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Abstract 
Providing working treatments safely, quickly and cost effectively are major factors in pharmaceutical 

companies. One stage within the drug discovery process is the lead optimisation (LO) stage. A LO 

project is an iterative process that alters a known active core to improve essential properties. These 

properties should be balanced to create an optimum drug candidate that can be progressed through 

the drug discovery process. These iterative refinements are typically represented using Markush 

structures and structure-activity relationship (SAR) tables. When used in unison, they can highlight 

core scaffolds and the varying surrounding substituents, which could be of particular interest. The 

use of these representations can highlight the impact small changes in R-groups can have on the 

property of interest. Unfortunately, however, they cannot provide the same for the core. This is 

because if there is a small modification to a core structure an entirely new Markush structure and 

SAR table are generated. Therefore, it becomes difficult to compare the SAR of closely related 

molecules with similar but non identical cores.  

A main aim of this thesis has been to develop a new visualisation tool using reduced graphs (RGs) 

that allows closely related molecules to be represented. The emphasis in the tool is on functional 

groups that can form intermolecular interactions instead of chemical substructures. 

Alongside the visualisation two scores have been developed. The first score, the exploration score, 

explains how much new chemical space and information would be added to the dataset when a new 

molecule is synthesised. The second score, the exploitation score, attempts to explain how 

important the core structure of a new molecule is to the biological activity. This takes into account 

the existing activity information. The new visualisation and scores can be used to aid decision making 

processes in LO projects when considering which molecules to synthesise next, by providing 

rationale based on different substructures within the core structures. 

The final stage of this project is to generate new molecular structures based upon RG node 

alterations. A node substructure for a specified molecule can be substituted for another as long as it 

remains the same node type. This allows scaffold hopping to easily occur as the same RG structure 

is retained. These new molecules can have their exploration and exploitation score calculated to aid 

the decision on which molecule to synthesise in the next iteration of the LO project. 
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Preface 
A massive issue within the pharmaceutical industry is that the drug discovery process is long and 

expensive. It has been determined that on average it takes twelve years and in excess of one billion 

pounds to get a new drug to market (Thomas, 2016). The drug discovery process is also extremely 

complex as the drug properties have to be balanced whilst ensuring there are no off target 

interactions that could cause harmful side effects. To improve the drug discovery process 

computational methods have been introduced and this area has more recently been referred to as 

chemoinformatics. Chemoinformatics is built on the similarity property principle, meaning that 

molecules that have a similar chemical structure should have similar chemical properties (G. 

Maggiora, Vogt, Stumpfe, & Bajorath, 2014). 

The initial use of computational methods for handling chemical structures was in the 1950s, when 

techniques for searching databases of chemical structures were developed (Ray & Kirsch, 1957). 

Then a few years later the first quantitative structure-activity relationship (QSARs) method was 

established (Hansch & Fujita, 1963). With the advancement of computational technologies more 

sophisticated techniques have been developed. These included new data mining techniques, 

visualisations and machine learning methods, providing greater insights into chemical data and 

structure-activity relationship (SAR) information and suggestions of new molecules to create. For all 

of these methods, molecular descriptors are needed as inputs. The Sheffield Chemoinformatics 

Research Group has developed a novel molecular descriptor called the reduced graph which is based 

upon functional groups that have potential to form interactions with biological receptors. This 

descriptor is the main focus of thesis.  

This thesis aims to overcome the issues associated with Markush structures and SAR tables and 

generate a new representation that summarises data generated within a lead optimisation (LO) 

dataset. Methods are then developed that use the information that can be extracted from the 

visualisation. The substructural fragments from the new representation are taken into account, so 

that when examining potential new molecules to synthesise, a score for the new chemical space 

being added to is given along with the potential significance of these fragments. All of the work done 

within this thesis attempts to aid the decision process for medicinal chemists, whilst generating new 

ideas for molecules to synthesise in the next iteration of the LO series. 

Chapter 1 provides an introduction to chemoinformatics by introducing basic concepts that form the 

basis of this thesis. It will discuss molecular representations, molecular descriptors and how they can 

be used in different chemoinformatics techniques. A brief introduction to how machine learning can 
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be applied to chemical data is then given. Different types of visualisations that have also been used 

to display chemical information are discussed. The final concept introduced is molecule generation.  

In Chapter 2, a method is developed to identify RG cores to represent molecules in lead optimisation 

series that can be used to illustrate the relationship between several molecules that share similar 

scaffolds. RGs are found for all the molecules and several clustering techniques are investigated to 

identify the best method to precluster a dataset prior to the application of the RG core extraction 

technique. Chapter 3 then evaluates the RG cores that have been generated from both the clustered 

dataset and the dataset as a whole. This comparison provides an understanding of which method 

creates the best RG cores to describe the relationship between molecules.  

Chapter 4 establishes how the RG cores can be mapped back onto the RGs of the molecules within 

the LO dataset as there are several instances where a molecule’s RG can have multiple occurrences 

of the RG core. The optimal overlap with the other molecules within the dataset is found. Chapter 5 

then describes how these RG mappings are used in the new visualisation, that has been developed 

to incorporate the SAR data across similar scaffolds, through the use of the RG cores.  

Chapter 6 and Chapter 7 introduce the work undertaken to generate the exploration and 

exploitation scores. Chapter 6 investigates how to best produce a score that indicates the level of 

exploration a new molecule would achieve. The score looks at how much chemical space has 

currently been explored and how much new information a new molecule would provide. Chapter 7 

then investigates creating an exploitation score for a potential new molecule. This indicates how 

significant each substructure within the RG core structure is to the biological activity. Therefore, a 

high score would potentially indicate an active area of chemical space that could be of interest to 

investigate, whereas a low score would potentially indicate an inactive area of chemical space. For 

both scores a hold out set from LO datasets are scored to understand their performances of how 

useful the scores are.  

Chapter 8 describes the development of a new approach to molecular generation through the use 

of RGs. Three different approaches have been constructed, a single node alteration, multiple node 

alterations and a full enumeration. The molecules generated from each method undergo a validation 

step to indicate how useful this technique is to generate new molecules and whether it can identify 

molecules within the LO dataset by introducing a hold out set.  

Finally, Chapter 9 summarises all of the work and brings together all conclusions, outlines some 

limitations and provides suggestions for future work.  
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1 Introduction to Chemoinformatics 
Chemoinformatics is a relatively new discipline, although many of the methods that it encompasses 

have been well researched for many years with chemoinformatics seen by some as a new name for 

an old problem (Hann & Green, 1999). It has been an instrumental part of several industries, 

particularly providing significant advancements to the drug discovery process. With the 

advancements in computing and technology, chemoinformatics is a fast paced field with lots of 

literature being produced.  

This chapter reviews chemoinformatics techniques that provide background to the research carried 

out in the thesis. The first principle to be reviewed is molecular representations. The molecular 

representation problem is notorious within chemoinformatics. Subsequently, it involves finding the 

best molecular descriptor that provides the most information and is most suited to the job. 

Therefore, several molecular descriptors are reviewed, followed by some important 

chemoinformatics applications, similarity searching, and reduced graph (RG) applications. The 

remainder of the chapter will review literature from a variety of procedures that utilise the molecular 

descriptors: machine learning, visualisations and molecular generation.  

 

1.1  Molecular Representations 

Different methods of molecular representation have been adopted to allow chemists and computing 

systems to understand the molecules that are being investigated. The molecular representations fall 

under two categories, human readable and computer readable. Both will be discussed. 

 

1.1.1 Human Readable 

In order to be able to communicate about molecules, chemists need some way of representing them. 

Hence different representations have been established. Human readable representations have been 

around a considerably longer time than computer readable ones. The most common way chemists 

ensure there is universal understanding is through naming systems, chemical formulas and chemical 

diagrams. 

There are two well-established naming systems: International Union of Pure and Applied Chemistry 

(IUPAC) and Chemical Abstracts Service (CAS) (Chowdary, Sri, Prasanna, Sudhakar, & Sarathi, 2014; 

Mills, Cvitas, Homann, Kallay, & Kuchitsu, 1993; Naming and Indexing of Chemical Substances for 

Chemical Abstracts TM 2007 Edition A publication of Chemical Abstracts Service, 2008). Both have 
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different rubrics and conventions, however, they both systematically identify the chemical 

nomenclature. This means that they are based on the functional groups and their positioning within 

a molecule. Figure 1-1 shows the IUPAC and CAS name for Aspirin. Additionally, when a drug is 

identified and brought onto the market it is given a commercial name in order to make it easier for 

the consumer market, for example Aspirin. 

 

Figure 1-1: Human readable representations for Aspirin 

Another way in which chemists communicate molecules is by using chemical formulae. A chemical 

formula identifies the atom types in the molecule along with the count. A chemical formula is very 

generic as it can represent several different molecules that contain the same types and numbers of 

atoms. To overcome this, an extended chemical formula is used. This provides information on the 

connectivity of the atoms which reduces the number of molecular possibilities down to one.   

The final approach is a two-dimensional (2D) structural drawing. This allows a more visual 

representation and allows more clarity than the two chemical formulas. Chemists follow several 

different chemical conventions so that there is a basic chemical understanding. For example, the 

bonds are arranged to best represent their actual structure and hybridisation states on a page 

(Brecher, 2008).  Therefore, this is a suspected 2D representation of what the molecule looks like 

from using the rules of chemistry. 

2D structural drawings can be used to represent multiple molecules simultaneously. For example, 

chemists working in the lead optimisation stage of drug discovery often use a generic structure in 

order to display multiple molecules that are related to one another in one simple representation. 

One way this is achieved is through Markush structures. Markush structures have two main uses. 

The first is in patent applications so that a multitude of similarly related compounds can be classed/ 

protected within the patent. The second is used to develop and explain chemical libraries. The part 

of the molecule that is common to them all, remains constant and is, therefore, only displayed as a 

2D structural drawing once. The groups that vary are also recorded, however these are not part of 

the main structure (Warr, 2011). 
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Figure 1-2: Simple example of a Markush structure 

Figure 1-2 demonstrates a simple Markush structure. On the left hand side, the core of the structure 

can be seen and the different R groups can be seen on the right hand side. This example represents 

six different molecules which can be constructed by combining the different R groups to the core. 

For some complex Markush structures the R groups may also contain R groups.  

 

1.1.2 Computer Readable 
For computer processing, chemical compounds have to be represented in machine readable form. 

The representation problem is a fundamental part of chemoinformatics, trying to find the best way 

to represent chemical compounds for a particular task.  

There are many types of molecular representations that are commonly used to describe the atoms 

and bonds within a structure while also making an easily storable representation. Molecular 

representation types can be grouped by dimensions. One-dimensional representations are linear 

notations that are built from alphanumeric characters to characterise a molecule. Two-dimensional 

representations can be seen like a graph as they indicate which atoms are present and the 

connections of the atom within the molecule. Two-dimensional representations may also contain x 

and y coordinates to allow them to be drawn on a page. Three-dimensional representations contain 

the same information as two-dimensional representations, however, they provide additional 

information regarding the geometry of the molecule. Three-dimensional representations are more 

accurate than the previous two, nevertheless, this added accuracy makes them much more 

computationally expensive to compute. Here, the four main representation of 2D structures will be 

discussed: SMILES and SMARTS, InChI keys, chemical graphs and connection tables. 
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Figure 1-3: Aspirin computer readable representations. a) SMILES b) InChI Key c) Connection Table d) Molecular graph 

Simplified Molecular Input Line Entry Specification (SMILES) is the simplest and most popular way 

that a molecular structure can be represented and can be described as a linear notation of a 2D 

structural drawing (A. R. Leach & Gillet, 2007; O’Boyle, 2012; Weininger, 1988). It contains 

information about which atoms are bonded and the bond types as well as the element types and 

whether an atom is aromatic or aliphatic. SMILES can also include charges and chirality of atoms. 

SMILES have become popular due to their ease of use and low computational and memory costs. A 

drawback of SMILES is that a molecule can be represented in many different ways (see Figure 1-3a). 

One way to overcome this is to apply a canonicalization algorithm to the SMILES representation so 

that it always gives the same unique SMILES for the molecule (A. R. Leach & Gillet, 2007). SMILES 

arbitrary target specification (SMARTS) is an extension of the SMILES notation that is used to 

represent specific substructures. SMARTS are typically used in searching for substructures within 

molecules. The main fundamentals remain the same between SMILES and SMARTS, however, 

SMARTS allows the inclusion of more symbols. Two examples are that a wildcard atom, *, can be 
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specified which means that this atom can be any element type, and an exclamation mark, !, can be 

used to specific not a particular element or atom type (James, Weininger, & Delany, 2020).  

The International Chemical Identifier (InChI) is an alternative linear representation method that can 

contain more information, however, this information is still restricted to two-dimensional 

characteristics. There is only one standard InChI for each molecule. Just like the SMILES 

representation, InChI allows the identification of different stereoisomers, easily allowing different 

structural information such as E/Z, alkene bond or R/S chiral centres to be distinguished. The InChI 

canonicalization algorithm generates a unique standard InChI for a molecule which can then be 

hashed to create the InChI key (Heller, McNaught, Pletnev, Stein, & Tchekhovskoi, 2015; O’Boyle, 

2012).  

There are also two dimensional representations. The 2D structural drawings can be adapted to be 

represented on a computer, this is becomes known as a chemical graph. The molecule is represented 

as a graph composed of nodes and edges, as can be seen in Figure 1-3c. The nodes are the circles 

and characterise the atoms of the molecule, which can have properties linked to them. The edges 

are the lines which signifies the bonds. An extra level of sophistication can be added by colouring 

the nodes and bonds to differentiate between the different types. Chemical graphs can be 

represented as connection tables in order for the computer to interpret them (A. R. Leach & Gillet, 

2007).   

A connection table is a simple table representation that attempts to replicate the connections that 

are made within a molecule. The atoms are enumerated and the bond order between each of the 

atoms is recorded within the table (for example, 1=single, 2=double, 3=triple), see Figure 1-3d. In 

most connection tables, hydrogen atoms are ignored. The level of complexity of the table was further 

developed in 1992 by Dalby et al. by adding more information into the connection table such as the 

hybridisation states, and xyz coordinates of each atom (Dalby et al., 1992; A. R. Leach & Gillet, 2007). 

 

1.2 Molecular Descriptors 
Many chemoinformatics applications require molecular descriptors to be defined which are 

experimentally measured or theoretically derived properties of a molecule. The molecular 

descriptors attempt to encapsulate as much chemical knowledge about the molecule as possible. 

This knowledge can include molecular properties such as the size, the shape, the symmetry, the 

stereochemistry, the branching, sterics, the cyclicity, and the hydrophobicity. Molecular descriptors 
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can be derived from several different principles. These principles consist of graph theory, topology, 

mathematics and multiple chemistry theories, such as chemical properties and potential bindings. 

These descriptors can then be used in different computational methods for more analysis and 

understanding. This section will discuss some of the main molecular descriptors that are commonly 

used in chemoinformatics.   

 

1.2.1 Simple Counts and Physicochemical Properties 

The simplest molecule descriptor is to use counts of features that are of interest. For example, these 

features can include counts of atom types, ring systems, rotatable bonds, hydrogen bond donors 

and hydrogen bond acceptors.  

Physicochemical properties can be calculated and also be used as a molecular descriptor. These can 

either be computed values or experimental values. Physicochemical properties that are typically 

used are molecular weight, lipophilicity (logP), solubility, polar surface area and molecular flexibility. 

These properties can be calculated either on an atomic level or fragment level. 

Both of these descriptors do not provide much information about the molecule itself due to their 

simplicity so they are often used in combination with other descriptors or can be used more as a way 

of filtering molecules (A. R. Leach & Gillet, 2007). 

 

1.2.2 2D Fingerprints 

Fingerprints were originally generated for substructure searches and then subsequently used for 

similarity searching (Willett, 1987). Fingerprints are very popular descriptors due to their ease of use 

and quick computational time. They are also preferred over graphical representations as they are 

much more efficient, can quickly capture complex relationships even with large amounts of data and 

contain similar information to a chemical graph. However, this is highly dependent on the fingerprint 

method used as some can be very basic whereas others can be more complex (Hasan, Bonde, 

Buchan, & Hall, 2012; Wollenhaupt & Baumann, 2014). 2D molecular fingerprints do not need to be 

canonicalised, therefore, for a fingerprint method the fingerprint for a molecule will always be the 

same.  

There are three fingerprint types commonly used: structural keys, hashed fingerprint, and extended 

connectivity fingerprints (R. D. Brown & Martin, 1996; Zahoránszky‑kőhalmi, Bologa, & Oprea, 2016). 

A molecular fingerprint is a binary key that indicates whether certain fragments appear within a 
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chemical structure or not. Structural keys are based on substructural fragments which can be atom-

centred or path-based. These can be dictionary-based where each bit in the fingerprint corresponds 

to a fragment in the dictionary. In hashed fingerprints, the fragments are generated algorithmically 

and are based on paths of atoms to a predefined length which form the inputs to a hashing algorithm 

to generate a number of bits to set in the fingerprint. A feature of hashed fingerprints is that they 

are not easy to interpret as the hashing algorithm makes it difficult to identify the fragment without 

knowing the specific hashing algorithm (Stepniewska-Dziubinska, Zielenkiewicz, & Siedlecki, 2017).  

Extended connectivity fingerprints (ECFP) were designed in an attempt to capture relationships 

between molecular fragments and molecular activity. ECFPs are also referred to as circular 

fingerprints and take into account a central atom and the surrounding atoms at increasing 

neighbourhoods. Each atom is initially given its own atom identifier, then depending on the chosen 

diameter, the neighbouring atom identifiers are combined into an array in an iterative manner. This 

is performed for each atom. The arrays are then hashed so that there is one single identifier for each 

generated array, that is, for each atom. Therefore, the amount of information contained within the 

ECFP is dependent on the diameter assigned. Like the hashed fingerprints described above, ECFPs 

can be generated on the fly and do not depend on predefined structural keys. Therefore, they can 

cover a wide range of functional groups including unusual or novel groups. Due to their advantages, 

they are frequently used for activity modelling and similarity searching. Another advantage is that 

they automatically capture stereochemistry and allow rings that have ortho, meta or para 

substituents to be distinguished.  

Bit folding can occur which reduces the fingerprint down to a particular size. Hashing (and bit folding) 

can lead to bit collisions which is where two different substructures are characterised as the same 

identifier (Rogers & Hahn, 2010).  

 

1.2.3 Reduced Graphs 
A reduced graph (RG) is a compressed representation of a molecular structure that is focused upon 

functional groups that could form interactions with a biological receptor. Groups of connected atoms 

are reduced to individual pharmacophore-type nodes, for example, an aromatic ring is reduced to 

one node, see Figure 1-4. The nodes in the reduced representation are connected according to the 

original structure to form a reduced graph. There are several ways in which this compression can be 

represented. One of the main ways to represent them is to use SMILES. This is achieved by mapping 

the different node types to atom types that are outside the usual set used for organic molecules.  
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RGs were originally created to describe the chemical space that is covered by a Markush structure 

as defined in a patent application (Gillet et al., 1987; Gillet, Holliday, & Willett, 2015). They were 

then applied to similarity searching with the aim of highlighting the types of interactions that 

functional groups could make rather than specific functional groups. The focus on the types of 

functional groups rather than particular atoms within molecules can lead to molecules with different 

2D structures being identified as similar (Birchall, Gillet, Harper, & Pickett, 2008; Gillet, Willett, & 

Bradshaw, 2003; Harper, Bravi, Pickett, Hussain, & Green, 2004). 

 

Figure 1-4: An example of a reduced graph representation (Birchall & Gillet, 2010) 

Different types of graph reduction can be applied and different amounts of information can be 

associated with the nodes. Figure 1-4 is the most basic example of a RG, the hydrogen bond acceptor 

and/ or donors have been found and are defined as feature nodes, F. For ring nodes, whether the 

ring is aromatic, Ar, or aliphatic, R, is also found. Any atoms that have not been assigned and connect 

nodes are then assigned as linkers, L. Other definitions include also encoding positive and negative 

ionisable features as node types (Gillet et al., 2003; Harper, Bravi, et al., 2004). 

There have also been similar approaches developed with the same principles of bringing together 

atoms with similar binding potentials. Rarey et al. established the feature tree (Rarey & Dixon, 1998). 

The feature tree is a tree of nodes and edges that replicates the functional features and connections 

of a chemical graph. The difference between a feature tree and a RG is that the feature tree does 
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not contain cycles, whereas the RG can. Feature trees have also been used for similarity searching 

applications.  

Stiefl et al. generated the extended RG (ErG) (Stiefl, Watson, Baumann, & Zaliani, 2006). The 

fundamental approach is similar to the RG with the key features of a molecule that could be 

important in forming interactions with a receptor being emphasised. However, the ErG is more 

complex as it tries to conserve the size and shape of the original molecule. This is achieved in several 

steps. The first is that the positions of the nodes, by retaining the distances between the node with 

features. Therefore, the linker node is redundant. The second is how ring nodes are defined. For 

each ring a centroid is established and any atoms that are potential features are also defined as a 

node. Then for any atom that has a substation site, including fused rings, are retained and connected 

to the ring centroid node. If any ring atoms have not been defined or connected they are then 

removed. Stiefl et al. generated ErG into its own FP that can be useful in virtual screening 

experiments (Stiefl & Zaliani, 2006). 

Another approach that attempts to use similar principles and exploit the observed pharmacophoric 

features is DeCAF (Discrimination, Comparison, Alignment tool for 2D Pharmacophores). DeCAF 

generates a pharmacophore model representation, seen in Figure 1-5, where five key 

pharmacophoric features are highlighted, hydrophobic, aromatic, hydrogen bond donor, hydrogen 

bond acceptor and ring atoms. Each atom is highlighted depending on these pharmacophoric 

features and the ring systems are then combined to one node. Each feature has an assigned weight 

which can be altered if the importance of a feature is considered to be more significant. When 

expressing multiple molecules, it can indicate the frequency of each feature. The edges between the 

nodes indicates the distances in bond in the chemical graph. Unlike RG and ErG, DeCAF are kept and 

utilised in their graphical forms (Stepniewska-Dziubinska et al., 2017).  

 

Figure 1-5: DeCAF pharmacophore model of a single molecule (Stepniewska-Dziubinska et al., 2017) 

Some of the ways in which these different molecular descriptors are utilised in chemoinformatics 

applications are now described.  
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1.3 Chemoinformatics Applications 
The molecular descriptors are implemented in a way in which they can be useful in various areas of 

chemoinformatics. Several of these areas are described below.  

1.3.1 Similarity  

Molecular similarity plays an important role in being able to establish common patterns that emerge 

within a chemical series due to the identification of a relationship between molecular structure and 

activity. The rationale for similarity searching is that molecules that have similar structures are also 

similar in biological activity (Willett, 2005). Similarity searching can be used with many different 

molecular descriptors, for example, fingerprints, chemical graphs and reduced graphs, with 2D 

fingerprints being most common but to them having shown a large amount of success with very little 

computational cost (Arif, Holliday, & Willett, 2010). Some of the main methods are described below.  

1.3.1.1 Fingerprint Similarity 

The similarity of two fingerprints can easily be calculated. As a fingerprint shows the present or 

absence of particular fragments as 1’s and 0’s, the number of bits that are the same can be 

calculated. An example of a fingerprint comparison is shown in Figure 1-6, when the bits are the 

same a value of one is given if the values are different a value of zero is given. These values are then 

totalled up and input into the Tanimoto similarity coefficient, which is explained later in this section. 

 

Figure 1-6: An example of a fingerprint comparison 

2D fingerprints have been demonstrated to be effective in similarity searching especially for 

molecules that are close analogues. Conversely, the main drawback with 2D fingerprints is that they 

do not allow compounds to be found that share the same biological activity but have different 2D 
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structures (Gillet et al., 2003). This also indicates that they are not good at scaffold-hopping which is 

one of the desired abilities of molecular representations as it allows the exploration of previously 

unexplored chemical space (Stepniewska-Dziubinska et al., 2017).  

Brown et al. found that the most effective 2D descriptor for clustering aimed at finding compounds 

that share the same activity was the structural key representation even though this encodes less 

structural information, compared to the hashed 2D fingerprint. It was suggested that the hashed 

fingerprints were not as effective as expected due to the hash key encoding a large amount of 

information within a small number of bits (R. D. Brown & Martin, 1996). Arif et al. investigated the 

use of weighting systems in the similarity scoring between two two-dimensional fingerprint 

representations. The first approach established the frequency of each fragment within the set and 

weighted them accordingly, the more it appears the greater the importance to the system activity. 

Contrastingly, the second approach interprets that if a fragment is frequently hit then this means 

that the fragment is not important in the molecular activity. Both methods varied drastically 

depending on the definition of the weighting, which is very dataset dependent, and therefore a wide 

variety of results can be obtained which is not desirable (Arif, Holliday, & Willett, 2009; Gillet et al., 

2015). 

1.3.1.2 Maximum Common Substructure (MCS) 

A maximum common substructure (MCS) is a set of common atoms and bonds between two 

molecules. From a graph-theoretical point of view, the MCS of two molecules is defined as the 

maximum common edge subgraph (MCES) or maximum common induced subgraph (MCIS) of two 

graphs. MCES is a subgraph that contains the largest number of edges that are common between 

both molecules. Whereas MCIS is a subgraph that contains the largest number of vertices, see Figure 

1-7. The identification of the MCS allows a degree of overlap to be established between two 

molecules which can be used as a measure of their similarity (Duesbury, Holliday, & Willett, 2017). 
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Figure 1-7: MCSs of Graph 1 and Graph 2 a) MCIS b) MCES 

In the first definitions of the MCS, the algorithms were designed to find the maximum common 

connected substructure between two molecules. For example, in Figure 1-8 all of the atoms and 

bonds highlighted in green would form the MCS. The rationale for this approach is that the 

environment of an atom affects its properties, for example, a nitrogen atom has very different 

properties in pyridine as it does within piperidine.  

 

Figure 1-8: An example of an MCS produced from RASCAL (Raymond, Gardiner, & Willett, 2002). All coloured bonds are part of the 
MCS 

Finding the MCS between two graphs is computationally expensive for large datasets (Willett, 2005; 

Wollenhaupt & Baumann, 2014). A clique is a set of nodes that are plotted on a graph that are 

connected and all nodes are connected to one another. A maximal clique is the largest clique within 

a graph which cannot be a subset of another clique (Ostergard, 2002). Barrow and Burstall were the 

first to attempt to overcome the computational costs of MCS detection by converting it to a maximal 

clique problem (Barrow & Burstall, 1975). Stepniewska-Dziubinska et al. further adapted the Barrow 

and Burstall MCS algorithm and combined it with Bron-Kerbosch’s algorithm for finding maximal 

cliques. The maximal clique is the clique with the highest similarity score, signifying that it the best 

alignment of all the models. They also included the topological distance of the bond as a constraint 
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(Stepniewska-Dziubinska et al., 2017). This methodology uses a similar algorithm to Raymond et al.’s 

program RApid Similarity CALculation (RASCAL) that calculated the similarity between two 

molecules. RASCAL is a fast similarity finding algorithm designed to analyse large-scale data sets. This 

algorithm provides chemical similarity searching on graphs instead of fingerprints. This is done by 

finding the maximum common induced subgraph (MCIS) and the maximum common edge subgraph 

(MCES).  The RASCAL algorithm was compared to the MC1 algorithm (Wood, 1997), Ostergard 

maximum clique problem (Ostergard, 2002) and a maximal clique detection algorithm (Bessonov, 

1985). The RASCAL algorithm outperformed these methods due to it being more efficient and stable 

as it had a quicker run time. It also allowed the classification of lower minimum similarity index (MSI) 

thresholds which is crucial as this allows potential scaffold-hopping as they have a bigger structural 

difference (Raymond et al., 2002). 

1.3.1.3 Tanimoto Coefficient 

The Tanimoto coefficient is used to quantify the similarity between two molecules (Willett, 2005; 

Zahoránszky‑kőhalmi et al., 2016). The Tanimoto coefficient equation is as follows: 

 𝑇𝑚𝐴𝑚𝐵
= 
|A| ∩ |B|

|A| ∪ |B|
 (1.1) 

Where the Tanimoto similarity is the number of features common to molecules A and B divided by 

the number of features in A or B (Zahoránszky‑kőhalmi et al., 2016). Therefore, for the example 

within Figure 1-6, only the comparison bits set to “1” are counted in the Tanimoto, 2039, and the 

number of features within A, molecule 1, are 2048 as this is how many bits are within the fingerprint. 

So the Tanimoto similarity coefficient for the ECFP fingerprints is 0.996. 

The MCS is the largest subgraph that is common to molecules and can be converted to a similarity 

value through the use of a similarity coefficient in a similar way to quantifying similarity based on 

molecular fingerprints. The Tanimoto coefficient equation has been adapted for this purpose (G. M. 

Maggiora & Shanmugasundaram, 2004). 

 𝑇𝑚𝐴𝑚𝐵
 

𝑀𝐶𝑆

𝐴 + 𝐵 −𝑀𝐶𝑆
 (1.2) 

Where A is the number of atoms within molecule A, B is the number of atoms within molecule B and 

MCS is the number of atoms within the MCS between molecules A and B.  

Even though the Tanimoto coefficient is still the most widely used similarity coefficient in 

chemoinformatics, several people have investigated different similarity coefficients, such as Forbes 
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and Russell-Rao coefficients. These were seen to give similar results if not superior to the Tanimoto 

coefficient in certain circumstances (Arif et al., 2009; Willett, 2005). 

 

1.3.2 RG Applications  
RGs have many useful applications in chemoinformatics. The RG has been shown to be useful in 

similarity searching. There are three different approaches that can be used to calculate the similarity 

between two molecules based on their RGs. These are by generating fingerprints from the RGs, by 

comparing the graph directly or using edit distance methods. As the RG is represented as a SMILES 

then a path-based fingerprint can be generated (Birchall & Gillet, 2010; Gillet et al., 2003). Another 

type of fingerprint that has been investigated is node-pair descriptors, which have been shown to 

have a greater success in comparing the RGs (Barker, Gardiner, Gillet, Kitts, & Morris, 2003; Birchall 

& Gillet, 2010).  

The RGs can also be compared directly using graph matching techniques, such as the MCS. RGs are 

smaller graphs than chemical graphs, therefore, this allows their comparison to be more 

computationally efficient. There are several research groups who have looked into similarity 

searching based on RGs and achieved some level of success (Harper, Bravi, et al., 2004).  

Gunera et al. also attempted to create a method for similarity searching that involves RGs as a 

combination of graphs and fingerprints. However, this methodology incorporated the use of colour 

on the nodes to be able to interpret more data. This research aimed to identify bioisosteres, which 

is where the functional groups within a molecule are swapped but the physicochemical properties 

remain unchanged, i.e. they remain biologically active, this is called scaffold hopping (Gunera & Kolb, 

2015). 

Harper et al. investigated similarity using edit distances and RGs. Two different types of distances 

were defined: a simple edit distance and weighted edit distance. A simple edit distance is where 

nodes can only be inserted, deleted or mutated in order to make two RGs match. In contrast, a 

weighted edit distance associates different weights to the insertion or deletion of different 

functional groups. They showed that RGs can be used in parallel with other methods to identify 

molecules that before would not have been found using just one method (Harper, Bravi, et al., 2004).  

Birchall et al. further developed this work by creating a genetic algorithm that assigned the weighting 

of the edit distances. This was found to outperform and differ significantly to Harper et al., with a 

higher recall rate across a range of different activity classes. These weightings were seen to be more 
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effective as they had been trained over several different activity groups (Birchall, Gillet, Harper, & 

Pickett, 2006).  

The RG has also been used in various clustering algorithms. Harper et. al first used RGs to cluster 

high-throughput screening data. The molecules were clustered dependent on several descriptors, 

either FP or RG of the molecules, and their respective similarity techniques, for RGs this is either 

substructure searching, FP, or edit distance. Molecules that had similar descriptors were then 

brought together in a cluster (Harper, Bravi, et al., 2004). 

Gardiner et al.’s research aimed to find a better way of representing the main relationship in a 

cluster. Gardiner et al. initially clustered a database, then for each cluster, they found an RG that is 

the MCES for as many molecules within a cluster. This method was successful in identifying an RG 

for a cluster that is representation of the majority of the molecules and which can be mapped back 

to a chemical graph to provide information on subgraphs that are important to the activity. 

(Gardiner, Gillet, Willett, & Cosgrove, 2007).   

RGs have been used to visualise SAR. One method is by Wollenhaupt et al. in their generation of 

inSARa program. An RG algorithm is first applied to the molecules, after which the MCS is found. As 

the RG dramatically reduces the size of the molecular representation, computing the MCS becomes 

a less computationally expensive task. This technique can be applied to large-scale problems such as 

large-scale SAR analysis. In this technique, a root MCS is established in order to generate a 

hierarchical network structure. An important key finding from Wollenhaupt et al.’s research is that 

it is important to not define the size of the root MCS too small. In their results, an RG-MCS greater 

than or equal to three could only found for 50% of the data. Therefore 50% of the data have an MCS 

of less than three nodes and this could just be from random MCS that happened to have two things 

in common. It was suggested that to become clustered the minimum number of MCS nodes should 

be four to help rule out random similarity or molecular features that appear in most molecules which 

does not provide any information about the SAR, for example, linker nodes (Wollenhaupt & 

Baumann, 2014).  

 

1.4 Machine Learning  
A huge part of chemoinformatics and data mining is using the data to extract knowledge. This is also 

particularly important in the lead optimisation (LO) stage of the drug discovery process. Several 

techniques have been developed to prioritise molecules to make based upon properties which can 
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be learnt from the previous data. The properties that are of particular importance are the biological 

potency and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties.  

Machine Learning has become a popular technique in chemoinformatics due to its ability to allow 

the computer to learn information. Machine learning is typically classified into two types: supervised 

and unsupervised (Witten, Frank, Hall, & Pal, 2016). There have been several successful uses of 

supervised and unsupervised learning in chemoinformatics, some of which are reviewed below.  

 

1.4.1 Supervised Learning  

Supervised learning gets its name as the algorithm learns under supervision. Supervised learning 

requires labelled training data and the aim is to learn the relationship between the input label and 

the set of variables that are used to present the objects, that is, how one maps onto the other. The 

resulting model is then able to predict the corresponding label for a new molecule from its known 

variables (Clarke et al., 2008; Witten et al., 2016). Quantitative structure-activity relationships 

(QSAR) is an example of how supervised machine learning can be applied to a chemoinformatics 

problem and is described below, along with several widely used supervised learning algorithms. 

1.4.1.1 Quantitative Structure-Activity Relationship 

Quantitative structure-activity relationships (QSAR) is a mathematical technique used to derive a 

relationship between structural features of molecules and a measured property, particularly their 

activities. QSAR models are either regression or classification models that are used to link features 

(X) of molecules to their potencies (Y). In a regression model Y is an activity value and in a 

classification model Y is an activity category. Molecules that have previously been unseen by the 

model can then have predictions made using the QSAR model. QSAR was first developed in 1962 by 

Hansch and Fujita who predicted the reactivity and molecular lipophilicity of phenoxyacetic acids by 

modelling on benzoic acid substituents (Hansch, Maloney, Fujita, & Muir, 1962). QSAR modelling can 

be used throughout the drug discovery projects as it allows predictions to be made on the activity of 

a molecule or its ADMET properties to establish a more optimised molecule. Molecular fingerprint-

based representations are the most commonly used descriptors in QSAR (Wollenhaupt & Baumann, 

2014). 

QSAR models are developed using a training set of molecules. The model can then be applied to 

unseen molecules to make predictions (Cherkasov et al., 2014). A QSAR model can be built via two 

different methods: internal cross-validation, where a percentage of the training set is taken out 
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before the model is built and these molecules become the test set. This is done several times and an 

average is taken of the model performance. Or an external validation can occur with a pre-

established set of compounds that are not contained within the training data, as long as the 

molecules are within the domain of applicability (Dearden, Cronin, & Kaiser, 2009).  

1.4.1.1.1 Free-Wilson Analysis 

Free and Wilson is a common approach in medicinal chemistry due to its simplicity and 

interpretability. A Free-Wilson analysis estimates the bioactivity of the molecules by summing the 

activities of the substructural fragments that constitute the molecule (Wilson & Free, 1964). The 

molecules that are used to create the model only need to be provided with the property of interest; 

they do not require the chemical analogue/ scaffold and substituents (R-groups) to be 

predetermined. An example of how the Free-Wilson analysis is calculated for one R group is 

demonstrated in Figure 1-9. The equation can then be adapted for more R groups around a scaffold, 

the subsequent summed R groups would be added to the end of the equation.  

 

Figure 1-9: Free-Wilson analysis example for one R group. Where μ is the contribution of the parent analogue, ai is the activity 
contribution of R group substructural fragment i and Xi is whether the R group i is present, 1, or absent 0 

One of the drawbacks of this methodology is that it can only provide predictions for R-groups that 

have previously been seen and therefore does not allow any exploration around certain substitution 

sites. Additionally, predictions for new molecules can only occur if the new molecule identifies with 

any of the scaffolds extracted within the dataset. Free-Wilson approach is limited to the local analysis 

of homogeneous datasets, however, other methods have been developed to overcome this 

limitation.  

1.4.1.1.2 Interpretation of QSAR 

An important aspect in chemoinformatics is to understand the relationships in QSAR models. There 

have been several approaches to attempt to make them interpretable and provide information on 

which atoms or group of atoms are important to the property of interest.  
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The first is matched molecular pair analysis (MMPA) that identifies SAR patterns through defining 

matched molecular pairs (MMP) that are present. A MMP is a “well-defined structural change” 

between two molecules, Figure 1-10. Kenny and Sadowski first established this concept (Kenny & 

Sadowski, 2005). SARs can be identified as chemical pair transformations that can cause a change in 

ADMET properties or target binding. MMPs are identified and differences in their measured ADMET 

data are used to link properties to structures. An example of an MMP is changing a methyl group to 

a fluorine atom (Griffen, Leach, Robb, & Warner, 2011; A. G. Leach et al., 2006). 

 

Figure 1-10: Comparison of MCS and FI MMP methods, MMP highlighted in green 

The most common way of finding an MMP is via the fragment-index (FI) method, which can be 

divided into several steps. The first step is to fragment each molecule by cleaving bonds. Hussain and 

Rea first described this method by cleaving every acyclic single bond between two heavy atoms. The 

bonds are broken one at a time and the resulting fragments are stored as SMILES, one is the core, 

that is the fixed fragment, while the other is the fragment that changes (Figure 1-10) (Hussain & Rea, 

2010). An alternative approach is based on finding the MCS. The main drawback with MMPs is that 

it depends on the implementation as using the two different techniques can result in different 

MMPs, see Figure 1-10. 

Polishchuk et al. developed a method that masks a fragment of interest and compares the 

predictions of this masked molecule and the original unmasked molecule, to provide information 

about the masked atom(s). Two different descriptors were used and four different models to 

generate a consensus score (P. G. Polishchuk, Kuźmin, Artemenko, & Muratov, 2013; P. Polishchuk 

et al., 2016). Further work, was also done by Polishchuk that took the environment of the atom(s) 

into account too (Matveieva, Cronin, & Polishchuk, 2019). This method will be further described in 

Chapter 7. 
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Sheridan has recently used similar principles to generate a method that colours the atoms according 

to how much they contribute to the activity (Sheridan, 2019). Sheridan uses a combination of 

molecular descriptors, in frequency form, and ML models to establish a consensus prediction from 

all combinations. To understand the importance of each atom a recalculated prediction is compared 

to the original prediction, when the atom is changed to a sodium, Na, atom. However, Sheridan 

showed that this is not always possible, as these different combinations are not always in agreement 

with the importance of each atom or even the ordering of the importance of the atoms in the 

molecule. 

1.4.1.2 Modelling Algorithms 

1.4.1.2.1 Decision Tree 

Decision trees are a form of machine learning technique that can also be used to predict discrete 

properties/ labels (Wawer, Lounkine, Wassermann, & Bajorath, 2010). Decision trees have been 

used across a wide range of chemical endpoints to successfully predict or interpret relationships or 

both (Agrafiotis, Shemanarev, Connolly, Farnum, & Lobanov, 2007). 

 

Figure 1-11: Decision Tree 

An example of a decision tree is shown in Figure 1-11. The root node represents the whole dataset, 

which is split into nodes based upon some criteria or property. The process is repeated until 

eventually the outcome is a leaf which is the prediction/ label. In order to split nodes different 

metrics can be used to establish the best split to keep alike molecules together. Common metrics 

that are used are Gini impurity, information gain (entropy), and variance reduction.  
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1.4.1.2.2 Random Forest 

The decision tree is prone to overfitting the data whereby it learns the training data but is not 

accurate in predicting new data. One way in which the decision tree can be enhanced is to create a 

collection of decision trees into a random forest (RF) (Ho, 1995, 1998). RFs can help to overcome low 

predictivity and instability of a model. RFs are stable models and are resistant to noise within the 

data. This is because it uses a combination of decision tree models, a prediction is based on the 

predictions made across multiple trees and each tree is built using a subset of descriptors/ data. An 

example of how a RF works is shown in Figure 1-12. A RF is built following three rules. The first is 

that each tree is generated from a random sample of the training set; by repeating this a number of 

times, the whole of the training set will be sampled. The second is that when splitting nodes only a 

defined number of random features are used. The third is that the trees cannot be pruned, i.e. be 

reduced (P. Polishchuk, 2017). 

 

Figure 1-12: An example of how a random forest works 

1.4.1.2.3 Gradient Boost Model 

Gradient boost model (GBM) is another ensemble approach based on decision trees that has been 

used in chemoinformatics for regression and classification problems (P. Polishchuk et al., 2016; 

Sheridan, Wang, Liaw, Ma, & Gifford, 2016). GBM sequentially builds weak models, where a weak 

model is one that is considered to be slightly better than random meaning that it has poor accuracy. 

This, ultimately, improves the predictivity power since it has less bias and variance as each model 

learns from the previous one. An illustrated example of how a boosted system works is displayed in 

Figure 1-13.  When moving on to the next decision tree larger weights are given to the incorrectly 

predicted observations. The next decision tree amplifies these incorrectly predicted observations to 

minimise the loss function and reduce the errors.  
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Figure 1-13: An example of a boosted system 

1.4.1.2.4 Support Vector Machine 

The support vector machine (SVM) is a supervised technique that identifies a hyperplane in 

regression and classification problems. They were initially introduced to the area of 

chemoinformatics for binary classification (Burbidge, Trotter, Buxton, & Holden, 2001) and were 

later used on regression problems (Alvarsson et al., 2016).  

SVM uses a kernel function to create a hyperplane, also known as a decision boundary, that for a 

classification problem separates the data into two different classes. The data points on either side 

of the hyperplane are defined as the support vectors. The optimum position of the hyperplane is 

when the distance between the support vectors is maximised, which is known as the margin, and 

which minimises the classification error (H. Chen et al., 2013). An example of a classification problem 

and how a SVM model works can be seen in Figure 1-14. This has two classes, 1 labelled in red and 

2 labelled in blue which contain two features, x and y. 

 

Figure 1-14: Illustration of how an SVM model works 
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Vapnik further developed the SVM method so that it could be useful for regression problems 

(Vapnik, 1995). For a regression model, instead of the hyperplane acting as a boundary between 

classes, it instead helps to establish a prediction value for the property of interest. Within a support 

vector regression (SVR) model an ε-insensitive region is established, this region controls the noise of 

the data within the model, Figure 1-15. Ideally all data points are within this region, however, this is 

not always possible to have a relevant worthwhile model, so the data points that lie outside this 

region have an associated error attached, ξi, which increases as the distances from the ε-insensitive 

region increases (Ivanciuc, 2007). A hyperplane can then be fitted using these data points allowing 

an estimate y value to be provided for any given x value. 

 

Figure 1-15: SVR example 

Not all examples are as straightforward as in Figure 1-14 and a clear hyperplane may not be 

identifiable. A hyperplane may be more easily identifiable when the data is projected into higher 

dimensions which is done through a kernel function. A common kernel function is the radial basis 

function (RBF). RBF is a Gaussian function ϕ: 

 𝜑 = 𝑒
(−
‖𝑥−𝑦‖2

2𝜎2
)
 (1.3) 
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Where x and y are vector points and σ controls the shape of the hyperplane. The squared distance 

between these two points is calculated. γ, 
1

2𝜎2
, scales the amount of influence two points have on 

each other (Ivanciuc, 2007). It is commonly used as it works in infinite dimensions and is efficient. 

1.4.1.2.5 Partial Least Squares 

Partial least squares (PLS) regression is based on the upon principal component analysis (PCA) and 

multiple linear regression. PLS is a technique that can deal with the large number of independent 

variables that are typically used to represent molecules. A PLS model provides a technique for 

correlating information in one data matrix, X, to the information within another matrix, Y, where X 

are the independent variables and Y is the dependent variable(s). Whereas, PCA is just the analysis 

of one data matrix, i.e., X, which can then be visualised, see below.  

The first step of a PLS is to first reduce the number of independent variables to a smaller set of 

uncorrelated components. A linear regression can then be performed on these components to allow 

the dependent variable, the property of interest, to be estimated. These two steps can be explained 

via the following equations: 

 𝑋 = 𝑇𝑃𝑇 (1.4) 

 Ŷ = 𝑇𝐵𝐶𝑇 (1.5) 

X is the original variable matrix which is made up from of a set of T scores and P their associated 

loadings and X-residuals, E. The set of T scores can then be combined with the regression weights, 

B, and the weight matrix of X, C, to provide an estimate of the Y value, Ŷ (Abdi, 2010). 

The way in which the PLS is developed means that the first components encode the most variation. 

As a result, PLS can reduce high dimensional data to a significantly smaller number of variables, 

which contains the largest amount of information for that original X matrix. This large reduction 

allows them to be useful predictors for chemical properties (B. Chen, Zhang, Bond, & Gan, 2015; P. 

Polishchuk et al., 2016).  

 

1.4.2 Unsupervised Learning  

In contrast to supervised learning, unsupervised learning is applied to unlabelled data. The main use 

of unsupervised learning in chemoinformatics is to model molecular properties and biological 

activity in order to learn more about the data. Examples of this are principal component analysis 

(PCA) and clustering (Clarke et al., 2008). 
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1.4.2.1 Principal Component Analysis 

PCA is a dimensionality reduction technique based on using linear combinations of the descriptors. 

However, with the reduction of the dimensions, there is an expected loss of information (Medina-

Franco, Martínez-Mayorga, Giulianotti, Houghten, & Pinilla, 2008; Wawer et al., 2010).  

The principal components are calculated from an original matrix of n rows, where n is the number 

of molecules, and p columns, where p is the number of descriptors, through a variance-covariance 

matrix. The variance-covariance matrix is of size of n x n. The eigenvectors represent the directions 

of lines, which can be drawn through the data points. The eigenvalues are the amount that the data 

points vary from this eigenvector. The eigenvector with the largest eigenvalue is known as the 

principal component, this means that it is the one with the largest variance. The number of 

eigenvectors and values that are considered following a PCA analysis determines the number of 

dimensions used to represent chemical space. Therefore, if the model only has two dimensions then 

the two largest eigenvalues are used. The principal components selected are all orthogonal to each 

other (A. R. Leach & Gillet, 2007; Medina-Franco et al., 2008). As variables with high dimensions can 

be reduced to two or three variables, principal components, the PCA can be visualised in a plot form, 

see Figure 1-18. A disadvantage of this visualisation technique is that the principal components are 

linear combinations of the original descriptors which can be hard to interpret and that it is not always 

possible to condense information into a small number of key components to allow patterns to be 

identified (Bro & Smilde, 2014). 

1.4.2.2 Clustering 

Clustering allows objects to be divided into different groups or clusters, where objects in the same 

group are the similar and objects in different groups are different. From a chemoinformatician’s 

point of view, this may enable relationships between chemotypes and biological activity to be 

identified (Gillet et al., 2015; Wawer et al., 2010). There are three main steps to clustering: the first 

step is to establish each molecule’s set of features; the second step is to calculate pairwise 

similarities between the molecules; the third and final step is to cluster together similar molecules 

(Willett, 2005). 

There are two main types of clustering methods which are hierarchical and non-hierarchical 

methods. Both clustering methods generate distinct or crisp clusters; therefore, none of the 

structures can appear in multiple clusters, other than the nested clusters within a hierarchy of 

clusters (R. D. Brown & Martin, 1996). There is another type of clustering known as fuzzy clustering 

that allows the objects to belong to more than one cluster. This arose in popularity due to its unique 
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ability to be able to have an item in multiple clusters, which in some instances can be useful (Bunin, 

Siesel, Morales, & Bajorath, 2007).  

There have been several areas in the chemoinformatics area that use clustering, such as: SAR, virtual 

screening (Gupta & Zhou, 2021), high-throughput screening (Harper, Bravi, et al., 2004; Reymond & 

Awale, 2012), visualisations (Gütlein, Karwath, & Kramer, 2012), scaffold analysis (Mok & Brown, 

2017) and molecular docking (Makeneni, Thieker, & Woods, 2018). 

1.4.2.2.1 Clustering Techniques 

1.4.2.2.1.1 Agglomerative Clustering 

Agglomerative clustering is a type of hierarchical clustering that builds clusters from the bottom up. 

Therefore, each molecule begins on its own and the molecules come together based upon a certain 

criterion. The merging of clusters is repeated until all molecules are in a single cluster. There are 

three main implementations of agglomerative hierarchical clustering: group-average, single-link and 

complete-link. In each case, the two clusters are combined that have the smallest index. The three 

indexes are illustrated in Figure 1-16 by different colours. The four resulting clusters are 

demonstrated with a dashed line. The group-average is the distance between the cluster’s averages, 

shown by the red arrows. The single-link index is the minimum distance between any two molecules 

where one is taken from each cluster, shown by the green arrows. The complete-link is the maximum 

distance between any two molecules where one is taken from each cluster, shown in by the yellows 

arrows. A clustering level is chosen based on either a distance criterion or a specific number of 

clusters (R. D. Brown & Martin, 1996; Murtagh, 1985). 
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Figure 1-16: An example of agglomerative clustering, the red arrows indicates the average distance algorithm, the green arrows 
indicates the single-link algorithm and the yellow arrows indicates the complete-link algorithm. 

1.4.2.2.1.2 Butina Clustering 

Butina clustering, also known as Taylor-Butina as it was first described by Taylor et. al (Taylor, 1995), 

consists of two main steps. The first step is to identify potential centroid molecules. These are the 

molecules that the clusters will be built around and will, therefore, be the centres of the clusters. 

For each molecule, the number of near neighbours is calculated using a specific Tanimoto threshold. 

The molecules are then ordered so that the molecule with the highest number of neighbours is first 

and the molecule with the fewest is last. This ordering eliminates issues of order dependencies that 

are seen with some other clustering techniques. The first molecule is then selected as the centroid 

of the first cluster and all the molecules that are above the similarity threshold become part of this 

cluster. These molecules are removed from the list to ensure that a molecule is only assigned to a 

single cluster. The next remaining molecule is then chosen from the list and the process is repeated 

until all molecules are within a cluster or are a cluster on their own (Butina, 1999). An example of 

this clustering technique can be seen in Figure 1-17 where the red circles represent centroid 

molecules, the lighter blue larger circles represent the Tanimoto threshold, and the small darker blue 

circles represent molecules that fall within the Tanimoto threshold of the respective centroid 

molecule. 
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Figure 1-17: Example of Butina clustering 

1.4.2.2.1.3 K-Means Clustering  

The K-means algorithm also uses centroids, as for Butina clustering, however, the number of 

centroids (and therefore clusters) is pre-defined as k. The centroids are initially chosen at random 

and each molecule is assigned to its nearest centroid. For each cluster, a new centroid is calculated 

as the centre of the compounds within the cluster. Each molecule in the dataset is then reassigned 

to its nearest centroid. The process is repeated until there is no change of molecules to clusters (Bora 

& Gupta, 2014). 

1.4.2.2.2 Cluster Validity 

Different clustering techniques typically produce different clusterings of molecules depending on the 

input parameters and the algorithm used. Therefore, once clusters have been established, it is 

important to check how valid the clusters actually are. Cluster validity is determined by calculating 

various scores that aim to quantify how good the clustering is. There are two criteria that are typically 

used. These are the compactness of the clusters and the separation between clusters. There are 

three types of indexes: external, internal and relative. External indexes are based on how well 

matched the clusters are to known specified classes or labels. This is useful if the ideal clustering of 

the data is known. However, if this is unknown, which is usually the case, then this index cannot be 

used without self-assigning all the data points. Internal indexes are based on the data itself and do 

not make reference to any pre-existing cluster information. These indexes are typically based on 

calculating inter- and intra-cluster distances. Relative indexes compare multiple clusters, via either 

an external or internal index (Agrawal, Garg, & Patel, 2015).  There are three different ways of 

calculating the inter-cluster distances. The first is the single linkage method which uses the same 

principle as the agglomerative clustering single linkage and is the minimum distance between 
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clusters, that is, the distance between the closest two data points. The second is complete linkage 

which is the maximum distance between clusters, that is, the distance between the furthest two 

data points. The third is the distance between the centroids of each of the clusters. Single linkage 

and complete linkage involve pairwise similarity calculations and can, therefore, have large 

computational costs (Azuaje & Bolshakova, 2002; Halkidi, 2001).  

1.4.2.2.2.1 Silhouette Average 

Silhouette average provides information on the cohesion and compactness of the clusters while also 

providing information on the separation. A silhouette average is a value between -1 and +1 with the 

closer the value is to +1 the better the clustering. A, s, is calculated for each data point/molecule as 

shown in Equation 1.6.  

 𝑠(𝑖) =

{
 
 

 
 1 −

𝑎𝑖
𝑏𝑖
, 𝑎𝑖 < 𝑏𝑖

0,                   𝑎𝑖 = 𝑏𝑖
𝑏𝑖
𝑎𝑖
− 1, 𝑎𝑖 ≥ 𝑏𝑖

 (1.6) 

 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑚
∑𝑠(𝑖)

𝑚

𝑖=1

 (1.7) 

Where ai is the average distance of point i to all points within its own cluster, bi is the average 

distance of i to all points in the nearest neighbouring cluster and m is the number of data points. The 

closer the silhouette score is to one the better matched a data point is to its own cluster, which 

represents good cohesion, and the more poorly it matches to the other clusters, representing good 

separation. When a data point is in a cluster on its own, i.e., a singleton, then that cluster’s silhouette 

score becomes zero as this is the most neutral score to give it as zero sits directly in the middle 

between -1 and +1 (Rousseeuw, 1987). 

1.4.2.2.2.2 Dunn Index 

The Dunn index is also based on inter- and intra-cluster distances.  

 

𝐷 = min
𝑖=1…𝑛𝑐

{ min
𝑗=𝑖+1…𝑛𝑐

(
𝑑(𝑐𝑖 , 𝑐𝑗)

max
𝑘=1…𝑛𝑐

(𝑑𝑖𝑎𝑚(𝑐𝑘))
)} ,

𝑤ℎ𝑒𝑟𝑒 𝑑(𝑐𝑖, 𝑐𝑗) = min
𝑥∈𝑐𝑖,𝑦∈𝑐𝑗

{𝑑(𝑥, 𝑦)}  

𝑎𝑛𝑑 𝑑𝑖𝑎𝑚(𝑐𝑘) = max
𝑥,𝑦∈𝑐𝑖

{𝑑(𝑥, 𝑦)} 

(1.8) 

Where d(ci, cj) is the distance between clusters ci and cj and max{d(x,y)} equates to the maximum 

distance between point x and y that are within the same cluster, ck. The more compact and more 

separated clusters are the higher the Dunn index (Dunn, 1974; Halkidi, 2001). A disadvantage of the 

Dunn index is that it can be computationally expensive for large datasets and it is sensitive to noise. 
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1.4.2.2.2.3 Davies Bouldin Index 

Davies Bouldin (DB) index is the average of the ratios between the intra-cluster distance and the 

separation between clusters for each cluster. This means that the Davies Bouldin must be positive. 

There are several properties that should be conserved. The main one is that the ratio between ith 

and the jth cluster must be greater than or equal to zero, whilst also maintaining that the ratio Rij 

equals Rji.  

 
𝑅𝑖𝑗 =

𝑠𝑖 + 𝑠𝑗

𝑑𝑖𝑗
  𝑑𝑖𝑗 = 𝑑(𝑣𝑖 , 𝑣𝑗)   𝑠𝑖 =

1

‖𝑐𝑖‖
∑ 𝑑(𝑥, 𝑣𝑖)

𝑥∈𝑐𝑖

 

 

(1.9) 

 𝐷𝐵 =
1

𝑛𝑐
∑𝑅𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 = max

𝑗=1…𝑛𝑐,𝑖≠𝑗
(𝑅𝑖𝑗), 𝑖 = 1…𝑛𝑐

𝑛𝑐

𝑖=1

 

 

(1.10) 

Where si is the intra-cluster distance, dij is the inter-cluster distance and nc is the number of clusters. 

This index generally suggests that the lower the value of DB then the better the cluster separation 

and the more compact the clusters are (Davies & Bouldin, 1979). 

1.4.2.2.2.4 Calinski-Harabasz 

The Calinski-Harabasz (CH) index is the ratio of the average intercluster distance and the average 

intracluster distance.  

 𝐶𝐻 = 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 /(𝑛𝑐 − 1)

𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 /(𝑛𝑜 − 𝑛𝑐)
 (1.11) 

 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =  ∑𝑛𝑘‖𝑧𝑘 − 𝑧‖
2

𝐾

𝑘=1

 (1.12) 

 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =  ∑∑‖𝑥𝑖 − 𝑧𝑘‖
2

𝑛𝑘

𝑖=1

𝐾

𝑘=1

 (1.13) 

Where no is the number of data points, nc is the number of clusters, nk is the number of points within 

cluster k, zk is the centroid of cluster k, z is the centroid of the overall points and xi is a data point 

within cluster k. Unfortunately, due to the nature of intra-cluster sum of squares, it examines all 

possible grouping of points which means that it can become very computationally expensive (Calinski 

& Harabasz, 1974). A larger CH index is preferred as this demonstrates a larger cluster separation 

relative to the cluster compactness (Jauhiainen & Kärkkäinen, 2017). 

1.4.2.2.2.5 Kelley Index 

The Kelley index is different from the other indexes as this index penalises clusters that contain a 

large number of singletons as these are not desired. 
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 (𝑛 − 2)(
�̅�𝑤𝑙 −min (�̅�𝑤)

max(�̅�𝑤) − min (�̅�𝑤)
) + 1 + 𝑘𝑙 (1.14) 

Where n is the number of points, kl is the number of cluster, �̅�𝑤𝑙 the mean of the intra-cluster 

distances and min(�̅�𝑤) and max(�̅�𝑤) are the minimum and maximum of the intra-cluster distances. 

The singletons are excluded from this calculation, therefore, this equation penalises where there are 

a large number of singletons. The better the clustering the lower the value of the Kelley index (Kelley, 

Gardner, & Sutcliffe, 1996). 

