: LA-GCN in Chapter 4, where there are no limitations

for the size and order of the input data. Under this framework, we proposed a new

aggregator function, mask aggregator that can learn a specific mask for each neighbors

148 Conclusions and Future Directions

before the neighborhood aggregation step. Both the NFC layer and mask-aggregator

can assign different weights to different features in the learning process. Thus, NFC-

GCN and LA-GCN successfully achieve node-level and feature-level attention of local

neighborhood information in the learning process.

• Hop-level attention of local neighborhood information. For node representation

learning, only the first-order neighborhood information may not be enough, which is

caused by the sparsity or heterophily of graphs. Thus, some GNNs tried to leverage

multi-scale neighborhood information to assist a given node’s representation learning.

Intuitively, neighbors from different hops show different importance for the central

node’s representation learning. However, existing methods usually aggregate the

central node with different hops of neighbors directly and fail to model their differences

in the learning process. To overcome this problem (Q2:hop-level attention of the

local neighborhood), we proposed HHR-GNN in Chapter 5 where knowledge graph

embedding techniques are introduced to learn the relationship between a given node

and its different hops (types) of neighbors. The learned relation-score can be used to

define a personalized receptive field for each node and a hop-aware aggregation to

distinguish different hops or types of neighbors.

• Exploring graph local information for application-specific tasks. Due to the data

sparsity (e.g., users’ search history, products’ rating information) in real industry,

graphs, such as click graphs (CGs), knowledge graphs (KGs), can be used to alleviate

this issue. For example, we can utilize the user relational graph to assist the user profile

learning and knowledge graph to enrich the product’s representation learning. How-

ever, industrial graphs are usually large-scale, sparse, and heterogeneous (containing

different types of nodes and edges), which are quite challenging to deal with. How

to apply GNNs to leverage the real-world graphs efficiently and effectively to assist

some application-specific tasks is a key problem (Q3) we need to obstacle. In Chapter

6 and Chapter 7, we applied the sampling strategy and hop-specific transformation

as in HHR-GNN, which enables us efficiently utilize the extra local neighborhood

8.2 Discussion 149

information from graphs for a given node’s representation learning. Then, the learned

embedding from graphs can provide extra information of the target nodes (e.g., users,

products), which benefits the personalized video search task and in Chapter 6 and the

cross-domain recommendation task in Chapter 7 respectively.

8.2 Discussion

GNN-based research area is a young and promising research field. Our study has explored

how to better leverage the graph local neighborhood information to learn better node repre-

sentations. NFC-GCN in Chapter 3 and LAGCN in Chapter 4 focus on node-level attention

and feature-level attention of the local neighborhood information, which can deal graphs with

node feature better than conventional GNNs. The proposed NFC layer or mask-aggregator

can be a plug-in module and integrated with other GNN extensions. Different from NFC-

GCN and LA-GCN in Chapter 3 and Chapter 4, HHR-GNN 5 can explore higher-order

neighborhood information and is suitable for both homogeneous and heterogeneous graphs.

In Part II, we applies the proposed neighborhood aggregation strategies to the real industrial

graphs for two application-specific tasks: personalized video search and cross-domain recom-

mendation. Experimental results show that our proposed methods MGNN-PVS in Chapter 6

and KG-aware NeuCMF in Chapter 7 are both efficient and effective.

However, our models failed to deal with some important problems in this thesis.

• In this thesis, we only explore two types of graph local patterns (node features and

different hops). Different types of local information, such as network motifs, ego

networks, circles or tree-like structures usually demonstrate unique patterns, semantics

of graphs [203, 202] and reveal more complex interactions within the data that go

beyond pairwise interactions [45]. But, we have not yet explored in this thesis.

• All the proposed models are applied on static graphs, where nodes and edges are fixed

and do not change over time. However, real networks are often dynamic. For instance,

new users appear in the social networks, new transitions appear between two banks in

150 Conclusions and Future Directions

the financial transaction graphs [13, 100]. The proposed models in this thesis did not

consider this.

• This thesis mainly focus on exploring the local information of a given node to assist

general graph-related and application-specific tasks. Leveraging local neighborhood

information to assist a given node’s representation learning is a core strength, but also

a major vulnerability of GNN [41, 253]. We only explore the robustness of the GNN

model in Chapter 3, but other chapters did not explore the model’s robustness.

8.3 Future Directions

While some fundamental problems of GNN have been address in this thesis, there are still

many open problems to be considered. This section lists three research topics that worth

further investigation.

• Subgraph structures. In this thesis, we only explore two types of graph local patterns

(node features and different hops). Subgraphs, such as network motifs, ego networks,

circles or tree-like structures, can be simple blocks and highly related to the func-

tions of graphs in many domains, especially the biochemistry, ecology [7, 137, 230].

Hence, investigating the subgraph structure in the learning process is a crucial step

for the graph-related tasks. However, these important subgraph structures have rarely

been exploited by current GNNs in both algorithms and graph-related applications

[133]. Therefore, extending current GNN architectures by exploring various subgraph

structures could be an interesting and important direction for both algorithms and

applications.

• Dynamic GNNs. Many real-world problems (e.g., financial transitions, social in-

teractions) can be modelled as dynamic graphs where nodes and edges appear over

time. Representing graphs as structures changing over time allows models to leverage

not only structural but also temporal patterns [100]. Therefore, dynamic graphs are

becoming an increasingly important topic of study. GNNs are primarily developed

8.3 Future Directions 151

for static graphs that do not change over time and some dynamic GNNs (D-GNNs)

have been proposed to model dynamic graphs [149, 177, 94]. These models mainly

focused on dynamic graph topology represented as a 3-dimensional cube. However,

both the topology and node/edge attributes (features) of real graphs may vary with

time and this can be considered another dimension in the dynamic graph (hypercube).

