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Abstract 

Sensorimotor control is pivotal in children’s development, allowing them to learn, 

explore and play. There are many factors within the external environment 

influencing children’s sensorimotor development. The present thesis aimed to 

study the impact of ethnicity and socioeconomic position on sensorimotor control 

in childhood, using kinematic analyses, and how to improve the measurement of 

such constructs. Chapter 2 derived a latent measure of socioeconomic 

circumstances which was sensitive to ethnic differences to use in subsequent 

analyses. Chapters 3 and 4 used Principal Components Analysis and 

Confirmatory Factor Analysis, respectively, to reduce the plethora of kinematic 

indices produced by the Clinical-Kinematic Assessment Tool and determine the 

theoretical constructs that best underpin sensorimotor control. These analyses 

found that the many hundreds of individual kinematic data points could be 

reduced to a substantially smaller number of sensorimotor components. Chapter 

5 is a two-part study exploring the relationship between ethnicity, socioeconomic 

circumstances and sensorimotor control in early childhood and how these 

relationships compare when using conventional variables versus the more novel 

latent measures derived in Chapters 2-4. Overall, the analyses demonstrate that 

White British children’s performance was superior to their British-born Pakistani 

peers even after controlling for socioeconomic factors. Additionally, latent 

measures of sensorimotor control were better predictors compared to 

conventional variables, suggesting these measures offer a more accurate 

reflection of performance and circumstances. Lastly, Chapter 6 explored whether 

the ethnic differences found in Chapter 5 persisted into mid-childhood and studied 

how children’s sensorimotor control developed across these two timepoints. 
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Results demonstrated that early ethnic differences in sensorimotor control 

reduced by mid-childhood. In summary, this thesis adds to the sparse literature 

on how a child’s ethnicity and their resulting environment can influence 

sensorimotor control, and also how this relationship changes over time. It also 

highlights that empirically derived latent measures may be more accurate and 

appropriate. 
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Chapter 1 General Introduction 

Early Piagetian theory suggests that competent motor control is vital for one’s 

ability to interact with, and understand the environment through “purposeful, 

coordinated movements” (Latash, 2012, p. 1; Piaget, 1952). This occurs even 

prior to birth, as the unborn infant interacts with their environment by responding 

through movement whilst in the womb (Dusing, 2016). Indeed, motor 

development  has been described as “enabling”, suggesting that movement 

provides a plethora of new opportunities to further develop knowledge about 

objects, surfaces, people and events in the surrounding environment (Adolph & 

Hoch, 2019; Adolph & Robinson, 2015; Campos et al., 2000; Gibson, 1988; 

Thelen, 2000; Thelen et al., 1994). Thus, it is pivotal to understand how these 

interactions are facilitated and equally, impeded.  

This chapter begins by introducing the concept of sensorimotor control including 

its theoretical underpinnings and the various aspects of health and development 

that it can impact across the lifespan. Next, the role of sociodemographic factors 

in sensorimotor control and other aspects of health and development is briefly 

discussed, alongside highlighting gaps that remain in the literature. Finally, the 

context of the current thesis and an overview of each chapter is described.  

1.1 Sensorimotor control  

The nomenclature describing the ability to move and control the body efficiently 

is highly varied and terms are often used interchangeably, causing 

inconsistencies across the literature. Sensorimotor control is often referred to as 

“fine motor skills” (e.g., Grissmer et al., 2010); “manual coordination” (e.g., Hill et 
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al., 2016); “pen skills” (e.g., Shire et al., 2016); or “manual dexterity” (e.g., Stöckel 

& Hughes, 2016). However, such terminology is frequently used to also describe 

more complex motor skills which generally require practice, feedback and 

instruction, and are often context-specific, such as copying shapes using pen and 

paper or using scissors (J. E. Clark & Metcalfe, 2002; Gallahue & Ozmun, 2006; 

Lubans et al., 2010). Therefore, the use of these broad definitions can refer to 

movements of varying complexity.  

Narrower, more precise definitions of sensorimotor control, however, have been 

provided. Tresilian (2012) argues that a key premise of sensorimotor control is 

that it involves a fundamental component which can then be combined to perform 

more complex actions. In addition, competent sensorimotor control includes 

applying the appropriate levels of force, using anticipatory visual information, 

prospective control, and producing a smooth trajectory (Snapp-Childs, Mon-

Williams, et al., 2013). For example, in prehension movements, such as reaching 

to pick up a cup of tea, there are generally two key phases: the “reach” phase 

which involves transportation of the hand to the target object and the “grasp” 

phase which allows the appropriate aperture to grasp the object and avoid 

knocking it over (Ingram & Wolpert, 2011; Jeannerod, 1984; Mon-Williams & 

Tresilian, 2001; Rand et al., 2006). Each of these components require the use of 

key sensorimotor processes. Franklin and Wolpert (2011) argue that to ensure 

accurate and skilful action, the sensorimotor control system must encounter and 

overcome several problems including: non-linearity, non-stationarity, delays, 

redundancy, uncertainty, and noise. This demonstrates the complexity involved 

in performing such actions. Thus, the study of sensorimotor control at this 

fundamental level is a prerequisite for deeper exploration of more complex 

actions. 
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Despite the inconsistencies within the literature, throughout the present thesis, 

sensorimotor control is defined as the capacity to skilfully execute specific 

sensory-guided movements with a single goal-directed action (Edwards et al., 

2019; Franklin & Wolpert, 2011; Tresilian, 2012). As such, the term specifically 

refers to the general processing abilities of the sensorimotor system to produce 

core movements at a basic level (i.e., aiming a limb towards a target).  

1.1.1 Theoretical underpinnings of sensorimotor control  

To produce such core movements, the human sensorimotor control system uses 

two main internal models to guide goal-directed action, forward and inverse 

(Atkeson, 1989; R. P. Cooper, 2010; Flanagan et al., 2006; Gritsenko et al., 2009; 

Hyde & Wilson, 2011; Waterman et al., 2017; Wolpert et al., 1995; Wolpert & 

Kawato, 1998).  

Forward models provide the nervous system with a means of accurately 

predicting the state of the body and how it will interact with the world around us; 

it is essential for the perception of our environment (Waterman et al., 2017; 

Wolpert et al., 1995; Wolpert & Kawato, 1998). It does this by using the available 

sensory information regarding the current state of the body (i.e., velocity and 

position of the limb) and a copy of the motor command (efference copy) to predict 

the sensory consequences of movement (Miall & Wolpert, 1996; Wolpert et al., 

2011; Wolpert & Kawato, 1998). The Bayesian Brain Hypothesis (Knill & Pouget, 

2004) is one view which suggests that the forward model uses sensory 

information probabilistically, based on prior experience (priors) and a likelihood 

to generate predictions (Friston, 2010). Sensory samples are then tested to 

update the prior beliefs about how the body interacts with the world (Friston, 

2010).  
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In contrast, inverse models act as controllers and are required in order to change 

the state of the body by specifying the necessary motor commands (R. P. Cooper, 

2010; Flanagan & Wing, 1997; Wolpert et al., 1995, 1998; Wolpert & Kawato, 

1998). Previous research suggests that inverse models are implicitly produced 

by feedback control strategies which compare the actual motor response to the 

desired response via error signals (Wolpert & Kawato, 1998). When the 

discrepancy between the actual and expected motor response is large, the 

temporal lag in response is much greater (Miall et al., 2001). Thus, the 

sensorimotor system corrects only errors that directly impair the task goal, and 

those errors which are not task-relevant are ignored. This prevents redundancy 

whilst minimising the chances of further task-relevant errors being generated due 

to over-correction of task irrelevant errors (Wolpert et al., 2011). This 

phenomenon is known as the minimum intervention strategy (Todorov & Jordan, 

2002).  

Despite distinctions between the roles of the forward and inverse models, there 

is an intimate relationship between the two in order to make efficient goal-directed 

movements (Flanagan et al., 2006). Indeed, Wolpert and Kawato (1998) suggest 

that each forward model has a paired inverse model which acts as a control 

strategy to guide optimal movement. Due to temporal delays as a result of neural 

conduction, muscle activation and receptor transduction, sensory feedback loops 

within inverse models are not enough for efficient sensorimotor control 

(Desmurget & Grafton, 2000; Wolpert et al., 2011). By making prior predictions 

and bypassing the sensory feedback loops, forward models allow the 

sensorimotor system to respond much more quickly (Wolpert et al., 1998). Thus, 

the two systems must work synergistically to elicit the appropriate motor response 

(Wolpert et al., 1998; Wolpert & Kawato, 1998). 
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1.1.2 Wider implications of sensorimotor control   

In addition to the more obvious benefits that arise from developing adequate 

sensorimotor control (i.e., the ability to perform various activities of daily living or 

perform more complex movements accurately and with ease), there are wider-

reaching effects of proficient motor competence, and repercussions for a lack 

thereof. Competent perception and action (i.e., sensorimotor control) are thought 

to underlie more complex cognitive functions, a view which stands in contrast to 

the traditional view of these being separate entities from cognition (Leonard, 

2016; L. B. Smith & Sheya, 2010; von Hofsten, 2004). This view that higher-order 

cognition occurs within the context of the physical world, through interactions with 

the environment is often referred to as the Embodied Cognition perspective 

(Barsalou, 1999; Foglia & Wilson, 2013; Gibbs, 2005; Jirak et al., 2010; M. 

Wilson, 2002; R. A. Wilson & Foglia, 2017). Indeed, this perspective suggests 

that there is no distinction between sensorimotor control (traditionally considered 

a “lower-order” skill) and “higher-order” cognitive functions, such as language 

abilities, as both are regulated by the body (Foglia & Wilson, 2013; Jirak et al., 

2010). The subsequent sections will discuss the wider implications of competent 

sensorimotor control in various aspects of health and development, including 

cognition, handwriting, academic achievement, and mental and physical health.  

1.1.2.1 Cognition 

Firstly, findings from the neuroscience literature have demonstrated the close 

association between cognition and motor skills during childhood. In their review, 

Diamond (2000) refers to cognitive and motor development being “fundamentally 

intertwined” (p.44). They elaborate further, suggesting that the cerebellum and 

dorsolateral prefrontal cortex (dPFC) are tightly coupled; brain areas which have 
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been traditionally thought to underpin motor and cognitive tasks, respectively 

(Diamond, 2000). Indeed, additional evidence has found patients with cerebellar 

lesions often fail a range of cognitive tasks involving verbal fluency (Appollonio et 

al., 1993; Schmahmann & Sherman, 1998), planning (Botez et al., 1989; Grafman 

et al., 1992; Leiner et al., 1986; Schmahmann & Sherman, 1998), and working 

memory (Schmahmann & Sherman, 1998; Strick et al., 2009). In a meta-analysis, 

Jirak et al. (2010) also demonstrated a strong association between language and 

sensorimotor control. The authors concluded that during language processing, 

brain areas primarily related to sensorimotor tasks (e.g., the primary motor, 

supplementary motor and premotor cortices) are also active.  

Furthermore, numerous behavioural studies have explored the relationship 

between performance on cognitive and motor tasks. Executive function (EF) is a 

construct responsible for the control and organisation of behaviour, generally 

associated with three higher-order cognitive processes: working memory; 

inhibition; and attention shifting (Anderson et al., 2010; Diamond, 2013; Houwen 

et al., 2019; Miyake et al., 2000; M. Schmidt et al., 2017; Zelazo & Carlson, 2012). 

EF has been previously linked to improved social skills and academic attainment 

and it is thought to contribute towards increased “school readiness” (Blair & 

Raver, 2015; Hudson et al., 2020). Previous correlational studies have found 

significant positive associations between fine motor skills and executive 

functioning (Cameron et al., 2016; Leonard & Hill, 2015; McClelland & Cameron, 

2019). Furthermore, children identified as experiencing motor difficulties have 

been found to perform poorly compared to typically developing controls on a 

range of EF tasks, including those that assess working memory; fluency; 

inhibition; and planning (Leonard et al., 2015; Michel et al., 2018). Interestingly, 

Leonard et al. (2015) found significant differences only on non-verbal 
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assessments of EF such as the “odd-one-out” task (a visuospatial task) but not 

listening recall. However, given the correlational nature of these studies, causal 

inference cannot be determined.  

Using structural equation modelling to investigate the mediating role of EF in the 

relationship between motor control and academic attainment, Schmidt et al. 

(2017) found a significant indirect relationship between coordination abilities and 

EF collected at two distinct timepoints. This was not the case when focusing on 

the relationship between strength or endurance and EF, suggesting that 

sensorimotor control specifically is linked with these abilities. Furthermore, 

Hudson and colleagues (Hudson et al., 2020) investigated the impact of a motor 

skill intervention on executive function, including inhibitory control, attention 

shifting and working memory. The findings indicated a significant improvement in 

inhibitory control and attention shifting compared to wait-list controls, 

demonstrating the important role competent motor control may play in relation to 

supporting wider developmental outcomes.  

Other evidence supporting the association between cognitive and motor function 

comes from research into non-motor developmental disorders. For example, 

more than 50% of children with Attention-Hyperactive Deficit Disorder (ADHD) 

experience motor difficulties reaching clinical diagnosis (Kadesjö & Gillberg, 

1999; Watemberg et al., 2007). These findings are further supported by 

neuropsychological research which has also found that the cerebellum of boys 

with ADHD is smaller compared to controls (Berquin et al., 1998; Castellanos et 

al., 1996; Mostofsky et al., 1998, 2002), which, as discussed, is an important part 

of the sensorimotor system. Similarly, movement difficulties are common in other 

neurodevelopmental disorders such as dyslexia (Geuze & Kalverboer, 1994; P. 
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H. Wolff et al., 1990); specific language disorder (SLI; Hill et al., 1998) and Autistic 

Spectrum Disorder (ASD; Leary & Hill, 1996; Manjiviona & Prior, 1995; Slavoff & 

Bonvillian, 1997). This evidence stresses the importance of competent 

sensorimotor control for cognitive function.  

1.1.2.2 Handwriting  

There are, of course, tasks that require a combination of motor and cognitive 

skills. Handwriting, for example, is a complex skill which is underpinned by 

several key sensorimotor processes as well as cognitive and language-related 

processes, such as the translation of internal to orthographic representations 

(Berninger, 2000; Berninger et al., 2002). Even with the rise of technology in the 

classroom (Mangen & Balsvik, 2016; Marquardt et al., 2016), handwriting is often 

required for learning activities across most school contexts (Caçola, 2014; Feder 

& Majnemer, 2007; Shire et al., 2016). It relies on key sensorimotor control 

mechanisms including visuomotor integration, the application of appropriate force 

through the writing utensil, postural control, motor planning, and using both 

feedforward and feedback control, amongst others (Denton et al., 2006; Feder & 

Majnemer, 2007; Rosenblum et al., 2010; Shire et al., 2016; Smits-Engelsman et 

al., 2001; Snapp-Childs, Casserly, et al., 2013). These movements then require 

integration with the mental imagery of letters (Meulenbroek & van Galen, 1988). 

The complexity of handwriting as a skill is also increased due to the need to 

consider and plan the syntax and spelling of the words, convert phonemes into 

graphemes, and maintain attentional control (Planton et al., 2013; Rosenblum et 

al., 2010). Because of these reasons, children can often struggle with 

handwriting, leading to many repercussions within the classroom. For example, 

the academic work of children with poor handwriting is often marked 
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disproportionally lower compared to “neater” work, regardless of the content 

(Amundson, 2001; V. Connelly et al., 2005; Markham, 1976).  Additionally, 

handwriting difficulties also impact a child’s ability to communicate and express 

their ideas easily (Francis et al., 2016), thus, increasing the likelihood of under-

achievement.  

However with greater sensorimotor control, handwriting becomes more 

automated and permits greater cognitive resources, such as attention, to be 

placed on other higher order processes (Berninger et al., 1992; Medwell & Wray, 

2007; Tucha et al., 2008). For example, when copying from the whiteboard, 

children can place increased amounts of “freed-up” cognitive resources on 

understanding and retaining the information, rather than on supervising the 

sensorimotor processes needed to execute production of each letter. Indeed, 

Prunty and colleagues (Prunty et al., 2014), found that children with diagnosed 

motor difficulties, such as Developmental Coordination Disorder (DCD), took 

longer pauses during a handwriting task. The authors attributed this to a lack of 

ability to produce automatic movement and process motoric and higher-order 

components of writing (e.g., planning) concurrently. Greater pauses likely 

increase the time taken to complete schoolwork, leading to incomplete tasks in 

the time allocated and falling behind academically. Furthermore, taking longer 

than their peers to complete writing tasks and experiencing more difficulties also 

decreases children’s self-esteem in their academic abilities and discourages 

writing (Berninger et al., 1997; Feder & Majnemer, 2007; Lange et al., 2007; 

Racine et al., 2008). Thus, within the context of handwriting, increased 

sensorimotor control facilitates engagement and motivation to perform an activity 

that is integral to learning, particularly within traditional, mainstream academic 

settings.  
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1.1.2.3 Academic achievement  

Beyond handwriting specifically, previous research has found significant 

relationships between children’s motor proficiency and direct measures of 

academic achievement. Fine motor skills are often embedded in many classroom 

activities such as drawing and colouring, using scissors and grouping objects for 

counting. Such activities facilitate learning via the association of visual 

representations with theoretical concepts (Cameron et al., 2016).   

A wealth of research has investigated the association between motor skills 

(specifically fine motor) and mathematic achievement (Carlson et al., 2013; 

Dinehart & Manfra, 2013; Grissmer et al., 2010; Hudson et al., 2020; Luo et al., 

2007; Macdonald et al., 2020; Pagani et al., 2010). Sensorimotor interactions with 

the environment appear to encourage the development of abstract concepts such 

as shape, number and time (Piaget & Garcia, 1989; Sheridan et al., 2017). Walsh 

(2003) elaborates, suggesting that concepts of time and space are associated 

with representations of number via a similar representation of magnitude. In 

addition, early years mathematics teaching often emphasises the manipulation of 

objects to facilitate learning, such as counting with objects (Guarino et al., 2013). 

For example, Bayesian analyses demonstrated non-zero relationships between 

two out of three computerised sensorimotor tasks (Aiming and Steering but not 

Tracking) and scores in standardised assessments of mathematics in primary-

school aged children (Giles et al., 2018).  

Previous research has also explored numerical processing using a mental 

number line task and how this relates to sensorimotor control in adults (Sheridan 

et al., 2017). The mental number line requires spatial representation of number 

(de Hevia, 2016; Mix & Cheng, 2012; Sheridan et al., 2017). When the numerical 
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processing task was more difficult (reversed number line), both the reaction time 

(i.e., time taken to process the task and initiate movement) and movement time 

(i.e., time to complete the movement from start to finish) was slower. In addition, 

for these conditions, there was a significant positive relationship between 

performance on the numerical processing task and sensorimotor control. 

Similarly, Simms et al. (2016) found the relationship between performance on a 

number line task and mathematics achievement was at least partly explained by 

visuomotor integration (measured via a pencil-and-paper copying task) and 

visuospatial skill. Execution of visuomotor tasks requires a coupling of fine motor 

coordination and attentional control to coordinate visual- and motor-related brain 

areas (Kim et al., 2017; Shin et al., 2008). Kim et al. (2017) used structural 

equation models to explore the relationship between fine motor control and 

mathematic achievement via visuomotor integration, finding a tight coupling 

between spatial processing in numerical tasks and sensorimotor control.  

In addition to mathematics, significant relationships have also been found 

between fine motor skills and reading achievement in children (Dinehart & 

Manfra, 2013; Giles et al., 2018; Macdonald et al., 2020; Pitchford et al., 2016). 

Macdonald et al. (2020) suggested that approximately 25% of the variance 

associated with reading can be accounted for by fine motor skills, although to a 

lesser extent than mathematics (where it accounted for 33% of variance). This is 

important, as the literature consistently argues for the importance of reading in 

determining children’s levels of academic success, intelligence, and general 

cognition (A. Cunningham & Stanovich, 2003; Mol & Bus, 2011; West et al., 

1993). Furthermore, even after controlling for EF, visuomotor integration 

significantly predicted phonological awareness and letter-word identification, 

skills necessary for children’s ability to read text (Cameron et al., 2012).   
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Several mechanisms have been proposed to explain this specific relationship, as 

well as the links with academic achievement more generally. In a similar vein to 

the arguments proposed in the previous section, related to handwriting, one view 

suggests that this is due to neurological associations between cognitive and 

motor skills (Dinehart & Manfra, 2013; Grissmer et al., 2010). Adequately 

automated levels of sensorimotor control subsequently permit greater amounts 

of cognitive resources to be distributed to the integration of conceptual 

information, rather than to perceptual or motoric information (Cameron et al., 

2016).  

An alternative explanation relates to the compensatory effect of fine motor skills 

to facilitate learning, when other key classroom skills may be sub-optimal 

(Cameron et al., 2016). For example, when inhibitory control was poor, academic 

achievement did not falter if children had strong visuomotor skills (Cameron et 

al., 2015). Cameron et al. (2016) argued that this was because fine motor skills 

supported children’s self-regulation abilities. Previous research has 

demonstrated the impact of adequate self-regulation on academic attainment 

outcomes (McClelland & Cameron, 2011). Thus, for children’s academic 

achievement, the development of sensorimotor control is likely essential.  

1.1.2.4 Mental and physical health  

In addition to learning and cognition, sensorimotor control has a role in both 

mental and physical health. For example, previous research has demonstrated 

that children and adults experiencing clinically significant levels of motor 

difficulties often face further challenges with their mental health (Cairney et al., 

2010; Crane et al., 2017; Harrowell et al., 2018; E. L. Hill & Brown, 2013; Lingam 

et al., 2012; Rigoli et al., 2017). Importantly, longitudinal studies have provided 
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evidence for the direction of this relationship, such that early motor difficulties 

during childhood predict psychopathology in later childhood and adolescence 

(Lingam et al., 2012; Sigurdsson et al., 2002).   

The Elaborated Environmental Stress Hypothesis (Cairney et al., 2013; Mancini 

et al., 2016) suggests that motor difficulties provide children with a “primary 

stressor” which lead to a range of “secondary stressors” such as peer conflict 

(e.g., getting picked last for sport teams due to poor motor skill), low self-esteem 

and self-competence. It is these secondary stressors which are believed to 

increase the risk of mental health issues, such as anxiety.   

Similarly, this relationship has also been found in non-clinical, community-based, 

samples. Hill and colleagues (Hill et al., 2016) explored the relationship between 

sensorimotor control and children’s mental health using the Strengths and 

Difficulties Questionnaire (SDQ). The authors found that children’s Total 

Difficulties Score (related to the hyperactivity, peer problems, conduct problems 

and emotional problems subscales of the SDQ) was predicted by performance 

on a sensorimotor task. Thus, understanding sensorimotor control may provide 

insights into mental health.  

However, although previous research has consistently demonstrated the 

importance of sensorimotor control and the widespread impact it can have on 

health and development, it is still relatively under-studied. After conducting a 

review of social science journal articles published between 1986 and 2004, 

Rosenbaum (2005) found papers focused more on attention, memory, cognition, 

language, perception and decision making, with motor control less commonly 

studied. This led Rosenbaum to describe research into motor control as “the 

Cinderella of Psychology” (2005, p. 308). 
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1.1.2.4.1 Developmental Coordination Disorder  

Sensorimotor control below the expected norm for the child’s age can have far-

reaching implications, such as those already discussed, even if the child is 

otherwise viewed as “typically-developing” (Gaul & Issartel, 2016). However, 

there can be particularly serious repercussions if sensorimotor difficulties surpass 

the clinical threshold. Developmental Coordination Disorder (DCD) is a relatively 

common neurodevelopmental disorder, affecting approximately 2-6% of school-

aged children (Lingam et al., 2009b). Children with DCD present motor deficits 

which cause disruption to activities of daily living and delays in the achievement 

of key motor milestones (A. L. Barnett, 2008; A. L. Barnett & Prunty, 2020; Dewey 

& Wilson, 2001; Zwicker et al., 2012). These deficits, however, are not due to an 

underlying intellectual disability, as can be the case with cerebral palsy. It 

frequently presents as a co-morbid disorder, with individuals commonly also 

experiencing attention difficulties such as Attention-Deficit Hyperactivty Disorder 

(ADHD) (A. L. Barnett & Prunty, 2020). Kadesjö & Gillberg (1999) found 47% of 

children with moderate-to-severe DCD exhibited at least five symptoms of ADHD 

and 19% meeting all the diagnostic criteria.  

While there is no “gold-standard” clinical assessment for the diagnosis of DCD 

(Dewey et al., 2002), a child’s performance below the 5th percentile on a norm-

reference test of motor competence is included in the criteria of substantial motor 

deficits (Sugden et al., 2006). Thus, the EACD recommends the use of tests such 

as the Movement Assessment Battery for Children-2 (MABC-2) (Henderson et 

al., 2007) or BOT-2 (Bruininks & Bruininks, 2005) for this assessment (Blank et 

al., 2019). Other criteria for the diagnosis of DCD includes substantial deficits to 



15 

 

activities of daily living, motor problems not better explained by co-morbidities, 

and the onset of symptoms occurring in childhood (Blank et al., 2019). 

1.1.3 Sociodemographic and contextual influences of sensorimotor control  

With such far-reaching consequences of inadequate sensorimotor control, it is 

important to understand which factors put children at an increased risk. 

Sociodemographic factors (sometimes referred to as socio-structural factors) 

refer to the context of one’s environment and include a range of variables 

including socioeconomic circumstances, education levels, ethnicity, place of 

birth, residing neighbourhood and language (Honjo, 2004). Such factors have a 

great influence on many outcomes related to physical, mental and social health 

and wellbeing, including sensorimotor control and more broader definitions of 

motor control. The two sociodemographic factors focused on within the present 

thesis are socioeconomic circumstances and ethnicity.   

1.1.3.1 Ethnicity  

Previous research has suggested that an individual’s ethnicity can influence their 

health and development, in both children and adults. For example, individuals 

from ethnic minority or non-White British populations in the UK are routinely found 

to exhibit poorer health outcomes and quality of life (Aspinall & Jacobson, 2004; 

Garcia et al., 2020; Karlsen & Nazroo, 2010; Wohland et al., 2015). Within the 

COVID-19 pandemic, widening inequalities were found for ethnic minority groups. 

For example, research found that members of ethnic minority groups were twice 

as likely to require more hours of clinical care after contracting the virus, 

compared to their White majority counterparts (Topriceanu et al., 2021). 

Additionally, the sleep of individuals from ethnic minorities was disproportionately 

impacted as a result of lockdown (Bann et al., 2021). Within the UK, it is 



16 

 

Bangladeshi and Pakistani individuals who often show the greatest levels of 

disadvantage across a variety of health outcomes (Nazroo, 2003). Research 

often defines these groups collectively, alongside other ethnicities originating 

from the Indian subcontinent, as being individuals of “South Asian” heritage.  

Ethnic differences within child samples have been found for a range of outcomes 

such as academic achievement (F. C. Curran & Kellogg, 2016; Frederickson & 

Petrides, 2008; J.-S. Lee & Bowen, 2006; Sonnenschein & Sun, 2017; Strand, 

2007), physical activity levels (Marshall et al., 2007), and increased adiposity 

(Saxena et al., 2004; Shaw et al., 2007). Furthermore, in both US (F. C. Curran 

& Kellogg, 2016; J.-S. Lee & Bowen, 2006; Sammons, 1995; Sonnenschein & 

Sun, 2017) and British (Frederickson & Petrides, 2008; Strand, 2007) samples, 

children from some ethnic minority groups have been found to fare worse on 

educational outcomes.  

Ethnic differences have been also found in studies exploring children’s motor 

skills (Adeyemi-Walker et al., 2018; L. M. Barnett et al., 2019; Cintas, 1995; Eyre 

et al., 2018; Kelly et al., 2006; Mayson et al., 2007; Venetsanou & Kambas, 2009). 

For example, research has suggested that White British and Black students out-

perform their South Asian peers on assessments measuring Fundamental 

Movement Skills (Adeyemi-Walker et al., 2018; Eyre et al., 2018). Chow et al. 

(2001) also found ethnic differences in fine motor tasks, suggesting this was likely 

due to differences in culturally specific norms and the appropriateness of such 

norms across different populations. There is currently little research which 

explores the role of ethnicity in objectively measured sensorimotor control. 

However, ethnicity is a complex term and must first be defined accordingly, within 

the context of this thesis, before exploring ethnic differences further.   
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The term ethnicity is relatively recent, appearing in the Oxford English Dictionary 

in 1953, and not measured within the British Census until 1991 (Davey Smith et 

al., 2000; Hutchinson & Smith, 1996). However, there is a lack of consensus 

regarding its definition and measurement (R. Connelly et al., 2016). Most 

commonly, ethnicity is described as a social construct which relates to group 

identity based on shared attributes such as religion, culture, history and ancestry 

(Baumann, 2004; Bulmer, 1996; R. Connelly et al., 2016; Hutchinson & Smith, 

1996; S. Jones, 1997; Platt, 2007, 2011; Rex, 1991). Johnson (2000) has 

combined these different aspects into a single definition: “a concept referring to 

a shared culture and way of life, especially as reflected in language, folkways, 

religious and other institutional forms, material cultures such as clothing and food, 

and cultural products such as music, literature and art” (p. 109). Importantly, 

Nazroo (1998) argued that ethnicity is not fixed over the lifespan and while one’s 

culture is bound within history, it can change depending on the context. Within 

the UK’s Office for National Statistics, ethnicity commonly refers to a combination 

of nationality and skin colour when used in the UK Census (R. Connelly et al., 

2016). 

The United Kingdom has an increasingly diverse and multicultural society (Jivraj, 

2012), yet a large proportion of social inequalities are proposed to be partly 

explained by ethnic differences (A. F. Heath et al., 2008; A. F. Heath & Cheung, 

2007; Platt, 2007; Tomlinson, 1991). There are several proposed pathways for 

how one’s ethnicity may influence their health and development. Balarajan 

proposed these may include: “biological, cultural, religious, socio-economic or 

other environmental factors” (Balarajan, 1996, p. 119). Karlsen adds to this by 

suggesting racism may also play a large role in explaining poorer health 

outcomes within ethnic minority groups (Karlsen, 2007). 
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Whilst advances in technology and innovation have provided evidence that 

genetic differences can be apparent between ethnic groups (Huang et al., 2015), 

previous research has suggested that there may be greater genetic differences 

within ethnic groups than across groups (J. B. Kaplan & Bennett, 2003; Nazroo 

& Williams, 2006; Rosenberg et al., 2002). Instead, some researchers have 

stressed the importance of socialisation and the environmental context for 

explaining ethnic differences. Sonnenschein and Sun (2017) used mediation 

analyses to explore the potential mechanisms within ethnic differences as they 

relate to influencing academic achievement. The authors suggested these 

differences were due to differences in parental knowledge of child development 

and provision of enrichment activities. Others have suggested that ethnic 

differences in academic skills can be influenced by whether English is spoken in 

the home or not (e.g., Reardon & Galindo, 2014). With regard to motor control, 

which is less likely to be affected by language, differences in parenting practices 

across ethnic groups have been proposed as an explanation for ethnic 

differences, such as the type and quality of stimulation provided in the home 

(Cintas, 1995; van Schaik et al., 2018; WHO Multicentre Growth Reference Study 

Group, 2006). Thus, various mechanisms underpinning ethnic differences in 

sensorimotor control may exist, which are likely be complex and intertwined.  

1.1.3.2 Socioeconomic circumstances  

Importantly, ethnicity cannot exist as an independent contributor to one’s health 

and development. It is commonly argued that associations with ethnicity are 

confounded by other characteristics, such as socioeconomic position (SEP). 

Cheng et al. (2015) suggest that ethnicity is linked with SEP and the two interact. 

These interactions are, in part, due to larger socioeconomic inequalities often 
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experienced by individuals from ethnic minority groups, sometimes referred to as 

a “double disadvantage” (K. Clark & Drinkwater, 2007; Garner & Bhattacharyya, 

2011; Jivraj & Khan, 2013).  

As early as 1916, differences in mortality rates between Black and White people 

were explained by differences in socioeconomic circumstances rather than 

genetic or cultural differences (Trask, 1916). Williams (2002) stated that ethnic 

differences in health are much smaller than differences between socioeconomic 

groups, with most ethnic differences being a result of socioeconomic inequalities 

(Navarro, 1990; Sheldon & Parker, 1992; Nazroo & Williams, 2006). More recent 

support for this claim comes from work demonstrating that ethnic differences in 

health and lifestyle are still apparent, but drastically reduced, when accounting 

for SEP (Erens et al., 2001; Marshall et al., 2007; Nazroo, 2003; Williams, 1999).  

These interactions are unsurprising considering the large body of research 

suggesting that one’s socioeconomic context is consistently associated with 

various health outcomes across the lifespan. One US study suggests that around 

70% of the length and quality of life can be attributed to social determinants of 

health, 40% of which were socioeconomic factors such as education, 

employment and community safety (County of Los Angeles Public Health, 2013). 

Acknowledgement of the link between health and deprivation is not new, with 

accounts dating back to ancient China, Egypt, and Greece highlighting the 

existence of such relationships (Krieger et al., 1997; Liberatos et al., 1988; Lynch 

et al., 1996). Indeed, research conducted by Oakes and Rossi (2003) almost two 

decades ago demonstrated the large rise in published articles exploring the 

relationship between SEP and health. A review of the relationship between 

income inequality and health also demonstrated that in societies in which there 
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are larger discrepancies between the “rich” and the “poor” overall health is 

typically poorer (Pickett & Wilkinson, 2015). This review demonstrated that 

countries such as Japan, where income inequality (ratio of income between the 

richest compared to poorest) was deemed the lowest out of 21 countries, had 

overall better health and social outcomes. In contrast, the most unequal society 

in terms of income, the USA, was found to have the worst health.  

A comprehensive body of research has consistently found that more deprived 

individuals, in general, tend to face an increased risk of several health issues 

including: maternal mental health (Uphoff et al., 2015); self-rated overall health 

(Präg et al., 2016); oral health (Delgado-Angulo et al., 2019) and mortality 

(Claussen, 2015). Concerningly, SEP can start to have these detrimental impacts 

on health and development from a very early age (Bradley & Corwyn, 2001). A 

large meta-analysis of 58 studies published over a ten-year period between 1990 

and 2000 found medium-to-large associations between academic attainment and 

SEP measured at both the pupil- and school-level (Sirin, 2005). Similar findings 

have been replicated more recently, indicating that this is very much still the case 

today (Coetzee et al., 2020; F. Zhang et al., 2020). Children from less affluent 

families have also been found to be at increased risk of stunted growth (Wagstaff 

& Watanabe, 2003), and face issues with literacy and verbal skills (Jednoróg et 

al., 2012); socioemotional wellbeing (Bøe et al., 2012); and general cognitive 

abilities, from as early as infancy (Roberts et al., 1999).  

Even at a neurological level, differences have been found between children 

according to parental SEP (Betancourt et al., 2016; Hanson et al., 2013; Raizada 

& Kishiyama, 2010). Previous research has found the volume of children’s grey 

matter was significantly associated with parental SEP when measured by 
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education and current occupation (Jednoróg et al., 2012) or household income 

(Hanson et al., 2011). Even prior to birth, MRI studies have found reduced SEP 

was associated with slower foetal brain development (Lu et al., 2021). Thus, there 

are catastrophic and widespread impacts of deprivation across the lifespan.  

As will be discussed further in Chapter 5, there is some research suggesting that 

those from more deprived backgrounds are consistently more likely to show 

reduced performance on gross motor skill or fundamental movement skill 

assessments, compared to their more affluent peers (Adkins et al., 2017; L. M. 

Barnett et al., 2016; Niemistö et al., 2020; Peralta et al., 2019; Zeng et al., 2019). 

Indeed, children from more deprived backgrounds are also at greater risk of being 

diagnosed with movement disorders such as DCD (Lingam et al., 2009b). 

However, there is currently relatively little research which explores the role of 

socioeconomic factors on sensorimotor control or fine motor skill using 

appropriate methodology (see Chapter 5’s introduction for an expanded 

discussion of this point and critique of previous research).  

1.1.3.2.1 Definitions and measures of socioeconomic circumstances 

Before the relationships between socioeconomic factors and sensorimotor 

control is explored further, the terminology describing socioeconomic context 

needs to be defined. Terms frequently used interchangeably across the literature 

include socioeconomic status (SES); socioeconomic position (SEP), social class; 

and social stratification (Darin-Mattsson et al., 2017; Galobardes et al., 2007; 

Wohlfarth, 1997). Whilst the term “socioeconomic” dates back as early as the 

1800’s, there is no universal definition used consistently across the literature (F. 

L. Jones & McMillan, 2001; Oakes & Rossi, 2003).  
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The work of early social theorists such as Weber & Marx have influenced the 

understanding of SEP today (Galobardes et al., 2007; Manstead, 2018). Marx’s 

views suggests that SEP is related to one’s hierarchy in society; contrasting those 

who work on the production line (i.e., factory workers or farmers) with those who 

own those businesses. Indeed, Marx’s view was that an individual’s social class 

in society was outside of the individual’s own control. In contrast, Weber 

suggested that individuals had more agency in determining their place in society. 

Individuals were grouped such that the members shared common circumstances 

in which Weber proposed were “life chances”. For example, a better education 

provides social advantage through increased career prospects and prestige. Like 

sensorimotor control, conflicting definitions lead to inconsistent measurement of 

SEP and therefore inconsistent conclusions drawn.  

Whist varying terminology is used, there is a consensus that SEP is a complex, 

multi-dimensional construct which places individuals on a hierarchy within society 

based on resource- (e.g., household income, or ownership of material goods) and 

prestige-based (e.g., occupation, or education) based attributes (Braveman et al., 

2001, 2005; Fairley et al., 2014; Galobardes et al., 2006; Howe et al., 2012; 

Jednoróg et al., 2012). SEP has been previously described to summarise 

“complex information about a person’s life” (Blane, 1995, p. 904). The 

multifaceted nature of SEP adds further complexity to the measurement of SEP, 

increasing discrepancies from study to study even further.  

The measurement of one’s socioeconomic circumstances has been described as 

one of the most controversial conversations within social research (Oakes & 

Rossi, 2003). For example, an individual’s SEP can be determined using a single 

indicator as a proxy measure, either on its own or alongside additional predictors. 



23 

 

One common example is level of education; for child samples, this is often their 

parent’s level of education (e.g., Bøe et al., 2012; De Craemer et al., 2018). If 

using a prestige-based indicator such as education, a significant association with 

a health outcome may lead to the conclusion that the most effective way to reduce 

inequalities would be to invest in interventions that target learning and support for 

expecting parents, thus raising their level of education. Yet, if the proxy used is 

more resource-based, it may lead to the conclusion that the health outcome will 

be improved via increased accessibility to resources such as books, stimulating 

toys and technology. In other words, both knowledge and resources are 

necessary but, on their own, neither may be sufficient to promote healthy child 

development. Thus, inconsistencies arise as a result of the choice of measure 

used.  

Alternatively, composite measures take into account several indicators related to 

socioeconomic circumstances (e.g., de Waal & Pienaar, 2020; Oakes & Rossi, 

2003). Such composite measures are sometimes determined empirically by 

computing a latent variable (e.g., Fairley et al., 2014; Goodwin et al., 2018). Other 

times, a simple aggregate is created by combining scores from a range of 

different SEP indicators (e.g., Mcphillips & Jordan-Black, 2007; Stamatakis et al., 

2014). Composite measures are arguably more accurate than various, potentially 

conflicting, individual proxies of SEP (Braveman et al., 2005; Fairley et al., 2014; 

Sherar et al., 2016). Further complexities are added when considering whether 

the measure of SEP is based on an individual- or group-based (e.g., school) level 

(e.g., Adkins et al., 2017). National-level indicators often use a postcode or wards 

to determine the social class of an area of residence or school as a whole (e.g., 

de Waal & Pienaar, 2020; Zylbersztejn, 2019). Due to the wide range of proxy 

measures used, and differences in how these are measured, interpretation of the 



24 

 

associations with SEP and health and development outcomes can be difficult. 

Further discussion of the various ways that SEP can be measured, and their 

respective advantages and disadvantages, is presented in Chapter 2.  

Although often used interchangeably, both SES and SEP will be used throughout 

the current thesis with each referring to a distinct definition. Socioeconomic status 

(SES) will refer to individual predictors used to describe one’s circumstances, 

such as maternal education level. Meanwhile socioeconomic position (SEP) will 

be used to describe the multifaceted latent measures that considers multiple 

predictors simultaneously. In Chapter 2, the latter is discussed in more depth and 

its derivation is described.   

1.2 Context, primary outcome measures and aims of the thesis 

1.2.1 Context 

As discussed, previous research has begun to demonstrate how social 

inequalities can arise as result of one’s ethnic or socioeconomic background, yet 

few studies have studied the effect of these factors on the fundamental 

mechanisms of movement: sensorimotor control. Thus, further research is 

needed to understand how two important sociodemographic factors, 

socioeconomic background and ethnicity, influence sensorimotor control. Such 

research has the potential to provide insights into improving developmental 

outcomes from a young age. The associations between both SES and SEP with 

sensorimotor control are explored in Chapter 5. Of course, to use a composite 

measure of SEP requires the measurement of several indicators of the various 

aspects of an individual’s socioeconomic circumstances which is not always 

possible or viable. Consequently, this research took advantage of an ongoing 
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partnership with a large birth cohort study, which has invested heavily in 

measuring such factors.  

The Born in Bradford (BiB) longitudinal birth cohort study collected, and continues 

to collect, a wide range of detailed predictors of child health, including those 

relating to an individual’s sociodemographic circumstances. This provides the 

opportunity to produce a multifaceted measure of SEP to investigate the 

associations with children’s sensorimotor control. Data collected as part of the 

Born in Bradford study was used throughout the current thesis.  

BiB was established to understand how children’s health, education, and wider 

development is impacted by various social, behavioural, environmental, and 

genetic factors (Raynor et al., 2008; J. Wright et al., 2013). Recruitment for the 

study began in March 2007 when pregnant mothers were approached at 26-28 

weeks gestation and invited to participate. This occurred during their attendance 

at a routine oral glucose tolerance test at Bradford Royal Infirmary, West 

Yorkshire (Raynor et al., 2008; J. Wright et al., 2013). The initial recruitment 

process continued until December 2010 and involved a total of 13,776 

pregnancies.  

The city of Bradford is a unique location to study ethnic differences because of 

its largely bi-ethnic population, with 20% of the population having a South Asian 

background (Pakistani, Indian, or Bangladeshi); primarily Pakistani (Raynor et al., 

2008). In one ward of the city, Little Horton, 37.8% of the population self-identified 

as Pakistani (Valentine, 2005). This compares to only 2.0% within England and 

Wales (Office for National Statistics, 2018a). This large proportion of Pakistani 

individuals is primarily a result of mass migration occurring from the region of 

Mirpur in the 1960s (Lothers & Lothers, 2012). At least 75% of all Pakistani 
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immigrants to Bradford are reported to originate from this region of the country 

(Imran & Smith, 1997). During the 1960s, the Pakistani government built the 

Mangla Dam in Mirpur to generate hydroelectric power which resulted in large 

flooding around the dam and surrounding villages, forcing thousands of people 

out of their homes (Ballard, 1991; Lothers & Lothers, 2012). In search of a new 

life and employment, a large proportion of these people (mostly the men of the 

households) migrated to the UK, particularly within Yorkshire, to work in the 

factories that were at that time suffering a shortage of labour. Bradford, in 

particular, was deemed “a centre of textile excellence” (Valentine, 2005, p. 3) 

during the Industrial Revolution due to the large number of mills. Over the next 

few years, it was common for the rest of the family to migrate from Mirpur and 

settle in the UK to join the men who had found work (Ballard, 2002). Since then, 

Bradford has been known as “the Mirpuri capital city in the UK” (Lothers & 

Lothers, 2012, p. 5). Thus, this diverse and unique population offers a fascinating 

opportunity to study ethnic differences in children’s health and development using 

adequately powered and robust analyses.   

In addition, the city of Bradford is also a suitable location for the study of the 

effects of socioeconomic deprivation on ill-health and adverse developmental 

outcomes. It is considered the 5th most income-deprived city in England (City of 

Bradford Metropolitan District Council, 2020a). As well as income-based 

measures, each town and city in the country is also ranked in terms of its relative 

level of deprivation based on the English Indices of Multiple Deprivation (IMD; 

Department for Communities and Local Government, 2015). This is a tool which 

measures the relative rates of deprivation across the country based on 37 

individual indicators (e.g., homelessness; theft rates; post-16 education) across 
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seven domains1 which are weighted appropriately. For Bradford, 32.6% of the 

population resides in the top 10% most deprived areas of the UK, according to 

the IMD, reflecting high and widespread levels of disadvantage (Department for 

Communities and Local Government, 2015). 

This has resulted in the city being ranked the 11th most deprived in the country, 

based on the number of deprived neighbourhoods. The high levels of deprivation 

are further demonstrated by the large proportion of families eligible for, and 

claiming, benefits. For example, within the UK population, 14.7% of children 

receive free school meals, yet this figure rises to 17.2% of children within Bradford 

(Department for Education, 2017). Thus, a deeper understanding of the 

numerous public-health issues that arise due to deprived socioeconomic 

circumstances can be obtained from studying these relationships within the BiB 

cohort (Raynor et al., 2008). Using data from BiB also counteracts the common 

bias for participants in research to be disproportionately recruited from high SEP 

populations (Baucom et al., 2017; Heinrichs et al., 2005). 

Since initial recruitment, several additional nested data collection sweeps and 

projects have been conducted which include children within the “original” BiB 

cohort (i.e., mothers recruited during pregnancy), as well as children from the 

wider Bradford population. These sweeps include: BiB1000 (Bryant et al., 2013); 

Starting School (Shire et al., 2020); Primary School Years (Bird et al., 2019; L. J. 

B. Hill et al., 2021); and Born in Bradford’s Better Start (Dickerson et al., 2016), 

amongst others. This thesis primarily focuses on analysis of sensorimotor data 

collected as part of the Starting School and Primary School Years sweeps, and 

 

1 Income; Employment; Education, Skills & Training; Health & Disability; 
Crime; Barriers to Housing & Services; Living Environment  
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demographic information collected during the Baseline Questionnaire. Each of 

these sweeps and their corresponding datasets are described in more detail in 

the following sections. All data collected from the Baseline Questionnaire or 

Starting School sweep was requested from the BiB Executive Board using the 

BiB Data Dictionary, an online database of all data available within BiB. See 

Figure 1 for an infographic of how each of the data collection sweeps is nested 

within the original BiB cohort. 

Figure 1 

Timeline of the BiB data sweeps 

 

1.2.1.1 Baseline Questionnaire  

During initial recruitment to BiB, mothers completed a Baseline Questionnaire 

which included numerous questions about their family background, lifestyle 

factors, health and wellbeing, and sociodemographic circumstances (Raynor et 
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al., 2008; J. Wright et al., 2013). Anthropometric measurements were also taken. 

Due to the high proportion of Pakistani mothers; a large proportion of the sample 

spoke Urdu or Mirpuri. However, since the Mirpuri language does not have a 

written script, the questionnaire and information sheets were either transliterated 

or translated into Urdu. Bilingual researchers assisted non-English speaking 

mothers with the completion of the questionnaires. In total, 11396 mothers 

completed the Baseline Questionnaire. The BiB cohort of mothers and children 

who completed the Baseline Questionnaire contained an approximately equal 

proportion of South Asian and non-South Asian participants (J. Wright et al., 

2013).  

1.2.1.2 Starting School  

Nested within BiB, the Starting School data collection sweep aimed to follow up 

BiB children and their peers during their first year of formal education (Reception 

class), during the 2012-13 and 2013-14 academic years. Three key areas of 

development were assessed: fine motor skills; literacy and communication; and 

social and emotional health, measured via the Clinical-Kinematic Assessment 

Tool (CKAT; Culmer et al., 2009), British Picture Vocabulary Scale – Second 

Edition (BVPS II; Dunn et al., 1997), and the Strengths and Difficulties 

Questionnaire (SDQ; Goodman & Goodman, 2009), respectively. These were all 

considered important indicators of school readiness (Shire et al., 2020). Testing 

was conducted in 77 schools in the Bradford district which were eligible if the 

Reception year included at least 10 children from the original BiB cohort (Shire et 

al., 2020). In total, 3444 BiB children consented to participate, although all 

children in Reception class aged 4-5 years old were eligible. Additional detail on 
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the Starting School cohort is reported within Shire et al. (2020). All raw data were 

accessed via the BiB Data Dictionary.  

1.2.1.3 Primary School Years  

In 2017, a second, large-scale data sweep was conducted which aimed to collect 

follow-up data as the BiB children reached 7-11 years of age (Bird et al., 2019; L. 

J. B. Hill et al., 2021). Within this data sweep, rather than only testing children 

included in the original BiB cohort, testing was conducted on a whole class basis, 

including both BiB children (n = ~6000) and their classmates who were not part 

of the original cohort (n = ~9000). In total, 15820 children were tested from 86 

Bradford schools over two years (L. J. B. Hill et al., 2021). It was intended that all 

children were tested as close to their eighth birthday as possible, however there 

was some deviation due to the very large sample size and logistics of school 

testing. I (Megan Wood), was involved in the data collection for this sweep during 

an internship affiliated with BiB during a year-long placement as part of the BSc 

Psychology (Industrial) degree. During testing, the Clinical-Kinematic 

Assessment Tool (CKAT) was administered to measure sensorimotor control, 

alongside a digitised assessment of cognitive skills. Within the cognitive battery, 

there were assessments of working memory (forward digit recall; backward digit 

recall; Corsi), inhibition (Flanker), and processing speed. Data from the cognitive 

battery were not used within the current thesis and were studied by a colleague 

within the ESRC White Rose Doctoral Training Network.  

Pre-processed sensorimotor data from the Primary School Years sweep was not 

available via the BiB Data Dictionary. Therefore, under the supervision of my 

primary supervisor (Dr Liam Hill) and lead of the Born in Bradford data 

management team (Dr Dan Mason), I (Megan Wood) was responsible for 

https://borninbradford.github.io/datadict/
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reviewing the sensorimotor data from the Primary School Years sweep, cleaning 

it and pre-processing it for quality control purposes, prior to it being made publicly 

available via the BiB Data Dictionary. Cases were omitted from further analyses 

primarily for one or more of the following reasons: incompleteness; duplication or 

issues occurring during testing that were recorded in an accompanying field note. 

Data were reviewed on a task-by-task basis, and thus sample sizes varied across 

tasks. Further detail of how the quality control was conducted is included in 

Appendix A.  

1.2.1.4 Additional Data 

As well as data collected within BiB cohort sweeps, this thesis includes analysis 

of additional data collated from five previously published theses and manuscripts 

within the author’s research group (Berry, 2017; Flatters, Hill, et al., 2014; L. J. B. 

Hill et al., 2016; Sheridan, 2015; Shire, 2016). These data were collected from 

eight Bradford primary schools and included a total of 1740 children aged 4-12 

years. Children from these datasets may or may not have been participants of 

the larger BiB cohort. Because these data were not linked with the BiB sweeps,  

only basic demographic information was available for these participants (e.g., 

age, handedness, sex). Ethical consent for the re-analysis of these data was 

obtained from the University of Leeds ethics committee (Ethics reference: PSC-

826).  

1.2.2 Primary outcome measures 

As discussed, sensorimotor control was objectively measured in both the Starting 

School and Primary School Years data sweeps, as well as in previous data 

collections within the research group, using CKAT. These data are noteworthy 

because, in a similar regard to the difficulties of accurately capturing children’s 
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family socioeconomics, the measurement of sensorimotor control can often be 

challenging – making the data used in this thesis rare, in terms of both its quantity 

and the quality of its measurement.  

Several longitudinal cohort studies measure children’s motor development, yet 

the methods used are not always appropriate for large, community-based 

settings. The methods employed by BiB have substantial advantages over those 

used in similar, earlier cohort studies. For example, the Avon-Longitudinal Study 

of Parents and Children (ALSPAC) (Golding et al., 2001), the Western Australian 

Pregnancy (Raine) Study (Straker et al., 2017), and the EDEN mother-child 

cohort (Heude et al., 2016) are all cohort studies which measure children’s motor 

control in some capacity. However, there are several limitations to the methods 

used. For example, ALSPAC have data available at only one timepoint (age 7), 

therefore longitudinal or repeated-measures analysis is not possible. Whilst the 

Raine and EDEN studies both have data collected at multiple timepoints, the 

nature of the data collected is prone to bias. For example, parental questionnaires 

are used within EDEN, which, as discussed further in Chapter 3, are prone to 

subjective responses from parents (Kohler et al., 2013; Lemler, 2012; Stone et 

al., 2010). In addition, the Raine study uses an assessment battery which 

compares performance to a US normative sample from the 1970s. As a result, 

these norms may be outdated and no longer accurately reflect children’s motor 

development due to differences in leisure time activities such as increased used 

of touch-screen devices and videogames (Bedford et al., 2016; Borecki et al., 

2012; Lin et al., 2017; Neumann & Neumann, 2014; Ribner & McHarg, 2021).  

In contrast, BiB offers an invaluable opportunity to study children’s sensorimotor 

control at scale. First and foremost, with thousands of children enrolled within the 
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cohort and the additional children tested during data sweeps, studies can be 

conducted with very large sample sizes. At this scale, participants can be grouped 

by demographics of interest (e.g., academic year groups; SEN status etc.) and 

still retain large enough samples to conduct robust analyses. Outside of cohort 

studies, independent research teams would struggle to obtain such large 

samples from a relatively homogenous population. These large samples are only 

possible through the close engagement and large investments that such cohort 

studies make into building ongoing relationships with the local authority and local 

schools, where testing takes place. For example, within the Primary School Years 

cohort, 86 of a total 142 Bradford primary schools were involved in data collection 

(L. J. B. Hill et al., 2021). In addition, because data collection was conducted 

within schools, the amount of time children spent out of the classroom was 

limited; minimising disruption to learning compared to testing within a controlled 

laboratory setting. 