1.4.2.2.2.6 Ball-Hall Index 

Ball-Hall (BH) index is one of the indexes that only takes into account the intra-cluster distances. 

 𝐵𝐻 =
1

𝐾
∑

1

𝑛𝑘
𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠{𝑘}

𝐾

𝑘=1
 (1.15) 

Where K is the number of clusters and nk is the number of data point in the kth cluster. The desired 

level is known as the elbow. This means if all BH points are plotted against number of clusters. Then 

the turning point in the graph is the number of clusters that should be chosen (Ball & Hall, 1965). 

 

1.5 Visualisation of Chemical Space 
Many different visualisation techniques have been used to help medicinal chemists easily interpret 

and identify relationships between chemical structures and activities. They can also be important in 

suggesting chemical space to further explore or exploit and display a large amount of data without 

any bias. This can either be to focus on one compound or to explore a larger set of compounds that 

have the potential to be biologically active (Kayastha, Kunimoto, Horvath, Varnek, & Bajorath, 2017; 

Wawer et al., 2010; Wollenhaupt & Baumann, 2014). Additionally, visualisation is crucial as it allows 

complex problems to be simplified to aid the decision-making process. It can provide information on 

which molecules to prioritise, while also providing information on how diverse a chemical series is, 

along with key SAR analysis with ADMET properties. Unfortunately, due to the complex nature of 

chemical space, which is frequently multi-dimensional, it is challenging to represent it in fewer 

dimensions to make it human readable (Medina-Franco et al., 2008). 

Four common uses of visualisations were identified by (Stumpfe & Bajorath, 2016) are shown in Figure 

1-18. Firstly, is plotting the compounds in a low dimensional space. Second, they can be used to 

organise data according to common substructures to, for example, indicate the significance of R-

groups around a scaffold. Third, they can be used to indicate how data can be organised through the 

clustering and partitioning. Finally, they can be used to relate chemical structures to properties of 

interest, typically active values. 
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Figure 1-18: Different visualisation approaches (Stumpfe & Bajorath, 2016) 

1.5.1 Generation of Structure-Activity Relationship Tables 
A unique way for chemists to display their data is in a structure-activity relationship (SAR) table. SAR 

tables are a way of uniformly representing chemical data within a table. This is done so the medicinal 

chemists can easily interpret and analyse the chemical space that has been explored. 

1.5.1.1 Traditional SAR tables 

A traditional SAR table is also known as a R-group table. Each row represents a chemical structure 

and the columns represent different R-groups with the corresponding chemical substitution in the 

cell. The final column represents the biological activity value of the molecule. These tables have been 

used for many years as chemists find them easy to comprehend. However, they can be time-

consuming to generate and also difficult to fully and critically analyse (Agrafiotis, Shemanarev, et al., 

2007).  
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Traditional SAR tables were generated manually however they are then subjective and different 

chemists may organise the data differently using a different core scaffold and different definitions 

of the R groups. This could have a large impact if the tables are analysed automatically or are fed 

into another system as the different variations could lead to different results. This type of R-group 

table is also not able to deal with large datasets (Wollenhaupt & Baumann, 2014). Different methods 

are being developed to overcome these disadvantages.  

1.5.1.2 SAR Matrices 

SAR matrices were developed in 2007 by Agrafiotis et al. with the main aim to help medicinal 

chemists see relationships within their data algorithmically without the need of a chemist’s input. A 

SAR matrix is a table where the columns are different R groups and the rows are different cores such 

that each cell is a unique molecule that can be coloured according to its biological activity, or 

physicochemical property that is being investigated. This can easily allow the medicinal chemist to 

identify areas of chemical space that have not been investigated, see Figure 1-19 (Agrafiotis, 

Shemanarev, et al., 2007). These matrices are generated through a mixture of MMP analysis and 

clustering. One cluster can easily be seen in Figure 1-19, the highlighted molecule is the combination 

of the core (row) and the R-group (column) (Stumpfe & Bajorath, 2016). Further work has been done 

recently, which constructs the SAR matrix whilst also being useful in molecular design as it provides 

predictions for neighbouring unexplored blank molecules (Yoshimori & Bajorath, 2020). 

 

Figure 1-19: SAR matrix (Stumpfe & Bajorath, 2016) 

1.5.1.3 Radial Scope Plot 

Recently, there has been a new visualisation to display structure-data relationships, the radial scope 

plot illustrated in Figure 1-20c. This attempts to combine a scaffold structure and a coloured 

heatmap of properties of the R-groups (Rodríguez Benítez, Dürr, & Narayan, 2020). Heatmaps will 
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be discussed further later. These radial scope plots attempt to demonstrate the R-groups that impact 

the conditions that are of interest.  

 

Figure 1-20: A) Traditional substrate scope plot, one core with multiple R-groups. B) A table representation of the substrate 
information. C) Radial scope plot for two different conditions. (Rodríguez Benítez et al., 2020) 

 

1.5.2 Structure-Activity Similarity Maps 
Structure-activity similarity (SAS) maps were first introduced by Maggiora et al. in 2001. SAS is a 

scatterplot representation that represents pairwise structure molecular similarities and molecular 

activities, see Figure 1-18. This visualisation differs from the SAR matrix as each point in the 

scatterplot is a molecular pair rather than a singular molecule. Figure 1-21 shows the four major 

regions that are associated with SAS maps. These regions help to identify where there is a high/low 

structure similarity and/or a high/low activity difference. Region II is a region with smooth SAR where 

there is a high molecular similarity and a low activity difference. Region IV is where the activity cliffs 

are as they contain high molecular similarity and high activity difference. Region I is the scaffold 

hopping region which is important and this is located across from the activity cliffs. Region III is an 

uninteresting region (Saldívar-González, Naveja, Palomino-Hernández, & Medina-Franco, 2017). 



 
 

34 
 

 

Figure 1-21: SAS map showing the four major regions (Saldívar-González et al., 2017) 

The regions in SAS maps are hard to define and vary from task to task. Additionally, SAS maps are 

limited to small datasets due to the plotting of N2 data points, where N is the number of molecules. 

There are several different variations of the SAR maps to help to overcome these issues. One 

example is density SAS maps which contain a heat map based on the number of points within that 

region, therefore, giving the frequency of the data points within that area (Saldívar-González et al., 

2017). 

 

1.5.3 Networks 

Chemical space networks were originally developed in 2014 by Maggiora et al. In a chemical space 

network, each molecule is represented as a node and the edges connect two molecules if their 

pairwise similarity is above a certain threshold. The network structure represents the chemical space 

by capturing the discrete pairwise similarity of molecular structures rather than just the molecules 

themselves. This means that it does not suffer from the ‘curse of dimensionality’. In addition, it 

allows easy analysis of chemical space through algorithms developed for network analysis. However, 

there is one universal issue that it fails to address, the visualisation can change depending on how 

the molecular representation is defined (G. M. Maggiora & Bajorath, 2014) 

Networks provide a good interpretation of chemical space. Networks allow us to establish activity 

cliffs where a slight change in chemical structure, whilst retaining a similar functionality (same RG), 
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can have a huge impact on the biological activity (Wollenhaupt & Baumann, 2014). Like many other 

visualisation techniques, network maps can be nicely complemented with the use of colour, as it 

allows a user to quickly and easily establish relationships between structure and activity. Two 

methods that are of interest are InSARa and SARANEA, as they use networks to display chemical 

information.  

1.5.3.1 InSARa 

InSARa is a chemical space network in which the underlying molecular representation is the RG. This 

is a visualisation technique that exploits MCS. The pairwise MCSs are found which consequently 

allows a root MCS to be found. The molecules are then matched to which root MCS they belong to. 

The network consists of a root node as the smallest RG-MCS of the cluster. This is then expanded 

out to more nodes, which contain subsets of the cluster represented by larger RG-MCS. Then, the 

molecules are placed onto the network attached to the largest possible RG-MCS of a cluster, see 

Figure 1-22. This visualisation allows easy identification of activity cliffs, pharmacophoric features of 

the chosen target and SAR hotspots (Wollenhaupt & Baumann, 2014). If a RG-MCS node has all red 

coloured attached nodes bar one being green, then this would demonstrate an activity cliff. Whereas 

a SAR hotspot would be if there were multiple occurrences of all colours at a single RG-MCS node. 

 

Figure 1-22: a) A prototype of the inSARa network. b) Import the chemical structures using Cytoscape with the chemViz plugin 
(Wollenhaupt & Baumann, 2014) 

1.5.3.2 SARANEA 

SARANEA is a network similarity graph that explores a dataset’s structure-activity relationship (SAR) 

and structure-selectivity relationship (SSR). Due to the structure and purpose of the SARANEA 

visualisation, it gets its name SAR due to the exploration of SAR analysis within this work and ANEA 

comes from araneae the scientific term for spider's webs which refers to the likeliness of network 

graphs to spider webs. 
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A node within the network represents a molecule within the dataset; the node's colour depends on 

the bioactivity of that molecule. The edges demonstrated between the nodes are if the two 

connected molecules have a structural similarity above a predefined threshold. Additional 

information is provided in the form of two numerical scores. A discontinuity score estimates the 

contribution from an individual molecule to the disagreement with the datasets SAR. A cliff index 

indicates how far away the molecule is from the activity cliff, therefore, the higher the cliff index, 

the greater the difference in activity from the activity cliff (Lounkine, Wawer, Wassermann, & 

Bajorath, 2010).  

 

1.5.4 Generative Topographic Mapping 

Generative topographic mapping (GTM) is another visualisation technique that reduces the 

dimensionality of the input data. It has been adapted for chemoinformatics from computer science. 

GTM is a similar visualisation technique to SOM. However, with GTMS the input data is not mapped 

exclusively to one node, instead, the mapping is based on probability distribution function. 

Therefore, a compound can map to multiple nodes with a probability so that the multiple nodes can 

share a compound (Stumpfe & Bajorath, 2016).  

 

1.5.5 Radial Clustergrams 

Radial clustergrams are similar to dendrograms. Dendrograms are a tree diagram that is used to 

display hierarchical clustering. This visualisation technique, however, displays the cluster in different 

layers, from the centre of a circle outwards. Each layer of the tree is seen as a different layer. Radial 

clusters are considered to be the most effective and efficient way to visualise large amounts of data 

on a screen (Agrafiotis, Bandyopadhyay, & Farnum, 2007). 
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Figure 1-23: A radial clustergram, each strand are trees and the colour corresponds to the properties of the tree (Agrafiotis, 
Bandyopadhyay, et al., 2007) 

Radial clustergrams are different from other methods as they do not display their data in a linear 

manner. The radial clustergram gets its name from it being a circular representation around a node, 

see Figure 1-23. Colour coding can be added to it to be able to clearly understand the properties and 

the molecular structures (Ivanenkov, Savchuk, Ekins, & Balakin, 2009). 

 

1.5.6 Heat Maps 

Heat maps are visualisation techniques that are suitable for large datasets and consequently, they 

have grown in their use recently due to an increase in the size of compound datasets. As traditionally, 

high quantity and high-density datasets that contain a lot of data points have been hard to visualise. 

A heat map is a mapping of data points to a grid. The heat in this instance refers to the number of 

data points within a region, generally the more data points the warmer the colour but this is 

dependent on how the map is constructed (Auman, Boorman, Wilson, Travlos, & Paules, 2007). This 

allows high-density data sets that contain a lot of data points to be analysed with colour showing the 

extent to which an area has been explored. Heat maps were originally used in social science, 

however, they have started to be used in chemoinformatics where there is a need to put high-density 

information into a visual representation that allows a proper biological context to be identified such 

as hot spots and clusters of biological activity. The difference in colours assists in hypothesis-

generating or data interpretation (Juneau, 2015). 
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1.5.7 Scaffold Visualisations 

There have been several visualisations that have been designed specifically to demonstrate the 

scaffolds that are present within a dataset and how molecules can vary around the scaffold. Various 

scaffold visualisations have been reviewed further.  

1.5.7.1 The Scaffold Tree 

The scaffold tree was developed in 2007 that creates a hierarchical tree like structure based upon 

scaffolds. The nodes of the tree are scaffold structures that when progressing down the tree 

becomes more complex scaffolds. The various scaffolds are generated through a set of chemically 

derived meaningful rules. For each molecule the terminal chains are removed. Ring structures are 

then iteratively removed until there is just one ring remaining. If any of the removal iterations would 

lead to a disconnected structure, then this could not be removed. Each of the scaffolds can be 

coloured according to the property of interest, generally it indicates the ratio of active compounds 

for that corresponding scaffold (Schuffenhauer et al., 2007). The scaffold tree has sequentially been 

expanded and transformed into an open source library scaffold graph (Scott & Edith Chan, 2020). 

Wetzel’s scaffold hunter tool takes advantage of these scaffold trees to create an interactive tool 

that uses the hierarchical structure along with the structure-activity relationships (Wetzel et al., 

2009). 

1.5.7.2 ChemTree Map 

The ChemTreeMap visualisation tool attempts to display the chemical space that has been explored 

and the relationship between all of the molecules. As well as providing information about the overall 

relationships of the molecules, specific information was focused on, such as molecular properties 

and biological activities. The tree is a hierarchical tree that places similar molecules on the same 

branches and the length of these branches corresponds to the molecular similarity, Tanimoto 

similarity. The molecules are represented as extended connectivity fingerprints (ECFP).  The size, the 

colour and the outline of the node are all user-defined based upon their interest and chosen 

properties (Lu & Carlson, 2016). An example of the ChemTreeMap can be Figure 1-24. 
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Figure 1-24: ChemTreeMap example of Chk1 dataset 

1.5.7.3 AnalogExplorer and AnalogExplorer2 

AnalogExplorer is a graphical method that examines analogue series within a dataset. The 

AnalogExplorer tool works by generating Bemis-Murcko scaffolds and then potential MMP adapted 

scaffolds. By allowing slight adaptions it tries to combine closely related series' so similar SARs can 

be identified. These adaptations have two strict rules, the MMP transformation maximum size of the 

exchanged fragment is thirteen non-hydrogen atoms and the size difference between the two 

scaffolds must be less than eight non-hydrogen atoms. By using MMP transformations, it attempts 

to display activity cliffs and R-groups responsible for the cliff. The R-groups decomposition then 

occurred to identify all substitution sites around the scaffold whilst also identifying the R-groups 

(Zhang, Hu, & Bajorath, 2014). AnalogExplorer2 uses the same principals, however, the methodology 

is sensitive to the molecules' stereochemistry within the scaffold and R-groups (Hu, Zhang, Vogt, & 

Bajorath, 2015).  

The AnalogExplorer is a directed hierarchical graphical representation, Figure 1-25a. The number of 

layers equates to the number of R-groups demonstrated. Therefore, it shows all possible substitution 

sites and site combinations that are currently present within the series. The beginning node is the 

analogue without any R-groups being added. Each layer indicates a different substitution site. The 

node size is the number of analogues within that node, the node colour is the mean pKi value and 

the node border is the potency range demonstrated within that node. Also, the node is labelled with 

a number and this is the node number that has been assigned to it. When a node does not contain 

a colour, this indicates that there are no corresponding molecules that only contain R-groups to this 

level. AnalogExplorer is a methodology that attempts to utilise the reduction in information by 
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creating its own reduced graph via excluding redundant nodes, Figure 1-25b. As once the chemical 

graph trees have been displayed they are then also turned into the RG counterparts. For both trees, 

the positioning is determined by DAGLaout algorithm of Java package JUNG (“Java Universal 

Network/Graph Framework,” 2020). 

 

Figure 1-25: Prototypic AnalogExplorer for Androgen receptor (Zhang et al., 2014) 

1.5.7.4 rdScaffold Network 

rdScaffold network is a scaffold network that has been implemented in RDKit. A molecule is 

iteratively fragmented according to pre-defined rules. The rdScaffold network then represents these 

different scaffolds where the node is the chemical structure of the scaffold and the edges are labelled 
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with the operation. The operation indicates whether it is an initialisation (remove side chains), 

fragmentation (according to the rules) or as generic (replacement of non-carbon atoms with carbon 

atoms) (Kruger, Stiefl, & Landrum, 2020). 

1.5.7.5 LASSO 

Another scaffold representation is the layered skeleton-scaffold organisation (LASSO) graph. The 

scaffolds within the LASSO visualisation are of cyclic skeletons that follow Bemis Murcko scaffold 

rules. Each layer within the representation increases in complexity. A pie chart is represented at each 

layer for each unique cyclic skeleton, the colours within the pie chart demonstrates the activity 

values. A demonstration of how the LASSO graph can be generated is in Figure 1-26. Figure 1-26a is 

a dataset and their corresponding activity values. Figure 1-26b shows the generation of the cyclic 

skeletons and relating pie charts. Figure 1-26c demonstrates how the information can be layered. In 

the LASSO graph the chemical structures are replaced with the activity pie charts (Gupta-Ostermann, 

Hu, & Bajorath, 2012). 
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Figure 1-26: Illustration of how the LASSO graph is generated (Gupta-Ostermann et al., 2012) 

 

1.6 Molecular Generation 
The final chemoinformatics approach to be examined is molecular generation. This is typically 

referred to as de novo design. De novo design techniques design new molecules in an automated 

way. There are typically two approaches, either atom-based or fragment-based. Several of which will 

be discussed.  
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1.6.1 Atom-Based 
Atom-based approaches build a molecule one atom at a time. Atom-based methods were first 

introduced to construct molecules to fit the binding site of a receptor. A molecule is grown atom-by-

atom to ensure that the molecule can fit within the pocket and form potential hydrogen bonds 

(Bohacek & McMartin, 1994; Nishibata & Itai, 1991). However, these methods can produce vast 

number of molecules that are either not valid or do not resemble drug-like molecules. More 

advanced methods of atom-based approaches have been introduced in recent years due to deep 

learning and artificial intelligence approaches. These can be anything from recurrent neural 

networks, autoencoders and generative adversarial networks (N. Brown et al., 2020). 

One of particular note, is the method developed by Pogány et. al (Pogány, Arad, Genway, & Pickett, 

2019). This is a deep learning method that takes an RG as an input string and returns SMILES strings 

of molecules that should have the same RG as the input string. This method is a long short-term 

memory neural network. Therefore, a test set of molecules and corresponding RGs has to be 

imported into the model so that the model can learn how SMILES can relate to RGs.  

As well as building molecules based on RG structures there have also been implementations that are 

based upon scaffolds. Langevin et. al recently incorporated recurrent neural networks and scaffolds 

to constrain the molecular generation to just a scaffold. A disconnected SMILES with wild atoms, *, 

to reserve connection points is input into the model. The model performs a sampling at the wild 

atoms to perform a scaffold transformation (Langevin, Minoux, Levesque, & Bianciotto, 2020). 

Another scaffold-based method is a variational autoencoder that allows a scaffold to be inputted 

and is grown atom or bond at a time (Lim, Hwang, Moon, Kim, & Kim, 2020). 

Another recent method looks at exploiting scaffolds and fragmentation rules. A scaffold is decorated 

in either a multi-step process or single-step process. The decorators were created using MMPs or 

RECAP rules. One molecule in the training set can contain multiple scaffolds, and therefore, multiple 

decorations. However, all scaffolds have to retain one ring system and comply with the rule of 3. 

Additionally, the decorator fragments can only contain one attachment point and the scaffold can 

have up to four. These are then used to train a scaffold generator model, recurrent neural network, 

and a decorator model, a bidirectional recurrent neural network. (Arús-Pous et al., 2020).   
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1.6.2 Fragment-Based 

In contrast, fragment-based approaches instead of building molecules atom-by-atom are based upon 

fragments. These occur through different fragmentation processes and can use fragment libraries. 

The fragments can be any size. 

An early fragment-based de novo design method is the Topliss tree. The Topliss tree is a tree that 

attempts to guide molecular design to the most active molecule. Topliss trees are usually used to 

alter an analogue in a step-wise manner based upon the physicochemical properties of new 

fragments. The Topliss tree was first used to alter the substitution on an aromatic ring (Topliss, 1972). 

More modern versions based on similar principles to the Topliss tree are molecules generated from 

MMPs (Dossetter, Griffen, & Leach, 2013; Griffen et al., 2011) or apparent well-known functional 

group changes (Stewart, Shiroda, & James, 2006).  

Several approaches alternatively, have rules that are implemented to fragment a molecule for part 

of the molecule to then be replace with a different fragment, examples are RECAP (Lewell, Judd, 

Watson, & Hann, 1998), BREED (Pierce, Rao, & Bemis, 2004) and BRICS (Degen, Wegscheid-Gerlach, 

Zaliani, & Rarey, 2008). These three methods will all be described further in Chapter 8.  

Another method that use uses fragment mutations is Polishchuk’s CReM method (P. Polishchuk, 

2020). The CReM method looks at fragmenting the molecule and then using a database of 

interchangeable fragments to replace the fragment. There are three different ways the structure can 

be generated, through a mutate, grow or link. Where mutate is a replacement, grow is a mutate 

operation, however, it is the replacement of a hydrogen atom, and link is the replacement of 

hydrogen atoms on two separate molecules to appropriately link the two separate molecules 

together.  

Fragment-based methods have also been developed with chemical scaffolds in mind. Jin et. al 

created a method that utilises junction trees and a variational autoencoder. A chemical graph is first 

turned into a junction tree based upon chemical substructures which have been determined from a 

training set constructed from building blocks. The junction tree and chemical graph are both fed into 

latent embeddings for the junction tree to be decoded and generates fragments to reconstruct into 

a chemical graph (Jin, Barzilay, & Jaakkola, 2018).  
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1.7 Conclusion 
With the rise in cost of the drug discovery process a new era of chemistry has arisen. This has led to 

intensive developments in different chemoinformatics and data analyst techniques. Therefore, 

appropriate chemical structural representations are required so that both humans and computers 

can understand and interpret them. The three most common representation are SMILES, molecular 

graphs and connection tables.  

These representations can be transformed into descriptors for data mining applications through 

mathematical procedures that allow the characteristics and properties of the chemical structures to 

be captured. Fingerprints are one of the most common descriptors, of which there are many 

different types: atom-based, path-based, hashed and ECFP. They all follow the similar concepts of a 

bit string containing ones and zeros to indicate whether the features are present or absent. However, 

careful consideration is required when selecting the best type of descriptor to use. One descriptor 

that is of particular interest in this thesis is the reduced graph due to its ability to compress the 

representation down to a more compact form that explains the molecules’ potential binding abilities.  

Molecular descriptors form the input to a variety of data mining and machine learning techniques in 

which the computer aims to identify patterns in the data. A key aim is to learn information to create 

models that relate the descriptors to the biological activities of the molecules so a prediction can be 

made for a previously unseen molecule. Other machine learning methods have the ability to group 

similar molecules together, where the similarity values can be calculated from either FPs or the 

maximum common substructures of chemical structures.  

There are many different ways in which molecular datasets can be visualised in order to make it 

easier for chemists to understand and interpret molecular relationships. Some of the visualisation 

general techniques and scaffold visualisations used in chemoinformatics have been reviewed, 

however, there are varied approaches to indicating the chemical space that has been explored whilst 

also showing potential chemical space to work in. This can be used to aid QSAR problems in the drug 

discovery process, in key stages such as lead optimisation. It has also been demonstrated that there 

is a need for a method that has the ability to deal with large amounts of data whilst also being 

interpretable by the end chemist. As good as visualisations are, they are not a replacement for 

quantitative numbers and analytics and statistics. Visualisation are a tool to further aid decisions and 

understanding of data. 

Finally, within this chapter, several different approaches to molecular generation were examined. 

Both atom and fragment-based methods that have presented. Some will provide inspiration for a 
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new molecular generation algorithm that has been created and described within this thesis. The next 

chapter shall focus on attempting to best represent the relationship between a set of molecules 

within a dataset. Ultimately, this will provide a platform to be able to visualise these relationships 

and SAR. 
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2 Using Reduced Graphs to Represent Lead Optimisation Series 

2.1 Introduction 

The lead optimisation (LO) stage of the drug discovery process is a crucial step to create a compound 

or compounds with the desired property profile(s). The desired property profiles aim to balance 

absorption, distribution, metabolism, excretion and toxicity (ADMET) properties while retaining or 

improving on potency. Initially, a few active analogues are identified and, through an iterative 

process, substituents on the molecules are modified to build chemical series and ideally identify 

compounds with the desired properties. Therefore, LO datasets generally contain hundreds of 

molecules that are built around a small number of scaffolds. An example is illustrated in Figure 2-1, 

where the scaffold has different substitution points identified on the ring, indicated through the use 

of arrows. Several different suggestions of substructures at these different substitution points are 

shown. LO datasets are typically represented through structure-activity relationship (SAR) tables and 

Markush structures. Markush structures are used to indicate the core scaffold with the substituents 

shown as R groups and SAR tables indicate the variation in the activity for different substituents at 

each R group position (Agrafiotis, Shemanarev, Connolly, Farnum, & Lobanov, 2007; Hu, Stumpfe, & 

Bajorath, 2016). SAR tables and Markush structures have been widely adopted as they are easy to 

understand and interpret. However, both the core scaffold and the substituents are represented as 

substructural fragments, which limits the usefulness of the approach. This is because a slight change 

to the core can lead to a new scaffold being produced, which can then make it more challenging to 

interpret the SAR across the series. The work undertaken in this chapter establishes a new technique 

for representing LO series to overcome these limitations. It extends the principles of the SAR table 

by replacing the substructural fragments by reduced graphs (RGs) which are insensitive to some 

small changes in substructure.  

RGs are used in Chemoinformatics to represent and search Markush structures in chemical patents, 

to identify SAR and for scaffold-hopping. (Barker et al., 2006; Barker, Gardiner, Gillet, Kitts, & Morris, 

2003; Birchall, Gillet, Harper, & Pickett, n.d., 2008; Birchall, Gillet, Willett, Ducrot, & Luttmann, 2009; 

Gillet, Downs, Holliday, Lynch, & Dethlefsen, 1991; Gillet et al., 1987) RGs are a compressed 

representation of a molecular structure. The atoms within the structure are compressed into RG 

nodes that focus on functional groups that have potential to form binding interactions. Different 

substructures can be collapsed into the same node type. Therefore, the RG representation is a many 

to one representation, as multiple molecules can produce the same RG, Chapter 1. Thus, RGs 

highlight parts of molecules that could form interactions with a receptor which are crucial parts of 
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drug molecules. Consequently, when chemical scaffolds are represented as RGs, these can highlight 

key interactions that are important in the drug binding process and can bring multiple Markush 

structure cores into a single representation. Another potential benefit of using an RG core as a 

scaffold is that it can allow the chemist to comprehend areas of chemical space that have been either 

over or under-explored. The degree to which regions of chemical space have been explored can be 

identified through the number of specific substructural groups represented by a particular node and 

the number of examples of each.  

 

Figure 2-1: An example of how chemists explore different substituents on a core scaffold in lead optimisation  

 

2.2  Methodology 

Given a LO dataset, the aim is to organise the data into one or more RG SAR tables which can then 

be visualised. A RG SAR table is similar to the SAR table, however, all components of the table are 

represented as RGs rather than as substructural fragments. Figure 2-2 shows an example of what 

the approach is trying to achieve. This hypothetical LO series consists of molecules represented by 

three different scaffolds, each of which has been explored in a similar way through different 

substituents around the rings. Using RGs, the three separate scaffolds are combined to become one 

RG core which is comprised of three RG nodes. The nodes are defined based on the bonding 

capabilities of the underlying substructures and whether the node is aromatic or aliphatic and are 

labelled using different atom symbols outside of the commonly used set; Ga is an acyclic hydrogen 

bond acceptor (HBA), Ce is an aliphatic hydrogen bond donor and acceptor (HBD-HBA) and No is an 

aromatic inert node. More information on the definitions of RG nodes will be provided later in this 

chapter. 
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Figure 2-2: An example of how an RG core can be used to represent three closely related scaffolds from a lead optimisation project. 
Each RG node represents a different type of interaction and they have been coloured on the chemical graph according to the RG 

node types. a) A RG core, where Ga is an acyclic HBA node, Ce is an aliphatic HBD-HBA and No is an aromatic inert node. b) Chemical 
graph scaffolds that are represented by the same set of nodes shown in the RG core. The colours used in the chemical graph show 

how atoms map to the RG nodes.  

The generation of RG cores for a dataset and to ultimately visualise them is comprised of several 

steps. The overall workflow is shown in Figure 2-3. A more detailed workflow where each of the 

steps has been expanded is shown in Figure 2-4.  

 

Figure 2-3: Optimised Workflow 
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Figure 2-4: Experimental workflow followed to optimise the overall workflow  

To extract the RG cores from a dataset the molecules must first be converted to RGs. From here, the 

relationships between the different RGs are investigated and one or more RG cores that are common 

to several molecules are obtained. The molecules can then be mapped to their respective core with 

any additional components represented through R groups, also represented as RG nodes rather than 

substructures. The extraction of the RG cores is the penultimate step before visualising the RG SAR 

tables. The final steps in constructing the visualisation tool are described in the next three chapter.  

Investigations were performed to find the best way of implementing each step to analyse and 

visualise the data in an optimum way. The use of a clustering step before extracting the RG cores 

was investigated to determine if the prior organisation of molecules can achieve a better mapping 

of molecules to RG cores. The clustering step aims to group compounds so that the chemical 

relationships are easier to establish. Clustering requires a similarity method which in turn is based 

on molecular descriptors and different ways of calculating these are investigated. All of these stages 

are discussed in greater detail below.  

 

2.2.1 Datasets 

The workflow has been developed using nine different datasets. Four publicly available datasets 

were used initially, three of which have been extracted from ChEMBL23 (Gaulton et al., 2012). The 

three datasets are a P2x7 receptor dataset (ChEMBL4805), a subset of the P2x7 dataset consisting 

of compounds reported by GSK, and a neurokinin receptor dataset (ChEMBL249). A fourth dataset 

was included from a Bajorath et al. paper on LO (Vogt, Yonchev, & Bajorath, 2018). A further five 

datasets were also used in order to compare the methods developed here with a related approach 
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called ChemTreeMap (Lu & Carlson, 2016). The five datasets were extracted from BindingDB, 

ChemBank and ChEMBL20 and consist of: cyclin-dependant kinase 2 (CDK2); checkpoint kinase 1 

(Chk1); cytochrome P450 3A4 (Cyto); clotting factor Xa (FactorXa); and p38α MAP kinase (p38α). All 

datasets are analysed in this chapter and subsequent chapters. 

A cleaning process was applied to all the datasets. The cleaning process involved removing duplicate 

molecules, removing molecules that RDKit could not read, and filtering out molecules that contained 

more than 50 heavy atoms. These were too complex to process and led to high computational costs. 

Table 2-1 shows the number of molecules in the datasets after cleaning.   

Table 2-1: The datasets and the number of molecules contained in each 

Name of Dataset Number of Molecules 

Bajorath 2549 

CDK2 1368 

Chk1 106 

Cyto 6370 

FactorXa 1956 

Neurokinin 2475 

P2x7 2259 

P2x7 Subset 691 

p38α 3644 

 

A further pre-processing step was carried out. Datasets Bajorath, P2x7 and P2x7 subset were 

manually clustered to provide a benchmark for evaluating the clustering methods. Manual clustering 

is a subjective process as different chemists may cluster compounds in different ways. Therefore, all 

manual clustering was done by the same chemist (i.e. the author of this thesis). The manual 

clustering examined the molecules within a dataset to find related molecules. Both the chemical 

graphs and the reduced graphs were considered. The primary consideration was that molecules 

should have similar chemical scaffolds, where similarity was determined according to binding 

potential based on the RG node definitions. An example is shown in Figure 2-5. The coloured 

substructures show the basis for the clustering; they are the same or vary slightly while retaining 

similar binding potentials. In Cluster 1, the molecules all have a benzene ring connected to a carbon 

atom then an amide group that links to an aliphatic ring with hydrogen bond acceptor potential and 

with a carbonyl substituent. When a molecule was closely related to two clusters, it was assigned to 

the cluster that it is more closely associated with.  
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Figure 2-5: A subset of the P2x7 subset dataset which illustrates the manual clustering. The highlighted substructures show the basis 
for the clustering with the different colours indicating different clusters. Substructures of the same colour are similar with similar 

binding features.  

 

2.2.2 Reduced Graph Generation 
Reduced graphs are fundamental to the approach. They are used to represent the molecules and 

then to group them according to common RG cores.  

To generate the RGs, a program was implemented using python and RDKit. This is based on a 

published implementation, which has not been publically released (Barker et al., 2003; Gardiner, 

Gillet, Willett, & Cosgrove, 2007; Gillet et al., 1991, 1987). Users can set their own definitions of a 

hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD) in both implementations. 

However, the new implementation allows more flexible definitions of the resulting RG via several 

different parameters that can be set depending on the interests of the chemist. Therefore, there can 

be many different variations of the RG for one molecule.  
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Figure 2-6: RG generation workflow alongside an example 

Figure 2-6 indicates the workflow undertaken to generate a RG from a molecule. The RG code initially 

identifies functional groups that are: HBD; HBA; or both hydrogen bond donor and acceptor (HBD-

HBA), with the definitions being read in from an input file. The definitions are in SMILES Arbitrary 

Target Specification (SMARTS) format (Daylight, n.d.). Acyclic functional groups are represented by 

nodes with the appropriate label. Ring atoms are then identified and individual rings are labelled as 

aromatic or aliphatic along with their hydrogen bonding characteristics: non-bonding; HBA; HBD or 

HBD-HBA. The number of ring nodes is determined as the smallest set of smallest rings.  

Linker groups are then identified: these are atoms that have not previously been defined as 

belonging to nodes. By introducing linker nodes, all of the atoms within a molecule are incorporated 

into nodes. Nodes that are adjoining and of the same type are combined together to form one node. 

Additionally, HBD or HBA node next to a HBD-HBA would also be collapsed together. An exception 

to combining adjoining alike atoms are atoms that are within a ring. Atoms are only combined with 

atoms of the same ring, therefore, a fused ring would be two separate nodes not one.   

The nodes are then connected via edges. A pair of nodes is connected by a single edge unless the 

two nodes represent fused rings when they are connected by two edges. Three additional rules have 

been explicitly written into the code. The first is the order in which the predefined nodes are 

established and found. Initially, metals are found if the metal parameter is used, more will be 

detailed about this later in this section; then the defined atoms for HBD and then the defined HBA 

atoms.  The second is the handling of carbonyl groups; both the carbon and oxygen are considered 
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as a single HBA node unless the carbon atom is within a ring when the oxygen is considered on its 

own. Another example of an explicit rule is that if a halogen is next to a HBA group, it becomes a part 

of that node. This rule means that, for example, acyl chlorides form a single node, Figure 2-7.  

 

Figure 2-7: Incorporating halogens into HBA nodes  

The labels for the different node types are atomic symbols outside of the standard atom set included 

in organic molecules, as shown in Table 2-2. The RGs are then written as valid SMILES strings, albeit 

with atom symbols that are not commonly seen in organic molecules. Each node is also annotated 

with a SMARTS string that represents the corresponding substructure, with the attachment points 

being labelled as a wild atom. For example, a phenyl ring will be represented by a node labelled as 

No and annotated by c1ccccc1. Within this implementation, only HBA and HBD definitions were 

used, along with metal definitions when the metal parameter was used. 

Table 2-2: A table showing the reduced graph node definitions 

Node Definition SMILES code 

Acyclic inert Li 

Acyclic HBA Ga 

Acyclic HBD Gd 

Acyclic HBD-HBA Ge 

Aromatic inert No 

Aromatic HBA Na 

Aromatic HBD Nd 

Aromatic HBD-HBA Ne 

Aliphatic inert Co 

Aliphatic HBA Ca 

Aliphatic HBD Cd 

Aliphatic HBD-HBA Ce 

Metal Au 

Complex Hg 

 

The default RG is illustrated in Table 2-3 for several simple chemical graphs. The default RG is the 

simplest form used here. The node types consist of aliphatic ring nodes, aromatic ring nodes, acyclic 

nodes and linker nodes and terminal carbon atoms are recursively removed, so no terminal linker 
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nodes are generated. All nodes except linkers are labelled as either inert (no hydrogen bonding 

characteristics), HBA, HBD or HBA-HBD. 

The first four examples in Table 2-3 consist of just one node. In the first molecule, just the oxygen 

atom is identified (as hydrogens are not included directly within the default reduced graph) and is 

assigned as a Ge node, as it is both a hydrogen bond acceptor and a donor. For the second molecule, 

just the carbonyl is identified. The two carbons that are on either side of the carbonyl are terminal 

carbon atoms and, as above, are recursively removed. For the third molecule, both of the oxygen 

atoms are assigned to a single node as they are adjacent. The fourth molecule is a benzene ring and 

all of the atoms are non-bonding aromatic atoms. These are all part of the same ring and they are 

therefore combined into one node. The fifth molecule is an example of a fused ring that results in 

two nodes connected by a double bond. The ring on the left is all carbon and, therefore, represented 

as an Aromatic inert node, No. The ring on the right contains two nitrogen atoms that are hydrogen 

bond acceptors, and becomes an Aromatic HBA ring node, Na. The final molecule consists of an 

Aromatic inert ring node (No) that is connected to an Acyclic HBD-HBA node (Ge) representing the 

amine group and an Acyclic inert node (Li) which represents the Chlorine atom.  

The implementation allows the different types of RGs to be created through use of parameters. This 

is because different features are known to be important for different biological targets. The 

parameters consist of four different types which can be set independently as on or off: 

● Terminal carbon chain  

● Complex 

● Double bond 

● Metal 
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Table 2-3: Table showing simple chemical graphs and reduced graphs 

 

 

Figure 2-8: Example of the various user parameters and how they can affect the RG definitions 

Figure 2-8 and Figure 2-9 show several larger molecules to illustrate how the RGs vary when different 

parameters are used. Figure 2-8 demonstrates the effect of the first three parameters. The default 

setting is that none of the four parameters are set. The fused ring within Figure 2-8 results in two Co 

nodes connected by a double bond. When the terminal carbon chain parameter is set, terminal 

carbon chains are identified as linker nodes, Figure 2-8 (b). This results in four linker nodes: two are 

connected to one of the Co nodes; one is connected to both of the Co nodes; and a fourth Li node is 

attached to the Aromatic inert node, No. In the latter case, the four carbon atoms, trimethyl, are 
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combined into a single Li node. Terminal linker nodes could be of interest to a chemist as they might 

indicate nodes that play some role in forming hydrophobic interactions between the potential drug 

and the receptor. The “complex” parameter defines heteroatoms or branched groups not previously 

identified as nodes, note that this does not include straight-chain carbon groups. Therefore, 

branched terminal carbon chains fall into this category, but single carbon atoms do not. The results 

of using the “complex” parameter can be seen in Figure 2-8 (c). The double bond parameter retains 

the bonding between nodes so that an edge can be labelled as a single, double, or triple bond. 

Allowing the bonding to be retained also allows any resonance occurring in the molecule to be 

retained, as demonstrated in Figure 2-8 (d).  

 

Figure 2-9: Example of the metal parameters being used on cisplatin  

Finally, as shown in Figure 2-9, the metal parameter defines all metal atoms as individual metal nodes. 

Metals atoms are particularly important for biometallic drugs, such as cisplatin, which is a common 

chemotherapy drug used to target specific cancers. When the default RG settings are used, just one 

node is found for the molecule in Figure 2-9: an acyclic HBA-HBD node, Ge. This is because the NH3 

functional groups are classified as acyclic hydrogen bond donor and acceptor groups. The platinum 

is defined as a hydrogen bond acceptor due to the hydrogen bond acceptor definition used. As these 

atoms are connected they are combined into a single node with all the properties; the chlorine atoms 

are identified as terminal linker nodes which get removed. When the metal parameter is set, the 

platinum atom is identified as a metal node, and all of the atoms form separate nodes.  

 

2.2.3 Molecular Descriptors 

Four different descriptors were used for the clustering experiments: the chemical graph (CG), RDKit’s 

Morgan radius 2 fingerprint (M2FP), the reduced graph (RG), and a reduced graph fingerprint (RGFP), 

respectively. The M2FP and CG descriptors are based on the original all-atom structures and allow 
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similarity to be calculated using a fingerprint and a maximum common subgraph (MCS) approach, 

respectively. The chemical graphs were then converted to reduced graphs which can be compared 

at the graph level or as fingerprint representations.  

The Morgan radius 2 fingerprint, which is equivalent to an extended connectivity fingerprint (ECFP4), 

was generated in RDKit by setting a radius of 2 and a bit length of 2048. The chemical graph 

descriptor was created by entering the molecule as a SMILES representation into an RDKit molecule 

object (“RDKit: Open-Source Chemoinformatics,” 2018). The RG was generated using the methods 

described above. The RGFP was generated in RDKit by passing the RG SMILES representation into 

RDKit and calculating the M2FP for it.  

 

2.2.4 Similarity 

Calculation of pairwise similarity is used for both the clustering and the RG core extraction steps. The 

similarity matrices for the two fingerprint representations (generated from the CG and the RG 

respectively) are calculated using the Tanimoto coefficient. Calculating a similarity matrix in this 

manner is a rapid and computationally cheap calculation.  

Pairwise similarities for the CGs and the RGs are calculated based on the MCS, which is more 

computationally expensive than calculating similarity based on fingerprints. There are two different 

types of MCS: a disconnected MCS (dMCS), and a connected MCS (cMCS), as shown in Figure 2-10. 

The parts highlighted in red are the atoms and bonds that are involved in the MCS.  Figure 2-10a 

shows the connected cMCS. Figure 2-10b shows the disconnected dMCS. The dMCS is made up of 

two components which are shown by the blue wavy line and labelled (i) and (ii). Both the 

disconnected and connected versions were calculated for both the chemical graphs and the reduced 

graphs. It was thought that the disconnected version might provide useful information that might be 

missed using the connected version. dMCSs tend to be larger and can detect similarities between 

molecules where there is a segment in the middle that differs or where they have large common 

substructures connected via different atoms, as shown in Figure 2-10.  
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Figure 2-10: Example of a connected (a) and a disconnected (b) MCS 

The MCS was calculated using RDKit’s implementation (“RDKit: Open-Source Chemoinformatics,” 

2018). The MCS algorithm is configured to compare the edges (bonds) as well as the nodes (atoms) 

so that, for example, a benzene ring does not match a cyclohexane ring. The MCS algorithm in RDKit 

is currently only able to find the cMCS. Therefore, an iterative process was implemented that 

identified the initial MCS and then removed the atoms in the MCS from each molecule. The process 

was then repeated until no further MCSs could be found. The MCSs found in each iteration were 

then combined to form a dMCS. The dMCS process is demonstrated in Figure 2-11, where the largest 

MCS is located in the first step, highlighted in red. The atoms contained in this MCS are then deleted, 

generating two fragments. The next largest MCS is found and deleted and so on until it is no longer 

possible to find an MCS. As the fragments get smaller then so does the MCS, and very small 

substructures are not likely to be of interest as the molecule becomes so disjointed that it begins to 

lose its chemical meaning. However, it was not possible to prevent this occurring in the RDKit 

implementation. Since this work was undertaken, there is now an implementation in ChemAxon 

(ChemAxon, 2020) where, potentially, a threshold could have been introduced to ignore MCSs that 

have a smaller number of atoms than the threshold, however, this was not implemented here.  
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Figure 2-11: Example of the iterative process in generating the dMCS 

The RG MCS works in the same way. The only difference is that the RDKit algorithm has been 

adjusted to allow for the smaller size of the RGs. The adjustment allows for an MCS to be just one 

node. This is because a node in this instance typically represents more than one atom in the chemical 

graph. A potential limitation of this approach is that the methodology could recognise two RGs as 

sharing one node in common, even when that node is not likely to be significant, for example, it 

could be a linker group which represents just a single carbon atom. Since this work was undertaken 

RDKit now allow one atom to be the MCS. 

Once the MCS has been found, the similarity is calculated using the graph-variant of the Tanimoto 

coefficient (Maggiora & Shanmugasundaram, 2004).  

 𝑇𝑐 =  
𝑀𝐶𝑆

𝐴 + 𝐵 −𝑀𝐶𝑆
  (2.1) 

Where A is the number of atoms (or nodes for the RG) in the first molecule, B is the number of atoms 

(or nodes) in the second molecule and MCS is the number of atoms (or nodes) in the MCS. 

The disadvantage of the chemical graphs over the RG is that the MCS is a lot more computationally 

expensive to calculate due to the larger, more complex graphs.  

 

2.2.5 Clustering 

The similarity matrices are used as the inputs to three different clustering algorithms: Butina (sphere 

exclusion), agglomerative (Ward’s), and K-means. These were implemented using algorithms in 
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RDKit and the scikit learning package (Pedregosa et al., 2011; “RDKit: Open-Source 

Chemoinformatics,” 2018). These three cluster methods were chosen because they represent the 

main methods applied to chemical datasets and include both hierarchical and non-hierarchical 

approaches.  

Different parameters were investigated for each method. For the agglomerative and K-means 

methodologies, the number of clusters is user-defined. In agglomerative clustering, the number of 

clusters to be output has to be specified due to the hierarchical nature. For K-means clustering, the 

number of clusters (K) is defined upfront. For both of these methods, the number of clusters was 

varied between 2 and 150. For the Butina methodology, the number of clusters depends on the 

similarity threshold used. For the experiments in this chapter, the similarity threshold was varied 

between 0.1 and 0.9, in increments of 0.1. 

Every combination of the molecular descriptors and clustering algorithms was investigated for each 

dataset for the different numbers of clusters or similarity thresholds. The resulting clusters were 

analysed to identify the most appropriate combination for each dataset.  

 

2.2.6 Clustering Validity Analysis 
Finding the most appropriate clustering technique is not trivial. After generating the clusters for each 

algorithm and level, various cluster validity scores were calculated provided that the condition in 

Equation 2-2 was met. Equation 2-2 is designed to prevent clusters from being too small and avoiding 

the situation of more singletons than clusters. Furthermore, clustering validity scores were not 

calculated if there was only one cluster, which sometimes occurred for the Butina clustering.  

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠 <

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

2
 

 (2.2) 

There are three types of clustering validity statistics: internal, external and relative. Those 

predominately studied in this chapter are internal and external cluster indexes.  

Two external indexes were used to evaluate how close each algorithmically determined clustering is 

to the manual clustering. These are cluster purity and v-measure; these have been defined in Chapter 

1. Each cluster in the manually clustered dataset is assigned a label.  Each labelled cluster is 

compared with the computationally assigned clusters and the cluster with the largest number of 

matching molecules is assigned the same label. The indexes are then calculated, to quantify the 

differences between the manual clusters and the computed clusters. Cluster purity calculates the 

percentage of correctly classified molecules, whereas the v-measure is based on a combination of 
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the homogeneity and completeness of the clusters. Homogeneity measures to what extent each 

cluster only contains members from a single manual cluster, and completeness measures the extent 

to which all molecules in a single manual cluster are assigned to the same cluster. The advantage of 

the external indexes is that they are based on how molecules are placed within clusters and not on 

the similarity values.  

Indexes that do not use any prior knowledge were also be examined, as this is how the methods 

would be used in practice. Six internal indexes were used to see whether the same conclusion could 

be drawn from the internal indexes as from the external indexes. The internal indexes are based on 

the underlying similarity values. Since these values are not directly comparable across different 

descriptors, the internal cluster indexes cannot be compared across the different descriptors. The 

internal indexes that were used are: Ball-Hall index; Calinski Harabasz; Davies-Bouldin; Dunn; Kelley; 

and silhouette average. These have been defined in Chapter 1.  

 

2.2.7 Reduced Graph Core Extraction  

Once a dataset had been clustered, each cluster was then processed in turn to generate one or more 

RG core from the RGs within a cluster. The RG subgraph that is contained in most, if not all, molecules 

within a cluster is extracted and becomes known as the core.   

The construction of the RG cores follows an existing method by Gardiner et al. (Gardiner et al., 2007) 

and is based on calculating MCSs between the RGs. Figure 2-12 shows a flowchart of the algorithm. 

The steps are as follows: 

1) Generate the RGs for each of the molecules within the cluster.  

2) Calculate the pairwise similarity between all RGs in the cluster. The molecule with the most 

neighbours above a user-defined similarity cut off is identified as the centroid. 

3) Find the most distant neighbour within the centroid’s neighbours and calculate the MCS 

between these two RGs. This MCS is then set as the current representative (curr_rep_MCS) 

for a core MCS.  

4) For all other RGs in the cluster,  

a) Compare the current representative with the RG. 

b) If the current representative is contained within the RG, then the RG is noted as being 

associated with this representative. 
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c) If the current representative is not contained within the RG, then a new MCS is found 

between the RG and the current representative. This new MCS must also meet specific 

requirements: it must be equal to or larger than the minimum number of user-defined 

nodes, and it must be a subgraph of the current representative. 

i. If this MCS passes these requirements, it is set as the new current representative 

MCS, and the search continues from the current point within the dataset.  

ii. If the MCS does not pass these requirements, then the current representative 

remains and the search continues. 

5) Once all of the RGs within the cluster have been searched, the current representative MCS 

becomes a core RG. 

6) Check whether all the RGs within the dataset are associated with a core within the core list. 

a) If all molecules are associated with a core the process stops. 

b) If not, then the process is repeated on the remaining RGs. 

 

Figure 2-12: Flowchart of establishing the RG core 

Figure 2-13 and Figure 2-14 both show implementation examples of this workflow. Figure 2-13 

demonstrates a straightforward example. All instances are neighbours of one another within the 

defined similarity threshold and, therefore, the first molecule is identified as the centroid. The 

furthest neighbour is then determined. The MCS between these two molecules is extracted and, as 

it meets the minimum core size requirement of four, the process continues. This MCS is found in the 
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rest of the molecules within the cluster, and the process completes with one core MCS identified. 

This is a simple example as all molecules contain the initial MCS.  

 

Figure 2-13: First example of the RG core extraction methodology  

Figure 2-14 shows a more complex example when the original MCS is not present within all the 

molecules. This is the same dataset as in Figure 2-13, but it is based on a different similarity 

threshold. As the minimum similarity has increased the number of neighbours is no longer the same 

for all of the molecules. Three of the molecules now have three neighbours, including the first 
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molecule. The first molecule is chosen as the centroid, as in the previous example.  However, a 

different molecule is now identified as the furthest neighbour and, therefore, a different initial MCS 

is constructed. The candidate MCS is then tested on all the molecules within the dataset to analyse 

whether it is present, as previously. The first molecule contains the MCS, however, the second 

molecule does not.  Therefore, as shown in the workflow, a new candidate MCS is determined by 

comparing the current MCS with the RG that does not match. A new valid MCS is found which 

becomes the new representative MCS. The iteration continues using the new MCS, which is found 

in the remaining molecules. The same RG core is identified in both Figure 2-13 and Figure 2-14 but 

the data is processed in different ways. However, this is not always the case when the threshold is 

varied.  
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Figure 2-14: Second example of the RG core extraction methodology 

2.2.7.1 Re-examining RG Cores 

Following the identification of RG cores for each cluster, a second pass through the data is made 

since some molecules have the potential to map to multiple RG cores. Each molecule is compared 

to each RG core and is associated with each RG core that it contains so the number of molecules that 

map to the RG core can increase. In some instances, the RG core could have been initially generated 

from a single RG, due to the re-examination step it can now be represented by multiple RGs and 

ultimately molecules, Figure 2-15. RG cores can also represent molecules across several clusters. 
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Figure 2-15: An example of how the number of mapped molecules to a RG core can vary  

 

2.2.7.2 Processing the Dataset as a Single Cluster 

The RG core workflow was also applied to each dataset with the data considered as a single cluster. 

This was to see if there was any advantage in clustering the datasets or whether this step could be 

avoided to lower computational costs. Multiple cores were expected as the variation of the RGs will 

be greater than when considering a subset that has been pre-clustered.  

 

2.3 Results and Discussion  
An analysis of descriptors and clustering methods showed that M2FP and agglomerative clustering 

gave the best performance compared to a “manual” clustering and this was selected for future 

studies. However, there was variation within the dataset and no universally best method could be 

identified. RG cores were then extracted from these clusters. 

2.3.1 Reduced Graphs 
The number of unique RGs for each dataset can be seen in Table 2-4, using the default RG type. Table 

2-4 also displays the average size of the molecules and the average size of the RGs. The average sizes 

are rounded to the nearest whole number. Table 2-4 demonstrates that by using the RG descriptor, 

the number of unique representations is reduced and therefore, the representation of the chemical 

space is more condensed. Also, the reduction in the complexity of the descriptors can be recognised 

by the decrease in the average sizes of the RGs compared to the molecules. Some datasets undergo 
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more compression than others. For example, the Neurokinin dataset contains fewer molecules than 

the Bajorath dataset, however, the Bajorath dataset contains fewer RGs. The different degrees of 

data compression reflect differences in the variation in molecular structures in the dataset. The more 

variation in the dataset the less compression will be seen using the RGs.  

Table 2-4: Table showing the number of RG generated for each dataset 

Name of 

Dataset 

Number of 

Molecules 

Average Size 

of Molecule 

Number of Unique 

RG (default) 

Average Size of 

RG (default) 

Bajorath 2549 34 920 10 

CDK2 1368 28 824 8 

Chk1 106 30 91 8 

Cyto 6370 37 3762 8 

FactorXa 1956 36 883 10 

Neurokinin 2475 31 1451 9 

P2x7 2259 29 822 9 

P2x7 Subset 691 25 162 9 

p38α 3644 30 1902 8 

 

All the different types of RG were generated by using all combinations of parameters to identify 

whether there are substantial differences in the RGs. Table 2-5 shows the number of unique RGs and 

the average size of the RGs for the different types of RG for the p2x7 Subset dataset and 

demonstrates that the number of RGs varies depending on the parameters set. Table 2-5 illustrates 

that as the definition of the RG becomes more complex the number of unique reduced graphs 

increases and some RGs that previously were the same are no longer the same. There is also an 

increase in the average size of the RG, as most of the parameters lead to additional nodes. For this 

dataset, adding the metal parameter does not affect the RG as no metals are present. However, all 

the other parameters define the RG differently and none of the other variants produce exactly the 

same RGs. The impact this variation has is explored later in the chapter. The results for the other 

datasets are in the Appendix, where apart from two datasets, Cyto and Neurokinin, the rest of the 

datasets follow the same pattern. For the Cyto and Neurokinin datasets, there are also slight 

variations when using the metal parameter. As the metal parameter is not useful for most datasets, 

it is not used in any the following experiments. 
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Table 2-5: A comparison of the effect of the different RG parameters on the number of RG for the P2x7 subset dataset 

Parameter Number of Unique RG 
Average Size of RG (rounded 

to the nearest whole number) 

Default 162 9 

Terminal 163 10 

Complex 220 10 

Double Bond 162 9 

Metal 162 9 

Terminal and Complex 222 10 

Terminal and Double Bond 163 10 

Terminal and Metal 163 10 

Complex and Double Bond 220 10 

Complex and Metal 220 10 

Double Bond and Metal 162 9 

Terminal, Complex and Double 
Bond 

222 10 

Terminal, Complex and Metal 222 10 

Terminal, Double Bond and 
Metal 

163 10 

Complex, Double Bond and 
Metal 

220 10 

Terminal, Complex, Double 
Bond and Metal 

222 10 

 

2.3.2 Similarity 

For each dataset, similarity matrices were calculated using both the CGs and the RGs and the 

different similarity methods resulting in six matrices (chemical graph cMCS, dMCS and fingerprint; 

reduced graph cMCS, dMCS and fingerprint).  

A comparison of the data within the matrices was also carried out. Figure 2-16 shows density plots 

of the pairwise similarity values for all the datasets. A few distinctive features can be seen across all 

datasets. The RGFP peak is always shifted the most to the lower end of the Tanimoto similarity scale, 

which could indicate that the fingerprint might be too sparse to hold sufficient information for 

effective clustering. The RGFP peak is then closely followed by the M2FP, RG cMCS and then CG cMCS 

peaks. It is also evident that the density plots for the two dMCSs have significantly different shapes 

from the rest. The different shapes could indicate that the dMCS methods will give more varied 

results compared to the other methods that all have a much narrower range of values. 

Table 2-6 shows the mean, median and mode of the different distributions for each method for each 

dataset. This gives some indication of the level (density) of chemical space explored. When a dataset 

has lower values, the molecules are more dissimilar and, therefore, more chemical space has been 

explored. Large similarity values indicate that lots of the molecules are similar, so a denser area of 
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chemical space has been searched. A good example of this is when the M2FP descriptors for P2x7 

Subset and P2x7 are compared. The P2x7 subset is a compact subset of the P2x7 dataset as shown 

by the mean, median and mode being higher for the P2x7 subset compared to the P2x7 dataset. 

Additionally, the relative values of the mean and median indicate the distribution of the molecules. 

If the mean is greater than the median, then this is a right positive skew, which means that there are 

some high-value similarity outliers. Whereas, when the median is greater than the mean, there is a 

left negative skew where there are some low-value similarity outliers.  
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Figure 2-16: Graphs showing the different density plots of the different similarity matrices generated for the all the dataset a) 
Bajorath b) CDK2 c) Chk1 d) Cyto e) FactorXa f) Neurokinin g) P2x7 h) P2x7 Subset i) p38a 
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Table 2-6: Table showing the mean, median and mode of the similarity distribution for each of the molecular descriptors for each 
dataset 

Dataset 
Molecular 

Descriptor 

Overall Average 

Pairwise Similarity 

Overall Mode 

Pairwise Similarity 

Overall Median 

Pairwise Similarity 

Bajorath 

M2FP 0.154 0.125 0.129 

RGFP 0.101 0.100 0.085 

RG Connected 0.165 0.125 0.133 

RG Disconnected 0.432 0.500 0.417 

CG Connected 0.194 0.143 0.160 

CG Disconnected 0.523 0.500 0.512 

CDK2 

M2FP 0.128 0.100 0.111 

RGFP 0.082 0.000 0.074 

RG Connected 0.157 0.143 0.143 

RG Disconnected 0.362 0.333 0.357 

CG Connected 0.214 0.167 0.191 

CG Disconnected 0.489 0.500 0.484 

Chk1 

M2FP 0.235 0.167 0.161 

RGFP 0.145 0.083 0.105 

RG Connected 0.259 0.143 0.182 

RG Disconnected 0.444 0.500 0.417 

CG Connected 0.324 0.200 0.238 

CG Disconnected 0.570 0.500 0.556 

FactorXa 

M2FP 0.168 0.143 0.145 

RGFP 0.111 0.100 0.098 

RG Connected 0.178 0.118 0.150 

RG Disconnected 0.472 0.500 0.462 

CG Connected 0.204 0.167 0.173 

CG Disconnected 0.541 0.500 0.540 

Cyto 

M2FP 0.114 0.111 0.104 

RGFP 0.074 0.000 0.067 

RG Connected 0.149 0.167 0.133 

RG Disconnected 0.333 0.333 0.333 

Neurokinin 

M2FP 0.139 0.125 0.125 

RGFP 0.087 0.000 0.075 

RG Connected 0.166 0.167 0.143 

RG Disconnected 0.383 0.500 0.375 

CG Connected 0.228 0.250 0.206 

CG Disconnected 0.457 0.500 0.463 

P2x7 

M2FP 0.171 0.143 0.148 

RGFP 0.095 0.000 0.080 

RG Connected 0.190 0.143 0.167 

RG Disconnected 0.412 0.500 0.400 

CG Connected 0.270 0.200 0.229 

CG Disconnected 0.489 0.500 0.481 

P2x7 

Subset 

M2FP 0.267 0.167 0.228 

RGFP 0.169 0.125 0.133 

RG Connected 0.352 0.214 0.286 

RG Disconnected 0.553 0.500 0.545 

CG Connected 0.448 0.333 0.405 
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CG Disconnected 0.588 0.500 0.576 

P38α 

M2FP 0.140 0.125 0.127 

RGFP 0.098 0.000 0.091 

RG Connected 0.174 0.143 0.154 

RG Disconnected 0.424 0.500 0.417 

CG Connected 0.217 0.167 0.182 

CG Disconnected 0.525 0.500 0.524 

 

Figure 2-17: Density plot of the different RG types for the P2x7 Subset dataset using RG cMCS 

The effect of the different variations of the RG was also examined. Figure 2-17 displays the 

distribution of similarity values for the various RG types for the P2x7 subset. Overall, the distributions 

all follow the same shape, but there is some slight variation as they have slightly different peak shifts, 

although these differences are not as large as between the different molecular descriptors. However, 

even these subtle differences in similarity are likely to lead to different clustering results. 