Therefore, a future direction would be to extend current GNN models for dealing with

both the dynamic graph structure and node/edge attributes, which will bring significant

improvements to the expressive ability of existing D-GNNs.

• Robust GNNs. Because of the message passing between a given node and its neighbors

in a graph, an attacker can change a single node’s prediction without even changing any

of its attributes or edges [35, 254]. This vulnerability has arisen tremendous concerns

for adapting GNNs in safety-critical applications, such as financial systems, risk

management. For example, in a credit scoring system, fraudsters can fake connections

with several high-credit customers to evade the fraud detection models; spammers can

easily create fake followers to increase the chance of fake news being recommended

and spread [97]. What types of local neighborhood information and how to utilize this

information to design robust GNN models would be an important future direction for

both algorithms and applications.

References

[1] Abu-El-Haija, S., Perozzi, B., Kapoor, A., Harutyunyan, H., Alipourfard, N., Lerman,
K., Steeg, G. V., and Galstyan, A. (2019). Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In ICML.

[2] Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the surprising behavior
of distance metrics in high dimensional space. In International conference on database
theory, pages 420–434. Springer.

[3] Agichtein, E., Brill, E., and Dumais, S. (2019). Improving web search ranking by
incorporating user behavior information. SIGIR.

[4] Ahmad, W. U., Chang, K.-W., and Wang, H. (2018). Multi-task learning for document
ranking and query suggestion. In ICLR.

[5] Ahmed, A., Shervashidze, N., Narayanamurthy, S. M., Josifovski, V., and Smola, A. J.
(2013). Distributed large-scale natural graph factorization. In WWW.

[6] Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., and Gong, B.
(2021). Vatt: Transformers for multimodal self-supervised learning from raw video, audio
and text. ArXiv, abs/2104.11178.

[7] Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews
Genetics, 8(6):450–461.

[8] Andrew, G., Arora, R., Bilmes, J. A., and Livescu, K. (2013). Deep canonical correlation
analysis. In ICML.

[9] Arora, S. (2020). A survey on graph neural networks for knowledge graph completion.
arXiv preprint arXiv:2007.12374.

[10] Aslam, J. A. and Frost, M. (2003). An information-theoretic measure for document
similarity. In Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, pages 449–450.

154 References

[11] Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. In
NeurIPS.

[12] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. ICLR.

[13] Barros, C. D., Mendonça, M. R., Vieira, A. B., and Ziviani, A. (2021). A survey on
embedding dynamic graphs. ACM Computing Surveys (CSUR), 55(1):1–37.

[14] Beeferman, D. and Berger, A. (2000). Agglomerative clustering of a search engine
query log. In SIGKDD.

[15] Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., and
Hjelm, D. (2018). Mutual information neural estimation. In ICML.

[16] Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In NeurIPS.

[17] Berkovsky, S., Kuflik, T., and Ricci, F. (2007). Cross-domain mediation in collaborative
filtering. In UMAP.

[18] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. (2008). Freebase: a
collaboratively created graph database for structuring human knowledge. In SIGMOD.

[19] Bordes, A., Chopra, S., and Weston, J. (2014a). Question answering with subgraph
embeddings. In EMNLP.

[20] Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2014b). A semantic matching energy
function for learning with multi-relational data. Machine Learning, 94(2):233–259.

[21] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013).
Translating embeddings for modeling multi-relational data. In NeurIPS.

[22] Bordes, A., Weston, J., and Usunier, N. (2014c). Open question answering with weakly
supervised embedding models. In ECMLPKDD.

[23] Bougouin, A., Boudin, F., and Daille, B. (2013). Topicrank: Graph-based topic ranking
for keyphrase extraction. In IJCNLP.

[24] Brody, S., Alon, U., and Yahav, E. (2021). How attentive are graph attention networks?
arXiv preprint arXiv:2105.14491.

References 155

[25] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and locally
connected networks on graphs. In ICLR.

[26] Cao, S., Lu, W., and Xu, Q. (2015). Grarep: Learning graph representations with global
structural information. In CIKM.

[27] Cao, Y., Long, M., Wang, J., Yang, Q., and Yu, P. S. (2016). Deep visual-semantic
hashing for cross-modal retrieval. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[28] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E. R., and Mitchell, T. M.
(2010). Toward an architecture for never-ending language learning. In AAAI.

[29] Carman, M. J., Crestani, F., Harvey, M., and Baillie, M. (2010). Towards query log
based personalization using topic models. In CIKM.

[30] Carreira, J. and Zisserman, A. (2017). Quo vadis, action recognition? a new model and
the kinetics dataset. In CVPR.

[31] Catherine, R. and Cohen, W. (2016). Personalized recommendations using knowledge
graphs: A probabilistic logic programming approach. In RecSys.

[32] Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between
probability density functions. City, 1(2):1.

[33] Chah, N. (2017). Freebase-triples: A methodology for processing the freebase data
dumps. arXiv preprint arXiv:1712.08707.

[34] Chamberlain, B. P., Clough, J., and Deisenroth, M. P. (2017). Neural embeddings of
graphs in hyperbolic space. CoRR.

[35] Chang, H., Rong, Y., Xu, T., Huang, W., Zhang, H., Cui, P., Zhu, W., and Huang, J.
(2020). A restricted black-box adversarial framework towards attacking graph embedding
models. In AAAI.

[36] Chen, J., Ma, T., and Xiao, C. (2018). Fastgcn: Fast learning with graph convolutional
networks via importance sampling. In ICLR.

