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Abstract

In this thesis, we investigate two important notions of category theory: monads

and multicategories.

First, we contribute to the formal theory of pseudomonads, i.e. the analogue

for pseudomonads of the formal theory of monads. In particular, we solve a

problem posed by Lack by proving that, for every Gray-category K , there is

a Gray-category Psm(K ) of pseudomonads in K . We then establish a triequiv-

alence between Psm(K ) and the Gray-category of pseudomonads introduced by

Marmolejo and give a simpler version of his proof of the equivalence between

pseudodistributive laws and liftings of pseudomonads to 2-categories of pseudoal-

gebras.

Secondly, we introduce the notion of a distributive law between a relative monad

and a monad. We call this a relative distributive law and define it in any 2-

category K. In order to do that, we introduce the 2-category of relative monads

in a 2-category K. We relate our definition to the 2-category of monads in K
defined by Street. Thanks to this view we prove two theorems regarding relative

distributive laws and equivalent notions. We also describe what it means to have

Eilenberg-Moore and Kleisli objects in this context and give examples in the 2-

category of locally small categories.

Finally, we consider multicategories. It is known that monoidal categories have a

finite definition, whereas multicategories have an infinite (albeit finitary) defini-

tion. Since monoidal categories correspond to representable multicategories, it

goes without saying that representable multicategories should also admit a finite

description. With this in mind, we give a new finite definition of a structure called a

short multicategory, which has only multimaps of dimension at most four, and show

that under certain representability conditions short multicategories correspond to

various flavours of representable multicategories. This is done in both the classical

and skew settings.
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Introduction

Context and Motivation

Monads are one of the fundamental notions of category theory [Mac71,

Chapter VI]. An example of the utility of monads is that they provide a homoge-

neous approach to the study of categories of sets equipped with algebraic structure,

such as groups and monoids [BW85]. Furthermore, Beck’s theorem on distributive

laws between monads [Bec69] describes concisely the structure that is necessary

and sufficient in order to combine two algebraic structures, so that the operations

of one distribute over those of the other. For example, the monads for groups

and for monoids can be combined via a distributive law to define the monad for

rings. In this context, the formal theory of monads, originally introduced by

Street [Str72] and later developed further by Lack and Street [LS02], has offered

an elegant and mathematically efficient account of the theory of monads, starting

from the observation that the notion of a monad can be defined within any 2-

category (so that the usual notion is recovered by considering the 2-category of

categories, functors and natural transformations). Among many other results,

Lack and Street’s work provides a characterisation of the existence of categories

of Eilenberg-Moore algebras as a completeness property and, importantly for our

purposes, a simple account of Beck’s theorem on distributive laws.

In recent years, motivation from pure mathematics, e.g. in the theory of

operads [FGHW08, FGHW17, GJ17, Gar08], and theoretical computer science,

e.g. in the study of variable binding [FPT99, CW05, Cur12, TP06b], led to signif-
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icant interest in pseudomonads [Lac00, Mar97, Mar04, Wal19], which are the

counterparts of monads in 2-dimensional category theory, obtained by requiring

the axioms for a monad to hold only up to coherent isomorphism rather than

strictly [Bun74]. Here, one of the key issues has been the proof of a counterpart of

Beck’s theorem on distributive laws, which requires a satisfactory axiomatisation

of the notion of a pseudostributive law [CHP03, Mar99, MW08, Tan04, TP06a],

building on early work of Kelly [Kel74] on semi-strict distributive laws. This is

a difficult question because such a notion necessarily involves complex coherence

conditions.

Monads can also be generalised in another way. It is known that they were

first introduced as endofunctors S : C → C with natural transformations

m : S2 → S and s : 1C → S acting as multiplication and unit. Then, Manes

[Man76, Definition 3.2] introduced the equivalent notion of a Kleisli triple,

which relies on a mapping of objects S : Ob(C) → Ob(C), an extension operator

sending any map f : X → SY to one of the type f † : SX → SY and a family

of maps sX : X → SX. In recent years, monads with this description have

been called no–iteration monads or (left) extension systems, and they have

been studied in [Her20, MM07, MVM17, MW10]. This description of monads

leads to a generalisation of them, known as relative monads [ACU15, Defini-

tion 2.1]. These are monad-like structure on a base functor I : C0 → C, i.e.

for any X ∈ C0 an object SX ∈ C, for any X, Y ∈ C0 an extension operator

(−)†S : C(IX, SY )→ C(SX, SY ) and a unit sX : IX → SX satisfying unital and

associativity laws. In [MRW02, Proposition 3.5] we find a characterization of

distributive laws d : ST → TS in terms of S-algebras α : STS → TS with some

properties. This description is adapted in [MW10, Theorem 6.2] to extension

systems. Then [Her20] provides the definition of a distributive law of a right

extension system with respect to a left extension system (also called a no-iteration

distributive law or a distributive law in extensive form), where a right extension

system is the dual notion of an extension system. Finally, mixed distributive

laws (between a monad and a comonad) have been studied in terms of extension

systems in [MVM17].
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Taking a step back, we can see how in the zoo of categorical structures, there are

three closely related ones:

• monoidal categories [Mac63], which involve tensor products A ⊗ B and a

unit I;

• closed categories [EK66], which involve an internal hom [A,B] and unit I;

• multicategories [Lam69], which involve multimorphisms A1, . . . , An → B for

all n ∈ N.

It is well known that there are various correspondences between different flavours of

these notions [Her00, Man09, BL18]. However, each of these concepts has various

pros and cons.

• Monoidal categories are fairly straightforward to work in — for instance, it

is easy to write down the definition of a monoid in a monoidal category.

Another advantage is that while the definition is finite, they admit a

coherence theorem — all diagrams commute [Mac63]. A disadvantage is

that in practise, the tensor product is often constructed using colimits and

so sometimes could be hard to describe explicitly.

• Closed categories have several advantages. Again they have a finite defini-

tion and a coherence theorem, though this is of a more complex nature

[KM71, Sol97]. Another advantage is that the internal homs are often

constructed using limits, and so easy to describe explicitly — see, for

instance, the internal hom of vector spaces. The disadvantage is that the

axiomatics of closed categories involve iterated contravariance, and this

makes it quite hard to parse diagrams in a closed category.

• In a multicategory, the multimaps can often be described directly — see, for

instance, multilinear maps of vector spaces — and this avoids the potentially
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complicated constructions of tensor products and internal homs using colimit

and limits. A disadvantage is that the definition, is infinite (though finitary)

in nature, and this sometimes makes it difficult to describe examples in full

detail.

In this thesis, we contribute both to the formal theory of pseudomonads (Chapter 1

and Chapter 2) and the formal theory of relative monads (Chapter 3). In partic-

ular, we prove counterparts of Beck’s theorem for distributive laws in both settings.

Then, we study multicategories (Chapter 4) and try to address the disadvantage

noticed above. In particular, we will provide an answer to the question: when is

it possible to give a finite definition of multicategory? The plan of action will be

to use the known equivalences between different flavours of monoidal category and

multicategory. We believe our results will make it easier to construct examples of

multicategorical structures in practice. For instance, we expect to get a shorter

proof of Verity’s multicategory of bicategories [Ver92, Definition 1.3.3].

Main Results

The aim of Chapter 1 and Chapter 2 is take some further steps in the development

of the formal theory of pseudomonads. The main contribution of Chapter 1 is to

answer the question raised in [Lac00] by showing that for every Gray-category K ,

there is a Gray-category Psm(K ) of pseudomonads, pseudomonad morphisms,

pseudomonad transformations and pseudomonad modifications in K .

Theorem 1.2.5. Let K be a Gray-category. Then there is a Gray-category

Psm(K ), called the Gray-category of pseudomonads in K , having pseudomonads

in K as 0-cells, pseudomonad morphisms as 1-cells, pseudomonad transformations

as 2-cells, and pseudomonad modifications as 3-cells.

The main challenge in proving this Theorem was to show that the composition of

pseudomonad morphisms is strictly associative (Lemma 1.2.8). Another result we
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prove is an analogue of a fundamental result of the formal theory of monads:

in Proposition 2.2.4 we show that the objects of Psm(Psm(K )) are exactly

pseudodistributive laws in K . Using this result, we give a new, simpler proof of

Marmolejo’s theorem regarding the equivalence between pseudodistributive laws

and liftings of pseudomonads to 2-categories of pseudoalgebras, given as the proof

of Theorem 2.2.5.

Theorem 2.2.5. Let K be a Gray-category, (X,S) and (X,T ) be pseudomonads

in K . A pseudodistributive law d : ST → TS is equivalent to a lifting of T to

pseudo-S-algebras.

The main result of Chapter 3 is a counterpart of Beck’s equivalence for relative

distributive laws, which is described in the theorem below. Here, we denote with

(X, I, T ) a relative monad in K where X, I : X0 → X are 1-cells in K and with

(S, S0) two monads S0 : X0 → X0 and S : X → X which are compatible with I

(Definition 3.5.1).

Theorem 3.6.19. Let K be a 2-category, (X, I, T ) a relative monad in K and

(S, S0) a compatible monad with I. The following are equivalent:

(i) a relative distributive law of T over (S, S0);

(ii) a lifting T̂ : S0-Alg(−) −→ S-Alg(−) of T to the algebras of (S, S0);

(iii) a lifting S̃ : ModT (−)→ ModT (−) of S to the relative right modules of T .

The central issue with this Theorem was to find the right definitions of lifting to

algebras and lifting to relative right modules.

Finally, the main contribution of Chapter 4 is to prove equivalences between

different flavours of (skew) multicategories and our new notion of short (skew)

multicategories, which involves multimaps of dimention at most four. We also

show that these equivalences are compatible with the ones given in [Her00, BL18]

for different flavours of multicategory and monoidal category. We start considering



6 Outline

left representable short multicategories and we prove the following theorem. Here,

we denote with ShMultlr the category of left representable multicategories, with

Skewln the category of left representable short multicategories and with Skewln

the category of left normal monoidal categories.

Theorem 4.4.5. The functor K : ShMultlr → Skewln is an equivalence of

categories, as is the forgetful functor Ulr : Multlr → ShMultlr. They also fit

in a commutative triangle

Multlr

ShMultlr

Skewln.

T

Ulr

K

Then, we also consider the following cases:

• Theorem 4.4.6 provides an equivalence between representable multicategories

and representable short multicategories.

• Theorem 4.4.7 and Theorem 4.4.8 show the equivalences in the closed left

representable and closed representable case.

• Theorem 4.5.12 proves the left representable skew case.

• Finally, Theorem 4.5.15 is about the left representable closed skew case.

The crucial part of these theorems was to carefully check which conditions were

enough to make the numerous diagrams in the proofs well-defined.

Outline

In Chapter 1 we start by recalling some useful background such as Gray-categories

and pseudomonads (Section 1.1). We will assume familiarity with basic defini-

tions of low dimensional category theory. For this notions, we refer the reader
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to [Lac10, KS74, JY21]. Then, in Section 1.2, we construct the 3-dimensional

category Psm(K ) of pseudomonads in a Gray-category K . We conclude the

chapter proving that Psm(K ) is a Gray-category.

Then, in Chapter 2, we first introduce liftings to pseudoalgebras and then prove

the equivalence between Psm(K ) and Lift(K ) (Section 2.1). At the end of the

chapter, Section 2.2, we discuss pseudodistributive laws.

