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Abstract 

The reliability of bus systems is a vital issue on the transport agenda, since urban areas 

are yearning for high quality alternatives for the private car. A key indicator of 

reliability is a low level of day-to-day travel time variability (TTV). To obtain funds for 

reducing TTV, it is necessary to give evidence for the benefits from such improvement, 

but current tools for estimating the cost of TTV are insufficient. This thesis covers 
issues that arise when analysts need to show that improved bus infrastructure brings 

benefits from reduced TTV. 

The first part of the thesis aims at understanding how the attitudes of travellers to TTV 

can be converted into monetary terms. The design of a survey is described, where 

respondents trade-off between TTV and other attributes. A modelling experiment, based 

on the survey responses, finds that the effect of TTV is best explained using variables 
that represent trip scheduling considerations. Following is a series of experiments that 

seek to estimate the willingness-to-pay for reduced TTV in a way that is sensitive to 

taste variation between travellers. Several Mixed Logit models are estimated, but some 
doubts about their credibility are raised, and hence the same willingness-to-pay 

estimates are also computed using nonparametric techniques. Some conclusions are 
drawn regarding the process of estimating heterogeneous willingness-to-pay and the 

ability to recognise the willingness-to-pay from survey data. 

The starting point for the second part of the thesis is the lack of tools for estimating the 

level of TTV in hypothetical scenarios. We, consider the case for using traffic 

microsimulation to estimate TTV by running a microsimulation model multiple times, 

and looking at the variation between runs as an estimate of the variation between 

different days. Such concept of estimation requires a special calibration methodology, 

which sets the level of simulated inter-run variability at a similar level to inter-day 

variability in the real network. A full calibration methodology is developed, tackling 

methodological, computational and statistical issues. 

Finally, the demand and supply methodologies are combined, and it is illustrated how 

the savings from improved bus infrastructure can be examined. The contribution of the 

entire study includes methodological and technical insights into modelling the attitudes 
to TTV, estimating the distribution of the willingness-to-pay and calibrating traffic 

microsimulation models; but it also brings up policy issues concerning the role of TTV 

in transport appraisal. 
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Chapter 1 

Introduction 

1.1. Background 

In recent years, the reliability of transport systems has been widely recognised as an 
important issue in transport planning and evaluation. Many studies have shown that the 

users of a transport system rate reliability as a key feature, which affects their views of 

the system and their frequency of using it. Reliability issues often come up in the 

discussion between transport researchers or practitioners, and seem to be on the agenda 

of transport decision makers. For this reason it is surprising that the tools available to 

analysts today are still in an early stage of development when it comes to the dealing 

with the sources and the impacts of unreliability. 

Unreliability has many faces, and in the transport literature it sometimes appears under a 

guise. There are some studies of the unpredictability (e. g. Small et al, 1999) of travel 

conditions, namely the tendency of the state of a transport network to vary with no 

evident reason. Other works focus on the lack of punctuality (e. g. Bates et al, 1995): 

journeys do not take exactly the same time as expected, or when referring to public 

transport services, the same time as in the published timetable. There are also papers 

about irregularity (e. g. Laidler, 1999) in the traffic conditions or in public transport 

performance. Although there are differences between the various terms used to describe 

unreliability, a fundamental trait of an unreliable transport system that resides in all of 

them is a high level of day-to-day travel time variability (TTV). 

If an authority wishes to obtain funds for improving the reliability of a transport system 

by reducing the level of TTV, it often needs to give evidence for the expected benefits 

from such improvement. This is equivalent to providing evidence of the costs of TTV 

before and after the improvement, or evidence of the difference between these costs, at 

the least. But the current practice in transport analysis does not include sufficient tools 

for estimating the cost of TTV or of a change in the extent of TTV. Not much is known 

about how to estimate the level of TTV (or differences in this level) in hypothetical 

settings, and even if such estimates exist, it is not always clear how to place a monetary 

value on them, as often required in scheme appraisal. 
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It is commonly agreed by planners and policy makers that in order to maintain the 

vitality and sustainability of urban areas, high quality alternatives to the private car must 

be provided. The ability to achieve a high level of reliability is therefore particularly 

important in the design of public transport systems. Of the various public transport 

modes available in the UK and other countries, railway services dominate the interurban 

travel market, but a large share of journeys in urban and metropolitan areas use bus 

services. Hence, the efforts to guarantee good levels of reliability for bus users deserve a 
thorough analytical discussion. As there has not been sufficient focus on this issue in 

previous studies, this thesis looks into the evaluation and the prediction of bus TTV. 

Throughout this thesis, a major role is played by the general concept of stochasticity; 

namely, by the idea that there is an element of randomness in the behaviour of 
individuals, the performance of vehicles and the occurrence of phenomena. The focus 

on TTV is in itself a manifestation of this concept. Another expression of it is an 

analysis of the distribution of the willingness-to-pay, which is based on the 

understanding that we cannot truthfully capture the pattern of response to changes in the 

transport system if we assume that travellers have uniform preferences. The stochastic 

approach is also apparent in our decision to model the incidence of TTV using traffic 

microsimulation, which has the ideas of randomness and heterogeneity at its core. 
At first glance, the different topics discussed in this thesis might not seem strongly 

related to each other. One part of the thesis involves demand modelling and analysis of 

consumer behaviour from an econometric perspective, while another part examines the 

way we use a supply model of a transport network, from the perspective of a traffic 

modeller. Some of the chapters concentrate on the principles of surveying or modelling, 

whereas other chapters investigate very technical issues. The common thread in all the 

ideas discussed here is that they are all needed in order to present evidence for the 

benefits from reduced variation in bus journey times. A modest attempt to bring these 

separate discussions together in an attempt to address a practical problem is presented 

towards the end of the thesis. 

1.2. Definition of travel time variability 

There are various ways to define TTV, and it is important to explain at this stage which 

of them is followed throughout this study. Three main types of TTV can be identified in 
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the transport literature, as described in the following paragraphs. The definition of the 

three types is partially based on tenninology presented by Bates et al (1987). 

Inter-vehicle variability is the variability between journey times experienced by 

different vehicles making similar journeys at the same time. It is attributed to waiting 

times at signals, conflicts with pedestrians, differences in driving style and so on. In the 

current context it should be noted that inter-vehicle TTV is not a powerful indicator of 
the type of reliability that travellers are likely to be concerned about, which has to with 
the unpredictable nature of their own travel experience, and not with the difference 

between them and other travellers. 

Inter-period variability (or within-day variability) is the variability between the travel 

times of vehicles making similar journeys at different times on the same day. it is 

mainly caused by differences in the level of demand, occurrence of accidents and 
incidents, weather conditions, the level of daylight and so on. We find that this type of 
TTV is most relevant for examining various policy-related measures, such as flexible 

working hours or congestion pricing, but not particularly for reliability analysis. 
In this thesis we focus on TTV between similar journeys made on different days (inter- 

day variability or day-to-day variability). It is caused by fluctuations in travel demand, 

variation in driving behaviour, changes in the amount of roadside activity, weather 

conditions, accidents and incidents and other reasons. In the case discussed here we 
limit the definition even further: we are not interested in the elements of the day-to-day 

variability that rational travellers can anticipate, such as the differences between 

summer and winter, weekend and weekdays, or irregular travel times experienced due to 

special events. The main interest here is in TTV that remains unexplained after 

variations due to these predictable elements have been subtracted. This variability is 

random in nature; its various causes are too subtle or too complex to be expected by 

travellers. 

It is important to note that the motivation for focusing on the abovementioned definition 

of TTV is not related to whether or not this type of TTV is easy to analyse or to model. 

Various ways to compromise with technical and computational difficulties are discussed 

later in the thesis, but the definition itself is uncompromised. The reason why we 

exclude the effects of predictable events is the belief that this form of TTV is the most 

accurate in the way it represents unreliability. A very similar definition of TTV is used, 

for similar reasons, by Fowkes and Watson (1989) and Bates et al. (200 1). 
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Both Bates et al (1987) and Noland and Polak (2002) note that most research about 

TTV focuses on day-to-day variability. They do not clarify whether or not existing 

research investigates only the random element of day-to-day TTV; this might cause 

some confusion, because not all studies clearly mention how they define TTV. It is 

common to base some of the analysis of TTV on surveys where travellers are asked to 

make various choices, responding to different levels of TTV; the actual definition of the 

investigated TTV is then deten-nined not by what the authors state but by what the 

respondents understand. A detailed definition of TTV is not normally presented in these 

questionnaires, and it is therefore likely that respondents refer to TTV in its most 
intuitive meaning. Judging by the way TTV is commonly presented (see also the review 
in chapter 2), we find that most studies, similar to this thesis, tend to focus on random 
TTV, whether or not they explicitly mention it. 

TTV is most commonly measured as the standard deviation of travel times (namely, of 

the set of travel time measurements that exhibit TTV as defined in the respective study). 

This applies to all TTV variables mentioned in the economic review and experiments, 

presented in the following chapters (unless mentioned otherwise). For the traffic 

experiments presented later, we develop another measure that meets the particular needs 

of the proposed methodology. 

The definition of TTV has implications also for the way we define the daily periods to 

be used in the forthcoming analysis. As mentioned above, we wish to distinguish 

between predictable and random components of TTV. Transport analysts commonly 

specify periods not shorter than two hours each; for instance, the morning peak period is 

typically defined as two or three hours long. However, it is clear that the differences 

between travel conditions in different parts of the entire morning peak are not 

completely unpredictable; this means that we cannot attribute a certain level of TTV to a 

whole period because it would contradict our definition of TTV. The analysis in this 

thesis therefore refers to much shorter periods; we define a period as a time interval 

which is short enough to be seen by travellers as having uniform travel conditions. 

Fifteen-minute long periods were used in a similar context by May and Montgomery 

(1984), and we suggest that any duration up to thirty minutes would be plausible. 
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1.3. Evidence of travel time variability 

Before going further into the analysis of TTV, it is useful to show evidence of what bus 

TTV is like in an actual setting. Figures 1.1 and 1.2 present real travel time data from 

bus route 4 in the city of York, on various days in October and November 2004. The 

horizontal axes represent stops along the route and the vertical axes stand for time from 

the scheduled departure. Each of the figures contains three graphs, each of whom 

presents trajectories of buses departing at a single time on multiple days. If buses 

adhered to their planned schedule, all the trajectories in the same graph would be 

identical. The extent of variation between trajectories in each graph manifests our 
definition of TTV. Differences between graphs, i. e. between different levels of TTV, 

are what we later try to predict and evaluate. 
Passenger demand on the buses going eastbound (figure 1.1) is relatively high (about 

450 passenger boardings per hour, with 8-minute headway), and the general traffic 

along parts of the route is relatively congested. The opposite direction (in figure 1.2) has 

lower passenger demand (about 150 passengers per hour) and lighter surrounding 

traffic. Table 1.1 presents simple analysis of the variation in arrival times at a bus stop, 
based on the same data as in the figures. The standard deviation of arrival times is 

averaged between all stops, and there is also indication of the stops with the highest and 
lowest standard deviation. The location of a stop is indicated as its serial number in the 

sequence of stops along the route. From the figures and the table we can come to some 
basic insights into the nature of bus TTV. 

Departure 
Mean Most reliable stop Most unreliable stop 

S. D. S. D. Location S. D. Location 

07: 32 eastbound 04: 33 02: 31 Is' of 23 06: 19 2 nd 
of 23 

08: 20 eastbound 02: 58 01: 04 Is' of 23 
- - 

04: 05 1 gth of 23 

09: 08 eastbound 02: 54 01: 48 T of 23 03: 21 1 1th of 23 

07: 38 westbound 01: 56 01: 03 35 th 
of 35 

- 
02: 59 gth of 35 

08: 26 westbound 02: 40 01: 51 f4t" of 35 03: 07 4 th 
of 35 

09: 14 estbound 03: 23 02: 15 13 th 
of 35 04: 37 34 th 

of 35 

Table 1.1: Standard deviation of the arrival time at a stop 

(as observed on route 4 in York, 2004) 
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Figure 1.1: TTV on route 4 in York - eastbound 
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Figure 1.2: TTV on route 4 in York - westbound 
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The mean TTV varies between departures and between traffic directions. TTV of the 

buses going eastbound is generally higher than in the other direction. However, there is 

considerable TTV in both directions. This relates to a discussion by Noland and Polak 

(2002), who point out that TTV is independent of congestion effects. That is, in some 

congested networks travel times can still be consistent, and hence not necessarily harder 

to anticipate, while a high level of TTV can occur when there in no significant 

congestion. 

Another insight is that sometimes the level of TTV tends to increase as the bus goes 
further along the route, but in some other cases a high TTV at an early section is 

partially recovered towards the end of the journey. Such recovery is mainly experienced 
by buses going westbound; but a gradually increasing TTV is apparent in both 

directions. This possibly has to do not only with the level of traffic congestion, but with 

the cumulative effect of a delay at one point on the number of passengers boarding at 

other points downstream. Since in these data the more congested direction is also the 

one with higher passenger load, it is not certain which of these features has stronger 

effects. The irregularities in the extent of TTV, and their secondary consequences on 
boarding times downstream, are probably among the main causes of the well-known 
bunching phenomenon, i. e. the uneven pattern of bus arrival despite an even schedule 

(although the presented graphs do not show successive departures and therefore do not 

demonstrate how bunching occurs). 

As mentioned, the data presented above is brought here as evidence for the existence of 

TTV. While it does illustrate some essential features of bus TTV, it mainly proves that 

the occurrence of TTV does not follow simple patterns, and is not easy to track. This 

thesis does not include extensive analysis of the causes for TTV, but the network used 

here for demonstration, and the data collected on the same bus route, are employed 

again for a more systematic analysis later in the thesis. 

1.4. Scope and objectives of this study 

This thesis tries to meet the needs for modelling and analysis of TTV in two different 

fields. First, it tackles the lack of sufficient methodology for converting the effects of 

bus TTV into monetary ten-ns. Then, it tries to deal with the shortage of tools for 

estimating the level of TTV in hypothetical scenarios. These form two separate 
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discussions; the rationale behind this duality is that the two problems are in fact 

elements of the broader challenge of revealing the benefits associated with improved 

bus reliability. An additional discussion, that follows the two mentioned parts, tries to 

combine their findings in a joint experiment. 
The objectives of the overall study are as follows: 

1. To develop methodology for expressing the impacts of bus TTV in equivalent 

monetary units, such that they can be used in the appraisal of bus schemes in the 

study area; and while doing so, to account for the idea that the population in the 

study area is heterogeneous, with varying tastes and preferences. 
2. To develop ability to estimate the expected level of TTV in the study area in 

hypothetical scenarios, in a way that is sensitive to local factors such as the 

detailed configuration of the transport network; and while doing so, to account 
for the idea that traffic phenomena, as well as the vehicles and their users, 

exhibit a high level of heterogeneity and randomness in their performance. 

3. To illustrate the application of our solutions for the two aforementioned 

problems in a practical case study. 

The study area in all parts of this thesis is York, a medium-sized city of 181,000 

inhabitants (according to the 2001 census), located in the Northern England county of 

North Yorkshire. The entire analysis focuses on the commuter population in York and 

on the morning commuting journey; this includes any journey for work or education 

purposes, as long as it is made on most working days during the morning peak. The 

traffic analysis is mainly based on data from bus route 4 in York, provided by its 

operator. More details of this route and of the network used are given later in the 

thesis. 

Setting the scope of this study also requires elucidating which related issues are not 

covered. During the preparation of this thesis, questions about the reasons why 

travellers dislike TTV, and possible differences in this matter between the users of 

different transport modes, repeatedly came up. For instance, it was theorised that one 

element of the discomfort attributed to TTV has to do with stress from the unsettled 

travel experience itself, while a separate element has to do with the late or early arrival 

at the destination, which is inevitable if travel times are unpredictable. There were also 

doubts about whether to expect greater sensitivity to TTV among bus users, compared 

to what is known from other studies about car users, because they are less capable of 
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changing their route once the journey has begun, or smaller sensitivity, because much of 

the stress caused by TTV would have to do with the task of driving. Such questions 

arose in such contexts as choosing survey wording, deciding on model variables, or 

judging whether modelling results are sound. But although the informal discussion of 

these issues was an integral part of the modelling experience presented later, it should 

be stressed that seeking proper answers to these questions in the current scope would be 

too ambitious. We do not formally attempt to understand the broad psychological 

background for the aversion that travellers feel towards TTV, only to model this 

aversion. A model is unavoidably (and to some extent also desirably) simpler than the 

real-world phenomenon it describes, and as other researchers do, we find that a model 

of the impact of TTV can be adequate even if it leaves many questions unanswered. 

The same disclaimer applies to the analysis of the reasons why travel times fluctuate at 

all. The role of various factors in the evolution of TTV is occasionally brought up 

throughout the thesis, but in our attempts to create a tool for estimating the level of 

TTV, no major attention is given to uncovering the full set of causes of TTV. 

Another broad area that the thesis is unable to encompass is the variety of indicators of 

unreliability of public transport systems. Analysis of TTV is very central to the 

discussion of unreliability, but other important indicators are used too in many studies. 

There are also works about TTV that measure it using other statistics but the standard 

deviation or the variance of travel times. Alternative measures for TTV are mentioned 

in the following chapters, but the whole range was not possible to cover in detail. 

1.5. Outline of this thesis 

As mentioned earlier, the main body of the thesis comprises two parts. The econometric 

part (chapters 2 to 4) describes experiments in modelling the effect of TTV on bus 

users, and the traffic part (chapters 5 to 7) explains issues that relate to the estimation of 

TTV using traffic micro simulation. Figure 1.3 depicts the structure of the thesis. 

Chapter I describes the background and the scope of the study. 

Chapter 2 reviews some relevant topics from the literature in transport economics. 

These relate to the appraisal of transport schemes, the role of TTV in it, and the design 

of surveys that focus on TTV. 
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Chapter 3 describes the design of a survey, where the respondents are asked to trade-off 

between TTV and other attributes. Based on the data collected in the survey, this 

chapter also presents models that account for the attitudes towards TTV either directly 

or indirectly, and suggests uniformly-distributed estimates of the willingness-to-pay for 

reduced TTV. 

Chapter 4 extends the estimates of the willingness-to-pay obtained in chapter 3 by 

allowing for taste variation between travellers. Several Mixed Logit models are 

estimated, but due to some doubts about the credibility of the distribution of the 

willingness-to-pay implied by these models, attempts are made to derive alternative 

estimates using two different nonparametric techniques. 
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Chapter 5 begins a new section of the thesis with a review of existing approaches for the 

estimation of TTV, and as a separate topic, a thorough review of methodologies for 

calibration of traffic microsimulation models. 

Chapter 6 presents a new approach for the estimation of TTV, based on analysis of the 

variation between the outputs of different runs of a traffic microsimulation model, such 

that each run represents a single day. The chapter shows that in order to be able to 

perform such analysis, the model needs to go through a special calibration process; full 

calibration methodology, including a solution algorithm, is proposed. 

Chapter 7 describes two experiments that implement the approach developed in chapter 

6. The first experiment uses artificial data, and is aimed at testing the validity of this 

approach. The second experiment applies the calibration algorithm with real data and a 

full-size network, and results in a model adjusted for the study area. 

Chapter 8 combines the demand and supply methodologies developed earlier in the 

thesis. Different scenarios of bus infrastructure schemes are specified, and the costs 

associated with TTV are compared. 

Chapter 9 includes conclusions and suggestions for further research. 

Notation 

The following abbreviations are used throughout the thesis: 

TTV travel time variability MTT mean travel time 

TMM traffic microsimulation model 

WTP willingness-to-pay 

DWP distribution of the willingness-to-pay 

DTC departure time choice 

VOT value of the mean travel time 

ME mean earliness 

VOE value of the mean earliness 

ML mean lateness 

VOL value of the mean lateness 

MTE mean travel time and earliness 

CBA cost-benefit analysis 

MXL Mixed Logit 

SUS sub-sampling 

ppm pence per minute 

VOTE values of the mean travel time and earliness 
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Chapter 2 

Travel time variability in the economic literature 

2.1. Introduction 

This chapter commences a part of this thesis that seeks to determine how to convert a 
given level of bus TTV into monetary terms, which can be used in an appraisal context. 
The search for such method includes the design of a survey, followed by a series of 

modelling experiments. Other works that share their objectives, or the techniques they 

use, with this study have been undertaken in the last decade, and therefore this chapter 

precedes the surveying and modelling effort with a review of these previous works. 
The review has two main parts. The first part discusses the general idea of appraisal and 
the willingness-to-pay (WTP), the role of TTV in the appraisal practice, and different 

approaches for estimating of the cost of TTV. The second part presents some basic 

features of the type of survey we carry out later, and examines in particular other studies 
that tackled the challenge of designing a survey in which TTV is a key attribute. The 

conclusions from this review are to be applied in chapter 3. 

2.2. Appraisal of transport schemes 

The construction of new transport infrastructure, or the improvement of existing 
infrastructure, has effects in various fields of modem life. It can cause immediate 

changes in the living standards of any individual and in the level of prosperity of any 
business. In the longer run, changes in the transport system may have economic, social, 

environmental and other consequences, either positive or negative, on parts of the 

public. The investment in transport projects may require substantial amounts of money, 

and the sources of finance are perpetually limited. Since this nature of transport 

investments was recognized, it has been common to carry out a process of appraisal 

prior to making investment decisions. 

Transport investment appraisal always includes the identification of expected costs and 

benefits from different alternatives of a transport scheme. There must be more than one 

alternative, since there are always at least the options of "do nothing" and "do 
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something". Frequently there is more than one "do something" option, such as "build a 

road" versus "construct a railway". Since the first attempts to formulate consistent 

appraisal methodologies, in the 1960's and 1970's, till today, a major trend in the 

evolution of appraisal principles has been the expansion of the range of benefits taken 

into account. Whereas the main discussion in the 1970's concentrated on benefits from 

travel time savings and improved road safety, there is today an increasing awareness of 

the environmental effects and socio-economic impacts, such as equity or economic 
development (Mackie and Nellthorp, 2001; Grant-Muller et al, 2001). Some of the 

effects that appraisal techniques are expected to take into account today were 

traditionally seen as un-measurable (Hotchkiss, 1977). 

The range of appraisal techniques has also expanded in other ways. Transport project 

assessment is now expected to consider systemwide effects rather than focus on the 

vicinity of the investment area; it is expected to deal with multimodal projects and 
identify benefits from different transport modes; and it also expected to analyse cost- 
benefit considerations in projects that are financed by complex mixtures of public and 

private sources (Mackie and Nellthorp, 2001; Grant-Muller et al, 2001; Nash, 1993; 

Banister and Berechman, 2000). 

Probably the most common appraisal method is the cost-benefit analysis (CBA). The 

main feature of the CBA is that all expected costs and benefits are converted into 

monetary units and summarized; by doing so, it is possible to ascribe an overall net 

benefit to each project alternative. The concept of attaching monetary values to amounts 

of time savings or to estimates of safety improvement, and the different ways to compile 

all impacts into a single number (such as a discounted net present value of the proposed 

project), have been extensively discussed in literature. Conventionally, CBA is based on 

the concept of WTP, i. e. the assumption that a more desirable situation is one that 

people would pay more for. Therefore, the monetary equivalent of a one-minute 

reduction in travel time in a CBA is simply, the expected amount of money that 

individuals would be willing to pay for this reduction. However, transport schemes also 

have effects that might be undervalued by the concept of WTP, because their 

importance is not necessarily appreciated by individual travellers; therefore, this 

concept is often extended by monetising environmental impacts, as well as other 

externalities, in other ways. The determination of prices per unit can be alternatively 

founded on social considerations; this can be done, for instance, by taking into account 
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the different levels of WTP that characterize different income sectors (Mackie and 
Nellthorp, 2001; Grant-Muller et al, 2001; Nash, 1993). 

It is possible to appraise transport projects through a multi-criteria analysis. The multi- 

criteria analysis framework is more flexible than the CBA in terms of defining the 

appraisal objectives; multiple simultaneous objectives are allowed, which can reflect a 
broad range of ideologies or policy perspectives. To form a multi-criteria analysis, a set 

of objectives should be defined, and a set of evaluation criteria should be attached to 

each objective. Each objective is also given a weight, which represents its relative 
importance with respect to the other objectives. Based on the evaluation criteria, each 

project alternative is given a mark (typically on a 0-100 scale) with respect to each of 
the objectives. Subsequently, the marks are multiplied by the weights, and all the 

weighted marks of each alternative are summed to form an overall score for that 

alternative. Various assessment techniques may be used for marking the alternatives, 

either based on purely quantitative calculations or on a partially-qualitative rating. 
Using assessment techniques that are based on the expected market reaction, and 

converting values into monetary units, as done in CBA, are also possible in a multi- 

criteria analysis but they are not common. The freedom to choose a variety of 

objectives, assessment criteria and any desired weights is both a great advantage of 

multi-criteria analysis and a ma or disadvantage; it enables a wide range of policies to 

guide the project judgement, but also gives rise to using improperly calibrated scores 

and to inconsistency between decisions made by different people or at different times 

(Grant-Muller et al, 2001). 

It is repeatedly found in appraisal studies that travel time savings are by far the most 

significant benefit from capital investment in transport projects (Georgi, 1973; Harrison, 

1974; Hotchkiss, 1977; Glaister, 1981; Pells, 1987b; Polak, 1987a; Nash, 1993; and 

others). Senna (1994a) and Polak (1987a) estimate that the share of travel time savings 

among other benefits in a CBA framework is approximately 80%. Pells (1987b) quotes 

references that estimate that benefits from the reduction of travel time in road 

improvement projects in Britain are on average 89% of the total benefit. As mentioned 

above, other common sources of benefit are accident prevention and environmental 

effects, but in recent years there has also been an increasing interest in socio-economic 

impacts, influence on land use and development, and equity considerations (Nash, 1993; 

Banister and Berechman, 2000; Grant-Muller et al, 2001; Mackie and Nellthorp, 2001). 

The concept of WTP, in particular, has been implemented to estimate numerous sources 
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of benefit, such as the benefit from improved safety (e. g. Iraguen and Ortuzar, 2004), 

noise reduction (e. g. Galilea and Ortuzar, 2005), fuel efficiency (e. g. Walton et al, 
2004), and more. Although the analysis of WTP is clearly not the only way of 

evaluating suggested investment alternatives, the current study accepts the CBA 

framework and the idea of WTP as a basis for project appraisal. 
From the key role that time reduction benefits often have in appraisal results we can 
learn not only about the importance of time savings, but also about the relatively minor 

role that other considerations but the travel time have in the appraisal methodology 
itself. It should be emphasized that the outputs of any appraisal study strongly depend 

on a predetermined list of sought benefits; such list is part of the appraisal guidelines, 

which vary from place to place and from time to time. The introduction of new potential 

sources of benefit to this list is a slow process, even if the need for this change is widely 

accepted. This is mainly due to the need to develop techniques for measurement and 

assessment, but also because changing appraisal guidelines is a political matter that 

requires the consent of decision makers and authorities. For this reason, environmental 

and socio-economic impacts of transport schemes took years to become an integral part 
in CBA practice, and some of them are still being discussed theoretically without being 

practically used. This is also the case for the benefits associated with improved 

reliability, which are at the heart of this study. 

2.3. Travel time variability considerations in cost-benefit analysis 

A factor that still struggles for a place in the list of potential benefits from transport 

investment is the reduction of TTV. Statements that these benefits should have a role in 

project appraisal have appeared occasionally in the transport literature for a few 

decades. Knight (1974) notes that TTV is "a significant component in the generalised 

cost of trip-making". A similar opinion is expressed by Harrison (1974), Polak (1987a, 

1987b), Noland and Small (1995), Small et al (1999), Bell and Cassir (2000), Grant- 

Muller et al (2001) and others. 

The idea that the effects of TTV should be included in project appraisal has evolved 

along with the recognition of TTV as a factor that influences choices made by travellers. 

Starting from the 1970's, variables that represent TTV were introduced in several 

behavioural models. These models gave evidence that travellers take account of TTV 
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considerations when choosing a mode of transport (e. g. Prashker, 1979) or a departure 

time (see detailed review later in this chapter). As stated by Bates et al (1987), it has 

been shown that the variability in journey duration, and the uncertainty in arrival time 

that directly results from TTV, are major sources of irritation to travellers, and can 

therefore be recognized as potential sources of additional travel cost. Several studies 
have even concluded that a low level of TTV is more important to travellers than travel 

time itself or the journey cost (Golob et al, 1970; Paine et al, 1976; Bates et al, 2001). It 

was mentioned above that a basic feature of CBA is the conversion of insights on the 

preferences of travellers into monetary values; it therefore seems clear that the 

recognition of the impact of TTV on travel behaviour should in principle result in the 

inclusion of the cost of TTV in the CBA practice. 
Nevertheless, TTV considerations are absent from almost any discussion of what is 

actually included in the appraisal framework. Historical reviews of appraisal 

components are brought by Georgi (1973) and Adler (197 1); TTV is hardly mentioned. 
Pells (1987a) explicitly notes that in existing appraisal framework, "benefit is assumed 

to derive purely from reductions in mean travel duration, and any effect an investment 

might have on the distribution of travel time is ignored". Nash (1993) reviews common 
CBA methodologies in Britain and elsewhere, and although he elaborates on various 
issues that have been raised and developed since Georgi's review, TTV is not 

addressed. A review of the current state-of-the-art in EU countries is carried out by 

Grant-Muller et al (2001); it shows that benefits related to TTV are not taken into 

account in any of these countries. 

The absence of TTV from the traditional appraisal agenda means, first of all, that 

investment benefits are underestimated in all projects that improve reliability. One may 

assume that this will always be in favour of "do less" investment alternatives. The 

consequences of ignoring TTV might be more complex when reduction of TTV is 

expected to be a major outcome of the appraised project, or even more so when several 

alternative schemes are compared but only one of them includes measures that reduce 

TTV. Appraisal results in projects that directly aim at improving reliability may be 

seriously distorted, since a key source of surplus is disregarded, and their likelihood of 

being promoted is clearly harmed. Noland and Polak (2002) mention that the projects 

whose benefits will be revealed, if TTV considerations are taken into account, are not 

the traditional transport projects but investments in improved incident removal, better 

management of public transport networks, or advanced information systems. There are 
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numerous documented CBAs of projects in which TTV reduction seems likely to be a 

source for considerable benefit, but this source is ignored (e. g. Schweiger and Marks, 

1999; and Thijs and Lindveld, 1999). 

There is some recent evidence showing an increasing awareness of the benefits from 

improved reliability in CBA practice. A set of guidelines for the appraisal of bus 

priority measures, presented by Laidler (1999), does state the significance of benefits 

from the reduction of TTV, but these benefits are only calculated using rules of thumb: 

they are assumed to equal 30% of the benefits from reducing the mean travel time 

(MTT) and waiting time in the peak period, and 15% in the off-peak. No attention is 

paid to the effects on TTV of potential differences between project alternatives or to the 

effect of any particular traffic conditions. SDG (2001) carried out appraisal of a quality 
bus corridor scheme and although benefits from reduced TTV were taken into account, 
it is not entirely clear what methodology was used for attaching a monetary value to 

TTV savings. 

It therefore seems that the CBA of transport schemes today either ignores TTV 

considerations or handles them in a simplistic manner. Obviously, the reasons for this 

are not as simple as pure negligence; the exclusion of TTV benefits from the appraisal 

practice has surely much to do with difficulties in defining measures for TTV, 

difficulties in generating forecasts of TTV, and difficulties in attaching monetary values 

to TTV. The methodology proposed in this thesis aims to examine the feasibility of 

filling these gaps. 

2.4. The benefits from reducing travel time variability 

2.4.1. Theoretical foundations 

We saw that the appraisal framework often does not account for the costs induced by 

TTV or the potential benefits from its reduction. In this section we look at previous 

attempts to quantify these costs or benefits. This sub-section reviews theoretical 

discussions of this issue, and the subsequent sub-sections examine models of a more 

empirical nature. 

It was mentioned earlier that the major source of benefits in the CBA of most transport 

investment schemes today is travel time savings (that is, reduction of the average travel 

time). The required input for estimating the monetary benefits from such time savings in 
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a hypothetical scenario is a forecast of the savings in time units. Converting them to 

monetary units is conventionally done by multiplying by the value of time (VOT), i. e. 

the WTP for a reduction of one unit of travel time. The use of VOT is based on the idea 

that there is a trade-off between time spent travelling and money; establishing an 

equivalent trade-off between money and other features but the average travel time is the 

main challenge to be faced if we want to include these additional features in the CBA. 

Knight (1974) states that the difficulty in defining a suitable trade-off between TTV and 

money is the main reason why TTV is neglected in project appraisal. To a great extent, 

all attempts to evaluate the benefits from reducing TTV try to define situations where 

travellers can exchange money, directly or indirectly, with a lower level of TTV. 

The economic significance of TTV was initially discussed theoretically by Knight 

(1974). Knight (1974) refers to an unpublished paper by Rees, which provides 

theoretical evidence for the existence of benefit from reducing TTV. It is assumed that 

travellers gain a surplus from travelling (the source of this surplus is further discussed 

later in this chapter); this surplus is assumed to be a function of trip duration. If surplus 

were a linear function of time, then the traveller would be indifferent to variability in 

trip duration, given that the same mean time is guaranteed. However, Rees assumes a 

convex function, i. e. an increasing slope of surplus loss as trip duration increases. Under 

this assumption, a traveller "would be indifferent between a trip of guaranteed duration 

and one of stochastic duration with a lower mean". In other words, for a given MTT, the 

surplus when there is no TTV is higher than in a case where some variability exists. 

This is illustrated in figure 2.1. The vertical axis represents surplus and the horizontal 

axis represents trip duration. The non-linear curve is the surplus function. Let us 

examine an example in which trip duration is a variable with a 0.5 probability of 

duration to and a 0.5 probability of duration t, . The MTT is t with surplus 

s=0.5 (SO+S, ). Now let us examine an alternative example, where a constant travel 

time is guaranteed. In this case, traveller's surplus equals S if travel time is t2 , wheret2 

>t. The introduction of variability is therefore a cause for reduced surplus. To 

eliminate the variation in travel time, the traveller would be willing to pay A units of 

surplus or B units of time. 
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Figure 2.1: Traveller's surplus according to Knight / Rees (1974) 

Knight mentions that this discussion is only valid if trip duration is the single relevant 

variable and if the surplus function is convex. Flexible arrival time to the destination, a 
high level of substitution between origin and 

_destination 
activities, and various 

constraints on the use of time may create circumstances in which the assumptions made 

by Rees are questionable. However, Knight and Rees do raise an important source of 

disutility that should be seriously considered, possibly under more realistic assumptions, 

when accounting for the benefits from investment alternatives. 

Another discussion of the outcomes of TTV, that is somewhat similar to the approach 

presented by Knight and Rees, is brought by Bates et al (1987). It is illustrated in figure 

2.2. 
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Figure 2.2: Time-flow diagram according to Bates et al (1987) 

The horizontal axis represents traffic flows and the vertical axis represents time. The 

solid curve shows the relationship between MTT and traffic flow on a specific road link. 

The area that lies between the two dashed curves contains 95% of different travel times 

observed on the road link. It is assumed that TTV increases with flow. It is also assumed 

that due to some improvement of the road infrastructure, vehicle density on the 

discussed road link decreases and the initial flow qA goes down to qB - If there were no 
TTV, time saving would be tA-tB. But Bates et al theorise that since travellers are aware 

of possible variability in trip duration, they are not concerned about the mean time but 

about the 95% percentile; they use it, for example, to decide on their departure time. As 

a result, the saving is VA-VB, which is more than tA-tB . This might have a major impact 

in a CBA context. 

The concept presented by Bates et al, similar to the one discussed earlier by Knight and 

Rees, describes the behaviour of travellers as a very simple mechanism that responds to 

a limited number of variables; it ignores more complex considerations that travellers 

might have when scheduling their journey. Still, these ideas do contribute theoretical 

reasoning to the additional generalised cost or disutility attributed to TTV. 

The abovementioned works do not aim at making practical recommendations 

concerning the introduction of TTV as an integral factor in a CBA framework. To make 

such recommendations based on the concept of the WTP, it is necessary to examine 
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empirically how travellers respond to TTV in real-life situationsý and to find what role 

monetary variables play in this response. But as implied earlier, the influence of TTV is 

often absent from the traditional studies of traveller behaviour. The classical models for 

the choice of route and travel mode pay considerable attention to the role of the MTT 

(and to the WTP for reducing it), but disregard the contribution of fluctuations around 

this mean. Several models of traveller behaviour that include TTV variables have been 

gradually introduced starting from the 1970's. The significance of TTV in explaining 

mode choice was revealed initially by Prashker (1979) and later by Hendrickson and 

Plank (1984); the discussion of TTV and mode choice is ongoing, and includes recent 

works such as Bliat and Sardesai (2005). Few studies give evidence that TTV influences 

route choice (Abdel-Aty et al, 1995; Liu et al, 2004; Bogers et al, 2005), the combined 

choice of route and departure time (Lam, 2000) or a combination of route, time and 

mode (Lam and Small, 2001). However, the big majority of route or mode choice 

models with TTV variables (all but Lam and Small, 2001) do not include monetary 

variables, and cannot lead to analysis of the WTP for reduced TTV. It seems that even if 

the extent of TTV does affect these choices, it is not yet clear what this effect implies on 

the WTP for reduced TTV. 

An effect of TTV that has been studied more intensely than the impact on route and 

mode choice is the effect on departure time choice (DTC). Many researchers 

(Hendrickson and Plank, 1984; Mahmassani and Stephan, 1988; Noland and Small, 

1995; Bates et al, 2001) stated that all other consequences of TTV are secondary to this. 

In the current study we accept the convention that the sought WTP for reduced TTV can 

be derived from a model of DTC. But although it is widely accepted that TTV is a key 

factor in DTC, researchers have not yet agreed on the preferable formulation of DTC 

models. Two approaches for capturing the effects of TTV in a DTC modelling 

framework appear in the literature; they are described in the following sections. 
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2.4.2. The trip scheduling approach 
The effect of TTV on DTC was originally discussed by Gaver (1968). Gaver introduced 

the idea that travellers depart earlier than they would if there were no TTV, allowing 

some amount of slack time to reduce the chance of arriving late. Gaver proposes a 

model for determining this slack time (which he calls headstart) using a cost 

minimization formulation. The cost expression is linear, and includes a penalty on 

arriving at the destination too early or too late; an optimal trade-off is sought under 

various assumptions concerning probability distribution of congestion delays. 

Knight (1974) refers to the early departure slack time as a safety margin; this term has 

been commonly used ever since. Similar to Gaver, Knight hypothesizes that travellers 

wish to be on the safe side when estimating their arrival time, but they also do not wish 
to arrive too early. Knight defines the traveller surplus from making the trip as the 

difference between the surplus from the time spent in both trip ends and the surplus 
from the time spent at the origin alone, since the latter would be gained if the trip were 

not undertaken. This definition is the basis for the convex surplus function that was 
discussed earlier in this chapter. 

Knight illustrates the safety margin approach by focusing on the morning commuting 

trip, under the assumption that work start time is fixed. The marginal disutility of being 

late for work is determined as the difference between the marginal utilities. of time spent 

at home and time spent at work prior to the fixed start time. The commuter wishes to 

minimise this marginal disutility by leaving a big enough safety margin, and it is shown 

that a reduction of TTV results in a smaller safety margin. Knight is the first to suggest 

that PTC considerations should be accounted for when evaluating the benefit from a 

reliability improvement. Although this is not expressed explicitly, it is indirectly 

implied by Knight's discussion that the benefit from reduced TTV should be calculated 

by multiplying the reduction in slack time by some monetary value associated with a 

unit of slack time. However, Knight does not carry this insight much further. 

Hall (1983) explores the effect of TTV on accessibility, and dedicates part of the 

discussion to modelling the safety margin that traveller place on their departure time. 

The model determines the magnitude of the safety margin based on a maximum risk 

approach: travellers are assumed to delay their departure from the origin as much as 

they can, as long as their risk of being late does not exceed a certain limit. The WTP for 

reduced TTV is not discussed. 
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Pells (1 987a) expands the discussion about the differences between values of time spent 

at home, at work when arriving early and at work when arriving late. Pells states that the 

value of time at work when arriving late is higher than the value of time at work when 

arriving early; this is the reason why travellers allow a safety margin of slack time on 

their departure time. Time spent at home has a higher value than time spent at work 

when arriving too early; this is the reason why travellers want to keep this slack time a 

short as possible. Based on this reasoning, Pells (1987b) develops two choice models 
for evaluation of two WTP elements: the value of slack time and the value of lateness. 

Pells' work is the first attempt to explicitly calculate the monetary benefit from a 

reduction in TTV. For doing this it uses the simple formula implied by Knight (1974): 

the benefit from a reliability improvement equals the reduction in slack time multiplied 
by the value of slack time. The value of slack time is the difference between the value of 

time at home and the value of early time at work. 

Polak (1987a, 1987b) formulates a DTC model that takes into consideration the 

attitudes of travellers towards risk. A main claim in this study is that such attitudes can 

not be incorporated into cost minimisation models, where the measuring units of all 

components are fixed and the only freedom allowed is to change the cost coefficients. A 

non-linear expected utility maximisation formulation is therefore proposed, which is in 

fact a concave transformation of Gaver's linear function. Different forms of utility 

expressions are examined, in which both quadric and exponential functions of MTT and 

TTV are studied. Using different parameters enables representing varying levels of risk 

aversion or proneness. The discussion of these formulations is theoretic and is not tested 

emirically; there is also no reference to CBA practice. 

Noland and Small (1995) develop a cost minimisation DTC model. The minimised cost 

function is: 

(2.1) 

a-MTT + ß-ME+-y-ML +0 -PL 
Where 

c cost 
MTT mean travel time 

ME mean earliness to destination 

ML mean lateness to destination 

PL the probability of late arrival 

0ý 0, 'Y' 0 parameters 
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The authors do not calibrate the model using observed data, but estimate parameter 

values based on evidence from other works. Still, this expression for the cost associated 

with trip scheduling considerations has been accepted by many other researchers in later 

works as a succinct description of the factors that affect DTC (see following 

paragraphs). Note that the distribution of travel times influences more than one 

component in this function. The discussion by Noland and Small takes into account the 

fact that different choices of a departure time lead to different levels of congestion; two 

alternative assumptions regarding the distribution of delay times are examined - uniform 

and exponential - and optimal departure times that minimise the cost function are 
derived analytically under both assumptions. The authors calculate and compare the 

expected MTT costs and scheduling costs (i. e. lateness and earliness) under various 

assumptions. Scheduling cost is found to be relatively minor under the assumption of 

uniform delay distribution but quite large under the exponential distribution assumption. 
Noland et al (1998) calibrate the cost function developed by Noland and Small (1995) 

using data from a stated-preference study. They apply the calibrated model in a simple 
imaginary network, where various congestion conditions are generated using a 

simulation model, and calculate the contribution of each element in the cost function to 

the total cost. It is shown that under various conditions, scheduling considerations 

account for a major part of travel cost. However, it should be noted that only the cost 

model, not the simulated TTV, is calibrated; hence the computed costs do not represent 

a realistic situation. 
Small et al (1999) develop another DTC model based on similar principles to those 

proposed by Noland and Small (1995). The model is calibrated and validated for 

highway users. In addition to the linear elements in the original cost function, the 

potential contribution of quadric values of the same variables is examined. It is found 

that the predictive power of the model improves if the cost function includes a quadric 

element of the amount of earliness to the destination. In addition to the variable 

expressing the probability of arriving late, previously used by Noland and Small (1995), 

the authors also examine here a variable that represent the probability of an extra-late 

arrival. An upper limit to the reasonable amount of lateness is determined individually 

for each respondent, and an extra-late arrival is one that exceeds this upper limit. Both 

lateness probability elements appear significant. The proposed cost function therefore 

includes MTT, early arrival (in minutes), squared early arrival, late arrival (in minutes), 

probability of late arrival and probability of extra-late arrival. Different model 
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parameters are estimated for travellers with different employment statuses, trip purposes 

and demographic background. 

A common feature of all works described in the paragraphs above is that they try to 

model the cost or disutility of TTV without explicitly using a TTV variable. This 

indirect approach, that is sometimes called the scheduling approach, is based on the 

concept that if travel times vary from day to day, arriving always at the destination 

exactly at the desired time is infeasible. Travellers can therefore react to TTV by 

choosing to shift their departure from home backward or forward, and by doing this, to 

change their chance of arriving too early or too late. The scheduling approach claims 

that this choice is the main manifestation of the impact of TTV. The cost attributed to 

TTV, according to the most recent scheduling models, is associated with the WTP to 

reduce the amount of earliness and lateness. This is derived from the utility function, 

equivalently to the more traditional computation of the VOT: 

(2.2) 

VO T= 
(13 UlaMTT)l (a Ula 

C) 

VOE = 
(a UlaME)l (a Ula 

C) 

VOL = 
(Ilulamd(llulac) 

Where: 
U utility function 

MTT mean travel time 

ME mean earliness to the destination 

ML mean lateness to the destination 

VOT value of the mean travel time 

VOE value of the mean earliness 

VOL value of the mean lateness 

C cost 

It is important to note that not all DTC models take TTV consideration into account. 

Bates et al (1987) review several modelling attempts in which variables that represent 

TTV appear not to be insignificant. Several DTC models (Vickrey, 1969; Small, 1982; 

Hendrickson and Plank, 1984) do not assume that travellers place a safety margin on 

their departure time, but they still make a contribution to the development of the 
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scheduling approach by introducing the idea that the cost or disutility gained from the 

journey is influenced by early or late arrival to their destination. 

Although they have not yet been fully implemented for appraisal purposes, scheduling 

models fon-n today the primary tool for estimating the cost of TTV based on behavioural 

reasoning. Yet, it has also been claimed that modelling only scheduling decisions does 

not capture the whole range of traveller responses to TTV. A modelling approach that 

tries to determine a monetary value for TTV per se is described in the following section. 

2.4.3. The mean-variance approach 

The alternative modelling approach claims that travellers see TTV per se as a source of 

inconvenience, independently of its consequences at the origin or the destination, 

similar to the way they look at the MTT; this concept is commonly referred to as the 

mean-variance approach. Bates et al (2001) and others note that this approach ascribes 

the cost of TTV to the anxiety or stress caused to travellers by the uncertainty of travel 

conditions. Mean-variance models use utility or cost functions that deal with TTV 

directly, often using a variable that stands for the standard variation of the journey time. 

Although most of the models reviewed here are DTC models, a mean-variance 

formulation can also be used in principle for modelling other choices. The main point in 

the distinction between the mean-variance and the scheduling approaches is the issue of 

whether or not the cost attributed to TTV can be adequately accounted for by the 

attitudes towards early or late arrival. 

A mean-variance model is developed by Jackson and Jucker (1982). They calibrate 

utility functions for a route choice model, based on a survey in which travellers are 

asked to choose between different combinations of MTT and TTV. The distribution of 

the TTV coefficient is determined, but there is no discussion of any monetary values. 

Black and Towriss (1993) improve the surveying techniques (see later in this chapter for 

a review of surveying issues) but do not introduce changes to the modelling 

methodology. 

Senna (1994a, 1994b) creates a model that combines the mean-variance approach and 

the modelling concepts proposed by Polak (1987a, 1987b). That is, he develops a utility 

maximisation model that incorporates MTT and TTV with other components that stand 

for travellers' risk aversion or proneness. Alternative formulations of the utility function 

are examined and compared. In addition, attention is paid to the possibility of flexible 

arrival times to the destination. Senna formulates the mean-variance equivalents of 
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formulas (2.2), expressing the WTP for improved travel conditions as a direct function 

of MTT and TTV: 

(2.3) 

VOT = 
((lU1aMTT)1(lý1aC) 

VOV = 
(%aTTV)1(aý1ac) 

Where: 
U utility function 

MTT mean travel time 

TTV travel time variability (e. g. the standard deviation of travel times) 

VOT value of MTT 

VOV value of TTV 

C cost 

However, in the part of Senna's work that illustrates the estimation of the costs and 
benefits, the value of TTV is calculated not according to the abovementioned formula 

but as the difference between two VOT estimates, one determined under the assumption 

that there is no TTV, and the other one determined assuming that TTV does occur. Such 

approach seems sensible but the rationale behind it is not explained. 
Noland et al (1998), whose scheduling model was presented previously, investigate the 

assumption that in addition to scheduling costs there is also a cost element that they call 

planning cost. They describe this supplementary cost, which is a function of the mean 

and the standard deviation of travel times, as related to the pure nuisance of not being 

able to plan one's activities precisely, which is an outcome of TTV. The authors use 

their stated-preference survey data to estimate a model that includes the typical 

variables of both scheduling and mean-variance approaches. The results show that the 

planning cost is not as powerful as the other variables in explaining commuters' 

decision-making. Much of the reaction to the uncertainty in commuting trip duration 

seems to be explained better by the scheduling delay and lateness probability variables. 

Small et al (1999), in the study described in the previous section, use their survey data 

to compare two model versions, one having a simple mean-variance fon-nulation and the 

other including both mean-variance and scheduling variables. When the utility function 

does not include scheduling considerations, the TTV variable is found significant; the 

value that travellers ascribe to improvement in TTV is twice as high as the value that 
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they place on MTT. But when scheduling costs are explicitly accounted for, the TTV 

measure no longer has explanatory power. The authors strictly conclude that scheduling 

costs account for all the aversion to TTV, and that "in models with a fully specified set 

of scheduling costs, it is unnecessary to add an additional cost for unreliability". 

Noland and Polak (2002) show that in a special case, where there is no lateness penalty 

and where changing the choice of departure time does not lead to a change in recurrent 

congestion, the scheduling and mean-variance approaches are equivalent. Bates et al 

(2001) note that empirically, the sum of the earliness and lateness components in the 

utility function of a scheduling model can often be approximated by a single component 

expressing the standard deviation of travel times. Although these insights are only valid 

under certain conditions, it is still interesting that a utility function with scheduling 

variables can be reduced to an expression that includes only the MTT and TTV. This 

might suggest that the mean-variance approach. is a simplified form of a scheduling 

model, or that the costs captured in mean-variance formulations are in fact implicit 

estimates of scheduling considerations. 

2.4.4. The cost of travel time variability for public transport users 

Most of the models cited above focus on the behaviour of car users. An intermodal 

comparison of values of TTV is derived by Black and Towriss (1993) from their mean- 

variance models of car, bus and train users; scheduling considerations or departure time 

choice are not explicitly addressed. There are very few studies of attitudes to TTV 

among public transport users. For bus users, Pells (1987a, b) introduces innovative ideas 

regarding scheduling behaviour, but does not use, within a single cost function, the 

entire set of scheduling variables that were later found necessary by other authors. For 

rail travellers, the only work known to us is described by Cook et al (1999) and 

analysed further by Bates et al (2001). 