Furthermore, unlike ALSPAC, BiB collected sensorimotor data at multiple 

timepoints across development. For example, there is currently sensorimotor 

data available for a large sample of children at 4-5 years old (Starting School), 

with a substantial proportion of these children retested at 7-10 years (Primary 

School Years). Thus, it permits investigation into children’s developmental 

trajectory over time on an individual basis. Compared to cross-sectional analysis, 

longitudinal data permits the researcher to measure the stability of particular 

phenomena over time (Farrington, 1991; Miller, 1998). Furthermore, compared 

to cross-sectional studies, increased confidence in causality can be placed on 

longitudinal data (Farrington, 1991; Rajulton, 2001). Robinson et al. (2006) 

provide an example of the benefits of longitudinal research by investigating 

children’s reading development between first and third graders. Biases would be 
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introduced if, for example, a new reading curriculum was introduced for first 

graders that the older cohort had not been exposed to, were the design to be 

cross-sectional. Measuring performance of the same cohort of children minimises 

the introduction of such biases. 

Lastly, measuring sensorimotor control within a large cohort study such as BiB, 

with many areas of interest, permits data linkage with various aspects of 

children’s development (e.g., academic achievement; mental health; 

sociodemographic factors). This permits the exploration of the factors which 

influence sensorimotor control and how this relates to various aspects of wider 

development. 

1.2.2.1 The Clinical-Kinematic Assessment Tool (CKAT) 

Within Born in Bradford, sensorimotor control is assessed using a computerised 

assessment called the Clinical Kinematic Assessment Tool (CKAT). As the name 

suggests, CKAT is a kinematic assessment of sensorimotor control, providing an 

objective and precise alternative to parental questionnaires or observational 

measures conducted by researchers (e.g., Blanchard et al., 2017; Blank et al., 

2012; Culmer et al., 2009; L. J. B. Hill et al., 2016; J. Schmidt et al., 2009; Zwicker 

et al., 2012). Kinematics can be defined as the quality of movement, taking into 

account the velocity, acceleration and form of one or more body parts in synergy, 

relative to time (A. C. Cunningham et al., 2019; Hall, 2018; Singer et al., 2016). 

As discussed further in Chapter 3, the use of kinematic measures of sensorimotor 

control is advantageous in that it provides the additional precise, kinematic detail 

that traditional observational assessment batteries cannot.  

CKAT is a tablet-based device which measures sensorimotor processes via uni-

manual interactions with a hand-held manipulandum and consists of three tasks: 
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Tracking, Aiming, and Steering (Culmer et al., 2009; Flatters, Mushtaq, et al., 

2014). CKAT, and each of the three tasks, are described in further detail in 

Chapter 3. For now, a brief justification of each task’s value in understanding 

sensorimotor control is detailed below. 

Tracking tasks are frequently used to measure sensorimotor function (Kim et al., 

2017; I.-C. Lee et al., 2013; Röijezon et al., 2017; van Roon et al., 2008). 

Performance on such tasks can provide an indication of a child’s ability to use 

forward models to make anticipatory predictions of the target’s trajectory and 

move accordingly to reduce the frequency of error (Miall et al., 2001; Miall & 

Wolpert, 1996). Alternatively, children can complete tracking tasks by making a 

series of small, corrective movements as the target moves which increases both 

temporal and spatial error (Culmer et al., 2009). It is generally preferred to take 

the former approach, as this produces much smoother movement (Culmer et al., 

2009). The latter is typical of children with DCD, who have previously exhibited 

deficits in predictive control on similar tracking tasks (Ferguson et al., 2015).  

Aiming tasks are commonplace in assessments of manual control, used as early 

as the 19th century (Woodworth, 1899). The aiming movement itself is considered 

to consist of two distinct phases; often referred to as the “Two-Component Model” 

(Woodworth, 1899). This includes an initial “ballistic” phase of acceleration 

followed by a deceleration or “homing” phase. These phases are related to 

feedforward and feedback control, respectively (M. Heath et al., 1998; Plumb et 

al., 2008; Woodworth, 1899). In addition, the use of “jump” events (sometimes 

referred to as the “step-perturbation paradigm”) are incorporated into the later 

stages of this task. This paradigm has been previously used in several aiming 

tasks (e.g., Heath et al., 1998; Pélisson et al., 1986; Plumb et al., 2008; Wilmut 
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et al., 2006) to study one’s online control of movement trajectory (Culmer et al., 

2009; Latash, 2012; Plumb et al., 2008). Lastly, unlike the other tasks, Aiming is 

entirely self-paced and carries no time constraints. This provides the opportunity 

to assess whether performance deviates from the bell-shaped speed profile 

typically found in human hand movements and understand the spatio-temporal 

structure of participants’ aiming movements (Culmer et al., 2009; Elliott et al., 

2001; Jeannerod, 1988) 

The Steering task requires participants to use both feedforward and feedback 

mechanisms in order to apply an appropriate load on the stylus at the right time 

(Culmer et al., 2009; Davidson & Wolpert, 2005). By providing the optimum 

trajectory, in addition to the optimum speed, participants receive continuous 

visual information, which the sensorimotor system can use to inform future 

movements (Gonzalez et al., 2011). Similar tasks, involving the tracing of various 

shapes, have been previously included in several computerised motor 

assessments (e.g., Lee et al., 2014; Röijezon et al., 2017). Additionally, a pencil 

and paper tracing task is also used within the manual dexterity component of the 

MABC-2 (Henderson et al., 2007).  

1.2.2.2 Outstanding limitations of kinematics 

CKAT is an appropriate tool to investigate the associations of sensorimotor 

control and sociodemographic indicators at scale as it provides an objective 

measure of precise kinematic data. However, while kinematic assessments in 

general are more optimal than observational or questionnaire-based alternatives 

due to the level of detail they provide, they still hold some limitations. For 

example, it can be difficult to draw meaningful conclusions from kinematic tools, 

such as CKAT, due to the sheer quantity of data obtained from a large array of 
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different kinematic variables. Therefore, a subset is often used, presenting the 

researcher with the necessity to form a logical selection process for the variables 

to analyse. This is an issue which the current thesis aims to resolve using 

empirical methods to drive the selection of the kinematic variables produced by 

CKAT to use in subsequent analyses (see Chapters 3 and 4).  

1.2.3 Aims of the current thesis  

The importance of developing competent sensorimotor control is well-established 

in the literature, impacting many aspects of health and development (Giles et al., 

2018; L. J. B. Hill et al., 2016; Hudson et al., 2020; Jirak et al., 2010; Sheridan et 

al., 2017; Shire et al., 2016; Zelazo & Carlson, 2012). Previous research has 

found that there are associations with several sociodemographic indicators and 

children’s motor skills (e.g., Adeyemi-Walker et al., 2018; Eyre et al., 2018; 

Mcphillips & Jordan-Black, 2007; Morley et al., 2015), however little research has 

investigated these relationships using precise, unbiased methods with a focus 

specifically on sensorimotor control. In addition, there is currently no research 

which has explored the longitudinal impact of ethnicity on sensorimotor control.  

The chapters contained within this thesis therefore aim to understand the 

sociodemographic influences impacting upon children’s sensorimotor control 

across the primary school years. Specific attention is given to studying whether 

ethnic differences exist, whilst controlling for any confounding influence of 

socioeconomic circumstances and then investigating interactions between these 

factors. It was apparent that the methodologies used in previous research were 

not optimal for such analyses and therefore, it was necessary to adapt existing 

measures of SES and sensorimotor control to limit biases which may have 

previously arisen.  
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Chapter 2 describes the derivation of a multi-faceted measure of SEP required 

for later chapters: an ethnic-specific latent measure of SEP. Accounting for ethnic 

differences in the measurement of SEP is not typical in the literature, but it has 

been argued that adjusting for ethnic differences may be necessary to accurately 

determine an individual’s socioeconomic circumstances. Therefore, it was 

deemed necessary to understand how this affected the relationship with 

sensorimotor control. These latent classes have been previously derived by 

Fairley et al. (2014) within the BiB cohort, however the variables were not 

accessible from the Born in Bradford Data Dictionary, so Fairley et al.’s work was 

replicated within this chapter in order to derive these variables. Raw data from 

which the latent classes were derived were obtained from the Baseline 

Questionnaire.  

Chapter 3 describes the creation of component scores describing sensorimotor 

performance via CKAT using Principal Components Analysis (PCA). Providing 

empirically driven scores of sensorimotor control from a larger range of kinematic 

indices than have been previously used is more likely to increase the accuracy of 

measurement, and limit the biases that often occur with traditional observational 

measures of motor control. Doing so ensured the largest amount of systematic 

variance in sensorimotor control was captured, whilst preventing the inclusion of 

redundant kinematic variables in the analysis. These measures of sensorimotor 

control were required for use in subsequent chapters. Data used within this 

chapter were previously collected by colleagues within the research group (see 

earlier Additional Data sub-section for more details).  

Chapter 4 extended the work of Chapter 3 by refining the models produced by 

the PCA using Confirmatory Factor Analysis (CFA). These models were further 
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revised with respect to existing theory of sensorimotor control. They were then 

tested on a new sample to ensure replication was possible, and that the models 

were valid and psychometrically sound. This new sample included kinematic data 

from both the Starting School and Primary School Years sweeps. As previously 

mentioned, data cleaning and quality control was conducted by the author on the 

Primary School Years data studied here, which is described in Appendix A. 

Description of these data is also included in the following paper: Hill et al. (2021), 

which I co-authored.   

Having derived the appropriate measures during the preceding chapters, it was 

then possible to conduct the main research study. Chapter 5 therefore sought to 

investigate the influence of sociodemographic factors (ethnicity and SEP) on 4-

5-year-old children’s sensorimotor control using objective measures, and further 

studied how ethnicity and SEP may interact. In addition, this chapter aimed to 

compare and contrast a set of “traditional” and “revised” measures (the latter 

derived in Chapters 2, 3 and 4) of sensorimotor control and SEP, to determine 

the effect of different measurement methods on the conclusions drawn. It was 

also possible to study how an ethnic-specific measure of SEP affected the 

relationship with sensorimotor control, compared to a cohort-wide measure. This 

chapter used kinematic data obtained during the Starting School sweep and 

sociodemographic information (ethnicity and SEP) from the Baseline 

Questionnaire.  

Finally, Chapter 6 used repeated measures of children’s sensorimotor control at 

two timepoints (4-5 years and 7-10 years) to explore the developmental changes 

during the primary school years. It also aimed to investigate the impact of ethnicity 

on these developmental changes and whether any ethnic differences were 
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invariant or changed over time. Through the derivation of more precise scoring of 

kinematics developed within Chapters 3 and 4, it was possible to understand and 

disentangle how specific components of sensorimotor control develop over this 

time period. Thus, detailed investigation of age-related differences was 

conducted for each of the sensorimotor components derived. Within this chapter, 

sensorimotor performance was determined using the kinematic data obtained 

during both the Starting School and Primary School Years, and ethnicity was 

obtained from the Baseline Questionnaire.  
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Chapter 2 Reproducing an ethnically sensitive measure of Socioeconomic 

Position using Latent Class Analysis 

2.1 Introduction  

Socioeconomic position (SEP) is a complex, multi-dimensional construct which 

places individuals on a hierarchy within society based on resource- (e.g., 

household income, or ownership of material goods) and prestige-based (e.g., 

occupation, or education) attributes (Braveman et al., 2001; Fairley et al., 2014; 

Galobardes et al., 2007; Howe et al., 2012). Chapter 1 described how the terms 

SES (Socioeconomic Status) and SEP are often, confusingly, used 

interchangeably in the previous literature (see Section 1.1.3.2). For clarity 

however, within this thesis SEP will be used when discussing multifaceted latent 

measures of socioeconomic circumstances, whilst SES will refer to individual 

predictors of one’s circumstances. 

Due to its multifaceted nature, SEP can be estimated from several directly 

observed measures (e.g., household income, qualifications, occupation), with 

different indicators accounting for distinct, but potentially overlapping pathways 

(Howe et al., 2012). Thus, the relationships found between one’s socioeconomic 

circumstances and various health outcomes (e.g., motor control, cognition) can 

vary widely or be masked entirely when using imprecise, one-dimensional 

measures (e.g., maternal education only) to represent a multi-dimensional 

construct. As such, researchers should carefully consider the most appropriate 

measure of socioeconomic influences. Presently, authors do not always provide 

a rationale and justification for specific measurement methods and there are 

several limitations concerned with relying on any one of the traditional measures 
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examples given above, which are commonly used across the literature as 

singular estimates of SES.  

2.1.1 Use of unidimensional indicators 

As discussed, SEP is multidimensional, with Krieger et al. (1997) referring to it as 

an aggregate concept which should be measured as such. However, it is 

commonplace in research that a single, univariate proxy is used to reflect an 

individual’s SES, such as maternal education or household income. Indeed, Myer 

and colleagues argue that the socioeconomic position of developed societies is 

becoming increasingly more intricate and dynamic (Myer et al., 2008). Thus, it is 

evident that such a complex construct cannot be captured by a single indicator 

and so multiple indicators are recommended (Nazroo, 1998). This is supported 

by previous research which has found inconsistent relationships between various 

health outcomes across different unidimensional measures of SES (Braveman et 

al., 2005; Erola et al., 2016; Marks, 2011). These findings have been mirrored 

when investigating children’s motor competence. Children with more educated 

parents tend to perform significantly better compared to their peers with less 

educated parents on various measures of motor competence (e.g., Cools et al., 

2011; Lejarraga et al., 2002; Zeng et al., 2019). However, when SES was 

measured via other means (e.g., parental occupation), this relationship failed to 

be replicated (Cools et al., 2011). In addition, whilst both paternal occupation and 

maternal education significantly predicted children’s fine motor performance in an 

Argentinian sample, this relationship was stronger for maternal education 

(Lejarraga et al., 2002). This provides evidence for the limitations of using 

univariate indicators of SES as different conclusions may be drawn as a result.  
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Furthermore, univariate indicators of SES fail to account for nuance in individual 

circumstances and may be skewed by extreme or unusual cases. For example, 

maternal education is commonly used in developmental research and 

epidemiology because it is thought to capture “knowledge-related assets”  

(Galobardes et al., 2007, p. 26). However, Braveman and colleagues (Braveman 

et al., 2005) warn against using level of education interchangeably with income 

or wealth as an indicator because the common assumption that more 

qualifications lead to a higher occupational class, in turn providing a greater 

income does not always prove to be the case (Davey Smith et al., 1998; Erola et 

al., 2016). Measures of education can become problematic, such as the 

introduction of biases when the wider context is not considered. For example, an 

individual who takes a more vocational route may not have obtained a high 

number of formal qualifications (e.g., postgraduate degrees, professional 

qualifications) yet they may still be in a highly paid career with a large disposable 

income (Sherar et al., 2016). Thus, it is inaccurate to categorise this individual as 

being in the same socioeconomic positon as an unemployed individual receiving 

multiple benefits and struggling to provide for their family. Using only employment 

status or occupation presents similar problems. A single measure related to 

employment (e.g., employed; unemployed; self-employed) cannot account for 

multiple jobs, temporary or seasonal work, overtime or bonuses (Elgar et al., 

2016; Howe et al., 2012). All of which can have a substantial impact on income.  

As with the measurement of any construct, there are inevitable imprecisions and 

biases. However, these biases are exacberated when only one proxy measure of 

the construct is relied upon. For example, in Cools et al.’s (2011) study of 

relationships between parental education and motor competence, discussed 

earlier, occupation was categorised as “active” versus “passive”, an arguably 
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vague and coarse indicator that is unlikely to directly map onto high and low SES. 

The authors did not provide detail into how this was categorised and thus, it 

cannot be replicated by other researchers. Therefore, the reliance on a single, 

imprecise measure to reflect one’s socioeconomic standing is contentious, at 

best. 

Similarly, education can be measured in multiple ways such as the number of 

years in education or highest qualification obtained. As already discussed, 

highest qualification may not be the most accurate indicator of an individual’s 

SEP due to context, but number of years in education is not an appropriate 

alternative. Individuals who have skipped or repeated academic years would 

therefore not be measured accurately. Whilst uncommon, this may become more 

problematic in larger samples or those collected across countries where length 

of time in education can vary (e.g., differences in the age which children start and 

finish compulsory education).  

To counteract some of these issues around using single measures of education 

or occupation, subjective poverty and ownership of goods has been used to 

provide context. For example, an individual can indicate to what extent they feel 

they can afford several necessities and “luxuries” such as the means to keep the 

home suitability warm, take holidays or have a hobby (Fairley et al., 2014). A 

meta-analysis conducted by Quon & McGrath (2014) found subjective social 

status predicted several health outcomes in adolescents. Indeed, another recent 

study found that subjective social status is significantly associated with 

cardiometabolic risk (McClain et al., 2021). Other researchers agree, arguing that 

subjective poverty or social status may be more useful than objective measures 

(Singh‐Manoux et al., 2006). Such measures can provide further nuance and 
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account for differeces in circumstances between individuals who may have 

otherwise been viewed homogenously. For example, it is likely inappropiate to 

suggest a single mother of four children with a seconday school education is 

comparable to a single, self-employed male with mutliple businesses who also 

only attended secondary education. Thus, the addition of further indicators may 

more accurately reflect one’s socioeconomic circumstances than a 

unidimensional measure of SES.  

The final major issue with unidimensional measures of SES relates to systematic 

bias, which is particularly prevalent in marginalised groups. For example, 

household income is commonly used to determine an individual’s socioeconomic 

circumstances (e.g., Akee et al., 2018; Lee et al., 2019; Zilanawala et al., 2016). 

However, household income may be particularly problematic for use in ethnic 

minority samples. For example, as many as 35% of women of a South Asian 

origin (e.g., Pakistani, Bangladeshi) were found to be unaware of or unwilling to 

provide their household income when asked for research purposes (Prady et al., 

2013). Similarly, in multi-ethnic samples educational achievements and 

qualifications may not be equivalent and as easily comparable across participants 

because qualifications may have been achieved outside of the country that the 

research is taking place (Howe et al., 2012). Further issues regarding ethnicity 

and uni-demensional measures of SES are discussed in greater detail in later 

sections.  

Thus, using a single measure as a proxy for SES can be prone to a number of 

biases, leading to an inaccurate representation of one’s socioeconomic 

circumstances. The alternative approach of measuring SEP should therefore 

better reflect the multifaceted nature of socioeconomic circumstances.   
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2.1.2 Area-based measures of socioeconomic position  

As an alternative to unidimensional indicators measured at an individual-level, 

previous research has used multidimensional indicators of SEP measured at an 

area-level. These are arguably less prone to some of the previously outlined 

biases. A commonly used indicator of area-based SEP is the Index of Multiple 

Deprivation (IMD) (Ministry of Housing Communities and Local Government, 

2019) but others used in the UK include: the Townsend Deprivation Index 

(Townsend et al., 1988); Underprivileged Area Score (Jarman, 1983); Breadline 

Britain Index (Mack & Lansley, 1985) and the Northern Ireland Multiple 

Deprivation Measure  (M. Noble et al., 2001). As the term “index” suggests, these 

measures take a range of area-based factors into consideration to produce a 

neighbourhood “rank” of deprivation. Often the household or school postcode is 

used as a determiner of this rank. Although useful for understanding the social 

environment of an individual, area-based measures are commonly used for 

convenience when it is not possible or feasible to measure on an individual level 

(Galobardes et al., 2007; Shavers, 2007). Taking IMD as an example, 

neighbourhoods are stratified into a hierarchy based on 37 indicators, distributed 

across seven domains: Income Deprivation; Employment Deprivation; Health 

Deprivation and Disability; Education, Skills and Training Deprivation; Crime; 

Barriers to Housing Services; and Living Environment Deprivation (Ministry of 

Housing Communities and Local Government, 2019). 

In addition to convenience, such measures do have a place within research as 

they can provide contextual information regarding where an individual resides, 

which may be particularly important for some health outcomes. For example, the 

relationships between air quality and asthma prevalence (Khreis et al., 2018; 
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Shavers, 2007), access to green space and mental health (Mceachan et al., 

2016; McEachan et al., 2018), availability of sports facilities and physical activity 

(Halonen et al., 2015) or proportion of fast-food eateries and childhood obesity 

levels (Fraser & Edwards, 2010). Area-based indicators have also been used in 

previous research when investigating the relationship between SEP and 

children’s motor skills, with children attending schools in more deprived areas 

exhibiting poorer motor skills than their peers in more affluent schools (Mcphillips 

& Jordan-Black, 2007; Morley et al., 2015). However, whilst it is commonplace to 

use such measures, as if they were univariate indicators, there are several 

limitations to this approach.   

Firstly, although area-based measures are often an index of multiple indicators, 

sometimes the area is categorised using only a single measure. In this regard, 

these are no better than univariate measures and are subject to similar biases. 

This is illustrated by an earlier review by Pickett and Pearl (2001), concluding that 

some neighbourhood characteristics may be a better predictor of health 

outcomes than others. Similarly, Tomaz et al. (2019) used the average household 

income and geographical context to categorise areas as high income versus low 

income and rural versus urban before relating these to the gross motor skills of 

3-6-year-old South African children from each of these groups. The authors did 

not find significant differences in the motor skills between children from urban 

low-income and urban high-income areas. However, significant differences were 

found between children from rural and urban areas, irrespective of income. This 

demonstrates how a single indicator of neighbourhood socioeconomic position 

may not be enough. Similar findings were reported by Birnbaum et al. (2019) who 

also used an area-based measure of household income to represent SES. Again, 

no significant association was found between SES and performance on two gross 
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motor skill subtests (jumping from side to side and standing long jump). The 

findings from these studies would imply that there is no relationship between 

socioeconomic circumstances and motor skills in children, which contradicts 

some of the literature previously discussed. These inconsistencies may be a 

result of imprecise measurement of socioeconomic circumstance.  

Furthermore, area-based measures of SEP are not always found to accurately 

reflect individual circumstances because they consider the average 

circumstances of individuals within the area (Ioannides, 2004). Indeed, research 

has found poor correlations between area- and individual-level measures 

(Geronimus & Bound, 1998; Southern et al., 2005). For example, Southern et al. 

(2005) compared area-based estimates of household income versus self-

reported estimates at an individual-level and found poor agreement. The authors 

did, however, find that both measures, whilst not correlated, did significantly 

predict health-related quality of life, concluding that area- and individual-level 

measures may simply reflect different constructs. Several studies support this, 

concluding that area-based measures are poorer at identifying relationships with 

obesity levels (Bodea et al., 2009), walking behaviour (Hearst et al., 2013), and 

self-reported health (Geronimus & Bound, 1998) compared to individual-based 

measures. 

Similarly, there are issues of heterogeneity when using area-based measures. 

For example, individuals entitled to benefits (a common individual-level indicator 

of SES) have been previously found to reside within areas categorised as both 

high and low SES (Hearst et al., 2013), suggesting that an area-level indicator 

can, in certain cases, be highly unrepresentative of individual circumstances. 

These issues are further exacerbated when researchers investigate school-aged 
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populations and analyse the SEP of the school, rather than pupils’ homes. Some 

have argued that we can assume children predominantly attend schools within 

their own catchment area (Department for Education, 2014; Morley et al., 2015), 

however this is not always the case. The geographical size of the areas 

represented by a single SEP classification may also add further issues to the 

representation of individuals’ circumstances. For example, Hyndman et al. (1995) 

found that capturing SEP across larger areas (e.g., neighbourhood-level) was 

less accurate than when using smaller areas (e.g., street-level). Thus, using area-

based measures to categorise individuals increases the risk of misclassification.  

To summarise, while area-based measures are often more readily available from 

datasets such as the England and Wales Census, with some even offering more 

multi-faceted estimates of socioeconomic factors, it must be acknowledged that 

they are still subject to several biases: accuracy, heterogeneity, and lack of 

context. As a result, the conclusions drawn may not be accurate.    

2.1.3 Ethnic sensitivity in SEP measures  

As discussed, selecting multiple measures that accurately reflect the 

socioeconomic circumstances of an individual is necessary, yet it is also vital to 

ensure the measures selected are appropriate across various social 

demographics (e.g., sex, nationality, and age) within the sample (Braveman et 

al., 2005; Delgado-Angulo et al., 2019; Fairley et al., 2014; Uphoff et al., 2015). 

For example, the strength of the relationship between SEP and various health 

outcomes (e.g., low birth weight, Type-2 diabetes) has been found to vary across 

different ethnic groups (Bécares et al., 2012; Mallicoat et al., 2020; Nazroo, 1998; 

Thomas et al., 2012; Uphoff et al., 2015). One potential explanation for this is that 

the meaning or priority of various aspects of SEP may not be equal across 
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different ethnic groups (Kelaher et al., 2009; Shavers, 2007). For example, 

applying the terminology used in their original paper, Kelaher et al. (2009) found 

that individuals in the “Pakistani and Indian” group were less likely to own their 

own car if university educated, yet the opposite was true for the “White” group. 

This highlights potential ethnic differences in behaviour relating to socioeconomic 

circumstances, despite similar levels of education (a proxy measure of SES).  

In addition, using area-based measures of SEP may not be appropriate in some 

communities because the decisions to live in a particular area may be driven by 

factors other than socioeconomic circumstances. For example, the decision to 

live in a particular neighbourhood may be more influenced by ethnic density than 

an area’s level of deprivation or affluence (Bhugra, 2004; Dorsett, 1998). In the 

UK, for example, Pakistani individuals were generally found to live in areas where 

the Pakistani population exceeded 50% of the total ethnic minority population for 

that area (Dorsett, 1998). In West Yorkshire (including Bradford), this finding was 

even more stark, with Pakistani people tending to live in areas where the largest 

proportion of all ethnic minority groups was also Pakistani (Dorsett, 1998). 

Therefore, while ethnic minority groups do tend to show lower levels of SEP, it is 

plausible that families moving to Bradford, a city of high deprivation, may be 

driven to do so, in part, by a motivation to be around people from a similar cultural, 

ethnic and religious background, rather than out of necessity. As such, it would 

be inappropriate to assume that all families within a neighbourhood or ward share 

similar socioeconomic circumstances without accounting for individual 

differences.  

Furthermore, research from the UK’s Fourth National Survey of Ethnic Minorities 

found that while British Indian and British Pakistani individuals were more likely 
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to own their homes (often an indicator of high SEP), although this was often lower 

quality housing compared to their white counterparts (Kelaher et al., 2009; 

Nazroo, 2003). In addition, Pakistani individuals were categorised as the poorest 

ethnicity, based on income. Thus, without context, indicators such as “home 

ownership” may be misleading in multi-ethnic samples as they do not reflect 

comparative circumstances across ethnic groups. Thus, it is necessary to 

consider measures of SEP which are sensitive to ethnic differences or take wider 

context into account.   

2.1.4 A latent class approach  

Latent Class Analysis (LCA) is a method of statistical analysis proposed by 

Lazarsfeld (1950) which is used as a means of grouping observations or 

individuals by measures which cannot be directly observed, such as depression, 

socioeconomic position, or personality (Dean & Raftery, 2010; Linzer & Lewis, 

2011; Porcu & Giambona, 2017). It has been used as an alternative means of 

producing a multidimensional measure of SEP that includes a wide range of 

socioeconomic indicators (Fairley et al., 2014; Mallicoat et al., 2020; 

Moonansingh et al., 2019).   

In LCA, numerous measurable (manifest) variables are used as proxies to 

estimate underlying constructs (latent variables). Cases or observations which 

behave similarly on a number of these manifest variables commonly cluster 

together within the same latent classes and are considered mutually exclusive 

(Lanza & Rhoades, 2013; Linzer & Lewis, 2011; Sartipi et al., 2016). As a result, 

LCA has been previously used to group individuals on various commonalities 

such as symptoms of eating disorders (Pinhas et al., 2017), indicators of 

intellectual disability (Nouwens et al., 2017), and even political behaviours 
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(Alvarez et al., 2017). Taking Pinhas and colleagues’ (2017) study as an example 

of how the process works, the authors took common symptoms of eating 

disorders and ran an LCA in a sample of UK, Canadian, and Australian children. 

Eating disorders cannot be measured directly, but the symptoms can, making it 

ideal for LCA. Analyses revealed two distinct clusters of children: those with body 

dissatisfaction and a preoccupation with food and exercise, which are symptoms 

consistent with Anorexia Nervosa, and a second cluster of children who did not 

have these preoccupations with their body and food. Children in the second 

cluster were instead more likely to experience somatic symptoms and have a 

comorbid psychiatric disorder, aligning with Avoidant/Restrictive Food Intake 

Disorder (ARFID). The authors concluded that the analysis lent support to there 

being two distinct latent classes of eating disorder diagnoses.  

Importantly, LCA is considered a “person-centred analysis” as it finds a model to 

fit and classify observations at an individual level, distinguishing it from methods 

such as Item Response Theory, which measures how well data fits an idealised 

model, or Factor Analysis, which is concerned with the relationships amongst 

variables (Bartholomew et al., 2011; Porcu & Giambona, 2017; Sartipi et al., 

2016). Another alternative technique, Principal Components Analysis (PCA), is 

better suited to continuous data, whereas LCA is favoured for categorical data 

(Kolenikov & Angeles, 2009). Whilst Non-Linear Principal Components Analysis 

(NLPCA) can be used with categorical data (Linting & Kooij, 2011; Michailidis & 

de Leeuw, 1998), NLPCA may not be appropriate for use in models comprising 

of more complex variables (Sartipi et al., 2016). In addition, NLPCA has several 

assumptions which must be met, such as normality (Sartipi et al., 2016). 

Therefore, for the classification of individuals into SEP latent classes, LCA is 

arguably the most appropriate statistical method.  
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2.1.5 The present study  

Considering the discussed limitations with uni-dimensonal measures of SES and 

area-level measures of SEP, Fairley et al. (2014) developed latent classes of 

SEP using data collected from the Born in Bradford Baseline Questionnaire (see 

Chapter 1 for a description of these data). The latent models encompassed 19 

individual-level indicators of SES and used them to produce a single measure, 

which represented the dynamic and multifaceted construct of SEP within a bi-

ethnic population. Considering that Bradford was ranked the 13th most deprived 

local authority in the country in 2019, it may not be appropriate to use an area-

based measure of SEP as there are widespread levels of area-level deprivation 

across the city (Ministry of Housing Communities and Local Government, 2019). 

Therefore, individual-level indicators should be preferred for use to accurately 

capture subtle differences and account for families who have migrated to the city 

due to its high ethnic density.  

In total, Fairley and colleagues (2014) produced three latent models: a “cohort-

wide” latent measure of SEP which had been constructed using the entire bi-

ethnic sample, and two “ethnic-specific” latent measures of SEP. The latter two 

models were each developed specifically for a White British and Pakistani 

sample, respectively. These latent measures provide a means to make 

comparisons of SEP on health and development both across and within ethnic 

groups. The authors found that the cohort-wide model revealed five latent classes 

of SEP, concluding that it was an appropriate model to use as a global measure 

of SEP which could then be used in combination with information on ethnicity to 

study interactions between SEP and ethnic group. Meanwhile, both ethnic-

specific models suggested that individuals were best categorised into four latent 
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classes and that various measures of SEP aggregated differently across White 

British and Pakistani samples. The authors suggest that these models are suited 

for investigating the impact of SEP within ethnic groups, such as in split-group 

analyses. As a result, it was evident that there were subtle differences in the 

derived latent variables, depending on whether these were ethnically-specific, or 

ethnically-independent. The ethnic-specific latent model provides the opportunity 

to investigate the impact of SEP on health within ethnic groups in greater detail 

and with greater precision.  

Mallicoat et al. (2020) used these measures to investigate social gradients in 

several health outcomes related to maternal and infant health (e.g., maternal 

mental health, low birth weight). However, these measure have yet to be used to 

explore potential social gradients regarding sensorimotor control.  

A practical problem arose in preparing to conduct this analysis. Within BiB’s Data 

Dictionary, only the cohort-wide latent classes of SEP had been retained for 

open-access use. The ethnic-specific classes had not. Therefore, to further 

explore social gradients in sensorimotor control using an ethnic-specific measure 

within each ethnic group, it was necessary to replicate Fairley and colleagues’ 

(2014) analyses within this thesis, to reproduce the ethnic-specific latent classes 

for use in subsequent analyses1. The analytical steps taken to accomplish this, 

and a brief review of their findings, are described in the rest of this chapter. 

2.2 Method  

2.2.1 Data  

 

1 Although on a slightly different dataset, see Section 2.2.1 for details on the difference 
in inclusion and exclusion criteria between the samples used in this Chapter 
compared to the Fairley et al. (2014) paper.  
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The data from 9617 White British and Pakistani mothers, obtained from the BiB 

Baseline Questionnaire, were included in analysis. For the purpose of the thesis, 

only White British and Pakistani mothers were included whilst Fairley et al. (2014) 

also included “Mixed”, “Black or Black British”, “Asian” (including Bangladeshi and 

Indian), “Chinese” and “Other” ethnic groups. Data from these individuals 

included a range of SEP indicators (manifest variables) and other demographic 

information. Only individuals with complete socioeconomic and ethnicity data 

were included in analyses. In contrast, Fairley and colleague’s (2014) criteria only 

excluded cases where specific types of demographic information were missing 

(ethnicity, age, marital and cohabitation status).   

2.2.2 Measures of SEP  

In accordance with Fairley et al. (2014), 19 measures were entered into the latent 

class models. These variables encompassed both objective monetary and non-

monetary measures, as well as subjective measures of poverty. These are 

summarised in Table 1.  

The highest educational qualification and the country in which this was completed 

was recorded for both the mother and father. Qualifications obtained in countries 

other than the UK were to allow comparison. In cases where the qualification had 

been obtained from outside of the UK and sufficient information was not provided, 

education was coded as “foreign unknown”. As shown in Table 1, as per Fairley 

et al.’s (2014) original study, education level was categorised into seven groups 

based on the UK ENIC classifications (formerly known as the “UK National 

Academic Recognition Information Centre” prior to Brexit).  

Employment status was measured differently between the mothers and fathers. 

Father’s employment was loosely based on the National Statistics Socio-
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Economic Classification (NS-SEC) (Rose & Pevalin, 2003). Such categorisation 

was not considered appropriate with the mothers as over a quarter stated that 

they had never been in employment. Instead, as shown in Table 1, a simpler 

description of employment status was applied: currently employed, previously 

employed, and never employed.  

Although a typical indicator of SEP, household income was not used in the 

present study due to the sample containing a high proportion of Pakistani 

individuals (for reasons explained earlier in Section 2.2.1). Instead, three 

alternative questions were asked to obtain a picture of the mothers’ financial 

situation: subjective poverty, receipt of means-tested benefits (e.g., income 

support), and whether bill payments were up to date. As discussed in Section 

2.1.1, such indicators have been used in previous research and provide some 

context concerning an individual’s financial situation that cannot otherwise be 

captured using objective measures alone (E. Goodman et al., 2007; Singh‐

Manoux et al., 2006; L. S. Wolff et al., 2009). In addition, mothers were also asked 

11 questions regarding the ability to afford various material items. Importantly, 

these questions were subjective in nature. This included providing mothers the 

option to indicate the item is not deemed necessary, regardless of if it could be 

afforded or not. These questions were based on the Households Below Average 

Income Survey (Adams et al., 2012).  
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Table 1 

Summary of the 19 SEP manifest variables included in the LCA [continues on next page] 

[Continued] 

SEP Manifest Variable  Response Options 

Mothers’ level of employment (Mother’s LoEm) Currently employed; previously employed; never employed 

Fathers’ level of employment (Father’s LoEm)  Non-manual; manual; self-employed; student; unemployed; 

don’t know 

Receipt of means-tested benefits (MTB) No; yes 

Housing tenure (HT)  Owns outright; mortgage; lives rent-free; private landlord; 

social housing; other; don’t know 

Mothers level of education (Mother’s LoEd)  <5 GCSE equivalent; 5 GCSE equivalent; A-level equivalent; 

higher than A-level; other; don’t know; foreign unknown 

Fathers level of education (Father’s LoEd)  <5 GCSE equivalent; 5 GCSE equivalent; A-level equivalent; 

higher than A-level; other; don’t know; foreign unknown 

Up to date with bills (Bills) No; yes; don't know  

Subjective poverty (SubPov)  Living comfortably; doing alright; just about getting by; quite 

difficult; very difficult 

Able to afford…  
 

…two pairs of all-weather shoes (Shoes)  Have; don’t want or need; can’t afford 

…money to replace any worn out furniture (Furn)  Have; don’t want or need; can’t afford 

…family and friends for a drink/meal at least once a month (FF)  Have; don’t want or need; can’t afford 
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Table 1 [continued] 

Summary of the 19 SEP manifest variables included in the LCA  

 

SEP Manifest Variable  Response Options 

…a hobby or leisure activity (Hob)  Have; don’t want or need; can’t afford 

…a small amount of money to spend on yourself each week (Self)  Have; don’t want or need; can’t afford 

…a holiday from home for at least one week once a year (Hol) Have; don’t want or need; can’t afford 

…to keep home warm enough during winter (Warm)  Have; don’t want or need; can’t afford 

…money to replace or repair major electrical goods (Elec)  Have; don’t want or need; can’t afford 

…household contents insurance (Ins)  Have; don’t want or need; can’t afford 

…to keep home in decent state of decoration (Dec)  Have; don’t want or need; can’t afford 

…to make regular savings of £10 a month (Save)  Have; don’t want or need; can’t afford 
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2.2.3 Ethnicity  

The present analyses were conducted on individuals who self-reported as White 

British or Pakistani during the baseline questionnaire. These ethnicities represent 

47% and 53% of the sample in this study respectively. Only these two ethnic 

groups were included due to the relatively small sample size of the “Other” ethnic 

group within the BiB cohort and its heterogeneous nature (Fairley et al., 2014).  

2.2.4 Statistical Analysis  

All latent class analyses were conducted using the poLCA package (Linzer & 

Lewis, 2011) in R (R Development Core Team, 2020). It was not necessary to 

conduct the Full Information Maximum Likelihood (FIML) approach manually as 

missing values are not included in analyses by default within the poLCA package. 

This is in contrast to Fairley et al. (2014) who used FIML to deal with missing 

data. Instead, as advised by Linzer and Lewis (2011), the present study derived 

each model by multiple re-estimations to increase the confidence that the global 

maximum, rather than local maximum of the log-likelihood function was found. 

Unlike global maxima, the local maximum of a latent model can vary depending 

on starting values which is not ideal for accurate estimation of latent models 

(Vermunt & Magidson, 2004). Both methods are commonly used to perform LCA, 

and this was the only deviation from the analytical approach taken within the 

original analysis reported by Fairley et al. (2014).  

Two independent latent class analyses were conducted, one for the White British 

and another for the Pakistani group, to identify and compare differences in the 

latent structure of SEP across ethnic groups. To determine how many classes 

were to be retained in each model, log-likelihood, Bayesian Information Criterion 

(BIC; Schwarz, 1978) and entropy were examined. A larger log-likelihood is 
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suggestive of better fit, with the maximum log-likelihood being desired. The 

maximum log-likelihood is reached when the log-likelihood “ceases to increment 

beyond some arbitrarily small value” (Linzer & Lewis, 2011, p. 4). BIC is a model 

fit statistic whereby a lower value is indicative of more preferred model fit, and 

has been found to be the most appropriate criterion to use (Nylund et al., 2007). 

Entropy is a measure of uncertainty or randomness, with lower values suggesting 

there is less variability between each latent class (Larose et al., 2016). Thus, a 

value closer to one indicates better fit as each class is considered more distinct.  

Individuals were then classified into their most likely SEP class using posterior 

membership probability. This refers to the probability of an individual belonging 

to a latent class based on item responses from each manifest variable (Vermunt 

& Magidson, 2004). This probability is calculated by the package using Bayes’ 

formula (Linzer & Lewis, 2011).  

2.3 Results  

Two independent latent class analyses were conducted, one for the White British 

and one for the Pakistani sample. The entropy, BIC and log-likelihood values 

used to determine the most suitable model are reported in Table 2 and Table 4.   

2.3.1 Pakistani sample  

Based on the model fit statistics (see Table 2), a four-class model was selected 

as being most appropriate fit for the data as the entropy value; which should be 

as close to one as possible; was higher for the four-class model, compared to a 

three- or five-class model.  

When compared to Fairley et al. (2014), the latent structure was generally 

replicated, albeit with slightly different proportions and minor differences, likely 
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due to due to the small difference in sample sizes (explained in Section 2.2.1). 

Amongst the minor differences were whether mothers were likely to be behind 

with bill payments and housing tenure in the Most Deprived group. Fairley et al. 

(2014) suggested that it was most likely that women in this latent class were in 

social housing, yet the present analysis suggested it was most likely that the 

women had a mortgage. For the “behind on bills” variable, the original manuscript 

suggested that women were behind with their bills, yet the present analysis found 

that all mothers were up to date, regardless of their latent class membership. 

However, while there were minor differences for some of the items, as expected, 

generally the interpretations were similar.   

Table 2 

Model fit statistics for Latent Class analysis models for the Pakistani sample  

Model Entropy BIC Log-Likelihood 

1 1 174160.1 -86746.90 

2 0.83 165304.7 -81981.77 

3 0.76 163776.3 -80880.12 

4 0.78 162698.6 -80003.84 

5 0.74 162599.1 -79616.67 

6 0.76 162582.3 -79270.84 

 

See Table 3 for a breakdown of how each SEP manifest variable contributed 

towards each latent class for the Pakistani sample, noting that the corresponding 

descriptions of each of these manifest variables (and the abbreviations used 

here) can be found by referring back to Table 1.    
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Table 3 

Description of each latent class from a 4-class model (Pakistani sample) [continues on next page]  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Class Size (%) 2107 (23%) 1367 (9%) 1170 (41%) 484 (27%) 

Class Characteristics (based on posterior probability)   

Manifest Variable     

Mother’s LoEm Currently employed  Never employed Never or previously employed  Never employed  

Father’s LoEm  Non-manual employment Manual and non-manual 

employment  

Manual employment  Manual employment  

MTB  Not receiving means-tested 

benefits   

Moderate receipt of means-

tested benefits  

Moderate receipt of means-

tested benefits  

High receipt of means-

tested benefits  

HT Mortgage  Mortgage or living rent-free  Mortgage or owns outright  Mortgage  

Mother’s LoEd Highly educated Medium level of education Low level of education  Low level of education 

Father’s LoEd  Highly educated Medium level of education  Low level of education & high 

don’t know response  

Mixed responses  

[Continued]  
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Table 3 [continued] 

Description of each latent class from a 4-class model (Pakistani sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Bills Up to date with bills  Up to date with bills  Up to date with bills  Up to date with bills  

SubPov “Living comfortably” or ”doing 

alright”   

“Doing alright”  “Doing alright”  “Just about getting by”  

Shoes  Can afford two pairs all-

weather shoes  

Can afford two pairs all-

weather shoes  

Can afford two pairs all-

weather shoes  

Can afford two pairs all-

weather shoes  

Furn Can afford to replace worn 

out furniture  

Don’t want/need to keep 

furniture in good repair 

Can afford to keep furniture in 

good repair  

Cannot afford to keep 

furniture in good repair 

FF  Can afford family/friends over 

for a drink/meal at least once 

a month 

Can afford to have 

family/friends round once a 

month  

Can afford to have 

family/friends round once a 

month  

Can afford to have 

family/friends round once a 

month  

Hob Can afford to have a hobby or 

leisure activity   

Can afford/don’t want to have 

a hobby  

Can afford/don’t want to have 

a hobby  

Can afford/don’t want to 

have a hobby  

[Continued] 
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Table 3 [continued] 

Description of each latent class from a 4-class model (Pakistani sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Self  Can afford a small amount of 

money to spend on self each 

week  

Can afford a small amount of 

money to spend on self  

Can afford a small amount of 

money to spend on self  

Mixed response for 

affording small amount of 

money to spend on self  

Hol Can afford a holiday from 

home 

Cannot afford/don’t want a 

holiday 

Cannot afford/don’t want a 

holiday 

Cannot afford a holiday  

Warm  Can afford to keep home 

warm during winter 

Can afford to keep home 

warm  

Can afford to keep home 

warm  

Can afford to keep home 

warm  

Elec Can afford to replace/repair 

major electrical goods 

Don’t want/need to keep 

electrical items in good repair 

Can afford to keep electrical 

items in good repair 

Cannot afford to keep 

electrical items in good 

repair 

Ins Can afford home contents 

insurance  

Mixed response for affording 

home contents insurance 

Can afford home contents 

insurance  

Mixed response for 

affording home contents 

insurance  

[Continued] 
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Table 3 [continued] 

Description of each latent class from a 4-class model (Pakistani sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Dec Can afford to keep home in 

good decoration  

Can afford to keep home in 

good decoration  

Can afford to keep home in 

good decoration  

Mixed response for 

affording to keep home in 

good decoration 

Save  Can afford to make regular 

savings  

Can afford to make regular 

savings  

Can afford to make regular 

savings  

Mixed response for 

affording to make regular 

savings  
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2.3.2 White British sample 

The same process was repeated for the analysis of the White British sample. 

Again, a four-class model was selected based on the model fit statistics (see 

Table 4). Although the BIC was smaller with the addition of a fifth class, this was 

very slight. In addition, the percentage change of the log-likelihood was less than 

1%, in comparison to a 1.49% difference between a three- and four-class model 

and a 2.3% difference between a two- and three-class model. Where there are 

only arbitrary differences with the inclusion of an additional class, it is generally 

considered good practice to select the model with fewer classes (L. M. Collins & 

Lanza, 2009; Fairley et al., 2014). Therefore, the four-class model was deemed 

most appropriate. Only one minor difference was found between the current 

results and those from Fairley et al. (2014): the current analysis suggested a 

moderate proportion of White British women receiving means-tested benefits in 

Class 3, the second most deprived category. Meanwhile, Fairley et al. (2014) 

suggested this was a high proportion. The distribution of all other indicators was 

identical.   

Table 4 

Model fit statistics for Latent Class analysis models for the White British sample  

Model  Entropy  BIC Log-Likelihood  

1 1 150230.4 -74787.23 

2 0.90 134495.9 -66587.80 

3 0.85 132084.4 -65049.91 

4 0.85 130804.8 -64077.92 

5 0.86 130297.9 -63492.32 

6 0.85 130079.6 -63050.97 
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See Table 5 for a breakdown of how each SEP manifest variable contributed 

towards each latent class for the White British sample, noting that the 

corresponding descriptions of each of these manifest variables (and the 

abbreviations used here) can be found by referring back to Table 1.     
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Table 5 

Description of each latent class from a 4-class model (White British sample) [Continued over next pages]  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Class Size (%) 1935 (42%)  723 (16%) 977 (22%) 854 (19%)  

Class Characteristics (based on posterior probability)     

Manifest Variable      

Mother’s LoEm Currently employed  Currently employed  Currently or previously 

employed 

Previously employed  

Father’s LoEm  Non-manual employment Non-manual employment Manual or non-manual 

employment  

Manual employment or 

unemployed  

MTB  Not in receipt of means-tested 

benefits 

Not in receipt of means-tested 

benefits 

Moderate level of receipt of 

means-tested benefits  

High receipt of means-

tested benefits  

HT Mortgage Mortgage Private renting or social 

housing 

Private renting or social 

housing 

Mother’s LoEd Highly educated  Moderately educated Low levels of education Low levels of education 

[Continued] 
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Table 5 [continued] 

Description of each latent class from a 4-class model (White British sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

     

Father’s LoEd  Highly educated  Moderately educated  Low levels of education 

with high don’t know 

response 

Low levels of education 

with high don’t know 

response 

Bills Up to date with bills  Up to date with bills  Up to date with bills  Some behind on bills  

SubPov “Living comfortably” or “doing 

alright”  

“Doing alright” or “just about 

getting by”  

“Doing alright”   “Just about getting by”   

Shoes  Can afford two pairs of all-

weather shoes  

Can afford two pairs of all-

weather shoes  

Can afford two pairs of all-

weather shoes  

Can afford two pairs of all-

weather shoes  

Furn Can afford to keep furniture in 

good repair 

Cannot afford to keep 

furniture in good repair 

Can afford to keep furniture 

in good repair 

Cannot afford to keep 

furniture in good repair 

[Continued] 
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Table 5 [continued] 

Description of each latent class from a 4-class model (White British sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

FF  Can afford to have 

family/friends round once a 

month  

Can afford to have 

family/friends round once a 

month  

Can afford to have 

family/friends round once a 

month  

Can afford to have 

family/friends round once a 

month  

Hob Can afford to have a hobby  Can afford or don’t want to 

have a hobby  

Don’t want to have a hobby  Mixed response for 

affording to have a hobby 

Self  Can afford a small amount of 

money to spend on self   

Can afford a small amount of 

money to spend on self   

Can afford a small amount 

of money to spend on self   

Cannot afford a small 

amount of money to spend 

on self   

Hol Can afford a holiday  Mixed response for affording 

a holiday  

Mixed response for 

affording a holiday  

Cannot afford a holiday  

Warm  Can afford to keep home 

warm  

Can afford to keep home 

warm  

Can afford to keep home 

warm  

Can afford to keep home 

warm  

[Continued]  

 



71 

 

Table 5 [continued] 

Description of each latent class from a 4-class model (White British sample)  

 Class 1 (Least Deprived) Class 2  Class 3  Class 4 (Most Deprived) 

Elec Can afford to keep electrical 

items in good repair 

Cannot afford to keep 

electrical items in good repair 

Can afford to keep 

electrical items in good 

repair 

Cannot afford to keep 

electrical items in good 

repair 

Ins Can afford home contents 

insurance  

Can afford home contents 

insurance  

Can afford or don’t want 

home contents insurance  

Cannot afford or don’t want 

home contents insurance  

Dec Can afford to keep home in 

good decoration 

Can afford to keep home in 

good decoration 

Can afford to keep home in 

good decoration 

Cannot afford to keep 

home in good decoration 

Save  Can afford to make regular 

savings  

Mixed response for affording 

to make regular savings  

Can afford to make regular 

savings  

Cannot afford to make 

regular savings  
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2.3.3 Comparing latent structures across ethnic groups  

As Table 3 and Table 5 indicate, there are several differences in the latent 

structures for Pakistani and White British women. Firstly, a larger proportion of 

Pakistani women were classified in the “Most Deprived” latent class (27%), 

compared to their White British counterparts (19%). This difference was even 

more marked when comparing those in the Least Deprived group; 23% and 43% 

for Pakistani and White British, respectively. The following sections contrast the 

derivation of each class between the two ethnic groups and demonstrate how the 

measurement of SEP should consider ethnicity. It also illustrates how belonging 

to the “Most Deprived” group as a Pakistani individual does not subject one to the 

same socioeconomic circumstances as a White British individual in their 

respective “Most Deprived” latent class. Thus, these classes should only be used 

in split-group analysis to investigate within-ethnic group differences.  

2.3.3.1 Employment 

Pakistani mothers tended to be “never employed” in the Most Deprived class, in 

contrast to White British mothers, who were more likely to have been “previously 

employed”. Meanwhile, within this class, Pakistani fathers were more likely to be 

in manual employment. White British fathers were equally as likely to be in 

manual employment or unemployed. This implies that Pakistani fathers may be 

more likely to be in employment, albeit in lower-paid, lower-skilled occupations 

than their White British counterparts. Meanwhile, in the Least Deprived latent 

class, mothers were most likely to be currently employed and fathers in non-

manual employment which was the case for both the White British and Pakistani 

samples. In summary, it was apparent that Pakistani mothers were generally less 

likely to be in current employment, regardless of their broader socioeconomic 
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circumstances, suggesting that employment status alone would not be an 

accurate proxy measure of SEP.  

2.3.3.2 Means-tested benefits 

It was evident that both White British and Pakistani mothers had a higher chance 

of being in receipt of benefits in each respective “Most Deprived” class. However, 

there was still a moderate likelihood of Pakistani individuals being in receipt of 

benefits if in Class 2 (the second least deprived). In contrast, White British 

individuals classified into Class 2 were unlikely to be receiving benefits. This 

indicates that a larger proportion of Pakistani families are likely to be in receipt of 

means-tested benefits, whereas only the two most deprived classes of White 

British individuals are likely to be receiving such benefits.  

2.3.3.3 Housing tenure  

There were clear ethnic differences in the latent models regarding housing 

tenure. The analyses revealed that Pakistani individuals were more likely to own 

their home, either with a mortgage, or outright, irrespective of class. In contrast, 

there was a dichotomy in the White British sample. The two least deprived 

classes were most likely to have a mortgage and the most deprived groups in 

social housing or private rental property. These differences align with previous 

literature (Kelaher et al., 2009; Nazroo, 2003) and illustrate the limitations of using 

housing tenure as a single indicator of socioeconomic position.  

2.3.3.4 Education 

There were many more similarities between the two ethnic groups regarding 

education. It was evident that the least deprived groups showed the highest levels 

of education, with this reducing with increasing deprivation. Interestingly, for both 
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ethnic groups, the two most deprived latent classes indicated that the education 

level of the father was commonly unknown. These findings suggest that parental 

education levels may be an appropriate indicator of SEP in a bi-ethnic sample as 

this is comparable across the two groups. It also supports the use of parental 

education as an indicator when limited socioeconomic data are available, lending 

support to its use in future research. However, it is unclear to what extent this 

would apply to a multi-ethnic, as opposed to bi-ethnic, sample and it does not 

imply that this is suitable for use as a single indicator.   