Next, we move to relative monads in Chapter 3. In Section 3.1 we introduce our

notation and the definition of operator, which generalises the notion of a family

of maps C(Fx,Gy)→ C′(F ′x,G′y) natural in x and y. Section 3.2 uses operators

to generalise some results for relative monads in Cat to any 2-category K. Then,

in Section 3.3, we define explicitly the 2-category Rel(K) of relative monads in K.

We proceed in Section 3.4 giving the definition of algebras for a relative monad and

use them to describe when a relative monad is induced by a relative adjunction. In

Section 3.5 we define a relative distributive law and then prove the first Beck-type

theorem (about distributive laws). Section 3.6 is devoted to the 2-isomorphism

between LiftR(K) and Rel(K) and the second Beck-type theorem. We conclude

the chapter with some examples.

Finally, we study strongly finitary notions of multicategory in Chapter 4. More

precisely, in Section 4.1 we recall some important notions for multicategories. In

Section 4.2 we introduce our new definition of short multicategories and related

concepts such as representability and closedness. In Section 4.3 we give an overview

on skew monoidal categories and skew multicategories. Then, Section 4.4 provides

various equivalences between different flavour of short multicategories and skew

monoidal categories. We conclude the chapter in Section 4.5 introducing short skew

multicategories and describing analogues of the results in Section 4.4 appropriate

to the skew setting.
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1. On the Formal Theory of

Pseudomonads

Introduction

The aim of this chapter is to give the right basis to prove a counterpart for

pseudomonads of Beck’s theorem on distributive laws. Given how the formal

theory of monads offers a simple proof of this theorem, it seems natural to

attack this problem by developing a formal theory of pseudomonads. In order

to do this, however, one needs to face the challenge that, just as the formal

theory of monads is formulated within 2-dimensional category theory [KS74],

the formal theory of pseudomonads is formulated within 3-dimensional category

theory [GPS95, Gur13], which is notoriously hard. In this setting, it is convenient

to work with Gray-categories, i.e. semistrict tricategories [GPS95, Section 4.8],

which are easier to handle than tricategories, but sufficiently general for many

purposes, since every tricategory is triequivalent to a Gray-category [GPS95,

Theorem 8.1].

In spite of significant advances in the creation of a formal theory of pseudomonads

in the works cited above, there are still fundamental questions to be addressed.

In particular, there is not yet a direct counterpart of the 2-category Mnd(K )

of monads, monad morphisms and monad transformations in a 2-category K ,

which is the the starting point of the formal theory of monads [Str72].

Filling this gap would involve the definition, for a Gray-category K , of
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a 3-dimensional category Psm(K ) having pseudomonads in K as 0-cells,

pseudomonad morphisms as 1-cells, and appropriately defined pseudomonad

transformations and pseudomonad modifications as 2-cells and 3-cells, respec-

tively. This issue was raised by Lack in [Lac00, Section 6], who suspected that

defining Psm(K ) in this way would give rise only to a tricategory, not a Gray-

category, and hence require lengthy verifications of the coherence conditions. For

this reason, Lack preferred to define a Gray-category of pseudomonads in K using

the description of pseudomonads in K as suitable lax functors and developing

parts of the theory using enriched category theory.

Main results

The aim of this chapter is to take some further steps in the development of

the formal theory of pseudomonads. In particular, our main contribution is the

following:

• Theorem 1.2.5, which answers the question raised in [Lac00] by showing

that for every Gray-category K , there is a Gray-category Psm(K ) of

pseudomonads, pseudomonad morphisms, pseudomonad transformations

and pseudomonad modifications in K .

This result will be particularly useful in Chapter 2 where we will use it in various

ways. For instance, since Psm(K ) is a Gray-category, then we will be able to

consider Psm( Psm(K ) ) and study what are the objects of this Gray-category.

Theorem 1.2.5 will also play a part in proving some results about pseudodistribu-

tive laws.

As the proof of our main result involves lengthy, subtle calculations with pasting

diagrams, we tried to strike a reasonable compromise between rigour and concise-

ness by giving what we hope are the key diagrams of the proofs, and describing

the additional steps in the text. When in doubt, we preferred to err on the side of

rigour, since one of our initial goals was to answer the question raised in [Lac00]
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about whether Psm(K ) is a Gray-category or not. For the convenience of the

readers, some of the diagrams are confined to the Appendices A.

Outline

Section 1.1 provides background on Gray-categories, pseudomonads and 2-

categories of pseudoalgebras.

Then, in Section 1.2 we define the Gray-category Psm(K ).

1.1. Preliminaries

Gray-categories

We begin by reviewing the notion of a Gray-category and fixing some notation.

A Gray-category can be defined very succinctly in terms of enriched category

theory (see Remark 1.1.4). For our purposes, however, it is useful to give an

explicit definition, which we recall from [Mar99, Section 2] in Definition 1.1.1

below. The explicit definition makes it easier to see that Gray-categories are special

tricategories [GPS95, Proposition 3.1] in which the only non-strict operation is

horizontal composition of 2-cells [GPS95, Section 5.2]. Throughout this paper,

for a Gray-category K , we use X, Y, Z, . . . to denote its 0-cells, F : X → Y ,

G : Y → Z, . . . for its 1-cells, f : F → F ′ , g : G → G′ . . . for 2-cells, and α : f →
f ′ , β : g → g′ . . . for 3-cells.

When stating the definition of a Gray-category below, we make use of the notion

of a cubical functor from [GPS95], which we unfold in Remark 1.1.2.

Definition 1.1.1. A Gray-category K consists of the the data in (G1)-(G4),

subject to axioms (G5) and (G6), as given below.

(G1) A class of objects K0. We call the elements of K0 the 0-cells of K .
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(G2) For every X , Y ∈ K0, a 2-category K (X , Y ). We refer to the n-cells of

these 2-categories as the (n+ 1)-cells of K .

(G3) For every X, Y, Z ∈ K0, a cubical functor

K (Y, Z)×K (X, Y )→ K (X, Z) ,

whose action on F : X → Y and G : Y → Z is written GF : X → Z, and

whose action on f : F → F ′ and g : G→ G′ gives rise to an invertible 3-cell

GF GF ′

G′F G′F ′

Gf

gF gF ′

G′f

gf

called the interchange maps of K .

(G4) For any X ∈ K0, a 1-cell 1X : X → X. We call these the identity 1-cells of

K .

(G5) For every

F F ′
f

f ′

α G G′
g

g′

β K K ′
k

k′

γ

in K (X, Y ), K (Y, Z) and K (Z, W ), respectively,

(KG)F = K(GF ) ,

(KG)f = K(Gf) , (Kg)F = K(gF ) , (kG)F = k(GF ) ,

(KG)α = K(Gα) , (Kβ)F = K(βF ) , (γG)F = γ(GF ) ,

(Kg)f = K(gf ) , (kG)f = kGf , (kg)F = k(gF ) .

(G6) For every X, the 2-functors

1X(−) : K (X, Y )→ K (X, Y ) , (−)1X : K (X, Y )→ K (X, Y )

defined by composition with 1X : X → X, are identities.
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Remark 1.1.2. Asserting that composition in a Gray-category K is a

cubical functor means that the properties in (i)-(v) below hold, for every

F , F ′ , F ′′ : X → Y , G ,G′ , G′′ : Y → Z and

F F ′ F ′′ ,

f

f ′

f ′′
φ G G′ G′′ .

g

g′

g′′
ψ

(i) Composition with 1-cells on either side,

(−)F : K (Y, Z)→ K (X, Z) G(−) : K (X, Y )→ K (X, Z) ,

is a strict 2-functor.

(ii) Composition with 2-cells,

(−)f : (−)F → (−)F ′ , g(−) : G(−)→ G′(−) ,

is a pseudo-natural transformation.

(iii) Composition with 3-cells,

(−)ϕ : (−)f → (−)f ′ , ψ(−) : g(−)→ g′(−) ,

is a modification.

(iv) The following coherence equations hold (which are equivalent to the ones

making gf the component of the pseudo-natural transformation (−)f and

g(−)):

GF GF ′

G′F G′F ′

Gf

Gf ′

gFg′F gF ′

G′f ′

Gϕ

gf ′γF
=

GF GF ′

G′F G′F ′

Gf

G′f ′

gF ′g′F ′g′F

G′f

G′ϕ

g′f γF ′

(1.1.1)
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GF GF ′

G′F G′F ′

G′′F ′ G′′F ′

Gf

gF

G′f

gF ′

g′′F g′′F ′

G′′f

gf

g′′f

=

GF GF ′

G′′F ′ G′′F ′

Gf

(g′′g)F (g′′g)F ′

G′′f

(g′′g)f (1.1.2)

GF GF ′

G′F G′F ′

GF ′′

G′F ′′

Gf

gF

G′f

gF ′

Gf ′′

G′f ′′

gF ′′gf gf ′′ =

GF GF ′′

G′F G′F ′′.

G(f ′′f)

gF gF ′′

G′(f ′′f)

g(f ′′f) (1.1.3)

(v) The interchange map gf is the identity 3-cell when either f or g is the identity.

Remark 1.1.3. When working with a Gray-category, we sometimes write G ◦ F
instead of GF for cubical composition of 1-cells. For 2-cells, we write g′ · g
(or g′ g) for the vertical composition and g ◦ f for cubical composition. For 3-

cells, we write β ◦ α for cubical composition, α′ ∗ α for vertical composition in

K (X, Y ) and ᾱ · α for horizontal composition in K (X, Y ), where α′ : f ′ → f ′′

and ᾱ ∈ K (X, Y )[F ′, F ′′].

Remark 1.1.4. We write Gray for the category of 2-categories and 2-functors. For

2-categories X and Y , let [X, Y ] be the 2-category of 2-functors from X to Y ,

pseudonatural transformations, and modifications [KS74]. This definition equips

the category Gray with the structure of a closed category [EK66]. The closed

structure of Gray is part of symmetric monoidal structure, whose tensor product is

known as the Gray tensor product [GPS95, Section 4.8]. We will writeX⊗Y for the

Gray tensor product of 2-categories X and Y . A Gray-category can then be defined

equivalently as a Gray-enriched category [GPS95, Section 5.1]. Since Gray is a

monoidal closed category, it is enriched over itself. Therefore, it can be viewed
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as a Gray-category, as we will do from now on. More explicitly, Gray is the

Gray-category having 2-categories as 0-cells, 2-functors as 1-cells, pseudonatural

transformations as 2-cells, and modifications as 3-cells.

The notions of a Gray-functor and of a Gray-natural transformation are instances

of the general notions of enriched functor and enriched natural transforma-

tion [Kel82, Section 1.2]. We will use the terminology of Gray-modification and

Gray-perturbation to denote the strict counterparts of the corresponding tricate-

gorical notions [GPS95, Section 3.3].

When working with the Yoneda embedding for Gray-categories, which is just an

instance of the Yoneda embedding for enriched categories [Kel82, Section 2.4],

we often identify an object X ∈ K with the representable Gray-functor

K (−, X) : K op → Gray associated to it. Analogous conventions will be used also

for the n-cells of K , where n = 1, 2, 3. For further information on Gray-categories

and tricategories, we invite the reader to refer to [GG09, GPS95, Gur13, Lac07].

Pseudomonads and their Pseudoalgebras

Let K be a Gray-category, to be considered fixed for the rest of this section. We

recall the definition of a pseudomonad.