 

2.3.3 Clustering 

Clustering was carried out to provide a first level of grouping of the molecules within a dataset as it 

was felt that considering each cluster in turn would lead to more effective extraction of RG cores 

compared to extracting them from all the molecules within a dataset in a single pass. The 

experiments in this section aimed to identify the optimum clustering method. All possible 

combinations of molecular descriptors, similarity methods, and clustering algorithms were 

investigated for all the datasets. All of the RG types were also explored to examine the effect of these 
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variations on the clustering results. For three of the datasets, the computer generated clusters were 

compared with the manual clustering. For the other six datasets, the internal indices only were 

considered. The first section below examines the impact of the RG types and the second explores 

the effect of the other molecular descriptors.  

2.3.3.1 Altering the different RG parameters 

The RG variants were explored to see the effect on the clustering results. The different clustering 

algorithms were used alongside the RG MCS similarities, cMCS and dMCS. Table 2-7 shows the results 

for each combination of RG parameters for the P2x7 subset dataset when clustered via 

agglomerative (Ward’s), K-means and Butina algorithms, using RG cMCS as the similarity metric. For 

the agglomerative and K-means clustering, all numbers of clusters were considered from two to one-

hundred and fifty and for the Butina clustering, all values between 0.1 and 1 in intervals of 0.1 were 

used. Table 2-7 reports the number of clusters for which the silhouette average score was a 

maximum for each method. For comparison, the ideal number of clusters from the manual clustering 

was four. In all cases, bar the Butina method, the optimum number of four clusters was found, 

however, some variations are seen in the silhouette average values. The silhouette average scores 

are similar for the agglomerative and K-means clusters which are relatively evenly populated, 

however, they are significantly different for the Butina clusters which are not. For example, using 

the default RG parameters the agglomerative and K-means clusters have 53, 44, 38 and 27 molecules 

in each cluster, however, the Butina clusters have 157, four and one respectively. The column 

headed “Number of Molecules Misplaced” gives the numbers of molecules that do not match the 

manual clustering, that is, although the desired number of clusters was found, the placement of 

molecules within the clusters was not identical to the manual clustering. The number of molecules 

misplaced for the agglomerative and K-means clusterings is either 16 or 17, which out of 691 

molecules is a small percentage.  

Table 2-7: Table showing the P2x7 subset dataset clustering results for each of the different RG parameters based on the best 
silhouette average, where the ideal clustering is 4 clusters. The number within the brackets for the Butina method is the similarity 
threshold that generated these results. 

Parameter Clustering Algorithm 
Number of 

Clusters Selected 

Silhouette 

Average 

Number of 

Molecules Misplaced 

Default 

Agglomerative 4 0.449 16 

Butina 3 (0.2) -0.079 438 

K-means 4 0.450 17 

Terminal Agglomerative 4 0.486 16 
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Butina 4 (0.2) -0.153 434 

K-means 4 0.487 17 

Complex 

Agglomerative 4 0.453 16 

Butina 10 (0.3) -0.255 541 

K-means 4 0.453 17 

Double Bond 

Agglomerative 4 0.461 16 

Butina 3 (0.2) -0.091 430 

K-means 4 0.461 16 

Terminal and 

Complex 

Agglomerative 4 0.453 16 

Butina 3 (0.2) -0.059 514 

K-means 4 0.453 17 

Terminal and 

Double Bond 

Agglomerative 4 0.495 16 

Butina 2 (0.2) 0.003 440 

K-means 4 0.495 16 

Complex and 

Double Bond 

Agglomerative 4 0.463 16 

Butina 3 (0.2) -0.125 478 

K-means 4 0.463 16 

Terminal, 

Complex and 

Double Bond 

Agglomerative 4 0.464 16 

Butina 2 (0.2) -0.032 440 

K-means 4 0.464 16 

 

All of the agglomerative clustering methods produced identical clusters, regardless of the RG type 

used. This can be seen by the number of molecules misplaced from the manual clustering being the 

same value throughout Table 2-7. When inspecting the K-means clusters, there are some minor 

changes in cluster assignments, with one molecule moving clusters depending on the reduced graph 

type, as shown in Figure 2-18. The Butina clustering does not give promising results as the silhouette 

average is negative or very low and the number of misplaced molecules is very high.  
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Figure 2-18: ChEMBL2218645 molecule varies in cluster assignment in P2x7 subset when varying the RG parameters. Where RGs 
were created by different parameters. 

Even though the agglomerative clusters are the same in all cases, they do not have identical 

silhouette average scores, and this is due to the differences in the similarity matrices generated from 

the different types of RGs. This means that the silhouette average score cannot be used to directly 

compare the clusters generated from the different molecular descriptors, or even within the 

different RG types, as they have different similarity matrices.  

Table 2-8 shows the result with the highest silhouette average score for the different RGs and 

clustering algorithms for all datasets. Butina clustering consistently underperforms the other 

clustering techniques for each of the RG types, indicated by the silhouette average scores always 

being negative or very low and when compared to the manual clusterings the misplacement of 

molecules is extensive.  

When considering all the datasets, greater variation was seen in the clusterings produced for the 

different RGs and different clustering algorithms than was seen for the P2x7 subset dataset. The 

agglomerative clusterings show slight variations across the different RGs, however, the variation is 

more pronounced for the K-means clusterings. Finally, the differences between the agglomerative 

and K-means methods are much larger than was seen for P2x7 subset. Some of these variations are 

caused by the presence of singletons for the agglomerative method, which are uncommon for the 

K-means method. The dataset that shows the most variation across the different RGs and clustering 

methods is the Neurokinin dataset. The overlap between the different clusters for this dataset is 
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shown as a pairwise overlap heatmap in Figure 2-19. The overlap indicates how many molecules are 

contained within the same cluster across the methods that are being compared. This is calculated 

using the cluster purity method choosing one of the clustering techniques as a reference. The lighter 

the colour the higher the degree of similarity and overlap, the darker the colour the lower the degree 

of similarity and overlap. Therefore, it can easily be seen that the Butina clusters differ from the 

agglomerative and K-means clusters. The lightest colours are observed when comparing different 

RG parameters for the same clustering method. The overlap between the agglomerative and k-

means results is around fifty percent. These results show that there is close alignment between the 

differing RG parameters but there is variation between different clustering methods. Additionally, 

these results indicate that the clusters from the Butina methodology vary more than the 

agglomerative and K-means. The results for the other datasets are within the Appendix.
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Table 2-8: The number of clusters for the clustering with the largest silhouette average for each parameter and clustering algorithm combination for all datasets.   

Parameter 
Clustering 
Algorithm 

Bajorath CDK2 Chk1 Cyto FactorXa Neurokinin P2x7 P38α 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Number 
of 

Clusters 

Silhouette 
Average 

Default 

Agglomerative 30 0.474 146 0.330 3 0.363 135 0.123 92 0.378 145 0.218 119 0.357 149 0.252 

Butina 4 (0.1) -0.043 5 (0.1) -0.059 2 (0.1) -0.038 7 (0.1) -0.074 2 (0.1) 0.008 4 (0.1) -0.044 3 (0.1) -0.019 4 (0.1) -0.057 

K-means 28 0.457 107 0.293 3 0.363 102 0.101 119 0.310 136 0.183 41 0.288 150 0.228 

Terminal 

Agglomerative 29 0.455 150 0.334 3 0.332 2 0.117 112 0.358 148 0.210 120 0.364 147 0.256 

Butina 4 (0.1) -0.025 3 (0.1) -0.016 5 (0.2) -0.191 9 (0.1) -0.113 3 (0.1) -0.038 4 (0.1) -0.018 4 (0.1) -0.073 4 (0.1) -0.057 

K-means 27 0.441 111 0.285 4 0.338 100 0.103 93 0.303 106 0.167 55 0.303 112 0.222 

Complex 

Agglomerative 29 0.458 150 0.334 3 0.333 2 0.112 113 0.356 144 0.210 103 0.354 150 0.253 

Butina 6 (0.1) -0.086 3 (0.1) -0.011 2 (0.1) 0.041 6 (0.1) -0.065 3 (0.1) -0.045 6 (0.1) -0.018 3 (0.1) -0.017 5 (0.1) -0.045 

K-means 28 0.457 115 0.297 4 0.335 116 0.104 90 0.314 131 0.181 38 0.286 138 0.234 

Double 
Bond 

Agglomerative 30 0.476 149 0.329 3 0.363 150 0.124 103 0.378 149 0.205 123 0.356 141 0.262 

Butina 5 (0.1) -0.074 5 (0.1) -0.076 5 (0.2) -0.110 5 (0.1) -0.063 3 (0.1) -0.026 6 (0.1) -0.015 2 (0.1) -0.009 4 (0.1) -0.058 

K-means 28 0.458 107 0.286 3 0.363 83 0.104 76 0.310 145 0.181 47 0.293 130 0.225 

Terminal 
and 

Complex 

Agglomerative 29 0.459 148 0.333 3 0.332 2 0.112 113 0.357 149 0.215 106 0.354 145 0.249 

Butina 6 (0.1) -0.068 4 (0.1) -0.050 2 (0.1) -0.029 7 (0.1) -0.102 4 (0.1) -0.079 6 (0.1) -0.047 4 (0.1) -0.079 4 (0.1) -0.067 
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K-means 30 0.448 125 0.287 4 0.335 85 0.103 76 0.311 113 0.178 40 0.291 150 0.237 

Terminal 
and 

Double 
Bond 

Agglomerative 29 0.457 150 0.329 3 0.332 2 0.116 117 0.362 149 0.209 120 0.364 147 0.260 

Butina 6 (0.1) -0.089 4 (0.1) -0.017 2 (0.1) 0.046 6 (0.1) -0.077 3 (0.1) -0.034 4 (0.1) -0.019 3 (0.1) -0.011 3 (0.1) -0.023 

K-means 29 0.451 104 0.274 4 0.338 98 0.105 87 0.313 126 0.168 39 0.295 144 0.210 

Complex 
and 

Double 
Bond 

Agglomerative 29 0.459 136 0.329 3 0.333 2 0.109 118 0.360 149 0.208 88 0.356 150 0.252 

Butina 7 (0.1) -0.105 4 (0.1) -0.020 2 (0.1) -0.036 6 (0.1) -0.083 3 (0.1) -0.029 7 (0.1) -0.056 6 (0.1) -0.104 4 (0.1) -0.040 

K-means 29 0.451 127 0.280 4 0.400 90 0.103 76 0.309 147 0.184 37 0.287 150 0.229 

Terminal, 
Complex 

and 
Double 
Bond 

Agglomerative 29 0.459 137 0.327 3 0.332 2 0.097 118 0.361 149 0.216 87 0.355 150 0.247 

Butina 8 (0.1) -0.094 4 (0.1) -0.035 2 (0.1) -0.036 7 (0.1) -0.087 3 (0.1) -0.033 4 (0.1) -0.019 4 (0.1) -0.039 3 (0.1) -0.012 

K-means 28 0.453 144 0.285 4 0.335 9 0.089 77 0.313 116 0.177 33 0.295 123 0.225 
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Figure 2-19: Neurokinin heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 

Given that in general the ideal clustering is not known, it would be desirable to have a method to 

compare the different clusterings that is independent of the values within the similarity matrices.  

To compare how ‘well’ the clustering techniques had performed, the clusterings were compared to the 

manual clusterings generated for the P2x7 subset, the P2x7 and the Bajorath datasets. The P2x7 subset 

has four manual clusters; the P2x7 dataset has sixty-one manual clusters; and the Bajorath dataset has 

twenty-nine manual clusters. Two different external indexes were calculated: the purity and v-measure. 

The results for P2x7 can be seen in Table 2-9, which clearly shows variations in the purity and v-

measures. The technique that has the highest purity and v-measure score is the default RG with 
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agglomerative clustering. The Butina clusterings consistently have very low purity and v-measure 

scores. The results for the P2x7 subset and the Bajorath dataset can be found in the Appendix. 

Table 2-9: Table showing the comparison of the Purity and V-measures for P2x7, the appropriate number of clusters is sixty-one 

Parameter 
Clustering 

Algorithm 

Number of 

Clusters 

Extracted 

Silhouette 

Average 
Purity V-Measure 

Default 

Agglomerative 119 0.357 0.926 0.904 

Butina 3 (0.1) -0.019 0.127 0.017 

K-means 41 0.288 0.836 0.863 

Terminal 

Agglomerative 120 0.364 0.917 0.894 

Butina 4 (0.1) -0.073 0.127 0.009 

K-means 55 0.303 0.885 0.869 

Complex 

Agglomerative 103 0.354 0.913 0.897 

Butina 3 (0.1) -0.017 0.132 0.036 

K-means 38 0.286 0.842 0.869 

Double Bond 

Agglomerative 123 0.356 0.925 0.902 

Butina 2 (0.1) -0.009 0.123 0.010 

K-means 47 0.293 0.856 0.870 

Terminal and 

Complex 

Agglomerative 106 0.354 0.913 0.896 

Butina 4 (0.1) -0.079 0.131 0.025 

K-means 40 0.291 0.838 0.854 

Terminal and 

Double Bond 

Agglomerative 120 0.364 0.917 0.894 

Butina 3 (0.1) -0.011 0.143 0.040 

K-means 39 0.295 0.849 0.866 

Complex and 

Double Bond 

Agglomerative 88 0.356 0.887 0.886 

Butina 6 (0.1) -0.104 0.130 0.027 

K-means 37 0.287 0.830 0.859 

Terminal, 

Complex and 

Double Bond 

Agglomerative 87 0.355 0.887 0.886 

Butina 4 (0.1) -0.039 0.127 0.034 

K-means 33 0.295 0.826 0.859 
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Unfortunately, the maximum silhouette score does not always correspond to the maximum purity or v-

measure score for any of the manually clustered dataset. Therefore, just taking the highest silhouette 

average is not possible. Although it is interesting to note that the purity and v-measure scores are 

always higher for the agglomerative clusters compared to the K-means clusters for the two larger 

datasets (see Appendix).  

The Butina clustering was not considered further since it did not perform well for any of the RG types 

for any of the datasets. When comparing the results of the agglomerative and K-means methods, the 

agglomerative method results in more singletons, whereas, the K-means clusters are generally larger 

and have higher average cluster similarity. The agglomerative clusters are more variable in size.   

The best RG types and clustering methods as measured using the largest Silhouette average, the largest 

purity and v-measures, and the smallest number of misplaced molecules for the hand clustered datasets 

are presented in the Appendix. The RG types that repeatedly perform the best are the default RG and 

the RG with terminal parameter. These two RG types consistently score the highest or are among the 

top performers for each of the different indexes explored. As the default RG is the simplest this was 

used hereon unless stated otherwise.  

2.3.3.2 Altering the molecular descriptors  

The clusters generated using the M2FP, RG, RGFP and chemical graph descriptions were then 

investigated with the internal cluster indices calculated in all cases. Two exceptions are datasets Cyto 

and p38α. The calculation of the similarity matrices for the chemical graphs timed out for Cyto. 

Additionally, the calculation of the cluster indexes for the chemical graphs timed out for p38α. 
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Figure 2-20: P2x7 subset results for the M2FP agglomerative data. The line's colour indicates whether the interest is in finding a 
maximum or minimum for this index, or the maximise difference i.e. the elbow point. Additionally, it also tells for some indexes whether 

delta 1 or delta 2 was used in the calculations.:  

The internal clustering indexes were then calculated for all clustering levels. For example, Figure 2-20 

displays all of the results from 2 to 150 clusters for the P2x7 subset data using the M2FP molecular 

descriptor and agglomerative clustering algorithm. For the silhouette average, Dunn index and Calinski-

Harabasz indexes the clustering with the highest value was selected; for Kelley and Davies Bouldin 

indexes the clustering with the lowest value was selected; and for the Ball-Hall index the elbow point 

was chosen. For the P2x7 Subset example, the optimum number of clusters for some methods and 

clustering indexes corresponds to the ideal (i.e., the number of clusters identified manually). However, 

the obtained number of clusters did not conform to the ideal clustering for all the different descriptors 

and clustering indexes for this dataset.  
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The “best” result for each internal index is reported in Table 2-10 together with the number of clusters 

generated for each molecular descriptor and clustering algorithm. The number of clusters and cluster 

index values are also plotted in Figure 2-21. There is no consensus on the optimum number of clusters 

across the indexes. It was thought that the indexes may converge and be in agreement with the ideal 

number of clusters to give an overall consensus. Some are in agreement, however, not all of them are. 

Also, no one index always agreed with the ideal number of clusters as determined by the manual 

clusterings.  
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Table 2-10: P2x7 subset table of the results from the clustering validity indexes 

  
Silhouette 

[max] 

Dunn delta 1 

[max] 

Dunn delta 2 

[max] 

Davies Bouldin 

delta 1 [min] 

Davies Bouldin 

delta 2 [min] 

Calinski 

Harabasz [max] 

Ball-Hall 

[elbow] 
Kelley [min] 

Molecular 

Descriptor 

Clustering 

Algorithm 
Clusters Value Clusters Value Clusters Value Clusters Value Clusters Value Clusters Value Clusters Clusters Value 

M2FP 
Agglomerative 4 0.265 4 0.534 3 1.080 149 2.734 149 1.333 4 467.883 11 8 300.732 

K-means 3 0.514 3 0.514 3 1.080 145 3.472 149 1.540 19 491.380 9 55 159.252 

RG (default) 

cMCS 

Agglomerative 4 0.449 2 0.615 6 1.182 63 2.915 63 1.099 6 276.257 6 4 76.477 

K-means 4 0.450 2 0.615 7 1.166 60 2.934 56 1.128 5 277.675 6 27 40.291 

RG (default) 

dMCS 

Agglomerative 55 0.390 9 0.183 7 1.128 61 2.116 61 0.843 6 95.366 6 28 67.565 

K-means 64 0.421 29 0.249 2 1.094 64 2.371 64 1.142 4 139.921 6 14 43.716 

RGFP 

(default) 

Agglomerative 19 0.259 2 0.648 2 1.029 51 1.351 51 1.057 46 169.798 9 10 59.725 

K-means 15 0.264 23 0.627 17 1.009 54 1.563 51 1.222 55 337.835 8 6 51.708 

Chemical 

graph cMCS 

Agglomerative 5 0.380 2 0.445 6 1.050 149 3.160 149 1.059 6 558.872 9 3 293.546 

K-means 4 0.381 4 0.290 5 1.075 149 5.229 138 1.416 5 676.618 9 138 142.219 

Chemical 

graph dMCS 

Agglomerative 144 0.374 7 0.125 2 1.066 149 3.810 149 1.127 144 269.277 13 69 344.851 

K-means 24 0.287 10 0.068 5 1.099 149 5.799 148 1.380 12 307.691 12 15 195.405 
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Figure 2-21: Graphs showing all the most appropriate results from all of the different combinations of molecular descriptors and 
clustering for the P2x7 subset dataset  

The overlap between the resulting clusters was investigated to understand how the results from the 

different combinations of molecular descriptors and clustering algorithm overlap. The clusters that 

had the largest silhouette average were compared between methods. The closer to one the more 

molecules were in the same cluster. A heatmap was generated to show the overlaps, Figure 2-22. It 

demonstrates that there tends to be considerable agreement between the agglomerative and K-

means method for each molecular descriptor. It also indicates that there is not much agreement 

between the connected MCS and FP similarity and the disconnected MCS. This suggests that the 

disconnected MCS version is not the ideal methodology as it is an outlier amongst the similarity 

methods explored. Additionally, there is some variation across different descriptors, which indicates 

that the clustering method depends on the molecular descriptor of choice.  
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Figure 2-22: Heatmap showing the overlap between clusters for each combination of molecular descriptor and clustering algorithm 
used for P2x7 Subset dataset 

As previously stated, the clustering validity indexes for the different representations cannot be 

compared directly. Therefore, two external indexes were calculated for the clusterings that achieved 

the highest silhouette score within each workflow. These were cluster purity and the v-measure. The 

clusterings that contained more clusters than the manual clusters had higher scores for the purity 

scores. The higher scores are because purity calculates the misclassification rate per cluster and then 

averages over all clusters: the extreme case, when all clusters are singletons, gives the maximum 

value of 1. Thus, if many clusters consist of sub-clusters of the ideal clusters, then a larger score is 

generated as most of the molecules are similarly correlated to the original clusters. Conversely, the 

v-measure score is in line with expected values, Table 2-11. 

Table 2-11: P2x7 subset different molecular descriptors purity and v-measures 

Molecular 

Descriptor 

Clustering 

Algorithm 

Number of 

Clusters 

Silhouette 

Score 
Purity V-measure 

M2FP 

Agglomerative 4 0.265 0.975 0.937 

K-means 4 0.265 0.974 0.935 

Agglomerative 4 0.449 0.977 0.941 
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RG (default) 

connected 
K-means 4 0.450 0.975 0.934 

RG (default) 

disconnected 

Agglomerative 2 0.334 0.919 0.487 

K-means 146 0.258 0.926 0.468 

RGFP (default) 
Agglomerative 19 0.259 0.983 0.712 

K-means 15 0.264 0.973 0.707 

Chemical graph 

connected 

Agglomerative 5 0.380 0.858 0.713 

K-means 4 0.381 0.857 0.725 

Chemical graph 

disconnected 

Agglomerative 144 0.374 0.968 0.427 

K-means 24 0.287 0.910 0.494 

 

To summarise all the results, the two descriptors and clustering methods that yielded the best results 

overall are the M2FP and RG connected MCS with agglomerative clustering, Table 2-12. These were 

selected as they generate the highest scores for the v-measure. The M2FP molecular descriptor and 

agglomerative clustering method are therefore used for the following steps as, overall, this 

combination give the highest purity and v-measures and is quicker to calculate. The cluster with the 

largest silhouette score is then used, as in general the purity and v-measure cannot always be 

calculated as the known clustering is not always known. Results for the other datasets are in the 

Appendix. 

Table 2-12: The top two results for the hand clustered datasets for their purity and v-measure scores 

Dataset 

Top Results Second Top Result 

Clustering 
Algorithm 

Molecular 
Descriptor 

Purity V-Measure 
Clustering 
Algorithm 

Molecular 
Descriptor 

Purity V-Measure 

Bajorath Agglomerative M2FP 0.994 0.972 Agglomerative 
RG (default) 
connected 

0.994 0.959 

P2x7 Agglomerative 
RG (default) 
connected 

0.926 0.904 K-means 
RG (default) 
connected 

0.836 0.863 

P2x7 
Subset 

Agglomerative 
RG (default) 
connected 

0.977 0.941 Agglomerative M2FP 0.975 0.937 
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2.3.4 Reduced Graph Core Extraction 
The RG cores were extracted for each cluster and also for the whole dataset. Both methods were 

investigated to identify if there was an advantage to either methodology. 

2.3.4.1 Extraction the RG Cores 

When extracting the RG cores two settings have to be specified. These are the minimum core size, 

that is, the minimum number of nodes a core can have, and a similarity cut-off that establishes the 

number of neighbours in the first step of the algorithm when the initial MCS is identified. These two 

settings were altered for the P2x7 Subset dataset to see the effect on the cores generated. The 

minimum core size was varied from 2 to 7 and the similarity threshold was varied between 0.1 and 

0.9. The four clusters generated using M2FP and agglomerative clustering were used, and the cores 

were found using the default RG parameters.  

Table 2-13: Table showing the number of cores extracted for the two different settings for P2x7 Subset for M2FP agglomerative 4 
clusters 

  Minimum Core Size 

  2 3 4 5 6 7 

Si
m

ila
ri

ty
 

0.1 4 4 6 7 13 16 

0.2 4 4 6 9 12 22 

0.3 4 4 6 8 13 22 

0.4 4 4 6 9 11 16 

0.5 4 4 6 8 13 16 

0.6 4 4 6 8 13 18 

0.7 4 4 6 8 14 20 

0.8 4 4 6 7 13 22 

0.9 4 4 6 7 16 28 

 

Table 2-13 shows the total number of RG cores extracted from all of the clusters for the P2x7 Subset 

dataset for different values of the two variables. When the minimum core size was set to two or 

three, the number of RG cores was four for all similarity threshold values; the four cores were the 

same in all cases; and one core was generated for each cluster. However, the number of cores 

increases when the minimum core size is increased above 3. This was expected because when the 

minimum core size is small, it is likely that an MCS can be found that is common to a wide variety of 

molecules, for example, a linker node and an aromatic hydrogen bond acceptor node. As the 

minimum core size is increased, the number of molecules that share an MCS is likely to decrease, so 

therefore, more cores are extracted. Additionally, when the similarity threshold increases, the 

number of neighbouring molecules decreases. Therefore, the initial MCSs are typically larger. 

However, as the initial MCS is compared to all the molecules in the cluster, it is typically reduced in 
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size to represent more molecules. Thus, there is some variation in the number of RG cores extracted 

for each combination of the settings.  

In general, there is a need to balance the two settings. If both settings are too low, then the RG cores 

will be small and generic and could be typical of many molecules and not specific to the molecules 

within a dataset. Such RG cores are not likely to represent the structure activity relationships in the 

data. However, if the settings are too large then the cores will be too specific and may only represent 

a few molecules and could even represent one molecule only, i.e., a singleton. Figure 2-23 shows an 

example where the minimum core size is too large for the P2x7 Subset dataset. In this case, the 

algorithm fails to generate a core, as the initial MCS is smaller than the minimum size required. To 

prevent a scenario where an initial MCS is not found, the method has been adapted so that an RG 

core is always extracted for a cluster. The adaption is if the furthest neighbour of the centroid does 

not generate an appropriate MCS, then the next furthest neighbour is considered, and this is 

repeated iteratively until an appropriate MCS is found. If an MCS is still not found using this iterative 

process, then the largest MCS that occurs most frequently is used. An example of how this 

methodology operates is shown using examples from Figure 2-23. The first centroid is found, RG1, 

the next step is to identify the furthest neighbour within the minimum similarity threshold, RG3. The 

MCS between RG1 and RG3 is then found and as this consists of three nodes and is lower than the 

minimum core size, it is put into a “reserve” list and the next furthest neighbour is examined. In this 

case, this is RG6 which generates an MCS with five nodes.   
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Figure 2-23: An example of an MCS core that does not meet the requirements 

The cores that are extracted can change dramatically for some clusters depending on the settings. 

Table 2-14 shows how the results can vary as the minimum core size is changed for a constant 

similarity threshold of 0.5. Cluster two and three illustrate a wide range of variation in the generated 

cores as the minimum core size increases, whereas clusters one and four give more consistent 

results. The variation seen for clusters two and three is likely due to the smaller average size of the 

RGs, which is eight nodes compared to nine nodes for clusters one and four, and the lower average 

pairwise similarities. Minor variations were seen when the minimum similarity threshold was varied.  
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Table 2-14: RG cores that are extracted for each cluster. The value in brackets demonstrates how many molecules this core 
represents, for M2FP agglomerative 4 clusters 

 

 

Figure 2-24: A selection of molecules and their RGs and the extracted RG cores from cluster two, highlighted core in RG in red 

Figure 2-24 illustrates four of the molecules and their RGs in cluster two and their initial assigned RG 

core. Through the re-examination step, Section 2.2.7.1, after the RG core extraction process, the 
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number of molecules associated with the RG cores changes. The initial singleton found by molecule 

a) increases as molecules b) and d) also contain the RG core [Na][Na]=[Ca][Ga][No], highlighted in 

blue.  

The higher values set for the minimum core size result in a large number of RG cores many of which 

represent a relatively small number of molecules (Table 2-14). Therefore, the lower values of 2 or 3 

are preferred for this dataset. Additional datasets are considered below. 

Table 2-15: Table showing the number of cores extracted for the two different settings for Bajorath for M2FP agglomerative 28 
clusters 

  Minimum Core Size 

  2 3 4 5 6 7 

Si
m

ila
ri

ty
 

0.1 28 28 29 39 60 88 

0.2 28 28 29 39 60 88 

0.3 28 28 29 39 59 88 

0.4 28 28 29 38 56 80 

0.5 28 28 29 41 58 74 

0.6 28 28 29 41 60 74 

0.7 28 28 29 43 63 80 

0.8 28 28 29 41 66 92 

0.9 28 28 29 41 83 130 

 

RG cores were extracted for the Bajorath dataset for different combinations of settings based on the 

M2FP agglomerative clustering, which produced twenty-eight clusters. The numbers of RG cores are 

shown in Table 2-15. As for the P2x7 subset there is little to no variation in the number of RG cores 

extracted for the different similarity settings for low values of the minimum core size. When the 

larger minimum core sizes are explored, more variation is seen. However, some of the results were 

unexpected as it was thought that as the similarity threshold increased the number of RG cores 

would also increase, but this was not always the case.  
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Table 2-16 shows the RG cores that are extracted for a selection of settings. The results were the 

same for minimum core sizes of two and three and so three is omitted. Only those clusters are shown 

for which the RG cores vary with the different settings. The table shows how the RG cores are 

extended as the minimum number of nodes increases. For cluster 1, when the minimum core size is 

increased from four to five, the number of RG cores increases from one to two, and increases again 

to four when the minimum core size is six. The values within the parentheses, (), are the numbers of 

molecules from which the RG cores are generated, whereas, the values in the square brackets, [], 

are the numbers of molecules mapped to the RG core when all molecules are mapped back to the 

RG cores through the re-examination step. An asterisk, *, can be seen in cluster five, this indicates 

that the RG core has been extracted from several clusters.  There are twelve RG cores that have been 

found in different clusters within the Bajorath dataset. Overall there is little variation in the number 

of RG cores or the nature of the RG cores for most of the clusters. It should be noted, however, that 

the Bajorath dataset is a fabricated dataset that was formed to help to evaluate the progress in LO 

datasets which likely explains this behaviour. 
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Table 2-16: RG cores that are extracted for each cluster from Bajorath dataset for M2FP agglomerative twenty-eight clusters. The 
value in parentheses demonstrates how many molecules this core relates to initially, the value in the square brackets demonstrates 

how many molecules relate to the core when the RG cores are mapped back onto the dataset and * indicates the cores that are 
seen across different clusters. 

 

Results are shown for the Chk1 dataset in Table 2-17 and demonstrate a similar pattern to the 

previous two datasets: there is no difference in the results for the different similarity thresholds for 

the two lowest minimum node values, however, variation is seen for the larger minimum core sizes. 

When examining the larger datasets, the number of RG cores extracted varies for all values of the 

minimum core size. 
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Table 2-17: Table showing the number of cores extracted altering the two different settings for Chk1 from M2FP agglomerative 3 
clusters 

  Minimum Core Size 

  2 3 4 5 6 7 
Si

m
ila

ri
ty

 

0.1 3 4 6 12 16 18 

0.2 3 4 6 10 14 21 

0.3 3 4 8 12 16 17 

0.4 3 4 8 12 16 20 

0.5 3 4 9 15 21 23 

0.6 3 4 9 15 21 23 

0.7 3 4 9 15 23 27 

0.8 3 4 9 14 25 36 

0.9 3 4 9 15 24 41 

 

Table 2-18 shows the RG cores generated for each cluster for Chk1 for several settings. Working down 

the table, when the minimum core size is 5 and similarity 0.5 the number of RG cores extracted 

increases for all of the clusters. The RG cores that are extracted using a larger minimum core size 

typically contain subgraphs of the RG cores extracted for the lower minimum core size.  
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Table 2-18: RG cores that are extracted for each for the Chk1 dataset for M2FP agglomerative 3 clusters. The value in parentheses 
demonstrates how many molecules this core relates to initially, the value in the square brackets demonstrates how many molecules 

relate to the core when the RG cores are mapped back onto the dataset through the re-examination step 
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Most of the datasets produce RGs with average size eight to ten when using the default RG and a 

minimum core size of four, which is generally half the average size of the RGs, and seems a good size 

to use as there is an acceptable balance between the size of the RG cores and the number of cores 

extracted. The average of the means of the RG connected similarity values is around 0.2 for all 

datasets. The similarity threshold should be larger than the average similarity as the RG cores 

attempt to encompass relationships that are similar throughout several molecules within a dataset 

and not just most drug-like molecules in general. However, this is also a balance to be had since too 

large a similarity threshold would lead to RG cores that are too detailed whereas too small a value 

will lead to RG cores that are too small and too generic. The values of 0.5 appears to achieve a 

balance between specificity and generalisability.  

 

2.4 Conclusions 
This chapter describes the construction of a workflow to generate RG cores that show the 

relationships between molecules in a lead optimisation dataset. The workflow consists of five steps 

that have been explored within this chapter. The first step consists of cleaning the data and 

generating four different representations: M2FP, RG, RGFP and chemical graph. The second step is 

to create the corresponding similarity matrix depending on the type of representation. The third 

step is to cluster the datasets. From here, cores are extracted to establish a relationship of the 

clusters within the dataset easily. The final step of visualising the RG cores is examined in a later 

chapter.  

It was concluded that the RGFP and chemical graph representations did not produce the most 

appropriate clusters and so will not be explored in further. Furthermore, it took considerably longer 

to compute the similarity matrix for the chemical graph. It is also important to note that if the 

reduced graph representation is used to create the similarity matrix, it should be created using the 

connected MCS, as the disconnected MCS produces too sparse similarity matrices leading to 

inappropriate clustering.  

Although it was not possible to identify a single descriptor and clustering methods that was 

consistently the best, the M2FP representation and agglomerative clustering were chosen for the 

subsequent work as these gave good results in most cases. 

RG cores were then extracted from the datasets to represent the molecules. After experimenting 

with the different settings that are available for generating the RG core, the use of a minimum of 
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four nodes and a minimum similarity of 0.5 is suggested to produce the best results. The two settings 

could be changed depending on the similarity and size of the molecules and RGs within a dataset. 

As an alternative to the clustering approach, it is possible to extract cores considering the full 

dataset. This would avoid selection of a descriptor and clustering method with no a priori 

information on which is most appropriate for a dataset. The two methods are compared in the next 

chapter. The subsequent chapters will look at how best to visualise these RG cores to obtain a better 

understanding and identify the relationships. Also, how a chemist using the tool can understand the 

exploration and exploitation that has occurred within the dataset. 
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3 Evaluating The Extracted Reduced Graphs Cores 

3.1 Introduction 
The previous chapter demonstrated how reduced graph (RG) cores could be derived to represent 

lead optimisation (LO) series. As described in the previous chapter, the RG core extraction process 

can be applied to a whole dataset or clusters derived from a pre-clustering step. This chapter aims 

to evaluate the RG cores from both methods to understand which methodology gives RG cores that 

best describe the relationships within the dataset.  

Additionally, the RG cores will be compared with existing methods that aim to serve a similar 

function. These include a maximum common substructure (MCS) extraction method, RDKit’s fMCS, 

which has been adapted for RGs and two other dataset representations methods, Markush 

structures and Bemis-Murcko scaffolds. Comparing the RG core extraction to existing methods will 

hopefully indicate how the RG core can be used to overcome some of their limitations. For example, 

the RG cores should represent LO series and bring together molecules containing similar but not 

necessarily identical scaffolds to overcome the issues associated with Markush structures and SAR 

tables.  

 

3.2 To Cluster or Not to Cluster 
The RG core extraction process can be applied to both a clustered dataset or a whole dataset. There 

is added computation expense associated with the clustered dataset as the dataset has to be 

clustered prior to extracting the RG cores. There are also challenges related to clustering a dataset 

as clustering indexes that are typically used to determine the optimum number of clusters do not 

always give the most appropriate clusters for this purpose. Therefore, a comparison of the RG cores 

extracted with and without clustering was carried out to see whether the extra computational 

expense and time are needed. The comparison was based on RG core extraction parameter settings 

of the minimum core size four and the minimum similarity 0.5 in both cases. The clustering was 

carried out using M2FP fingerprints and agglomerative clustering with the clustering level chosen 

using the largest silhouette average. 

3.2.1 Initial Comparison 

The first thing to note is that there was very little difference in the time taken to compute the cores 

for both methods. Table 3-1 shows the RG cores extracted for both methods for the P2x7 Subset. 

The RG cores extracted for both methods are shown in the central portion of the table, additional 

RG cores unique to the whole data set are shown in the left section, and an RG core unique to the 
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clustered data is shown in the right-hand section. For each section, the second column contains the 

number of molecules that were initially mapped to the RG core in the RG core extraction process; 

the next column contains the molecules that are mapped after remapping occurs; and the final 

column shows which cluster or clusters the molecules belong to for each RG core.  

Table 3-1: Table displaying the cores extracted from the two different processes for the P2x7 subset 

 

The results are very similar with and without clustering. Seven cores were found for the unclustered 

data and six for the clustered data, with five common to both. The remaining core found for the 

clustered data is closely related to one core found for the unclustered data which has an additional 

node. The same RG core can be extracted from multiple clusters when extracting RG cores from a 

clustered dataset. For example, the RG core [Ga][Ca]([Ga])[Li][No] is seen in cluster one and two. 

When this occurs, a unique set of RG cores is always reported, and the molecules that map to it are 

merged together regardless of which cluster they appear in.  

A similar comparison was carried out for the Bajorath and P2x7 datasets. As larger numbers of cores 

were produced just the numbers are reported in this chapter, however, the Appendix contains the 

structures of each of the cores. Table 3-2 shows the number of RG cores extracted with and without 

clustering. Fewer RG cores were extracted from the whole datasets for the Bajorath and P2x7 

datasets compared to when the data was clustered and the average core size is only slightly smaller. 

Therefore, extracting cores from the whole datasets provides a more condensed summary of the 

relationships within the datasets. The RG cores from the entire datasets also have fewer singletons, 

this is particularly noticeable for the P2x7 set, which results in thirty singleton RG cores when the 

data is pre-clustered. Additionally, over half the cores were the same whether they were extracted 

from the clustered dataset or the whole dataset.  
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Table 3-2: Table showing the number of RG cores extracted from the two different approaches, for clustering technique M2FP 
agglomerative 

Dataset 

Clusters Whole dataset Number 

of 

Common 

Cores 

Number 

of 

Clusters 

Number 

of RG 

Cores 

Average 

Core Size 

Number of 

Singletons 

Number 

of RG 

Cores 

Average 

Core Size 

Number of 

Singletons 

Initial Remap Initial Remap 

Bajorath 28 29 6 0 0 24 5 0 0 15 

P2x7 

Subset 
4 6 5 1 0 7 5 1 0 5 

P2x7 67 97 6 30 23 58 5 13 9 35 

 

The ten RG cores reflecting the largest number of compounds in each dataset are shown in Table 3-

3, from the whole dataset, and Table 3-4, clustered dataset. The number of molecules that map to 

the core is given in the brackets and the cells shaded in grey in Table 3-4 show RG cores that were 

also extracted from the whole dataset.  

It can be seen in both tables that the majority of the top ten cores are linear RGs and, with the 

exception of the Cyto and Neurokinin datasets, mainly consist of four nodes. Some of the cores have 

a branch point and these tend to be focused around a ring node, particularly inert aromatic No. The 

most populated core in each dataset typically represents around a third of the dataset, although, the 

top RG core for each of the CDK2, FactorXa and p38α datasets has a lower representation of around 

fifteen percent.  

The Cyto and Neurokinin datasets have multiple single and two node cores as well as disconnected 

RG cores. (As discussed in the previous chapter, the RG core extraction algorithm allows smaller RG 

cores to be found when cores with the minimum size are not possible.) Disconnected RG cores are 

generated as some of the RGs within these datasets were disconnected molecules, giving rise to 

disconnected RGs. The disconnected molecules are largely due to salts that were not removed in the 

initial cleaning process.  Both datasets contain molecules that have very small RGs. The Cyto dataset 

has eight molecules that reduced a single node; 39 molecules were reduced to two nodes; and 86 

molecules were reduced to three nodes. For the Neurokinin dataset, 17 molecules were reduced to 

a single node; 22 molecules were reduced to two nodes; and 74 molecules were reduced to three 

nodes. For example, the Neurokinin dataset contains the molecule carbon tetrachloride, a carbon 

atom attached to four chlorine atoms, which reduces to a single linker node, Li. The disconnected 
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RG core and small RG cores indicates that the dataset cleaning step should be improved before 

running this methodology. 

When comparing the clustered and non-clustered results, out of the top ten results for all datasets 

71 of the 90 RG cores are the same, with two datasets Neurokinin and p38α having all the same top 

ten RG cores. The large overlap between the top RG cores extracted for both methods demonstrates 

that any variation in the RG cores overall generally occurs for RG cores that are represented by fewer 

molecules. 
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Table 3-3: Top ten cores from each dataset with the number of molecules associated with the core using the whole dataset extraction method 
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Table 3-4: Top ten cores from each dataset with the number of molecules associated with the core using the clustered dataset extraction method. The shaded RG cores are cores that are also seen in the 
whole dataset extraction method results 
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A summary of all the RG cores generated from the clustered and non-clustered datasets is 

shown in Table 3-5 which gives: the number of molecules; the number of unique RGs; the 

number of RG cores extracted from both methods; the number of RG cores that appear in 

both methods; and the average percentage overlap of the methods. For the small datasets, 

Chk1 and P2x7 Subset, there is a considerable overlap of 77%, with only two RG cores 

different in both cases. However, the larger datasets with more RG cores extracted have 

fewer RG cores that appear within both methods. As more molecules cover a larger area of 

chemical space, a greater variation in the RG cores is observed. This is because the clustered 

datasets lead to RG cores being extracted from lots of small areas of chemical space, whereas, 

when extracting cores from the whole dataset there is a tendency to identify relationships 

between a larger number of molecules across a more diverse chemical space.  

Table 3-5: Comparison of the number of cores extracted from both methods, as well as the overlap between the two 
methods for each dataset 

Dataset 

Number 

of 

Molecules 

Number 

of RGs 

Number 

of RG 

Cores in 

Clustered 

Dataset 

Number 

of RG 

Cores in 

Whole 

Dataset 

Number of 

RG Cores 

that are 

Common 

Average 

Overlap 

Percentage 

(%) 

Bajorath 2549 920 29 24 15 57.11 

CDK2 1368 824 195 114 68 47.73 

Chk1 106 91 9 9 7 77.78 

Cyto 6370 3762 181 182 132 72.73 

FactorXa 1956 883 126 42 22 34.92 

Neurokinin 2475 1451 85 86 56 65.50 

P2x7 2259 822 97 58 35 48.21 

P2x7 Subset 691 162 6 7 5 77.38 

p38α 3644 1902 245 125 82 49.53 

 

Table 3-6 shows the details of the RG cores extracted using the whole dataset extraction 

methodology. One of the aims of the RG core is to represent the relationships between the 

molecules within a dataset whilst also reducing the amount of information to process. The 
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amount of data has been reduced vastly for all of the datasets, with some more so than 

others. Additionally, for most of the datasets, the average RG core size is five nodes, indicating 

that the relationship identified by the RG core is significant, i.e., it represents a substantial 

portion of the molecules.  

When examining the number of molecules each of the RG cores represents, there are a few 

key things to note. The first is that several of the datasets have RG cores representing just one 

molecule. These are present in all the datasets except two. The second is that when looking 

at the average number of molecules that each RG core represents, the numbers vary from 

just over one percent, CDK2, to just over 24%, P2x7 Subset. For the P2x7 Subset and Chk1 

datasets each core represents a large percentage of the molecules, 24.2% and 15.8% 

respectively. These were small datasets with a less diverse chemical space, shown by the 

relatively large average pairwise similarity across the dataset in Chapter 2. The two datasets 

that have the largest average number of molecules represented are Cyto and Neurokinin, 

however, this is due to the size and nature of the RG cores that have been extracted from 

these two datasets with both of the datasets extracting several RG cores that consist of just 

one or two nodes. Cyto has two single node cores and fifteen cores with two nodes, and 

Neurokinin has four single node cores and nine cores with two nodes. These small cores 

consist of simple common nodes such as a linker node. Therefore, these RG cores are not 

selective and do not demonstrate meaningful relationships between the molecules within the 

dataset, as the RG cores could be generic to any molecule. As mentioned previously, these 

small cores were due to some of the RGs within the dataset being themselves small, i.e., 

consisting of one or two node RGs.  

Table 3-6: Table showing the number of RG cores extracted for each dataset using whole dataset extraction method 

Dataset 

Number 

of 

Molecules 

Number 

of RGs 

Number 

of RG 

Cores 

Average 

Number of 

Nodes in RG 

Core 

Number of 

Singletons 

Number of 

Molecules on 

Average a Core 

Represents [%] 

Average % 

The Core 

Represents of 

The RG (%) 

Bajorath 2549 920 24 5.33 0 115.58 [4.5%] 53.72 

CDK2 1368 824 114 4.81 26 23.11 [1.7%] 49.70 

Chk1 106 91 9 4.67 2 16.78 [15.8%] 50.86 

Cyto 6370 3762 182 3.68 22 282.26 [4.4%] 32.55 

FactorXa 1956 883 42 4.83 7 87.52 [4.8%] 42.70 
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Neurokinin 2475 1451 86 3.60 10 226.36 [9.1%] 25.61 

P2x7 2259 822 58 5.26 10 90.50 [4.0%] 45.96 

P2x7 Subset 691 162 7 5.00 0 167.43 [24.2%] 56.73 

P38α 3644 1902 125 4.66 23 75.14 [2.1%] 46.85 

 

Table 3-7 shows similar results to Table 3-6 but for the clustered datasets. One notable 

difference is the larger number of RG cores and singletons extracted. The average number of 

nodes in the RG core is slightly larger, with a broader coverage of the RG of the molecules. 

However, they do not represent as many molecules per core. The RG cores extracted from 

the whole dataset were slightly smaller in size but represented more molecules. Therefore, 

there is a trade-off between the size of the RG cores and the number of molecules they 

represent. 

Table 3-7: Table showing the number of RG cores extracted for each dataset using clustered dataset extraction method 
from M2FP agglomerative results 

Dataset 

Number 

of 

Molecules 

Number 

of RGs 

Number of 

RG Cores 

Average 

Number of 

Nodes in 

RG Core 

Number 

of 

Singletons 

Number of 

Molecules on 

Average a Core 

Represents 

[Percent] 

Average % The 

Core 

Represents of 

The RG (%) 

Bajorath 2549 920 29 6.31 0 92.93 [3.6%] 61.33 

CDK2 1368 824 195 6.25 81 12.11 [0.9%] 55.60 

Chk1 106 91 9 5.22 3 14.11 [13.3%] 51.66 

Cyto 6370 3762 181 3.72 16 290.38 [4.5%] 32.39 

FactorXa 1956 883 126 7.07 28 37.94 [1.9%] 53.68 

Neurokinin 2475 1451 85 3.71 5 215.86 [8.7%] 26.26 

P2x7 2259 822 97 6.18 23 61.04 [2.7%] 50.94 

P2x7 Subset 691 162 6 5.00 0 123.67 [17.9%] 60.43 

P38α 3644 1902 245 5.83 73 45.66 [1.3%] 49.48 

 

To summarise this section, the RG cores extracted from the clustered datasets tend to be 

larger and more selective as each core, on average, matches to fewer molecules than the 

cores extracted from the whole dataset. Furthermore, the clustered datasets tend to include 

more RG cores that represent just one molecule. The overlap between the RG cores extracted 
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from the two methods is around 50%. The RG cores extracted from both methods were 

analysed further below to identify if one set of RG cores is more appropriate than the other. 

 

3.2.2 Scaffold Score 
As noted above, the RG cores extracted from the clustered datasets are generally larger and 

represent fewer molecules, whereas the RG cores extracted from the whole datasets were 

mainly smaller and represent more molecules. A scaffold score was explored to understand 

further which RG cores would be more beneficial to see if one methodology was favoured 

over the other. Bandyopadhyay et al. presented a scaffold score for chemical graphs to 

quantify the quality of a scaffold (Bandyopadhyay et al., 2019). The S score is as follows:  

 𝑆 = − log10 (√𝑁𝑐𝑜𝑟𝑒 .
𝑁𝑚
𝑁
.
1

√𝜎
.
1

𝑅
)  (3.1) 

Where Ncore is the number of atoms within the scaffold, Nm is the number of molecules 

associated with the scaffold, N is the number of molecules within the dataset, R is the number 

of R-groups identified for the scaffold and σ is a measure of how close the molecules are to 

the scaffold and is defined as 

 𝜎 =∑(𝐴𝑖 − 𝑁𝑐𝑜𝑟𝑒)
2

𝑁𝑚

𝑖=1

 (3.2) 

Where Ai is the number of atoms within molecule i. σ is, therefore, a measure of the 

proportion of each molecule that is represented by the scaffold. A high value of σ indicates 

relatively large molecules and a relatively small scaffold, whereas a small value of σ indicates 

that the scaffold represents a large proportion of the molecules.  

The S score has been modified for the RG core analysis as follows: the Ncore becomes the 

number of RG nodes within the RG core and Ai is the number of nodes within the RG 

representing molecule, i.  

In order to extract the number of R groups the data was reorganised. The RG for each 

molecule was mapped to the RG core. The additional nodes in each RG were then attached 

to the respective node in the RG core as R substituents, Figure 3-1. Where multiple molecules 

had substituents attached to the same node on the RG core, these were aggregated as 
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alternative nodes at that substituent position. Figure 3-1 demonstrates an example for an RG 

core which has four molecules mapped to it. The core consists of five nodes, 

[Ga][Ca][Ge][Li][No]. Each of the RGs of the molecules can be mapped onto the core and the 

additional RG nodes were considered as substituents. These substituents are shown with 

dashed bonds.  Therefore, there were four different substitution sites on the RG core and 

seven unique R groups for this example. There are a few instances when an RG core 

represents the whole RGs, which leads to no R groups for that molecule. If either sigma or R 

are zero, then 
1

√𝜎
 and 

1

𝑅
 are set to 1.1 to avoid division by zero.  

 

Figure 3-1: An example of how five molecules map onto RG core [Ga][Ca][Ge][Li][No] to demonstrate R groups 
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A larger RG core score indicates a bigger scaffold with fewer R-groups where the majority of 

the molecules are of similar size to the RG core and where the RG core covers a large portion 

of the dataset. The median RG core score is reported for each dataset in Table 3-8 for RG 

cores calculated from the whole dataset and from the pre-clustered dataset. The median 

score was quoted as it is less affected by outliers than the mean, as the distributions are not 

normally distributed. 

Table 3-8: Median RG core scaffold score for each dataset 

Dataset 
Number 

of 
Molecules 

Number 
of RGs 

Whole dataset Clustered Dataset 

Number 
of RG 
Cores 

Number 
of 

Singletons 

Median 
RG Core 

Score 

Number 
of RG 
Cores 

Number 
of 

Singletons 

Median 
RG Core 

Score 

Bajorath 2549 920 24 0 1.883 29 0 1.820 

CDK2 1368 824 114 35 1.681 195 89 1.226 

Chk1 106 91 9 3 1.126 9 3 1.126 

Cyto 6370 3762 182 41 2.245 181 16 2.265 

FactorXa 1956 883 42 9 1.991 126 31 1.589 

Neurokinin 2475 1451 86 21 2.070 86 8 2.137 

P2x7 2259 822 58 13 1.813 97 16 1.662 

P2x7 
Subset 

691 162 7 1 1.394 6 1 1.435 

P38α 3644 1902 125 30 1.975 245 88 1.781 

 

For five of the nine datasets, the RG cores extracted using the whole dataset methodology 

have a higher median RG core score indicating that they are more representative of the data. 

The three datasets for which the median RG core scores are higher for the clustered datasets 

are Cyto, Neurokinin and P2x7 Subset. This could be because for these datasets both methods 

produce very similar numbers of RG cores, which probably indicates that when the number 

of RG cores is similar between methods, the clustered dataset produces slightly better RG 

cores. However, the difference in scores is minimal, so the extra computational expense of 

clustering the datasets does not generate significantly better results for these three datasets.  

Identical median RG core scores were obtained for both methods for the Chk1 dataset. The 

RG cores extracted from the Chk1 dataset only vary by one RG core as shown in Figure 3-2.  

The RG core that has been extracted from the whole dataset is more representative as it is 

derived from 20 molecules, whereas the RG core for the clustered dataset represents a single 
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molecule only. The RG core derived from the whole dataset is a subgraph of that derived from 

the clustered dataset and has a higher RG core score due to the larger number of molecules 

it represents. Therefore, in this case, the whole dataset methodology is more representative 

and produces better RG cores overall.  

 

Figure 3-2: RG cores that vary within the Chk1 dataset 

3.2.3 Summary 
To summarise the results from the clustering vs using the whole dataset analyses, it was 

concluded that extracting the cores from the whole dataset was more appropriate as similar 

results were generated in a shorter amount of time and the RG cores were produced that 

generate higher RG core scores, overall. From here on, the RG cores were extracted from the 

whole dataset. 

 

3.3 Applying RG Extraction to Known Datasets 
In this section, the RG core extraction is applied to datasets of increasing difficulty to validate 

its performance.  

The MMP12 dataset is a publicly available LO dataset developed at GSK (Pickett, Green, Hunt, 

Pardoe, & Hughes, 2011). The MMP12 dataset is constructed around one Markush structure 

shown in Figure 3-3.  
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Figure 3-3: Markush structure that the MMP12 dataset has been built around 

There are 2500 molecules and 484 unique RGs within the MMP12 dataset. The RG core 

extraction process resulted in a single RG core that corresponds to the Markush structure and 

represents all of the molecules in the dataset. The RG core is shown in Figure 3-4 along with 

the substructure of the Markush where the atoms are coloured according to the 

corresponding nodes in the RG core. The MMP12 RG core has a scaffold score of 1.623. This 

dataset represents an “easy” case in which the RG core extraction method successfully 

reproduced the Markush.    

 

Figure 3-4: RG core extracted from the MMP12 dataset 

The Bajorath dataset is a constructed dataset that was put together to investigate the 

progression of LO series (Vogt, Yonchev, & Bajorath, 2018). It is more complex than the 

MMP12 dataset and is based on 34 analog series-based (ASB) scaffolds. Scaffolds are typically 

sourced from individual molecules, however, ASB scaffolds are generated from analog series 

(AS) which are extracted from the dataset using retrosynthetic combinatorial analysis 

procedure (RECAP) matched molecular pairs (MMPs), Figure 3-5 (Dimova, Stumpfe, & 

Bajorath, 2018; Dimova, Stumpfe, Hu, & Bajorath, 2016; Stumpfe, Dimova, & Bajorath, 2016).  
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Figure 3-5: Identification of an analog series-based scaffold (Dimova et al., 2016) 

The top ten most populated ASB scaffolds are shown in Table 3-9 with the number of 

molecules that each ASB scaffold represents in parentheses. A total of 24 RG cores were 

extracted for the dataset. The second column shows the corresponding RG cores which 

represent the same set of molecules as the ASB scaffold. The numbers in the parentheses, 

“()“, indicate how many molecules that have that ASB scaffold contain the associated RG core. 

The numbers within the square brackets, “[]” which are separated by a dash, indicate how 

many molecules within the dataset contain that RG core and how many different ASB 

scaffolds these molecules cover, respectively. For example, the first ASB scaffold represents 

166 molecules. There is one RG core that represents all 166 molecules covered by the ASB. A 

total of 429 molecules contain this RG core and these are covered by a total of 5 ASBs. In most 

cases, one of the RG cores corresponds directly to the ASB scaffold (as for the first row) and 

is shown in grey. However, the RG cores shown in black reflect that some RG similarities may 
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be observed outside the ASB scaffolds and instead are detected within the R-group 

substituents throughout the dataset. Some of the RG cores map to more than one ASB. 

Figure 3-6 and Figure 3-7 show examples where the RG cores have merged multiple ASBs 

together. In Figure 3-6 three ASB scaffolds were combined to create a five node RG core, 

[No][Ca][Li][Co][Ge], each node has been highlighted in its respective colour. The second ring 

within the fused ring has not been incorporated into the RG core as in molecule (a) it is an 

inert aromatic node, No, whereas molecules (b) and (c) have hydrogen bond acceptor 

aliphatic rings at this position, Ca. Figure 3-7 shows four ASB scaffolds that were combined 

into a four-node RG core, [Na][Li][Na][Ge], each node has also been highlighted in its 

respective colour. The RG core comprises two ring nodes rather than three due to molecule 

(c) containing only two rings. The ethyl group that is a substituent on the pyrimidine ring and 

is common to all four ASBs is not part of the RG core due to using the default settings when 

generating the RGs. Therefore, the RG core extraction method has produced fewer scaffolds 

than the ASB with, in general, each core representing more molecules than the ASBs. 

However, in some cases the RG cores represent fewer atoms overall due to the way the RG 

nodes are defined.  
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Table 3-9: Top ten most populated ASB Scaffolds and RG core present for each for Bajorath dataset 
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Figure 3-6: ASB Scaffolds that are combined into one RG core [No][Ca][Li][Co][Ge]  

 

 

Figure 3-7: ASB Scaffolds that are combined into one RG core [Na][Li][Na][Ge] 
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Three of the datasets introduced in Chapter 2, Neurokinin, P2x7 and P2x7 Subset, have been 

extracted from ChEMBL, with each molecule annotated by the journal in which the molecule 

was published. These datasets were examined to see if the RG cores were able to merge 

molecules together than are derived from different journal papers and which might be based 

on different chemical scaffolds. 

For each dataset, the number of unique DOC CHEMBLIDs present is shown Table 3-10 

alongside the number of unique RG cores extracted for the dataset and the average number 

of RG cores per DOC CHEMBLID showing that for most journal articles the molecules are 

represented by multiple RG cores. For both the Neurokinin and P2x7 datasets there are more 

DOC CHEMBLIDs than RG cores. When examining which RG cores correspond to molecules 

within each DOC CHEMBLID, for the P2x7 dataset, only nine journal articles have one RG core. 