2.3.3.5 Bills 

There was only one difference between ethnic groups on whether individuals 

were up to date with bills. It was apparent that all individuals were most likely to 

be up to date with their bills except for the most deprived class of the White British 

sample. This could be due to spending patterns or the increased number of White 

British individuals in rented housing. For example, recent research has suggested 

that “Asian” ethnic groups are less likely to hold “high-cost credit” products (e.g., 

car finance, payday loans or store credit) compared to “White”  ethnicities 

(Financial Conduct Authority, 2021).  

2.3.3.6 Subjective poverty 

Regarding subjective poverty, there were few differences between the two ethnic-

specific models. It was evident that for both groups, individuals from the Least 

Deprived class were most likely to state they were “living comfortably” or “doing 

alright” and the Most Deprived “just about getting by”. Interestingly, within the 

second least deprived class for White British women, it was approximately as 

likely for individuals to respond, “just about getting by” or “doing alright”. In 

contrast, the second least deprived class in the Pakistani group were most likely 
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to be “doing alright”. Although arguably paradoxical, this does align with previous 

research using a multi-ethnic sample in the United States, in which Wolff et al. 

(2009) found that Black participants had higher perceived social status compared 

to their White counterparts, even when objective measures of social class 

showed no differences.   

2.3.3.7 Material deprivation 

Lastly, some ethnic differences were found with how items related to material 

deprivation fit in each of the latent classes. For example, there were more mixed 

responses across these 11 questions in the Pakistani group in the Most Deprived 

class, whereas in the White British model, mothers more consistently reported 

not feeling they could afford the item or activity (e.g., making regular savings, 

purchasing home contents insurance). Within Class 3 of both models (the second 

most deprived), White British individuals were more likely to spend money on a 

holiday, whereas there was a largely mixed response in the Pakistani sample. 

Otherwise, there were many similarities across the two groups. For example, in 

the Most Deprived group, neither ethnic groups felt they could afford to replace 

electrical items or furniture, or keep them in good repair. At the other end of the 

deprivation scale, ethnicities were also more similar, with none of the individuals 

classified into the Least Deprived group reporting being materially deprived, 

regardless of their ethnic group. Individuals in these groups were most likely to 

report that they were able to afford various “luxury” items such as holidays or 

having hobbies.  

2.4 Discussion  

The aim of the present study was to replicate the work of Fairley et al. (2014) to 

produce a multi-dimensional measure of socioeconomic position that is sensitive 
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to ethnic differences. It was necessary to derive these measures for use in 

subsequent analysis within this thesis (see Chapter 5) because they were not 

available from the Born in Bradford Data Dictionary. For both White British and 

Pakistani groups, a four-class model was selected as the most appropriate 

structure, and the classes largely reflected those reported by Fairley and 

colleagues (2014), justifying these models. These analyses made it possible to 

assign a large sample of mothers to their most likely group membership based 

on their socioeconomic circumstances.  

Whilst this was a replication study, there are some methodological limitations that 

should be noted. Firstly, there was a slight discrepancy in the proportions of each 

latent class reported here, compared to the original study. Although the same 

sample was used, a potential explanation for this could be the way in which 

missing data were treated. As previously mentioned, the poLCA package within 

the open-source statistical software R was used in the present study which treats 

missing values differently to the method used by Fairley et al. (2014). In the 

present sample, only cases with complete data were included, whereas Fairley 

et al. (2014) used a Full Information Maximum Likelihood (FIML) approach which 

uses estimations for missing data. Although slightly reducing the sample size, the 

current method estimates latent class membership on directly-observed variables 

only. This also explains why there are more discrepancies in the Pakistani 

proportions, as there are fewer fully-observed cases. A potential explanation is 

that cultural differences in reporting biases may mean Pakistani women were less 

willing, less likely to know, or less able to provide answers to all questions, 

particularly those related to finances - such as home insurance or savings (Prady 

et al., 2013).  
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Thus, whilst the results do not offer an exact replication, by conducting this 

analysis in open-source software, the code can be distributed for the use within 

further analysis and applications by other researchers. How these derived SEP 

latent classes impact upon children’s sensorimotor control will be explored in 

subsequent chapters.  
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Chapter 3 Improving interpretability and reducing noise of kinematic data: 

A Principal Components Analysis 

3.1 Introduction  

3.1.1 Movement kinematics 

Movement kinematics have been measured as early as the 19th century when the 

Edison pen was used to measure speed of hand movement (Binet & Courtier, 

1893). Measuring how a movement is performed; referred to as “process-

oriented” assessment (Eddy et al., 2020; Logan et al., 2018) offers a deeper level 

of description of children’s sensorimotor control. Such measures have a number 

of advantages over more traditional measures of assessment known as “product-

oriented” measures. Product-oriented measures focus on the achievement or 

outcome of specific skills, such as successfully catching a ball or the time it takes 

to run a set distance (Eddy et al., 2020; Logan et al., 2018).  

3.1.2 Benefits of kinematic assessment  

3.1.2.1 Dimensionality  

Traditional standardised assessments of motor skills generally measure motor 

performance in terms of “product-oriented” outcomes, such as the widely used 

Movement ABC-2 (MABC-2; Henderson et al., 2007) and BOT-2 (Bruininks & 

Bruininks, 2005). Whilst these measures; particularly the MABC-2, are 

recommended for use as diagnostic tools for the identification of disability (e.g.,  

Developmental Coordination Disorder), they are limited in the level of detail they 

provide (R. Blank et al., 2012; Culmer et al., 2009; L. J. B. Hill et al., 2016). For 

example, such assessments only provide a simple dichotomous outcome which 
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determines whether a task has been completed successfully, or not (Logan et al., 

2018). They also tend not to measure motor control along a continuum.  

Once scores are produced for each child, they are compared against “norms”, 

collated from a normative sample. Normative samples represent what is “typical” 

for a given population (e.g., children of a particular age range) and are used as a 

reference group (O’Connor, 1990; Ware & Keller, 1996). Taking the MABC-2 as 

an example, thresholds at the bottom 5th and 15th percentiles are suggested as 

representing “impairment” and “at-risk” of impairment, respectively (Venetsanou 

et al., 2011). For diagnostic purposes, this relatively sparse level of detail is often 

sufficient to open access to additional treatment and support, such as 

physiotherapy (Croft et al., 2015; Jutel, 2014). However, greater detail regarding 

how movement is executed across a range of abilities is not readily or easily 

obtainable using such methods.  

An additional problem with normative data lies with the standardisation of these 

norms. The original MABC-2 norms were based on a sample of typically 

developing British children, however many studies have found cross-cultural 

differences, ceiling effects or differences in the factor structure when comparing 

to children from other countries. This has been demonstrated when comparing 

British or American norms to performance of children from: Israel (Engel-Yeger 

et al., 2010), Greece (Ellinoudis et al., 2008), Japan (Hirata et al., 2018; Miyahara 

et al., 1998), and Spain (Ruiz et al., 2003).  

Ceiling effects lead to inaccurate assumptions of children’s abilities and limit the 

usefulness of such measures (Chow et al., 2006; French et al., 2018; Van 

Waelvelde et al., 2004). For example, when children are performing at ceiling 

level on a particular task, it is not possible to determine when a child’s limits have 
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been reached. In addition, the MABC-2 has “stopping rules” in tasks that allow 

multiple attempts. Therefore, children who achieve maximum performance on 

their first attempt are less likely to experience, potentially confounding, mental or 

muscular fatigue compared to peers who require several attempts (French et al., 

2018). As a result, subsequent tasks can be performed more optimally. For this 

reason, French et al. (2018) suggested that measures such as the MABC-2 are 

only useful for identifying impairment and have little utility in discriminating 

between children performing at the higher end of the spectrum of abilities. For 

example, Japanese children demonstrated ceiling effects in five out of eight test 

items of the MABC (Miyahara et al., 1998), with Chow et al. (2006) finding 92% 

of children reaching ceiling in a balance task (walking along a line with heels 

raised). Therefore, without sufficient modification of test items or the creation of 

culture-specific reference norms, the application of such measures to other, 

particularly non-clinical, populations may be limited. 

Furthermore, subsequent refinement of scores obtained from such batteries may 

be inadequate and oversimplified. Whilst tasks in a battery may reflect various 

aspects of sensorimotor control and their various mechanisms, the scores 

derived from the number of successfully completed tasks are often averaged to 

produce an overall test-battery score. For example, the BOT-2 (Bruininks & 

Bruininks, 2005) consists of a range of subtests, yet performance is often reduced 

to a simple “Total Motor Composite” (e.g., Martinez Hernandez & Caçola, 2015). 

Thus, more detailed information regarding which aspects of sensorimotor control 

a child is having the most difficulty with, or on which particular tasks, is lost.  

On the contrary, kinematic measures offer the scope for measuring motor control 

dimensionally, providing a more nuanced insight of children’s abilities which 
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reflect its heterogeneous nature (Zwicker et al., 2012). By measuring the 

fundamentals of sensorimotor control along a continuum, the need to produce 

numerous normative samples for various cultures and/or regions is no longer 

necessary.  

Furthermore, many neurodevelopmental disorders are now viewed and 

measured along a spectrum, such as Autistic Spectrum Disorder (Ousley & 

Cermak, 2014) and other forms of child psychopathology (A. Goodman & 

Goodman, 2009; R. Goodman, 1997). Kaplan and colleagues extend this view to 

DCD, suggesting this disorder too exists on a “continuum of severity” (B. Kaplan 

et al., 2006, p. 723). Thus, kinematic tools supporting the dimensional 

measurement of sensorimotor control may be more suitable and reflective of this 

condition’s dimensional nature.  

3.1.2.2 Objectivity  

In addition to supporting dimensional measurement, computer-recorded 

kinematic measurements are arguably more objective, minimising the influence 

of researcher bias. One method of recording movement kinematics is through 

computerised motion-capture devices. Such devices often use optoelectronic 

systems which rely on cameras picking up signals from multiple sensors (e.g., 

infra-red emitting diodes) placed on the body. Examples include the NDI 

Optotrak, Vicon MX (Vicon Motion Systems), and SMART-D system 

(Bioengineering Technology and Systems). These do not require subjective 

experimenter judgements and previous research has commended such devices 

for their high levels of accuracy, precision, and repeatability (Richards, 1999; J. 

Schmidt et al., 2009).  
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In contrast, children’s motor ability is often assessed via parental reports such as 

the Denver Developmental Screening Test (DDST; Frankenburg & Dodds, 1967) 

or DCDQ’07 (B. N. Wilson et al., 2007). While parents offer a good overall insight 

of their child’s development, they may not provide the most accurate indication of 

their child’s motoric abilities when compared to performance-based motor 

assessments (Kennedy et al., 2011; Zysset et al., 2018). In support of this 

hypothesis, Blanchard et al. (2017) found that a reaching and grasping task was 

able to predict scores on the MABC-2, but not the DCDQ’07, suggesting parents’ 

evaluations of their child’s motor skills should be interpreted with caution.  

Meanwhile, Kelly and colleagues administered a parent-informed questionnaire 

based on items from the DDST (Kelly et al., 2006). This measure classified 

children as presenting developmental delay based on parental perception of 

whether a series of motor milestones have been attained. Research suggests 

that the DDST has poor sensitivity, with limited concurrent and predictive validity 

(Cadman et al., 1984; Meisels, 1989). This, alongside the level of imprecision, 

subjectivity and potential bias that comes with parental reports of this nature 

suggest it may not be an appropriate measure of motor ability.   

Other motor assessments use observation by trained researchers or clinicians to 

measure children’s motor competence. However, such measures (e.g., the 

TGMD-2, MABC-2, and BOT-2) still depend on subjective human judgement. 

Even when conducted by trained clinicians or researchers, observational 

methods have been found to result in discrepancies between observers in up to 

15% of cases (Smits-Engelsman et al., 2008). When combined with the 

previously discussed issues of dichotomous measurement, such discrepancies 

in judgement can lead to an increased chance of misclassification; potentially 
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preventing access to therapeutic services, or incorrectly labelling a child as 

“impaired”. In addition, previous research has found differences in judgements of 

the same child using different observational motor assessments, with some 

findings showing more than 20% disagreement between the MABC-2, DCDQ’07, 

and BOT-2 (Crawford et al., 2001; van Hartingsveldt et al., 2005). Instead, 

kinematic assessments rely on objective metrics describing the characteristics of 

simple movement (e.g., acceleration, velocity), which are required in the 

execution of more complex actions (Cook et al., 2013). Thus, they cannot be 

influenced by an observer’s experience or expertise, or parental biases. 

3.1.2.3 Specificity  

As noted, kinematic assessment focuses on recording distinct components of 

movement which form the “building blocks” for more complex action. For 

example, Zoia et al. (2006) use 17 different kinematic parameters to fully describe 

a simple reach-to-grasp movement; breaking this fundamental sensorimotor task 

down into various phases (i.e., “reaching” component, “grasping” component). 

Thus, it was possible to identify participants’ abilities in each aspect of 

sensorimotor control required for such tasks.  

Consequently, while product-oriented assessments are useful for the 

identification and diagnosis of children with a coordination disability (e.g., DCD), 

determining and analysing the entire process of movement offers additional value 

within the context of therapeutic intervention. To intervene appropriately and 

effectively, it is necessary to understand the specific aspects of sensorimotor 

control that are causing difficulty and preventing tasks being completed 

successfully (K. C. Collins et al., 2018; Raw et al., 2017). For example, a child 

may face difficulties with producing a smooth movement yet retain optimum 
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temporal accuracy, or struggle with acceleration but exhibit excellent spatial 

accuracy. However, if the desired outcome is achieved, product-oriented tools 

would not detect impairment. Furthermore, if knowledge is obtained about how 

movement is sub-optimal, targeted interventions can focus on addressing these 

specific underpinning dimensions of sensorimotor control rather than generically 

focusing on training all components of the task as a whole.  

Lastly, traditional product-oriented assessments often include tasks which are 

misrepresented as relatively simple. For example, the MABC-2 includes a ball-

catching task where children are required to throw a ball against a wall and catch 

it. However, successfully catching the ball is also dependent on a successful 

throw, making it difficult to determine where the difficulties lie (Van Waelvelde et 

al., 2004). Because kinematic measures generally focus on recording very simple 

movements, they are less likely to be confounded by such complexities. 

Therefore, one could argue that to fully understand a child’s sensorimotor control 

abilities and then to intervene appropriately, the capacity to break movement 

down into the specific kinematic parameters is essential.  

3.1.3 Large-scale kinematic assessment  

As discussed in Chapter 1, large cohort studies (e.g., BiB, ALSPAC) are 

incredibly useful tools for gaining broad insights into various aspects of health 

and the complex relationships that exist between them (Golding et al., 2001; J. 

Wright et al., 2013). The large samples in these studies make for incredibly 

powerful analyses, which may be difficult to acquire under standard experimental 

investigations due to limited resources and time. However, precise measurement 

of children’s movement abilities at scale presents a plethora of challenges for 

researchers, which are discussed in the following sections.  
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3.1.3.1 Laboratory-based measures 

Whilst the previously mentioned motion-capture devices offer an objective 

kinematic assessment of movement, they are not always the most feasible for 

large scale measurement. For example, devices such as the Optotrak are large, 

static devices, often needing dedicated or purpose-built laboratory space (Culmer 

et al., 2009). Schools are often used as a base for testing to take place in cohort 

studies, such as BiB, because they provide easy access to participants in a 

familiar environment. It is of course often impractical to transport large devices 

into community settings. In addition, motion-capture devices often rely on the 

placement of multiple sensors and/or cameras, requiring extensively trained 

researchers and technical support (Culmer et al., 2009). As a result, this also 

increases both the overheads and time taken to test each participant. Thus, with 

a finite number of resources, space, time and money in large cohort studies, such 

specialised technology is not practical.  

3.1.3.2 Truncated measures  

To overcome these issues, previous cohort studies, such as ALSPAC, have used 

truncated measures like the ALSPAC Coordination Test (ALSPAC-CT) to assess 

children’s motor skills at scale (Taylor et al., 2018). This is an adapted version of 

the aforementioned MABC, including only a handful of the original subtests: heel 

to toe walking, beanbag throw, placing pegs, and lace threading (Taylor et al., 

2018). Several ALSPAC studies have used this version of the tool (Lingam et al., 

2009a; Schoemaker et al., 2013; Taylor et al., 2018). Whilst using a shortened 

version of the task reduces administration time and can be conducted in 

community settings, additional methodological issues arise.  
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The main issues relate to how adaptation affects the tool’s psychometric 

properties. Whilst the literature suggests that MABC and MABC-2 have high 

levels of validity and reliability (Ellinoudis et al., 2011; Schulz et al., 2011; Smits-

Engelsman et al., 2008), these studies were conducted using the complete form. 

The development of the ALSPAC-CT was based on a principal components 

analysis, extracting the highest loading subtests for each of the three motor 

domains (balance, ball skills, and manual dexterity; Lingam et al., 2009). This 

suggests the included tasks are most representative of each domain. However, 

there were a number of subtests that also loaded highly yet were not included. 

Thus, it cannot be automatically assumed that the psychometric properties of the 

full MABC apply to a truncated version, such as the ALSPAC-CT.  

Other truncated assessments have also been criticised for their inability to 

accurately represent the same domain as their long-form equivalent (Brahler et 

al., 2012; Carmosino et al., 2014; Jírovec et al., 2019; Mancini et al., 2020). For 

example, more than 30% of children identified with motor difficulties using the 

long-form BOT-2 were not recognised by the short form (Mancini et al., 2020).   

Thus, whilst the ALSPAC-CT has a reduced administration time and is portable, 

there are questions regarding its validity, in comparison to the longer-form 

standardised assessments it was inspired by. Consequently, results arising from 

its use in large cohort studies should be interpreted with caution. In contrast, there 

are alternative assessments that could be used in large-scale community settings 

that address many of these limitations. 
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3.1.3.3 End-point kinematics  

Motion-capture devices receive a large quantity of three-dimensional information 

from multiple electromagnetic or infra-red sensors across the body, up to 500 

individual markers in some devices (Northern Digital Inc., 2020). As a result of 

the high level of precision and accuracy obtained, they are arguably the “gold-

standard” in movement research (Ozkaya et al., 2018). However, as previously 

discussed, such devices are often impractical and expensive, particularly in large-

scale studies (Culmer et al., 2009; Ozkaya et al., 2018). Therefore, more practical 

alternatives may be better suited for use within large, community-based samples 

such as cohort studies, even if this comes at the cost of comparatively reduced 

fidelity.   

Digitised, tablet-based end-point kinematic measures have been used to provide 

objective measurement of motor control for over two decades (Smits-Engelsman 

& Van Galen, 1997). Rather than their three-dimensional counterparts, end-point 

kinematic measures record time-stamped two-dimensional Cartesian X-Y 

coordinates of hand movement which are then used to calculate an array of 

common kinematic metrics. This, as the name suggests, is achieved via a single 

“end-point” (i.e., a finger or hand-held stylus) to infer function of the entire upper 

limb and sensorimotor control system.  

Although focused on hand movement, rather than the entire body, Culmer et al. 

(2009) argued that upper limb function influences hand movement, and that the 

hand is used as a reference in motor planning. This is supported by several 

commonly used kinematic assessments which are underpinned by more general 

sensorimotor control of the upper limbs. For example, efficient movement takes 

the least taxing route for the body which is usually the shortest movement 
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trajectory (Nordin et al., 2014). Similarly, producing smooth movements requires 

appropriate muscle tone and joint torque (Nordin et al., 2014). Therefore, 

recording smoothness of end-point movement can indirectly measure general 

sensorimotor control and upper limb function. Thus, whilst tablet-based end-point 

kinematic measures do not directly capture movement of the entire limb to the 

same extent as their motion-capture counterparts, they still provide a useful 

indicator of sensorimotor control.  

Similarly, as humans we naturally navigate through a three-dimensional world, 

and thus valuable spatial information of complex and dynamic movement cannot 

be obtained when using tablet-based two dimensional measures (Maykut et al., 

2015). However, by removing the third dimension, the reliance on stereopsis 

(ability to perceive depth), is eliminated, thus focusing entirely on motoric ability. 

More applied tasks executed in three dimensions such as bead-threading in the 

MABC-2 risk placing children with lack of stereopsis or who have issues like 

amblyopia at a disadvantage (O’Connor et al., 2010; Suttle et al., 2011). Thus, 

whilst the depth of information regarding movement is reduced, there are some 

merits of reducing sensorimotor assessment to two dimensions due to the 

reduced risk of confounding factors exerting influence on results.  

Furthermore, there are a number of practical benefits in using tablet-based 

kinematic devices. For example, tablet devices are highly portable and can be 

administered within classroom settings easily (Flatters, Mushtaq, et al., 2014). By 

“taking the lab to the school”, researchers gain access to a larger pool of 

participants whilst causing minimal disruption to learning by negating the need to 

take children off-site (Alibali & Nathan, 2010). Using such devices, a number of 

studies have obtained sensorimotor data from larger samples (n >100) than 
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would likely be possible with motion-capture devices (Accardo et al., 2013; L. J. 

B. Hill et al., 2014; Rosenblum et al., 2006).  

On a similar note, administration times should be kept to a minimum, even when 

conducted in school settings to prevent additional disruption to learning. 

Traditional clinical measures of motor skills (e.g., MABC-2) can take up to an hour 

per assessment and can only be conducted on one child at a time. Likewise, the 

set-up of motion-capture devices is often lengthy, to ensure correct positioning of 

the sensors and cameras. In contrast, due to the vast quantity of sensorimotor 

data recorded and the ease of administration, tablet-based kinematic 

assessments can require as little as 12-15 minutes to obtain a detailed 

description of children’s unimanual movements (Flatters, Hill, et al., 2014). 

Additionally, certain assessment tools require little specialist training to 

administer, and so can be deployed by research assistants, undergraduate 

students, or teachers. This contrasts with more clinical or laboratory-based 

measures, which often require administrators to undergo extensive training to 

gain sufficient technical expertise and/or accurately judge “acceptable” motor 

competence through observation. Consequently, tablet-based kinematic 

measures are more feasible in school-settings at a large scale.  

While feasibility is important, the accuracy of end-point kinematic devices is 

arguably even more crucial. Previous literature has found that the temporal and 

spatial accuracy can be “on-par” with more sophisticated laboratory-based 

systems (Culmer et al., 2009). The Slurp Tool (previously named the Lee-Ryan 

Eye-Hand Coordination Test) uses an Apple iPad application to measure tracing 

ability (Junghans & Khuu, 2019; K. Lee et al., 2014). It has been found to have 

high temporal accuracy, with precision to 1000th of a second (Junghans & Khuu, 
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2019). Similarly, CKAT (Culmer et al., 2009) is sensitive enough to detect the 

small differences across kinematic outcomes that exist between males and 

females (Flatters, Hill, et al., 2014). 

In conclusion, tablet-based end-point kinematic devices offer portable, process-

oriented assessment of sensorimotor control with adequate accuracy that can be 

administered quickly and cheaply within community-settings. Thus, they are an 

appropriate choice for use within large-scale cohort studies. 

3.1.4 Selecting the most appropriate kinematic variables  

As discussed, end-point kinematic assessments record a series of time-stamped 

X-Y coordinates, producing hundreds, if not thousands, of individual data points 

for a single trial. Using these data, an array of kinematic variables can be derived 

which such measures have been praised for. However, a dilemma faced by 

researchers is determining which aspects of movement to focus on, and how to 

quantify (sensori)motor control using the wealth of data available. Thus, whilst 

there is some overlap across studies, there is no universal agreement on the 

metrics used or the names to describe them, creating inconsistencies within the 

motor control literature (Tran et al., 2018). In addition, the likelihood of “cherry-

picking” metrics increases when such a large choice of kinematic measures is 

available (Murphy & Aguinis, 2019). For example, reviews have identified up to 

49 kinematic variables of upper limb function, with another finding 17 commonly 

used specifically in end-point kinematic assessments (De Los Reyes-Guzmán et 

al., 2014; Tran et al., 2018).  

In addition, even amongst similar aiming tasks, the metrics selected can vary 

widely. These can include: jerk; acceleration; movement time; peak velocity; 

reaction time, among others in various combinations (A. C. Cunningham et al., 
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2019; Flatters, Hill, et al., 2014; M. Heath et al., 1998; Hussain et al., 2018; Hyde 

& Wilson, 2011). As there are so many possibilities to describe movement, 

discrepancies sometimes occur even using the same measurement tool (e.g., 

Cunningham et al., 2019; Flatters, Hill, et al., 2014; Hill et al., 2016). Taking a 

simple reach-to-grasp task as an example, the upper-limb movements involved 

can be described in a plethora of ways. Movement Time could account for the 

time taken from the initial onset of movement through to coming to a complete 

stop, or it can be broken down further into phases within it (e.g., reaction time; 

time to peak speed; deceleration etc.).  

Researchers select the variables considered most appropriate in describing 

performance on a task, however a large amount of variance reflecting 

sensorimotor control is likely not captured by any single variable (Hussain et al., 

2019). The alternative, however, is equally unpalatable; to include tens of various 

kinematic metrics to describe performance on a single task, is usually not 

meaningful or practical. Striking the right balance between too few and too many 

metrics is particularly pertinent for clinicians and teachers, who need to 

understand where children’s difficulties lie but may not possess the skills to 

interpret complex kinematic analyses (Rosenblum et al., 2006). Thus, a more 

nuanced, empirically driven approach in selecting the most suitable kinematic 

metrics to describe performance on sensorimotor tasks is necessary. 

3.1.4.1 Principal Components Analysis  

Principal Components Analysis (PCA) is a data reduction technique which aims 

to determine which variables or metrics within a large dataset explain the largest 

amount of variance of an attribute or variable (Jolliffe, 2002; Ringnér, 2008). 

Previous work has used PCA to identify the most valuable metrics collected by 



92 

 

the KINARM (a robotic tool to study upper-limb motor control) to explain 

sensorimotor functioning in stroke survivors (Wood et al., 2018). It was found that 

up to 20 items per task could be reduced to three to five independent 

components; reducing the amount of data described by 67-79% (Wood et al., 

2018). Consequently, it became clearer which elements of the task should be 

retained for use in subsequent analyses, and which were redundant, adding 

unnecessary noise to the data. Similar studies have been conducted using PCA 

on a range of movement assessments, finding many kinematic variables can be 

reduced to a smaller number of independent components (Hinkel-Lipsker & 

Hahn, 2018; Matsuura et al., 2019; Sandlund et al., 2017). Using such methods 

reduces the ambiguity surrounding selection of kinematic metrics to analyse.  

PCA is one of the most common methods of unsupervised dimensionality 

reduction which aims to reduce a large number of correlated variables into new, 

uncorrelated principal components (Jolliffe, 2002; Ringnér, 2008; Van Der 

Maaten et al., 2009). Principal components are “linear combinations of the 

original variables” (Ringnér, 2008, p. 303) containing a large amount of the 

variance in the original dataset (Jolliffe, 2002). PCA is favoured over other 

methods such as Exploratory Factor Analysis (EFA) when the variables are 

thought to be “causal or formative indicators of the over-arching construct rather 

than reflective effects of it” (Wood et al., 2018, p. 2). EFA is typically employed 

when the underlying constructs cannot be measured or observed directly so rely 

on the derivation of hypothetical constructs (Cattell, 1973; Yong & Pearce, 2013). 

For example, screening tools for mental health diagnoses use directly observable 

symptoms to describe and categorise diagnoses like depression and anxiety 

(Timothy A. Brown et al., 1997). In contrast, items within PCA are directly 

measured but are reduced into a simpler form. Although alternative, non-linear 
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techniques have been developed to address some limitations of existing 

methods, comparisons of dimensionality reduction techniques have shown PCA 

is superior to competitor methods across various datasets (Van Der Maaten et 

al., 2009).  

3.1.5 The present study  

Within the present thesis, sensorimotor control was assessed using CKAT. As 

described in Chapter 1, this is a tablet-based device which aims to measure 

sensorimotor processing via uni-manual interactions with a hand-held stylus 

(Culmer et al., 2009; A. C. Cunningham et al., 2019; Flatters, Hill, et al., 2014). 

Despite being subject to similar limitations of end-point kinematic measures 

already discussed, CKAT was deemed an appropriate choice due to its 

applicability for use in large-scale community-based settings. CKAT shares 

several strengths common to kinematic assessment batteries (particularly its 

portability, accuracy, quick administration, and minimal need for specialist 

training).  

Like all kinematic assessments, CKAT generates an array of kinematic metrics, 

and it is currently not clear which are most appropriate and/or necessary in 

quantifying children’s sensorimotor control. Across the three tasks, there are 13 

different metrics obtained (see Table 7), equating to a plethora of data made 

available to researchers. For example, the Aiming task, records eight metrics for 

each of the 75 aiming movements produced. One full CKAT assessment battery 

produces a dataset of over 600 metrics per participant. This is an unrealistic 

number of independent measures to analyse on a trial by trial basis, and not 

useful for interpretation and dissemination. Currently, researchers select a 

handful of metrics a priori, which are argued, on theoretical grounds, to be the 
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most appropriate measures of children’s sensorimotor control within the given 

sub-tasks (e.g., Cunningham et al., 2019; Flatters, Hill, et al., 2014; Flatters, 

Mushtaq, et al., 2014; Giles et al., 2018; Raw et al., 2017). However, these 

metrics are not always consistent across studies and justification for these 

selections has, until now, not been motivated directly by empirical evidence.   

Furthermore, the metrics selected are sometimes then simplified further by 

averaging performance across the three tasks to produce a single “overall” 

measure (e.g., Hill et al., 2016). Similar to the issues discussed earlier in 

truncating measures (see section 3.1.3.2), this may mask subtleties within the 

underlying mechanisms of sensorimotor control. For example, previous research 

has found significant relationships between sensorimotor control and various 

cognitive and academic outcomes (Giles et al., 2018; Simmatis et al., 2020). 

However, these relationships were task-specific; academic achievement was 

only consistently related to performance on a Steering task, but not with Aiming 

or Tracking tasks. If performance across independent tasks was compiled into a 

single measure, such relationships may have not emerged.  

Consequently, the present study aims to use PCA to investigate how 

performance on CKAT can be most suitably used to conceptualise sensorimotor 

control. It aims to strike an appropriate balance between accounting for a large 

amount of variability in sensorimotor control from the many kinematic metrics the 

tool records, whilst limiting noise and redundant information. 
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3.2 Methods 

3.2.1 Participants  

The present study is a secondary data analysis of a dataset compiled from five 

previously published studies and dissertations (Berry, 2017; Flatters, Hill, et al., 

2014; L. J. B. Hill et al., 2016; Sheridan, 2015; Shire, 2016). These data are 

described in more detail in Chapter 1. In total, 1740 participants were included in 

these analyses, with an age range of 4-12 years (M = 7 years, 10 months, SD = 

2 years, 0 months). Participant demographics are displayed in  

Table 6. Participants were excluded from analysis for a particular task if more 

than one data point on any metric was missing. As such, the sample size for each 

task varied: Tracking (n = 1730), Aiming (n = 1323), and Steering (n = 1727). 

Ethical approval for the re-analysis of these data was granted by the University 

of Leeds ethics committee (Ethics reference: PSC-826).  

Table 6 

Sample demographics for the training dataset  

Handedness 
            Sex 

Male Female Total  

Left  111 88 199 

Right  749 786 1535 

Unknown  2 4 6 

Total  862 878 1740 

3.2.2 Procedure  

All data were collected between 2012 and 2014 from eight primary schools within 

Bradford. Detail of these data are described in Section  1.2.1.4. 
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3.2.3 Materials  

CKAT was used to measure children’s sensorimotor control via three tasks: 

Tracking, Aiming, and Steering which are described in detail below. It uses time-

stamped X-Y coordinates of the stylus location which are recorded at a rate of 

120 Hz to derive a range of task-relevant kinematic variables. During data 

collection, the preferred hand was used to complete the battery, with the device 

placed in front of the child, horizontally orientated and approximately 10 

centimetres from the edge of the table. In total, CKAT takes 12-15 minutes to 

complete. Testing was conducted on a Toshiba tablet PC (Portege M700-13P). 

A description of each of the kinematic variables recorded by CKAT and the task 

which captures them is included in Table 7.   



97 

 

Table 7 

Description of each kinematic variable automatically calculated by the Clinical-Kinematic Assessment Tool [continues on next page] 

 Metric Metric Category   Description   

All Tasks  Normalised Jerk  Dynamic Movement smoothness. A time-derivative of acceleration 

 Path Length Time  Temporal Time taken to create path length  

 Path Length  Spatial  Distance travelled from start to end of movement  

Task-
Specific 

   

Tracking & 
Steering  

Path Accuracy  Spatial Measure of spatial errors against a reference trajectory   

[continued] 
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Table 7 [continued] 

Description of each kinematic variable automatically calculated by the Clinical-Kinematic Assessment Tool [continues on next page] 

 Metric Metric Category   Description   

Aiming Only Peak Speed Temporal Fastest speed reached within the movement (mm/s)  

 Time to Peak 
Speed  

Temporal Time taken to reach peak speed (secs)  

 Deceleration Time  Temporal Amount of time from peak speed to end of movement (secs)  

 Reaction Time  Temporal Time between presentation of the stimulus & reaching a threshold of specified 
speed1 

 Movement Time  Temporal Time taken between movement first exceeding the velocity threshold then falling 
back below1 

[continued] 

 

 

 

1 Velocity threshold is set at 50 mm/s. 
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Table 7 [continued] 

Description of each kinematic variable automatically calculated by the Clinical-Kinematic Assessment Tool  

 Metric Metric Category   Description   

Tracking Only X Gain Dynamic  “Degree to which the movement corresponds to the target sine wave” on X axis 
(Culmer et al., 2009, p. 187).  

 Y Gain  Dynamic “Degree to which the movement corresponds to the target sine wave” on Y axis 
(Culmer et al., 2009, p. 187).  

 

 Mean RMSE Dynamic Amount of error related to both temporal & spatial accuracy in comparison to 
reference trajectory  

 Standard Deviation 
of RMSE 

Dynamic The SD of all RMSE measurements across conditions (i.e., amount of variability in 
tracking errors)  
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3.2.3.1 Tracking 

The first sub-task is Tracking which requires participants to use the stylus to track 

a moving red dot around the screen in a series of sinusoidal waves. It consists of 

two conditions; related to the presence or otherwise of a visual guide that 

indicates the target’s trajectory (shown in Figure 2). The “No Guide” condition is 

completed first, with three revolutions completed at three variable speeds: slow, 

medium, and fast (nine trials in total). These speeds of the target are 42, 84, and 

168 mm/s, respectively and it takes 84 seconds in total to complete the nine 

revolutions. The same procedure is then repeated for the “With Guide” condition 

but this time with the assistance of the visual guide. This provides additional 

spatial information to predict target trajectory and facilitate performance. 

However, the ability to take advantage of this additional spatial information has 

been previously found to be dependent on participant age and target speed 

(Ferguson et al., 2015; Flatters, Hill, et al., 2014). At slower target speeds, this 

information can be used more effectively, and it is of greater benefit to older 

children, who generally possess a greater degree of sensorimotor control 

(Flatters, Hill, et al., 2014). 
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Figure 2 

Infographic of the Tracking task on the Clinical-Kinematic Assessment Tool  
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3.2.3.2 Aiming 

The second task in the battery, Aiming, requires participants to make a series of 

75 aiming movements, as quickly and accurately as possible, towards individually 

presented targets that appear sequentially in a pseudo-randomised order. As 

shown in Figure 3, these aiming movements take the form of a pentagram but, 

unlike the With Guide condition of the Tracking task, no visual guide is provided. 

Upon arrival at each target, the target disappears and is immediately presented 

in a new target-location. Participants are required to keep the stylus in contact 

with the screen throughout the task. The first 50 of these movements are 

constant, totalling ten repetitions of the pentagram shape. The final 25 

movements incorporate a “Jump” condition. Six trials within this condition were 

included where the target location changes to the next in sequence as the 

participant reached 40mm from the target (accounting for 12 aiming movements). 

This required the execution of an online corrective movement (Flatters, Hill, et al., 

2014). These trials were included to reduce the predictability of the sequence and 

ensure participants treat each trial as an independent movement. These “Jump” 

trials were pseudo-randomly interspersed between 13 standard aiming 

movements, referred to hereafter as “Embedded-Baseline” trials. These were 

identical to those within the Baseline condition (i.e., the target did not change 

location), thus negating the need to make an additional online correction. Thus, 

the Aiming task comprised three target presentation types, which were included 

as independent conditions within the present analyses: Baseline, Jump, and 

Embedded-Baseline.  
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Infographic of the Aiming task on the Clinical-Kinematic Assessment Tool  

 

Figure 3 
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3.2.3.3 Steering 

The final task, Steering (previously referred to as “Tracing”; see Flatters, Hill et 

al., 2014) requires participants to accurately trace an abstract path (5mm wide) 

from the left to right side of the screen (see Figure 4). During this task, participants 

are also required to keep within a box which moves sequentially along the path 

every five seconds to constrain movement speed. This was included with the 

intention to prevent a speed-accuracy trade-off (Flatters, Hill, et al., 2014). Within 

this task, there are two conditions: “Shape A” and “Shape B” which are identical 

in shape but are mirrored vertically (see Figure 4). In the original version of the 

CKAT battery (Flatters, Hill, et al., 2014), each shape is presented three times in 

alternate order (i.e., A, B, A, B, A, B); six trials in total. However, to limit the 

duration of testing within the Starting School and Primary School Years sweeps, 

this was truncated to contain just one trial from each condition within these 

versions of CKAT (Shape A and B).   
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Figure 4 

Infographic of the Steering task (Shape A and Shape B conditions) on the Clinical-Kinematic Assessment Tool  

 

 Shape A  Shape B 



106 

 

3.2.4 Statistical Analysis  

3.2.4.1 Data Cleaning  

Prior to analysis, a mean value was calculated for each metric within each task, 

and within each condition within a task (e.g., a mean value for Peak Speed of the 

Jump trials within the Aiming task). The justification for this was to minimise the 

measurement error associated with random trial-to-trial variability. Therefore, the 

analysis would be more representative of children’s general sensorimotor 

performance and not influenced by random or outlying data points (potentially 

arising due to temporary fluctuations in the equipment’s sampling rate).  

In addition, as previously described, the Steering task originally contained three 

trials of each condition (Shape A and Shape B). However, in subsequent data 

collection within the Born in Bradford project, due to time limitations, this task was 

truncated to just one trial per condition: reducing the number of trials from six to 

two. The present analyses aimed to build models that would be applied to the BiB 

data which used the truncated version of CKAT. Therefore, to ensure uniformity 

across the data and allow direct comparison, only the first trial from each 

condition with this task was analysed within the present study (two Steering trials 

in total).  

Figure 5 breaks down the battery into each respective task and condition. 

Consequently, there were 42, 24, and 8 individual data points entered into the 

PCA for Tracking, Aiming, and Steering, respectively. To allow comparison 

across each metric, data were scaled and standardised. Throughout this chapter, 

note that “metrics” refer to the variable names (i.e., “Peak Speed” or “Movement 

Time”) and “items” refer to individual data points from a specified condition (i.e., 

“Fast + No Guide: Path Length”).     
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 Figure 5 

Flow diagram of the conditions included within each task of the CKAT battery 
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3.2.4.2 Principal Components Analysis  

Prior to conducting the PCA, assumptions were checked. The Kaiser-Meyer-

Olkin (KMO) test was used to verify the sampling adequacy for the analysis.  

Values for this statistic will lie between 0 and 1, with values below 0.6 are deemed 

“unacceptable” and those above 0.8 described as “meritorious” (Kaiser, 1974). In 

addition, KMO values for individual items are required to be greater than the 

acceptable limit of 0.5 (Kaiser, 1974). Bartlett’s test of sphericity indicated 

whether the correlations between items were sufficiently large to conduct PCA.  

PCA was conducted in R (Version 3.6.1; R Development Core Team, 2020) using 

the psych package (Version 1.9.12, Revelle, 2019). As discussed in Chapter 1, 

sensorimotor control encompasses a range of more specific behaviours, and 

each of the three CKAT tasks was designed to assess one of these more distinct 

fundamental behaviours within the domain of sensorimotor control. Thus, 

independent analyses were conducted for each task. This approach addresses 

previously discussed issues around reducing sensorimotor control, and wider 

motor skills assessment, which arise when performance gets collapsed into a 

single measure of “general motor skill”, as has been used in previous 

assessments. Additionally, by not inputting all data points into a single analysis, 

it provides scope for investigating specific relationships between various 

developmental outcomes, distinct aspects of sensorimotor control, and 

underlying mechanisms.  

3.2.4.2.1 Selecting the number of components to retain  

To determine the number of components to retain, several criteria were assessed 

and contrasted: eigenvalues, scree plots, and cumulative variance explained. 

Component eigenvalues represent the relative share of total variance accounted 
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for by that component (Finch et al., 2017). Kaiser’s criterion suggests that 

eigenvalues greater than one are considered acceptable (Kaiser, 1974). 

However, Zwick and Velicer (1986) suggest that Kaiser’s criterion should not be 

used in isolation and may lead researchers to inaccurately describe the 

underlying structure of data. Therefore, scree plots (Cattell, 1966) and cumulative 

variance were also examined. Scree plots (Figure 6, Figure 7, and Figure 8) 

demonstrate the eigenvalues visually on a line graph. Where the line begins to 

plateau, it suggests that including an additional component does not explain a 

substantial amount of additional variance. Lastly, the amount of cumulative 

variance a model explains was also examined. Jolliffe (2002) suggests a sensible 

threshold for cumulative variance is between 70 and 90%, although this can vary 

depending on the dataset in question. Cattell (1966) suggested that a “true 

number of factors to extract” does not exist (p.273), and thus interpretation of 

these three methods collectively is necessary to select the most appropriate 

number of components to retain. Where a consensus is not reached using the 

three criteria, multiple potential models may be tested and interpreted.  

3.2.4.2.2 Interpretation of components  

Once the number of components to be retained was selected, interpreting how 

each metric contributed to each component was determined via a two-stage 

process. The first stage involved examining component loadings. Metrics with 

component loadings greater than or equal to .50 were deemed to contribute a 

substantial amount of the variance of that component. Recommendations on 

what threshold to use varies across the literature, but Comrey & Lee (1992) 

suggest that loadings of 0.45 and above are “relevant”, 0.55 are “good”, and 0.63 

“very good”.  
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The second stage of interpretation involved reviewing these component loadings 

further alongside current theory. For example, in rare instances an item would 

load highly onto a component but a clear theoretical explanation for it doing so 

was not apparent. In other words, its loading appeared inconsistent with existing 

theory. The relevance of such items was investigated further in subsequent 

analyses. Considering component loadings are built upon mathematical models, 

Kellow does caution that the analyst is required to apply some “logical 

interpretation” in their analyses, rather than following strict and arbitrary criterion 

(Kellow, 2006). 

3.2.4.2.3 Application of rotations 

In addition, rotations were used to aid interpretability by transforming the 

coordinates of the component solution. This alters the loadings on each solution 

and often makes the loading patterns more distinct (Finch et al., 2017; Kellow, 

2006; Yaremko et al., 1986). However, rotation does not adjust the amount of 

variance a component explains, it simply changes the dimensional space of the 

data (Kellow, 2006). There are two methods of rotation: Oblique and Orthogonal. 

The most appropriate to apply depends on the correlation between items 

(Tabachnick & Fidell, 2019). If the correlation between items is .32 or above 

(implying at least 10% shared variance), it is recommended that an oblique 

rotation should be applied (Tabachnick & Fidell, 2019). Conversely, in models 

where items are not considered to be sufficiently correlated, it is recommended 

that an orthogonal rotation is applied. For the two types of rotations, there are 

multiple options available (e.g., Oblimin, Varimax, Promax, Quartimax). Within 

the present analyses, Oblimin and Varimax were used for oblique and orthogonal 

rotations, respectively. Although Gorsuch (1983) suggests that the choice of 
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rotation to be applied should not dramatically influence a clear structure, these 

respective methods were selected as they are among the most commonly used 

in the literature and most often recommended (Stevens, 1992; Tabachnick & 

Fidell, 2019).   

3.3 Results 

3.3.1 Tracking  

As outlined in Section 3.2.3.1 (see also Figure 2), the Tracking task consists of 

two conditions: “With Guide” and “No Guide” referring to the presence of the 

visual guide. These two conditions are then each performed at three different 

speeds: “Slow”, “Medium” and “Fast”; resulting in a total of six conditions for the 

task. In addition, seven metrics (see Table 7) are captured for each of these 

conditions. As such, 42 items were entered into the PCA.  

The KMO test verified the sampling adequacy, KMO = .93 (“marvellous” 

according to Kaiser, 1974). Bartlett’s test of sphericity indicated that the 

correlation between items was sufficiently high χ2 (861) = 78216.3, p< .001.  

3.3.1.1 Selecting components to retain  

From the 42 items entered into the model, analyses revealed eight components 

that had eigenvalues above Kaiser’s criterion of one, explaining a total variance 

of 71%. The scree plot (Figure 6) was slightly ambiguous, showing inflexions that 

would justify retaining both seven and nine components. Given the large sample 

size, the convergence of the scree plot, proportion of variance explained, and 

Kaiser’s criterion, nine components were initially retained to be interpreted 

further.  
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Note: Dashed line represents an eigenvalue of 1 on the Y axis.  

Figure 6 

Scree plot showing the number of components to be retained for the Tracking task 
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3.3.1.2 Description of component loadings  

Correlations between items indicated that an oblique rotation should be applied 

to aid interpretability of the component loadings. Refer to Table 8 for a breakdown 

of the component loadings following this rotation. Two of the eight components 

reflected performance on specific metrics across most of the six conditions: Path 

Length (Component 5), Normalised Jerk (Component 6). With the exception of 

one item (Fast + With Guide: Path Accuracy) inconsistently loading onto 

Component 5, these components consisted of only items related to each of these 

metrics. However, only on the Normalised Jerk component did items from all six 

conditions load sufficiently. The six remaining components were reflective of the 

six specific conditions within this task, with the same four metrics loading 

consistently on each: X Gain, Y Gain, Mean RMSE and SD of RMSE. One metric, 

Path Accuracy was not well accounted for in any of the components because it 

did not consistently load onto an independent component across all conditions, 

nor cluster with other metrics within one of the condition-specific components. 

This suggests that Path Accuracy does not appear to explain unique variance in 

kinematic performance within this specific CKAT task. The fit based upon 

diagonal values was .99, indicating a good model fit (Field et al., 2012). 
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Table 8 

Component loadings on an eight-component model for the Tracking task following oblique rotation (N = 1730). [Continues on 

next pages].  

 Component 

Item 1 2 3 4 5 6 7 8 

Slow + With Guide: Y Gain  -.92 -.01 .01 -.04 .07 .05 .03 -.03 

Slow + With Guide: SD of RMSE .90 .01 .03 .04 .02 .04 .04 -.01 

Slow + With Guide: X Gain -.87 -.05 -.01 -.08 .01 .01 .01 -.04 

Slow + With Guide: Mean RMSE .85 .06 .06 .09 -.08 -.02 .04 .03 

Slow + With Guide: Path Length .49 .00 -.02 -.01 .44 .18 -.03 .01 

Slow + No Guide: SD of RMSE .03 .90 .02 .00 .10 .11 -.02 .00 

Slow + No Guide: X Gain .06 -.90 -.01 -.01 .16 -.04 -.04 .04 

Slow + No Guide: Y Gain -.12 -.86 .01 .10 .03 .13 -.06 -.01 

Slow + No Guide: Mean RMSE .06 .74 .11 .09 .00 -.01 .14 .03 

Slow + No Guide: Path Accuracy .20 .50 .04 .04 .23 -.10 .12 .13 

[continued] 
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Table 8 [continued] 

Component loadings on an eight-component model for the Tracking task following oblique rotation (N = 1730).  

 Component 

Item 1 2 3 4 5 6 7 8 

Fast + With Guide: SD of RMSE .07 .01 .80 .02 .09 .01 .11 .00 

Fast + With Guide: Path Length .09 -.06 -.79 -.05 .33 -.03 .11 -.01 

Fast + With Guide: Mean RMSE .03 .06 .78 .08 .00 -.06 .07 .07 

Fast + With Guide: X Gain -.08 -.05 -.77 -.10 -.10 .04 -.01 -.08 

Fast + With Guide: Y Gain -.06 -.01 -.75 -.08 -.15 .01 -.05 -.06 

Medium + With Guide: SD of RMSE .05 -.04 .02 .92 .00 .08 .03 -.03 

Medium + With Guide: Mean RMSE .06 -.02 .11 .85 -.13 -.01 .06 -.01 

Medium + With Guide: X Gain -.09 -.03 -.03 -.84 -.05 .01 -.01 -.01 

Medium + With Guide: Y Gain -.11 -.01 .00 -.80 -.07 .03 -.03 .01 

[continued]  
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Table 8 [continued] 

Component loadings on an eight-component model for the Tracking task following oblique rotation (N = 1730).  

 Component 

Item 1 2 3 4 5 6 7 8 

Medium + No Guide: Path Length .07 -.02 .07 .06 .78 .06 -.13 -.07 

Medium + With Guide: Path Length .01 -.08 -.13 .02 .66 .09 .18 -.07 

Slow + No Guide: Path Length .12 .03 .01 .05 .61 .21 -.02 .13 

Fast + No Guide: Path Length .11 -.09 -.07 -.08 .60 -.05 .08 -.58 

Fast + With Guide: Path Accuracy -.05 .17 .24 .17 .57 -.05 .01 .19 

Medium + With Guide: Path Accuracy -.04 .14 .00 .45 .49 -.03 .04 .17 

Slow + With Guide: Path Accuracy  .14 .16 .00 .26 .47 .00 .00 .15 

Medium + No Guide: Normalised Jerk -.05 .04 -.02 .01 .00 .80 .19 .02 

Fast + No Guide: Normalised Jerk -.05 -.04 -.05 .02 -.03 .78 -.04 .23 

Medium + With Guide: Normalised Jerk -.05 .04 -.03 .16 .03 .74 .05 -.04 

Slow + With Guide: Normalised Jerk .29 .09 -.07 -.01 .06 .64 -.02 -.01 

Fast + With Guide: Normalised Jerk .08 -.11 .45 -.24 .02 .61 .03 -.10 

Slow + No Guide: Normalised Jerk -.04 .48 -.05 .09 .11 .54 -.13 -.01 

[continued] 
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Table 8 [continued] 

Component loadings on an eight-component model for the Tracking task following oblique rotation (N = 1730).  

 Component 

Item 1 2 3 4 5 6 7 8 

Medium + No Guide: Y Gain  -.06 -.06 .03 .02 .04 .06 -.87 -.01 

Medium + No Guide: X Gain .10 -.08 .02 -.04 .21 -.04 -.80 -.10 

Medium + No Guide: SD of RMSE .05 .02 .08 .11 .16 .21 .73 -.02 

Medium + No Guide: Mean RMSE .04 .11 .17 .18 .04 .04 .63 .08 

Medium + No Guide: Path Accuracy .16 .07 .10 .11 .32 -.13 .42 .13 

Fast + No Guide: Y Gain -.16 .01 .01 .05 -.05 .03 -.16 -.79 

Fast + No Guide: X Gain -.01 -.04 -.12 -.10 .17 -.05 -.08 -.73 

Fast + No Guide: SD of RMSE .14 .01 .08 -.03 .14 .23 .08 .68 

Fast + No Guide: Mean RMSE .08 .09 .22 .14 .07 .02 .11 .55 

Fast + No Guide: Path Accuracy .10 .09 .14 .11 .38 -.18 .02 .47 

Eigenvalues  4.73 4.26 4.23 4.58 3.89 3.31 3.47 3.57 

% Total Variance  11 10 10 11 9 8 8 9 

Note: Component loadings over .50 appear in bold and red typeface.  
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3.3.1.3 Interpretation of component loadings  

The loading of Normalised Jerk and Path Length on two performance-specific 

components suggest they both explain unique variance in sensorimotor control. 

Considering previous literature, it is perhaps not surprising that these elements 

surfaced as independent components. As previously noted, the nature of the 

Tracking task permits participants to make a series of corrective ad-hoc 

movements which can produce a less smooth trajectory. Alternatively, the 

participant can use forward models to predict target trajectory and apply 

anticipatory corrections to their own movement accordingly, producing smoother, 

less jerky, movement (Culmer et al., 2009). Additionally, as suggested by Nordin 

et al. (2014), efficient movement takes the shortest path to minimise a limb’s 

exerted effort. Thus, it is again unsurprising that a distinct component relating to 

Path Length emerged.  

For the six condition-specific components (i.e., Slow + With Guide), it was found 

that metrics related to both temporal and spatial accuracy loaded together (Mean 

RMSE, SD of RMSE, X Gain, and Y Gain), reflecting a dynamic aspect of 

sensorimotor control, whereby speed and accuracy interacted. This also reflects 

the nature of the task as participants are required to maintain spatial accuracy, 

by keeping the stylus on the target, at the same time as they exhibit temporal 

accuracy, in order to keep up with the increasing speed. From here on in, this is 

referred to as reflecting “Dynamic Accuracy”. 

There were, however, several theoretical inconsistencies, namely:  

• Slow + No Guide: Path Accuracy loaded onto Component 2. (related to 

“dynamic accuracy” of the Slow + No Guide condition)  
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• Fast + With Guide: Path Length condition loaded onto Component 8 

(related to Dynamic Accuracy of the same condition) 

• Fast + With Guide: Path Accuracy from the Fast + With Guide condition 

loaded onto Component 5 (related to overall Path Length).  

It is perhaps reassuring to note that for the first two of these inconsistencies, the 

additional item loaded onto condition-specific components of the same condition. 