[37] Cong, W., Ramezani, M., and Mahdavi, M. (2021). On the importance of sampling in
learning graph convolutional networks. arXiv preprint arXiv:2103.02696.

[38] Craswell, N. and Szummer, M. (2007). Random walks on the click graph. In SIGIR.

156 References

[39] Cucala, D. J. T., Grau, B. C., Kostylev, E. V., and Motik, B. (2022). Explainable
GNN-based models over knowledge graphs. In ICLR.

[40] Cui, G., Zhou, J., Yang, C., and Liu, Z. (2020). Adaptive graph encoder for attributed
graph embedding. Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining.

[41] Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and Song, L. (2018). Adversarial
attack on graph structured data. In ICML.

[42] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. In NeurIPS.

[43] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL.

[44] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T.,
Sun, S., and Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In SIGKDD.

[45] Dong, X., Thanou, D., Rabbat, M., and Frossard, P. (2019). Learning graphs from data:
A signal representation perspective. IEEE Signal Processing Magazine, 36(3):44–63.

[46] Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec: Scalable representation
learning for heterogeneous networks. In SIGKDD.

[47] Dong, Y., Hu, Z., Wang, K., Sun, Y., and Tang, J. (2020). Heterogeneous network
representation learning. In IJCAI.

[48] dos Santos, V. and Lifschitz, S. (2021). A semantic search approach for hyper relational
knowledge graphs. Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados
(SBBD Estendido 2021).

[49] Dou, Z., Song, R., and Wen, J.-R. (2007). A large-scale evaluation and analysis of
personalized search strategies. In WWW.

[50] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., and Adams, R. P. (2015). Convolutional networks on graphs for learning
molecular fingerprints. In NeurIPS.

References 157

[51] Dzabraev, M., Kalashnikov, M., Komkov, S. A., and Petiushko, A. (2021). Mdmmt:
Multidomain multimodal transformer for video retrieval. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 3349–3358.

[52] Ehrlinger, L. and Wöß, W. (2016). Towards a definition of knowledge graphs. SEMAN-
TiCS.

[53] Fernández-Tobías, I. and Cantador, I. (2014). Exploiting social tags in matrix factoriza-
tion models for cross-domain collaborative filtering. In RecSys.

[54] Fernández-Tobías, I., Cantador, I., Kaminskas, M., and Ricci, F. (2012). Cross-domain
recommender systems: A survey of the state of the art. In CERI.

[55] Fu, X., Zhang, J., Meng, Z., and King, I. (2020). Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding. In WWW.

[56] Gabeur, V., Sun, C., Alahari, K., and Schmid, C. (2020). Multi-modal transformer for
video retrieval. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part IV 16, pages 214–229. Springer.

[57] Gao, H. and Huang, H. (2018). Deep attributed network embedding. In IJCAI.

[58] Gao, H., Wang, Z., and Ji, S. (2018). Large-scale learnable graph convolutional
networks. In SIGKDD.

[59] Gao, Z., Liu, J., Chen, S., Chang, D., Zhang, H., and Yuan, J. (2021). Clip2tv: An empir-
ical study on transformer-based methods for video-text retrieval. ArXiv, abs/2111.05610.

[60] Ge, S., Dou, Z., Jiang, Z., Nie, J.-Y., and Wen, J.-R. (2018). Personalizing search results
using hierarchical rnn with query-aware attention. In CIKM.

[61] Ge, Y., Ma, J., Zhang, L., and Lu, H. (2020). Unifying homophily and heterophily
network transformation via motifs. arXiv preprint arXiv:2012.11400.

[62] Ge, Y., Peng, P., and Lu, H. (2021). Mixed-order spectral clustering for complex
networks. Pattern Recognition, 117:107964.

[63] Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. (2017). A convolutional encoder
model for neural machine translation. In ACL-IJCNLP.

[64] Getoor, L., Friedman, N., Koller, D., Pfeffer, A., and Taskar, B. (2007). Probabilistic
relational models. Introduction to statistical relational learning, 8.

158 References

[65] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In ICML.

[66] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR.

[67] Gong, Y., Ke, Q., Isard, M., and Lazebnik, S. (2013). A multi-view embedding space
for modeling internet images, tags, and their semantics. International Journal of Computer
Vision, 106:210–233.

[68] Gori, M., Monfardini, G., and Scarselli, F. (2005). A new model for learning in graph
domains. In IJCNN.

[69] Goyal, P. and Ferrara, E. (2018). Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94.

[70] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
In SIGKDD.

[71] Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., and He, Q. (2020). A survey
on knowledge graph-based recommender systems. IEEE Transactions on Knowledge and
Data Engineering.

[72] Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive representation learning on
large graphs. In NeurIPS.

[73] Hamilton, W. L., Ying, R., and Leskovec, J. (2017b). Representation learning on graphs:
Methods and applications. IEEE Data Eng. Bull.

[74] Harvey, M., Crestani, F., and Carman, M. J. (2013). Building user profiles from topic
models for personalised search. In CIKM.

[75] Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M., Duffield, N., Narayanan, K.,
and Qian, X. (2020). Bayesian graph neural networks with adaptive connection sampling.
In ICML.

[76] He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and Ma, W.-Y. (2016). Dual
learning for machine translation. In NeurIPS.

[77] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural collaborative
filtering. In WWW.

References 159

[78] Heitmann, B. and Hayes, C. (2016). Semstim: Exploiting knowledge graphs for cross-
domain recommendation. In 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), pages 999–1006. IEEE.