As, in general, there is more than one RG core per paper, this indicates that the molecules 

within a journal article are not always closely aligned or based on one Markush structure. For 

the Neurokinin and P2x7 Subset datasets, the journal articles all contain multiple RG cores 

per paper.   

Table 3-10: Table showing the number of DOC CHEMBLIDs for each dataset 

Dataset 
Number of 
Molecules 

Number of 
RGs 

Number of RG 
Cores 

Number of 
DOC 

CHEMBLIDs 

Average Number 
of RG Cores per 
DOC CHEMBLID 

Neurokinin 2475 1451 86 130 11.57 

P2x7 2259 822 58 61 4.89 

P2x7 Subset 691 162 7 4 3.25 

 

There were four DOC CHEMBLID’s within the P2x7 Subset dataset that represent three journal 

articles, CHEMBL1157114 (supplementary information of (Chambers et al., 2010)) and 

CHEMBL2218064 (Chambers et al., 2010), CHEMBL1221272 (Abdi et al., 2010) and 

CHEMBL1268987 (Abberley et al., 2010). The Markush structures representing the molecules 

within each journal article are shown in Figure 3-8.  Figure 3-9 shows the Markush structures 

associated with each of the journal articles alongside RG representations of each Markush. R 

indicates where an R group variation occurs; X indicates an amide linker; the grey RG node, 

hetero, indicates a hydrogen bond acceptor or hydrogen bond acceptor and donor; Aro, the 

black node, is an aromatic ring; and Ali, the yellow RG node (mapping to Ce, Ca, Na and Ne 

nodes), is an aliphatic ring variation.  
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Seven RG cores were extracted from the whole of the P2x7 Subset. When comparing these 

RG cores to the Markush structures there are four RG cores that represent all or part of the 

Markush structures, [Li][No]([Li])[Li], [Ga][Ca][Ge][Li][No], [Na][Li][Ge][Li][No], 

[Li][No][Li][Ge][Ce][Ga]. These are the shaded RG cores within Table 3-11. Also, there are five 

out of the nine Markush structures that are incorporated within the RG cores, a(iii), a(iv), b(i), 

c(i) and c(ii). Therefore, most of the Markush structures are represented and RG cores 

represent multiple Markush structures and across different journal articles. 

 

Figure 3-8: Markush structures that are present in each of the DOC CHEMBLID a) CHEMBL1157114 and CHEMBL2218064 
(Chambers et al., 2010)  b) CHEMBL1221272 (Abdi et al., 2010)  c) CHEMBL1268987 (Abberley et al., 2010)  
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Figure 3-9: RGs of the Markush structures in each DOCCHEMBLID a) CHEMBL1157114 and CHEMBL2218064 (Chambers et 
al., 2010)  b) CHEMBL1221272 (Abdi et al., 2010)  c) CHEMBL1268987 (Abberley et al., 2010) 

As the P2x7 Subset is a subset of the P2x7 dataset, the RG cores extracted from each dataset 

were compared to see if the RG cores extracted from the subset were also extracted from the 

full dataset. However, only two of the seven RG cores within the P2x7 Subset were also 

extracted from the larger P2x7 dataset. The other five RG cores are not present, although a 

substructure of each of these RG cores is present. The P2x7 Subset RG cores and the related 

P2x7 RG cores are shown in Table 3-11. The top two cores are the cores that were found in 

both datasets. The following five either have one or two nodes removed, resulting in more 

molecules being brought together. In some cases, the number of molecules represented by 

the core has increased significantly. 
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Table 3-11: P2x7 Subset RG cores and the related RG cores in the P2x7 dataset. The starred RG cores are ones that 
represent parts or all of a Markush structure within the P2x7 Subset dataset. 

 

 

The final step of the RG core extraction process is to identify all the RG cores present within 

a molecule. The rationale for this process was discussed in the previous chapter and arises 

because one molecule can map to multiple different RG cores. The average number of RG 

cores each molecule maps to is shown in Table 3-12. The ideal outcome would be for each 

molecule to be represented by one RG core so there is no ambiguity. However, for the 

majority of the datasets the average number of RG cores per molecule is between one and 

two. For the Cyto and Neurokinin datasets the average number of cores per molecule is above 

seven and eight, respectively. These large numbers indicate that these datasets were too 

diverse for the RG cores extraction process to extract meaningful and efficient RG cores. 

Additionally, and as discussed previously, these two datasets identify RG cores with one and 

two nodes.     
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Table 3-12: Table showing the average number of RG core per molecules for each dataset 

Dataset Number of Molecules 
Average Number of Cores per 

Molecules 

Bajorath 2549 1.09 

CDK2 1368 1.93 

Chk1 106 1.42 

Cyto 6370 8.18 

FactorXa 1956 1.88 

Mmp12 2500 1 

Neurokinin 2475 7.05 

P2x7 2259 2.32 

P2x7 subset 691 1.70 

p38a 3644 2.58 

 

3.4 Comparison to Other Methods 
This section compares the RG cores with representations generated by established methods, 

including RDKit’s function fMCS, Chemaxon’s Markush structures and Bemis-Murcko 

scaffolds. 

3.4.1 Comparison to an Alternative Maximum Common Substructure Method 
A comparison was made between RDKit’s function fMCS and the RG core extraction process. 

The fMCS (“RDKit: Open-Source Chemoinformatics,” 2018) is a RDKit function that identifies 

the MCS from a list of molecules. The fMCS implementation was developed for chemical 

graphs rather than RGs, however, it takes input as SMILES strings and given that the RGs are 

also represented as SMILES it was used here to calculate the MCS from the RG representations 

of the molecules.  

fMCS was first applied at the whole dataset level, however, no MCSs were produced. This is 

because in the default setup the fMCS function attempts to find an MCS that represents all of 

the input molecules and the variation of the RGs is too large so that an MCS cannot be found. 

Therefore, fMCS was then applied to the clustered datasets.  
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Table 3-13: P2x7 subset RG core results from the different methods 

RG Core Extraction 

(Min Core Size 2 or 

3 with similarity 

0.5) Clustered 

Dataset 

RG Core Extraction 

(Min Core Size 4 

similarity 0.5) 

Clustered Dataset 

RG Core Extraction 

(Min Core Size 4 

similarity 0.5) Whole 

Dataset 

RDKit fMCS 

applied to the 

clustered dataset 

 

 

 

 

 

Table 3-13 shows that the fMCS method extracts the same RG cores from the clustered P2x7 

Subset data as the RG core extraction method for minimum core size of 2 or 3 and similarity 

set to 0.5. However, when the minimum core size is set to 4 for the RG core extraction 

method, larger RG cores are found that represent superstructures of those found with the 

smaller minimum nodes threshold and by fMCS. Thus, the RG core extraction method 

provides greater flexibility than the fMCS approach.  

When fMCS was applied to the Bajorath dataset more differences were seen between the 

two methods. Although the numbers of RG cores extracted are similar, 28 for fMCS compared 

to 29 for the RG core extraction method, the cores themselves vary, with those extracted 

using fMCS having a higher average core size of 7.29 nodes compared to 6.31 nodes for the 

RG core extraction method. The number of RG cores extracted from the whole dataset by 

fMCS was slightly fewer at 24 unique RG with an average core size of 5.13 nodes. 
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The RG cores generated from the clustered data were compared for both methods as shown 

in Table 3-14. The results were identical except for cluster 5, where the fMCS extracts just one 

RG core and the RG core extraction method produces two RG cores which are superstructures 

of the core found by fMCS. There were more differences between the RG cores extracted 

using the whole dataset and the fMCS methods and the comparison is shown in Table 3-15. 
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Table 3-14: Core extraction from the clustered Bajorath dataset for the RG core extraction and the fMCS methods 
(threshold level 1) 
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Table 3-15: A table comparing the RG cores extracted from the whole dataset RG core extraction and from the fMCS 
method (threshold level set to 1) for the Bajorath dataset 
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It is possible to relax the condition that all molecules must contain the MCS in the fMCS 

method. The threshold setting was reduced to 0.75 so that only 75% of the molecules need 

to contain the MCS, to see how this affected the RG cores extracted. The RG cores that were 

extracted are bigger than the previous RG cores with a threshold setting of 1, however, the 

RG cores do not always represent all of the molecules in the cluster. Table 3-16 shows the 

number of molecules that match the fMCS core for each cluster when the similarity threshold 

was set to 0.75. It can be seen that 153 molecules are not represented by the RG cores 

extracted, which is six percent of the dataset. In contrast, all of the molecules are represented 

using the RG core extraction method.  

Table 3-16: Bajorath fMCS results for each cluster when the threshold setting is 0.75 

Cluster 
Number of 
Molecules 

Number of 
Unique RGs 

Number of Molecules 
represented by fMCS 

Core 

Number of Molecules not 
represented by fMCS Core 

0 100 47 94 6 

1 54 34 46 8 

2 52 29 47 5 

3 55 31 45 10 

4 69 37 66 3 

5 375 101 314 61 

6 135 58 132 3 

7 146 35 146 0 

8 65 31 64 1 

9 53 14 42 11 

10 56 15 51 5 

11 226 65 226 0 

12 182 43 182 0 

13 53 10 52 1 

14 47 18 43 4 

15 2 2 2 0 

16 81 29 80 1 

17 62 25 61 1 

18 60 24 54 6 

19 73 22 73 0 

20 51 31 47 4 

21 91 45 88 3 

22 98 41 86 12 

23 63 36 55 8 

24 88 26 88 0 

25 86 20 86 0 

26 57 21 57 0 

27 69 30 69 0 
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When larger datasets were examined larger differences between the two methods start to 

arise. For all the datasets the fMCSs were calculated with the thresholds 1 and 0.75. When 

examining the results in Table 3-17 and Table 3-18, the RG core extraction method always 

represents all molecules within the dataset or cluster. fMCS threshold 1 results are provided 

in the Appendix as the comparison is similar to the results obtained with a threshold of 0.75. 

However, for both fMCS thresholds, some molecules are not represented, and in some cases, 

a considerable number of molecules are not characterised. This is detrimental for a method 

that aims to summarise a dataset. Additionally, for some datasets the fMCS does not generate 

an RG core for some clusters as the molecules within the cluster are too diverse. For the 

Neurokinin dataset and fMCS threshold 1, no RG cores were extracted for all the clusters, and 

therefore, there is no RG core to represent any molecules within the dataset. 

The fMCS results are more aligned with those generated by the RG core extraction method 

when the datasets were pre-clustered due to the molecules being more similar. However, the 

RG core found using the fMCS method and threshold 0.75 do not always represent all of the 

molecules in a cluster, Table 3-16. This, therefore, explains why the RG cores were slightly 

larger from the fMCS clustered dataset as the extracted MCS does not have to represent all 

of the molecules. Also, for fMCS with a threshold of 1, the RG core sizes were smaller because 

the fMCS attempts to represent all the molecules within one cluster by one RG core. A 

comparison of the RG cores details are highlighted in Table 3-17. 
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Table 3-17: Comparison of the two different methods for all nine datasets. RG core extraction whole dataset results are within the Appendix. 

Dataset 
Number 

of 
Clusters 

RG Core Extraction fMCS 

Clustered Dataset Threshold 1 (Clustered Dataset) Threshold 0.75 (Clustered Dataset) 

RG 
Cores 

Mean 
Core 
Size 

Number 
of 

Singletons 

RG 
Cores 

Mean 
Core 
Size 

Number 
of 

Singletons 

Clusters 
without a 

core 
extracted 

Molecules 
Not 

Represented 

RG 
Cores 

Mean 
Core 
Size 

Number 
of 

Singletons 

Clusters 
without a 

core 
extracted 

Molecules 
Not 

Represented 

Bajorath 28 29 6.31 0 28 6.29 0 0 0 28 7.29 0 0 84 

CDK2 150 195 6.25 89 142 5.93 64 3 30 149 6.33 64 1 91 

Chk1 3 9 5.22 3 3 3.00 0 0 0 3 4.00 0 0 11 

Cyto 2 181 3.72 16 0 - - - 6370 0 - - - 6370 

FactorX
a 

112 126 7.07 31 108 6.68 24 1 7 108 7.29 24 0 104 

Neuroki
nin 

2 85 3.71 8 0 - 0 2 1483 1 4.00 0 1 1189 

P2x7 67 97 6.17 16 58 5.98 16 4 152 64 6.70 16 0 112 

P2x7 
Subset 

4 6 5.00 1 4 4.00 0 0 0 4 6.50 0 0 23 

p38α 150 245 5.56 88 113 5.24 51 13 649 136 5.65 51 2 361 
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Table 3-18: Difference between the fMCS method and the method presented in this chapter on a cluster level and a whole dataset level. Threshold Level set to 0.75. 

Dataset 

Unique Number of Cores from 

Comparison of RG cores for… 

RG extraction method and fMCS for clustered data 
RG extraction method for whole 

dataset and fMCS for clustered data 

Cluster 

Method 

Whole 

Method 

fMCS 

Method 

Number of 

Clusters 

that Cores 

Exactly 

Match 

Number of 

Cores the 

Same 

Number of 

Unique 

Cores to 

Cluster 

Method 

Number of 

Unique 

Cores to 

fMCS 

Method 

Number 

of Cores 

the Same 

Number of 

Unique 

Cores to 

Whole 

Method 

Number of 

Unique 

Cores to 

fMCS 

Method 

Bajorath 29 24 28 9 10 19 18 7 17 21 

CDK2 195 115 145 99 102 93 43 27 88 118 

Chk1 9 9 3 1 3 6 0 3 6 0 

Cyto 181 182 0 0 0 181 0 0 182 0 

FactorXa 126 42 108 61 80 46 28 14 28 94 

Neurokinin 85 86 1 0 1 84 0 1 85 0 

P2x7 97 58 64 25 33 64 31 10 48 54 

P2x7 Subset 6 7 4 0 0 6 4 0 7 4 

p38α 245 125 136 69 90 155 46 36 89 100 
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Table 3-19 shows the number of cores that change between the two threshold settings for fMCS, 0.75 

and 1 and in some cases the difference is large. Therefore, if this method were to be used it would need 

to be optimised to achieve the most optimal RG cores. 

Table 3-19: Capturing the number of clusters cores that change in the fMCS method when adapting the threshold setting 

Dataset Number of Clusters 
Number of Clusters Cores that change 

between threshold settings 0.75 to 1 

Bajorath 28 19 

CDK2 150 36 

Chk1 3 2 

Cyto 2 NA 

FactorXa 112 35 

Neurokinin 2 1 

P2x7 67 32 

P2x7 Subset 4 4 

p38α 150 48 

 

From this investigation, it can be considered that both methods could be used to generate RG cores, if 

the dataset was pre-clustered and the parameters for both methods can be adjusted produce varying 

RG cores. However, the RG core extraction method is more flexible and the settings can be adjusted to 

produce a better optimum set of RG cores. Although the RG cores become larger as the threshold for 

the fMCS is reduced, these are less representative of the dataset as not all of the molecules are 

represented by RG cores. This is more pronounced for more diverse datasets where the fMCS does not 

allow RG cores to be extracted with either threshold setting. Additionally, on average, the fMCS with 

threshold 0.75 generates slightly larger RG cores than the RG core from the RG core extraction. 

However, this is only slight and does not outweigh the benefits of applying the RG core extraction 

method to the whole dataset.  

Furthermore, the RG core extraction method applied to the whole datasets produces results that 

represent all molecules with considerably less computation as there is no need for the data to be 

clustered.  
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3.4.2 Comparison to Markush Structures 
In this section, the RG cores are compared with Markush structures generated using ChemAxon's 

Markush Editor (“ChemAxon Markush Editor,” 2020). The Markush structures were made using all 

default settings such as: enable nested R-groups; enable position variation; enable atom lists; merge 

duplicate R-groups; the scaffold option was automatic detection rather than user-defined; calculation 

mode was set to normal; the minimum scaffold size was two; and the minimum common size for nesting 

R-groups was three.  

Only two Markush structures were generated for the P2x7 Subset, shown in Figure 3-10, compared to 

the seven RG cores, Figure 3-11. It can be seen that the two Markush structures are smaller than the 

RG cores represented for this dataset, as these two Markush structures correspond to one or two 

nodes, respectively, whereas the average RG core size is five. These Markush structures initially do not 

easily allow a chemist to see a relationship between the molecules. The structures identified are small 

and could be considered common to a wide number of molecules. 

 

Figure 3-10: Markush structures generated for the p2x7 subset dataset 

 

Figure 3-11: RG cores identified from p2x7 subset dataset 

The ChemAxon Markush Editor tool provides the option to drill down the representation via the R group 

substituents which can be nested and contain further R-groups. An example of this breakdown is 

demonstrated in Figure 3-12, which shows the R groups that were associated with the second of the 
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Markush structures. Both R1 and R2 were fragmented further. A greater breakdown and analysis of the 

R-groups is not currently provided in the method presented within this thesis. 

 

Figure 3-12: Second Markush structure along with R-groups 

The Markush structures were generated for the rest of the datasets. Table 3-20 shows that all of the 

datasets produce more RG cores than Markush structures. As for the P2x7 Subset, the reduced number 

of Markush structures is because they are less complex and represent less information in the main 

scaffold, shown by the overall reduction in the median number of atoms. Therefore, the highest level 

Markush structures are not as useful as the RG cores to clearly identify structural relationships between 
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the molecules within a dataset. The Markush structures also do not allow for closely related structures 

to be compared. In contrast, the RG cores allow variation within the core, as long as the pharmacophoric 

features remain the same. When examining the Markush structures they are all small cores, and are 

mainly either a ring or a fused ring system, whereas, the RG cores are constructed from more than just 

the ring or ring systems. 

Table 3-20: Table showing the comparison between the number of Markush structures and RG scaffolds extracted 

Dataset 
Number of 
Markush 

Structures 

Median Number of 
Atoms within 

Markush Structures 

Number of RG 
Cores 

Median Number 
of Atoms within 

RG Core 

Bajorath 7 6 24 16 
CDK2 16 6 114 14 
Chk1 3 6 9 18 
Cyto 63 N/A * 182 7 

FactorXa 8 6 42 15 
MMP12 1 20 1 21 

Neurokinin 2 7.5 86 14 
P2x7 Subset 2 8 7 15 

P2x7 5 6 58 12 
P38α 11 6 125 16 

*Cyto only shows five random Markush Structures once calculated. 

 

3.4.3 Comparison to Bemis-Murcko Scaffolds 
Along with Markush structures, Bemis-Murcko scaffolds are also sometimes used to determine 

scaffolds. Bemis-Murcko scaffolds can be constructed in three ways: removing side chains, replacing all 

heteroatoms with carbons, and finally, a scaffold that combines both methods to replace all 

heteroatoms and side chains (Bemis & Murcko, 1996). Therefore, all of these methods build a 

framework based on the ring systems within a molecule. An example of how all three of these scaffolds 

relate to a molecule, A01B01 from MMP12 dataset, is shown in Figure 3-13.   
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Figure 3-13: Bemis-Murcko scaffolds for molecule A01B01 from the MMP12 dataset 

The number of unique representations for each dataset for all three Murcko scaffolds methods are 

reported in Table 3-21. For all implementations, a much larger number of Murcko scaffolds were found 

than RG cores. The RG cores provide more details of the actual atomic structure as two of the Murcko 

methods remove this detail. However, the Murcko scaffolds are larger.   

Table 3-21: Table showing the number of Murcko scaffolds extracted from all dataset using all three methods 

Dataset 
Number of Murcko Scaffolds 

Number of RG 
Cores 

Removal Side 
Chains 

Remove all 
Carbons 

Remove Side Chains 
and Carbons 

Bajorath 969 1726 470 24 

CDK2 661 1018 397 114 

Chk1 60 99 39 9 

Cyto 3190 5169 1409 182 

FactorXa 867 1356 414 42 

MMP12 194 1220 114 1 
Neurokinin 1194 1888 545 86 

P2x7 Subset 137 413 55 7 

P2x7 751 1422 316 58 

P38α 1405 2546 698 125 

 

Considering the MMP12 dataset which is based on one Markush structure, which is also extracted from 

the RG core extraction process, even the most generic Murcko scaffold produces 114 scaffolds. These 

Murcko scaffolds are therefore not as good as the RG cores for providing information about the 

relationships within the dataset, although they would deliver more details about the shape and overall 

framework of the molecules in the dataset. 
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3.5 Conclusions 
Two different ways of extracting RG cores from a dataset were explored. The first extracted RG cores 

after clustering the dataset and the second extracted RG cores from the dataset as a whole. The results 

presented here show that it is more effective to extract the RG directly from the dataset as a whole 

rather than from pre-clustered data. 

There are several reasons for this. The first is that there is no easy way to select the most appropriate 

clustering as it is difficult to compare the clustering indexes across methods, which was demonstrated 

in the previous chapter. The clustering methods used in the previous chapter do not seem to produce 

suitable clusters. Furthermore, the clustered datasets do not sufficiently organise the molecules to 

demonstrate an improvement on the relationships identified within the dataset. The superiority of the 

RG cores extracted from the whole dataset is confirmed by them being more concise and superior 

representations of the relationships in the dataset, reflected by their larger scaffold scores, on average, 

compared to those generated from clustered data.  

There were three main hopes for the work undertaken. The first is that it would be able to deal with 

slight variations within a core structure as this is a current issue with Markush structures and SAR tables 

as it can lead to multiple representations. The second is that it would be able to bring together scaffolds 

as well as molecules from different journals. The final hope is that it would be able to represent the 

analogue series that formed the Bajorath dataset. All three were achieved as the RG cores deal with a 

slight variation within molecular structures as long as they are retaining the same RG node type. The 

bringing together of molecules was demonstrated as for three datasets, Neurokinin, P2x7 and P2x7 

Subset, the RG cores represent molecules across different journal articles. Finally, all of the analogue 

series were represented in 28 RG cores, however, some were combined together, as of the Bajorath 

dataset is constructed from 34 analogue series. 

The RG core extraction method was shown to be advantageous over using RDKit’s fMCS function since 

the datasets must be clustered for the latter increasing the computational time but not substantially 

increasing the quality of the RG cores. The RG cores from the fMCS method, also, do not represent all 

of the RGs within a dataset and, therefore, this is not as reliable as the method outlined within this 

thesis.  

Furthermore, the benefits of the RG cores over the Markush structures and the Murcko scaffolds were 

demonstrated. The Markush structures represent more molecules, however, this is due to them being 

considerably smaller than the RG cores. The Murcko scaffolds contain less atomic data or reflect a small 

number of molecules even though they are larger than the RG cores. 
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The RG cores that have been extracted from the whole dataset shall be taken forward for more analysis. 

The next chapter will look at how it is best to visualise these RG cores to understand better and identify 

the relationships.  
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4 Reduced Graph Core Mapping 

4.1 Introduction 
The previous chapter demonstrated the optimum extraction methods for the reduced graph (RG) cores 

to represent lead optimisation (LO) series. This chapter demonstrates how the RG cores are mapped 

back onto the RGs in order to extract substructural information for each node. The RG core mapping is 

a pre-processing step to organise the data in a dataset so that it can be visualised appropriately, which 

will be examined in the next chapter.  

4.2 Pre-Processing Cleaning 
As discussed in the previous chapters, disconnected RG cores were discovered in some of the datasets 

and so an additional pre-processing cleaning step has been added. The molecules undergo two new 

steps, a salt remover step and a neutralising step. The salt remover step is a function within RDKit that 

extracts the largest fragment as the main molecule (“RDKit: Open-Source Chemoinformatics,” 2018). 

There are some instances where this function still returns a disconnected SMILES, for example, when 

two fragments are the same size. The disconnected SMILES that are generated in these instances are 

kept. 

The second step is to neutralise the molecules. This neutralisation step has been added as the RG 

definitions used within this thesis do not take into consideration charged atoms. The neutralisation step 

is the O’Boyle neutralisation code using RDKit (O’Boyle, 2019). This algorithm neutralises the molecules 

on an atom-by-atom basis if there are no neighbouring counter charges to prevent groups such as nitro 

groups being altered. The RDKit rdMolStandardize uncharger function was not used as this does not 

alter the charges on an atom if there is a counter charge anywhere within the molecule to prevent a 

change in the overall molecular charge.  

For six of the datasets, both steps alter some of the RGs generated as well as the RG cores, as shown in 

Table 4-1. These datasets are marked by an asterisk. 

Table 4-1: Table showing the change in the molecules at each stage of the new cleaning steps. Row contain an asterisk indicate that the 
RG cores have also been altered. 

Dataset 
Number 

of 
Molecules 

Number of Molecules… 
Molecules Filtered 

Out as Now 
Duplicates 

Number 
of 

Molecules 
RGs 

altered 

Number 
of RG 
Cores 

Changed 
Due to 

Salt 
Removed 

Changed Due 
to 

Neutralisation 

Changed 
Overall 

Bajorath 2549 0 0 0 0 0 24 

CDK2 1368 0 480 480 0 446 114* 

Chk1 106 0 0 0 0 0 9 

Cyto 6370 252 59 266 60 220 187* 

FactorXa 1956 0 1317 1317 0 668 44* 
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Mmp12 2500 0 0 0 0 0 1 

Neurokinin 2475 92 7 94 4 92 84* 

P2x7 2259 25 0 25 0 25 61* 

P2x7 
subset 

691 0 0 0 0 0 7 

p38a 3644 0 894 894 0 871 123* 

 

Table 4-2 displays the number of RG cores for each of the datasets together with the number of these 

that vary following this pre-processing. Some of the RG cores vary by a single node only, as the 

neutralisation step has caused a change in the node type. Some variations occur due to the removal of 

salts. 

Table 4-2: Number of RG cores that vary from the previous chapter 

Dataset Number of RG Cores 
Number of RG Cores 

That Remain The Same 
Number of RG Cores 

That Are Different 

CDK2 114 70 44 

Cyto 187 121 66 

FactorXa 44 21 23 

Neurokinin 84 53 31 

P2x7 61 48 13 

p38a 123 82 41 

 

4.3 Reduced Graph Core Mapping Procedure 
To create the visualisation and examine the amount of chemical space that has been explored the 

substructural chemical graph features need to be extracted. This is achieved by mapping the RG of each 

molecule on to the corresponding RG core and analysing the metadata associated with each of the 

nodes that map to the RG core. Mapping of a molecule back onto the core is not trivial, as there may 

be multiple ways in which a molecule could be mapped. Figure 4-1 illustrates a molecule within the 

MMP12 dataset with two different mappings onto an RG core. The MMP12 dataset only generates one 

RG core which is based on one Markush structure. The RG of the molecule has two Ge nodes attached 

to the linker node representing the substructures labelled as (1) and (2). Both of these can map onto 

the starred Ge node in the core. Each mapping would lead to a different substructure being associated 

with the node and it is therefore necessary to select the mapping that best represents the LO series. 

The metadata stored with the RG nodes of each molecule includes information on the substructural 

fragment that each node represents along with information on stereochemistry (when present in the 

molecule) and substitution patterns and is used to resolve ambiguous mappings as described below. 
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The numbers of molecules where there are multiple potential mappings to the associated RG core are 

displayed in Table 4-3 for the nine datasets. The table also shows the average number of RG cores each 

molecule maps to. For the majority of the datasets, the average number of RG cores each molecule 

maps to is between 1 and 2.68; the exceptions are the datasets Cyto and Neurokinin datasets where 

the average is more than 7. The number of mappings to consider is therefore more than the number of 

molecules in the dataset as multiple molecules map to multiple RG cores.  

Table 4-3: Table showing the number of mappings to create and the number of molecules that can have multiple mappings 

Dataset 
Number of 
Molecules 

Average Number of 
Cores Each Molecule 

Maps To 

Number of 
Mappings 

Number of Molecules 
that have multiple 

mappings for an RG core 

Bajorath 2549 1.09 2774 377 

CDK2 1368 1.93 2637 355 

Chk1 106 1.42 151 2 

Cyto 6370 7.31 46150 15192 

FactorXa 1956 2.22 4333 668 

Mmp12 2500 1 2500 600 

Neurokinin 2475 7.37 18203 9316 

P2x7 2259 2.36 5342 961 

P2x7 subset 691 1.70 1172 290 

p38a 3644 2.68 9752 1814 

 

 

Figure 4-1: The Markush structure (with R-groups) is shown at the top together with RG core extracted from the dataset. The molecule 
bottom left has two different mappings to the starred Ge node, substructural fragment 1 or 2.  

When there are multiple ways of mapping a molecule to an RG core, in the majority of cases one of the 

mappings is the “correct” mapping as it maximises the overlap between the molecules when the 

underlying substructures are considered. For example, in the case shown in Figure 4-1, the correct 

mapping is substructure (2) since the majority of the molecules represented by the core have a COOH 

substructure at this position. There are 1704 molecules that map to this RG core for this dataset, many 
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of which have multiple mappings. Figure 4-2 shows the effect of simply taking the first mapping 

compared with resolving the mappings according to the majority substructure in the molecules. The 

first method on the left identifies three substructural fragments with varying number of examples, 

whereas, all 1704 molecules contain the COOH mappings as one of the multiple mappings. This example 

shows the importance of attempting to resolve multiple mappings in order to create a visualisation that 

is representative of how the LO series was developed.  

 

Figure 4-2: Demonstrating the difference between selecting the first seen mapping and the mapping that maximise the overlap between 
all molecules 

Ideally, just one mapping should be identified per molecule, otherwise, the analysis may not be 

representative of the underlying LO series. Furthermore, multiple mappings will impact on further 

analysis as the number of substructures represented by a node would be more than the number of 

molecules.  

Therefore, where there are multiple potential mappings, each instance has to be analysed and 

considered with one being selected. The benefits of the RG should be retained as they are an abstract 

representation that allows different substructures to be brought together so it is not desirable to look 

for exact matches at the substructure level. Instead, the different substructures are compared based 
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on topological distances, since the distance between key features in a molecule can be important for 

binding to a biological receptor.  

4.3.1 Methodology 
For each RG core, the molecules that have only one potential mapping are mapped first and the 

metadata for each of the nodes is extracted. The unique mappings then allow a basis for choosing 

mappings for those molecules where multiple mappings are possible. As the main goal is to maximise 

the overlap between the molecules, inspiration is taken from the node-bond-pair fingerprint in Barker 

et al. and a node topological distance map is created for each molecule (Barker et al., 2006). The node 

topological distance map is created by finding the shortest topological distance between each pair of 

RG nodes which is the shortest bond length between any pairs of atoms where one atom is taken from 

each node. An example of a node topological distance map is shown in Figure 4-3. Each node is labelled, 

and the topological distance between each node is found, for example, 1-2:1 indicates that the 

topological distance between nodes 1 and 2 is 1. Each mapping to the RG core will give rise to a different 

topological distance map. 

 

Figure 4-3: Example of the node topological distance map for a molecule 
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A substituent topological distance map is also created by finding the shortest topological distance 

between each node and each of the R-group substitution sites within the RG core. An example of a 

substituent topological distance map is shown in Figure 4-4. As before, the nodes are labelled and the 

topological distance to each of the substitution sites is found, for example, 2: [3, 4, 4] indicates that the 

topological distance between node 2 and the three different substituent sites is 3, 4 and 4, respectively. 

 

 

Figure 4-4: Example of the substituent topological distance map for a molecule  

The workflow used to identify the optimal mapping to an RG core is shown in Figure 4-5. Following each 

stage, if the potential mappings still cannot be resolved they are taken forward to the next stage of 

analysis. The first step is to calculate the topological distance maps and the substituent topological 

distance maps for all molecules. Those molecules that have a unique mapping to the RG core are then 

identified and their topological distance maps are aggregated. The molecules with multiple mappings 

are then studied. 
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Figure 4-5: Workflow indicating how mappings to the RG core are found 
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For a molecule with multiple mappings, each mapping is compared to the aggregated node 

topological distance maps derived from the molecules with unique mappings. If there is a 

single match then this mapping is used. If there are multiple matches, then the mapping with 

the largest number of previously seen examples in the aggregated maps is used. If there is 

more than one such match, then the substituent topological distance maps from these 

aggregated maps are compared. If there is no matching topological distance map, then a 

topological edit distance is carried out to select the mapping with the lowest edit distance.  

Edit distance is used to quantify the distance between two objects by identifying the number 

of operations (insertion, deletion or replacement) needed to change one object into another. 

As the mappings should maximise the alignments between molecules, the mapping with the 

smallest topological edit distance to the aggregated maps is chosen. An example of how the 

topological edit distance is calculated is shown in Figure 4-6. For each node-node pairing the 

topological distance between both nodes is compared. This number indicates how many 

bonds need to be added or removed to make the bond structure overlap. The total of all these 

comparisons is found and becomes the topological edit distance. The topological edit distance 

for the topological distance maps shown in Figure 4-6 is 12. If there are multiple examples 

with the smallest topological edit distance, then the one with the lowest average distance 

compared to all the aggregated maps is selected. 

If there is more than one mapping with the smallest topological edit distance, then the 

substituent topological edit distance maps are compared. For each node the number of 

insertions and deletions are calculated, Figure 4-7 illustrates an example of how the 

substituent topological edit distance is calculated. The lower the total number, the larger the 

overlap. The example with the lowest total is selected, unless there are multiple examples 

with the same lowest total, then the lowest average across all the aggregated substitution 

maps is used. If there is only one match this is the RG core mapping that is used. However, if 

there are multiple matches these all go forward onto the next stage or if there are no matches 

all the potential mappings that had previously not been filtered out go forward onto the next 

stage.  
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Figure 4-6: Comparison of the edit distance between two topological distance map, each node to node distance is 
compared to generate an overall total edit distance of the topological distance maps 

 

Figure 4-7: Example of the how the topological substitution edit distance is calculated 

If the multiple mappings are still not resolved, then the chemical graphs are checked to 

determine if the chemical graphs of the unresolved mappings are the same, if they are there 

is no way to distinguish between them and so one is chosen arbitrarily (the first instance 

encountered) Figure 4-8. When there are multiple chemical graphs then the heavy atom 

counts (HAC) are compared and the mapping with the largest HAC is used. The largest HAC is 

selected as this is likely to be a larger molecule and take up a larger space within a potential 

binding pocket. If the HACs are the same then molecular weights are considered and the 

mapping with largest molecular weight is used.  
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Figure 4-8: An example where the CG does not differ and is therefore indistinguishable 

If this still does not distinguish between the mappings, then the Tanimoto maximum common 

substructure (tMCS) of the chemical substructures of the potential mappings are found with 

all the substructure in the unique mappings. The mappings with the largest tMCS is used, if 

there are multiple mappings with the same largest tMCS then the highest average tMCS 

across all the unique mappings is found for all the potential mappings, Figure 4-9. When there 

are examples with the highest average tMCS the chemical graphs are compared again.   

There are very few examples where this workflow is unable to resolve multiple mapping, and 

for those cases where it does not identify a single mapping then an arbitrary one is chosen 

from the remaining examples.  
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Figure 4-9: An example of how the Tanimoto MCS is calculated where 1) and 2) are potential mappings within the molecule 
and a) b) and c) are chemical graph RG core equivalents from the single mappings 

There are some instances where there are no molecules with unique mappings to the RG core. 

In this case, the node topological distance maps are collected from all molecules, along with 

the number of times that they appear. This enables the most common node topological 

distance map to be found. For a given molecule, if there is only one mapping that contains 

the most frequent node topological distance map then this mapping is used. If there are no 

examples, then the next most common topological distance map is used. Also, if there are 

multiple examples then some of the same procedures as before are followed with the 

chemical graph checked, then the HAC, then the MW and finally the chemical graph again. 

Finally, an arbitrary mapping is selected if none of these steps identify a preferred mapping. 

Some examples are given below. 

The example in Figure 4-10 is from the MMP12 dataset. 1900 molecules have a unique 

mapping to the core and identical topological distance maps. Molecule A06B02 has two 

potential mappings to the RG core due to the presence of two Ge, hydrogen bond acceptor 

and donor aliphatic nodes, at the right side of the molecule labelled 1) and 2). The node 

topological distance maps for these two alternative mappings are shown and just one of these 

is present in the aggregated maps (representing substructure 2) and so this mapping is 

selected.  
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Figure 4-10: Molecule with ID A06B02 within the MMP12 dataset containing multiple examples and how the selection 
process occurred. 

Figure 4-11 shows an RG core [Ga][Ce]=[No][Ga] for the CDK2 dataset. 28 molecules have 

single mappings to the core and these give rise to three topological distance maps due to 

different substituent positions on the rings. Examples are given in the table: variant 1) 

represents 24 molecules; variant 2) represents five molecules; and variant 3) represents a 

single molecule. The molecule 50415235 has multiple mappings to the RG core and two 

topological distance maps consistent with variant 1) and variant 3), respectively.  Mapping 1) 

is chosen as this is more prevalent in the maps aggregated from the molecules with unique 

mappings.  
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Figure 4-11: Workflow for a multiple mapping molecule, 50415235, within CDK2 dataset 

These two examples are representative of the approaches that resolve many cases, however, 

there are two instances when neither approach is sufficient to differentiate between the 

potential mappings. The first is when a molecule has multiple topological distance maps that 

match to maps in the aggregated set that are equivalent and also most frequent.  The second 

is when none of the topological distance maps for the molecule are present in the single 

mapping molecules. For these instances, further action needs to be taken and examples of 

each are shown below.  
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Figure 4-12: Molecule CHEMBL2218143 within P2x7 Subset dataset with multiple mappings with the same number of 
examples 

Figure 4-12 shows molecule CHEMBL2218143 which is in the P2x7 Subset and the P2x7 

dataset and is represented by the RG core [Li][No][Ga][Ca].  There are three potential 

mappings for the molecule to the RG core due to the presence of the three halogens on the 

ring (labelled 1), 2) and 3)), each of which matches to the first Li node of the RG core (starred). 

The three topological distance maps for the molecule are shown. The topological distance 

maps for 1) and 3) are identical and occur 10 times in the aggregated set, whereas the map 

for 2) is not present. These two potential mappings are further analysed through the 

topological substitution edit distance. Figure 4-13 shows the molecule CHEMBL2218143 in 

full where it can be seen that there are two further substituents on the ring. Each of the 

potential node mappings gives rise to a different substituent topological map as shown on 

the left. Similarly, each of the molecules in the unique mappings to the RG core may have a 

different substituent pattern and therefore substituent topological map, and examples of 
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these are shown on the right along with the number of molecules that have each substituent 

topological map. Each of the substituent maps for the molecule is compared against each of 

the aggregated substituent maps, shown on the right hand side, using the edit distance 

approach, and the mapping is chosen with the smallest edit distance to one of the aggregated 

maps. In the example shown this is mapping 1) which has edit distance 4 to the aggregated 

map b).  

 

Figure 4-13: Molecule CHEMBL2218143 within P2x7 Subset dataset topological substitution edit distance calculations 

Figure 4-14 is molecule CHEMBL3091612 in the P2x7 dataset which is represented by the RG 

core [Ge][Na][Li][No].  There are two potential mappings for the first node, Ge, of the 

molecule. Within the figure, the node has been starred and the different substructural 

fragments have been labelled. Neither of the potential mappings map to the single mapping 

topological distance maps. The two potential mappings are then compared to the single 

mapping topological distance maps (only one in this instance). Mapping 1 is selected as the 

smallest number of changes would be required to make it match to the single mapping 

example.   
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Figure 4-14: Molecule CHEMBL3091612 within P2x7 dataset, solved by comparing potential topological distance maps to 
existing topological distance maps 

Figure 4-15 shows molecule 50457130 within the CDK2 dataset which maps to the RG core 

[No]=[No][Ce][Ga]. This illustrates the molecular weight step in the workflow. There are three 
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nodes that have several different variants, the first, No, second, No, and fourth, Ga, nodes. 

There are only two possibilities for the fused ring, the first two nodes, and have been labelled 

1) or 2). The fourth node has been labelled a) or b). There are then four possible mappings of 

the RG core onto the molecule. These are made up of a combination of the substructures 1) 

or 2) and a) or b). The topological distance maps are calculated for each. 1b) and 2a) match 

with the most frequent map in the aggregated set. When examining the substitution patterns 

for these two mappings, both have 12 minimum changes using the edit distance approach, 

therefore, both are taken forward for further analysis. The next step is to compare the 

number of heavy atoms for the underlying structures. Both 1b) and 2a) have 15 heavy atoms 

so the molecular weight is checked next. 1b) is selected as it has a larger molecular weight of 

199.063, compared to 2a)’s molecular weight of 197.071. 

Figure 4-16 shows an RG core [Li][Na][No][Li] for the P2x7 dataset together with the set of 

topological distance maps for molecules with a single mapping to the core and some example 

molecules for each map. Molecule CHEMBL21028, shown in Figure 4-17, has two possible 

mappings to the core as both of the Cl substructures labelled 1) and 2) can map to the Li node 

labelled 4 in the RG core. Figure 4-17 demonstrates the steps taken within the workflow to 

resolve the RG core mapping for molecule CHEMBL21028. Both of the potential mappings 

match to the same number of existing examples (the final two rows in the table in Figure 4-

16), therefore, they cannot be distinguished at this first step. When comparing the 

substitution patterns, both potential mappings have edit distances of four, the heavy atom 

counts and molecular weights of the underlying chemical graphs are also the same, 13 and 

194.036 respectively. A tMCS is calculated for the chemical graph of every molecule which 

has a unique mapping to the RG core, and there are 25 of these. The largest tMCS is shown 

for each potential mapping, and the second option is selected as it has the highest tMCS 

overall. If these two were the same, the average tMCS would be found across the 25 examples 

in order to achieve the maximum overlap, however, this step is not necessary in this case. 
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Figure 4-15: Molecule 50457130 within CDK2 dataset with multiple mappings with the same number of examples that is 
resolved using molecular weight 
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Figure 4-16: Molecule CHEMBL210284 within P2x7 dataset initial single mapping examples 
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Figure 4-17: Molecule CHEMBL210284 within P2x7 dataset resolution steps of the RG core mapping 

Figure 4-18 illustrates how two molecules CHEMBL1371125 and CHEMBL31184 within the 

Neurokinin dataset can be mapped to the RG core [No]=[No]1=[No]=[No]=1 when there are 

no existing single mapping examples. There are three possible mappings to the core for 

CHEMBL1371125 and two possible mappings for CHEMBL31184, respectively. All five 

topological distance maps are found which leads to three unique maps with two having two 

examples. The potential maps are then examined for each molecule to see which maps to the 
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topological distance map with the largest number of examples. As there are two that have 

two examples this step only rules out option b) for molecule CHEMBL1371125. The chemical 

graphs of each of the potential maps are then examined. These are different within the 

molecule so the number of heavy atoms is calculated, which allows the two options to be 

resolved. In both instances mapping a) is selected as this contains one more heavy atom at a 

count of 17. 

 

Figure 4-18: Example from Neurokinin dataset of how to resolve RG core mapping issue when there are no initial single 
mappings 
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4.4 Results of Mapping Process 
Table 4-4 demonstrates how many molecules are resolved at each stage of the workflow. The 

majority of the multiple matches are resolved using the topological distance maps with the 

more complex steps required only for a relatively small number of molecules, with the 

exception of the Cyto and Neurokinin dataset. This indicates that the RG cores probably do 

not work effectively enough for these two datasets as they cannot easily distinguish the 

relationships in the dataset, also indicated by small RG cores.  
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Table 4-4: Table showing the number of molecules that are resolved within each step of the workflow 

Resolved By… 

Dataset 

Bajorath CDK2 Chk1 Cyto FactorXa MMP12 Neurokinin P2x7 P2x7 Subset p38α 

Molecules with multiple mappings 377 355 2 15192 668 600 9316 961 290 1814 

Existing Match 

to Topological 

Node Map 

Single Match to 

Topological 

Distance Map 

123 67 0 586 140 600 119 74 149 201 

Separated by the 

number of 

Topological Node 

Distance Map 

previously seen 

11 200 2 2144 307 0 692 434 107 1050 

Topological 

substitution edit 

distance 

46 45 0 1175 114 0 671 113 1 176 

CG 6 9 0 4189 21 0 3625 173 33 273 

HAC 13 0 0 4301 17 0 2382 30 0 30 

MW 2 7 0 1482 0 0 558 28 0 38 

Largest tMCS 0 2 0 132 31 0 83 9 0 9 

Highest Average 

tMCS 
0 0 0 198 15 0 25 39 0 3 

Second CG 0 0 0 705 0 0 1092 1 0 0 

Arbitrary 0 0 0 0 0 0 0 0 0 2 
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No Existing 

Match to 

Topological 

Node Map 

Min Edit Distance 

Topological Node 

Distance Map 

62 6 0 22 19 0 3 5 0 1 

Avg Low Edit 

Distance 

Topological Node 

Distance Map 

58 5 0 47 2 0 9 0 0 1 

Topological 

substitution edit 

distance 

4 2 0 96 0 0 15 40 0 2 

CG 43 7 0 35 1 0 18 6 0 27 

HAC 9 2 0 3 1 0 5 2 0 0 

MW 0 0 0 2 0 0 0 1 0 1 

Largest tMCS 0 0 0 2 0 0 1 3 0 0 

Highest Average 

tMCS 
0 0 0 2 0 0 1 0 0 0 

Second CG 0 0 0 0 0 0 3 0 0 0 

Arbitrary 0 0 0 0 0 0 5 3 0 0 

No Existing 

Single 

Mappings 

Max Overlap 0 0 0 0 0 0 0 0 0 0 

CG 0 0 0 0 0 0 0 0 0 0 

HAC 0 0 0 0 0 0 2 0 0 0 

MW 0 0 0 0 0 0 0 0 0 0 
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4.5 Conclusion 
Some molecules can be mapped onto an RG core multiple times; a prioritisation process has been 

implemented to select one mapping that will be used for the further analysis. The prioritisation 

involves first examining the mappings of molecules for which there is a unique mapping and then 

exploring which of the multiple mappings aligns best with the existing examples. This process uses a 

topological distance map and associated workflow that allows the different mappings to the RG core 

to be distinguished. These mappings are then be utilised in the RG core visualisation. 
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5 Using Reduced Graphs to Visualise Lead Optimisation Series 

5.1 Introduction 

The previous chapter described how RG cores can be mapped onto a RG core to allow metadata to 

be extracted. This chapter aims to illustrate how these RG cores can be visualised, the final step of 

the workflow Figure 5-1.  

An RG core consists of connected nodes that are common to multiple molecules within the dataset. 

The nodes contain the substructural information collected from the molecules represented by the 

RG core. The visualisation should provide an understanding of the relationship between molecules 

and be easily interpretable. Also, the visualisation should demonstrate the chemical space that has 

been investigated. The level of exploration is described by examining the variety of substructural 

groups each node represents.  

 

Figure 5-1: Optimised workflow:  

5.2 Generation of the Visualisation 
Data visualisation is important as it provides a way to communicate the relationships between data. 

These visualisations can then indicate patterns within the data that might have been missed or 

overlooked.  Visualisations also provide a way of representing a large amount of information in an 

effective way. Therefore, a visualisation that brings together the molecules within a dataset and 

indicates areas of chemical space that these molecules cover, can allow chemists to identify 

relationships between the different structures and their properties. 

The visualisation tool is designed to be interactive to allow a chemist to view the data at different 

levels of detail, such as the RG core level or RG node level and by the various substructures 

represented by the RG nodes. By moving between the different levels, the relationships and areas 

in chemical space that have been over- or under-explored should be revealed. The visualisation 
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extends and complements R-group SAR tables and Markush structures. The RG cores are the most 

central part of the visualisation as they aim to summarise all the molecules and focus on the 

relationships between them all. An RG core should also demonstrate potential binding capabilities 

with the target. 

Once the molecules represented by an RG core have been mapped to it, Chapter 4, the chemical 

fragments for each molecule are associated with the corresponding RG nodes of the core. These 

fragments become known as substructural group derivatives. Figure 5-2 shows an example of the 

output from this step for a dataset. As mentioned in Chapter 2, the reduced graph nodes of the 

individual molecules are annotated by SMARTS string representations of the underlying 

substructures. These substructures are collated for all molecules represented by a core and 

displayed as tables associated with each node. The substructures are associated with counts 

indicating the number of times they occur, i.e., the number of molecules that contain the 

substructure at that position. As demonstrated by the node No in Figure 5-2, this method 

differentiates between substructural group derivatives with different substitution patterns.  
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Figure 5-2: Representation of the substructure derivatives for a set of molecules that map to an RG core. 

Figure 5-3 illustrates another example based on five molecules that all match the same RG core. Even 

though there are five molecules, there are only three unique substructures that are represented by 

the red node and the count for each substructure is displayed in the table.  
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Figure 5-3: The substructure derivative table for the node shown in red 

Each node of an RG core is displayed as a pie chart that shows the number of different substructures 

associated with the node. The overall size of the pie chart represents the number of unique 

substructures represented by the node. The segments within the pie chart represent the different 

substructures, with the segment size proportional to the frequency of the substructure. Figure 5-4 

illustrates the node pie chart for the molecules in Figure 5-3. Using pie charts makes it easy for the 

user to see which substructures have been used frequently and which have been used rarely. For 

example, Figure 5-4, shows three substructural group derivatives have been used, where the 

trifluoro group (grey) has been explored less than the chloro (orange) and fluoro (blue) groups. The 

pie charts therefore indicate the level of exploration of a node and by examining the core as a whole, 

a user can identify chemical space that has been under- and over-explored. In Figure 5-5, nodes 1Na, 

2Ca, and 3Ga are smaller pie charts as they have only one or two substructural group derivatives, 

respectively. Node 0Na is considerably bigger as it has 17 different substructural group derivatives. 

The large blue segment in node 0Na indicates that one of the substituents has been seen the most 

at 15 times, and the olive coloured segment is smaller as it has only been seen once. 
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Figure 5-4: An example of a node pie chart  

The pie charts that represent the nodes within a core are connected together to form a visualisation 

of a set of related molecules. The way they are connected depends on the bond between the nodes 

within the core structure. A thin line is used for a single bond with a thicker line used for a double 

bond. An example can be seen in Figure 5-5, where the bond between node 1Na and 2Ca is a double 

bond and the rest of the bonds are single bonds.  

 

Figure 5-5: An example of a whole core within the visualisation tool 

 

5.2.1 Implementation 
The visualisation is an interactive tool that was implemented via a RESTful API that runs using Python 

3, Flask, D3, JavaScript, HTML and CSS. The engineering of this interactive tool is highlighted in Figure 
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5-6. The interactive tool is a webpage that the user can easily interact with. These interactions cause 

a request to be posted to the flask server.  If the user is looking at a dataset that has already been 

processed and exists within the visualisation, the data is extracted from the corresponding 

hierarchical data format (HDF) file. The HDF file allows several different datasets and the associated 

RG core information to be saved within the same file within separate sections so they can be 

accessed individually. The first page for each dataset is a principal component analysis (PCA) plot 

that is constructed in a D3 SVG object, where the data points are calculated using scikit-learn and 

M2FP descriptors. The RG core visualisation is also constructed in a D3 SVG object. The user can also 

import a new dataset as a set of SMILES strings with a corresponding IDs and pIC50 values. In this 

case, all the pre-processing steps are executed including creating the RGs, extracting the RG cores 

and then extracting the metadata to display within the RG visualisation.  

 

Figure 5-6: Engineering behind the visualisation tool 

 

5.3 Results 
The initial webpage of the interactive tool is depicted in Figure 5-7 where the blue boxes have been 

inserted to highlight some features. The interactive features allow different data to be hidden until 

needed so that the visualisation is clear, concise, and not an information overload. The user can 

select between existing datasets or exploring a new dataset that has not yet been run through the 

visualisation, by using the highlighted tabs. If the user wants to examine an existing dataset, the 

dataset is selected from the dropdown menu, the box labelled B in Figure 5-7. The boxes labelled C 

and D in Figure 5-7 show search bars where either individual RG cores or the molecule IDs can be 
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searched. If the RG core or molecule ID is present within the current screen the corresponding data 

is highlighted, otherwise, if there are no matches, the user is alerted.  

The following analysis was done for the P2x7 subset dataset when extracting the cores from the 

whole dataset, i.e., without any clustering.  

 

Figure 5-7: Initial view of the interactive tool. A) Tab to select between current datasets or new dataset. B) Dropdown menu that 
contains the current datasets. C) Core search bar. D) Molecular ID search bar. 

 

Figure 5-8: Visualisation screenshot of the PCA plot for P2x7 subset 

The first step is for the user to select the dataset they would like to visualise. A PCA plot is then 

generated using M2FP descriptors calculated for the dataset, Figure 5-8. The display can also be 

switched to a t-distributed stochastic neighbour embedding (t-SNE) plot (Van Der Maaten & Hinton, 

2008). The displayed plot can be saved as an image by clicking the ‘Download Plot as Image’ button 

below the plot. Each data point is a molecule that can be coloured by the RG core that it belongs to. 

When the user hovers over a data point, they are presented with some information about that 

molecule, Figure 5-9. The reported metadata is in a grey hover box and provides details of the 

SMILES, ID and RG core for that data point. As mentioned previously, two search bars can be used 

to highlight molecules with either a specific RG core or molecule ID. An example of how this looks in 

the scatterplot is shown in Figure 5-10 where the molecules corresponding to RG core 

[Ga][Ca][Ge][Li][No] have been highlighted in red.  
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Figure 5-9: Screenshot showing the hovered over information 

 

Figure 5-10: Highlighting RG core [Ga][Ca][Ge][Li][No]  

To understand how an individual molecule relates to the dataset, the user can select the ‘RG Core 

Visualisation’ tab or click on a specific data point to highlight the RG core related to that molecule. 

A new display is generated showing all of the RG cores for that dataset and if a data point is clicked, 

the corresponding core is highlighted in orange, Figure 5-11. The P2x7 subset dataset consists of 691 

unique molecules that are represented by seven RG cores. 
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Figure 5-11: Visualisation screenshot of all cores within P2x7 subset, the top central RG is highlighted in orange 

The RG cores are represented as graphs with the nodes displayed as pie charts. An image of the RG 

core representations can also be saved. An RG core from Figure 5-11 is captured in Figure 5-12. The 

number of molecules represented by this core is 249.  

 

 

Figure 5-12: RG core [Ga][Ca][Ge][Li][No] from P2x7 subset is displayed in the visualisation 

As the size of the pie charts indicates how many substructural fragments have been explored, it is 

easy to see that two nodes have had more fragments investigated. Three of the nodes, Ga, Ge and 

Li, only have one substructural group derivative and are therefore small pies charts of uniform 

colour. For the remaining two nodes, Ca and No, it can be seen that there are multiple substructural 

group derivatives. Node Ca is the largest because it has the highest number of different substructural 

group derivatives at 16, compared to No's seven and the rest of the nodes with just one. As discussed 
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above, substructural group derivatives with different substitution patterns are distinguished as 

demonstrated in Figure 5-13 where the substructures are all benzene rings but with varying points 

of substitution. The pie charts can be selected and a pop up is displayed showing the pie chart and a 

table of the corresponding substructural group derivatives with the number of occurrences, as 

shown in Figure 5-13.  

 

Figure 5-13: Pop up display of one of the core RG nodes 

Within the main display window, underneath the node display, there is a table that represents each 

RG core. The columns represent the nodes in the RG core and each row represents a unique 

combination of the substructures that map to the nodes of the RG core. Therefore, a substructural 

group derivative could appear multiple times in a column, however, the combination of 

substructures across the nodes is unique. Figure 5-14 demonstrates an example of a single RG core 

within the table where it can be seen that for nodes 0Ga, 2Ge and 3Li there is no variation. However, 

for the other two nodes, there are variations, whether it is the substitution patterns or the atoms 

found within the rings. A combined column is also introduced to clearly demonstrate how the 

substructures are connected. The final column contains the number of molecules that have this 

combination as their chemical graph representative of that RG core. A screenshot of how the RG 

core table is displayed within the interactive visualisation is shown in Figure 5-15, which is an up 
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scaled version of Figure 5-14 that shows the tables for all the RG cores within the dataset. A table 

can also be downloaded as an excel file to make it easier to convert this information into different 

formats or presentations.  

 

Figure 5-14: A snippet of the large all cores table, Figure 5-15  

 

Figure 5-15: Screenshot demonstrating the RG core substituent table for all p2x7 subset cores 

If a dataset has a large number of RG cores, the interactive visualisation can be overwhelming and it 

can be a little difficult to comprehend all the data initially. Therefore, strategies have been put in 

place to allow the data to be filtered. On the RG core visualisation ‘All Cores’ tab, a slider filter option 
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allows the shown RG cores to be filtered between the two limits.  Additionally, to allow a less 

complicated display, a tab has been created that allows the user to select RG cores to compare. This 

tab has all the same functionality as before, however, it only displays the RG cores that the user has 

selected.  

 

Figure 5-16: Core comparison screen within the visualisation 

Like previously, underneath the core display, the substituent tables indicate the unique 

combinations of substructural group derivatives for each of the cores, Figure 5-17, and both tables 

have interactive features. Each of the RG cores can be viewed individually. There are two possible 

ways: clicking on the ‘Single Core’ tab and choosing from the drop-down menu; or clicking on the 

header of the table of a core which takes the user to a page displaying only that core, Figure 5-18.  
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Figure 5-17: Core breakdown within the core comparison 
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Figure 5-18: Core analysis within the new visualisation, the highlighted atoms are part of the RG core 

Finally, if the input dataset is organised according to lead optimisation rounds, that is, the molecules 

are labelled according to the LO iteration in which they were made, the progression of the data in 

each iteration can be analysed. The progress of each RG core is then observed. A table is provided 

that shows the RG cores that exist within each iteration along with the number of molecules that 

map to each RG core in each round of the lead optimisation process. A simplistic view of what is 
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achieved is illustrated in Table 5-1, where ‘RG Core 1’ represents one of the RG cores and ‘+n’ is the 

number of molecules that have been added to the RG core in each round.  Additionally, within the 

pop up display of the RG core node, Figure 5-13, new substructural fragments are indicated along 

with the numbers of each substructure that have been added in this iteration. 

Table 5-1: Simplistic view of the RG core progression table when round data is introduced 

 

5.4 Conclusion 
An interactive visualisation tool has been created to complement the chemists existing knowledge 

and to aid their decision-making process. It allows them a more profound understanding of the lead 

optimisation dataset that is being researched. Once the molecules have been mapped to the RG 

cores, the corresponding substructural node fragments are extracted from the datasets, and can be 

visualised to understand the chemical space that had been over- and under-explored. This is done 

through a combination of RG cores, a new graphical representation, and node tables. The 

substructural fragments for each of the nodes within an RG core were extracted for each molecule 

associated with the RG core.  

The nodes of an RG core are represented as pie charts. The pie charts indicate the levels of chemical 

exploration at the node. When a pie chart is small and has a low number of segments then the 

chemical space in this region of the molecule has not been explored extensively, however, if a pie 

chart is large and has a high number of segments then the chemical space has been explored more 

extensively.   