With so few of these theoretical inconsistencies, it is arguably appropriate to apply 

some logical discretion and omit these items from further analyses. Lastly, only 

one instance of cross-loading was found. This was for Fast + No Guide: Path 

Length, which loaded onto both Component 5 (related to overall Path Length) 

and Component 8 (related to Dynamic Accuracy of the Fast + No Guide 

condition). The loading onto Component 8 could be considered theoretically 

inconsistent as it diverges from the general pattern of results found. Subsequent 

analyses will determine its importance in explaining performance within this task.  

A number of cases emerged where items did not load sufficiently onto any of the 

eight components. Four of these were items related to Path Accuracy. 

Interestingly, the two remaining Path Accuracy metrics which did reach the 

threshold of .5, did so only marginally (.50 and .57 for the Slow + No Guide and 

Fast + With Guide conditions, respectively). This suggests that for Tracking, 

metrics related to simple spatial accuracy do not capture unique variance well. 

Instead, more dynamic spatial metrics that also take temporal accuracy into 

account (e.g., Mean RMSE) appear more relevant. The only remaining item not 

loading sufficiently onto any of the eight components was Slow + With Guide: 

Path Length. 
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3.3.1.4 Summary  

Within the current literature, the metric most commonly used to quantify 

performance on the Tracking task is the mean RMSE (Flatters, Hill, et al., 2014; 

Flatters, Mushtaq, et al., 2014; L. J. B. Hill et al., 2016; Raw et al., 2012). It is 

therefore reassuring that the present findings support the importance of this 

metric in explaining variance in sensorimotor control, as it consistently loads onto 

all six of the condition-specific components. It also suggests that prior reliance on 

this metric alone in studies using CKAT is not without merit. However, this metric 

on its own explains a smaller amount of overall variance compared to the current 

model.  

For several reasons, it is also interesting that the component with the largest 

eigenvalue (therefore explaining the largest proportion of variance) is Slow + With 

Guide: Dynamic Accuracy. Firstly, at the slowest speed, and with the assistance 

of a visual guide, this condition could be considered the easiest to complete. This 

corroborates previous research finding that, with increasing speed, tracking 

performance significantly decreases (Ferguson et al., 2015; Flatters, Hill, et al., 

2014; Raw et al., 2012). Therefore, as the task becomes more difficult, children 

may place a larger emphasis on their temporal accuracy, in order to keep up with 

the target. As a result, the level of spatial accuracy is compromised. Thus, within 

conditions at the slower speeds, a more accurate representation of children’s 

sensorimotor control may be captured, suggesting why this condition explains the 

largest amount of variance. Further support of this claim comes from previous 

research, which finds this condition is most sensitive to detecting subtle sex 

differences in performance (Flatters, Hill, et al., 2014).   
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Furthermore, previous evidence suggests a shift in the internal sensorimotor 

mechanisms when the target speed increases. With increasing speed, less 

reliance is placed on feedback systems as it becomes more difficult to use online 

information provided by previous performance. This is due to a delay caused by 

visual processing (Wolpert et al., 1998). Instead, greater emphasis is placed on 

feedforward control mechanisms which predict and anticipate future target 

movement with minimal delay (Ferguson et al., 2015; van Roon et al., 2008; 

Wolpert et al., 1998). Thus, including condition-specific components enables 

researchers to pinpoint the specific mechanisms that may be sub-optimal in 

participants’ performance.  

3.3.2 Aiming 

The aiming task comprises three types of target presentation: “Baseline”, “Jump”, 

and “Embedded-Baseline” which refer to how the target moves between each 

trial (see Section 3.2.3.2 for a more detailed description). As detailed in Table 1 

eight metrics are captured during this task and thus, 24 items were included in 

the PCA.  

The KMO test verified the sampling adequacy; KMO = .83 (“meritorious” 

according to Kaiser, 1974), and all KMO values for the individual items were 

acceptable at >.67. Bartlett’s test of sphericity indicated that correlations between 

items were sufficiently large for PCA, χ2 (276) = 73242.02, p< .001. 

3.3.2.1 Selecting components to retain  

Four components had eigenvalues exceeding one, which explained a total 

variance of 85%. Upon also assessing the scree plot (Figure 7), four components 

were retained in the subsequent analyses.  
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3.3.2.2 Description and interpretation of component loadings  

Correlations between items were sufficiently high to apply oblique rotation to 

improve interpretability. Although a four-component model was retained based 

on the above criteria, the fourth component did not contain any items reaching 

the loading threshold of .5 (see Table 9). Thus, a three-component model was 

also subsequently extracted and interpreted after oblique rotation (see Table 10). 

These models will be discussed each in turn. Although counter-intuitive, loadings 

Note: Dashed line represents an eigenvalue of 1 on the Y axis.  

Figure 

Scree plot showing the number of components to be retained for the Aiming task 

Figure 7 
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above one are possible when using an oblique rotation as the loadings represent 

regression coefficients rather than correlations (Jöreskog, 1999). 

3.3.2.2.1 Four-component model  

Within the four-component model (see Table 9), the first component explained a 

large proportion of variance (41%). It consistently accounted for Reaction Time, 

Time to Peak Speed, and Path Length Time across all three conditions. In 

addition, Movement Time from the Jump and Baseline conditions also loaded 

highly, as well as Normalised Jerk from the Baseline condition. These metrics 

would suggest that this component is indicative of a participant’s “General Speed 

of Movement”, and will henceforth referred to as such. This interpretation is made 

on the basis that all the metrics loading here relate to how quickly the participant 

performs each trial. Furthermore, although not explicitly obvious, Normalised Jerk 

could also be considered a measure of speed as it is reflective of when there is 

a change in force such as during acceleration (Eager et al., 2016). It makes 

intuitive sense that a large proportion of unique variance within this task was 

related to speed compared to other tasks, as participants were instructed to 

perform “as quickly and accurately as possible” under no time constraints. 

Therefore, a larger emphasis may have been placed on speed rather than spatial 

accuracy.  

The second component explained 25% of the total variance. It contained the Path 

Length items from all three conditions, as well as two items related to the 

Deceleration Time metric, and one item of Movement Time. Therefore, this 

component could be interpreted as representing “Movement Efficiency” because, 

as previously described, efficient movement takes the shortest trajectory (Nordin 

et al., 2014) which is captured by Path Length. At first glance, the remaining items 
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may be deemed inconsistent, however when considering the mechanics of 

movement, rational explanations can be proposed. For example, although only 

one item of Normalised Jerk loaded onto this component, it could be argued that 

it is related to this component, as decreased path length is likely to represent 

smoother movement. It is also conceivable that with a decreased Path Length, 

movements may be quicker, producing quicker deceleration, and thus shorter 

Movement Time. Subsequent analyses will determine the importance of these 

items within this component (see Chapter 4).  

Component three was relatively simple, consisting only of items related to the 

Peak Speed metric across all three conditions (14% variance explained). This is 

interesting, especially considering previous research using CKAT has thus far not 

considered this metric within their analyses. However, previous research using 

other kinematic assessments has found individuals within clinical samples, such 

as Stroke patients (Hussain et al., 2018), children with DCD (Elders et al., 2010; 

Gonsalves et al., 2015), and ataxia (Ramos et al., 1997), have slower Peak 

Speed compared to healthy controls. This provides grounds for including it as an 

additional component of sensorimotor control to consider. Furthermore, Peak 

Speed is widely accepted as reflecting feedforward control, and it is this aspect 

of sensorimotor control which children with DCD show the greatest difficulty with 

(Elders et al., 2010; Plumb et al., 2008). Thus, including Peak Speed as an 

independent metric within the CKAT battery may be indicative of one of the key 

mechanisms underpinning proficient sensorimotor control.  

As previously stated, the fourth component did not contain any items which 

reached the threshold value. It also only contributed 5% of total variance, and 
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thus excluding it from subsequent analyses still captures 80% of total variance of 

the model.  

Lastly, within this model, several items did not load sufficiently onto any 

component, suggesting that they do not explain unique variance within this task. 

These items were: Normalised Jerk from the Embedded-Baseline and Jump 

conditions, as well as Deceleration Time from the Jump condition.  
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Table 9 

Component loadings on a four-component model for the Aiming task following 

oblique rotation (N = 1323) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Component loadings over .50 appear in bold and red typeface.  

 Component Loadings 

Item  1  2 3   4  

Embedded: Reaction Time  1.02  -.11 .04 -.12 

Jump: Reaction Time 1.01 -.17 .02 -.11 

Baseline: Reaction Time  1.00 -.11 .03 .12 

Baseline: Time to Peak Speed .92 .02 -.02 .17 

Embedded: Time to Peak Speed  .88 .12 .01 -.13 

Baseline: Path Length Time  .79 .20 -.11 .23 

Jump: Path Length Time .77 .30 -.10 -.09 

Jump: Time to Peak Speed .71 .12 -.13 .04 

Embedded: Path Length Time .69 .40 -.10 -.10 

Baseline: Normalised Jerk .68 .03 .44 .35 

Jump: Movement Time .68 .40 -.11 -.09 

Baseline: Movement Time  .51 .44 -.20 .32 

Jump: Deceleration Time .38 .37 .02 -.21 

Embedded: Path Length  -.12 .96 .19 -.03 

Jump: Path Length  -.04 .88 .20 .03 

Embedded: Deceleration Time  .10 .84 -.23 -.04 

Embedded: Movement Time  .28 .76 -.17 -.08 

Baseline: Path Length  .18 .64 .27 .41 

Baseline: Deceleration Time  .39 .50 -.22 .36 

Embedded: Normalised Jerk  .35 .46 .33 -.39 

Embedded: Peak Speed  -.11 .06 .91 -.04 

Baseline: Peak Speed  -.02 -.10 .89 .16 

Jump: Peak Speed  .03 .13 .86 -.13 

Jump: Normalised Jerk  .41 .24 .46 -.41  

Eigenvalues 9.92 5.93 3.29 1.14 

% of Total Variance  41 25 14 5 
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3.3.2.2.2 Three-component model  

After applying an oblique rotation (Oblimin), the clustering of items suggested a 

similar pattern to the four-component model, with only a few minor differences 

(see Table 10).   

Component 1 was identical to its equivalent in the four-component model, 

accounting for 42% variance and thus will not be interpreted further.  

Component 2 explained only 1% less variance than in the four-component model, 

differing only by replacing Deceleration Time from the Baseline condition with 

Normalised Jerk from the Embedded-Baseline condition. Interestingly, Baseline 

Deceleration Time was one of only two metrics that did not sufficiently load onto 

any component within this model (the other being Deceleration Time from the 

Jump condition). As two of three of the Deceleration Time metrics were not 

included in the model, it may suggest it has minimal relevance in explaining 

unique variance of sensorimotor control on this task, after accounting for other 

metrics. Deceleration Time is commonly understood as reflecting feedback 

control (Elders et al., 2010; Plumb et al., 2008). However, previous research has 

found group differences in the Movement Time of aiming movements in children 

with DCD are best explained by differences in Deceleration Time (Plumb et al., 

2008). Thus, as the (total) Movement Time metric within the CKAT battery 

encompasses both the time to peak speed and deceleration time, the feedback 

control mechanisms relating to deceleration may be already captured in 

weightings of Movement Time within this model’s components. As such, it is 

possible that including both metrics in the model is redundant and omitting 

Deceleration Time will not decrease the amount of variance explained.  
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Lastly, Component 3 again explained 14% of variance and only differed by one 

metric: the addition of Normalised Jerk from the Jump condition. This is arguably 

a theoretical inconsistency, given all other items relate to Peak Speed. In addition, 

the three Peak Speed items all loaded highly on this component (>.8) whilst 

Normalised Jerk had a comparatively weak loading (.6). 
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Table 10 

Component loadings on a three-component model for the Aiming task following 

oblique rotation (N = 1323) 

 Component Loadings 

Item 1  2 3  

Baseline: Reaction Time  1.03 -.14 .02 

Embedded: Reaction Time  1.00  -.10 .07 

Jump: Reaction Time  .99 -.16 .05 

Baseline: Time to Peak Speed  .96 -.01 -.04 

Embedded: Time to Peak Speed  .86 .13 .04 

Baseline: Path Length Time  .84 .16 -.14 

Baseline: Normalised Jerk   .77 -.02 .38 

Jump: Path Length Time  .76 .30 -.07 

Jump: Time to Peak Speed  .72 .11 -.13 

Embedded: Path Length Time  .67 .40 -.08 

Jump: Movement Time  .66 .40 -.08 

Baseline: Movement Time  .59 .39 -.24 

Baseline: Deceleration Time  .47 .45 -.27 

Embedded: Path Length  -.11 .95 .20 

Jump: Path Length   -.02 .87 .19 

Embedded: Deceleration Time  .10 .83 -.21 

Embedded: Movement Time  .27 .76 -.15 

Baseline: Path Length  .28 .58 .20 

Embedded: Normalised Jerk  .28 .50 .40 

Jump: Deceleration Time  .35 .39 .06 

Embedded: Peak Speed  -.10 .07 .91 

Jump: Peak Speed .02 .14 .88 

Baseline: Peak Speed  .02 .14 .88 

Jump: Normalised Jerk  .34 .28 .61 

Eigenvalues 10.12 5.77 3.34 

% Total Variance  42 24 14  

Note: Component loadings over .50 appear in bold and red type-face.  
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3.3.2.3 Aiming: Summary 

The model fit, based upon off-diagonal values was .99 for both the 3- and 4-

component models, indicating good fit (Field et al., 2012). In contrast to the 

Tracking task, it is interesting that components were not condition-specific (i.e., 

Peak Speed from all three conditions loaded onto a single component). This 

raises questions of the importance of all three conditions within the assessment 

battery if they are not explaining additional unique variance. However, 

movements made within the Jump condition can be thought of as “double-step” 

target movements, frequently used across the literature for assessing online 

control (Blanchard et al., 2017; Culmer et al., 2009; Hyde & Wilson, 2011). Thus, 

it may be sufficient and justifiable to truncate the Aiming task by only analysing 

the Baseline and Jump conditions and omitting redundant data from the 

Embedded-Baseline. The Embedded-Baseline trials were interspersed pseudo-

randomly around the Jump movements and were included only to ensure that the 

presentation of the target was not predictable when switching into and out of 

Jump movements (i.e., not every movement within the last 25 aiming movements 

was a ‘Jump’ trial). In additional confirmatory analyses (see later chapters), the 

relative appropriateness of both a 3- and 4-component model will be explored 

further.  

3.3.3 Steering 

The Steering task has only two conditions, each requiring the participant to steer 

along a differently shaped trajectory (Shape A and Shape B). Four metrics were 

captured within this task (see Table 7) and thus eight items were entered into the 

PCA. The KMO test verified the sampling adequacy for the analysis KMO = .60 

(“mediocre” according to Kaiser, 1974). Correlations between items were 
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deemed sufficient according to Bartlett’s test of sphericity, χ2 (28) = 4183.94, p < 

.001.  

3.3.3.1 Selecting components to retain  

Three components had eigenvalues greater than one and in combination 

explained 72% of the variance which is within Jolliffe’s (2002) recommendation 

of 70-90%. The scree plot’s inflexions justified the retention of three components 

(see Figure 8). Therefore, a three-component model was selected as the most 

appropriate for this task.  

Figure 8 

Scree plot showing the number of components to be retained for the Steering 

task 

 

 

 

 

 

 

 

 

Note: Dashed line represents an eigenvalue of 1 on the Y axis 

3.3.3.2 Description and interpretation of component loadings  

An oblique rotation (Oblimin) was applied to improve interpretability of the model. 

The model fit based upon off-diagonal values was good (.9). As Table 11 shows, 

three metrics loaded onto Component 1; Path Length (B); Normalised Jerk (B); 

and Path Length Time (B), explaining 34% variance. As previously discussed, 
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more efficient movement takes a shorter trajectory, reflecting greater control of 

the arm muscle and joints (Nordin et al., 2014). Additionally, less smooth 

movement (potentially due to making a series of ad-hoc, corrective movements) 

would likely produce a longer path length. Thus, on this task, it is not surprising 

that these items have loaded together. Thus, this component could be interpreted 

as representing “Movement Efficiency” of Shape B.  

Component 2 (explaining 33% variance), indicates a similar pattern but for Shape 

A: Path Length (A); Normalised Jerk (A); and Path Length Time (A). Like the 

Tracking task, it is interesting that the analysis indicates that the two conditions 

describe unique variance and should be interpreted independently. Likewise, 

Component 2 could be interpreted as signifying “Movement Efficiency” of Shape 

A.  

Lastly, Component 3 consists of Path Accuracy from both Shape A and Shape B 

as well as Path Length Time (B) which had a negative loading. Whilst it is 

conceivable that a less accurate trajectory perhaps takes longer to execute, it 

could be argued that Path Length Time (B) is theoretically inconsistent on this 

component. It also contributes a much smaller amount than the other two items 

in this component; only just reaching the threshold of .50. This item additionally 

shows evidence of cross-loading as it also sufficiently loads onto Component 1, 

justifying further investigation of its importance in explaining unique variance on 

this task. As Path Length Time for one or both conditions load across all three 

components, it is worth speculating that it may not be contributing unique 

variance in explaining performance on the Steering task. If Path Length Time is 

included in Component 3, it may be interpreted as reflecting general spatio-

temporal accuracy. A more intuitive interpretation though, may be to only include 
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the Path Accuracy metrics, which would be suggestive of this component likely 

representing solely “Path Accuracy”. Further analyses (see Chapter 4) will 

determine whether Path Length Time should be considered a redundant metric 

within this model, omitted from future analyses.  

Table 11 

Component loadings on a three-component model for the Steering task following 

oblique rotation (N = 1727) 

 Component loadings  

Item (Condition)  1  2   3 

Normalised Jerk (B)  .88 .01 .01 

Path Length (B) .84 -.03 .20 

Path Length Time (B) .64 .07 -.53 

Normalised Jerk (A)  -.10 .86 .05 

Path Length Time (A) .07 .77 -.32 

Path Length (A)  .08 .73 .32 

Path Accuracy (B) .10 .08 .85 

Path Accuracy (A) .01 -.07 .79 

Eigenvalues 1.95 1.90 1.89 

% of Total Variance 24 24 24 

Note: Component loadings over .50 appear in bold & red typeface. 

3.3.3.3 Summary  

A three-component model was deemed the most suitable for describing 

performance on the Steering task, explaining 72% of the variance. All eight items 

loaded sufficiently onto at least one component. There was however, one 

instance of cross-loading found (Path Length Time (B)) which was speculated as 

being theoretically inconsistent. 

In previous CKAT literature, Steering is quantified by the metric: penalised  
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path accuracy (pPA); a measure which amalgamates temporal and spatial 

accuracy, combining Path Length Time and Path Accuracy into a single measure.  

However, the current analyses emphasise the importance of Path Length as an 

additional measure of spatial accuracy in explaining variance associated with 

children’s sensorimotor control. Although not included in previous CKAT 

literature, other kinematic measures have previously used this metric as an 

outcome (e.g., Accardo et al., 2013; Naish et al., 2013; Rosenblum et al., 2013). 

Similarly, the present analyses demonstrate the importance of movement 

smoothness, which again has not been commonly considered for this CKAT task. 

Thus, these analyses suggest that the inclusion of additional spatial metrics, such 

as Path Length and Normalised Jerk would be beneficial for gaining a more 

detailed and accurate understanding of children’s sensorimotor control. 

Further investigation will determine whether Path Length Time is a necessary 

item for describing performance and how it relates to other items within the model. 

The model will also be validated using novel data with subsequent confirmatory 

analyses to assess its appropriateness for describing sensorimotor control on a 

kinematic steering task, in Chapter 4.  

3.4 Discussion  

The aim of this study was to employ a data reduction technique (Principal 

Components Analysis) to explore which of the numerous metrics that can be 

derived from an end-point kinematic assessment contribute in a systematic way 

towards describing children’s sensorimotor control. The present analyses were 

specific to the Clinical-Kinematic Assessment Tool (CKAT) and demonstrated its 

potential to capture more detailed summaries of children’s sensorimotor control 

than previous studies using this measure have (Flatters, Hill, et al., 2014; Giles 
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et al., 2018; L. J. B. Hill et al., 2016; Shire et al., 2016). It was found that the large 

variety of metrics available via CKAT could also be combined through analyses 

into a smaller number of theoretically meaningful dimensions, for all three tasks.  

For the Tracking task, analyses indicated that it was meaningful to differentiate 

across conditions for some of the more dynamic kinematic metrics (capturing both 

spatial and temporal accuracy). In addition, two more general (non-condition 

specific) dimensions emerged, each explaining variance associated with a 

specific aspect of sensorimotor control (i.e., Normalised Jerk and Path Length).  

For both Aiming and Steering, the same metrics were observed to load together 

on single components, irrespective of the task condition (Baseline versus Jump 

and Shape A versus Shape B, respectively). The variance within these two tasks 

was found to be sufficiently explained by three or four components for Aiming, 

and three components for Steering. Further investigation will determine which of 

the two potential models for the Aiming task is most appropriate, using unseen 

data.  

It is critical to note that these analyses demonstrate distinct dimensions existing 

within the over-arching construct of sensorimotor control, suggesting these 

nuances are masked when research condenses the description of motor control 

into a single “overall” battery measure (French et al., 2018). As previously 

discussed, this more reductive approach has been practiced in both kinematic 

(e.g., Hill et al., 2016) and traditional measures of motor ability (e.g., Henderson 

et al., 2007).  

This chapter also provides additional support for the use of kinematic measures 

in research, as it demonstrates the large level of detail that can be acquired in 

how movement is executed, rather than whether the “end-goal” is achieved, or 
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not. As discussed, from an applied perspective, this approach enables a clinician 

or teacher to identify which specific aspect of sensorimotor control a child is facing 

difficulties with (i.e., speed or spatial accuracy) and can thus intervene 

accordingly.  

From a research perspective, this study provides a platform for future work to 

investigate group differences in how movement is executed. For example, 

previous research has investigated sex differences in various aspects of 

children’s movement and motor control (Bolger et al., 2018; Flatters, Hill, et al., 

2014; Morley et al., 2015). This research has often demonstrated that boys’ and 

girls’ competencies differ as a result of task. For example, by determining 

performance using only one kinematic metric per task, it is difficult to determine 

exactly how movement varies across the sexes. The increased speed found in 

male performance on the Aiming task in Flatters et al. (2014) may be a result of 

a quicker response time, faster deceleration or shorter Path Length, or perhaps 

a combination of all of these. However, without using a more expansive method 

to record and describe kinematic performance, the ability to drill down into various 

aspects of sensorimotor control and identify which aspects are most informative 

and influential is not possible.  

With the increased level of detail of sensorimotor control that is demonstrated 

within the present study, a deeper understanding of potential group differences 

in the underpinning mechanisms is also possible. The example above describes 

sex differences; however, this can be applied to a wide number of demographic 

groups including ethnicity, age or clinical samples.  

3.4.1 Strengths and Limitations  
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A strength of this work is the large sample size, a vital prerequisite of PCA, as 

models built on smaller samples are much more susceptible to being influenced 

by outliers (Jolliffe, 2002). The smallest number of participants in the present 

analyses was in the Aiming task (n = 1323) which is still substantially larger than 

previous similar research, where the largest sample was 208 (Wood et al., 2018). 

In addition, the sample employed a wide age range (4-12 years), supporting its 

applicability for children across the primary school years.  

A potential limitation is that the sample included only typically developing children. 

Although not originally intended for diagnostic use, it may be beneficial to 

investigate further how the models compare to those built using clinical samples, 

such as children with DCD. This could indicate future applications of CKAT to 

more clinical settings. However, building models on “typical” children is first 

necessary, to better enable comparisons to then be made with children who are 

displaying “atypical” movement patterns.  

Furthermore, the analyses did not differentiate by handedness. Previous 

literature has found left-handers to perform more poorly on motor tasks, 

compared to their right-handed peers (C. Freitas et al., 2014). Whilst the literature 

may benefit from an investigation in the loading of kinematic metrics according to 

preferred hand, this was not possible in the present study. Although the sample 

size was large, there were not enough left-handed participants to achieve 

sufficient power for such sub-group analysis. However, the analyses were 

repeated after excluding left-handed participants producing models which 

replicated those produced on the whole sample.   

3.4.2 Conclusions  
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The aim of this work was to reduce the dimensionality of a large body of 

sensorimotor data collected via the Clinical-Kinematic Assessment Tool. This 

was achieved by conducting Principal Component Analysis to produce an 

empirically guided structure of new metrics to be used in subsequent analyses. It 

was found that for each of the three CKAT tasks, a reduced number of 

components was able to capture a large amount of variance underlying 

sensorimotor control. In addition, it is encouraging to learn that the results found 

here do align with the present use of CKAT, albeit with an additional level of detail 

captured. The present study also has wider applications. It demonstrates that 

dimension reduction techniques offer an alternative to cherry-picking kinematic 

variables to maximise the amount of variance explained. In addition, such 

techniques should be considered by researchers interested in limiting the amount 

of noise present in their sensorimotor data and/or if they wish to simplify the 

interpretation of their data, to optimise the level of detail captured whilst also not 

making it overly complicated for a less expert audience to also make good use of 

(e.g., informing clinicians and/or teachers in their respective practices).  

Further confirmatory analyses and interpretation with a new, unseen sample will 

confirm the model structures proposed in the present study (see Chapter 4). 

Necessary further adjustments can then be made before applying this revised 

scoring of CKAT to future experimental investigation of sensorimotor control (see 

Chapter 5 onwards). 
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Chapter 4 Further refinement of scoring kinematic assessments using 

Confirmatory Factor Analysis 

4.1 Introduction  

Before investigating potential relationships between sensorimotor control and 

other aspects of children’s lives, psychometrically sound measures are required. 

The development and refinement of such measures requires rigorous and robust 

statistical modelling across multiple contexts and samples (T. A. Brown, 2015; 

Schmitt & Kuljanin, 2008; Suhr, 2006). 

As discussed in Chapter 3, Principal Components Analysis (PCA) is a data 

reduction technique used to condense a large number of observed variables into 

a smaller array of components reflecting the underlying latent structure (Jolliffe, 

2002). Although widely used and suitable for this purpose, it is largely exploratory 

with no pre-determined hypotheses regarding the latent structure with items free 

to load across any component (Finch et al., 2017; Jolliffe, 2002). In addition, PCA 

has been described as “insufficient” as a standalone method, with one study 

finding discrepancies in component loadings across samples (Björklund, 2019; 

Finch et al., 2017). Thus, additional statistical techniques are required to 

complement PCA to produce robust model estimations.  

4.1.1 Confirmatory Factor Analysis 

Confirmatory Factor Analysis (CFA), like PCA, is a technique used to reduce a 

set of variables to a fewer number of factors representing latent constructs, based 

on shared variance (Babyak & Green, 2010; D. L. Jackson et al., 2009). However, 

it differs from more exploratory approaches such as PCA or Exploratory Factor 
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Analysis (EFA) in that it is hypothesis driven, with all aspects of the model 

specified by the researcher a priori based on existing research or theory such as 

imposing constraints (Babyak & Green, 2010; T. A. Brown, 2015; D. L. Jackson 

et al., 2009; Matsunaga, 2010). When used following PCA, CFA is often 

conducted on an “unseen” or novel sample, independent of that used to build the 

initial models with PCA. Thus, while PCA provides insight to the general shape 

of the latent structure, a larger amount of confidence can be placed in models 

that can be reproduced on data from new samples using CFA (Bandalos, 1996; 

Maccallum et al., 1999). This aids researchers in selecting the most suitable 

model from a number of plausible options suggested by the PCA.  

Furthermore, as PCA permits items to load freely, there may be numerous cases 

which do not align with theory. Thus, CFA can drive model re-specification which 

is guided by existing theory such as the omission of indicators which do not load 

highly onto any factor. Brown (2006) refers to these as “poorly behaved 

indicators” (p. 106). This produces models which are both mathematically and 

theoretically plausible. The shift in approach from exploratory to confirmatory is 

also reflected in the terminology used. For example, PCA refers to “items” which 

load onto “components”. In contrast, the CFA literature refers to these as “directly 

observed variables” loading onto “latent variables”.  

In summary, CFA offers the capacity to subject the models produced by PCA to 

further rigorous testing while accounting for existing theory. Thus, it is considered 

an appropriate method of analysis for the present study.    

4.1.2 The present study  

As previously described, the CKAT battery produces a large array of individual 

data points reflecting multiple kinematic metrics across different conditions for the 
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Tracking, Aiming, and Steering tasks. However, the prior PCA (Chapter 3) 

suggested systematic variation in performance on these three tasks could best 

be described by considering a smaller number of underlying latent variables. 

Each of these models had compelling justification as to why they were the most 

appropriate.  

For example, analyses suggested Tracking may be best described with eight 

components. For Aiming, while the criteria suggested a four-component model 

was the most appropriate, none of the items met the threshold, justifying the 

testing of the three-component model. Lastly, Steering analyses proposed that a 

three-component model may be suitable.  

Whilst these models derived from the PCA are the most mathematically 

parsimonious, some item loadings did not always align with theory. With further 

refinement guided by existing theory, it was predicted that a number of these 

theoretical inconsistencies would be eliminated. The present study tested the 

reproducibility of these models on a novel sample of 4-11 year old children and 

sought to determine which of the proposed plausible models was the most 

appropriate for each task. Ultimately, this process aimed to determine the single, 

best fitting model for each task that will be used to describe sensorimotor control 

data collected by CKAT throughout this thesis.  

4.2 Methods  

4.2.1 Participants  

The present study included sensorimotor data collected previously as part of two 

sub-cohorts within the Born in Bradford project; “Starting School” and “Primary 

School Years”. Detail of these two cohorts is described in Chapter 1. Relevant 
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demographic information for the participating children is presented in Table 12, 

including a breakdown from each cohort. In total, 22406 children were included 

in the present analyses, with an age range of 4-11 years (M = 7 years, 10 months; 

SD = 16.34 months). Similarly to the analysis in Chapter 3 (PCA), participant data 

were analysed on a task by task basis, with participants excluded from an 

individual task if more than one data point on any metric was missing. Therefore, 

the total sample size for each task was: Tracking (n = 22139); Aiming (n = 20030); 

Steering (n = 22266). Prior approval was granted from the BiB Executive Board 

for the analysis of these data.  

There is a slight discrepancy between the sample in the present study and that 

from which the models were trained with PCA (see Chapter 3). The Starting 

School and Primary School Years cohorts include 4-5-year-old and 7-10-year-old 

children, respectively (with the exception of two 6 year olds and one 11 year old 

child). Thus, there are no data for children aged 6 years. 
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Table 12 

Sample demographics for the test dataset 

 Starting School Primary School Years Full Cohort  

n 6586 15820 22406 

Sex (%)    

Males 1329 (20.2%)  8068 (51.0%) 9042 (40.3%) 

Females 1290 (19.6%) 7752 (49.0%) 9397 (41.9%) 

Not 

Specified 

3967 (60.2%)  0 3967 (17.7%)  

Mean Age [Range] 4 yrs, 11m [4 yrs, 0 m-5 yrs, 10m] 8 yrs, 4 m [6 yrs, 9 m-11yrs, 9m]  7 yrs, 10 m [4 yrs, 0 m-11yrs, 9m] 

Handedness (%)    

Left 592 (9.0%)  1626 (10.3%) 2218 (9.9%) 

Right  5968 (90.6%) 14175 (89.6%) 20143 (89.9%) 

Not 

Specified 

26 (0.4%)  19 (0.1%)  45 (0.2%)  
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4.2.2 Materials/Procedure 

Kinematic data were again obtained via CKAT, thus the materials and procedure 

are identical to that already described in Chapter 3.  

4.2.3 Statistical Analysis  

The data were prepared in the same way as previously reported to ensure 

uniformity (averaging across trials, centring and scaling). The models proposed 

by the PCA in the previous chapter were tested on these unseen data using 

Confirmatory Factor Analysis; via the lavaan package (Version 0.6.5; Rosseel, 

2012) for R (Version 4.0.0; R Development Core Team, 2020). 

Whilst the chi-square statistic is generally always reported, it is sensitive to 

sample size and nearly always significant when sample sizes are large (T. A. 

Brown, 2015; Byrne, 2013; Kenny, 2016). Thus, a selection of alternative 

goodness of fit indices were also included to determine model fit. Fit indices 

generally fall into three categories: absolute fit; parsimony correction; and 

comparative fit. Brown (2015) recommends one from each category should be 

inspected. Thus, the robustness of the proposed models was tested using 

Standardised Root Mean Square Residual (SRMR); Root Mean Square Error of 

Approximation (RMSEA); and Comparative Fit Index (CFI) based on 

recommendations from Brown (2015) and Kline (2005). Bayesian Information 

Criterion (BIC) was also inspected when conducting additional model 

modifications, with a smaller BIC being preferred. 

There is debate across the literature regarding the thresholds which should be 

used for each of these indices to determine a good-fitting model. For example, 

Browne & Cudeck (1992) reported that RMSEA <.08, SRMR <.08, and CFI > .90 
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suggests good model fit. Models with RMSEA values between .08 and .10 have 

also been reported as indicating “mediocre” model fit (MacCallum et al., 1996). 

More conservative fit indices have also been suggested in the literature, such as 

RMSEA <.06 and CFI > .95 (Hu & Bentler, 1999). However, as indicated by the 

lack of agreement across academics, such fit metrics should be considered 

guidelines rather than being overly rigid in applying arbitrary thresholds to 

interpret them (Hermida, 2015; Hooper et al., 2008). Although there are no 

universal guidelines regarding which should be used, the present study aimed 

towards: RMSEA <.10, SRMR <.08 and CFI >.90.  

Firstly, a one-factor model was tested where all items were loaded onto a single 

latent variable. This was to refute the hypothesis that individual task metrics do 

not differentiate into unique underlying dimensions.   

The original, unmodified models determined by the PCA were next  applied to the 

new sample. These models were the most mathematically parsimonious and 

blind to theoretical consideration. Thus, items were free to load on whichever 

component maximised the amount of variation explained. For example, this 

model would allow a Path Accuracy item to load onto a component where all other 

items were related to Path Length. From here on in, these models will be referred 

to as the “Statistical Model” for each of the three tasks. For each task, findings 

from the testing of two competing statistical models are reported.  

Next, hypothesis-driven amendments were made to the Statistical Models to 

increase the interpretability. This involved making alterations that principally 

sought to reduce theoretical inconsistencies in the relationships between the 

observed variables and the latent variables. For example, omitting items which 

were not theoretically consistent (i.e., removing Path Accuracy from the previous 
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example). Doing so aimed to determine a model fit which accounted for both a 

statistical and theoretical perspective. Such models are referred to as the “A Priori 

Theoretical Model”.  

Lastly, some additional refinement was conducted on some models to produce a 

“Posterior Theoretical Model”. This, however, was not always necessary. To 

arrive at these models, Modification Indices (MI) were examined in parallel to the 

Estimated Parameter Change (EPC) value to identify metrics with high shared 

covariance (T. A. Brown, 2015; Jöreskog, 1993; D. Kaplan, 1990). Re-specifying 

the model in this way by correlating error terms between variables can produce 

better fitting models but it is only recommended to do so if sound theoretical 

justification can be provided (T. A. Brown, 2015; Byrne, 2013; Jöreskog, 1993). 

For example, it would be difficult to justify items to correlate which did not have 

common characteristics (i.e., Slow + With Guide: Normalised Jerk with Fast + No 

Guide: X Gain). In contrast, greater rationale may be provided for allowing two 

items derived from the same condition such as Baseline Reaction Time and 

Baseline Path Length Time to correlate as they are derived from the same 

condition.  

4.3 Results  

Findings are reported for each of the three tasks in turn, This includes the one-

factor model, Statistical Model(s), A Priori Theoretical Model, and Posterior 

Theoretical Model.
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4.3.1 Tracking  

As noted, the prior PCA suggested an Eight-Component model was most 

plausible. Results for the One-factor, Statistical, A Priori Theoretical, and 

Posterior Theoretical Models are reported.   

4.3.1.1 One-factor model  

As expected, the unidimensional, one-factor model indicated poor fit across all fit 

metrics: χ2 (819, N = 22139) =  561860.49, p <.001,  CFI = .44, SRMR = .12, 

RMSEA = .18. Thus, it was evident that data from this task should be structured 

across multiple dimensions. The fit statistics for this model (and all subsequent 

models) are shown in Table 13. 
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Table 13 

Fit statistics for the proposed models of the Tracking task  

Model χ2 Df  CFI SRMR  RMSEA  BIC 

One-Factor Model 561860.49* 819 .44 .12 .18 2197310.98 

Eight-Factor Statistical Model 145821.45* 600 .83 .08 .11 1607285.72 

Eight-Factor A Priori Theoretical Model   133031.31* 499 .83 .11 .11 1473011.10 

Eight-Factor Posterior Theoretical Model 115659.98* 498 .86 .07 .10 1455649.77 

* Statistically significant at p<.001       
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4.3.1.2 Eight-factor statistical model  

The eight-factor statistical model was only approaching acceptable fit. As detailed 

in Chapter 3, this model included items deemed to be related to a form of 

“dynamic accuracy” for each condition, as well as independent components for 

items related to Normalised Jerk and Path Length. It did also include one cross-

loading item; Fast + No Guide: Path Length. The CFA showed mixed results with 

SRMR reflecting adequate model fit, RMSEA approaching acceptable, and CFI 

further from acceptable (χ2(600, N = 22139) =  145821.45, p <.001, CFI = .83, 

SRMR = .08, RMSEA = .11).  

4.3.1.3 A priori theoretical model  

It was evident that the removal of some theoretical inconsistencies was required 

to improve both the model fit and interpretability. The following items were omitted 

from the model: 

• Slow + No Guide: Path Accuracy from Component 2  

• Fast + With Guide: Path Length from Component 3  

• Fast + With Guide: Path Accuracy from Component 5 

• Fast + No Guide: Path Length from Component 8 

The removal of these items did not improve model fit as much as expected, with 

some fit indices actually worsening (χ2(499, N = 22139) = 133031.31, p <.001, 

CFI = .83, SRMR = . 11, RMSEA = .11). Thus, it was necessary to inspect the 

modification indices to understand how the model could be improved. 
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4.3.1.4 Posterior theoretical model  

Upon inspecting the modification indices of the A Priori Theoretical Model, it was 

evident that Fast + No Guide: Path Length explained a large amount of variance 

in both Components 5 and 8 (Overall Path Length and Fast + No Guide Dynamic 

Accuracy, respectively). Interestingly, it was not necessary for Fast + With Guide: 

Path Length to follow the same pattern and be included in Component 3 (Fast + 

With Guide Dynamic Accuracy). Goodness-of-fit indices demonstrated that 

although the threshold for CFI was not quite reached, this model was the most 

appropriate in explaining the underlying structure of the Tracking task from both 

a theoretical and statistical viewpoint χ2(498, N = 22139) = 115659.98, p <.001, 

CFI = .86, SRMR = . 07, RMSEA = .10). See Figure 9 for the path diagram of the 

final model. The model was interpreted as comprising six condition-specific 

“Dynamic Accuracy” components, plus components representing “Path Length” 

and “Normalised Jerk”. 
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Figure 9 

Path diagram of final model for Tracking task (Eight-Component Posterior Theoretical Model)  

 

 

 

Note: Rectangle boxes represent manifest (observed) variables. Double-headed curved arrows represent correlation. Ellipses represent latent 

(unobserved) variables. Single headed arrows from latent to manifest variables represent factor loadings – thickness of these arrows represent the size 

of the loadings. Single-headed arrows towards manifest variables represent residual error 
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4.3.2 Aiming  

As described in the previous chapter, although similar, both the three- and four-

Factor models were tested on the unseen sample to assess the most appropriate 

fit. Thus, the results from the One-Factor, Three-Factor Statistical, Four-Factor 

Statistical, and A Priori and Posterior Theoretical Models are reported. Table 14 

displays the fit statistics for all Aiming task models reported.  

4.3.2.1 One-factor model   

The unidimensional model did not converge due to a not positive-definite matrix, 

therefore results for this model are not reported. 
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Table 14 

Fit statistics for the proposed models of the Aiming task  

 

 

 

 

 

 

* Statistically significant at p<.001        

 

Model χ2 Df  CFI SRMR  RMSEA  BIC 

One-factor model Not positive-definite matrix 

Three-factor statistical model 948449.71* 206 .28 .10 .48 880642.79 

Four-factor statistical model Not positive-definite matrix 

A priori theoretical model 52913.47* 32 .72 .07 .29 434024.22 

Posterior theoretical model  18202.54* 30 .90 .06 .17 399333.10 
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4.3.2.2 Three-factor statistical model  

Although containing a number of items deemed theoretically inconsistent, this 

model included factors interpreted as General Speed; Peak Speed, and 

Movement Efficiency. Prior to further modifications, this model demonstrated very 

poor fit (χ2 (206, N = 20030) = 948449.710, p <.001, CFI = .28, SRMR = .10, 

RMSEA = .48.  

4.3.2.3 Four-factor statistical model  

This model only differed from the three-factor model by the omission of 

Normalised Jerk from the Jump and Embedded conditions, and the addition of 

Deceleration Time from Baseline. Although similar, without further re-

specification, the statistical four-factor model did not converge due to a not 

positive-definite matrix so is not reported.  

4.3.2.4 A priori theoretical model  

The three-factor statistical model contained a number of theoretical 

inconsistencies, many of which from the Embedded condition. Following the 

hypothesis proposed in Chapter 3 that this condition may be redundant and add 

additional noise rather than meaningful theoretical value, models excluding this 

condition were explored. In addition, Movement Time is defined as the time 

between the first movement exceeding 50mm/s and then falling back below it. 

Therefore, it could be argued that this item is predominantly captured by Path 

Length Time. In addition, this item just reached above the loading threshold for 

both the three- and four-factor models. Thus, it was considered justifiable to omit 

this item for both the Baseline and Jump conditions. Lastly, the Normalised Jerk 

metrics were omitted from the model as these did not load consistently on any 
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one component. After the omission of the items not aligning with prior theory, the 

model still had poor fit (χ2 (32, N = 20030) = 52913.47, p <.001, CFI = .72, SRMR 

= .07, RMSEA = .29. 

4.3.2.5 Posterior theoretical model 

Following inspection of the modification indices (MI), it was suggested that the 

model should allow Baseline: Reaction Time and Baseline: Time to Peak Speed 

(MI = 26565.43, EPC = .30), plus Jump: Path Length Time and Jump: Time to 

Peak Speed (MI = 5883.75, EPC = .19) to co-vary. Justification for modifying the 

model in this way is that these variables come from the same condition. In 

addition, one could argue that Time to Peak Speed and Reaction Time capture 

the ability to make initial movement at speed. Culmer et al. (2009) provided a 

visualisation to argue that Time to Peak Speed encompasses Reaction Time, 

therefore it is unsurprising that these variables share unique variance. 

Furthermore, the correlation between Path Length Time and Time to Peak Speed 

may be justified as it is likely to take less time to complete the task if the 

participant has a “head start” by reaching peak speed quickly. This is evidenced 

by previous research finding that when elements of an aiming task are modified 

via the inclusion of a distractor, movement takes both longer to execute (i.e. Path 

Length Time) and longer to reach peak speed (Mcintosh & Buonocore, 2012).   

After this relatively substantial re-specification, the model approached good fit 

(χ2 (30, N = 20030) = 18202.54, p <.001, CFI = .90, SRMR = .06, RMSEA = .17) 

and aligned more with existing sensorimotor control theory. When compared to 

the three-Component Statistical Model, the Posterior Theoretical Model which 

removed justifiably redundant or inconsistent items was vastly improved, 

χ2 difference (176, N = 20030) = 930247, p <.001. Figure 10 shows the structure 
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of the final model which was interpreted as representing “General Speed”; “Path 

Length”; and “Peak Speed”.  
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Note: RT = Reaction Time; TPS = Time to Peak Speed; PLT = Path Length Time; PL = Path Length; PS = Peak Speed  

Rectangle boxes represent manifest (observed) variables. Double-headed curved arrows represent correlation. Ellipses represent latent (unobserved) 

variables. Single headed arrows from latent to manifest variables represent factor loadings – thickness of these arrows represent the size of the 

loadings. Single-headed arrows towards manifest variables represent residual error 

Figure 10 

Path diagram of final model for Aiming task (Three-Component Posterior Theoretical Model)  
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4.3.3 Steering  

The PCA suggested a three-component model would be the most appropriate fit. 

Thus, the Statistical Model is reported alongside the A Priori and Posterior 

Theoretical Models. Fit statistics for all reported models can be found in Table 15.  

4.3.3.1 One-factor model 

Firstly, the one-factor model showed extremely poor fit, providing evidence that 

there are distinct sensorimotor dimensions underpinning this task (χ2 (20, N = 

22266) = 27282.64, p <.001, CFI = .53, SRMR = .14, RMSEA = .25). 
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Table 15 

Fit statistics for the proposed models for the Steering task  

Model χ2 Df  CFI SRMR  RMSEA  BIC 

One-Factor Model 27282.64* 20 .53 .14 .25  2574366.60 

Three-Factor Statistical Model 10676.37* 16 .82 .09 .17 458021.45 

A Priori Theoretical Model  1075.80* 6 .95 .03 .09 360521.40 

* Statistically significant at p <.001      
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4.3.3.2 Three-factor statistical model 

As reported in the previous chapter, the three-component model suggested Path 

Length Time from Shape B cross-loads across both Component 1 and 

Component 3. This was deemed theoretically inconsistent as the third component 

generally aligned with Path Accuracy. Although approaching acceptable model 

fit, further modification and re-specification was deemed necessary, (χ2 (16, N = 

22266) = 10676.37, p <.001, CFI = .82, SRMR = .09, RMSEA = .17).  

4.3.3.3 A priori theoretical model 

Some model re-specification was conducted to improve model fit and reduce the 

theoretical inconsistencies. Firstly, as suggested in Chapter 3, the Path Length 

Time metric (which had previously cross-loaded across Component 1 and 3) was 

omitted. This was for both Shape A and B. Justification for this decision was that 

one item related to Path Length Time loaded onto each of the three components, 

suggesting that as a whole, the metric adds little unique variance to the model. 

This is supported by no component consisting of solely items related to Path 

Length Time. In addition, the Steering task is somewhat temporally constrained 

with the inclusion of the timed box (see Section 1.2.2.1 for further detail) and thus, 

it may be less useful to include a temporal metric. The final model produced 

indicated good model fit, (χ2 (8, N = 22266) = 1075.80, p <.001, CFI = .95, SRMR 

= .03, RMSEA = .09). No further modification indices were deemed necessary. 

As shown in Figure 11, the final model contained three components, interpreted 

as Movement Efficiency (Shape B); Movement Efficiency (Shape A); and Path 

Accuracy.  
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Figure 11 

Path diagram of the final model for Steering task (three-component a priori theoretical model)  

 

Note: Rectangle boxes represent manifest (observed) variables. Double-headed curved arrows represent correlation. Ellipses represent latent 

(unobserved) variables. Single headed arrows from latent to manifest variables represent factor loadings – thickness of these arrows represent the size 

of the loadings. Single-headed arrows towards manifest variables represent residual error 
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4.4 Discussion  

4.4.1 Summary of findings 

The aim of the present study was to use confirmatory factor analysis to determine 

the most interpretable and appropriate model fit for three tasks of CKAT to 

measure sensorimotor control. The models tested were proposed by a principal 

components analysis conducted previously (see Chapter 3). Subsequent 

exploration guided further refinement of these models to determine the most 

appropriate factor structure to be taken forward and applied for future studies 

investigating children’s sensorimotor control. Findings suggested that 

sensorimotor control should be quantified via eight, three, and three dimensions, 

for the Tracking, Aiming, and Steering tasks, respectively. These factor structures 

had acceptable model fit when tested on a large, unseen dataset. Thus, we can 

place confidence in the ability of such model structures to account for 

performance on these sensorimotor tasks.  

Quantifying movement in the proposed structure better captures the multi-faceted 

nature of sensorimotor control and various skills that this encompasses (e.g., 

different aspects of speed, spatial accuracy etc.). The findings from the present 

study align with previous research such as Wood et al. (2018). Using an 

alternative kinematic assessment, metrics such as movement smoothness (i.e., 

normalised jerk) and reaction time were better described across multiple 

independent components, each explaining unique variance within sensorimotor 

control. 
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4.4.2 Strengths and limitations  

In comparison to other motor skill assessments and the previous use of CKAT, 

this refinement of the CKAT scoring provides a much more detailed description 

of how children execute movement. As previously discussed in Chapter 3, a large 

number of motor assessments are product-oriented (e.g., MABC-2), limiting the 

level of detail that can be captured. Even when process-oriented, kinematic 

assessments are used, the number of variables used to describe movement are 

often sparse. When compared to the Slurp Tool (K. Lee et al., 2014), which only 

quantified sensorimotor control via “time taken” and “number of errors” to account 

for spatial and temporal accuracy, the current analyses allow sensorimotor 

control to be described in a greater level of detail. Furthermore, alternative 

quantification of the CKAT subtests used in previous literature (e.g., Hill et al., 

2016; Shire et al., 2016) were guided by theory, but were not grounded by specific 

empirical testing. Thus, the latent structures proposed in the present study are 

arguably more robust and justifiable descriptors of systematic variation in task 

performance, and thus sensorimotor control.  

An additional strength of this study is the large datasets used to train and test the 

proposed models independently. PCA and CFA should not be conducted on the 

same samples, as this increases the risk of overfitting (Fokkema & Greiff, 2017). 

Thus, the current study benefits from using data collected from the Born in 

Bradford study, as this provides a large sample of sensorimotor data from a 

relatively homogenous sample of 4-11 year old children.   

There are some limitations to be noted. Whilst the models tested were based on 

prior principal components analysis, the final models do reflect some ad hoc 

refinement such as allowing the error to co-vary across items or truncating the 
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battery by omitting particular conditions. As discussed in Section 4.2.3 of this 

chapter, modifications should not be made to models without an adequate 

rationale, as this increases the risk of Type 1 error (Schreiber et al., 2006). 

However, all decisions concerning model re-specification were driven by existing 

theory and no modifications were made without sound theoretical justification. In 

addition, any correlated error terms included in the final models were all within 

the same component which Hooper et al. (2008) argue is preferred than allowing 

items to correlate across latent factors. For this reason, it was more justifiable to 

allow two observed variables from the Movement Efficiency latent variable to co-

vary rather than observed variables from different latent variables (e.g., co-

varying an observed variable from Movement Efficiency with an observed 

variable from Path Accuracy). It was deemed necessary to refine the structure of 

the latent factors in this way in order to increase interpretation and 

meaningfulness on an applied level – making it more user-friendly for clinicians, 

teachers, and researchers alike. 

Thus, the present analyses did encompass an element of exploratory analysis 

and so is not strictly confirmatory. However, the latent structures proposed in the 

present study are arguably more robust and justified than those in previous 

literature. Additional testing of these model structures can be conducted in future 

research across different populations when new data of a similar scale becomes 

available.  

4.4.3 Conclusions 

The present study aimed to inform future work on how to quantify sensorimotor 

control using CKAT. The factor structure proposed will be applied throughout 

subsequent studies within this thesis. It also provides evidence that sensorimotor 
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control is a complex, multifaceted construct and thus measurement and analysis 

of sensorimotor data should reflect this. Whilst the present use of CKAT is not 

clinically diagnostic, it will provide indication of the specific aspects of movement 

a child is having the most difficulty with. As such, targeted interventions and/or 

support can be implemented to limit the consequences of poor sensorimotor 

control (e.g., poor academic attainment). More specific to this thesis, these 

findings can be used to provide additional information on how particular aspects 

of sensorimotor control develop throughout childhood and may be impacted by 

external factors, such as sociodemographic influences.  
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Chapter 5 Understanding the relationships between ethnicity, 

socioeconomic circumstances and sensorimotor control 

5.1 Introduction  

Sociodemographic factors can have a dramatic impact on a wide range of health 

and developmental outcomes (Altschul et al., 2019; Brodersen et al., 2005; Drozd 

et al., 2021; Gouge et al., 2019; Wickersham et al., 2021). As discussed in 

Chapter 1, ethnic and socioeconomic inequalities have been found in several 

areas of health and development (Aspinall & Jacobson, 2004; Bann et al., 2021; 

Claussen, 2015; Delgado-Angulo et al., 2019; Garcia et al., 2020; Karlsen & 

Nazroo, 2010; Kate E Pickett & Wilkinson, 2015; Präg et al., 2016; Uphoff et al., 

2015; Wohland et al., 2015). Of particular concern is that these differences are 

found even in early childhood, likely contributing to further “domino effects”, 

through influencing the likelihood of additional adverse outcomes later in the life-

course.  

There are several proposed pathways in how one’s ethnicity may influence their 

health and development. Balarajan proposed these may include: “biological, 

cultural, religious, socio-economic or other environmental factors” (Balarajan, 

1996, p. 119). Karlsen (2007) adds to this by suggesting racism experienced by 

some ethnic minority groups may also contribute towards ethnic differences in 

health outcomes. Understanding whether ethnic differences exist, and to what 

extent is first required, before these mechanisms can be explored further.  

In terms of socioeconomic circumstances, research suggests increased 

disadvantage is associated with health and development inequalities at even a 

neurological level (Raizada & Kishiyama, 2010). Previous research has found 
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that these relationships may be explained by a combination of individual (e.g., 

education, income, living arrangements) and area-based (e.g., access to services 

and amenities, infrastructure of local area, general attitudes towards health 

behaviours) mechanisms (Flensborg-Madsen et al., 2019; Macintyre et al., 1993; 

Niemistö et al., 2020). These sociodemographic factors (ethnicity and 

socioeconomics) have also been associated with children’s motor abilities, with 

this research reviewed in the following sections.  