[79] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

[80] Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., and Weld, D. S. (2011). Knowledge-
based weak supervision for information extraction of overlapping relations. In ACL-
IJCNLP.

[81] Hoory, S., Linial, N., and Wigderson, A. (2006). Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561.

[82] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural networks.

[83] Hsu, W. H., Kennedy, L. S., and Chang, S.-F. (2007). Video search reranking through
random walk over document-level context graph. In MM.

[84] Hu, G., Zhang, Y., and Yang, Q. (2018). Conet: Collaborative cross networks for
cross-domain recommendation. In CIKM.

[85] Hu, L., Cao, J., Xu, G., Cao, L., Gu, Z., and Zhu, C. (2013). Personalized recommenda-
tion via cross-domain triadic factorization. In WWW.

[86] Hu, Z., Dong, Y., Wang, K., and Sun, Y. (2020). Heterogeneous graph transformer. In
WWW.

[87] Huang, J., Wang, H., Fan, M., Zhuo, A., and Li, Y. (2020a). Personalized prefix
embedding for poi auto-completion in the search engine of baidu maps. In SIGKDD.

[88] Huang, J.-T., Sharma, A., Sun, S., Xia, L., Zhang, D., Pronin, P., Padmanabhan, J.,
Ottaviano, G., and Yang, L. (2020b). Embedding-based retrieval in facebook search. In
SIGKDD.

[89] Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep
structured semantic models for web search using clickthrough data. In CIKM.

[90] Huang, X., Peng, Y., and Yuan, M. (2018). Mhtn: Modal-adversarial hybrid transfer
network for cross-modal retrieval. IEEE transactions on cybernetics, 50(3):1047–1059.

160 References

[91] Ivanov, S. and Burnaev, E. (2018). Anonymous walk embeddings. In ICML.

[92] Jeh, G. and Widom, J. (2003). Scaling personalized web search. In WWW.

[93] Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. (2015). Knowledge graph embedding via
dynamic mapping matrix. In IJCNLP.

[94] Jia, C., Wu, B., and Zhang, X. (2020). Dynamic spatiotemporal graph neural network
with tensor network. ArXiv, abs/2003.08729.

[95] Jia, S., Xiang, Y., Chen, X., Wang, K., and Shijia, E. (2019). Triple trustworthiness
measurement for knowledge graph. In WWW.

[96] Jiang, S., Hu, Y., Kang, C., Daly Jr, T., Yin, D., Chang, Y., and Zhai, C. (2016).
Learning query and document relevance from a web-scale click graph. In SIGIR.

[97] Jin, W., Li, Y., Xu, H., Wang, Y., and Tang, J. (2020). Adversarial attacks and defenses
on graphs: A review and empirical study. ArXiv.

[98] Jolliffe, I. T. (2011). Principal component analysis. In International Encyclopedia of
Statistical Science.

[99] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014).
Large-scale video classification with convolutional neural networks. In CVPR.

[100] Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., Poupart, P., and
Borgwardt, K. (2020). Representation learning for dynamic graphs: A survey. J. Mach.
Learn. Res., 21:70:1–70:73.

[101] Kim, Y. (2014). Convolutional neural networks for sentence classification. In EMNLP.

[102] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
ICLR.

[103] Kipf, T. N. and Welling, M. (2017a). Semi-supervised classification with graph
convolutional networks. In ICLR.

[104] Kipf, T. N. and Welling, M. (2017b). Variational graph auto-encoders. NeurIPS
(workshop).

[105] Klicpera, J., Weißenberger, S., and Gunnemann, S. (2019). Diffusion improves graph
learning. In NeurIPS.

References 161

[106] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37.

[107] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In NeurPIS.

[108] Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data.

[109] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

[110] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[111] Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K., and Koh, E. (2019). Attention models
in graphs: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD),
13(6):1–25.

[112] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., and Bizer, C. (2015). Dbpedia -
a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web,
6:167–195.

[113] Leskovec, J., Kleinberg, J., and Faloutsos, C. (2007). Graph evolution: Densification
and shrinking diameters. In ACM Transactions on Knowledge Discovery from Data.

[114] Li, P. and Tuzhilin, A. (2020). Ddtcdr: Deep dual transfer cross domain recommenda-
tion. In WSDM.

[115] Li, Q., Han, Z., and Wu, X. (2018). Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI.

[116] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S. (2016). Gated graph sequence
neural networks. In ICLR.

[117] Li, Z., Liu, H., Zhang, Z., Liu, T., and Xiong, N. N. (2021a). Learning knowledge
graph embedding with heterogeneous relation attention networks. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–13.

[118] Li, Z., Wang, X., Li, J., and Zhang, Q. (2021b). Deep attributed network representation
learning of complex coupling and interaction. Knowledge-Based Systems, 212:106618.

162 References

[119] Lian, J., Zhang, F., Xie, X., and Sun, G. (2017). Cccfnet: a content-boosted collabora-
tive filtering neural network for cross domain recommender systems. In WWW.

[120] Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A. L., Urtasun, R., and Zemel, R. S.
(2018). Graph partition neural networks for semi-supervised classification. In ICLR
workshop.

[121] Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015). Learning entity and relation
embeddings for knowledge graph completion. In AAAI.

[122] Lin, Y.-S., Jiang, J.-Y., and Lee, S.-J. (2013). A similarity measure for text classifica-
tion and clustering. IEEE transactions on knowledge and data engineering, 26(7):1575–
1590.

[123] Liu, X., Yan, M., Deng, L., Li, G., Ye, X., and Fan, D. (2021). Sampling methods
for efficient training of graph convolutional networks: A survey. IEEE/CAA Journal of
Automatica Sinica, 9(2):205–234.