The work carried out in the rest of this thesis will further explore and exploit the data extracted from 

this visualisation and create molecules based on this information. 
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6 Applying Reduced Graphs For Molecular Exploration  

6.1 Introduction 
A lead optimisation (LO) project consists of an iterative process in which existing structure-activity 

relationship (SAR) knowledge is used to suggest modifications to an existing molecule. These new 

molecules are synthesised, tested and the SAR updated to repeat the design process. The functional 

groups are chosen based on existing knowledge, or by exploring areas of chemical space that have 

previously not been observed. In chemoinformatics, when existing knowledge is used to create a 

molecule, this concept is known as exploitation. Whereas, when previously unseen functional groups 

are incorporated into a new molecule, new chemical space is explored. Characteristically, when 

pharmaceutical companies design new molecules, exploration and exploitation tend to be balanced 

so that further knowledge can be discovered while existing knowledge of active chemical space is 

utilised. 

In recent years, machine learning algorithms have been employed to suggest potential new 

molecules to synthesise. Some of these machine learning techniques are referred to as black-box 

algorithms. A machine learning method is called a black box when it learns from the input data and 

creates a function that is not transparent to the user. Therefore, although the algorithms can 

generate output molecules there is little understanding of why the molecules are being 

recommended. However, it is essential for the medicinal chemists to understand and interpret why 

the molecules are of interest and why a molecule should be prioritised to be synthesised over other 

molecules. If medicinal chemists can understand why a model is suggesting a molecule, they are 

more likely to trust and use it.  

The visualisation created in the previous chapter allows medicinal chemists to see areas of chemical 

space that are over- and under-explored. It does this by showing the substructural group derivatives 

used for each node together with the number of molecules in the series that they occur in. It is hoped 

that the information gathered in the creation of the visualisation can be utilised to determine if 

particular substructural group derivatives are crucial for particular nodes or whether any 

substructural group is satisfactory as long as it has the same binding capabilities. 

Even though the concepts of exploration and exploitation are essential features in the drug discovery 

process, none of the current techniques explicitly maps molecules onto the existing LO dataset and 

scores them on both the exploration and exploitation. The next chapter will investigate the creation 

of an exploitation score. 
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Molecules are categorised as “exploring” if they represent new areas of chemical space and can, 

therefore, generate new knowledge. Contrastingly, molecules are classified as exhibiting 

exploitation if they are comprised of functional groups that have been seen before and the functional 

groups are associated with good properties, albeit in different arrangements. 

 

6.2 Methodology 
Chapter 2 presented a representation that has been developed to align compounds in a LO project 

into a single object, referred to as a reduced graph (RG) core, or simply a core. Each node within a 

core is annotated according to the number of different substituents/ substructures that map to that 

node. An example RG core that represents 334 molecules is shown in Figure 6-1. The visual 

representation illustrates the different chemical substructures associated with each node, Figure 6-

2. Each node contains the metadata that is related to that node for a particular LO dataset. The 

metadata consists of the different substructures along with the frequency of occurrence of each. A 

node’s metadata indicates the extent to which the chemical space at this position has been explored. 

For example, the blue node in the core in Figure 6-1 is shown in Figure 6-2. The node has four 

substructures which are distributed as follows: 165 of the 334 molecules have F at this node position; 

158 are Cl; ten are CF3, and one example is Br.  

 

Figure 6-1: Reduced Graph Core. The number within the node is how many substructures that node contains  
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Figure 6-2: Visual representation of core and node breakdown 

This chapter describes the development of an exploration score based on this representation. The 

exploration score will assess the extent to which a new molecule expands the chemical space 

currently explored. Therefore, the frequency of occurrence of each of the substructural fragments 

for each node is of importance.  

 

6.2.1 Exploration Score 

Given a new molecule, the aim is to map the new molecule onto the core and generate a score to 

reflect how much information would be added to the LO series. A molecule which adds the most 

information should have the highest exploration score. A score is calculated for each node that maps 

to a node in the core. Ideally the score will lie between zero and one to easily identify an exploration 

scale for a node, whether it has a high level of exploration or a low level of exploration. The node 

scores for all nodes that map to the core will be combined to generate an overall molecule score. 

The higher the score, the higher the level of exploration. This score is known as the exploration score 

since it should reflect the extent to which the new molecule explores new chemical space.  

Consider a new molecule that maps to the grey segment of the node shown in Figure 6-3a) which 

represents three different substructures (shown by the grey, orange and blue segments) with 

different frequencies of occurrence. The exploration score should be highest if the molecules maps 

to the least frequent substructure shown by the grey segment, followed by orange, followed by blue. 

The exploration score should also be able to distinguish between nodes with different distributions 

of substructures. For example, the node in Figure 6-3b) also represents three different substructures 
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but the examples are distributed differently across the three substructures. The exploration score 

for mapping to the grey segment in b) should be higher than that for the grey segment in a) since 

the distribution across the substructures in b) is more skewed and the molecule maps to a 

substructure with relatively low occurrence. If the molecule maps to the blue segment then the 

exploration score for a) should be higher. If the molecule maps to the orange segment then b) should 

be higher.  

 

 

Figure 6-3: Two separate nodes. The exploration score should distinguish between adding a new molecule to the two different 3 
grey substructures  

The exploration score should take account of both the number of substructural fragments within a 

node and the distribution of examples across the substructures. Consider the example in Figure 6-4, 

which shows two nodes, one which represents five substructure fragments whereas the other 

represents just two. A new molecule which does not map to either node segments would have a 

higher score for node b). Also, if a new molecule maps to both the orange segments then node b) 

will score higher. An example where node a) would score a higher exploration score than node b) 

would be if a new molecule would map to the yellow segment in node a) and blue segment in node 

b).   
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Figure 6-4: Example of two nodes with different number of substructural fragments but overall represent the same number of 
molecules 

6.2.1.1 Hypothetical Examples 

6.2.1.1.1 Node Scores 

Some hypothetical examples were constructed to determine requirements for the exploration score. 

The examples represent nodes derived from theoretical LO series and are described in Table 6-1. 

There are a total of seven different nodes (A, B, C, D, E, F, G) each with a different underlying 

distribution of substructures. In all cases, the nodes represent 20 molecules. The second column 

shows the underlying distribution of substructures for each node as a set of frequency bins. Thus, 

Node A consists of a single substructure which is common to all 20 molecules. Node B consists of 

two substructures with one present in 19 molecules and the other present in only one molecule. The 

third column represents the corresponding part of the prior distribution that the new molecule 

would map to. If the new molecule has a substructure that is already present in the core, the bin 

number indicates which bin it maps to; if it is a new substructure that is not present in the node from 

the core this is shown as “New subst”. Thus, the first row in the table represents a new molecule 

mapped to node A where the molecule contains the same substructure that is represented by all 20 

molecules in node A. The second row represents a new molecule which adds a new substructure to 

node A, etc. 

Table 6-1: Hypothetical node examples 

Row No.: Node No Prior Distribution New Molecule 

1:A (20) i.e. single substituent Bin 1 

2:A (20) i.e. single substituent New subst 

3:B (19,1) Bin 1 

4:B (19,1) Bin 2 

5:B (19,1) New subst 

6:C (18,1,1) Bin 1 

7:C (18,1,1) Bin 2 
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8:C (18,1,1) New subst 

9:D (11,9) Bin 1 

10:D (11,9) Bin 2 

11:D (11,9) New subst 

12:E (11,6,3) Bin 3 

13:F (14,3,3) Bin 3 

14:G (7,6,4,3) Bin 4 

 

Considering the two extreme cases first. The largest score should be row 2 and the lowest score 

should be row 1. There is only one existing substructure represented in node A and row 2 adds a 

new substructure, i.e., new information, whereas row 1 represents another example of the 

substructure seen in all existing molecules.  

The next highest scoring molecules should be those that add new substructures that have not been 

seen before; rows 5, 8 and 11. Ideally the exploration score should differentiate between the 

different prior distributions in these nodes. Rows 5 and 8 are highly skewed distributions indicating 

that most molecules in the series have the same substructure at this node. The addition of a new 

substructure should therefore score highly in terms of exploration. This is most extreme for row 5 

which should therefore have the highest score. Row 11 has a more even distribution. Adding a new 

substructure is beneficial in terms of exploration but the prior distribution is less extreme than for 

either row 5 or 8 and therefore ideally the exploration score would be less in this case.  

The next level of molecules is represented by rows 4 and 7. Both these rows add a substructure that 

has only a single example in the core. Ideally row 4 would score slightly higher as there are only two 

substructures in the prior distribution compared to three.  

The next three rows are 12, 13, 14. All three of these rows add to a substructure that currently has 

three examples, however, the prior distributions of substructures differ. The highest of the three 

rows should be row 13 as the prior distribution is the most skewed and the new substructure 

smooths this. Row 14 is the most even distribution and the new substructure does not, therefore, 

change this much. Row 12 is intermediate.  

The next two rows, 9 and 10, are both from the same distribution, but row 10 adds to the 

substructure with a lower number of examples and therefore leads to a smoothing of the distribution 

compared to row 9 which increases the skewness. Therefore, row 10 should have a higher 

exploration score.  
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The final rows 3 and 6 both add to the substructure with the highest number of examples within 

their distributions. The final state for 3 is more skewed than the final state for 6, therefore, 6 should 

score higher.  

Therefore, the ideal ordering is: 2 > 5 > 8 > 11 > 4 > 7 > 13 > 12 > 14 > 10 > 9 > 6 > 3 > 1. 

Therefore, the requirements for the exploration score are: that the values should range between 

zero and one where one is the maximum information that can be added and should be assigned 

when a new substructure is being added; different scores are given for the same number of 

substructures but different distributions, like the orange segments in Figure 6-4; and the addition of 

a substructure that smooths a more skewed distribution should score higher than a less skewed one.   

 

6.2.1.1.2 Molecule Scores 

The node exploration scores should be combined to generate an overall molecular exploration score. 

A simple scenario has been constructed to identify the best way of combining the scores. This 

consists of a hypothetical core and various new molecules that map onto the core in different ways. 

The hypothetical core consists of three nodes and all three nodes, by definition, must have the same 

overall number of examples. The three nodes that comprise the hypothetical core are nodes, E, F 

and G, from Table 6-1. Their node distributions can be seen in Figure 6-5 (where the nodes are 

represented as histograms rather than pie charts). Three different methods are used to combine the 

node scores to molecule scores: summing the node scores; multiplying the node scores; and 

calculating the mean value of the node scores.  

 

Figure 6-5: Node distribution of example core, with nodes E, F and G 

Several new molecules have been imagined as shown in Table 6-2. Each row represents a new 

molecule that has been mapped to the core. If the molecule presents a new substructure at a node, 

this is indicated by “New subst” at the relevant node position in column three. If the new molecule 
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has a substructure that is already present in the relevant node of the core, then the appropriate bin 

is highlighted in red in column two and the bin number is given in column 3.  

Table 6-2: Imagined Core Scenarios 

Row No. Prior Distributions (E, F, G) New Molecule (E, F, G) 

15 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (New subst), (New subst), (New subst) 

16 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 3), (New subst), (New subst) 

17 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (New subst), (Bin 3), (New subst) 

18 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (New subst), (New subst), (Bin 4) 

19 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 3), (Bin 3), (Bin 4) 

20 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 3), (Bin 3), (Bin 3) 

21 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 2), (Bin 3), (Bin 4) 

22 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 3), (Bin 3), (Bin2) 

23 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 2), (Bin 3), (Bin2) 

24 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 1), (Bin 3), (Bin 4) 

25 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 3), (Bin 1), (Bin 4) 

26 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 1), (Bin 1), (Bin 4) 

27 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (Bin 1), (Bin 1), (Bin 1) 

 

An ideal ordering of the molecules in Table 6-2 was determined by manually considering the extent 

to which the molecules explore new chemical space. Row 15 should score the highest as this 

molecule introduces a new substructure to all three nodes. The next three rows (16, 17 and 18) all 

present new substructures to two of the nodes and an existing substructure to a third node, albeit a 

different node in each case.  Although the existing substructure is added to a bin of occupancy three 

in each case, the underlying distributions are different and therefore the node exploration scores, 

and consequently the molecule exploration scores, should be different. The molecule adding an 

existing substructure to node F should score higher than that adding to node E which in turn should 

be higher than that adding to node G. This is because F has the most highly skewed distribution 

which is being smoothed followed by E and then G. Therefore, the ordering of the rows should be 

row 17 > row 16 > row 18. Row 19 should be ranked next; it adds previously seen substructures to 

each node but in each case this is to the bin with lowest occupancy.  
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The ideal ranking of the next six rows is not as clear cut, however, rows 20, 21 and 22 should all score 

higher than rows 23, 24 and 25 as in the first three cases the skewness of the distributions are 

smoothed whereas in the last three cases the skewness is increased.  

Comparing rows 20 and row 21, the distributions for row 20 become less skewed than for row 21, 

therefore, the ideal ranking would rank 20 higher than 21 in terms of exploration.  

Comparing rows 21 and 22, for both nodes E and G different segments are added to. Node E is initially 

a more skewed distribution. Both rows for node G smooth out the distributions row 22 only slightly 

more. However, as node E is initially a more skewed distribution and row 21 contributes more to 

smoothing out the distribution, overall row 21 should score a slightly larger exploration score. 

Considering rows 23, 24 and 25, row 23 should have a larger exploration score than row 24, because 

adding to the two groups of six does not have as big an impact on the distribution as adding to the 

group with 11 examples. Row 24 should have a higher exploration score than row 25, since both add 

to the largest value for node F which makes both the distributions more skewed, however, this is 

more pronounced for row 25, therefore, it should have a lower exploration score than row 24. As 

row 26 adds to the highest number of examples for two of the nodes, this is the next expected row 

in the ranking. Row 27 should have the lowest score, as it adds to the substructure with the highest 

number of existing examples for all three nodes.  

In summary, putting all the above information together the ideal ordering should be: row 15 > row 

17 > row 16 > row 18 > row 19 > row 20 > row 21 > row 22 > row 23 > row 24 > row 25 > row 26 > 

row 27.  

6.2.1.2 Real LO data 

The examples shown previously are based on hypothetical data. Here, data from a real LO series was 

examined. RG cores were extracted from 90% of the P2x7 Subset dataset selected at random and 

one of the cores was selected. Six of the molecules in the remaining 10% of the dataset that matched 

this core were then analysed. 

As shown in Chapter 3, more than one core can be generated for a given LO series. Therefore, it 

would be desirable to have a score that could be used to compare exploration scores across different 

cores. The final experiment compared the scores generated when molecules are mapped to different 

cores. Comparing molecules with differing cores is referred to as cross core comparison. In this case, 

the cores can have different numbers of nodes with different numbers and distributions of 

substructures. The cores can also represent different numbers of molecules. Six molecules across 
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four other cores were used from the P2x7 Subset test set. The six molecules were examined to 

understand if molecules that map to different cores can be scored and ranked effectively.  

 

6.2.2 Different Implementations of an Exploration Score 

A number of different node scores were investigated. These are prior probability, information 

entropy, Kullback-Leibler divergence and an adaptation to RG cores of a score developed for 

screening collection design, designated here as Collection Score. Each of these methods was used to 

develop a node score as described below.   

As mentioned above, three different methods were explored to generate a molecule score from the 

node scores: summing; multiplying; or taking the mean of the node scores.  

6.2.2.1 Prior Probability 

This score is based on the prior probability of the substructure that is mapped onto a node of the 

core. The prior probability of substructure i is given by: pi = x/N where x is the frequency of the bin 

the substructure i maps to, and N is the total number of molecules in the LO series. The exploration 

score is then formed by subtracting the prior probability from one (Ep= 1- pi). Therefore, a higher 

value means the substructure in the new molecule has a low likelihood and therefore scores highly 

with respect to exploration.  

 

Figure 6-6: RG core breakdown 
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An example is shown in Figure 6-6 to demonstrate how this score is calculated. The RG core 

represents nine molecules. Each column indicates the substructures represented by each node 

within the core shown at the top of the table along with the number of molecules in the core that 

contain the substructure. Considering node four, and a new molecule which contains the last 

substructure (the fully substituted benzene) shown in the table then:  

 

𝐸𝑃 = 1 −
𝑥

𝑁
 

𝐸𝑃 = 1 −
2

9
 

𝐸𝑃 = 0.778 

(6.1) 

Where x/N equals 2/9 as the substructure has two previously seen examples out of a total of nine.  

The prior probability score is the simplest of the scores investigated as it relies only on knowing the 

prior probability of the substructure that is being added to the series. However, a limitation of the 

prior probability score is that it does not take into account the distribution of substructures within 

the node.  

 

6.2.2.2 Change in Information Entropy 

Information entropy, or Shannon entropy, is an approach used to calculate how much information, 

order or uncertainty, is within a system or event (Shannon, 1948). The more certain and ordered a 

system is, the less information it contains, and the lower entropy it has. A highly probable event 

within a system does not provide much information as this event is unsurprising, compared to an 

improbable event that provides a large amount of information as this event's occurrence is surprising 

and rare. Information entropy takes the distribution of the events into account and not just the total 

number. As entropy is a measure of uncertainty, a high entropy score indicates that there is a large 

amount of uncertainty and there is no order in any potential outcome (Shannon, 1948). When 

examining two different systems, Figure 6-7a shows a highly ordered system with a lower 

information entropy than a highly disordered system such as Figure 6-7b. A new event corresponding 

to the third bin in each case would be less surprising for case a) compared to b) and would therefore 

add less information to case a). It is important to note that if there are two entropy scores, for 

example, 1.5 and 3, that there is more uncertainty in the larger value, however, the values are not 

scalable, meaning that there is not twice as much uncertainty in the larger value. 
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Figure 6-7: Information Entropy Graphs a) highly ordered b) highly disordered 

The information entropy for a node is calculated before any new information is added into the 

system, using the following equation. 

 𝐻 = −∑𝑝𝑖𝑙𝑛 𝑝𝑖
𝑖

  (6.2) 

Where pi is the proportion of substructure i within the node, this can be calculated as 
𝑥

𝑁
 where x is 

the number of times substructure i appears and N is the number of molecules related to that core 

and the summation is over the different substructures represented by the node. This equation is 

used as all events are independent. 

The minimum entropy value is zero. A value of zero occurs when there is only one state or event 

within a system as it is highly probable that this event will occur. The maximum entropy is when all 

events are equally as likely. Therefore, the maximum entropy is equal to the natural log of the 

number of substructure derivatives present for that node, i.e. for a node that has three substructure 

values 𝐻𝑚𝑎𝑥 = 𝑙𝑛 (3)  = 1.099. 

The exploration score is defined as the change in entropy when a new molecule is added which is 

calculated by subtracting the entropy before from the entropy afterwards.   

Considering the example in Figure 6-6, the entropy is calculated for the node 4No prior to considering 

the new molecule, HB.  

 

𝐻𝐵 =  −∑(
5

9
𝑙𝑛 
5

9
 ) + (

2

9
𝑙𝑛 
2

9
 ) + (

2

9
𝑙𝑛 
2

9
 )

𝑖

 

𝐻𝐵 = −∑(−0.327) + (−0.334) + (−0.334)

𝑖

 

𝐻𝐵 = 0.995 

(6.3) 
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The information entropy is then calculated with the new molecule added, HA, when the number of 

molecules is increased by 1 to 10 and the distribution of substructures is now: 5;2;3 (compared to 

5:2:2). The calculation is as follows.  

 

𝐻𝐴 = −∑(
5

10
𝑙𝑛 

5

10
 ) + (

2

10
𝑙𝑛 

2

10
 ) + (

3

10
𝑙𝑛 

3

10
 )

𝑖

 

𝐻𝐴 = −∑(−0.347) + (−0.322) + (−0.361)

𝑖

 

𝐻𝐴 = 1.030 

(6.4) 

The exploration score is then calculated as the change in entropy:  

 𝛥𝐻 = 𝐻𝐴 − 𝐻𝐵 
= 1.030 − 0.995 = 0.035 

(6.5) 

If a new substructure is introduced in the new molecule, then a new term is added to the calculation, 

as shown on the left of Figure 6-8. A negative score can sometimes occur when adding a substructure 

with a large number of previously seen examples, as shown on the right of Figure 6-8. This indicates 

that a negative score is always generated when the new state is more disordered. 

 

Figure 6-8: Examples of a new substructure calculation and an example where a negative value is found 

 

6.2.2.3 Kullback-Leibler Divergence 

Kullback-Leibler (KL) divergence is a way of quantifying and comparing two probability distributions. 

An exploration score based on KL divergence is calculated using the probabilities of the node 

substructures before and after a new molecule is added to the series.  

 𝐾𝐿 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =  −∑𝑝𝑖𝑙𝑛 (
𝑞𝑖
𝑝𝑖
)  (6.6) 
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Where pi is the probability of the substructure before; qi is the substructure’s probability after a new 

molecule has been added into the system; and the summation is over the different substructures (or 

bins) represented by the node.  

An example of how the KL divergence is calculated is shown below using the same example as 

previously seen, where the new molecule is being added to the last substructure for node 4No in 

Figure 6-6. pi is 5/9 for the first substructure; and 2/9 for the last two. As the new molecule maps to 

the third substructure, the qi values are, 5/10, 2/10 and 3/10 as the denominator for all the 

substructures is incremented by one to represent the new molecule being added into the core. The 

third numerator is also incremented as this is the substructure that the new molecule possesses. 

These values are input to equation 6.6 as follows (equation 6.7) 

 

𝐾𝐿 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

=  −∑(
5

9
𝑙𝑛 (

5/10

5/9
) ) + (

2

9
𝑙𝑛 (

2/10

2/9
) )

𝑖

+ (
2

9
𝑙𝑛 (

3/10

2/9
) ) 

= −∑(−0.059) + (−0.023) + (0.067)

𝑖

 

= 0.015 

(6.7) 

A limitation of KL divergence for this problem is that a score cannot be calculated for a new 

substructure because the prior probability of that substructure, pi, is zero which would lead to a 

division by zero. To avoid this problem alpha smoothing is used. Alpha smoothing is a technique used 

to eliminate zero values while retaining the original ratios. When calculating pi and qi an alpha value 

is added to both the denominator and the numerator so that  
𝑥

𝑁
 becomes 

𝑥+𝛼

𝑁+𝛼
. Where x is the number 

of times substructure i appears and N is the number of molecules related to that core and alpha is a 

value that is set by the user. In the experiments carried out within this chapter alpha equals 0.01. 

 

6.2.2.4 Collection Model 

The collection model score was developed to select a balanced set of compounds for high-

throughput screening (HTS) (Harper, Pickett, & Green, 2004). The score is used to relate chemical 

similarity (as defined by clusters) to potential biological activity to estimate the number of clusters 

that contain lead compounds in HTS datasets. A higher value is more favoured as this means more 

clusters are likely to contain active molecules. The equation used for to calculate a collection model 

score is: 
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 𝐸 =∑𝜋𝑖[1 − (1 − 𝛼𝑖)
𝑁𝑖]

𝑝

𝑖=1

 (6.8) 

Where p is the number of clusters, i is a cluster, alpha is 0.3 (a property of the similarity method), Ni 

is the number of compounds in cluster i, π is the probability of there being a molecule active towards 

a particular assay within a set of molecules. π can be varied as some datasets could have a higher hit 

rate. By summing over the clusters, the collection model score takes account of the distribution of 

molecules across clusters. It was believed that this would be a good equation to adapt as the score 

as the distribution of molecules across the clusters can be considered similar to the distribution of 

molecules across the different substructures represented by a node. 

To adapt the collection score to an exploration score, p is the number of distinct substructural 

fragments for the node and Ni is the frequency of occurrence of substructure i. π is set to 1 as there 

is no equivalent term to hit rate, and the same value of α is used as in the HTS experiments (0.3).  

The first adaption of E, referred to as E1, is the change in the E scores following the addition of the 

new molecule to the core, and the summation is over the different substructures (or bins), p, 

represented by the node. A higher score indicates a higher exploration. 

𝐸1 =  ∑ [1 − (1 − 𝛼)𝑁𝑖]

𝑝

𝑎𝑓𝑡𝑒𝑟

− ∑ [1 − (1 − 𝛼)𝑁𝑖]

𝑝

𝑏𝑒𝑓𝑜𝑟𝑒

 (6.9) 

E1 considers the absolute counts of the substructures, rather than proportions, and therefore it only 

accounts for the bin that changes due to the addition of the given substructure. All other bin values 

are unchanged and therefore cancel out of the equation.  

A number of adaptions were then made in order to take the full distributions into account. The 

second method, E2, is based on E1, however, this is divided by the before E value, which therefore 

differentiates between different distributions.  

𝐸2 =
∑ [1−(1−𝛼)𝑁𝑖]
𝑝
𝑎𝑓𝑡𝑒𝑟 − ∑ [1−(1−𝛼)𝑁𝑖]

𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 ∑ [1−(1−𝛼)𝑁𝑖]
𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

  (6.10) 

In the third method, E3, the count of each substructure is replaced by the probability. Where pi is 

the probability before and qi is the probability after.  

𝐸3 =  ∑ [1 − (1 − 𝛼)𝑞𝑖]

𝑝

𝑎𝑓𝑡𝑒𝑟

− ∑ [1 − (1 − 𝛼)𝑝𝑖]

𝑝

𝑏𝑒𝑓𝑜𝑟𝑒

 (6.11) 
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For the fourth method, E4, the Ni is replaced by the difference in the probability for substructure 

derivative i, pi-qi. This is to avoid negative powers since the before probability minus the after 

probability is a positive value for all the substructures that are unchanged.  

𝐸4 = −∑[1 − (1 − 𝛼)𝑝𝑖−𝑞𝑖]

𝑝

𝑖=1

 (6.12) 

The final method, E5, is based on E4, however, it scales the score between zero and one, by dividing 

the sum by the maximum value E4 can take. The maximum value E4 can take is when all the 

substructures represented by a node are the same bin (i.e. there is only one bin) and the new 

molecule presents a new substructure. The maximum value is then dependent on the value of N, 

that is, the number of molecules represented by the core.  

𝐸5 = 
−∑ [1 − (1 − 𝛼)𝑝𝑖−𝑞𝑖]

𝑝
𝑖=1

𝐸4𝑚𝑎𝑥
 (6.13) 

The above five equations are applied to the example shown in Figure 6-6 where a new molecule is 

added to the last substructure in node 4No in Figure 6-6. There are three different substructures 

with prior distribution (5, 2, 2) and the after distribution (5, 2, 3). 

 

𝐸1 = ([1 − (1 − 0.3)5] + [1 − (1 − 0.3)2] + [1 − (1 − 0.3)3])
− ([1 − (1 − 0.3)5] + [1 − (1 − 0.3)2] + [1 − (1 − 0.3)2]) 

= (0.832 + 0.510 + 0.657) − (0.832 + 0.510 + 0.510) 
𝐸1 = 1.999 − 1.852 = 0.147 

(6.14) 

 

 

𝐸2

=  
([1 − (1 − 0.3)5] + [1 − (1 − 0.3)2] + [1 − (1 − 0.3)3]) − ([1 − (1 − 0.3)5] + [1 − (1 − 0.3)2] + [1 − (1 − 0.3)2])

([1 − (1 − 0.3)5] + [1 − (1 − 0.3)2] + [1 − (1 − 0.3)2])

=
(0.832 + 0.510 + 0.657) − (0.832 + 0.510 + 0.510)

(0.832 + 0.510 + 0.510)
 

𝐸2 =  
1.999 − 1.852

1.852
= 0.079 

(6.15) 

 

 

𝐸3 = ([1 − (1 − 0.3)5/10] + [1 − (1 − 0.3)2/10] + [1 − (1 − 0.3)3/10])

− ([1 − (1 − 0.3)5/9] + [1 − (1 − 0.3)2/9]

+ [1 − (1 − 0.3)2/9]) 

𝐸3 = (0.163 + 0.069 + 0.101) + (0.180 + 0.076 + 0.076) 
𝐸3 = 0.334 − 0.332 = 0.002 

(6.16) 

 

 

𝐸4 = − [([1 − (1 − 0.3)(
5
9
−
5
10
)]) + ([1 − (1 − 0.3)(

2
9
−
2
10
)])

+ ([1 − (1 − 0.3)(
2
9
−
3
10
)])] 

𝐸4 = −[(0.020) + (0.008) + (−0.028)] 

(6.17) 
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𝐸4 = 0.0006 
 

 

𝐸5

=  
− [([1 − (1 − 0.3)(

5
9
−
5
10
)]) + ([1 − (1 − 0.3)(

2
9
−
2
10
)]) + ([1 − (1 − 0.3)(

2
9
−
3
10
)])]

− [([1 − (1 − 0.3)(
9
9
−
9
10
)]) + ([1 − (1 − 0.3)(

0
9
−
1
10
)])]

 

𝐸5 =
−[(0.020) + (0.008) + (−0.028)]

−[(0.035) + (−0.036)]
 

𝐸5 =
0.0006

0.0013
= 0.483 

(6.18) 

 

6.3 Results and Discussion 
All of the exploration scores were calculated for the hypothetical cases represented in Table 6-1 and 

Table 6-2.  

6.3.1 Node Score  

The simple node examples were examined first. As reported above, the ideal ordering is: 2 > 5 > 8 > 

11 > 4 > 7 > 13 > 12 > 14 > 10 > 9 > 6 > 3 > 1.  

Table 6-3: Single node prior probability, change in entropy and KL divergence scores 

Row 
No.:Node No 

Prior Distribution 
New 

Molecule 
Prior Prob 

Change in 
Entropy 

KL Divergence 

1:A 
(20) 

i.e. single substituent 
Bin 1 0 0 0 

2:A 
(20) 

i.e. single substituent 
New subst 1 0.191 0.046 

3:B (19,1) Bin 1 0.05 -0.007 8.58 E-05 

4:B (19,1) Bin 2 0.95 0.116 0.014 

5:B (19,1) New subst 1 0.182 0.047 

6:C (18,1,1) Bin 1 0.1 -0.014 0.0001 

7:C (18,1,1) Bin 2 0.95 0.501 0.014 

8:C (18,1,1) New subst 1 0.567 0.047 

9:D (11,9) Bin 1 0.45 -0.005 0.0009 

10:D (11,9) Bin 2 0.55 0.004 0.001 

11:D (11,9) New subst 1 0.159 0.047 

12:E (11,6,3) Bin 3 0.85 0.038 0.006 

13:F (14,3,3) Bin 3 0.85 0.045 0.006 

14:G (7,6,4,3) Bin 4 0.85 0.021 0.006 

 

Table 6-3 demonstrates the results that were generated for the prior probability, change in entropy 

and KL divergence methods.  
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The prior probability method generates scores in the range zero to one. However, this method 

cannot distinguish between distributions with different skewness and distributions consisting of a 

different number of substituents or bins.  For example, the same scores are derived for rows 12 and 

13 despite the prior distribution of row 13 being more skewed. Similarly, the same score is derived 

for row 14 despite there being four substructures or bins in this case. Furthermore, the addition of 

a new substructure always results in a score of one regardless of the prior distribution, as shown for 

rows 2, 5, 8 and 11. 

In contrast, the change in information entropy method is able to distinguish distributions with 

different skewness’s and with different numbers of variables/substituents. This includes cases when 

new substructures are added, shown by the different values produced for rows 2, 5, 8 and 11. The 

ability to discriminate between these rows is important as it allows the identification between 

different distributions. Therefore, the score is not just based upon the substructure being added but 

on the whole system. However, the entropy scores do not scale well, as there are some negative 

values and it is therefore not possible to create a score between zero and one. The negative scores 

occur when adding a new substructure increases the skewness of the distribution, e.g., for rows 3, 6 

and 8. These values are problematic as ideally the exploration score for these cases should be larger 

than for row 1. Row 1 should be the lowest score as it represents the case where all the existing 

molecules in the LO series have the same substructure at this position (node) and the new molecule 

presents another example of the same substructure, i.e., there has been no exploration of this region 

of the chemical space. The negative values could also cause issues when combining the nodes to 

generate a molecular exploration score.  

KL divergence does not have the issue of negative scores. However, the range of values is extremely 

small with the maximum value of 0.046, and, as for the prior probability score, it does not have the 

ability to differentiate between different distributions skewness’s and number of 

variables/substituents.  

Table 6-4: Single node collection model based scores 

Row No.: 
Node No 

Prior 
Distribution 

New 
Molecule 

E1 E2 E3 E4 E5 

1:A 
(20) 

i.e. single 
substituent 

Bin 1 0.0002 0.00024 0 0 0 

2:A 
(20) 

i.e. single 
substituent 

New subst 0.300 0.300 0.005 0.00029 1 
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3:B (19,1) Bin 1 0.0003 0.0003 -0.0002 7.21E-07 0.003 

4:B (19,1) Bin 2 0.210 0.162 0.004 0.00026 0.902 

5:B (19,1) New subst 0.300 0.231 0.004 0.00028 0.953 

6:C (18,1,1) Bin 1 0.0005 0.0003 -0.0004 2.16E-06 0.008 

7:C (18,1,1) Bin 2 0.210 0.131 0.004 0.00025 0.858 

8:C (18,1,1) New subst 0.300 0.188 0.004 0.00026 0.908 

9:D (11,9) Bin 1 0.006 0.003 -0.0003 5.84E-05 0.202 

10:D (11,9) Bin 2 0.012 0.006 0.0002 8.73E-05 0.302 

11:D (11,9) New subst 0.300 0.155 0.003 0.0002 0.755 

12:E (11,6,3) Bin 3 0.103 0.041 0.001 0.00016 0.559 

13:F (14,3,3) Bin 3 0.103 0.045 0.002 0.00018 0.618 

14:G (7,6,4,3) Bin 4 0.103 0.032 0.0005 0.00014 0.489 

 

Table 6-4 shows the results for the different collection model score variations.  

As discussed above, the E1 score produces results that are similar to the prior probability method as 

it does not discriminate between different distributions. Furthermore, the values range from 0 to 

0.3 (𝛼). 

E2 differentiates between different distributions, such as rows 2, 5, 8 and 11, due to the division by 

the before E value. Furthermore, none of the scores are negative values.  As for E1 the values range 

from 0 to 0.3.  

E3 uses the probabilities of the substructures before and after the new molecule is added. This 

method is therefore able to differentiate between, for example, rows 12, 13 and 14 and ranks these 

rows in the desired order. However, it does not differentiate between rows 4, 5 and 7. Furthermore, 

the E3 scores are very low due to the power term being small, and for this example, it has a maximum 

value of 0.005. Also, there are some negative values. Negative values are caused when the skewness 

is increased by adding a substructure to a bin with a large percentage of the previously seen 

examples.  

To overcome the negative values, E4 replaces Ni by the difference in the probabilities and, therefore, 

a comparison did not have to be drawn between E4 before and E4 after. Using the probabilities 

solved the issue of having negative results and the score still differentiates between different 

distributions. However, this score has even smaller power terms than seen with E2 and so the scale 

is even smaller, and for this example, the maximum value was 0.00029.  

E5 combats the very small values associated with E4 by dividing by the maximum value E4 could be 

to scale the score between zero and one. The maximum score E4 is when all previously seen 

substructures are in only one existing group and the new substructure has not been seen before. 
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The maximum value varies depending on the number of previously seen examples. There are no 

negative values and E5 also discriminates between the distributions. Two key results to note are row 

4 and 8, where the E4 scores appear to be the same, however, the E5 scores are slightly different. 

The difference in scores is due to the scaling and if the results are shown to another decimal place 

then row 4 would be 0.000260 and row 8 0.000262. Therefore, the scaling allows these two cases to 

be differentiated more easily. 

The orderings of the rows for each of the methods in Table 6-3 and Table 6-4 are seen below. If more 

decimal places were examined, some equal values may have had slight variations, however, it was 

felt the number of decimal places that have been reported was sufficient.  

Prior Probability: 2 = 5 = 8 = 11 > 4 = 7 > 12 =13 =14 > 10 > 9 > 6 > 3 > 1. 

Change in entropy: 8 > 7 > 2 > 5 > 11> 4 > 13 > 12 > 14 > 10 > 1 > 9 > 3 > 6. 

KL divergence: 5 = 8 = 11 > 2 > 4 = 7 > 12 = 13 = 14 > 10 > 9 > 6 > 3 > 1. 

E1: 2 = 5 = 8 = 11 > 4 = 7 > 12 = 13 = 14 > 10 > 9 > 6 > 3 > 1. 

E2: 2 > 5 > 8 > 4 > 11 > 7 > 13 > 12 > 14 > 10 > 9 > 6 > 3 > 1. 

E3: 2 > 4 = 5 = 7 = 8 > 11 > 13 > 12> 14 > 10 > 1 > 3 > 9 > 6.  

E4: 2 > 5 > 4 = 8 > 7 > 11 > 13 > 12 > 14 > 10 > 9 > 6 > 3 > 1. 

E5: 2 > 5 > 8 > 4 > 7 > 11 > 13 > 12 > 14 > 10 > 9 > 6 > 3 > 1.  

Unfortunately, none of the above methods achieves the ideal ordering. However, the orderings for 

E2 and E5 are close to the ideal. They differ slightly from the ideal as row 11 is expected to score 

higher than row 4 and 7, however, it scores lower than one or both of them. Row 11, is where a new 

substructure is being added to a relatively even distribution consisting of two substructures with 

eleven and nine examples. The other rows, 4 and 7, add another instance to an existing substructure 

with just one previous example. This is, therefore, acceptable if one or both of row 4 and 7 score 

higher than row 11 as it promotes the exploration of groups with a low number of examples and 

new substructures. Therefore, when new molecules are suggested it will not always constantly 

promote the introduction of new substructures, i.e. a full enumeration and allow the substructure 

with lower number of examples to be further analysed too. 
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6.3.2 Molecule Score 
The molecule score investigation examines the effects of combining node scores together. The ideal 

ordering of the molecules should be: row 15 > row 17 > row 16 > row 18 > row 19 > row 20 > row 21 

> row 22 > row 23 > row 24 > row 25 > row 26 > row 27.  

Three methods were considered for combining the node scores to form molecule scores. These are 

to sum them, to multiple them, and to find the average of them. Results are shown in Table 6-5 and 

Table 6-6 where the rows have been switched around so that they are in the ideal order so that a 

scoring method that is able to reproduce the ideal ordering would have values that decrease going 

down the tables. Table 6-5 shows each node score for each of the methods and different additions. 

Table 6-6 shows the calculated overall exploration scores for the molecules by summing, multiplying 

and calculating the mean node score for all the nodes. The other remaining scores not shown can be 

found in the Appendix.  

Table 6-5: Results for each node for this experiment for the Collection Model Score Variations 

Row 
No. 

Prior Distributions (E, F, G) E2 E5 

15 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.119), (0.130), (0.093) (0.710), (0.769), (0.640) 

17 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.041), (0.130), (0.093) (0.710), (0.618), (0.640) 

16 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.119), (0.045), (0.093) (0.559), (0.769), (0.640) 

18 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.119), (0.130), (0.032) (0.710), (0.769), (0.489) 

19 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.041), (0.045), (0.032) (0.559), (0.618), (0.489) 

20 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.041), (0.045), (0.022) (0.559), (0.618), (0.439) 

21 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.014), (0.045), (0.032) (0.408), (0.618), (0.489) 

22 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.041), (0.045), (0.011) (0.559), (0.618), (0.338) 

23 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.014), (0.045), (0.011) (0.408), (0.618), (0.338) 

24 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.002), (0.045), (0.032) (0.158), (0.618), (0.489) 

25 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.041), (0.0009), (0.032) (0.559), (0.068), (0.489) 

26 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.002), (0.0009), (0.032) (0.158), (0.068), (0.489) 
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27 (11, 6, 3), (14, 3, 3), (7, 6, 4, 3) (0.002), (0.0009), (0.008) (0.158), (0.068), (0.288) 

  

Table 6-6: Combined Overall Scores for this experiment for the Collection Model Score Variations 

Row No. 
E2 E5 

Sum Multiplied Mean Sum Multiplied Mean 

15 0.342 0.001 0.114 2.119 0.350 0.706 

17 0.264 0.0005 0.088 1.968 0.281 0.656 

16 0.257 0.0005 0.086 1.968 0.275 0.656 

18 0.281 0.0005 0.094 1.968 0.267 0.656 

19 0.117 5.82E-05 0.039 1.666 0.169 0.555 

20 0.108 4.08E-05 0.036 1.616 0.152 0.539 

21 0.091 1.99E-05 0.030 1.515 0.123 0.505 

22 0.096 2.00E-05 0.032 1.515 0.117 0.505 

23 0.070 6.85E-06 0.023 1.365 0.085 0.455 

24 0.079 3.36E-06 0.026 1.265 0.048 0.422 

25 0.074 1.15E-06 0.025 1.115 0.018 0.372 

26 0.035 6.64E-08 0.012 0.714 0.005 0.238 

27 0.011 1.59E-08 0.004 0.513 0.003 0.171 

 

The order of the rows using the E2 and E5 node scores are as follows:  

E2: Sum and Mean: 15 > 18 > 16 > 17 > 19 > 20 > 22 > 21 > 24 > 25 > 23 > 26 > 27.  

E2: Multiplied: 15 > 18 > 16 > 17 > 19 > 20 > 22 > 21 > 23 > 24 > 25 > 26 > 27. 

E5: Sum and Mean: 15 > 17 = 16 =18 > 19 > 20 > 21 = 22 > 23 > 24 > 25 > 26 > 27.  

E5: Multiplied: 15 > 17 > 16 > 18 > 19 > 20 > 21 > 22 > 23 > 24 > 25 > 26 > 27.  

 

It can be seen that the sum and mean methods give the same rankings and only E5 is able to 

reproduce the ideal ordering and this is just for the multiplication method. The E5 scores combined 

using sum and mean are very similar apart from rows 16, 17 and 18 which generate the same values, 
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as do rows 20 and 21. These scores being equal is not considered to be too detrimental as they are 

very similar and the individual node scores are as to be expected, however, when combined they 

return the same results. 

Although E2 looked promising at the node level it did not work as well at the molecule level because 

row 16, 17 and 18 generated the reverse ordering.  

The three methods used to combine the node scores into molecule scores have different advantages 

and disadvantages. If one of the node scores is zero, then the molecule score will be zero using the 

multiplication method. Summing the scores is more effective in this case, however, this score may 

not be appropriate when comparing different cores, which may consist of different numbers of 

nodes. Therefore, the mean value may be preferred as it averages the score over the nodes. This is 

explored later in the chapter.   

 

6.3.3 Applying the Scores to Real Molecules  
For all the datasets the molecules without pIC50 values were filtered out. A random selection of 90% 

of molecules were selected and the RG cores found. For each dataset, the remaining 10% of 

molecules were scored against all of the RG cores they matched to. Table 6-7 shows the split of data 

for each dataset and the number of RG cores extracted from the 90% of molecules.  

Table 6-7: Table showing the data of the split datasets 

Dataset 

Number of Molecules in 

Whole Dataset with 

pIC50 Value 

Number of Molecules in 

Subset of Dataset with 

pIC50 Value 

Number of RG 

Cores Extracted 

from 90% Dataset 
10% 90% 

Bajorath 2084 208 1876 24 

CDK2 1367 137 1230 105 

Chk1 105 10 95 8 

Cyto 6310 635 5675 189 

FactorXa 1956 196 1760 40 

MMP12 1704 170 1534 1 

Neurokinin 1468 147 1321 27 

P2x7 1786 179 1607 43 

P2x7 Subset 691 69 622 7 
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P38α 3644 364 3280 120 

 

One of the cores from the P2x7 Subset was selected as shown in Figure 6-9. Four molecules from the 

held out 10% that map to this core were selected (labelled 3, 4, 5 and 6 in Figure 6-10).  In addition, 

two hypothetical molecules (1 and 2) were constructed to analyse how well the scores deal with 

extreme examples.  

 

Figure 6-9: The core that these molecules have. The number within the node is how many substructures that node contains 

The core, shown in Figure 6-9, is constructed from 334 molecules and consists of four nodes which 

are labelled according to the number of distinct substructures that each node represents. For 

example, the pink and red nodes each represent a single substructure so that there is no variation 

at these positions in the 334 molecules, whereas the purple node represents 7 different 

substructures. Figure 6-11 shows the distributions of substructures for each of the nodes. 

 

Figure 6-10: Six molecules that are being examined that match to the RG core in Figure 6-9 
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The molecules in Figure 6-10 represent new molecules that match to the core. The mapping of each 

molecule to the core is shown using colour coding, with the substructures coloured according to the 

respective node they match to. Additionally, each substructure in the molecule is labelled by the size 

of the bin it maps to and the number of bins is shown in brackets. For example, the pink and red 

substructures in molecule 2 are both labelled 334/334(1), indicating that there is just one 

substructure at each corresponding node in the core. The purple substructure is labelled 5/334(7), 

indicating that it is present in five out of 334 molecules and there are seven different substructures 

at this position in the core. A “0” value, e.g. the purple substructure in molecule 1, indicates that this 

substructure is not present in the core.  

 

Figure 6-11: Representation of each of the nodes distributions 

Before scoring the new molecules, they were inspected manually to determine the ideal ranking. 

Only two nodes need to be considered as in all cases the substructures that map to the first two 

nodes are identical to those in all molecules used to build the core.  

Molecule 1 should have the highest exploration score as for both the purple and blue nodes it adds 

new substructures, that is, substructures that are not represented in the core. The rest of the 

molecules all add substructures that are already present in the core for all nodes.  

Considering the blue node, the new molecules include one of the two most frequent substructures 

(either 165 or 158 occurrences in the core) and, of these, a slightly higher node exploration score 

should be obtained for the slightly less frequent substructure. For the purple node, the frequency of 

the group being added should influence the exploration score, with a substructure of lower 

frequency resulting in a higher exploration score. 

As all molecules contain the same pink and red nodes then these are not taken into consideration 

when thinking about the overall molecule score rankings as they will be the same for all six 

molecules. As molecule 1 is the only molecule to introduce new substructures for the purple and 

blue node, this will score the highest exploration score. The next ranked molecule shall be molecule 

2 closely followed by molecule 3. They both have a fluorine atom for the value node which has the 

highest number of seen examples for a substructure in that node, but they both have a substructure 
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that has not been seen very often for the purple node, where molecule 2 has been seen one less 

time than molecule 3.  Molecule 4 should be the next ranked molecule as it’s blue node was observed 

only slightly fewer times than the previous examples but the purple node was seen a lot more times. 

Molecule 5 will score the second lowest exploration score as it has the same blue node as molecule 

4 and a purple node that contains more observed examples. The last molecule is molecule 6 as for 

both the purple and blue node matches to the substructures with the highest number of examples.  

 Therefore, the exploration score should be highest for molecule 1 in descending order to molecule 

6. There is only a marginal difference between molecule 2 and molecule 3, so it would be acceptable 

if these molecules scored the same. Similarly, for molecules 5 and 6 as they have the same 

substructure for the purple node and, although they have different substructures corresponding to 

the blue node, there is not much difference in the frequencies of these substructures in the core.  

The molecules are presented in Figure 6-12 to Figure 6-17, respectively. For each molecule, the node 

breakdown and combinations for the collection model score E5 variations are shown in Table 6-8, 

Table 6-9, Table 6-10, Table 6-11, Table 6-12 and Table 6-13. All other scores can be found in the 

Appendix.  

 

Figure 6-12: Molecule 1  

Table 6-8: Node breakdown for Collection Model score Variations for Molecule 1 

Node E5 

Pink 0 

Red 0 

Purple 0.704 

Blue 0.735 

Molecule Score 

Total Summed 1.438 

Total Multiplied 0.000 

Total Mean 0.360 
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Figure 6-13: Molecule 2 

Table 6-9: Node breakdown for Collection Model score Variations for Molecule 2 

Node E5 

Pink 0 

Red 0 

Purple 0.689 

Blue 0.240 

Molecule Score 

Total Summed 0.929 

Total Multiplied 0.000 

Total Mean 0.232 

 

 

Figure 6-14: Molecule 3, CHEMBL2218567  

Table 6-10: Node breakdown for Collection Model score Variations for Molecule 3 

Node E5 

Pink 0 

Red 0 

Purple 0.686 

Blue 0.240 

Molecule Score 

Total Summed 0.926 

Total Multiplied 0.000 

Total Mean 0.232 
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Figure 6-15: Molecule 4, CHEMBL2218612 

Table 6-11: Node breakdown for Collection Model score Variations for Molecule 4 

Node E5 

Pink 0 

Red 0 

Purple 0.431 

Blue 0.261 

Molecule Score 

Total Summed 0.693 

Total Multiplied 0.000 

Total Mean 0.173 

 

 

Figure 6-16: Molecule 5, CHEMBL2218364 

Table 6-12: Node breakdown for Collection Model score Variations for Molecule 5 

Node E5 

Pink 0 

Red 0 

Purple 0.141 

Blue 0.261 

Molecule Score 

Total Summed 0.402 

Total Multiplied 0.000 

Total Mean 0.101 

 



209 
 

 

 

Figure 6-17: Molecule 6, CHEMBL2218425  

Table 6-13: Node breakdown for Collection Model score Variations for Molecule 6 

Node E5 

Pink 0 

Red 0 

Purple 0.141 

Blue 0.240 

Molecule Score 

Total Summed 0.381 

Total Multiplied 0.000 

Total Mean 0.095 

 

Table 6-14: Displaying all the overall scores together for molecules within the same core 

 
Molecule 

1 
Molecule 

2 
Molecule 

3 
Molecule 

4 
Molecule 

5 
Molecule 

6 

1-Prior 
Prob 

Total 
Summed 

2 1.491 1.488 1.255 0.964 0.943 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.5 0.373 0.372 0.314 0.241 0.236 

Change in 
Entropy 

Total 
Summed 

0.035 0.009 0.008 0.0004 -0.002 -0.002 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.009 0.002 0.002 0.0001 -0.001 -0.001 

KL 
Divergence 

Total 
Summed 

0.006 0.0003 0.0002 1.76E-05 9.23E-06 8.83E-06 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.001 6.63E-05 5.63E-05 4.41E-06 2.31E-06 2.21E-06 

E1 

Total 
Summed 

0.600 0.050 0.035 0.000 0.000 0.000 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.150 0.013 0.009 0.000 0.000 0.000 

E2 
Total 

Summed 
0.148 0.009 0.007 0.000 0.000 0.000 
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Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.037 0.002 0.002 0.000 0.000 0.000 

E3 

Total 
Summed 

0.0003 0.0001 0.0001 4.09E-05 -5.39E-05 -6.06E-05 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 7.60E-05 3.17E-05 3.14E-05 1.02E-05 -1.35E-05 -1.51E-05 

E4 

Total 
Summed 

1.63E-06 1.05E-06 1.05E-06 7.85E-07 4.56E-07 4.32E-07 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 4.08E-07 2.63E-07 2.62E-07 1.96E-07 1.14E-07 1.08E-07 

E5 

Total 
Summed 

1.438 0.929 0.926 0.693 0.402 0.381 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.360 0.232 0.232 0.173 0.101 0.095 

 

The molecule scores for all molecules and all methods are shown in Table 6-14 to enable easy 

comparison with the ideal ranking of the molecules. The ideal ordering is molecule 1 > molecule 2 > 

molecule 3 > molecule 4 > molecule 5 > molecule 6 so that the scores should decrease going across 

the rows from left to right. Firstly, it can be seen that when the node scores are combined by 

multiplication all of the scores are zero. This is because two of the node scores are zero as they both 

only have one previously seen example which all of the molecules all add to it. When examining the 

other node score and molecule score combinations, the ones that replicate the ideal ordering are 

prior probability with summed and mean, KL divergence with summed and mean, E3 with mean, E4 

with mean, and E5 with summed. Several other combinations produce rankings that are close to the 

ideal ordering (E3 with summed, E4 with summed and E5 with mean). The rest of the other methods 

do not produce the correct ordering.  

Finally, it is interesting that methods E1 and E2 are unable to differentiate between molecules 4, 5 

and 6. This is because all three molecules have large examples for the purple and blue node. When 

a large value is taken to the power of 0.7 (1-α) then this becomes a very small number, only 

significant at over 20 decimal places, and one minus an extremely small number becomes one.  

 

6.3.4 Cross Core Comparison 
The above molecules all match to the same core. In general, more than one core might be generated 

to represent a lead optimisation series, for example, this can arise if changes are made to a central 
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scaffold. Thus, when considering new molecules to include in a LO project, different molecules may 

map to different cores. Therefore, it would be desirable to have a score that could be used to 

compare exploration scores across different cores. We refer to this as cross core comparison. In this 

case, the cores can have different numbers of nodes with different numbers and distributions of 

substructures. The cores can also represent different numbers of molecules, Figure 6-18.  

 

Figure 6-18: Cores being investigated  

Below is an example from a LO project, 90% Chk1, where the existing data consists of four cores. 

Chk1 dataset was chosen as all four RG cores extracted are seen within the 10% of molecules and as 

it is a small dataset and it allows an easier cross-core comparison. Six new molecules, from 10% Chk1, 

are shown, Figure 6-19. Molecule 7 maps to core 1; molecule 8 maps to core 2; molecule 9 maps to 

core 3; molecule 10 maps to core 3; molecule 11 maps to core 2; molecule 12 maps to core 4. For 

each of the cores, the distributions of substructures represented by the nodes are shown in Figure 

6-20, Figure 6-21, Figure 6-22 and Figure 6-23 to help with the analysis of formulating the expected 

ordering. 
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Figure 6-19: Molecules 7- 12 with their highlighted RG core mapping 

 

Figure 6-20: Core 1 nodes distributions 
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Figure 6-21: Core 2 nodes distributions  

 

Figure 6-22: Core 3 nodes distributions  

 

Figure 6-23: Core 4 nodes distributions 

To determine the expected exploration score order, pairs of molecules were first inspected.  

Initially, molecule 7 (Figure 6-24) and molecule 8 (Figure 6-25) were compared. These molecules map 

to core 1 and 2, respectively, and the substructures are coloured and annotated accordingly. 

Molecule 7 has a substructure (green) that is not present in the core; two substructures (red and 

purple) where there is no variation in the core; and two substructures (orange and blue) with a high 

number of previously seen examples. Molecule 8 has one substructure (cyan) that has a low number 

of seen examples; two substructures (purple and blue) that have a large number of previously seen 

examples; and one substructure (orange) for which there is no variation. Molecule 7 should have a 

slightly higher exploration score. This is because an entirely new substructure is added for one node, 

but the rest of the nodes have similar proportions. However, molecule 7 has two fully exploited 

nodes compared to just the one with molecule 8. Therefore, the order of these two molecules could 

be reversed or equal.   
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The next two molecules to be compared are molecules 8 and 9. Molecule 9 can be seen in Figure 6-

26 and matches to core 3. Molecule 9 has one substructure with a low number of examples; one 

substructure which maps to half of the examples in the core; and two substructures where there is 

no variation. Ignoring the nodes where there is no variation, molecule 9 should therefore have one 

substructure which has a high node score and another with a medium score, compared to molecule 

8 which should have one node that scores highly and three low scoring nodes. Overall, this suggests 

that molecule 9 should have a higher exploration score than molecule 8. 

Comparing molecule 7 and molecule 9, as molecule 7 is expected to score similar if not slightly higher 

than molecule 8, molecule 9 would be expected to generate a higher exploration score than 

molecule 7. Even though molecule 7 has a new substructure, this should not outweigh the other 

factors. 

Comparing molecule 8 and molecule 10, molecule 10 (Figure 6-27) has one substructure that is 

present in half of the examples in the core 3. Another substructure has many examples, and the final 

two substructures match nodes where there is no variation. Consequently, molecule 8 should 

generate a higher exploration score than molecule 10. 

Molecule 10 and molecule 11 were the next pair to be compared. Molecule 11 is shown in Figure 6-

28 and maps to core 2. Molecule 11 has three substructures that have a very high number of 

previously seen examples and one substructure where there is no variation. Molecule 10 should have 

a higher exploration score of these two molecules. 

Finally, molecule 11 and molecule 12 are compared. Molecule 12 is demonstrated in Figure 6-29 and 

represents core 4. Molecule 12 has three substructures where there is no variation and one 

substructure that has a very high number of previously seen examples.  So molecule 12 should have 

the lowest exploration score.  

Ultimately, the molecule should, therefore, be ordered as follows: molecule 9 > molecule 7 ≥ 

molecule 8 > molecule 10 > molecule 11 > molecule 12.  

The nodes are highlighted whilst displaying the number of examples currently with that substructure 

and within the parentheses the number of substructures for that node. For each molecule, the node 

breakdown and combinations for the collection model score E5 variations are shown in Table 6-15, 

Table 6-16, Table 6-17, Table 6-18, Table 6-19 and Table 6-20. All other scores can be found in the 

Appendix.  
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Figure 6-24: Molecule 7, Chk1N34 

Table 6-15: Node breakdown for Collection Model score Variations for Molecule 7 

Node E5 

Red 0 

Blue 0.035 

Orange 0.016 

Pink 0 

Green 0.892 

Molecule Score 

Total Summed 0.943 

Total Multiplied 0 

Total Mean 0.189 

 

Figure 6-25: Molecule 8, Chk1N35:  

Table 6-16: Node breakdown for Collection Model score Variations for Molecule 8 

Node E5 

Orange 0 

Purple 0.005 

Blue 0.005 

Cyan 0.797 

Molecule Score 

Total Summed 0.807 

Total Multiplied 0 

Total Mean 0.202 
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Figure 6-26: Molecule 9, Chk1N123 

Table 6-17: Node breakdown for Collection Model score Variations for Molecule 9 

Node E5 

Cyan 0.146 

Green 0 

Olive 0 

Blue 0.735 

Molecule Score 

Total Summed 0.880 

Total Multiplied 0 

Total Mean 0.220 

 

Figure 6-27: Molecule 10, Chk1N95 

Table 6-18: Node breakdown for Collection Model score Variations for Molecule 10 

Node E5 

Cyan 0.146 

Green 0 

Olive 0 

Blue 0.020 

Molecule Score 

Total Summed 0.166 

Total Multiplied 0 

Total Mean 0.042 
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Figure 6-28: Molecule 11, Chk1N65 

Table 6-19: Node breakdown for Collection Model score Variations for Molecule 11 

Node E5 

Orange 0 

Purple 0.005 

Blue 0.005 

Cyan 0.013 

Molecule Score 

Total Summed 0.023 

Total Multiplied 0 

Total Mean 0.006 

 

 

Figure 6-29: Molecule 12, Chk1N13 

Table 6-20: Node breakdown for Collection Model score Variations for Molecule 12 

Node E5 

Orange 0 

Green 0 

Pink 0 

Blue 0.019 

Molecule Score 

Total Summed 0.019 

Total Multiplied 0 

Total Mean 0.005 
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Table 6-21: Displaying all the overall scores together for molecules within the different cores 

 
Molecule 

7 
Molecule 

8 
Molecule 

9 
Molecule 

10 
Molecule 

11 
Molecule 

12 

1-Prior 
Prob 

Total 
Summed 

1.313 1.081 1.357 0.643 0.297 0.136 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.263 0.270 0.339 0.161 0.074 0.034 

Change in 
Entropy 

Total 
Summed 

0.170 0.035 0.017 -0.042 -0.024 -0.011 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.034 0.009 0.004 -0.011 -0.006 -0.003 

KL 
Divergenc

e 

Total 
Summed 

0.059 0.003 0.004 0.0008 0.0002 0.0002 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.012 0.0008 0.001 0.0002 4.18E-05 5.00E-05 

E1 

Total 
Summed 

0.307 0.103 0.074 0.002 7.12E-06 0.0007 

Total 
Multiplied 

1.76E-12 1.51E-19 2.79E-14 2.22E-17 4.86E-24 5.52E-16 

Total Mean 0.061 0.026 0.019 0.0005 1.78E-06 0.0002 

E2 

Total 
Summed 

0.307 0.103 0.074 0.002 7.12E-06 0.0007 

Total 
Multiplied 

1.76E-12 1.51E-19 2.79E-14 2.23E-17 4.86E-24 5.52E-16 

Total Mean 0.061 0.026 0.019 0.0005 1.80E-06 0.0002 

E3 

Total 
Summed 

0.003 0.001 0.001 -0.001 -0.0007 -0.0005 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.0007 0.0004 0.0003 -0.0003 -0.0002 -0.0001 

E4 

Total 
Summed 

0.0004 7.11E-05 0.0001 2.51E-05 2.06E-06 4.47E-06 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 8.29E-05 1.78E-05 3.33E-05 6.28E-06 5.15E-07 1.12E-06 

E5 

Total 
Summed 

0.943 0.807 0.880 0.166 0.023 0.019 

Total 
Multiplied 

0 0 0 0 0 0 

Total Mean 0.189 0.202 0.220 0.042 0.006 0.005 

 

The expected ordering of the molecules in this section and Table 6-21 is: molecule 9 > molecule 7 ≥ 

molecule 8 > molecule 10 > molecule 11 > molecule 12. The orderings observed for 1-Prior Prob, 

change in entropy, KL divergence and each E score for the summed, multiplied and mean 

combinations are as a follows. The orders that are the same have been combined. 
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1-Prior Probability summed: 9 > 7 > 8 > 10 > 11 > 12. Mean: 9 > 8 > 7 > 10 > 11 > 12. 