5.1.1 Motor skills and ethnicity  

Evidence to date has suggested ethnic differences within children’s motor skills 

(Adeyemi-Walker et al., 2018; L. M. Barnett et al., 2019; Chow et al., 2001; E. 

Cohen et al., 1999; Eyre et al., 2018; Josman et al., 2006; Kelly et al., 2006; 

Tripathi et al., 2008; Ueda, 1978; Victora et al., 1990). Specifically, two studies 

have found UK primary-school-aged children from a South Asian background 

exhibited significantly poorer fundamental movement skills or fine motor skills 

compared to their White British and Black peers (Adeyemi-Walker et al., 2018; 

Eyre et al., 2018; Kelly et al., 2006). Fundamental Movement Skills were 

measured using the Test of Gross Motor Development-2 (TGMD-2; Ulrich, 2000) 

which categorises tasks into two domains: “Object Control” (i.e., catching, kicking) 

and “Locomotion” (i.e., running, jumping). Of note, the relationships between 

motor skill and ethnicity differed by domain within these three studies. Significant 

ethnic differences were found in the locomotor subtest of the TGMD-2 but not 

object control. Interestingly, the opposite was found in an Australian study which 

compared the fundamental movement skills of children from “Asian” and 

“European” backgrounds. Significantly poorer object control skills were found in 

the Asian group, but this was not the case for the locomotor domains (L. M. 



168 

 

 

Barnett et al., 2019). Thus, the cited evidence raises questions about the 

methodology used when investigating ethnic variation regarding children’s motor 

skills. 

As discussed in Chapter 1, ethnicity is an incredibly complex and multi-faceted 

construct so assuming homogeneity of such large groups as “Asian” versus 

“European” may be inappropriate and introduce biases. Rather than providing 

participants with the opportunity to self-report their ethnicity (or use parental-

report), Barnett and colleagues (L. M. Barnett et al., 2019) split their sample into 

only two groups; based on the language spoken at home. A “cultural and 

linguistically diverse (CALD) classification hierarchy” then determined whether 

they should be grouped as “Asian” or “European”. Grouping individuals in this 

way, however, does not necessarily determine a child’s ethnic background 

accurately. For example, in some African countries such as Cameroon or Congo, 

the official language is French and thus regularly spoken in the home. Applying 

this classification in such a setting would erroneously assume children from these 

countries are more like their European peers although the culture (and genetics) 

are likely very different. Additionally, this method classifies children from a large 

range of different ethnicities (i.e., who speak a variety of different Asian 

languages) within the same category. Therefore, the subtle nuances of one’s 

ethnic identity may not be accurately captured when using language spoken at 

home as a proxy measure for ethnicity. Thus, the findings should be interpreted 

with caution.  

Similar limitations may be found within other studies which group participants as 

simply “Black”, “White” or “Asian” (e.g., Adeyemi-Walker et al., 2018; Eyre et al., 

2018). Instead, focus should be placed on a more specific ethnic group (e.g., 
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White British) rather than more general groups (e.g., White) as large 

discrepancies across culture can still arise. Overgeneralisation of ethnicity 

increases the risk of assuming homogeneity within a large range of individuals 

which may otherwise vary largely (Bradby, 2003; Nazroo, 1998; Nazroo & 

Williams, 2006). For example, categorising an individual as “Asian” within the US 

encompasses people from approximately 28 different countries – each having 

their own unique religion, cultural practices and belief systems (Lin-Fu, 1993). 

Indeed, Bhopal et al. (1991) argue that the term “Asian” is rarely used as a self-

descriptor by people around the South-East Asian continent. Rather, it is a term 

used by others outside of that community. Consequently, more specific, 

appropriate, and inclusive terminology is required when investigating ethnic 

differences.  

Secondly, ethnic differences may be a result of methodological constraints in the 

measurement of motor skills, and biases that may arise due to these chosen 

methods. The TGMD-2 (used by (Adeyemi-Walker et al., 2018; L. M. Barnett et 

al., 2019; Eyre et al., 2018) is a standardised assessment battery widely used in 

the literature to assess children’s fundamental movement skills, but it has several 

limitations specific to this line of research. For example, batteries such as the 

TGMD-2 (Ulrich, 2000), as well as the BOT-2 (Bruininks & Bruininks, 2005), are 

assumed to be an accurate representation of general motor competence but are 

largely sport-specific (Larsson & Quennerstedt, 2012; Ng & Button, 2018). 

Subsets include kicking, striking a stationary ball, throwing a ball at a target, and 

catching a tossed ball. Some researchers have suggested that such skills are 

based on norms often biased by sex, race and social status (Larsson & 

Quennerstedt, 2012; Jan Wright & Burrows, 2006). Furthermore, some skills 
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within assessment batteries may be more akin to sports played more frequently 

within some groups than others (Bardid et al., 2015). Thus, disadvantaged or 

minority groups (e.g., ethnic minorities, low-income households), who are less 

likely to engage in extra-curricular activities such as sports (Brockman et al., 

2009; Casper et al., 2011; Somerset & Hoare, 2018) are likely disadvantaged in 

being able to develop their skills in a way which meets the requirements of the 

task (e.g., two-handed ball strike). As a result, they are deemed less competent 

than their peers because their motor skills are assessed in this biased context, 

even if their core sensorimotor mechanisms may be equally well-developed - just 

less adapted to the specific expectations of the dominant culture.   

However, as discussed in Chapter 3, even if assessment batteries are not sport-

specific, they are often subjective in nature; relying on observation methods by 

trained researchers or clinicians, such as the MABC-2 (Henderson et al., 2007) 

and DDST (Frankenburg & Dodds, 1967). The subjectivity of such assessment 

batteries may be exacerbated when investigating ethnic or socioeconomic 

differences due to potential unconscious biases or experimenter effects. For 

example, when assessing interventions, studies with non-blinded assessors are 

generally more likely to find significant effects compared to those blinded to the 

experimental objectives (Hróbjartsson et al., 2013). Previous research has also 

suggested that implicit biases towards various sociodemographic groups (e.g., 

defined by ethnicity, SES, sex) may impact perceptions of children’s abilities 

(Mason et al., 2014). The avoidance of such biases may therefore be difficult 

when using subjective assessments and thus previous findings may not reflect 

true ethnic differences but rather limitations with the method of assessment. 

5.1.2 Accounting for SES  



171 

 

 

As briefly discussed in Chapter 1, when conducting such research, it is important 

to acknowledge that ethnicity cannot and should not be viewed in isolation. It has 

been argued that ethnicity is intertwined with SES; with the two interacting with, 

and confounding each other (Cheng et al., 2015). As early as 1916, differences 

in health (mortality rates) between Black and White people were explained by 

differences in socioeconomic circumstances rather than genetic or cultural 

differences (Trask, 1916). Williams (2002) stated that the ethnic differences in 

health are much smaller than differences between socioeconomic groups, with 

most ethnic differences being a result of socioeconomic inequality (Navarro, 

1990; Sheldon & Parker, 1992). More recent support for this claim comes from 

work demonstrating that ethnic differences in health and lifestyle are still 

apparent, but drastically reduced when accounting for SES (Erens et al., 2001; 

Marshall et al., 2007; Nazroo, 2003; Williams, 1999).  

There is evidence to suggest that the relationship between ethnicity and SES 

should also be taken into consideration when investigating ethnic differences in 

children’s motor skills. Whilst Kelly et al. (2006) found Pakistani and Bangladeshi 

infants were significantly more likely to exhibit delay in gross and fine motor 

milestones, these ethnic differences disappeared when adjusting for SES. That 

is, the advantage originally exhibited by White British infants compared to 

Pakistani and Bangladeshi was explained by differences in their socioeconomic 

circumstances. 

Indeed, individuals from ethnic minorities are generally over-represented in the 

most deprived groups based on income, particularly those from Pakistani or 

Bangladeshi backgrounds (Nazroo & Williams, 2005; Office for National 

Statistics, 2018). Previously cited evidence which found children of South Asian 
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origin exhibit poorer motor skills (e.g. Adeyemi-Walker et al., 2018; Eyre et al., 

2018) did not account for SES in analyses, only suggesting that participants all 

came from schools in “low-SES areas” of England. Individual socioeconomic 

circumstances, and the nuances of SES were not appropriately acknowledged or 

controlled for. Thus, it is conceivable that any ethnic differences previously found 

may be a result of the inequalities associated with social disadvantage in wealth 

within the sample, rather than genetic or cultural differences. If this is the case, a 

different approach would be necessary for addressing differences through 

prevention or intervention strategies, as a result of social disadvantage compared 

to differences related to genetics or culture.  

5.1.3 Motor skills and SES  

The idea that ethnic differences in motor skills are the result of associated 

differences in SES is entirely plausible considering the large body of evidence 

which demonstrates how children’s motor abilities are strongly associated with 

their family’s socioeconomic situation. Research shows that children from lower 

SES backgrounds (based on indicators such as education, employment status, 

household income), are at an increased risk of poor motor ability compared to 

their less-deprived peers (Adkins et al., 2018; Comuk-Balci et al., 2016; Cools, 

De Martelaer, Samaey, & Andries, 2011; Ferreira, Godinez, Gabbard, Vieira, & 

Caçola, 2018; Ghosh, Ghosh, Dutta Chowdhury, Wrotniak, & Chandra, 2016; 

Mcphillips & Jordan-Black, 2007; Mülazımoğlu-Ballı, 2016; Verheijen et al., 2020; 

Zeng, Johnson, Boles, & Bellows, 2019). For example, Morley and colleagues 

(Morley et al., 2015), used the Index of Multiple Deprivation (IMD; Ministry of 

Housing Communities and Local Government, 2007) and the BOT-2 (Bruininks-

Oseretsky Test of Motor Proficiency; Bruininks, 1978) to investigate the impact of 
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SES on both fine- and gross-motor skills in 4-7 year olds. It was found that 40% 

of the children in the low SES group scored below average on the BOT-2, 

compared to only 22% of the children in the high SES, and 19.4% of children from 

the medium SES groups. Using maternal education as a measure of SES, 

research has found it to significantly predict fine motor (Comuk-Balci et al., 2016; 

Verheijen et al., 2020) and locomotor (Zeng et al., 2019) skills in early childhood. 

However, the relationship between SES and motor ability is somewhat dependent 

on how SES is conceptualised, and which indicators are used. For example, 

significant associations have been found for parental education, but not parental 

occupation within the same sample (Cools et al., 2011). Therefore, differences in 

which indicators of SES are used may account for some inconsistencies across 

the literature as to how strongly SES may influence motor abilities.  

5.1.4 Interaction between SES and ethnicity  

Furthermore, the complexities of the relationship between ethnicity and 

socioeconomic inequalities have also been established in research investigating 

social gradients in multi-ethnic samples. The term “social gradient” refers to the 

phenomenon that inequalities in health are often related to inequalities in 

sociodemographics, whereby the poorest individuals are often the sickest (Cheng 

et al., 2015; World Health Organization, 2013). Previous research has shown 

steep social gradients for various health outcomes (e.g., preterm birth, mental 

health) for White British individuals which are not replicated to the same extent 

for Pakistanis (Aveyard et al., 2002; Bhopal et al., 2002; Chandola, 2001; 

Fischbacher et al., 2014; Mallicoat et al., 2020; Uphoff et al., 2015; Zilanawala et 

al., 2016). In other words, ethnicity appeared to moderate the relationship 

between SES and health. Thus, it is possible that the same trend applies to 
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children’s motor skills, in that there may be larger discrepancies in motor skills 

between socioeconomic groups within White British, compared to Pakistani 

individuals. 

5.1.4.1 The present study  

Upon reviewing the current evidence, it was evident that studies exploring the 

association of one’s ethnicity and/or socioeconomic circumstances often use 

methodologies which are not optimal, leading to a lack of clarity and consistency 

of results when reviewing the current evidence. For example, the subjective and 

sport-specific nature of the assessments often used may confound findings. 

Instead, by focusing on the underpinning mechanisms of movement, a more 

detailed understanding of how movement is sub-optimal can be obtained. 

Kinematic assessment batteries offer this ability (discussed in detail in Chapter 

3) and are arguably preferable to more subjective assessments, which are more 

prone to bias and human error. By measuring motor skills more accurately and 

objectively, greater confidence can also be placed in conclusions drawn from 

studies exploring its association with various sociodemographic factors. 

In Chapter 3 and Chapter 4, PCA and CFA, respectively, were conducted to 

reduce the dimensionality of the kinematic output from CKAT. It was predicted 

that a measure which describes a greater amount of systematic variance, that is 

based upon both theoretical and empirical evidence would be better able to 

capture more subtle differences in sociodemographics, compared to conventional 

scoring methods of CKAT (i.e., a priori metric selection based on theoretical but 

not empirical justifications). In addition, using a data-driven approach of selecting 

kinematic variables criticism of potential “cherry-picking” of variables (Murphy & 

Aguinis, 2019). This is the first study to apply this revised scoring procedure to 
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answer novel research questions. Thus, the analyses within Study 1 of this 

chapter used the “conventional” one-metric-per-task scoring system (e.g. L. J. B. 

Hill et al., 2016) and Study 2 used the novel, revised approach derived in Chapter 

3 and Chapter 4.  

Measurement choices in relation to SES may also explain some of the 

inconsistencies found across the literature thus far, as different relationships have 

been found depending on the way SES has been measured. By investigating 

multiple measures of SES, it is possible to pin-point which may be more accurate 

indicators of children requiring additional help. As previously discussed, a latent 

measure of SEP may better capture the multifaceted nature of the construct. 

Chapter 2 describes the method used to obtain latent classes of SEP from 19 

individual indicators which were adjusted for individual ethnicity. Thus, as was the 

case for sensorimotor control, the analyses were conducted using both the 

“conventional” method of multiple, commonly used individual predictors of SES 

in Study 1 here and again with the latent class measure of SEP in Study 2.  

Furthermore, rarely do studies explore the complex interaction between ethnicity 

and SES. Considering how sensorimotor control underpins a large aspect of 

children’s development and wellbeing (Augustijn et al., 2018; Harrowell et al., 

2018; L. J. B. Hill et al., 2016; Kwan et al., 2016; Zwicker et al., 2013), this gap in 

the literature needs addressing. By understanding ethnic differences (or even 

whether they exist after appropriately controlling for SES), it is possible to address 

potential inequalities through targeted intervention, which may be specific to 

ethnic minority groups.  

As such, the present chapter aimed to use an objective kinematic assessment 

tool to explore how ethnicity and socioeconomic circumstances influence 



176 

 

 

sensorimotor control in school-aged children. It also aimed to investigate how 

these relationships are affected by the method of measuring these variables. To 

do so, the present chapter is divided into two distinct studies. The first study uses 

the “conventional” measures (CKAT scoring and SES) and the second uses the 

“revised” measures to explore the relationships between ethnicity, socioeconomic 

position and sensorimotor control. Specifically, the following predictions were 

made:  

1. Ethnicity will significantly predict children’s sensorimotor control 

performance in both Study 1 and 2 after controlling for age, sex, and 

handedness  

2. Conventional measures of SES and cohort-wide SEP will both significantly 

predict children’s sensorimotor control performance in their respective 

studies after controlling for age, sex, and handedness  

3. The strength of the relationship between ethnicity and sensorimotor 

control performance will weaken or disappear when controlling for 

conventional SES or cohort-wide SEP, and age, sex, and handedness  

4. If a relationship with ethnicity persists after controlling for conventional 

SES or cohort-wide SEP, it will be moderated by the relationship between 

sensorimotor control performance and conventional SES, or ethnic-wide 

SEP  

5. The impact of SEP on sensorimotor control will differ by ethnic group when 

using an ethnic-specific measure in sub-group analyses 
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5.2 Study 1  

5.2.1 Method  

5.2.1.1 Study setting and participants  

The present study is a secondary data analysis of data collected from the Starting 

School sweep within the Born in Bradford study (this cohort is described in detail 

in Chapter 1). A detailed analysis plan was pre-registered prior to accessing 

secondary data from BiB (see https://osf.io/jb5z3/). Although data from “non-BiB” 

children were also collected within this sweep, only those with both complete 

sensorimotor data and additional demographic information obtained during the 

Baseline Questionnaire were included in the present analyses (n = 2480). Due to 

the bi-ethnic nature of the sample, most participants identified as either White 

British (n = 806) or Pakistani (n = 1362), with 312 recorded as “Other”. As such, 

participants coded as “Other” were excluded from this analysis. The number of 

participants from the various ethnic groups within this category were too few to 

enable meaningful statistical analysis of them. In addition, only participants with 

complete sensorimotor and demographic data were retained in the final analysis 

(n = 2168).  

Table 16 displays the demographic information for this sample and shows how 

this varied by ethnic group. As can be seen in the table, a larger proportion of the 

sample were of Pakistani origin and a larger proportion of Pakistani individuals 

were categorised into the lower SES groups compared to their White British 

peers. This is particularly evident for proportion of those in the most deprived IMD 

quintile. Similarly, an approximately even split between those receiving and not 

receiving means-tested benefits was also found with Pakistani mothers, whilst a 

https://osf.io/jb5z3/
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larger proportion of White British mothers did not receive such benefits. The 

distribution of education levels were relatively similar across the two ethnicities.
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Table 16 

Demographic information for the whole sample and stratified by ethnicity 

 Pakistani White British Whole Sample  

Child Demographics    

N (%) 1362 (62.8) 806 (37.2)  2168 (100.0)  

Sex     

Male (%) 687 (50.4)  412 (51.1) 1099 (50.7) 

Female (%) 675 (49.6) 394 (48.9) 1069 (49.3) 

Handedness    

Left (%) 103 (7.6) 98 (12.2) 201 (9.3) 

Right (%)  1259 (92.4) 708 (87.8) 1967 (90.7) 

Maternal Demographics     

Receipt of Means-Tested Benefits     

Yes (%) 647 (47.5) 307 (38.1)   954 (44.0) 

No (%)  715 (52.5) 499 (61.9)  1214 (56.0) 

IMD Quintile1     

1 (%) 1121 (82.3) 420 (52.1) 1541 (71.1) 

2 (%) 175 (12.8) 161 (20.0) 336 (15.5) 

3 (%) 62 (4.6) 170 (21.1) 232 (10.7) 

4 (%) 2 (0.1) 33 (4.1) 35 (1.6) 

5 (%) 2 (0.1)  22 (2.7) 24 (1.1) 

Maternal Education     

< 5 GCSEs equiv. (%) 383 (28.1) 180 (22.3) 563 (26.0) 

5 GCSEs equiv. (%) 472 (34.7) 291 (36.1) 763 (35.2) 

A-Level equiv. (%) 157 (11.5) 119 (14.8) 276 (12.7) 

> A-Level equiv. (%) 290 (21.3) 137 (17.0) 427 (19.7) 

Don’t Know (%) 21 (1.5) 9 (1.1) 30 (1.4) 

Foreign Unknown (%) 4 (0.3) 0 (0.0) 4 (0.2) 

Other (%)  35 (2.6) 70 (8.7) 105 (4.8) 

1 Most Deprived = Quintile 1, Least Deprived = Quintile 5. 
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5.2.1.2 Materials  

5.2.1.2.1 Socioeconomic Status (SES)  

Information regarding mothers’ socioeconomic circumstances was collected at 

recruitment within the BiB Baseline Questionnaire. Although a number of SES 

variables were recorded, the present analyses focused on three commonly used 

within studies from the Born in Bradford cohort and the wider literature: maternal 

education; IMD (Department of Communities and Local Government, 2011), and 

receipt of means-tested benefits. The subsequent sections describe each of 

these measures in turn.  

5.2.1.2.1.1 Index of Multiple Deprivation (IMD) 

IMD is used to classify English neighbourhoods into quintiles based on the 

relative level of deprivation, with lower quintiles indicating increased deprivation. 

These scores are derived from 37 indicators, distributed across seven domains: 

Income Deprivation; Employment Deprivation; Health Deprivation and Disability; 

Education, Skills and Training Deprivation; Crime; Barriers to Housing Services; 

and Living Environment Deprivation (Ministry of Housing Communities and Local 

Government, 2019). As noted in Chapter 1, the IMD ranks Bradford as the 11th 

most deprived city in England based on the number of deprived neighbourhoods 

in the city. This is a commonly used measure of SES in the literature (Stamatakis 

et al., 2014; Zilanawala et al., 2015), including in previous research using BiB 

data (Prady, Pickett, Croudace, et al., 2016).  

5.2.1.2.1.2 Means-tested benefits  

During the Baseline Questionnaire, mothers were additionally asked to specify 

whether they were in receipt of any means-tested benefits. Eligibility for such 
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benefits (e.g., Jobseeker’s Allowance, Housing Benefit) is dependent on 

household income and capital. This was coded dichotomously (Yes; No) and has 

been previously used as an indicator of SES within BiB studies (e.g., Kelly et al., 

2017; Prady et al., 2016; Uphoff et al., 2015). 

5.2.1.2.1.3 Maternal education  

Lastly, maternal education was also used as an indicator of family SES. This 

measure is a widely used proxy of SES (e.g., Cools et al., 2011; Corsi et al., 2016; 

Lejarraga et al., 2002; Uphoff, Pickett, & Wright, 2016). Maternal education was 

coded as “<5 GCSE or equivalent”, “5 GCSE equivalent”; “A-level equivalent”; 

“Higher than A-level”; “Don’t Know”; “Foreign Unknown”, and “Other”. For the 

purposes of the present analyses, participants recorded as having responded 

with “Don’t Know”, “Foreign Unknown” or “Other” were omitted. 

5.2.1.2.2 Additional demographic information  

As described in Chapter 1, self-reported ethnicity was collected as part of the BiB 

Baseline Questionnaire administered at recruitment. This was coded into one of 

three categories: “White British”; “Pakistani”; or “Other”. Although more nuanced 

descriptors of ethnicity were also collected (e.g., “Bangladeshi”, “Mixed-White 

and South Asian”), the number of participants in these groups was much smaller 

and so these individuals were classified as “Other”. Thus, ethnicity was stratified 

into only three groups (White British, Pakistani, and “Other”).  

Additional information was collected during testing to include as covariates. This 

included children’s self-reported handedness, age in months (provided by the 

school), and sex. 
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5.2.1.2.3 Sensorimotor control  

CKAT was used to measure children’s sensorimotor control (Culmer et al, 2009; 

Flatters et al., 2014). Consistent with previous literature, one kinematic metric 

was selected to quantify performance on each of the three tasks analysed as 

outcomes measured in Study 1. These metrics were the Root Mean Squared 

Error (RMSE), Path Length Time (PLT), and penalised Path Accuracy (pPA) for 

the Tracking, Aiming, and Steering tasks, respectively. These kinematic metrics 

have been routinely reported as outcomes in previous literature using CKAT 

(Flatters et al., 2014; Giles et al., 2018; Hill et al., 2021; Shire et al., 2016).  

RMSE is the average distance (in millimetres) between the tip of the stylus and 

the target centre over the course of the Tracking task, with respect to each speed 

condition (i.e., Slow, Medium, Fast). This provides a measure of spatio-temporal 

accuracy. PLT is the average time taken to respond to and execute the aiming 

movement within the Aiming task, in seconds. For trials within the Jump condition, 

the PLT was calculated respective of the final target location. Lastly pPA takes 

path accuracy (i.e., a measure of all spatial errors) and multiplies it by the 

deviation from the “optimum” path length time of 36 seconds within the Steering 

task (see Equation 1). These tasks and the corresponding metrics provide insight 

on specific sensorimotor control mechanisms, namely, feed-forward and 

feedback mechanisms and the ability to make online corrections (Flatters, Hill, et 

al., 2014). 

The median values of RMSE, PLT & pPA were computed before each was 

reciprocally transformed to normalise their distributions. Next, each transformed 

outcome was scaled and centred to allow comparisons across tasks. Lastly, an 

Overall CKAT score was computed by taking the mean of the three task scores. 
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This Overall CKAT score was used as the outcome variable within the present 

analyses. The use of an Overall Score has been used previously in the literature 

(e.g., Hill et al., 2016). A higher Overall CKAT score was indicative of better 

performance.  

Equation 1 

Formulaic expression of "Penalised Path Accuracy" 

𝑝𝑃𝐴=𝑃𝐴×(1+|(𝑃𝐿𝑇/36)−1|) 

5.2.1.3 Procedure  

The testing procedure for the collection of the sensorimotor data via CKAT was 

as detailed in Chapter 1.  

5.2.1.4 Statistical analysis  

A series of hierarchical linear regressions were used to investigate the proposed 

research questions using an alpha level of .05 to indicate statistical significance. 

All statistical analyses were conducted in R (version 4.0.0, R Development Core 

Team, 2020). Goodness of fit was compared between each additional step of the 

hierarchical model to indicate the explanatory power of each additional predictor 

variable. Step 1 of all models included the outcome variable (Overall CKAT 

Score) and the three baseline covariates (age, handedness, and sex).  

Equation 2 

Baseline model for the hierarchical linear regression for the effect of age, 

handedness and sex on sensorimotor control  

𝑌 = 𝑏0 + 𝑏1𝐴𝐺𝐸 + 𝑏2𝐻𝐴𝑁𝐷 + 𝑏3𝑆𝐸𝑋 + ɛ 

where Y is children’s Overall CKAT score, AGE is the child’s age in months, 

HAND is handedness and SEX is the child’s biological sex.  
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Next, Model 1, which related to Research Question 1 (RQ1; the role of ethnicity 

on sensorimotor control) was divided into two steps. Step 1 was as above. Step 

2 then added ethnicity as an additional predictor to the model.  

Equation 3 

Step 2 of the hierarchical linear regression (Model 1) for the effect of ethnicity on 

sensorimotor control (RQ1)  

Y = 𝑏0 + 𝑏1𝐸𝑇𝐻 + 𝑏2𝑋 + ɛ 

where Y is children’s Overall CKAT score, ETH is the participant’s ethnic group 

(White British or Pakistani) and X is the covariates included (age, handedness 

and sex).  

Models 2, 3 and 4 were associated with RQ2 (the role of SES). Each of these 

three models included one of the three indicators of SES as an additional 

predictor in Step 2 (maternal education, receipt of means-tested benefits, or IMD) 

and were run independently. For maternal education, the reference category was 

<5 GCSEs or equivalent. The reference category for IMD was Quintile 1 (Most 

Deprived).  

Equation 4 

Step 2 of the hierarchical linear regression (Models 2,3 & 4) for effect of SES on 

sensorimotor control (Research Question 2)  

𝑌 = 𝑏0 + 𝑏1𝑆𝐸𝑆 + 𝑏2𝑋 + ɛ 

where Y is children’s Overall CKAT score, SES is one of the three SES indicators 

(maternal education, receipt of means-tested benefits, or IMD), and X is the 

covariates included (age, handedness and sex).  

Model 5 related to RQ3 (the role of ethnicity after controlling for SES). Within this 

model, Step 1 was as above. Step 2 included the covariates and all three SES 
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indicators (maternal education, receipt of means-tested benefits, and IMD) 

entered simultaneously. Step 3 added ethnicity as an additional predictor to 

investigate whether ethnic differences were present after controlling for SES.  

Equation 5 

Step 3 of the hierarchical linear regression (Model 5) for effect of ethnicity on 

sensorimotor control after controlling for SES (Research Question 3)  

𝑌 = 𝑏0 + 𝑏1𝑆𝐸𝑆 + 𝑏2𝑆𝐸𝑆 + 𝑏3𝑆𝐸𝑆 + 𝑏4𝐸𝑇𝐻 + 𝑏5𝑋 + ɛ 

where Y is children’s Overall CKAT score, SES is one of the three SES indicators 

(maternal education, receipt of means-tested benefits, or IMD), ETH is the 

participant’s ethnic group (White British or Pakistani) and X is the covariates 

included (age, handedness and sex). Note that in this model, all three SES 

indicators were added to the model simultaneously as additional covariates.  

Lastly, moderation analyses were conducted to determine how the relationship 

between SES and sensorimotor control may be influenced by one’s ethnicity 

(RQ4). These analyses are reflected in Models 6, 7, and 8. Step 2 of these 

models included the baseline covariates, SES (an independent model was 

conducted for each SES indicator, respectively), and ethnicity. Step 3 added in 

the interaction term between the respective SES indicator and ethnicity. 

Moderation analyses were conducted for each of the three SES indicators in 

independent models, irrespective of whether the SES indicator was previously 

found to significantly predict performance. 
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Equation 6 

Step 3 of the hierarchical linear regression (Models 6, 7 & 8) for the moderating 

effect of SES and ethnicity on sensorimotor control (Research Question 4)  

𝑌 = 𝑏0 + 𝑏1𝐸𝑇𝐻 + 𝑏2𝑆𝐸𝑆 + 𝑏3𝐸𝑇𝐻 ∙ 𝑆𝐸𝑆 + 𝑏4𝑋 + 𝜀 

where Y is children’s Overall CKAT score, ETH is the participant’s ethnic group 

(White British or Pakistani), SES is one of the three SES indicators (maternal 

education, receipt of means-tested benefits, or IMD), X is the covariates included 

(age, handedness and sex), and ETH∙SES refers to the moderation.  

5.2.2 Results  

5.2.2.1 RQ1: Does ethnicity predict Overall CKAT score when controlling for 

age, sex and handedness? 

Overall CKAT score was contrasted between White British and Pakistani 

participants. As shown in Figure 12, on average, White British participants 

produced greater Overall CKAT scores (M = .05, SD = .50) compared to their 

Pakistani peers (M = -.05, SD = .53). 
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Figure 12 

Mean values of Overall CKAT Score stratified by ethnicity  

 

Note: Each dot represents an individual participant. Higher score is indicative of better 

performance. Error bars indicate 95% bootstrapped confidence intervals- these are very small 

due to the large sample sizes. 

Hierarchical linear regression was then conducted to determine the effect of 

ethnicity on Overall CKAT score when controlling for age, sex, and handedness. 

As shown in Table 17, ethnicity was a significant predictor of Overall CKAT Score, 

b = 0.113 [0.068, 0.157], p<.001. Including ethnicity as an additional predictor in 

the regression model explained 3.6% of the variance in Overall CKAT score (R2= 

.036, F(4,2163) = 20.464, p<.001). This was an increase of 1% compared to Step 

1 which was statistically significantly different from zero (ΔF(1, 2163) = 24.575, 

p<.001). 
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Table 17 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age and ethnicity (Model 1) 

Note: * indicates p< .05. ** indicates p< .01. Reference category for ethnicity is Pakistani. SE = 

Standard Error. B = Unstandardized coefficient. CI = Confidence Interval. β = Standardised 

coefficient. R2 = R-squared, ΔR2 = change in R-squared.  

 

5.2.2.2 RQ2: Does SES predict Overall CKAT score when controlling for 

age, handedness? 

To understand the predictive value of SES on children’s sensorimotor control, 

each of the three SES predictors (maternal education, receipt of means-tested 

benefits, IMD) were entered into Step 2 of three independent hierarchical linear 

regression models (Model 2, Model 3, and Model 4). 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .026  

(Intercept)  -0.489** [-0.689, -0.288] 0.102      

Male  -0.110** [-0.153, -0.067] 0.022    -.106   

Right-handed  0.111** [0.036, 0.185] 0.038     .062   

Age (Years)  0.095** [0.053, 0.137] 0.021    .095   

Step 2     .036 .010** 

(Intercept)  -0.544** [-0.745, -0.344] 0.102       

Male  -0.110** [-0.153, -0.067] 0.022   -.106   

Right-handed  0.125** [0.051, 0.199] 0.038     .070   

Age (Years)  0.095** [0.054, 0.137] 0.021     .095   

White British  0.113** [0.068, 0.157] 0.023     .105   
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5.2.2.2.1 Maternal education   

On average, children with mothers with the highest level of education (above A-

level or equivalent) had greater Overall CKAT scores compared to those with less 

educated mothers for both ethnic groups (see Figure 13). 
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Figure 13 

Overall CKAT score across level of maternal education, stratified by ethnicity 

 

Note: Each dot represents an individual participant. Higher score is indicative of better performance. Error bars indicate 95% bootstrapped confidence intervals. 
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Step 1 of Model 2 explained 2.4% of the variance (R² = .024, F(3,2025) = 16.600, 

p<.001). As shown in Table 18, the inclusion of maternal education as an 

additional predictor of Overall CKAT Score alongside age, sex, and handedness 

at Step 2 explained 2.9% of the variance (R² = .029, F(6,2022) = 9.889, p<.001). 

This increased the total amount of variance explained by 0.5% compared to Step 

1, which was an increase that was significantly different from zero ΔF(3, 2022) = 

3.125, p =.025). Compared to children of mothers with fewer than five GCSEs 

(the reference category), only those whose mothers had the highest qualification 

level (above A-level or equivalent) were predicted to score significantly higher 

Overall CKAT scores (b = 0.100, p=.002). None of the lower levels of education 

showed statistically significant increases over the lower (reference) level in this 

model (i.e., <5 GCSEs). In addition, age, sex, and handedness were all found to 

be significant predictors of Overall CKAT score (see Table 18), with right-handed 

children outperforming left-handers, females  outperforming males, and older 

children outperforming their younger peers. 
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Table 18 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age, and maternal education (Model 2)  

Note: * indicates p< .05. ** indicates p< .01. Reference category for maternal education is <5 

GCSEs or equivalent.  SE = Standard Error. B = Unstandardized coefficient. CI = Confidence 

Interval. β = Standardised coefficient. R2 = R-squared, ΔR2 = change in R-squared. 

5.2.2.2.2 Means-tested benefits  

On average, there was little difference in the performance of children from 

families who were not in receipt of means-tested benefits (M = -0.01, SD = 0.51) 

compared to children whose families did receive such benefits (M = -0.02, SD = 

0.53; see Figure 14).   

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .024  

(Intercept)  -0.458** [-0.664, -0.252] 0.105    

Male  -0.112** [-0.156, -0.067] 0.023 -.108   

Right-handed  -0.103* [0.024, 0.181] 0.040 .056   

Age (Years)  0.089** [0.046, 0.132] 0.022 .089   

Step 2     .029 .005* 

(Intercept)  -0.515** [-0.73, -0.30] 0.108    

Male  -0.113** [-0.16, -0.07] 0.023 -.110   

Right-handed 0.100* [0.02, 0.18 0.040 .055   

Age (Years)  0.092** [0.05, 0.13] 0.022 .093   

5 GCSEs equiv.  0.045 [-0.01, 0.10] 0.028 .043   

A-Level equiv. 0.052 [-0.02, 0.13] 0.038 .035   

Above A-Level equiv.  0.100** [0.04, 0.16] 0.033 .079   
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Figure 14 

Mean Overall CKAT Score between recipients of Means-Tested Benefits, 

stratified by ethnicity 

 

Note: Each dot represents an individual participant. Higher score is indicative of better 

performance. Error bars indicate 95% bootstrapped confidence intervals. 

Table 19 shows that a model including means-tested benefits alongside the 

covariates (Model 3) explained 2.6% of the variance of Overall CKAT Score (R² 

= .026, F(4,2163) = 14.244, p <.001. However, in comparison to Step 1, this 

addition of receipt of means-tested benefits did not significantly increase the 

unique variance explained by the model (ΔF(1, 2163) = 0.330, p = .566). Again, 

sex, age, and handedness were all found to significantly predict Overall CKAT 

score.  The direction of these effects was identical to those for maternal education 

(Model  2). 
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Table 19 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age, and receipt of means-tested benefits (Model 3)  

Note: * indicates p< .05. ** indicates p< .01. Reference category for receipt of means-tested 

benefits is “No”. SE = Standard Error. B = Unstandardized coefficient. CI = Confidence Interval. 

β = Standardised coefficient. R2 = R-squared, ΔR2 = change in R-squared. 

5.2.2.2.3 Index of Multiple Deprivation 

As Figure 15, shows, there was a general trend of increasing Overall CKAT Score 

with increasing affluence, as determined by IMD, up to Quintile 3 within both 

ethnic groups. After this point, White British children in Quintile 4 tended to 

demonstrate further benefit but this was not mirrored in the Pakistani sample. 

Children in Quintile 5 performed similarly across ethnic groups. However, findings 

in relation to Quintiles 4 and 5 should be interpreted with caution as they may be 

a result of the particularly small sample sizes in these higher IMD quintiles. For 

example, only two Pakistani children were designated as falling within Quintile 5 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .026  

(Intercept)  -0.489** [-0.689, -0.288] 0.102      

Male  -0.110** [-0.153, -0.067] 0.022    -.106   

Right-handed  0.111** [0.036, 0.185] 0.038     .062   

Age (Years)  0.095** [0.053, 0.137] 0.021     .095   

Step 2       

(Intercept)  -0.483** [-0.684, -0.281] 0.103  .026 <.001 

Male  -0.110** [-0.153, -0.067] 0.022 -.106   

Right-handed  0.111** [0.036, 0.186] 0.038 .062   

Age (Years)  0.095** [0.053, 0.136] 0.021 .095   

Receipt of MTB: Yes  -0.013 [-0.056, 0.031] 0.022 -.012   
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(see Table 16). As there were too few participants within Quintiles 4 and 5 to run 

regression analyses and draw meaningful conclusions, participants from these 

groups were omitted from further analysis. 
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Figure 15 

Mean Overall CKAT score across IMD (2010) quintile, stratified by ethnicity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Each dot represents an individual participant. Higher score is indicative of better performance. Error bars indicate 95% bootstrapped confidence intervals- these 

are very small due to the large sample sizes. 
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IMD group was entered into the regression model (Model 4) with the most 

deprived group (Quintile 1) as the reference category (see Table 20). It was found 

that the model including this predictor alongside the covariates explained 2.8% 

of the total variance in Overall CKAT Score (R² = .028, F(5,2103) = 12.076, p < 

.001). This inclusion of IMD as a predictor variable at Step 2 did not significantly 

improve the amount of variance explained by the model compared Step 1 (ΔF(2, 

2103) = 2.975, p = .051). Sex, handedness, and age remained significant 

predictors of Overall CKAT score (see Table 20). It is important to note that 

performance was significantly different between Quintile 1: Most Deprived (the 

reference category) and only one of the two dummy variables of IMD (Quintile 3). 
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Table 20 

Hierarchical linear regression table for Overall CKAT Score as predicted by sex, 

handedness, age, and Index of Multiple Deprivation (Model 4)  

Note: * indicates p< .05. ** indicates p< .01. Reference category for IMD = Quintile 1 (Most 

Deprived). SE = Standard Error. B = Unstandardized coefficient. CI = Confidence Interval. β = 

Standardised coefficient. R2 = R-squared, ΔR2 = change in R-squared. 

 

5.2.2.3 RQ3: Does ethnicity still predict Overall CKAT score even after 

controlling for measures of SES? 

To examine how much variance in Overall CKAT Score could be explained by 

ethnicity after controlling for all three measures of SES (maternal education, IMD, 

and receipt of means-tested benefits), variables were entered into the regression 

model in three steps (see Table 21). As before, age, sex, and handedness were 

entered in Step 1; Step 2 added the three SES measures, and Step 3 added 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .025  

(Intercept)  -0.486** [-0.689, -0.283] 0.104      

Male  -0.109** [-0.153, -0.065] 0.022    -.105   

Right-handed  0.118** [0.042, 0.194] 0.039     .066   

Age (Years)  0.092** [0.050, 0.135] 0.022     .092   

Step 2     .028 .003 

(Intercept)  -0.506** [-0.710, -0.302] 0.104    

Male  -0.111** [-0.155, -0.067] 0.022 -.107   

Right-handed  0.123** [0.047, 0.199] 0.039 .068   

Age (Years)  0.093** [0.051, 0.135] 0.022 .093   

IMD Quintile 2 0.025 [-0.036, 0.085] 0.031 .017   

IMD Quintile 3  0.087* [0.016, 0.158] 0.036 .052   
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ethnicity as a predictor. Step 2 of the model accounted for 3.0% of the total 

variance explaining Overall CKAT score (R² = .030, F(9,1964) = 6.705, p<.001). 

After including ethnicity as an additional predictor into Step 3 of the regression 

model, the total amount of variance explained was 3.8% (R² = 0.038, F(10,1963) 

= 7.822, p<.001). Adding ethnicity as an additional predictor in Step 3 significantly 

improved model fit compared to Step 2, ΔF(1,1963) = 17.366, p <.001). As can 

be seen in Table 21, in the final step of the regression model, both ethnicity (b = 

.107, p<.001) and having above A-level or equivalent maternal education 

compared to fewer than 5 GCSEs (b. = .105, p=.002) were still significant 

predictors of Overall CKAT Score. The direction of the effect was as expected, 

with White British children outperforming Pakistani children. 
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Table 21 

Hierarchical linear regression table for Overall CKAT Score as predicted by sex, 

handedness, age, Index of Multiple Deprivation, receipt of means-tested benefits, 

maternal education, and ethnicity (Model 5) [continues on next page] 

[continued] 

 

 

 

 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .023  

(Intercept)  -0.450** [-0.659, -0.241] 0.107    

Male  -0.110** [-0.155, -0.065] 0.023 -.106   

Right-handed 0.109** [0.029, 0.188] 0.041 .060   

Age (Years)  0.085** [0.042, 0.129] 0.022 .096   

Step 2    .030 .007* 

(Intercept) -0.517** [-0.733, -0.300] 0.110    

Male -0.113** [-0.158, -0.068] 0.023 -.109   

Right-handed 0.110** [0.030, 0.190] 0.041 .060   

Age (Years) 0.089** [0.046, 0.133] 0.022 .090   

IMD Quintile 2 0.011 [-0.052, 0.073] 0.032 .008   

IMD Quintile 3 0.067 [-0.010, 0.143] 0.039 .040   

5 GCSEs 0.045 [-0.011, 0.101] 0.029 .042   

A-level equiv. 0.054 [-0.021, 0.129] 0.038 .036   

Above A-Level equiv. 0.094** [0.027, 0.162] 0.034 .073   

Receipt of Means-

Tested Benefits: Yes 

-0.007 [-0.054, 0.040] 0.024 -.007   
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Table 21 [continued] 

Hierarchical linear regression table for Overall CKAT Score as predicted by sex, 

handedness, age, Index of Multiple Deprivation, receipt of means-tested benefits, 

maternal education, and ethnicity (Model 5)  

Note: * indicates p< .05. ** indicates p< .01 SE = Standard Error. B = Unstandardized coefficient. 

CI = Confidence Interval. β = Standardised coefficient. R2 = R-squared, ΔR2 = change in R-

squared.

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 3    .033 .003** 

(Intercept) -0.554** [-0.771, -0.338] 0.110    

Male  -0.113** [-0.158, -0.068] 0.023 -.109   

Right-handed 0.118** [0.039, 0.198] 0.041 .065   

Age (Years)  0.089** [0.046, 0.133] 0.022 .090   

IMD Quintile 2  -0.011 [-0.074, 0.052] 0.032 -.008   

IMD Quintile 3 0.018 [-0.061, 0.097] 0.040 .011   

5 GCSEs  0.042 [-0.014, 0.099] 0.029 .040   

A-level equiv.  0.049 [-0.026, 0.123] 0.038 .032   

Above A-Level equiv.  0.105** [0.038, 0.173] 0.034 .082   

Receipt of Means-

Tested Benefits: Yes  

-0.004 [-0.050, 0.043] 0.024 .003   

White British  0.107** [0.056, 0.157] 0.026 .098   
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5.2.2.4 RQ4: Does ethnicity moderate the relationship between SES and 

Overall CKAT score? 

As illustrated in Table 22, Table 23, and Table 24, ethnicity did not appear to 

moderate the relationship between any of the three SES measures (maternal 

education, IMD quintile, receipt of means-tested benefits) and sensorimotor 

control. Thus, the influence of SES on Overall CKAT performance did not differ 

according to one’s ethnic group. As shown in Table 22 and Figure 13, there did 

appear to be a relationship between maternal education and CKAT performance 

whereby children of mothers with the highest level of qualifications appear to 

perform superior to children of mothers with fewer than five GCSEs. However, as 

analyses show, this relationship did not differ by ethnicity. 
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Table 22 

Hierarchical linear regression model for the moderating effect of ethnicity and 

maternal education on Overall CKAT score (Model 6) [continues on next page] 

[continued] 

 

 

 

 

 

 

 

 

Predictor   B [95% CI] SE  β R2  ΔR2 

Step 1     .024  

(Intercept)  -0.458** [-0.664, -0.252] 0.105    

Male  -0.112** [-0.156, -0.067] 0.023 -.108   

Right-handed  -0.103* [0.024, 0.181] 0.040 .056   

Age (Years)  0.089** [0.046, 0.132] 0.022 .089   

Step 2     .038 .015** 

(Intercept)  -0.560** [-0.771, -0.349]  0.108    

Male  -0.114** [-0.159, -0.070] 0.023 -.111   

Right-handed  0.112** [0.033, 0.190] 0.040 .061   

Age (Years) 0.092** [0.050, 0.135] 0.022 .093   

5 GCSEs equiv. 0.039 [-0.016, 0.094] 0.028 .037   

A-level equiv.  0.041 [-0.033, 0.114] 0.037 .027   

Above A-level equiv.  0.100** [0.036, 0.164] 0.033 .079   

White British  0.105** [0.059, 0.151] 0.024 .098   
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Table 22 [continued] 

Hierarchical linear regression model for the moderating effect of ethnicity and 

maternal education on Overall CKAT score (Model 6)  

Note: * indicates p< .05. ** indicates p< .01. Reference category for maternal education = < 5 

GCSEs. SE = Standard Error. B = Unstandardized coefficient. CI = Confidence Interval. β = 

Standardised coefficient. R2 = R-squared, ΔR2 = change in R-squared. 

 

 

Predictor   B [95% CI] SE  β R2  ΔR2 

Step 3     .038 <.001  

(Intercept)  -0.557** [-0.770, -0.344] 0.108    

Male  -0.115** [-0.159, -0.071] 0.023 -.111   

Right-handed  0.110** [0.032, 0.188] 0.040 .060   

Age (Years) 0.093** [0.050, 0.135] 0.022 .093   

5 GCSEs equiv. 0.032 [-0.037, 0.100] 0.035 .030   

A-level equiv.  0.027 [-0.068, 0.121] 0.048 .018   

Above A-level equiv.  0.113** [0.035, 0.190] 0.040 .089   

White British  0.100* [0.010, 0.190] 0.046 .093   

5 GCSEs equiv. x 

White British  
0.020 [-0.097, 0.136] 

0.060 .013   

A-level equiv. x White 

British  
0.034 [-0.117, 0.185] 

0.077 .015   

Above A-level equiv. x 

White British  
-0.040 [-0.177, 0.] 

0.070 -.019   
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5.2.3 Discussion 

Study 1 aimed to investigate the impact of two common sociodemographic 

factors: ethnicity and SES, on children’s sensorimotor control and how these 

factors interact. Within this study, conventional methods of measurement were 

used; SES was measured via three commonly used proxy measures (Index of 

Multiple Deprivation, receipt of means-tested benefits and maternal education) 

and the widely used one-metric-per-task CKAT scoring method was used to 

measure sensorimotor control, with these metrics collapsed into one overall 

CKAT score.  

Analyses revealed several key findings. Firstly, when controlling for participants’ 

age, handedness and sex, ethnicity was a significant predictor of sensorimotor 

control. These ethnic differences support previous literature which have also 

found that children categorised by the authors as “Asian” are outperformed by 

White British children on measures of fundamental movement skills (Adeyemi-

Walker et al., 2018; Eyre et al., 2018). This relationship remained significant even 

after controlling for all three measures of SES, contradicting previous research 

which found that ethnic differences in the achievement of motor milestones in 

infants did not remain significant once measures of SES were accounted for in 

the model (Kelly et al., 2006). 
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Table 23 

Hierarchical linear regression model for the moderating effect of ethnicity and 

receipt of means-tested benefits on Overall CKAT score (Model 7) [continues on 

next page] 

[continued] 

 

 

 

 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .026  

(Intercept)  -0.489** [-0.689, -0.288] 0.102      

Male  -0.110** [-0.153, -0.067] 0.022    -.106   

Right-handed  0.111** [0.036, 0.185] 0.038     .062   

Age (Years)  0.095** [0.053, 0.137] 0.021     .095   

Step 2     .036 .010** 

(Intercept)  -0.543** [-0.745, -0.341] 0.103    

Male  -0.110** [-0.153, -0.067] 0.022 -.106   

Right-handed  0.125** [0.051, 0.199] 0.038 .070   

Age (Years) 0.095** [0.053, 0.137] 0.021 .095   

Receipt of 

means-tested 

benefits: Yes  

-0.003 [-0.046, 0.041] 0.022 .003   

White British .112** [0.068, 0.157] 0.023 .105   
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Table 23 [continued] 

Hierarchical linear regression model for the moderating effect of ethnicity and 

receipt of means-tested benefits on Overall CKAT score (Model 7)  

Note: * indicates p < .05. ** indicates p < .01 Reference category for maternal education = < 5 

GCSEs. Reference category for receipt of means-tested benefits = No.. SE = Standard Error. B 

= Unstandardized coefficient. CI = Confidence Interval. β = Standardised coefficient. R2 = R-

squared, ΔR2 = change in R-squared. 

 

Secondly, from the three indicators of SES, maternal education and IMD was 

found to significantly predict Overall CKAT Score, suggesting that those from 

more disadvantaged families have significantly poorer scores compared to their 

more affluent peers. However, note that the impact of IMD should be interpreted 

with caution. Although children from Quintile 3 significantly outperformed children 

from Quintile 1 (the reference category), the effect of adding IMD as an additional 

predictor was minimal (i.e., increasing the amount of variance explained by less 

than 1%). This supports a wealth of research finding a significant association 

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 3     .037 .001 

(Intercept)  -0.539** [-0.742, -0.336] 0.104    

Male  -0.110** [-0.153, -0.067] 0.022 -.106   

Right-handed  0.125** [0.050, 0.199] 0.038 .070   

Age (Years) 0.095** [0.053, 0.136] 0.021 .095   

Receipt of means-

tested benefits: Yes 
-0.009 [-0.063, 0.045] 

0.028 -.009   

White British 0.105 [0.047, 0.164] 0.030 .098   

Receipt of means-

tested benefits: Yes 

x White British 

0.017 [-0.073, 0.108] 

0.046 .012   
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between social deprivation and motor skills (Adkins et al., 2017; Comuk-Balci et 

al., 2016; Cools et al., 2011; Ferreira et al., 2018; Ghosh et al., 2016; Mcphillips 

& Jordan-Black, 2007; Mülazımoğlu-Ballı, 2016; Verheijen et al., 2020; Zeng et 

al., 2019), which will now be reviewed. 
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Table 24 

Hierarchical linear regression model for the moderating effect of ethnicity and 

Index of Multiple Deprivation (2010) Quintile on Overall CKAT score (Model 8) 

[continues on next page]  

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 1     .025  

(Intercept)  -0.486** [-0.689, -0.283] 0.104      

Male  -0.109** [-0.153, -0.065] 0.022    -.105   

Right-handed  0.118** [0.042, 0.194] 0.039     .066   

Age (Years)  0.092** [0.050, 0.135] 0.022     .092   

Step 2     .037 .012** 

(Intercept)  -0.544** [-0.748, -0.340] 0.104    

Male  -0.110** [-0.154, -0.067] 0.022 -.106   

Right-handed  0.133** [0.058, 0.209] 0.039 .074   

Age (Years) 0.093** [0.051, 0.135] 0.021 .093   

IMD: Quintile 2 0.003 [-0.058, 0.064] 0.031 .002   

IMD: Quintile 3 0.038 [-0.036, 0.112] 0.038 .023   

White British  0.107** [0.059, 0.155] 0.021 .099   

[Continued] 
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Table 24 [continued] 

Hierarchical linear regression model for the moderating effect of ethnicity and 

Index of Multiple Deprivation (2010) Quintile on Overall CKAT score (Model 8) 

      

Predictor  B [95% CI] SE  β R2  ΔR2 

Step 3     .037 <.001 

(Intercept)  -0.544** [-0.748, -0.339] 0.104    

Male  -0.111** [-0.154, -0.067] 0.022 -.106   

Right-handed  0.133** [0.057, 0.209] 0.039 .074   

Age (Years) 0.093** [0.051, 0.135] 0.021 .093   

IMD: Quintile 2 -0.005 [-0.087, 0.076] 0.042 .004   

IMD: Quintile 3 0.054 [-0.077, 0.185] 0.067 .032   

White British 0.106** [0.049, 0.163] 0.029 .098   

IMD: Quintile 2 x 

White British 

0.017 [-0.107, 0.140] 0.063 .009   

IMD: Quintile 3 x 

White British 

-0.021 [-0.180, 0.138] 0.081 -.011   

Note: * indicates p < .05. ** indicates p < .01. Reference category for maternal education = < 5 

GCSEs. Reference category for IMD = Quintile 1. SE = Standard Error. B = Unstandardized 

coefficient. CI = Confidence Interval. β = Standardised coefficient. R2 = R-squared, ΔR2 = change 

in R-squared. 

 

The relationship between maternal education and performance on CKAT was, 

however, only found to be significant for those with greater than A-Level 

equivalent education, compared to those with fewer than 5 GCSEs, and when 

comparing IMD Quintile 3 with Quintile 1. Receipt of means-tested benefits was 

not found to significantly predict performance. These inconsistencies in the 

relationships with regard to the measure used support previous research. Cools 
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et al. (2011) also found that differences in children’s fundamental movement skills 

across socioeconomic groups that depended on the proxy measure used. The 

authors found significant associations with maternal and paternal education and 

performance, but not occupation, workload or family situation.  