The model presented by Bates et al (2001) attempts to take into account a major source 

of complexity in modelling the DTC of public transport users: the need to consider a 

given timetable of the service being used. Unlike car users, that can choose departure 

times along a continuous time scale, public transport users make a discrete choice of the 

departure time from their initial boarding point. The authors note that the discrete nature 

of public transport DTC is both a modelling difficulty and an additional source of 

disutility for travellers. They propose a utility maximisation model for the simultaneous 

choice of a railway service and a departure time. The utility function is the following: 
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(2.4) 

O-ME + -y-ML + O-f + n-h + v-lt 
Where 

U utility function 

ME mean earliness to the destination 

ML mean lateness to the destination 

f fare 

h headway 

P mean delay, i. e. the difference between actual and scheduled 

arrival 
0, -Y, 0, n, parameters 

This model is calibrated based on a series of stated-preference studies. A variable 

expressing the MTT is not included. A direct representation of TTV is excluded as well, 
due to a high level of correlation between the standard deviation of travel times and the 

mean delay variable. An important finding from the modelling experiment is that a 

nested structure is strongly implied, i. e. change in DTC is much more likely than a 

change in the choice of a rail service. This resembles the conclusions reached in the 

aforementioned DTC models for car users. 

Another important finding is that the variables related to scheduling are not the only 

factors that appear significant. Earliness and lateness do have a major role in the model, 

but the variable that represents the mean delay in arrival time contributes to the 

predictive power of the model as well. This contradicts the findings reached by Noland 

et al (1998) and Small et al (1999) concerning DTC of car users. Bates et al (2001) 

conclude that railway users associate some further disutility with TTV per se, over and 

above the contribution of scheduling variables. 
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2.4.5. Summary 

The main studies reviewed above are summarised in table 2.1. It is apparent from this 

review that there has recently been a significant improvement in the ability to model the 

way TTV affects decisions made by travellers. There has also been considerable 

progress in estimating the WTP for a reliable journey. Despite this progress, it is still 

unanswered whether a scheduling model can satisfactorily explain the reaction of most 

travellers to TTV. While for modelling the effect on car users there seems to be enough 

evidence for the sufficiency of scheduling variables, the little documented evidence for 

rail users is to the contrary; for bus users there is hardly any evidence at all. There is 

great interest in finding whether bus users will appear to be motivated by scheduling 

consideration only, similar to car users (according to Noland et al, 1998, and Small et al, 
1999), or also by the nuisance caused by TTV per se, similar to rail users (According to 

Bates et al, 2001). We probe into this issue in chapter 3 of this thesis. 

The majority of studies reviewed here suggest that scheduling models give a better 

understanding of the cost associated with TTV. But most practical works that involve 

evaluation of this cost use mean-variance models; see, for instance, TRL (2004), Atkins 

(1997) and others. The main reason for this is probably that the implementation of a 

mean-variance model is fairly straightforward and only requires aggregate estimates of 

MTT and TTV, while applying a scheduling model requires information on the 

distribution of preferred arrival times and simulation of the mean lateness and earliness 

at a disaggregate level. A serious concern, which has not been discussed in any of the 

studies reviewed here, is whether the common use of the formulation that is normally 

found inferior leads to any bias in the evaluation of the cost of TTV. This issue is 

further investigated in chapter 3. 
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> 

Calculation 
Source Approach Formulation of costs or 

CD 
CD 

rA P+ M 

Z. M+ benefits? 

Gaver (1968) Scheduling Cost minimisation No No No No 

Knight (1974) Scheduling Utility No No No No, but the 
maximisation idea is 

introduced 

Jackson and Jucker Mean- Utility Yes No No No 
(1982), variance maximisation 

Black and Towriss 
(1993) 

Hall (19 8 3) Scheduling Joint minimisation No No No No 
of time and risk 

Pells (1987a, b) Scheduling Utility Yes No Yes Yes 
maximisation 

Polak (1987a, b) Scheduling Utility No Yes No No 
maximisation 

Senna(1994a, b) Mean- Utility Yes Yes Yes Yes 
variance maximisation 

Noland and Small Scheduling Cost minimisation Partially No No Yes 
(1995) 

Noland et al (1998) Scheduling Cost minimisation Yes No No Yes 
+ mean- 
variance 

Small et al (1999) Scheduling Utility Yes No Yes No 
+ mean- maximisation 
variance 

Cook et al (1999), Scheduling Utility Yes No No Yes 
+ mean- maximisation Bates et al (2001) 
variance 

Table 2.1: Models for the effects of TTV 
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Note that in the abovementioned models for the attitudes to TTV there is little account 
for the heterogeneity of tastes and preferences among travellers. A theoretical 

discussion of possible ways to account for varying levels of risk aversion across the 

population is presented by Polak (1987a, b) but not calibrated with real data. Senna 

(1994a, b) continues this discussion and calibrates models for travellers with different 

conceptions of risk, but only uses mean-variance formulations, and does not derive any 

estimates of the distribution of the WTP. Few other studies, such as De Jong et al 
(2004), Hess et al (2004) and Rohr et al (2005), present models for the choice of mode 

and time of day, which use a Mixed Logit formulation that fully considers heterogeneity 

of preferences across the studied population. These models do make an important 

contribution by allowing for a distribution of individual attitudes to the extent of 

earliness and lateness. However, the discussed lateness and earliness depend only on the 

MTT; the surveys on which the models are based do not present distributions of journey 
times, and therefore, the effects of TTV cannot be captured even if scheduling variables 

are included. The modelling attempts described in chapter 4 of this thesis try to meet the 

need for a study of variations between travellers in their attitudes to TTV. 

2.5. Travel time variability in stated preference surveys 

2.5.1. Basic challenges in survey design 

We now shift the focus of this review from the evaluation of the cost of TTV to the 

stage of data collection that normally precedes the evaluation. In chapter 3 we describe 

a survey conducted in order to investigate DTC considerations of bus users and their 

attitudes to TTV; in this section we describe s everal earlier works that inspired the 

design of our survey. 

In order to estimate a choice model that includes TTV variables it is necessary to find 

situations where travellers have a choice between well-defined alternatives that differ in 

the extent of TTV. Bates et al (2001) point out that using revealed-preference (RP) 

techniques, which examine the choices travellers have actually made in observed 

situations, is not practical for TTV valuation because it is extremely hard to find such 

situations. They state that for modelling the effects of TTV, stated-preference (SP) 

techniques are "de facto almost always the only realistic possibility for data collection". 

This is indeed the case in the current study, as we did not have detailed information on 
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any situations in which travellers in the study area could trade-off between TTV and 

money. Still, it should be mentioned that the difficulty in using RP data for modelling 

the effects of TTV is a technical problem and not a fundamental problem. Although 

most models in this area are based on SP experiments, several RP-based models do 

exist, such as those presented by Brownstone and Small (2005) and Small et al (2005). 

Brownstone and Small (2005) compare values of time and reliability from several SP 

and RP models; their review confirms that econometric analysis of the effects of 

unreliability based on RP data has been undertaken, although in a very small number of 

studies (which were reviewed earlier in this chapter). 

SP techniques offer a higher level of flexibility than RP since they analyse the responses 

to hypothetical scenarios. A typical questionnaire in an SP experiment presents a series 

of choice situations; in each situation the respondent faces two or more choice 

alternatives. Many works (e. g. Fowkes and Wardman, 1988; Fowkes and Preston, 1991; 

Hensher, 1994; Hensher, 2004; Caussade et al, 2005; Cirillo, 2005; and others) have 

discussed issues and challenges in the design of SP surveys. The major decisions that 

need to be made when designing such a survey include the following: 

" Setting the number of attributes that define each of the presented alternatives, 

and deciding what would each attribute stand for. Normally, the attributes 

correspond to potential variables in the choice model that the survey designer 

wishes to base on the survey responses. 

" Determining the number of alternatives in each choice situation. 

" Defining the task the respondent is asked to perform. The common options are 

choosing one alternative, rating the alternatives or ranking them. 

" Setting the number of different levels for each of the attributes presented in each 

choice situation, and choosing the particular values for these different levels. 

Deciding to what extent the series of choice situations would cover the entire set 

of combinations of feasible levels of the attributes. Factorial designs cover the 

whole set of combinations, but are rarely used since the full number of 

combinations might require a very lengthy questionnaire. Fractional factorial 

designs only use a subset; if a fractional factorial design is used, the total 

number of choice situations in the questionnaire should also be determined. 

There seems to be an underlying contradiction between the different criteria that the 

survey designer should follow when making the abovementioned decisions. On one 
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hand, the primary objective of the survey is always to get as much data as possible. On 

the other hand, designs that try to extract an excessive amount of information from the 

respondents might actually achieve the opposite. If the questionnaire is either too long 

or too hard to understand, the responses might not be credible, because of the "limited 

ability of consumers to process the information presented in the experiment" (Caussade 

et al, 2005). The need to balance between the desire for a rich dataset and the risk of an 

incomprehensible questionnaire is the incentive for much of the recent discussion of SP 

concerns. 

In order to make the survey easy to understand and to assure that the respondent does 

not get tired or bored while filling in the questionnaire, it is inevitable to limit the 

number of choice situations and the number of alternatives per situation. Hensher 

(1994) discusses some of the consequences of the attempts to make the SP experiment 

manageable; these involve some loss of statistical efficiency, since the designer has to 

assume that certain interactions among the attributes are not significant. Hensher states 

that the designer has to be creative in selecting a limited number of combinations of the 

attributes. 

Since we want to construct a rich dataset despite these restrictions, the task of 

determining the levels of the presented attributes often becomes the most critical 

element in the design process. The attribute levels are normally not constrained by 

complexity considerations, and they have a direct impact of the ability to identify, at a 

later stage, the behaviour patterns of the respondents. Most of the studies cited above 

(especially Hensher, 1994; and Caussade et al, 2005) have therefore highlighted this 

issue from various perspectives. However, Cirillo (2005) illustrates a serious obstacle to 

an optimal design of the attribute levels: since it is common to use the responses to 

estimate non-linear choice models, the best design depends on the values of the model 

parameters, but these are obviously unknown at the stage of design. 

2.5.2. Presenting the idea of travel time variability 

SP surveys with TTV attributes have already been designed in some of the studies 

mentioned earlier in this chapter. These surveys conventionally ask the respondents to 

make hypothetical choices that reveal the way they trade-off between TTV and other 

elements of the generalized cost of travel, such as the MTT or the journey cost. SP 

methodologies that concentrate on the trade-off between sources of discomfort to 

travellers are very common, but in most of them the respondents are asked to exchange 



36 

MTT and money; the description and presentation of such attributes in a questionnaire 

is relatively straightforward. The introduction of 'ITV an attribute raises the issue of 
how to present the level of TTV in a clear and simple way. The difficulty lies in the fact 

that analysts measure TTV using terms such as standard deviation, that are not 
intuitively understood to many of the respondents (Cook et al, 1999). Hence, many 

researchers of this area focused their discussion on how to illustrate the concept of a 

probabilistic travel time distribution to respondents. 
Early SP experiments described a given distribution of travel times by noting the usual 
travel time and the extent and frequency of delay. The usual travel time in these 

experiments is sometimes defined in an infon-nal. manner, e. g. as the "approximate time 

it takes most of the time" (Jackson and Jucker, 1982). The frequency of delay is given in 

terms such as "once a week". A typical question in surveys of this type (that we denote 

"type I ") would ask respondents to choose one of the following alternatives (Jackson 

and Jucker, 1982): 

Alternative Usual travel time 

(in minutes) 

Delay 

A 50 None 

B 40 20 minutes once a week 

Table 2.2: Typical choice situation - type 1 

It is common in such questionnaires that in one of the presented alternatives there is no 
delay at all. A slightly different version of such questionnaire (that we denote "type I a") 
fixes the frequency of delay at a constant level in the introduction to the main 

questionnaire, and then presents choice situations that differ only in the usual time and 

the amount of delay. 

In recent years, most experiments used a more explicit formulation, which was 

originally proposed by Benwell and Black (1994). This methodology (that we denote 

"type 2") demonstrates the TTV pattern as a sequence of several journey times. The 

number of times presented to define a single distribution varies in different works from 

5 to 10. A typical choice scenario would be the following (Noland et al, 1998): 
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Alternative Departure time (in Typical travel times 

minutes before the on 5 different days 

desired arrival time) 

A 15 125 135 145 16,20 

B 10 5ý 7ý 95 12,18 

Table 2.3: Typical choice situation - type 2 

Studies that use questionnaire type 2 state that it is better understood, since it gives a 

plain illustration of the unpredictability of travel times. Still, there are also discussions 

of its disadvantages. Noland et al (1998) mention that using a list of travel times to 

describe a distribution creates an artificial certainty about the maximum possible delay. 

Many authors emphasize that the order of the presented travel times is important: some 

respondents mistakenly assume that the times are displayed in descending or ascending 

order when they are actually not, and thus do not read carefully the entire sequence. The 

most recent design (Bates et al, 2001) tries to solve this problem by listing the travel 

times not as a sequence, but using a circular "clock-face" presentation (see figure 2.5). 

Both questionnaire types I and 2 do not explicitly present the levels of all the variables 

that are subsequently used for modelling. The modeller normally does not employ the 

set of presented attributes, but a different setý of variables that captures the same 
information in a way that is statistically more concise. The modelling set explicitly 

includes variables such as the standard deviation of travel times or the probability of late 

arrival, whose direct presentation is avoided. 

Note that although in the general SP literature there are many examples for surveys 

where more than two alternatives are presente. d in each choice situation, most the 

surveys reviewed here tend to have only two alternatives. This is clearly because the 

implicit presentation of a TTV variable requires displaying more information per 

alternative than is normal in other SP experiments; since each alternative is relatively 

complex, most authors prefer to present the smallest possible number of alternatives. 

With only two alternatives per question, the only relevant task for the respondent to 

perform is to choose the preferable alternative; ranking and rating are irrelevant in the 

case if two alternatives. Pells (1987a, b) and Senna (1994a, b) ask the respondents to 

choose one of five options, but these are based again on only two alternative sets of 

travel conditions, and the five options merely specify different levels of preference 
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("definitely choose A", -probably choose A" etc. ). Cook et al (1999) and Bates et al 

(2001) include three optional departure times for each level of TTV, and thus even 

though only two distributions of travel times are displayed, the number of alternative 

combinations amounts to six. 

2.5.3. Full survey design 

The most common attributes that form each of the presented alternatives, in surveys that 

investigate the attitudes to TTV, are the MTT, TTV, departure time and the cost of the 

journey. As mentioned earlier, for a powerful choice model it is important that the 

different levels of the survey attributes are carefully designed. The levels should cover 

the entire hypothetical range of circumstances in which the model we wish to calibrate 

should work. With the increasing use of computerised surveys, it has recently become 

common to ask the respondents about their normal MTT, desired arrival time to the 

destination and departure time, and then base the presented levels on the reported 

values, so that the choice situations are adjusted to travel conditions that each 

respondent is familiar with. 

Most authors base the design of the attribute levels on three preset levels of the feasible 

values of each attribute - high, medium and low (Senna, 1994; Noland et al, 1998; 

Small et al, 1999). TTV levels (measured as the standard deviation of travel times) 

typically vary from 0% to 50% of the usual travel time (Senna, 1994) or from 10% to 

30% (Small et al, 1999). The range of departure times can be fixed such that the range 

of expected arrival times will start two standard-deviation-long time units before the 

usual arrival time (i. e. very early departure) and end at the usual arrival time (i. e. very 

late departure) (Noland et al, 1998); or alternatively, such that the shift of departure time 

due to TTV varies between 0% to 15% of MTT (Small et al, 1999). The levels of the 

MTT are determined by Small et al such that the middle level is equal to the MTT 

reported by the respondent, and the lower level does not fall under the free flow travel 

time. Within the range of levels for each variable, Small et al find that the design is 

more powerful when the low, medium and high levels are not evenly spaced, i. e. the 

medium level is not exactly the average of the low and the high. 

If three levels of n attributes are identified, the number of choice alternatives would be 

3n. The full set of alternatives can be reduced to a much smaller set, in which no 

alternative dominates another in all n variables. Once this subset is identified, several 

pairs of alternatives can be randomly chosen to formulate each choice situation in the 
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fractional factorial design. Most surveys documented in literature include between 6 and 
10 situations. 
Not all the abovementioned SP experiments include a cost variable. The exclusion of 
the cost from the set of survey attributes helped several authors (e. g. Noland et al, 1998) 

reduce the amount of information displayed, and thus alleviate the cognitive burden on 
the respondent. However, surveys where the alternatives that the respondent chooses 
from do not differ in their cost cannot be used for determining the WTP. 

Most of the early designs presented the distribution of travel times without explicitly 

noting the departure time. Noland et al (1998) were the first to state the departure time, 
described as "15 minutes before your usual arrival time". This approach was later 

employed by other authors, some of which worded it simply as "depart at 08: 10". In 

principle, it is possible to estimate a DTC model even if departure time itself is not 

specified; but since most recent models also account for the occurrence of early or late 

arrivals, the explicit departure time appears an important element in the SP design 

(Bates et al, 2001). In contrast, Small et al (1999) choose to leave the exact departure 

time explicit, fearing that too much information is already presented. 
Due to the complexity of the information displayed in surveys with TTV attributes, it is 

common to precede the main body of the questionnaire with an introductory section. 
This section is meant to orient the respondents to the idea of TTV and familiarise them 

with the way it is presented in the main questionnaire. Jackson and Jucker (1982) 

mention that it is also important to clarify the basic assumptions of the survey, e. g. that 

it is not possible to avoid the delay by switching route or to predict when the delay will 

occur. 
Most of the latest ideas in the design of surveys that look at the attitudes to TTV are 

implemented in the study of rail users' choices, described by Bates et al (2001). Parts of 

this computer-based experiment are demonstrated in the following figures. Figures 2.3 

and 2.4 show two of the introductory pages presented before the main questionnaire to 

present the idea of unpredictable travel times. These pages illustrate the same level of 

TTV in different ways, but only the last format is then repeatedly used in the main 

questionnaire. Figure 2.5 shows a typical choice situation in the main questionnaire, 

where a "clock-face" diagram is used to depict the distribution of the amounts of 

earliness or lateness to the destination. 
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2.5.4. Summary 

Characteristics of the reviewed SP methodologies are summarised in table 2.4. Many 

elements in the existing methodologies, such as most of their statistical properties, seem 

generally suitable for the current study. However, despite recent developments that 

aimed at making the idea of TTV easy to grasp, it still seems that this objective is not 
fully met. Even in advanced designs such as the one proposed by Bates et al (2001), the 

respondent is expected to read twenty daily arrival times (of the format "15L", "6E" 

etc. ), six scheduled departure times, six scheduled arrival times and two fare levels prior 

to making a single choice. This is repeated in every choice situation, and one might 
therefore doubt whether all respondents are able to process this amount of infori-nation 

and provide credible responses. 

Note that none of the surveying methodologies mentioned here uses graphical 

presentation to explain the difference between different distributions of travel times. 

The "clock-face" display in figure 2.5 makes a step in this direction, but the circular 
form of the presented times is only meant to imply that attention should be paid to their 

order. The shape of the circle does not change between alternatives or between choice 

situations, and it therefore does not illustrate the level of TTV itself. In the design of the 

survey described in chapter 3, an attempt is made to deliver the same information using 

a lighter presentation, and to use a graphical display to make the infori-nation understood 

even if the respondent does not rigorously read all the presented numbers. 

Your experiencu of arri%als can bc shown ws a bar chart 

More than 5 minutes early, 

On tinje. or up to 5 minutes early 15% 

Up to 10 minutes late 

Bet%%een II and 30 minutes late 25 

Retween 31 and 60 minutes lale 10 (Iýc 

More than 60 minutes late 

III ---r- II 
20 40 60 80 100 

l7c of trains 

Figure 2.3: One of the introductory pages at Bates et al (2001) 
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More than 5 minutes early 10 '/'C 

-P 
24L On time, or up to 5 minutes early 15 t; Ic 

Up to 10 minutes late 35 % 
8L 

Between II and 30 minutes late 25 % 
75L 

3L 
Between 31 and 60 minutes late 10 % 

More than 60 minutes late 5 % 

Later in this interview, we are going ... and we'd like you to think of the cards as beingjust 
to use cards like those above to another way or describing an arrival pattern like the one 
represent late arrivals oftrains... you originally gave us above 

Figure 2.4: Another introductory page at Bates et al (2001) 

10a 
You prefer to be at London Paddington at 11.00am 

Operator A 

70L JE 

45L 

35L 41, 

27t, 9L 

20L ISL 

Pattern sho"ing number (if mintiles carlyAale for 
typical ten train arrivals of London Paddington 

Scheduled (lei). 0704 0804 0904 
1 st 

Scheduled arr. 0940 1040 1140 

A: 13.00 one-way fare 

Pattern showing number of minutes early/lale for 
typical ten train arrivals of London Paadington 

Scheduled dep. 0634 0804 0934 
2nd 

Scheduled arr. 0910 1040 1210 

E15.50 one-way fare 

Figure 2.5: A typical choice situation at Bates et al (2001) 
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2.6. Conclusions 

The variability of travel times is a source of inconvenience to travellers and there is 

theoretical and empirical evidence that it affects their travel behaviour. There is great 

interest in studying the willingness of travellers to pay for reducing this variability, in 

order to incorporate such effects in the appraisal of transport schemes. The WTP for 

reduced TTV is conventionally investigated by examining the impact of TTV on 
departure time choice considerations. Many researchers have studied this issue, but 

some important aspects of the problem have not been tackled. It is still unclear whether 

the cost associated with late or early arrival to the destination fully captures the attitudes 

towards TTV. This is particularly true for public transport users: there is only one study 

of the behaviour of rail users, and hardly any study of bus users. Since practitioners 

normally prefer mean-variance models, even if there is some evidence that they are less 

powerful than scheduling models, it is also important to examine what effect this 

preference has on the results of appraisal studies that use these models. In addition, new 

ideas are needed in order to alleviate the cognitive burden on the participants of surveys 

with TTV attributes, as current questionnaire designs present extensive amount of 

numerical information with very limited use of graphics. In chapter 3 we hope to use 

all the infort-nation assembled here on these issues for collecting data on bus 

user preferences, modelling their DTC behaviour, and deriving their WTP for 

reduced TTV. 

The review presented here also reveals that all existing attempts to determine the WTP 

for improved reliability ignore the variations in tastes and preferences among travellers. 

The scope for calculating the WTP not as a single average number but as a distribution 

is explored in chapter 4. 
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Chapter 3 

A monetary value for travel time variability 

3.1. Introduction 

We are interested in evaluating the willingness of bus commuters in York to pay for 

reduction in the extent of TTV. Many of the works reviewed in chapter 2 evaluate the 

WTP through modelling of DTC considerations, and we choose to do the same here. 

The first part of this chapter describes the design of a survey conducted as the basis for 

the analysis of DTC and attitudes towards TTV. The modelling work that followed the 

survey is described in the second part of this chapter. Further analysis of the survey is 

also presented in chapter 4. 

3.2. Survey design 

3.2.1. Internet-based surveying 
The survey described here was conducted and distributed through the internet. The 

questionnaire is a series of programs, accessed through the survey website 
(http: //www. its. leeds. ac. uk/survey/). The survey programs are written in PHP 

(Hypertext Preprocessor), which is a programming language mainly used for server-side 
internet applications. 

Internet-based transport surveys have been used in many recent studies (e. g. Killi and 

Nossum, 2003; Hojman et al, 2004; Bhat and Sardesai, 2005), but not all the advantages 

and disadvantages of this medium are recognised. The main motivation for holding a 

survey on the internet in most cases is the low cost, as there is often no need in such 

survey to hire additional staff, produce paper-based prints or send large amounts of 

mail. In the current study, the costs associated with traditional surveying methods made 

any other option but using the internet impractical, as the entire design, distribution and 

processing had to be at a zero cost. Additional incentives for an internet survey are the 

automatic creation of the database, which is ready to analyse in no time; the ability to 

use colourful, graphical and dynamic presentation without additional cost; the 

possibility of modifying the survey wording after its distribution has already begun; and 

the ability to create an automatically customised, respondent-adaptive questionnaire. 
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A major difficulty with internet surveys is that they cannot reach the potential 

respondents using traditional methods. Two common methods of distributing internet 

surveys are either by sending letters that ask the recipients to enter the survey website, 

or by purchasing lists of email addresses of people or businesses that have given their 

consent to be contacted for commercial purposes; both methods are pricey and therefore 

could not be used here. Distribution of the survey was enabled thanks to the cooperation 

of several contact people in various organisations in York, who were willing to circulate 

within their organisations an email with a request to fill in the questionnaire, and a link 

to the survey website. A related disadvantage of an internet survey is a relatively low 

response rate; many recipients are regularly bombarded with email messages that invite 

them to follow a link to an unknown website, and cannot be blamed for discarding the 

message that informed them about the current survey. Among the organisations that 

took part in the survey, it was generally found that the number of actual responses 

strongly depended on the identity, rank or position of the person that circulated the link 

to the survey website; when it was some senior figure, or the person in charge of 

transport arrangements at the work place, more recipients of the email were willing to 

take part in the survey. It should be noted that when a questionnaire is distributed using 

such method, it is impossible to calculate the exact response rate, since the number of 

people that received the email message in the first place is unknown. 

Another key problem with internet surveys 1s the difficulty in reaching a good 

representation of the population of interest, given that the sample is entirely consisted of 

people that are accessible through the internet. In the context of the current study there 

is a concern that responses from those bus users that have email access do not represent 

the entire range of bus user preferences. We discuss this concern, and the actions taken 

to deal with it, later in this section. 

3.2.2. Format of the survey 

The review in chapter 2 illustrated that previous studies have already discussed many 

surveying issues that the needs of the current study bring in. For instance, it has been 

made clear that it is hard to find records of choices made by travellers in situations 

where there are several travel options with different levels of TTV. This is often tackled 

by concentrating on hypothetical situations, using SP experiments. Although many 

aspects of the design have been discussed by others, all features of the survey were re- 

specified and adjusted to the current project. 
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A key consideration in determining that survey format is the complexity of the concept 

of TTV. Independently of the method chosen for presenting different levels of TTV, it 

is inevitable that the amount of information that needs to be displayed to illustrate these 

levels, and the amount of time the respondent is expected to spend processing this 

information, are higher compared to the other presented attributes. The main concern is 

that too many details per choice situation might make the SP experiment 

incomprehensible. The main decision this led to was to stick to the relatively simple 

format of two alternatives per choice situations. Some surveying methods that enable 

extracting more information from each respondent, such as using rating or ranking of 

the presented alternatives, are only available when there are three or more alternatives. 

But in the case when TTV is one of the attributes, the additional information might 

come at the expense of loss of credibility. Therefore, each situation presented in our 

survey will include two alternatives only, and the choice between them will be a 

straightforward "A or B", without rating or ranking. 

A related decision has to do with the total number of choice situations in the 

questionnaire. The review in chapter 2 showed that in other surveys with TTV 

attributes, nine choice situations for each respondent are very common. This number 

was therefore accepted as is (although later in this chapter it is verified that the total 

time a respondent needs to complete the entire'questionnaire is reasonable). Another 

feature that was borrowed from other recent works is the choice of the main attributes 

that define each choice alternative: the MTT, TTV, cost and departure time. The first 

three attributes are used in all SP experiments that examine attitudes to TTV. Although 

most of these experiments are used for estimating DTC models, the departure time itself 

is not always stated, especially in paper-based questionnaires, where it is not possible to 

adjust the times presented in each question to the normal travel conditions the 

respondent is used to experience. Since the current survey is computer-based, it was felt 

that explicitly presenting the departure time will make the respondent feel more familiar 

with the choice situation. Besides, including the departure time as one of the survey 

attributes is essential for the potential inclusion of variables relating to earliness and 

lateness to the choice model we wish to estimate. 

The main element in the survey format where existing methodologies seem 

unsatisfactory is the presentation of the extent of TTV. As explained in chapter 2, in all 

recent SP experiments that investigate the attitudes to TTV, the only means for 

delivering the level of TTV is through display of a list of numbers. These numbers, 



48 

which represent travel times on different days, are organised on the paper or the screen 

in various ways, but in all cases the respondents must read and grasp all of them, one by 

one. If even one of the presented numbers has not been read properly, the distribution of 

travel times is likely to be misinterpreted. The problem with experiments that only 
display a list of number is that they assume that the respondents are concentrated and 

patient enough to read the whole list throughout the entire questionnaire. In a survey 

with unknown respondents, that were contacted in a random manner and have varied 

skills and an unproven willingness to cooperate, there are no grounds for this 

assumption. The survey conducted here includes a numerical display similar to previous 

experiment, but this is accompanied by a graphical display which has not been used 

previously. 
The graphical display used here is meant to provide all the information related to the 

journey time (i. e. the departure time, MTT and TTV) in a way that can be intuitively 

understood even by a respondent that hardly reads any of the presented numbers. It has 

also been decided not to assume that the respondent knows how to interpret a diagram, 

i. e. to avoid presenting values on horizontal and vertical axes. The chosen formant, 

which tries to meet these requirements, is shown in figure 3.1. Any particular pattern of 

travel conditions is described as a set of five possible daily journeys; indeed some 

previous studies used up to ten items, but the gain from a more accurate distribution 

might be marred by reduced comprehensibility. Each daily journey is represented by a 

vertical bar; a longer bar implies longer journey, and when two alternative sets of travel 

times are presented in one choice situation, a late departure is shifted downwards along 

an invisible vertical axis. The journey time itself is not explicitly stated, only hinted by 

the length of the bar, but the exact departure and arrival times are displayed. To deliver 

the idea that journey times are unpredictable even if the departure time is unchanged, 

the departure time is written separately above each bar; but since this information is 

redundant, and to ensure that attention is mainly paid to the differences between the 

arrival times, the departure time is printed in a much smaller font. None of the statistics 

that might be included later in the choice model (MTT, TTV, mean earliness, mean 

lateness, probability of late arrival, and more) is displayed. 
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depart 
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arrive 

8: 55 

Figure 3.1: Presentation of a distribution of travel times 

3.2.3. Full survey design 

The entire internet-based questionnaire was prepared in two different versions. One 

version is addressed to bus passengers only, whereas the other version is for users of 
bus, car or rail. The purpose of collecting data from car and rail travellers was to enable 
inten-nodal comparison of the WTP; this analysis is briefly described in appendix A. 

The main analysis described in this chapter is based on responses from bus users that 

filled in either of the questionnaires. Figures 3.2 to 3.8 are taken from the intermodal 

version of the survey, and hence the wording used is slightly more general; but note that 

there are only very subtle differences between this version and the version for bus users 

only. 

The questionnaire starts with a series of four introductory pages. The objectives these 

pages are aimed at are the following: 

1. Give a very general introduction to the current research. 

2. Verify that respondents that are not included in the population of interest do not 

proceed to the main part of the questionnaire. 

3. Ask each respondent about his/her daily commuting journey. The details of this 

journey are used later in the main questionnaire. 

4. Orient the respondent to the idea of TTV and to the way it is presented in the 

main questionnaire. 

The first introductory page (figure 3.2) is mainly used as a filter: It clarIfies that the 

questionnaire is to be filled in by certain travellers only. Readers are asked to halt if 

they do not use the travel modes of interest (in the version for bus users only this is 

clearly stated at this point), or if they are not regular commuters in the study area. The 
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first introductory page also draws their attention to the optional page of "Frequently 

asked questions" (figure 3.8), which is accessible at any point throughout the 

questionnaire by clicking the "More info" button. 

The second page (figure 3.3) includes several questions about the daily commuting 

journey of the respondent. The sought information includes that normal travel time, the 

preferred arrival time to the destination, and cost of the journey. The answers to these 

questions are used later in the questionnaire to make sure that the random attributes 

presented in the various choice situations fluctuate around values that the respondent is 

familiar with. The third and fourth introductory pages (figures 3.4,3.5) demonstrate, 

both verbally and graphically, the idea of TTV and the way it is displayed throughout 

the questionnaire. 

The main body of the questionnaire consists of nine choice situations, all of the same 

structure. In each of them, the respondent is asked to consider two alternative sets of 

travel conditions and costs, displayed in different colours, and choose one of them. In 

the inter-model version, the alternatives are entitled "Option A" and "Option B"; in the 

bus-only version they are entitled "Red bus" and "Green bus". Typical choice situations 

are presented in figure 3.6. The levels of the survey attributes (MTT, TTV, departure 

time and cost) are adjusted such that their averages are similar to the levels stated by the 

respondent in the introductory page. The MTTs of the two alternatives presented in each 

choice situation are chosen randomly within the range from 70% to 130% of the 

respondent's normal time. The TTV, i. e. the standard deviation of the journey times in 

each alternative, is generated through a random draw between I minute and 40% of the 

MTT of the same alternative. The fare is chosen randomly between 50% and 160% of 

the actual fare paid by the respondent. The five displayed times that define each 

distribution are determined as follows. The first is chosen randomly subject to lying no 

more than two standard deviations away from the mean (either over or under). The 

second needs to be within 1.5 standard deviations from the mean, and the third within 

one standard deviation. The forth and fifth are determined such that the predetermined 

MTT and TTV are kept. Departure times are drawn such that earliest possible departure 

allows the maximum trip length (out of the five displayed) before the desired arrival 

time, i. e. constitutes a conservative estimate of the worst possible travel conditions, and 

the latest possible departure allows the mean, i. e. constitute a realistic estimate. A set of 

constraints guarantees that in each choice situation, none of the two presented 

alternatives has dominance over the others in all variables. The constraints also verify 
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that no choice situation resembles one that has already been presented to the same 

respondent. 
After the series of nine choice situations, a concluding question (figure 3.7) asks the 

respondent about his/her level of income. It is intended to use the responses to this 

question for checking whether there is risk of considerable bias, caused by potential 
insufficient representation of bus users with low income. 

Responses to all questions and choice situations are automatically fed into a database. 

The survey program sends the responses to the databases immediately after every time 

the "continue" button has been pressed, and not only after the entire questionnaire has 

been completed. This is meant to enable using the answers of respondents that did not 

press the "continue" button at one of the last pages. It was decided to accept choices 

made by respondents that did not state their level of income, and also to accept 

responses from users who completed successfully any eight of the nine main choice 

situations. 
In figures 3.2 - 3.8, the symbols at the upper comers of each page include links to the 

Leeds University website, the Institute for Transport Studies website, the "Frequently 

asked questions" page, and the email address of the author, respectively. 
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Here are the answeri (o some frequently asked questions. 

Abop. 4 this_S, u-rvey 

What is the P111POSe OftiliS Sill-Vey? 

"I'lle skii-vey will Itelp Its tillderstaild tile ilkilliellce 0i'various factors oil (lie way travellers choose how aLld whell to travel to 
work (or to ikiLiversity). 11te inain factor that we foci's oil is tile day-to-day variations of the travel tilne. Understanding 

people's preferences is finportaitt in order to inake stuT that the money hivested hi finprovirlig the transport systern is lised ill 
the most appropriate way. 

Who conducts this surt-vvy? 

7nie Survey is part of an acadeirlic research, carried out by (lie histilute for Transport Studies at the University of Leeds. The 

mLalysis is perforined by Mr. Yaroik Hollander alid supei'Vised by Prof. Peter Mackie and Dr. Roughtil Litt. 

Will iny personal details he storeft somewhei e, or used t. gaill? 

We are Hot 351dikil fOr alkV idendfNilie detaili. The only details Selit to ]IS whelk VOll fill ilk the (IlleStiOlAlkAiTe Me V01U- Allmels. 
We do not have. volu- murte or einail address. We will not contaCt 

. 
%'Oil agAilk. IMIPSS YOU Selid It; )It Pillail with qlle'; tiolkS 01 

comneitts about the S1111-ey AlAd Ask US to leldy. 

I'm not salistiet) NNith, tile level of public tramporl sel vic" fil York. Will this Survey lead to improN ellient? 

We hope that at dke end of om, reseim, cll. we will be able to sitizest wa 
, 
VS Of ilklI)1 OVillg YOM tl-lVel C01141itiOlk. i. We Will loreselkt 

our i ecoimnelkdAtiOlkS to York City COMM, bit'; Opel-MOUS ', )1kd SO Oll. HOWeVer, it is 110t eNlIeCted tIlAt yoll will S" the effect.; 

of l1ki% research ilk (Ike iminediate um. 

1" 14,1wýill the i 1kO1ý; f1111MAjk* 

sollietfune's I wiljt to ýý 01h, ill tile 111011thkz, 'aild ti avel by ])Its Oil the way back. (-', ilk I aik"vei the questions i efening to in. ', 

Aftel llooll joltulhe. -, ý? 

No. 'nie factors that we miallyse differ fle. kily beh%eelk (he 11`101-11ilkg J0111111eý' Alld file AftellhOOlk jOlU JkOy. lVe W011141 Ask VOU 11) 

YCfel Olkl. V 110 jOlUlkeyS Made ilk (Ike inoutijug, before 10: 30 
-OL 

I tlAN Cl 40 %ýOfh jUSI ON 0 111101'lkilkýss a vveelý. NVolidd 
., 
6,011 Still fike irke to fin ilk the 411le'aiOlukail e" 

No. Since we focus on the issue of da. V-W(hy NAIiAtiOM ill YOIU' j04111key tinke. Nve are inaftily interested iik Ilke IsieAN'S OflýeOlile 
who ri-avel evely flay, 

I me Park and Rifle evejy day. Shmild I complete the yiestionnaire? 

Yes, Mleit you are asli(-d about the modes of tralkslWit that you use. please tick all (lie modes ijkN, ol% ed ija yom daily joltilkey 
IfOl' eX, 1111101e. CAU Mkil WIS). 

I'm t1vo ditfejellt])IlNeý oll 141ýv lla. vto Ilm" 410 1 misivei the yiestions aboW my joume. v tijuir'! 

IN"lleik we inelitiolk Yom depairme thne, we iefer to the thne you lews-e hoine. and when ive inention yotu- anival time. we 

Illealk Ille thne volt get to volu. fukal destilk, -IdOlk (WOILIMIE J&We, lllkilversit. v etc. ). lEverythina between the departme and anival 
iS Of the JOIU'Ikeyý eVelk if it ilICIII(lei ClUlikopk-01 bll. Sei Olk die WýIv. 

AIV tUlVel eNlIelkseS lie 1). Aid by in. i. employen so it doesn't cost file AliVilliII2. BlIt the SIM-OV d0eslk't let Me %0 Olk ifthe COýf I 

elktel' i. S 4). 

Figure 3.8: The "Frequently asked questions" page 
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We Would ask YOU to filter VOIU'JOMlkev Cost even if you don't p ay for it yourself. 

NNIII the trainibus company that I travel "idt know aliout -Aliat I'm writing here? I'd like to take this opportunity to make a 
complaint. 

Bus Companies do not take an active part ill this part of the research, so this imight not be the best way to contact theim. Some 
respondents have mailed its various conuneuts about bus and rall sen-ires in York. We will inforin d; e Companies that 
operate ilk York about these comnents, but %%ithout mentioning the naine of the person wlkov%Tote to us. 

like way I travel cl kanges frout our 4Liy to another, so I have different tlavel costs Olt diffelýellt (lays. But ill (lie surs-ey I call 
ojdv enter olke havel cost. 

If you have a typical way of travelling ou most nionkings, please refer to it. But if youl, jotnuey details vary p-eatly between 
days, please do not complete the questionnaire. 

like times presented are itol realistic - it actually takes much inore im less) to get to iny destination. Wk. - is ilkat? 

I'lle wenallos that we present are eidti, ely iniaginary., You shotild think what would you do if the. y wele real. 

I do not Itive a fixed arrival tiimý to work. How calk I ailmer this question? 

Simply enter die thne Whell YOU PI'tfer to arrive. If die exact tfine is not cimcial to you, we "ill probahky miderstand thatwhen 
. 111alysing the results. 

In some of dke questioim the co., ýt is initich higher dian in real Iffe. I'm wortied that this inight lead to raisinz pices, because 
faves ai-e veiýy high aoirvaý. 

The results of this sui-veywill not he used for considering changes ilk fares or other costs. 

Figure 3.8 (continued): The "Frequently asked questions" page 

3.2.4. The pilot survey 
The limited budget of the survey did not enable conducting a full pilot study. Since it 

was feared that there were not going to be enough responses from travellers in the study 

area, it was preferred not to "waste" potential respondents on the pilot survey. Instead, a 
limited pilot experiment was carried out outside the study area, featuring 35 students 

and members of staff at the University of Leeds. The participants of the experiment 

were asked to fill in the survey without being given any preliminary information; in 

addition, they were asked several additional questions informally, after completing the 

questionnaire. 

The pilot experiment was used to examine the credibility of the survey design in the 

following ways: 

9 Unlike the questionnaire used for the main survey, as described above, the pilot 

experiment included several choice situations where one of the alternatives 
dominated the other in all attributes (at any level of WTP that seemed feasible). 

The responses from all 35 participants show that the dominating alternative was 

always chosen. This gives evidence that the presentation and the wording of the 

questionnaire are clear enough. 
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9 The survey progam keeps a record of the time it takes each respondent to fill in 

the entire questionnaire (including the time it takes to read the introductory 

pages). Among the 35 participants of the experiment, the shortest time was 

around 3 minutes, the longest was close to 15 minutes, and the median was 

around 5 minutes. This seems short enough to avoid any significant effects of 
tiredness or boredom. 

9 Some of the respondents were given a longer questionnaire with 20 choice 

situations and were asked, after completing it, whether they felt concentrated 

enough to give serious answers throughout the whole questionnaire. While some 

of them stated that they did feel they gave credible answers to all questions, 

some said that the repetition of the same task was palling after about 10 choice 

situations. This confirms the choice of nine choice situations per respondent as a 

satisfactory number to avoid loss of credibility. 

e After completing the questionnaire, the participants were asked, in an informal 

manner, whether they were mainly following the numerical display of departure 

and arrival times, or the graphical display, or both. About a third of the 

participants said they started with reading all the information, but then they 

realised that the graphical display included most of the necessary information, 

and therefore towards the last choice situations they started referring mainly to 

the graphical display. These participants were still having an occasional peek at 

the numerical display, mainly if there were either very small differences between 

the two alternatives, or very big differences among the five typical days that 

form each alternative. Another third of the participants said they always got a 

first impression of the travel conditions from the graphical display, and then had 

a look at the presented numbers to confirm this impression. The other 

participants said they equally used the graphical and the numerical display. All 

these responses seem to support the assumption that the graphical display 

alleviates the need to process the relatively complicated presentation of a 

distribution of travel times. 

* It is worth verifying that the different colours used for the display of the two 

alternatives in each choice situation did not have an effect on the actual choices. 
This is particularly important in the version of the survey that is used by bus 

users only, because the two alternatives are entitled "Red bus" and "Green bus", 
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and these might be wrongly identified with specific bus operators, that the 

participants might like or dislike independently of the presented choice situation. 
To check this, a simple Logit model was estimated based on the experiment 
data, featuring all variables that are discussed in great detail later in this chapter, 

and an additional dummy variable that gets a value of I if the "Green Bus" 

alternative is chosen and 0 otherwise. If this dummy variable was found 

significant, it would mean that the participants have a consistent tendency 

towards (or against) one of the colours. However, the dummy variable was 
found most insignificant, indicating that there was no such bias. 

All in all, it appears that the pilot experiment, despite its limited scope, confirms that the 

survey design is sound. 

3.3. Survey results 

The full-size survey, featuring respondents which are bus commuters to or in the city of 

York, was conducted from November 2004 to February 2005, excluding holidays. After 

sifting improperly or partially filled questionnaires, the database included 250 

questionnaires. Most of the questionnaires include choices made in nine situations each, 

but in several cases, one or two choices per respondent were omitted from the database 

due to suspected errors. The final data file that was used for modelling included 

responses from 2165 choice situations. 

In order to verify that the WTP derived from this sample can represent the true WTP, 

the income distribution of the respondents was compared to the general income 

distribution in the study area, as published on the Office for National Statistics website. 

It was found impossible to prove that a significant difference between the two 

distributions exists. The share of low-income respondents, that were feared to be 

insufficiently represented in the sample, seemed to be reasonably accurate. Many efforts 

were made to find additional information on the income distribution of bus users only, 

as they are obviously very likely to have lower income levels than the general 

population in the area. Unfortunately, no available data were found, and the survey- 

based income distribution could therefore not be compared to another source. Hence, 

the analysis presented here is based on the assumption that the participants of the survey 

do fon-n a credible sample of all bus users in York. In the absence of robust evidence for 
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it, our judgment'of how realistic this assumption is will be mainly based on paying 

special attention to whether the WTP estimates derived later seem too high. 

Before using the survey results for modelling, an attempt was made to identify 

behavioural patterns that stick out without using advanced mathematical tools. First, it 

was checked whether there were travellers that consistently followed a simple decision 

rule throughout the entire questionnaire, i. e. always chose the alternative that had 

advantage over the other option in a specific attribute, ignoring all other attributes. It is 

found that 13% of the respondents choose the alternative with the lower fare in each of 
the choice situations, no matter what other apparent differences existed between the two 

alternatives. Minimising the cost was found the only simple decision rule: all other 

respondents (87%) respond to the value of more than one attribute when choosing their 

preferred bus service. 

It was therefore examined which of the time-related attributes, namely all attributes 
apart from the cost, were most frequently used when choosing a bus service. This was 
done by noting in which attributes the chosen alternative in each choice situation was 
better than the alternative that was not chosen, and then checking which attribute 
appeared as a choice criterion in more choice situations than other attributes, among the 

nine choices of each respondent. If two or three attributes were used by a respondent 

more than the other attributes, and at the same frequency, a weight of 0.5 or 0.33 was 

ascribed to each one of them. The different choice criteria used by the survey 

respondents, and the share of respondents using them, are presented in table 3.1. 

Choice criterion Share of respondents that used 
this as most frequent criterion 

Minimise MTT 46.7% 

Minimise TTV 9.9% 

Depart as late as possible 3.7% 

Minimise mean lateness 25.4% 

Minimise mean earliness 14.3% 

Table 3.1: Criteria for choosing bus service 
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The last three rows of table 3.1 describe scheduling-related decision rules. They add up 

to 43.4% of the respondents, who tend to prefer travel alternatives that optimise 

common scheduling considerations, while only 9.9% follow the minimum TTV more 
frequently than other criteria. This is our first evidence that an indirect representation of 
TTV, through the amounts of lateness and earliness, enables better understanding of the 

effect it has on the behaviour of bus users. 

3.4. The scheduling model 

In chapter 2 we saw that it has not yet been investigated which set of variables can 

satisfactorily explain the reaction of bus passengers to TTV. Following the data 

collection described above, a series of modelling attempts was performed, aimed at 
founding a basic Multinomial Logit model on the survey responses. 
A decision that had to be made concerning the model formulation, prior to the actual 

estimation, was whether travellers with fixed arrival times should be treated separately 
from travellers who have some flexibility in choosing when to arrive at their 

destination. The flexibility in choosing arrival time is crucial to the choice of departure 

time; in previous works, different authors interpreted this in different ways. Some works 
(Black and Towriss, 1993; Bhat and Sardesai, 2005; and others) distinguish between 

travellers that ascribe different levels of importance to on-time arrival, while most other 

researchers do not make this distinction. Models that discuss the cases of fixed or 

flexible arrival time separately have a better behavioural reasoning, since this is clearly 

a consideration that travellers take into account when choosing a departure time. 

However, such models are harder to use for prediction, because they require information 

about arrival time flexibility as input, and this is hard to find. Data about the level of 

flexibility are hard to obtain also because there are actually not only two strictly 

contradicting cases; in different working or studying places, a whole range of attitudes 

to late arrival exists. If we wanted to account for this accurately, we would have to 

either carry out extensive data collection or create a disaggregate model that predicts the 

level of flexibility, but both these options are not possible in the current scope. It was 

therefore decided to ignore the different levels of flexible arrival, and cover all of them 

in one model. Although this might at first glance seem simplistic, ignoring this issue 
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might actually help the real distribution of flexibility reveal itself more truthfully, as it is 

indirectly incorporated in every choice the respondents made in the survey. 

All modelling attempts discussed in this chapter were carried out using the Alogit 4.1 

and Alogit 4.2 packages. A sample of test models was also run with other software tools 

(Biogeme and Gauss) to verify their consistency. For more details on the software used, 

see chapter 4. 

Many model specifications were attempted; we cannot present all of them here, but 

some interesting specifications and the estimation results are shown in table 3.2. In each 

cell of the table, the value in brackets is the t-statistic; and the value in italic print, in 

rows that stand for variables measured in minutes, is the WTP in pence per minute 

(ppm). An expected outcome of the modelling experiments is that the fare parameter 

and the MTT parameter are found the most significant; logically, these parameters have 

negative values. Several attempts were made to formulate a utility function that 

explicitly includes a TTV variable. Some models with a TTV variable were found very 

successful in terms of their final likelihood, but the significance of the TTV variable 

itself (as reflected by its t-statistic) was low, and we could not accept these as models 

with a satisfactory explanatory power. Insufficient significance of the TTV variable was 

found both in models where scheduling variables were included and in models where 

these variables were omitted. A single specification (model 3 in table 3.2) did lead to a 

model with a higher significance of the TTV variable, but the likelihood of the model as 

a whole was very low, and it was decided not to accept this specification, too. In 

contrast, the mean lateness (ML) consistently proved to make a significant contribution 

to the model; this led us to the understanding that bus users are concerned about the 

effect of TTV on the way they schedule their trip, and not about TTV per se. This 

resembles the conclusions of Noland et al (1998), Small et al (1999) and others 

regarding car users' preferences; it contradicts what Bates et al (2001) conclude as to 

rail users. 