[124] Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., and Qi, Y. (2019). Geniepath:
Graph neural networks with adaptive receptive paths. In AAAI.

[125] Loni, B., Shi, Y., Larson, M., and Hanjalic, A. (2014). Cross-domain collaborative
filtering with factorization machines. In ECIR.

[126] Lu, S., Dou, Z., Jun, X., Nie, J.-Y., and Wen, J.-R. (2019). Psgan: A minimax game
for personalized search with limited and noisy click data. In SIGIR.

[127] Luo, D., Cheng, W., Yu, W., Zong, B., Ni, J., Chen, H., and Zhang, X. (2021). Learning
to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining.

[128] Ma, H., Yang, H., King, I., and Lyu, M. R. (2008). Learning latent semantic relations
from clickthrough data for query suggestion. In CIKM.

[129] Ma, J., Cui, P., Kuang, K., Wang, X., and Zhu, W. (2019). Disentangled graph
convolutional networks. In ICML.

[130] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605.

[131] Man, T., Shen, H., Jin, X., and Cheng, X. (2017). Cross-domain recommendation: An
embedding and mapping approach. In IJCAI.

References 163

[132] McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. (2000). Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–
163.

[133] Meng, C., Mouli, S. C., Ribeiro, B., and Neville, J. (2018). Subgraph pattern neural
networks for high-order graph evolution prediction. In AAAI.

[134] Meng, Z., Liang, S., Bao, H., and Zhang, X. (2019). Co-embedding attributed
networks. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining.

[135] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. ICLR.

[136] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In NeurIPS.

[137] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002).
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–
827.

[138] Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., and Bronstein, M. M.
(2017). Geometric deep learning on graphs and manifolds using mixture model cnns. In
CVPR.

[139] Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. (2019). Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In ICLR.

[140] Ni, J., Li, J., and McAuley, J. (2019). Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In EMNLP-IJCNLP.

[141] Nickel, M., Rosasco, L., and Poggio, T. (2016). Holographic embeddings of knowledge
graphs. In AAAI.

[142] Nickel, M., Tresp, V., and Kriegel, H.-P. (2011). A three-way model for collective
learning on multi-relational data. In ICML.

[143] Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning convolutional neural
networks for graphs. In ICML.

164 References

[144] Ning, W., Cheng, R., Shen, J., Haldar, N. A. H., Kao, B., Huo, N., Lam, W. K.,
Li, T., and Tang, B. (2021). Reinforced meta-path selection for recommendation on
heterogeneous information networks. arXiv preprint arXiv:2112.12845.

[145] Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). Asymmetric transitivity
preserving graph embedding. In SIGKDD.

[146] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab.

[147] Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359.

[148] Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R. (2021). Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural
Information Processing Systems, 34.

[149] Pareja, A., Domeniconi, G., Chen, J. J., Ma, T., Suzumura, T., Kanezashi, H., Kaler,
T., and Leisersen, C. E. (2019). Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In AAAI.

[150] Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film:
Visual reasoning with a general conditioning layer. In AAAI.

[151] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social
representations. In SIGKDD.

[152] Perozzi, B., Kulkarni, V., Chen, H., and Skiena, S. (2017a). Don’t walk, skip!: Online
learning of multi-scale network embeddings. In ASONAM.

[153] Perozzi, B., Kulkarni, V., Chen, H., and Skiena, S. (2017b). Don’t walk, skip!: Online
learning of multi-scale network embeddings. In ASONAM.

[154] Qu, M., Bengio, Y., and Tang, J. (2019). Gmnn: Graph markov neural networks. In
ICML.

[155] Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems
handbook. In Recommender systems handbook, pages 1–35. Springer.

[156] Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR.

References 165

[157] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326.

[158] Sahebi, S. and Brusilovsky, P. (2015). It takes two to tango: An exploration of domain
pairs for cross-domain collaborative filtering. In RecSys.

[159] Sahebi, S. and Walker, T. (2014). Content-based cross-domain recommendations
using segmented models. In RecSys.

[160] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative
filtering recommendation algorithms. In WWW.

[161] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and Welling, M.
(2018). Modeling relational data with graph convolutional networks. In ESWC.

[162] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding
for face recognition and clustering. In CVPR.

[163] Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge.

[164] Seongjun, Y., Minbyul, J., Raehyun, K., Jaewoo, K., and JKim, H. (2019). Graph
transformer networks. In NeurIPS.

[165] Sheikh, N., Qin, X., Reinwald, B., Miksovic, C., Gschwind, T., and Scotton, P. (2021).
Knowledge graph embedding using graph convolutional networks with relation-aware
attention. arXiv preprint arXiv:2102.07200.

[166] Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and Borgwardt,
K. M. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12(9).

[167] Shi, C., Li, Y., Zhang, J., Sun, Y., and Yu, P. S. (2017). A survey of heterogeneous
information network analysis. IEEE Transactions on Knowledge and Data Engineering,
29:17–37.

[168] Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2013).
The emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Magazine,
30:83–98.

166 References

[169] Sieg, A., Mobasher, B., and Burke, R. (2007). Web search personalization with
ontological user profiles. In CIKM.

[170] Singh, A. P. and Gordon, G. J. (2008). Relational learning via collective matrix
factorization. In SIGKDD.

[171] Socher, R., Chen, D., Manning, C. D., and Ng, A. (2013). Reasoning with neural
tensor networks for knowledge base completion. In NeurIPS.

[172] Sohangir, S. and Wang, D. (2017). Improved sqrt-cosine similarity measurement.
Journal of Big Data, 4(1):1–13.