The significant relationships found between performance and maternal education 

are supported by previous literature that has also found a significant relationship 

between maternal education and children’s fine motor skills in both typically 

developing (Comuk-Balci et al., 2016) and preterm infants (Patra et al., 2016). It 

could be argued that education level is more indicative of parenting practices, 

such as effective scaffolding behaviours, rather than the wealth and amenities of 

the family which other proxy measures may better reflect such as income (Carr 

& Pike, 2012; Fox et al., 1995). Furthermore, Rowe and colleagues (Rowe et al., 

2016) found that an increase in years of education was positively associated with 

KIDI scores (Knowledge of Child Development Inventory; MacPhee, 1981, 2002). 

This suggests that increased level of maternal education may encourage 

practices that are conducive to a more stimulating home environment, regardless 

of home affordances. Alternatively, Patra et al. (2016) suggest the positive 

influence of maternal education on fine/sensorimotor skills could be a result of 

increased intelligence, use of positive psychology, and increased income level. 

Indeed, using path modelling, Jackson et al. (2017) suggested that greater 

maternal education had a direct effect on increased income and reduced financial 

strain. Thus, there are several potential mechanisms underpinning the significant 

relationship between maternal education and children’s sensorimotor control.  

IMD was also found to be a significant predictor of Overall CKAT Score, even if 

its inclusion did only increase the amount of variance explained by less than 1%. 
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As discussed in Section 5.2.1.2.1.1, IMD is reflective of the area in which a family 

resides. The present study suggests that children from families living in the third 

(middle) quintile achieved significantly greater Overall CKAT scores compared to 

their peers from IMD Quintile 1 (the most deprived). This corroborates previous 

literature which has found poorer motor skills in more deprived children, 

quantified via the IMD, as well as by using equivalent Brazilian (Ferreira et al., 

2018), and Irish (Mcphillips & Jordan-Black, 2007) measures of neighbourhood-

level deprivation. IMD comprises several indicators reflecting domains such as 

average household income, access to services and education. As a result, 

children from more deprived areas according to the IMD may attend poorer-

performing schools, that place less attention on the development of sensorimotor 

control and manual dexterity tasks. For example, previous research has 

suggested that children attending private school or pre-school had increased fine 

motor skills compared to their peers attending a state institution (Bobbio et al., 

2007; Corsi et al., 2016; de Barros et al., 2003). There, of course, may also be 

an influence of the likely increased household income for the children attending 

private institutions, as families able to pay expensive education fees are also 

likely to be able to afford other resources to support their child’s learning. For 

example, more affluent families are more likely to have funds available for 

educational toys or extra-curricular activities, and more stimulating activities with 

parents (Bobbio et al., 2007; T. C. B. Freitas et al., 2013; Hua et al., 2016; 

Miquelote et al., 2012). It is worth noting that participants from the least deprived 

quintiles (Quintiles 4 and 5) were excluded from analysis due to small sample 

sizes. Thus, comparisons between these quintiles and the most deprived group 

were not possible. It may, therefore, not be appropriate to use IMD as a proxy 

measure of SES when studying participants from a particularly disadvantaged 
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area, such as Bradford which is the 11th most deprived city in the UK (Department 

for Communities and Local Government, 2015). Furthermore, IMD can be 

determined relative to the whole country, as was done here, or a city-specific 

measure can be used which is determined relative to deprivation level of other 

neighbourhoods within the city. Therefore, different relationships may have been 

revealed if alternative IMD quintiles were used, which were specific to Bradford.  

Lastly, receipt of means-tested benefits was not found to significantly predict 

Overall CKAT performance. One could argue that means-tested benefits are 

indicative of household income, with the advantage that it does not require the 

mothers surveyed to know the precise amount of household income. As 

previously discussed this is something which is often not known amongst 

Pakistani populations.  

Families not on benefits may be more likely to have increased access to extra-

curricular sports clubs or sports equipment (i.e., tennis balls, hockey sticks etc.). 

The attendance of sports clubs has been previously found to positively correlate 

with gross motor skills (Roth et al., 2010). Therefore, access to such activities 

could encourage and develop Fundamental Movement Skills (such as running 

and jumping) or gross motor skills, both of which are largely measured via sport-

specific assessments. In contrast, the underpinning sensorimotor mechanisms 

as captured by assessment batteries such as CKAT, are less likely to be as 

strongly influenced by gross-motor sports participation. This offers a potential 

explanation as to why significant differences were not found between children 

from families who were and were not in receipt of such benefits. Equally, the lack 

of a significant relationship found for receipt of means-tested benefits as opposed 

to the other proxy measures of SES here, may be due its dichotomous nature. 
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As such, more subtle nuances across different socioeconomic circumstances are 

not captured. This is supported by previous work which has found SES to be a 

significant predictor of maternal mental health when measured via cohort-wide 

latent classes of SEP, ethnic-specific latent classes of SEP, employment status, 

and subjective poverty, but not when using receipt of means-tested benefits 

(Mallicoat et al., 2020). In addition, there are several circumstances which permit 

eligibility for the receipt of such benefits which may have obscured potential 

relationships more than if household income was asked for explicitly.  

Lastly, no significant moderation was found between ethnicity, SES and Overall 

CKAT Score, suggesting there is limited evidence to suggest a different impact 

of SES upon sensorimotor control between White British and Pakistani children. 

This is somewhat contradictory to previous literature that finds few, or very weak 

social gradients for Pakistani individuals for other health- and development-

related outcomes, whilst these were much stronger in the White British individuals 

(Uphoff et al., 2015).  

5.2.3.1 Strengths and limitations of Study 1  

A potential limitation of Study 1 is the sub-optimal measurement of SES. As 

discussed, a multifaceted measure could be more appropriate. This will be 

addressed in Study 2. In addition, while the use of kinematic measures offers 

increased precision and objectivity (Culmer et al., 2009; Ozkaya et al., 2018), 

only one metric per task was included in scoring (RMSE, PLT, and pPA). These 

were then also collapsed into a single overall battery score to replicate the 

approach taken to summarise performance in previously published research 

(e.g., Hill et al., 2016). As discussed in Chapter 3, including a greater number of 

metrics in the scoring of CKAT increases the amount of systematic variance 
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explained which cannot be captured by any one variable (Hussain et al., 2019). 

Therefore, more consistent and/or stronger relationships may be revealed with a 

more objective and empirically justifiable approach being taken to selecting 

measures of sensorimotor control, as demonstrated in Chapters 3 and 4.  

To summarise, significant ethnic differences in CKAT performance were found 

when using the conventional “one-metric-per-task” scoring system, even after 

three common measures of SES were controlled for. The impact of SES was 

somewhat inconsistent though, with significant relationships only between the 

most and least deprived groups when using maternal education and IMD as 

socioeconomic indicators. Using a measure of SES that is more inclusive and 

multifaceted may reveal more consistent relationships with sensorimotor control.  

5.3 Study 2  

Study 2 aimed to repeat the previous analyses using measures that may better 

represent the multidimensional nature of both sensorimotor control and 

socioeconomic circumstances as constructs. It aimed to understand how using 

such measures would affect the relationships and the conclusions drawn.  

5.3.1 Methods  

5.3.1.1 Study setting and participants  

The data used within these analyses were also obtained from the Starting School 

sweep of the Born in Bradford cohort. Only children with complete data were 

included in analyses. Note that although this sample is taken from the same BiB 

sweep as was used in Study 1 (Starting School), due to the more detailed 

measures of both sensorimotor control and socioeconomic position requiring a 

larger number of datapoints, fewer participants had complete data, compared to 
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that reported in Study 1. Thus, 1796 children were included in the present sample. 

The demographic information of these participants is reported in Table 25. It is 

evident that regardless of whether the “cohort-wide” or “ethnic-specific” measure 

was used to quantify SEP, that a larger proportion of Pakistani children come 

from more deprived families compared to White British. This indicates that even 

with more precise and sensitive measurement, there are still large discrepancies 

between ethnicities relating to their socioeconomic circumstances, with those 

from Pakistani backgrounds still more likely to be disadvantaged.  
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Table 25 

Demographic information of the sample, stratified by ethnicity 

 Pakistani White British Whole Sample 

Child Demographics    

N (%) 1121 (62.7) 668 (37.3)  1789 (100)  

Mean Age (SD)  4y11mo (4mo) 4y11mo (4mo)  4y11mo (4mo)  

Sex     

Male (%) 540 (48.2)  330 (49.4) 870 (48.6) 

Female (%) 581 (51.8) 338 (50.6)  919 (51.4)  

Handedness    

Left (%) 81 (7.2)  83 (12.4)  164 (9.2)  

Right (%)  1040 (92.8)  585 (87.6)  1625 (90.8)  

Maternal Demographics     

Ethnic-Wide SEP Class1     

1 (%) 160 (14.3) 104 (15.6) 264 (14.8)  

2 (%) 121 (10.8)  216 (32.3) 337 (18.8)  

3 (%) 159 (14.2) 98 (14.7) 257 (14.4)  

4 (%) 513 (45.8) 117 (17.5)  630 (35.2)  

5 (%) 168 (15.0)  133 (19.9)  301 (16.8)  

Ethnic-Specific SEP Class2     

1 (%) 210 (18.7)  282 (42.2)  NA  

2 (%) 80 (7.1)  105 (15.7)  NA 

3 (%) 505 (45.0) 157 (23.5)  NA 

4 (%)  326 (29.1)  124 (18.6)  NA  

1 = “Least deprived and most educated”; 2 = “Employed and not materially deprived”; 3 = 

“Employed and no access to money”; 4 = “On benefits and not materially deprived”; 5 = “Most 

economically deprived”. 
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2 White British Classifications: 1 = “Employed, educated, not materially deprived”; 2 = “Employed, 

moderate education, materially deprived”; 3 = “Low education, benefits not materially deprived”; 

4 = “Low education, benefits, subjectively poor and materially deprived”.  

Pakistani Classifications: 1 = “Educated, low benefits, not materially deprived”; 2 = Employed, 

moderate education, benefits, not materially deprived”; 3 = “Not employed, low education, 

benefits, not materially deprived”; 4 = “Not employed, moderate education, benefits, subjectively 

poor and materially deprived”.  

5.3.1.2 Materials  

5.3.1.2.1 Socioeconomic position  

Two measures of socioeconomic position were used in the present analyses. 

Firstly, the cohort-wide latent measure of SEP developed by Fairley et al. (2014) 

was used. This measure included 19 independent indicators relating to SEP 

which latent class analysis found to be best fit by a five-class model. These 

measures were appropriate for comparisons across ethnic groups. See Chapter 

2 and Fairley et al. (2014) for a more thorough description of these latent classes. 

Informative labels describing the general characteristics of each of these ethnic-

wide latent classes can be found in the footnote of Table 25.  

Secondly, the ethnic-specific latent classes which were derived in Chapter 2 were 

used when conducting the sub-group analyses. As previously discussed, these 

data were not available in the BiB Data Dictionary so needed to be derived by the 

author for this thesis. Both the ethnic-specific and the cohort-wide measures were 

used to highlight the impact of using these, more culturally appropriate, ethnic-

specific measures of SEP on relationships with sensorimotor control. These 

methods of measuring SEP within ethnicity have been used previously by 

Mallicoat et al. (2020), when exploring social gradients in health-related 

outcomes such as low birth weight and maternal mental health. As Fairley et al 

(2014) highlight, when exploring ethnic differences in health, the cohort-wide 
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measure would be most appropriate. However for within-group analyses, the 

ethnic-specific measure may be more informative, and thus useful in planning 

subsequent intervention strategies.  

Briefly, the ethnic-specific measure included four latent classes which were 

specific to Pakistani and White British individuals, respectively. They were 

derived using the same 19 predictors related to SEP. For both ethnic groups, 

increasing latent class was indicative of an increased level of deprivation (i.e., 1 

= “Least Deprived”, 4 = “Most Deprived”). The characteristics of each of these 

classes is described in further detail in Chapter 2. Informative labels describing 

the general circumstances of each of these ethnic-specific latent classes can be 

found in the footnote of Table 25.  

5.3.1.2.2 Sensorimotor measures  

As per Study 1, sensorimotor control was measured using CKAT (Culmer et al., 

2009; Flatters, Hill, et al., 2014). However, rather than using a “one metric per 

task” approach and summarising this into a single Overall CKAT score, 

performance was quantified via the factor scores obtained from the PCAs and 

CFAs in Chapter 3 and Chapter 4. These analyses found that performance on 

the three CKAT tasks (Tracking, Aiming, and Steering) would be most 

appropriately scored via eight, three, and three components, for each task 

respectively. Factor scores were extracted for each component using the lavaan 

package (Rosseel, 2012). Except for Peak Speed, a lower score was indicative 

of better performance (i.e., less error) on all items. Therefore, the Peak Speed 

component was reverse scored to ensure uniformity in comparisons.  

Whilst these components were extracted from the most parsimonious and 

theoretically sound models (referred to as the “final” model in Chapter 4), to 



220 

 

 

increase practical interpretation, they were then summarised as a weighted mean 

of these factor scores, to produce a single score for each of the three tasks. 

Weighted means better reflect the amount of variance related to sensorimotor 

control that each component explains compared to a standard, equally weighted 

mean average. For example, the General Speed factor accounted for a larger 

proportion of the Aiming Overall Score, compared to the Peak Speed factor as it 

explained a larger proportion of the variance within the CFA (see Chapter 4). 

These weighted means were then averaged to produce an Overall CKAT Score 

to indicate general performance. Because each of the items contained within 

each factor most commonly represent the amount of error or time elapsed, a high 

score was indicative of poorer performance.  

5.3.1.2.3 Additional demographics 

Additional demographics were obtained and coded identically to those within 

Study 1. Similarly, the co-variates included sex, handedness and age.  

5.3.1.3 Procedure  

Although the measures were scored differently, the data within the present study 

were collected in the same way as reported in Section 5.2.1.  

5.3.1.4 Statistical analysis  

For study 2, hierarchical linear regressions were used to investigate the proposed 

research questions, using an alpha level of .05 to indicate statistical significance. 

All statistical analyses were conducted in R (version 4.0.0, R Development Core 

Team, 2020). Again, goodness of fit was compared between each additional step 

of the hierarchical model to indicate the explanatory power of each additional 

predictor variable. Step 1 of all models included the outcome variable (Overall 
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CKAT Score) and the three baseline covariates (age, handedness, and sex). See 

Equation 2 for the baseline model.  

To explore the role of ethnicity on sensorimotor control (RQ1), Model 1 from 

Study 1 was replicated with the novel, latent Overall CKAT Score to produce 

Model 9 (see Equation 3). The reference category for ethnicity was Pakistani.  

Model 10 was conducted to investigate the impact of cohort-wide SEP on 

sensorimotor control (RQ2) with cohort-wide included as an additional predictor 

in Step 2. The reference category for cohort-wide SEP was Class 5 (Most 

Deprived).  

Equation 7 

Step 2 of the hierarchical linear regression for effect of cohort-wide SEP on 

sensorimotor control (Research Question 2)  

Y = 𝑏0 + 𝑏1𝑆𝐸𝑃 + 𝑏2𝑋 + 𝜀 

where Y is children’s Overall CKAT score, SEP is the vector of dummy variables 

for the 5-class cohort-wide measure of SEP, and X is the covariates included 

(age, handedness and sex).  

To investigate RQ3, Model 11 was conducted to study the role of ethnicity after 

controlling for cohort-wide SEP, similarly to in Study 1. Step 2 of the model 

included the covariates and cohort-wide SEP, with Class 5 (Most Deprived) as 

the reference category. Step 3 added ethnicity as an additional predictor to 

investigate whether ethnic differences were present after controlling for SEP.  

Equation 8 

Step 3 of the hierarchical linear regression (Model 11) for effect of ethnicity on 

sensorimotor control after controlling for SEP (Research Question 3)  

𝑌 = 𝑏0 + 𝑏1𝑆𝐸𝑃 + 𝑏2𝐸𝑇𝐻 + 𝑏3𝑋 + 𝜀 
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where Y is children’s Overall CKAT score, SEP is the vector of dummy variables 

for the 5-class measure of cohort-wide SEP, ETH is the participant’s ethnic group 

(White British or Pakistani) and X is the covariates included (age, handedness 

and sex).  

Lastly, a moderation analysis was conducted in Model 12 to explore how the 

influence of cohort-wide SEP on CKAT performance differed by ethnic group:  

Equation 9 

Step 4 of the hierarchical linear regression model for the moderating effect of 

cohort-wide SEP and ethnicity on sensorimotor control (Research Question 4)  

𝑌 = 𝑏0 + 𝑏1𝐸𝑇𝐻 + 𝑏2𝑆𝐸𝑃 + 𝑏3𝐸𝑇𝐻 ∙ 𝑆𝐸𝑃 + 𝑏4𝑋 + 𝜀 

where Y is children’s Overall CKAT score, ETH is the participant’s ethnic group 

(White British or Pakistani), SEP is the vector of dummy variables for the 5-class 

measure of cohort-wide SEP, X is the covariates included (age, handedness and 

sex), and ETH∙SEP refers to the moderation.  

In addition, to further explore the effect of an ethnic-specific measure of SEP 

compared to the cohort-wide measure (RQ5), sub-group analyses were 

conducted on the White British and Pakistani children. The analyses to 

investigate the effect of SEP on Overall CKAT Score were repeated using both 

the cohort-wide and ethnic-specific variables.
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5.3.2 Results  

5.3.2.1 RQ1: Does ethnicity predict Overall CKAT score after controlling for 

age, sex, and handedness?  

As Figure 16 illustrates, White British participants (M = 0.69, SD = 0.38) 

performed significantly better (indicated by lower scores) compared to their 

Pakistani peers (M = 0.88, SD = 0.51).  

Figure 16 

Mean Overall CKAT score across White British and Pakistani samples  

 

  

Note: Each dot represents an individual participant. Lower score is indicative of better 

performance. Error bars indicate 95% bootstrapped confidence intervals- these are very small 

due to the large sample sizes. 
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A two-step hierarchical linear regression model was then conducted (Model 9), 

as presented in Table 26. Step 1 of the model (including handedness, age and 

sex as covariates) explained 7.6% of the variance (R2= .076, F(3, 1785) = 49.215, 

p<.001). Both age (bAge = -0.024 [-0.029, -0.020], p<.001) and sex (bSex = 0.150 

[0.108, 0.193], p<.001), were significant predictors of performance at Step 1. At 

Step 2, after including ethnicity as an additional predictor, the model explained 

11.2% of the total variance (R2= .112, F(4, 1784) = 56.132, p< .001). Sex (bSex = 

0.152 [0.111, 0.194], p<.001), age (bAge = -0.024 [-0.029, -0.020], p<.001) and 

ethnicity (bEthnicity = -0.186 [-0.229, -0.142], p<.001) were significant predictors of 

performance. White British children significantly outperformed Pakistani children, 

females outperformed males, and older children outperformed younger children. 

An ANOVA was conducted to compare Step 1 and Step 2 of the model and found 

significant improvement after the addition of ethnicity, ΔF(1, 1784) = 71.087, 

p<.001. Adding ethnicity to the model increased the amount of variance explained 

by 3.6%. 
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Table 26 

Hierarchical linear regression table for Overall CKAT Score, predicted by sex, 

handedness, age and ethnicity (Model 9)  

Predictor  B [95% CI] SE  β R2 ΔR2 

Step 1     .076**  

(Intercept)  2.198** [1.904, 2.491] .150     

Age (Months)  -0.024* [-0.029, -0.020] .002  -.227   

Right-handed 0.001 [-0.072, 0.075] .038  .001   

Male   0.150** [0.108, 0.193] .022  .158   

Step 2     .112** .036 

(Intercept)  2.279** [1.990, 2.567] .147     

Age (Months)  -0.024** [-0.029, -0.020] .002  -.225   

Right-handed -0.026 [-0.098, 0.047] .037  -.016   

Male 0.152** [0.111, 0.194] .021  .160   

White British -0.186** [-0.229, -0.142] .022  -.189   

Note: * indicates p < .05. ** indicates p < .01. Reference category for ethnicity = Pakistani. SE = 

Standard Error. B = Unstandardized coefficient. CI = Confidence Interval. β = Standardised 

coefficient. R2 = R-squared, ΔR2 = change in R-squared. 

 

5.3.2.2 RQ2: Does a latent measure of SEP predict Overall CKAT score 

when controlling for age, handedness, and sex? 

The second research question sought to understand the influence of one’s 

socioeconomic position on sensorimotor control but this time using a measure of 

SEP which reflects its multifaceted nature. As can be found in Figure 17, there 

was a general trend of less deprived SEP classes showing better performance 

across both ethnic groups. However, as the figure shows, this trend does appear 

to differ between the Pakistani and White British samples.  
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Figure 17 

Mean Overall CKAT score across IMD (2010) quintile, stratified by ethnicity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Each dot represents an individual participant. Higher score is indicative of better performance. Error bars indicate 95% bootstrapped confidence intervals- these 

are very small due to the large sample sizes.
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Step 1 of the model was identical to that reported within Section 5.3.2.1 and thus 

its results will not be repeated here. Step 2 of Model 10 (see Table 27) included 

the additional cohort-wide latent measure of SEP with Class 5 (Most Deprived) 

as the reference category, explaining 9.4% of the total variance, R2= .094, 

F(7,1781) = 26.510, p<.001. SEP class was a significant predictor of Overall 

CKAT score for those in Class 1 (bSEPClass1 = -0.100 [-0.175, -0.025], p =.009) and 

Class 2 (bSEPClass2 = -0.118 [-0.189, -0.048], p =.001), compared to Class 5 (Most 

Deprived). In addition, both age (bAge = -0.025 [-0.029, -0.020], p<.001) and sex 

(bSex = 0.158 [0.116, 0.200], p<.001), were found to significantly predict 

performance. In comparison to Step 1, the inclusion of SEP as an additional 

predictor significantly improved the model, ΔF(4, 1781) = 8.833, p <.001. The 

addition of SEP to the model increased the amount of variance explained by 

1.8%. 
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Table 27 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age, ethnicity and SEP, plus the interaction effect between SEP and 

ethnicity [continues on next pages]  

Predictor  B [95% CI] SE β R2 ΔR2 

Step 1    .076**  

(Intercept)  2.198** [1.904, 2.491] .150    

Age (Months)  -0.024* [-0.029, -0.020] .002 -.227   

Right-handed 0.001 [-0.072, 0.075] .038 .001   

Male   0.150** [0.108, 0.193] .022 .158   

Step 2 (Model 10)     .094** .018 

(Intercept)  2.236** [1.942, 2.530] .150    

Age (Months)  -0.025** [-0.029, -0.020] .002 -.227   

Right-handed -0.006 [-0.079, 0.067] .037 -.004   

Male 0.158** [0.116, 0.200] .022 .166   

SEP Class 1  -0.100** [-0.175, -0.025] .038 -.075   

SEP Class 2 -0.118** [-0.189, -0.048] .036 -.097   

SEP Class 3 -0.065 [-0.141, 0.010] .039 -.048   

SEP Class 4  0.037 [-0.026, 0.099] .032 .037   

[Continued] 
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Table 27 [continued] 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age, ethnicity and SEP, plus the interaction effect between SEP 

and ethnicity 

Predictor  B [95% CI] SE β R2 ΔR2 

Step 3 (Model 11)     .120**  .026 

(Intercept)  2.316** [2.026, 2.607] .145    

Age (Months)  -0.024** [-0.029, -0.020] .002 -.225   

Right-handed -0.029 [-0.101, 0.044] .037 -.017   

Male 0.156** [0.114, 0.197] .021 .164   

SEP Class 1  -0.109** [-0.183, -0.035] .038 -.081   

SEP Class 2 -0.086* [-0.156, -0.016] .036 -.071   

SEP Class 3 -0.076* [-0.150, -0.001] .038 -.056   

SEP Class 4  -0.007 [-0.069, 0.056] .032 -.007   

White British  -0.167** [-0.213, -0.122] .023 -.170   

[Continued] 

 

 

 

 

 

 

 

 

 

 

 



230 

 

 

Table 27 [continued] 

Hierarchical linear regression table for Overall CKAT Score predicted by sex, 

handedness, age, ethnicity and SEP, plus the interaction effect between SEP 

and ethnicity 

Predictor  B [95% CI] SE β R2 ΔR2 

Step 4 (Model 12)     .123** .003 

(Intercept)  2.310** [2.017, 2.603] .149    

Age (Months)  -0.024** [-0.029, -0.020] .002 -.226   

Right-handed -0.029 [-0.101, 0.044] .037 -.017   

Male 0.155** [0.113, 0.196] .021 .163   

SEP Class 1  -0.099* [-0.196, -0.003] .049 -.074   

SEP Class 2 -0.001 [-0.105, 0.104] .053 <.001   

SEP Class 3 -0.057 [-0.154, 0.040] .049 -.042   

SEP Class 4  -0.005 [-0.083, 0.073] .040 .005   

White British  0.135** [-0.237, -0.034] .052 -.138   

SEP Class 1 x White 

British 

-0.020 [-0.170, 0.130] .077 -.010   

SEP Class 2 x White 

British 

-0.143* [-0.285, -0.001] .073 -.098   

SEP Class 3 x White 

British 

-0.044 [-0.195, 0.108] .077 -.021   

SEP Class 4 x White 

British  

0.033 [-0.103, 0.169] .069 .017   

Note: * indicates p < .05. ** indicates p < .01. Reference category for SEP Class = Class 5 (Most 

Deprived). Reference category for ethnicity = Pakistani.  SE = Standard Error. B = Unstandardized 

coefficient. CI = Confidence Interval. β = Standardised coefficient. R2 = R-squared, ΔR2 = change 

in R-squared.
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5.3.2.3 RQ3: Does ethnicity still predict CKAT performance even after 

controlling for SEP? 

Grouping participants using the latent classes of SEP produced a more even 

distribution of participants, with no classes needing to be excluded from analysis 

due to small sample sizes (as was the case in Study 1). Step 1 of the model 

contained the three same covariates (age, handedness, and sex). Step 2 

included these plus the cohort-wide latent SEP measure. This is identical to Step 

2 of the model in the previous section and therefore results are not repeated here. 

Refer to Section 5.3.2.2 for detail of these model statistics for Step 2. Thus, only 

Step 3 of each model is reported in this section, which includes both cohort-wide 

SEP and ethnicity as predictors (see Table 27).  

Including ethnicity as an additional predictor in Step 3 explained 12.0% of the 

total variance, R2 = .120, F(8,1780) = 30.303, p <.001. In this model, ethnicity 

was still found to significantly predict performance, even after controlling for 

cohort-wide SEP, handedness, age and sex (bEthnicity = -0.167 [-0.213, -0.122], 

p<.001). In addition, SEP class was a significant predictor for Class 1 (bSEPClass1 

= -0.109 [-0.183, -0.035], p = .004), Class 2 (bSEPClass2 = -0.086 [-0.156, -0.016], 

p =.016), and Class 3 (bSEPClass3 = -0.076 [-0.150, -0.001], p = .047), compared to 

Class 5 (Most Deprived). Lastly, both age (bAge = -0.024 [-0.029, -0.020], p<.001) 

and sex (bSex = 0.156 [0.114, 0.197], p<.001) significantly predicted performance. 

As before, older children significantly outperformed their younger peers and 

females significantly outperformed males. Step 3 was found to be a significantly 

better model fit compared to Step 2, ΔF(1, 1780) = 51.581, p <.001). Adding 

ethnicity to the model in Step 3 increased the amount of variance explained by 

2.6%.  
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5.3.2.4 RQ4: Does ethnicity moderate the relationship between SES and 

Overall CKAT score?  

When investigating the moderating effect of ethnicity and cohort-wide SEP on 

Overall CKAT score, a significant moderation was only found at SEP Class 2, 

relative to SEP Class 1, for ethnicity, b = -0.14 [-0.29, -0.00], p = .05. No other 

moderation effects were found. This provides some indication that there may be 

a difference in the effect of SEP across ethnic groups. Additional split-group 

analyses investigated this further.  

5.3.2.5 RQ5: Does the impact of SEP on sensorimotor control differ by 

ethnic group when using an ethnic-specific measure of SEP?  

Split group analyses were conducted to investigate the role of SEP using both 

the cohort-wide latent SEP measure as well as the ethnic-specific latent SEP 

measure for both the Pakistani and White British samples. For the Pakistani 

sample, ethnic-specific SEP class was a significant predictor for Class 1 

(bSEPClass1 = -0.095 [-0.180, -0.010], p = .029) compared to Class 4 (Most 

Deprived). Using the ethnic-specific SEP latent classes in the model explained 

8.7% of the total variance (R2 = .087, F(6, 1114) = 17.595, p <.001). In contrast, 

when using the cohort-wide SEP classes with the Pakistani sample, no significant 

differences were found between Class 1, 2, 3 or 4 compared to Class 5 (Most 

Deprived), all p>.05. This model explained 8.5% of the total variance (R2 = .085, 

F(7, 1113) = 14.724, p <.001). For the White British sample, however, using the 

ethnic-specific SEP latent class, there were significant differences between Class 

1 (bSEPClass1 = -0.106 [-0.182, -0.029], p = .007), and Class 2 (bSEPClass2 = -0.099 

[-0.193, -0.005], p = .040) when compared to Class 4 (Most Deprived). This model 

explained 11.6% of the total variance (R2 = .116, F(6, 661) = 14.514, p <.001). 

When using the cohort-wide SEP classes, significant differences were found 
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between Class 1 (bSEPClass1 = -0.121 [-0.214, -0.028], p =.011), Class 2 (bSEPClass2 

= -0.143 [-0.221, -0.065], p < .001), and Class 3 (bSEPClass3 = -0.104 [-0.198, -

0.009], p =.031), compared to Class 5, explaining 11.7% of the total variance (R2 

= .117, F(7, 660) = 12.500, p <.001). How the type of SEP measure affected each 

ethnic group’s mean Overall CKAT Score is presented in Figure 18. This 

suggests that the ethnic-specific measure of SEP may be more appropriate for 

the Pakistani sample when investigating the effect of SEP on sensorimotor 

control.   
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Figure 18 

The effect of SEP on Overall CKAT score by ethnicity and SEP measure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Error bars represent 95% confidence intervals  
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5.3.3 Discussion  

The second study within this chapter was a replication of Study 1 using more 

multidimensional, empirically validated measures of SEP and sensorimotor 

control. It aimed to investigate how the use of these measures would impact the 

relationships between SEP, sensorimotor control, and ethnicity. As expected, it 

was found that White British children performed significantly better compared to 

their Pakistani peers. This difference remained significant even after controlling 

for the cohort-wide latent measure of SEP. In line with the hypotheses and 

findings from Study 1, ethnicity was a significant predictor of sensorimotor control; 

White British children outperformed their Pakistani peers. This supports previous 

research which also suggests that White British children outperform their peers 

from other ethnic minority groups (Adeyemi-Walker et al., 2018; L. M. Barnett et 

al., 2019; Eyre et al., 2018).  

Within the present study, the impact of a child’s SEP on their sensorimotor control 

was studied using a latent measure of SEP, derived using 19 individual indicators 

of objective and subjective wealth and prestige. Investigation of the effect of 

cohort-wide SEP on CKAT performance indicated children from families in the 

two least deprived groups (Class 1 and Class 2) performed significantly better 

compared to the Most Deprived group. The findings support previous literature 

which shows that less deprived children outperform their most deprived peers 

(Adkins et al., 2017; Comuk-Balci et al., 2016; Cools et al., 2011; Ferreira et al., 

2018; Ghosh et al., 2016; Mcphillips & Jordan-Black, 2007; Mülazımoğlu-Ballı, 

2016; Verheijen et al., 2020; Zeng et al., 2019). These differences, however, only 

occurred between the first and second least deprived groups when compared 

with the most deprived group. No significant differences were found between 
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Class 3 and Class 4, compared with Class 5 (Most Deprived). Similar results were 

found when using this measure of SEP in regard to maternal mental health; those 

from less deprived SEP classes experienced fewer mental health problems in 

comparison to the most deprived group (Mallicoat et al., 2020). This is the first 

study of its kind to apply such multifaceted latent measures when exploring the 

impact of SEP on (sensori)motor control.  

Lastly, moderation and split-group analyses suggested that there were 

differences between a larger number of SEP classes compared to the Most 

Deprived group within the White British sample compared to the Pakistani 

children. In addition, social gradients for the Pakistani sample were only evident 

when using the ethnic-specific latent measure of SEP. This, alongside evidence 

suggesting that there were differences between a larger number of SEP classes 

compared to the Most Deprived group suggests that the social gradients were 

different between the White British and Pakistani children. For example, larger 

differences were seen between SEP Class 1 and SEP Class 2 for the Pakistani 

group, whereas performance was relatively similar between these two classes for 

the White British sample. These differences, in part, align with previous research 

by Uphoff et al. (2015) who also found differences in social gradients for the 

Pakistani sample compared to White British for a range of health outcomes 

(including maternal mental health and low birth weight). In their case though, 

there were fewer and/or weaker social gradients in the Pakistani group compared 

to White British counterparts.  

In addition, previous research has suggested that an ethnic-specific measure of 

SEP may also better capture subtle differences compared to a more general, 

cohort-wide measure. For example, when studying a Pakistani sample from the 
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Born in Bradford cohort, Mallicoat et al. (2020) also found significant differences 

between a greater number of classes in comparison to the reference category 

when using the ethnic-specific measure compared to the cohort-wide measure of 

SEP. These socioeconomic differences were found with both pre-term birth and 

smoking during pregnancy as the outcome variables. This supports previous 

research that claims ethnic differences should be accounted for in the 

measurement of socioeconomic circumstances (Braveman et al., 2001, 2005; 

Fairley et al., 2014). It also suggests that standard measures of SEP may not be 

suitable across all participants, particularly those from ethnic minority groups.  

5.3.3.1 Strengths and limitations of Study 2 

The present study investigated the influence of SEP on children’s sensorimotor 

control using a latent measure of SEP. To allow comparisons to be drawn across 

ethnicities, the cohort-wide measure of SEP was used. It was only appropriate to 

use the ethnic-specific measure of SEP in a split-group analysis of Pakistani and 

White British participants, respectively. However, Goodwin et al. (2018) extended 

the work of Fairley et al. (2014) to include a latent class of SEP, which also took 

ethnicity and migrant status into account, investigating the role of SEP on 

psychological distress. Including these additional indicators in the model allowed 

comparisons to be made across ethnic groups whilst still accounting for ethnic 

differences in SEP. However, this method may not be appropriate for use in a 

largely bi-ethnic sample due to the homogeneity of the ethnic groups.  

A strength of Study 2 was that by using a more multifaceted, latent measure of 

SEP, individuals were more evenly dispersed across the classes. In contrast, 

when using IMD as a proxy measure for SES (i.e., in Study 1), there was a much 

larger proportion of individuals classified in the more deprived IMD quintiles, 
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leaving too few participants in the less deprived groups to conduct analysis with 

satisfactory statistical power. Thus, these participants needed to be omitted from 

analysis. In addition, the wider range of indicators used in the latent measure of 

SEP permits a more detailed understanding of a family’s circumstances with the 

inclusion of spending priorities and subjective poverty. For example, it may be the 

case that a family is not receiving benefits, living in a relatively good 

neighbourhood and good education background. Using the traditional measures 

of SES would categorise this family as relatively privileged. However, it may be 

the case that the family is struggling to make ends meet and all income is put 

towards food and bills. Thus, there are no additional funds available for 

supporting motor development and physical education, such as purchasing 

motor-specific toys and extra-curricular activities. In addition, parents may work 

multiple jobs and therefore one-to-one time with the child to support and develop 

these skills is limited. Using the latent measure of SEP is more likely to capture 

these more subtle nuances.  

A potential limitation of the present study is that it uses an Overall Score. In 

Chapter 3, some limitations of using composite motor scores are discussed. To 

account for this, analyses conducted in Chapter 3 and Chapter 4 derived a more 

interpretable scoring system for the CKAT assessment battery using a wider 

range of kinematic variables and thus capturing more systematic variance. Whilst 

this reduced over 600 individual data points to a smaller selection of meaningful 

dimensions, it was still not considered practical to investigate the 

sociodemographic influences for each independent dimension (there were twelve 

in total across the three sub-tasks). Therefore, a weighted mean was produced 

for each task which was then average to get an Overall Score. This prevented 
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individual analysis of how sub-tasks and specific latent variables within each task 

were impacted upon. Using an Overall Score which was weighted appropriately 

with each of the kinematic dimensions and captured more systematic variance in 

this chapter, whilst a compromise, was still considered an improvement to using 

the conventional “one metric per task” approach as used in previous research 

(e.g., Flatters et al., 2014; Hill et al., 2016; Shire et al., 2016).  

To summarise, this study aimed to use more multidimensional methods to 

investigate the ethnic and socioeconomic impact on children’s sensorimotor 

control, that were both more empirically and theoretically justifiable. How these 

findings differ from those using more “conventional” methods are discussed in 

relation to the current literature in the subsequent section. What these two studies 

can tell us collectively and how these relate to the current literature is discussed 

in the subsequent General Discussion section (both Study 1 and Study 2). 

5.4 General discussion of Study 1 and Study 2 

The primary aim of the present chapter was to investigate the impact of 

socioeconomic circumstances and ethnicity on children’s sensorimotor control. 

Additionally, it aimed to explore how using more multidimensional measures of 

these variables influenced the conclusions drawn.  

5.4.1 Explanations of ethnic differences in sensorimotor control 

In both studies, ethnicity was a significant predictor of Overall CKAT performance, 

regardless of the scoring system used. This was indeed the case even after 

controlling for all measures of SES (IMD, maternal education and receipt of 

means-tested benefits) or the latent measure of SEP, findings which contradict 

earlier findings by Kelly et al. (2006). In addition, within the work of Kelly et al. 
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(2006), parent-reported achievement of motor milestones was the method used 

to quantify motor skill. As reported in the Introduction and Chapter 3, the DDST 

was used to measure these milestones which is prone to bias with poor sensitivity 

and limited concurrent and predictive validity (Cadman et al., 1984; Meisels, 

1989). Thus, it may not be an appropriate measure to explore sociodemographic 

effects of movement abilities. This does, however, support the work of Eyre et al. 

(2018) and Adeyemi-Walker et al. (2018), who also found White British children 

outperformed their South Asian peers. It is, of course, important to note the 

practical implications of such ethnic differences regarding the amount of variance 

explained. In both studies, a significant effect of ethnicity was found, yet the 

addition of ethnicity to Step 3 of Models 5 and 11 provided an  R2 change of only 

0.01 and 0.03 when using the “traditional” and “revised” CKAT scoring methods, 

respectively. Similarly, Adeyemi-Walker et al. (2018) found significant but only 

small-to-moderate effect sizes between White British and Asian children.  

Resultantly, whilst it is evident that there are some ethnic differences in 

sensorimotor control (Adeyemi-Walker et al., 2018; Eyre et al., 2018; Josman et 

al., 2006; Kelly et al., 2006; Victora et al., 1990), it is vital to consider the practical 

implications of such differences. Although the differences were significant, the 

effect of adding these predictors to the covariates was minimal. Thus, this brings 

into question whether Pakistani children would experience any wider 

repercussions on their development (e.g., academic attainment or physical 

activity) as a result of slightly reduced performance on the CKAT battery and 

warrants further investigation.  

As discussed in Section 1.2.2.1, CKAT focuses largely on the underpinning 

mechanisms of movement (i.e., sensorimotor control), rather than more complex 
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motor coordination which are often measured by sport-related motor 

assessments (e.g., the TGMD-2). Thus, the current findings are unlikely to be 

confounded by the assessment type and culture-biased norms (Larsson & 

Quennerstedt, 2012; Ng & Button, 2018; Jan Wright & Burrows, 2006). 

Furthermore, CKAT is a process-oriented assessment which aims to measure 

the various mechanisms of sensorimotor (e.g., feedforward control) rather than 

product-oriented goals such as catching ability. Therefore, the ethnic differences 

found are less likely to be confounded by cultural differences in physical activity 

levels or sports participation (Casper et al., 2011; Eyre & Duncan, 2013; Love et 

al., 2019).  

Considering previous research, it was predicted any ethnic differences found 

would be largely accounted for by differences in socioeconomic circumstances 

(e.g., Kelly et al., 2006). However, neither studies were found to support this, as 

ethnicity was still found to significantly predict sensorimotor control, even after 

controlling for all three measures of SES, or the cohort-wide latent measure of 

SEP. This implies that there are some systematic differences of sensorimotor 

control between Pakistani and White British children that cannot be explained by 

differences in levels of social disadvantage between these ethnic groups. 

However, upon inspecting the standardised beta values, it was evident that 

ethnicity did have a slightly reduced impact on Overall CKAT performance when 

accounting for the cohort-wide latent measure of SEP. Kelly et al. (2006) found 

that all systematic variance explained by ethnicity was accounted for after 

controlling for simple, conventional measures of SES (i.e., household income, 

maternal education). Whilst the current findings suggest that some ethnic 

differences do persist, the hypothesis was supported in that the effect of ethnicity 
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was reduced somewhat when using the cohort-wide latent measure of SEP. This 

was not the case in Study 1.  

The ethnic differences found in the present chapter may be explained by several 

potential mechanisms. Currently, there is little evidence to suggest that ethnic 

differences in motor skills are a result of genetic disparities, and it is instead a 

consequence of the environment (Cooper et al., 2003; WHO Multicentre Growth 

Reference Study Group, 2006). One suggestion is that across ethnicities, there 

are differences in parenting practices. For example, previous research has found 

that there is a tendency to encourage and stimulate children’s development (e.g., 

the achievement of motor milestones) in some cultures, whilst others are more 

inclined to allow the natural developmental trajectory to occur without interference 

(van Schaik et al., 2018; WHO Multicentre Growth Reference Study Group, 

2006). Indeed, research has suggested that providing a more stimulating 

environment is associated with greater neonatal motor responsivity (Cintas, 

1995). Additionally, Cintas (1995) found cultural differences in the specific skills 

which are encouraged by parents and how much parents allow the infant to 

interact freely with the environment. For example, in European and North 

American cultures, the infant is more likely to be encouraged to crawl freely to 

explore their surroundings, whereas African cultures generally prefer infants to 

remain in close proximity in the early years (Cintas, 1995). Therefore, it is 

plausible that ethnic differences likely result in differences in motor development 

due to variation in social context across these groups; such contexts are arguably 

modifiable risk factors which can be targeted with intervention.  
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5.4.2 Explanations of socioeconomic differences in sensorimotor control  

Within the present chapter, the role of socioeconomic circumstances was first 

studied using three independent and widely used measures, namely IMD, receipt 

of means-tested benefits, and maternal education. Next, the role of 

socioeconomics was studied using a latent measure of SEP, derived using 19 

individual indicators of objective and subjective wealth and prestige. Comparison 

of findings from the two studies suggests that it may be more useful and more 

appropriate to use a latent measure of SEP rather than more traditional, 

independent measures of SES. However, regardless of the measure used, there 

is evidence to suggest that those from more deprived backgrounds perform more 

poorly on a kinematic task of sensorimotor control. These conclusions align with 

previous research which has found similar relationships with more general 

movement coordination and fine motor skills (Ghosh et al., 2016; Mcphillips & 

Jordan-Black, 2007; Morley et al., 2015; Potter et al., 2013).  

However, by focusing on sensorimotor control specifically and using a kinematic 

measure which is not biased by sport-related assessment (e.g., the TGMD-2), 

the current findings also suggest that differences found are not simply due to 

reduced sports participation and physical activity levels in lower socioeconomic 

environments.  

Instead, potential explanations may include increased affordances to improve the 

quality of the home environment (T. C. B. Freitas et al., 2013). Previous research 

has found that homes of higher SES families are more likely to focus on building 

skills to prepare children for formal education through educational activities and 

positive parenting practices (Dumais, 2006; Duncan et al., 1994; Farkas, 2003; 

Heckman, 2006; Sui-Chu & Willms, 1996). In turn, these stimulating home 
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environments build a range of skills, such as fine motor and sensorimotor control, 

prior to starting school, placing children at an advantage compared to their less-

affluent peers (Potter et al., 2013).  

To demonstrate, Potter et al. (2013) found that after controlling for the family 

environment (such as child activities and parental expectation), the effect of SES 

on fine motor skills alone was reduced. Similarly, Ferreira et al. (2018) found the 

home environment mediated the relationship between SES and performance on 

the BOT-2 (including fine motor performance). More specifically, increased SEP 

permits the capacity to purchase fine motor toys which encourages the use of the 

hands and coordinative abilities (T. C. B. Freitas et al., 2013). Together, this 

suggests that a more stimulating home environment, including resources and 

parenting behaviours, may encourage development of sensorimotor control in 

early childhood, explaining a substantial proportion of the effect of SEP in the 

present analyses. 

Another possible explanation, particularly important in early school starters, is 

how frequently children attend preschool or formal childcare. Previous research 

has suggested that preschool environments are conducive to daily practice of fine 

motor activities (e.g., crafts, writing, colouring), and are thus likely to increase fine 

motor skills more quickly (de Barros et al., 2003; Poresky & Henderson, 1982; 

Stein et al., 2001; Vazir et al., 1998). In England, up to 30 hours of free childcare 

per week are provided by the Government for all families with 3-4 year-old 

children (Department for Education, 2018). Yet, with the increasing cost of 

childcare increasing the number of families falling below the poverty line (Hirsch 

& Valadez, 2015), it is unlikely that lower-SES families would have the means to 

purchase additional hours. Thus, children from higher SES families are likely to 
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also have increased access to additional educational and stimulating toys, 

promoting motor skills outside of the home too.  

As noted by Cools et al. (2011), the method used to measure SES can impact 

the relationships with motor skills. They found that children’s fundamental 

movement skills were significantly associated with maternal and paternal 

education levels, but not occupation, workload or family situation. This could 

explain the slightly different relationships found across different methods of 

assessment of SES. As discussed in Chapter 2, it also highlights the benefit of 

using a more multifaceted measure of SEP to account for subtle differences in 

circumstances and avoid inconsistencies.  

5.4.3 Measuring sensorimotor control using kinematic measures  

Generally, there are benefits of using a kinematic assessment of sensorimotor 

control, which have been discussed at length in Chapter 3. Such benefits include 

objectivity, precision, and dimensionality. Most notably, a process-oriented 

measure of sensorimotor control is also much less likely to be biased by sport-

specific experience that can arise with measures that include kicking or catching 

such as the TGMD-2 (e.g., Larsson & Quennerstedt, 2012; Ng & Button, 2018). 

Instead, the core mechanisms underpinning sensorimotor control such as speed 

and jerk are captured. The current chapter highlights the benefits of using a more 

precise method of quantifying kinematic data which better represents its 

multidimensional nature. This is the first study to apply this new method to a novel 

research question and compare the findings when using the more conventional 

approach. In addition, although an Overall score was reported in Study 2, using 

this scoring method provides the opportunity to investigate more subtle 
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differences in sensorimotor control across sociodemographic groups, such as 

differences in speed of movement, or dynamic accuracy. 

5.4.4 Strengths and limitations  

Taking both studies together, the present chapter highlights the impact of using 

more multidimensional measures that are both empirically and theoretically 

justifiable, providing evidence in favour of using these measures in subsequent 

research. However, although it was evident that the ethnic-specific latent SEP 

measure may be the most appropriate way of measuring a child’s socioeconomic 

background, this cannot be applied when comparing performance across ethnic 

groups. Thus, when also exploring the additional influence of ethnicity, a more 

suitable measure which incorporates ethnic differences may need to be applied.  

A potential limitation of this work is that it does only use a sample recruited from 

the Born in Bradford longitudinal cohort study. This provides access to a large 

sample of ethnic minority individuals and thus the sample is more evenly 

distributed across ethnic groups compared to previous research (e.g., Kelly et al., 

2006). However, within Bradford, the population is ethnically dense (Uphoff et al., 

2015). As a result, this high ethnic density may have had a potential preventative 

or “buffer” effect which has been previously found in studies assessing health 

(e.g., Gieling et al., 2010; Uphoff et al., 2016). Thus, the effect of ethnicity may 

be much larger in other areas of the UK which have a much smaller ethnic 

minority population.   

5.4.5 Future research  

The present chapter explored the sociodemographic impact on a typically 

developing sample. Whilst it is important to also measure motor control of 

typically developing children and acknowledge that difficulties can occur, albeit at 
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a sub-clinical level (Gaul & Issartel, 2016), further research could build on this 

work by replicating with participants from a population with DCD. It would be 

interesting to explore whether the relationships found in the present study are 

replicated in a non-typically developing sample, and to what extent. 

Previous research has suggested that children from lower socioeconomic strata 

are at increased risk of DCD or probable-DCD (Lingam et al., 2009b). It would 

also be useful to conduct this research using a wider range of ethnic minority 

groups to understand how ethnic differences may vary across multiple 

populations, other than just Pakistani and White British. Replicating this research 

in a less ethnically dense community would also be beneficial to increase 

generalisability beyond the niche area of Bradford.  

5.4.6 Conclusions  

The present chapter aimed to explore how sociodemographic factors, namely 

ethnicity and socioeconomic position related to sensorimotor control in 4-5 year 

old children. It found that even after controlling for SEP, ethnicity was still a 

significant predictor, even if only a relatively small proportion of variance was 

explained. As expected, SEP was also found to predict CKAT scores, and split 

group analyses revealed socioeconomic differences between the two ethnic 

groups, providing evidence that ethnic-specific SEP classes may be more 

appropriate when exploring the association between SEP and sensorimotor 

control. Thus, these analyses indicate that targeting interventions towards 

increasing education or motor skills for these groups may be beneficial. However, 

as the sample consisted of 4-5 year olds only, further research should investigate 

whether these differences persist with increasing age. This question is explored 

in Chapter 6.  
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Chapter 6 The development of sensorimotor control over the primary 

school years 

6.1 Introduction 

Akin to Piaget’s (1952) description of the importance of sensorimotor control to 

facilitate interactions with the environment (see Chapter 1), Malina (2004) 

proposes that the development of motor behaviour enables children to 

“experience many dimensions of their environment” (p.50). The development of 

movement begins even prenatally and is essential for the appropriate growth of 

muscles and joints (Einspieler et al., 2008; Malina, 2004). Across the course of 

infancy, with increasing cerebral maturation, reflexive movements are replaced 

by voluntary action (Capute et al., 1978). Furthermore, during the first year of life, 

there is evidence to suggest children undergo vast visual and perceptual 

development, with improvements in motion perception, binocular vision, visual 

acuity, and contrast sensitivity (Braddick & Atkinson, 2011). Research and 

assessment of the development of motor behaviour and the sensorimotor system 

during infancy is largely based around the acquisition of key milestones related 

to postural, locomotor, and prehensile development (Malina, 2004).   

Indeed, motor development research generally focuses on this period between 

infancy and early childhood (Golenia et al., 2017). Less research, however, 

focuses on motor development during mid-childhood, despite a “mid-growth 

spurt” occurring at around six-to-eight years of age and vast changes to the 

physical characteristics of the body (Golenia et al., 2017; King et al., 2012; Malina 

et al., 2004). However, the Dynamic Systems Approach would argue this change 

in the child’s physical state would change how the child interacts with their 
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environment and the movement tasks they face. Indeed, researchers have 

posited that there are ongoing complex interactions between the child, the task 

requirements, and the physical and social environment in relation to motor 

development, throughout childhood and beyond (Gallahue & Ozmun, 2006; 

Lewis, 2000; Malina, 2004; Newell, 1986; Thelen et al., 1994). For example, as 

the child adapts and changes, through morphological, physiological and 

neuromuscular development, interactions with the environment and task 

requirements also change (Malina, 2004). These interactions are dynamic, in that 

various components occur across multiple timescales (Spencer et al., 2011).    

As previously discussed, competent sensorimotor control is necessary for the 

successful execution of fine motor tasks (Franklin & Wolpert, 2011; Snapp-Childs, 

Casserly, et al., 2013; Tresilian, 2012). Research has suggested that the 

development of optimal movement of the upper limbs and hands, for fine motor 

tasks, depends on: increased movement speed (Bard et al., 1990; Bourgeois & 

Hay, 2003), reduced movement variability (H Forssberg et al., 1991; Kuhtz-

Buschbeck et al., 1998), and an increased ability to make online corrections in 

response to sensory feedback (Fuelscher et al., 2015; King et al., 2012). Thus, 

the use of kinematic analyses permit an in-depth and precise investigation of 

each of these elements over time. Traditional observational methods, particularly 

product-oriented, do not offer the same level of detail regarding how these 

aspects of sensorimotor control develop (De Los Reyes-Guzmán et al., 2014; L. 

J. B. Hill et al., 2016).  

Intuitively, the literature suggests that with increasing age, there is an 

improvement in motor skills during childhood. Specifically, studies have 

suggested that over time, children show an increase in movement speed (R Blank 
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et al., 1999; Kakebeeke et al., 2018; Rueckriegel et al., 2008; van Mier, 2006), 

improved fine motor proficiency on standardised tasks (Gaul & Issartel, 2016) 

and a refinement of reaching behaviours; becoming quicker and more accurate 

(Fuelscher et al., 2015; Golenia et al., 2017). Additionally, older children are 

better able to use online control to correct reaching movements (Fuelscher et al., 

2015). Alramis and colleagues (Alramis et al., 2016) studied fine motor skills in 

children aged five to thirteen years using bead-threading and peg-board tasks. 

With increasing age, children’s performance on both tasks significantly improved, 

indicated by reduced time to complete the tasks. In addition, a task difficulty by 

age interaction was also found, where greater discrepancies between easy and 

difficult tasks were found for the younger children.  

More recently, a bead-threading task has been used alongside a motion-tracking 

system to derive kinematic variables related to sensorimotor control to assess 

development of fine motor skills (Niechwiej-Szwedo et al., 2020). The authors 

found that performance increased across all kinematic measures on this task, 

concluding that performance reached a mature state at around eight-to-ten years. 