Many different forms of variables that denote the amount of lateness or earliness were 

probed; table 3.2 shows only some of these attempts. In addition to the ML variable, 

modelling attempts included the probabilities of arriving too early or too late by various 

amounts of time, expressed either in minutes or as a percentage of the MTT. Squared 

values of the mean lateness and earliness, and various combination where lateness and 

earliness are represented by more than one variable, were tried too as they were found a 

significant contribution to the model in other works (such as Small et al, 1999). The 
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conclusion from these experiments was that there is no statistical justification for 

introducing most of these variables, including some that do seem rational, such as the 

various variables that represent the size of the right-hand tail of the distribution of 

arrival time (e. g. probability of extra-late arrival). 
Variables that represent earliness were not found as significant as the ML in any of our 

model specifications. It is clearly logical the travellers are less concerned about 

earliness than about lateness; but in a departure time choice model, the penalty on late 

arrival must be balanced by some penalty on early arrival, even if a small one. 
Travellers are unlikely to be indifferent to very early arrival, since this also implies very 

early departure. Due to the difficulty in specifying a model that directly penalises 

earliness, we specified a model in which the sum of MTT and the mean earliness 

constitutes one variable, which we denote MTE (model 7 in table 3.2); this model 

performed well statistically. It can be shown that MTE is always equal to the time from 

the departure till the moment with the mean lateness; this means that some correlation 

exists between the MTE and ML variables, since changes in the mean lateness affect 
both of them. However, since changes in the extent of lateness can only occur together 

with changes in travel time, the way MTE is affected by lateness differs between short 

and long j ourneys, while ML represents pure lateness independently. 

The fact that the MTT and the mean earliness are covered in this successful model by a 

single variable is not a very strong indication that the WTP that corresponds to these 

two separate elements is equal. It certainly implies that the difference between the 

attitudes to earliness and to the MTT is likely to be much smaller than the difference 

between earliness and lateness (or between MTT and lateness). But what is more 

strongly understood from this experience with the MTE variable is that the amount of 

available data was not sufficient for making clear distinction between the MTT and 

earliness elements, whose contributions were apparently not very different from each 

other. By incorporating the MTE variable we probably merely helped the estimation 

tool identify, without introducing a massive bias, a model more easily. Indeed, a rational 

guess of the relationship between the penalties on MTT and on earliness would suggest 

that the penalty on MTT should be the higher of the two (this is also discussed in detail 

by Pells, 1987b). We test the logic in the MTE variable again in chapter 4, where the 

decision finally made is to leave its two components separate; but since the Multinomial 

Logit model with the MTE variable performs here better than other specifications, we 

leave it as is for now. 
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Model I Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
(final (final 

mean- scheduling 
variance model) 
model) 

Fare -1.174 -1.179 -1.009 -1.196 -1.144 -1.245 -1.375 
(-12.0) (-12.1) (-11.7) (-12.2) (-13.6) (-13.0) (-14.2) 

Mean travel -0.0626 -0.0821 -0.0636 -0.0586 -0.0687 
time (-3.8) (-12.3) (-12.7) (-13.1) (-12.5) 

-0-0717 5.3 7.0 5.3 5.1 5.5 
Mean 0.0447 0.0332 -0.0601 5.2 
earliness (1.6) - (1.2) - (-0.3) 

-3.8 -2.8 4.8 
Mean -0.1384 -0.1935 -0.1237 -0.1594 -0.1974 
lateness (-1.3) - (-3.2) (-2.7) (-3.6) (4.1) 

11.8 M. 2 10.8 12.8 14.4 
Median travel -0.0010 -0.0488 
time (-0.1) - (-12.0) - - - - 

0.001 4.8 
TTV -0.0103 -0.0077 -0.0192 -0.0118 

(0.4) (-0.5) (-2.1) (-1.3) 
0.88 0.65 1.9 1.0 

Probability of -0.2030 -0.2231 -0.2240 
late arrival (-1.0) 1.4) (-1.5) 

Probability of 
arriving more -0.6042 
than 5 (-0.9) 

minutes late 

Probability of 
arriving more -0.7771 -0.5429 -0.5665 
than 10 (-1.2) (-0.7) (-0.8) 

minutes later 

Squared 
-0.0014 -0.0008 

mean 
earliness 
Squared -0.0082 
mean lateness (-0.5) 

Initial 
-1534 -1534 -1534 -1534 -1534 -1534 -1534 likelihood 

Final 
-1342 -1359 -1381 -1349 -1346 -1369 -1369 likelihood 

Table 3.2: Multinomial Logit models 

(in brackets - t-statistic; in italic print - WTP in pence per minute) 
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Table 3.2 also shows an attempt to examine the, potential effect of replacing the MTT 

variable with a variable that stands for the median of travel times. This was based on a 

hypothesis that bus users might be more sensitive to the median than to the mean. The 

median was generally found capable of replacing the MTT in the utility function, but 

the median-based model was less powerful than the mean-based model, and the median 

variable was therefore left out. 

The scheduling model with fare, MTE and ML variables (model 7 in table 3.2) is 

therefore the best description we could obtain of the attitudes of bus users to TTV. To 

assess whether the final scheduling model and the WTP derived from it make good 

sense, it would be useful to compare them with the findings of other studies. But this is 

found rather difficult, as no previous work examined the same elements of WTP in a 

similar area at a similar time. Given that no other study is truly equivalent to the current 

one, the following is a general comparison of our findings to those reached in the only 

available studies that seem somewhat comparable. A recent study of the value of the 

MTT (namely the VOT) of bus users was carried out by Mackie et al (2003). They 

suggest several values that apply in various cases, all are around 3 ppm, in 1994 prices. 

The ratio of the Nominal Gross Domestic Product (GDP) per capita in the UK between 

2004 and 1994 is 1.653 (E19461 to fl 1773 per person), and we would therefore expect 

the respective VOT of a bus passenger, at the time of our own survey, to be around 5.0 

ppm. This is very close to the value of 5.2 ppm that our scheduling model implies. 

The only study to which we can directly compare the estimates of the values that bus 

users place on earliness and lateness is Pells' work from 1987. Pells estimates the value 

of earliness at 1.5 ppm and the value of lateness at 7 ppm. The ratio of GDP between 

2004 and 1987 is 2.634, and the respective values in 2004 prices would therefore be 4.0 

ppm for earliness and 18.4 ppm for lateness. Although these estimates do not perfectly 

match ours, they clearly are in the same order of magnitude. Pells' estimate of the value 

of earliness supports the hypothesis made earlier, that our MTE estimate overvalues the 

penalty on earliness, although not to a great extent. The ratio of values of lateness and 

earliness according to Pells is 4.67, and according to our model it is 2.77. Despite the 

considerable difference, the comparison does strengthen the finding that lateness is 

much more heavily penalised than earliness. Unfortunately, Pells does not present VOT 

estimate and therefore it is not possible to compare all three WTP elements to his 

results. 
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The attitudes of public transport users to TTV were also studied by Bates et al (2001). 

This study focused on train passengers, and similar to Pells, it presents values for 

earliness and lateness but not for VOT. The authors founds that train users value 

earliness at 56 ppm and lateness at 113 ppm; it is not surprising that the order of 

magnitude of these values is significantly higher than that of our estimates for bus users, 

as it is well known that railway travel in the UK has a very different market from bus 

travel. Still, the fact that the ratio of the values for lateness and earliness is 2.018, gives 

some additional evidence that the relatively high penalty placed in our own model on 
lateness is plausible. 

3.5. The consequences of using a mean-variance model 

In chapter 2 it was mentioned that although most of the research about the effects of 

TTV on car travellers has found that these effects are best modelled using scheduling 

variables, applications of mean-variance models are more common in practice. The 

reason for this is presumably the difficulty in the implementation of scheduling models, 

which normally requires using simulation-based methods, and depends on detailed 

information about individual preferred arrival times. The modelling experience 

described above confirms that for bus users too, a model based on scheduling variables 

is more credible than a model where TTV is represented directly. It is thus important to 

understand the consequences of the common use of the less powerful model. To do this, 

we look at the differences between model 2 in table 3.2, which is a mean-variance 

model, and model 7, which is our scheduling model. The likelihood of the mean- 

variance model is higher, but as explained above, we could not accept this specification 

because of the low t-statistic of the TTV variable. Examining the WTP implied by each 

of the models shows that the mean-variance model ascribes a higher value to MTT and 

a very low value to TTV. It seems that in the absence of the appropriate variables, the 

mean-variance model associates most of the monetary effect with the only included 

variable that is found significant enough (i. e. the MTT variable), and by doing this, it 

undervalues the importance of reliability. 

The following experiment aims at demonstrating the influence of using a mean-variance 

model on the assessment of TTV-related costs in a realistic scenario. The survey data 

file, which was used for model estimation, is used here again, but this time we only use 
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the answers to the introductory questions about the respondents' daily travel experience: 

their MTT, preferred arrival time and fare. The choices in the hypothetical situations are 

ignored, i. e. the survey data are merely used since they contain information about the 

true distribution of journey times and costs. The analysis included the following stages: 

1. A spreadsheet was prepared, with a record for each of the 250 individuals that 

took part in the survey. The record for each person includes the MTT, preferred 

arrival time and fare of his/her commuting journey. 

2. A random level of TTV was added to each record. TTV was not mentioned in 

the introductory page of the survey and therefore the data file did not include 

information about the real TTV experienced by each individual. The random 

values were drawn in a similar way to the levels of TTV generated in the survey, 
i. e. as a proportion of the MTT, with the same upper and lower boundaries. This 

range of values seemed a reasonable representation of real conditions, as 
described in chapter 2. 

3. For each individual 0), 10 random travel times were drawn, assuming a 
lognormal distribution with MTTj and TTVjI i. e. the true mean and variance of 

the daily journey of this respondent. For reasons why a lognormal distribution 

was chosen, see chapter 5. 

4. For each individual, 150 evenly-spaced (non-random) feasible departure times 

were generated. The earliest departure for individual j is 2-MTTj before his/her 

preferred arrival time, and the latest is 0.5-MTTj before the preferred arrival 

time. 

5. For each feasible departure time of each individual, ML and MTE were 

computed, based on the 10 random travel times. The ML and MTE were added 

to the record of each individual. 

6. For each individual, the optimal departure time (of the 150 alternatives) was 

chosen deterministically, as the one that maximises the utility function of the 

scheduling model. Note that it is assumed here that as our model implies, actual 

choices are best explained by the scheduling model, even if the cost might be 

calculated (in stage 7 right away) according to the mean-variance model. 
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7. Based on the chosen departure time of each individual, the cost of each of the 

utility elements was calculated by both the scheduling and the mean-variance 

models. Note that although MTT and the mean earliness are included in one 

variable in the scheduling model, in the current analysis they are considered 

separate elements with the same cost per unit. 
8. Elements of the total cost, according to both models, were analysed using a 

frequency diagram. Figures 3.9 and 3.10 show how each of the two models 
interprets the cost of the analysed sample of journeys. 

The scheduling model curve in figure 3.9 is slightly more skewed to the left than the 

mean-variance curve; high cost of MTT is less frequently implied by the scheduling 

model than by the mean-variance model. This is a direct result of the higher value 

placed on MTT in the mean-variance model, and is therefore not surprising. The picture 

painted in figure 3.10 is much stronger: if we accept the aforementioned argument that 

the scheduling model is more powerful, figure 3.10 shows that the mean-variance model 
immensely undervalues the effects of TTV. If the relations between mean-variance 

models that are practically used for transport scheme appraisal to their equivalent, 

unused scheduling models are similar to the relation disclosed here, then a massive bias 

is implied. 

To conclude the current analysis, the total journey cost across all 250 trips in the data 

file was summarised, as well as the cost of only the TTV-related elements. There is a 

considerable difference between the models in the total cost: the cost based on the 

mean-variance model is 21% higher. But even if one of the two models overvalues or 

undervalues the total cost, this might apply equally to all scheme alternatives that the 

model is expected to asses. Therefore, the more critical source of potential bias is not 

the difference in total cost but the difference in the composition of the various costs 

implied by each model. According to the mean-variance model, the cost of TTV across 

all journeys amounts to 1.0% of the total cost. When the scheduling model is used, the 

total contribution of the mean lateness is 3.8% of the total, and the mean earliness adds 

up to 7.2%, hence the indirect cost of TTV is 11.0% of the total cost. This means that 

when we compare alternative investment schemes, the mean-variance model is likely to 

be very insensitive to differences between the alternatives in terms of their effects on 

TTV, while the scheduling model does exhibit such sensitivity. Since we find the 

statistical significance of the TTV variable in the mean-variance model inadequate, we 
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conclude that the scheduling model should be preferred owing to its ability to 

distinguish between "more reliable" and "less reliable" alternatives. 

3.6. Conclusions 

The main contribution of the presented experiments is the estimates of values of MTE 

and ML, as the attitudes of bus users to TTV have not been discussed elsewhere in 

recent literature in an economic context. We find that the values placed on the mean 

time and the mean earliness are 5.2 ppm, and the value placed on ML is 14.4 ppm. We 

have raised the suspicion that the value of earliness might be slightly overestimated, but 

overall, judging by common sense and by comparison to other studies, the derived 

values seem plausible. The fact that the late arrival is heavily penalised sheds some light 

on a major element in the attitude of bus users to TTV. 

On a broader view, our results show that the effects of TTV should be converted into 

monetary terms indirectly, through analysis of the consequent pattern of lateness and 

earliness. Models with scheduling variables are not the easiest to implement, because 

they rely on disaggregate input data; but it is found here that monetising the effects of 

TTV using the alternative, mean-variance approach, is inappropriate since it leads to a 

serious underestimation of the importance of TTV. The presented experience with a 

mean-variance model should be therefore treated as a warning to practitioners who use 

models where TTV is assumed to have a direct cost. 

Along the way towards the estimates of the WTP, several other issues were brought up. 

These include some ideas about the formulation of a departure time choice model and 

about survey design, particularly with respect to the use of a computerised survey and to 

the graphical presentation of the idea of TTV. - 
The values derived here can be used to analyse whether investment in improved bus 

infrastructure brings considerable reliability benefits. But we choose not to do so before 

we extend the analysis of the same data, and try to reveal variations in tastes and 

preferences between individuals, which have not been considered here. This extended 

analysis is presented in the next chapter. 
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Chapter 4 

The distribution of the willingness to pay 

4.1. Introduction 

This chapter describes the attempts to extend the estimates of the WTP, obtained earlier 
in the thesis, 'to estimates of the entire distribution of the WTP (i. e. the DWP). The 

collection of data on the attitudes of bus users to TTV, as well as some Multinomial 

Logit modelling experience, were presented in chapter 3. The analysis in the current 

chapter starts from the point reached at the end of the previous chapter: it uses the same 
data for the same purpose, but it tries to account for variation in preferences between the 

travellers, and thus to represent the true WTP more accurately, using other techniques. 

The first section of this chapter reviews previous studies that inspired our DWP 

analysis. Since obtaining credible estimates is found here a challenging task, the other 

sections try to tackle the estimation of the DWP from a number of perspectives. First, 

several specifications of a Mixed Logit model are presented. Then, the use of a sub- 

sampling technique as an additional tool for testing model fit is considered and 

illustrated. Subsequently, the DWP is investigated in an experiment that is not based on 

the parameters of a choice model, and thus attempts to avoid unnecessary assumptions. 

A concluding discussion tries to decide which of the different estimates of the DWP 

should be used in forthcoming chapters. 

It is worth mentioning that unlike chapter 3, which presented econometric analysis 

using well- established methodologies, this chapter deals with a field of transport 

economics whose exploration has only just begun. The publications mentioned here in 

the context of the estimation of the DWP are very recent; many of them were made 

public when the analysis presented here was almost complete. As before, our main 

interest is in the evaluation of benefits from improved bus TTV, but the undiscovered 

nature of the techniques required to reliably estimate the DWP shifts the main focus in 

this chapter from the phenomenon of TTV to the econometric technique itself. 

Nevertheless, as the forthcoming sections disclose, the technical difficulties described 

here are closely related to the essence of TTV, because the attitudes towards TTV are 

not captured in a single variable, and the key source of complexity is therefore the fact 

that these attitudes compose a multi-dimensional WTP space. 
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4.2. Literature on the distribution of the willingness to pay 

4.2.1. Mixed Logit models: strengths and weaknesses 
The current section introduces the techniques used in the various experiments presented 
later in the chapter. This sub-section introduces the Mixed Logit (MXL) model, and the 

subsequent sub-sections present some alternative nonparametric approaches and some 

relevant software tools. 

The idea that the WTP is heterogeneous, namely that different travellers have different 

levels of WTP, has gone through several phases in the last decade. Traditionally, it has 

been very common to derive the WTP from the utility function of a Multinomial Logit 

model; in such function there is a single value for each parameter, unifon-nly distributed 

across all travellers, and therefore the WTP is homogeneous too. To account for 

differences in the WTP between the users of different travel modes, or between journeys 

made for different purposes, it has been common to calibrate separate models (or 

separate utility functions) for each. It also became common practice to segment the 

studied population into smaller groups according to their income level or other socio- 

economic characteristics. By estimating a different model for each group, it is possible 

to find several different levels of WTP without abolishing the traditional methods. This 

traditional approach does not allow for variation in the WTP that results from taste 

variation among travellers or from any other traveller characteristics that there is no 

explicit information about. This makes them a rather simplified representation of the 

true WTP, since it is impossible to include in the model all variables that have effect on 

individual WTP. 

In recent years, significant attention has been, given to models that allow random 

variation in individual preferences, independently of whether the causes for this 

variation are explicitly modelled. This increased popularity was gained thanks to the 

development of simulated-based techniques for the estimation of MXL models and 

other similar models with random parameters. The foundations of MXL are extensively 

discussed in the literature (Train, 2001; Hensher and Greene, 2003; Bhat, 2001; Batley 

et al, 2001; Walker, 2002; and many others); the following is only a brief description of 

its general form. MXL models generally use the utility function 

Unj, On - X,, j, + Enj, 5 whose value varies between travellers (n), choice alternatives (j) 

and choice situations (t). Xnjt is a vector of explanatory variables, and E nit is an error 



76 

term with an iid-extreme-value distribution. 0 is a vector of preference parameters that 

varies over travellers with 0, -D (0) , where D is the set of distributions of the 

elements of 0 (each parameter of the utility function can have a different distribution) 

and 0 is a vector of the parameters of these distributions. Conventionally, o includes the 

mean and variance of each distribution, although 0 might also include boundary values 

or other constraints, as we discuss later. Note that the terminology that distinguishes 

between D and 0 does not appear in this form in existing literature; it is made here to 

clarify ideas expressed in the forthcoming paragraphs. 
Theoretically, MXL models seem to meet the need for tools to estimate the range of 

preferences, and hence the distribution of the WTP, in a heterogeneous population. 
However, the estimation is sometimes more challenging than it seems at first glance. 
Note that which parameters are included in 0, and whether or not it includes any bounds 

or constraints, are conventionally considered part of the specification of D, not the 

specification of 0. Determining 0 only involves finding the best values for a 

predeten-nined set of parameters. A serious difficulty lies in the fact that the available 
tools for estimating MXL models perform evaluation and statistical analysis of 0, but a 

specification of D is required as input; the common practice is thus to choose D (not 

systematically) and then estimate 0 (systematically). Another difficulty is that the 

estimation tools mainly use the same measures of statistical fit that have been 

traditionally used to assess the performance of models with fixed parameters. This is 

only natural, as there has so far been no apparent need for new statistical measures. But 

some recent experience (Hess et al, 2005; Train and Weeks, 2005; Sorensen and 
Nielsen, 2003) suggests that MXL models that are deemed successful by those measures 
do not necessarily exhibit good performance. 
Several researchers have tackled problems relating to the choice of D or to the 

assessment of MXL model fit (although this is not always the main focus of their 

discussions). Hess et al (2005) illustrate why caution should be taken when specifying 

the parameter distributions, especially when the parameters are later used to derive the 

WTP. The authors analyse the case where the model ascribes positive parameter values 

to some of the population; this often occurs when the estimated mean is negative but 

relatively close to zero. Positive parameters lead to negative WTP, and the authors 

stress that this contradicts the economic theory of time valuation; they state that the 

positive values should not be seen as evidence that some travellers truly wish to 

experience longer journeys. The paper also discusses the use of bounded distributions to 
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avoid the excessive share of positive parameters. Using distributions with fixed bounds 

is generally found inappropriate because it might force the estimation procedure to yield 
flawed results. The recommended solution is to use bounded distributions where the 

bounds are estimated from the data; some successful experience with Johnson's SB 

distribution is reported. 
The discussion by Hess et al (2005) concerning the choice of distribution introduces 

valuable insights, but some expansion of its scope is required. A first reason for this is 

that the analysis of the difference between the true and the modelled distributions is 

mainly based on comparing the 95 percentiles, i. e. examining the tails of the 
distribution; it should be important to examine the differences using other two-sample 

tests. Second, the true behaviour that Hess et al try to replicate is made up artificially; it 

is not clear whether the examined distributions perform similarly with data representing 

real behaviour. Third, further discussion is needed about how we can know more about 
the true range of traveller preferences and about whether a certain specification of a 
MXL model fits the true behaviour. 

Not all works on the distribution of the WTP are equally rigorous about positive values 

of time-related parameters. As mentioned earlier, Hess el al (2005) recommend treating 

such values with suspicion. Similarly, Batley et al (2001) find a positive tail in the 

distribution of a mean lateness parameter, and decide as a result not to allow any 
distribution of this parameter. In contrast, Cirillo and Axhausen (2004) state that it is 

acceptable that a small share of a population does not value time savings or would even 

rather extend the journey. They bring evidence of the existence of such preference, and 

also cite other studies with a similar finding. In a model presented by Bhat and Sardesai 

(2005), positive travel time parameters are attached to 27% of the population, and the 

authors do not see this as a reason to reject the model. 
Train and Weeks (2005) and Fosgerau (2005) examine modelling in WTP space as an 

alternative approach for estimating the distribution of the WTP; this is based on a 

concept originally introduced by Ben-Akiva et al (1993), although it has so far been 

uncommon in transport analysis. Instead of estimating parameters of a utility function 

and then deriving the WTP as a ratio, this concept directly estimates individual WTP 

values and the cost parameter, and can then derive the other parameters by 

multiplication. One of the appealing features of modelling in WTP space is that it 

avoids the need to calculate the WTP as a quotient of two parameters; as illustrated later 

in this chapter, the seemingly- straightforward -division of two numbers can cause 
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serious difficulties if the distribution of the cost parameter, which is used as the 

denominator, includes values close to zero. Formally, modelling in WTP space and the 

more traditional modelling in parameter space should be equivalent, but in practice this 

is compromised due to the distributional assumptions made prior to estimation. If, for 

instance, we estimate a model in the parameter space and assume that the parameters 
distribute lognormally, the resulting distribution of the WTP will have the quite 

complicated shape of a ratio of two lognon-nal curves; if the model is estimated in the 

WTP space and lognormal assumptions are applied to the WTP, it is then the parameters 

and not the WTP that have a more complicated distribution. Train and Weeks (2005) 

find that estimation in WTP space leads to better estimates of WTP, although some 

common statistical tests fail to detect this better fit. However, although this concept 

opens an interesting avenue as an alternative modelling approach, note that some 

theoretical and practical issues still need to be tackled before modelling in WTP space 

can be treated as an available approach for model estimation. These issues include 

investigation of the performance of different statistical distributions in WTP space and 

assessing the fit of utility parameters when they are derived from estimates of WTP. 

Note also that the software tools used in the current study (as described in section 4.2.4) 

do not enable estimation of models in the WTP space; this made it impossible for us to 

focus on WTP estimation based on this concept within the scope of this work. 

4.2.2. Sub-sampling techniques 

Later in this chapter we present experiments that use a method which is part of a bigger 

group of methods, called sub-sampling (SUS) or re-sampling techniques. SUS is 

employed here in an attempt to obtain an external estimate of the distribution of the 

WTP, independently of the MXL model. SUS methods are typically applied to a dataset 

when additional statistical analysis is required but there is no further data; the analysis is 

thus performed using subsamples of the available dataset. Cirillo et al (2000) explain 

the essence of SUS, denoting the observed data. records in the full original dataset by 

(XI, X2, ..., x, ). When the full dataset is used to compute any statistic (e. g. mean, 

variance, parameter in a MXL model, etc. ) these records are normally given trivial 

weights, i. e. ý/,, '/,, 
..., 

'/, ), and the statistic is computed once. SUS replaces the trivial 

weighting with other weighting rules, and the single computation of the statistic is 

replaced with an aggregation of its value over multiple evaluations. 
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The procedure used by Sorensen and Nielsen (2003) is similar to the SUS technique 

known as Bootstrap. Bootstrap involves generation of multiple small subsamples based 

on the original full sample; subsample i with ki data records can be generated by random 

weighting rules such as (11ki, 0,0,11ki, ... ), 
(0,11ki, 0,0, ... 

), etc. The distribution of 

values of the statistic of interest across all subsamples is the Bootstrap estimator of the 

distribution of this statistic in the full dataset (Cirillo et al, 2000). Sorensen and Nielsen 

generate a large number of small subsamples by repeatedly dividing the full sample into 

random parts of similar sizes. Then they estimate a Multinomial Logit model for each 

subsample, and the distribution of model parameters across these sub-models is their 

estimate of the real parameter distribution. 

The procedure described by Hensher and Greene (2003) resembles the SUS technique 

called Jackknife. Each Jackknife subsample is created by removing a single record (or 

all r records that come from the same respondent) from the full dataset, using a 

weighting rule of the form ýln-r, ]In-r, 
---, 

0, 
---, 

'In-r, 'In-d. If a Multinomial Logit model 

is estimated for each subsample, it is possible to learn about the parameter distribution 

in the original dataset through sensitivity analysis. 

Cirillo et al (2000) compare the performance of Bootstrap and Jackknife and present 

advantages and disadvantages of the two approaches; the general impression is that the 

two perform largely the same. In an experiment with up to 40 subsamples, the Bootstrap 

estimate of the sample variance shows better convergence, but appears slightly biased 

downwards. The authors confirm, though, that Bootstrap is a more direct method for 

trying to replicate the distribution of the original dataset, whereas Jackknife mainly tests 

the sensitivity of the parameter estimates. 

The SUS experiments later in the chapter are inspired by the studies of Sorensen and 

Nielsen (2003) and Hensher and Greene (2003); these studies use SUS techniques for 

the same purposes as here, but there are several reasons why it is necessary to extend 

their scope. First, these previous works do not discuss the fact that the techniques they 

use are private cases in the broader group of SUS techniques. Second, Sorensen and 

Nielsen do not clarify whether (or how) they avoid the bias caused by the fact that 

multiple responses in the database come from the same survey respondent (unlike 

Cirillo et al, 2000, that do elaborate on this bias but in a different context). And third, 

SUS has so far been used prior to model estimation, to examine which specification of 

the parameter distributions (namely, using the terminology defined earlier, which 

specification of D) seems the most appropriate for the model. The aforementioned 
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works ignore the fact that the when the most suitable D (say Do) is then used for the 

actual estimation of the model, the parameters 0 are re-estimated. The vector of 

parameters 00 that was used in the SUS experiment to choose Do is replaced with 

another vector, 01, determined by the estimation tool. There is no reason to assume that 

00 
--ý--Oj, or that a model specified with 0, - Do (01) will perform similarly to the model 

that had good fit with 0, - Do (0o). It might even occur that once 0 has been re- 

estimated, the model with 0, - Do (01) is inferior to another model, where the 

specification of the parameter distributions is some unknown D1. The experiments in 

presented later try to deal with this difficulty by applying the SUS technique as an 

additional statistical test, after the estimation of the MXL model. 
Later in this chapter we discuss to what extent SUS can be reliably used to estimate the 

DWP. Although we do use it as a key method in the search for the best estimates of the 

DWP5 it should be stressed at this early stage that when the level of variation of some 

parameter is determined using SUS, the estimate is inevitably biased downwards by the 

very definition of this technique. Since the subsamples always include several 
individuals, the preferences of individuals with extreme characteristics will always be 

balanced by those of individuals in the same 'subsample whose behaviour is more 

common. Hence, the far edges of any distribution cannot by captured by its SUS-based 

replica. However, as we discuss towards the end of this chapter, all methods for 

estimating the DWP have deficiencies, and a distribution might be considered a 

relatively good estimate despite an inability to reproduce these far edges. 

4.2.3. Nonparametric estimation of the distribution of the willingness to pay 
The common way of estimating MXL models is using the method of maximum 

simulated likelihood. Denote y" the choice that traveller n makes in choice situation t. y" 
is the sequence of choices that traveller n makes throughout the entire set of choice 

situations. Conditional on the set of parameters D (0), the probability that a 

particular y" is chosen is (Based on Train, 1999; Train, 2001; Hensher and Greene, 

2003): 

(4.1) 

P (y' 1 D, 0) =fL (y" i ßJ -g (ß, 1 D, 0) dß 

Where 
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(4.2) 

n n'Xnyntt 
fin e6 

)t3n*Xnjt 
te 

and g (0,1 D, 0) is the probability density function that describes the distribution of fl, 

The maximum log-likelihood is estimated by simulation because the integral in (4.1) 

does not have a closed form. The simulated likelihood is calculated using random draws 

of 0 from the density function g (0,1 D, 0); the value of L (y" I fl, ) is calculated 

separately and the results are averaged over all draws. This simulated probability is 

denoted P*, and the simulated log-likelihood is: 

(4.3) 

AL (0) --"::: 
In In P *n 

The parameters 0 are optimised by maximising this expression. The maximum 
likelihood method required preliminary knowledge of D, or in other words, of the 

general form of the function g (0,1 D, 0); it therefore belongs to the broad family of 

parametric techniques. The information that parametric techniques require as input is 

often unknown, and therefore various assumptions need to be made. Nonparametric 

techniques are those that try to determine the estimates of interest without making such 

assumptions. The SUS techniques mentioned earlier are all nonparametric, but there are 

many other nonparametric methods (described for instance by Yatchew, 1998). 

It has been known for several decades that nonparametric methods can be used as an 

alternative to Maximum Likelihood estimation (see for instance comments by Ben- 

Akiva and Len-nan, 1985). However, hardly any attempts to take this idea forward can 

be found in the transport literature. The few abovementioned studies that use SUS do 

illustrate the general concept of nonparametric estimation, even if SUS clearly has 

drawbacks, as discussed further later. Thorough study of the case for nonparametric 

estimation of the distribution of the WTP is beyond the scope of the current study; 

however, a very simple nonparametric experiment is conducted later, in an attempt to 

reveal what information truly comes from the input data, as opposed to the information 

that originates in our own assumptions. 

The nonparametric experiment performed later is inspired by two previous works from 

very different points in the history of WTP evaluation. The first inspiring work is 

Beesley's discussion of the calculation of WTP (Beesley, 1973), that was published 
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before it became common practice to derive the WTP from choice models. Beesley is 

not interested in the distribution of the WTP, only in the average VOT. He shows that in 

a survey where each respondent is asked to make a choice between hypothetical 

services, we can identify the accepted maximum and the rejected minimum of the WTP. 

Stating that "the idea of acceptance or rejection suggests a method for deriving the 

measure of central tendency", Beesley searches for the single value that fits the entire 

sample best. The optimal WTP is determined by "minimising mi sclassifi cations of 

observations", i. e. by checking how many choices in the sample can be explained by 

every feasible WTP, and then choosing the value that can successfully explain the 

biggest share. The experiment described later in the chapter demonstrates that despite 

the remarkable improvements in choice modelling since Beesley's work, what can be 

deduced from survey responses about the range of individual WTP, without relying on 

additional assumptions, is not significantly different from Beesley's accepted/rejected 
boundaries. 

The second work that inspired the simple nonparametric experiment is Fosgerau's 

recent investigation of the distribution of the VOT (Fosgerau, 2006). This is the only 

work (known to the author) that explicitly describes nonparametric methodology for 

computing the WTP; this is done without estimating a MXL model. The analysis 

examines, directly from a dataset collected in a stated choice experiment, for which 

responses it is possible to identify the WTP that led to the choice. The mathematical and 

statistical tools used for the nonparametric regression include the Klein-Spady 

estimator, Zheng test and other advanced features; these require high mathematical 

proficiency and are not used in the current study. An important finding of Fosgerau's 

analysis is that the WTP can identified for 87% of the examined population without 

requiring distributional assumptions. For the remaining 13%, additional input 

information is necessary. 

It should be noted that the work by Fosgerau makes a first important step in a direction 

that deserves significant further development. Fosgerau uses a dataset from a very 

simple survey, where respondents are asked to trade off between time and cost only; 

there is therefore just one element of WTP (namely the VOT). As discussed later in this 

chapter, the number of WTP elements influences the ability to identify a considerable 

share of the distribution of the WTP. It can be expected that if 13% remain unidentified 

in the analysis of VOT only brought by Fosgerau, then in models where several 

variables have a monetary value, a bigger part of the distribution will not be revealed 
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directly but only with the help of various assumptions. The hypothesis that in many 

practical circumstances more than 13% of the distribution of WTP will remain 

unidentified is also enhanced by the fact that the dataset that Fosgerau uses is almost 
ideal in terms of its size (17,000 responses from 2000 respondents) and in the sense that 

the panel nature of the data is ignored. 

4.2.4. Software issues 

Several software packages are available for estimating MXL models. The differences 

between the packages relate not only to the user interface, file syntax and so on, but also 
to their modelling concepts and capabilities. 

Alogit is a friendly and powerful tool, which supports most model structures from the 

Logit family, and is very commonly used worldwide. Alogit has two disadvantages in 

the current context. The first is that version 4.1, which is currently the most common, 
does not enable lognormal (and other asymmetrical) parameter distributions. This is 

partially solved in version 4.2, which is still in limited distribution, but was kindly made 

available to use in this work by its developer. The second disadvantage is that when a 
MXL model is estimated with panel data, i. e. with several responses from each 

respondent, Alogit might ascribe different parameter values to the different responses of 

the same respondent; this leads to biased estimates, as explained by Cirillo et al (2000). 

Alogit does feature a module that reduces this bias using the Jack-Knife technique. This 

is satisfactory in most circumstances but not for the needs of this thesis, as we compare 

the MXL estimation results with an external estimate based on SUS, and it seems 

inappropriate to use a MXL model which in itself is based on SUS. 

Another software package is Biogeme (see Bierlaire et al, 2004). Biogeme lacks some 

of the friendly traits of Alogit but has some other merits. It is distributed freely on the 

internet, and enables greater flexibility in the model specification, including non- 

linearity and a direct option of modelling with panel data. Unfortunately, some of the 

model specifications presented in the following chapters were tried with Biogeme and 

the estimation process did not terminate successfully. 

A third optional tool is a code developed by Kenneth Train (see Train et al, 1999). The 

code is distributed freely on the internet, but must be used with Gauss, which is a 

commercial package. Many of the capabilities of Alogit and Biogeme are not possible 

using the code, but it is purposely designed for estimating MXL models with panel data. 
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The code was therefore found very convenient for the current needs, and it was used for 

all MXL estimates presented here. 

For the Multinormial Logit models that form the sub-models in the SUS experiments, 

mainly Alogit was used. Various test models were also estimated using other tools; they 

generally verified that if convergence is reached, then the same specification leads the 
different tools to very similar results. For the sake of clarity, we refer to all software 

used in this chapter as the estimation tool. 

4.2.5. Summary 

There is no doubt that different travellers have different levels of WTP, and that it is 

very hard to include all the factors that influence individual WTP in any choice model. 
But unlike the well-established methodologies for calculating the average WTP, 

methods for estimating the distribution of the WTP, independently of its sources, are 

still in an early state of development. MXL models, which allow random variation in 

individual preferences, have attracted significant attention in recent years, as they are 

powerful, flexible and relatively simple to estimate. Nevertheless, some challenges in 

specifying MXL models, and especially the need to predetermine the family of 

statistical distributions for the model parameters, have raised doubts in several recent 

works about the credibility of the derived distribution of the WTP. 

It is important to observe that the growing popularity of MXL model has not been so far 

accompanied by development of new tools for testing their statistical fit. As illustrated 

later, it seems that there is a real need for such tools. In their absence, it is not always 

clear how to interpret outputs such as positive parameters (and hence negative WTP) for 

a certain share of the population. It appears that SUS and other nonparametric methods 

can be used to obtain alternative estimates of the distribution of the WTP; but this has 

hardly been done so far in practice. 

4.3. The Mixed Logit models 

One of the main properties of MXL is that it allows for random variation between 

individuals in the values of the parameters that represent attitudes and preferences, and 
it is therefore a natural basis for estimating the DWP. This section describes the 

attempts to specify and estimate several MXL models based on the same dataset that 
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was used for the Multinomial Logit models. The scheduling model created in chapter 3 
is the starting point for the current modelling experiments; the same variables as in the 
final model are used here, namely the fare paid for the bus journey, the MTE (sum of 
the mean travel time and mean earliness to the destination) and the ML (mean lateness). 

In all the models presented in this section, variation among travellers was found in the 
fare and ML parameters, but there was not sufficient evidence of variation in the MTE 

parameter. Leaving one parameter fixed is a common practice in MXL modelling, and it 

has therefore been decided to leave the MTE parameter fixed. 

It was explained earlier that the specification of MXL models, prior to the estimation of 

the parameter values, involves not only choosing the relevant variables but also 
determination of the general shape of the distributions of the parameters. The model 

specifications that were probed here used some of the most common distributions for 

the fare and the ML parameters, namely the normal, triangular and lognon-nal 

distributions. The model with normally-distributed parameters is denoted NU (i. e. 

normal unconstrained). The t-test and the change in the maximum likelihood, compared 

to the original Multinomial Logit model, testify that this is a successful model (see table 

4.1). However, examining the range of parameter values in the NU model reveals that 

positive fare parameters are attached to 5.4% of the population (as the mean parameter 

is -4.0981 with standard deviation of 2.5504). An individual whose fare parameter is 

positive prefers an expensive journey to a cheap one, when all other attributes are equal; 

although 5.4% is not a substantial share, it is yet unlikely that the number of people with 

such unusual behaviour is as high as this. Looking at the distribution of the ML 

parameter, it is found that 29.1% of the population have positive parameters (the mean 

is -0.7168 with standard deviation of 1.3028). A person with a positive ML parameter is 

one that prefers to arrive late to work. Since many working places operate flexible 

working times, it is likely that some travellers might wish to arrive to work later than 

the formal starting time; but a portion of 29.1 % seems excessive (although we have no 

solid evidence to support this). In general, the NU model appears statistically 

successful, but some qualitative judgement implies that the parameter estimates are 

questionable. 

The TU model (triangular unconstrained) replaces the normal distribution used in NU 

with the symmetrical triangular distribution. The TU model estimation results are very 

similar to those obtained for the NU model, both in terms of the statistical fit of the 

model, which seems good, and in terms of the distributions of the parameters, which 
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seem unlikely. The fare parameter has 5% positive values and the ML parameter has 
29%. Both NU and TU models used unconstrained distributions; the occurrence of a 
large share of positive values is simply a result of the shape of the curves of these 
distributions. The main conclusion this leads to is that more reasonable estimates might 
be obtained by constraining the distributions of the parameters. The following model 
specifications apply different approaches for the constraining of these distributions. 

One way of narrowing the range of parameter values is by using a distribution such as 
the lognormal, which is constrained by definition. The lognormal distribution only 

encompasses positive values, and if a negative sign is attached to it, it only includes 

negative values. By specifying a model with lognormally-distributed parameters for the 
fare and ML variables we can therefore avoid the positive tail experienced in the NU 

and TU models. Unfortunately, the attempts to estimate a model with lognormal 

distribution were not successful, as the estimation tool was not able to identify a 

satisfactory model. Difficulties in estimating MXL models with lognormal parameters 

are very common; similar experience is reported by Small et al (2005) and other 

authors. 
A different approach to avoiding outspread parameters is by using distributions with 
lower and upper bounds, which are estimated simultaneously with the other parameters. 

We refer to this approach as constraining by estimation. A distribution that can be used 

efficiently for such estimation is Johnson's SBdistribution (Johnson, 1949), which has 

been successfully implemented in MXL models described by Hess et al (2005) and 

others. In many of the common distributions, such as the normal or lognormal, any 

specific curve can be identified by two parameters, namely the mean and variance; the 

SB distribution includes the lowest and highest values as additional parameters and it 

therefore has four parameters. The appealing property of a distribution such asSBis that 

it enables fixing the highest and the lowest values for each parameter at levels that are 

directly derived from the data. It therefore avoids the somewhat-arbitrary shape of the 

tails obtained at the far ends of the distribution when an unbounded distribution is used. 

Nevertheless, the main strength of distributions constrained by estimation is also their 

main weakness: the fact that each curve of the SB distribution is defined by four 

parameters means that during the estimation of the MXL model, there are more 

parameters to identify. In the current work, all the attempts to specify and estimate 

MXL models with theSBdistribution were not successful, since the estimation tool was 

not able to identify a satisfactory set of parameters. A very similar case, where it is 
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found impossible to identify the parameters in a model that uses theSBdistribution, is 

reported by Train and Sonnier (2003). It might be assumed that constraining by 

estimation is more likely to work well when a very big dataset is at hand, such that the 

need to identify many parameters does not constitute a major problem. 
The remaining way to avoid an irrationally large share of positive parameters is through 

constraining by imposition. This approach involves imposing various constraining rules 

on the distributions of the parameters prior to the estimation of the model. Since the 

constraints are introduced before the estimation, without an attempt to determine 

constraints (such as upper and lower bounds) from the data, there are fewer parameters 
to identify, compared to the case of constraining by estimation. It is clear that 

constraining by imposition is not the preferable technique. As illustrated in the 
following paragraphs, the imposed constraints are inevitably arbitrary; specifying 

models with imposed constraints is considered not because there is any evidence that 

these constraints make sense, but simply because such model is easier to estimate. Still, 

as other specifications either led to irrational estimates or did not lead to any model at 

all, the advantages of constraining by imposition should not be undervalued. 
Two models were estimated using a constrained normal distribution. In both models, the 

method of constraining was forcing the standard deviation of the parameters to be equal 

to the mean; with the normal distribution this always fixes the percentage of positive 

values at 16%. In one of these models (denoted NC, i. e. normal constrained), such 

restriction was imposed on both the fare and ML parameters, and in the other (NP, i. e. 

normal partially-constrained) it was only imposed on the ML parameter. In the NP 

model, the proportion of travellers with a positive fare parameter rose to 8.4%. An 

additional model, where only the fare parameter was constrained, appeared much 
inferior by both statistical and rational judgement, and is not presented here. 

Two additional constrained models were estimated with the symmetrical triangular 

distribution: a partially-constrained model (TP) and a fully-constrained model (TC). The 

rule used for constraining was that the spread of the distribution must be equal to the 

mean; in a symmetrical triangular distribution with a negative mean, this always sets the 

upper bound at zero and thus there are no positive values. This constraining rule was 

imposed on the ML parameter in the TP models and on both ML and the fare 

parameters in the TC model. In the TP model, the share of positive values for the fare 

parameter, that was left unconstrained, increased to 9.3%. As with the normal 
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distribution, a triangular specification where only the fare parameter is constrained 
performed much poorer than the other specifications and is therefore not presented. 
The output of the entire modelling sequence is the six MXL models presented in table 

I. Note that in models with normally-distributed parameters, the error component is 

the standard deviation, whereas in models with triangularly-distributed parameters the 

error component is the spread. All the presented models have significantly higher 

likelihood than the Multinomial Logit model, and reasonably high t-statistic values for 

all parameters. 

Multinomial NU NC NP TU TC TP 

-1.343 -4.0981 -3.4812 -4.0071 -4.1859 -3.6528 -3.6791 Fare 
(4.5) (-11.0) (-11.2) (-11.0) (-10.9) (-10.6) (-11.2) 

-0.0724 -0.1413 -0.1377 -0.1405 -0.1410 -0,1244 -0.1234 MTE 
(-7.3) (-11.2) (-11.0) (-11.1) (-11.3) (-11.4) (-11.0) 

-0.1961 -0.7168 -0.8953 -0.9248 -0.7285 -0.6943 -0.6401 ML 
(-2.3) (-6.0) (-6.7) (-7.2) (-6.2) (4.9) (4.7) 

Fare - 2.5504 3.4812 2.9074 6.1272 3.6528 6.4779 

error (9.5) (11.2) (9.3) (9.1) (10.6) (10.0) 
component 

ML - 1.3028 0.8953 0.9248 3.0533 0.6943 0.6401 
error (7.9) (6.7) (7.2) (8.2) (4.9) (4.7) 
component 

Final 
likelihood -1187.9 -999.4 -1010.6 -1004.7 -998.4 -1056.2 -1028.5 

Table 4.1: Mixed Logit models (t-test results in brackets) 

In order to derive the DWP that we are interested in, it is necessary to choose the single 

model that seems to perform better than the others. But this choice is found quite 

challenging, as all six models have serious flaws. Judging by the traditional maximum 

likelihood test, the unconstrained models (NU and TU) are the best. This is supported 
by other tests, such as rho-squared, which are not presented as they lead to the same 

conclusions. But as discussed earlier, in the unconstrained models the positive tail of the 
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ML parameter seems too outstretched. In contrast, the constrained models (NC and TC) 
have lower maximum likelihood, and there is also some concern that the arbitrary 
imposition of the constraining rule, which presets the size of the positive tail, is an 
artefact that makes these models unreliable. The partially-constrained models (NP and 
TP) could be seen as a tolerable compromise, but they imply an outsized positive tail for 

the fare parameter. All in all, the question of which specification should be employed to 

estimate the DWP is still unanswered. 

The various approaches attempted here for constraining the distributions of the 

parameters are summarised in table 4.2. These approaches have been used in previous 

studies, but note that none of these previous studies illustrated the fundamental 
differences between them. For instance, Hess el al (2005) present the advantages of 

constraining by estimation without mentioning that it normally requires a rich dataset, 

while Hensher and Greene (2003) use constraining by imposition without stressing that 

using preset constraints constitutes a serious compromise. Using the terminology 

developed earlier, observe that constraining by estimation sees the constraints as part of 

the set of model parameters, 0, whereas constraining by imposition deems them part of 

the model structure, D. 

Approach Distributions Advantages Disadvantages 

Unconstrained Non-nal, No interference in the Risk of excessive 

parameters triangular estimation process share of positive 

values 

Constraining by Lognormal No risk of a tail with Difficulties in 

definition the wrong sign estimation 

Constraining by SB Upper and lower High number of 

estimation bounds derived directly parameters leads to 

from the input data identification 

problems 

Constraining by Normal, Easy to estimate The preset 

imposition triangular because of the small constraining is an 

number of parameters artefact 

Table 4.2: Different approaches to constraining distributions 
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The NC, NP, TC and TP models described above were specified using a relatively 
simple imposed constraint, which set the standard deviation or the spread at the same 
level as the mean parameter. Hensher and Greene (5) discuss other constraining rules, 
such as forcing the standard deviation to equal the mean multiplied by a factor. 
Although this opens an avenue for many new possible model specifications, it was 
decided not to use this modified approach; the reason is as follows. If the mentioned 
factor is preset, a distribution is thus imposed, but Hensher and Greene do not devise a 
procedure of determining the value of the factor prior to estimation. Apparently this 

requires either a lengthy trial-and-error process whose success is not guaranteed, or an 
arbitrary decision that will form an intrusive interference in the estimation procedure. If 

the factor is estimated, then similar identification problems as those with distributions 

constrained by estimation are likely to occur. 
As discussed earlier, the main purpose of the entire series of modelling experiments is 

to obtain estimates of the DWP for reduced TTV. The distributions of the model 
parameters are of interest because they are meant to be used later to derive the DWP. 

Since it was found difficult to choose the best model by looking at the values of the 

parameters, it might be useful to also explore the different DWP curves implied by each 

of the six alternative models. All six model specifications include two variables to 

which we want to attach a monetary value: MTE and ML. We therefore now derive the 

VOTE (value of mean travel time and earliness) as the ratio of the MTE parameter to 

the fare parameter, and the VOL (value of mean lateness) as the ratio of the ML 

parameter to the fare parameter. Note that although the MTE parameter remained fixed 

(not random), we do get an entire distribution of VOTE because of the division by the 

fare parameter. The distributions of VOTE and VOL are derived by repeatedly taking 

random draws from the distributions of the relevant parameters (that vary according to 

the specification of the model), calculating the ratios of these random numbers (fixed 

MTE parameter to random fare parameter or random ML parameter to random fare 

parameter), and finally analysing the distribution of the resulting ratios. The 

distributions of VOTE and VOL are presented in figures 4.1 and 4.2 as cumulative 

frequency curves. A cumulative presentation was chosen because some of the curves 

include values that lie outside the presented range; the amount of such values can only 

be emphasized in a cumulative diagram. 
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The DWP diagrams demonstrate two important issues. First, it can be seen that the 
distributions of VOTE and VOL include a negative share that seems too big; this is not 

surprising as a negative WTP is the direct outcome of the positive parameters discussed 

earlier. The only model that does not include any negative WTP is the TC model, as the 

constraining used in this model did not allow any positive parameters. As shown in 

table 4.1, the maximum likelihood for the TC model was significantly lower than for all 

other specifications. 
The second issue that the diagrams illustrate is that the range of VOTE and VOL is 

irrationally large. It would seem logical if the entire distribution lay within the range of 

values presented on the horizontal axes; but in practice there are many values that 

exceed this range. The occurrence of extreme values, both positive and negative, is the 
direct result of division by numbers very close to zero. Such numbers are taken from the 
distribution of the fare parameter, which is used as the denominator when the WTP is 

computed. The existence of values close to zero in the distribution of the fare parameter 
is a major problem, since even very careful bounding of the fare parameter might not 

completely prevent it. 

The problems encountered while trying to model the attitudes to TTV with MXL can 
lead to several different directions of further investigation. For instance, it should be 

important to explore the issue of how to reach better identification of models with 

parameters constrained by estimation, or how to improve the specification of models 

with parameters constrained by definition or by imposition. These problems deserve a 

separate thorough discussion which is not possible in the scope of the current study. 
Other possible directions to follow are discussed later in this chapter. But since we have 

not yet made a clear choice between the six MXL models presented above, it was 
decided to make some additional attempts to test the performance of these six 

specifications. Since the traditional measures of model fit did not seem sufficient in the 

current case, the further attempts require using other tools. The next section describes a 

series of experiments aimed at testing the fit of the MXL models using a sub-sampling 

technique. 
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4.4. Sub-sampling experiments 

4.4.1. Tests for comparing distributions 

The main analysis presented in this section involves comparing distributions based on 

the MXL models to the respective distributions estimated independently using sub- 

sampling (SUS). Before describing the SUS experiments it is important to verify that 

trustworthy methods are used for this comparison. We find that two distributions can 
differ in two distinctive dimensions, and hence both these dimensions should be 

compared. 

If we describe the two distributions as cumulative frequency curves, the first dimension 

of potential difference is represented by the vertical axis of the diagram. Namely, a 

small vertical distance between two cumulative frequency curves signifies good fit 

between the distributions; this is conventionally measured using the Kolmogorov- 

Smirnov (K-S) test. In the current context it was decided to consider any K-S test 

statistic smaller than 15% as indicating satisfactory fit. This is merely a rule of thumb, 

but since the input data is based on responses from travellers that are often inconsistent, 

and since the SUS technique used to obtain an external estimate of the DWP is 

inaccurate, we find it unnecessary to use a rigorous statistical terminology that includes 

accurate levels of confidence. For a more thorough description of the K-S statistic, see 

later chapters of this thesis, where this test is used more systematically (although in a 

different context). 