Definition 1.1.5. Let X ∈ K . A pseudomonad on X in K consists of:

• a 1-cell S : X → X in K ;

• two 2-cells m : S2 → S and s : 1X → S in K ;

• three invertible 3-cells in K of the following form:

S3 S2

S2 S

Sm

mS m

m

µ

S S2

S

S
Ss

1S

m
1S

sS

λ ρ
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satisfying the coherence axioms in (1.1.4) and (1.1.5) below:

S4 S3

S3 S2

S3

S2 S

S2m //

mS2

��
Sm //

m

��

SmS

��

Sm

��

mS

��
mS

��

m
//

Sµ
��

µ
��

µS��

=

S4 S3

S2

mm��

S3

S2 S

S2

µ � 

S2m //

mS

��

m

��

mS2

��
Sm //

m

��

Sm

��

mS
��

m //

µ��
(1.1.4)

S2

S3 S2

S2 S

1S2

""

1S2

��

m

��

Sm

��

SsS

��
Sm //

m
//

µ
��

Sρ��

λS��

= S2 S
m // (1.1.5)

For brevity, we will refer to an object X ∈ K and a pseudomonad (S,m, s, µ, λ, ρ)

on X simply as a pseudomonad in K and write simply (X,S) to denote it.

Example 1.1.6. Many examples of pseudomonads can be found in [Tan04,

Section 8.1], [CHP03, Section 2] and [FGHW08, Section 4.2]. Two of them are

the pseudomonad of small categories with products and the pseudomonad of small

symmetric monoidal categories [Tan04, Examples 8.1 and 8.3].

Note that the notion of a pseudomonad is self-dual, in the sense that a

pseudomonad in K is the same thing as a pseudomonad in K op , where K op

is the Gray-category obtained from K by reversing the direction of the 1-cells,

but not that of the 2-cells and 3-cells. As in the formal theory of monads, this is

important to obtain results by duality.

Let (X,S) be a pseudomonad in K . For I ∈ K , there is a 2-category Ps-S-Alg(I)

of I-indexed pseudo-S-algebras, pseudoalgebra morphisms, and pseudoalgebra 2-

cells, whose definitions we recall below. An I-indexed pseudoalgebra for S consists
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of a 1-cell A : I → X, called the underlying 1-cell of the pseudoalgebra, a 2-cell

a : SA→ A, called the structure map of the pseudoalgebra, and invertible 3-cells

S2A

SA

SA

A ,

Sa //

a
//

mA

��

a

��
ā��

A SA

A ,
1A %%

sA //

a

��

ã +3

called the associativity and unit of the pseudoalgebra, satisfying the coherence

axioms (1.1.6) and (1.1.7) stated below.

S3A S2A

S2A SA
S2A

SA A

S2a //

mSA

��
Sa //

a

��

SmA

��

Sa

��

mA

��
mA

��
a

//

Sā
�#

ā��

αA��
=

S3A S2A

SA

ma
��

S2A

SA A .

SA
ā
� 

S2a //

mA

��

a
��

mSA

��
Sa //

a

��

Sa

��

mA
��

a
//

ā ��

(1.1.6)

SA

S2A SA

SA A

1SA

""

1SA

��

a

��

mA

��

SsA

��
Sa //

a
//

ā��

ã��

λA��

= SA A .
a // (1.1.7)

As usual, we refer to a pseudoalgebra by the name of its underlying 1-cell, leaving

the rest of its data implicit. Similar conventions will be implicitly assumed for

other kinds of structures.
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Proposition 1.1.7. [Mar97, Lemma 9.1] Let (X,S) be a pseudomonad in K ,

I ∈ K and A an I-indexed pseudoalgebra for S. Then, the coherence condition

SA A

S2A

SA

sa��

A

SA
ā
� 

a //

sA

��

a
��

sSA

��
Sa //

1SA


mA

��
a

//

ã ��

=

SA

S2A

SA A

sSA

��

mA
��

a
//

1SA



ρA��

(1.1.8)

is derivable.

Given pseudoalgebras A and B, a pseudoalgebra morphism f : A→ B consists of

a 2-cell f : A→ B and an invertible 3-cell

SA

A

SB

B

Sf //

f
//

a

��
b

��
f̄��

satisfying the coherence conditions (1.1.9) and (1.1.10) stated below.

S2A S2B

SA SB
SA

A B

S2f //

mA

��
Sf //

b

��

Sa

��

Sb

��

a

��
a

��

f
//

Sf̄
�#

f̄��

ā��
=

S2A SB

SB
SA

A B .

mf

��

SB
f̄
� 

S2f //

mB

��

b

��

mA

�� Sf //

b

��

Sb

��

a
��

f
//

b̄��
(1.1.9)

A

SA

A B

sA

��

a
��

f
//

1A

��

ã ��

=

A B

SA

A

sf��

B .

SB
f̄
� 

f //

sB

��

b
��

sA

�� Sf //
1B

��
a

��

f
//

b̃ ��

(1.1.10)
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Given pseudoalgebra morphisms f : A→ B and g : A→ B, a pseudoalgebra 2-cell

consists of a 3-cell α : f → g satisfying the coherence condition (1.1.11).

SA

A

SB

B

Sf
((

Sg

66

g

88

a

��

b

��
ḡ
��

Sα��

=

SA

A

SB

B .

Sf
((

f

''

g

77

a

��

b

��

f̄
��

α��

(1.1.11)

There is a forgetful 2-functor UI : Ps-S-Alg(I)→ K (I,X), defined by mapping a

pseudo-S-algebra to its underlying 1-cell, which has a left pseudoadjoint, defined by

mapping a 1-cell A : I → X to the free pseudoalgebra on it, given by the composite

1-cell SA : I → X. Attentive readers will have observed that the directions of the

structural 3-cells µ and λ for a pseudomonad as in Definition 1.1.5 match those of

the 3-cells necessary to make SA into a pseudoalgebra.

The function mapping an object I ∈ K to the 2-category Ps-S-Alg(I) extends to

a Gray-functor Ps-S-Alg : K op → Gray. We also have a Gray-transformation

U : Ps-S-Alg→ X , (1.1.12)

with components given by the forgetful 2-functors UI : Ps-S-Alg(I) → K (I,X),

for I ∈ K . Note the use of our convention on the Yoneda lemma in (1.1.12).

Note that the structure of pseudo-S-algebra on a 1-cell A : I → X can be viewed

as a left S-action on A, associative and unital up to coherent isomorphism. For

this reason, we sometimes refer to pseudoalgebras as left pseudomodules. This

terminology is convenient when we discuss dualities in Section 2.2.

1.2. The Gray-category of Pseudomonads

The aim of this section is to introduce the 3-dimensional category Psm(K ) of

pseudomonads in a Gray-category K and prove that it is a Gray-category. In
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order to do so, we review the notion of a pseudomonad morphism from [MW08]

and introduce the notions of a pseudomonad transformation and modification.

Again, we fix a Gray-category K . When working with two pseudomonads (X,S)

and (Y, T ), we use m and s for the multiplication and unit of S, n and t for the

multiplication and unit of T , but we use the same letters µ, λ, ρ for the structural

3-cells of both monads to simplify notation, as the context makes it always clear

to which we are referring.

Definition 1.2.1. Let (X,S) and (Y, T ) be pseudomonads in K . A pseudomonad

morphism (F, φ) : (X, S) → (Y, T ) consists of a 1-cell F : X → Y , a 2-cell

φ : TF → FS and two invertible 3-cells

T 2F TFS

FS2

TF FS

Tφ

nF

φS

Fm

φ

φ̄

F TF

FS.

tF

Fs
φ

φ̃

These data are required to satisfy the coherence axioms in (1.2.1) and (1.2.2).
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T 3F T 2FS

TFS2

T 2F T 2F TFS

TF FS

FS2

T 2φ //

nTF

��

TnF

""

TφS

!!

nF

��

TFm

""

Tφ
//

nF

��

φS��

Fm

��

h
//

⇓ T φ̄

⇓ φ̄

⇓ µF =

T 3F T 2FS

T 2F TFS

TFS2

FS2

FS3 TFS

TF FS

FS2

T 2φ //

nTF

��

nFS

��

TφS

""

Tφ //

nF

""

φS ""

φS2

��

FmS

��

FSm

""

TFm

""

Fm !!

φS

��

Fm

��

φ
//

⇓ nφ

⇓ φ̄S

⇓ φm

⇓ φ̄ ⇓ Fµ

(1.2.1)

TF

T 2F TFS

FS2

TF FS

⇓λH

TFs

""

1TF

��

φS

��

Fm

��

nF

��

TtF

�� Tφ //

φ
//

⇓T φ̃

⇓ φ̄

=

TF

FS
TFS

FS2

FS

TFs

""
φ

��

FSs

))

φS

��

Fm

��

1FS

((

⇓φs

⇓Fλ

(1.2.2)
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Proposition 1.2.2. [MW08, Theorem 2.3] Let (F, φ) : (X,S) → (Y, T ) be a

pseudomonad morphism. The coherence condition

TF FS

TF FS

T 2F TFS

FS2

φ
//

φ //

tTF

��

nF

''

Fm

%%

φS

&&

tFS

��Tφ //

FsS

��

1FS

��

⇓ tφ

⇓ φ̄

⇓FρS

⇓ φ̃S

=

TF FS

TF

T 2F

φ
//

tTF

��

nF

��

1TF



ρTF��

is derivable.

Definition 1.2.3. Let (F, φ), (F ′, φ′) : (X, S) → (Y, T ) be pseudomonad

morphisms. A pseudomonad transformation (p, p̄) : (F, φ) → (F ′, φ′) consists

of a 2-cell p : F → F ′ and an invertible 3-cell

TF TF ′

FS F ′S

Tp

φ φ′

pS

p̄

satisfying the coherence conditions in (1.2.3) and (1.2.4) below.

T 2F T 2F ′

TF

TFS TF ′S

FS2 F ′S2

FS F ′S

T 2p //

nF

��

Tφ

��

Tφ′

��

φ

��

TpS //

φS

��
φ′S

��pS2
//

Fm

��
F ′m

��

pS
//

⇓T p̄

⇓ φ̄
⇓ p̄S

⇓ p−1
m

=

T 2F T 2F ′

TF TF ′

TF ′S

F ′S2

FS F ′S

T 2p //

nF

��

nF ′

��

Tφ′

��

Tp //

φ

��

φ′

��

φ′S

��

F ′m

��

pS
//

⇓np

⇓ φ̄′

⇓ p̄

(1.2.3)
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F F ′

TF

FS F ′S

tF

��

p //

F ′s

��φ
##

pS
//

Fs

��

φ̃��
p−1
s��

=

F F ′

TF

FS F ′S

TF ′

p̄
�%

p //

tF ′

��

φ′ ##

tF

�� Tp //
F ′s

��φ
##

pS
//

φ̃′��

tp��

(1.2.4)

Definition 1.2.4. Let (p, p̃), (p′, p̃′) : (F, φ)→ (F ′, φ′) be pseudomonad transfor-

mations. A pseudomonad modification α : (p, p̃) → (p′, p̃′) is a 3-cell α : p → p′

satisfying the coherence condition below.

TF

FS

TF ′

F ′S

Tp
((

Tp′

66

p′S

66

φ

��

φ′

��
p̄′��

Tα��

=

TF

FS

TF ′

F ′S

Tp
((

pS
((

p′S

66

φ

��

φ′

��

p̄
��

α��

(1.2.5)

The following is our first main result, which solves the problem raised in [Lac00,

Section 6].

Theorem 1.2.5. Let K be a Gray-category. Then there is a Gray-category

Psm(K ), called the Gray-category of pseudomonads in K , having pseudomonads

in K as 0-cells, pseudomonad morphisms as 1-cells, pseudomonad transformations

as 2-cells, and pseudomonad modifications as 3-cells.