Importantly, it was noted that performance across different sensorimotor tasks 

may differ in their maturation rates and thus cannot necessarily be generalised, 

highlighting the importance of studying the developmental trajectories across 

multiple sensorimotor tasks and assessment batteries.   

Returning to CKAT, Flatters et al. (2014) have previously used a cross-sectional 

design to investigate age-related changes in performance. Using a sample of 4-

11 year olds, they found consistent improvements with increasing age across all 

three tasks (Tracking, Aiming, and Steering). In addition, there were age-related 

differences in how each condition impacted performance. For example, the 
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additional benefit of the guide-line within the Tracking task was not evident in the 

youngest age group but grew with age across the later age group, whilst also 

interacting with task difficulty and being most pronounced on easier (slower) trials 

(Flatters, Hill, et al., 2014). This suggests that with increasing age and refined 

sensorimotor control, children are able to benefit from additional visual 

information. Thus far, there has not been longitudinal investigation on 

performance of CKAT using repeated-measures.  

Explanations of motoric development have been proposed, however there are 

some conflicting perspectives. One school of thought is that development occurs 

as a function of changes within the sensorimotor mechanisms. Previous research 

has suggested that in younger children (approximately five to six years of age), 

feedforward mechanisms are most often adopted. This permits fast movement, 

as it does not require the use of online sensory feedback, however it does require 

an accurate internal model (Kawato, 1999; Seidler et al., 2004). Around the age 

of eight, there is believed to be a shift in the control mechanisms whereby children 

use more accurate proprioception feedback to execute movement. While this 

provides the capacity to make online corrections, feedback-based corrections are 

associated with slower movement (Pellizzer & Hauert, 1996). During this shift, it 

has been frequently documented that performance drops, particularly in relation 

to movement time (Bard et al., 1990; Chicoine et al., 1992; Fayt et al., 1992, 1993; 

Hay, 1979; Pellizzer & Hauert, 1996). This phenomenon is often referred to as a 

non-monotonic development trend. With further development, children begin to 

integrate these two control mechanisms, to produce more optimal movement and 

reach adult-like competency soon after (Desmurget & Grafton, 2000). It is 

important to note that both feedback and feedforward mechanisms continue to 
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improve over time into late childhood, adolescence, and beyond, there is simply 

a shift in which mechanism is preferred.  

Interestingly, a large proportion of studies which investigate age-related changes 

use samples of six-, eight-, and ten-year-old children and use cross-sectional 

designs rather than longitudinal measurement (Golenia et al., 2017, 2018). To 

the author’s knowledge, little research has been conducted to investigate the 

development of sensorimotor control longitudinally across mid-childhood. In 

contrast to cross-sectional designs, longitudinal analyses provide the opportunity 

to study the individual rates of change and both inter- and intra-individual 

variability (Busey et al., 2010; Humes et al., 2012; Molenaar, 2004; Salthouse, 

2014). Moreover, extant research that has used longitudinal designs tends to 

focus on the development of non-typically developing samples, such as those 

with Autistic Spectrum Conditions (ASC) (e.g., Travers et al., 2018), cerebral 

palsy (e.g., Smits et al., 2013; van Eck et al., 2009), and infants born pre-term or 

with low body weight (e.g., Goyen & Lui, 2002; Smyser et al., 2010). 

As Gaul and Issrartel (2016) suggest, it is important to not only focus on children 

with clinically disordered movement patterns though, such as DCD, but also 

acknowledge that typically developing children can also experience difficulties. 

Thus, typically-developing populations also warrant investigation, for a variety of 

reasons. For example, in recent years children have become increasingly reliant 

on technology such as tablets and computers over traditional pen and paper in 

both education and leisure settings (Christakis, 2014; Common Sense Media, 

2013; Cristia & Seidl, 2015). Therefore, it is necessary to investigate how 

children’s sensorimotor control develops over childhood, as this may be changing 

in response to changes in modern society.   
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In Chapter 5, the role of ethnicity in children’s sensorimotor control was explored, 

finding that it was a significant predictor at four-to-five years of age, even after 

controlling for SEP. In addition, although focused on Fundamental Movement 

Skills in a cross-sectional sample, Adeyemi-Walker and colleagues (2018) found 

ethnic differences in children in both early- (4-5 years) and middle-childhood (9-

10 years). To date, however, no research has thus far investigated the role of 

ethnicity in the development of children’s sensorimotor control over this time 

period. For example, whether differences are pervasive or diminish over time.  

Whilst there is a paucity of research investigating ethnic differences in 

developmental trajectories of sensorimotor control, data from the Millennium 

Cohort Study (Dex & Joshi, 2004) has provided insight into longitudinal ethnic 

differences in cognitive and language development (N. R. Smith et al., 2016; 

Zilanawala et al., 2016). When comparing cognitive development amongst 

Bangladeshi, Black Caribbean, Black African, Indian, and Pakistani children, 

large ethnic inequalities were found at age three, compared to a White British 

reference group. Yet, when the children were tested again at age seven, these 

differences reduced, with the exception of Black Caribbean children. Indeed, for 

Indian, Bangladeshi, and Black African children, these differences were no longer 

significant at age seven. Similarly, Zilanawala et al. (2016) found, at age three, 

there was a significantly poorer performance on a vocabulary task within minority 

ethnic groups compared to the White British reference group. However, at age 

seven, only Black African children were still performing worse than the reference 

group, whilst Indian children were now surpassing their White British peers.  

Similarly, looking at longitudinal ethnic differences in mental health between 

Hispanic and non-Hispanic children in the United States, Zhang and colleagues 
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(X. Zhang et al., 2020) found that at kindergarten, Hispanic children perceived 

their “physical functioning” levels significantly poorer compared to non-Hispanic 

children. The authors described physical functioning as being related to a child’s 

perceived capabilities and energy levels. However, by third grade (approximately 

8-9 years), no significant ethnic differences between Hispanic and non-Hispanic 

children were found. The authors proposed these changes were due to the effect 

of a structured and organised education, which encourages development and 

allows the Hispanic children to “catch-up”. A final example includes early work by 

Sammons (1995), who studied various demographic influences upon educational 

attainment in a nine-year longitudinal study. In summary of their findings, 

Sammons suggested that “the patterns of ethnic differences evident amongst 

younger age groups are not stable over the longer term” (Sammons, 1995, p. 

480). Together, these studies would suggest that the ethnic differences in 

sensorimotor control found in Reception may weaken, disappear entirely, or even 

reverse in direction by mid-childhood.  

Chapter 3 and Chapter 4 produced more comprehensive factor scores of 

sensorimotor control which encompassed a larger number of kinematic metrics 

than has been used previously (e.g., Flatters et al., 2014; Hill et al., 2021). 

However, no research to date has investigated longitudinal development of motor 

skills using this with the revised, more empirically and theoretically justifiable 

scoring method for CKAT. In doing so, this chapter will provide a more detailed 

understanding of how various mechanisms of sensorimotor control develop over 

the course of childhood. For example, such analyses can be used to determine 

whether some aspects of sensorimotor control (e.g., peak speed) take longer to 

develop compared to others (e.g., movement smoothness). Formally testing age-
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related changes of the factor scores additionally serves as validation for the 

revised scoring method. For example, finding large deviations or limited age-

related changes across components may reveal discrepancies in the 

developmental trajectories of these mechanisms of sensorimotor control which 

would otherwise remain undetected if using a one-metric-per-task approach. To 

illustrate this, it could be possible that one component is fully developed by age 

five, so shows few age-related changes after then, while another component has 

large developmental gains between the ages seven and nine.  

The present chapter consists of two studies using distinct, but overlapping, 

samples of children. Study 1 uses an exploratory, cross-sectional design to 

investigate age-related differences in each of the individual sensorimotor 

components for each CKAT task. The aim of this study was to understand the 

developmental trajectory of sensorimotor control using a more multidimensional 

measure. Due to its exploratory nature, it was expected that there would be a 

general increase of performance with increasing age, but the rate of these 

improvements may differ across the different tasks and sensorimotor component.  

To investigate further, Study 2 firstly used a repeated-measures design to 

understand the developmental change of sensorimotor control between two 

timepoints during early- and mid-childhood. Secondly, in an extension of the work 

in Chapter 5, ethnic differences in the development of sensorimotor control were 

also investigated. For this study, the following hypotheses were proposed: 

1) There will be significant age-related changes in performance on all three CKAT 

tasks (Tracking, Aiming, and Steering) between Timepoint 1 (ages 4-5) and 

Timepoint 2 (ages 7-10).  
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2) Any ethnic differences found at Timepoint 1 (T1) will weaken or diminish by 

Timepoint 2 (T2).  

6.2 Study 1: Cross-sectional analysis of sensorimotor control 

A cross-sectional analysis was first conducted to determine the developmental 

trajectory of each of the sensorimotor dimensions derived in Chapter 3 and 

Chapter 4.  

6.2.1 Study 1: Method  

6.2.1.1 Participants  

For this cross-sectional analysis, the sample included 18132 children aged 4-11 

years (M = 7 years, 5 months, SD = 16 months). The data comprised of both 

participants in BiB’s Starting School and Primary School Years cohorts, as well 

as additional data collected as part of previous theses and manuscripts (see 

Chapter 1 for additional detail). This additional non-BiB data was added to the 

sample for the cross-sectional analysis to include children aged six (this age 

group was not tested in either the Starting School or Primary School Years 

sweep). As shown in Figure 19, there were fewer children around age six and 

age eleven children compared to other age groups. However, over 200 six year 

old (72 to 83 months) and 62 eleven year old (132 to 143 months) children were 

included in analyses, enough to draw meaningful conclusions about age-related 

differences.
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Figure 19 

Distribution of ages included in sample by months (n = 18132)  

 

6.2.1.2 Procedure and materials  

Individual analyses were conducted for each factor score from the Tracking, 

Aiming, and Steering tasks within CKAT (see Section 5.3.1.2.2 for a more 

thorough explanation of how these scores were derived).  

6.2.1.3 Statistical analysis  

A series of one-way ANOVAs were conducted to investigate age-related 

differences amongst 4–11-year-olds for each factor score. This was followed by 

multiple comparisons with Tukey’s HSD correction. All statistical analysis was 

conducted in R, version 4.0.2 (R Development Core Team, 2020).  

6.2.2 Study 1: Results 

6.2.2.1 Tracking 

A significant effect of age was found on all eight Tracking components (all 

p<.001). Multiple comparisons generally found that older children performed 
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significantly better than their younger peers, however there were some 

exceptions. Tables detailing all multiple comparisons with Tukey’s HSD 

correction can be found in Appendices B-O. No significant differences were found 

between children aged nine and eleven, or between ten and eleven year old 

children for any of the eight Tracking components (all p>.05). In addition, no 

significant differences were found between nine and ten year olds on Dynamic 

Accuracy: Slow + With Guide; Dynamic Accuracy: Slow + No Guide; Dynamic 

Accuracy: Medium + No Guide; Dynamic Accuracy: Fast + No Guide; Normalised 

Jerk; or Path Length (see Appendices B-I ). This indicates that for the Tracking 

task, significant differences were most consistently found amongst the younger 

age groups or between the youngest and oldest age groups. This suggests that 

larger developmental changes were found in early childhood, with smaller 

incremental gains later which may begin to plateau. One exception is the lack of 

significant differences found between six and seven year olds on five of the eight 

components (Dynamic Accuracy: Slow + With Guide; Dynamic Accuracy: Slow + 

No Guide; Dynamic Accuracy: Medium + No Guide; Dynamic Accuracy: Medium 

+ With Guide; and Path Length). Figure 20 shows the developmental trajectory 

for each component of the Tracking task. 
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Mean performance on each Tracking component by age  

Note: A: Dynamic Accuracy (Slow + With Guide); B: Dynamic Accuracy (Slow + No Guide); C: Dynamic Accuracy (Medium + With Guide); D: Dynamic 

Accuracy (Medium + No Guide); E: Dynamic Accuracy (Fast + With Guide); F: Dynamic Accuracy (Fast + No Guide); G: Normalised Jerk; H: Path Length.  

Lower score is indicative of better performance. Error bars represent 95% confidence intervals. 

Figure 20 
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6.2.2.2 Aiming  

A significant effect of age was found for all three Aiming components (all p<.001). 

For General Speed and Path Length, improvement with increased age was 

relatively consistent (see Figure 21). No significant differences were found 

between nine and ten year olds or ten and eleven year olds for any of the three 

components (all p>.05). As can be seen in Appendix K,  the findings for Peak 

Speed were more inconsistent, with fewer significant differences between age 

groups. Note that for Peak Speed, a higher score is indicative of increased peak 

speed and therefore better performance.  
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Figure 21 

Mean performance on each Aiming component by age  

 

 

Note: A: Peak speed; B: Path Length; C: General Speed.  

For Peak Speed, higher score is indicative of better performance. Error bars represent 95% confidence intervals.  
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6.2.2.3 Steering  

For all three Steering components, a significant effect of age on performance was 

found at the p<.001 level.  

Although there was a significant age effect, multiple comparisons revealed 

inconsistent relationships. For Movement Efficiency A, significant differences 

were found in the youngest children when compared to their older peers (see 

Appendix M). Few significant differences were found in children six years and 

older. For Movement Efficiency B, even fewer significant differences were found 

across the sample. Significant differences in performance were found only 

between four and five year olds, five and seven year olds, five and eight year 

olds, five and nine year olds, five and ten year olds, and seven and nine year 

olds. In contrast, significant age differences were found more consistently for the 

Path Accuracy component on the Steering task. Again, most of these differences 

were found in the youngest children. The developmental trajectories for the 

Steering task are displayed in Figure 22.  
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Figure 22 

Mean performance on each Steering component by age  

 

Note: A: Movement Efficiency Shape A; B: Movement Efficiency Shape B; C: Path Accuracy. Error bars represent 95% confidence intervals. 
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6.2.3 Study 1: Discussion  

The present findings corroborate previous literature which shows general 

improvement in sensorimotor control with increasing age (e.g., Alramis et al., 

2016; Flatters, Hill, et al., 2014; Kakebeeke et al., 2018).  

Whilst the majority of the sensorimotor dimensions showed a clear trend over 

time, there were some inconsistencies. Both Movement Efficiency A and B within 

the Steering task showed a more inconsistent improvement. These dimensions 

both consist of Path Length and Normalised Jerk. Previous research has 

suggested that with increasing age, children are better able to produce smoother 

movements which has been explained by maturing corticospinal connections 

(Armand et al., 1996; Kuhtz-Buschbeck et al., 1998; Müller & Hömberg, 1992; 

Porter & Lemon, 1993).  

Similarly, Path Length relates to the distance travelled during movement, where 

a smaller distance is indicative of more control (Culmer et al., 2009). Previous 

research has determined that with increasing age and practice, children show 

reduced path length during reaching tasks (Konczak & Dichgans, 1997; M.-H. 

Lee et al., 2017).  

However, whilst there was a general trend of improvement with age, performance 

was much more variable in the present study. This could be explained by the 

complexity of the task itself, in comparison to the Tracking and Aiming tasks. For 

example, the Steering task requires children to overtly focus on both temporal 

and spatial accuracy due to the timing box (see Figure 4). Therefore, instead of 

following a smooth trajectory through adequate pacing of movement, some 

children would trace the shape in their own time, then wait for the timing box to 

“catch up”. This approach therefore resulted in many “stop-starts” which would 
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likely increase the normalised jerk score. The variability in performance then, may 

have occurred due to some children taking this stop-start approach whilst others 

completing the task as intended, and producing a smoother trajectory, 

irrespective of their age. These differences in the approach taken may have 

masked the expected age-related changes.  

Peak speed within the Aiming task showed an interesting developmental trend. 

The large increase in performance between six and seven year olds was 

particularly stark. Previous research has suggested that children are able to 

perform motor tasks with increasing speed over the course of childhood due to 

more efficient activation of the necessary muscles, and selection of the more 

efficient and quickest corticospinal pathway (Alramis et al., 2016; Hans 

Forssberg, 1999; Hadders-Algra, 2000; Heinen et al., 1998; Sporns & Edelman, 

1993). In addition, Rueckriegel and colleagues also found a dramatic increase in 

speed of movement between six and eight years, explaining this is due to 

physiological maturation of the CNS (Rueckriegel et al., 2008). Although there is 

limited research which investigates peak speed specifically, it is intuitive that a 

greater peak speed would result in faster movement times. As a result, the 

present findings may align with previous evidence showing reduced movement 

times with increasing age (Flatters, Hill, et al., 2014; Smits-Engelsman & Wilson, 

2013; P. H. Wilson & Hyde, 2013). This has been previously explained by rapid 

maturation in the neural networks of the sensorimotor system, providing an 

reduced time in neural transmission (Durston et al., 2006; P. H. Wilson & Hyde, 

2013). The apparent dip in performance at age eleven may be somewhat due to 

sampling error as compared to the other age groups, fewer children aged eleven 
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were included in the sample. This is evidenced by the much wider confidence 

intervals compared to other age groups.  

As discussed in Section 6.1, the literature often reports a non-monotonic trend in 

the development of sensorimotor control, in which performance; particularly in 

Aiming tasks, temporarily drops at around eight years old (Bard et al., 1990; 

Chicoine et al., 1992; Fayt et al., 1992, 1993; Golenia et al., 2017; Hay, 1979; 

Pellizzer & Hauert, 1996). This has been explained by the sensorimotor system 

integrating feedforward and feedback control mechanisms (Desmurget & 

Grafton, 2000). However, in the present study, no such trend was found, with 

children’s performance improving over time. However, this drop in performance 

has generally been found in total movement time (which includes acceleration or 

time to peak speed and deceleration time) or reaction time (Pellizzer & Hauert, 

1996). In the present study, however, only time to peak speed was included in 

the General Speed dimension within the Aiming task, alongside other kinematic 

variables. Neither deceleration time, nor reaction time was included within any of 

the sensorimotor dimensions. This difference may explain why the non-

monotonic trend was not found in the present study.  

6.3 Study 2: Longitudinal analysis of sensorimotor control and the impact 

of ethnicity 

Study 2 used repeated-measures analyses to determine how sensorimotor 

control changed between two timepoints over the course of early-mid childhood. 

It also sought to understand how these relationships were influenced by ethnicity. 
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6.3.1 Study 2: Method 

6.3.1.1 Participants  

For this study, 1036 children were analysed. These data were obtained from two 

timepoints (Starting School and Primary School Years sweeps). Demographic 

information of the sample is detailed in Table 28. As measurements were 

collected as part of the two data sweeps, ethical approval and informed consent 

was obtained as part of the Born in Bradford study which is detailed in Chapter 

1. At timepoint 1 (T1), all children were tested within the Reception year (age 4-

5 years), as part of the Starting School sweep. At timepoint 2 (T2), the data 

collection process included children aged 7-10 years and spanned over a number 

of academic years, that were simultaneously participating in the Primary School 

Years sweep. Due to sample size s, only children within Year 3 (ages 7-8) and 

Year 4 (ages 8-9) were included in the present analyses. For increased 

consistency and to account for any further development between Years 3 and 4, 

participants in these two different year groups were analysed separately. A similar 

number of children were included within both Year 3 (n = 501) and Year 4 (n = 

531).
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Table 28 

Demographic information for the whole sample and for each Year Group  

 Whole Sample  Year 3 (@ T2) Year 4 (@ T2)  

Mean Age @ T1 (SD) 4 y, 11 mo (4 mo) 4y, 11 mo (4 mo) 5 y, 0 mo (4 mo) 

Mean Age @ T2 (SD) 8 y, 6 mo (7 mo)  8 y, 0 mo (4 mo) 9 y, 0 mo (4 mo) 

Ethnicity     

White British (%) 286 (27.7) 141  (28.1) 145(27.3) 

Pakistani (%) 746  (72.3) 360  (71.9) 386  (72.7) 

Handedness    

Left (%) 100 (9.7) 45 (9.0) 55 (10.4) 

Right (%) 932  (90.3) 456 (91.0)  476 (89.6) 

Sex    

Male (%) 487  (47.2) 228 (45.5) 259 (48.8) 

Female (%) 545  (52.8) 273 (54.5) 272 (51.2) 

Total 1032  501 531 

 

6.3.1.2 Design 

To investigate the age-related effects on sensorimotor control, a longitudinal 

repeated-measures design was used. All children had measures of sensorimotor 

control at both T1 (Reception) and T2 (Year 3 or Year 4). To investigate the effect 

of ethnicity in the age-related differences, a mixed design was used. 
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6.3.1.3 Procedure and materials  

Similar to the previously described studies within this thesis, sensorimotor control 

was measured via CKAT. Ethnicity was again measured via self-report from the 

mother during the BiB Baseline Questionnaire. For the purpose of the present 

analyses, weighted means of the factor scores derived in Chapter 3 and Chapter 

4 were used. Thus, there was one score for each CKAT task (Tracking, Aiming, 

Steering). Analyses were not conducted for each of the sensorimotor 

components within each task (as was the case in Study 1 of this Chapter) as it 

was not considered practical or possible to draw meaningful conclusions 

regarding the influence of ethnicity on so many individual aspects of sensorimotor 

control. Note, also, that for these measures, a lower score is indicative of better 

performance. 

6.3.1.4 Statistical analysis  

Linear mixed effects (LME) models were conducted to investigate the 

development of sensorimotor control between two time points during early and 

middle childhood. Linear mixed effects modelling is an analytic framework which 

is particularly useful for studies with repeated measures (Chou et al., 1998; P. J. 

Curran, 2003). The use of multilevel models accounts for between-subject 

variability on developmental trajectories via the inclusion of random effects (Quen 

& Van Den Bergh, 2004). All models used Maximum Likelihood estimations. Time 

point (T1 or T2) was included as a within-subjects predictor which was nested 

within participants. The models were built sequentially using a standardised 

protocol (Field et al., 2012). For Model A, a baseline model was firstly built which 

included only the outcome (CKAT score) and the intercept. Next, random 

intercepts were added to allow the outcome to vary at the individual level. Fixed 
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effects were then included in the model (i.e., time point). Lastly, the inclusion of 

random slopes in the model allowed for the effect of time point to vary by each 

participant. Random effects were only included in the model if they significantly 

improved model fit. To understand how the development of sensorimotor control 

varied by ethnicity in Model B (Research Question 2), an interaction term was 

then also added to the model (time point x ethnicity). Ethnicity, handedness, sex 

and SEP were also added as covariates to both model A and B. To assess model 

fit, each additional step of the model was compared to the preceding step. 

Goodness-of-fit statistics were inspected to evaluate the increase in explanatory 

power of the model using AIC and log-likelihood values.  

Individual models were built for each CKAT task for both Year 3 and Year 4 pupils 

separately . This led to six models in total (Tracking: Year 3; Tracking: Year 4; 

Aiming: Year 3; Aiming: Year 4; Steering: Year 3; and Steering: Year 4. Effect 

sizes were also calculated to evaluate the effect of time point for White British 

and Pakistani children, respectively using Pearson’s r.  

6.3.2 Study 2: Results  

6.3.2.1 Research Question 1: Impact of timepoint 

6.3.2.1.1 Tracking 

6.3.2.1.1.1 Year 3   

The relationship between timepoint and Tracking performance showed significant 

variance in intercepts across participants, SD = 0.27 (95% CI: 0.00, 802.95) but 

the addition of random intercepts alone did not improve model fit, χ2 (1) = 2.47, p 

= .12. However, the relationship did show significant variance in slopes, SD = 

0.29 (95% CI: 5.71, 151174.83), and the addition of both random slopes and 
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intercepts significantly improved model fit compared to the model with random 

intercepts only, χ2 (2) = 81.64, p <.001. The slopes and intercepts were not 

significantly correlated, cor = -.85 (CI: -1.00, 1.00). In the final model, only 

timepoint, b = -0.22, t(500) = -14.99, p<.001, and ethnicity b = -0.05, t(493) = -

2.91, p = .004, were significant fixed effects of Tracking performance (see Table 

29). Participants performed significantly better at T2 (M = -0.06, SD = 0.19) 

compared to T1 (M = 0.16, SD = 0.29) and White British children (M = 0.01, SD 

= 0.24) performed significantly better than Pakistani children (M = 0.07, SD = 

0.28). Neither handedness, SEP, nor sex significantly predicted performance 

(p>.05). 

6.3.2.1.1.2 Year 4  

The relationship between timepoint and Tracking performance showed significant 

variance in intercepts across participants, SD = 0.24 (95% CI: 0.06, 0.91), but 

again, the inclusion of random intercepts did not significantly improve model fit, 

χ2 (1) = 0.00, p = .99. The relationship showed significant variance in the slopes 

across participants, SD = 0.28 (95% CI: 0.04, 2.08). Adding both random 

intercepts and random slopes significantly improved model fit compared to the 

random intercept model, χ2 (2) = 141.01, p<.001. The slopes and intercepts were 

not significantly correlated, cor = -.90 (CI: -.99, .98). In the final model, only 

timepoint (b = -0.22, t(528) = -16.33, p <.001) and SEP Latent Class 5, relative 

to Class 1 (b = -0.05, t(525) = -2.48, p = .01) significantly predicted Tracking 

performance (see Table 29). It was found that participants performed significantly 

better at T2 (M = -0.10, SD = 0.15) compared to T1 (M = 0.12, SD = 0.26) and 

children from SEP Class 5 (Least Deprived; M = -0.02, SD = 0.27) performed 
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significantly better compared to children in SEP Class 1 (Most Deprived; M = 

0.03, SD = 0.25).  
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Table 29 

Regression table showing the effect of timepoint, handedness, and sex on Tracking performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children [continues on next page] 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model A           

Intercept  0.20 .03 6.11 500 <.001 0.12 .02 4.96 528 <.001 

Handedness: Right -0.01 .03 -0.23 493 .82 0.01 .02 0.79 528 .43 

Sex: Male 0.02 .01 1.26 493 .21 0.01 .01 0.66 528 .51 

SEP: Class 2 -0.03 .02 -1.42 493 .16 -0.00 .02 -0.13 525 .90 

SEP: Class 3 -0.05 .03 -1.92 493 .06 -0.01 .02 -0.69 525 .49 

SEP: Class 4 -0.03 .02 -1.13 493 .26 -0.02 .02 -0.95 525 .34 

SEP: Class 5  -0.01 .03 -0.47 493 .64 -0.05 .02 -2.48 525 .01 

Ethnicity: White British  -0.05 .02 -2.91 493 .004 -0.02 .01 -1.44 525 .15 

Timepoint:T2 -0.22 .01 -14.99 500 <.001 -0.22 .01 -16.33 528 <.001 

[continued] 
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Table 29 [continued] 

Regression table showing the effect of timepoint, handedness, and sex on Tracking performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children [continues on next page] 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model B            

Intercept  0.21 .03 6.29 498 <.001 0.13 .03 4.63 526 <.001 

Handedness: Right -0.01 .03 -0.23 494 .82 0.01 .02 0.61 526 .54 

Sex: Male 0.02 .02 1.26 494 .21 0.03 .01 2.10 526 .04 

SEP: Class 2  -0.03 .02 -1.42 494 .16 -0.01 .02 -0.73 526 .47 

SEP: Class 3  -0.05 .03 -1.92 494 .06 -0.03 .02 -1.12 526 .26 

SEP: Class 4 -0.03 .02 -1.13 494 .26 -0.01 .02 -0.29 526 .77 

SEP: Class 5  -0.01 .03 -0.47 494 .64 -0.05 .03 -2.04 526 .04 

Timepoint (T1) x Ethnicity (White British)  -0.09 .03 -2.96 498 .003 -0.05 .02 -2.53 526 .01 

Timepoint (T2) x Ethnicity (White British)  -0.03 .02 -1.76 498 .08 -0.01 .02 -0.55 526 .59 

SE = Standard Error. B = Unstandardized coefficient. Df = degrees of freedom 



275 

 

 

6.3.2.1.2 Aiming  

6.3.2.1.2.1 Year 3  

The relationship between timepoint and Aiming performance showed significant 

variance in intercepts across participants, SD = 0.82 (95% CI: 0.35, 1.92), χ2 (1) 

= 20.87, p <.001. In addition, the slopes varied across participants, SD = 0.75 

(95% CI: 0.10, 5.74), χ2(2) = 267.45, p<.001, and the slopes and intercepts were 

not significantly correlated, cor = -0.93 (CI: -.99, .99). The final model which 

included both random intercepts and random slopes found that timepoint, b = -

1.36, t(500) = -35.99, p<.001, SEP Latent Class 3 (Employed and no access to 

money), b = -0.12, t(493) = -2.06, p = .04, and ethnicity, b= -0.13, t(493) = -3.20, 

p = .002, predicted Aiming performance (see Table 30). Participants performed 

significantly better at T2 (M = 0.64, SD = 0.41), compared to T1 (M = 2.00, SD = 

0.88). In addition, participants in SEP Class 3 (M = 1.21, SD = 0.99) performed 

significantly better compared to SEP Class 1 (Most deprived;  M = 1.43, SD = 

1.04) and White British children (M = 1.15, SD = 0.83) performed significantly 

better than Pakistani children (M = 1.38, SD = 0.83). Handedness nor sex 

significantly predicted performance (p>.05).  

6.3.2.1.2.2 Year 4  

The relationship between timepoint and Aiming performance showed significant 

variance in intercepts across participants, SD = 0.72 (95% CI: 0.33, 1.58), χ2 (1) 

= 10.58, p = .001. In addition, the slopes showed significant variance across 

participants, SD = 0.68 (95% CI: 0.12, 3.98), χ2 (2)= 410.89, p<.001, and the 

slopes and intercepts were not significantly correlated, cor = -0.96 (CI: -1.00, 

.1.00). The final model which included both random intercepts and random slopes 
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found that only timepoint significantly predicted performance, b = -1.38, t(528) = 

-42.43, p <.001 (see Table 30). Participants performed significantly better at T2 

(M = 0.49, SD = 0.30) compared to T1 (M = 1.88, SD = 0.76). Neither 

handedness, sex, SEP, nor ethnicity significantly predicted performance (p>.05).  
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Table 30 

Regression table showing the effect of timepoint, handedness, and sex on Aiming performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children [continues on next page] 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model A           

Intercept  2.10 .08 25.73 500 <.001 1.88 .06 31.50 528 <.001 

Handedness: Right -0.02 .06 -0.30 493 .77 -0.03 .04 -0.76 528 .45 

Sex: Male -0.02 .04 -0.51 493 .61 0.00 .03 0.17 528 .87 

SEP: Class 2  -0.04 .05 -0.69 493 .49 0.07 .04 1.93 525 .05 

SEP: Class 3  -0.13 .06 -2.06 493 .04 -0.03 .05 -0.56 525 .57 

SEP: Class 4  -0.01 .06 -0.18 493 .85 -0.02 .05 -0.33 525 .74 

SEP: Class 5 -0.05 .07 -0.69 493 .49 -0.02 .04 -0.53 525 .59 

Ethnicity: White British -0.13 .04 -3.20 493 .002 0.02 .03 0.61 525 .55 

Timepoint: T2 -1.36 .04 -35.99 500 <.001 -1.38 .03 -42.43 528 <.001 

[continued] 
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Table 30 [continued] 

Regression table showing the effect of timepoint, handedness, and sex on Aiming performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model B            

Intercept  2.16 .08 25.63 498 <.001 1.88 .06 30.09 526 <.001 

Handedness: Right -0.02 .06 -0.30 494 .77 -0.03 .04 -0.76 526 .45 

Sex: Male -0.02 .04 -0.51 494 .61 0.00 .03 0.17 526 .87 

SEP: Class 2  -0.04 .05 -0.69 494 .49 0.07 .04 1.93 526 .05 

SEP: Class 3  -0.13 .06 -2.05 494 .04 -0.03 .05 -0.56 526 .57 

SEP: Class 4  -0.01 .06 -0.18 494 .85 -0.02 .05 -0.33 526 .74 

SEP: Class 5 -0.05 .07 -0.69 494 .49 -0.02 .04 -0.53 526 .59 

Timepoint (T1) x Ethnicity (White British)  -0.35 .09 -4.03 498 <.001 0.02 .07 0.14 526 .89 

Timepoint (T2) x Ethnicity (White British)  -0.11 .04 -2.66 498 .008 0.02 .03 0.62 526 .54 

SE = Standard Error. B = Unstandardized coefficient. Df = degrees of freedom 
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6.3.2.1.3 Steering  

6.3.2.1.3.1 Year 3  

The relationship between timepoint and Steering performance showed significant 

variance in intercepts across participants SD = 0.86 (95% CI: 0.69, 1.08) but the 

addition of random intercepts only did not significantly improve the model fit 

compared to a model with fixed effects only, χ2 (1)= 0.09, p = .76. Meanwhile, 

there was significant variance found in slopes across participants, SD = 0.92 

(95% CI: 0.63, 1.34), and including both random slopes and intercepts 

significantly improved fit compared to the random intercept model, χ2 (2)= 199.14, 

p<.001. The slopes and intercepts were not significantly correlated, cor = .92 (CI: 

-.99, .99). The final model (including fixed effects, random slopes and random 

intercepts) showed that timepoint (b = -0.31, t(500) = -6.78, p <.001), sex (b = 

0.11, t(493) = 2.78, p = .006), and ethnicity (b = -0.13, t(493) = -2.87, p = .004) 

significantly predicted performance (see Table 31). Indeed, performance was 

significantly better at T2 (M = -0.10, SD = 0.48) compared to T1 (M = 0.22, SD = 

0.93), females (M = -0.01, SD = 0.67) performed significantly better than males 

(M = 0.14, SD = 0.85), and White British (M = -0.10, SD = 0.42) performed 

significantly better than Pakistani children (M = 0.12, SD = 0.85).  

6.3.2.1.3.2 Year 4  

The relationship between timepoint and Steering performance did not show 

significant variance in intercepts across participants, nor did the slopes. 

Therefore, the final model included fixed effects only (see Table 31). Timepoint 

(b = -0.46, t(1053) = -8.58, p<.001), ethnicity (b = -0.15, t(1053) = -2.45, p = .01), 

and SEP Latent Class 5 significantly predicted performance (b = -0.20, t(1053) = 
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-2.14, p = .03). Again, performance was significantly better at T2 (M = -0.15 , SD 

= 0.58) compared to T1 (M = 0.31 , SD = 1.10), SEP Latent Class 5 (M = -0.04, 

SD = 0.68) performed significantly better than SEP Latent Class 1 (M = 0.15 , SD 

= 1.14), and finally White British children (M = -0.04, SD = 0.58) significantly 

outperformed Pakistani children (M = 0.12, SD = 1.00).  
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Table 31 

Regression table showing the effect of timepoint, handedness, and sex on Steering performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children [continues on next page] 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model A           

Intercept  0.10 .09 1.17 500 .24 0.39 .11 3.45 528 <.001 

Handedness: Right 0.08 .07 1.12 493 .26 -0.00 .09 -0.04 528 .97 

Sex: Male 0.11 .04 2.78 493 .01 0.10 .05 1.84 528 .07 

SEP: Class 2 0.03 .06 0.55 493 .58 -0.04 .08 -0.47 525 .64 

SEP: Class 3  0.12 .07 1.86 493 .06 -0.12 .10 -1.25 525 .21 

SEP: Class 4  0.01 .06 0.12 493 .90 -0.20 .09 -2.14 525 .03 

SEP: Class 5 -0.02 .07 -0.25 493 .81 0.10 .05 1.84 525 .07 

Ethnicity: White British -0.13 .04 -2.87 493 .004 -0.15 .06 -2.45 525 .01 

Timepoint: T2 -0.31 .05 -6.78 500 <.001 -0.46 .05 -8.58 528 <.001 

[continued] 
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Table 31 [continued] 

Regression table showing the effect of timepoint, handedness, and sex on Steering performance (Model A), and the interaction 

between timepoint and ethnicity (Model B) for Year 3 and Year 4 children [continues on next page] 

  Year 3  Year 4 

 B  SE t df p B  SE t df p 

Model B            

Intercept  0.17 .09 1.87 498 .06 0.41 .11 3.60 526 <.001 

Handedness: Right 0.08 .07 1.12 494 .26 -0.00 .09 -0.04 526 .96 

Sex: Male 0.11 .04 2.78 494 .01 0.10 .05 1.84 526 .07 

SEP: Class 2 0.03 .06 0.55 494 .58 -0.04 .08 -0.47 526 .64 

SEP: Class 3  0.12 .07 1.86 494 .06 -0.12 .10 -1.25 526 .21 

SEP: Class 4  0.01 .06 0.12 494 .90 -0.11 .10 -1.12 526 .26 

SEP: Class 5 -0.02 .07 -0.25 494 .81 -0.20 .09 -2.14 526 .03 

Timepoint (T1) x Ethnicity (White British)  -0.36 .09 -3.93 498 <.001 -0.23 .09 -2.62 526 .01 

Timepoint (T2) x Ethnicity (White British)  -0.07 .05 -1.34 498 .18 -0.08 .09 -0.90 526 .37 

SE = Standard Error. B = Unstandardized coefficient. Df = degrees of freedom 
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6.3.2.2 Research Question 2: The impact of ethnicity on change over time 

To each of the linear mixed models reported in the preceding section, an 

interaction term was added (ethnicity x timepoint) to investigate ethnic differences 

in the trajectory of sensorimotor control. Where significant interactions were 

found, post-hoc planned contrasts were conducted to identify how ethnic 

differences differed over time.  

6.3.2.2.1 Tracking  

6.3.2.2.1.1 Year 3  

There was a significant interaction between ethnicity and timepoint, F(2, 498) = 

5.43, p = .005, indicating the effect of ethnicity differed between T1 and T2, as 

presented in Table 29. It was found that at T1, there were significant differences 

between White British and Pakistani children, b = -0.09, t(498) = -2.96, p = .003, 

r = .13.  However, at T2, there were no longer any significant differences found, 

b = -0.03, t(498) = -1.76, p = .08, r  = .08. This interaction is illustrated in Figure 

23. 

6.3.2.2.1.2 Year 4  

A significant interaction was found between ethnicity and timepoint, F(2, 1052) = 

3.32, p = .04 (see Table 29). Planned contrasts revealed significant differences 

in performance between ethnic groups at T1, b = -0.05, t(1052) = -2.53, p = .01, 

r = .08. However at T2, no significant ethnic differences were found, b = -0.01, 

t(1052) = -0.55, p = .59, r = .02. These differences can also be seen in Figure 23. 
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Figure 23 

Tracking performance between Timepoint 1 and Timepoint 2 between ethnic groups, faceted by Year 3 and Year 4 pupils 

 

Note: Children were in either Year 3 or Year 4 at Timepoint 2. At Timepoint 1, all children were 4-5 years old. Error bars represent 95% confidence intervals. 
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6.3.2.2.2 Aiming  

6.3.2.2.2.1 Year 3  

There was a significant interaction between ethnicity and timepoint, F(2, 498) = 

9.20, p<.001 (see Table 30). Planned contrasts revealed that while there were 

still ethnic differences found at T2 (b= -0.11, t(498) = -2.66, p = .01, r = .12), these 

were substantially reduced compared to the differences found at T1 (b = -0.35, 

t(498) = -4.03, p<.001, r = .18). These differences are illustrated in Figure 24. 

6.3.2.2.2.2 Year 4  

No significant interaction was found between ethnicity and timepoint, F(2, 526) = 

0.19, p = .83, suggesting that the effect of timepoint was similar for both White 

British and Pakistani children (see Table 30). Indeed, there were no significant 

differences across ethnic groups at either T1 (b = 0.02, t(526) = 0.14, p = .89, or 

at T2 (b = 0.02, t(526) = 0.62, p = .54). This lack of an interaction is illustrated in 

Figure 24.
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Figure 24 

Aiming performance between Timepoint 1 and Timepoint 2 between ethnic groups, faceted by Year 3 and Year 4 pupils 

 

Note: Children were in either Year 3 or Year 4 at Timepoint 2. At Timepoint 1, all children were 4-5 years old. Error bars represent 95% confidence intervals. 
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6.3.2.2.3 Steering  

6.3.2.2.3.1 Year 3 

There was a significant interaction between ethnicity and timepoint, F(2, 498) = 

8.37, p <.001 (see Table 31). Indeed, at T1, there was a significant difference 

across ethnic groups, b = -0.36, t(498) = -3.93, p <.001, r = .17, yet this was not 

significant at T2, b = -0.07, t(498) = -1.34, p = .18, r = .06. These differences are 

illustrated in Figure 25.  

6.3.2.2.3.2 Year 4  

Lastly, there was a significant interaction between ethnicity and timepoint, F(2, 

1052) = 3.76, p = .02 (see Table 31). Again, ethnic differences were found at T1, 

b = -0.23, t(1052) = -2.62, p =.009, r = .04,  but these dissipated at T2, b = -0.08, 

t(1052) = -0.90, p = .37, r = .03. These differences can also be seen in Figure 25.
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Figure 25 

Steering performance between Timepoint 1 and Timepoint 2 between ethnic groups, faceted by Year 3 and Year 4 pupils  

 

 

Note: Children were in either Year 3 or Year 4 at Timepoint 2. At Timepoint 1, all children were 4-5 years old. Error bars represent 95% confidence intervals. 
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6.3.3 Study 2: Discussion  

6.3.3.1 The longitudinal impact of sensorimotor control  

As expected, significant improvement in CKAT performance was found between 

T1 and T2. This aligns with previous research that shows an increase in children’s 

fine and sensorimotor skills between early- and mid-childhood, irrespective of the 

measures used to determine performance (e.g., Alramis et al., 2016; Flatters et 

al., 2014; Fuelscher et al., 2015; Kakebeeke et al., 2018; Rueckriegel et al., 2008; 

van Roon et al., 2008; Wilson & Hyde, 2013). These findings also align with the 

cross-sectional analyses conducted in Study 1 of this chapter. Generally, 

improvements in children’s sensorimotor control are explained by maturation of 

the CNS, including an increase in white matter volume and decrease in grey 

matter, and efficiency of neural transmission (Durston et al., 2006; Giedd et al., 

1999; Rueckriegel et al., 2008; Sowell et al., 2004; P. H. Wilson & Hyde, 2013).  

6.3.3.2 The influence of ethnicity on the longitudinal impact of sensorimotor 

control 

Thus far, there has been no research to the author’s knowledge which has 

investigated how the longitudinal development of sensorimotor control is 

impacted by ethnicity. Generally, it was found that significant differences between 

ethnic groups at T1 (4-5 year old children) disappeared by T2 (either 7-8-years-

old or 8-9-years-old). The exception to these findings were results concerning the 

Aiming task. A significant interaction was found between ethnicity and timepoint 

for the Aiming task for children in Year 3. Post-hoc exploration of this interaction 

found a significant ethnic difference at both timepoints. The size of the difference 

however, while still significant, was substantially smaller at T2 compared to T1. 
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This is illustrated by the smaller beta value in Table 30 and the narrowed 

difference between points in Figure 24. Contradictorily, for the Year 4 sample, no 

significant differences between ethnicities were found at either T1 or T2. This was 

surprising considering all children at T1 were tested during the Reception year of 

school (aged 4-5 years), regardless of when they were assessed for their T2 

performance.  

Inconsistencies aside, the general picture that emerges from five out of six of 

these analyses is that ethnic differences do dissipate over the course of just a 

few years, and that in some cases, these differences are no longer significant. 

Thus, these findings are broadly in agreement with previous studies which have 

found that ethnic differences reduce over time in cognitive and vocabulary tasks 

(N. R. Smith et al., 2016; Zilanawala et al., 2016) and speak to the diminishing 

relevance of ethnicity with increasing age in the context of children’s sensorimotor 

development.  

There are several potential explanations for these findings. For example, with 

increasing age, the effect of the home and family environment is likely to have a 

reduced impact on motor and cognitive development. This has similarly been 

found in relation to the effect of SEP. Ferreira et al. (2018) found that SEP had a 

greater impact on younger children’s motor skills compared to older children. The 

authors suggested that the benefit of a positive school environment may come to 

outweigh the benefit of the home environment as children grow up. This is 

intuitive, as prior to starting formal education, children spend the majority of their 

time within the home and are thus more likely to be influenced by whether parents 

create sufficient opportunities within the home environment to facilitate motor 

development (L. M. Barnett et al., 2019; Baxter et al., 2016). As the child enters 
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school, they are faced with a plethora of novel opportunities to develop their 

sensorimotor control and fine motor skills through everyday classroom activities 

(e.g., drawing, manipulating objects, using scissors) and more formal handwriting 

instruction (Cameron et al., 2016; Hua et al., 2016). Even in kindergarten, Marr 

and colleagues report children spend 36-66% of class time engaged in fine motor 

activities (Marr et al., 2003). As such, children starting school with poorer 

sensorimotor control are presented with the opportunity to catch up with their 

more competent peers, and thus, ethnic inequalities would correspondingly begin 

to narrow over time.  

The present findings therefore suggest that with increasing age, there are more 

influential factors of children’s sensorimotor control than ethnicity. Indeed, the 

ethnic inequalities found at 4-5 years had virtually dissipated by age seven. Also, 

even though there were ethnic differences found at 4-5 years (as found in Chapter 

5), it is important to make note of the size of this effect. The Pearson’s r statistic 

for the effect of ethnicity at T1 never exceeded .19, suggesting only a small-

medium effect at most (J. Cohen, 1992). However, whilst small in size when 

interpreted against arbitrary thresholds, it is interesting to compare these effects 

of ethnicity to the size of the observed age differences. When inspecting absolute 

scores for each of the tasks, a larger mean difference was found between 

Pakistani and White British children, compared to mean differences across 

consecutive age groups (i.e., four and five year olds; seven and eight year olds). 

This implies that the ethnic differences in sensorimotor control are at least the 

equivalent of a one year age gap. When compared in this way, these differences 

are not so trivial. Further research is needed to investigate the impact of these 
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ethnic differences on wider developmental outcomes such as academic 

achievement.  

6.4 General discussion of Study 1 and Study 2  

6.4.1 Summary of findings  

The aim of the present study was to investigate longitudinal trends in 

sensorimotor control and how these interacted with ethnicity. Exploratory 

analyses investigated how each of the sensorimotor dimensions developed over 

the course of mid-childhood (4-11 years). Data at the first timepoint was collected 

when children were in the Reception year of primary school (aged 4-5 years), 

meanwhile at the second timepoint, children were in either Year 3 (aged 7-8 

years) or Year 4 (aged 8-9 years).  

Regarding age-related differences using cross-sectional analysis of all children, 

steep improvement in performance was generally found between four and six 

year old children for all Tracking components except Normalised Jerk. For 

Normalised Jerk on the Tracking task, performance generally increased over time 

but the improvement was more linear compared to the other dimensions. Similarly 

for Aiming, a steep increase in performance between four and six years was 

found for both Path Length and General Speed. Conversely, for Peak Speed, 

there was a negligible difference in performance between four and six before a 

sharp increase at age seven and a possible decline again from age nine to 

eleven. Of course, caution should be taken when interpreting the findings from 

the eleven year old children as performance was much more variable due to the 

lower sample size relative to the other age groups.  
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Lastly, the Steering task showed less stark improvements in performance 

compared to the other tasks, particularly Movement Efficiency A and B. These 

two dimensions also revealed an unexpected sharp decrease in performance at 

age five. Generally, trends indicated an improvement in performance over time. 

No significant improvements were found between any consecutive age groups 

for Movement Efficiency B. However, significant differences were found across 

wider age groups (i.e., five year old children were consistently outperformed by 

seven, eight, nine, and ten year old children). This indicates that there age-related 

improvements for this component, just on a smaller scale compared to the other 

components and sub-tasks.  

For the repeated-measures analyses (Study 2), significant improvement was 

found between the first and second timepoint for all three tasks, irrespective of 

whether T2 testing was conducted in Year 3 or Year 4. This was as expected. In 

addition, a significant interaction between ethnicity and timepoint was found for 

the Tracking and Steering tasks in both the Year 3 and Year 4 samples. A 

significant interaction was found for the Aiming task for the Year 3 sample, with 

the effect of ethnicity reducing at T2 compared to T1. However, a significant effect 

of ethnicity on performance was found at both timepoints. No significant 

interaction was found for the Aiming tasks in the Year 4 sample. Indeed, there 

were no significant ethnic differences found at either T1 or T2. 

Altogether, these findings suggest that children in the Pakistani sample initially 

show slightly poorer sensorimotor control but then catch up over time. This aligns 

with recent evidence which suggests that children with early “moderate 

coordination difficulties” that do not reach a clinical level (as determined by the 

MABC-2), catch up with their typically-developing, average performing peers over 
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time, without the need for intervention (McQuillan et al., 2021). However, the 

impact of these early differences on other aspects of health and development 

remains unclear.  

6.4.2 Strengths and limitations  

While the study is one of the first to study the longitudinal effects of sensorimotor 

control, its ability to infer the shape of developmental trajectories over the period 

investigated (4-11 years) was limited by the inclusion of only two timepoints. More 

informative and detailed patterns of the development of sensorimotor control over 

the course of childhood would be possible with additional intervening timepoints. 

With more data points, more detailed growth curve analyses would be possible, 

to follow the development of the same children’s sensorimotor control over time. 

Only two timepoints were included due to the longitudinal data here being 

collected within large data sweeps situated within the larger Born in Bradford 

cohort study. It is important to also note the difference between the two data 

sweeps in terms of the age ranges tested too. For example, at T1, all children 

were 4-5 years, yet at T2, children were tested within the age ranges of 7-11 

years. As such, the sample was split by year group at T2 into Year 3 and Year 4. 

This was to differentiate between participants in the cohort who were, on average, 

either followed up four or five years after their first CKAT assessment (i.e., in Year 

3 or Year 4, respectively).  

In addition, while fewer timepoints were available, using data from BiB did provide 

the opportunity to access a much larger sample from a bi-ethnic population. The 

sparseness of the timepoints for the repeated-measures analysis in Study 2 was 

also remedied somewhat by the inclusion of the cross-sectional analysis in Study 
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1 where a more general overview of the trajectory of various aspects of 

sensorimotor control was possible.  

6.4.3 Implications and future research  

The present findings give greater insight into the extent to which ethnicity  

influences sensorimotor development over the course of childhood, and how 

those from ethnic minority groups show signs of “catching up” to their White 

British peers. However, it is currently unclear as to why these ethnic differences 

in sensorimotor control initially arise or why they diminish over time. Further 

research should seek to address this, perhaps to see if several explanations for 

reduced ethnic differences over time in previous research looking at academic 

achievement, can also be applied to explaining these similar patterns of 

attenuation in the effects of ethnicity on sensorimotor development.   

For example, Wilson et al. (2006) propose that children from ethnic minority 

groups may not have English as their first language which may present as a 

challenge initially as they navigate the classroom environment. However, as their 

language skills develop, these children are better able to engage with learning. 

However, unlike academic achievement and educational outcomes, it is unlikely 

that language will have as large an impact on sensorimotor control compared to 

other domains, such as academic achievement. Thus, there are likely additional 

mechanisms underpinning these findings.  

Wilson et al. (2006) also suggest that the ethnic composition of the school 

environment could influence the impact of ethnicity on educational outcomes. 

This corroborates previous literature which suggests that a high ethnic density 

may serve as a protective mechanism for the adverse effects of belonging to an 

ethnic “minority” group (Bécares et al., 2009, 2018; Das-Munshi et al., 2010; K. 
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E. Pickett et al., 2009; K. E. Pickett & Wilkinson, 2008). However, within Bradford 

classrooms, the high proportion of South Asian and Pakistani children is much 

larger than the UK average, particularly inner city Bradford. Thus, future research 

could investigate the effect of ethnic density serving as a protective factor for 

sensorimotor control by comparing ethnic differences in schools with varying 

proportions of ethnic “minority” children.  

Additionally, the present study highlights significant, albeit small, ethnic 

differences in sensorimotor control at age 4-5 years. This research could be 

extended to include mediation analyses to determine the extent to which ethnic 

differences in sensorimotor control impact academic achievement at both 4-5 

years (e.g., EYSP scores) and in later childhood (e.g., SATs scores) or mental 

health using the Strengths and Difficulties Questionnaire (R. Goodman, 1997). 

Both of these outcome measures are currently available within the Born in 

Bradford dataset. Such research has been conducted within a US-based cohort 

study: the Early Childhood Longitudinal Study (ECLS-K; Luo et al., 2007). The 

authors found that fine motor skill significantly mediated the relationship between 

ethnicity (East Asian American versus European American) and mathematics 

achievement. It would be interesting to explore if similar results were replicated 

when comparing White British and Pakistani children within a UK-based cohort. 

6.4.4 Conclusion  

In conclusion, the present study found that most aspects of sensorimotor control 

improve with increasing age across the primary school years, with the greatest 

improvements found between four and six years. Additionally, repeated-

measures analyses show that children on an individual level do show significant 

improvement over time. Lastly, the current chapter suggests that any early ethnic 
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differences in sensorimotor control are not enduring and tend to dissipate before 

the end of primary school. This is promising, as it implies that Pakistani children 

do not remain at a disadvantage throughout the course of childhood, with regard 

to sensorimotor control. Therefore, it may be a better use of resources to prioritise 

progress in domains other than sensorimotor control, where children do not 

naturally catch up over time. It also suggests that there may be more influential 

factors contributing to children’s sensorimotor control than ethnicity alone. 

Currently, the effect of these early differences in sensorimotor control on other 

aspects of health is not known. Future research would benefit from understanding 

how these early ethnic differences affect other aspects of development and how 

other modifiable sociodemographic factors impact sensorimotor control.  
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Chapter 7 General Discussion 

Sensorimotor control provides the ability to interact with the environment by 

converting sensory information into a goal-directed action (Edwards et al., 2019; 

Franklin & Wolpert, 2011; Tresilian, 2012). As discussed at length in Chapter 1, 

it underpins the ability to seamlessly execute movements for activities of daily 

living, partake in physical activity, and produce legible handwriting (Cools et al., 

2011; Kilbreath & Heard, 2005; Lubans et al., 2010; Ng & Button, 2018; 

Rosenblum et al., 2010; Shire et al., 2016; Smits-Engelsman et al., 2001; Snapp-

Childs, Casserly, et al., 2013).  