Change in Entropy summed and mean: 7 > 8 > 9 > 12 > 11 > 10. 

Kl divergence summed: 7 > 9 > 8 > 10 > 11 = 12. Mean: 7 > 9 > 8 > 10 > 12 > 11. 

E1 summed and mean: 7 > 8 > 9 > 10 > 12 > 11. Multiplied: 7 > 9 > 12 > 10 > 8 > 11.  

E2: summed and mean: 7 > 8 > 9 > 10 > 12 > 11. Multiplied: 7 > 9 > 12 > 10 > 8 > 11.  

E3 summed: 7 > 8 = 9 > 12 > 11 > 10. Mean: 7 > 8 > 9 > 12 > 11 > 10. 

E4 summed and mean: 7 > 9 > 8 >10 > 12 > 11. 

E5 summed: 7 > 9 > 8 > 10 > 11 > 12. Mean: 9 > 8 > 7 > 10 > 11 > 12. 

When multiplying the nodes together, the same issue occurred as previously that when one node 

was zero it affected the score as a whole. The method that reproduces the expected ordering is the 

node scoring method 1-Prior Prob with the node scores summed to give the molecule score. 

However, 1-Prior Prob mean and E5 mean produce orderings that are close to the expected ordering, 

as only molecules 7 and 8 are reversed and these could be considered close in terms of exploration. 

The other methods, do not give the correct ordering as they score molecule 7 higher than molecule 

9 this is due to them placing more emphasis on new substructures. 

From examining all these different scenarios E5 is the only method that across all three experiments 

generates the desired ordering or is close. It also has the desired properties of generating a score 

being zero and one, whilst also allowing the method to decipher between different distributions. 

The most appropriate way of combining is through the mean as this also provided the desired or 

close to order. By using the mean it also allows better cross-core comparison as otherwise RG cores 

with more nodes would naturally score more.    

 

6.3.5 Exploration Score Validation 

The exploration score that has been generated needs to be validated to ensure that this score is 

worthwhile. Unfortunately, there is not an existing method to compare the score to that looks at the 

level of exploration of chemical space that a molecule adds to. However, it is possible to see if it has 

advantages over just using Tanimoto distances, by comparing the ranking of molecules from both 

the exploration score and the Tanimoto distances. There are three levels that are examined: a node 

level, a core level and a whole molecule level. 
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All of the molecules from the 10% hold out set are compared to their 90% counterparts. The RG 

cores that each molecule can map to is identified. If a molecule matches no cores a score of zero is 

given. If a molecule matches multiple RG cores it is scored for each. The substructures can then be 

extracted for each of the nodes and the chemical graph that represents the RG core. The attachment 

points are all retained with changing the connecting atoms to a wild atom, *.   The Tanimoto distance 

can then be calculated, by finding one minus the Tanimoto coefficient using the maximum common 

substructure, MCS, of the two structures or substructures (Maggiora & Shanmugasundaram, 2004). 

Where A is the number of atoms in the first molecule or substructure and B is the number of atoms 

in the second molecule or substructure.  

 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 −
𝑀𝐶𝑆

𝐴 + 𝐵 −𝑀𝐶𝑆
 (6.19) 

For the node level, just the substructure extracted from a matched molecule is compared to all the 

existing substructural fragments for that node. The minimum distance to the nearest substructure is 

found. If the substructure already exists for that node, then a score of zero is assigned. Therefore, 

only substructural fragments that have not been seen before provide any score. For this method, 

the number of already seen examples does not affect this validation score. Figure 6-30 shows an 

example of how each of the node distances is calculated. This is molecule CHEMBL2218289 that 

matches to core [Li][No][Li][Ge] from the P2x7 Subset dataset. It can be seen that the node does 

already exist so a distance of zero is scored. However, if this was not present, the distance would be 

0.6. For each node the distance is calculated. To compare to the exploration score, these distances 

are combined via adding and finding the mean for that core.  
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Figure 6-30: Demonstrating the node distance extraction process  

The next level is to examine the molecules on a core level. For this methodology, the whole core 

SMARTS are compared to the existing core SMARTS. This is done similarly to the node level. The 

minimum distance between this core SMARTS and the existing core SMARTS becomes this 

molecules' core score. Figure 6-31 demonstrates how the methodology works on a core level. The 

core from the molecule being examined is compared to all the existing unique cores present within 

this dataset. Only a proportion of the cores are shown in this example. As this core is already present 

a distance of zero is observed. 
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Figure 6-31: Example of core distance for molecule CHEMBL2218289 

For the final level, the whole molecule is compared to all existing molecules represented by a core. 

The molecular level contains extra molecular information than the exploration score explored in this 

chapter as it contains the additional R-groups and not just the core scaffold. Molecule 

CHEMBL2218289 has a Tanimoto distance of 0.048. The whole molecule validation is an extra level 

of complexity than the exploration score generated in this chapter, however, it was done for 

comprehensiveness. 

All of these scores were found for each of the molecules within the extracted 10%. As the rankings 

of these scores were to be compared to the rankings generated from the exploration score, the 

fractional ranking were found. These fractional rankings were found for the molecules that matched 

to each core level and for the whole 10% hold out set. The molecules are ordered in descending 

order of score. Fractional ranking then takes an average of the indexes if any of the values are the 

same. For example, Table 6-22 demonstrates how fractional ranking is found. When looking at 0.3 

the two indexes it has in a sorted list are 4 and 5, therefore, the fractional ranking would be an 

average of these indexes.  

Table 6-22: Fractional ranking example 

Distance Score 0 0.3 0.2 0 0.7 0.4 0.9 0.3 0.7 0.1 

Ordered Indexed 8 4 6 9 1 3 0 5 2 7 

Fractional Ranking 8.5 4.5 6 8.5 1.5 3 0 4.5 1.5 7 
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Two statistics are then found. The statistics do not need to include a ranked bias comparison, just a 

comparison of agreement. Therefore, the Kendall tau and spearman rank coefficient are found. Both 

look at comparing the ranking within a list. For both n is the number of molecules.  

 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑇𝑎𝑢

=  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

(
𝑛(𝑛 − 1)

2 )
 (6.20) 

 
𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑟𝑎𝑛𝑘 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 −

6∑𝑑𝑖
2

𝑛(𝑛2 − 1)
 

 
(6.21) 

Where di is the difference in ranked orders. 

6.3.5.1 Whole dataset 

All the molecules are compared on a whole datasets level for all of the datasets. The comparison is 

drawn on two levels on a core level, where the average of these scores is taken and then on a whole 

dataset level. Table 6-23 show the results from the E5 Mean exploration score, p-values are recorded 

in brackets.  

Table 6-23: E5 Mean Statistical Ranking Comparison 

E5 Mean 
Node Distances Core Distances Molecular Distance 

Kendall Spearman Kendall Spearman Kendall Spearman 

Bajorath 

Avg 

Core 
0.619 0.640 0.487 0.534 0.171 0.203 

Dataset 
0.141 

(0.005) 

0.170 

(0.005) 

0.258 

(2.451e-7) 

0.313 

(1.22e-7) 

0.019 

(0.648) 

0.037 

(0.544) 

CDK2 

Avg 

Core 
0.505 0.521 0.357 0.393 0.070 0.063 

Dataset 
0.257 

(1.66e-6) 

0.315 

(1.26e-6) 

0.379 

(2.10e-13) 

0.480 

(1.72e-14) 

0.119 

(0.009) 

0.179 

(0.007) 

Chk1 

Avg 

Core 
1 1 1 1 0.825 0.864 

Dataset 
0.461 

(0.053) 

0.523 

(0.055) 

0.461 

(0.053) 

0.523 

(0.055) 

0.333 

(0.116) 

0.483 

(0.080) 

Cyto 

Avg 

Core 
0.418 0.465 0.409 0.469 0.168 0.207 

Dataset 
0.212 

(1.68e-72) 

0.262 

(4.46e-74) 

0.240 

(3.09e-95) 

0.301 

(9.80e-99) 

0.169 

(6.27e-66) 

0.251 

(6.87e-68) 

FactorXa 
Avg 

Core 
0.429 0.466 0.473 0.527 0.117 0.144 
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Dataset 
0.275 

(9.50e-12) 

0.341 

(2.53e-12) 

0.341 

(4.20e-18) 

0.433 

(1.17e-19) 

0.087 

(0.012) 

0.127 

(0.011) 

Neurokinin 

Avg 

Core 
0.401 0.439 0.429 0.478 -0.073 -0.040 

Dataset 
0.290 

(9.21e-9) 

0.356 

(3.87e-9) 

0.430 

(1.72e-18) 

0.534 

(2.03e-20) 

0.145 

(0.001) 

0.208 

(0.001) 

P2x7 

Avg 

Core 
0.449 0.472 0.435 0.489 0.051 0.058 

Dataset 
0.069 

(0.094) 

0.084 

(0.095) 

0.246 

(9.05e-10) 

0.304 

(7.19e-10) 

0.018 

(0.592) 

0.029 

(0.562) 

P2x7 

Subset 

Avg 

Core 
0.524 0.576 0.642 0.670 0.072 0.102 

Dataset 
0.090 

(0.213) 

0.106 

(0.223) 

0.199 

(0.006) 

0.237 

(0.006) 

0.118 

(0.052) 

0.170 

(0.050) 

P38a 

Avg 

Core 
0.374 0.413 0.328 0.372 0.156 0.191 

Dataset 
0.209 

(5.66e-15) 

0.257 

(3.26e-15) 

0.255 

(4.81e-23) 

0.323 

(1.30e-23) 

0.134 

(2.30e-9) 

0.196 

(2.44e-9) 

 

Examining the results in Table 6-23 shows that very few datasets show cohesion between the 

exploration score and the distance as very few scores are one or close to one. The one dataset that 

generates the same ranking is dataset Chk1 and this is because there are very few molecules within 

the 10 percent, eleven molecules in fact. Four molecules match to two cores, therefore, there are 

only fourteen exploration scores to compare. Out of the fourteen only two provide a new 

substructure for one node, and these two cores had not been seen before. Therefore, it is very easy 

for the two ranked list to be the same. These scores in the majority of cases show the advantages of 

using the number of previously seen number of examples and it allows methods to be more 

discriminative.  

 

6.4 Conclusion 
Extensive work has been carried out to develop an exploration score. The exploration score should 

reflect the amount of information that would be added to a lead optimisation series by the addition 

of a new compound. It therefore should reflect the information being added into the system 

compared to how much current information is within the system. The score should be scaled 
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between zero and one to allow to distinguish between a high and low score easily. Also, the score 

should be able to differentiate between different underlying distributions of substructures 

represented by the nodes in a reduced graph core. Finally, work was done to identify how best to 

combine the node scores for an overall molecule score.   

Several scores have been developed from different theories. The different scenarios were manually 

ranked and assessed the scoring methods against these manual rankings, whilst understanding if 

these methods contained the desired properties. The majority of the scores had several advantages 

and disadvantages. Two scores seemed to have potential and were promising as they possessed all 

the sought after properties, E2 and E5. These two scores were promising because they were scaled 

between zero and one, they distinguish between different underlying distributions and between 

these distributions they reproduce the correct ordering. 

All the scores were then further explored to identify if any of the scores generate the expected 

manual ordering. Several different experiments were constructed to evaluate them and to see if any 

consistently performed as hoped. None of the scores for all of the experiments got the desired 

ordering, however, some were close to the expected ordering, and there were justifications on why 

they could have got a slight variation to the desired results. For the simple node experiment, none 

of the variations exhibited the desired ordering. However, E2 and E5 nearly generate the expected 

ordering other than two rows being in a different order and this was down to the fact these two 

scores try and prevent the constant promotion of a new substructure being added. When a core was 

constructed of three nodes then two different techniques did generate the correct score. This 

experiment analysed how the node scores worked along with how best to combine the node scores. 

The two techniques that generated the correct score is E3 mean and E4 mean. Two scores generated 

nearly the expected ordering was E5 sum and mean.  

The last two experiments were based upon real examples from P2x7 Subset dataset. When 

examining the molecules that came from the same core several scoring methods gave the desired 

output, 1-Prior prob sum and mean, KL divergence sum and mean, E3 mean, E4 mean and E5 sum. 

Four scores were close to generating this ordering, E3 sum, E4 sum and E5 mean, as they ranked two 

molecules equal instead of one being superior. When examining the molecules' results from 

different cores only one molecule gives the desired result, 1-Prior prob sum. However, two other 

scores nearly generate the correct results, 1-Prior prob mean and E5 mean.  

After reviewing all of the experiments resulting and the desired properties that were hoped for 

within an exploration score, it was felt that the most appropriate score to use was E5 mean. E5 mean 
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is the favoured score because it had all of the desired properties and in most instances, either gave 

the desired ordering or was close. If the ordering was not obtained, it was close and had valid reasons 

as to why this had been achieved and was not unreasonable.  
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7 Applying Reduced Graphs For Molecular Exploitation 

7.1 Introduction 
The Lead optimisation (LO) process is concerned with developing known active molecules to further 

improve absorption, distribution, metabolism, excretion and toxicity (AMDET) and potency 

properties. As stated previously, medicinal chemists adapt substituents on a core or scaffold that is 

shared by several molecules that are known to be active. Chemists typically adopt one of two 

strategies during lead optimisation: exploitation or exploration of the chemical space occupied by 

the compounds synthesised so far. In an exploitation strategy, they typically want to work in the 

areas of the chemical space that the most active compounds found so far occupy in order to improve 

potency. 

The aim of the previous chapter was to assign an exploration score to a new molecule by comparing 

its RG representation with those of molecules already in the LO series. This was achieved by mapping 

the molecule to an RG core in the series and carrying out a node-by-node comparison. For each node, 

the substructure presented by the new molecule was compared with the frequency distribution of 

substructures in the RG core. A high exploration score was assigned to a substructure with low 

frequency in the RG core and vice versa.  

The research undertaken within this chapter aims to assign an exploitation score to new molecules 

according to the extent to which they exploit existing knowledge on activity. First, substructure 

significance values are calculated for each substructure at each node position in the RG core based 

on the activity values of the molecules represented by the core. The substructure significance values 

are calculated using a method that is similar to the fragment significance method developed by 

Polishchuk et al. (Matveieva, Cronin, & Polishchuk, 2019; P. G. Polishchuk, Kuźmin, Artemenko, & 

Muratov, 2013; P. Polishchuk et al., 2016). An exploitation score for a new molecule is determined 

by mapping the new molecule onto a RG core and retrieving substructure significance scores based 

on the mapping. 

The chapter first introduces the Polishchuk et al. method and then describes how it has been adapted 

in this work. Results are then presented based on the MMP12 dataset. 

 

7.2 Methodology 
The exploitation score is based on work by Polishchuk (Matveieva et al., 2019; P. G. Polishchuk et al., 

2013; P. Polishchuk et al., 2016). Polishchuk et al. developed an approach to assess the contributions 
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of specific fragments to a property of interest based on an existing QSAR model. A fragment 

contribution is assessed by first applying the model to calculate a predicted value for a molecule 

containing the fragment. The fragment is then removed from the molecule and a new predicted 

value is calculated. The new predicted value is then subtracted from the whole molecule predicted 

value to give the fragment contribution. This value is considered as a local contribution of that 

fragment to the property of interest. A global measure for a fragment is calculated by repeating the 

process for all molecules containing the given fragment and averaging the local fragment 

contributions. If the global fragment contribution is positive then the fragment is favourable with 

respect to the property modelled by the QSAR, otherwise, if the contribution is negative then the 

chemist should consider replacing the fragment either by one that has not been seen before or by 

one that contributes a positive amount to the property.  

Polishchuk et al. investigated the effectiveness of their approach using different machine learning 

methods including random forest (RF), gradient boost model (GBM), partial least squares (PLS) and 

support vector machines (SVM) and using two types of molecular descriptors: the two dimensional 

simplex representation of molecular structure (SiRMS) descriptors; and Dragon descriptors 

(“Dragon,” n.d.; V. E. Kuźmin, Artemenko, & Muratov, 2008; Victor E. Kuźmin et al., 2005; Mauri, 

Consonni, Pavan, & Todeschini, 2006). For each descriptor, average fragment significance values 

were calculated using each machine learning method and a consensus value was taken (P. G. 

Polishchuk et al., 2013; P. Polishchuk et al., 2016).  

In the follow up paper, Matveieva examined how the environment of a fragment can have an impact 

on its significance. The distribution of fragment contribution scores was examined for a specific 

fragment, and if the distribution contained several peaks or one broad peak then the variance of the 

score was high suggesting that the environment of the fragment should be considered. This was 

done by using a Gaussian mixture model to separate the peaks. These peaks were then analysed 

using SMARTSminer to generate a SMARTS pattern that represents the fragment and surrounding 

environment (Bietz, Schomburg, Hilbig, & Rarey, 2015; Matveieva et al., 2019).  

An outline of the methodology developed here is shown in Figure 7-1. First a QSAR model is 

developed for the LO series. Then each RG core is considered in turn and a significance score is 

calculated for each substructure for each node as follows. Each substructure of each node is 

considered in turn. A molecule containing the substructure at that node position is retrieved and a 

local substructure significance score is calculated. The QSAR model is used to predict the score for 
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the molecule then the substructure is removed from the molecule and the QSAR model is applied 

again. The local substructure significance score is calculated as the difference in predicted scores 

with and without the fragment. A global score is then calculated by combining the local scores for all 

molecules that contain the substructure at that node position. 

 

Figure 7-1: Workflow of RG core node significance 

As indicated in the workflow in Figure 7-1, a number of alternatives were explored for each step. 

These include different QSAR methods and different ways of masking the fragments in order to 

derive predictions when the fragment of interest is removed from a molecule. These investigations 

are described in detail below with molecule CHEMBL2218289 from the P2x7 subset and P2x7 dataset 

used as an exemplar.  

 

7.2.1 Creation of Machine Learning Models 

Four machine learning methods were used to calculate the QSAR models. The biological activity, 

pIC50, is the target value of interest and the molecular descriptors were Morgan radius 2 (M2FP). 

The QSAR models were generated using the python module scikit-learn (Pedregosa et al., 2011). In 

each case, a ten-fold cross validation was undertaken to assess model performance. The cross 

validation was implemented using scikit-learn’s model selection KFold function. The best model was 

that with the highest mean 10-fold cross validation R2 score. The model was then recreated using 

the whole dataset, as the point of this study is to exploit the data within a dataset and not predict 

new molecules. Additionally, as no prediction of new molecules is occurring no further 

hyperparameter optimisation of the model occurs, such as changing the number of trees. The mean 
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absolute error (MAE), R2, root-mean squared error (RMSE) and mean squared error (MSE) are all 

calculated. 

Both the RF and GBM models were created using the default settings of one-hundred estimators and 

a fixed random state (of 42) so that the results are reproducible. The SVM model was generated 

using default settings with the kernel set to radial basis function (rbf). The PLS model was generated 

using default settings with number of components equal to two. 

 

7.2.2 Producing Bit Masked FP 
The input to the QSAR method is the M2FP representation of a molecule. As above, and following 

the method of Polishchuk et al., the predicted activity is first calculated for the whole molecule and 

a predicted value is then calculated for the molecule without the substructure (P. G. Polishchuk et 

al., 2013). The latter requires that the M2FP is modified to represent the molecule with the 

substructure removed.  Four different masking approaches were considered for modifying the 

M2FP fingerprint. The first two methods involved modifying the molecule and then recalculating 

the M2FP.  The molecule was modified by: removing the fragment from the molecule; and altering 

the fragment atoms to wild atoms. The second two methods involved manipulating the fingerprint 

directly. 

7.2.2.1 Removal of Fragments 

The substructure, or fragment, of interest was removed from the molecule by deleting the atoms in 

the fragment along with any bonds incident on those atoms. The M2FP was then recalculated. An 

example of how this was achieved for a molecule is shown in Figure 7-2.  
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Figure 7-2: Example of how the removal method works for each RG core node within a molecule 

7.2.2.2 Swapping to Wild Atoms 

The second method replaced the substructural atoms of the fragment with wild atoms instead of 

removing the atoms and bonds. This helps to retain the molecular framework given the circular 

nature of the fingerprints while removing specific atom types. An example of the wild atom 

replacement is shown in Figure 7-3. 
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Figure 7-3: Example of how the wild atom method works for each RG core node within a molecule 

7.2.2.3 Bit Masking 

A dictionary can be generated when creating the M2FP fingerprint in RDKit that aligns each bit within 

the fingerprint to one or more tuples, where the tuple is of length 2 (“RDKit: Open-Source 

Chemoinformatics,” 2018). The first number within a tuple is the atom index that the bit is centred 

upon and the second number is the radius that is represented, e.g. 0, 1 or 2 for M2FP. If the 

substructure is repeated with a molecule then the bit is associated with multiple tuples, one for each 

occurrence of the substructure.  
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Figure 7-4: Molecule CHEMBL2218289 showing the fingerprint bits present within M2FP 

Figure 7-4 shows the fingerprint bits present in the M2FP for molecule CHEMBL2218289. The M2FP is 

a binary vector fingerprint so that a bit is set to 1 if there is at least one tuple present. Bits 561, 650, 

926, 1011, 1380, 1683, 1750 and 1873 are all examples where multiple substructures generate the 

same bit. Figure 7-5 indicates four examples of bits that are present within the M2FP of molecule 

CHEMBL2218289. Bit 80 has a radius of zero and represents an aliphatic carbon atom with two 

substitution sites and two hydrogens. Bit 197 has a radius of one, and represents a secondary 

nitrogen with two connecting carbon atoms, where one of the carbons has another substitution site 

and the other has two substitution sites one of which is a single bond and the other is a double bond. 

Bit 216 has a radius of two, and is a carbon atom with a fluorine atom connected at radius 2. Bit 561 

represents a chlorine atom connected to a carbon and there are two occurrences in the molecule. 
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Figure 7-5: Bits example  

There are several ways in which the bits could potentially be masked, for example, a bit can be 

masked based upon just the central atom or on all the atoms incorporated in the radius. In the first 

method, referred to as the central atom method, all of the tuples that represent atoms in the 

substructure of interest are removed. When this results in all of the tuples for a given bit being 

removed then the bit is removed (masked) from the fingerprint. An example is shown in Figure 7-6 

where the different colours correspond to the tuples that would be removed for each of the 

correspondingly coloured substructures. When this process results in bits being removed/masked 

these are also highlighted. Two instances where bits remain despite tuples being removed are Ge bit 

650 and No bit 1380.  
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Figure 7-6: Central atom masking method bits that have been highlighted are the bits that are masked for each node  
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Figure 7-7: All atom masking method bits that have been highlighted are the bits that are masked for each node 
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The second method, referred to as the all atom method, is to remove all of the tuples, and then bits, 

that contain any of the atoms involved in the substructure, as shown in Figure 7-7 where the tuples 

and bits that are removed are highlighted.   

 

7.2.3 Comparing the fingerprint masking methods 

The effects of each of the different masking techniques were analysed using the substructure 

represented by the terminal Li node of the molecule CHEMBL2218289. This substructure is a fluorine 

atom. The fingerprint bits of the original unaltered molecule are shown in Figure 7-8, with each atom 

labelled with its corresponding atom index and the 2048 Morgan 2 fingerprint bits. 

 

Figure 7-8: Unaltered molecule and corresponding M2FP bits 

Figure 7-9 indicates the impact of each method of masking the fluorine atom. For both the removal 

of fragment method and the wild atom method, while bits are removed from the fingerprint, new 

bits are also gained due to the nature of the spherical fingerprint and the environment of the atoms 

that remain in the molecule changing. These methods were therefore not investigated further. For 

the two bit masking methods, the central atom method does not remove all of the bits associated 

with the F atom and was also not considered further. The method chosen was the all atom bit 

masking method which results in all bits associated with the F atom being removed.  
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Figure 7-9: Altered molecule with bits that have been removed or added depending on the methodology 

 

 

7.3 Results 
For each of the datasets, the molecules without a pIC50 value were removed and the rest of the 

dataset was split into a 90:10% split. This is the same split as used in the previous chapter. The QSAR 

models and substructure significance values were calculated using the 90% set and exploitation 

scores were calculated for the molecules in the 10% holdout sets. 
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7.3.1 Creation of Machine Learning Models 
The statistics for the cross validated and final models built using the four machine learning methods 

are shown in Table 7-1 for all datasets. 

Table 7-1: Table of model statistics for all datasets 

Dataset Model 

10-fold CV R2 Final Model 

Mean Std 
Mean 

Absolute 
Error 

R2 RMSE MSE 

Bajorath 

RF 0.801 0.039 0.138 0.973 0.196 0.039 

GBM 0.736 0.050 0.387 0.825 0.498 0.248 

SVM 0.773 0.040 0.244 0.878 0.416 0.173 

PLS 0.677 0.038 0.456 0.727 0.621 0.386 

CDK2 

RF 0.734 0.064 0.199 0.960 0.301 0.091 

GBM 0.710 0.052 0.500 0.820 0.638 0.407 

SVM 0.764 0.051 0.278 0.904 0.466 0.393 

PLS 0.720 0.046 0.467 0.826 0.627 0.393 

Chk1 

RF 0.067 0.270 0.301 0.890 0.365 0.133 

GBM -0.015 0.344 0.244 0.934 0.281 0.079 

SVM 0.096 0.267 0.445 0.684 0.618 0.382 

PLS -0.016 0.289 0.367 0.812 0.476 0.226 

Cyto 

RF 0.306 0.064 0.118 0.892 0.177 0.031 

GBM 0.256 0.039 0.325 0.384 0.422 0.178 

SVM 0.348 0.059 0.155 0.716 0.287 0.082 

PLS 0.241 0.048 0.306 0.376 0.424 0.180 

FactorXa 

RF 0.667 0.052 0.216 0.946 0.304 0.093 

GBM 0.573 0.046 0.589 0.693 0.724 0.524 

SVM 0.669 0.050 0.354 0.829 0.540 0.292 

PLS 0.513 0.071 0.623 0.631 0.794 0.630 

MMP12 

RF 0.838 0.021 0.113 0.978 0.151 0.023 

GBM 0.836 0.021 0.280 0.881 0.352 0.124 

SVM 0.876 0.020 0.178 0.934 0.263 0.069 

PLS 0.827 0.028 0.306 0.848 0.399 0.159 

Neurokinin 

RF 0.643 0.039 0.240 0.931 0.347 0.120 

GBM 0.585 0.032 0.564 0.719 0.699 0.488 

SVM 0.660 0.031 0.355 0.831 0.542 0.294 

PLS 0.573 0.037 0.575 0.695 0.728 0.530 

P2x7 

RF 0.494 0.044 0.172 0.932 0.230 0.053 

GBM 0.390 0.043 0.464 0.578 0.573 0.328 

SVM 0.518 0.026 0.260 0.792 0.402 0.162 

PLS 0.376 0.056 0.460 0.552 0.590 0.348 

P2x7 subset 

RF 0.560 0.072 0.144 0.941 0.181 0.033 

GBM 0.511 0.074 0.318 0.733 0.385 0.148 

SVM 0.611 0.073 0.197 0.859 0.280 0.078 

PLS 0.411 0.138 0.350 0.656 0.437 0.191 

p38α 

RF 0.702 0.027 0.195 0.957 0.270 0.073 

GBM 0.553 0.027 0.629 0.642 0.781 0.609 

SVM 0.728 0.023 0.293 0.876 0.459 0.211 

PLS 0.584 0.040 0.586 0.669 0.751 0.563 
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For the majority of datasets, the SVM models had the highest 10-fold CV R2 scores. For all datasets 

and models there is a slight increase in R2 for the final models as would be expected as more data is 

being incorporated into the model. This increase is larger for the RF and GB models which is likely 

due to these methods being prone to overfitting. The 10-fold CV models for the Chk1 and Cyto 

datasets are poor which can be rationalised by the small number of molecules, Chk1, or the 

molecules being too dissimilar, Cyto, which has the lowest pairwise similarity, see Chapter 2.  

The best machine learning method was selected based on the mean 10-fold cross validation R2 score 

and the final model was used to calculate the fragment significance scores, i.e., the model built using 

all molecules within the dataset.  

 

7.3.2 Fragment Significance 

This section presents results for the MMP12 dataset as this consists of one RG core representing all 

1534 molecules, Figure 7-10. Three of the nodes (2No, 3Ge and 5Ge) represent one substructural 

fragment, respectively, i.e., there is no variation in the molecules at these nodes. Nodes 1No and 4Li 

each represent multiple substructural fragments, nine and 11, respectively, and the number of 

molecules that have those substructural fragments at those node positions is given in the table. 
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Figure 7-10: RG Core extracted from the MMP12 dataset and substructural fragments present for each node with the number of 
occurrences 
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First, fragment significance values were calculated for a given fragment regardless of where that 

fragment occurred within the molecules, i.e., the mapping of the molecules to the RG core was not 

considered. This was then compared with the fragment significance values of the same fragment 

within a given position based on the mapping of the molecules onto the RG core. The aim was to 

examine whether the environment of a fragment is important when considering the contribution it 

makes to activity.  

Figure 7-11 shows the distribution of local fragment significance values calculated for the para 

substituted benzene fragment regardless of its position in the molecules (orange distribution) 

compared to the fragment significance values for the same fragment at the position corresponding 

to node 1No in the RG core (blue and darker orange in the overlapping region). The fragment 

significance values were calculated using the SVM model and the all atom bit masking method. 

The median and mean scores are 0.472 and 0.327 (standard deviation 0.594) when the environment 

is ignored and 1.015 and 0.988 (standard deviation of 0.295) when the environment is taken into 

account. This pattern is similar for most substructural fragments, unless there are very few examples 

that occur outside of the node. Therefore, it was concluded that the environment is important when 

assessing fragment significance with respect to activity and this is the approach used hereon.  
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Figure 7-11: Fragment comparison of substructural fragment *c1ccc(*)cc1  from whole dataset (orange) and the specific 
environment node No1 (blue) in MMP12 dataset 

7.3.2.1 Fragment Significance From The Different Methods of Bit Masking the Fingerprints 

The different methods for masking the fingerprints are compared within this section. 

7.3.2.1.1 Bit Masking All Occurrences 

Fragment significance scores were calculated as median and mean (standard deviation) values 

considering each substructural fragment for each node in turn for the RG core [No][No][Ge][Li][Ge] 

representing the MMP12 dataset. The scores were calculated for all four machine learning methods. 

Table 7-2 presents the results for the three nodes that each represent a single substructural 

fragment that is, therefore, common to all molecules in the dataset. For each fragment, the number 

of bits that was altered by removing the fragment and masking the bitstring is quoted. For all three 

examples, more than 60 bits are altered. The fragment significance scores are positive for all four 

machine learning methods (with the exception of the mean score for the first fragment using PLS) 

indicating that each fragment makes a positive contribution to the bioactivity. However, the values 

for a given fragment differ for the different machine learning methods. It was therefore decided to 

base the significance scores on the best modelling method rather than a consensus score, as used 
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by Polishchuk et al. It is also notable that the standard deviations are large relative to the mean 

values indicating that the fragment significance values should be considered as a general trend. The 

fragment significance values differ across the fragments with the para substituted benzene fragment 

having the largest significance values. 

Table 7-3 demonstrates the results for node 1No for which there are nine different substructural 

fragments. The fragments with the largest and smallest significance values are bolded, and the rank 

order for each model is included in the corner of each cell. There is more disagreement in the 

significance values for the fragments represented by this node when considering the different 

modelling methods, and for some fragments the contribution is positive or negative depending on 

the method. However, when examining the ranks, the models tend to be in agreement based on 

both median and mean values as shown by the overall average pearson rank coefficient of the 

pairwise values of 0.973. There are some slight differences in rank order for a given model when 

considering the median and the mean values which is due to the mean values being influenced by 

outliers. The fragment that is at rank one and is therefore predicted to contribute the most to the 

biological activity is the para-substituted benzene ring which is also the most frequent with 349 

examples. According to the best model for the MMP12 dataset, SVM, the para-substituted benzene 

in this position has a median value of 1.015 indicating a positive effect on bioactivity. This is a 

reasonable increase as this is a log unit indicating a 1.015 increase in pIC50. In contrast, the fragment 

with the most negative effect on activity is the benzene ring with four adjacent substitution sites 

which has the median value of -1.178.  

Table 7-4 shows the results for the fragments represented by the node 4Li. For a given fragment, 

there is strong agreement across the models on the contribution to bioactivity being either positive 

or negative. There are some slight variations in the rank orders of the fragments but these are not 

large variations as shown by the overall average pearson rank coefficient of the pairwise values of 

0.953. The substructural fragment at rank one for all methods is [1,1,3-butyl], which has 210 

examples and the median fragment significance of 0.595. In contrast, the substructural fragment 

with the most negative median fragment significance is [1,1,2-propyl], with 31 examples, with 

median decrease in biological activity of -0.342.  

It is also important to note that the standard deviation of the fragment significance can be quite 

large, and in some instances larger than the significance value itself. This is the case for most of the 
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substructural fragments for each node. A large standard deviation indicates that the local 

significances that are calculated have a large range. 
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Table 7-2: Node significance for nodes 2No, 3Ge and 5Ge in [No][No][Ge][Li][Ge] which contain just one substructural fragment 

 

Number 
of Bits 

That Are 
Altered 

RF GBM SVM PLS 

Median Mean Std Median Mean Std Median Mean Std Median Mean Std 

2No 

 

1534 79 0.774 1.041 0.990 0.729 0.845 0.750 0.353 0.203 0.553 0.133 -0.043 0.357 

3Ge 

 

1534 69 0.064 0.097 0.179 0.134 0.126 0.134 0.175 0.202 0.231 0.149 0.130 0.097 

5Ge 

 

1534 63 0.063 0.094 0.178 0.133 0.124 0.132 0.106 0.116 0.166 0.102 0.080 0.100 
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Table 7-3: Node significance for node 1No substructural fragments in [No][No][Ge][Li][Ge] 
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Table 7-4: Node significance for node 3Li substructural fragments in [No][No][Ge][Li][Ge] 
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7.3.3 Uncertainty 

The RF and GBM machine learning methods have in-built ways of estimating the uncertainty 

of predictions, therefore, these two methods are further examined. 

Both RF and GBM are ensemble approaches consisting of multiple trees each of which makes 

a prediction based on input data. The predictions made by individual trees are then combined 

to generate the overall prediction. The standard deviation of the predictions provides a 

measure of uncertainty that is associated with a given prediction. When calculating local 

fragment significance using either RF and GBM, the uncertainties in the predictions for both 

the original molecule and the masked molecule were found. As the significance score is the 

original molecule’s prediction minus the masked molecule’s prediction, the uncertainty of the 

fragment significance score is the sum of these two uncertainties. An example is given in 

Figure 7-12 for one molecule and one masked substructural fragment.  

 

Figure 7-12: An example of how the uncertainty of a significance score is generated 
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The median, mean and standard deviation of the uncertainty values for each substructural 

fragment were calculated. The results for all substructural fragments and all nodes for the 

MMP12 dataset are shown in Table 7-5, with the uncertainty data shown in the shaded 

columns. The distribution of fragment significance and the uncertainty values are shown for 

the C(=O)O fragment at node 5 Ge , Figure 7-13. Together, these demonstrate that the 

uncertainties of the significance scores are large and in some instances are bigger than the 

significance score itself. These large uncertainties may be due to changes in multiple bits at 

once and due to the large sizes of the fragments being removed. The high uncertainties 

indicate that the significance scores may not be as accurate as originally hoped, however, 

they give some indications of trends, which may be better than a random selection.  

 

Figure 7-13: Node 5Ge substructural fragment *C(=O)O distribution of significance and uncertainties 
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Table 7-5: All nodes and substructural fragments significance and uncertainty for RF and GBM for core [No][No][Ge][Li][Ge] in MMP12 dataset, of the bit masked approach 

Node 
Substructural 

Fragment 

RF GBM 

Significance Uncertainty Significance Uncertainty 

Median Mean Std Median Mean Std Median Mean Std Median Mean Std 

1No 

 

2.396 2.314 0.580 0.569 0.601 0.163 2.035 1.998 0.380 0.469 0.466 0.041 

 

0.822 0.969 0.670 0.630 0.643 0.129 0.638 0.777 0.459 0.353 0.355 0.047 

 

0.992 1.160 0.905 0.605 0.627 0.134 0.992 0.900 0.796 0.417 0.415 0.030 

 

0.160 0.176 0.224 0.677 0.670 0.149 0.018 0.000 0.111 0.402 0.378 0.050 

 
0.156 0.347 0.519 0.608 0.650 0.198 0.032 0.169 0.353 0.410 0.389 0.056 

 

0.937 0.880 0.645 0.590 0.599 0.121 0.849 0.724 0.591 0.376 0.375 0.045 

 
1.704 1.757 0.385 0.585 0.617 0.122 1.768 1.744 0.227 0.455 0.453 0.035 

 

0.053 0.038 0.204 0.594 0.602 0.085 -0.103 -0.110 0.075 0.419 0.413 0.035 

 

-0.165 -0.166 0.028 0.530 0.548 0.107 -0.158 -0.148 0.024 0.430 0.431 0.009 

2No 

 

0.774 1.041 0.990 0.626 0.652 0.182 0.729 0.845 0.750 0.415 0.410 0.072 
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3Ge 

 

0.064 0.097 0.179 0.609 0.646 0.221 0.134 0.126 0.134 0.407 0.392 0.103 

4Li 

 

0.113 0.116 0.220 0.610 0.649 0.216 0.156 0.123 0.105 0.403 0.382 0.106 

 
0.366 0.429 0.377 0.637 0.665 0.177 0.443 0.447 0.220 0.416 0.410 0.100 

 

-0.042 -0.067 0.186 0.574 0.626 0.227 -0.070 -0.085 0.106 0.401 0.384 0.099 

 
0.203 0.226 0.282 0.605 0.628 0.189 0.223 0.212 0.103 0.405 0.392 0.102 

 
0.319 0.340 0.269 0.670 0.666 0.152 0.285 0.244 0.102 0.428 0.411 0.087 

 
0.454 0.427 0.319 0.625 0.623 0.140 0.406 0.334 0.123 0.407 0.388 0.098 

 

0.398 0.353 0.259 0.615 0.648 0.154 0.312 0.281 0.048 0.419 0.396 0.095 

 
-0.127 -0.133 0.241 0.647 0.701 0.188 -0.014 -0.134 0.148 0.401 0.380 0.090 

 

-0.120 -0.165 0.117 0.677 0.670 0.160 -0.117 -0.123 0.058 0.418 0.412 0.107 

 
0.461 0.400 0.303 0.536 0.536 0.109 0.285 0.271 0.117 0.403 0.383 0.110 

 

0.013 0.027 0.284 0.681 0.625 0.153 -0.023 -0.006 0.059 0.401 0.371 0.109 

5Ge 

 

0.063 0.094 0.178 0.601 0.643 0.222 0.133 0.124 0.132 0.406 0.390 0.105 
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7.3.4 Comparing Significance of Fragments To Other Methods 

The significance of each of the fragments is compared to other existing methods that attempt 

to find significant fragments. Both the significance score and the substructural fragments that 

the score is linked to are compared. 

7.3.4.1 Comparison to Random Forest significance bits 

The random forest (RF) method in sci-kit learn returns the feature importance of each bit from 

the input data that is included in the model. Therefore, the feature importance values are 

compared to the information extracted from the fragment significances. To extract the 

feature importance from a RF the methodology observes the performance of the RF when 

features are absent. The default feature importance in sci-kit learn is based on the mean 

decrease in impurities. This method assesses how each feature, bit, decreases the impurity of 

the tree node split within the tree and these are averaged over all trees within the forest to 

provide a feature importance. 

Table 7-6 shows the top ten bits according to feature importance. An image of what each bit 

represents is shown, along with the number of times that bit is seen within the dataset. For 

each node, within the RG core, the substructural fragment is displayed if this bit is disguised 

in the masking process. For each of these substructural fragments the significance score and 

rank number is provided. 
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Table 7-6: Top ten bits with feature importance for MMP12 dataset 

Bit 
Feature 

Importance 

Number of 
Molecules 
With Bit 

Present within substructural fragment… 

1No 2No 3Ge 4Li 5Ge 

1964  

0.409 942 

  

  

 

 

- - - 

1039  

0.140 564 
  

 

- - - - 

945  

.  

0.028 115 
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875  

0.027 762 

 

 

- - - - 

1034  

0.016 89 

 

 

- - - 

354  

0.012 89 

  

- - - - 

1391  

0.011 185   

  

- - - - 

451  

0.009 42 

  

- - - 

 0.009 42 

 

- - - - 
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1032  

699  

0.007 404 

  

 

  

 

- - - - 
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All of the top ten bits have atoms that are contained within the chemical graph mapping of 

the RG core. It is interesting to note that bit 945 demonstrates a bit clash as two different 

substructures are represented by this bit. This could have an impact on the bit masking for 

the significance score, if both fragments are present and only one is being masked then for 

the bit masking it would not be removed. However, if the count FP was to be used it would 

be reduced. 

The feature importance results focus on specific bits, whereas the method outlined in this 

chapter examines the effect of a fragment and therefore multiple bits. When looking at the 

node substructural fragments, the top five fragments from 1No with the most positive 

fragment significance scores all contain the bit that is deemed most important by the RF. 

However, their significance scores are not all within the top five scores of the overall 

substructural fragments observed for all nodes within this RG core. But when using the count 

masked FP they are the top five scores. It is also interesting that one bit can be seen in multiple 

different substructures across multiple node, such as bit 945.  

When comparing the feature importance to the associated substructural fragments 

significance it is interesting to note that seven out of nine of the substructural fragments 

within node 1No have negative significance scores. However, these all seem to contain a bit 

or bits that are in the top ten feature importance. Yet when ranking all the substructural 

fragments observed within the RG core only two are in the top ranked fragments based on 

their significance score. This difference could be due to the nature of some of the R-groups 

but also one bit does not provide much information, however, when combined with multiple 

bits can provide more of an overall picture of the impact of that substructural fragment. 

Although, more of these fragments within the count masked FP are considered to be within 

the top ranked substructural fragments based on their significance scores.  

A drawback of the RF impurity based feature importance method is that the results can be 

biased towards high cardinality features, meaning where a feature has lots of potential 

values. This is not a problem for this investigation as none of the features have high cardinality 

as the feature is either a bit turned on 1 or turned off 0 (Pedregosa et al., 2011).
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7.3.4.2 Comparison to Matched Molecular Pairs 

Matched molecular pairs (MMPs) are a powerful tool in identifying fragments that are significant. 

Therefore, the MMPs are extracted to analyse the differences between the MMPs and the 

significances of the substructural fragments. A MMP links a molecular transformation with a 

molecular property. An example is a hydrogen atom to a fluorine atom that could be linked to a 

specific increase in biological activity. 

 

Figure 7-14: MMP example for one cute, two cuts and three cuts for molecule A35B31 in MMP12 dataset 

Unfortunately, MMPs are not as useful when handling datasets that are sparse and small as they can 

be more difficult to extract these transformations as there is less likely to be three examples of the 

transformation to become a MMP. The Hussain and Rea algorithm with one, two and three cuts with 

at least three examples were extracted from the datasets to see if MMPs could be used to identify 

the significance of substructural fragments (Hussain & Rea, 2010). An example can be seen in Figure 

7-14, where the cuts are shown with blue curved lines. Table 7-7 shows the number of MMP 

extracted for each dataset with one, two or three cuts. The number in the square brackets indicates 

the maximum number of examples for a single MMP. 
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Table 7-7: Number of MMP for each dataset at 1, 2 and 3 cuts [max number is the maximum number of example for a single MMP] 

Dataset 
Number of 

Molecules in 90% 

Number of 

MMPs with 1 Cut 

Number of MMPs 

with 2 Cuts 

Number of MMPs 

with 3 Cuts 

Bajorath 1876 245 [max 16] 283 [max 21] 37 [max 11] 

CDK2 1230 24 [max 5] 79 [max 6] 65 [max 5] 

Chk1 95 0 0 0 

Cyto 5676 365 [max 41] 155 [max 88] 75 [max 8] 

FactorXa 1760 86 [max 16] 85 [max 11] 66 [max 7] 

MMP12 1534 1065 [max 83] 747 [max 54] 221 [max 38] 

Neurokinin 1321 104  [max 10] 100 [max 26] 93 [max 20] 

P2x7 1607 409 [max 46] 725 [max 53] 214 [max 37] 

P2x7 Subset 622 106 [max 10] 302 [max 30] 73 [max 30] 

P38α 3280 274 [max 19] 410 [max 26] 280 [max 12] 

 

It is clear to see that some datasets are more amenable to extracting MMPs than others, for example 

MMP12 compared to Chk1 for which no MMPs were found. Also, when looking at the maximum 

number of examples of a MMP some datasets also produce MMP that have more examples than 

others. A good example of this is the CDK2 dataset compared to the MMP12 dataset. Both datasets 

contain more than 1000 molecules, yet the maximum number of examples for a MMP is six within 

the CDK2 dataset, but 83 within the MMP12 dataset. MMPs rely on lots of data that is not sparse, 

whereas, the exploitation score can still provide some information about small sparse datasets.  

When the MMPs were examined, some were bigger than the node substructural fragments 

identified by reduced graphs. Some of the MMPs do include features of the RG core. An example is 

demonstrated in Figure 7-15. This MMP was seen 14 times in the 90% linked to an increase the pIC50 

value of 0.429 with a standard deviation of 0.383. The standard deviation of these increases were 

also large. In terms of RG nodes, this MMP goes from being two nodes to three nodes so would not 

be identified in the RG nodes significance score.  
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Figure 7-15: MMP with 1 cut seen in MMP12 dataset 

 

7.3.5 Creating an Exploitation Score 

Even though the confidence level of the scores is rather low, they have been used to generate an 

exploitation score to act as a guide for a chemist when considering which molecule should be made 

next. A new molecule is mapped onto a RG core and for each node the median significance score of 

the substructure at that node is retrieved based on the best performing model. When a substructural 

fragment has not been seen before, it is assigned a significance score of zero as there is no knowledge 

for that substructural fragment. The exploitation score for the molecule is then the mean of the 

median value of the significance scores for its constituent fragments. The mean value is used rather 

than the sum to allow the exploitation scores to be compared across cores. The higher the 

exploitation score the more a new molecule is considered to investigate an area of chemical space 

likely to be active. Figure 7-16 demonstrates how the exploitation score for a molecule would be 

generated, using one of the holdout molecules from the MMP12 dataset.  
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Figure 7-16: Example of generating exploitation score for molecule A33B01 within 10% of MMP12 dataset, MMP12 RG Core 
significance scores can be found in the Appendix 

7.3.5.1 Generating Scores for the Ten Percent Hold Out Set 

All 170 molecules in the MMP12 holdout set were scored. Table 7-8 shows a selection of molecules 

with different exploitation scores from this holdout percent where the scores range from 0.449 to -

0.143. Nine molecules have the highest score substructure at each node position and therefore have 

the highest exploitation score of 0.449, with one shown in the top row of the table.    

Table 7-8: Ten molecule that have had been assigned an exploitation score according to significance of core [No][No]Ge][Li][Ge] 
from MMP12 dataset 

Molecule 1No 2No 3Ge 4Li 5Ge 
Exploitation 

Score 
Original 

pIC50 

 

1.015 0.353 0.175 0.595 0.106 0.449 7.5 

 

1.015 0.353 0.175 0.409 0.106 0.412 8.0 

 

1.015 0.353 0.175 0.339 0.106 0.398 6.6 
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1.015 0.353 0.175 0.160 0.106 0.362 6.4 

 

0.464 0.353 0.175 0.160 0.106 0.252 5.3 

 

-0.171 0.353 0.175 0.409 0.106 0.174 7.1 

 

-0.245 0.353 0.175 0.160 0.106 0.120 6.1 

 

-0.903 0.353 0.175 0.484 0.106 0.043 3.9 

 

-0.883 0.353 0.175 0.160 0.106 -0.018 4.6 

 

-1.178 0.353 0.175 -0.170 0.106 -0.143 3.8 

 

As the holdout molecules have already been made and tested, the pIC50 values were examined. The 

pIC50 values range from 3.8 to 8. There are 170 molecules contained within the holdout set. These 

generate 48 unique exploitation scores. The molecule with the highest pIC50 value was molecule 

A31B25, which has an exploitation score of 0.412. This molecule was ranked 12 out of the 170 

molecules using the exploitation score, however, there are only two higher exploitation scores. 

These molecules with the two highest exploitation scores have pIC50 values ranging from 5.3 to 7.7. 

The two molecules with the lowest pIC50 values, molecules A11B47 and A11B50 have exploitation 
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scores of 0.015 and -0.143, respectively. A11B50 is the molecule with the lowest exploitation score 

and A11B47 is ranked 130 out 170 molecules, which is the 36 highest exploitation score.  

Four of the nine molecules with the highest exploitation score, also had high pIC50 values, with them 

being ranked second, third, seventh and tenth according to their pIC50 values. This indicates that 

the exploitation score can identify new molecules with high activity values, although, the remaining 

three molecules were ranked 33, 53 and 81 on their pIC50 values. The range of pIC50 values, 5.3 to 

7.7, for the top exploitation score may indicate that the R-groups also play a key role in the biological 

activity, whereas, the exploitation score is based on the substructures that map to an RG core only.  

 

7.4 Conclusion 
An exploitation score is generated for a molecule that matches to an existing RG core. The 

exploitation score is based upon the substructural fragments that have already been investigated for 

each node. The exploitation score is found by calculating the mean of the median significance score 

that has been generated for each substructural fragment at that point in the existing molecules. This 

method is based upon work that has already been done by Polishchuk. The input for the molecule, 

however, has been altered.  

A Morgan 2 fingerprint was used with several different ways of masking the substructural fragment 

of interest. The best approach was masking the bits that incorporated any atom that was associated 

to the fragment of interest. Only the substructural fragment that is present at that specific node are 

combined together to generate a significance score as the environment in which the fragment is was 

also shown to be important. 

The significance scores generated within this investigation had high standard deviations and tend to 

have a high uncertainty associated with them. This uncertainty was found from the RF and GBM 

models, due to the ensemble nature of the models.  

These significance scores were combined together by finding the mean to generate an exploitation 

score. Even with these high uncertainties, when examining the hold out dataset it was found that 

the molecules that had a higher exploitation score generally had a higher pIC50 value. Therefore, 

these large uncertainties and standard deviations may be caused by noise within the model. The 

exploitation score produced is not perfect but provides a good estimation from the existing 

information as to what molecule to potentially investigate next.  
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The next chapter shall use all the work done in previous chapters to generate new molecules to 

suggest to the chemist and present them with an exploration and an exploitation score.  
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8 Molecular Generation Using Reduced Graphs 

8.1 Introduction 
An important branch of chemoinformatics is molecular generation. This is commonly known as de 

novo design. De novo design techniques generate new molecule ideas that commonly go through a 

filtering and assessment process to determine which should be taken forward for synthesis. There 

are two ways in which molecular generation is typically achieved, by either an atom-based (Bohacek 

& McMartin, 1994; Nishibata & Itai, 1991) or a fragment-based construction approach (Dossetter et 

al., 2013; P. Polishchuk, 2020). More recently, deep learning approaches have been developed which 

are typically atom-based methods (Jin et al., 2018; Lim et al., 2020).  

The only current approach that takes advantage of reduced graph (RGs) in their approach to 

molecular generation is that of Pogány et. al (Pogány et al., 2019). RG2SMI is a seq-to-seq deep 

learning approach where an input RG is used to generate an arbitrary number of molecules that are 

represented by the RG. Initially, a neural network has to learn the relationship between a SMILES 

structure and a RG SMILES structure. Therefore, the resulting molecule does not always reflect the 

RG.  

This chapter describes a new fragment-based approach to de novo design where the fragments are 

defined according to the RG generation rules and correspond to RG nodes. The method involves a 

pre-processing step in which RGs are generated for a set of molecules. The substructures associated 

with each node are then aggregated by node type to form a node-substructure dictionary where 

there is a one-to-many relationship between nodes and substructures. New molecules are then 

generated based on an input molecule that is first converted to a RG. A node of interest is selected 

and alternative substructures are extracted from the dictionary. This process can be repeated for 

any number of nodes in the input molecule. The method is inspired by a number of existing 

approaches that apply fragmentation rules and then replace part of a molecule with different 

fragments, for example, RECAP (Lewell et al., 1998), BREED (Pierce et al., 2004) and BRICS (Degen et 

al., 2008). This chapter first describes the molecular generation methods and then presents several 

applications of the methods to generate new molecules.  

 

8.2 Methodology 
RECAP, BREED and BRICS are existing methodologies that demonstrate how structural information 

can be taken advantage of to suggest new molecules. All methods are based on fragmenting existing 

molecules and then recombining the fragments to generate new molecules. RECAP generates 
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fragments by cleaving molecules at 11 chemical bond types which have been derived according to 

common chemical reactions, shown in Figure 8-1a. The number of attachment points for each 

fragment is found. Building blocks with the same number of attachment points can then be 

exchanged (Lewell et al., 1998).  BREED is an iterative process that aligns two molecules and finds 

bonds that match, which fit certain requirements. The bonds are then broken iteratively and the 

fragments are recombined by swapping them with the opposite molecule to generate new 

molecules, Figure 8-1b (Pierce et al., 2004). BRICS further develops the principles in RECAP and 

breaks molecules according to retrosynthetic rules, shown in Figure 8-1c (Degen et al., 2008).  
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Figure 8-1: A) RECAP bond cleaving rules, adapted from (Lewell et al., 1998). B) Illustration of the BREED process. The overlapping 
bonds are shown in black and the cuts to make the fragments are shown with the blue line, adapted from (Pierce et al., 2004). C) 

BRICS fragmentation prototypes taken from (Degen et al., 2008) 
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The approach developed within this chapter takes advantage of RGs and uses the RG generation 

rules and the resulting nodes to define fragmentation points in a molecule. The substructural 

fragment represented by a node can then be replaced by a different fragment as long as it is the 

same node type. The fragmentation process using RGs is illustrated in Figure 8-2, using one of the 

molecules from the BREED explanation. Each node is highlighted in a solid colour and connecting or 

shared bonds and atoms are highlighted in a checked colour formed from the individual colour of 

each node. The checked bonds are broken and each connection point to an adjacent node is retained 

using a wild atom.  

 

Figure 8-2: Molecule fragmentation process using RG nodes 

The replacement fragments must be of the same node type, have the same number of connection 

points and have compatible bond types. The new fragment must have the same number of 

connection points so that the molecule can be fully connected once the substructure is replaced. 

Also, fragments that have multiple connection points could potentially be connected in multiple 

different ways. This applies to all nodes other than terminal nodes, which only have one connection 

point. A simplistic example of how a replacement substructural fragment can generate several 

different molecules due to there being more than one connection point is shown in Figure 8-3. The 

cyclohexane fragment has three different connection points, leading to the generation of six unique 

combinations. R groups represent parts of the input molecule that do not change and which the 

replacement fragment should connect to. 
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Figure 8-3: Different combinations for one substructural fragment 

All six combinations are valid for this example as all connection points are compatible bonds, i.e., 

they are all single bonds. Figure 8-4 shows a different example where one of the connection points 

of the cyclohexane ring is a double bond, and assuming there is one connecting double bond in the 

input molecule, then there would only be two possible combinations to generate.  

 

Figure 8-4: An example demonstrating that the bond type is important 

In order to identify appropriate substructural fragments, a node-substructure dictionary has to be 

created. This is a pre-processing step with the dictionary used as a lookup during the generation 

phase of the molecular generation process. For the experiments presented later in this chapter, all 
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ten previously studied datasets have been used to construct node substructural fragment 

dictionaries so that there is one tailored to each LO series. (Generic dictionaries have also been 

created using the ChEMBL and Zinc databases.) A dictionary is generated by first representing a set 

of molecules by RGs and then extracting the substructures for each node and each molecule. The 

substructures for a given node type are aggregated and each substructure is annotated with the 

number of connection points. An example of the substructural fragments for each node along with 

the number of neighbours is shown in Figure 8-5. Molecule A21B07 is from the MMP12 dataset and 

is the most potent molecule in the dataset with a pIC50 value of eight.  

 

Figure 8-5: Molecule A21B07 from MMP12 dataset with RG (parameters linker and linker and complex) and node substructural 
fragments 

Three molecular generation approaches were developed. All three are based on a given input 

molecule for which an RG is generated. The first method is the exchange of substructures 

corresponding to a single RG node of the input molecule. The second method is the exchange of 

substructures for multiple RG nodes of the input molecule. The final method is a full enumeration of 

substructures for all nodes of the RG. The first two methods represent alternatives to current 

scaffold hopping methods. The latter provides a method for molecular suggestions to expand the 

chemical space already explored. 