The rest of this section is devoted to the proof of Theorem 1.2.5, which will be

obtained by combining Lemmas 1.2.6, 1.2.8, 1.2.9 and 1.2.10 below. We begin

by giving the definition of the hom-2-categories of Psm(K ).

Lemma 1.2.6. Let (X, S) and (Y, T ) be two pseudomonads in K . Then

there is a 2-category Psm(K )( (X, S), (Y, T ) ) having pseudomonad morphisms

from (X,S) to (Y, T ) as 0-cells, pseudomonad transformations as 1-cells and

pseudomonad modifications as 2-cells.
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Proof. First of all, for any pair of composable 1-cells (p0, p̃0) : (F0, φ0)→ (F1, φ1)

and (p1, p̃1) : (F1, φ1) → (F2, φ2) we define their composition as (p1p0, p̃1p0)

where p̃1p0 is defined as the pasting of

TF0 TF1

F0S F1S F2S.

TF2
Tp0

φ0 φ1

p0S

Tp1

φ2

p1S

p̃0 p̃1

We want to show that composition is strictly associative. So let us consider three

composable 1-cells

(F0, φ0)
(p0, p̃0)−−−−→ (F1, φ1)

(p1, p̃1)−−−−→ (F2, φ2)
(p2, p̃2)−−−−→ (F3, φ3)

By definition, the two possible composites are

(p2, p̃2) ·
(
(p1, p̃1) · (p0, p̃0)

)
= (p2(p1p0), ˜p2(p1p0)) ,(

(p2, p̃2) · (p1, p̃1)
)
· (p0, p̃0) = ((p2p1)p0, ˜(p2p1)p0) .

We want to show that these are equal. Since K is a Gray-category, p2(p1p0) =

(p2p1)p0. Moreover, ˜p2(p1p0) = ˜(p2p1)p0 since they are both the pasting of

TF0 TF1

F0S F1S F2S

TF2 TF3

F3S.

Tp0

φ0 φ1

p0S

Tp1

φ2

p1S

Tp2

φ3

p2S

p̃0 p̃1 p̃2

It remains to define the identity 1-cells of Psm(K )( (X, S), (Y, T ) ). For a

pseudomonad morphism (F, φ) : (X,S) → (Y, T ), we define the identity on it to

be

(1F , 1φ) : (F, φ)→ (F, φ) .

This is allowed since T1F = 1TF and 1FS = 1FS. These can be shown to be a strict

identities, using that K is a Gray-category and in particular Axiom (G6).
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We proceed by defining the composition of 1-cells in Psm(K ) and proving that

is strictly associative, as required to have a Gray-category. Since a pseudomonad

morphism is a tuple of the form (F, φ, φ̄, φ̃), where F is a 1-cell, φ is a 2-cell while

φ̄ and φ̃ are 3-cells, we will need to check equalities at three levels. The key level of

the verification is that of 2-cells. Indeed, strict associativity at the level of 1-cells

will follow easily from the strict associativity of composition of 1-cells in K . The

key issue are the equalities at the level of 2-cells, since 2-cells could be isomorphic

(by means of an invertible 3-cell), but not equal. Instead, equalities of 3-cells will

be quite straightforward. In fact, the required equations for 3-cells either hold

strictly or they fail completely, since there are no 4-cells that could make these

equations hold only up to isomorphism.

In the following, for a pseudomonad morphism F = (F, φ, φ̄, φ̃), we define

F ¯:= φ̄ , F˜:= φ̃ .

Let (F, φ) : (X, S) → (Y, T ) and (G, ψ) : (Y, T ) → (Z, Q) be two pseudomonad

morphisms. We define their composition as

(G, ψ,G ,̄G˜) ◦ (F, φ, F ,̄ F˜) :=
(
GF, Gφ · ψF ,G ◦ F ,̄G ◦ F˜) (1.2.6)

where the invertible 3-cells are defined by the following pasting diagrams:

Q2GF QGTF

GT 2F

QGF GTF

QGFS

GTFS

GFS2

GFS

G ◦ F ¯:=

QψF

mQGF

ψTF

ψF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

ψ̄F

Gφ̄

ψφ
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GF GFS

QGF .

GTFG ◦ F˜:=

GFs

GtF
Gφ

qGF

ψF

Gφ̃

ψ̃F

The proof that this definition gives a pseudomonad morphism is in Appendix A.2.

Remark 1.2.7. We did not consider any parenthesis in the diagrams above thanks

to axiom (G5) for a Gray-category. Moreover since Q(−) is a strict 2-functor

we have Q(Gφ · ψF ) = QGφ · QψF (and similarly for other compositions in the

diagrams).

Lemma 1.2.8. The composition of pseudomonad morphisms defined in (1.2.6) is

strictly associative.

Proof. From now on, let us consider three pseudomonad morphisms in K :

(X, S)
(F, φ)−−−→ (Y, T )

(G,ψ)−−−→ (Z, Q)
(H, ξ)−−−→ (V, R).

In order to prove this statement we have to prove that the equation for associativity

holds for the respective 1-, 2- and 3-cell components. For 1-cells, since K is a

Gray-category, then H(GF ) = (HG)F .

For 2-cells, the idea is to reduce both composites to HGφ · HψF · ξGF . On the

one hand,

H(Gφ · ψF ) · ξGF = [H(Gφ) ·H(ψF )] · ξGF (because H(−) is strict)

= [HGφ ·HψF ] · ξGF (by (G5))

= HGφ ·HψF · ξGF (since K (X, V ) is a 2-category).

On the other hand,

HGφ · (Hψ · ξG)F = HGφ · [(Hψ)F · (ξG)F ] (because (−)F is strict)
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= HGφ · [HψF · ξGF ] (by (G5))

= HGφ ·HψF · ξGF (since K (X, V ) is a 2-category).

For 3-cells, to prove that
(
H(GF )

) ˜=
(
(HG)F

) ˜we just need to notice that,

using the fact that H(−) and (−)F are strict 2-functors, both of them are pasting

of:

HGF HGFS

HGTF

HQGF

RHGF .

HGFs

HqGF

HGtF
HGφ

rHGF

ξGF

HψF

HGφ̃

Hψ̃F

ξ̃GF

We get the required equality by the pasting theorem for 2-categories [Pow90].

Finally, let us prove the equality on the other 3-cell component. By definition,

R2HGF RHQGF RHGFS

HQ2GF HQGFS

RHGF HQGF HGFS .

H(GF )¯ = ξ̄GF

ξ(Gφ·ψF )

H(GF )̄
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Using the definition of GF ¯and (1.1.3), the right-hand side pasting becomes

R2HGF RHQGF RHGTF RHGFS

RHGF

HQ2GF HGTFS HQGFS

HGT 2F HGTFS

HQGF HGTF HGFS .

Hψ̄F

H(ψφ)

HGφ̄

ξ̄GF

ξψF ξGφ

Let us notice that, by (G5), H(ψφ) = Hψφ, ξψF = (ξψ)F and ξGφ = ξGφ.

Moreover, using the definition of HG¯and (1.1.2), the diagram above is equal to

R2HGF RHGTF RHGFS

HGT 2FS HGTFS

RHGF HGTF HGFS,

(HG )̄F

(Hψ · ξG)φ

HGφ̄

which is exactly the definition of H(GF ) .̄

For brevity, we sometimes write PK instead of Psm(K ), so for any pair of

pseudomonads (X, S) and (Y, T ) the 2-category of pseudomonads morphisms from

(X, S) to (Y, T ) can be written as PK

(
(X, S), (Y, T )

)
.
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Lemma 1.2.9. The definition of composition of pseudomonad morphisms extends

to a cubical functor

− ◦ − : PK ( (Y, T ), (Z, Q) )× PK ( (X, S), (Y, T ) ) −→ PK ( (X, S), (Z, Q) )

for (X,S) , (Y, T ) , (Z,Q) ∈ Psm(K ).

Proof. This is a just a long verification, but we spell it out in some detail. By the

definition of a cubical functor, for (F, φ) : (X, S)→ (Y, T ) and (G, ψ) : (Y, T )→
(Z, Q) in Psm(K ), we need to define strict 2-functors

Fφ : PK ( (Y, T ), (Z, Q) )→ PK ( (X, S), (Z, Q) ) , (1.2.7)

Gψ : PK ( (X, S), (Y, T ) )→ PK ( (X, S), (Z, Q) ) (1.2.8)

such that

Fφ( (G, ψ) ) = Gψ( (F, φ) ) = (G, ψ) ◦ (F, φ) , (1.2.9)

plus, for 2-cells (p, p̃) : (F, φ) → (F ′, φ′) and (q, q̃) : (G, ψ) → (G′, ψ′), an

invertible 3-cell in Psm(K )

(G, ψ) ◦ (F, φ) (G, ψ) ◦ (F ′, φ′)

(G′, ψ′) ◦ (F, φ) (G′, ψ′) ◦ (F ′, φ′)

(q, q̃) ◦ (F, φ)

(G, ψ) ◦ (p, p̃)

(G′, ψ′) ◦ (p, p̃)

(q, q̃) ◦ (F ′, φ′)Σ(p, p̃), (q, q̃) (1.2.10)

satisfying axioms (1.1.1), (1.1.2) and (1.1.3).

We begin by defining Fφ in (1.2.7). Its action on objects is determined by (1.2.9).

For its action on 1-cells, we send (q, q̃) : (G,ψ) → (G′, ψ) to the pseudomonad

modification (qF, q̃F ) : (GF,Gφ · ψF )→ (G′F,G′φ · ψ′F ), where q̃F is defined as

the following pasting:
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QGF QG′F

GTF G′TF

GFS G′FS.

QqF

ψF

qTF

ψ′F

Gφ G′φ

qFS

q̃F

qφ
−1

The action of Fφ on 3-cells β : (q, q̃)→ (q′, q̃′) is defined by letting β◦(F, φ) := βF

in K . The proof that this is a pseudomonad modification, and therefore a 3-cells

in Psm(K ), is in Appendix A.2.

We now show that Fφ is a 2-functor. For this, we use extensively the notation

of Remark 1.1.3 to avoid writing some diagrams. To prove that composition is

preserved strictly, we show that

Fφ( (q′, q̃′) · (q, q̃) ) = Fφ(q′, q̃′) · Fφ(q, q̃) (1.2.11)

for any

(G, ψ)
(q, q̃)−−→ (G′, ψ′)

(q′, q̃′)−−−→ (G′, ψ′)

in PK ( (Y, T ), (Z, Q) ). The composition (q′, q̃′) · (q, q̃) is defined as (q′q, q̃′q)

where q̃′q is defined as the pasting of

QG QG′

GT G′T G′T .

QG′

q̃ q̃′

Using the equation (1.1.3) we can see that the 3-cells components of Fφ( (q′, q̃′) ·
(q, q̃) ) and Fφ(q′, q̃′)· Fφ(q, q̃) are two pasting of the diagram below:
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QG QG′

GT G′T G′T

QG′

GF G′F G′F .

q̃ q̃′

qφ
−1 q′φ

−1

Moreover, (q′ · q)F = q′F · qF since (−)F is a strict 2-functor (since K is a Gray

category). Hence, the required equality in (1.2.11) holds. Let us also verify that

Fφ preserves identities strictly. Recall from Lemma 1.2.6 that 1(G,ψ) := (1G, 1ψ)

in PK ( (Y, T ), (Z, Q) ). Therefore,

Fφ(1G, 1ψ) = (1GF, 1̃GF )

and moreover

(1GF, 1̃GF ) = (1GF , ( (1G)φ · 1ψF ) ∗ (1Gφ · 1ψF ) ) (by definition ofFφ)

= (1GF , (1Gφ · 1ψF ) ∗ (1Gφ · 1ψF ) ) (by Remark 1.1.2)

= (1GF , (1Gφ·ψF ) ∗ (1Gφ·ψF ) ) (since · preserves identities)

= (1GF , 1Gφ·ψF ) (by (G2))

= 1(GF,Gφ·ψF )

= 1Fφ(G,ψ) ,

as required.