[173] Strehl, A., Ghosh, J., and Mooney, R. (2000). Impact of similarity measures on
web-page clustering. In Workshop on artificial intelligence for web search (AAAI 2000),
volume 58, page 64.

[174] Stretcu, O., Viswanathan, K., Movshovitz-Attias, D., Platanios, E., Ravi, S., and
Tomkins, A. (2019). Graph agreement models for semi-supervised learning. In NeurIPS.

[175] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic
knowledge. In WWW.

[176] Sun, C., Myers, A., Vondrick, C., Murphy, K. P., and Schmid, C. (2019). Videobert: A
joint model for video and language representation learning. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 7463–7472.

[177] Sun, L., Zhang, Z., Zhang, J., Wang, F., Peng, H., Su, S., and Yu, P. S. (2021).
Hyperbolic variational graph neural network for modeling dynamic graphs. In AAAI.

[178] Sun, Y. and Han, J. (2012). Mining heterogeneous information networks: principles
and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2):1–
159.

[179] Sun, Y., Han, J., Yan, X., Yu, P. S., and Wu, T. (2011). Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks. Proceedings of the VLDB
Endowment, 4(11):992–1003.

[180] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In CVPR.

[181] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). Line: Large-scale
information network embedding. In WWW.

References 167

[182] Tang, X., Wang, T., Yang, H., and Song, H. (2019). Akupm: Attention-enhanced
knowledge-aware user preference model for recommendation. In SIGKDD.

[183] Teevan, J., Adar, E., Jones, R., and Potts, M. A. (2007). Information re-retrieval:
Repeat queries in yahoo’s logs. In SIGIR.

[184] Teevan, J., Liebling, D. J., and Ravichandran Geetha, G. (2011). Understanding and
predicting personal navigation. In ICDM.

[185] Teru, K. K., Denis, E., and Hamilton, W. L. (2020). Inductive relation prediction by
subgraph reasoning. In ICML.

[186] Thompson, V. U., Panchev, C., and Oakes, M. (2015). Performance evaluation of
similarity measures on similar and dissimilar text retrieval. In 2015 7th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K), volume 1, pages 577–584. IEEE.

[187] Trouillon, T., Welbl, J., Riedel, S., Gaussier, e., and Bouchard, G. (2016). Complex
embeddings for simple link prediction. In ICML, pages 2071–2080. PMLR.

[188] Umadevi, M. (2020). Document comparison based on tf-idf metric. International
Research Journal of Engineering and Technology (IRJET), 7(02):1546–1550.

[189] van den Berg, R., Kipf, T. N., and Welling, M. (2017). Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263.

[190] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. In NeurIPS.

[191] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2018).
Graph attention networks. In ICLR.

[192] Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D.
(2019). Deep graph infomax. In ICLR.

[193] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11:3371–3408.

[194] Vu, T., Nguyen, D. Q., Johnson, M., Song, D., and Willis, A. (2017). Search personal-
ization with embeddings. In ECIR.

168 References

[195] Vu, T., Willis, A., Tran, S. N., and Song, D. (2015). Temporal latent topic user profiles
for search personalisation. In ECIR.

[196] Wagstaff, E., Fuchs, F. B., Engelcke, M., Posner, I., and Osborne, M. A. (2019). On
the limitations of representing functions on sets. In ICML.

[197] Waitelonis, J. and Sack, H. (2012). Towards exploratory video search using linked
data. Multimedia Tools and Applications, 59(2):645–672.

[198] Wang, D., Cui, P., and Zhu, W. (2016). Structural deep network embedding. In
SIGKDD.

[199] Wang, H., Ren, H., and Leskovec, J. (2021a). Relational message passing for knowl-
edge graph completion. SIGKDD.

[200] Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., and Guo, M. (2018). Rip-
plenet: Propagating user preferences on the knowledge graph for recommender systems.
In CIKM.

[201] Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., and Wang, Z.
(2019a). Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In KDD.

[202] Wang, P., Fu, Y., Xiong, H., and Li, X. (2019b). Adversarial substructured representa-
tion learning for mobile user profiling. In SIGKDD.

[203] Wang, P., Fu, Y., Zhou, Y., Liu, K., Li, X., and Hua, K. (2020). Exploiting mutual
information for substructure-aware graph representation learning. In IJCAI.

[204] Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743.

[205] Wang, X., He, X., Cao, Y., Liu, M., and Chua, T. (2019c). KGAT: knowledge graph
attention network for recommendation. In SIGKDD.

[206] Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and Yu, P. S. (2019d). Heteroge-
neous graph attention network. In WWW.

[207] Wang, Y., Liu, Z., Fan, Z., Sun, L., and Yu, P. S. (2021b). Dskreg: Differentiable
sampling on knowledge graph for recommendation with relational gnn. CIKM.

References 169

[208] Wang, Z., Zhang, J., Feng, J., and Chen, Z. (2014). Knowledge graph embedding by
translating on hyperplanes. In AAAI.

[209] Wei, L., Zhao, H., and He, Z. (2021). Learn layer-wise connections in graph neural
networks. arXiv preprint arXiv:2112.13585.

[210] White, R. W., Chu, W., Hassan, A., He, X., Song, Y., and Wang, H. (2013). Enhancing
personalized search by mining and modeling task behavior. In WWW.

[211] Xie, R., Liu, Z., and Sun, M. (2018). Does william shakespeare really write hamlet?
knowledge representation learning with confidence. In AAAI.

[Xu et al.] Xu, C., Su, F., and Lehmann, J. Time-aware relational graph attention network
for temporal knowledge graph embeddings. In ICLR.