 

8.2.1 Node-substructure Dictionaries 

To be able to generate molecules that can explore new regions of chemical space then, in addition 

to the tailored dictionaries, a wider range of substructural fragments needs to be used than those 

already explored in a LO series. Therefore, node-substructure dictionaries were generated from 

ChEMBL23 and Zinc 20 drug-like and in-stock datasets (Gaulton et al., 2012; Irwin & Shoichet, 2005; 
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Irwin et al., 2020). As these datasets contain drug molecules then they should provide fragments 

that could potentially be useful. Both of these datasets were cleaned and desalted before the 

substructural fragments dictionaries were generated from the RGs of the cleaned molecules. The 

number of molecules within each of these two datasets is shown in Table 8-1. For each of the LO 

datasets, a list of unique substructural fragments was also collected for each node type, with the 

number of substitution sites for each substructural fragment recorded.  

Table 8-1: Number of molecules and RGs for ChEMBL and Zinc. Three different RG types were used as described in Chapter 2. These 
are Default, Linker and Linker and complex 

Dataset Number of Molecules 
Number of unique RGs  

Default Linker Linker and complex 

ChEMBL 1,636,835 537,933 654,366 753,693 

Zinc 6,836,016 760,754 1,121,126 1,389,928 

 

8.2.2 Substructure Replacement based on One Node 

The RG of the molecule of interest is generated and one node is selected. The node type and the 

number of neighbours are then searched within a node-substructure dictionary. The choice of which 

node-substructure dictionary to use for fragment replacements is left to the user. The retrieved 

substructural fragments are then considered in turn and used to replace the substructure of the 

input molecule corresponding to the selected node. The broken bonds in the input molecule must 

be compatible with the connection bonds of the replacement substructures. If the selected node is 

one ring in a fused ring system, then the atoms that are within both fused rings must match. All 

possible combinations of the connection points for each substructural fragment are considered. 

Figure 8-6 indicates how one fragment can have several different ways of being connected to the 

rest of the molecule. The green linker node with three different connection points is being replaced. 

The corresponding substructural fragment has three connection points, labelled 1), 2) and 3). A 

replacement fragment is also shown which also has three connection points, labelled a), b) and c). 

There are six different ways in which the replacement substructural fragments could be connected 

to the connection points. However, only three unique structures can be generated. One combination 

of connection points is 1-a, 2-b, 3-c. The other two combinations are 1-a, 2-c, 3-b and 1-c, 2-a, 3-b; 

these will be generated within the molecular generation algorithm. Molecules generated from 

combinations 1-b, 2-a, 3c; 1-b, 2-c, 3-a and 1-c, 2-b, 3-a are duplicates. 
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Figure 8-6: An example that one substructural fragment can be connected in different ways 

An example of a single node change can be seen in Figure 8-7 based on a small node fragment 

dictionary. The linker node, Li, represents the substructure to be replaced. Only three substructural 

fragments are selected as these are the only substructural fragments with three connection points, 

like the existing fragment. The fragment matching the input fragment is selected as the different 

orientations of this fragment are also considered. Nine molecules are generated, three for each 

fragment and then duplicates are deleted as well as generated molecules that are identical to the 

input molecule. The new molecules are also compared to the molecules within the LO series and if 
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any already exist in the series, they are also removed. The final molecules are validated using RDKit’s 

rdMolStandardize to ensure that they are viable molecules (“RDKit: Open-Source 

Chemoinformatics,” 2018). For this example, six unique molecules are retained: two for substructure 

a; one for substructure b since the fragment is symmetrical; and three for substructure c.  

 

Figure 8-7: An example of a single node, 6Li, replacement for molecule A21B07 

Another rule to note when altering nodes is when one of the nodes is within a fused ring, that the 

length of the fusion path and the atoms must be the same. An example of how the fused ring rules 

are applied is shown within Figure 8-8. Figure 8-8a is an example of where both the equal path length 

and the same atoms are met, generating a combined molecule. Figure 8-8b is an example of where 

the path lengths are not equal, therefore, a new molecule is not generated. Figure 8-8c is an example 

where the path length is equal, however, the atoms that would be fused are different as the new 

fragment contains a carbon and an oxygen atom, whereas the remaining molecule it contains two 

carbons, so cannot be combined.   
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Figure 8-8: Demonstration of a fused ring combination where the length of the paths must be the same. The red highlighted atom in 
the input molecule is the node to be replaced. A) Is an example of when both rules are met. B) Is an example of when the same path 

length is not met. C) Is an example of when the same atoms is not met. 

 

8.2.3 Substructure Replacements based on Multiple Nodes 
For each node that has been selected for replacement, all substructural fragments that could 

potentially replace the substructure represented by the node are found. The replacements are then 

carried out combinatorially. Similar to the single node replacement, duplicates are removed and 
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molecules identical to the input molecule or molecules currently present within the LO series are 

removed, and the molecules are validated. 

An example of a multiple node molecular generation is demonstrated in Figure 8-9. Two nodes are 

replaced within molecule A21B07; nodes 2Ga and 6Li. There are two replacement substructures for 

node 2Ga and three for node 6Li giving a total of six substructural fragment combinations. These six 

combinations generate 12 new and unique molecules through the different ways of connecting the 

substructural fragments.  
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Figure 8-9: An example of a multi node, 2Ga and 6Li, replacement for molecule A21B07 
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If the two nodes that are being replaced are connecting, then the bond that joins these two nodes 

does not have to be the same as in the original molecule. Figure 8-10 illustrates how two adjoining 

nodes that are being altered do not have to retain the original joining bond. This is demonstrated as 

the carbonyl double bond in the new molecule becomes a single bond. The only requirement is that 

the connecting bond matches between the two node substructural fragments. 

 

Figure 8-10: Example of how the bonds between adjoining altering nodes do not have to be retained 

 

8.2.4 Full Enumeration 

The final method allows a RG to be input and a full enumeration of all possible and applicable 

substructural fragments combinations for all nodes is completed. This can be done using the 

substructural fragments from either ChEMBL, Zinc, or the dataset itself. The user can specify specific 

substructural fragments for individual or all nodes within the RG being enumerated. A full 

enumeration provides the chemist with a large exploration of the chemical space. All molecules can 

then be scored using the exploration and exploitation score generated in the previous two chapters 

to allow the chemist to select a molecule based on their interests. 
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8.2.5 Filtering Molecules 

In some instances, the number of molecules generated is very large. The molecules need to be 

filtered to be useful as suggestions to allow an easier and more manageable list of proposed 

molecules. Four possible ways in which the generated molecules can be filtered have been 

examined.  

The first filtering method is to use the exploration and exploitation scores that were produced in the 

previous two chapters and set a cut off for each depending on the area of chemical space the user 

is interested in. If the chemist is more interested in exploration, then a large exploration score cut 

off would be set and a low exploitation score; and vice versa if they were interested in exploiting the 

chemical space.  

The second filtering method is to set a minimum and maximum change in heavy atom count (HAC). 

This then allows the generated molecules to be a similar size to the input molecule. The change in 

HAC filter can only be applied for the single and multiple node experiments as the full enumeration 

does not start with a molecule.  

The third filtering method is to apply a QSAR model and only retain molecules that are above a 

specified biological activity (pIC50) value. For this chapter, the molecules are filtered at a pIC50 value 

of 6.5. 6.5 is considered as the active/ inactive threshold as this is in accordance with Bosc et al. (Bosc 

et al., 2019). Table 8-2 summarises the activity values for the datasets and indicates how they are 

classified as active and inactive based on this threshold. However, the biological activity threshold 

can be altered by the user. 

Table 8-2: Activity data within all datasets, provided to 2 decimal places 

Dataset 
Range of pIC50 Values Mean 

pIC50  
Std 

Median 

pIC50 

Classification 

Minimum Maximum Active Inactive 

Bajorath 4.01 11.92 7.48 1.18 7.54 1647 437 

CDK2 2.91 9.52 5.92 1.50 5.68 500 867 

Chk1 4.76 9.52 7.03 1.10 7.19 72 34 

Cyto 4.30 8.89 5.19 0.54 5.10 165 6145 

FactorXa 2.97 10.70 7.09 1.31 7.22 1317 639 

MMP12 3.70 8.00 5.46 1.03 5.30 380 1324 

Neurokinin 4.00 11.00 7.91 1.32 7.94 1248 220 

P2x7 4.02 11.00 7.12 0.88 7.10 1368 418 
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P2x7 Subset 5.90 9.10 7.30 0.74 7.30 593 98 

P38α 2.89 10.40 6.76 1.30 6.82 2159 1485 

 

The final filtering method is to use Medchem filters. There are two parts to this filtering. The first is 

that the molecule should have specific drug-like properties. These properties and associated values 

can be found in Table 8-3. The second stage is to filter out molecules if they contain certain structural 

alerts that are considered to be undesirable functional groups. Several different structural alerts can 

be used, but the ones used within this chapter are the BMS filters (Pearce, Sofia, Good, Drexler, & 

Stock, 2006). There are 180 alerts in the BMS filters within the Walters implementation (Walters, 

2020). 

Table 8-3: Medchem property filters 

Property Minimum Value Maximum Value 

Number of hydrogen bond acceptors (HBA) 0 10 

Number of hydrogen bond donors (HBD) 0 5 

Lipophilicity (LogP) -5 5 

Molecular Weight (MW) 0 500 

Topological polar surface area (TPSA) 0 200 

 

8.3 Results 

8.3.1 Node-substructure Dictionaries 
Node-substructure dictionaries were built using ChEMBL, Zinc and the ten datasets researched 

within the thesis so far, for RGs generated using the parameter Linker and Complex. This parameter 

was selected as it incorporates all atoms within the molecule into nodes and it allows a greater 

differentiation between the terminal nodes than using just the Linker parameter.  
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Figure 8-11: Example of how to clean substructural fragments 

Fragments generated from fused rings where an aromatic ring is fused to an aliphatic ring need to 

be cleaned. This is because the atoms in the extracted aliphatic ring are a mixture of aromatic and 

aliphatic and the bond is considered to be aromatic. An example is shown in Figure 8-11, where the 

dashed bond is considered to be an aromatic bond. The atoms are changed to aliphatic atoms and 

two separate substructural fragments are generated, one with a single bond and the other with a 

double bond, if the atoms' valence allows. Within the generation phase, the new bond type formed 

is not considered for either a fused or non-fused alteration.  

Table 8-4: Table showing all of the number of substructural fragments extracted for each node type from ChEMBL and Zinc for RG 
made with linker and complex parameter 

Nodes ChEMBL Zinc 
Number of substructures 

that are the same 

Acyclic inert - Li 7938 4905 1693 

Acyclic HBA - Ga 848 981 372 

Acyclic HBD - Gd 20 12 5 

Aromatic inert - No 557 546 419 

Aromatic HBA- Na 580 549 425 

Aromatic HBD - Nd 234 247 171 

Aliphatic HBD - Cd 30 9 0 

Aliphatic HBA - Ca 2103161 16862 6672 

Aliphatic inert - Co 4565603 11879 4565 

Acyclic HBA HBD - Ge 2556 2663 990 

Aromatic HBA HBD - Ne 200 204 137 

Aliphatic HBA HBD - Ce 2282292 11249 2680 

Hydrophobic - Hg 2240 1393 525 
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The number of each type of node generated for each dataset can be seen in Table 8-4 and Table 8-5. 

Table 8-4 demonstrates the number of unique substructural fragments for each node for ChEMBL 

and Zinc. It is interesting to note that even though Zinc has a larger number of molecules, there are 

generally fewer substructures for each node. Additionally, the overlap generally lies between 30% 

and 80% other than aliphatic HBD, Cd, where no substructural fragments are the same. However, 

there are very few examples for this node. 

Nodes aliphatic HBA, Ca, aliphatic inert, Co, and aliphatic HBA HBD, Ce, generate a vast number of 

substructural fragments due to the cleaning process of the fragments. Many of the uncleaned 

fragments contain one or more bonds that need to be cleaned. Additionally, within the ChEMBL 

dataset, there are several large heterocyclic rings containing several bonds to be cleaned and as the 

cleaning process generates all combinations of single and double bonds for aromatic fused bonds, 

one unclean fragment can generate a large number of cleaned fragments. An example is shown in 

Figure 8-12, where one substructure leads to 14 substructural fragments. 
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Figure 8-12: An example of how one substructural fragment is cleaned 

Table 8-5: Table showing all of the number of substructural fragments extracted for each node type for each dataset for RG made 
with linker and complex parameter 

Nodes Bajorath CDK2 Chk1 Cyto FactorXa MMP12 Neurokinin P2x7 
P2x7 

Subset 
P38α 

Acyclic inert 
- Li 

44 56 15 229 64 17 33 26 8 45 

Acyclic HBA 
- Ga 

18 27 10 76 19 8 20 15 6 22 

Acyclic HBD 
- Gd 

0 0 0 0 0 0 1 1 0 0 

Aromatic 
inert - No 

29 51 12 93 43 12 26 22 12 70 

Aromatic 
HBA- Na 

81 77 8 101 57 9 40 62 42 107 

Aromatic 
HBD - Nd 

4 22 3 32 9 1 5 4 2 17 

Aliphatic 
HBD - Cd 

0 0 0 1 0 0 0 0 0 0 

Aliphatic 
HBA - Ca 

91 107 12 1369 125 5 128 83 34 125 
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Aliphatic 
inert - Co 

27 53 8 793 35 2 57 47 6 63 

Acyclic HBA 
HBD - Ge 

20 34 12 101 62 8 28 17 5 27 

Aromatic 
HBA HBD - 

Ne 
12 16 6 19 11 1 15 15 1 23 

Aliphatic 
HBA HBD - 

Ce 
29 502 9 204 38 0 58 26 3 58 

Hydrophobic 
- Hg 

28 22 7 76 23 6 16 22 13 32 

 

Table 8-5 demonstrates the number of unique substructural fragments for each node for the ten 

datasets that have been examined in this thesis. There are a varying number of substructural 

fragments for each of the nodes across the datasets. For aromatic HBD, Gd, there is only one example 

across all of the datasets which is seen in the Neurokinin and P2x7 datasets, and only one example 

of the aliphatic inert, Cd, node, which is for the Cyto dataset. 

 

8.3.2 Substructure Replacement based on One Node 
For each of the datasets, the molecule with the highest pIC50 value was selected. One random node 

was selected to be replaced and the results from the three different substructural fragments 

dictionaries, ChEMBL, Zinc and the dataset itself are reported in Table 8-6. For each dataset, the 

node and corresponding substructure that has been replaced is highlighted in red. In all cases, 100% 

of the generated molecules were valid.  

For each dataset, two of the generated molecules were selected to display when using the node-

substructure dictionary generated from the LO series, other than for Neurokinin and FactorXa, which 

instead are from the ChEMBL node-substructure dictionary. These molecules can be seen in Figure 

8-13. Some observations based on these follow. For Chk1, there are no new substructures in the 

node-substructure dictionary, but two new molecules are generated by changing the connection 

points of the highlighted substructure. A similar effect is seen in one of the Cyto examples where the 

existing sulfonamide has been flipped. The FactorXa examples indicate that the bond types between 

the nodes are retained as only substructural fragments with a connecting double bond are used. 

Finally, no new molecules are generated for the Neurokinin dataset when the substructural 

fragments are used from just the dataset. This is because none of the substructural fragments have 

the same shortest path as the fused atoms in the remaining part of the input molecule.  
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Table 8-6: Results of the most active molecule from each dataset undergoing single node transformation 

Dataset Molecule RG 

Number of Molecules Generated Using… 

Dataset ChEMBL Zinc 

Replacement 
Fragments 

Number 
of 

Molecules 
Generated 

Replacement 
Fragments 

Number 
of 

Molecules 
Generated 

Replacement 
Fragments 

Number 
of 

Molecules 
Generated 

Bajorath 

 
CHEMBL3691541 (pIC50 = 11.92) 

 29 38 1054 1350 1004 1197 

CDK2 

 
50422965 (pIC50 = 9.52) 

 

25 104 180 429 185 375 

Chk1 

 
Chk1N144 (pIC50 = 9.52) 

 

1 3 55 11 67 17 
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Cyto 

 
4806 (pIC50 = 8.89) 

 
42 59 1055 1626 1160 1666 

FactorXa 

 
50266775 (pIC50 = 10.70) 

 

6 1 77 8  70 13 

MMP12 

 
A21B07 (pIC50 = 8.00) 

 
6 15 2166 9700 1425 6218 

Neurokinin 

 
CHEMBL281797 (pIC50 = 11.00) 

 

6 0 68 8 58 9 
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P2x7 

 
CHEMBL2324343 (pIC50 = 11.00) 

 

3 9 120 204 126 229 

P2x7 
Subset 

 
CHEMBL2218174 (pIC50 = 9.51)  

13 12 2087 1937 1178 1081 

P38α 

 
255896 (pIC50 = 10.40) 

 

18 17 54 53 46 45 
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Bajorath 

  

CDK2 

  

Chk1 

  

Cyto 
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MMP12 
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P2x7 Subset 

  

P38α 

  
Figure 8-13: Two examples of molecules generated from the single node generation 
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A comparison was drawn between the molecules generated using the three different node-

substructure dictionaries. The number of molecules that are the same is shown in Table 8-7. 

For all datasets, other than Cyto, the molecules generated from the substructural fragments 

from the dataset are also all generated when using the substructural fragments the ChEMBL. 

This is not surprising as all the datasets, except Cyto, are subsets of ChEMBL. Similarly, the 

molecules generated using substructural fragments from the dataset are also generated using 

the substructures from Zinc, except for the Bajorath and Cyto datasets. When comparing the 

molecules generated from ChEMBL and Zinc the overlap is not 100% and this reflects the 

differences in the node-substructure dictionaries shown in Table 8-4.  

The molecules generated from the dataset substructural fragments are within the domain 

applicability, whereas, the molecules generated from the ChEMBL and Zinc substructural 

fragments are exploring new areas of chemical space and introducing unseen fragments. To 

get the largest chemical space coverage, a combination of all three substructural fragments 

would be preferred. However, a greater number of molecules would be generated, so a 

filtering process would be needed to narrow down the molecules. 

Table 8-7: Comparison of the molecules between each of the methods to establish the overlap 

Dataset 

Molecules That Are The Same in… 

Dataset ChEMBL 

ChEMBL Zinc Zinc 

Bajorath 38 31 616 

CDK2 104 104 300 

Chk1 3 3 11 

Cyto 56 52 708 

FactorXa 1 1 4 

MMP12 15 15 1813 

Neurokinin - - 6 

P2x7 9  9 171 

P2x7 Subset 12 12 440 

P38α 17 17 44 

 

Additionally, on closer inspection of the molecules generated there are some peculiar 

molecules created. Two are identified in Figure 8-14. Molecule a) is an example of how the 

size of the fragment can significantly change. A small ring of size four has been replaced by a 

macrocycle of size 19. Additionally, some of the molecules are peculiar, one is identified in 

Figure 8-14b. The bonds that are dashed indicate that these are aromatic bonds, therefore, 

this is an aromatic ring with a triple bond also included within this ring. This is considered valid 
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as it can be read into a molecule object in RDKit. Numerous molecules contain this fragment, 

with an example from Zinc shown in Figure 8-15. Due to these factors and the vast number of 

molecules generated in some instances the molecules go through a filtering process. Of the 

filtering processes examined within this chapter, the only method that removes molecule 

Figure 8-14b is the medchem filters as it would be filtered out due to primary_halide_sulfate 

> 0 filter, [CH2][Cl,Br,I,$(O(S(=O)(=O)[!$(N);!$([O&D1])]))] which matches to the -CH2Br, and 

the current MW filter.  

 

Figure 8-14: Two peculiar molecules identified from the molecular generation process. a) from Bajorath dataset and b) from 
Neurokinin both created with Zinc substructural fragments 

 

Figure 8-15: Molecule contained with Zinc with the peculiar fragment, *c1c#cccc1* 

8.3.2.1 Filtering Molecules 

All the molecules generated in the above section then undergo the four filtering processes. 
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8.3.2.1.1 Exploration and Exploitation Score 

The exploration and exploitation scores from the previous chapter can be used to filter out 

molecules that do not fit the potential exploration or exploitation goals that the chemist is 

after. Given that the two scores are based on the RG cores, these methods are applicable to 

the replacement of nodes in the RG core only.  

The use of the exploration and exploitation scores is demonstrated using molecule A21B07 

from the MMP12 dataset. The MMP12 dataset is represented by a single RG core as described 

in Chapter 3 and the exploration and exploitation scores for each substructural fragment in 

the RG core are displayed in Figure 8-16. These were derived using the methods described in 

Chapter 6 and 7. Table 8-8 illustrates the exploration and exploitation scores for the 15 

molecules generated by replacing the linker node referred to earlier and using the MMP12 

node-substructure dictionary. In each case, the overall molecule score is shown as well as 

each of the individual node scores. None of these new molecules generated has an unseen 

linker substructure within this node. Given that the scores are agnostic of how the 

substructures are connected, then the node scores are assigned according to substructures 

in the LO series. Therefore, multiple molecules can achieve the same score. The first new 

molecule generated receives the highest exploration score as the RG core substructures are 

relatively rare in the LO series. The contributions that are made by the other nodes/ 

substructures that are unchanged are the same across all 15 new molecules. The exploitation 

scores do not produce the reverse ordering of the exploration score because this score is 

dependent on how important the substructure at that node position is to the biological 

activity and not the distribution of how many times it has been observed. Once again, the 

four unchanged node contributing scores remain the same throughout the new molecules.  

However, this was not the case for the substructure replacements to molecule 50266775 from 

the FactorXa dataset since the node that has been replaced is not part of the RG core. As all 

the nodes within the RG core remain the same, the exploration and exploitation scores are 

the same and do not allow a way to distinguish between or filter molecules. Therefore, this 

filtering method could only be used for molecules that have alterations to the RG core nodes. 

Additionally, the filtration could be on either just the exploration score or exploitation score 

or could be of both.    
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Figure 8-16: MMP12 RG core substructural fragment 
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Table 8-8: Table of exploration and exploitation scores for the molecules generated from A21B07 and the MMP12 node-
substructure dictionary 

New Molecule Exploration Score Exploitation Score 

 

0.201 
[0.355, 0, 0, 0.652, 0] 

0.270 
[1.037, 0.358, 0.169, 

-0.317, 0.103] 

 

0.201 
[0.355, 0, 0, 0.652, 0] 

0.270 
[1.037, 0.358, 0.169, 

-0.317, 0.103] 

 

0.201 
[0.355, 0, 0, 0.652, 0] 

0.270 
[1.037, 0.358, 0.169, 

-0.317, 0.103] 

 

0.196 
[0.355, 0, 0, 0.627, 0] 

0.401 
[1.037, 0.358, 0.169, 

0.338, 0.103] 

 

0.196 
[0.355, 0, 0, 0.627, 0] 

0.401 
[1.037, 0.358, 0.169, 

0.338, 0.103] 

 

0.196 
[0.355, 0, 0, 0.627, 0] 

0.401 
[1.037, 0.358, 0.169, 

0.338, 0.103] 

 

0.193 
[0.355, 0, 0, 0.612, 0] 

0.402 
[1.037, 0.358, 0.169, 

0.341, 0.103] 
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0.193 
[0.355, 0, 0, 0.612, 0] 

0.402 
[1.037, 0.358, 0.169, 

0.341, 0.103] 

 

0.193 
[0.355, 0, 0, 0.612, 0] 

0.402 
[1.037, 0.358, 0.169, 

0.341, 0.103] 

 

0.191 
[0.355, 0, 0, 0.600, 0] 

0.327 
[1.037, 0.358, 0.169, 

-0.032, 0.103] 

 

0.178 
[0.355, 0, 0, 0.534, 0] 

0.446 
[1.037, 0.358, 0.169, 

0.563, 0.103] 

 

0.178 
[0.355, 0, 0, 0.534, 0] 

0.446 
[1.037, 0.358, 0.169, 

0.563, 0.103] 

 

0.094 
[0.355, 0, 0, 0.114, 0] 

0.367 
[1.037, 0.358, 0.169, 

0.169, 0.103] 

 

0.094 
[0.355, 0, 0, 0.114, 0] 

0.367 
[1.037, 0.358, 0.169, 

0.169, 0.103] 

 

0.094 
[0.355, 0, 0, 0.114, 0] 

0.367 
[1.037, 0.358, 0.169, 

0.169, 0.103] 

 



 
 

294 
 

8.3.2.1.2 Change in HAC 

The generated molecules were filtered using maximum and minimum change in HAC which 

were set to -3 and 3. The numbers of molecules filtered out are shown in Table 8-9. There is 

very little effect for the molecules derived from the substructures in the LO datasets, 

therefore, this shows that there is less fluctuation in the HAC when using those substructural 

fragments. For some of the datasets, no molecules are filtered when using the substructures 

derived from ChEMBL or Zinc. This suggests that this filter should be fine-tuned for each 

individual dataset.  

Table 8-9: Number of molecules from the single node change that were filtered out for each dataset using the change in 
HAC filter 

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 0 [0%] 128 [9.5%] 126 [10.5%] 

CDK2 0 [0%] 0 [0%] 0 [0%] 

Chk1 0 [0%] 0 [0%] 0 [0%] 

Cyto 3 [5.1%] 510 [31.4%] 550 [33.0%] 

FactorXa 0 [0%] 0 [0%] 0 [0%] 

MMP12 0 [0%] 7057 [72.8%] 4406 [70.9%] 

Neurokinin - 0 [0%] 0 [0%] 

P2x7 0 [0%] 0 [0%] 0 [0%] 

P2x7 Subset 0 [0%] 1476 [76.2%] 689 [63.7%] 

P38α 0 [0%] 0 [0%] 0 [0%] 

 

8.3.2.1.3 QSAR Filter 

The QSAR models that were trained for each of the datasets from the previous chapter were 

used to produce predictions for all generated molecules. The SVM models were used for all 

datasets, as this method typically produces the best model.  Molecules that have a predicted 

pIC50 value of less than 6.5 were filtered out. The filtered results can be seen in Table 8-10. 

There are only three datasets where any of the generated molecules are filtered. These three 

datasets are the only datasets where the molecules used to generate the models have a mean 

and median pIC50 value below 6.5, and they all have a high inactive to active ratio, which is 

the reverse for all of the other seven datasets. For the Cyto dataset, nearly 100% of the 

molecules are filtered. This is due to the Cyto model having the lowest mean and median 

pIC50 activity values and the lowest active to inactive ratio. Therefore, if the QSAR filter 

technique were to be implemented, it would have to be either based on a user-defined 
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threshold or the threshold could be determined using all the predictions that are calculated 

for the new molecules.  

Table 8-10: Number of molecules from the single node change that were filtered out for each dataset using the QSAR model 

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 0 [0%] 0 [0%] 0 [0%] 

CDK2 0 [0%] 25 [5.8%] 32 [8.5%] 

Chk1 0 [0%] 0 [0%] 0 [0%] 

Cyto 59 [100%] 1626 [100%] 1666 [100%] 

FactorXa 0 [0%] 0 [0%] 0 [0%] 

MMP12 0 [0%] 6515 [67.2%] 4426 [71.2%] 

Neurokinin - 0 [0%] 0 [0%] 

P2x7 0 [0%] 0 [0%] 0 [0%] 

P2x7 Subset 0 [0%] 0 [0%] 0 [0%] 

P38α 0 [0%] 0 [0%] 0 [0%] 

 

8.3.2.1.4 Medchem Filters 

The final filtering method that was explored was using the medchem filters. Both the BMS 

filters and drug-like properties were applied simultaneously. The number of filtered 

molecules can be found in Table 8-11. The medchem filters have a varied performance across 

the datasets and the different variations of substructural fragments available to build new 

molecules. For FactorXa and Neurokinin, all of the new molecules are filtered out. These filters 

may therefore be only applicable for some datasets and therefore would need to be changed 

accordingly. The input molecule for the FactorXa molecule is an important example as the 

molecule being altered also would not pass these filters as the MW is above 500.  

Table 8-11: Number of molecules from the single node change that were filtered out for each dataset using the BMS and 
medicinal chemistry filters 

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 6 [15.8%] 368 [27.3%] 298 [24.9%] 

CDK2 15 [14.4%] 214 [49.9%] 189 [50.4%] 

Chk1 0 [0%] 0 -0%] 0 [0%] 

Cyto 8 [13.6%] 576 [35.4%] 525 [31.5%] 

FactorXa 1 [100%] 8 [100%] 13 [100%] 

MMP12 6 [40%] 9404 [96.9%] 5985 [96.3%] 

Neurokinin - 8 [100%] 9 [100%] 

P2x7 0 [0%] 77 [37.7%] 101 [44.1%] 

P2x7 Subset 0 [0%] 1165 [60.1%] 529 [48.9%] 

P38α 0 [0%] 5 [9.4%] 2 [4.4%] 
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The number of molecules that were filtered according to each filter was also investigated. 

Table 8-12 demonstrates the split in the number of molecules that are filtered out by the BMS 

filters and the property filters and the number in brackets, [], indicates how many BMS filters 

were used. Figure 8-17 shows the BMS filters used with their frequencies when applying them 

to the molecules generated from the datasets’ substructural fragments. The breakdown of 

how many filters were used and the corresponding number of molecules removed by each 

can be found within the Appendix. There were only six BMS filters used within the molecules 

generated from the datasets’ substructural fragments. 66 and 63 BMS filters were used for 

the molecules generated from the ChEMBL and Zinc substructural fragments, respectively.  

For the molecules generated using the substructures from within the LO series, the BMS filter 

that filters the most molecules is the halogen_heteroatom with 15 examples across all ten 

datasets. This alert identifies a halogen is connected to anything other than a carbon or 

hydrogen atom. For both the ChEMBL and Zinc substructures, the BMS filter that filters the 

most molecules is gte_10_carbon_sb_chain with 2249 and 1065 examples across all ten 

datasets, respectively. This is a ten carbon chain link where each carbon is not connected to 

a ring atom.  

Table 8-12: Table showing the split of molecule that are filtered by either the BMS filters or the property filter for the single 
node alteration. The number in the square brackets equals the number of BMS filters 

Dataset Filter 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 
BMS 2 [1] 212 [14] 138 [11] 

Properties 4 156 160 

CDK2 
BMS 15 [1] 214 [6] 183 [3] 

Properties 0 0 6 

Chk1 
BMS 0 0 0 

Properties 0 0 0 

Cyto 
BMS 8 [4] 486 [39] 394 [34] 

Properties 0 90 131 

FactorXa 
BMS 0 2 [2] 3 [3] 

Properties 1 6 10 

MMP12 
BMS 0 2682 [17] 1675 

Properties 3 6700 4288 

Neurokinin 
BMS - 8 [2] 9 [1] 

Properties - 0 0 

P2x7 
BMS 0 77 [8] 101 [8] 

Properties 0 0 0 

P2x7 Subset 
BMS 0 569 [7] 213 [7] 

Properties 0 570 302 

P38α BMS 0 5 [2] 2 [1] 
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Properties 0 0 0 

 

 

Figure 8-17: BMS filters applied to the single node alteration for each dataset when using the substructural fragments from 
the dataset 

For some of these datasets, the drug-like properties were too strict as they passed the BMS 

filters, however, failed on the drug-like property. Even though the initial molecule would have 

also failed. Therefore, these properties could be altered according to the input molecule or 

what the chemist is interested in.  

 

8.3.3 Substructure Replacements based on Multiple Nodes 

The same molecules from the single node section then underwent a multiple node 

transformation. This was the same node from the single node transformation along with 

another randomly selected node. The number of replacement fragments and molecules 

generated using each dictionary for all datasets is shown in Table 8-13. In all cases, 100% of 

the generated molecules were valid.  
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Table 8-13: Results of the most active molecule from each dataset undergoing multiple node transformation 

Dataset Molecule RG 

Number of Molecules Generated Using… 

Dataset ChEMBL Zinc 

Replacement 
Fragments 

Number 
of 

Molecules 
Generated  

Replacement 
Fragments 

Number 
of 

Molecules 
Generated  

Replacement 
Fragments 

Number 
of 

Molecules 
Generated  

Bajorath 

 
CHEMBL3691541 (pIC50 = 11.92) 

 
Ga 6 
Ca 29 

233 
Ga 236 
Ca 1054 

397193 
Ga 278 
Ca 1004 

351013 

CDK2 

 
50422965 (pIC50 = 9.52) 

 

Na 25 
Hg 21 

4409 
Na 180 

Hg 2087 
1666679 

Na 185 
Hg 1178 

813663 

Chk1 

 
Chk1N144 (pIC50 = 9.52) 

 

Ne 1 
Na 5 

35 
Ne 55 

Na 126 
2399 

Ne 67 
Na 114 

3189 
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Cyto 

 
4806 (pIC50 = 8.89) 

 
Ge 42 
No 14 

899 
Ge 1055 

No 68 
87857 

Ge 1160 
No 58 

76681 

FactorXa 

 
50266775 (pIC50 = 10.70) 

 

No 16 
Ga 6 

79 
No 68 
Ga 77 

3797 
No 58 
Ga 70 

2753 

MMP12 

 
A21B07 (pIC50 = 8.00) 

 

Ga 5 
Li 6 

93 
Ga 236 
Li 2166 

2852091 
Ga 278 
Li 1425 

 1822164 

Neurokinin 

 
CHEMBL281797 (pIC50 = 11.00) 

 

Na 1 
No 6 

17 
Na 51 
No 68 

4772 
Na 53 
No 58 

3599 
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P2x7 

 
CHEMBL2324343 (pIC50 = 11.00) 

 

Ge 6 
No 3 

58 
Ge 646 
No 120 

117258 
Ge 606 
No 126 

115688 

P2x7 
Subset 

 
CHEMBL2218174 (pIC50 = 9.51)  

Ca 9 
Hg 13 

389 
Ca 3902 
Hg 2087 

11174507 
Ca 3826 
Hg 1178 

6573149 

P38α 

 
255896 (pIC50 = 10.40) 

 

Na 18 
Li 6 

107 
Na 54 
Li 375 

18953 
Na 46 
Li 210 

8555 

 

 



301 
 

Bajorath 

  

CDK2 

  

Chk1 

  

Cyto 

 
 

FactorXa 

  

MMP12 

  

Neurokinin 

  

P2x7 

  

P2x7 Subset 

  

P38α 

  
Figure 8-18: Two examples of molecules generated from the multiple node generation  
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After examining the molecules generated from the multiple node replacements, there are several 

key issues to note. The Chk1 examples within Figure 8-18 show that when multiple nodes are being 

replaced, the original substructure for one node is retained provided that the substructure for the 

other node is replaced. This is because these combinations of substructures have not been seen 

before. The P2x7 Subset demonstrates that a substructural fragment can be the same, but connected 

differently from the input molecule, as shown in the previous section. An example of how adjoining 

bond types can be altered from the initial bonds can be found in Figure 8-18 for FactorXa, where the 

double bond between the two nodes in the input molecule is not retained and a single bond joins 

the replacement substructures.  

Table 8-14: Comparison of the molecules between each of the methods to establish the overlap 

Dataset 

Molecules That Are The Same in… 

Dataset & … ChEMBL & … 

ChEMBL Zinc Zinc 

Bajorath 233 191 89464 

CDK2 4409 3989 265481 

Chk1 35 35 1827 

Cyto 854 794 27650 

FactorXa 79 79 1356 

MMP12 93 93 263027 

Neurokinin 17 17 2180 

P2x7 58 58 41622 

P2x7 Subset 389 233 1143071 

P38α 107 107 4814 

 

Table 8-14 shows the number of molecules that are the same between the three different node-

substructure dictionaries. As for the single node replacements, all of the molecules generated using 

the LO dataset substructural fragments are subsets of the molecules generated using the ChEMBL 

substructural fragments, except for the Cyto dataset. However, this is not the case when comparing 

the molecules generated from the LO dataset fragments and the Zinc substructural fragments where 

there are three more datasets that are not subsets, Bajorath, CDK2 and P2x7 Subset. Finally, the 

overlap between the molecules generated from the two larger substructural fragment dictionaries, 

ChEMBL and Zinc, varies depending on the dataset. For some datasets the overlap is small, two of 

note are the MMP12 and P2x7 Subset datasets as these are around 15%. Whereas, for the 

Neurokinin dataset, the overlap is around 60%. The degree of overlap is dependent on the type of 

nodes being replaced and the number of connection points with the larger overlaps tending to be 

for the node types that have fewer substructural fragments extracted, shown in Table 8-4. Therefore, 
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if a user wanted to explore a vast area of chemical space a combination of ChEMBL and Zinc 

substructural fragments would be more ideal. 

 

8.3.3.1 Filtering Molecules 

All the molecules from each experiment were then filtered using the four filtering processes. 

8.3.3.1.1 Change in HAC 

The generated molecules were filtered using the same HAC cut offs as the previous section, that is, 

-3 to 3. Table 8-15 demonstrates the number of molecules that were filtered out for each 

experiment. There was little to no effect on the molecules generated from the LO dataset 

substructural fragments. However, this is the opposite for the molecules generated from the 

ChEMBL and Zinc substructural fragments. The large filtration for these two methods is good, as in 

most instances, the chemists still have many molecules to examine to make their own opinions but 

are not overwhelmed with as many molecules as they would have been without the filter. 

Table 8-15: Number of molecules from the multiple node change that were filtered out for each dataset using the change in HAC 
filter 

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 70 [30.0%] 321059 [80.8%] 314498 [89.6%] 

CDK2 0 [0%] 1320460 [79.2%] 569324 [70.0%] 

Chk1 0 [0%] 24 [1.0%] 0 [0%] 

Cyto 35 [3.9%] 18663 [21.2%] 16811 [21.9%] 

FactorXa 0 -0%] 563 [14.8%] 393 [14.3%] 

MMP12 6 [6.5%] 2756063 [96.6%] 1786033 [98.0%] 

Neurokinin 0 [0%] 9 [0.2%] 45 [1.3%] 

P2x7 10 [17.2%] 70502 [60.1%] 74918 [64.8%] 

P2x7 Subset 0 [0%] 9421770 [84.3%] 4996011 [76.0%] 

P38α 25 [23.4%] 17646 [93.1%] 7772 [90.8%] 

 

8.3.3.1.2 QSAR Filter 

Similar to the single node investigation, the QSAR filter only removed molecules for a few of the 

datasets and for seven datasets no molecules were filtered regardless of which substructural 

fragments were used, Table 8-16. For the Cyto dataset, all of the molecules were filtered out when 

an activity cut off of 6.5 is used. Therefore, the QSAR filter for each dataset should be established 

for each or a top percentage or cut off should be applied. 

Table 8-16: Number of molecules from the multiple node change that were filtered out for each dataset using the QSAR model  

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 0 [0%] 0 [0%] 0 [0%] 
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CDK2 3522 [79.9%] 1517698 [91.1%] 725682 [89.2%] 

Chk1 0 [0%] 0 [0%] 0 [0%] 

Cyto 899 [100%] 87857 [100%] 76681 [100%] 

FactorXa 0 [0%] 0 [0%] 0 [0%] 

MMP12 67 [72.0%] 2847883 [99.9%] 1819971 [99.9%] 

Neurokinin 0 [0%] 0 [0%] 0 [0%] 

P2x7 0 [0%] 0 [0%] 0 [0%] 

P2x7 Subset 0 [0%] 0 [0%] 0 [0%] 

P38α 0 [0%] 0 [0%] 0 [0%] 

 

8.3.3.1.3 MedChem Filters 

The BMS filter and property filters were applied to all the molecules generated in Table 8-13. The 

number of filtered molecules for each dataset and node-substructure dictionary can be found in 

Table 8-17. For the LO dataset substructural fragments at least 30 percent of the molecules were 

filtered out, apart from for the two smallest datasets Chk1 and P2x7 Subset. For the ChEMBL and 

Zinc node-substructure dictionaries, a larger percentage of molecules were filtered out and in some 

instances all the molecules were filtered. This is good as the chemist is presented with a more 

manageable list of suggested molecules to synthesis next. However, like the single node experiment, 

the property filter may need to be relaxed in some scenarios as a large proportion are filtered out 

and for some of the datasets the majority of the compounds in the LO series would also not pass 

these filters. 

Table 8-17: Number of molecules from the multiple node change that were filtered out for each dataset using the BMS and medicinal 
chemistry filters 

Dataset 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 76 [32.6%] 274926 [69.2%] 237055 [67.5%] 

CDK2 1230 [27.9%] 1533742 [92.0%] 727022 [89.4%] 

Chk1 0 [0%] 464 [19.3%] 596 [18.7%] 

Cyto 328 [36.5%] 59071 [67.2%] 49818 [65.0%] 

FactorXa 79 [100%] 3797 [100%] 2753 [100%] 

MMP12 42 [45.2%] 2846480 [99.8%] 1819078 [99.8%] 

Neurokinin 17 [100%] 4772 [100%] 3599 [100%] 

P2x7 20 [34.5%] 99693 [85.0%] 101678 [87.9%] 

P2x7 Subset 2 [2.8%] 9152049 [81.9%] 4896192 [74.5%] 

P38α 33 [30.8%] 14385 [75.9%] 5850 [68.4%] 

 

A breakdown of the split between the BMS filters or the property filters is shown for each experiment 

in Table 8-18. The number in brackets, [], indicates how many BMS filters were used. There were 13, 

90 and 83 unique BMS filters used for the dataset, for the ChEMBL and Zinc substructural fragments 

respectively. The number of molecules that are filtered out for each filter is shown within the 
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Appendix. For the LO dataset substructural fragments, the most effective filter is the 

halogen_heteratom filter, which is where a halogen atom is connected to a heteroatom contained 

within a ring. For the ChEMBL and Zinc dictionaries the largest filter is once again the 

gte_10_carbon_sb_chain.    

Table 8-18: Table showing the split of molecule that are filtered by either the BMS filters or the property filter for the multiple node 
alteration. The number in the square brackets equals the number of BMS filters 

Dataset Filter 
Number of Molecules Filtered Out… 

Dataset ChEMBL Zinc 

Bajorath 
BMS 49 [2] 229782 [37] 178370 [35] 

Properties 27 45144 58685 

CDK2 
BMS 990 [1] 1153591 [13] 528535 [11] 

Properties 240 377129 196394 

Chk1 
BMS 0 464 [5] 580 [6] 

Properties 0 0 16 

Cyto 
BMS 328 [6] 54769 [43] 46130 [39] 

Properties 0 4302 3688 

FactorXa 
BMS 38 [4] 2044 [24] 1433 [26] 

Properties 41 1753 1320 

MMP12 
BMS 0 1792294 [39] 1063831 [41] 

Properties 30 1053392 754780 

Neurokinin 
BMS 17 [1] 4772 [8] 3599 [3] 

Properties 0 0 0 

P2x7 
BMS 0 68037 [43] 65434 [40] 

Properties 20 31656 36244 

P2x7 Subset 
BMS 0 3739469 [32] 1550330 [23] 

Properties 11 5412580 3331523 

P38α 
BMS 0 10820 [11] 3584 [9] 

Properties 33 3565 2266 

 

8.3.4 Full Enumeration 
For each dataset, the molecule with the largest pIC50 value was examined. The first step was to find 

all possible substructural fragments for each node type with the correct number of neighbours 

(connection points) to be applicable for this enumeration. An example is displayed within Figure 

8-19, based on the node-substructure dictionary from the MMP12 LO series. An indication of the 

number of molecules that would be generated can be calculated by considering all combinations. 

The real number is likely to be considerably larger due to the different ways of combining 

substructures with more than one connection points.  
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Figure 8-19: Extraction of all substructural fragments for RG and fragments from MMP12 dataset 

Given the extremely large number of substructural fragments, full enumerations were not carried 

out. Instead the number of combinations of fragments for each RG were calculated. The number of 

combinations of each substructural fragment for each node for the overall RG can be seen in Table 

8-19. It should be noted that these values do not equate to the number of molecules that would be 

generated as most fragments can be connected in multiple different ways via their connection 

points, as mentioned above. Additionally, some of these substructural fragments may not be 

compatible as the connecting bonds may not be the same and if a fused ring is present the 

overlapping atoms may not be the same or both rings may not have the same number of connecting 

atoms. Table 8-19 just gives an indication of the vast size of space that would be explored. 

Unfortunately, these would take a large amount of computational power to compute. 

Table 8-19: Number of combinations of applicable substructural fragments for a full enumeration 

Dataset RG 
Number of Combinations of Fragments… 

Dataset ChEMBL Zinc 

Bajorath  206,007,648 1.813E+16 8.173E+15 

CDK2 

 

6.293E+11 1.583E+27 1.641E+26 
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Chk1 

 

75,600 7.221E+23 3.022E+23 

Cyto 
 

186,701,760 1.795E+14 1.262E+14 

FactorXa 

 

9.042E+13 3.728E+28 6.741E+27 

MMP12 
 

72,900 1.275E+22 2.510E+21 

Neurokinin 

 

1,395,523,584 9.325E+26 3.854E+25 

P2x7 

 

13,412,044,800 3.193E+30 2.262E+29 

P2x7 Subset 

 

821,340 7.963E+25 5.232E+24 

P38α 

 

783,820,800 5.903E+21 8.721E+20 

 

The full enumeration was completed for the top RG within the MMP12 dataset using the 

substructural fragment dictionary generated from the dataset itself. Even though there were only 

72,900 different fragment combinations, this resulted in 933,120 molecules. Therefore, this 

demonstrates how the number of molecules begins to explode. 

A full enumeration using all possible substructural fragments, even from just the dataset, would 

require a large amount of computation and generate a vast amount of molecules. It would be more 

beneficial if the user was to craft their own preferences for each node. Or the user needs to set 

certain requirements to filter the fragment set down even further.  

 

8.4 Verification of Molecular Generation Method  
Two verification experiments have been created that aim to understand how effective the molecular 

generation algorithm is at identifying new molecules that would potentially be useful to a lead 

optimisation programme.  The first analysis examines whether a hold out set can be generated from 
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the main dataset. The second examines whether the hold out set is generated using each of the 

different substructural fragment sets. 

8.4.1 Generating molecules in a hold out set 

All molecules had their respective RGs calculated using the parameter “linker and complex”. For each 

dataset, each RG within the hold out 10% was examined to see whether it was present within the 

90% RGs. Table 8-20 shows the number of molecules for which the RG representations are not 

represented within the 90%. These molecules are removed since the molecular generation method 

is not applicable to the generation of these due to it being driven by the RG representation of the 

input molecules. This is a limitation of the method.  

Table 8-20: Table showing the split of data within the 90% and 10% set for each dataset and the number of molecules that could not 
be created 

Dataset 
90% 10% Number of Molecules in 

holdout for which the RG is 
Not Represented in 90% 

Number of 
Molecules 

Number of 
Unique RG 

Number of 
Molecules 

Number of 
Unique RG 

Bajorath 1876 981 208 191 66 

CDK2 1230 842 137 129 71 

Chk1 95 86 11 11 11 

Cyto 5675 3999 635 590 328 

FactorXa 1760 981 196 181 67 

MMP12 1534 563 170 135 39 

Neurokinin 1321 800 147 133 62 

P2x7 1607 749 179 148 46 

P2x7 Subset 622 210 69 60 13 

P38α 3280 2038 364 330 147 

 

Hold out sets for each dataset were derived using stratified sampling. For each dataset, first, 

singletons were removed, that is, molecules with a unique RG representation, and then a stratified 

split was taken of the remaining molecules to generate a training and a hold out set. The size of the 

hold out set has to be equal to or greater than the number of unique RGs. The singletons were then 

recombined with the training set to generate the substructural fragments for each node type. The 

split in data can be seen in Table 8-21. 

Table 8-21: Training and test set split using the stratified sampling approach 

Dataset 

Singletons Training Set Hold Out Set 

Number of 
Molecules 

Number of 
Unique RG 

Number of 
Molecules 

Number of 
Unique RG 

Number of Molecules 
and Unique RG 

Bajorath 702 702 964 418 418 

CDK2 681 681 455 231 231 

Chk1 90 90 9 7 7 

Cyto 3237 3237 1988 1085 1085 
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FactorXa 653 653 910 393 393 

MMP12 275 275 1102 327 327 

Neurokinin 559 559 608 301 301 

P2x7 482 482 992 312 312 

P2x7 Subset 104 104 469 118 118 

P38α 144 144 1463 740 740 

 

For each molecule, the nearest molecule in the training set with the same RG was found within the 

hold out. The nearest molecule was perceived to be the molecule with the fewest number of RG 

node transformations. The number of substructural changes that would be required to generate the 

hold out molecule from the molecule in the training data was then calculated based on the node 

definitions. Most of the molecules in the hold out set can be generated with one or two node 

changes, shown in Table 8-22. The structure generation method was then applied to the molecule 

in the training data to see if the hold out molecule could be generated. This was repeated for each 

training set-hold out set molecule pair from each dataset using the three different node-substructure 

dictionaries: the one derived from the LO series; the ChEMBL dictionary; and the Zinc dictionary. The 

number of molecules from the hold out sets that could not be generated from each of the different 

node substructure dictionaries can be found in Table 8-23.  

Table 8-22: Number of node changes to make for each molecule within each datasets test set 

Dataset Molecules in Test Set 
Node Changes… 

One Two More Than Two 

Bajorath 418 350 42 25 

CDK2 231 185 29 16 

Chk1 7 5 2 0 

Cyto 1085 700 254 117 

FactorXa 393 326 39 22 

MMP12 327 271 40 16 

Neurokinin 301 237 48 13 

P2x7 312 234 38 35 

P2x7 Subset 118 81 26 10 

P38α 740 610 68 38 

 

Table 8-23: The number of molecules that cannot be generated in the hold out set from each of the different substructural 
dictionaries 

Dataset 
Number of 

Molecules in Hold 
Out Set 

Number of Molecules Not Generated Using Substructural 
Fragments From … 

Dataset ChEMBL Zinc 

Bajorath 418 17 0 9 

CDK2 231 28 1 12 

Chk1 7 5 0 0 

Cyto 1085 83 3 67 

FactorXa 393 42 1 3 
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MMP12 327 0 0 0 

Neurokinin 301 42 0 19 

P2x7 312 10 0 5 

P2x7 Subset 118 2 0 4 

P38α 740 21 1 8 

 

Two examples from the P2x7 Subset dataset molecules that could not be generated are shown in 

Figure 8-20. The hold out molecule and its nearest neighbour are shown. The first example requires 

just one substructure/node replacement (shown in red) and the second requires two replacements 

(shown in red and blue). The tables underneath show the substructural fragments that are present 

in the node-substructure dictionary generated from the training data. It can be seen that for the first 

molecule the required substructural fragment is not contained within the already seen substructural 

fragments extracted from the training set. For the second molecule, the substructure required as a 

replacement for the Li node is present, however, that required for the Ge node is not present within 

the Ge substructural fragments that exist within the training set. This means that it cannot be 

generated from the node-substructure dictionary from the training data. However, there are many 

instances where these are present within the ChEMBL and Zinc node-substructure dictionaries and 

why more molecules can then be generated. Also, all datasets that are extracted from ChEMBL, 

(Bajorath, Neurokinin, P2x7 and P2x7 Subset) when using the ChEMBL node-substructure dictionary 

are able to make the hold out molecules. These datasets should have good reproducibility as all 

fragments are presented within the ChEMBL database.  
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Figure 8-20: Example of how the two molecules from P2x7 Subset with the dataset substructural fragments cannot be made 

 

8.5 Conclusion 
A new molecular generation algorithm has been created based upon RGs and BRICS and BREED. A 

molecule can have a proportion of it altered according to the underlying RG node structure. This can 

either be a single or multiple node alteration, with the corresponding RG node fragments being used 

from either the LO series itself, or from the ChEMBL or Zinc node-substructural dictionaries. An 

advantage of this methodology is that the RG structure is always retained, unlike Pogány et. al, 

making it a good technique for scaffold hopping as the pharmacophoric features remain. The RG 

structure remains the same while introducing variations in the underlying chemical structure. 

Additionally, this methodology can also act as a way to essentially complete a Free-Wilson matrix for 

R-groups, however, it can also incorporate changes within the RG core not just the R-groups. 

The single node and multi node alterations both can generate numerous molecules. Three different 

node-substructure dictionaries were used from which the new molecules are generated. There were 

fewer molecules generated from the LO series node-substructure dictionary as there were fewer 

substructural fragments. This would allow a chemist to remain within the domain of applicability as 
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the substructures have already been seen. Also, these molecules generally tended to be a subset of 

the molecules extracted from the molecules generated from the ChEMBL node-substructure 

dictionary. A large proportion of molecules were different when using either the ChEMBL or Zinc 

node-substructure dictionaries, which is due to the initial substructural fragments being different. 

Therefore, the molecules generated are dependent on the node-substructure dictionary used.  

Additionally, some ways were examined that allowed the molecules generated to be filtered to 

provide a more manageable list of suggested molecules. However, some work still needs to be done 

on this. It may also be worth the substructural fragments going through an additional filtering 

process. This would reduce the number of molecules generated and allow the molecules to be more 

appropriate. 

Furthermore, a full enumeration was attempted, however, due to the number of nodes and 

fragments there were a vast number of ways in which these could be combined. To make a full 

enumeration more achievable then the number of substructural fragments for each node needs to 

be reduced. This could be achieved by either filtering the fragments or allowing a chemist to choose 

several fragments for each node that could be of interest. This would reduce the amount of 

combinations and allow a more computational viable option. Additionally, the chemist would be able 

to personalise the molecule to their own preferences whilst retaining the RG structure.  
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9 Conclusions and Future Work 

9.1 Conclusions 
This thesis has detailed the creation and evaluation of a new visualisation for LO series, two new 

scores to assess the contribution that new molecules would make to the series, and a new de novo 

design technique based on an existing LO series. The ability to present information to chemists to 

provide an insight into relationships within a lead optimisation dataset is important in drug discovery 

to allow them to make informed choices for the next iteration of the project. The visualisation aims 

to overcome limitations of existing methods in that Markush structures and SAR tables which are 

typically used do not allow scaffolds that have small alterations to be considered under the same 

representation.  

Chapter 2 demonstrated how a RG core could be extracted from a clustered dataset. A combination 

of different molecular descriptors and clustering algorithms were investigated, to provide a pre-

clustered dataset to allow the best RG core to be extracted. The RG core represents the relationships 

between the molecules within a cluster. It is important to have RG cores that reflect the relationships 

between molecules as this affects the rest of the results within the thesis. While it was shown that 

it was possible to cluster a dataset it was difficult to identify the most appropriate cut-off for the 

different methods, whether this is the number of clusters or the similarity value used.  

Chapter 3 aimed to assess the quality of the RG cores. RG cores were extracted from both the 

clustered datasets and the datasets as a whole. In most instances, the most effective method was to 

extract the RG cores from the whole dataset. These RG cores were more concise and were therefore 

more representative of the data within the LO dataset. This was also confirmed by the scaffold scores 

produced, as on average the whole dataset RG cores had larger scores than those produced from 

the clustered data. Furthermore, the RG cores were compared to Markush structures and Murcko 

scaffolds where it was shown that the RG cores provided advantages over these existing methods, 

due to their sizes and the calculated scaffold scores.  

Chapter 4 first describes the process of mapping the RGs of the molecules in a LO dataset back onto 

the RG cores. When molecules have multiple mappings to an RG core a prioritisation process has 

been created to allow just one RG core to be mapped that best aligns with the rest of the molecules 

in the LO series. The development of a new visualisation tool is then described in Chapter 5. First, 

the substructural fragments for each node within the RG core are identified. The nodes within a RG 

core are then be represented as pie charts, where each segment indicates a different substructural 
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fragment. The visualisation provides an understanding of the relationships between molecules in a 

LO series, whilst providing information on how well explored the chemical space for each node is. 

Chapter 6 introduced several different methodologies that have been analysed in the development 

of the exploration score. The exploration score should reflect the amount of information that would 

be added to a LO series by a new molecule based on its structure. The developed score is based on 

an existing score used within high-throughput screening, the collection model score (Harper, Pickett, 

& Green, 2004), that has been adapted for the exploration purpose. The mean of all the node scores 

was calculated to provide a score for the whole RG core. By using the mean this allows the 

comparison between molecules that map to different RG cores including when the RG cores have 

different number of nodes with the RG core. The exploration score was compared to a manual 

ranked list and it performed well. 

Chapter 7 describes the development of the second score which is the exploitation score. The 

exploitation score is based upon the significance of each of the substructural fragments within the 

node. The significance of each fragment was calculated based on a methodology described by 

Polishchuk et. al (P. G. Polishchuk et al., 2013). Once again, the mean of the node scores is found for 

the overall molecule exploitation score. Unfortunately, these scores had large uncertainties, 

therefore, these are not the most ideal score. However, the exploitation score offers a chemist a 

base to work from other than just making a random choice. 

Finally, Chapter 8 detailed a new algorithm for de novo design. A new molecule can be achieved by 

replacing either a single substructure or multiple substructures of an input molecules, where the 

substructures are defined according to RGs generated using a dataset of molecules. The resulting 

new molecules retain the same RG representation as the input molecule but are constructed from 

different substructures. The replacement substructures should have the same node type and 

number of neighbours and are extracted from a pre-defined node-substructure dictionary. These 

node-substructure dictionaries can be generated from the LO series itself or ChEMBL or Zinc. There 

are fewer molecules generated when using the node-substructure dictionary from the LO series as 

would be expected, however, these molecules are likely to be closely related to those in the series. 

The molecules from the ChEMBL and Zinc dictionaries explore a larger area of chemical space. A full 

enumeration was attempted, however, there was a large computational cost when using all 

potential substructural fragments. To make this method more effective, then the fragments for each 

node must be filtered to a select a subset of fragments. 
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9.2 Future Work 
This thesis has introduced a new visualisation, an exploration score, an exploitation score and a new 

de novo design tool. There are several ways in which this work could be improved and developed 

further. The first is that the RG core could be allowed to be more flexible. It could be seen that some 

of the RG cores were closely related to each other. An optimisation of these cores could be an area 

of development to achieve more coherent results. An optimisation could be achieved through trying 

a disconnected core or alternatively having a core that contained a node that could be either of two 

nodes or just a particular binding style or aromaticity style. Therefore, some nodes could be 

incorporated together and if the user wanted to delve into greater depths then it could provide a 

way of showing these different node types. An example of this is when two RG cores differ by one 

node and this node is an aromatic ring hydrogen bond acceptor node and the other is an aromatic 

ring hydrogen bond acceptor and donor.  

Additionally, it would be good if a user could import a user defined RG core and then all the 

corresponding data according to that RG core could be extracted and represented. This would allow 

the user to input known scaffolds that are important for the biological activity or that are of interest 

to their LO projects.  

The scores provided information for the substructural fragments that were incorporated within the 

RG core, however, no information was provided about the R-groups. Therefore, the R-groups of the 

molecules could be aligned and introduced into the visualisation and incorporated somehow into 

both scoring techniques, even if just for each R-group the exploration and exploitation scores are 

produced for each node and not incorporated into the scores and just presented on the visualisation. 

The user would then have some indication as to the level of exploration of each node and significance 

of each substructural fragment. 

Following the large uncertainties observed with the significance scores that are used within the 

exploitation score a more effective exploitation score should be produced. One way in which this 

might be achieved is to incorporate physicochemical properties after the FP and train the models 

from these. Improved models may also provide a smaller uncertainty, which may be achieved 

through more refinement in the hyperparameters.  