We now define the 2-functor Gφ of (1.2.8). Again, its action on objects is

determined by (1.2.9). On morphisms, it sends (p, p̃) : (F, φ)→ (F ′, φ′) to

(Gp, G̃p) : (GF,Gφ · ψF )→ (GF ′, Gφ′ · ψF ′) ,

where G̃p is defined as the following pasting:
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QGF QGF ′

GTF GTF ′

GFS GF ′S .

QGp

ψF

GTp

ψF ′

Gφ Gφ′

GpS

ψp

Gp̃

On 3-cells α : (p, p̃) → (p′, p̃′) we let (G, φ) ◦ α := Gα, which is a 3-cell in

Psm(K ) by a similar argument to the one used for Fφ. The proof that this is a

2-functor is completely analogous to the one for Fφ and hence omitted.

To conclude the proof, we need to define the 3-cell Σ(p, p̃), (q, q̃) in (1.2.10). We take

this to be qp, which is shown to be a pseudomonad modification in Appendix A.2.

The required axioms for Σ(p, p̃), (q, q̃), as in (1.1.1), (1.1.2) and (1.1.3), hold as they

are instances of the ones for qp for K .

Lemma 1.2.10. The cubical functor providing composition in Psm(K ) satisfies

the coherence conditions of Axiom (G5).

Proof. The first one is just Lemma 1.2.8. Since the definitions on 3-cells coincide

with the ones in K , all the equations regarding them hold directly. Therefore,

we only need to prove the ones for 2-cells. Let us consider the following diagram

in Psm(K ):

(X, S) (Y, T ) (Z, Q) (V, R)

(F, φ)

(F ′, φ′)

(p, p̃)

(G, ψ)

(G′, ψ′)

(q, q̃)

(H, ξ)

(H ′, ξ′)

(r, r̃)

We need to prove:

(i) (Hξ ◦Gψ) (p, p̃) = Hξ(Gψ (p, p̃) ),
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(ii) (Hξ (q, q̃) )Fφ = Hξ( (q, q̃)Fφ ),

(iii) ( (r, r̃)Gψ )Fφ = (r, r̃) (Gψ ◦ Fφ ).

At the 2-cells level we have (HG)p = H(Gp) because K is a Gray-category. The

same happens in (ii) and (iii) so we will just prove that the associated 3-cells are

equal in each case. Let us start with part (i). On the one hand, by definition,

(̃HG)p = H̃G̃p ,

and therefore

RHGF RHGF ′

RHGF RHGF ′

HGFS

HQGF HQGF ′

HQGF HQGF ′

HGTF HGTF ′

HGF ′S

HGFS HGF ′S.

= Hψp

HGp̃

ξGp

HG̃p

ξGp

On the other hand Hξ(Gψ (p, p̃) ) = (HG, Hψ · ξG) (p, p̃) so the associated 3-cell

is, using (1.1.2),

RHGF RHGF ′

RHGF RHGF ′

HGFS

HGTF HGTF ′

HQGF HQGF ′

HGTF HGTF ′

HGF ′S

HGFS HGF ′S.

=

(Hψ · ξG)p

HGp̃

ξGp

Hψp

HGp̃
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But ξGp = ξGp, since K is a Gray-category, and so the required equality holds.

For part (ii), by definition, the 3-cell component of Hξ (q, q̃) )Fφ is:

RHGF RHG′F

HGTF HG′TF

HGFS HG′FS

=

RHGF RHGF ′

HQGF HQG′F

HGTF HG′TF

HGFS HG′FS

=

RHGF RHGF ′

HQGF HQG′F

HGFS HG′FS.

H̃qF

Hqφ
−1

(ξq)F

Hq̃F

Hqφ
−1

ξqF

H(q̃F )

Finally, part (iii) is completely analogous to the first one using the inverse of 1.1.3

instead of 1.1.2.

The combination of Lemmas 1.2.6, 1.2.8, 1.2.9 and 1.2.10 proves Theorem 1.2.5.



2. Pseudodistributive Laws

Introduction

In Chapter 1 we constructed the direct counterpart for pseudomonads of the 2-

category Mnd(K ) of monads, monad morphisms and monad transformations

in a 2-category K , which is the the starting point of the formal theory of

monads [Str72]. In this chapter, instead, we will consider another approach that

was taken earlier by Marmolejo in [Mar99]. Marmolejo introduced, for a Gray-

category K , a Gray-category that we denote here Lift(K ) to avoid confusion,

that has pseudomonads in K as 0-cells and liftings of 1-cells, 2-cells and 3-cells

of K to 2-categories of pseudoalgebras as 1-cells, 2-cells and 3-cells, respectively.

He then used Lift(K ) to introduce the notion of a lifting of a pseudomonad to

pseudoalgebras and of a pseudodistributive law, proving the fundamental result

that pseudodistributive laws are equivalent liftings of pseudomonads are equivalent

to [Mar99, Theorems 6.2, 9.3 and 10.2], thus obtaining an analogue of Beck’s result

on distributive laws. Here, Marmolejo defined pseudodistributive laws explic-

itly, giving nine coherence conditions for them [Mar99]. Later, Marmolejo and

Wood [MW08] showed not only that an additional tenth coherence condition,

introduced by Tanaka [Tan04], can be derived from Marmolejo’s conditions, but

also that one of the original nine conditions introduced by Marmolejo is derivable

from the others, thus reducing the number of coherence axioms for a pseudodis-

tributive law to eight. Subsequent work on simplifying the axioms even further

has been done by Walker [Wal21].
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Main Results

The aim of this chapter is to continue the work done in Chapter 1. In particular,

our main contributions are the following:

• Theorem 2.1.4, the analogue of a fundamental result of the formal theory

of monads, asserting that Psm(K ) is equivalent, in a suitable 3-categorical

sense, to the Gray-category Lift(K );

• Proposition 2.2.4, recording that an object of Psm(Psm(K )) is the same

thing as a pseudodistributive law in K ;

• a new, simpler proof of Marmolejo’s theorem of the equivalence between

pseudodistributive laws and liftings of pseudomonads to 2-categories of

pseudoalgebras, given as the proof of Theorem 2.2.5.

Theorem 1.2.5 supports the definition of a pseudodistributive law of [Mar99,

MW08], since it allows us to show that a pseudodistributive law is the same

thing as a pseudomonad in Psm(K ) (Proposition 2.2.4), as one would expect

by analogy with the situation in the formal theory of monads. Thanks to this

observation, we provide an interpretation of the complex coherence conditions for

a pseudodistributive law in terms of simpler ones, namely those for a pseudomonad

morphism, a pseudomonad transformation and a pseudomonad modification (see

Table 2.2 for details). This point of view allows us to give a principled presenta-

tion of the conditions for pseudodistributive laws of [Mar99, Tan04], included in

Appendix A.1, which hopefully provides a useful reference for future work in this

area. For the convenience of readers, we also describe how our formulation relates

to the ones of Marmolejo and of Tanaka (see Table 2.1).

Theorem 2.1.4, which establishes the equivalence between Psm(K ) and Lift(K ),

does not seem to be part of the literature (in part because its very statement

requires the introduction of the 3-dimensional category Psm(K ), which is defined
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here for the first time), but extends existing results. In particular, the equiva-

lence between pseudomonad morphisms and liftings of morphisms to categories

of pseudoalgebras is proved in [MW08]. Related results appear also in [Tan04],

but with important differences. First, the work carried out therein is developed

for the particular tricategory 2-Catpsd of 2-categories, pseudofunctors, pseudonat-

ural transformations and modifications, rather than for a general tricategory or

Gray-category. While that is an important example (cf. Remark 2.2.7), restricting

to a particular tricategory does not allow us to exploit the various dualities

that are essential to derive results in the formal theory. Secondly, the results

obtained therein focus on hom-2-categories of pseudomonad endomorphisms, i.e. of

the form Psm(K )((X,S), (X,S)), rather than on general hom-2-categories of

pseudomonad morphisms.

Our proof of Theorem 2.2.5, which asserts the equivalence between pseudodis-

tributive laws and liftings of pseudomonads to 2-categories of pseudoalge-

bras established in [Mar99], follows naturally combining Theorem 1.2.5 and

Theorem 2.1.4. More specifically, combining our identification of pseudodistribu-

tive laws with pseudomonads in Psm(K ) of Proposition 2.2.4 with the fact that

a pseudomonad in Lift(K ) is a lifting of a pseudomonad T to the 2-categories

of pseudoalgebras of another pseudomonad S, we obtain the desired equivalence

between a pseudodistributive law of S over T and a lifting of T to pseudo-S-

algebras. This proof is simpler than that in [Mar99] since it takes a modular,

more abstract, approach to the verification of the coherence conditions and avoids

completely the notion of a composite of pseudomonads with compatible structure.

Outline

We introduce liftings to pseudoalgebras in Section 2.1 and then we prove the

equivalence of Psm(K ) and Lift(K ).

We conclude in Section 2.2 by discussing pseudodistributive laws.
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2.1. Liftings to Pseudoalgebras

We now recall from [Mar99, Section 7] and [Lac00, Section 6] the definition of the

Gray-category Lift(K ) of pseudomonads in K and liftings to pseudoalgebras. In

[Mar99] this was written as Psm(K ), but we prefer to use that notation for the

Gray-category introduced in Section 1.2, since it seems the natural generalization

of the 2-category of monads defined by Street in [Str72]. We will then show

that Lift(K ) is equivalent to Psm(K ), which will be used in Section 2.2 for our

results on pseudodistributive laws.

The 0-cells of Lift(K ) are pseudomonads (X,S) in K . For 0-cells (X,S) and

(Y, T ), a 1-cell (F, F̂ ) : (X,S)→ (Y, T ) consists of a 1-cell F : X → Y in K and

a Gray-transformation F̂ : Ps-S-Alg → Ps-T -Alg making the following diagram

commute

Ps-S-Alg F̂ //

U
��

Ps-T -Alg

U
��

X
F

// Y

where, using implicitly the Yoneda lemma for Gray-categories, we write X and Y

instead of K (−, X) and K (−, Y ). We refer to F̂ as a lifting of F to pseudoalge-

bras. Analogous terminology will be used for the 2- and 3-cells introduced below.

Lemma 2.1.1. Let (F, φ) : (X,S)→ (Y, T ) be a pseudomonad morphism. Then,

there exists a lifting F̂ : Ps-S-Alg→ Ps-T -Alg of F : X → Y .

Proof. Let us consider a fixed I ∈ K . First, let us observe that if A is an I-

indexed pseudo-S-algebra, then FA is naturally an I-indexed pseudo-T -algebra,

with structure map given by the composite

TFA
φA // FSA

Fa // FA
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and associativity and unit 3-cells provided by the pasting diagrams

T 2FA

TFA

TFSA

FSA

FS2A

TFA

FSA

FA ,

TφA //

φA
//

n(FA)

��

φSA

��

FmA

��

TFa //

FSa
//

Fa
//

φA

��

Fa

��

φa��

F ā��

φ̄A��

FA TFA

FA .