Verifying tolerably small vertical difference is essential when comparing two 

distributions, but it is not sufficient. Major differences can lie between two compared 

distributions in another dimension, that we call the horizontal dimension, even if the 

vertical fit is good. This can result from the existence of some very big numbers 

(positive or negative) in only one of the distributions; the amount of these big numbers 

might be too small to make a vertical difference, but it can still cause vast differences 

when various statistics are computed. The DWP is particularly sensitive to poor 

horizontal fit, since WTP is a quotient of two numbers; as illustrated above, the value 

used as denominator is sometimes very close to zero, hence it can result in very high 

values. A simple way to verify good horizontal fit is by comparing the standard 

deviation of the analysed distributions. 
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The K-S test and the comparison of the standard deviation, which are used here, are not 
the only ways to verify good fit between two distributions, and they clearly have some 
drawbacks. In future research, it should be important to examine other measures. 
However, it should be stressed that it is essential to examine the discrepancies between 

the distributions both vertically and horizontally. 

4.4.2. Experiment A: the validity of sub-sampling experiments 
The essence of SUS was described earlier in this chapter. The series of experiments 

presented in this section uses SUS to obtain independent estimates of the distributions 

of the model parameters or of the WTP; then tho discrepancies between the SUS-based 

and the MXL-based distributions are used as an additional test of goodness-of-fit. The 

SUS technique used here is similar to the Bootstrap technique, and also to the SODA 

technique proposed by Sorensen and Nielsen (2003), as explained further in the 

following paragraphs. The first experiment in the series is meant to illustrate the use of 

this technique and to test whether it is sound to use it to estimate the DWP. Note that 

there is no intention to undermine other techniques, such as Jackknife. Bootstrap is a 

more direct method for trying to replicate the distribution of preferences in the original 

dataset, whereas Jackknife mainly performs sensitivity analysis. The direct output of 

Bootstrap is an approximated distribution which can then be easily compared with the 

MXL distribution without further analysis; but it should be emphasized that the use of 

Jackknife too for similar purposes should be considered in future research. 

To perform the first experiment, the full dataset from the SP survey is used, but instead 

of the actual choices made by the respondents, artificial choices were added, based on 

an imaginary MXL model. The imaginary model has the same variables as the 

aforementioned models (fixed MTE parameter and random fare and ML parameters) but 

the parameter values are made up. These values were determined such that when the 

MTE and ML parameters are divided by the fare parameter, the resulting VOTE is 

distributed triangularly across individuals, with mean 3 and spread 3 pence per minute; 

and VOL is distributed triangularly across individuals, with mean 12 and spread 12 

pence per minute. Our interest is in whether examining this synthetic dataset using SUS 

can reproduce the artificial DWP, which is in this, case the real distribution. 

The sample was randomly divided into 20 subsamples, such that each subsample 

contained the responses of about 5% of the individuals; responses from the same 

individual were always kept in the same subsample (to comply with the conventions of 
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panel data analysis). The random creation of subsamples was repeated 10 times; all 

together, 200 different subsamples were created, and a Multinomial Logit model with 
fare, MTE and ML parameters was estimated for each subsample. From the parameters 

of each model we can calculate VOTE and VOL, derive the distributions of these values 

across all SUS models, and examine whether these distributions are similar to those that 

were used to simulate the artificial choices. Note that the number of subsamples used 
here is much bigger than in the experiments described by Cirillo et al (2000). As 

mentioned in earlier in this chapter, Cirillo et al found that with a few dozens of 

subsamples, the Bootstrap estimates tend to underrate the extent of variation in the 

dataset; the high number of subsamples is used here in an attempt to reduce the risk of 

such bias. 

The mean values in the SUS-based DWP are found very similar to the real values: 2.9 

pence per minute for VOTE and 11.5 for VOL. The SUS standard deviation of VOTE is 

0.9 (the real is 1.2); the SUS standard deviation of VOL is 8.7 (the real is 4.9). When 

the SUS distributions are compared to the real ones, K-S test statistic for VOTE is I I% 

and for VOL it is 12%. We conclude that although SUS distributions do not replicate 

the real preferences accurately, they do constitute reasonable estimates of the true 

behaviour. In the absence of better estimates we therefore wish to use SUS to examine 

how likely different MXL model specifications are, in addition to more traditional tests 

such as the maximum likelihood. 

4.4.3. Experiment B: fitting distributions to sub-sampled parameters 

Unlike the illustrative experiment described above, in the second experiment we use the 

real choices recorded in our database. However, we still do not compare the MXL-based 

and SUS-based estimates directly (we do this later); the different specifications of the 

MXL model are ignored at this stage. The experiment follows the methodology 

proposed by Sorensen and Nielsen (2003), which is meant to be used prior to the MXL 

model estimation (it is, however, different from Sorensen and Nielsen as it takes into 

account the panel nature of the data). This basic test examines whether the SUS-based 

parameter distributions resemble several common distributions; we use nonnal, 

triangular and lognormal (with the opposite sign). The logic is that if a specific 

distribution fits well, it can then be used as a starting point for MXL estimation. Using 

the notation defined earlier, the current experiment assists in making an intelligent guess 

of D under the assumption that there is no risk of bias in 0. Note that it is not possible to 
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compare the SUS distribution to the general shape of a normal, triangular or lognormal 

distribution; it is only possible to compare with specific curves from these families. In 

the analysis performed here we give these specific curves the SUS-based, not the MXL- 

based, mean and standard deviation; namely, as in Sorensen and Nielsen (2003), we 

assume that the SUS estimate of 0 is always accurate. 
The test was carried out similarly to experiment A. Based on the full sample (with 

travellers' real choices), 200 subsamples were created and a Multinomial Logit was 

estimated for each. The distribution of parameters across these sub-models was 

compared to normal, triangular and lognormal distributions with the same mean and 

standard deviation. In the current experiment we do not examine the distribution of the 
MTE parameter since in the MXL models that we are about to test, the MTE parameter 
is fixed; its fit is tested later. 

The SUS distribution of the fare parameter includes positive values for I% of the 

sample; these values are very close to zero and therefore seem negligible. This makes 

good sense because an increase in the level of utility as the fare increases seems most 

unlikely for any traveller. The fact that the SUS estimates of the fare parameter do not 
include a considerable positive share supports the doubts raised earlier concerning the 

credibility of the some of the MXL specifications. Unfortunately, conclusions from the 

SUS distribution of the ML parameter are not equally clear. Similar to the NC and NP 

models, SUS shows that about 18% of the travellers have positive ML parameters; this 

finding creates a dilemma. On one hand, both the MXL model and SUS have now 
independently shown that some travellers have a positive attitude towards late arrival. 

Note that such attitude does not seem as irrational as positive attitude to the fare or to 

the mean travel time, because in working places that allow flexible arrival times, it is 

not unlikely that some workers see late arrival as a better use of their time (for reasons 

related either to leisure activities, carried out before arrival, or to work activities, carried 

out after arrival). On the other hand, several authors have recently stated that positive 

parameters for time-related variables (and hence negative WTP) are irrational, as 

reviewed above. It therefore appears that before deciding which specification of a MXL 

model is the best, there is a need to decide whether or not we accept the existence of a 

small share of travellers that are lateness-prone. We return to this issue later in this 

section. 

Table 4.3 and figures 4.3-4.4 present the attempts to fit distribution curves to the SUS- 

based parameter distributions. The SUS distribution of the fare parameter is 
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successfully replicated by the normal and triangular curves. The lognormal curve, 
however, has the infamous long tail which stretches much farther than the lower end of 

the SUS curve. Similar to the fare parameter, the SUS-based distribution of the ML 

parameter is reconstructed well by the normal and triangular curves. The lognormal 

curve is unable to replicate the positive tail of ML, and is also found inappropriate at the 

negative end (2 5.1 %). 
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Normal Lognonnal Triangular 

Fare 5.4% 25.1% 6.4% 

ML 6.1% 29.6% 6.8% 

Table 4.3: Experiment B- K-S test statistic 

In principle, it is also possible to compare the SUS-based parameters with distributions 

with MXL-based (instead of SUS-based) mean and standard deviation. If such test 

shows good fit between SUS and one of the MXL models, this credibly indicates an 

acceptable model. But it should be observed that if such comparison reveals big 

differences between the SUS and MXL parameter distributions, it does not prove that 

the MXL model has poor performance. The sought model is to be used to derive 

estimates of the DWP; these do not directly depend on the parameter values, but only on 

the ratios of the time-related parameters to the fare parameter. Differences in the order 

of magnitude of the parameters between Multinomial Logit and MXL are common, but 

the ratios that specify the DWP often remain at a similar level. The experiment 

performed here, which follows experiments proposed in some previous studies, is in this 

sense not a powerful one. In the next subsection a different experiment is performed to 

compare not the parameter distributions but the DWP directly. 

4.4.4. Experiment C: Mixed Logit versus sub-sampled distributions 

Experiment B was used to assist in specifying the set of parameter distributions, D, 

under the assumption that the problem of setting D is independent of the estimation of 

the parameters, 0. In practice, if a guess of D is made before model estimation and then 

used to specify the MXL model, 0 is re-estimated and there is no guarantee that the 

parameter distributions with a SUS-based D and MXL-based 0 will perform as well as 

the distributions that were initially tested, with both D and 0 based on SUS. In other 

words, using the right distribution while re-estimating its parameters might still result in 

a poor model. The experiment described in this subsection uses SUS to test both D and 

0 after the MXL model estimation, with 0 based on the estimation results. The 

advantage of such analysis is that it does not disregard any bias introduced at a later 

stage, and is thus a more credible indicator of model fit. The disadvantage is that similar 

to other indicators, such as the maximum likelihood, it only applies to models that have 

already been specified and estimated; it does not tell us how to specify a better model. 
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The current experiment tests directly the DWP and not the model parameters, as the 

need for good estimates of the DWP is the primary motivation for the entire modelling 

effort. The SUS-based DWP is determined as in experiment A, except that it is based on 

the true behaviour rather than on artificial choices. The DWP from the different MXL 

models was derived by simulation. Each of the MXL models presented earlier defines a 
fixed MTE parameter and a distribution of ML and fare parameters; 10,000 (ten 

thousands) sets of parameters were drawn from each of the models, simulating the 

individual choice models of 10,000 travellers. The VOTE and VOL were calculated for 

each one of them, and the resulting distributions were compared to the SUS 

distributions. 

Figures 4.5 and 4.6 present the cumulative frequencies of VOTE and VOL according to 

all six MXL models, similar to figures 4.1 and 4.2, but with an added curve for the SUS 

estimates. The figures demonstrate that the models with the normal distribution 

overestimate the share of travellers with WTP that lies at the far ends. The NP curve of 

VOL performs better than the other normal models at the negative end, but it fails to 

predict the entire part of the curve that lies above the mean. The TU curve implies (not 

surprisingly) that using the triangular distribution without constraints performs similarly 

to the unconstrained normal distribution. As mentioned earlier, the reason why many 

oversized values (positive or negative) are repeatedly found is that most feasible 

distributions of the fare parameter include values very close to zero, that are used as the 

denominator when calculating the WTP. The TP and TC models are the best in the way 

they replicate the right end of the distributions of VOTE and VOL; but the TP model, 

like most other models, gives too many negative values, and in contrast the TC model is 

unable to replicate any negative values. As we discussed in the previous subsection, the 

decision of whether or not the TC model is acceptable depends on another decision, 

namely whether or not we allow a certain share of lateness-prone travellers. 

As explained earlier in this section, the diagrams illustrate the vertical differences 

between the estimates of the DWP, but they do not examine the horizontal differences. 

Table 4.4 presents a more systematic comparison between the SUS-based and MXL- 

based DWP. The vertical fit is measured using the K-S statistic and the horizontal fit is 

measured by comparing the standard deviation. The results are gloomy: none of the 

MXL models gives acceptable levels of vertical fit to the SUS estimates; most models 

also have very poor horizontal fit. The NC estimate of the standard deviation of VOL is 

250 times higher than the SUS estimate, and the TP estimate is 1100 times higher than 
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SUS! NU, NP and TU also overstate the standard deviation, and only the TC model 

gives an estimate at the same order of magnitude as SUS. 
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Figure 4.5: MXL-based VOTE versus SUS 
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Figure 4.6: MXL-based VOL versus SUS 
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SUS NU NC NP TU TC TP 

VOTE 
26.8% 34.2% 33.2% 28.7% 26.8% 32.1% 

K-S statistic 

VOL 
19.4% 15.7% 58.6% 20.1% 16.6% 9.7% 

K-S statistic 

VOTE 
6.0 325.5 492.0 502.3 181.4 5.3 276.5 

Standard deviation 

VOL 
43.8 1512.0 11286.2 1896.2 6408.0 33.1 49219.9 

Standard deviation 

Table 4A Experiment C- vertical and horizontal fit 

4.4.5. Discussion 

A major issue that the presented analysis raises is the existence of negative WTP. 

Experiment B shows that the SUS distribution of the fare parameter has only negative 

values; this enhances our suspicions about the positive tail of the fare parameter, 

implied by most of the MXL models. SUS results for the ML parameter in experiment 

B show that similar to the results of models NC and NP, 18% of travellers have positive 
0 

values. The fact that a considerable amount of positive ML parameters is found by both 

SUS and some of the MXL models obliges us to rethink whether the argument made in 

some previous works (reviewed earlier), regarding the flaw in positive time-related 

parameters, is not too strict. The fair amount of positive parameters might insinuate that 

there should be. a distinction between travel time in general, which is truly unlikely to 

have positive parameters, and specific elements of it, such as lateness. Since flexible 

start times are accepted in many working places, it might make sense that some 

travellers would rather arrive later than earlier. If we had managed to estimate a credible 

MXL model in which some share of positive VOL was the only feature that 

contradicted the conventions of traditional demand models, we would have therefore 

seriously considered accepting that model. But obtaining such a model was found here a 

real challenge, as each of the six MXL specifications presented here had other flaws. 
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Since the estimation of the DWP is the main objective of the modelling experiments, the 

poor fit of the MXL models is a key problem. Nevertheless, the experience described 

here raises an additional, more general problem: despite the poor fit, the conventional 
tools imply that the fit is good. Table 4.5 summarizes how different tests rate the MXL 

models. Judging by the maximum likelihood, TC is the worst model, but according to 

most other tests, it is the best! The TP model, which is the only model that replicates the 
distribution of VOL reasonably well, has the second-worst likelihood. The maximum 
likelihood shows a consistent tendency to penalise constrained models; the more 

constraints we place on the distribution of parameters, the lower the maximum 
likelihood. Still, comparison of the DWP between the MXL and SUS distributions 

testifies that constraining did generally lead to better estimates. The general problem 
implied by this experience is that MXL specifications that are chosen only by checking 
the maximum likelihood, and the respective estimates of the DWP, might lead to biased 

analysis and hence even to wrong conclusions from scheme assessment. 
Our analysis used constraining of the parameter distributions as a key method for 

defining different model specifications from the same family of statistical distributions. 

It should be pointed out that the entire concept of constraining the cost parameter, in an 

attempt to reach a more rational DWP, has some deficiencies. One of them is that even 
if a logical way of constraining is found, the distribution of the cost parameter might 

still include values close to zero that result in an unbounded DWP. Another deficiency 

is that the distribution of the cost parameter often affects more than one WTP ratio (e. g., 
in our case, VOTE and VOL), and the constraints required to adjust different ratios 

might contradict each other. Such problem is most apparent in models where some 

parameters are fixed (i. e. in most MXL models), since altering the cost parameter 
becomes the only way to control the DWP associated with the fixed parameters. For 

both these reasons, one might claim that in some cases, a cost parameter distribution 

that leads to a realistic DWP simply does not exist. 
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Experiment C 

MXL K-S test Ratio of sta. dev. 
Rate (vertical test) (horizontal test) 

Maximum 
likelihood VOTE VOL VOTE VOL 

I TU TC TP TC TC 
(best 

model) 
(-998.4) (26.8%) (9.7%) (88%) (76%) 

2 NU NU NC TU NU 
(-999.4) (26.8%) (15.7%) (3023%) (3452%) 

3 NP TU TC TP NP 
(-1004.7) (28.7%) (16.6%) (4608%) (4329%) 

4 NC TP NU NU TU 

(-1010.6) (32.1%) (19.4%) (5424%) (14630%) 

5 TP NP TU NC NC 

(-1028.5) (33.2%) (20.1%) (8200%) (25768%) 

6 TC NC NP NP TP 
(worst (-1056.2) (34.2%) (58.6%) (8372%) (112374%) 
model) 

Table 4.5: Rating of the MXL models by different tests 

As mentioned earlier, the main reason for the poor performance of the MXL models is 

insufficient horizontal fit, caused by an excessive share of very big values that result 

from fare parameters close to zero. The presented analysis detects this problem only in 

our particular database, but we believe that a similar problem is likely to occur in many 

models with a random cost parameter. The search for solutions to the problem can lead 

to different directions, as described in the following paragraphs. 

The unbounded nature of the WTP can be solved by not allowing the fare parameter to 

vary across the population. In the current context this means that VOTE will have a 

fixed value for all travellers, because an error component for the MTE variable did not 

appear significant. Since we believe that some variation of VOTE across travellers does 

exist, this would be undesirable. Besides, Train and Weeks (2005) discuss why it is 
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generally important to allow for heterogeneity in the cost parameter despite the 

difficulties it brings in. 

Efforts to avoid the problems arising from the sensitive nature of the cost parameter 
distribution can take another direction, by estimating the model in the WTP space rather 

than the utility space. The concept of modelling in WTP space, and its main advantages 

and disadvantages, were mentioned in section 4.2.1. The advantages include the fact 

that the WTP is computed directly, avoiding the division by small numbers, as well as 

some evidence of good statistical fit, reported in a small number of studies. The 

disadvantages have to do with the fact that there is still very limited general experience 
in application of this approach, and in particular, experience with the performance of 
different statistical distributions in WTP space. An additional major disadvantage is that 

techniques for such estimation are currently not offered by the common software. 
Therefore, although this opens an interesting avenue as an alternative modelling 

approach, extending our modelling experiments in this direction is beyond the scope of 
the current study. 

At this stage, we leave the problem of choosing, the best DWP estimate unsolved. We 

return to it later in this chapter, after examining the DWP from a different perspective. 

4.4.6. Summary 

The analysis presented here demonstrates some of the difficulties and risks involved in 

the process of estimating MXL models. We wanted to allow variation in the cost 

parameter, but this gave rise to problems in specifying a model that leads to a credible 

estimate of the DWP. When the MXL model parameters were not constrained, the 

resulting range of WTP seemed too wide. It seemed that limiting the range of parameter 

values, by using distributions that are constrained by definition or by estimation, would 

solve this problem (at least partially); but models with such distributions were found 

hard to estimate. We therefore specified some models where constraints were imposed 

on the parameter distributions. We then had to decide whether the constrained models 

performed better than the unconstrained ones. 

Our experience suggests that the maximum likelihood test penalises any constraining of 

the distributions of the parameters, even if it appears that such constraining improves 

model fit. Since the true range of traveller preferences is unknown, we found it useful to 

compare the MXL-based estimates to the distribution of preferences derived from a 

SUS experiment. The SUS distribution is merely an inaccurate estimate of the true 
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distribution, and it is always biased downwards, at least slightly, as explained earlier in 

this chapter; but it is still a good test of the MXL model fit, in the light of the failure of 

other statistical tools to detect poor model performance. We fear that similar 
deficiencies to those we found in the models presented here may possibly exist in 

models presented by others; they might have not been identified because insufficient 

statistical tests were used. 
Previous studies suggested using SUS before model estimation, to assist in guessing the 

true parameter distribution; we remind that this does not guarantee good fit, since the 

parameters of the distributions are then re-estimated. We recommend using SUS also 

after model estimation. We also remind that when MXL and SUS distributions are 

compared, both the vertical and horizontal dimensions should be examined; the DWP is 

prone to poor horizontal fit, a problem that stems from values close to zero of the cost 

parameter. 

Since the traditional measures of MXL model fit are insufficient, it is suggested that 

SUS should be used, among other tests, when evaluating MXL models. To enable easy 

use of SUS techniques it should be considered to incorporate them as an integral part in 

the conventional software tools used for estimation. Some of these tools (i. e. Alogit) 

already include SUS features but there is scope to extend them such that they enable 

analysis such as the one performed here. There is also scope for investigating, in future 

studies, the use of other SUS techniques, such as Jackknife. Finally, since many 
difficulties are encountered due to the parametric nature of the conventional estimation 

concept, there seems to be a growing need for exploring the merits of alternative, 

nonparametric methods. A simple nonparametric investigation of our dataset is 

undertaken in the following section. 

4.5. Deriving the distribution of the willingness to pay under weak 

assumptions 

4.5.1. Deriving individual willingness to pay from survey responses 

One of the main findings from the MXL modelling experience described above is that 

different model specifications lead to very different estimates of the DWP; it seems that 

the original data leave substantial freedom of interpretation for the estimation 

procedure. If the derived DWP depends not only on the data, but also on the model 
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specification and on the estimation procedure, there is great interest in trying to isolate 

only the information that truly exists in the raw data. The current section presents a very 

simple experiment that aims at exploring these questions. The experiment is 

nonparametric, as it tries to avoid any preliminary assumption concerning the shape of 

the DWP curve. 

The experiment performed here accepts the conclusion reached in chapter 3 concerning 

the most significant variables (fare, mean travel time, mean earliness and mean 

lateness); other variables are not re-examined here. However, the grouping of the mean 

travel time and earliness into one variable is no, longer required. The grouped variable 

performed better than two separate variables in the previous modelling experiments, but 

there is no need to assume that the same will occur when a different approach is used. 

The aim of this section is therefore to determine the DWP that corresponds to three 

variables: MTT, ME and ML. 

Models which are used to derive the WTP are typically estimated based on data from SP 

surveys. A very common type of situation presented in such surveys includes two 

alternative sets of travel conditions, corresponding to the variables that the modeller 

considers to include later in a cost or utility function; the respondents are asked to 

choose their preferred set. One of the attributes that defines the travel conditions is 

conventionally the cost. If there is only one additional attribute, such as journey time, 

then the survey can lead to one-dimensional analysis of the WTP for time savings (i. e. 

VOT). Each particular choice situation in such survey draws a border between two 

ranges of WTP. If, for instance, the respondent is asked to choose between a 30-minute 

journey that costs 200 pence and a 20-minute journey that costs 300 pence, the 

generalised costs of the two options are equal when 

(4.4) 

200 + 30-C = 300 + 20-C 

i. e. when. Cz-- 10 pence per minute (ppm). Fowkes and Wardman (19 8 8) and Fowkes and 

Preston (1991) refer to this as the boundary value. A respondent that chooses the more 

expensive option can be assumed to have a higher WTP than 10 ppm, and a respondent 

that chooses the cheaper option can be assumed to have a lower WTP than 10 ppm. It is 

expected that a series of such choice situations with different attribute levels will create 

a set of constraints on the feasible range of the respondent's WTP, such that it will be 

possible to identify a relatively small range of monetary values that the sought WTP lies 
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in. This is illustrated in figure 4.7, where the responses of a single individual to five 

different SP choice situations are described. The short solid vertical lines represent the 

boundary values defined by each choice situation; the respondent's choice in each 

situation suggests whether the range of this respondent's WTP lies to the right or to the 

left from the boundary value. Based on all the responses is it possible to seek the most 
likely individual WTP (the dashed vertical line), and derive the entire DWP. 

Most likely value 

4 

WTP 

Figure 4.7: One-dimensional derivation of WTP from SP responses 

If the modeller attempts to find the WTP for two attributes, such as travel time and the 

mean lateness to the destination, a new dimension is added to the problem. The 

boundary determined in each choice situation is no longer a point along a line that 

represents all feasible WTP levels, but a line in a two-dimensional plane. The response 

to a single SP choice situation divides the plane into two areas, in one of which the 

WTP of the respondent is more likely to lie. The analysis of a series of responses in the 

two-dimensional case is illustrated in figure 4.8. Such analysis is expected to imply in 

which of the areas bounded between the different lines the most probable combination 

of WTP levels is. 

The same concept applies when the number of WTP elements is higher: if the cost or 

utility function is linear, then each SP choice situation divides the multidimensional 

WTP space into two parts, and the respondent's individual WTP is more likely to be in 

one of them. However, it is common knowledge in SP design that the number of choice 

situations should be restricted. Respondents tend to become tired or bored, and their 

answers gradually turn less credible. A reasonable number of choice situations is around 

nine (Fosgerau, 2006; Noland et al, 1998; Jackson and Jucker, 1982). The direct effect 
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of this limitation is that when there are several WTP elements, the area in the 

multidimensional space where we can identify high likelihood of a certain combination 

of WTP is quite big. In other words, if several elements of WTP need to be identified 

with a relatively small number of choice situations, it is hard to guarantee sufficient 

constraining that leads to a properly-defined WTP. 

WTP 2 

WTP I 

Figure 4.8: Two-dimensional derivation of WTP from SP responses 

Good design of the SP survey, that takes into account the composition of areas between 

the boundary values, can improve the ability to identify the WTP. But given the 

restriction on the number of choice situations a respondent is willing to face, good 
design is not expected to completely solve the problem of identification when there are 

several WTP attributes. Since the responses are unknown at the stage of design, we do 

not know which boundary values will be effective in identifying the WTP. Even if the 

boundary values are designed such that they divide the WTP space into many areas, the 

particular combinations of choices made by each respondent turns only part of these 

boundaries into strong constraints on the WTP. Almost any combination of the 

attributes in an SP choice situation can lead to valuable insights about one respondent 

but not provide any important information about another respondent. The fact that the 

optimal SP design depends on the values of the parameters, which are still unknown at 

the stage of design, has been also discussed recently by Cirillo (2005). 

An additional difficulty has to do with possible mismatch between the attributes used in 

survey design and the variables chosen later, at the stage of modelling. In the case 
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discussed here, the attributes used to generate the SP choice situations were the fare, 

MTT, departure time and level of TTV; but during the estimation of a choice model it 

was found better to transform this information into a set of variables that includes ME 

and ML instead of the departure time and TTV. Ideally, all six attributes had to be 

accounted for in the survey design. In practice, ME and ML were not explicitly 

considered when a reasonable composition of attribute levels was verified. Considering 

this was not practical at the stage of survey design, because at that stage there were 

many other variables that seemed equally likely to appear significant at later stages, and 
it was not feasible to use all possible variables as design attributes. 
Even in cases where all relevant variables are taken into account as design attributes, 

another dilemma needs to be faced. To assure identification of the entire DWP, it is 

important that the range of attribute values used in the survey design is big enough. 
However, expanding the range of values, while using a preset number of choice 

situations, implies bigger spaces between the boundary values. In other words, verifying 
that very high or very low values are properly constrained inevitably weakens the 

constraints on intermediate values. 
As illustrated above, the difficulties discussed here are strongly related to the 

dimensionality of the problem, i. e. the number of SP attributes or potential model 

variables. Dimensionality issues in SP design have been recently discussed in several 

publications, but from a different perspective. Hensher (2004) explores the influence of 

SP dimensionality on the WTP estimated from a MXL model. The main question being 

examined is whether the derived monetary estimates vary systematically with the 

dimensionality of the design, i. e. when there is, an increase in the complexity of the 

tasks the respondent is faced with. In our case the dimensionality was predetermined by 

other considerations, namely the need to account for the attributes that capture the 

effects of TTV. Hensher does not investigate the identification of the WTP with the 

varying number of dimensions. Caussade et al (2005) study how different aspects of 

dimensionality and complexity in survey design affect the modelling outputs. Again, the 

WTP is derived in the traditional way and the ability to identify it is not challenged. 

4.5.2. Deriving boundaries at different levels of consistency 

The simple experiment performed here is similar to the analysis mentioned earlier by 

Beesley (1973), which seeks the lowest and highest values accepted or rejected in each 

response in the dataset. But unlike Beesley, we allow each respondent to have different 
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WTP, so that we can then look at the resulting DWP. We assume that the cost 

associated with a journey is: 

(4.5) 

Total cost = Fare + VOT - MTT + VOE - ME + VOL - ML 

Where: 

MTT = mean travel time, VOT = value of MTT 

ME = mean earliness, VOE = value of ME 

ML = mean lateness, VOL = value of ML. 

This is based on the modelling experience described in chapter 3. The experiment 
included the following stages: 

eA set of all feasible combinations of VOT, VOE and VOL was generated. The 

values are in the range from -10 to +30 ppm, with intervals of 0.1 ppm. Any 

WTP below -10 or above +30 was considered unlikely when the SP survey was 
designed and there was therefore no point in accounting for such values in the 

current experiment, as the survey is unable to identify them. Note that, as 

discussed in detail earlier, there is a debate in literature about whether or not 

negative WTP should be strictly rejected, even for a small share of the 

population. In the current experiment we allowed negative values in order to 

demonstrate that a "strictly positive WTP" might be the policy of the modeller, 

but it is not necessarily supported by the data. 

For each single response in the database, it was examined whether the recorded 

choice made by the respondent can be explained by each feasible combination of 

VOT, VOE and VOL. In other words, for each response and each combination 

of WTP it was checked whether the total cost of the chosen alternative is lower 

than the total cost of the alternative that was not chosen. 

If travellers were entirely consistent in making their choices, we could now 

check what WTP can successfully explain all nine choices made by each 

respondent. But since we do not expect the respondents to be perfectly 

consistent, we define a consistency ratio (CR) as the ratio of the number of 

responses in which a certain WTP is accepted to the total number of responses 

of a specific individual. For example, if a certain combination of VOT, VOE and 

VOL is accepted by a traveller at CR=0,75, it means that at least 75% of the 
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responses of this traveller can be explained by these values. Now, for each 

respondent in the database, we mark all WTP levels that can be explained at 
CR=I, CR=0.75 and CR=0.5. 

Generally, the choices of each respondent can be explained by many different 

combinations of VOT, VOE and VOL. Because of the linear nature of the cost 
function, the accepted values of each one of the three WTP elements form a 

single segment with global minimum and maximum. For each respondent and 
for each CR we now calculate the minimum and the maximum accepted levels 

of VOT, VOE and VOL. 

Finally, at each CR, we examine how common every feasible level of VOT, 

VOE and VOL turned out, and draw the respective cumulative frequency curves. 

The number of respondents, out of the 250 travellers in the dataset, for which a range of 
WTP could be identified, is as follows - 

" At CR=1: 133 respondents (53.2%), 

" At CR=0.75: 225 respondents (90.0%), 

" At CR=0.5: 249 respondents (99.6%). 

The fact that at CR=l it is not possible to identify the range of WTP for many 

respondents is not surprising; we did not expected respondents to be consistent. The 

share of respondents for which a range can be derived at lower CRs seems reasonable, 
but the main question that arises is how wide the range of WTP is when the acceptance 

criterion is not strict. The question is answered in figures 4.9,4.10 and 4.11, which 

present cumulative frequency curves of the minimum and maximum VOT, VOE and 
VOL. Note that the experiment examined three-dimensional combinations of the WTP 

elements and not each element alone, but the figures present the minimum and 

maxim I um in a one-dimensional WTP space, for the simplicity of the presentation. Each 

presented curve is in fact the projection of the extremum contour of a diagram where all 

three dimensions are presented. 

We saw that at lower CRs it is easier to identify the range of WTP; but figures 4.9-4.11 

demonstrate that the lower the CR, the wider the recognised range. The range of VOT at 

CR=l (the solid curves in figure 4.9) is defined properly for most of the respondents; 

for around 18% of them the lower or upper bounds of the VOT are outside the 

examined range. This is only slightly different from the respective finding in the simpler 
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case discussed by Fosgerau (2006). However, the ability to identify a reasonably-narrow 

range of VOT at lower CRs is much poorer: at CR=0.75, the upper or lowers bounds of 

hardly half of the respondents are within the examined range. 
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Figure 4.9: Cumulative frequencies of the VOT at different consistency ratios 
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Figure 4.10: Cumulative frequencies of the VOE at different consistency ratios 
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Figure 4.11: Cumulative frequencies of the VOL at different consistency ratios 

The width of the range of VOE and VOL appears an even bigger problem: not only the 

curves for the lower CRs, but also those for CR= I, leave a very wide space between the 

minimum and the maximum WTP. The difficulty in estimating stricter boundaries for 

VOE and VOL might be partially explained by the fact that ME and ML were not 

explicitly used to determine the attribute levels in the design of the SP survey. But still, 

re-examination of the choice situations that were presented in the SP survey confirms 

that all the relevant variables - MTT, ME and ML - vary to an extent that encompasses 

the entire range of likely values. An equal conclusion, about the inability to determine 

the boundaries of the DWP despite an SP design that seems appropriate, was reached by 

Fosgerau; and as discussed earlier in this section, due to the higher dimensionality of 

our analysis it is natural that this problem is bigger in the current circumstances. 

4.5.3. Discussion 

The wide range of WTP revealed in the experiment described above is not a particular 

problem with this type of analysis, but a general problem with this type of data. Our 

understanding is that the dataset that includes the survey responses, and other datasets 

based on similar surveys, truly do not contain more information that this. The special 
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feature of the current analysis (similar to the analysis by Fosgerau) is that it shows only 
information that is directly derived from the data. It reveals that the data leaves us with 

a considerable amount of freedom to determine the exact DWP curve. This freedom 

might be one of the reasons for the difficulties that are repeatedly found in obtaining 

stable estimates of the DWP, and for the big differences between estimates of DWP that 

are based on different specifications of the parameter distributions. There are clearly 

many different forms of the DWP curves that can fit into the space between the 

minimum and maximum curves in figures'4.9-4.1 1. Parametric estimation of the DWP, 

using methods such as the maximum likelihood, suggests a likely DWP curve that 

efficiently uses the information in the dataset; such estimation is very powerful, but it 

does not explicitly illustrate that a suggested DWP is also based on information whose 

origin is the model specification and not the data itself. 

Practitioners often assume that it is not essential to have estimates of the entire DWP, as 
it is possible to base scheme appraisal on the estimated preferences of most travellers 

rather than all of them. It is important to note that if we cannot identify the entire 
distribution, estimates of the mean or the median are not reliable; therefore the entire 

shape of the DWP, including extreme values at the far ends, is crucial even if there is 

only interest in the mean. 

This conclusion about the difficulty in identifying the DWP points towards two 

different directions for further discussion. First, there is a clear need to make any effort 

to extract all the possible information from the survey data. In the presented experiment 

some information that exists in the survey data was not used: in cases where a certain 

level of WTP can explain some of the choices made by a certain respondent, but not as 

many choices as required by the preset CR, the implications of these choices in 

determining the likely range of WTP have so far been ignored. Several ideas were 

brought up as possible ways to employ the unused information to narrow the range of 

identified WTP: 

1. Instead of deriving different WTP curves at different CR levels, it is possible to 

derive a single WTP curve where the CR is used as a weight. Namely, any level 

of WTP is accepted, but its frequency is reduced by multiplying it by the CR. 

We performed this experiment but chose not to present it here, since the 

resulting range of feasible WTP is even wider than in the presented experiment. 

This is a consequence of a very high number of WTP levels that were accepted 

at low CRs. 
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2. Assume that between the values for the minimum and maximum WTP of each 

person, there is a single, unknown value which is the most likely WTP, and 

assume that each person has an individual DWP around this most likely value. 

The individual-specific distributions can be derived from the curves we already 

have, based on the assumption that the minimum and maximum distributions we 

calculated earlier are actually estimates of a collection of the lower and upper 
boundaries of the individual- specific distributions. However, although this 

analysis enables more intensive use of the survey data, it requires making 

assumptions regarding the shape of the individual-specific distribution, while the 

main incentive of the current analysis is our wish to avoid unnecessary 

assumptions. This concept was therefore not taken any further. 

3. Assume, alternatively, that between the values for the minimum and maximum 

WTP of each person, all levels of WTP are equally likely. The individual- 

specific WTP is uniformly distributed, but each person has a different range with 

a different bandwidth. It is possible to derive from our data file estimates of the 

individual bandwidth; this is only an upper bound for the real bandwidth, since 

the real bandwidth (which is narrower) is not fully identified. The bandwidth 

information has not been used so far and therefore, we could in principle use it 

to try to narrow the DWP. However it was eventually decided not to use this 

option, too, since the bandwidth itself is identified for only part of the sample, 

which means that some undesired distributional assumptions should be made. 

Overall, no satisfactory way was devised to reduce the width of the estimated range of 

WTP, even if some of the information in the data file has not been used. Note that the 

fact that we look at each individual separately, accounting for the panel data nature of 

the survey results, is in itself a source for loss' of data: if we treated each response 

separately, there would be no need to ignore responses where some levels of WTP are 

accepted at a low CR. Observe also that in our experiment, the choice of CR in fact 

involves a trade-off between an efficient use of the data and a reasonably narrow DWP, 

since high CR implies that fewer WTP levels are accepted but it also implies that much 

information is not being exhausted. Nonparametric methods that can make a more 

systematic use of the data do exist, as illustrated by Fosgerau (2006). However, it seems 

that existing methods require very high mathematical proficiency and still only perform 

very basic WTP analysis. All in all, much remains to be investigated in this field. 
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The second direction for further discussion is towards a better specification of future 

surveys. Designing the survey held in the current study involved a challenging 

combination of several difficulties, but at the stage of survey design we were not fully 

aware of their severe consequences, as these difficulties had hardly been discussed in 

preceding studies. The nature of the modelled phenomenon required displaying a 

sequence of travel times for each choice alternative, as well as some other attributes; 
during the design it was still unknown what variables these attributes will turn into in 

the final model. The design problem is multidimensional, not only because there are 

several WTP elements, but also because the determination of appropriate attribute levels 

should account for any potential variable, even if it is not presented. The risk in 

designing the questionnaire for a multidimensional problem is that in some of the 

dimensions not enough information is collected. On the other hand, because of the 

relatively detailed presentation, the design is also sensitive to the risks of task 

complexity. Hence, simple ways of coping with the high dimensionality might reduce 

the credibility of the results due to the effects of boredom or fatigue, as discussed in 

detail by Hensher (2004) and Caussade et al (2005). These simple ways to extract more 
data might include any of the following: 

1. Presenting more than two alternative options in each question, and asking the 

respondents to rank the alternatives instead of just choosing one. There are available 

methods for modelling based on ranking preferences, as used for instance by Bates 

et al (2001), which are indeed efficient in terms of the amount of information 

obtained from a given number of respondents. In our survey, where the amount of 
detail required for defining each alternative is relatively large, presenting more than 

two alternatives per choice situation might have constituted a considerable burden 

on the respondent. In addition, the conversion of the ranking data into econometric 

insights must be based on a set of assumptions that ascribe different probabilities or 

levels of likelihood to each rank, and this contradicts the nonparametric nature of the 

current analysis. 

2. Presenting more questions. However, as we discussed, the number of choice 

situations used here is repeatedly mentioned in similar studies as appropriate to 

avoid reduced credibility of the responses towards the end of the questionnaire. 

3. Increasing sample size. The number of respondents in our survey is not significantly 

different from the sample size used in similar studies (see review earlier in this 

chapter), and could not be increased due to budget constraints; still, approaching 
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more respondents seems the only straightforward way of reaching satisfactory 

estimates of the DWP. 

The difficulty in obtaining trustworthy estimates of the DWP stresses the need for more 

sophisticated surveying techniques. Some basic needs of survey design for MXL 

models have been statistically specified by Cirillo (2005), who states that "the studies 

on optimal design for MXL models are in their primordial phases". The main need that 

future works will have to meet is for surveying methods that enable getting more 
information from each respondent but without causing the negative effects of 

complicated surveys. 

4.5.4. Summary 

The simple experiment presented in this section derived the DWP nonparametrically, 
directly from the raw dataset. When we relax the distributional assumptions normally 

made in parametric analyses, it is found that the amount of information that the survey 
data truly contains is limited. The common tool for estimating MXL models, namely the 

maximum simulated likelihood, is indeed flawless and powerful in pointing to the best 

model even with a small amount of data; but this power can mislead us to believe that 

the derived estimates of the DWP are entirely based on the input data. The special 
features of the current case study, and the multidimensional space of survey attributes in 

particular, make this case especially sensitive to insufficient amount of input 

information. The needs of MXL modelling procedures, and their implications in the 

design of SP surveys, have hardly been discussed in previous literature. While we 

realise that this made the design of our own survey imperfect, it also led us into some 

important insights that might prove useful in the design of future experiments. 

4.6. Best-practice estimates 

Despite the extensive analysis performed in the previous sections of this chapter, the 

main objective is still not met, as we still do not have satisfactory estimates of the DWP 

for reduced TTV. The various MXL models did not perform rationally, either in the 

vertical dimension, the horizontal dimension or both. The SUS estimates made good 

sense but given the inexact nature of this technique, there is no evidence that they 
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accurately represent the true behaviour. The additional nonparametric experiment 

showed that our dataset indeed does not contain a sufficient amount of information to 

allow full identification of the DWP. The scope of this study does not enable collecting 

more data or examining the existing data in new directions. Following all this, is it now 

necessary to decide whether and how to obtain the desired estimates of the DWP. 

As it was found harder than expected to estimate the DWP, one option is to return to the 

Multinomial Logit model estimated in chapter 3 and to the uniforin WTP derived from 

it. Using WTP estimates that do not vary between travellers would be the safest option 
in terms of statistical confidence, as the data requirements for estimating such WTP are 

modest, and the estimates reached in chapter 3 appear reliable enough. However, as 
discussed earlier, uniform WTP is not a realistic representation of the heterogeneous 

composition of the population of travellers. In this respect, even an estimate of the DWP 

that encompasses most travellers, rather than all of them, would be a significant 

improvement compared to a uniform WTP, as long as it can be identified properly; this 

is the rational behind the final estimates of the DWP, brought in this section. The DWP 

sought here is a conservative estimate, as it excludes any range of monetary values in 

which there is no sufficient statistical confidence; but it is more realistic than the MXL 

models, and it covers a large share of the population in greater detail than the 

Multinomial Logit model. It can hence be seen as a compromise. 

Of the three different concepts we used to analyse the raw data (in sections 4.3,4.4 and 

4.5), the SUS approach was the one that led to the most sensible estimates; we therefore 

base the best-practice DWP estimates on a new SUS experiment. SUS-based DWP has 

a major disadvantage: we do not have any external estimate to compare it to, as a test of 

fit. This is the main reason why the SUS experiment carried out here is more selective 

than the one in section 4.4. Sub-models that do not perform well enough are not 

included this time in the group of sub-models from which the DWP is computed. 

In the SUS experiments in section 4.4, each DWP estimate was based on 200 

subsamPles; each subsample contained about 110 responses. Since the multiple sub- 

models were based on such small samples, their statistical fit was not expected to appear 

as good as it would be in an equivalent model based on a full sample. In about 75% of 

the sub-models, all t-test values were above 1.5, and in about 99% of them all t-test 

values were above 1. In the context of a SUS experiment, where each sub-model is an 

element in a big sample, this was considered sufficient. Due to the abovementioned 

reasons, the current experiment is more prudent, and hence only sub-models where all t- 
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test values are above 2 are used to derive the DWP. In addition, several sub-models that 

were included in the early SUS experiments are omitted in the current experiment, 
because of various suspected faults. The new SUS experiment uses the same 200 sub- 

models as in section 4.4, but as a result of this rigorous selection, the number of 

effective sub-models is reduced to 100. As in the earlier SUS experiment, the WTP is 

computed from each sub-model separately and then the DWP is derived. Separate 

distributions are calculated for VOT, VOE and VOL. 

The selective SUS experiment discards any sub-model whose plausibility seems 

questionable; naturally, the omitted sub-models are mainly those that point to extreme 
WTP estimates. As mentioned above, it is very likely that the range of WTP revealed by 

the selective SUS experiment is narrower than the true range. Still, owing to the 
difficulties encountered at earlier stages, it was decided that it would be better to 

estimate a DWP that ignores travellers whose behaviour is radically different from the 

average, than to derive a very wide DWP that comprises some values that do not really 

exist. 
To make the resulting DWP curves easy to describe in the forthcoming application, we 

now try to find simple curves from common families of distributions (lognormal, 

normal etc. ) that can reasonably replicate them. Describing the SUS curves this way 

turns this nonparametric experiment into a parametric one. One justification for this is 

that since a simple curve is fitted to the SUS-based curve after the estimation, we are 

not imposing any preset shape on the DWP, only trying to smooth the SUS-based curve 

(as opposed to maximum simulated likelihood estimation, where the general shape of 

the distribution is detennined before the estimation). Another justification is that as we 

saw, our dataset does not contain enough , information for full nonparametric 

identification of the DWP, and therefore accepting the shape of an existing curve is 

unavoidable. The search for the smoothed curve that fits each SUS-based curve best is 

carried out using a computer program that tries many different curves, calculates their 

fit using K-S test, and settles on the curve that minimises the test statistic. The selective 

SUS curves for VOT, VOE and VOL and the chosen smoothed curves are presented in 

figures 4.12,4.13 and 4.14. Table 4.6 shows the parameters of the chosen curves and 

the results of the comparison between the original and the smoothed curves. The K-S 

statistic values for all three curves are satisfactorily low. 

Note that despite the discussion made earlier about the feasibility of negative WTP for a 

certain part of the population, two of the three chosen DWP curves are lognormal, and 
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hence do not allow any negative values. The lognonnal curves were found best in 

replicating the selective SUS curves primarily because most sub-models that indicated 

negative WTP did not meet the rigorous requirements for being included in the selective 
SUS experiment. It might also seem surprising that a curve that straddles zero was 

chosen only for VOE, while the earlier discussion of negative WTP mainly referred to 

the VOL curve. This is probably because in the early SUS experiment, the mean 

earliness was included in the same variable as the mean travel time, and therefore any 
unique features of the VOE curve were harder to reveal. 

The noticeable negative tail of the new SUS curve for VOE seems rational in the sense 

that it is indeed likely that a small group of travellers strongly prefers to arrive early. 
But it should be observed that travellers that have positive VOT, positive VOL and 

negative VOE will tend to always choose the earliest possible departure, even if it 

departs irrationally early. The reason why the estimation procedure did not prevent this 

from occurring is presumably that in the dataset that these estimates are based on, the 

number of choice situations with exceptionally early departures was not very high. We 

do accept the distribution of VOE, including its negative tail, as our best estimate of 
VOE; but we find that it should be implemented in conjunction with a constraint that 

verifies that among the various departure times that are early enough to guarantee 

arrival to the destination before the desired arrival time, travellers with negative VOE 

choose the latest. 

VOT VOE VOL 

Distribution Lognormal Normal Lognormal 

Mean (ppm) 5.0 2.5 20.8 

Standard deviation (ppm) 1.6 4.4 2.1 

K-S statistic 4.4% 8.7% 5.6% 

Table 4.6: Smoothed curves fitted to the SUS-based curves 

All in all, despite the weaknesses of the analysis used here to derive the curves in table 

4.6, we see these as the best estimates of the DWP for reduced TTV that can be reached 

in this study. 



121 

0.16- 
-Selectke SUS 

0.12- Lognormal 

LL 
0.04 - -- 

0.00- 
02468 10 12 14 16 18 20 

VOT (pence per minute) 

Figure 4.12: Best-practice distribution of VOT 

0.20 
-Selective SUS 

0.16- Normal 

0.12- 

0.08- 
U. 

0.04-- 

00 .6 --A/ .011111111 
A4 

-24 -20 -16 -12 -8 -4 048 12 16 20 24 
VOE (pence per minute) 

Figure 4.13: Best-practice distribution of VOE 

0.12 

C 0.08 - 

LL 0.04----- - 

Selecti\, e SUS 
Lognormal 

wIF%ý ýW% -1 0.00 T--j III 
3-fi llý 

I 

-20 -10 0 10 20 30 40 50 60 70 80 90 100 

VOL (pence per minute) 

Figure 4.14: Best-practice distribution of VOL 



122 

4.7. Conclusions 

The extensive analysis performed in this chapter leads to two types of conclusions. The 

first type concerns the range of attitudes of bus travellers to TTV as an economic 

problem, rather than as a mathematical (or econometric) problem. Disclosing the true 

range of these attitudes is a main issue in this thesis, although in this chapter it has 

somewhat been put aside while dealing with more technical matters. An important 

conclusion is that there is no doubt that variations between different travellers in their 

attitudes towards TTV do exist. Obviously, travellers tend to wish to minimise the time 

spent travelling or any deviation from their desired arrival time to the destination. We 

found some evidence that not all travellers value savings in the mean travel time or in 

the extent of earliness or lateness. But from a rigorous perspective on the estimation 

process of the DWP, we only found solid evidence for such behaviour in the attitudes 

towards early arrival. Therefore, the modelling results imply that most travellers prefer 

not to arrive too early to their destination, whereas all travellers prefer to minimise their 

mean travel time and lateness. The best estimates of the DWP we could obtain imply 

that the VOT is distributed lognormally with a mean of 5.0 ppm and standard deviation 

1.6; the VOE is distributed normally with a mean of 2.5 ppm and standard deviation of 

4.4; and the VOL is distributed lognormally with a mean of 20.8 ppm and standard 
deviation of 2.1. This confirms the conclusion reached in chapter 3, regarding the severe 

manner in which any additional minute of lateness is regarded, compared to an 

additional minute of earliness or of the mean travel time. These estimates of the DWP 

will be used in chapter 8 to illustrate the role that TTV should have in the assessment of 

bus infrastructure schemes. 

The second type of conclusions, that gained the main attention in this chapter, has to do 

with the general econometric task of deriving the DWP from the responses of an SP 

survey. It is very common today to estimate the DWP from MXL models, but we find 

that the choice of an appropriate model specification should be done cautiously. The 

fact that the WTP is a ratio of model parameters brings in much sensitivity, and makes it 

hard to assure that the resulting range of values is well-bounded. MXL models are 

conventionally estimated using parametric techniques, such as the maximum simulated 

likelihood, and the estimation results therefore heavily depend not only on the input 

data but also on the model specification. Attempts to orient the modelling outputs 
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towards directions that we see as more sensible, for example by using constrained 

distributions, might be unsuccessful - either because constrained models are 

mathematically harder to estimate or because the existing estimation tools are unable to 

identify the improvement in model fit. Future research might make the modeller's life 

easier by recognising better ways to specify the MXL model in the first place, or by 

developing improved estimation procedures, or by introducing new tools for testing the 

goodness of fit. The newly-introduced concept of estimation in the WTP space is 

another promising avenue for further investigation. 