Finally, within the molecular generation algorithm, as well as filtering the fragment list more which 

has already been stated, then it would be interesting to create an algorithm that can take a RG core 

as an input and then produce new molecules. This would mean that a new algorithm would need to 
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go from a RG core to a full RG to then undergo the full enumeration. Also, another piece of future 

work for the molecular generation step could be to turn it into an active learning problem and the 

choice of molecule would be the molecule that had the most uncertainty.  
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Appendix 

Reduced Graphs 
Table 0-1: A comparison of the effect of the different RG parameters on the number of RG (average size of RG rounded to the nearest 
whole number) 

Parameter Bajorath CDK2 Chk1 Cyto FactorXa Neurokinin P2x7 P38α 

Default 920 (10) 824 (8) 91 (8) 3762 (8) 883 (10) 1451 (9) 822 (9) 1902 (8) 

Terminal 1089 (10) 872 (9) 97 (9) 4262 (9) 1010 (11) 1530 (10) 842 (10) 2026 (9) 

Complex 1250 (10) 929 (9) 97 (9) 4463 (9) 1087 (11) 1645 (10) 1020 (10) 2246 (9) 

Double Bond 929 (10) 825 (8) 91 (8) 3814 (8) 890 (10) 1461 (9) 823 (9) 1904 (8) 

Metal 920 (10) 824 (8) 91 (8) 3765 (8) 883 (10) 1451 (9) 822 (9) 1902 (8) 

Terminal and 
Complex 

1227 (10) 923 (9) 97 (9) 4442 (9) 1089 (11) 1641 (10) 1018 (10) 2236 (9) 

Terminal and 
Double Bond 

1094 (10) 872 (9) 97 (9) 4274 (9) 1012 (11) 1535 (10) 842 (10) 2028 (9) 

Terminal and 
Metal 

1089 (10) 872 (9) 97 (9) 4264 (9) 1010 (11) 1530 (10) 842 (10) 2026 (9) 

Complex and 
Double Bond 

1255 (10) 929 (9) 97 (9) 4489 (9) 1088 (11) 1649 (10) 1020 (10) 2248 (9) 

Complex and 
Metal 

1250 (10) 929 (9) 97 (9) 4465 (9) 1087 (11) 1645 (10) 1020 (10) 2246 (9) 

Double Bond 
and Metal 

929 (10) 825  (8) 91  (8) 3816 (8) 890 (10) 1461 (9) 823 (9) 1904 (8) 

Terminal, 
Complex and 
Double Bond 

1232 (10) 923 (9) 97 (9) 4451 (9) 1090 (11) 1646 (10) 1018 (10) 2238 (9) 

Terminal, 
Complex and 

Metal 
1227 (10) 923 (9) 97 (9) 4444 (9) 1089 (11) 1641 (10) 1018 (10) 2236 (9) 

Terminal, 
Double Bond 

and Metal 
1094 (10) 872 (9) 97 (9) 4276 (9) 1012 (11) 1535 (10) 842 (10) 2028 (9) 

Complex, 
Double Bond 

and Metal 
1255 (10) 929 (9) 97 (9) 4491 (9) 1088 (11) 1649 (10) 1020 (10) 2248 (9) 

Terminal, 
Complex, 

Double Bond 
and Metal 

1232 (10) 923 (9) 97 (9) 4453 (9) 1090 (11) 1646 (10) 1018 (10) 2238 (9) 
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Clustering 
Clustering overlap heatmaps 

 

Figure 0-1: Bajorath heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Figure 0-2: CDK2 heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Figure 0-3: Chk1 heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Figure 0-4: FactorXa heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Figure 0-5: P2x7 heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Figure 0-6: P2x7 subset Neurokinin heatmap of the overlap between the clusters all of the different top results from the different 
parameters and clustering techniques. The closer to one the more overlap 
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Figure 0-7: p38α heatmap of the overlap between the clusters all of the different top results from the different parameters and 
clustering techniques. The closer to one the more overlap 
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Bajorath 

Table 0-2: Bajorath table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP 

Agglomerative 28 0.493 28 0.823 28 1.188 28 1.945 49 1.411 39 1665.290 25 5 1088.117 

Butina 0.1 
-

0.008 
0.1 0.040 0.1 0.990 0.1 49.383 0.4 1.184 0.7 5.089 0.2 0.1 1274.500 

K-means 29 0.469 21 0.680 2 0.992 21 2.185 43 1.589 39 2407.769 14 59 551.698 

RG (default) 

connected 

Agglomerative 30 0.474 2 0.688 30 1.178 3 2.070 147 1.281 29 431.020 15 3 411.701 

Butina 0.1 
-

0.043 
0.1 0.067 0.1 0.957 0.1 25.692 0.8 1.602 0.8 0.152 0.2 0.2 308.060 

K-means 28 0.457 2 0.455 29 1.041 29 3.382 145 1.460 34 466.300 14 118 242.458 

RG (default) 

disconnected 

Agglomerative 145 0.233 7 0.106 2 1 149 5.485 146 1.315 57 134.682 19 5 338.172 

Butina 0.2 
-

0.031 
- - 0.2 0.867 - - 0.3 1.509 0.8 0.152 0.4 0.6 338.756 

K-means 148 0.205 149 0.178 2 1 149 6.493 148 1.515 2 580.139 11 66 240.615 

RGFP 

(default) 

Agglomerative 40 0.331 2 0.684 28 1.033 147 1.962 147 1.356 40 260.480 14 19 400.960 

Butina 0.1 
-

0.097 
- - - - 0.5 5.361 0.5 1.673 0.5 0.155 0.2 0.1 418.787 

K-means 38 0.327 16 0.393 2 1 149 2.676 149 1.669 46 406.774 14 72 259.626 

Chemical 

graph 

connected 

Agglomerative 31 0.621 28 0.744 30 1.250 29 1.835 57 1.276 30 2145.631 23 21 1067.316 

Butina 0.1 0.010 - - 0.1 0.972 - - 0.5 1.203 0.9 6.290 0.2 0.1 1274.500 

K-means 30 0.619 14 0.470 29 1.025 29 2.358 30 1.473 41 2696.857 15 86 615.169 
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Chemical 

graph 

disconnected 

Agglomerative 47 0.430 2 0.271 2 0.990 2 5.779 148 1.340 39 888.079 14 10 1118.358 

Butina 0.4 
-

0.088 
- - 0.4 0.959 - - 0.8 1.558 0.9 1.854 0.5 0.5 1246.440 

K-means 35 0.381 - - 2 1.061 128 11.965 4 0.905 35 960.648 11 102 631.734 

 

CDK2 

Table 0-3: CDK2 table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP 

Agglomerative 150 0.340 - - - - 2 1.281 2 1.002 136 67.731 133 2 2.000 

Butina 0.1 -0.087 - - - - - - 0.7 1.464 0.6 2.138 0.2 0.1 727.653 

K-means 117 0.295 2 0.538 2 0.982 2 3.147 148 1.675 2 372.872 138 65 470.306 

RG (default) 

connected 

Agglomerative 146 0.330 2 0.667 2 1.000 145 2.149 149 1.286 83 45.479 15 2 412.000 

Butina 0.1 -0.059 - - - - 0.1 16.037 0.6 1.614 0.6 0.129 0.2 0.1 336.703 

K-means 107 0.293 107 0.179 2 1.000 107 4.469 148 1.667 2 165.648 12 76 279.357 

RG (default) 

disconnected 

Agglomerative 146 0.230 2 0.333 2 1.000 149 4.663 128 1.292 136 64.305 17 6 274.272 

Butina 0.2 0.038 - - 0.2 1.000 - - 0.4 1.742 0.8 0.270 0.3 0.5 405.021 

K-means 145 0.196 112 0.167 2 1.000 149 6.090 149 1.583 5 220.763 10 57 175.342 

RGFP 

(default) 

Agglomerative 149 0.182 2 0.700 2 1.000 150 2.160 150 1.561 20 26.680 132 3 405.669 

Butina 0.1 -0.071 - - - - 0.4 3.863 0.4 1.541 0.2 0.126 0.2 0.2 461.762 

K-means 142 0.159 140 0.425 2 1.000 149 2.888 2 2.000 3 144.070 139 142 364.007 
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Chemical 

graph 

connected 

Agglomerative 149 0.462 3 0.552 3 1.006 148 2.064 149 1.252 149 87.749 21 2 684.000 

Butina 0.2 -0.172 - - - - - - 0.8 1.490 0.7 2.377 0.3 0.8 1335.862 

K-means 88 0.438 2 0.214 13 0.971 149 3.976 140 1.591 104 369.631 15 37 390.912 

Chemical 

graph 

disconnected 

Agglomerative 144 0.356 2 0.350 3 1.035 150 4.249 150 1.331 - - - 9 591.096 

Butina 0.3 -0.064 - - 0.3 0.949 - - 0.3 1.664 0.9 0.840 0.5 0.5 460.538 

K-means 59 0.248 46 0.057 5 0.959 141 8.243 3 1.179 - - - 117 357.108 

 

Chk1 

Table 0-4: Chk1 table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP 

Agglomerative 3 0.334 3 0.783 3 1.150 34 1.724 34 1.145 3 137.690 6 3 44.597 

Butina 0.1 -0.009 - - - - 0.1 3.318 0.1 1.016 0.4 0.230 0.2 0.1 2.000 

K-means 3 0.334 3 0.783 3 1.150 39 1.949 40 1.320 5 150.776 5 17 36.435 

RG (default) 

connected 

Agglomerative 3 0.363 5 0.661 4 1.091 33 1.966 33 1.061 3 81.459 6 3 36.139 

Butina 0.1 -0.038 - - - - 0.1 3.339 0.1 1.028 0.5 0.147 0.2 0.1 2.000 

K-means 3 0.363 2 0.640 11 1.099 36 2.183 32 1.194 6 106.156 6 24 26.829 

RG (default) 

disconnected 

Agglomerative 3 0.351 6 0.389 6 1.167 30 2.763 29 1.028 3 68.762 6 10 29.945 

Butina 0.3 0.016 - - 0.3 1.053 - - 0.7 1.533 0.6 0.351 0.5 0.3 45.500 

K-means 4 0.346 7 0.250 4 1.249 35 3.006 35 1.211 5 71.006 5 8 18.578 

Agglomerative 33 0.198 3 0.740 5 1.075 33 1.809 33 1.269 33 54.773 6 6 36.417 
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RGFP 

(default) 

Butina 0.1 -0.061 0.1 0.286 0.1 0.946 0.4 3.953 0.5 1.607 0.5 0.196 0.2 0.1 59.291 

K-means 4 0.197 3 0.740 3 1.028 33 1.924 33 1.340 34 109.151 6 23 34.445 

Chemical 

graph 

connected 

Agglomerative 3 0.435 3 0.808 3 1.180 6 1.783 34 1.055 3 156.170 4 4 34.024 

Butina 0.2 -0.085 0.2 0.038 0.2 0.980 0.7 23.509 0.5 1.498 0.7 0.142 0.3 0.4 42.409 

K-means 3 0.435 3 0.808 3 1.180 36 2.083 39 1.126 3 156.170 5 9 26.925 

Chemical 

graph 

disconnected 

Agglomerative 29 0.337 7 0.292 7 1.127 38 2.168 38 1.006 34 79.259 6 8 36.043 

Butina 0.5 -0.160 - - - - 0.5 21.529 0.5 1.612 0.8 0.180 0.6 0.6 38.711 

K-means 4 0.331 19 0.244 10 1.111 38 2.968 40 1.181 36 84.558 6 21 33.221 

 

Cyto 

Table 0-5: Cyto  table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

M2FP 

Agglomerative 2 0.111 2 0.909 2 1 2 1.833 9 1.616 2 3185.000 

Butina 0.1 (9) 
-

0.017 
- - - - 0.1 4.086 0.9 1.347 0.1 3526.830 

K-means 150 0.087 2 0.176 2 1 146 7.743 139 1.885 137 2624.225 

RG (default) 

connected 

Agglomerative 135 0.123 - - - - 2 1.056 2 1 2 2 

Butina 0.1 (7) 
-

0.074 
- - - - 0.9 8.016 0.9 1.457 0.1 1535.803 

K-means 102 0.101 69 0.110 2 1 145 1512.866 148 1865.893 140 1379.629 
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RG (default) 

disconnected 

Agglomerative 2 0.258 2 0.500 2 1 2 3 2 1.5 5 1189.142 

Butina 0.3 (7) 
-

0.125 
- - - - 0.1 3.086 0.1 0.925 0.3 907.263 

K-means 150 0.145 33 0.088 2 1 2 0 2 0 95 899.808 

RGFP (default) 

Agglomerative 2 0.073 2 0.667 2 1 4 2.411 4 1.739 6 1.818 

Butina 0.1 (27) 
-

0.088 
- - - - 0.9 3.912 0.9 1.339 0.1 2004.177 

K-means 149 0.048 46 0.250 2 1 150 4.878 128 1.924 3 1624.015 

 

FactorXa 

Table 0-6: FactorXa table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP 

Agglomerative 112 0.327 2 0.733 3 1.000 2 2.237 149 1.407 78 221.075 135 121 966.175 

Butina 3 
-

0.057 
- - - - - - 0.7 1.627 0.3 0.081 0.2 0.1 979.000 

K-means 71 0.294 116 0.214 11 0.992 146 4.713 148 1.681 8 486.413 140 143 541.413 

RG (default) 

connected 

Agglomerative 92 0.378 - - - - 2 1.284 2 1.012 92 101.199 137 2 2.000 

Butina 0.1 0.008 0.1 0.115 0.1 0.995 0.7 13.631 0.7 1.604 0.4 0.124 0.2 0.2 199.131 

K-means 119 0.310 126 0.152 2 0.995 144 4.323 146 1.585 15 228.571 140 97 243.342 

RG (default) 

disconnected 

Agglomerative 150 0.243 2 0.263 2 0.978 150 4.992 149 1.258 68 93.994 136 45 402.822 

Butina 0.3 0.040 0.3 0.071 0.3 0.978 0.3 24.955 0.4 1.647 0.9 0.247 0.5 0.7 438.636 
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K-means 138 0.215 117 0.153 2 1.003 148 6.503 149 1.573 2 292.942 142 86 127.288 

RGFP 

(default) 

Agglomerative 150 0.244 19 0.384 2 1.000 150 2.257 150 1.438 4 84.727 137 16 396.194 

Butina 0.1 
-

0.029 
0.1 0.208 0.1 0.978 0.5 4.527 0.5 1.570 0.3 0.144 0.2 0.1 250.853 

K-means 92 0.198 101 0.408 2 1.000 149 2.994 149 1.714 10 151.413 140 124 307.499 

Chemical 

graph 

connected 

Agglomerative 138 0.475 2 0.502 2 0.991 150 2.345 150 1.177 71 260.229 135 76 936.862 

Butina 0.2 
-

0.133 
- - - - - - 0.8 1.597 0.9 0.161 0.3 0.2 1203.855 

K-means 83 0.458 4 0.088 2 1.022 137 5.712 150 1.587 83 791.987 140 82 448.386 

Chemical 

graph 

disconnected 

Agglomerative 137 0.358 2 0.186 2 0.984 150 5.545 150 1.278 137 286.442 140 3 895.361 

Butina 0.4 
-

0.121 
- - - - - - 0.5 1.579 0.9 0.163 0.6 0.5 529.314 

K-means 149 0.273 14 0.035 2 1.053 3 11.004 3 1.200 10 589.996 141 140 430.221 

 

Neurokinin 

Table 0-7: Neurokinin table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP 

Agglomerative 2 0.139 - - - - 2 1.042 2 1 137 15.635 20 2 2 

Butina 0.1 0.009 - - 0.1 0.984 - - 0.7 1.569 0.4 6.045 0.2 0.1 930.176 

K-means 140 0.181 142 0.195 2 1 140 5.355 149 1.789 2 1197.014 13 108 788.135 

Agglomerative 145 0.218 - - - - 2 1.125 2 1 145 42.518 29 2 2 
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RG (default) 

connected 

Butina 0.1 
-

0.044 
- - - - - - 0.7 1.614 0.7 0.160 0.2 0.1 697.602 

K-means 136 0.183 131 0.141 2 1 134 6.848 149 1.799 2 544.150 12 135 509.522 

RG (default) 

disconnected 

Agglomerative 2 0.326 - - - - 2 1.667 2 1 146 58.128 30 2 2 

Butina 0.1 
-

0.018 
- - 0.1 1 - - 0.6 1.637 0.7 0.439 0.4 0.2 602.629 

K-means 2 0.207 138 0.144 2 1 145 8.159 145 1.702 2 1405.862 10 78 337.511 

RGFP 

(default) 

Agglomerative 149 0.092 - - - - 2 1.273 2 1 51 23.972 21 2 2 

Butina 0.1 
-

0.040 
- - - - 0.1 20.540 0.4 1.556 0.1 0.365 0.2 0.1 471.767 

K-means 147 0.098 146 0.386 2 1 147 3.612 142 1.871 2 846.657 11 103 678.009 

Chemical 

graph 

connected 

Agglomerative 149 0.244 2 1 2 1 6 1 6 1 90 54.169 56 6 6 

Butina 0.4 
-

0.295 
- - - - - - 0.9 1.594 0.4 2.607 0.5 0.4 1088.380 

K-means 129 0.256 2 0.032 2 1 14 29.751 139 1.729 2 1412.825 13 90 729.762 

Chemical 

graph 

disconnected 

Agglomerative 2 0.458 2 1 2 1 6 1 6 1 125 98.653 21 6 6 

Butina 0.2 0.157 - - 0.2 1.000 - - 0.4 1.714 0.5 8.768 0.4 0.7 898.759 

K-means 2 0.277 14 0.037 2 1 14 36.478 130 1.802 4 2269.532 10 147 504.826 

 

P2x7 

Table 0-8: P2x7 table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 
Value 

Clusters 

* 

Clusters 

* 
Value 

M2FP Agglomerative 67 0.260 - - - - 2 1.314 2 1.006 46 181.373 23 2 2 
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Butina 0.1 0.007 0.1 0.081 0.1 0.984 0.1 23.984 0.7 1.598 0.6 0.131 0.2 0.2 950.647 

K-means 64 0.251 131 0.210 3 0.997 147 5.503 139 1.756 2 584.958 13 105 570.017 

RG (default) 

connected 

Agglomerative 119 0.357 - - - - 2 1.109 2 1.016 147 91.965 23 2 2 

Butina 0.1 -0.019 - - 0.1 0.98 - - 0.7 1.621 0.5 0.276 0.2 0.2 316.950 

K-means 41 0.288 92 0.187 2 1 149 4.836 149 1.566 3 220.233 11 96 180.057 

RG (default) 

disconnected 

Agglomerative 2 0.334 2 0.556 2 0.979 3 1.755 3 1.028 123 95.719 14 3 3 

Butina 0.2 -0.042 - - 0.2 1 - - 0.3 1.439 0.7 0.176 0.3 0.5 325.228 

K-means 146 0.258 109 0.157 2 1 149 5.651 145 1.481 3 333.035 10 68 156.084 

RGFP 

(default) 

Agglomerative 148 0.201 2 0.769 2 1 149 2.059 149 1.432 80 47.545 25 2 411 

Butina 0.1 -0.060 - - - - 0.5 4.346 0.5 1.592 0.4 2.581 0.2 0.2 507.295 

K-means 83 0.177 83 0.457 2 1 138 2.822 145 1.738 2 245.570 14 46 325.903 

Chemical 

graph 

connected 

Agglomerative 2 0.206 - - - - 2 1.531 3 0.997 78 265.125 39 2 2.000 

Butina 0.1 -0.043 - - - - 0.1 26.794 0.1 1.033 0.7 0.529 0.8 0.1 2 

K-means 2 0.105 - - 2 1 - - 144 1.489 2 1507.468 14 34 650.010 

Chemical 

graph 

disconnected 

Agglomerative 2 0.195 2 0.040 2 1.025 2 30.823 146 1.208 126 309.908 14 3 844.780 

Butina 0.3 -0.015 - - 0.3 0.949 - - 0.4 1.767 0.9 0.182 0.6 0.6 784.970 

K-means 10 0.096 - - 2 1 - - 133 1.589 2 783.878 11 68 505.918 
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p38α 

Table 0-9: p38α table of the results from the clustering validity indexes (*or Tanimoto cut off) 

  Silhouette Dunn delta 1 Dunn delta 2 
Davies Bouldin 

delta 1 

Davies Bouldin 

delta 2 
Calinski Harabasz 

Ball-

Hall 
Kelley 

Molecular 

Descriptor 

Clustering 

Algorithm 

Clusters 

* 

Value Clusters 

* 

Value Clusters 

* 

Value Clusters 

* 

Value Clusters 

* 

Value Clusters 

* 

Value Clusters 

* 

Clusters 

* 

Value 

M2FP 

Agglomerative 150 0.237 2 0.690 2 0.987 143 2.597 149 1.550 146 81.251 135 2 1822 

Butina 0.1 -0.037 - - - - - - 0.7 1.541 0.5 0.149 0.2 0.1 2232.963 

K-means 139 0.232 146 0.181 2 1.001 147 5.668 147 1.798 3 600.727 138 104 1284.756 

RG (default) 

connected 

Agglomerative 149 0.252 2 0.500 2 1 145 3.167 145 1.457 33 79.455 130 5 823.771 

Butina 0.1 -0.057 - - - - 0.1 18.031 0.7 1.635 0.7 0.197 0.2 0.1 655.673 

K-means 150 0.228 144 0.136 2 1 144 7.919 150 1.768 6 336.412 141 142 572.329 

RG (default) 

disconnected 

Agglomerative 2 0.278 - - - - 2 2.667 2 1 137 86.089 126 2 2 

Butina 0.2 -0.064 - - 0.2 0.929 - - 0.2 1.722 0.8 0.163 0.5 0.3 706.157 

K-means 149 0.160 128 0.142 2 1 150 8.687 150 1.705 2 969.437 142 149 425.887 

RGFP 

(default) 

Agglomerative 148 0.122 2 0.833 2 1 4 2.002 4 1.665 34 34.827 133 14 913.106 

Butina 0.1 -0.051 - - - - 0.4 4.155 0.4 1.646 0.4 0.208 0.2 0.1 877.901 

K-means 135 0.106 109 0.359 2 1 135 4.023 147 1.888 3 467.113 140 4 529.647 
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Table 0-10: Bajorath different molecular descriptors purity and v-measures 

Molecular 

Descriptor 

Clustering 

Algorithm 
Cluster 

Silhouette 

Score 
Purity V-measure 

Mean of Purity 

and V-measure 

M2FP 
Agglomerative 28 0.493 0.994 0.972 0.809 

K-means 29 0.469 0.993 0.953 0.771 

RG (default) 

connected 

Agglomerative 30 0.474 0.994 0.959 0.646 

K-means 28 0.457 0.971 0.946 0.627 

RG (default) 

disconnected 

Agglomerative 145 0.233 0.875 0.717 0.074 

K-means 148 0.205 0.860 0.685 0.048 

RGFP 

(default) 

Agglomerative 40 0.331 0.994 0.939 0.662 

K-means 38 0.327 0.990 0.915 0.626 

Chemical 

graph 

connected 

Agglomerative 31 0.621 0.994 0.953 0.789 

K-means 30 0.619 0.993 0.949 0.779 

Chemical 

graph 

disconnected 

Agglomerative 47 0.430 0.993 0.914 0.279 

K-means 35 0.381 0.895 0.848 0.263 

 

Table 0-11: P2x7 different molecular descriptors purity and v-measures 

Molecular 

Descriptor 

Clustering 

Algorithm 
Cluster 

Silhouette 

Score 
Purity V-measure 

Mean of Purity 

and V-measure 

M2FP 
Agglomerative 67 0.260 0.817 0.843 0.830 

K-means 64 0.251 0.838 0.773 0.806 

RG (default) 

connected 

Agglomerative 119 0.357 0.926 0.904 0.915 

K-means 41 0.288 0.836 0.863 0.850 

RG (default) 

disconnected 

Agglomerative 2 0.334 0.123 0.004 0.063 

K-means 146 0.258 0.763 0.696 0.730 

RGFP 

(default) 

Agglomerative 148 0.201 0.872 0.814 0.843 

K-means 83 0.177 0.817 0.771 0.794 

Chemical 

graph 

connected 

Agglomerative 2 0.2056 0.123 0.001 0.062 

K-means 2 0.105 0.171 0.268 0.219 
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Chemical 

graph 

disconnected 

Agglomerative 2 0.195 0.122 0.003 0.062 

K-means 10 0.096 0.420 0.509 0.464 

 

RG Core Evaluation 
Table 0-12: Table displaying the cores extracted from the two different processes for the Bajorath dataset, the number in the bracket is 
the number of examples of each core once re-examined 
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Table 0-13:  Table displaying the cores extracted from the two different processes for the P2x7 dataset, the number in the bracket is the 
number of examples of each core once re-examined 
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Table 0-14: RG core comparison for each dataset 

Dataset 

Number 

of 

Clusters 

RG Core Extraction 

Whole Dataset Clustered Dataset 

Number 

of RG 

Cores 

Mean 

Core 

Size 

Number of 

Singletons 

Number 

of RG 

Cores 

Mean 

Core 

Size 

Number of 

Singletons 

Bajorath 28 24 5.33 0 29 6.31 0 

CDK2 150 114 4.81 35 195 6.25 89 

Chk1 3 9 4.67 3 9 5.22 3 

Cyto 2 182 3.68 41 181 3.72 16 

FactorXa 112 42 4.83 9 126 7.07 31 

Neurokinin 2 86 3.67 21 85 3.71 8 

P2x7 67 58 5.26 13 97 6.17 16 

P2x7 Subset 4 7 5.00 1 6 5.00 1 

p38α 150 125 4.66 30 245 5.56 88 

 

Table 0-15: Difference between the fMCS method and the method presented in this chapter on a cluster level and a whole dataset level. 
Threshold Level set to 1. 

Dataset 

Unique Number of Cores 

from 

Comparison of RG cores for… 

RG extraction method and fMCS for 

clustered data 

RG extraction method for 

whole dataset and fMCS for 

clustered data 

Cluster 

Method 

Whole 

Method 

fMCS 

Method 

Number 

of 

Clusters 

that 

Cores 

Exactly 

Match 

Number 

of Cores 

the 

Same 

Number 

of 

Unique 

Cores 

to 

Cluster 

Method 

Number 

of 

Unique 

Cores 

to fMCS 

Method 

Number 

of Cores 

the 

Same 

Number 

of 

Unique 

Cores 

to 

Whole 

Method 

Number 

of 

Unique 

Cores to 

fMCS 

Method 

Bajorath 29 24 28 27 27 2 1 14 10 14 

CDK2 195 115 138 117 114 81 24 29 86 109 

Chk1 9 9 3 0 1 8 2 1 8 2 

Cyto 181 182 0 0 0 181 0 0 182 0 

FactorXa 126 42 108 69 92 34 86 16 26 102 

Neurokinin 85 86 0 0 0 85 0 0 86 0 
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P2x7 97 58 58 32 41 56 17 12 46 46 

P2x7 

Subset 
6 7 4 2 2 4 2 1 6 3 

p38α 245 125 113 83 92 153 21 31 94 82 

 

Exploration Scores 
Table 0-16: Results for each node for this experiment for 1-Prior Prob, Change in Entropy, KL Divergence 

Row 
No. 

Prior Distributions (E, F, G) 1-Prior Prob Change in Entropy KL Divergence 

15 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(1), (1), (1) 

(0.145), (0.152), 
(0.128) 

(0.047) (0.047), (0.047) 

17 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(1), (0.85), (1) 

(0.145), (0.045), 
(0.128) 

(0.047) (0.006), (0.047) 

16 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.85), (1), (1) 

(0.038), (0.152), 
(0.128) 

(0.006) (0.047), (0.047) 

18 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(1), (1), (0.85) 

(0.145), (0.152), 
(0.021) 

(0.047) (0.047), (0.006) 

19 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.85), (0.85), (0.85) 

(0.038), (0.045), 
(0.021) 

(0.006), (0.006), 
(0.006) 

20 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.85), (0.85), (0.80) 

(0.038), (0.045), 
(0.009) 

(0.006), (0.006), 
(0.004) 

21 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.7), (0.85), (0.85) 

(0.008), (0.045), 
(0.021) 

(0.003), (0.006), 
(0.006) 

22 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.85), (0.85), (0.7) 

(0.038), (0.045), (-
0.009) 

(0.006), (0.006), 
(0.003) 

23 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.7), (0.85), (0.7) 

(0.008), (0.045), (-
0.009) 

(0.003), (0.006), 
(0.003) 

24 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.45), (0.85), (0.85) 

(-0.019), (0.045), 
(0.021) 

(0.001), (0.006), 
(0.006) 

25 
(11, 6, 3), (14, 3, 3), (7, 6,  

4, 3) 
(0.85), (0.3), (0.85) 

(0.038), (-0.023), 
(0.021) 

(0.006), (0.0005), 
(0.006) 

26 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.45), (0.3), (0.85) 

(-0.019), (-0.023), 
(0.021) 

(0.001), (0.0005), 
(0.006) 

27 
(11, 6, 3), (14, 3, 3), (7, 6, 

4, 3) 
(0.45), (0.3), (0.65) 

(-0.019), (-0.023), (-
0.016) 

(0.001), (0.0005), 
(0.002) 

 

Table 0-17: Combined Overall Scores for this experiment for 1-Prior Prob, Change in Entropy and KL Divergence 

Row 
No.:Node 

No 

1-Prior Prob Change in Entropy KL Divergence 

Summed Multiplied Mean Summed Multiplied Mean Summed Multiplied Mean 

15 3.00 1.00 1.00 0.425 0.003 0.142 0.140 0.0001 0.047 

17 2.85 0.850 0.950 0.318 0.0008 0.106 0.099 1.23E-05 0.033 

16 2.85 0.850 0.950 0.318 0.0007 0.106 0.099 1.23E-05 0.033 

18 2.85 0.850 0.950 0.318 0.0005 0.106 0.099 1.23E-05 0.033 

19 2.55 0.614 0.850 0.104 3.57E-05 0.035 0.017 1.83E-07 0.006 

20 2.50 0.578 0.833 0.092 1.50E-05 0.031 0.016 1.36E-07 0.005 

21 2.40 0.506 0.800 0.074 7.84E-06 0.025 0.014 8.34E-08 0.005 

22 2.40 0.506 0.800 0.074 -1.5E-05 0.025 0.014 8.38E-08 0.005 

23 2.25 0.417 0.750 0.045 -3.30E-06 0.015 0.011 3.83E-08 0.004 
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24 2.15 0.325 0.717 0.047 -1.80E-05 0.016 0.012 3.16E-08 0.004 

25 2.00 0.217 0.667 0.036 -1.80E-05 0.012 0.012 1.75E-08 0.004 

26 1.60 0.115 0.533 -0.021 8.81E-06 -0.007 0.007 3.03E-09 0.002 

27 1.40 0.088 0.467 -0.057 -6.60E-06 -0.019 0.004 1.13E-09 0.001 

 

Table 0-18: Results for each node for this experiment for the Collection Model Score Variations 

Row 
No. 

Prior Distributions (E, F, G) E1 E3 E4 

15 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.300), (0.300), 

(0.300) 
(0.002), (0.003), 

(0.001) 
(0.0002), (0.0002), 

(0.0002) 

17 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.300), (0.103), 

(0.300) 
(0.002), (0.002), 

(0.001) 
(0.0002), (0.0002), 

(0.0002) 

16 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.103), (0.300), 

(0.300) 
(0.001), (0.003), 

(0.001) 
(0.0002), (0.0002), 

(0.0002) 

18 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.300), (0.300), 

(0.103) 
(0.002), (0.003), 

(0.0006) 
(0.0002), (0.0002), 

(0.0001) 

19 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.103), (0.103), 

(0.103) 
(0.001), (0.002), 

(0.0006) 
(0.0002), (0.0002), 

(0.0001) 

20 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.103), (0.103), 

(0.072) 
(0.001), (0.002), 

(0.0003) 
(0.0002), (0.0002), 

(0.0001) 

21 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.035), (0.103), 

(0.103) 
(0.0005), (0.002), 

(0.0006) 
(0.0001), (0.0002), 

(0.0001) 

22 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.103), (0.103), 

(0.035) 
(0.001), (0.002), (-

0.0002) 
(0.0002), (0.0002), 

(9.76E-05) 

23 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.035), (0.103), 

(0.035) 
(0.0005), (0.002), (-

0.0002) 
(0.0001), (0.0002), 

(9.76E-05) 

24 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.006), (0.103), 

(0.103) 
(-0.0008), (0.002), 

(0.0006) 
(4.55E-05), (0.0002), 

(0.0001) 

25 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.103), (0.002), 

(0.103) 
(0.001), (-0.0009), 

(0.0006) 
(0.0002), (1.95E-05), 

(0.0001) 

26 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.006), (0.002), 

(0.103) 
(-0.0008), (-0.0009), 

(0.0006) 
(4.55E-05), (1.95E-05), 

(0.0001) 

27 
(11, 6, 3), (14, 3, 3), (7, 6, 4, 

3) 
(0.006), (0.002), 

(0.025) 
(-0.0008), (-0.0009), (-

0.0005) 
(4.55E-05), (1.95E-05), 

(8.31E-05) 

 

Table 0-19: Combined Overall Scores for this experiment for the Collection Model Score Variations 

Row 
No. 

E1 E3 E4 

Sum Multiplied Mean Sum Multiplied Mean Sum Multiplied Mean 

15 0.900 0.027 0.300 0.006 7.99E-09 0.002 0.0006 8.39E-12 0.0002 

17 0.703 0.009 0.234 0.005 5.50E-09 0.002 0.0006 6.74E-12 0.0002 

16 0.703 0.009 0.234 0.005 4.83E-09 0.002 0.0006 6.61E-12 0.0002 

18 0.703 0.009 0.234 0.005 3.22E-09 0.002 0.0006 6.41E-12 0.0002 

19 0.309 0.001 0.103 0.004 1.34E-09 0.001 0.0005 4.06E-12 0.0002 

20 0.278 0.001 0.093 0.003 7.03E-10 0.001 0.0005 3.64E-12 0.0002 

21 0.241 0.000 0.080 0.003 5.11E-10 0.001 0.0004 2.96E-12 0.0001 

22 0.241 0.000 0.080 0.003 -5.45E-10 0.001 0.0004 2.81E-12 0.0001 

23 0.173 0.000 0.058 0.002 -2.07E-10 0.0007 0.0004 2.05E-12 0.0001 
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24 0.212 6.28E-05 0.071 0.002 -7.85E-10 0.0006 0.0004 1.14E-12 0.0001 

25 0.208 2.15E-05 0.069 0.001 -6.36E-10 0.0003 0.0003 4.43E-13 0.0001 

26 0.111 1.24E-06 0.037 -0.001 3.72E-10 -0.0004 0.0002 1.25E-13 6.87E-05 

27 0.033 2.98E-07 0.011 -0.002 -3.19E-10 -0.0007 0.0001 7.37E-14 4.94E-05 

 

Applying the Scores to Real Molecules 
Table 0-20: Node breakdown for Molecule 1 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 1 0.017 0.003 0.300 0.056 0.0001 7.98E-07 

Blue 1 0.018 0.003 0.300 0.092 0.0002 8.33E-07 

Molecule Score 

Total 
Summed 

2 0.035 0.006 0.600 0.148 0.0003 1.63E-06 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.5 0.009 0.001 0.150 0.037 7.60E-05 4.08E-07 

 

Table 0-21: Node breakdown for Molecule 2 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 0.985 0.009 0.0003 0.050 0.009 0.0001 7.81E-07 

Blue 0.506 -0.0004 4.83E-06 0.000 0.000 -8.72E-06 2.72E-07 

Molecule Score 

Total 
Summed 

1.491 0.009 0.0003 0.050 0.009 0.0001 1.05E-06 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.373 0.002 6.63E-05 0.013 0.002 3.17E-05 2.63E-07 
 

Table 0-22: Node breakdown for Molecule 3 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 0.982 0.008 0.0002 0.035 0.007 0.0001 7.78E-07 

Blue 0.506 -0.0004 4.83E-06 0.000 0.000 -8.72E-05 2.72E-07 

Molecule Score 

Total 
Summed 

1.488 0.008 0.0002 0.035 0.007 0.0001 1.05E-06 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.372 0.002 5.63E-05 0.009 0.002 3.14E-05 2.62E-07 
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Table 0-23: Node breakdown for Molecule 4 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 0.728 0.0006 1.24E-05 0.000 0.000 4.29E-05 4.89E-07 

Blue 0.527 -0.0002 5.23E-06 0.000 0.000 -2.04E-06 2.96E-07 

Molecule Score 

Total 
Summed 

1.255 0.0004 1.76E-05 0.000 0.000 4.09E-05 7.85E-07 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.314 0.0001 4.41E-06 0.000 0.000 1.02E-05 1.96E-07 

 

Table 0-24: Node breakdown for Molecule 5 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 0.437 -0.002 4E-06 0.000 0.000 -5.18E-05 1.60E-07 

Blue 0.527 -0.0002 5.23E-06 0.000 0.000 -2.04E-06 2.96E-07 

Molecule Score 

Total 
Summed 

0.964 -0.002 9.23E-06 0.000 0.000 -5.39E-05 4.56E-07 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.241 -0.001 2.31E-06 0.000 0.000 -1.35E-05 1.14E-07 

 

Table 0-25: Node breakdown for Molecule 6 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Pink 0 0 0 0 0 0 0 

Red 0 0 0 0 0 0 0 

Purple 0.437 -0.002 4E-06 0.000 0.000 -5.18E-05 1.60E-07 

Blue 0.506 -0.0004 4.83E-06 0.000 0.000 -8.72E-06 2.72E-07 

Molecule Score 

Total 
Summed 

0.943 -0.002 8.83E-06 0.000 0.000 -6.06E-05 4.32E-07 

Total 
Multiplied 

0 0 0 0.000 0 0.000 0.000 

Total Mean 0.236 -0.001 2.21E-06 0.000 0.000 -1.51E-05 1.08E-07 
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Cross Core Comparison 

Table 0-26: Node breakdown for Molecule 7 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Red 0 0 0 0.001 0.001 0 0 

Blue 0.188 -0.017 0.0004 0.003 0.002 -0.0007 1.55E-05 

Orange 0.125 -0.015 0.0003 0.002 0.001 -0.0006 6.88E-06 

Pink 0 0 0 0.001 0.001 0 0 

Green 1 0.202 0.058 0.3 0.200 0.005 0.0004 

Molecule Score 

Total 
Summed 

1.313 0.170 0.059 0.307 0.307 0.003 0.0004 

Total 
Multiplied 

0 0 0 1.76E-12 1.76E-12 0 0 

Total Mean 0.263 0.034 0.012 0.061 0.061 0.0007 8.29E-05 

 

Table 0-27: Node breakdown for Molecule 8 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Orange 0 0 0 5.57E-07 5.6E-07 0 0 

Purple 0.081 -0.007 4.54E-05 1.62E-06 5.6E-07 -0.0002 4.51E-07 

Blue 0.081 -0.007 4.54E-05 1.62E-06 9.0E-07 -0.0002 4.51E-07 

Cyan 0.919 0.049 0.003 0.103 9.0E-07 0.002 7.02E-05 

Molecule Score 

Total 
Summed 

1.081 0.035 0.003 0.103 0.103 0.001 7.11E-05 

Total 
Multiplied 

0 0 0 1.51E-19 1.51E-19 0 0 

Total Mean 0.270 0.009 0.0008 0.026 0.026 0.0004 1.78E-05 

 

Table 0-28: Node breakdown for Molecule 9 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Cyan 0.5 -0.033 0.0007 0.002 0.0005 -0.0008 2.20E-05 

Green 0 0 0 1.38E-05 1.4E-05 0 0 

Olive 0 0 0 1.38E-05 1.4E-05 0 0 

Blue 0.857 0.050 0.003 0.072 0.041 0.002 0.0001 

Molecule Score 

Total 
Summed 

1.357 0.017 0.004 0.074 0.074 0.001 0.0001 

Total 
Multiplied 

0 0 0 2.79E-14 2.79E-14 0 0 

Total Mean 0.339 0.004 0.001 0.019 0.019 0.0003 3.33E-05 
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Table 0-29: Node breakdown for Molecule 10 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Cyan 0.5 -0.033 0.0007 0.002 0.0005 -0.0008 2.20E-05 

Green 0 0 0 1.38E-05 1.4E-05 0 0 

Olive 0 0 0 1.38E-05 1.4E-05 0 0 

Blue 0.143 -0.009 0.0001 5.75E-05 3.3E-05 -0.0004 3.09E-06 

Molecule Score 

Total 
Summed 

0.643 -0.042 0.0008 0.002 0.002 -0.001 2.51E-05 

Total 
Multiplied 

0 0 0 2.22E-17 2.23E-17 0 0 

Total Mean 0.161 -0.011 0.0002 0.0005 0.0005 -0.0003 6.28E-06 

 

Table 0-30: Node breakdown for Molecule 11 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL 
Divergence 

E1 E2 E3 E4 

Orange 0 0 0 5.57E-07 5.6E-07 0 0 

Purple 0.081 -0.007 4.54E-05 1.62E-06 9.0E-07 -0.0002 4.51E-07 

Blue 0.081 -0.007 4.54E-05 1.62E-06 9.0E-07 -0.0002 4.51E-07 

Cyan 0.135 -0.010 7.65E-05 3.31E-06 1.50E-06 -0.0003 1.16E-06 

Molecule Score 

Total 
Summed 

0.297 -0.024 0.0002 7.12E-06 7.12E-06 -0.0007 2.06E-06 

Total 
Multiplied 

0 0 0 4.86E-24 4.86E-24 0 0 

Total Mean 0.074 -0.006 4.18E-05 1.78E-06 1.80E-06 -0.0002 5.15E-07 

 

Table 0-31: Node breakdown for Molecule 12 

Node 
1-Prior 
Prob 

Change in 
Entropy 

KL Divergence E1 E2 E3 E4 

Orange 0 0 0 0.0001 0.0001 0 0 

Green 0 0 0 0.0001 0.0001 0 0 

Pink 0 0 0 0.0001 0.0001 0 0 

Blue 0.136 -0.011 0.0002 0.0003 0.0002 -0.0005 4.47E-06 

Molecule Score 

Total Summed 0.136 -0.011 0.0002 0.0007 0.0007 -0.0005 4.47E-06 

Total 
Multiplied 

0 0 0 5.52E-16 5.52E-16 0 0 

Total Mean 0.034 -0.003 5.00E-05 0.0002 0.0002 -0.0001 1.12E-06 
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Molecular Generation 

Node Extraction 

Table 0-32: Table showing all of the number of substructural fragments extracted for each node type from ChEMBL and Zinc for RG made 
with linker parameter 

Nodes 
ChEMBL Zinc 

Comparison of ChEMBL and 
Zinc nodes (same) 

Linker Linker Linker 

Acyclic inert - Li 11843 7877 2579 

Acyclic HBA - Ga 848 981 372 

Acyclic HBD - Gd 20 12 5 

Aromatic NHB - No 557 546 419 

Aromatic HBA- Na 580 549 425 

Aromatic HBD - Nd 234 247 171 

Aliphatic HBD - Cd 30 9 0 

Aliphatic HBA - Ca 2103161 16862 6672 

Aliphatic NHB - Co 4565603 11879 4565 

Acyclic HBA HBD - Ge 2556 2663 990 

Aromatic HBA HBD - Ne 200 204 137 

Aliphatic HBA HBD - Ce 2282292 11249 2680 

Hydrophobic - Hg 0 0 0 

 

Table 0-33: Table showing all of the number of substructural fragments extracted for each node type for each dataset for RG made with 
linker parameter 

Nodes Bajorath CDK2 Chk1 Cyto FactorXa MMP12 Neurokinin P2x7 
P2x7 

Subset 
P38α 

Acyclic inert 
- Li 

87 83 22 328 95 23 53 51 23 89 

Acyclic HBA 
- Ga 

18 27 10 76 19 8 20 15 6 22 

Acyclic HBD 
- Gd 

0 0 0 0 0 0 1 1 0 0 

Aromatic 
NHB - No 

29 51 12 93 43 12 26 22 12 70 

Aromatic 
HBA- Na 

81 77 8 101 57 9 40 62 42 107 

Aromatic 
HBD - Nd 

4 22 3 32 9 1 5 4 2 17 

Aliphatic 
HBD - Cd 

0 0 0 1 0 0 0 0 0 0 

Aliphatic 
HBA - Ca 

91 107 12 
136

9 
125 5 128 83 34 125 

Aliphatic 
NHB - Co 

27 53 8 793 35 2 57 47 6 63 

Acyclic HBA 
HBD - Ge 

20 34 12 101 62 8 28 17 5 27 

Aromatic 
HBA HBD - 

Ne 
12 16 6 19 11 1 15 15 1 23 
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Aliphatic 
HBA HBD - 

Ce 
29 502 9 204 38 0 58 26 3 58 

Hydrophobic 
- Hg 

0 0 0 0 0 0 0 0 0 0 

 

BMS Filter Breakdown 

Single Node Alterations 

Dataset 

('halogen_heteroatom > 0', 15), ('aryl_phosphonate > 0', 4), ('contains_metal > 0', 2), ('sulfonium > 0', 2), 

('azo_filter2 > 0', 1), ('hydrazine > 0', 1) 

ChEMBL 

('boron_warhead > 0', 41), ('azo_filter2 > 0', 8), ('CH2_S#O_3_ring > 0', 1), ('peroxide > 0', 42), ('aziridine_diazirine > 

0', 13), ('crown_ether > 0', 54), ('phosphite > 0', 5), ('hydrazine > 0', 21), ('sulfonium > 0', 58), ('sulf_D3_nitrogen > 0', 

4), ('activated_S#O_3_ring > 0', 16), ('polysulfide > 0', 6), ('sulf_D2_nitrogen > 0', 14), ('contains_metal > 0', 59), 

('hyperval_sulfur > 0', 8), ('halogen_heteroatom > 0', 172), ('quat_N_N > 0', 57), ('oxonium > 0', 13), 

('disulfide_acyclic > 0', 9), ('azo_amino > 0', 25), ('sulf_D2_oxygen_D2 > 0', 2), ('alpha_dicarbonyl > 0', 61), 

('keto_def_heterocycle > 0', 30), ('activated_diazo > 0', 3), ('diazo_carbonyl > 0', 4), ('gte_3_COOH > 0', 1), 

('hydroxamate_warhead > 0', 2), ('phosphorus_sulfur_bond > 0', 19), ('thio_hydroxamate > 0', 13), 

('aryl_thiocarbonyl > 0', 21), ('anhydride > 0', 5), ('nitrone > 0', 49), ('bad_boron > 0', 2), ('azo_filter3 > 0', 2), 

('thioester > 0', 2), ('acyclic_imide > 0', 10), ('diamino_sulfide > 0', 2), ('hydrazothiourea > 0', 4), ('hetero_silyl > 0', 3), 

('quat_N_acyl > 0', 63), ('phosphorous_nitrogen_bond > 0', 18), ('gte_2_free_phos > 0', 4), ('aryl_phosphonate > 0', 

118), ('NO_phosphonate > 0', 6), ('aldehyde > 0', 6), ('nitrosamine > 0', 15), ('oxime > 0', 41), ('sulfonyl_heteroatom > 

0', 8), ('bad_cations > 0', 8), ('polyene > 0', 356), ('gte_10_carbon_sb_chain > 0', 2249), ('non_ring_acetal > 0', 4), 

('trisub_bis_act_olefin > 0', 26), ('activated_acetylene > 0', 142), ('phosphonium > 0', 17), ('thiocarbonate > 0', 28), 

('non_ring_CH2O_acetal > 0', 30), ('acrylate > 0', 137), ('gte_2_N_quats > 0', 42), ('gte_8_CF2_or_CH2 > 0', 49), 

('primary_halide_sulfate > 0', 7), ('4halo_pyridine_3EWG > 0', 1), ('2halo_pyridine_3EWG > 0', 1), ('thiopyrylium > 0', 

3), ('2halo_pyridine_5EWG > 0', 1), ('secondary_halide_sulfate > 0', 14) 

Zinc 

('boron_warhead > 0', 15), ('CH2_S#O_3_ring > 0', 2), ('aziridine_diazirine > 0', 11), ('crown_ether > 0', 60), ('phosphi
te > 0', 10), ('hydrazine > 0', 25), ('thio_hydroxamate > 0', 19), ('sulf_D3_nitrogen > 0', 8), ('activated_S#O_3_ring > 0'
, 10), ('sulf_D2_nitrogen > 0', 17), ('contains_metal > 0', 10), ('halogen_heteroatom > 0', 179), ('quat_N_N > 0', 59), ('
oxonium > 0', 22), ('hyperval_sulfur > 0', 16), ('alpha_dicarbonyl > 0', 52), ('diazo_carbonyl > 0', 11), ('keto_def_heter
ocycle > 0', 45), ('gte_3_COOH > 0', 5), ('acyl_cyanide > 0', 2), ('activated_diazo > 0', 1), ('hydroxamate_warhead > 0', 
4), ('anhydride > 0', 17), ('aryl_thiocarbonyl > 0', 10), ('nitrone > 0', 22), ('azo_filter3 > 0', 2), ('thioester > 0', 2), ('acycl
ic_imide > 0', 9), ('hydrazothiourea > 0', 2), ('diamino_sulfide > 0', 4), ('thiocarbonate > 0', 3), ('phosphorous_nitroge
n_bond > 0', 17), ('sulfonium > 0', 11), ('gte_2_free_phos > 0', 3), ('aryl_phosphonate > 0', 33), ('NO_phosphonate > 
0', 1), ('azo_filter2 > 0', 9), ('aldehyde > 0', 6), ('nitrosamine > 0', 3), ('oxime > 0', 62), ('sulfonyl_heteroatom > 0', 16), 
('azo_amino > 0', 16), ('polyene > 0', 385), ('phosphonium > 0', 20), ('non_ring_CH2O_acetal > 0', 32), ('acrylate > 0', 
64), ('gte_2_N_quats > 0', 45), ('bad_boron > 0', 4), ('trisub_bis_act_olefin > 0', 17), ('activated_acetylene > 0', 113), (
'gte_8_CF2_or_CH2 > 0', 37), ('quat_N_acyl > 0', 53), ('gte_10_carbon_sb_chain > 0', 1065), ('non_ring_acetal > 0', 1
8), ('bad_cations > 0', 1), ('primary_halide_sulfate > 0', 9), ('4halo_pyridine_3EWG > 0', 1), ('thiopyrylium > 0', 15), ('2
halo_pyridine_3EWG > 0', 1), ('2halo_pyridine_5EWG > 0', 1), ('gte_7_total_hal > 0', 1), ('gte_3_iodine > 0', 1), ('seco
ndary_halide_sulfate > 0', 4) 
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Multiple Node Alterations 

Dataset 

('halogen_heteroatom > 0', 990), ('acyl_imidazole > 0', 120), ('quat_N_acyl > 0', 105), ('aryl_phosphonate > 0', 52), ('k
eto_def_heterocycle > 0', 39), ('contains_metal > 0', 26), ('azide > 0', 19), ('primary_halide_sulfate > 0', 17), ('aldehyd
e > 0', 17),  ('azo_filter2 > 0', 13), ('hydrazine > 0', 13), ('sulfonium > 0', 10),  ('quat_N_N > 0', 1) 

ChEMBL 

('keto_def_heterocycle > 0', 7460), ('azo_filter2 > 0', 1692), ('carbodiimide_iso#thio#cyanate > 0', 21680), ('anhydrid
e > 0', 136283), ('nitrone > 0', 27508), ('nitrosamine > 0', 114947), ('sulfite_sulfate_ester > 0', 28863), ('sulfonyl_anhy
dride > 0', 32983), ('disulfide_acyclic > 0', 160261), ('hydrazine > 0', 11983), ('boron_warhead > 0', 44474), ('sulfoniu
m > 0', 40612), ('thiosulfoxide > 0', 32736), ('alpha_dicarbonyl > 0', 159208), ('hetero_silyl > 0', 9094), ('thioester > 0', 
56207), ('activated_diazo > 0', 21674), ('contains_metal > 0', 396498), ('sulf_D2_oxygen_D2 > 0', 33158), ('CH2_S#O_
3_ring > 0', 294), ('azo_amino > 0', 23744), ('diamino_sulfide > 0', 10757), ('thiocarbonate > 0', 49834), ('aldehyde > 0
', 22383), ('peroxide > 0', 117147), ('thio_xanthate > 0', 8343), ('crown_ether > 0', 24354), ('gte_2_N_quats > 0', 1169
4), ('aryl_thiocarbonyl > 0', 44070), ('aziridine_diazirine > 0', 3406), ('diazo_carbonyl > 0', 128181), ('polysulfide > 0', 
1062), ('sulf_D2_nitrogen > 0', 45664), ('phosphite > 0', 5035), ('aryl_phosphonate > 0', 16655), ('sulf_D3_nitrogen > 
0', 8890), ('activated_S#O_3_ring > 0', 4704), ('bad_boron > 0', 13127), ('oxonium > 0', 16516), ('alpha_halo_amine > 
0', 4138), ('secondary_halide_sulfate > 0', 80612), ('bad_cations > 0', 15332), ('halogen_heteroatom > 0', 369674), ('h
yperval_sulfur > 0', 23076), ('polyene > 0', 328267), ('gte_8_CF2_or_CH2 > 0', 258014), ('quat_N_N > 0', 227350), ('gt
e_10_carbon_sb_chain > 0', 3355292), ('thio_hydroxamate > 0', 14266), ('quat_N_acyl > 0', 38274), ('hydroxamate_
warhead > 0', 1358), ('gte_3_COOH > 0', 49), ('acyl_pyrazole > 0', 3230), ('oxime > 0', 3607), ('sulfonyl_heteroatom > 
0', 232), ('phosphorus_sulfur_bond > 0', 2165), ('acyl_imidazole > 0', 3230), ('azo_filter3 > 0', 356), ('gte_2_free_phos 
> 0', 6664), ('hydrazothiourea > 0', 336), ('NO_phosphonate > 0', 728), ('acyclic_imide > 0', 540), ('phosphorous_nitro
gen_bond > 0', 105984), ('diazonium > 0', 54), ('azide > 0', 728), ('acyl_activated_NO > 0', 11650), ('acyl_cyanide > 0', 
256), ('activated_acetylene > 0', 41748), ('acrylate > 0', 40278), ('trisub_bis_act_olefin > 0', 3925), ('phosphonium > 0
', 3859), ('non_ring_acetal > 0', 760), ('non_ring_CH2O_acetal > 0', 5710), ('alpha_halo_heteroatom > 0', 44), ('prima
ry_halide_sulfate > 0', 3525), ('phosphorane > 0', 131), ('phosphorus_phosphorus_bond > 0', 131), ('2halo_pyridine_
5EWG > 0', 572), ('2halo_pyridine_3EWG > 0', 572), ('4halo_pyridine_3EWG > 0', 572), ('thiopyrylium > 0', 1155), ('be
talactam > 0', 116100), ('gte_7_total_hal > 0', 6), ('alpha_halo_carbonyl > 0', 3876), ('activated_vinyl_ester > 0', 3876
0), ('halo_olefin_bis_EWG > 0', 2854), ('beta_lactone > 0', 34830), ('gte_3_iodine > 0', 6), ('carbonyl_halide > 0', 7740
), ('isonitrile > 0', 245) 

Zinc 

('keto_def_heterocycle > 0', 9468), ('anhydride > 0', 108104), ('phosphonium > 0', 10412), ('nitrone > 0', 40213), ('nit
rosamine > 0', 43798), ('sulfite_sulfate_ester > 0', 39955), ('sulfonyl_anhydride > 0', 17175), ('disulfide_acyclic > 0', 7
134), ('thio_hydroxamate > 0', 19878), ('hydrazine > 0', 21730), ('boron_warhead > 0', 3911), ('alpha_dicarbonyl > 0', 
90509), ('sulfonyl_heteroatom > 0', 44684), ('thioester > 0', 72495), ('activated_diazo > 0', 36186), ('contains_metal > 
0', 56492), ('sulf_D2_oxygen_D2 > 0', 22732), ('CH2_S#O_3_ring > 0', 586), ('azo_filter3 > 0', 14514), ('diamino_sulfid
e > 0', 14484), ('thiocarbonate > 0', 22742), ('crown_ether > 0', 21354), ('thio_xanthate > 0', 17010), ('gte_2_N_quats 
> 0', 16378), ('aryl_thiocarbonyl > 0', 22144), ('aziridine_diazirine > 0', 2827), ('hydrazothiourea > 0', 6410), ('diazo_c
arbonyl > 0', 64972), ('sulf_D2_nitrogen > 0', 23481), ('phosphite > 0', 19606), ('aryl_phosphonate > 0', 23064), ('sulf_
D3_nitrogen > 0', 1584), ('hyperval_sulfur > 0', 71470), ('activated_S#O_3_ring > 0', 2930), ('phosphorous_nitrogen_
bond > 0', 45826), ('bad_boron > 0', 24256), ('gte_7_total_hal > 0', 6701), ('oxonium > 0', 18921), ('alpha_halo_amin
e > 0', 2385), ('secondary_halide_sulfate > 0', 23868), ('halogen_heteroatom > 0', 241112), ('gte_8_CF2_or_CH2 > 0', 
144631), ('polyene > 0', 215666), ('quat_N_N > 0', 149183), ('gte_10_carbon_sb_chain > 0', 1293677), ('gte_3_iodine 
> 0', 6701), ('azo_filter2 > 0', 1105), ('quat_N_acyl > 0', 66853), ('hydroxamate_warhead > 0', 969), ('gte_3_COOH > 0
', 205), ('acyl_pyrazole > 0', 3318), ('sulfonium > 0', 2543), ('oxime > 0', 5404), ('acyl_imidazole > 0', 3318), ('azo_amin
o > 0', 1554), ('aldehyde > 0', 859), ('gte_2_free_phos > 0', 1891), ('NO_phosphonate > 0', 46), ('acyclic_imide > 0', 41
4), ('acyl_cyanide > 0', 592), ('thiopyrylium > 0', 7167), ('carbodiimide_iso#thio#cyanate > 0', 138), ('diazonium > 0', 4
6), ('azide > 0', 638), ('acyl_activated_NO > 0', 13052), ('activated_acetylene > 0', 33109), ('bad_cations > 0', 482), ('a
crylate > 0', 18752), ('trisub_bis_act_olefin > 0', 2839), ('non_ring_acetal > 0', 3744), ('non_ring_CH2O_acetal > 0', 66
76), ('primary_halide_sulfate > 0', 3040), ('2halo_pyridine_5EWG > 0', 503), ('2halo_pyridine_3EWG > 0', 503), ('pero
xide > 0', 288), ('4halo_pyridine_3EWG > 0', 503), ('halo_imino > 0', 221), ('gte_4_basic_N > 0', 442), ('betalactam > 0
', 45318), ('activated_vinyl_ester > 0', 30296), ('beta_lactone > 0', 16185), ('acyl_123_triazole > 0', 5410), ('isonitrile > 
0', 44) 
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