FSA
FsA ,,

1FA

**

sFA //

φA

��

Fa

��

φ̃A +3

F ã +3

The coherence condition (1.1.6) for FA follows by an application of the coherence

condition (1.2.1) for F and the coherence condition (1.1.6) for A. The coherence

condition (1.1.7) for FA follows by applying the coherence condition (1.2.2) for F

and the coherence condition (1.1.7) for A. Secondly, we observe that if f : A→ B

is a pseudo-S-algebra morphism, then Ff : FA → FB is naturally a pseudo-T -

algebra morphism, as we have the following pasting diagram:

TFA

FA

FSA

TFB

FSB

FB .

φA

��

Fa

��

TFf //

FSf
//

Ff
//

φB

��

Fb

��

φf��

F f̄��

The coherence conditions (1.1.9) and (1.1.10) follow immediately by the axioms

for a Gray-category. Finally, if α : f → g is a pseudo-S-algebra 2-cell, the required

pseudo-T -algebra 2-cell is given by Fα : Ff → Fg. We have thus defined the

components of a Gray-natural transformation F̂ : Ps-S-Alg→ Ps-T -Alg, which is

clearly a lifting of F : X → Y .

Given 1-cells (F, F̂ ) : (X,S) → (Y, T ) and (F ′, F̂ ′) : (X,S) → (Y, T ), a 2-

cell (p, p̂) : (F, F̂ )→ (F ′, F̂ ′) in Lift(K ) consists of a 2-cell p : F → F ′ in K and

a Gray-modification p̂ : F̂ → F̂ ′ such that the following diagram commutes

UF̂
Up̂ // UF̂ ′

FU
pU

// F ′U.
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The vertical arrows are the identities, which hold by the assumption that F̂ and

F̂ ′ are liftings of F and F ′, respectively.

Lemma 2.1.2. Let (p, p̃) : (F, φ) → (F ′, φ′) be a pseudomonad transformation.

Then, there exists a lifting p̂ : F̂ → F̂ ′ of p : F → F ′, where F̂ and F̂ ′ are the

liftings of F and F ′ associated to the pseudomonad morphisms (F, φ) and (F ′, φ′),

respectively, defined as in Lemma 2.1.1.

Proof. Let I ∈ K . We need to define a pseudonatural transformation p̂ : F̂I → F̂ ′I .

We define the component of p̂ associated to an I-indexed pseudo-S-algebra A to

be the I-indexed pseudo-T -algebra morphism given by pA : FA → F ′A and the

2-cell

TFA

FA

FSA

TF ′A

F ′SA

F ′A .

φA

��

Fa

��

TpA //

pSA
//

pA
//

φ′A
��

F ′a

��

p̄A��

p−1
a��

To prove the condition (1.1.9) for the pseudoalgebra morphism pA, we apply

the axioms for a Gray-category and then condition (1.2.3) for the pseudomonad

transformation p. To establish condition (1.1.10), it is sufficient to apply the

coherence condition (1.2.4) for the pseudomonad transformation p, and then the

axioms for a Gray-category. By definition, p̂ is a lifting of p as required.

Finally, for 2-cells (p, p̂) and (q, q̂), a 3-cell α : (p, p̂) → (q, q̂) consists of a 3-cell

and α : p → q and a Gray-perturbation α̂ : p̂ → q̂ making the following diagram

commute

Up̂ Uα̂ // Uq̂

pU
αU

// qU .

As before, the vertical arrows are the identities that are part of the assumption

that p̂ and q̂ are liftings of p and q, respectively. Composition and identities of

Lift(K ) are defined in the evident way, using those of K and Gray.
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Lemma 2.1.3. Given a pseudomonad modification α : (p, p̃) → (q, q̃) we can

define a lifting α̂ : p̂→ q̂ of α as the Gray-perturbation whose components are, for

a pseudo-S-algebra A, the 3-cells αA : pA → qA.

Proof. It suffices to check that, these 3-cells are a pseudo-T -algebra 2-cells. To

prove this, apply the axioms for a Gray-category and the coherence axiom (1.2.5).

We use these results to define a Gray-functor

Φ : Psm(K )→ Lift(K ) .

On objects, Φ acts as the identity. For two pseudomonads (X,S) and (Y, T ) in

K , the hom-2-functors

Φ(X,S), (Y,T ) : Psm(K )( (X,S), (Y, T ) ) −→ Lift(K )( (X,S), (Y, T ) )

are defined sending a pseudomonad morphism, pseudomonad transformation and

pseudomonad modification to the associated liftings, using Lemmas 2.1.1, 2.1.2

and 2.1.3, respectively. Here, the Gray-functoriality of Φ is standard verifica-

tion, which we omit for brevity, limiting ourselves to highlight that this includes

checking that Φ preserves composition strictly, i.e. that the lifting associated to the

composite of two pseudomonad morphisms is equal (rather than just equivalent by

invertible 2-cells) to the composite of the liftings obtained from the pseudomonad

morphisms. Theorem 2.1.4 states that the construction of Psm(K ) given in

Section 1.2 is equivalent to the one by Marmolejo in [Mar99].

Theorem 2.1.4. The Gray-functor Φ: Psm(K )→ Lift(K ) is a triequivalence.

Proof. Since Φ is clearly bijective on objects, it suffices to prove that locally it is

a biequivalence. Let us begin by considering a lifting F̂ : Ps-S-Alg → Ps-T -Alg

of a 1-cell F : X → Y . By the definition of a lifting, the following diagram of
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2-categories and 2-functors commutes:

Ps-S-Alg(X)
F̂X //

UX
��

Ps-T -Alg(X)

UX
��

K (X,X)
K (X,F )

//K (X, Y ) .

(2.1.1)

Let us now observe that S : X → X can be regarded as an X-indexed pseudo-S-

algebra, with structure map given by the 2-cell m : S2 → S. By the commutativity

of the diagram (2.1.1), this pseudo-S-algebra is mapped by the 2-functor F̂X into

a pseudo-T -algebra with underlying 1-cell FS : X → Y , with structure map a

2-cell of the form φ0 : TFS → FS, and invertible 3-cells fitting in the diagrams

T 2FS

TFS

TFS

FS

Tφ0 //

h′
//

nFS

��

φ0

��
φ̄0��

FS TFS

FS .
1FS ((

tFS //

h′

��

φ̃0 +3

The desired pseudomonad morphism (F, φ) : (X,S)→ (Y, T ) is then obtained by

letting φ : TF → FS be the composite

TF
TFs // TFS

φ0 //// FS.

The appropriate 3-cells are provided by the following pasting diagrams

TFS

T 2FS

TF

T 2F TFS

FS

TFS2

FS2

T 2Fs //

TFs
//

nF

��

nFS

��

Tφ0 //

φ0
//

φ0

%%

TFsS //

φ0S

��

Fm

��

φ̄0��nFs��

γ ��

F

FS

TF

FS ,

TFS

Fs

��

tF //

1FS //

tFS //

TFs

��

φ0
��

tFs +3

φ̃0 +3

where γ is the inverse to the 2-cell obtained from the following pasting of invertible
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2-cells:
TFS

TFS2 TFS

FS2 FS .

1TFS

��

φ0

��

φ0S

��

TFsS

��
TFm //

Fm
//

Fα��

TFρ��

Let us now consider a lifting (p, p̂) : (F, F̂ ) → (F ′, F̂ ′) of a 2-cell p : F → F ′. We

can define a pseudomonad transformation p : (F, φ)→ (F ′, φ′) by considering the

following pasting diagram:

TF

FS

TFS

TF ′

TF ′S

F ′S ,

TFs

��

φo

��

Tp //

TpS
//

pS
//

TF ′s

��

φ′0
��

Tp−1
u��

p̄S��

in which the bottom 3-cell is part of the structure making pS : FS → F ′S into

a pseudoalgebra morphism. Finally, if (α, α̂) : (p, p̂) → (q, q̂) is a lifting of a 3-

cell α : p → q, then α : p → q is a pseudomonad modification. These definitions

determine a 2-functor

Ψ(X,S),(Y,T ) : Lift(K )
(
(X,S), (Y, T )

)
−→ Psm(K )

(
(X,S), (Y, T )

)
which provides the required quasi-inverse to Φ(X,S),(Y,T ). We omit the construction

of the required invertible pseudonatural transformations η : 1→ ΨΦ and ε : ΦΨ→
1, since this is not difficult.
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2.2. Pseudodistributive Laws

Definition 2.2.1. Let (X,S) and (X,T ) be pseudomonads in K . A pseudodis-

tributive law of T over S consists of a 2-cell d : ST → TS and invertible 3-cells

S2T

ST

STS

TS

TS2

Sd //

d
//

mT

��

dS

��

Tm

��

m̄��

T ST

TS

Ts

��

sT //

d

��

s̄ +3

ST 2

T 2S

ST

TS

TST

Sn //

nS
//

dT

��
d

��
Td

��

n̄��

S

ST

TS
tS
//

St

BB

d

��

t̄
��

satisfying the coherence conditions (C1)-(C8) stated in Appendix A.1.

Remark 2.2.2. For the convenience of the reader, Table 2.1 describes the correspon-

dence between the presentation of the coherence conditions for pseudodistributive

laws here and in [Tan04, Mar99]. In the table, each row lists different formulations

of the same axiom.

Remark 2.2.3. Our development in Section 2.1 allows us to give a clear explanation

for the coherence conditions for pseudodistributive laws, summarised in Table 2.2.

The coherence axioms, (C9) and (C10) of Appendix A.1 have been shown to

be derivable from the others in [MW08, Theorem 2.3 and Proposition 4.2].

Indeed, axiom (C9) is a particular case of a provable coherence condition for a

pseudomonad morphism and follows from (C1) and (C2) (cf. Proposition 1.2.2).

By duality, one can see that axiom (C10) is a particular case of a provable coherence

condition for a pseudomonad op-morphism and follows from (C7) and (C8).



2.2. Pseudodistributive Laws 45

Appendix A.1 Marmolejo [Mar99] Tanaka [Tan04]

(C1) (coh 4) (T6)

(C2) (coh 2) (T2)

(C3) (coh 5) (T9)

(C4) (coh 3) (T8)

(C5) (coh 1) (T1)

(C6) (coh 6) (T10)

(C7) (coh 9) (T7)

(C8) (coh 7) (T5)

(C9) - (T3)

(C10) (coh 8) (T4)

Table 2.1: Comparison of coherence conditions.

Axiom Coherence condition

(C1) and (C2) (T, d) : (X,S)→ (X,S) is a pseudomonad morphism

(C3) and (C4) (n, n̄) : (T, d)2 → (T, d) is a pseudomonad transformation

(C5) and (C6) (t, t̄) : (X, 1X)→ (T, d) is a pseudomonad transformation

(C7) α is pseudomonad modification

(C8) ρ is a pseudomonad modification

(C9) λ is a pseudomonad modification

Table 2.2: Coherence axioms for pseudodistributive laws.

The explanation of the axioms for a pseudodistributive law in Remark 2.2.3 proves

the following straightforward, but important, proposition.

Proposition 2.2.4. The objects of Psm(Psm(K )) are exactly pseudodistributive

laws in K .

Proof. An object of Psm(Psm(K )) consists of an object (X,S) of Psm(K ), i.e.

a pseudomonad in K , together with a pseudomonad (T, d) : (X,S) → (X,S) on

it in Psm(K ), which is exactly a pseudodistributive law by Remark 2.2.3.
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We can now give a new simple proof of Marmolejo’s fundamental result asserting

the equivalence between a pseudodistributive law of a pseudomonad T over a

pseudomonad S and a lifting of the pseudomonad T to the 2-categories of pseudoal-

gebras for S [Mar99].