Due to the failure to identify satisfactory MXL models, a series of nonparametric 

experiments was carried out. First, we used a SUS technique to obtain a crude, but yet 

useful, independent estimate of the DWP. Unlike previous studies, we do not 

recommend using SUS simply to start the MXL estimation process with an intelligent 

guess of the distributions of the parameters, because re-estimation of the parameters 

makes such use inappropriate. We found that to a great extent, model fit as implied by 

the SUS estimates contradicts what is implied by the maximum likelihood. We do not 

suggest here that any of these is necessarily more correct than the other, only that it is 

advisable to seek confirmation of model fit in other ways but the conventional ones. We 

also remind that when a MXL-based DWP is compared with an external estimate, it is 

important to verify good fit in both the vertical and the horizontal dimensions. The 

nonparametric experiments performed here also looked at the amount of information 

that truly exists in our raw dataset. Although the -sample size and the collection method 

complied with the common practice in this field, it was found that the amount of 

available information is far from enabling identification of the entire DWP. We learn 

from this again that great care should be taken when making conclusions from datasets 

of this nature, especially in problems that involve a multidimensional WTP space. 
While it is important to conclude that awareness to the needs of MXL modelling is 

crucial from the very early stages of SP design, our findings also stress the need for 

developing more sophisticated methods of data collection. 
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Chapter 5 

Selected topics from the literature in traffic modelling 

5.1. Introduction 

This chapter opens the second main part of the thesis, where our attention is shifted 
from the attempt to understand the behaviour of the users of the transport system to an 

attempt to understand the performance of the system itself. In this chapter and the two 

chapters that follow, the perspective of an economic analyst is replaced with the point of 

view of a traffic modeller, who wishes to be able to anticipate what the condition of the 

transport network will be like under various circumstances. 
Following the analysis in chapters 3 and 4, we now have a way to convert a given level 

of TTV to monetary values. But to carry out full assessment of any suggested change in 

the transport infrastructure, we also need an estimate of the level of TTV itself In other 

words, we have estimated the costs per unit of some indicators of unreliability, but we 

still need to estimate the number o units. Tools for estimating the level of TTV are not )f 

as common as tools that calculate the MTT, and therefore, in the forthcoming chapters 

we try to develop such a tool. Note that we seek a method for predicting the level of 
TTV, even though our economic analysis found that TTV only has an indirect effect, 
through its influence on how early or late travellers get to their destinations. The 

amounts of earliness and lateness depend on the extent of TTV, and therefore estimation 

of TTV is required even if it is later only used indirectly. The conversion of the estimate 

of TTV into the extent of earliness and lateness is demonstrated in chapter 8. 

The next section of this chapter examines previous studies that aimed at developing 

tools for estimating the level of TTV. The following section includes a thorough review 
in an area that at this point might seem irrelevant to the problem of predicting TTV: 

methodologies for the calibration of traffic inicrosimulation models (TMMs). The 

motivation for our interest in such methodologies is that the following chapters 
introduce the concept of estimating the level of TTV using a TMM, and show that in 

order to make a TMM suitable for this task, it must go through a purposely-designed 

calibration procedure. The concept that combines the objective (predicting TTV) with 

the tool (TMMs and their calibration procedure) is introduced later in the thesis. In this 
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chapter, we explore the role that this objective and this tool, as two separate topics, had 

in previous studies. 

5.2. Prediction of travel time variability 

5.2.1. Travel time variability as a function of other attributes 

Tools that can generate forecasts of the level of TTV in various hypothetical scenarios 

are a requisite for evaluation of the benefits from improved reliability. In principle, 

estimates of TTV do not necessarily have to be the direct output of a model especially 
built for this purpose: it is theoretically possible to separately estimate travel times in 

multiple days, or in a big range of settings, and then analyse the variability between 

them. Mohammadi (I 997b) expresses such approach by including models for estimating 

MTT in a review of methods for making TTV forecasts. However, existing models for 

estimating MTT are not sensitive or detailed enough to make the repeated estimates of 

MTT different from each other in a way that truly replicates the real distribution of 

travel times. Tools purposely designed for the prediction of TTV, and other related 

works, can be grouped into three categories. The first category is described here and the 

others in the following sub-sections. 

Several works calibrate models where TTV, expressed as the standard deviation of 

travel times, is a function of the MTT or other attributes. Such models are presented in 

table 5.1. All the models of this type are empirical in nature, and do not attempt to 

establish any theoretical foundations of the mathematical relationship they present. Dale 

et al (1996) identify two different types within these models: 

1. Models that estimate TTV of the complete journey. A level of TTV is ascribed 

to each feasible route through the network. 

2. Models that estimate TTV on individual links or junctions. 

Although the authors identify only the first type of models as aggregate, in fact both 

types are based on an aggregate, macroscopic perspective, since they do not look at the 

behaviour of individual drivers or at the performance of individual vehicles. 

All the models in table 5.1 find that raising the MTT to different powers between 0.49 

and 1.17, and incorporating the result in a relatively simple linear function, can 

approximate the level of TTV; but the models differ from each other in any other aspect. 

This is hardly surprising, since they are based on different assumptions and validated in 
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diverse test beds. None of the models has been recognised as contributing to the 

understanding of TTV as a general phenomenon, or gained wide acceptance. 

Source Mode Expression Comments 

Herman and Car TTV = 0.36 MT7449 (to work) Individual road links 

Lam (1974) TTV = 0.31 MTTO'70 (from work) 

Polus (1979) Bus TTV = We*5 12.478 Entire j ourney 

May et al Car TTV = 0.38 + 0.2 MTT (spring) Individual road links 

(1989) TTV = 0.41 + 0.14 MTT (summer) 

Linaritakis Bus TTV = 1.049 MT7,0.6 7 SpO. 3 7 (VIC) 0.36 Entire j ourney 
(1995) SP is the mean bus travel speed. 

(VIC) is the ratio of flow to capacity 

of the general traffic along the 

examined corridor 

Dale et al Mixed TTV = 0.0 778 (MTT - TTO)'* 166 Individual road links, 

(1996) for motorways not including junctions. 

TTV= 0.4020 (MTT- TTo) 0.893 Correlation coefficients 

for other roads are proposed for 

TTO is the free-flow travel time. converting into TTV of 

Separate models developed for 17 entire journey. Model 

not calibrated with real types of junctions 
data 

Mohammadi Mixed Different models for varying vehicle Entire journey 

(I 997b) types, journey purposes, times of day, 

road types, weather conditions and so 

on. Form of most models: 

TTV =a -MTT (a constant), or: 

TTV=a-MTT+b (a, bconstants) 

Table 5.1: Models that present TTV as a function of other attributes 
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5.2.2. Fitting a probability density function to travel times 

The need to model the unpredictable nature of travel times was tackled in numerous 

research works by trying to fit a probability density function to observed travel time 

data. Studies that attempted to determine which common families of statistical 

distribution curves match observed TTV are reviewed in table 5.2. There are major 

differences between the datasets used in the various studies: each study focuses on 

different combinations of road types, times of day, urban or interurban surroundings, 

levels of congestion and so on. Different authors also report varying levels of statistical 

significance of their findings. The way TTV is defined varies too: some of the works 
focus on the distribution of travel times over different vehicles travelling concurrently; 

some others look at the day-to-day distribution; and many of the studies either combine 

more than one dimension of variation or simply do not give any clear explanation in this 

issue. All in all, the diversity of findings is not surprising. It can be generally observed, 

though, that most researchers choose asymmetric distributions, such as the lognormal or 

exponential. Apparently this is because it is impossible for the journey to take less time 

than in an ideal, free-flowing journey, but there is no equivalent limitation on the 

maximum trip length. 

Note that even if sufficient fit is found between a particular probability density function 

and the observed distribution of travel times, this is not necessarily sufficient as a tool 

for predicting TTV. Prediction based on a known distribution is perfon-ned by drawing 

random numbers from this distribution; but in such procedure there is no account for 

local factors, such as the detailed configuration of the road, that make different parts of 

the distribution suitable for different settings. Unfortunately, when estimating TTV in 

the context of transport appraisal, sensitivity to these factors is vital. 
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Source Mode Proposed 

probability density 

function 

Based on 

empirical 

analysis? 

Gaver (196 8) Car Exponential No 

Hermand and Lam (1974) Car Normal Yes 

Polus (1975) Bus Beta Yes 

Richardson and Taylor (1978) Car Lognormal Yes 

Turnquist (1978) Bus Lognormal Yes 

Anderson et al (1979) Bus Lognormal Yes 

Polus (1979) Car Gamma Yes 

Taylor (1982) Bus Non-nal Yes 

Mogridge and Fry (1984) Car Lognormal Yes 

Guehthner and Hamat (1985) Bus Gamma Yes 

Hall (1985) Bus Exponential No 

Mora Camino et al (1986) Car Shifted Gamma Yes 

Golob et al. (1987) Car Lognormal (only 

incident delay) 

Yes 

Talley and Becker (1987) Bus Exponential Yes 

Giuliano (1989) Car Lognormal (only 

incident delay) 

Yes 

May et al. (1989) Car Normal Yes 

Bookbinder and Desilets (1992) Bus Shifted truncated 

exponential 

No 

Strathman and Hopper (1993) Bus Lognormal Yes 

Table 5.2: Studies that fit a distribution to travel time data 
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Source Mode Proposed Based on 

probability density empirical 

function analysis? 

Mei and Bullen (1993) Car Shifted lognormal Yes 

Noland and Small (1995) Car Two alternatives: No 

uniform and 

exponential 

Mohammadi (1997a) Car Lognormal Yes 

Noland (1997) Car Lognormal found No 

best but exponential 
is used 

Cohen and Southworth (1999) Car Gamma (only No 

incident delay) 

Emam and Al-Deek (2005) Car Lognormal Yes 

Table 5.2 (continued): Studies that fit a distribution to travel time data 

5.2.3. Other methods 

Very few other methods for estimating TTV were found in literature. An interesting 

approach has been recently proposed by Van Lint and Van Zuylen (2005), who 

developed an artificial neural network model based on historical day-to-day 

distributions of travel times. The parametric functions of the neural network model can 

be used to predict the I Oth , 50th and 90thpercentiles of the distribution of travel time. 

Compared to the simpler approaches described earlier, the mathematical complexity of 

this model makes it potentially more sensitive to the particular characteristics of the 

different settings in which it can be used. However, it should be noted that similar to the 

models described in the previous sub-sections, the TTV estimates in the neural network 

model have no foundation in a behavioural. (or other) theory. The model parameters are 

merely elements in an empirical expression, which do not stand for clear features of the 

real network. Since there is no theoretical basis, it is not clear how transferable the 

model is to situations that are different from those that were recorded in the historical 
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data used for calibration. The potential use of such model as a general tool for 

prediction is therefore limited. 

5.2.4. Summary 

This section has included a review of existing approaches to the prediction of TTV in 

hypothetical scenarios. The common feature of many of the reviewed works is that they 

try to incorporate TTV in a simple mathematical expression. The fact that hardly any 

consistency is found between these works might signify that this concept is too 

simplistic: TTV is not a straightforward function of MTT and it also does not 

systematically behave according to a well-known probability distribution curve. Even if 

in a specific time or location such relationship is found, there is no reason to assume 

that it will hold in other settings. 

It is quite surprising that none of the reviewed approaches attempts to estimate TTV in a 

procedure that considers the causes of TTV. As discussed in more detail later in this 

thesis, it is clear that not all the causes that contribute to the creation of TTV can be 

modelled; but it seems worthwhile to examine to what extent it is possible to capture a 

share of the variation by taking direct account of even just some of these causes. The 

failure of the simple, aggregate methods to find an empirical formula for TTV that 

works in multiple surroundings suggests that TTV is a phenomenon whose magnitude 

heavily depends on local conditions and on the disaggregate elements of the network. 

The main incentive for the experiments described in the forthcoming chapters is an 

interest in how well TTV can be reproduced by microscopic traffic modelling. 

5.3. Calibration of traffic microsimulation models 

5.3.1. Background 

The methodology introduced in the next chapter is based on intensive use of a TMM for 

the purpose of estimating the level of TTV. We discuss later that such use is only valid 

if it is preceded by a special calibration procedure of the TMM. The formulation of a 

new calibration method has a major role in the remaining part of the thesis, and it is 

therefore important to carefully examine other TMM calibration approaches; this is the 

main objective of this section. 
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TMMs are commonly used by researchers and practitioners for a detailed analysis of the 

performance of transport systems. Microscopic traffic analysis attempts to replicate the 

dynamics of a real transport system: it generates actions made by users of the system, 

lets the different actions interact with each other and examines the cumulative effects of 

these interactions. A key feature of microscopic traffic modelling is that whether the 

network of interest is as small as a single junction or as big as an entire metropolitan 

area, the estimates it generates are based on explicit representation of individual 

behaviour. The behavioural patterns that TMMs try to capture range from the driver's 

choice of route and departure time (e. g. Hu and Mahmassani, 1997; Liu et al, 2006) to 

various aspects of the actual driving behaviour, such as vehicle following and lane 

changing (e. g. Nagel, 1996; Yang and Koutsopoulos, 1996). 

Most TMMs include a large number of parameters that stand for various characteristics 

of the travellers, the vehicles, the transport system and so on. These parameters must be 

calibrated before the TMM is used as an estimation tool, but until recently, methods for 

calibration of TMMs were almost nonexistent. In the last few years there has been a 

wave of valuable research work that developed and discussed procedures for TMM 

calibration, and it now seems clear, at least to traffic theorists, that no TMM should be 

used without a preceding stage of proper calibration. 
Since many of the newly-proposed TMM calibration methodologies were developed 

independently, with no well-establi shed principles as a common background, it is hard 

to view them in a wide uniform context. As demonstrated later in this section, some 

procedures were devised for the needs of a particular study, whereas some others were 

created in an attempt to suggest generic calibration guidelines. In addition, some issues 

that one calibration methodology sees as vital are ignored by others. The review 

presented here concentrates on several issues that are repeatedly brought up when TMM 

calibration is discussed. We try to take into consideration the diversity of TMM 

applications, on one hand, and the particular needs of the current study, on the other 

hand. 

5.3.2. Calibration conventions and underlying assumptions 

As mentioned above, a TMM typically consists of several sub-models, each of which 

tries to reproduce the mechanism of a single decision made by an individual traveller, 

such as the decision to change lane or to accept a gap in the opposing traffic in order to 

enter an intersection. Each one of the sub-models that form a TMM normally includes 
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several parameters, and a complete TMM sometimes includes many dozens of 

parameters. A fundamental issue is the great difficulty to measure the behavioural 

parameters directly through observations or field surveys. Direct measurement is very 

complicated as many of the parameters stand for very subtle features that are hard to 

isolate from other irrelevant features. Even when a parameter is measurable or 

observable, this normally requires extensive collection of disaggregate data, which is in 

many cases impractical because of its cost. Works that directly study the value of a 
TMM parameter do exist, but we are not aware of any work where it was possible to do 

so for all parameters of a TMM. There is always a need, therefore, to estimate the 

values of most TMM parameters in a compromised, indirect way. 
Essentially, calibration of a TMM is the process of adjusting the values of the model 

parameters such that the model is able to produce outputs that are reasonably similar to 

observed data. Due to the abovementioned difficulties, all the studies reviewed here do 

this with aggregate data, i. e. without using information that explicitly relates to the 

specific behavioural. feature that each parameter represents. Some works that 

concentrate on calibration with disaggregate data do exist (e. g. Hoogendoorn and Ossen, 

2005), but they only deal with the calibration of specific elements of a TMM (such as a 

car following sub-model) and with a limited number of parameters; we do not include 

such methodologies in this review as they do not directly aim at calibrating a TMM as a 

whole. The aggregate data used for calibration typically include such measures as travel 

times, flows, speeds or queue lengths. In all the methodologies we discuss here, 

observed values of these measures are compared to the equivalent values in the TMM 

outputs, and the TMM parameters are modified till there is sufficient match between the 

field observations and the simulation. 

The aggregate nature of TMM calibration has been discussed by Toledo et al (2003), 

Ben-Akiva et al (2004) and Toledo and Koutsopoulos (2004). These studies describe the 

general framework of TMM calibration as a process of two stages: first, the sub-models 

are estimated with disaggregate data, and then the whole model system is calibrated 

with aggregate data (with possible re-iteration if necessary). Many of the calibration 

studies imply, even if not explicitly, that although TMMs have disaggregate 

foundations, aggregate calibration does make good sense because it is only meant to 

adjust a model that is already theoretically well- established to a specific situation. What 

has not been sufficiently stressed in any of the reviewed studies is that when a 

behavioural model is calibrated without using disaggregate data, there is a risk that the 
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result is plausible as a mathematical tool but not as a powerful behavioural model. This 

might happen if a set of flawed parameter values happens to have good fit to observed 
data and is therefore chosen as the best solution of the calibration problem. Since the 

values are flawed, they might result in unreasonable estimates when the TMM is used as 

a prediction tool in hypothetical scenarios. As previously mentioned, the lack of data 

and the inability to measure the parameters directly often oblige us to assume that the 

empirical calibration does not cause significant bias; but it is vital to always treat the 

results of such calibration with suspicion. No irrational parameter value should be 

accepted only because this was the calibration result, and attempts should be made to 

compare the parameter values rendered by the calibration procedure to estimates of 
these parameters from other sources. 
TMMs, similar to other models, are not free from simplification. In addition to error or 
bias that might result from the lack of high-quality data, TMM outputs are also 
inevitably compromised because it is not possible to incorporate in the TMM all the 

factors that influence the performance of the real transport system. No TMM can always 

replicate the entire range of factors such as roadside activities or road incidents. When 

observed data are compared to the simulated outputs during the calibration process, we 

unavoidably make the assumption that only factors that the model includes exist in the 

actual network. Since this assumption is erroneous, the result is that the real-world 

phenomena that are not incorporated in the TMM affect the values of the calibration 

parameters, although ideally they should not. Th is is a source of error that we have no 

means to tackle; it should remind us that there is a need to constantly seek ways to 

improve the behavioural explanatory power of the TMM itself, independently of the 

calibration methodology. 
TMM calibration is a multidimensional problem, as there are usually more than just one 

or two parameters to calibrate. Since there is often a limited amount of data, as well as 
limited amount of time for the calibration process, it is hardly ever possible to calibrate 

all the parameters. All calibration methodologies reviewed here concentrate on the 

calibration of a relatively small subset of parameters. Many methodologies stress the 

importance of a systematic calibration procedure, but no study was found where the 

subset of parameters to be calibrated is in itself chosen systematically. It is most 

demanding to investigate the sensitivity of the model outputs to the values of all 

parameters as a basis for the choice of the parameter subset, because the stochastic 

nature of the TMM will require a very high number of runs even for a basic sensitivity 
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test (runtime issues are further discussed later in the chapter). Still, analysts should 

remember that putting much effort in the development of a powerful calibration 

methodology can bring little gain if some parameters that strongly influence the traffic 

measure of interest have not been included in the calibration subset. Therefore, while 

we focus here on the methodology of calibration, it should be reminded that there is also 

need to study how the input for the calibration process can be specified more efficiently. 
The conventions and assumptions discussed in the previous paragraphs are common to 

all the calibration methodologies reviewed here. In the subsequent sub-sections we 
discuss issues where major differences exist between the different procedures. A 

systematic comparison between the reviewed methods and case studies is presented in 

table 5.3. 

5.3.3. Scope of the calibration problem 
All the studies summarised in table 5.3 deal with TMM calibration (or validation), but 

in fact there are considerable differences between these problems. A first major 
difference lies in the definition of the problem itself: while some studies concentrate on 

the calibration of driving behaviour parameters only (e. g. Jayakrishnan et al, 2001; Ma 

and Abdulhai, 2002; Hourdakis et al, 2003; Kim and Rilett, 2003,2004), some others 
(e. g. Toledo et al, 2003; Ben-Akiva et al, 2004; 'Chu et al, 2004; Dowling et al, 2004; 

Oketch and Carrick, 2005) incorporate this in a broader problem, where a route choice 

model and/or a demand (origin-destination) matrix are calibrated too. The authors who 

propose the broader problems present evidence that procedures which simultaneously 

tackle multiple problems result in stronger models, and that solving the sub-problems 

separately might lead to biased estimates. However, it should be stressed that the 

various sub-problems that can constitute a broad calibration problem might differ from 

each other in their data requirements. For example, to calibrate driving behaviour 

parameters it is important that the data are collected in a range of traffic settings, while 

for estimating the demand matrix it is mainly essential that they are collected in a large 

number of locations throughout the network. Therefore, when there is limited amount of 

data, the attempt to solve a joint calibration problem might be very ambitious. In 

addition, the abovementioned risk, of weakened behavioural power of models whose 

calibration is based on aggregate data, is higher in a problem of a bigger scale. In other 

words, increased scope of the calibration problem might compromise the ability to 
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retain the original role of each individual parameter, which is important when the model 

is used for prediction in hypothetical scenarios. 

Among the case studies that accompany the calibration methodologies there is 

substantial variation in the number of parameters being calibrated. As mentioned 

previously, no methodology suggests calibrating all parameters; the size of the 

calibrated subset varies from 4 parameters or even fewer (e. g. Merritt, 2004; and 
Shaaban and Radwan, 2005) to 19 (Kim and Rilett, 2003 and 2004). Focusing on a 

smaller number of parameters is less demanding in computational terms, and has also 
the advantage of enabling to pay more attention to each parameter when its value is 

modified; in some cases this is done through a manual procedure (see more on this issue 

later in this section). Bigger parameter subsets are normally calibrated using automated 

algorithms, which potentially make them more, likely to get efficiently closer to an 

empirically-optimised solution, but also make it harder to follow changes in the value of 

each parameter very closely. A disadvantage of calibrating only few parameters is the 

risk that their resulting values are influenced by phenomena that are actually related to 

some of the non-calibrated parameters. This leads to erroneous estimates, but obviously 

there is no well-defined minimum for the number of parameters that should be 

calibrated for the model to be valid. Overall, it seems that when an analyst chooses a set 

of calibration parameters, the very ambitious task is to choose a number of parameters 

that is big enough to cover the various behavioural elements in the model, but small 

enough to enable paying individual attention to the value of each parameter, and also 

small enough to make the procedure computationally feasible. 
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There are also significant differences between the various calibration studies in terms of 

their geographical scale. Such differences exist both in the size of the simulation 

network and in the spread and density of data sources over this network. In terms of 

network size, the studies vary from a single intersection (e. g. at Ma and Abdulhai, 2002) 

to an extensive metropolitan area (e. g. at Park and Qi, 2005). The dispersion of sources 

of input data is sometimes as limited as two observation points in a medium-sized 

network (Dowling et al, 2004) or, in contrast, dozens of points in a network that is not 

much bigger (Chu et al, 2004; Oketch and Carrick, 2005). In principle, many calibration 

methodologies can be implemented in various networks, independently of the size of the 

network that was used to illustrate their foundations. However, most methodologies are 

at least partially adjusted for the scale in which they are later implemented: automated 

calibration is preferred if data is available from many measurement points (e. g. Ma and 
Abdulhai, 2002 or Ben-Akiva et al, 2004); comparison of multiple traffic measures is 

used in cases where there is much data but only from a small number of locations (e. g. 
Dowling et al, 2004; Merrit, 2004); and so on. We discuss these issues further later. 

The scope of the calibration problem also has to do with the choice of traffic measures 

used to compare observed data to the simulation outputs. Some of the proposed 

procedures use a single measure; for instance, Ma and Abdulahi (2002) and Kim and 
Rilett (2003,2004) compare only flows. Some others use more than one measure, 

normally by performing a sequence of calibration sub-processes, each one of which uses 

a different traffic measure to calibrate a separate group of parameters. In the procedure 

proposed by Dowling et al (2004) simulated and observed capacities are compared in 

the first stage to calibrate driving behaviour parameters, then flows are compared to 

calibrate route choice parameters, and finally all parameters are fine-tuned by 

comparing travel times and queue lengths. Hourdakis et al (2003) start with calibrating 

global parameters (such as maximum acceleration and other vehicle characteristics) by 

comparing flows; then they calibrate local parameters (such as speed limits) by 

comparing speeds; an optional third calibration stage is suggested, where any measure 

chosen by the user can be compared. A similar multi-stage concept is also proposed by 

Chu et al (2004). 

The fact that the calibration methodologies cover a variety of problem sizes could be an 

advantage if it was clear in which circumstances we should use any of the methods. In 

practice this is difficult to determine, since the choice of geographical scale and traffic 

measures often depends primarily on which data is available. When the choice of 
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calibration methodology is dictated by data availability considerations, the credibility of 

the calibrated model must not be taken for granted. For instance, it is hard to judge 

whether a model calibrated using a single traffic measure, such as flows, is proper to use 

for estimating other measures, such as travel times; or if a model calibrated based on 

data from one intersection can be used in an entire urban area. Since limited data 

availability is often inevitable, there would be no use in forming very strict principles 
for the acceptability of a calibration method. Instead, it should be bom in mind that the 

scope of the calibration procedure determines, to a great extent, the range of 

circumstances in which the calibrated model can later be reliably implemented. 

5.3.4. Formulation and automation of the calibration process 

Not all the discussions of TMM calibration include an explicit formulation of a 

calibration problem. Three groups of studies can be identified in this respect: studies 

where a full calibration procedure is presented; studies where a full procedure is used 

but not all of it is presented; and studies where calibration does not rigorously follow a 

systematic procedure. Many papers (Jayakrishnan et al, 2001; Hourdakis et al, 2003; 

Park and Schneeberger, 2003; Barcelo and Casas, 2004; Dowling et al, 2004; Merrit, 

2004; Chu et al, 2004; Shaaban and Radwan, 2005; Oketch and Carrick, 2005) belong 

to the latter group. These works form an intermediate stage in the evolution of more 

cohesive concepts of calibration, as they do stress the need for some consistent 

judgement throughout the calibration process, unlike earlier studies, where parameters 

were normally adjusted using manual trial-and-error techniques (see also discussion at 

Toledo et al. 2003; Ben-Akiva et al, 2004; and Chu et al, 2004). 

When a systematic calibration procedure exists (whether or not it is presented), it often 

has the form of an optimisation problem. It does not necessarily have the explicit forin 

of a mathematical program, although in most cases at least the objective of the 

calibration is presented in a quantitative way. Systematic calibration procedures must 

use a solution algorithm, i. e. a methodical series of actions taken in order to find the 

best parameter set. The solution algorithm is non-nally an automated iterative process, in 

which the best solution is gradually improved till some stopping criterion is met. It is 

often described verbally or as a flow chart, even if the approach is methodical and 

quantitative. As mentioned earlier, the concept of a fully-automated calibration 

procedure is somewhat inconsistent with the idea that each TMM parameter stands for a 

particular element in a behavioural sub-model, because such parameters need individual 



146 

attention when their values are adjusted. However, the point made here is that this 

paradox is in the nature of TMM calibration, and that modellers should be aware of the 
drawbacks of whatever calibration concept they choose. 
Although the calibration problem is commonly formulated as an optimisation problem, 
it is unlikely to lead to a global optimum. Whether or not such optimum exists is an 

ambitious question, which we leave for other studies. But even if it does exist, the 

multidimensionality of the solution search space, and the tendency of the observed input 

data to exhibit various inconsistencies, make many calibration problems more likely to 

result in a local optimum. In fact, the higher the number of calibration parameters, the 

more probable it is that all the calibration process achieves is an improved set of 

parameter values, not necessarily even a local optimum. This does not mean that 

calibration is unnecessary; but as explained earlier in this chapter, it is another reminder 
that the calibration outputs should be subject to constant logical judgement and 

comparison to other available sources. 
We do not include here a detailed description of all optimisation approaches used in the 

reviewed calibration studies. However, some specific concepts of optimisation seem 

particularly relevant for TMM calibration, as they are repeatedly mentioned by different 

authors. Several studies conduct the search for the best parameter set using a genetic 

algorithm (Ma and Abdulhai, 2002; Kim and Rilett, 2004; Kim et al, 2005; Park and Qi, 

2005). Genetic algorithms borrow ideas from the theory of natural evolution to tackle 

multidimensional optimisation problems. A population of candidate solutions (namely, 

in our context, candidate sets of parameter values) is generated and then goes through 

an iterative evolutionary process. In this process, the chance of any candidate to have 

offspring in the next generation of solutions depends on some measure of its fitness. 

This measure is normally called the fitness function; each genetic algorithm develops a 
different function. In the context of TMM calibration, this function should express how 

similar simulation outputs are to observed field measurements. Candidate solutions with 

a high fitness value go through mutation and crossover operations, attempting to retain 

their beneficial traits, while solutions with a low fitness value are likely to become 

gradually extinct. From a mathematical perspective, genetic algorithms are a powerful 

search technique; among their advantages is the fact only the fitness function, and not 

its derivatives, needs to be calculated throughout the process. However, the fact that at 

each generation there is a need to calculate the fitness value for many candidate 
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solutions, and thus to run the TMM many times, is a disadvantage as it might cause 

serious increase of the process runtime. 

Another optimisation concept that is used by several authors includes the algorithm 

known as the Downhill Simplex Method and another technique named Box's Complex 

Algorithm. These techniques belong to the same family of methodologies, although the 

calibration studies who use them do not discuss this. The simplex method (used for 

instance by Kim and Rilett, 2003) presents a set of candidate solutions as a 

multidimensional geometrical shape, called simplex. Each dimension of this space 

represents the range of feasible values of one variable, i. e. one TMM parameter. If in 

the calibration problem there are N parameters to calibrate, the simplex is N- 

dimensional, and it has N+1 vertices, each one of whom stands for one feasible solution. 

The simplex goes through a series of manipulations, such as reflection and contraction, 
in an attempt to find vertices that perform best as solutions of the calibration problem. 

Box's algorithm (used by Ben-Akiva et al, 2004) is a more general version of the 

simplex method: the simplex is replaced with a complex, and at any stage of the process 

there are at least N+1 candidate solutions (as opposed to exactly N+I). 

In the context of TMM calibration, in which the TMM needs to be run every time a 

candidate parameter set is evaluated, both the simplex and the complex algorithms are 

relatively efficient in terms of the number of evaluations per single iteration. This is 

because they are based on the idea that only few candidates are replaced at a time, as 

opposed to the substitution of multiple candidates in each iteration of a genetic 

algorithm. Similar to genetic algorithms, the simplex and complex algorithms do not 

require calculation of derivatives. However, they are not considered efficient in terms of 

the number of iterations required to reach convergence. The complex algorithm is more 

efficient than the simplex algorithm, but requires more evaluations per iteration. There 

is a clear trade-off between a low runtime per iteration and a small number of required 

iterations. Since we do not know in advance how many iterations will be required for a 

satisfactory solution, it is hard to tell which of the methods should be favoured. It 

generally seems that in applications where each single evaluation takes a considerable 

time (for instance because it requires multiple runs of the TMM, as we discuss later), 

any method that requires a small number of evaluations per iteration is preferable 

despite the tendency of such methods for only a slight improvement of the parameter set 

between successive iterations. For this reason, later in this thesis we use the simplex 

algorithm. But note that this is not meant to undermine the complex algorithm, which 
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might be found more efficient if its improved efficiency compensates for the higher 

duration of each iteration, and there seems at this point equally suitable. 
Naturally most calibration methodologies search optimal parameter values in a 

continuous space, such that any value within some preset range is considered feasible. 

However, several methodologies only choose the optimal values from a given set: 
Merritt (2004) chooses from a set of 10 predetermined values, and Shaaban and Radwan 

(2005) choose from 3 values. This is done when no optimisation problem is formulated; 

the selection of the best parameter set is done by checking the difference between 

simulated and observed measurements for all possible combinations of the discrete 

values of all the parameters. Note that when the value of a calibration parameter is 

chosen from a preset discrete list, the level of detail of this list (e. g. 10 or 3 values, in 

the examples above) is not related to the dimensionality of the entire calibration 

problem. Whatever the number of preset values, they all constitute a single choice 
dimension. 

A different type of manual search is used by Hourdakis et al (2003) and Oketch and 
Carrick (2005): the space of feasible solutions is indeed continuous, but the calibration 

procedure is perfort-ned at one location at a time, and the chosen parameter set is 

obtained after going one-by-one through all sites where input data is available. 

Although manual calibration does not seem generally efficient, it should be remembered 

that automated procedures often require a considerable programming effort. If a TMM 

is needed in a limited small-scale application, the option of manual calibration should 

not be discarded. As discussed earlier, the risk that an automatic procedure might not be 

sensitive enough to the behavioural foundations of each parameter is another 

justification for undertaking manual calibration. 

5.3.5. Measuring goodness-of-fit 

At the heart of any calibration technique is a comparison between simulation outputs 

and observed measurements of various traffic measures. The goodness of fit of the 

simulated measurements, based on any candidate parameter set, to the observed 

measurements, is the indicator for the fit of the parameter set itself Various calibration 

methodologies use different ways to measure the discrepancies between observed and 

simulated values; the measures they use are summarised in table 5.4. The following 

notation is used in the table: 
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X, simulated or observed measurement, respectively 

N number of measurements 

xly sample average 

Orx, Ory sample standard deviation 

The different measures of fit have different sensitivities to various aspects of 
dissimilarity between the simulated and observed measurements; performing a 

calibration process with different measures is most likely to lead to different solutions. 
The following are examples of differences between the measures: 

1. Most of the measures will mainly identify poor fit between the central 

tendencies of the compared samples, while only few measures (especially 

Theil's indicators) exhibit explicit sensitivity to the variance and covariance. 
Clearly, whether this has major importance varies between different 

applications. 

2. Some of the measures (PE, ME, MNE) let errors with a similar size but a 
different sign balance each other. Such measures are useful for detecting 

systematic bias, but they are not powerful as indicators of the magnitude of an 

error. 

3. Some measures (MAE, MANE) use the absolute value of the difference between 

the observed and simulated measurements; thus they give equal weights to all 

errors, whatever their size. In contrast, other measures (SE, RMSE, RMSNE) 

depend on the squared difference, and hence place a higher penalty on large 

errors. In the context of traffic modelling, penalising small errors is wrong, since 

the stochastic nature of traffic phenomena makes small errors inevitable. Using 

the squared difference between the simulated and the observed measurement is 

more appropriate, and it is actually surprising that none of the reviewed 

measures raises this difference to a power higher than 2. Alternatively, avoiding 

the unnecessary effect of small errors is also possible by examining the 

probability density function (as in the K-S test) rather than directly examining 

each individual observation. 
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Name Measure Used by Comments 

Percent error Xi -Yi 
. 100 Shaaban and Applied either to a 

(PE) Yi Radwan (2005), single pair of 
Park and Qi observed-simulated 
(2005), Merritt measurements or to 
(2004) aggregate 

networkwide 

measures 

Squared error N (X 
_Y 

Ben-Akiva et al 
(SE) i i (2004), Chu et 

al (2004) 

Mean error N 
(X'-Y') 

Toledo and Indicates the 
(ME) N Koutsopoulos existence of 

(2004) systematic bias. 

Useful when applied 

separately to 

measurements at 

each location 

Mean N X1 y, Toledo et al Indicates the 

normalized N Yi (2003), Toledo existence of 

error (MNE) and systematic bias. 

Koutsopoulos Useful when applied 
(2004), Chu et separately to 

al (2004) measurements at 

each location 

Mean absolute N Ma and Not particularly 
Exi -Yil error (MAE) N Abdulhai (2002) sensitive to large 

errors 

Table 5.4: Measures of goodness-of-fit 
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Name Measure Used by Comments 

Mean absolute N X - 
J Ma and Not particularly I 

. y, 

normalized N Abdulhai sensitive to large 
Yj 

error (2002), Kim and errors 

(MANE) Rilett (2003), 

Merritt (2004), 

Kim et al (2005) 

Exponential Ae -B -MANE Kim and Rilett Used as a fitness 

mean absolute (A, B are parameters) 
(2004) function in a genetic 

normalized algorithm 

error (EMANE) 

Root mean N Toledo and Large errors are 

squared error 
(Xi 

- Yi N Koutsopoulos heavily penalised. 
(RMSE) (2004), Dowling Sometimes appears 

et al (2004) 
as mean squared 

error, without the 

root sign 

Root mean 2 Hourdakis et al Large errors are 

squared 
N Xj-Yj (2003), Toledo heavily penalised 

normalized 
N 

i=1 Y et al (2003), 

error (RMSNE) Toledo and 
Koutsopoulos 

(2004), Ma and 
Abdulhai (2002) 

GEH statistic Barcelo and Applied to a single 
2(xi-yiy. 

Cases (2004), pair of observed- 
Xi + Yi Chu et al simulated 

(2004), Oketch measurements. 

, and Carrick GEH<5 indicates a 

(2005) good fit 

Table 5.4 (continued): Measures of goodness-of-fit 



152 

Name Measure Used by Comments 

Correlation N (X, X-)(y, Y) Hourdakis et al 

coefficient (r) N-1 
ý 

=1 
O'xC)' (2003) 

y 1 

Theil's bias 
N (Y_X)2 Hourdakis et al A high value 

proportion (Um) N (2003), implies the 2 
-X Dy ) 

i f i i 
-Barcelo and ex stence o 

Cases (2004) systematic bias. Um 

=0 indicates a 

perfect fit, Um =1 
indicates the worst 
fit 

Theil's variance 2 Hourdakis et al A high value 
N 

(tjy 
_07X) 

proportion (Us) (2003), implies that the N 
(Yi Xi )2 

Barcelo and 
distribution of 

Cases (2004) simulated 

measurements is 

significantly 
different from that 

of the observed 
data. Us =0 
indicates a perfect 
fit, Us =1 indicates 

the worst fit 

Theil's 2(1 - r) -N- OrxtTy Hourdakis et al A low value implies 

covariance N 
-X 

2 E(yi 
i 

(2003), the existence of 

proportion (Uc) i=1 Barcelo and unsystematic error. 

Cases (2004) Uc =1 indicates a 

perfect fit, Uc =0 
indicates the worst 
fit. r is the 

correlation 

coefficient 

Table 5.4 (continued): Measures of goodness-of-fit 
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Name Measure Used by Comments 

Theil's N Ma and Combines effects of 
I Gy X 

F 

' inequality i i N Abdulhai all 3 Theil s error 

coefficient NN 
2: y 2 zXj2 + 

(2002), 

Hourdakis et al 

proportions (Um, 

=0 us, UC). U 

(2003), Toledo indicates a perfect 

and fitý U=1 indicates 

Koutsopoulos the worst fit 

(2004), Barcelo 

and Cases 

(2004) 

Kolmogorov- 
max 

(ýFx-F)) Kim et al (2005) F is the cumulative 
Smirnov (K-S) probability density 

test function 

Moses' test and The detailed procedure is described by Kim et al 
Wilcoxon test (2005) 

Table 5.4 (continued): Measures of goodness-of-fit 

Most measures involve summation of errors over a series of pairs of simulated and 

observed values. It is not always obvious how to create these pairs. When each 

measurement is taken at a particular time and place, no such difficulty arises; but if, for 

instance, each measurement stands for the travel time of a specific vehicle, there are 

many different vehicles in the simulation outputs that can be paired with any observed 

vehicle, and each pattern of pairing might lead to a different level of fit. Unfortunately, 

none of the reviewed methods elaborates on this issue. If a test such as K-S is used, the 

measurement error that can be potentially caused by the pairing method is avoided, 

since individual observations are not examined explicitly. 
The reviewed methodologies tend to consider the space of simulation outputs as one- 

dimensional, as only one index (denoted i) is used for the series of measurements in all 

the measures of fit in table 5.4. But in fact the outputs form a multi-dimensional space; 

in different studies, the index i is used in different dimensions. The most common 

dimension is time (namely, each measurement is taken at a different time interval), as 
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used by Toledo et al (2003), Chu et al (2004), Hourdakis et al (2003), Kim et al (2005) 

and others. But sometimes the series of measurements consists of values from different 

locations in the study network, and in other cases, each element in the series 

corresponds to a different vehicle. Many of the mentioned measures of fit can be used in 

any of these dimensions, but obviously in each dimension they have a different 

meaning. This is most apparent when the measure of fit is sensitive not only to 

estimates of the mean but also to the variations between the measurements. For 

instance, calibrating a TMM by focusing on estimates of variation of the travel speed 

over different time periods will probably lead to different results from calibration that 

focuses on speed variation between vehicles. It is- therefore important to choose not only 

a measure of fit that is suitable for the particular needs of every application, but also to 

use it in the appropriate dimension. 

The methodology described by Park and Schneeberger (2003) does not use any of the 

measures in table 5.4 but proposes an alternative concept, which estimates the model 

parameters without explicit calculation of the goodness of fit. This is done by creating a 

regression model where the calibration parameters are used as the explanatory variables 

and a traffic measure is the dependent variable. Calibration of the TMM is performed 

through seeking the parameter values with which the regression-based value of the 

traffic measure is the closest possible to the observed value; the fit of a candidate 

parameter set is therefore evaluated indirectly, via the fit of the regression model. 

The procedure presented by Kim et al (2005) is the only one where the evaluation of fit 

uses the family of statistical techniques known as two-sample tests. These tests are more 

commonly used for validation of the calibration results. It should be stressed that in 

principle, two-sample tests are as suitable as the other measures mentioned above for 

measuring the fit between the simulation outputs and the field data. We return to this 

issue later in this section. 

5.3.6. Repeated runs 

Due to their stochastic nature, TMMs generate different outputs in every single run 

(unless the user chooses not to allow this randomness, by repeatedly using the same 

random seed numbers). As mentioned by Vovsha et al (2002), the heterogeneity of 

TMM outputs creates an opportunity for realistic representation of the range of likely 

outcomes in the real transport system. However, most of the reviewed calibration 

approaches consider this heterogeneity as a burden: Park and Schneeberger (2003), Park 
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and Qi (2005) and others state that the statistical analysis of the TMM outputs is aimed 

at reducing variability in the provided estimates, rather than making use of this 

variability. 
Since TMM outputs vary from one run to another, it is necessary to look at the results of 

more than one run in order to ensure they are credible; the need to run the model several 

times requires significant time and some additional statistical analysis. The different 

calibration methodologies are not equally rigorous in this respect: some of them use a 

single run per one evaluation of the fit of a specific candidate solution, while others run 
the model up to 20 times for one evaluation. In most works where the model is run 

multiple times, the subsequent analysis is based on the average values across the series 

of runs, but Chu et al (2004) use the median rather than the average. The methodologies 

where the TMM is only run once for each evaluation do not provide reasoning for this. 

Our understanding is that even if due to the computational burden there is a need for 

some compromise, a single run is insufficient. 

Many of the methodologies use the following formula to determine the required number 

of runs (Merritt, 2004; Toledo and Koutsopoulos, 2004; Chu et al, 2004; Shaaban and 
Radwan, 2005): 

(5.1) 

R= s. ta12 

X-C 
Where 

R required number of model runs 

S standard deviation of the examined traffic measure 

mean of the traffic measure 

the required accuracy, specified as a fraction of 

tctl2 critical value of Student's Mest at confidence level a 

When R is calculated with this formula, an estimate of s is necessary as an input; but s 

is unknown prior to running the model. The papers that use the fon-nula mention three 

slightly different methods to tackle this difficulty. According to the first approach, s and 

R are recalculated after every run, and the model is run till the resulting value of R is 

higher than the number of runs that have already been performed. The second approach 
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suggests that an estimate of S is calculated first based on a predetermined number of 

runs, and then it is used to determine how many more runs are still required. The third 

approach is similar to the first one, but instead of a single run between two successive 

recalculations of s and R, it uses a randomly-generated number of intermediate runs. All 

three methods require that if more than one traffic measure is used when comparing 

simulated and observed measurements, R should be computed for each measure 

separately, and the highest of all resulting values should be used. 
Note that the abovementioned formula only determines the number of runs that is 

required to achieve a certain level of confidence about the mean value of the estimated 

traffic measure. If there is interest in any other statistic but the mean (such as the 

variance), it is wrong to use this formula. However, we are not aware of studies that 

seek the required number of runs for estimating other statistics but the mean. We pay 

special attention to this issue in chapter 6. 

5.3.7. Validation of the chosen parameter set 

Whatever parameter values are chosen in the calibration procedure, it is still necessary 

to confirm, using an independent set of data, that the model with the selected parameter 

values has a reasonable predictive power; this is conventionally referred to as the 

validation stage. The idea that validation must follow the calibration process is agreed 

by all, but a variety of techniques are used to implement it: 

1. Visual validation (mentioned by Park and Qi, 2005; Oketch and Carrick, 2005; 

Toledo and Koutsopoulos, 2004; and many others). This is done by eyeballing the 

graphical presentation of the modelled network as the model runs, trying to spot any 

unusual behaviour. Most authors agree that visualisation is an efficient way to detect 

significant errors but cannot replace a more quantitative validation. 

2. Validation using measures of fit, like those presented in table 5.4. Toledo and 

Koutsopoulos (2004) remind that these measures are sometimes used for validation, 

but in practice we found very few works that do this. 

3. Statistical validation by arranging the simulated and observed measurements as two 

time series and then comparing the series (Barcelo and Cases, 2004). A slightly 

different version of this approach arranges each of the two compared datasets as a 

group of series rather than one series, and then compares the groups through 

bandwidth analysis (Barcelo and Cases, 2004). 
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4. Statistical validation using two-sample tests (Toledo and Koutsopoulos, 2004; 

Barcelo and Cases, 2004; Park and Qi, 2005; Park and Schneeberger, 2003). These 

are tools that examine the level of confidence about the hypothesis that two given 

samples (i. e. the simulated data and the observed data) have the same statistical 

properties; they are by far the most common techniques for TMM validation. The 

most popular is the two-sample t-test, but there are many other available two-sample 

tests, some of which have not been described in detail in the transport literature (see 

Scheffe, 1970; Maisel and Gnugnoli, 1972; and Kleijnen, 1995). Some tests are 

parametric, i. e. designed for cases where we have some preliminary information 

about the distribution of the measurements in the compared datasets. In contrast, 

nonparameteric tests do not require such information, but they are less powerful, i. e. 

require more data for a certain level of confidence. We normally do not know in 

advance what distribution describes the TMM outputs best, but as Kleijnen (1995) 

and others point out, it is not uncommon to make some distributional assumption in 

order to be able to use a parametric test. This is particularly true for the Mest, which 

can fon-nally be used only for normally-distributed samples, but in practice is not 

very sensitive to violation of this requirement., 
5. Indirect statistical validation. Instead of examining how similar TMM outputs are to 

field measurements, it is possible to test whether some product of the simulation 

outputs resembles the respective product of the field data. Toledo and Koutsopoulos 

(2004) build meta-models that capture relations between various traffic measures, 

such as the speed-flow relationship or the time evolution of flows; meta-models are 

estimated independently based on the simulated and the observed measurements, 

and it is then tested statistically whether the two models might be identical. Earlier 

versions of this approach were proposed by Kleijnen (1995) and Rao et al (1998). 

The review of measures of fit, earlier in this section, shows that the different measures 

used in the calibration process do not use any uniform scale or consistent criterion to 

indicate good fit. In contrast, in the validation stage most authors prefer to use statistical 

tests that state well-defined levels of confidence. We find that this is unnecessary, 

because in traffic modelling the uncertainty about the input data (such as travel demand) 

is very high and it is therefore impossible to estimate the exact level of accuracy of the 

outputs. Validation is neither more nor less, rigorous than calibration, and the 

requirements from the measure of fit used for calibration and the test used for validation 
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are in fact the same. Every test used within the calibration process can be also used for 

validation and vice versa; the various tests obviously have different advantages and 

disadvantages, but these apply similarly to validation and calibration. 

Nevertheless, it is important to ensure that the validation test does not simply repeat 

what has already been tested in the calibration process. Toledo and Koutsopoulos 

(2004) mention that validation against the same measure that was used for calibration 

may lead to overestimating the realism of the model. This is an essential point, but note 
that it is very ambitious to always require validation using a different traffic measure 
from the one that has been used for calibration. The basic requirement, which every 

calibrated TMM must meet, is that it can be successfully validated with a new set of 
data from the same type. For example, a model that has been calibrated with queue 
length data from one set of intersections must pass the validation test using queue length 

data from another set of intersections. A higher standard of validation is reached if it can 
be confirmed that the model calibrated with queue length data can also give good 

estimates of speeds, times or flows. But in practice the relations between the different 

dimensions in the TMM itself are not always reliable enough to achieve such standard. 
It should therefore be mainly stressed that if validation is undertaken in the same 
dimension that has been examined during calibration, the TMM can be later used 

reliably as an estimation tool only in this dimension. 

5.3.8. Summary 

This section included a review of methodologies for calibration of TMMs and a 

discussion of similarities and differences between the methodologies. The need for 

systematic calibration has only gained attention quite recently, and the various newly- 

proposed calibration concepts have not been so far examined in a uniform context. The 

reviewed methodologies differ from each other both in principle issues, such as their 

objective and their scope, and in technical issues, such as their formulation, solution 

approach and statistical properties. Practitioners who calibrate traffic models often face 

insufficient amount of data, and the ways to deal with this have a key role in many of 

the discussed works. 
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Following the review it can be deduced that whatever the needs and the circumstances 

of the calibration of a TMM, the issues listed below must always be addressed: 

* The set of calibration parameters should be specified with great care. There is little 

gain from the entire calibration process if the parameters that influence the traffic 

measure of interest are not calibrated, but in contrast, calibrating too many 

parameters is computationally inefficient. A parameter should be calibrated only if it 

cannot be directly measured or observed. 

The scope of the calibration problem is defined by the geographical area it 

encompasses and the amount of information sought (e. g. whether it incorporates 

additional features such as origin-destination travel demand estimation). There 

should be some fit between the scope of the problem, on one hand, and the amount 

and dispersion of the input data, on the other hand. 

" The modeller should be aware of the disadvantages of the method, either automated 

or manual, used for searching for feasible solutions or for solving the specified 

optimisation problem. Possible disadvantages are high runtime and inefficient 

coverage of the solution space. 

" If a small number of model runs is used to evaluate the fit of every particular 

candidate solution, the modeller must appreciate that the statistical credibility is 

compromised. 

" The traffic measures used for calibration should be chosen while accounting for the 

expected future use of the model. Using more than one measure is advised if the 

TMM is to be used for multiple purposes. The multidimensionality of the TMM 

outputs and the input data should also be taken into consideration, as there are 

variations between vehicles, between points in space and between points in time. 

Given that the calibration process inevitably involves some compromises, it is 

essential to always treat its results with suspicion and make any effort to crosscheck 

them with other sources. It is important to remember that appropriate calibration 

does not solve the weaknesses of the TMM itself. 