[213] Xu, C., Su, F., and Lehmann, J. (2021). Time-aware graph neural network for entity
alignment between temporal knowledge graphs. In EMNLP.

[214] Xu, H., Sang, S., Bai, P., Yang, L., and Lu, H. (2020). Gripnet: Graph information
propagation on supergraph for heterogeneous graphs. arXiv preprint arXiv:2010.15914.

[215] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural
networks? In ICLR.

[216] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018).
Representation learning on graphs with jumping knowledge networks. In ICML.

[217] Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. (2015). Embedding entities and
relations for learning and inference in knowledge bases. In ICLR.

[218] Yang, C., Xiao, Y., Zhang, Y., Sun, Y., and Han, J. (2020). Heterogeneous network
representation learning: Survey, benchmark, evaluation, and beyond. arXiv preprint
arXiv:2004.00216.

[219] Yang, L., Wu, F., Wang, Y., Gu, J., and Guo, Y. (2019). Masked graph convolutional
network. In IJCAI.

[220] Yang, Y. and Qi, Y. (2021). Image super-resolution via channel attention and spatial
graph convolutional network. Pattern Recognition, 112:107798.

[221] Yao, J., Dou, Z., and Wen, J.-R. (2020). Employing personal word embeddings for
personalized search. In SIGIR.

170 References

[222] Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). Gnn explainer:
A tool for post-hoc explanation of graph neural networks. In NeurIPS.

[223] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
(2018). Graph convolutional neural networks for web-scale recommender systems. In
SIGKDD.

[224] Yoon, M., Gervet, T., Shi, B., Niu, S., He, Q., and Yang, J. (2021). Performance-
adaptive sampling strategy towards fast and accurate graph neural networks. In SIGKDD,
pages 2046–2056.

[225] You, J., Ying, R., and Leskovec, J. (2019). Position-aware graph neural networks. In
ICML.

[226] Yu, L., Sun, L., Du, B., Liu, C., Lv, W., and Xiong, H. (2021a). Heterogeneous graph
representation learning with relation awareness. arXiv preprint arXiv:2105.11122.

[227] Yu, T., Yang, Y., Li, Y., Chen, X., Sun, M., and Li, P. (2020). Combo-attention network
for baidu video advertising. In SIGKDD.

[228] Yu, T., Yang, Y., Li, Y., Liu, L., Sun, M., and Li, P. (2021b). Multi-modal dictionary
bert for cross-modal video search in baidu advertising. In CIKM.

[229] Yuan, F., Yao, L., and Benatallah, B. (2019). Darec: Deep domain adaptation for
cross-domain recommendation via transferring rating patterns. In IJCAI.

[230] Yuan, H., Yu, H., Gui, S., and Ji, S. (2020). Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445.

[231] Yuan, J., Cao, M., Cheng, H., Yu, H., Xie, J., and Wang, C. (2022). A unified structure
learning framework for graph attention networks. Neurocomputing.

[232] Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B., Salakhutdinov, R., and Smola,
A. J. (2017). Deep sets. In NeurIPS.

[233] Zhang, C., Song, D., Huang, C., Swami, A., and Chawla, N. V. (2019a). Heterogeneous
graph neural network. In SIGKDD.

[234] Zhang, L., Ge, Y., and Lu, H. (2020). Hop-hop relation-aware graph neural networks.
arXiv preprint arXiv:2012.11147.

[235] Zhang, L. and Lu, H. (2020). A feature-importance-aware and robust aggregator for
gcn. In CIKM.

References 171

[236] Zhang, L., Shi, L., Zhao, J., Yang, J., Lyu, T., Yin, D., and Lu, H. (2022a). A gnn-based
multi-task learning framework for personalized video search. Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining.

[237] Zhang, L., Song, H., Aletras, N., and Lu, H. (2022b). Node-feature convolution for
graph convolutional networks. Pattern Recognition.

[238] Zhang, M. and Chen, Y. (2018). Link prediction based on graph neural networks. In
NeurIPS.

[239] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018a). An end-to-end deep learning
architecture for graph classification. In AAAI.

[240] Zhang, N., Wang, W., and Wang, L. (2021). Attributed graph alignment. arXiv
preprint arXiv:2102.00665.

[241] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019b). Deep learning based recommender
system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38.

[242] Zhang, Y., Qi, P., and Manning, C. D. (2018b). Graph convolution over pruned
dependency trees improves relation extraction. arXiv preprint arXiv:1809.10185.

[243] Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018c). Deep mutual learning.
In CVPR.

[244] Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., and Ye, Y. (2021). Heterogeneous
graph structure learning for graph neural networks. In 35th AAAI Conference on Artificial
Intelligence (AAAI).

[245] Zhao, J., Zhou, Z., Guan, Z., Zhao, W., Ning, W., Qiu, G., and He, X. (2019a).
Intentgc: a scalable graph convolution framework fusing heterogeneous information for
recommendation. In SIGKDD.

[246] Zhao, W., Wu, X., and Luo, J. (2020). Cross-domain image captioning via cross-modal
retrieval and model adaptation. IEEE Transactions on Image Processing, 30:1180–1192.

[247] Zhao, Z., Hong, L., Wei, L., Chen, J., Nath, A., Andrews, S., Kumthekar, A., Sathi-
amoorthy, M., Yi, X., and Chi, E. (2019b). Recommending what video to watch next: a
multitask ranking system. In RecSys.

172 References

[248] Zhen, L., Hu, P., Wang, X., and Peng, D. (2019). Deep supervised cross-modal
retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10394–10403.

[249] Zhou, Y., Dou, Z., and Wen, J.-R. (2020). Encoding history with context-aware
representation learning for personalized search. In SIGIR.