Theorem 2.2.5. Let K be a Gray-category, (X,S) and (X,T ) be pseudomonads

in K . A pseudodistributive law d : ST → TS is equivalent to a lifting of T to

pseudo-S-algebras.

Proof. By Theorem 1.2.5, Psm(K ) is a Gray-category and therefore we can

consider the Gray-category Psm(Psm(K )).

Next, observe that that Psm(−) preserves triequivalences between Gray-

categories, i.e. given a triequivalence of Gray-categories Φ: K → K ′, then it

is possible to define a triequivalence Psm(Φ) : Psm(K ) → Psm(K ′). The

construction of Psm(Φ) is evident, and the verification that it is a triequiva-

lence is a long, but routine, calculation. For example, to prove essential surjec-

tivity, we need to show that for every pseudomonad (X ′, T ′) in K ′, there is a

pseudomonad (X,T ) in K that is mapped by Psm(Φ) to a pseudomonad that

is biequivalent to (X ′, T ′) in Psm(K ′). For this, one defines (X,T ) using the

essential surjectivity of Φ, carefully inserting coherence isomorphisms that are

part of the given triequivalence where appropriate.

Applying this fact to the triequivalence of Theorem 2.1.4, we get a triequivalence:

Psm(Psm(K )) ' Psm(Lift(K )) .

An object on the left hand side is exactly a pseudodistributive law by Proposi-

tion 2.2.4. Similarly, an object on the right hand side consists exactly of a

pseudomonad (X,S) in K and a pseudomonad T : X → X with a lifting

T̂ : Ps-S-Alg→ Ps-S-Alg.

We conclude the chapter by outlining how duality can be applied as in [Str72,

Section 4] to obtain an equivalence between pseudodistributive laws and extensions
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to Kleisli objects (whenever they exist). Fix a Gray-category K and let (X,T )

be a pseudomonad in it. By definition, a right pseudo-T -module in K is a left

T -module in K op . We then have a Gray-functor

ModT : K op → Gray . (2.2.1)

Assuming the evident definition of a lifting to 2-categories of right pseudomodules,

we have the following corollary of Theorem 2.2.5.

Corollary 2.2.6. Let (X,S) and (X,T ) be pseudomonads in K . A pseudodis-

tributive law d : ST → TS is equivalent to a lifting of S to right pseudo-T -

modules.

The equivalence of Corollary 2.2.6 becomes more familiar under the assumption

that K has Kleisli objects. Recall that a Kleisli object for a pseudomonad (X,T )

in K is an 0-cell XT ∈ K and a right pseudo-T -module JT : X → XT , which is

universal in the sense that the 2-functor

K (XT , I)→ ModT (I) ,

induced by composition with JT , is an equivalence of 2-categories, thus making the

Gray-functor in (2.2.1) representable. Now, a pseudodistributive law d : ST → TS

is equivalent to a lifting of S to right pseudo-T -modules, as in

ModTModT

K (−, X) .K (−, X)

Ŝ

U

S ◦ −

U

This, in turn, is equivalent to

XTXT

X ,X

Ŝ

JT

S

JT

which describes an extension of S to the Kleisli object of T .
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Remark 2.2.7. We conclude the chapter by briefly discussing the question of

whether the Gray-category Gray has Kleisli objects. Given a 2-category X and

pseudomonad T : X → X, there are two reasonable options to be the Kleisli object

for T , mirroring the one-dimensional situation. In both cases, the objects are the

same objects as those of X, but they have different hom-categories of morphisms.

The first option is to define the hom-category between two objects x, y ∈ X to be

X(x, Ty). With this definition we only get a bicategory, not a 2-category, and so we

step outside Gray. The second option (which we will call XT ), is to take the hom-

category of morphisms between x and y to consist of pseudoalgebras morphisms

from Tx to Ty (considered as free algebras). This is a 2-category and so one could

try to show that it is a Kleisli object for Gray. In order to do this, one should

prove that, for any 2-category I, there is an equivalence as in (2.2.1). However, the

construction taking a I-indexed right pseudo-T -module to a 2-functor XT → I is

only a pseudofunctor and not a strict 2-functor, thus leading again outside Gray.

The reason for this is that we need to use the pseudonaturality of the module

action λ and other coherence isomorphisms. Because of this, it seems that Gray

does not have Kleisli objects. We suspect that, once it is defined what it means

for a tricategory to have Kleisli objects, it should be possible to show that the

tricategory 2-Catpsd of 2-categories, pseudofunctors, pseudonatural transforma-

tions and modifications has Kleisli objects. The same should hold also for Bicat,

the tricategory of bicategories, pseudofunctors, pseudonatural transformation and

modifications. We leave the investigation of these problems to future research.



3. Distributive Laws for Relative

Monads

The main aim of this chapter is to develop further the theory of distributive laws by

presenting a possible definition of a distributive law between a relative monad T

and a monad S, which we call a relative distributive law (Definition 3.5.2). In

particular we prove a counterpart of Beck’s equivalence for relative distributive

laws (Theorem 3.6.19).

We take a 2-categorical approach to the subject, inspired by the formal theory

of monads [LS02, Str72]. Let us briefly recall how distributive laws are treated

there. First, for a 2-category K, one introduces the 2-category Mnd(K) of

monads, monad morphisms and monad 2-cells. Then, one defines the notions

of an (indexed) left module and left module morphism, uses them to construct

a 2-category Lift(K) of monads, liftings of maps to left modules and lifting of

2-cells to left modules, and proves that Mnd(K) and Lift(K) are 2-isomorphic.

Once this is done, everything follows formally. First, one gets an equivalence

between distributive laws (which are monads in Mnd(K)) and liftings of monads

to left modules (which are monads in Lift(K)). Secondly, by duality, one obtains

a 2-isomorphism Mnd(Kop)op with Lift(Kop)op, which leads to the corresponding

result on the equivalence between distributive laws and extensions of monads to

right modules. Since representability of left and right modules corresponds to

existence of Eilenberg-Moore and Kleisli objects, respectively, in that case one gets

a version of Beck’s theorem. Importantly, in the equivalence between distributive

laws d : ST → TS and liftings of T to the category of Eilenberg-Moore algebras



50 3. Distributive Laws for Relative Monads

of S, one considers S as a part of an object of Mnd(K) and T as part of a monad

morphism, while in the equivalence between distributive laws d : ST → TS and

extensions of S to the Kleisli category of T , one considers T as part of an object

of Mnd(K) and S as part of a monad morphism. The equivalence between all these

notions is possible because of the aforementioned duality and because Mnd(Kop)op

has the same objects as Mnd(K), which are exactly distributive laws.

We will introduce a 2-category Rel(K) of relative monads, relative monad

morphisms and relative monad transformation in K. This 2-category generalises

the one of no-iteration monads introduced in [Her20]. Importantly, Rel(K)

is related more closely to Mnd(Kop)op than to Mnd(K). Indeed, it

contains Mnd(Kop)op as a full sub-2-category (Proposition 3.3.5). This is

motivated by the fact that relative monads are particularly suited to study Kleisli

categories. Then, we extend some results of [ACU15, FGHW17] to our setting,

proving them for any 2-category. Using this point of view, we introduce a notion

of distributive law of a relative monad T on a monad (Definition 3.5.1), which we

call relative distributive law (Section 3.5). We then show that it is equivalent to

an object of Mnd(Rel(K)).

The first difference we find between our work and the formal theory of monads

is that the objects of Rel(Kop) are not the same as those of Rel(K). The issue

is that the notion of operator (Definition 3.1.3), that is involved in the definition

of a relative monad, does not dualise, i.e. an operator in Kop is not an operator

in K. For this reason, the duality available for monads fails and we need to

consider separately left and right modules. In each case, we are able to prove

some, but not all, counterparts of results valid in the classical case. Importantly,

the combination of these results still allows us to obtain a version of Beck’s theorem

about distributive laws (Theorem 3.6.19).

Using left modules for a relative monad we are able to find a relative adjunction

(Theorem 3.4.5). In particular, thanks to this result we can prove that if a 2-

category has relative Eilenberg-Moore objects then any relative monad is induced

by a relative adjunction (Theorem 3.4.6). On the other hand, we do not have a
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correspondence between relative monad morphisms and liftings of morphisms to

left modules. Nevertheless, we get an equivalence between relative distributive

laws and liftings of relative monads to left modules (Theorem 3.5.9).

Considering right modules we do not get a relative adjunction (see Remark 3.6.7).

Instead, we use them to get an equivalence between relative monad morphisms

and liftings of morphisms to right modules (Proposition 3.6.10). In particular, we

can define a 2-category LiftR(K) of liftings to right modules and prove that it is

2-isomorphic to Rel(K). Thus, we get an equivalence between relative distributive

laws and liftings of monads to right modules of a relative monad (Theorem 3.6.18),

for which we use an argument similar to the one in [Str72].

A further motivation for this work is to provide a first step towards the defini-

tion of a notion of a pseudodistributive law between a relative pseudomonad

[FGHW17] and a 2-monad [BKP89]. Part of a Beck-like theorem has already been

translated in this setting [FGHW17, Theorem 6.3] without defining the notion of a

relative pseudodistributive law. With this definition, it will be possible to interpret

the results in [FGHW17, Section 7] with a relative pseudodistributive law of the

presheaf relative pseudomonad on the 2-monad for free monoidal categories, or

symmetric monoidal categories etc. Since this work, some steps in this direction

have been made by Walker [Wal21].

3.1. Preliminary Definitions

Throughout this chapter, for a 2-category K, we use letters X, Y, Z ... to denote

0-cells, F : X → Y , G : Y → Z ... for 1-cells and f : F → G, α : F → F ′ ... for

2-cells. Regarding compositions, we will write G ◦ F or GF for composition of 1-

cells. For 2-cells we denote with β ◦α : GF → G′F ′ or juxtaposition for horizontal

composition and f ′ · f : F → H for vertical composition. We will denote with

(A,B) : O → X;Y spans in K and with (S,R) : Y ;X → Z cospans, i.e. diagrams

as below.
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O

YX

A B
YX

Z
R S

When it will be clear from context, we will sometimes avoid saying explicitly

which spans/cospans we are considering and might refer to them as [S, R]. For

2-categorical background we redirect the reader to [Gra74, Lac10].

Let us recall the definition of a relative monad [ACU15, Definition 2.1].

Definition 3.1.1. A relative monad on a functor I : C0 → C consists of:

• an object mapping S : Ob(C0)→ Ob(C);

• for any x, y ∈ C0, a map (−)∗S : C(Ix, Sy)→ C(Sx, Sy) (the extension);

• for any x ∈ C0, a map sx : Ix→ Sx (the unit);

satisfying the following axioms

• the left unital law, i.e. for any k : Ix→ Sy, k = k∗ · sx;

• the right unital law, i.e. for any x ∈ C0, s∗x = 1Sx;

• the associativity law, i.e. for any k : Ix→ Sy and l : Iy → Sz, (l∗·k)∗ = l∗·k∗.

Example 3.1.2. Many examples of relative monads can be found in [ACU15]. At

the end of this chapter we will consider one of them, the relative monad of vector

spaces [ACU15, Example 1.1].