160 

5.4. Conclusions 

Previous attempts to develop tools for the prediction of TTV do not meet the needs that 

would come up if TTV was to be included in the appraisal of transport schemes. The 

required tools need to be sensitive to local factors and to detailed network configuration, 

so that it would be possible to use them to look at the effect of various changes of 

infrastructure on the level of TTV. We intend to examine whether there is scope for 

using microscopic traffic modelling for this purpose. 

The introduction of TMMs into the discussion brings in the question of how these 

models should be calibrated if we want to use them for estimating TTV. We reviewed 

different methods of TMM calibration, and found that the opportunity of analysing the 

distribution of TMM outputs rather than the mean has hardly been discussed. It appears 

that particular elements of the TMM calibration process must be purposely adjusted for 

the task of estimating TTV. For example, special attention has to be paid to the choice 

of suitable measures of fit and to verifying a sufficient number of model runs. These 

issues are discussed further in the next chapter. 
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Chapter 6 

Inter-run variation analysis of traffic microsimulation 

6.1. Introduction 

In chapter 5 we saw that there are currently no available tools that can assist in 

estimating the level of TTV under various assumptions of network configuration. In the 

current chapter we therefore propose a new approach for the estimation of TTV. No tool 
is developed here from scratch; rather, the proposed approach is based on using existing 
tools of microscopic traffic modelling. The innovative features discussed here are not in 

the tool itself, but in the concept of how to use it for the purpose of TTV prediction, and 
in the process it needs to go through before it can be used for this purpose. 
Among the main elementary causes for variation in travel times in any transport system 
are heterogeneity and randomness. These are apparent in driving behaviour, in the level 

of demand, in the intensity of roadside activity, in weather conditions and so on. 
Heterogeneity and randomness are fundamental concepts in microscopic traffic 

modelling: random values of driver characteristics, vehicle features and so on are drawn 

in every run of a TMM from preset distributions or samples; running a TMM several 
times with the same inputs (but with different random seed numbers) will give different 

outputs. At first glance it might therefore seem only natural to estimate TTV by running 

a TMM multiple times and then analysing the variation of travel times between the runs. 
In fact, among practitioners it is not uncommon to run a TMM several times in order to 

get several different sets of outputs, each of whom is expected to represent feasible 

traffic conditions on a different day. However, such estimation brings in many issues 

that need careful examination. In this chapter we discuss whether day-to-day TTV, as 
defined in chapter 1, can be plausibly estimated through inter-run analysis of a TMM, 

i. e. the analysis of TTV between different runs. The calibration of the parameters of the 

TMM has a key role in the discussed approach, but this is not a discussion of a standard 

calibration problem, as most existing TMM calibration procedures focus on the mean 

values of the outputs and not on their variability. 
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This chapter starts with an introduction of the basics of the proposed concept, including 

the scope and the limitations of the analysis performed here. Then it discusses various 

technical, statistical and computational issues that must precede the full methodological 
development. Two experiments and their results are presented: one that has to do with 

required number of TMM runs, and one that looks at the ability to capture a particular 
level of TTV through a particular set of parameters. This leads to a full description of a 

calibration algorithm. The methodology suggested in this chapter is tested and applied 
in chapter 7. 

6.2. Modelling variability using traffic microsimulation 

The key objective of this part of the thesis is to examine whether inter-run TTV of a 

TMM can replicate the level of inter-day TTV in a real transport network. To show that 

there is a case for such analogy, we need to establish an analogy between a single TMM 

run and a single day in the real network. This idea brings in several fundamental issues 

that must be discussed before moving on to more-technical matters. Four such issues are 

raised in the following paragraphs, which are also used to set the scope and the limits of 

the methodology and experiments presented later. 

1. Can TTV be explained at all? 

Independently of the problem of modelling TTV, we could ask whether a consistent 

pattern of TTV exists at all. One might suggest that fluctuations in journey time are 

chaotic or that they are intractable in nature. If this is the case, then even an 

seemingly-perfect model of TTV will not be credible, because whatever the 

explanatory rules it finds in field measurements of travel time, these rules will not 

hold in other scenarios, and they therefore cannot be used for prediction. The fact 

that so far no model of TTV has been widel y accepted can support this approach. 

However, the question of whether or not TTV can be modelled at all is too 

ambitious to be dealt with in the scope of our current work. The analysis in this 

thesis is based on the assumption that TTV is possible, even if hard, to model to a 

tolerable level of accuracy. This is taken as an axiom and no evidence for it is given; 

readers are welcome to make their own judgement based on the presented findings. 
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2. Can aggregate calibration be valid in a behavioural model? 

There is no reason to assume that inter-run TTV can represent inter-day TTV 

without appropriate calibration. Such calibration procedure should set the values of 

the TMM parameters at a level that establishes the analogy between a single run and 

a single day. This brings in the question of what the calibration procedure should be 

like. A major strength of TMMs is that every parameter in the model has a 
distinctive meaning and is not merely an element in a mathematical expression; but 

most existing methodologies for TMM calibration modify an entire set of 

parameters simultaneously, ignoring what each individual parameter stands for. 

Calibrating each parameter separately is extremely demanding in terms of the 

amount of data and effort required; calibration of a whole parameter set at once 

seems the only practical option. But as discussed in chapter 5, it should be realised 

that this is a compromise, since there is a risk that in order to improve the fit of the 

entire model, individual parameters are assigned wrong values. The calibration 

experiments described in this thesis do not offer an absolute solution for this risk. 

An attempt to reduce it is made by limiting the space of feasible solutions such that 

it only includes values that seem rational in the first place; values that deviate from 

the predetermined range of feasible values of each parameter are not accepted even 

if they seem better from the empirical point of view. 

3. Can all the causes for TTV be modelled? 

Running a TMM either once or multiple times gives a range of travel time 

measurements, even if the location and time period of interest are unchanged. There 

are several sources for diversity in the model outputs: 

a) Randomness in input values, generated by the TMM itself. Some parameters are 

specified not as fixed values but as a distribution, and the TMM draws different 

values from this distribution every time it is required. 

b) Randomness in input values, generated by the user. When the TMM does not 

allow a parameter (or any other element of the TMM) to vary randomly, the user 

can alter the value of this parameter manually before each run. 
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c) Heterogeneity within the inputs for a single run. The user sometimes specifies a 
detailed list of travellers or a list of vehicles as part of the input data for the 

TMM run. It is often possible to attach different characteristics to each member 

of the list. The model outputs then enable separate analysis of the individual 

travel experience of each traveller or vehicle. 
d) Special events, such as incidents or accidents, created by the model with a preset 

probability. Since the occurrence of these events is random, they add to the 

variability in the outputs. 

The first and second sources on the list are essential for the current needs, and are 

also relatively easy to implement, as illustrated later in the chapter. The third source 
is important when studying inter-vehicle variability but is not a key issue here. The 

forth source requires features that are currently not possible in most TMMs (this is 

discussed further below). 

It is important to understand to what extent the sources of variability that are 

actually generated by the TMM cover the causes of TTV in the real transport 

system. By efficiently using the first and second sources on the above list it seems 

possible to encompass a major share of these causes. But the range of factors and 

phenomena that influence the level of real, world TTV is very wide, and is not 
directly accounted for in full by any TMM. Daily fluctuations in roadside activity, 

weather changes, the chance of a missing bus driver and many other factors add 

additional uncertainty to daily journey times but most of them are currently 

considered too complicated to be incorporated in a TMM. In addition, most TMM 

applications do not allow the travellers complete freedom to change their entire set 

of travel choices (e. g. mode of transport, driving route or departure time) on a daily 

basis, even if variations in these choices must have some effect on TTV. If some 

sources of TTV are not modelled, then in the calibration procedure their effect will 
influence the values of the wrong parameters, and this will result in a compromised 

model. 

The effect of an un-modelled source of TTV is not always a major problem. For 

instance, there is some sense in letting the calibration procedure find empirically 

which parameters can bear the influence of variation in weather conditions and 

roadside activity, as these phenomena truly affect TTV indirectly, via their effect on 

driving behaviour and vehicle performance. Another example is the direct effect of 
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accidents and other incidents such as road closure, i. e. the increase in travel times 

(and therefore in their variability) at the time and place where such events occur. 

This increase is not part of the scope of TTV discussed here (as defined in chapter 
1), since we assume (as other authors do, such as Bates et al, 2001) that travellers 

are aware that these are independent events that do not necessarily signify poorer 

reliability. Therefore, if we omit from the observed measurements that we use for 

calibration those extreme travel times from days when accidents and incidents 

occurred, then this source of potential bias is avoided. 
There are, however, un-modelled causes for TTV that constitute a bigger problem in 

the current context, such as the secondary effects of accidents and incidents, namely 
the indirect consequences that such events have at other locations or other times 

than where and when they occurred. These effects are probably quite small in 

magnitude, but they bring in serious compli cation because we are neither able to 

exclude them from the data we use for calibration, nor willing to exclude them from 

the definition of TTV, as travellers are not aware that they are related to any 

particular event. In this respect the experiments brought here are compromised, 

since we use a TMM that does not incorporate these secondary effects. We assume 

that their influence on TTV is not considerable, and suggest that this issue should be 

probed separately in the future. Note that to account for secondary effects in the 

calibration of the model, what needs to be improved is the ability of the TMM to 

take these effects into account, not the calibration procedure itself. Therefore, to 

cover the side effect& of accidents and incidents in future experiments, the same 

methodology as presented here can be re-used with a TMM that does model 

accidents and incidents. 

4. Which parameters influence TTV? 

In principle all parameters might influence the level of TTV, but the number of 

parameters in most TMMs is so high that it would be computationally impractical to 

calibrate them all. Any additional parameter that we wish to calibrate adds a new 

dimension to the effort of searching a solution for the calibration problem. As the 

review in chapter 5 illustrates, all existing calibration methodologies concentrate on 

a subset of parameters. It is natural to exclude from the set of calibration parameters 

those whose values can be directly observed or measured using available data. But 
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in most practical circumstances, the remaining set will still be too large, and hence 

the decision of which parameters should be calibrated is a dilemma. 

It would be important indeed to study the particular effect of each parameter on 
TTV, but this is not possible in the current scope. The calibration set used here is 

assumed to include the main parameters that significantly influence the level of 
TTV, but no solid evidence for this is presented. It is likely that the specification of 
this set can be refined and improved. It is therefore also assumed that with a better 

specification of the set of influential parameters, the results of the experiments 
described later could have been stronger. 

In summary, this section has defined the scope of an attempt to determine the values of 

a set of TMM parameters such that the TTV between different runs can replicate inter- 

day TTV. The starting point for this experiment is the assumption that TTV is a 

phenomenon that can be plausibly explained by TMM parameters and that calibration of 

this behavioural model can be performed through a procedure that focuses on a set of 

parameters concurrently. We have also presented drawbacks of our own assumptions; it 

is hoped that the results of the experiment will help us determine to what extent were 

these assumptions logical. 
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6.3. Definition of objective 

Methodologies for calibrating TMMs were proposed in many recent publications, but 

mainly discussed the estimation of mean values rather than measures of variability. 
Some of the existing methodologies do consider the distribution of TMM outputs, when 
testing the fit between simulated and observed measurements (e. g. Kim et al, 2005). But 

those distributions stand for spatial variability (between different locations in the 

network) or for temporal variability (between different periods), not for TTV as defined 

here. 

Similar to some existing TMM calibration methodologies, the calibration experiment 

proposed here is performed through an optimisation process. Examining the objective 
functions used in other optimisation procedures who aim at calibrating TMMs confirms 

that most of them do not seek to reproduce a credible distribution of model outputs but 

mainly to reproduce the mean. A few methodologies use Theil's variance proportion, 

which does consider differences in the standard deviation of the two compared data 

series. As mentioned above, those methods look at variability in other dimensions than 

the one that the current analysis focuses on. In addition, Theil's measure is also 

unsuitable for our needs because it is insufficiently sensitive to various potential 
differences between the observed and simulated travel time distributions. If, for 

instance, the observed and simulated travel times have different distributions with the 

same standard deviation, Theil's measure will indicate perfect fit. For our optimisation 

process we therefore specify anew objective. 

We wish to minimise the overall difference between the simulated inter-run TTV and 

the observed inter-day TTV. The required input for the calculation of our objective 

function includes: 

1. Observed travel time measurements from L different locations, P time sub- 

periods and N different days. Each measurement is taken at a specific location, 

sub-period and day. It is not required to have data from all sub-periods at each 

location, but it is strictly required that for each available combination of location 

and sub-period there are measurements from N days (otherwise, it is not possible 

to calculate the level of TTV). 

2. Simulated travel time measurements from the same L locations and P sub- 

periods as the observed measurements, each from N different runs. It is strictly 
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required that the locations and sub-periods are defined equally to the way they 

are defined in the observed data, and also that for each combination of location 

and sub-period there should be measurements from N simulation runs. 
A later section in this chapter elaborates on how to determine N. The number of 
locations L and sub-periods P is too difficult to determine analytically; L and P mainly 
depend on the amount of available data, and the obvious general rule is that the more 
data is used, the better the results. Since this methodology is developed to be used (in 

chapter 8) for estimating bus TTV, it is assumed that the input data comes from bus 

travel time records; hence, each location is defined as a route segment, i. e. the part of a 
bus route between two consecutive stops. 

In this study we only carry out simulation during the morning peak period, and the 

reason why this period is divided into several sub-periods is that our definition of TTV 

obliges it. TTV is defined here as random in nature, namely as variation due to factors 

that a rational traveller cannot predict. If measurements from an early time point during 

the morning peak period (say 07: 10) were treated as part of the same travel time 

distribution as measurements from a late time point in this period (say 08: 50), it would 

contradict the definition of TTV, since many travellers are clearly aware of reasons for 

differences in the level of TTV between these two time points. We therefore look at 

shorter periods and ascribe a different level of TTV to each one of them. The duration 

of the shortest period that travellers identify wi th a single set of traffic conditions is 

unknown; it is suggested that sub-periods of 30 minutes or less are plausible. 
For each one of the route segments and sub-periods where data is available, we 
determine the fit between simulated and observed measurements based on the 

Kolmogorov-Smirnov test (K-S), which is a very common nonparametric two-sample 

test. Note that the same test has been used in chapter 4 for different purposes. The range 

of the K-S test statistic is between 0 and 1, where 0 indicates that the two samples are 

identical, and I indicates the worst fit between the samples. If the simulated and the 

observed distributions of travel times on a particular route segment at a particular sub- 

period are presented as cumulative probability density curves, the K-S test statistic 

equals the maximal difference (i. e. the maximal -vertical distance) between the curves; 

this is illustrated in figure 6.1. 
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Figure 6.1: Kolmogorov-Smimov test 

Travel time 

In the calibration procedure described here, simulated and observed cumulative 

probability density curves of this nature are constructed for every combination of route 

segment and sub-period, and the K-S test statistic is then computed from each such pair 

of curves. All the curves are based on the same series of N runs of the TMM and N 

respective days of field measurement. The value of the objective function is an average 

of the K-S statistic values across all available locations and sub-periods. The objective 

function is fonnally defined as follows: 

(6.1) 

where 

min Z max(F, 'P, -F"P NLP 
It ob t, Sim 

value of the objective function 

NLp the number of combinations of location and sub-period with 
available data 

I, P cumulative probability density of observed travel time t at Ft, 
obs 

location I in sub-period p (based on N days of field measurement) 
1, Fp cumulative probability density of simulated travel time t at 
t, sim location I in sub-period p (based on N model runs). 
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Since the objective value is an average K-S statistic, conclusions regarding the 

goodness-of-fit between observed and simulated measurements can be drawn similarly 

to the way they are drawn with the original K-S statistic. When the K-S test is used in a 

statistically rigorous framework, each level of the test statistic corresponds to a well- 
defined level of significance with respect to the difference between the two compared 

samples. In the context of traffic modelling, where there is a high level of uncertainty 

about even the most fundamental model inputs (such as travel demand), it is pointless to 

explicitly state the levels of statistical significance. Instead, we judge the results of our 

experiments using the following key legend, which reflects our own interpretation of 
how satisfactory the indicated fit is: 

1.00 >Z>0.48 no fit 

0.48 >Z>0.36 very poor fit 

0.36 >Z>0.24 poor fit 

0.24 >Z>0.12 plausible fit 

0.12 >Z>0.00 excellent fit 

Figure 6.2 illustrates the type of match indicated by each of these levels. The solid curve 
in all the diagrams represents the cumulative probability density of the observed travel 

time, and the other curves represent the respective density based on several different 

sets of simulation outputs. In the upper right diagram, for instance, the K-S statistic is 

0.16, which is classified here as "plausible fit". The value of the statistic means that the 

maximum error found in the cumulative curve of the simulated results, compared to the 

observed data, is 16%, i. e. for most travel times the cumulative difference between the 

simulated and observed measurements is smaller than 16%. 
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6.4. Determining sample size 

When we analyse the variability between model runs or between days of field 

measurement, it is vital that the sample (i. e. number of days or number of runs) is big 

enough to ensure credible estimation of the objective function. As shown in chapter 5, some 

existing methodologies for TMM calibration discuss the required number of model runs, 
but they are only motivated by the will to guarantee reliable estimates of mean values, and 

are therefore not applicable here. Note that the sought sample size is the number of model 

repetitions (and daily field measurements) required to calculate a single value of the 

objective ftinction, namely the objective value based on a specific candidate set of 

parameter values. To evaluate the goodness-of-fit of other sets of parameter values, the 

same number of model repetitions should be performed again and again. Determining the 

sample size in the case discussed here is not a straightforward issue, and it is therefore 

explored from both a theoretical and an empirical point of view. 
For a theoretical estimate of the required sample size, we make two assumptions. First, we 

assume that the distribution of travel times is lognormal. This assumption is supported by 

the studies of Turnquist (1978), Strathman and Hopper (1993), Mohammadi (1997) and 

many others. Not all studies of TTV agree that lognormal distribution is the most 

appropriate. For instance, May et al (1989) find that normal distribution fits travel time 

measurements; Talley and Becker (1987) suggest an exponential distribution; and 
Guehthner and Hamat (1985) suggest the gamma distribution. Still, the lognormal 

distribution of travel times seems better established than the alternative assumptions as it is 

repeatedly mentioned in a large number of studies (the full review was presented in chapter 

5). The second assumption we make is that it is sufficient to look at the statistical properties 

of TTV itself, i. e. of the standard deviation of travel times, even if what we actually 

measure after running the TMM is the objective ftinction and not this standard deviation. 

This assumption is simply made in order to avoid the mathematical analysis of the level of 

significance of the objective value, which is more complicated. It would indeed be 

interesting to look at the sample size issue from a more statistically rigorous perspective, in 

future work. 
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If travel times are lognormally distributed then their natural logarithms are normally 
distributed, and the variance of the logarithms is distributed chi-squared. Based on our 

assumptions we can therefore determine the sample size by imposing restrictions on the 

width of the confidence interval of the chi- squared-distributed variance. A confidence 
interval on the standard deviation in this case is given by (Stephenson 2004; Siegrist 2004; 

Kendall 2004): 

(6.2) 

(n-I)s' 
<< 

(n-I)s 2 

22 

, 
Xl-a12 Za 

/2 

where a is the real standard deviation, s is the sample standard deviation, n is the sample 

size, a is the desired level of confidence, and xý is taken from the chi-squared distribution 

with n- I degrees of freedom. To assure a certain level of significance of the ratio of the real 

standard deviation to the estimated standard deviation, we determine: 

(6.3) 
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2 

a 
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The range of ratios of the real and the estimated standard deviation, based on different 

numbers of model runs and different levels of confidence, is presented in figure 6.3. The 

horizontal axis represents the number of degrees of freedom, which equals n-1. The two 

groups of curves show the upper and lower bounds. For example, if for a certain 

combination of sample size and level of confidence we get an upper bound at 130% and 
lower bound at 65%, we can deduce that the true standard deviation is not more than 30% 

above or 35% under the TMM-based estimate. 
Figure 6.3 illustrates that up to around 40 TMM runs, any additional run makes quite a 

substantial improvement in the estimation accuracy. Beyond 40 runs, the slope of all curves 
becomes milder, hence the increased accuracy might not compensate for the additional 

runtime. 
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Figure 6.3: Theoretical range (upper and lower bounds) of the ratio 
of the real TTV to estimated TTV 

To examine whether this approximated theoretical estimate of the required sample size is 

reasonable, we explore the same issue empirically. This is done through an experiment 

where the objective function is repeatedly evaluated with an increasing number of model 

runs, and the convergence of the objective value is checked. This experiment involves 

using the TMM and the procedure that calculates the objective value in the same way as in 

the full calibration algorithm described later. The TMM, the calibration algorithm, the test 

network and other relevant features have not been presented yet; therefore, suffice it to say 

at this point that the TMM used is DRACULA, the calibration set includes 21 parameters, 

and the test network includes a small section of York city centre. Full details of all these are 

presented in chapter 7. 

Several artificial sets of observed travel time measurements were generated for the 

experiment, each one corresponding to a different level of TTV. In addition, several sets of 

values for the 21 calibration parameters were generated; the values are random but within 

the feasible range for each parameter (as described in chapter 7). Subsequently, several 

series of model runs are carried out, each series with a particular parameter set and a 

ý77 
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particular file of observed times. In each series of runs, the value of the objective function 

is calculated after each run, based on all runs in the series that have been made till that 

point; the idea is to see how the objective value changes with an increasing sample size. 
Note that since this is still not a calibration experiment, it does not matter if the objective 

value is high or low, or if the artificial files of observed measurements stand for a realistic 
level of TTV; we only want to see how many runs are necessary for the objective value to 

stabilise. Changes in the objective value with an increasing sample size, based on various 

artificially- observed TTV patterns and various parameter sets, are presented in figure 6.4. 

The results confirm that generally, a series of 40 runs and 40 daily measurements should be 

enough for a reasonable estimate of the objective function. In fact, from the results it seems 

that in most series of runs there were no major fluctuations in the objective value after more 

than 20 runs. Still, since the theoretical analysis implied a higher number, and to assure that 

the estimates are prudent enough, the forthcoming analysis uses 40 runs per each evaluation 

of the objective function. 
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. 0, U. 4 --- --- 0 

0.2 - 
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- 
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Figure 6.4: The objective value with increasing sample sizes 



176 

A brief note should be made on another statistical, concern. Some recent studies of TMM 

calibration and validation (e. g. Toledo and Koutsopoulos, 2004) discuss issues relating to 

the assumption known as "the i. i. d. assumption", which is a requisite for some common 
fonns of statistical analysis. The essence of this assumption is that the observed and 

simulated samples are independent draws from identical distributions. The mentioned 

recent studies observe that in some analyses of variability in TMM outputs, the i. i. d. 

assumption is inappropriate, since the entire set of outputs of a particular run is derived 

from the same random draws, and consequently the estimate of variability is based on 
dependent measurements. It is important to stress that this problem does not apply to the 

case discussed here, but only to discussions of temporal or spatial variability. We examine 
the distribution of travel time measurements taken independently from different runs and 
based on different random draws, and thus the i. i. d. - condition is met. 

6.5. Capturing travel time variability in the model parameters 

The idea that a calibration process can establish an analogy between a single TMM run and 

a single day can be reliably implemented only if we can show that any set of values of the 

calibration parameters consistently stands for a certain level of TTV. The main concern is 

that due to the random nature of the TMM, a set of parameter values that the calibration 

procedure identifies with the level of TTV found in the observed data will generate a 
different level of TTV when later used for prediction. Therefore, before moving on to the 

calibration procedure itself we carry out another experiment that examines whether a 

particular set of values of the calibration parameters can systematically represent a 

particular level of TTV. As with the sample size experiment, the current experiment uses 
the TMM, the procedure that evaluated the objective function, and the set of calibration 

parameters which are described in detail in the next chapter. We choose to present the 

experiment before elaborating on its inputs because the case for developing the full 

calibration methodology can only be established if this experiment is perfon-ned 

successfully. 



177 

For the experiment we use again artificial travel time measurements as well as randomly- 

generated (but feasible) parameter values. What we check this time is how consistent with 

each other are 20 different estimates of the same objective value. Each of the 20 estimates 

is calculated with the same inputs (parameter set and observed times) using 40 model runs 

(i. e. for each combination of a specific level of TTV and a specific parameter set the TMM 

is run 800 times). 

One set of results of the experiment (out of many sets) is illustrated in figure 6.5. Each one 

of the three curves represents a different series of 20 estimates of the objective function; for 

all three curves the same set of parameter values was used, but for each curve, the 

calculation of the objective value was based on a different set of observed times. These 

three observed time sets were generated from distributions with the same mean but 

different levels of variability: the ratio of the standard deviation to the mean was 10% in the 

first set, 20% in the second set and 30% in the third set. The diagram presents the 

frequencies of different objective values within the different sets of 20 estimates of the 

same objective. The general idea is that the easier it is to identify differences between the 

curves, the more established is the concept that a specific parameter set can be linked to a 

specific level of TTV. 

We come to the following conclusions from the diagram: 

1. The fact that the three curves are clearly distinguishable from each other signifies 

that the examined parameter set stands for a specific level of TTV. When the TTV 

in the observed times that were used to calculate the objective is similar to the TTV 

that the parameter set stands for, we get a curve with relatively low values (the left 

curve in the diagram). When the TTV in the observed measurements and the TTV 

represented by the examined parameters are very different from each other, we get 

high values (the right curve). We do not know, at this stage, the level of TTV that 

the examined parameter set captures, or which parameter values capture the level of 

TTV in our real observed data; but a calibration process should help us identify it. 

2. The fact that each curve encompasses a range of values indicates that a low value of 

the objective, when a particular set of parameter values is examined, implies a high 

chance that this parameter set stands for the desired level of TTV. Since we are 
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using a probabilistic model, we cannot expect it to determine with absolute 

confidence whether a candidate parameter set is good or bad. But since the 

calibration procedure we develop later is an iterative process, where the objective 

value is repeatedly re-estimated till there is consistent improvement, even an 
indicator of high chance of success (rather than an indicator of success) can be used 

satisfactorily. 
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Figure 6.5: Repeated evaluation of the same parameter set with different input data 

3. There are overlapping areas between the curves in the diagrams. If for a specific 

parameter set and specific observed data we calculate the objective value only once, 

as we intend to do in the calibration procedure, the resulting value might belong to 

several adjacent curves, some of which imply better fit than others. We could have 

more certainty about the objective value by calculating it more than once or by 

using more TMM runs for each value, but this will require higher runtime and is 

therefore undesirable. As mentioned in the previous paragraph, the limited 

fluctuations of the objective value are tolerable if they occur along an iterative 
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process, as the small error they might involve is likely to be corrected in subsequent 
iterations. The only real risk is in the last iteration, when the final parameter set is 

evaluated; this stresses the importance of the validation stage. In principle, the same 

procedure as the one used in this experiment (i. e. calculating the same objective 

several time) can be adequately used to verify whether a parameter set that seems 
better than others is indeed repeatedly proved better. 

The experiment was repeated with different Parameter sets, and for all parameter sets the 

results were similar to those presented in figure 6.5. When the objective function was 

repeatedly evaluated with the same parameter set and observed data, the resulting values 
lay within a relatively narrow range. Changing either the parameter set or the observed data 

resulted in objective values outside this range. The conclusion is that with the exceptions 
discussed above, and subject to validation of the chosen solution, a specific parameter set 

can capture a specific level of TTV. 

6.6. Computational difficulties 

To calibrate the TMM we wish to minimise the value of the objective function developed 

earlier. As in many other calibration problems, this is done through an iterative process, 

where in each stage a particular candidate solution (i. e. parameter set) is examined, and 

new candidates are repeatedly generated in an attempt to reach improvement in the 

objective value. 
There are numerous methods for solving minimisation problems (for a thorough review see 
Press et al, 1992); but from a computational perspective, our problem is relatively a 

complex one, and most methods cannot be applied to solve it efficiently. One reason for 

this complexity is the multidimensionality of the calibration problem: there is a big number 

of parameters to calibrate. In the experiments presented in chapter 7, for instance, the 

calibration set includes 21 parameters even though efforts were made to include only those 

parameters that seemed essential for the estimation of TTV. The majority of existing 

calibration procedures (as reviewed in chapter 5) focus on smaller calibration sets. The 
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space where the optimal parameter set is to be sought has therefore multiple degrees of 
freedom; many optimisation techniques are not suitable for such problems and thus they 

cannot be used to solve the problem forinulated here. 

Another reason why our calibration problem is difficult to solve has to do with the way the 

objective function is computed. Calculating a single value of this function requires 40 

TMM runs; even in a very small network, each run takes at least a few minutes, and the 

entire series of runs might take a few hours. For illustration: a single run of the DRACULA 

model with a 17-zone, 60-link test network, on several common types of computers, with 

some graphical features disabled to reduce runtime, takes about 3.5 minutes (the model and 
the network are presented in chapter 7). If 40 runs are required to calculate the objective 
function, it takes 140 minutes to obtain one value of this objective. The minimisation 

process is likely to require quite a few iterations till a good solution is found, and it is 

therefore crucial to choose an optimisation procedure that needs the smallest possible 

number of evaluations of the objective value per iteration. Unfortunately, this requirement 
implies that the most efficient solution methods cannot be used for our problem. Any 

minimisation procedure that uses derivatives of the objective function is unsuitable, 
because estimating the gradient of the objective function numerically requires calculating 
its value at several points, and the computational effort this involves is excessive. 
Analytical calculation of the derivatives of the objective function is obviously impossible, 

since it is not a direct function of the decision variables. As Press et al (1992) point out, 
"algorithms using the derivatives are somewhat more powerful than those using only the 

function, but not always enough so as to compensate for the additional calculations of 
derivatives". 

Some efficient optimisation approaches, such as genetic algorithms, are also not suitable for 

the discussed problem although they do not use derivatives. This is because these methods 
involve processing a group of feasible solutions at every iteration, rather than focusing on 

an individual candidate solution at each stage. Again, such approach requires multiple 

evaluations of the objective function at each iteration, which is impractical when many 

TMM runs are needed for each evaluation. 
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The "downhill simplex method", described by Press et al (1992), is one of the few 

optimisation procedures that seem relatively suitable for the current problem. It is not 

known as an efficient method: its progress towards an improved solution is slow, and it also 
does not guarantee convergence to a global optimum. However, it does guarantee 
improvement in the parameter set, and given the complexity of the problem, this should not 
be belittled. As briefly explained in chapter 5, the downhill simplex method presents a set 

of possible solutions of the optimisation problem as a multidimensional geometrical shape, 

called simplex; each vertex of the simplex represents a single solution. In each stage of the 

process, the vertex with the worst objective value is replaced with a new vertex through one 

of several possible geometric manipulations, such as reflection of the simplex through its 

base, expansion or contraction. In most iterations, the value of the objective should be 

calculated only once; this is the most appealing feature of this method for our needs. 

There are two particular stages in the downhill simplex method where many objective 

evaluations are necessary. First, there is the starting stage of the process, in which the entire 

simplex must be initialised, i. e. a value of the objective function must be attributed to each 

of the vertices of the initial simplex; this is inevitable despite the long runtime it requires. 

Second, one of the possible simplex manipulations involves changing all vertices but the 

one with the worst value. This can be seen as a re-initialisation of the simplex, and is 

performed only if the other types of manipulation do not prove useful. In the current 

context, the high time consumption of the re-initialisation stage is a serious problem. To 

avoid the need to re-initialise the simplex in a case where the other available modifications 

fail, we adjust the simplex method to our needs by introducing an alternative search 

technique. Our experience with this amended simplex method suggests that in a big 

majority of the cases where none of the simple modifications can improve the objective 

value, the alternative search resumes this improvement. The traditional simplex method and 

our modification are explained in the next section. 
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6.7. The simplex method and its modification 

The downhill simplex method (Press et al, 1992) is commonly used to search optimal 

solutions for multidimensional minimisation problems. In a problem with N decision 

variables, this method uses an N-dimensional simplex, which is a geometrical shape with 
N+l vertices. This means that throughout the whole process, there are always N+l 

candidate solutions. A required input is the objective function we wish to minimise; this 
function is used to ascribe a value to each vertex. Prior to the search process, the simplex 

should be initialised, i. e. a set of N+l vertices should be generated (either randomly or 
based on previous knowledge) and the objective value for each vertex should be calculated. 
Each step in the iterative minimisation process tries to replace the vertex with the worst 

objective value with a new vertex, at a different location in the multidimensional space, 

where the objective value is lower. 

The problems illustrated in chapter 7 have 21 decision variables and therefore they involve 

a 22-dimensional simplex. But to facilitate the graphical demonstration of the search 

process, this section considers a problem with two decision variables only. The three-vertex 

simplex that such problem uses is actually a triangle. The principles of the solution 

technique demonstrated in this section work equally with any number of variables. 
The first attempts to find an improved vertex, in each iteration of our proposed procedure, 

are based on the traditional version of the simplex method, where new vertices are sought at 

different points along a single line. This line, that we call the main search axis, is presented 

in figure 6.6. The following symbols are used: 

W is the vertex with the worst (i. e. highest) objective value. 

S is the vertex with the second worst objective value. 

B is the vertex with the best (i. e. lowest) objective value. 

C is the centre of gravity of the base on the simplex. 

The line along which an improved solution is sought in the current stage is the line that 

connects points C and W. We define thefactor as the ratio 
CV 

, where CV is the distance 
CW 
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from point C to any other point V, and CW is the distance from C to W. At the original 

vertex W (that we wish to move to a new location)factor equals 1. 

B 

T'2b 

1-7 

T'2c 

Figure 6.6: The main search axis 

The search for solution along the main search axis is based on the following rules: 

* The first point we examine as a candidate for replacing W is VI, wherefactor equals 

-1. If the objective at V1 is better than at S, we have managed to find a successful 

replacement for vertex W, and we can move on to the next iteration, where a similar 

process is repeated. 

* If the objective at VI is better than at W but not better than at S, we have managed 

to improve the worst objective value but not significantly. We therefore examine an 

additional point V2b, wherefactor equals -0.5. Of the two candidates, VI and V2b, 

we then choose the best, and move on. 

0 If the objective at VI is better than at B, it might signify that the farther we go from 

W. the better the objective value. We therefore examine an additional point V2c, 5 



184 

wherefactor equals -2. Of the two candidates, VI and V2c, we then choose the best, 

and move on. 

If the objective at VI is worse than at W, it might signify that searching for solutions 

with a negative factor does not lead to improvement. We therefore examine an 

additional point V2a, wherefactor equals 0.5. If the value at V2a is better than at W, 

we choose V2a and move on. If the value at V2a is worse than at W, we have failed 

to improve the simplex using the available strategies. In such case, the original 

simplex method restarts the whole process by re-initialisation. But as we discussed 

previously, given the high time consumption of calculating the objective value in 

the current problem, re-initialisation would be most inefficient. If all search 

strategies along the CW axis have failed, we continue the solution search along the 

"last resort" axis, as described below. 

Note that only one (or none) of the points V2a, V2b or V2c is evaluated at a single iteration 

of the process. Hence, the search along the CW axis involves no more than two evaluations 

of the objective function. 

If none of the points examined along the main search axis brings improvement, we start a 

new search along the line that we call the "last resort " search axis. This is an alternative to 

the re-initialisation stage in the traditional simplex method, which would be too lengthy in 

the current context. The new search axis is the line that connects vertex B with vertex W, as 

illustrated in figure 6.7. We re-define factor as the ratio 
BV, 

where BV is the distance 
BW 

from point B to any other point V, and BW is the distance from B to W. As before, at the 

original vertex Wfactor equals 1. The idea of seeking alternative solutions along the axis 

that connects the best and worst vertices was originally proposed by Kaczmarczyk (1999). 

However, Kaczmarczyk does not use a systematic search along this axis, but only examines 

specific candidate vertices. In addition, the improvements proposed by Kaczmarczyk to the 

original simplex method are introduced very briefly, and hence were mainly used as a 

general inspiration to the technique described here. The following search process along the 

BWaxis is different from Kaczmarczyk's suggestions. 
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B 

fh3e 

Figure 6.7: The "last resort" search axis 

Starting from the original factor of 1, the process repeatedly reduces factor by 0.4 and re- 

evaluates the resulting new candidate vertex, till a better vertex is reached. The first 

examined vertex (V3a) has afactor of 0.6; the second (V3b) has 0.2; then -0.2 (V3c), -0.6 
(M)ý -1 (V3e) and so on. In principle, the search process can repeat many times if there is 

no improvement. However, in our experiments improvement was always experienced 

within no more than 7 evaluations of candidate vertices along the BW axis (i. e. with 

jactor>=- 1.8), or much less than this in most cases. 

6.8. Calibration algorithm 

The full calibration procedure, based on the modified simplex method, is described in detail 

as a flow chart in figure 6.8. The section of the flow chart with dotted frames describes the 

initialisation stage. The section with solid frames describes the parts of the algorithm that 

follow the traditional simplex method. The section with dashed frames describes the 

additional stages in the modified method. The sub-process of calculating the objective 
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value for a given candidate parameter set, i. e. a single vertex, is described separately in 

figure 6.9. This sub-process is performed every time in the main process when the value of 

the objective function needs to be calculated. It is this sub-process that repeatedly calls the 

external program that runs the simulation itself, and therefore more than 99% of the 

runtime of the entire process are spent in it. 

The inputs to the process include the following information: 

1. Initial values for all parameters. These are copied into the first vertex of the 

simplex, as they form one possible solution. 
2. The feasible range and the likely range of values for each parameter. The feasible 

range is used to verify that during the modification of the simplex no parameter 

exceeds its realistic boundaries. The likely range, which is narrower, is used during 

the creation of the first simplex to draw initial random parameter values (for all 

vertices but the first). 

3. A list of observed travel time measurements, used throughout the process to 

examine the difference between real-world TTV and simulated TTV. 

The calibration procedure was programmed in C. The full program is available from the 

author. The program uses various file structures for inputting data and outputting results; 

the main structures are described in appendix B. 

It was not found necessary to incorporate within the calibration procedure a clearly-defined 

criterion that causes, once it is met, the process to stop and deem the last vertex as the 

optimal solution; the reason for this is the following. A key feature of the procedure is that 

the improvement of the objective value is slow but steady. It is slow since the calculation of 

each value of the objective function takes a relatively long time, and also because between 

consecutive iterations there is normally quite a modest decrease in the objective value. It is 

steady because there is improvement in every iteration. Our experience is that even after 

many iterations, there is still gradual improvement. Due to the complex, multidimensional 

nature of the problem, it is not expected that the process will reach a global optimum. We 

therefore find that the best practice is to halt the process at the discretion of the user: better 

solutions can be reached at the price of higher runtime. Note that runtime issues are also 

discussed in chapter 7. 
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6.9. Conclusions 

Randomness and heterogeneity in the elements of a transport network have a key role in the 

concept of microscopic traffic modelling. This led us to hypothesize that it might be 

possible to use TMMs for the ambitious task of estimating the extent of TTV in 

hypothetical scenarios, by introducing an analogy between a single run of the TMM and a 

single day in the real network. The fact that some practitioners use TMMs as if such 

analogy can be taken for granted was an additional motivation for the analysis presented 
here. To enable estimation of TTV through inter-run analysis of a TMM, the model needs 
to be calibrated in a way that pays attention to variability in the outputs, as opposed to most 

existing calibration methods, that focus on analysis of mean values only. 
This chapter provided some evidence that there is a solid case for the proposed concept of 
inter-run analysis. This was done, for example, by showing that running a TMM with one 

set of parameter values consistently results in a relatively small range of levels of TTV. We 

presented a full calibration algorithm, where the objective is to minimise the difference 

between the distribution of simulated times and a given distribution of observed times. It 

was shown that this calibration problem is computationally challenging, because the 

solution space is multidimensional and the objective function is non-differentiable and slow 

to estimate. No common solution method seemed suitable as is for this problem, and the 

presented algorithm was therefore based on our own modification of the well-known 

simplex method. 
We also discussed some of the limitations of the proposed methodology. The fact that all 

parameters are calibrated simultaneously, without paying much attention to the features and 

phenomena that each parameter stands for, is a compromise. There is also some risk of bias 

since no TMM can replicate the entire range of causes for TTV in the real world. 

The methodology developed here has not yet been tested and illustrated. Experiments that 

use the calibration algorithm are presented in the next chapter. 
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Chapter 7 

Calibration experiments 

7.1. Introduction 

This chapter demonstrates the application of the methodology developed in chapter 6 for 

calibration of a TMM. The main goal of the calibration process is to make the variability 
between time measurements from different runs of the TMM similar to the variability 
between travel times on different days in the real transport system. If such calibration is 

performed successfully, then it is possible to use the TMM as a tool that generates forecasts 

of the level of TTV. Basing TTV estimates on a microscopic traffic modelling might prove 

very useful in transport analysis, because TMMs are sensitive to various local factors, to the 
level of demand and to differences between network configurations. As we saw earlier in 

the thesis, the tools currently available for estimating TTV do not exhibit these features. 

Two experiments are described in this chapter. The first experiment is meant to test the 

calibration mathodology, by separately performing the calibration procedure in three 

imaginary scenarios and then verifying whether the calibrated parameters in each scenario 

can pass a validation test. The network used in this test represents a small (but real) part of 
York city centre. The second calibration experiment is carried out not as a test but as our 

main attempt to adjust the TMM parameters to the characteristics and behavioural patterns 

of the York network and its users. The input data for this experiment are real travel time 

measurements, and the network used covers a major part of the city. 
The TMM used for both testing and implementing the calibration procedure is DRACULA 

(Liu, 2006), which is a package commonly used in the UK. DRACULA has been 

developed at the University of Leeds since 1993, and its current version includes, apart 

from sub-models for car following and lane changing, such additional features as demand 

fluctuation, randomness in vehicle characteristics, complex traffic controls and bus priority 

measures, and so on. 
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7.2. Choice of parameters 

In the experiments presented here we calibrate a relatively big set of 21 parameters. The 

choice of these 21 parameters was mainly based on common sense and on some infon-nal 

past experience. In the current scope we only calibrate parameters that relate to driving 

behaviour and variable demand; parameters relating to route choice, departure time choice 

and so on are not considered. As mentioned in previous chapters, it is likely that with a 
better specification of the parameter set, the results could be improved. The following 

parameters are included in the calibration set: 
1. Four parameters of the gap acceptance model: the normal acceptable gap; the 

minimum acceptable gap; the time waited before accepting a lower gap; and the 

time waited before accepting the minimum gap. All these are standard DRACULA 

parameters, which have to do with the way drivers decide under what conditions 

they would be willing to use a temporary gap, created between vehicles in the 

opposing traffic, in order to enter a junction or change lane. 

2. Four groups of vehicle characteristic: normal acceleration parameters; maximum 

acceleration parameters; normal deceleration parameters; and maximum 

deceleration parameters. Each of the four groups contains four parameters: mean 

value for cars; coefficient of variation for cars; mean value for buses; and 

coefficient of variation for buses. All these are standard DRACULA parameters, 

which define the distribution of features relating to acceleration and deceleration 

across the various types of vehicles that constitute the general traffic. 

3. An additional parameter, which is external to the DRACULA model, stands for the 

standard deviation of the overall level of car traffic in the network. Although such 

parameter is not part of the DRACULA package, it seemed important to incorporate 

this element of travel demand fluctuation into the model as this is presumably a 

major cause for TTV. DRACULA does include a factor by which all car flows are 

multiplied in every run, but this parameter is not suitable for calibration, as a fixed 

value would not result in fluctuation. Therefore, the calibration parameter represents 

the standard deviation of the DRACULA standard demand factor, and a different 
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value for the demand factor is randomly drawn in every run from the distribution 

defined by the calibration parameter. Note that the factor affects car flows only and 

not the number of bus passengers or bus journeys; and in addition, it applies equally 
in all parts of the network. In this sense, it is indeed a rather simplistic way of 

accounting for variations in the general level of congestion, whose real nature is 

clearly not that simple or uniform. However, allowing for a more realistic pattern of 

variability in the surrounding traffic will inevitably require calibrating more 

parameters, and we therefore leave it for other studies. 

As explained in detail earlier in the thesis, calibrating the values of all these parameters 
jointly is not ideal. If it were possible, it would be preferable to determine their values by 

observation and measurement; but this requires very intensive data collection and analysis, 

which have so far never been possible in the study area. 
The calibration procedure requires five sets of input values for the calibration parameters. 
The first is a set of initial values, which the algorithm stores as the first vertex of the 

simplex, since it forms one possible solution. Two more values for each parameter are 

needed to define the lower and upper bounds of its likely range; all the vertices of the initial 

simplex, apart from the first one, are generated randomly but within this range. Two 

additional values define the feasible range (minimum and maximum) of each parameter; 

during the calibration of each parameter the algorithm makes sure it does not go beyond 

this range. The input values used here are presented in table 7.1. 
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Parameter 

Initial 

value 

Likely 

range 

Feasible 

range 

Normal acceptable gap (seconds) 3 1- 5 0 -60 
Minimum acceptable gap (seconds) 0.5 0.2 -2 0.1 -60 
Time waited before accepting reduced gap (seconds) 30 20- 40 0.1 -600 
Time waited before accepting min. gap (seconds) 60 40- 80 0.1 -600 
Mean of car normal acceleration (M/S2) 1.5 1- 5 0.1 -60 
Coefficient of variation of car normal acceleration 0.1 0- 0.3 0 -2 
Mean of car maximum acceleration (n, /S2) 2.5 2- 5 0.1 -60 
Coefficient of variation of car maximum acceleration 0.1 0- 0.3 0 -2 
Mean of car normal deceleration (M/S2) 2 1.5 -5 0.1 -60 
Coefficient of variation of car normal deceleration 0.1 0- 0.3 0 -2 
Mean of car maximum deceleration (M/S2) 5 3.5- 6.5 0.1 -60 

Coefficient of variation of car maximum deceleration 0.1 0- 0.3 0 -2 

Mean of bus normal acceleration (M/S2) 1.5 0.8 -2 0.1 -60 

Coefficient of variation of bus normal acceleration 0.1 0- 0.3 0 -2 

Mean of bus maximum acceleration (rn/S2) 1.6 0.8 -2 0.1 -60 

Coefficient of variation of bus maximum acceleration 0.1 0- 0.3 0 -2 

Mean of bus normal deceleration (M/S2) 1.5 1- 4 0.1 -60 

Coefficient of variation of bus normal deceleration 0.1 0- 0.3 0 -2 

Mean of bus maximum deceleration (M/S2) 2.5 1- 4 0.1 -60 

Coefficient of variation of bus max. deceleration 0.1 0- 0.3 0 -2 

Demand fluctuation (coefficient of variation of 

overall demand) 
0 0.01 -0.2 0- 0.25 

Table 7.1: Inputs to the calibration procedure 
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7.3. Test of the calibration algorithm 

The network used for testing the calibration algorithm represents a section of the street 

network in the centre of York. Figure 7.1 contains a map of the area included in the test 

network and a plot of its computerised representation. The central intersection, Bootham 

Bar, is a key location in the centre of York, around which are many public buildings and 
the Old City, which generate intensive traffic. The roads that intersect at this point are 

all major urban streets: the A19 arterial (Bootham) to the north-west, Gillygate to the 

north-east, and St. Leonard's Place to the south., 
The route sections, on which observed and simulated measurements are compared in the 

experiment, are the sections 1-2,2-3 and 3-4 along one bus route, where 1 2,3 and 4 

represent bus stops. A DRACULA model for this test network has been prepared in 

previous works; the starting point for the current calibration experiment is the parameter 

values and other network features as determined in the previous works. 
Three imaginary scenarios were defined, and an artificial set of observed travel time 

measurements was generated for each scenario. The mean travel time on each route 

section (1-2,2-3 and 3-4 in figure 7.1) is the same in all scenarios, but the standard 
deviation differs between the scenarios. In scenario I the standard deviation of travel 

times is around 10% of the mean on each section, in the scenario 2 it is around 17% and 
in scenario 3 it is 25%. We regard these three scenarios as reflecting low, medium and 
high levels of TTV, respectively. With these sets of input data, three separate runs of the 

calibration algorithm were launched. 

The progress of the calibration process in all three scenarios appeared similar. For 

illustration, figure 7.2 shows the gradual changes in the objective value throughout the 

calibration process for scenario 2. The coloured, area above the number of a particular 

iteration describes the range of objective values in the simplex during that iteration. The 

upper contour of the entire coloured area connects the worst vertices at difference stages 

of the calibration process, which we try to replace. Along the lower contour, each value 

is the objective that corresponds to the best vertex found till that point. A new vertex is 

accepted only if it is better than the worst one, but naturally in most cases the new 

vertex is not as good as the best. Therefore, the slope of the upper contour is bigger that 

the slope of the lower contour. If in certain parts of the diagram it looks like there is no 

progress between two consecutive iterations, it is because there are sometimes several 
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vertices with very similar objective values, and when one of them is replaced with a 
better vertex, the other vertex with an equally-bad objective value still remains to be 

replaced. 

0.4 

Worst vertex replaced using: 
Main axis, Factoi-1 

0.35 - Main axis, Factor--0.5 

El Main axis, Factor-0.5 

13 Main axis, Factor-2 0.3- 
Alternative axis 

0.25 

LJ 
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05 10 15 20 25 30 35 40 45 50 55 

Iterabon 

Figure 7.2: Progress of the calibration experiment 

The different shapes and colours used in figure 7.2 show what type of simplex 

manipulation was used in each iteration; this also implies how many times the objective 

value had to be calculated. In most iterations, one calculation of the objective value was 

enough, as the candidate vertex created withfactor=-] along the main search axis was 

found a successful substitute. But it seems that as the process moves on, it gradually 

becomes harder to improve the worst vertex, and a second candidate vertex (with other 

factor than -1) is evaluated more frequently. When a factor of 0.5, -0.5 or 2 is used, 

there are two evaluations of the objective per iteration: one unsuccessful attempt with 

factor=-] and then one successful attempt with the new factor. When the alternative 

search axis is used, the number of evaluations per iteration is three or higher. However, 

it should be reminded that the alternative axis was introduced here as a substitute for the 

re-initialisation stage in the original simplex method, that in the current case would 

require 21 evaluations of the objective. Our experience is that the number of evaluations 
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along the alternative axis is normally between I and 3, and hence we find this 

modification of the simplex method very efficient. 
The calibration experiment in all three scenarios included around 60 iterations. The 

number of evaluations of the objective function during the 60 iterations is around 90. 

When it was decided to halt the process, the objective function reached values around 
0.17, which according to the terminology described in chapter 6 signifies "plausible fit". 