This, of course, can be impacted by various sociodemographic factors. For 

example, previous research has found a link between SEP and motor skills 

(Adkins et al., 2017; Comuk-Balci et al., 2016; Mcphillips & Jordan-Black, 2007; 

Morley et al., 2015). Similarly, some research has also found ethnic inequalities 

in motor skills (Adeyemi-Walker et al., 2018; Eyre et al., 2018; Mayson et al., 

2007). There is, however, a complex interaction between these variables on 

children’s motor control which may affect the conclusions drawn (Bécares et al., 

2012; Cheng et al., 2015; Nazroo, 1998, 2003; Uphoff et al., 2015). Thus, it is 

essential that these factors are not investigated as independent silos. After 

reviewing the literature, there was scant research found which focused on how 

these two sociodemographic factors interactively impact children’s sensorimotor 

control. In addition, it was evident that studies exploring social determinants of 

health, including motor skills, do not always use the most optimal or appropriate 

methodology. Furthermore, these relationships have not been studied in large-

scale studies across the primary school years. 
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As a result, this thesis sought to refine and apply existing methods to understand 

social determinants of sensorimotor control (ethnicity and SEP) both 

longitudinally and cross-sectionally and explore how these factors interact. To do 

so, a more inclusive, ethnic-specific measure of SEP was reproduced using latent 

class analysis to provide a more holistic proxy measure compared to individual 

conventional indicators. Dimension reduction techniques (Principal Component 

Analysis and Confirmatory Factor Analysis) were also used in tandem to 

determine the most appropriate way to quantify sensorimotor performance of an 

existing kinematic tool (CKAT). Analyses were conducted on a sample taken from 

a large, longitudinal cohort of bi-ethnic children. This sample had greater 

proportions of individuals from Pakistani and disadvantaged backgrounds than 

the UK average (City of Bradford Metropolitan District Council, 2020b; Raynor et 

al., 2008; Valentine, 2005; John Wright et al., 2013), providing a unique dataset 

to explore the effect of these social determinants on children’s sensorimotor 

control. Specifically, the studies contained within this thesis aimed to determine: 

(i) the extent to which ethnicity impacts school-starters’ sensorimotor control and 

whether this relationship weakened after controlling for SEP, (ii) how SEP 

impacts sensorimotor control, (iii) how the method of quantifying these measures 

impacts the relationships, and (iv) the longitudinal development of sensorimotor 

control over the primary school years. This is the first research of its kind to 

assess the demographic predictors of sensorimotor control within this sample and 

the first to investigate these data longitudinally. A summary of the key findings for 

each study will be reiterated before discussing the implications of the research 

contained within this thesis, methodological limitations and directions for future 

research.  
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7.1 Summary of the experimental findings  

7.1.1 Chapter 2  

Chapter 2 aimed to replicate the work of Fairley et al. (2014) to produce an ethnic-

specific latent measure of socioeconomic position to use in split-group analyses 

to determine the extent to which SEP predicts children’s sensorimotor control 

(Chapter 5). Replication of the derivation of these measures was necessary as 

these are not available within the Born in Bradford Data Dictionary. Nineteen 

independent indicators of socioeconomic circumstances were included in the 

models such as maternal education, spending priorities, and subjective poverty. 

As expected, the results mirrored those of Fairley et al. (2014), finding that for 

both Pakistani and White British samples, four latent classes best fit the data. 

There were, however, some differences in the circumstances that made up each 

of these classes, suggesting that an ethnic-specific SEP may be more 

appropriate to account for these differences when investigating within-group 

differences. Importantly, these ethnic-specific SEP classes are not appropriate 

for use when determining differences between ethnic groups.   

7.1.2 Chapters 3 & 4  

Chapters 3 and 4 aimed to reduce the number of dimensions of sensorimotor 

control produced by the Clinical-Kinematic Assessment Tool using Principal 

Components Analysis and Confirmatory Factor Analysis, respectively. While 

kinematic assessment tools offer a more precise and objective alternative to 

subjective observational assessments, there are tens of potential kinematic 

variables to consider when quantifying performance. This can lead to cherry-

picking or selecting inappropriate and/or redundant kinematic metrics (Murphy & 

Aguinis, 2019). Instead, exploratory and confirmatory dimension reduction 
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techniques such as PCA and CFA provide the opportunity to strike an appropriate 

balance between explaining the largest amount of systematic variance and 

making theoretically justifiable decisions. It was predicted that the dimensionality 

of CKAT output data could be reduced to a smaller number of meaningful 

sensorimotor components.  

Within each task, a mean score of all conditions was created before entering 

these median values into three individual PCA models: 48 items for Tracking, 24 

for Aiming, and eight for Steering. The appropriate number of components were 

selected using eigenvalues, cumulative variance, and scree plots. In cases where 

the number of appropriate components to extract was not clear, CFA was 

conducted on both potential models. Following the PCA, the models were refined 

using CFA to ensure they fit a novel, unseen dataset. This allowed the author to 

use existing theoretical frameworks to adjust the models and rectify any 

anomalies that the PCA included. Following up the PCA with CFA using a novel 

sample demonstrated that the models were valid across multiple samples. Thus, 

there is evidence to suggest that the proposed models are both mathematically 

and theoretically sound.  

Together, these two chapters found that Tracking, Aiming, and Steering would be 

quantified most optimally using eight, three, and three sensorimotor components, 

respectively. Previous literature using CKAT often takes a one-metric-per-task 

approach to quantifying performance (e.g., Flatters et al., 2014; Hill et al., 2021), 

however by including a larger range of kinematic metrics, there are arguably more 

aspects of children’s sensorimotor control considered as more systematic 

variance is explained. As demonstrated in Chapters 5 and 6, these scores can 

be used as independent component scores (e.g., Study 1 of Chapter 6), used to 
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create a weighted mean task score (e.g., Study 2 of Chapter 6) or produce an 

Overall Score across all three tasks (e.g., Chapter 5). These various forms of the 

sensorimotor factor scores highlight the flexibility available dependent on specific 

research questions at hand.  

7.1.3 Chapter 5 

Chapter 5 was a two-part study which sought to understand how ethnicity and 

socioeconomic status individually and collectively impacted sensorimotor control 

in 4-5-year-old children. These analyses were conducted using both the 

“conventional” measures of SES (maternal education, receipt of means-tested 

benefits and IMD) and CKAT (one metric per task: RMSE, Path Length Time and 

pPA) and the “revised” methods, latent SEP and CKAT factor scores, 

respectively. Study 1, using the conventional methods, illustrated that ethnicity 

significantly predicted Overall CKAT score, even after controlling for all three 

measures of SES. In addition, the findings indicated that only maternal education 

and IMD were significant predictors of performance but not receipt of means-

tested benefits. This corroborates previous literature which suggests the proxy 

measure of SES used can impact the relationships found (Cools et al., 2011). In 

addition, there was no significant moderation found between ethnicity, SES and 

Overall CKAT Score, regardless of which SES proxy measure was used. This 

suggests that the impact of SES on Overall CKAT is similar, regardless of one’s 

ethnic group.  

Study 2 found similar results. Ethnicity was still a significant predictor when 

controlling for cohort-wide latent SEP, with White British children significantly 

outperforming their Pakistani peers. Additionally, there was a significant effect of 

SEP, with children from the two least deprived groups performing significantly 
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better than the most deprived group. The impact of using the ethnic-specific latent 

measure of SEP was tested by conducting a split-group analysis of the effect of 

SEP on CKAT performance. For Pakistani children, there was a significant 

difference between the most and least deprived groups when using the ethnic-

specific SEP, however no differences were found when using the cohort-wide 

measure. For White British children, differences in children’s performance were 

found across socioeconomic groups, regardless of which measure was used.  

Whilst these studies do suggest that ethnicity is a significant predictor of 

sensorimotor control, putting these differences into context is important. For 

example, adding ethnicity to the model explained little additional unique variance, 

questioning the extent to which it would impact children’s abilities in applied 

settings. This highlights that other social determinants may play a much larger 

role in influencing children’s sensorimotor control.  

7.1.4 Chapter 6  

Chapter 6, the final experimental chapter, aimed to understand the longitudinal 

development of sensorimotor control over the course of childhood and how this 

is impacted by ethnicity. To do so, several analyses were conducted. Firstly, 

cross-sectional, exploratory analyses aimed to study the general developmental 

trajectory of sensorimotor control over the course of the primary school years. 

This was performed on every component (derived in Chapter 3 and Chapter 4) 

for all three tasks, individually and allowed the exploration of how the different 

mechanisms underpinning sensorimotor control develop over time. Additionally, 

repeated-measures analyses were conducted to understand how children’s 

sensorimotor control improved across two timepoints during primary school (4-5 

years and 7-8 or 8-9 years) and how this differed across ethnic groups.  
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As expected, the cross-sectional analyses revealed a general increase in 

performance across all components, indicated by reduced error scores. Greater 

developmental gains were found for many sensorimotor components between 

four and six years of age with a slower rate of improvement at around nine years, 

supporting previous literature (e.g., Gaul & Issartel, 2016; Wilson & Hyde, 2013). 

Some components such as Movement Efficiency within the Steering task, 

however, did show less consistent age-related improvements. As discussed in 

Chapter 6 though, this could be, in part, due to the complexity and difficulty of the 

Steering task compared to Tracking and Aiming. Aligning with predictions, the 

repeated-measures analyses indicated significant improvement between the two 

timepoints (Reception versus Year 3 or Year 4).  

When incorporating ethnicity, a significant interaction was found between 

ethnicity and timepoint. Post-hoc analyses found that differences at the first 

timepoint diminished by the second, indicating that the effect of ethnicity on 

sensorimotor control reduces with increasing age. This was the case across all 

tasks. This study extends the work of Chapter 5 which found significant ethnic 

differences in Overall performance of sensorimotor control. This implies that with 

increasing age, ethnic inequalities reduce, supporting previous literature 

(Sammons, 1995; X. Zhang et al., 2020; Zilanawala et al., 2016).   

Together, these findings indicate that similar age-related trajectories are found 

across all tasks and components, so it is appropriate to combine these into overall 

scores for some analyses to increase interpretability of more general 

relationships (i.e., Chapter 5). However, when the aim is to understand the 

specific mechanisms of sensorimotor control in more detail, it is viable to use the 

individual components. These findings support the work of Chapters 3 and 4 by 
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demonstrating the flexibility of quantifying sensorimotor control using factor 

scores. This is the first instance of using the longitudinal sensorimotor data within 

the Born in Bradford cohort to understand the development of children’s 

sensorimotor control.  

7.2 Implications  

Collectively, the studies contained within this thesis have several implications for 

research, policy and practice. These include highlighting the importance of 

empirically driven selection of measurement variables, the need to reduce ethnic 

inequalities in children’s sensorimotor control, and need for further investigation 

of the wider and long-term impact of these differences.  

Firstly, one of the key findings of this work was evidence to support the 

importance of empirically driven selection of measurement variables. It was 

evident that using measures of SEP and sensorimotor control which are 

empirically determined and capture a larger proportion of systematic variance 

were better able to detect subtle differences in relationships between 

sociodemographic factors and sensorimotor performance. Similar conclusions 

may be found in future research using other sociodemographic factors such as 

biological sex (Bolger et al., 2018; Flatters, Hill, et al., 2014; Morley et al., 2015). 

For example, previous research investigating sex-related differences in 

sensorimotor control using CKAT did not identify statistically significant 

differences on the Tracking task when measured using RMSE (Flatters, Hill, et 

al., 2014). In addition, the authors concluded that the sex differences that were 

found were minimal and unlikely to have lasting impact. However, measuring 

CKAT with the scoring method derived within this thesis may have detected 

larger, more meaningful differences between the two groups when incorporating 
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wider aspects of sensorimotor control and thus highlighting a need for targeted 

intervention. This is supported by the present research which found sex 

significantly predicted performance across tasks. In addition, it is possible to 

understand the specific aspects where these differences lie when using more 

specific scoring. Previous research has broken down movements into individual 

sensorimotor components, finding sex differences across the different aspects of 

movement. For example, females have shown reduced spatial accuracy in goal-

directed movements compared to males and increased movement times, yet no 

significant sex differences were found for temporal accuracy or “decision time” 

(Casamento-Moran et al., 2017; Lynn & Ja-Song, 1992). Indeed, after finding that 

accurate online corrections were made quicker by female participants than 

males, Hansen and Elliott (2009) concluded that males were more likely to 

“sacrifice the accuracy of completion of the task for the speed of completion” 

(p.28). Such detailed analysis of these individual aspects of movement would not 

be possible when using a “one-metric per task” approach to measuring 

sensorimotor performance. Similar individual differences may also be masked 

across various sociodemographic groups such as various ages, ethnicities, SEP-

classes etc. Thus, this research provides evidence to support the use of such 

empirically driven variables within future analyses. Relatedly, as these newly 

derived scores of sensorimotor control were developed using data from the Born 

in Bradford cohort, these measures are available for use by other researchers 

within BiB, avoiding arbitrary cherry-picking of kinematic variables and 

encouraging the use of more detailed and inclusive sensorimotor data.   

Another implication of the work contained within this thesis is the opportunity of 

using the large dataset of sensorimotor performance to generate age-appropriate 
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norms for determining benchmark performance to compare individuals against. 

Within paediatric health and medicine, age-appropriate norms are frequently 

used to assess children’s current level of development (Kelle, 2010). While even 

“normal” development is not homogenous across all children and there are 

individual differences in terms of individual trajectories, age-appropriate norms 

are useful for giving parents realistic expectations of their children (Boatella-

Costa et al., 2007; Kelle, 2010; Y. Noble & Boyd, 2012).  Age-related norms are 

available for a range of movement assessments, including the MABC-2 

(Henderson et al., 2007), TGMD-2 (Ulrich, 2000), and BOT-2 (Bruininks & 

Bruininks, 2005) and are useful for highlighting children who are not performing 

as expected for their age.  

Such age-appropriate norms are not currently available for CKAT and although 

not originally intended as a diagnostic tool, it could be used as a pre-screening 

assessment for all children as they enter formal education. With the increased 

risk of a plethora of adversities due to impeded motor skills as discussed in 

Chapter 1, such as poor academic achievement (Cameron et al., 2016; Giles et 

al., 2018), mental health difficulties (L. J. B. Hill et al., 2016; Mancini et al., 2018), 

and reduced levels of physical activity (L. M. Barnett et al., 2011; Temple et al., 

2019), identifying children at risk is pivotal. Through early identification of these 

children, these related adversities may be diminished or avoided through targeted 

sensorimotor intervention. In addition, although motor skills vary along a 

spectrum of abilities, difficulties at a clinical level are not infrequent. Recent 

research suggests that 12-17.4% of 4-6-year-old children are at risk of DCD, 

equating to at least one child per average classroom (Amador-Ruiz et al., 2018; 

De Milander et al., 2016b, 2016a). Children not performing as expected for their 
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age would be identified as those who may benefit from additional support in the 

classroom. In extreme cases, poor performance for age on CKAT could be used 

as an incentive for referral to a physiotherapist or occupational therapist for 

additional diagnostic screening for movement disorders such as DCD. Further 

detail regarding targeted intervention for those at risk is described later in this 

section.  

Normative data have also been previously used to assess the appropriateness of 

various assessment tools of motor control within other populations (Chow et al., 

2001; Hirata et al., 2018; Mayson et al., 2007; Tripathi et al., 2008). As the present 

research highlights, ethnic differences are apparent, particularly in early 

childhood, meaning normative data requires adjustment of these differences, 

accordingly. This supports previous research which has found similar 

adjustments of age-related norms are necessary when using the MABC-2 across 

different populations such as Japanese (Hirata et al., 2018), Thai (Jaikaew & 

Satiansukpong, 2019) and Dutch (Fleurkens-Peeters et al., 2018) samples. Thus, 

it may be appropriate to generate CKAT norms which are specific to ethnicity. 

Lastly, if age-appropriate norms are extended to include typically-developing 

adult populations too, CKAT could be used to gauge recovery or progress in 

groups undergoing rehabilitation or treatment for movement disorders such as 

stroke or cerebral palsy (Fitoussi et al., 2011; Koesler et al., 2009; Nowak, 2008; 

Rudisch et al., 2016; Wu et al., 2007). Previous research has already used an 

early version of CKAT to research intracranial aneurysm treatment following 

stroke (Raw et al., 2017). However, using the current scoring would increase the 

level of detail obtained. The advantage of using CKAT in such scenarios is that it 
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is easily transportable, making at-home assessments viable, minimising the 

inconvenience placed on the patient to attend primary healthcare settings.  

In addition to highlighting the importance of accurate, empirically determined 

measurement of sensorimotor control, the current thesis does also demonstrate 

a similar advantage of such techniques with regard to socioeconomic position. It 

was evident that using a comprehensive, latent measure of SEP which better 

reflects the multifaceted construct was better able to detect differences in 

sensorimotor control compared to a single measure. As previously discussed, 

SEP encompasses a range of attributes including individual’s social status, 

prestige, wealth and access to resources, both objectively and subjectively 

(Braveman et al., 2001; Fairley et al., 2014; Galobardes et al., 2006; Howe et al., 

2012; Krieger et al., 1997; Nazroo, 1998). These findings provide additional 

support to the evidence base of the importance of using measurement tools which 

reflect these many aspects. This has important implications for future research 

as it advocates the use of composite and multifaceted measures when designing 

future studies. Using a measure which takes into account multiple aspects of 

socioeconomic circumstances and also weights these aspects appropriately 

avoids inconsistencies in the conclusions drawn as a result of the proxy measure 

of SEP used. Such discrepancies have been found in previous research 

investigating the relationships between SEP and motor skills when using different 

individual predictors of SEP (e.g., Cools et al., 2011; Lejarraga et al., 2002) which 

can lead to conflicting evidence. 

Using a comprehensive SEP variable also avoids biases which can arise as a 

result of individual differences. These biases may be more prevalent in particular 

populations such as when using education as the indicator but the individual in 
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question has qualifications obtained outside of the UK or taken a vocational, 

rather than conventionally “academic” route (Braveman et al., 2005; Sherar et al., 

2016). Thus, future research should aim to collect data concerning a range of 

predictors of SEP to gauge individuals’ circumstances most accurately, 

particularly if interested in its relationship with children’s sensorimotor control, or 

development more generally.   

Additionally, there was a distinct benefit of using measures of SEP which were 

specific to the ethnic group in question. For example, in Pakistani individuals, 

greater socioeconomic differences were captured when using the ethnic-specific 

measure. This highlights that similar measures should be incorporated when 

investigating socioeconomic effects on various outcomes within different ethnic-

populations and that a “one size fits all” approach cannot be taken with regard to 

SEP (Braveman et al., 2005). This is supported by previous research which 

suggests that measures of SEP may not be equivalent across different ethnicities 

and there may be differences in circumstances, despite some conventional 

predictors of SEP being identical (Kelaher et al., 2009; Shavers, 2007). Future 

studies aiming to look at SEP across diverse populations should acknowledge 

these differences and consider a specific SEP measure. However, as previously 

noted, these measures are not appropriate when comparing health, performance 

or development between different ethnic groups (Fairley et al., 2014).   

In addition to providing evidence to inform practice on the measurement of 

variables within sociodemographic and/or sensorimotor control research, the 

present thesis also provides insights into ethnic differences of sensorimotor 

control within early childhood. It was found that Pakistani children may be at an 

increased disadvantage in terms of their sensorimotor control during the first year 
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of formal education. However, it is promising that these ethnic differences were 

found to dissipate over time. As discussed in Chapter 6, there are several 

possibilities as to what is driving this reduction in ethnic differences. One possible 

explanation is that children spend a large proportion of time in the classroom 

environment compared to the home once they reach school age, providing a 

plethora of opportunities to refine and develop their sensorimotor control and fine 

motor skills through everyday classroom activities such as handwriting and other 

fine motor tasks (Caçola, 2014; Cameron et al., 2016; Hua et al., 2016; Marr et 

al., 2003). Additionally, the school environment in UK state schools is relatively 

homogenous, regardless of ethnicity with all children receiving relatively equal 

access to opportunities, provisions, and stimulation, putting children on an even 

playing field. On the contrary, the home may vary more widely from child to child 

and across ethnic groups. Thus, with increased access to these resources at 

school, children of Pakistani ethnicity have the opportunity to catch up to their 

White British peers. While previous research has suggested that up to two-thirds 

of the progress made by ethnic minority children in terms of academic 

performance is a result of increased language competence (Dustmann et al., 

2010). However, this is unlikely to be the case for sensorimotor control, therefore 

further research is needed to understand the mechanisms underpinning this 

progress in Pakistani children.  

Although these children do catch up over time, it does highlight the importance of 

early intervention and provision of education for stimulating sensorimotor skills 

during the early years, particularly in ethnic minority groups. This is especially 

important as it is not currently clear whether this initial ethnic disparity causes 

lasting impact on other aspects of development. One approach could be to 
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improve parents’ education and empower them to provide their child with an 

enriching and stimulating home environment. Such approaches have been 

successfully implemented to improve children’s language skills, specifically those 

from ethnic minority backgrounds. Mendez et al. (2010) found that parents 

receiving the intervention increased the frequency of reading to their child, 

improved the home learning environment, encouraged positive parent-child 

interactions with educational activities and improved parent-teacher 

relationships. At the end of the intervention, it was found that children in the 

intervention group had superior receptive vocabulary compared to controls. Thus, 

the present research may serve as an incentive that similar preventative 

initiatives may be appropriate for ensuring children enter school with a competent 

level of sensorimotor control. 

In addition to improving parental education and providing preventative strategies, 

sensorimotor control has been significantly improved following various child-

focused programmes during early childhood. For example, Bingham and Snapp-

Childs (2019) found that age differences in performance on a kinematic task at 

pre-test were eliminated at post-test following a specific sensorimotor 

intervention. Furthermore, classroom interventions have also suggested potential 

for improving children’s sensorimotor and fine motor skills. Helping Handwriting 

Shine (Shire, Atkinson, et al., 2020) is an initiative that has been successfully 

implemented during the first year of school which involves sensorimotor activities 

and handwriting skills. Interventions such as these may be useful to help children 

who may be initially struggling to “catch up” to their peers and reduce any early 

ethnic differences found.  
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7.3 Limitations  

The present research is of course, not without limitations and the work contained 

within this thesis was conducted within the remits of a three-year doctoral degree. 

Firstly, although the statistical analysis used to derive the revised measures of 

SEP and sensorimotor control (PCA, LCA, CFA) are more empirically driven than 

selecting variables based upon theoretical assumptions only, there is some 

subjectivity involved. For example, other researchers may have interpretated 

findings slightly differently and thus, the components or variables derived may 

vary somewhat. Therefore, the relationships in which these are used may have 

subtle differences. Whilst a possibility, using an empirically driven method is still 

superior.  

Although not investigated in the current thesis, there is a potential limitation 

regarding how ethnicity was measured. For example, the data used was derived 

from the Baseline Questionnaire of the Born in Bradford study. Ethnicity was a 

self-reported measure based on the Census and was used to group individuals 

into White British, Pakistani and “Other”. However, as Ford and Harawa (2010) 

highlight, ethnicity is a subjective and complex construct and thus while reducing 

it to only three groups makes analyses and interpretation easier, it does not allow 

for nuances. In addition, ethnicity is a sensitive and personal construct and so by 

using only three ethnic groups, it could be interpreted as non-inclusive for 

individuals who identify as multi-racial or multi-ethnic. Similarly, Bradford is a 

unique city, with a high ethnic density (John Wright et al., 2013). Thus, it is not 

clear how well these findings would translate to other ethnic groups or between 

White British and Pakistani samples across the UK. For example, areas with high 

ethnic densities have been previously found to act as a buffer effect for the 
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inequalities often faced by ethnic minority groups (Bécares et al., 2009; Karlsen 

et al., 2002; K. E. Pickett & Wilkinson, 2008; Uphoff et al., 2016). With Bradford 

schools comprising a large proportion of Pakistani children, particularly within the 

inner city, this “buffer” effect as a result of ethnic density could explain why these 

children were found to “catch up” in mid-childhood (Valentine, 2005; John Wright 

et al., 2013). However, despite the potential lack of generalisability, the findings 

can be used to inform practice, policy and further research which is tailored for 

Bradford specifically.  

The generalisability of the sample used within the present thesis may be 

considered a potential limitation, since all participants resided in the city of 

Bradford, UK. However, Bradford may be an appropriate microcosm for other 

large UK cities where there is a high ethnic density of “minority” groups. As the 

2011 Census demonstrates, the proportion of Asian or Asian British individuals 

surpasses that within Bradford in several districts within England including 

Leicester, several boroughs within London, and Blackburn4 (Office for National 

Statistics, 2012). Therefore, similar findings would be predicted in such districts 

where there is a large ethnic minority population. Further research should be 

conducted, however to determine the appropriateness of such generalisations. In 

the event that such generalisations are not appropriate, the present research 

reveals the complex relationship between ethnicity and children’s sensorimotor 

control, specific to Bradford pupils where targeted policy can be implemented, 

accordingly.  

 

4 Note that “Asian or Asian British” includes individuals identifying as Indian, Pakistani, 
Bangladeshi, Chinese or any other Asian background 
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Lastly, the present research builds on the current literature by using repeated 

measures to understand the longitudinal relationships of sensorimotor control. 

Repeated measures provide the opportunity to account for individual differences 

(Imlach Gunasekara et al., 2014). However, the present research does only 

include two timepoints, limiting the extent to which current findings may extend 

across the course of childhood. As Born in Bradford is very much still an active 

cohort study with data collection ongoing, this may be a line for future research 

as more data become available.  

7.4 Future Directions  

Whilst the present research does reveal some novel findings, there are several 

potential avenues that should be investigated to further disentangle the 

complexities between socioeconomic position, ethnicity and children’s 

sensorimotor control.  

Whilst the current research suggests that ethnic differences in sensorimotor 

control diminish over the course of childhood, further research should aim to 

investigate the extent to which these early differences have on other aspects of 

development. As discussed in Chapter 1, the ability to execute sensory-guided 

movements accurately is associated with a wide range of developmental 

outcomes such as academic achievement, physical activity, and mental health 

(Cairney et al., 2010; Cameron et al., 2016; Crane et al., 2017; Giles et al., 2018; 

Harrowell et al., 2018; L. J. B. Hill et al., 2016; Hudson et al., 2020). Thus, it would 

be of interest to understand whether these early ethnic differences in 

sensorimotor control have a longer term, wider impact on such developmental 

outcomes. 
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In a similar vein, as the significant differences between White British and 

Pakistani children diminishes with increasing age and such a small amount of 

unique variance is explained when this is significant, what are the other potential 

determiners of children’s sensorimotor control? Possibilities could include the 

amount of formal handwriting practice performed within the classroom per week 

or use of video games or other digital technology. For example, previous research 

has found a positive association between videogaming and fine motor skills in 

trainee laparoscopic surgeons (e.g., Rosser et al., 2007). In addition, there is 

evidence suggesting the need for competent manual dexterity to interact 

efficiently with touch screen devices with positive associations found between the 

use of early touch-screen devices and acquisition of fine motor milestones 

(Bedford et al., 2016).  

Lastly, to address the limitations around the generalisability of the current 

research outside of Bradford, future directions should include conducting similar 

research in other populations. Although the socioeconomic data contained within 

the current thesis is very rich, there are other cohort studies around the UK which 

collect similarly detailed demographic information. For example, ALSPAC is a 

large cohort study which includes participants from Bristol and surrounding areas 

in North Somerset (Golding et al., 2001). With a smaller proportion of South Asian 

individuals and a smaller ethnic density, it would be interesting to understand 

whether similar ethnic patterns arise within this population.  

7.5 Concluding remarks  

To conclude, the research contained within this thesis aimed to understand the 

sociodemographic predictors of sensorimotor control and its development over 

the primary school years. Findings suggest that there are ethnic differences in 
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school-starters, but these differences diminish by age 7 onwards and other 

factors are likely to have a greater impact. It was also revealed that one’s SEP 

can influence sensorimotor control, supporting previous research. However, the 

extent to which SEP plays a role does depend upon the way it is measured and 

whether ethnicity is accounted for. Furthermore, a key takeaway from the 

research is the importance of careful consideration of the variables used to 

measure and conceptualise important constructs within developmental research 

using children from bi-ethnic, deprived backgrounds and how these can impact 

the conclusions drawn. 
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Appendix A 

Quality control of the sensorimotor data from the Primary School Years data 

sweep  

Under the supervision of their primary supervisor and lead of the Born in 

Bradford data management team, the author was responsible for reviewing the 

sensorimotor data from the Primary School Years sweep for quality control 

purposes. These data are used in analyses in Chapter 5 and Chapter 6. Cases 

were omitted from further analyses primarily for one or more of the following 

reasons: incompleteness; duplication or issues occurring during testing which 

were recorded in an accompanying field note.  

Firstly, incompleteness occurred when a participant had missing data for one or 

more trials in a given task. This generally occurred due to technical faults such 

as software crashes. Importantly, to conserve as much data as possible, the 

data were reviewed on a task by task basis: incomplete Tracking task but 

complete Aiming and Steering tasks meant omission of the Tracking trials only, 

rather than the entire case. Thus, sample sizes varied across the three tasks.  

Secondly, duplicated data arose when the participant identifying information 

(e.g., Child ID) was identical across one or more sessions. In some cases, this 

was legitimate (e.g., when a participant began a testing session but this had to 

be completed in a second session due to logistical or technical issues). For 

these instances, an accompanying field note was recorded explaining the 

circumstances and sessions were combined. Where both the participant 

information and kinematic recordings were identical across multiple sessions, 

one session was retained and the other(s) omitted. However, if, due to human 
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error, the participant information was recorded incorrectly, resulting in two cases 

with the same Child IDs but different kinematic data, both sessions were 

omitted from analyses.  

Lastly, at the end of each session, the experimenter was provided the option to 

record anything of note that should be considered when analysing the data as a 

field note. The field notes were each inspected by the author and primary 

supervisor and reviewed on a case by case basis for exclusion. Examples of 

cases warranting exclusion: technical issues (e.g., software crashes), non-

compliant participants (e.g. not following task instructions) or participants raising 

the stylus from the tablet on multiple occasions (therefore limiting the accuracy 

of the kinematic data obtained).  

Data were reviewed on a task by task basis, and thus sample sizes varied for 

Tracking, Aiming, and Steering. For example, if issues arose for the Tracking 

task but complete data were provided for the Aiming and Steering tasks, only 

data for the Tracking task would be omitted rather than the entire case to limit 

data loss.  
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Appendix B 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Slow + With Guide) [continues on next 
page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.41*** .03 -0.50 -0.33 

6 -1.21*** .05 -1.35 -1.07 

7 -1.19*** .02 -1.26 -1.13 

8 -1.24*** .02 -1.31 -1.18 

9 -1.35*** .02 -1.41 -1.28 

10 -1.43*** .04 -1.54 -1.33 

11 -1.52*** .09 -1.78 -1.27 

5 6 -0.80*** .05 -0.94 -0.65 

7 -0.78*** .02 -0.84 -0.72 

8 -0.83*** .02 -0.89 -0.77 

9 -0.93*** .02 -1.00 -0.86 

10 -1.02*** .04 -1.12 -0.91 

11 -1.11*** .09 -1.36 -0.86 

[continued] 
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Appendix B [continued]  

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Slow + With Guide)  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.02  .05 -0.12 0.15 

8 -0.03  .05 -0.16 0.10 

9 -0.13* .05 -0.27 0.00 

10 -0.22*** .05 -0.38 -0.07 

11 -0.31* .10 -0.59 -0.03 

7 8 -0.05** .01 -0.09 -0.01 

9 -0.15*** .02 -0.20 -0.11 

10 -0.24*** .03 -0.33 -0.15 

11 -0.33** .09 -0.58 -0.08 

8 9 -0.10*** .01 -0.15 -0.06 

10 -0.19*** .03 -0.28 -0.10 

11 -0.18** .09 -0.53 -0.03 

9 10 -0.09 .03 -0.18 0.01 

11 -0.18  .09 -0.43 0.07 

10 11 -0.09 .09 -0.36 0.17 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix C 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Slow + No Guide) [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.37***     .03 -0.46  -0.28 

6 -0.94***    .05 -1.10  -0.78 

7 -0.97***    .03 -1.04 -0.89 

8 -1.02***    .02 -1.10 -0.95 

9 -1.11***    .03 -1.19 -1.03 

10 -1.13***    .04 -1.25 -1.02 

11 -1.21***    .10 -1.50 -0.93 

5 6 -0.57***    .05 -0.72 -0.41 

7 -0.59***    .02 -0.66 -0.53 

8 -0.65***    .02 -0.72 -0.58 

9 -0.74***    .02 -0.81 -0.67 

10 -0.76***    .04 -0.88 -0.65 

11 -0.84***    .10 -1.12 -0.56  

[continued] 
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Appendix C [continued] 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Slow + No Guide) 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.03 .05 -0.18 0.12 

8 -0.08 .05 -0.23 0.06 

9 -0.17** .05 -0.32 -0.02 

10 -0.19* .06 -0.37 -0.02 

11 -0.27 .11 -0.58 0.04 

7 8 -0.06** .01 -0.10 -0.02 

9 -0.14*** .02 -0.19 -0.10 

10 -0.17*** .03 -0.27 -0.06 

11 -0.25 .09 -0.52 0.03 

8 9 -0.09*** .02 -0.14 -0.04 

10 -0.11* .03 -0.21 -0.01 

11 -0.19 .09 -0.47 0.09 

9 10 -0.02 .04 -0.13 0.08 

11 -0.10 .09 -0.38 0.18 

10 11 -0.08 .10 -0.37 0.21 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix D 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Medium + No Guide) [continues on next 
page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.44*** .03 -0.53 -0.35 

6 -0.96*** .05 -1.12 -0.80 

7 -1.08*** .03 -1.15 -1.00 

8 -1.16*** .02 -1.23 -1.09 

9 -1.29*** .03 -1.36 -1.21 

10 -1.36*** .04 -1.48 -1.25 

11 -1.36*** .10 -1.65 -1.08 

5 6 -0.53*** .05 -0.68 -0.37 

7 -0.64*** .02 -0.71 -0.57 

8 -0.72*** .02 -0.79 -0.66 

9 -0.85*** .02 -0.92 -0.78 

10 -0.93*** .04 -1.04 -0.81 

11 -0.93*** .10 -1.21 -0.64 

[continued] 
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Appendix D [continued]  

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Medium + No Guide) 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.11 .05 -0.26 0.03 

8 -0.20** .05 -0.35 -0.05 

9 -0.32*** .05 -0.47 -0.17 

10 -0.40*** .06 -0.58 -0.23 

11 -0.40** .11 -0.72 -0.09 

7 8 -0.08*** .01 -0.12 -0.04 

9 -0.21*** .02 -0.26 -0.16 

10 -0.29*** .04 -0.39 -0.18 

11 -0.29* .10 -0.57 -0.01 

8 9 -0.13*** .02 -0.17 -0.08 

10 -0.21*** .03 -0.31 -0.10 

11 -0.21 .10 -0.48 0.07 

9 10 -0.08 .04 -0.18 0.03 

11 -0.08 .10 -0.36 0.20 

10 11 0.00 .10  -0.29 0.30 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix E 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Medium + With Guide) [continues on next 
page]  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.41*** .03 -0.51 -0.35 

6 -1.26*** .05 -1.41 -1.12 

7 -1.24*** .02 -1.31 -1.17 

8 -1.32*** .02 -1.38 -1.25 

9 -1.43*** .02 -1.50 -1.36 

10 -1.54*** .04 -1.65 -1.43 

11 -1.63*** .09 -1.89 -1.37 

5 6 -0.83*** .05 -0.97 -0.69 

7 -0.81*** .02 -0.87 -0.75 

8 -0.89*** .02 -0.95 -0.83 

9 -1.00*** .02 -1.07 -0.94 

10 -1.11*** .04 -1.21 -1.00 

11 -1.20*** .09 -1.46 -0.94 

[continued] 
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Appendix E [continued]  

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Medium + With Guide) 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.02 .05 -0.11 0.16 

8 -0.06 .05 -0.19 0.08 

9 -0.17*** .05 -0.31 -0.04 

10 -0.27*** .05 -0.43 -0.12 

11 -0.37** .10 -0.65 -0.08 

7 8 -0.08*** .01 -0.11 -0.04 

9 -0.19*** .02 -0.24 -0.15 

10 -0.30*** .03 -0.39 -0.20 

11 -0.39*** .09 -0.64 -0.14 

8 9 -0.12*** .01 -0.16 -0.07 

10 -0.22*** .03 -0.31 -0.13 

11 -0.31** .09 -0.56 -0.06 

9 10 -0.10* .03 -0.20 -0.01 

11 -0.20 .09 -0.45 0.06 

10 11 -0.09 .09 -0.36 0.17 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix F 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Fast + With Guide) [continues on next 
page]  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.36*** .03 -0.45 -0.27 

6 -1.03*** .05 -1.18 -0.87 

7 -1.20*** .03 -1.27 -1.13 

8 -1.32*** .02 -1.39 -1.25 

9 -1.46*** .03 -1.54 -1.39 

10 -1.61*** .04 -1.73 -1.49 

11 -1.68*** .10 -1.96 -1.39 

5 6 -0.67*** .05 -0.82 -0.51 

7 -0.84*** .02 -0.96 -0.77 

8 -0.96*** .02 -1.03 -0.89 

9 -1.10*** .02 -1.18 -1.03 

10 -1.25*** .04 -1.37 -1.14 

11 -1.32*** .10 -1.60 -1.03 

[continued] 
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Appendix F [continued] 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Fast + With Guide) 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.17** .05 -0.32 -0.03 

8 -0.29*** .05 -0.44 -0.15 

9 -0.44*** .05 -0.59 -0.29 

10 -0.59*** .06 -0.76 -0.41 

11 -0.65*** .11 -0.96 -0.34 

7 8 -0.12*** .01 -0.16 -0.08 

9 -0.26*** .02 -0.31 -0.21 

10 -0.47*** .03 -0.51 -0.31 

11 -0.48*** .09 -0.75 -0.20 

8 9 -0.14*** .02 -0.19 -0.10 

10 -0.29*** .03 -0.39 -0.19 

11 -0.36** .09 -0.63 -0.08 

9 10 -0.15*** .04 -0.25 -0.04 

11 -0.21 .09 -0.49 0.06 

10 11 -0.06 .10 -0.36 0.23 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix G  

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Fast + No Guide) [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.44*** .03 -0.54 -0.35 

6 -0.93*** .06 -1.10 -0.77 

7 -1.13*** .03 -1.21 -1.06 

8 -1.22*** .03 -1.30 -1.15 

9 -1.36*** .03 -1.44 -1.28 

10 -1.45*** .10 -1.57 -1.33 

11 -1.45*** .04 -1.75 -1.16 

5 6 -0.49*** .06 -0.66 -0.33 

7 -0.69*** .02 -0.76 -0.62 

8 -0.78*** .02 -0.85 -0.71 

9 -0.91*** .03 -0.99 -0.84 

10 -1.01*** .04 -1.13 -0.89 

11 -1.01*** .10 -1.30 -0.72 

[continued]  
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Appendix G [continued] 

Table of multiple comparisons for age-related differences within Tracking: Dynamic Accuracy (Fast + No Guide) 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.20** .05 -0.35 -0.05 

8 -0.29*** .05 -0.44 -0.14 

9 -0.42*** .05 -0.58 -0.27 

10 -0.52*** .06 -0.70 -0.34 

11 -0.52*** .11 -0.84 -0.20 

7 8 -0.09*** .01 -0.13 -0.05 

9 -0.22*** .02 -0.27 -0.17 

10 -0.32*** .10 -0.42 -0.21 

11 -0.32* .10 -0.61 -0.03 

8 9 -0.13*** .02 -0.18 -0.08 

10 -0.23*** .04 -0.33 -0.12 

11 -0.23 .10 -0.52 0.06 

9 10 -0.10 .04 -0.20 0.01 

11 -0.10 .10 -0.39 0.19 

10 11 -0.00 .10 -0.31 0.30 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix H 

Table of multiple comparisons for age-related differences within Tracking: Normalised Jerk [continues on next page]  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.21*** .03 -0.31 -0.11 

6 -0.59*** .06 -0.76 -0.42 

7 -0.42*** .03 -0.50 -0.35 

8 -0.48*** .03 -0.55 -0.40 

9 -0.64*** .04 -0.73 -0.56 

10 -0.62*** .04 -0.75 -0.50 

11 -0.80*** .10 -1.10 -0.50 

5 6 -0.38*** .06 -0.55 -0.21 

7 -0.21*** .02 -0.29 -0.14 

8 -0.27*** .02 -0.34 -0.19 

9 -0.43*** .03 -0.51 -0.35 

10 -0.41*** .04 -0.54 -0.29 

11 -0.59*** .10 -0.89 -0.29 

[continued] 
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Appendix H [continued] 

Table of multiple comparisons for age-related differences within Tracking: Normalised Jerk  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.17* .05 0.01 0.32 

8 0.11 .05 -0.04 0.27 

9 -0.05 .05 -0.21 0.11 

10 -0.03 .06 -0.22 0.15 

11 -0.21 .11 -0.54 0.12 

7 8 -0.05** .01 -0.10 -0.01 

9 -0.22*** .02 -0.27 -0.17 

10 -0.20*** .04 -0.31 -0.09 

11 -0.37** .10 -0.67 -0.08 

8 9 -0.17*** .02 -0.22 -0.12 

10 -0.15** .04 -0.26 -0.04 

11 -0.32* .10 -0.62 -0.02 

9 10 0.02 .04 -0.09 0.13 

11 -0.16 .10 -0.45 0.14 

10 11 -0.17 .11 -0.49 0.14 

* p≤.05; ** p≤.01; *** p≤.001 



412 

 

 

Appendix I 

Table of multiple comparisons for age-related differences within Tracking: Path Length [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.25*** .03 -0.32 -0.17 

6 -0.70*** .05 -0.84 -0.56 

7 -0.73*** .02 -0.79 -0.67 

8 -0.84*** .02 -0.90 -0.78 

9 -0.99*** .02 -1.06 -0.93 

10 -1.02*** .03 -1.12 -0.92 

11 -1.13*** .08 -1.37 -0.89 

5 6 -0.45*** .05 -0.59 -0.32 

7 -0.48*** .02 -0.54 -0.42 

8 -0.59*** .02 -0.65 -0.54 

9 -0.75*** .02 -0.81 -0.68 

10 -0.78*** .03 -0.87 -0.68 

11 -0.88*** .08 -1.12 -0.64 

[continued] 
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Appendix I [continues] 

Table of multiple comparisons for age-related differences within Tracking: Path Length 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.03 .04 -0.16 0.10 

8 -0.14* .04 -0.26 -0.01 

9 -0.29*** .04 -0.42 -0.17 

10 -0.32*** .05 -0.47 -0.18 

11 -0.43*** .09 -0.69 -0.16 

7 8 -0.11*** .01 -0.14 -0.08 

9 -0.26*** .01 -0.31 -0.22 

10 -0.29*** .03 -0.38 -0.21 

11 -0.40*** .08 -0.63 -0.16 

8 9 -0.15*** .01 -0.19 -0.11 

10 -0.18*** .03 -0.27 -0.10 

11 -0.29** .08 -0.52 -0.05 

9 10 -0.03 .03 -0.12 0.06 

11 -0.14 .08 -0.37 0.10 

10 11 -0.11 .08 -0.35 0.14 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix J 

Table of multiple comparisons for age-related differences within Aiming: General Speed [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.51*** .03 -0.59 -0.43 

6 -1.16*** .05 -1.29 -1.02 

7 -1.69*** .02 -1.75 -1.63 

8 -1.87*** .02 -1.93 -1.81 

9 -2.03*** .02 -2.09 -1.97 

10 -2.07*** .03 -2.17 -1.97 

11 -1.99*** .08 -2.23 -1.75 

5 6 -0.64*** .05 -0.78 -0.51 

7 -1.18*** .02 -1.23 -1.12 

8 -1.36*** .02 -1.42 -1.30 

9 -1.52*** .02 -1.58 -1.54 

10 -1.56*** .03 -1.66 -1.46 

11 -1.48*** .08 -1.72 -1.24 

[continued] 
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Appendix J [continued] 

Table of multiple comparisons for age-related differences within Aiming: General Speed [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.53*** .04 -0.66 -0.41 

8 -0.72*** .04 -0.84 -0.59 

9 -0.87*** .04 -1.00 -0.75 

10 -0.91*** .05 -1.06 -0.77 

11 -0.83*** .09 -1.10 -0.57 

7 8 -0.18*** .01 -0.22 -0.15 

9 -0.34*** .01 -0.38 -0.30 

10 -0.38*** .03 -0.47 -0.29 

11 -0.30** .08 -0.54 -0.07 

8 9 -0.16*** .01 -0.20 -0.12 

10 -0.20*** .03 -0.28 -0.11 

11 -0.12 .08 -0.35 0.11 

9 10 -0.04 .03 -0.13 0.05 

11 0.04 .08 -0.20 0.27 

10 11 .08 .08 -0.17 0.33 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix K 

Table of multiple comparisons for age-related differences within Aiming: Peak Speed [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.02 .03 -0.12 0.07 

6 -0.03 .06 -0.20 0.14 

7 0.38*** .03 0.31 0.46 

8 0.46*** .03 0.39 0.54 

9 0.49*** .03 0.41 0.58 

10 0.44*** .04 0.31 0.57 

11 0.18 .10 -0.13 0.48 

5 6 -0.01 .06 -0.17 0.16 

7 0.41*** .02 0.33 0.48 

8 0.49*** .02 0.42 0.56 

9 0.52*** .03 0.44 0.59 

10 0.46*** .04 0.34 0.59 

11 0.20 .10 -0.10 0.50 

[continued] 
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Appendix K [continued] 

Table of multiple comparisons for age-related differences within Aiming: Peak Speed  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.41*** .05 0.26 0.57 

8 0.49*** .05 0.34 0.65 

9 0.52*** .05 0.36 0.68 

10 0.47*** .06 0.29 0.66 

11 0.21 .11 -0.12 0.54 

7 8 0.08*** .01 0.04 0.12 

9 0.11*** .02 0.06 0.16 

10 0.06 .04 -0.05 0.17 

11 -0.21 .10 -0.50 0.09 

8 9 0.03 .02 -0.02 0.08 

10 -0.02 .04 -0.13 0.09 

11 -0.29 .10 -0.58 0.01 

9 10 -0.05 .04 -0.16 0.06 

11 -0.32* .10 -0.61 -0.02 

10 11 -0.26 .11 -0.58 0.05 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix L 

Table of multiple comparisons for age-related differences within Aiming: Path Length [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.55*** .03 -0.63 -0.46 

6 -1.14*** .05 -1.29 -0.99 

7 -1.32*** .02 -1.39 -1.25 

8 -1.44*** .02 -1.51 -1.37 

9 -1.57*** .02 -1.64 -1.49 

10 -1.61*** .04 -1.72 -1.50 

11 -1.76*** .09   

5 6 -0.59*** .05 -0.74 -0.45 

7 -0.77*** .02 -0.83 -0.71 

8 -0.89*** .02 -0.95 -0.83 

9 -1.02*** .02 -1.08 -0.95 

10 -1.06*** .04 -1.17 -0.95 

11 -1.21*** .09 -1.47 -0.94 

[continued]  



419 

 

 

Appendix L [continued] 

Table of multiple comparisons for age-related differences within Aiming: Path Length  

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 -0.18** .05 -0.32 -0.04 

8 -0.30*** .05 -0.43 -0.16 

9 -0.42*** .05 -0.56 -0.28 

10 -0.47*** .06 -0.63 -0.31 

11 -0.61*** .10 -0.91 -0.32 

7 8 -0.12*** .01 -0.16 -0.08 

9 -0.25*** .02 -0.29 -0.20 

10 -0.29*** .03 -0.39 -0.20 

11 -0.44*** .09 -0.70 -0.18 

8 9 -0.13*** .02 -0.17 -0.08 

10 -0.32*** .09 -0.27 -0.08 

11 -0.32** .09 -0.58 -0.06 

9 10 -0.05 .03 -0.15 0.05 

11 -0.19 .09 -0.45 0.07 

10 11 -0.14 .09 -0.42 0.13 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix M 

Table of multiple comparisons for age-related differences within Steering: Movement Efficiency B [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 0.12** .03 0.03 0.21 

6 -0.02 .05 -0.17 0.14 

7 0.01 .02 -0.06 0.08 

8 -0.01 .02 -0.08 0.06 

9 -0.05 .03 -0.13 0.03 

10 -0.02 .04 -0.13 0.10 

11 -0.10 .10 -0.38 0.18 

5 6 -0.14 .05 -0.30 0.02 

7 -0.12*** .02 -0.18 -0.05 

8 -0.14*** .02 -0.20 -0.07 

9 -0.17*** .02 -0.25 -0.10 

10 -0.14** .04 -0.26 -0.03 

11 -0.23 .10 -0.51 0.05 

[continued]  
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Appendix M [continued] 

Table of multiple comparisons for age-related differences within Steering: Movement Efficiency B 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.02 .05 -0.12 0.17 

8 0.00 .05 -0.14 0.15 

9 -0.03 .05 -0.18 0.11 

10 -0.00 .06 -0.17 0.17 

11 -0.09 .11 -0.40 0.22 

7 8 -0.02 .01 -0.06 0.02 

9 -0.06* .02 -0.11 -0.01 

10 -0.02 .03 -0.13 0.08 

11 -0.11 .09 -0.39 0.17 

8 9 -0.04 .02 -0.08 0.01 

10 -0.00 .03 -0.11 0.10 

11 -0.09 .09 -0.37 0.19 

9 10 0.03 .04 -0.07 0.14 

11 -0.05 .09 -0.33 0.22 

10 11 -0.09 .10 -0.38 0.20 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix N 

Table of multiple comparisons for age-related differences within Steering: Movement Efficiency A [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 0.10* .03 0.01 0.18 

6 -0.08 .05 -0.23 0.07 

7 -0.07* .02 -0.14 0.00 

8 -0.09 .02 -0.16 -0.03 

9 -0.14*** .02 -0.21 -0.07 

10 -0.13* .04 -0.24 -0.02 

11 -0.20 .09 -0.46 0.07 

5 6 -0.18*** .05 -0.32 -0.03 

7 -0.17*** .02 -0.23 -0.10 

8 -0.19*** .02 -0.25 -0.13 

9 -0.24*** .02 -0.31 -0.17 

10 -0.23*** .04 -0.33 -0.12 

11 -0.29* .09 -0.56 -0.03 

[continued]  
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Appendix N [continued] 

Table of multiple comparisons for age-related differences within Steering: Movement Efficiency A [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.01 .05 -0.13 0.15 

8 -0.01 .05 -0.15 0.13 

9 -0.06 .05 -0.20 0.08 

10 -0.05 .06 -0.21 0.12 

11 -0.12 .10 -0.41 0.18 

7 8 -0.02 .01 -0.06 0.01 

9 -0.07*** .02 -0.12 -0.03 

10 -0.06 .03 -0.16 0.04 

11 -0.13 .09 -0.39 0.13 

8 9 -0.05* .02 -0.09 -0.00 

10 -0.04 .03 -0.13 0.06 

11 -0.10 .03 -0.36 0.16 

9 10 0.01 .03 -0.09 0.11 

11 -0.05 .09 -0.32 0.21 

10 11 -0.07 .09 -0.34 0.21 

* p≤.05; ** p≤.01; *** p≤.001 
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Appendix O 

Table of multiple comparisons for age-related differences within Steering: Path Accuracy [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

4 5 -0.37*** .04 -0.50 -0.24 

6 -0.84*** .08 -1.07 -0.61 

7 -0.83*** .04 -0.94 -0.72 

8 -0.86*** .04 -0.96 -0.75 

9 -0.94*** .04 -1.05 -0.83 

10 -1.10*** .06 -1.27 -0.93 

11 -1.15*** .14 -1.56 -0.74 

5 6 -0.47*** .08 -0.69 -0.24 

7 -0.46*** .03 -0.56 -0.36 

8 -0.49*** .03 -0.58 -0.39 

9 -0.57*** .04 -0.67 -0.46 

10 -0.73*** .06 -0.90 -0.56 

11 -0.77*** .14 -1.18 -0.37 

[continued]  
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Appendix O [continued]  

Table of multiple comparisons for age-related differences within Steering: Path Accuracy [continues on next page] 

Age Group (I) Age Group (J) Mean Difference (J – I)  Std. Error  Lower Bound Upper Bound  

6 7 0.01 .08 -0.21 0.22 

8 -0.02 .07 -0.23 0.19 

9 -0.10 .07 -0.32 0.11 

10 -0.26* .09 -0.52 -0.01 

11 -0.31 .15 -0.76 0.14 

7 8 -0.03 .02 -0.09 0.03 

9 -0.11*** .02 -0.18 -0.04 

10 -0.27*** .05 -0.42 -0.12 

11 -0.32 .14 -0.72 0.09 

8 9 -0.08 .02 -0.15 -0.02 

10 -0.25*** .05 -0.39 -0.10 

11 -0.28 .14 -0.69 0.11 

9 10 -0.16* .05 -0.31 -0.01 

11 -0.20 .14 -0.61 0.20 

10 11 -0.04 .14 -0.47 0.38 

* p≤.05; ** p≤.01; *** p≤.001 