[250] Zhu, F., Chen, C., Wang, Y., Liu, G., and Zheng, X. (2019). Dtcdr: A framework for
dual-target cross-domain recommendation. In CIKM.

[251] Zhu, F., Wang, Y., Chen, C., Zhou, J., Li, L., and Liu, G. (2021a). Cross-domain
recommendation: challenges, progress, and prospects. In IJCAI.

[252] Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. (2021b). Neural bellman-ford
networks: A general graph neural network framework for link prediction. ArXiv,
abs/2106.06935.

[253] Zugner, D., Akbarnejad, A., and Gunnemann, S. (2018). Adversarial attacks on neural
networks for graph data. In SIGKDD.

[254] Zugner, D. and Gunnemann, S. (2019a). Adversarial attacks on graph neural networks
via meta learning. In ICLR.

[255] Zugner, D. and Gunnemann, S. (2019b). Certifiable robustness and robust training for
graph convolutional networks. In SIGKDD.

	Important Notations and Abbreviations
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Structure and Contributions

	2 Background
	2.1 Graphs
	2.2 Graph Representation Learning
	2.2.1 Matrix Factorization-based GRL
	2.2.2 Random Walk-based GRL
	2.2.3 Neural Network-based GRL

	2.3 Graph Neural Networks
	2.3.1 Convolution on Graphs
	2.3.2 GNNs for Homogeneous Graph Representation Learning
	2.3.3 GNNs for Heterogeneous Graph Representation Learning
	2.3.4 Comparison of Different GRL Methods

	2.4 Knowledge Graph Embedding
	2.5 Personalized Video Search
	2.5.1 Video Search
	2.5.2 Personalized Search
	2.5.3 Graphs based Information Retrieval

	2.6 Knowledge Graph for Recommendation
	2.6.1 Knowledge Graph for Recommendation
	2.6.2 Cross-Domain Recommendation

	I Algorithms
	3 Node-Feature Convolution for Graph Convolutional Network
	3.1 Introduction
	3.2 Methodology
	3.2.1 Problem Definition
	3.2.2 Neighbor Selection and Ordering
	3.2.3 Node-Feature Convolution Layer
	3.2.4 Graph Convolutional Layer
	3.2.5 Computational Complexity
	3.2.6 Differences with Existing GNNs

	3.3 Experiments
	3.3.1 Datasets
	3.3.2 Baselines
	3.3.3 Hyperparameters Setting
	3.3.4 Performance for Node Classification
	3.3.5 Effectiveness of NFC aggregation
	3.3.6 Node Bandwidth Study
	3.3.7 Model Depth Study
	3.3.8 Discussion

	3.4 Summary

	4 Learnable Aggregator for Graph Convolutional Network
	4.1 Introduction
	4.2 Methodology
	4.2.1 Problem Definition
	4.2.2 Framework of LA-GCN
	4.2.3 Theoretical Studies of Aggregator
	4.2.4 Mask Aggregator
	4.2.5 Auxiliary Model
	4.2.6 Computational Complexity
	4.2.7 Differences with Existing GNNs

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Baselines
	4.3.3 Hyperparameters Setting
	4.3.4 Performance for Node Classification
	4.3.5 Performance for Graph Classification
	4.3.6 Parameter Sensitivity
	4.3.7 Effectiveness of Mask Aggregator
	4.3.8 Interpretability Study
	4.3.9 Robustness Study

	4.4 Summary

	5 Hop-Hop Relation-aware Graph Neural Network
	5.1 Introduction
	5.2 Methodology
	5.2.1 Problem Definition
	5.2.2 Theoretical Studies
	5.2.3 A Personalized Receptive Field
	5.2.4 Hop-aware Projection
	5.2.5 Relation-score Learning
	5.2.6 Hop-aware Aggregation
	5.2.7 Computational Complexity
	5.2.8 Differences with Existing GNNs

	5.3 Experiments
	5.3.1 Datasets
	5.3.2 Baselines
	5.3.3 Hyperparameters Setting
	5.3.4 Performance for Node Classification
	5.3.5 Interpretability Study
	5.3.6 Efficiency Study
	5.3.7 Different KGE Model Study

	5.4 Summary

	II Applications
	6 Multi-Task GNN for Personalized Video Search
	6.1 Introduction
	6.2 Methodology
	6.2.1 Problem Definition
	6.2.2 Semantic Representation Learning
	6.2.3 Graph Representation Learning
	6.2.4 Incorporating User Meta Information
	6.2.5 Ranking Score Generation
	6.2.6 Model Training and Optimization

	6.3 Experiment
	6.3.1 Datasets
	6.3.2 Baselines
	6.3.3 Hyperparameters Setting
	6.3.4 Performance for Click and Relevance Tasks.
	6.3.5 Trade-off between Two Tasks.
	6.3.6 Effectiveness of Graph Information.
	6.3.7 Case Study.

	6.4 Summary

	7 KG-aware Cross-Domain Recommendation
	7.1 Introduction
	7.2 KG Construction for CDR
	7.3 Methodology
	7.3.1 Problem Definition
	7.3.2 Entity Embedding
	7.3.3 NeuCMF Module
	7.3.4 Model Training and Optimization

	7.4 Experiment
	7.4.1 Datasets
	7.4.2 Baselines
	7.4.3 Hyperparameters Setting
	7.4.4 Performance for CDR
	7.4.5 Different Ways to Incorporate KG Information
	7.4.6 Performance in Cold-Start Item Scenarios

	7.5 Summary

	8 Conclusions and Future Directions
	8.1 Conclusions
	8.2 Discussion
	8.3 Future Directions

	References