In all three scenarios, there was still gradual improvement of the objective value when it 

was decided to stop the process; it seems that if we allowed additional runtime, it would 
be possible to reach some further improvement. However, it does not seem practical to 

reach the range of objective values defined earlier as "excellent fit". While we cannot 

conclude that the calibrated model perfectly fits the observed data, it appears that the 

calibration was successful in preventing the model from rendering seriously biased 

estimates. 
Validation of the calibration results was carried out by repeatedly calculating the 

objective values that correspond to the chosen parameter sets. Namely, the parameter set 

that was chosen for each scenario in the calibration process, and a set of artificial 

observed data with the same standard deviation as the one that was used to generate the 

respective scenario, were used a few more times as input for new evaluations of the 

objective value. Results of this new series of runs, for all three scenarios, are almost 

identical to those depicted by the left curve in figure 6.5: different evaluations give 

different objective values, but the distribution of these values mainly encompasses 

values that indicate plausible fit. This gives evidence that the three calibrated sets of 

parameters consistently fix the TTV in the model outputs at a level that is adequately 

similar to the desired level. 

Table 7.2 presents the values of all relevant parameters at the end of the calibration 

process. Due to the extreme complexity of the 21-dimensional solution space, we 

cannot expect the results to follow simple rules; the difference between scenarios in the 

value of a certain parameter cannot always be easily explained. We pay special attention 

to the parameters that stand for direct sources of variability in the model (these appear 

in the table in cells with a dark background). For some of these parameters, such as the 

coefficients of variation of bus normal acceleration and deceleration, it is apparent that 

the calibration process chose a higher level of variation in the scenarios where TTV is 

higher. This makes good sense, given that the optimisation process was based on 

comparing bus travel times. For some other parameters, such as the coefficient of 
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variation of car normal acceleration, differences between the scenarios seem less 

logical, and our understanding is that these parameters do not have a significant 

contribution to the extent of simulated bus TTV. The parameters that indicate high level 

of variation in scenarios with low TTV, as well as parameters whose values in the 
different scenarios are almost the same (such as the variation of car maximum 
deceleration) are probably of low importance for TTV estimation. 

7.4. Calibration with real data 

The basic experiments described in chapter 6, and the test described in the previous 

section, have shown that there is a serious case for the concept of inter-run variation 

analysis and the calibration algorithm that applies this concept. Although some features 

of this concept can benefit from further investigation and development, we leave this for 

future work. In the rest of the thesis the calibration algorithm is used as a legitimate tool 

for estimating the level of TTV. The current section is aimed at preparing a DRACULA 

model for our area of interest in the city of York, which can be used for generating TTV 

forecasts. This is done by running the calibration algorithm with a network of a 

considerable size, which covers a large part of York, and with real travel time 

measurements recently taken in the study area. 

The travel time data used here are based on travel time records generated by a system 

installed on several buses that work on route number 4 in York. Route 4 connects 

Acomb in west York with the railway station, the city centre and the University of York 

in the east. It is a frequent service, with around 8 departures per hour during the 

morning peak. The scheduled runtime of a journey along the entire route is 

approximately 45 minutes. The system that generates the time records takes a note of 

the time when the bus arrives at each stop, and can therefore be used to generate a 

profile of the progress of the bus on each journey. Joining the records from multiple 

days forms the input required for TTV analysis; note that some basic analysis, based on 

the same data used here, was presented in chapter 1. The itinerary of route 4 (like the 

itineraries of all routes in the area) is coded in detail in the DRACULA network, and the 

calibration is carried out by comparing simulated and observed TTV along various 

sections of this route. The network used here and the itinerary of route 4 are presented 

in figures 7.3 and 7.4. 
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Scenario 
Parameter 

Low 
TTV 

Medium 
TTV 

High 
TTV 

Normal acceptable gap (seconds) 3.15 2.39 2.99 

Minimum acceptable gap (seconds) 0.84 0.61 1.75 

Time waited before accepting reduced gap (seconds) 30.43 31.96 37.52 

Time waited before accepting minimum gap (seconds) 47.56 68.52 50.92 

Mean of car normal acceleration (m/s 2) 4.41 2.48 4.28 

Coefficient of variation of car normal acceleration 0.22 0.20 0.07 

Mean of car maximum acceleration (M/S2) 3.43 3.99 3.88 

Coefficient of variation of car maximum acceleration 0.11 0.20 0.17 

Mean of car normal deceleration (M/S2) 2.12 3.63 3.77 

Coefficient of variation of car normal deceleration 0.03 0.18 0.15 

Mean of car maximum deceleration (M/S2) 4.75 4.53 4.51 

Coefficient of variation of car maximum deceleration 0.22 0.18 0.17 

Mean of bus normal acceleration (M/S2) 1.86 1.57 1.64 

Coefficient of variation of bus normal acceleration 0.08 0.18 0.24 

Mean of bus maximum acceleration (M/S2) 0.90 1 . 14 1.82 

Coefficient of variation of bus maximum acceleration 0.24 0.16 0.11 

Mean of bus normal deceleration (m/s 2 1.61 2.63 1.35 

Coefficient of variation of bus normal deceleration 0.06 0.07 0.21 

Mean of bus maximum deceleration (M/S2) 2.25 2.87 0.48 

cient of variation of bus maximum deceleration 0.27 0.12 0.20 

Demand fluctuation (coefficient of variation of overall 

demand) 
0.04 0.06 0.08 

Table 7.2: Values of the calibration parameters at the end of the process 
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Figure 7.3: The network used for calibration and the itinerary of route 4 
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Figure 7.4: The itinerary of route 4, as published by the operator 

Prior to the calibration itself, extensive re-editing and processing of the raw data was 

necessary. First, some simple pruning of the dataset verified that only measurements 
from normal working days are used, omitting any weekends or holidays. In addition, the 

DRACULA model has information of traveller demand during the morning peak period 

only, and it therefore had to be confin-ned that the observed data used for calibration 

only cover bus journeys that depart during the morning peak. After examining the 

amount of daily measurements available from different departures of route 4, it was 

Hull Rzall 
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decided to base the calibration on travel times from bus journeys that depart during a 
relatively short period, between 8: 00 and 8: 30. Other departures were removed from the 
dataset. Note that although the departures used for calibration are taken from a 30- 
minute time window, each actual run of the TMM simulated the traffic through a period 
longer than this, since the simulation runs as long as all buses that departed before 8: 30 
have not reached their terminals. 

Some additional pruning of the raw data involved a dilemma. The data provided by the 
bus operator contained information on the departures between 8: 00 and 8: 30 on many 
different days, but each daily record consisted of a different list of stops. For some 
major stops there are data from most days, but for many other stops timing information 
is available from fewer days. To facilitate the automatic comparison between simulated 
and observed measurements, the list of stops from all days needs to be uniformly 
formatted as a set of sections. The sections can be specified either at a high level of 
detail, such that each section is the part of the route between two consecutive stops, or at 
a lower level of detail, such that each section also includes some intermediate stops. The 
dilemma arises since a high level of detail would enable more accurate calibration, and 
a better use of the available information about intermediate stops, but it would also 
oblige us to discard measurements from days when the data of some of the intermediate 

stops are missing. Specifying the sections at a low level of detail can be based on the 

major stops whose timing data appear on most days, and hence can give more daily 

measurements, but it also makes the calibration less refined. The decision finally made 
in this issue was a compromise: since 80 days of measurement are required (40 for 

calibration and 40 for validation), it was decided to use information from the biggest 

number of stops under the condition that timing data are still available from 80 days. 

The input needed for running the model also includes the number of passenger 
boardings at each stop along the analysed route. The bus operator provided us with 
boarding data for route 4, but the stops were grouped into clusters according to fare 

zones, and the required number of passengers at each stop was not stated explicitly. To 

tackle this problem we used a slightly older study (Sinha, 2004) that contained a more 
detailed demand profile of the same route. We followed the internal distribution of 
boarding within each cluster of stops in the older study, to convert the information of 
boardings per cluster into information of boardings per stop. The overall number of 

passengers in each cluster was left as in the newer data obtained from the operator. The 

boarding profile, clustered into route sections as given by the operator, is presented in 
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figure 7.5. The modified profile, as fed into the calibration procedure, is presented in 

figure 7.6. The columns painted with a different pattern in figure 7.6 stand for bus stops 
that are shared by route 4 and some other low-frequency routes. When several routes 

share the same stop, DRACULA models passenger boarding without direct account of 
the desired destination of each passenger. To comply with this method of modelling, the 

number of passengers boarding the other routes at these stops (based on data from the 

operator) was added to the profile. 
All the information prepared as input for calibration, including journey times and 
demand data, reflects the state of the York network in October and November 2004, 
during the morning peak of a normal working day. The data processing described above 
completed the necessary preparations for running the calibration procedure. 
The progress of the calibration process is described in figure 7.7. The coloured area 
shows the upper, lower and all intermediate objective values in the simplex at every 
stage of the calibration. The different colours and patterns represent the different ways 
of modification of the simplex along the process (as in figure 7.2). The process was 
stopped after 75 iterations, when the best objective value was around 0.16. As in the test 

experiment, it appears again that at the beginning of the process, simple modification of 
the simplex withfactor=-] performs well most of the time, and only one evaluation of a 
new candidate vertex is needed per iteration. Modification withfactor=0.5 (and also, 
less frequently, with factor=-0.5) is increasingly used as the process moves on, 
requiring two evaluations per iteration. The alternative search axis was not used 
frequently throughout the experiment, but its use in iteration 46 saved considerable 

runtime, since an improved vertex was found immediately (with factor= 0.6), and the 

need to re-initialise the simplex (as the traditional simplex method would require) was 

avoided. All in all, the objective function was evaluated 113 times during the calibration 

process. The best set of parameter values is presented in table 7.3. 

Figures 7.8 to 7.16 illustrate the improved explanatory power of the calibrated model. 
Three sections of route 4 were chosen for this illustration. Section I is from Acomb 

Library to Chaloner's Road; this part of the route is in a residential area, without 

significant congestion but with a high number of boarding passengers. Section 2 runs 
from Eason View to the Railway Station; along a major share of this section, the route 

goes through a bus lane where it has its own right of way, but towards the end of the 

section it join the general traffic entering the city centre. Section 3 lies between the 

Railway station and Clifford Street, and is entirely within York city centre. 
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Figure 7.7: Progress of the calibration with real data 

Figures 7.8 to 7.10, which compare the observed TTV with TTV simulated using the 

original parameters, show that before the calibration the model had a very limited 

predictive ability. In contrast, figures 7.11 to 7.13 demonstrate fairly good fit between 

the observed curves and those estimated using the calibrated model. This is confirmed 

by the validation results, in figures 7.14 to 7.16. The nine pairs of curves were 

compared using the K-S test; the test statistics are presented in table 7.4. The initial 

values indicate no fit at all between observed and simulated levels of TTV, whereas all 

values for the calibrated or validated model indicate plausible fit. 

Note that although the discrepancies between the observed and simulated TTV curves 

are relatively small, the simulated distributions of travel times in figures 7.11 to 7.16 are 

always narrower than the observed curves. This means that despite the good fit, 

simulated estimates of TTV tend of slightly underestimate the real level of TTV. It 

seems that the TMM does not do well in reproducing the few days with extreme travel 

conditions. This is apparent especially on section 3, presumably because this section is 

in the congested city centre and is prone to such conditions. 
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Parameter Value 

Normal acceptable gap (seconds) 3.75 

Minimum acceptable gap (seconds) 1.14 

Time waited before accepting reduced gap (seconds) 32.02 

Time waited before accepting minimum gap (seconds) 56.66 

Mean of car normal acceleration (m/s 2 3.00 

Coefficient of variation of car normal acceleration 0.13 

Mean of car maximum acceleration (m/s 2) 3.66 

Coefficient of variation of car maximum acceleration 0.12 

Mean of car normal deceleration (m/s 2 3.35 

Coefficient of variation of car normal deceleration 0.10 

Mean of car maximum deceleration (M/S2) 4.51 

Coefficient of variation of car maximum deceleration 0.12 

Mean of bus normal acceleration (m/s 2) 1.35 

Coefficient of variation of bus normal acceleration 0.12 

Mean of bus maximum acceleration (m/s 2) 1.43 

Coefficient of variation of bus maximum acceleration 0.20 

Mean of bus normal deceleration (m/s 2) 2.29 

Coefficient of variation of bus normal deceleration 0.16 

Mean of bus maximum deceleration (m/s 2) 2.15 

Coefficient of variation of bus maximum deceleration 0.16 

Demand fluctuation (coefficient of variation of overall demand) 0.06 

Table 7.3: Parameter values after calibration 

Section I Section 2 Section 3 

Before calibration 0.821 0.590 0.564 

After calibration 0.128 0.162 0.179 

Validation 0.231 0.179 0.197 

Table 7.4: Testing the calibrated model using K-S statistic 
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Figure 7.8: TTV on section I before calibration 

0.30 

0.25 

0.20 

Observed 
0.15 

Simulated 
LL 0.10 

0.05 

0.00 
600 800 1000 1200 1400 

Travel time (sec) 

Figure 7.9: TTV on section 2 before calibration 
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Figure 7.10: TTV on section 3 before calibration 
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Figure 7.11: TTV on section I after calibration 
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Figure 7.12: TTV on section 2 after calibration 
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Figure 7.13: TTV on section 3 after calibration 
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Figure 7.14: TTV on section I- validation 
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Figure 7.15: TTV on section 2- validation 
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Figure 7.16: TTV on section 3- validation 
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7.5. Runtime issues 

The obvious major drawback of the TMM calibration methodology presented in this 
thesis is its high runtime. Some facts about the duration of the two calibration 
experiments described in this chapter are presented in table 7.5. 

Test experiment Calibration with 
real data 

Duration of single 3.5 minutes 6 minutes 
DRACULA run (on a 
typical Pentium 4) 

Runtime for one evaluation 140 minutes 240 minutes 
(40 DRACULA runs) 

Number of iterations in 60 75 
calibration process 

Total number of 90 113 
evaluations of the objective 

Runtime of entire 8.75 days 18.83 days 
calibration process 

Table 7.5: Runtime of the calibration experiments 

Performing a full calibration experiment takes several days of uninterrupted run; this is 

clearly a significant runtime. The main justification for considering inter-run analysis of 

TMM to estimate inter-day TTV, despite the high time consumption, is simply that 

there are very few alternative methods for estimating TTV, as discussed in detail in 

chapter 5. Note that although high runtime is required for calibration, the 

implementation of a TMM to estimate TTV is much less of a computational burden. 

Once a satisfactory set of parameter values has been chosen, carrying out TMM-based 

estimation of TTV in a given scenario is equivalent to evaluating one vertex of the 

simplex (i. e. needs about 40 runs) and is likely to take a couple of hours. Another 

justification for using this type of analysis is that most analysts that are interested in 

estimating TTV already are regular users of TMMs, for other purposes; they normally 

keep and maintain TMM networks and other required input data. The relatively lengthy 
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calibration procedure described here might be actually considered a much quicker way 
for them to develop a tool for estimating TTV, compared to the alternative of creating 

new tools from scratch. 

7.6. Conclusions 

In this chapter we tested and then implemented the calibration algorithm and the 

modelling concept developed in chapter 6. Calibration was performed in three 
imaginary scenarios and in a real network with data from the city of York. Although the 

statistical fit between the outputs of the calibrated models and observed measurements 

was not perfect, the calibrated models did provide very reasonable TTV estimates. We 
found that the simulation-based estimates of TTV, after the calibration, were slightly 

underestimated, especially on a congested section of the analysed bus route. Still, in the 

absence of other tools for generating forecasts of TTV, we see the results as most 

satisfactory. 
During the test of the calibration procedure, some of the calibration parameters 

performed more rationally than others. It seems, for instance, that the extent of bus TTV 

is positively influenced by the coefficients of variation of bus normal acceleration and 
deceleration, and from the level of fluctuation in the overall demand. However, it should 
be reminded that the scope of the current study did not enable us to choose the set of 

calibration parameters systematically. A study of, the sensitivity of TTV estimates to the 

level of different parameters would constitute an important extension of the current 

work. Implementing the calibration methodology described in this thesis with a set of 

parameters that has been chosen more carefully would enable a more focused study and 

would presumably also result in a model with a better explanatory power. 
It is also worth mentioning that there is always need to improve the TMM itself, since 

any model is only a simplified version of the real transport system. Some features that 

apparently affect the level of TTV, such as accidents, various incidents and their 

consequences, are currently not modelled in DRACULA; incorporating them in the 

model will inevitably result in a more powerful tool for estimating TTV. 

Undoubtedly, the main weakness of the concept demonstrated here is the high runtime 

required for full calibration of a TMM. It is hoped that improvement in computing 

power will significantly reduce the time consumption of the proposed algorithm in the 
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future. Nonetheless, we remind that only the calibration takes significant time; 

application of the calibrated model does not require many hours of running, and it has 

the advantage of relying on an existing software tool rather than having to develop a 

new one. 
Through the calibration experiments we also examined a modification of the well- 
known simplex method. The modification is suitable for problems such as the one 

tackled here, where the evaluation of the objective function is time consuming due to 

high dimensionality and nondifferentiability. It was found that in stages of the 

minimisation process where the original simplex method requires very lengthy re- 
initialisation, the modified approach avoids this and moves on much faster by searching 
for a solution along an alternative geometrical axis. 
We deem the model calibrated here for York ready for application. In the next chapter 

this model is combined with the economic findings of chapter 4, for evaluating the cost 

associated with TTV in a hypothetical scenario of bus infrastructure investment. 
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Chapter 8 

Combining the demand and supply tools 

8.1. Introduction 

Although there clearly is much scope for extending and refining our econometric 

analysis (chapters 2 to 4) and traffic analysis (chapters 5 to 7), we have addressed two 

of the objectives specified in the introduction to this thesis: we have estimates of the 

willingness of bus users to pay for reduction in the level of TTV, and we have a tool 

that can be used for estimating the level of TTV in hypothetical scenarios. The third 

objective specified in chapter I is to illustrate how the outputs from these two separate 

sets of experiments can be used together in an attempt to determine the benefit from 

reducing TTV in a practical setting; we attempt to do this in this chapter. The next 

section formulates methodology for the joint application of our demand and supply 

tools. The following section describes a simple case study in which the methodology is 

applied, and presents a full set of results of this application. Some conclusions are 

presented in the last section of the chapter. 

8.2. Methodology 

We have seen that TTV affects the way travellers choose their departure time on their 

commuting trip. We introduce here an iterative procedure, in which travellers repeatedly 

choose departure times and travel conditions are repeatedly estimated based on their 

choices, till a stable choice pattern is reached. The travel conditions are estimated using 

the calibrated traffic microsimulation model (TMM) described in the previous chapter, 

with the same concept that sees a single run of the TMM as representing a single day in 

reality (it should be borne in mind that we still follow the definition of TTV described 

in chapter 1, i. e. we consider unpredictable variation between days but not systematic 

variation). The choices of the travellers follow the behavioural model developed earlier 

in the thesis, which ascribes penalties to the mean travel time, earliness and lateness. 

The gradual improvement of the choice estimates from one iteration to another is based 

on cost minimisation: the individual cost of travel, based on our econometric model, is 

calculated for each traveller, and his/her current choice is replaced with a different one 
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if it offers a lower cost. The total travel cost, summarised across all travellers, can be 

used in an appraisal framework to compare between different investment scenarios. 
A key principle in the methodology is the redistribution of departure time choices 
(DTCs) at each iteration. Bus journey times cause some travellers to change their 
departure times, but these changes affect bus journey times, and the process of 
determining DTC therefore needs to consider this loop. In the suggested estimation 

procedure, travellers repeatedly shift to earlier or later departures, in order to reduce 
their travel costs. The overall number of passengers wishing to board each departure of 
the analysed route is re-calculated at each iteration; the updated passenger demand per 
departure is fed into the next iteration and hence affects journey times and their 

variability. The process is repeated till the change in the distribution of DTCs between 

successive iterations is relatively small. 
The methodology outline is presented as a flow chart in figure 8.1. The principles of the 

methodology and the calculations involved are described in the following paragraphs. It 

is assumed that the methodology is to be applied for a single bus route, as we do in this 

chapter, although only minor changes would be required to amend it for the needs of a 

more general case. 

Notation. The following notation is used: 

I size of a given sample of users of the analysed bus route 

i index for an individual user 
N number of runs of the TMM, each run represents a day 

n index for a single run or day 

Di desired arrived time of user i to his/her destination 

Bi boarding stop of user i 

Ai alighting stop of user i 

VOTj value of the mean travel time of user i 

VOEj value of mean earliness of user i 

VOLj value of mean lateness of user i 

i index for a particular bus journey (with a particular departure time) 

ji S index for the s th bus journey to depart after (or before, if s<O) the departure 

chosen by user i 

jiO index for the bus journey chosen by user i 

jF index for the first bus journey during the analysis period 
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jL index for the last bus journey during the analysis period 
Tj, 

p, n clock time when bus j arrives at stop p on day n 
MTTjj mean travel time for user i when bus j is used 
MEýj mean earliness for user i when bus j is used 
ML, j mean lateness for user i when bus j is used 
COT, j cost of mean travel time for user i when bus j is used 
COE, j cost of mean earliness for user i when bus j is used 
COL, j cost of mean lateness for user i when bus j is used 
C) I total cost for user i when bus j is used 
Rj the proportion of all users that chooses bus departure j 
6j Ia dummy variable that equals I if user i chooses bus departure j, and 0 otherwise 

Inputs. The input for the process includes the following: 

1. Specification of the analysed network and time period. The network inputs 

include the configuration of the street network, the bus timetables and the 

general trip demand during the analysed period. 
2. Characteristics of the user demand for the discussed route, given as a sample of I 

users. The inputs include features of the journey made by each user, namely Di, 

Bi and Aj. 

3. The products of an economic model that describes the individual willingness of 

each of the I users to pay for an improved journey: VOTj, VOEj and VOLj. 

4. The products of a traffic model that can be used to obtain estimates of travel 

times and their variance. 

Simulation outputs and initial guess of departure time choice. At each stage of the 

algorithm described in figure 8.1, the TMM is run N times and a set of travel times is 

derived. The travel times obtained from the series of runs have the fonn of clock times. 
The main loop performed in the algorithm is used to iteratively determine the departure 

time chosen, such that each stage tries to improve the estimates obtained in the 

preceding stage. In order to start this loop, some initial guess of the pattern of DTCs is 

required. We make this first guess of the journey chosen by each bus user by assuming 

that he/she chooses the departure that minimises his/her mean travel time. That is, the 

initial individual j (namely the initial jjO) is chosen for each i as follows: 



216 

(8.1) 

0Fj: 
ýý jL ji arg min MTTj j= arg min -j N 

n=l 

Calculating individual mean travel time, earliness and lateness. At each stage of the 

algorithm, individual journey attributes are calculated using the following formulas: 

(8.2) 

i. 
IN 

N 
L(T MTT j,, Ai, n -Tj, Bi, n 

n=l 

N 
MEj =-J: max(Oý Di-Tj, 

Ai, n N 
n=l 

M 05 Tj, 
Ai, n -Di) N 

ImaX( 

n=l 

The same formulas are used both with j= ji 0, namely for calculating the attributes that 

correspond to the currently chosen journey, and with j= ji' (s 90), namely for calculating 

the attributes that correspond to other alternative departures. 

Calculating individual costs. The individual costs that correspond to each possible 

departure are calculated using the following fonnulas: 

(8.3) 

COP = MTTj - VOT 
IiI 

COEI. J = MEiJ - VOEI. 

COL j =ML ii -VOL 

Checking alternatives and updatinlz departure time choices. At each iteration of the 

algorithm, the total cost of the bus journey currently chosen by each passenger is 

compared to the total costs of alternative journeys that depart earlier or later. The 

procedure does not allow sudden radical changes in the DTC, as these do not seem to 
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represent real behaviour. Thus, the procedure restricts the range of alternative 
departures examined at each stage to those that are no more than two departures earlier 

or later than the currently chosen one. The process does enable a greater change of the 
DTC, but only as a gradual change, a small step at a time. The individual choice of a 

new j at each iteration can be formulated as follows: 

(8.4) 

ji 
0= 

arg min Cj- arg min f COlý + COEj + COL 1' 
1. iii 

-2 -1 0 +1 +2 
-F < j: ýý jL i (9 01- 

li I- li I. IiI. li I. 
)l i- 

Updatin2 user demand per departure. Once new DTCs have been made, the new 
demand per departure is calculated as follows: 

(8.5) 
0 

Rj 9. j , 
(6' =I if j=j ,0 otherwise) 

It should be noted that the total number of passenger, I, is not fed into the TMM runs at 

any point. The number of passengers that use the analysed route in the TMM is 

specified separately, based on passenger counts at bus stops, and is independent of the 

sample of I passengers discussed here. In our algorithm, the choices of the I bus users 

change only the proportion of the overall demand that uses each particular departure, 

not the overall level of demand. Namely, I is not the number of passengers but merely 

the size of a sample that should be big enough to account for the diversity of levels of 

WTP among travellers. Changing the value of I will affect the level of accuracy of the 

analysis but not affect the level of demand. 

Conver1jence test. The natural indication that the process should be terminated would 

be when all (or most) travellers cannot reduce their cost of travel by changing their 

DTC. However, in some test runs of the algorithm it was found that such convergence 

does not occur, since the choices of many travellers enter an endless loop. For some 

travellers it seems that the costs can fall if they shift to another departure, but in the next 

iteration, once several passengers have switched to the same departure, there is 

apparently no improvement and they return to the departure chosen previously. In the 

test runs some travellers repeated the same unsuccessful attempt to reduce the cost again 
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and again, and hence, convergence was not reached. This clearly does not represent 
realistic behaviour, and therefore a very simple constraint was introduced to the 

algorithm, to account for a more logical learning mechanism. The constraint deten-nines 

that if a shift to a specific departure has been tried and did not lead to reduced cost5 it 

cannot be tried again. Once this constraint was added, convergence of the cost estimates 
for about 90% of travellers has been finally achieved (i. e. for 90% of travellers it was 
not possible to reduce travel cost by changing DTC). It was decided that for the needs of 
the example presented here, trying to pursue convergence for the remaining 10% is not 
of major importance. Note that the fact that we seek convergence of individual costs 
rather than total costs implies that we deal with a user-optimal (as opposed to system- 
optimal) problem. 
The methodology has been devised for the purpose of comparing the costs of MTT and 
TTV between different scenarios of investment in bus infrastructure. If the methodology 
is applied to different network configurations, and convergence is reached, then the 

difference between the final cost estimates can constitute an important appraisal feature. 

The fact that the costs associated with TTV are explicitly accounted for, together with 

the DTC mechanism that determines these costs, is the main innovative element in this 

methodology. However, this is done here in an illustrative manner; the methodology is 

obviously limited in the sense that other effects of TTV, apart from the effect on DTC, 

are not considered. The main justification for this source of simplification is that, as we 
discussed in chapter 2, DTC seems to be the most direct effect of TTV. Changes in 

mode choice, route choice and other secondary responses to the level of TTV would 

need to be captured in a broad, multimodal and fully-elastic model which is beyond the 

scope of this thesis. 

The presented methodology clearly involves some other compromises. These are 

discussed in more detail towards the end of this chapter. 
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Network Demand 
inputs by user 

Economic 
model inputs 

by user 

Traffic model 
inputs 

Run simulation and get times 

Make initial guess of departure time choice (eq. 8.1) 

Run simulation and get times 

inputs 

Calculate individual mean travel time, earliness and lateness (eq. 8.2) 

for currently chosen departure and for alternative departures (eq. 8.4) 

Calculate individual costs (eq. 8.3) 
for currently chosen departure and for alternative departures (eq. 8.4) 

Update departure time choices (eq. 8.4) 

Update user demand per departure (eq. 8.5) 

N 
ponvergence? 

Y 

Stop 

Figure 8.1: Procedure for estimating DTC and travel cost 
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8.3. Demonstration of a scenario analysis 

8.3.1. Inputs 

This section demonstrates an application of the procedure presented above. We examine 

a simple case, where an extension of an existing bus lane is considered; we wish to 

assess the potential benefit from such extension, in general, and the benefit from 

reduced TTV, in particular. This is therefore a comparison between a "basic" scenario 

and an "extended" scenario. The possible extension of the bus lane does not include 

introduction of any other measures, such as priority in intersections and so on. We carry 

out this analysis in the same geographical area that all previous parts of the thesis have 

focused on, namely the city of York. This makes our econometric and traffic models apt 
to be used here. The bus lane extension is considered along the itinerary of the same bus 

route that has been previously discussed, namely route 4. This is a major commuting 

route, that operates at a high frequency (the headway during the morning peak is 8 

minutes), and crosses the city from West to East via the city centre. We only examine 

one direction of the route here, and only examine its performance during the morning 

peak period. 
Figure 8.2 shows the location of the basic and the extended bus lanes on a map of York 

and of route 4. A bus lane already exists between points A and B; this bus lane serves 
buses on their way to the city centre, but it does not stretch into the centre itself. We 

now consider extending the bus lane to point C, situated next to the York Railway 

Station, closer to the heart of the city centre. The length of the proposed new bus lane 

section is about 500 meters; it is suggested to construct it adjacent to, and not instead, 

the existing all-traffic lanes. It should be emphasized that this is only a conceptual 

scheme; we have not examined whether the physical right of way that would be needed 

for a bus lane along this section is actually available. 
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As input for the scenario analysis we generate a random sample of 1000 users that make 
their commuting trip on route 4 in the morning peak period. The actual number of 

passengers on this route in the morning peak (around 440 per hour in total) was 

presented in section 7.4, and is not equal to the sample size used here. The current 

analysis examines the choices made by passengers as a proportion of the entire sample 

and then applies these proportions to the actual demand; therefore the sample size was 

mainly determined so that it can reflect a large enough variety of preferences and origin- 
destination patterns. Each of the 1000 users in the sample has an individual monetary 

value for the mean travel time, the earliness and lateness. We assume here that the 

distributions of these WTP elements are the same as the distributions determined earlier 
in the thesis, in table 4.6 and in figures 4.12,4.13 and 4.14. These distributions were 

obtained by fitting smoothed curves to the results of a selective sub-sampling 

experiment, as described in detail in section 4.6. We remind the notion made in section 

4.6, that these distributions are not rigorously consistent with a full model of departure 

time choice. Due to the difficulties we faced when trying to reach a model from which 

the entire distribution of the WTP can be identified, we based our best-practice 

estimates on a compromised technique; these estimates are not likely to include the 

extreme values of people with a very high or very low WTP, but still, they are most 

likely to truthfully capture the preferences of the majority of the population. 

Each user also has individual boarding stop, alighting stop and desired arrival time at 

the alighting stop. The sources for data on boarding and alighting were described in 
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section 7.4; they include information provided by the bus operator, enriched by some 

more data from a recent study by Sinha (2004). A general description of the demand 

matrix used in the current experiment is brought in table 8.1. To simplify the 

presentation, the stops along the route are grouped in this table into four zones. The 

distribution of desired arrival times used here is taken directly from the responses of the 

participants of the survey described in chapter 3; this distribution is presented in figure 

8.3. 

As in the previous chapters, the TMM used for the analysis is DRACULA. Each set of 

estimates of the mean travel time, earliness and lateness (in a single iteration of the 

process) is based on the outputs of 40 runs; this is based on the discussion in section 6.4. 

The values of the 21 parameters whose calibration against real data was described in 

section 7.4 are fixed at the levels presented in table 7.3. 

The values of the main attributes we use as input for this demonstration of the 

methodology are summarised in table 8.2. 

0.5 

0.4 

0.3 

Cr 0 0.2 I- U- 

0.1 

0.0 
08: 00 08: 30 09: 00 09: 30 10: 00 

Desired arrival time 

Figure 8.3: The distribution of desired arrival times 
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Alighting 

Boarding 

Along 

Tadcaster 

Road 

Around the 

Railway 

Station 

Around 

Clifford 

Street 

Heslington 

Acomb 3.2% 7.4% 14.8% 10.3% 

Along Tadcaster Road 8.7% 19.2% 16.2% 

Around the railway station 10.5% 5.6% 

Around Clifford Street 4.1% 

Table 8.1: The demand matrix (with the bus stops grouped into zones) 

Attribute Value Source 

Size of sample of bus users (1) 1000 See discussion above 

Actual level of demand As in table 8.1 See section 7.4 

Desired arrival times As in figure 8.3 Survey results - see 
chapter 3 

Value of mean travel time 
(pence per minute) 

Lognormal with mean = 5.0, 
sta. dev. = 1.6 

See section 4.6 

Value of mean earliness (pence 
per minute) 

Normal with mean = 2.55 
sta. dev. = 4.4 See section 4.6 

Value of mean lateness (pence 
per minute) 

Lognormal with mean 
20.8, sta. dev. = 2.1 

See section 4.6 

Size of sample of days (N) 40 See section 6.4 

TMM parameters As in table 7.3 See section 7.4 

Maximum passenger load on 
bus 

105 See section 8.3.2 

Convergence test 
No change in DTC for 90% 

of travellers 

Table 8.2: Inputs for an illustrative scenario analysis 
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8.3.2. Constraining earliness benefits and maximum bus load 

The methodology presented earlier in this chapter can be generally used with different 

sources for the individual WTP and with different TMMs. The specific sources used in 

the application illustrated here have some drawbacks that required making small 

modifications to the methodology. 
First, we use a distribution of the value of the mean earliness that includes some 

negative values. As this is based on careful analysis of our survey responses, as 
described in chapter 4, it does not constitute any problem in itself However, as 

mentioned in chapter 4, the dataset that was used to estimate this distribution did not 
include extremely early departures; therefore, when applying this distribution it is 

necessary to make sure that the negative WTP is not erroneously interpreted as a 
justification for some irrational choices. The main risk is that some travellers whose 
VOE is in the negative tail of the distribution, and whose current DTCs are early 

enough to make their costs of earliness negative, will keep shifting their departures to 

earlier times in order to reduce their cost even further. In order to avoid this 

unreasonable behaviour, a constraint was included in the algorithm, verifying that if the 

cost of earliness associated with a travellers' DTC is negative already, the option of 

shifting to an earlier departure can only be chosen if it also offers reduction in the costs 

other than the cost of earliness. In a mathematical formulation, a departure 0) earlier 

than the currently chosen one OjO) can be considered only if- 

(8.6) 

COE 
0 

>- 0 and COT' .+ COE' .+ COL' .< COT' .i0+ COE jio 
+ COL jio 

iiiiii 

or 

COE io <0 and COT' + COL, .< C07-1 
0+ 

COL, 
0 

iiii 

A second amendment to the methodology is needed because the DRACULA version 

that we use to estimate travel times does not feature any constraining on the maximum 

passenger load on each bus. In some preliminary test runs of the methodology it became 

apparent that without such constraint, the number of passengers choosing the same 

departure might significantly exceed that capacity of a single bus. A bus capacity 

constraint was therefore introduced externally, as part of our algorithm; it lets a 
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passenger shift to his/her preferred journey j (which has been chosen using (8.6)) only if 

the number of passengers on the bus in the simulation is smaller than the bus capacity. 

Passengers that cannot board their chosen bus are assigned by the algorithm to a slightly 

earlier or later bus in which the maximum capacity is not reached. This constraint is 

checked in every iteration, hence some of the passengers who cannot board their 

preferred bus in one iteration do manage to do so in the following iteration. As shown in 

table 8.2, the maximum passenger load per bus chosen for the current experiment is 

105. Note that this value refers to the physical maximum bus capacity, which is 

occasionally reached in practice, even if it is much higher than the maximum capacity 

used for design. While seeking the most appropriate value to use as the physical 

maximum capacity, we came across a wide range of suggested values, most of which 

were much lower than 105 (i. e. around 80). Since it was not possible to investigate 

which of the suggested values was the most realistic, it has been decided that for the 

current needs even a modest capacity restriction would be sufficient, as it is primarily 

meant to prevent the algorithm from accepting irrational bus loads; therefore, the 

relatively high estimate of capacity is used. 

8.3.3. Departure time choices and the cost of travel time variability 

The DTC and cost estimation methodology presented in the previous section was 

programmed in C and run twice, once for the "basic" scenario and once for the 

"extended" scenario. Figure 8.4 presents the gradual changes in the total journey cost, 

summarised across all 1000 travellers. It shows that in the first few iterations the 

choices and the respective costs are very unstable. Many travellers move their departure 

forward or backward, attempting to reduce their generalised cost of travel but 

sometimes experiencing an actual higher cost, due to the high number of passengers on 

several particular departures. This is gradually stabilised in later iterations; for both 

scenarios the process was stopped after II iterations. The runtime of the whole process 

was about 70 hours for each scenario. 
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Figure 8.4: Convergence of the total journey cost 

We now focus on the last set of estimates reached for each scenario after convergence. 
We are primarily interested in comparing the DTCs, travel time distributions and costs 
between the two scenarios. Figure 8.5 describes the general relationship between 

desired arrival time to the destination and the chosen departure time, before and after 

the extension of the bus lane. It shows that with the extended bus lane, travellers 

generally tend to leave slightly later. This is a direct outcome of the improved travel 

conditions, as we illustrate later. The shift of some travellers to somewhat later 

departures is also illustrated in figure 8.6, which depicts the difference in the 

distribution of DTCs between the scenarios. 

Note that the departure times in figures 8.5 and 8.6 are the times when the bus, and not 

each traveller, leaves its origin. The choices are presented in this aggregated form in 

order to make the graph easy to read. Travellers board the bus later (or at least not 

earlier) than the bus departure time, at various points along its route; but since in this 

example the boarding stop of each traveller is fixed, choosing a bus that departs later 

also implies that the actual boarding is later. 

Tables 8.3 and 8.4 present the changes in the MTT and TTV for each bus departure 

following the construction of the bus lane. As explained in chapter 1, TTV is measured 

as the standard deviation of travel times. The tables focus on the section of route 4 in 

which the bus lane is introduced, i. e. the section B-C in figure 8.2. Naturally, this 

section is of special interest in the current analysis, since it uses the general-traffic lanes 
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Figure 8.5: Departure time choices of travellers with different desired arrival times 

in the basic scenario but has a separate right of way in the extended scenario. The bus 

lane section includes three bus stops, two at its ends and one at a distance of about 180 

meters from the beginning of the section (and about 320 meters from its ending); we 

therefore present the MTT and TTV separately for each of the two segments between 

bus stops. The infori-nation in table 8.3 is also presented graphically in figure 8.7 (MTT 

on segment 1) and figure 8.8 (MTT on segment 2). The inforination in table 8.4 is 

presented graphically in figure 8.9 (TTV on segment 1) and figure 8.10 (TTV on 

segment 
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Figure 8.6: The distribution of departure time choices 

It can be observed that for most bus departures, the extension of the bus lane into these 

two segments leads to improvement in both the MTT and TTV. However, this is not an 

absolute improvement, that is evident in all bus journeys, but a relative improvement in 

the average performance. Examining the different effects of the bus lane extension on 
the MTT and TTV on the buses that depart at different times reminds us that travel 

conditions are stochastic in nature, and that the likely outcome of improved 

infrastructure is not a deten-ninistically smoother journey but an increased chance of a 

smoother j oumey. 
A lower MTT in the new bus lane section, due to a reduced level of friction between 

buses and cars, is evident for the majority of the bus journeys, on both segments (table 

8.3). The average MTT across all departures reduces by 10% on segment I and 15% on 

segment 2. There is also a reduction in the standard deviation of MTT, i. e. in the level 

of fluctuation between the different departures. Both the departure with the minimum 

MTT and the one with the maximum MTT have shorter journey duration in the 

extended scenario. The improvement on segment 2 is generally greater, when expressed 

as a percent of the original MTT. This is probably an outcome of the fact that segment I 

is only 180 meter long; this length is not sufficient for considerable acceleration, since it 

is almost immediately necessary to decelerate in order to stop again at the end of the 

segment. Segment 2 is about twice longer than segment 1, and there is more room in it 

to take advantage of the segregation from private car traffic. 
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Segment I Segment 2 
Departure rB. 

a, sic Extended Change Basic Bas ic Extended Change 

4 g7 -16% 07: 08 43.8 3366.7 -16v( 31.8 38 24.9 -22% 

07: 16 51.8 58.3 13% 29.3 21.8 -25% 

07: 24 56.8 63.4 t2% 35.6 34.8 -2% 

07: 32 70.8 55.5 -22% 50.7 55.7 10% 

07: 40 1.24.7 68.2 -45% "v 
76.4 44.2 -42% 

07: 48 79.8 66.7 -160/o 
61.7 -21% 

07: 56 105.6 110.4 5% 69.1 56.3 -18% 

08: 04 73.1 57.4 -21% 106.6 41.8 -61% 

08: 12 70.5 43.6 -38% 77.4 44.6 -42% 

08: 20 57.9 57.8 0% 67.2 48.3 -28% 

08: 28 65.7 72 .6 
11% 56.6 50.7 -10% 

08: 36 59.6 56.7 -5% 53.3 51.8 -3% 

08: 44 66.7 66.1 -1% 64.7 45.8 -29% 

08: 52 63.1 67.3 7% 50.4 60.0 19% 

09: 00 56.2 71.8 28% 38.9 67.6 74% 

09: 08 47.2 35.5 -25% 35.5 24.0 -32% 

Mean 68.3 61.7 -10% 57.6 45.9 -15% 

Sta. dev. 20.9 17.2 -18% 21.2 13.7 -35% 

Min 43.8 35.5 -19% 29.3 21.8 -26% 

Max 124.7 110.4 -11% 106.6 67.6 -37% 

Table 8.3: Mean travel time on individual bus journeys (in seconds) 
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Segment I Segment 2 

Departure 
Basic Extended Change Basic Extended Change 

07: 08 20.1 14.8 -26% 20.7 3.0 -85% 

07: 16 17.4 26.2 51% 21 () 

07: 24 17.9 21.8 22% 28.5 25.1 -12% 

07: 32 27.4 23.9 -13% 28.2 29.6 5% 

07: 40 33.6 17.0 -49% 45.8 33.2 -28% 

07: 48 29.9 15.4 -49% 43.0 29.6 -31% 

07: 56 34.4 31.3 -9% 

08: 04 39.1 39.7 2% 58.2 34.3 -41% 

08: 12 41.8 17.2 -59% 59.9 28.9 -52% 

08: 20 39.8 18.1 -55% 49.9 44.8 -10% 

08: 28 36.2 39.0 8% 46.9 40.7 -13% 

08: 36 35.6 13.9 -61% 29.0 30.3 4% 

08: 44 38.8 20.0 -49% 41.5 26.0 -37% 

08: 52 17.0 32.3 90% 30.9 46.9 52% 

09: 00 26.4 9.6 -64% 26.7 40.5 52% 

09: 08 27.6 32.5 17% 25.1 3.4 -87% 

Mean 30.2 23.3 -23% 36.8 28.7 -22% 

Sta. dev. 8.5 9.2 8% 12.5 14.4 15% 

Min 17.0 9.6 -44% 20.7 2.2 -89% 

Max 41.8 39.7 -5% 59.9 46.9 
1 -22% 

Table 8.4: Travel time variability on individual bus journeys (sta. dev., in seconds) 
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Figure 8.7: Changes in the mean travel time on segment I 
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Figure 8.8: Changes in the mean travel time on segment 2 
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Figure 8.9: Changes in travel time variability on segment I 
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Figure 8.10: Changes in travel time variability on segment 2 
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The extent of reduction in TTV, in the segments where a bus lane has been constructed, 
is greater than the reduction of MTT (table 8.4). As with the MTT, there is a high 
degree of randomness in the network performance, and the improvement is in the 

average TTV rather than in the TTV on all bus journeys. The variation in the level of 
TTV between the different departures (i. e. the standard deviation of the standard 
deviation of journey times) does not fall: it goes up by 8% on segment I and 15% on 
segment 2. Eyeballing the network simulation as it runs confirms that the reason for this 
increase is that the separate right of way makes the bus journey smoother on most 
occasions, but not all of them. Occasional serious delays in the bus lane are possible 
even in the extended scenario, due to reasons such as a high number of boarding 

passengers on a bus that arrives late following irregular travel times further upstream, or 

a gridlock caused by private cars at the junction at the exit from the bus lane. Since 

there are some serious delays, even if less frequent than in the basic scenario, it is likely 

that on most days and most bus departures TTV decreases, but on some specific once it 

remains high, thus resulting in a higher variation of the TTV. This logic is supported by 

the minimum and maximum changes in the level of TTV: while the minimum falls 

drastically, the reduction of the maximum is more modest. 
Table 8.5 shows the effect of the extension of the bus lane on the level of MTT and 
TTV for the entire journey of route 4, ftom Acomb to the University of York. We 

obviously do not expect the new bus lane to cause a major change here, as it only covers 

a minor part of route. However, the table shows that the change is considerable: the 

mean reduction in MTT is 8.8% and in TTV it is 11.8%. There are some fluctuations 

between the different bus journeys in the extent of difference between the scenarios, as 

implied for instance by the standard deviation of the standard deviations; but compared 

to the fluctuations in the measurements on individual segments, the results for the entire 

journey exhibit greater stability. The difference in the level of MTT and TTV 

fluctuation between a single segment and the whole route results ftom the ability to 

partially recover, before the end of the journey, some of the irregular delays that occur 

on specific segments. We found evidence for such ability in the analysis of real data in 

chapter 1, and hence, this output of the simulated network makes good sense. 
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Mean travel time Travel time variability 
Departure 

Basic Extended Change Basic Extended Change 

07: 08 59.1 57.0 -3.6% 2.75 2.51 -8.7% 

07: 16 57.9 56.7 -2.2% 2.15 2.04 -4.9% 
07: 24 57.9 56.9 -1.8% 1.73 1.84 5.9% 

07: 32 75.0 68.5 -8.7% 4.67 3.58 -23.3% 

07: 40 104.8 88.0 -16.1% 6.11 5.8 -5.1% 

07: 48 91.9 86.8 -5.6% 4.55 4.44 -2.5% 

07: 56 108.3 98.1 -9.4% 3.87 4.38 13.1% 

08: 04 142.1 129.1 -9.1% 3.19 3.32 3.9% 

08: 12 162.2 140.0 -13.7% 4.46 3.52 -21.0% 

08: 20 144.1 132.8 -7.8% 1.71 1.62 -5.6% 

08: 28 120.4 109.8 -8.8% 6.42 5.16 -19.7% 

08: 36 116.1 105.4 -9.2% 2.89 2.56 -11.3% 

08: 44 133.7 118.6 -11.3% 6.46 5.63 -12.8% 

08: 52 58.1 56.8 -2.2% 1.96 1.87 -4.7% 

09: 00 72.3 68.1 -5.8% 4.54 3.66 -19.4% 

09: 08 88.0 79.7 -9.5% 8.19 6.00 -26.7% 

Mean 

Sta. dev. 

Min 

Max 

99.5 

34.7 

57.9 

162.2 

90.8 

29.2 

56.7 

140.0 

-8.8% 

-15.7% 

-Z2% 

-13.7% 

4.1 

1.9 

1.7 

8.2 

3.6 

1.5 

1.6 

6.0 

-11.8% 

-23.2% 

-5.6% 

-26.7% 

Table 8.5: The effect of the new bus lane on travel time of the entire route (in minutes) 
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The most striking finding in table 8.5, when it is compared to table 8.3, is that although 
the direct time saving within the bus lane extension is never more than 2 minutes, the 

average travel time saving on the whole route is almost 9 minutes. In other words, the 

simulation outputs imply that most of the reduction in travel time occurs not on the bus 
lane itself, but elsewhere along the route; this is indeed surprising. In order to 

understand the source of this result, an attempt was made to follow the movements of 
many different buses on the simulation screen, in both the basic and extended scenarios, 
and trace differences in the way delay occurs. This is clearly not a systematic way of 
investigating whether the effect of the bus lane on travel times in other locations is 

plausible; but it seems the only possible way, since we do not have real travel time 

measurements for scenarios with and without a bus lane, and since it is not possible to 

orient the simulation to only generate time differences that result from the causes that 

we wish to examine. Our main conclusion from this experiment is that a typical event, 

which subsequently triggers serious delays, occurs much more frequently in the basic 

scenario, and leads to the mentioned difference between the scenarios. This typical 

event involves the arrival of a bus to a stop before the preceding bus has left it; from 

this stop on, the two buses tend to bunch together, and their frequent arrival at some of 
the stops at almost the same time hinders their efforts to enter or leave the stop 

undisturbed. In the extended scenario, slight delays at the first sections of the route have 

a better chance of recovery in the extended bus lane, before entering the congested city 

centre, and such deterioration is often avoided. The important insight suggested by this 
finding is that apart from the direct effect that the introduction of a bus lane has on bus 

travel conditions on the lane itself, it also has an indirect, but yet strong, positive effect 

on the way buses perform further downstream, as it gives them a chance to realign (at 

least partially) with their planned timetable. It can be assumed that the location of the 

bus lane examined here makes it a critical link of the route, as it is situated late enough 

along the route to suffer from delays but also just before the city centre, where due to 

the high number of passengers, small delays might deteriorate to bigger ones. Being a 

critical link might explain the significant difference between the scenarios and insinuate 

that this is a good choice of location for a bus lane. It should be reminded, though, that 

these conclusions are not supported here by real data; it would be important to look for 

empirical evidence for these effects in future work. 

The results presented so far look at the levels of MTT and TTV experienced on the 

various bus journeys. This gives an idea of the effect of the extension of the bus lane on 
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the general performance of route 4. However, as our DTC model suggests, bus users are 
less concerned about the standard deviation of their travel time, and are mostly 

interested in optimising the extent of late or early arrival to their destinations. The actual 

cost of travel is therefore derived from these results after applying formulas (8.2) and 
(8.3), which take into account the individual MTT, earliness and lateness, and the 
different WTP ascribed by each traveller to changes in these attributes. The distribution 

of individual WTP was described earlier in the chapter and in more detail in chapter 4; 

we now combine it with the distribution of the individual MTT, ME and ML that each 
traveller experiences during his/her bus journey. 
Figures 8.11,8.12 and 8.13 describe the cumulative frequencies of the individual MTT, 

ME and ML. The mean individual travel times are shorter than the bus travel times 

presented above, as most passengers board and alight at various points along the route. 
The figures show reduction in all three time elements, following the extension of the 
bus lane. They also illustrate that most travellers prefer to arrive at their destination 

significantly earlier than their formal desired arrival time, in order to reduce their 

chance of arriving late. This is a direct result of the high lateness penalty found in 

chapters 3 and 4; a traveller whose VOL is 4 times higher than his/her VOE, would 

rather arrive up to 4 minutes early than I minute late. The strong preference to avoid 
lateness is also apparent in the fact that for almost a quarter of the travellers, the mean 
lateness is zero, implying that they are willing to leave early enough to make the risk of 
late arrival almost nonexistent. 

Figures 8.14,8.15 and 8.16 describe the cumulative frequencies of the elements of the 

individual trip cost. Figure 8.17 shows the sum of all cost elements. The presented costs 

are per individual journey. The figures illustrate that the apparent result of the high cost 

of lateness, or of the strong willingness to avoid it, is that the final cost of lateness is 

quite low compared to the cost of earliness. Figure 8.18 and table 8.6 present a 

summary of the total individual costs during the analysis period (namely the morning 

peak), across the 1000 individual trips in the sample. The absolute numbers presented 

are less important than the differences between the scenarios (for convenience, table 8.6 

also presents the corresponding values in time units). The extension of the bus lane 

appears to cause a reduction of about 14% in the total journey cost. The effect of the 

extension on the cost of earliness (46%) and lateness (-20.4%) is bigger than the effect 

on the cost of travel time itself (-5.8%). Namely, it seems that the reliability effects of 

the bus lane scheme are stronger than its time saving effects; this is a crucial finding, as 
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we have demonstrated in chapter 2 that the common practice of scheme appraisal tends 

to ignore reliability benefits. Note that the significant fall in the cost of earliness does 

not result from a relatively uniform reduction across many travellers, but primarily from 

the existence of a small group of travellers in the basic scenario that due to high 

penalties on earliness, choose to depart extremely early; there are only very few such 
travellers in the extended scenario. 
The most significant finding is that the introduction of TTV considerations into the 

calculation of costs has doubled the estimated benefit for the entire journey: from 5.8% 

when only the MTT is taken into account to 13.8% when all scheduling costs are 

considered. As this is the effect on the total cost of a relatively minor scheme, that 

includes a 500-meter-long bus lane without introducing any traffic control measures in 

intersections, the benefit from reduced TTV seems significant in both absolute and 

relative terms. This finding has important policy implications, which we discuss at the 

end of this chapter. 

8.4. Conclusions 

In this chapter we have demonstrated the feasibility of estimating the cost of bus travel, 

including the contribution of travellers' trip scheduling behaviour, through the joint 

application of a departure time choice model with traffic microsimulation. The 

methodology is based on a disaggregate, microscopic approach; it is sensitive to the 

diversity of tastes and preferences in the population of bus users, and also to 

randomness, heterogeneity and many local factors in the urban road network. The 

methodology was applied in an illustrative case study, in which the extension of an 

existing bus lane is considered. By examining the outputs of this procedure, it was 

generally found that the way it converges into estimates of the travel cost makes good 

sense. 
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Basic Extended Change 

E2232 (78.4%) E2103 (85.7%) 
Mean travel time -5.8% (41.2 minutes) (39.3 minutes) 

E481 (16.9%) E260 (10.6%) 
Earliness -46% (19.8 minutes) (11.3 minutes) 

L133 (4.7%) E92 (3.7%) 
Lateness -20.4% (0.8 minutes) (0.5 minutes) 

Total E2847 (100%) f-2455 (100%) -13.8% 

Table 8.6: The effect of the bus lane extension on the total user-time cost 

during the morning peak (in brackets: mean value per traveller in minutes) 
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The presented approach has a few major weaknesses. First, it considers the effect of 

TTV on DTC, which we believe is the main effect, but it does not consider other effects 

that surely exist, such as the way TTV influences mode and route choice. If a change in 

the level of TTV causes some travellers to shift to other modes or to change their trip 

itineraries, the equilibrium pattern that should be sought when estimating the cost of 

TTV is more complicated than the one described here, because there are complex 

interplays between the different choices that different travellers make. The choice of 

some travellers to avoid a particular mode of transport or a specific location in the 

network might lead other travellers to choose the very same mode or location, or to 

affect the choices of the users of adjacent elements of the transport system; a realistic 

model of systemwide choice making should be able to accommodate these dynamics. 

This also relates to the flexibility of the fundamental decision of whether or not to 

travel: our model assumes that the total number of users is fixed, but in reality, changes 

in reliability (or in other travel conditions) are also likely to induce new demand, or in 

other cases, to reduce existing demand. All in all, it would be necessary, in future 

studies, to allow the repeated loop of decision making, that follows the estimation of the 

level of TTV in each iteration, to include a more comprehensive choice model. 

Another limitation of the proposed methodology is that it only accounts for the effects 

of a bus scheme on the journey cost for bus users. In practice, launching new 

infrastructure for buses is often followed by changes in road configuration that directly 

affect the generalised cost for car users. The attempts to improve the journey conditions 
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for buses occasionally result in a poorer travel experience for car travellers, for example 

when a lane for general traffic is converted to a bus lane. Although this is sometimes 
done with an explicit intention to give buses priority over cars, there should at least be 

some awareness of all likely effects. Therefore, a more thorough appraisal study than 

the one illustrated here must address costs and benefits incurred by all affected network 

users. 

An additional limitation of our analysis is the focus on the morning peak period only. 
To summarise the total costs and benefits from a suggested scheme, it is necessary to 

add up the typical values for different times of day and days of week. It is very likely 

that the difference between a morning-only analysis and an entire-day (or, ideally, 

entire-year) analysis will be not only in the order of magnitude of the total costs, but 

also in the proportion of the costs of MTT and of TTV out of the total. The DTC 

considerations that our case study concentrates on only apply in the morning 

commuting trip, in which the main concern for most travellers is about the desired 

arrival time at work. In trips on the way back from work, or trips for non-commuting 

purposes, DTC behaviour is expected to follow different rules, which need to be 

analysed with a different choice model. It is not possible to estimate how the summation 

of costs and benefits across multiple periods will alter the conclusions from the 

morning-only illustration presented here. Clearly, the intensity of travel demand during 

the morning peak guarantees that the costs of the morning commute will have a major 
influence on any multi-period analysis; but the exact extent of such influence should be 

studied in more detail in the future. 

It would also be useful to examine whether the estimated costs are seriously affected by 

our choice of DRACULA as the main tool for modelling network performance. 

Naturally, the sub-models in DRACULA have features that differ from other tools (such 

as VISSIM, Paramics and others). For instance, bus capacity constraints and a detailed 

representation of the individual alighting stop of each passenger are modelled in the 

version used here in quite a simplistic manner. DRACULA is also simpler than some 

other packages in the sense that its current version does not have dynamic route choice 

features. Undertaking similar analysis with other software can help identifying elements 

of a network model that the cost of TTV is sensitive to. 

Despite these weaknesses, our finding concerning direct consideration of reliability 

costs in the evaluation of a proposed scheme still seems meaningful. Our case study 

implies that a relatively minor scheme, which gives a separate right of way to buses 
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along a 500-meter-long corridor, results in a reduction of about 14% in the total user- 
time cost for the passengers of the analysed route in the morning peak. We find that the 

introduction of a bus lane not only reduces travel time and its variability within the bus 

lane boundaries, but also helps to maintain the regular headway along the entire route, 

and thus prevents the creation of further delays after the bus has left the bus lane. The 

saving from the bus lane scheme, as calculated here, is more than double the respective 

saving that would have been implied if only the reduction in the MTT had been 

accounted for. This finding confirms the concern raised in the introduction to this thesis, 

that by not including TTV considerations in the common appraisal practice, a major 

source of benefit is not revealed. 

The direct implication of this is that justifying investment in a transport scheme without 
taking TTV into account might result in a decision to embark on the wrong project. If 

two alternatives of a proposed schemed are compared, and one of them has a slight 

advantage over the other in the expected MTT savings, it is likely to be the selected 

option even if the other option can considerably reduce TTV. The fact that for many 

years the benefits from improved reliability have not played a role in appraisal studies 
has probably influenced not only the decisions about specific projects, but the formation 

of transport policies in general, because the focus on the reduction of MTT is also a 
focus on the traditional forms of transport investment. Schemes that explicitly aim at 

improving reliability, such as various control measures or passenger information 

systems, might still be consistently undervalued. We conclude that if the results of the 

case study presented here truly represent the outcome of other potential investments in 

bus infrastructure, then there is a genuine need to rethink the way different time 

elements compose the total cost savings in many current appraisal studies. 
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Chapter 9 

Conclusions and suggested extensions 

9.1. The contribution of this thesis 

The reviews, discussions and experiments described in this thesis tackled various 

problems that transport analysts face when they wish to estimate the benefits from 

improved bus reliability. We focused on the variability of travel times as a key indicator 
of unreliability. In a nutshell, the following are the main themes in which this study has 

added to the experience and the knowledge gathered by others: 
1. The study presented estimates of the distribution of the willingness of bus users 

to pay for reduction in the extent of TTV. 

2. The study proposed a methodology for predicting the extent of TTV in 

hypothetical scenarios, in a way that is sensitive to local factors such as the 

detailed configuration of the transport network. 
3. The study illustrated an estimation framework that combines the two 

abovementioned methodologies and can be used to incorporate TTV 

considerations in scheme appraisal. 
To the best of the author's knowledge, no previous studies explicitly addressed any of 

these three issues. Note that these three areas of contribution correspond to the key 

objectives of this thesis, as specified in section 1.4. In this concluding chapter we bring 

together some of the main conclusions reached throughout the thesis and point to 

several potential directions for future research. The following paragraphs elaborate on 

the three abovementioned areas in which this thesis has gone farther than previous 

works. 

The most straightforward contribution of this study is the values suggested for 

converting information about the bus journey of an individual into generalised cost 

estimates, which include the cost of the discomfort caused by TTV. A complete set of 

such values for bus users did not appear in the literature previously. While seeking these 

values, we have found new evidence for the advantages of modelling the impact of TTV 

indirectly, through the resulting patterns of earliness and lateness. Such evidence was 

needed to extend an ongoing discussion in literature, and particularly for public 

transport users, whose response to TTV has not been sufficiently studied before. We 
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have also brought evidence for the valuation bias caused by the common use of the 
direct approach for modelling the effects of TTV. We find that this approach 

underestimates the significance of TTV costs as a proportion of the overall journey cost, 
and therefore, using it does not do justice the true benefits from improved reliability. 
The discussion of this issue here might help preventing such undervaluation in future 

assessment. 
On the way to these monetary estimates, we have also introduced new ideas regarding 
the presentation of the concept of TTV in stated preference (SP) experiments. The 

surveying methodology suggested here uses a relatively light display in terms of the 

amount of numerical information presented, and incorporates improved graphical 
features. This might assist in alleviating the cognitive burden on the participants of such 

experiments in the future, and hence it might improve the power and fit of future 

models. 

The author is not aware of any previous studies of the attitudes to TTV that take random 

variations in tastes and preferences between travellers into consideration. We have paid 

much attention to the derivation of the distribution of the willingness-to-pay (DWP) 

across different travellers. The thesis does not propose innovative theory in this area, 
but it presents findings that contribute to the discussion of practical issues in the 

derivation of the DWP from SP surveys and from choice models, not solely for TTV 

valuation. We bring in some important insights with respect to the distinction between 

optimised and non-optimised elements in the specification of Mixed Logit models, and 

some arguments about different approaches for constraining the distributions of the 

random parameters. In addition, we raise the need for new statistical tests in the process 

of estimating the DWP; traditional tools such as the maximum simulated likelihood are 

efficient and powerful, but as we demonstrate, they can sometimes lead us to prefer an 

imperfect model specification. We also illustrate here that when comparing different 

estimates of a distribution, it is important to test not only the somewhat-obvious vertical 

dimension (of the cumulative frequency curve), but also the horizontal one, as this is 

likely to detect major errors that the DWP is prone to. 

The thesis expands the discussion, which has only recently been launched, of 

nonparametric estimation of the DWP. It demonstrates how a sub-sampling technique 

can be involved in the process of estimating the DWP, but also shows that previous 

studies that used such technique for a similar purpose might have not employed it 

appropriately, because they used it before the specification of a Mixed Logit model and 
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then allowed re-estimation of the parameters. The thesis also describes a simple 

nonparametric experiment which investigates what is the amount of information about 
the DWP that is explicitly based on the data from the SP survey. An important 

contribution of this experiment is the conclusion that the ability to reach proper 
identification of the DWP is related to the dimensionality of the SP survey, and that this 

must be accounted for in the survey design. 

Our analysis of the DWP also contributes to the debate on the more general issue of 
how to interpret evidence for the existence of negative willingness-to-pay for attributes 
related to travel time. Unlike previous studies, that either support or contradict the 

general case for potential negative willingness-to-pay, we find that for some time- 

related variables (such as the mean earliness or lateness), a small share of negative 

values should not be as strictly rejected as for the mean or general travel time. 
In a research area that at first glance might seem irrelevant to the issues listed above, 
this study points to the lack of available tools for estimating the level of TTV in 

hypothetical scenarios. Tools that can generate TTV forecasts, in a way that is sensitive 
to the network configuration and meets the needs that come up in scheme appraisal, are 

almost nonexistent. We have discussed the case for using traffic microsimulation for the 

analysis of variations in the performance of .a transport network, owing to the 

fundamental role that randomness and heterogeneity have in the concept of microscopic 

modelling. In particular, this study has introduced the concept of establishing an 

analogy between a single run of a traffic microsimulation model (TMM) and a single 
day in the real network; such analogy can open an avenue for estimating the level of 
TTV by analysing variations between runs of the TMM- 

As part of our search through the literature in network modelling, we have defined a list 

of key principles that should be addressed whenever a TMM is to be calibrated. These 

principles have to do with the scope of the calibration problem, its formulation and 

automation, the choice of measures of fit, the number of model runs, the dimensionality 

of the TMM outputs and more. Subsequently, we have developed a full algorithm for 

TMM calibration. The algorithm attempts to make the distribution of simulated bus 

travel times resemble the respective distribution in the real transport system. In the 

development of this algorithm we have tackled various methodological, computational 

and statistical issues. To enable solution of the calibration problem, this thesis also 

introduces a modification of the Downhill Simplex Method of optimisation. The 

modification is suitable for problems in which the objective function is 
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nondifferentiable and takes a long time to estimate. Although we do not provide a 

rigorous theoretical background for this modification, we show that according to our 

experience, it may save precious runtime. 
The last methodological section of the thesis proposes a procedure for joint application 

of the previously-developed economic tool and network tool in an appraisal framework. 

This iterative procedure seeks a stable pattern of departure time choices and derives the 

cost of the mean travel time and the cost of unreliability, which can then be compared 

with the respective costs in other scenarios. Procedures that directly compute the cost of 
TTV, and applications of departure time choice models in general, are very uncommon 
in previous literature. We applied this methodology to assess the benefit to the users of 

a major bus route following the introduction of a bus lane along a 500-meter-long street 

section, close to the city centre in York. This application suggests that economic saving 
from the bus scheme, including the contribution of the effects of reduced TTV, is more 
than double the respective saving calculated in the traditional way that only looks at 

reduction in the mean travel time. This finding has serious policy implications: it 

enhances our fear that by ignoring reliability benefits, policy-makers only see part of the 

full picture of benefits from investment in new. infrastructure, and are very likely to 

allocate money for the wrong schemes. Although these results are based on a limited 

study, they do indicate that more attention should be given both to schemes that directly 

aim at improving the reliability of public transport services, and to the secondary 

reliability effects of schemes that do not see reducing of TTV as their main objective. 

9.2. Suggestions for further research 

Many of the issues that this thesis raises deserve a more thorough and focused 

investigation, which was not possible in the current scope. Some of these issues are 

hereby listed as potential themes for further research. 

In the design of the SP survey, we attempted to make the introduction and the 

presentation of the idea of TTV easy to understand, but have not proved that our chosen 

way of presentation is optimal. It would be useful to carry out comparison between 

responses collected using different formats of questionnaires with TTV attributes. In the 

modelling experiments we have found that the amount of information in the survey 

database was not sufficient; this emphasizes the need for developing more efficient 
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fon-nats and surveying techniques, which can be used to extract more information from 

each respondent, and still avoid the undesirable effects of boredom or fatigue. 

Our attempts to estimate the DWP through a Mixed Logit model included a discussion 

of ways to constrain the distributions of the model parameters, but some of the available 

ways of controlling these distributions were not attempted. These include the use of 
various truncated distributions, as well as the entire concept of modelling in the 

willingness-to-pay space. It is important to investigate whether these alternatives would 
be able to lead to more reliable and powerful estimates of the DWP. Further discussion 

is also needed concerning some of the approaches that this study did try, namely 
constraining by estimation and by imposition, or using distributions that are constrained 
by definition. There is a need to examine whether we can reach better specification or 
better identification of models based on any of these concepts. Our analysis also 

suggests that new tools are needed for testing the fit of Mixed Logit models. 
Development and testing of such tools in future research would make an important 

contribution, as the tools we use today have not been purposely designed to be used 

with Mixed Logit specifications. Furthermore, there is a broad scope to further explore 
the case for nonparametric estimation of the DWP. The techniques used here, as well as 

many other nonparametric techniques, bring in the appealing feature of estimation that 

does not strongly depend on preliminary assumptions. But using these techniques 

involves new mathematical challenges that future research needs to tackle. 

Our experiments in economic modelling only examined the choices made on a 

commuting trip during the morning peak. Departure time choice considerations would 
be different on trips made for business or leisure purposes, or in other parts of the day, 

because constraints such as those imposed here on the arrival time to the destination 

would be replaced with others. The cost of TTV in other periods but the morning peak 
has hardly been studied so far, although it is most necessary for realistic estimation of 

the benefits from improved reliability. 

Our choice model is rather simplistic in the sense that it assumes travellers choose the 

option with the lowest cost. Some recent studies use an alternative assumption to enable 

more realistic account of habitual behaviour; they assume travellers have a preferred 

choice that is not necessarily optimal, and that they change this choice only if the added 

benefit exceeds some threshold. It would be interesting to estimate the cost of TTV and 

the choice of departure time using such model. 
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In the area of TMM calibration, there is a clear need to test the effect of the various 

model parameters on TTV, and the sensitivity of calibration outputs to the values of the 
different parameters. These are important to assure that when it is not possible to 

calibrate all model parameters, a smaller-scale calibration effort would be able to 

concentrate on the most influential ones. The calibration parameters that this study has 

focused on were not selected in a systematic way, and this means that they do not 

necessarily represent a general set that we can recommend to use in other studies of 
simulating TTV. Another reason why the generality of our results should be 

investigated further is that the methodologies discussed here in the context of network 

modelling have only been implemented with DRACULA. Although the presented 

methods were devised as generic concepts, which should apply equally to any TMM, 

the results might be sensitive to particular features that DRACULA lacks, such as more 
detailed modelling of the boarding and alighting patterns at bus stops. 
Despite the microscopic nature of TMMs, not all causes for TTV in the real transport 

system are modelled. While it is important to carry out adequate calibration, it is also 

necessary to continuously improve the explanatory power of the model itself, and keep 

seeking ways to realistically account for various traffic phenomena. In the analysis of 
bus performance, in particular, there is a need for more realistic representation of 

various causes for service cancellation, some of which are related to mechanisms in the 

public transport operation industry and not necessarily to the traffic itself There is also 

need to improve the modelling of the cumulative effects (including phenomena such as 
bus bunching) of relatively minor delays. 

The illustration of the joint application of the demand and supply tools only examined a 

relatively minor case study. There is great interest in carrying out assessment of the cost 

of TTV in a more thorough scenario analysis. It is essential to check the consequences 

of new bus infrastructure not only on bus passengers but also on the other network 

users, as there might be cases in which the cost for bus users falls but the cost for car 

users rises. As implied above, this should be examined not only for morning commuters 

but for the general population of travellers. Moreover, the fact that TTV affects the 

generalised cost of travel, as demonstrated in this thesis, means that improved reliability 

can make travellers change not only their choice of departure time but also their mode 

or route; such changes can indirectly affect the behaviour of users of all modes in all 

parts of the transport system. It is therefore important to study the impact of changes in 
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the level of TTV in a fully-elastic intermodal model that allows for these diverse 

interactions. 

When the broader systemwide impacts of TTV are taken into account, it would be 
important to re-assess the benefits from potential measures of policy intervention. We 
believe that such re-assessment can strengthen the case for introducing public transport 

priority measures similar to those examined in this study, and for other measures such 
as intelligent transport systems and provision of advanced inforination. We anticipate 
that a broader model will help establishing our evidence of benefits from improved TTV 
because it will reveal effects not examined here, like a shift of some demand from cars 
to public transport. 

A key incentive for the entire research presented here is the current lack of tools that are 

needed to incorporate TTV considerations in scheme appraisal. The tools presented here 

constitute a step forward in this issue, but additional or alternative steps need to follow. 

There is a wide scope for developing other estimation instruments that take the dynamic 

effects of TTV on both supply and demand into account. For instance, there are 

presently very few documented applications of models of departure time choice that 

capture the attitudes to unreliability, and very few available tools to choose from for 

TTV prediction. Moreover, there is still insufficient awareness to the role that the 

application of such tools should have in practical appraisal. Further work on all these 

will help making future public transport services more reliable and transforming urban 

areas into a more vigorous and sustainable environment. 
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Appendix A 

Models for car and rail users 

In parallel with the bus user survey described in chapter 3, similar questionnaires were 
also presented to some car and rail users. When the link to the survey website was 
circulated, the identity of the recipients was unknown, and it was therefore not possible 
to address only bus users. Thus, since users of all modes were contacted, collecting 
responses from car and rail users, in addition to bus users, did not incur any additional 
cost. It was decided to also estimate models for those travellers mainly in order to 
enable comparison with the bus user model and to check its reasonableness. However, 

only basic analysis of the car and rail user data was possible in the current scope, hence 

only Multinomial Logit models were estimated, and there was no further analysis of 
taste heterogeneity. 

The sample of non-bus users included responses from 290 car users and, unfortunately, 

only 20 rail users. Each respondent answered nine questions of a similar structure to the 

one described in chapter 3. Due to the small number of respondents that commute by 

rail, the rail user models are primarily judged by common sense and not necessarily by 

the measures of statistical performance (such as t-test). As mentioned above, the rail 

model is presented here for the comparative analysis; due to the small sample it is not 

recommended to use it for other purposes. 
The same variables whose potential contribution to the bus user model was examined in 

chapter 3 were tried again for the car and rail user models. It was found again that the 

mean travel time, earliness and lateness are sufficient in capturing the response to TTV. 

For both car and rail users it was found that a direct TTV variable remains significant 

while the scheduling variables are not included, but does not improve the power of the 

model once the lateness and earliness variables are introduced. 

As in the bus user model, model performance was found better when the mean travel 

time and earliness were included in the same variable, MTE. Again, this does not prove 

that the penalties placed on these two separate elements are equal; but it implies that 

they are close to each other enough to make their treatment as one variable (which 

makes the model easier to identify) contribute to the statistical significance of the model 

more than accounting for them separately. 
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The car and rail user models as presented in table A. 1, together with the bus user model 

of a similar fori-nat. Values of the t-statistic appear in brackets. The WTP derived from 

these models is also presented in figure A. 1. 

Car Bus Rail 

Cost 
-0.6996 -1.375 -0.1739 

(-14.2) (-3.4) 

MTE -0.05209 -0.07173 -0.03229 Coefficients 
(-10.0) (-11.5) (-3.2) 

ML -0.2315 -0.1974 -0.1147 
(-5.6) (4.1) (-1.3) 

Initial -1985 -1534 -124 Likelihood 
Final -1726 -1369 -116 
MTE 7.4 5.2 18.6 

WTP 
ML 33.1 14.4 66.0 

(pence per 
Ratio 

minute) 4.5 2.8 3.5 
ML / MTE 

Table A. 1: Departure time choice models for car, bus and rail users 

Ci 

I%Aean travel time and earliness 
GO f--Aean lateness 

4 cl - 33.1 

18.6 14.4 
7.4 10 

Car E3 Lis Pall 

Figure A. 1: The willingness of car, bus and rail users to pay for 

reduced travel time, earliness and lateness 
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It is not surprising that car users' WTP is found higher than the respective WTP among 
bus users. It is striking, though, that while the value placed by car users on MTE is 42% 

higher than for bus users, the value placed on lateness is 130% higher. It seems that bus 

users do not only exhibit reduced WTP, but they are also less sensitive to latenessi 

relative to the mean travel time. 

The monetary values for rail users are much higher than for car users. This might seem 

unusual if compared to results from other countries (see, for instance, Dutch study by 

De Jong et al, 2004, where the WTP among car users is higher than among rail users). 
Nevertheless, a high level of WTP among rail users is consistent with the findings of 

recent works that bring inter-modal evaluation of the value of time for travellers in the 

United Kingdom (Wardman, 2004; TRL, 2004). The rail user model shows that the 

sensitivity to late arrival is not strictly proportional to the WTP: the number of rail MTE 

minutes that is equivalent to one minute of lateness (3.5) is higher than for bus users 
(2.8) bus lower than for car users (4.5). 

All in all, the relations between the WTP estimates for the three modes seem plausible. 
The fact that some of the conclusions reached in the analysis of the bus user data are 

also found valid for other travellers adds some more confidence about our previous 
findings. 
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Appendix B 

Structures used in the calibration Procedure 

The TMM calibration algorithm, developed and applied in chapters 6 and 7, uses 
various data structures for inputting and outputting information, and for interlinking 

with either the TMM used (DRACULA) or the user itself The main data structures are 
briefly explained here as a supplementary description of the calibration methodology. 

The *. rng file 

1 0.1 60 1 5 
2 0.1 60 0.2 2 
3 0.1 600 20 40 
4 0.1 600 40 80 
5 0.1 60 1 5 
6 0 2 0 0.3 
7 0.1 60 2 5 
8 0 2 0 0.3 
9 0.1 60 1.5 5 
10 0 2 0 0.3 
11 0.1 60 3.5 6.5 
12 0 2 0 0.3 
13 0.1 60 0.8 2 
ý14 0 2 0 0.3 
15 0.1 60 0.8 2 
16 0 2 0 0.3 
17 0.1 60 1 4 
18 0 2 0 0.3 
19 0.1 60 1 4 
20 0 2 0 0.3 
21 0 0.25 0.01 0.2 

The *. rng file is introduced to define thefeasible range and the likely range for each of 

the calibration parameters. The parameter index (from I to 21) is in the first column. 

The lower and upper boundaries of the feasible range are in the second and third 

columns. The lower and upper boundaries of the likely range are in the forth and fifth 

columns. All boundaries in the *. rng file were determined based on commonly used 

values of the various calibration parameters (see for instance Bonsall et al, 2005, which 

was one of the main sources). 
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The *. par and *. rst files 

PARAMETERS 
TMAIN=60 
TWARM=5 
TCOOL=5 
TOUTPUT=15 
START-HOUR=07 
START-MIN=55 
NSEED=1200 
GAP=3.0 
GAP-MIN=0.5 
GAP-TSTART=30 
GAP-TEND=60 
FGW-CAR=0.5 
FGW-BUS=0.5 
CIRC-SPEED=30 
QTRAJ=T 
PTRAJ=50 
PHGV=1.0 
QSATNET=T 
QBUS=T 
QNEWDEMAND=T 
PECAR(1)=20 
PECAR(2)=10 
PECAR(3)=20 
PECAR(4)=10 
PECAR(5)=10 
PECAR(6)=10 
PECAR(7)=5 
PECAR(8)=5 
PETRUCK(11)=10 
PETRUCK(12)=90 

END 

The *. par file is a standard DRACULA file. Dozens of parameters can be defined using 
this file, of which the current experiments only focus on a few. 

Four of the parameters in the file are calibrated directly: 

1. GAP - the normal acceptable gap - it is stored as parameter I in the simplex. 
2. GAP_MIN - the minimum acceptable gap - parameter 2 in the simplex. 
3. GAP-TSTART - the time waited before accepting a lower gap - parameter 3 in 

the simplex. 
4. GAP_TEND - the time waited before accepting the minimum gap - parameter 4 

in the simplex. 

An additional parameter that is relevant to our experiment is GONZO, a factor by which 

the entire travel demand is multiplied. We do not wish to calibrate the parameter itself 

but its standard deviation, which stands for the extent of daily fluctuations in the level 

of demand; DRACULA does not have an explicit parameter that represents these 

fluctuations. We store this parameter as parameter 21 in the simplex, and a random 
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number based on it is written to the GONZO field in the *. par file whenever this file is 
being created. The mean value of GONZO remains I throughout the whole process. 
A random seed number is also defined as a parameter in the *. par file. Such number is 

re-generated every time the file is being created. 
The *. rst file (rst stands for "the rest") is not a DRACULA file; we use it to store all 
non-calibration parameters, which are kept fixed throughout the process. The *. rst file 
looks exactly like the *. par file, except that it excludes the lines containing the six 
parameters mentioned above. 

The veh. tab file 

&VEH-P ARAM 
CAR 

4.50 1.00 1.00 2.69 2.82 1.66 4.84 1.00 1.00 
0.10 0.10 0.00 0.08 0.06 0.22 0.01 0.15 0.10 
3.50 0.80 1.00 1.00 2.00 1.50 3.50 0.80 0.80 
5.50 1.20 1.00 5.00 5.00 5.00 6.50 2.00 2.00 

BUS 
7.50 1.00 1.00 1.64 1.69 1.42 3.36 1.00 0.50 
0.10 0.10 0.00 0.02 0.09 0.07 0.00 0.10 0.10 
5.00 0.80 1.00 0.80 0.80 1.00 1.00 0.10 0.20 

10.00 1.20 1.00 2.00 2.00 4.00 4.00 1.50 2.00 
&END 

The veh. tab file is a standard DRACULA file. For each vehicle type, the user can define 

in this file the mean (first row), coefficient of variation (second row), and feasible range 
(third and forth rows) of nine different vehicle characteristic (each described in a 
different column). In the current experiment we focus on two vehicle types only (car 

and bus), and use eight of the vehicle parameters of each one, expressing the mean and 

the coefficient of variation of the following features: 

9 Normal acceleration 

* Maximum acceleration 

e Nonnal deceleration 

* Maximum deceleration 

All in all, 16 vehicle parameters are calibrated; they are stored as parameters 5 to 20 of 

the simplex. 
When the veh. tab file is read, the entire set of car and bus parameters, and not only the 

calibration parameters, is input into two arrays (one for car parameters and the other for 

bus parameters). This makes it easier at later stages to output the entire veh. tab file in its 

desired format. 
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The *. spx file 

1 3.00 0.50 30.00 60.00 1.50 0.10 2.50 0.10 2.00 0-10 5.00 0.10 1.50 0.10 1.60 0.10 1.50 0.10 2.50 0.10 0.15 0.367 2 3.99 1.32 36.37 48.02 2.44 0.26 3.74 0.02 1.78 0.15 4.71 0.06 1.54 0.25 0.83 0.04 3.05 0.28 2.36 0.03 0.3-1 0.350 3 4.87 0.87 23.26 40.58 3.59 0.13 2.96 0.29 2.56 0.15 5.69 0.12 1.52 0.14 0.80 0.01 1.86 0.24 2.02 0.01 0.05 0.333 4 1.45 0.25 23.74 53.16 2.69 0.08 2.82 0.06 1.66 0.22 4.84 0.01 1.64 0.02 1.69 0.09 1.42 0.07 3.36 0.00 0.12 0.356 5 3.63 1.83 24.95 59.08 2.35 0.18 3.22 0.13 2.10 0.16 5.37 0.17 0.87 0.08 1.88 0.17 1.61 0.13 1.73 0.19 0.18 0.415 6 4.95 1.11 25.38 75.04 1.65 0.06 2.48 0.17 3.26 0.26 6.09 0.13 1.97 0.13 1.20 0.15 1.51 0.05 3.15 0.16 0.18 0.123 7 1.88 1.71 36.36 41.64 4.69 0.17 2.05 0.27 4.28 0.19 3.72 0.03 1.90 0.28 1.44 0.03 1.23 0.29 2.67 0.17 0.06 0.278 ý8 3.30 1.25 26.17 70.19 2.42 0.07 3.39 0.21 1.96 0.08 4.89 0.02 1.79 0.07 1.02 0.27 3.81 0.20 2.09 0.07 0.06 0.298 9 1.68 0.54 38.94 74.24 4.36 0.13 3.16 0.26 4.34 0.27 5.90 0.10 1-. 39 0.20 1.25 0.19 2.78 0.21 1.78 0.14 0.03 0.364 ý10 3.41 1.86 23.30 66.05 4.73 0.16 3.05 0.29 3.61 0.17 4.89 0.15 1.15 0.13 1.31 0.15 1.15 0.06 3.50 0.12 0.02 0.398 11 2.03 1.94 29.57 72.00 1.70 0.00 2.44 0.18 2.33 0.23 5.86 0.22 1.01 0.09 1.78 0.01 2.83 0.25 3.24 0.12 0.11 0.316 12 1.01 1.67 38.01 54.17 2.37 0.04 4.61 0.06 4.12 0.22 3.54 0.16 1.58 0.23 1.45 0.20 1.44 0.24 2.45 0.06 0.08 0.317 13 4.31 0.74 37.70 58.21 4.55 0.24 2.42 0.19 3.77 0.18 4.73 0.13 1.07 0.02 1.85 0.18 1.77 0.26 3.56 0.06 0.15 0.422 14 2.37 1.39 35.85 59.51 3.93 0.01 3.43 0.27 2.01 0.27 6.14 0.22 1.73 0.23 1.54 0.13 1.11 0.08 2.05 0.08 0.02 0.365 : 15 2.06 0.25 25.37 54.81 2.15 0.13 2.96 0.00 2.00 0.17 5.34 0.04 1.87 0.03 1.60 0.07 1.32 0.06 1.57 0.28 0.05 0.265 16 1.94 1.72 33.20 48.12 3.30 0.11 2.29 0.08 4.38 0.02 5.47 0.22 1.93 0.27 1.90 0.02 2.23 0.19 1.99 0.24 0.02 0.365 17 1.24 1.99 31.80 63.26 1.99 0.29 3.11 0.10 4.30 0.22 4.02 0.18 1.40 0.15 1.05 0.27 1.43 0.26 2.78 0.05 0.09 0.354 118 2.21 0.45 20.49 57.58 2.43 0.24 3.03 0.15 4.58 0.04 5.30 0.04 0.90 0.09 1.38 0.02 3.47 0.29 2.83 0.09 0.18 0.357 
; 19 4.88 0.99 37.55 73.79 2.87 0.27 3.47 0.23 4.57 0.25 5.62 0.29 1.33 0.29 1.61 0.26 1.91 0.10 3.97 0.22 0.05 0.273 20 4.68 0.85 21.61 66.44 2.41 0.27 4.44 0.21 3.62 0.19 4.85 0.29 1.40 0.02 1.17 0.10 3.15 0.18 3.16 0.26 0.09 0.465 21 1.25 1.26 25.67 46.65 4.00 0.04 3.42 0.23 2.24 0.01 5.47 0.16 1.50 0.06 1.48 0.01 2.13 0.27 1.09 0.20 0.04 0.373 22 4.22 1.36 36.00 44.92 3.06 0.23 2.80 0.02 2.30 0.15 3.55 0.19 1.07 0.28 1.87 0.07 2.14 0.12 1.99 0.03 0.18 0.376 

A simplex is a multidimensional geometrical shape, employed in procedures such as 

ours to symbolize a set of decision variables. At each stage of the process, the simplex 

represents the group of all candidate solutions; each vertex of the simplex stands for a 
feasible set of values for the calibration parameters, and a value of the objective 
function corresponds to it. 

Each row of the *. spx file describes one of the vertices of the simplex. Each column, 

except the first and the last columns, stands for the location of the vertex in a different 

dimension; each such dimension represents one of the calibration parameters. 
Parameters 1-4 are gap acceptance parameters, stored in DRACULA in the *. par file. 

Parameters 5-20 are vehicle characteristics, stored in DRACULA in the veh. tab file. 

Parameter 21 is a demand fluctuation parameter; it is not stored anywhere in 

DRACULA, but a demand factor, drawn randomly from a distribution defined by this 

parameter, is stored in the *. par file. 

The first column in each row of the *. spx file is the vertex index. The last column in 

each row shows the value of the objective function that corresponds to the vertex 

describes in that row. In each stage of the calibration process, the row that includes the 

vertex with the highest (i. e. worst) objective is changed. 
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The *. pas file 

Outputs of a simulation run (in DRACULA as well as most other TMMs) include 

multiple files that list various traffic measures or statistical measures in different 

formats. Our procedure reads the simulated travel time measurements from the *. pas 
file, which is a standard DRACULA output. The *. pas file is set up as a list of the times 

when individual buses reach their stops (given in seconds from the beginning of the 

simulation period). Since the main purpose of our calibration experiments is to examine 

their potential use in the future in the analysis of bus TTV, it seemed natural to looks 

directly at bus travel times. 

I-Network: YORK 
Isummary of Passenger Delays and BUS DWell TIMe 

Time vehicle service BUS-Stop NPSg PDelay(m) 
189 86 5 ill 0 0.00 
203 86 5 222 0 0.00 
261 86 5 333 0 0.00 
394 86 5 444 3 2.45 
635 151 5 ill 14 36.87 
698 1865 5 ill 2 0.97 
737 151 5 222 18 63.60 
743 1865 5 222 0 0.00 
837 1869 5 Ill 6 7.20 
869 151 5 333 23 108.87 
874 1865 5 333 0 0.00 
892 1869 5 222 6 7.90 
968' 159 5 ill 5 5.92 

1017 1869 5 333 6 8.40 
1019 159 5 222 6 6.20 
1133 159 5 333 5 5.67 
1151 151 5 444 32 205.87 
1155 1865 5 444 0 0.00 
1270 181 5 Ill 13 34.02 
1289 1869 5 444 6 6.80 
1294 1870 5 ill 1 0.22 
1337 1870 5 222 13 32.93 
1352 181 5 222 0 0.00 
1400 159 5 444 4 3.93 
1425 1870 5 333 12 31.20 
1440 181 5 333 1 0.25 
1608 1864 5 ill 13 34.45 
1630 1870 5 444 10 20.17 
1634 181 5 444 0 0.00 
1649 213 5 Ill 2 0.67 
1694 213 5 222 15 43.25 
1698 1864 5 222 0 0.00 
1792 213 5 333 15 43.75 
1797 1864 5 333 0 0.00 
1834 1862 5 ill 7 11.32 
1896 1862 5 222 8 13.20 
1978 1862 5 333 7 11.32 
2002 213 5 444 15 48.25 
2017 1864 5 444 1 0.27 
2043 1861 5 Ill 9 17.10 

^ ný 1 ý r--n ý -q .4 

TDwel I (s) 
0.00 
0.00 
0.00 

17.00 
57.00 
17.00 
77.00 

0.00 
29.00 
97.00 

0.00 
29 . 00 
25 . 00 
29.00 
25.00 
25.00 

133.00 
0.00 
0.00 

29.00 
61.00 

0.00 
61.00 
21.00 
53.00 

9.00 
57.00 
45.00 

0.00 
13.00 

0.00 
65.00 
65.00 

0.00 
33.00 
37.00 
33.00 
65.00 

9.00 
0.00 

A r' ^^ 
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The format of the *. pas file is relatively convenient for our needs, but still, after reading 

a set of such files from a series of simulation runs, a complete reorganisation of the data 

is carried out, for several reasons: 

1. The file contains information about travel times in one simulation run, 

representing one day, whereas for the analysis of TTV we need a series of travel 

times from multiple days, i. e. we need to combine many such files into a single 

data structure. 
2. The file provides absolute time readings at particular points, whereas we 

compare route segment travel times, i. e. time differences between points. 

3. The file gives a sequence of time readings for the entire simulation period, while 

our analysis uses several shorter sub-periods. We only compare simulated travel 

times from any particular sub-period to observed travel times from the same 

sub-period. 
4. In any sub-period on any single simulation day, multiple buses perfonn a similar 

journey (given that the frequency is high enough), but our observed time 

measurements include no more than one measurement per sub-period per day. 

Segment travel times from each simulation day therefore need to be averaged. 
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The *. obs file 

The *. obs file is the medium of inputting real-life, observed bus travel time data into the 

procedure. In our calibration experiments, each scenarios is represented by a different 

*. obs file. The first column in the file gives the time, in seconds after the beginning of 

the analysed time period. The second column contains the sub-period when the bus has 

departed from its origin. The third column includes the index of the bus stop where the 

bus has arrived at the mentioned time point. The forth columns contains the day index. 

The file is organised such that all timed stops along the route of a daily bus journey, 

with a particular scheduled departure, are brought in succession. Following is the 

respective data of the same scheduled journey from the next available day of 

measurement, and so on. After the entire series of multi-day time measurements of a 

particular scheduled j ourney, data of other j oumeys are recorded in a similar manner. 

113 1 111 1 
179 1 222 1 
299 1 333 1 
467 1 444 1 
93 1 Ill 2 
154 1 222 2 
271 1 333 2 
417 1 444 2 
99 1 Ill 3 
163 1 222 3 
266 1 333 3 
463 1 444 3 
95 1 ill 4 
156 1 222 4 
280 1 333 4 
463 1 444 4 
95 1 ill 5 
159 1 222 5 
265 1 333 5 
453 1 444 5 
105 1 ill 6 
162 1 222 6 
265 1 333 6 
470 1 444 6 
116 1 Ill 7 
178 1 222 7 
277 1 333 7 
456 1 444 7 
92 1 ill 8 
151 1 222 8 
244 1 333 8 
446 1 444 8 
QR 1 111 Q 
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The *. prg file 

The *. prg file gives information about the progress of the calibration process. It is being 

constantly updated during the process. The file reports on every candidate vertex that 

comes up throughout the calibration, and shows why it has or has not been chosen, as 

well as the type of simplex. manipulation used. 

ThQ simplex at the oQglmniry of iteration 9: 
7 us 1.29 0. 1 3.55 2.41 37.36 Aý66 4.61 0. C IS 4.96 0.11 4,9B 0.18 4.65 0.29 ! Aý 

7 2.99 1.75 37, W 50,92 4.2ri 0.07 3. RI; 0.17 3.77 0.15 4.51 0,17 , . 64,0.24 1. Fi 7 0,11 1.35 0. 
3 2.23 1.42 37.94 29.59 2.76 0.15 3.03 0.04 4. C6 0.20 1.73 0.20 . 19 0.25 2. C4 0.02 0.36 0. 
4 2.80 1-96 42.05 35.14 2.32 0.16 -1.52 0.08 3.94 0.1s ý. 9L4 0.16 42 0.24 1.713 0.06 1.4 E! 0. 
5 4,04 1.81 34' . 29 43ý 32 2.39 0. C63,41 0.12 3.05 0.10 4.98 0,17 56 0.21 1.59 0,01 0.96 0, 
6 2.82 1.83 33.53 47.08 3.56 0.07 4.. 18 0.19 3.38 0.25 4.06 0.19 52 0.16 1.9i 0.08 0.10 0. 
7 4.34 1-14 34.43 SO. 41 2.61 0. Cl 4.78 0.05 -1.57 0.19 3.29 0.21 1.28 0.20 1.40 0.00 0.46 0. 
B 4.59 2.50 32,66 20.68 2.32 0.08 3.09 0.15 4.93 0.25 3.39 0.05 1.77 0.1 C. 2.27 0.07 0.10 0, 
C, 2.92 1.81 34.76 5 0.58 3.28 0.11 3.38 0.11 3. H 0.14 4.61 0.18 1,56 0. " 1.71 0.08 1.11 0. 
10 3.08 1.71 30.68 31.74 4.72 0.12 4.24 0.10 4.35 0.21 3.75 0.03 1.11 0.214 'ý . 48 0.01 2. -'-., 
11 4.96 1. C., 33,94' 46.78 3,01 0.18 2.48 0.30 2,99 0.23 3,76 0.18 1.64 0.15 1.27 0.25 1.22 
12 3.95 2.50 33.58 46.91 3.44 0.21 3.33 0.09 5.89- 0.18 2.89 0.21 1.23 0. '-3 1.50 0.15 0.10 
13 1.88 2,17 43.90 29.66 3.0? 0,17 2.91 0.05 4.80 0.22 3. '0 0.11 1.17 0-2. -1 1.94 0.01 1.44 
14 4.57 1.74 32.45 65.34 4.80 0.00 5.08 0.14 3.37 0.29 1.76 0.25 1.87 0.11 2.32 0.06 1.40 
15 2.08 1,89 38,06 4 9.82 3.37 0.15 2.33 0.21 4.52 0.2) 0 4.03 0.17 1.4 60"71.7 3 0.00 2.67 ( 
16 2.70 1ý 24 32,1) 44.20 1-95 0,00 3.70 0.16 3.6B 0.02 3.51 0,28 1.44 0.04 1,75 0.12 1.45 k 
17 2.89 1.82 A. 0.2 51.153 3.49 0.14 3.07 0.12 5.00 0.20 3.59 0.22 1.41 3.25 1.77 0.10 10 - 92 
1B 2-27 1,79 35,9ý bs-10 3.79 0.09 3.74 0.17 ý. 20 0.20 4. YS 0.12 1.46 0.22 1. .1 aý 0.04 1,43 
19 2. A, 4 1,20 35,54 43.47 2.60 0.11 3. e30.04 3.13 0.17 4,26 0,24 1.30 0.20 1.93 0.02 0.89 
20 2.57 2.44 32.03 73.66 3.51 0.07 3.88 0.01 4.90 0.29 . 1.93 0.07 1.52 0.14 2.09 0.11 1.48 
21 2.99 1.81 41.58 49.64 3.54 0.13 3.07 0.14 4.54 D. 20 3.53 0.21 1.4 S 3.23 1.137 0.09 3-89 
N 3.04 1,96 41,85 51.95 4.36 0,17) 3.33 0.03 4.91 0.10 4.87 0.13 1.30 ". ). 31 1.61 0.13 1. 

Trying simple rpfle, ý: rion, 
candida, cp oblecl,; e - 0.275 

-150 worst objec-tive = 0. ý 
Second worST objec-rive - 44 
uowest objective - 0.192 

irying modiflcaclon wl7li factor 
new cardidaýte objective - 0.233 

ver, ýex 3 c., I. )riflfld TO - 
2,72 1.63 36.90 38.72 3.07 0., 13 3.30 0.08 4. '-, 2 0.19 3.83 0.18 1.32 C. 23 1.91 0.05 0.76 0., 

A facror of 0.5 'was used- 
0ie new ob3eciivc ValUe of thIs ver, Tex is 0.233 
End of iteratiun 9. 

The simplpx a-r inriinq of xhe be izeraicion lo-. 
* 55 2 . 41 13 ,2 37.3fi 5 . 615 4.61 , 47 0,05 4.96 0.11 4.98 0.18 4.65 0.29 - 0.29 1. C, ý 0.05 1.29 0. 

. . 2 h99 1.75 37.52 50.92 4.28 M7 3.88 0.17 3.77 oýIS 4.51 0.17 1.64 0.24 1. S" 0.11 1.35 0. 
3 2,72 1.63 36.99 38,72 3.07 0,13 3,30 0. ()8 4.12 0,19 3.83 0.19 *. 32 0.23 1,91 0,05 0.7ýý, C), 
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The table of observed versus simulated times 

A table of the following format is created at the final stage of preparations towards the 

calculation of the objective function, every time it is being calculated. 

From To Period Day obs s! m 
111 222 1 1 81 53 
ill 222 1 2 41 67 
ill 222 1 3 63 59 
ill 222 1 4 31 70 
ill 222 1 5 62 67 
ill 222 1 6 47 54 
ill 222 1 7 58 57 
ill 222 1 8 38 62 
ill 222 1 9 71 58 
ill 222 1 10 68 63 
ill 222 1 11 38 60 
Ill 222 1 12 37 62 
ill 222 1 13 56 61 
ill 222 1 14 36 59 
ill 222 1 15 67 52 
ill 222 1 16 47 59 
ill 222 1 17 85 63 
ill 222 1 18 59 61 
Ill 222 1 19 53 62 
ill 222 1 20 83 66 
222 333 1 1 122 119 
222 333 1 2 53 104 
222 333 1 3 81 106 
222 333 1 4 90 139 
222 333 1 5 105 136 
222 333 1 6 110 98 
222 333 1 7 108 107 
222 333 1 8 134 124 
222 333 1 9 115 116 
222 333 1 10 85 132 
222 333 1 11 122 107 
222 333 1 12 112 100 
222 333 1 13 118 126 
222 333 1 14 140 102 
222 333 1 15 121 103 
222 333 1 16 77 125 
222 333 1 17 91 90 
222 333 1 18 145 104 

222 333 1 19 82 98 

222 333 1 20 99 116 

333 444 1 1 193 222 

333 444 1 2 182 204 

333 444 1 3 156 150 

333 444 1 4 192 215 

333 444 1 5 164 217 
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Appendix C 

Publications and presentations based on this thesis 

Hollander, Y. (2006). Direct Versus Indirect Models for the Effects of Unreliability. 
Transportation Research, Part A: Policy and Practice, Vol. 40 (9), pp. 699-711. 

Hollander, Y. (forthcoming). Fitting Distributions to Random Parameters. 
Transportation Research Record. Also in: Proceedings of the 85th Annual Meeting of 
the Transportation Research Board, Washington DC, January 2006. 

Hollander, Y. (2005). The Attitudes of Bus Users to Travel Time Variability. Paper 

presented at the European Transport Conference, October 2005, Strasbourg, France 

(winner of Neil Mansfield award). 

Hollander, Y. & Liu, R. (2005). Calibration of a Traffic Microsimulation Model as a 
Tool for Estimating the Level of Travel Time Variability. In: Advanced OR and Al 

Methods in Transportation, Proceedings of the 10th meeting of the EURO Working 

Group on Transportation, September 2005, Poznqn, Poland. 

Hollander, Y. (2005). Travellers' Attitudes to Travel Time Variability: Inter-modal and 

Intra-Modal Analysis. Paper presented at the 3rd international SIIV congress - People, 

Land, Environment and Transport Infrastructure - Reliability and Development, 

September 2005, Bari, Italy. 

Liu, R. & Hollander, Y. (2005). Modelling and Computational Issues in the Estimation 

of Travel Time Variability Using Traffic Micro simulation. Presented at: Simulation 

Models - from the Labs to the Trenches -a Workshop on Traffic Modelling, September 

2005, University of Arizona, USA. 

Hollander, Y. & Liu, R. Identifying Key Principles in the Calibration of Traffic 

Microsimulation Models. Currently under review for publication at Transportation. 
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Hollander, Y. & Liu, R. Inter-run Variation Analysis of Traffic Microsimulation. 

Currently under review for Transportation Research, Part C: Emerging Technologies. 

Hollander, Y. The Distribution of the Willingness to Pay for a Reliable Journey. Paper 

presented at the 86 th Annual Meeting of the Transport Research Board, Washington DC, 

January 2007. 

For the full list of publications of the author, see www. yat-hoI. corn\cv. htmI. 