A relative monad with I = 1C is a no-iteration monad (also called extension system

[MW10, Definition 2.3]). The notion of a no-iteration monad can be generalised

to any 2-category K thanks to the definition of pasting operators [MW10, Defini-

tion 2.1], which is a mapping of 2-cells as shown below
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O Y

Z

A

B

S
f

O Y

Z Z ′,
T

A

B

U
f#(−)#

indexed on spans (A,B) : O → Z;Y and satisfying two axioms. Similarly, the

extension of a relative monad can be expressed as a mapping of the form

1 C0

C0 C
I

x

y

S
k

1 C0

C0 C,
S

x

y

S
k∗S

(−)∗S

where 1 is the terminal category and x, y : 1→ C0 are the constant functors to x

and y respectively, satisfying two axioms. With this in mind, we can see how the

next definition generalises pasting operators and gives us a way to define a relative

monad in any 2-category.

Definition 3.1.3. Let

Z

YX
F G

YX

Z ′
F ′ G′

be two cospans in a 2-category K. An operator (−)# : [F, G]→ [F ′, G′] is a family

of functions, for any span of arrows (A, B) : O → X;Y

(−)#
A,B : K[O,Z](FA, GB)→ K[O,Z ′](F ′A, G′B)

O Y

X Z
F

A

B

G
f

O Y

X Z ′,
F ′

A

B

G′
f#(−)#
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satisfying the following axioms:

• indexing naturality, i.e. for any diagram

O′

O Y

X Z
F

A

B

G

P

f , (fP )# =

f#P ;

• left naturality, i.e. for any diagram

O Y

X Z
F

AA′

B

G
fα

, (f ·Fα)# = f# ·F ′α;

• right naturality, i.e. for any diagram

O Y

X Z
F

A

B

B′

G
f

β

, (Gβ ·f)# = G′β ·f#.

The axioms of indexing, left and right naturality represent naturality inO, A andB

respectively. When we consider F = 1X (so an operator [1X , G] → [F ′, G′]) we

get back the definition of pasting operator given in [MW10]. The conditions of

whiskering and blistering of [MW10] correspond to indexing and left naturality,

while right naturality is deducible from [MW10, Lemma 2.2] and the interchange

law of K. Pasting operators are also studied in [Her20], where both left and right

pasting operators are introduced. Following the reasoning above we can see that

right pasting operators are equivalent to operators in Kop with F = 1X .

Example 3.1.4.

(i) Let us consider K = Cat. We will show that, in this particular 2-category,

an operator is equivalent to a family of maps indexed by pairs of objects. Let

X, Y, Z and Z′ be categories and (F,G) : X;Y→ Z and (F ′, G′) : X;Y→ Z′
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be two cospans in Cat. Let (−)# : [F, G] → [F ′, G′] be an operator. Then,

if we consider the span given by (x, y) : 1→ X;Y with x ∈ X and y ∈ Y, the

operator (−)# gives us family of maps

(−)#
x,y : Z(Fx,Gy)→ Z′(F ′x,G′y)

1 Y

X Z
F

x

y

G
f

1 Y

X Z′
F ′

x

y

G′
f#(−)#

Left and right naturality of (−)# tell us that these maps are natural in x

and y respectively. Conversely, if we have such a natural family of maps,

then we can construct a pasting operator in the following way. For any span

(A, B) : O→ X;Y and any natural transformation f : FA→ GB, we define

the component of the natural transformation f# : F ′A→ G′B at o ∈ O as

(f)#
Ao,Bo : F ′Ao −→ G′Bo

1 Y

X Z
F

Ao

Bo

G
f

1 Y

X Z′.
F ′

Ao

Bo

G′
(f)#

Ao,Bo
(−)#

Ao,Bo

Using naturality in a and b and naturality for f we can prove that f# is also

a natural transformation. Moreover this definition satisfies all the axiom of

an operator: indexing naturality follows directly from the definition, left and

right naturality follow from naturality in a and b respectively.

(ii) Let us look at the notion of operator when we set K = V-Cat, the 2-

category of V-categories with V a symmetric closed monoidal category. For

background in enriched category theory we redirect the reader to [Kel82].

We have a description similar to the one in the previous example. Let X, Y, Z
and Z′ be V-categories and (F,G) : X;Y→ Z and (F ′, G′) : X;Y→ Z′ be two



56 3. Distributive Laws for Relative Monads

cospans in V-Cat. Also in this case an operator (−)# : [F, G] → [F ′, G′] is

equivalent to a family of functions, for any a ∈ X and b ∈ Y,

(−)#
a,b : Z(Fa,Gb) −→ Z′(F ′a,G′b)

natural in a and b, where Z and Z are the underlying categories of Z and Z′,
respectively. We get this characterisation setting O = I the unit V-category,

which has one object and the monoidal unit I ∈ V as hom-object.

(iii) Let us consider another important example in K = V-Cat (we will use the

same notation as above). If we have a natural family of maps in V , for any

a ∈ X and b ∈ Y,

(−)#
a,b : Z(Fa,Gb) −→ Z′(F ′a,G′b),

then we can construct a pasting operator in the following way. For any span

(A, B) : O→ X;Y and any V-natural transformation f : RA→ SB, then we

define the o ∈ O component of f# as

I
fo−→ Z(FAo, GBo)

(−)#Ao,Bo−−−−−→ Z′(F ′Ao, G′Bo).

Using naturality in a and b and V-naturality for f we can prove that f#

is also a V-natural transformation. Moreover this definition satisties all the

axiom of an operator: indexing naturality follows directly from the definition,

left and right naturality follow from naturality in a and b respectively.

Remark 3.1.5. Let us state three properties that will be useful to prove that any

relative adjunction induces a relative monad (Lemma 3.2.5).

• We can easily see that given two operators [F1, G1] → [F2, G2] and

[F2, G2] → [F3, G3] we can construct a composition operator [F1, G1] →
[F3, G3] composing component-wise.

• An example of an operator is, for any 1-cell T : Z → Z ′ in K, T (−) : [F, G]→
[TF, TG] defined as Tf : TFA → TGB for any f : FA → GB. Indexing,

left and right naturality in this case derive from the pasting theorem for

2-categories.
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• Let (−)] : [F, G] → [F ′, G′] be an operator between the cospans

(F,G) : X;Y → Z and (F ′, G′) : X;Y → Z ′. Then, given any 1-cells

F0 : X0 → X and G0 : Y0 → Y , we can construct a new operator

(−)] · (F0, G0) : [FF0, GG0]→ [F ′F0, G
′G0].

For any span (A,B) : O → X0;Y0 we define the action of (−)]F0,G0
on a 2-cell

f : FF0A→ GG0B as

[(f)] · (F0, G0)]A,B := (f)]F0A,G0B
.

All three naturality axioms for (−)] · (F0, G0) hold since they are particular

cases of the ones of (−)].

We will use the following proposition in Section 3.2 to prove that any relative

adjunction induces a relative monad (Lemma 3.2.5).

Proposition 3.1.6. Let (−)# : [R, S] → [T, U ] be an operator such that each

(−)#
A,B is an isomorphism. Then the family of functions sending any g ∈

K[O,Z ′](TA, UB) to the unique f such that f#
A,B = g forms an operator

(−)[ : [T, U ]→ [R, S].

Proof. Let us check all the axioms for (−)[. For any P : O′ → O,

f [P = (fP )[ ⇐⇒ (f [P )# = ((fP )[)#.

The second equation is true using the fact that (−)[ is locally the inverse of (−)#

and indexing naturality for (−)#. With the same reasoning we can prove that

(−)[ satisfies also the other axioms.

3.2. Relative Monads in K

Using Definition 3.1.3 we can define a relative monad in any 2-category K as

follows.



58 3. Distributive Laws for Relative Monads

Definition 3.2.1. A relative monad (X, I, S) in K consists of a pair of objects

X, X0 ∈ K together with:

• two 1-cells I, S : X0 → X (we say that S is a relative monad on I);

• an operator (−)†S : [I, S]→ [S, S] (the extension operator);

• a 2-cell s : I → S (the unit);

satisfying the following axioms:

• the left unit law, i.e. for any A, B : O → X0

IA SA

SB;

sA

k†

k

• the right unit law, i.e. s† = 1S;

• the associativity law, i.e. for any 2-cells k : IA→ SB and l : IB → SC

SA SB

SC.

k†

l†

(l† · k)†

Example 3.2.2.

(i) Let us consider relative monads in K with X0 = X and I = 1X . Since

operators with I = 1X are pasting operators, we get back exactly no-iteration

monads in K [MW10, Theorem 2.4].

(ii) Thanks to part (i) of Example 3.1.4, setting K = Cat gives back exactly the

definition of relative monad given in [ACU15] and recalled in Definition 3.1.1

here.
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(iii) Using part (ii) of Example 3.1.4 we can write more explicitly what is a relative

monad (X, I, S) in V-Cat. Such an object consists of a pair of V-categories

X and X0 together with:

• two V-functors I, S : X0 → X;

• a family of functions for any a, b ∈ X0, (−)†S : X(Ia, Sb) → X(Sa, Sb)

natural in a and b (with UX the underlying category of X);

• a V-natural transformation s : I → S;

satisfying left/right unital law and associativity.

We notice that this is not what we expect to be an enriched relative monad,

which would involve a natural family of maps in V , for any a ∈ X and b ∈ Y,

(−)#
a,b : Z(Fa,Gb) −→ Z′(F ′a,Gb).

We get such a notion using the operators described in part (iii) of

Example 3.1.4.

When we set K = Cat we know that any relative monad is induced by a relative

adjunction [ACU15]. It is natural to wonder if the same holds in any 2-category K.

In order to show this we start defining a relative adjunction in K.

Definition 3.2.3. Let I : C0 → C be a 1-cell in K. A relative adjunction in K
over I, denoted as F I a G consists of an object D in K together with:

• two 1-cells F : C0 → D and G : D → C;

• a 2-cell ι : I → GF ;

such that the operator G(−)ι : [F, 1D]→ [I,G] induces isomorphisms, for any span

(A,B) : O → C0;D,

K[O, D](FA, B)
∼−→ K[O, C](IA, GB).
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Remark 3.2.4. By taking I = 1C we see that this definition generalises that of an

adjunction in K [Lac10, Section 2.1]. Additionally, considering the case K = Cat

we see that it also generalises the definition of relative adjunction defined in

[ACU15].

Lemma 3.2.5. A relative adjunction F I a G induces a relative monad

(X, I, GF ).

Proof. By Proposition 3.1.6 the operator G(−)ι : [F, 1] → [I, G] induces an

operator (−)[ : [I, G] → [F, 1]. Then, by Remark 3.1.5 we get an operator

(−)# := (−)[ · (1, F ) : [I, GF ] → [F, F ]. We define the extension operator (−)†

of S =def GF as (−)# composed after with G(−) (by Remark 3.1.5 we get an

operator of the required type). As unit we consider s := ι.

The left unital law follows from the fact that (−)# is the inverse of G(−)ι, and

therefore for any f : IA→ SB we have f = G(f#)ι = f †ι.

Moreover we can deduce also the right unital law, as

(s)† = G( (s)# ) (by definition of (−)†)

= G( (G(1F )ι)# ) (by definition of s and indentity law inK)

= G1F = 1GF = 1S (since (−)# inverse of G(−)ι).

We have left to check the associativity law. Given f : IA→ SB and g : IB → SC,

we have

(g†f)† = G( (G(g#)f)# ) (by definition of (−)†)

= G( (G(g#)G(f#)ι)# ) (by left unital law)

= G( (G(g#f#)ι)# ) (by strict functoriality of G)

= G(g#f#) = G(g#)G(f#) = g†f † (by left unital law).
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3.3. The 2-category of Relative Monads

In this section, fixed a 2-category K, we will give the definition of the 2-

category Rel(K) of relative monads in K.

Definition 3.3.1. Let (X, I, S) and (Y, J, T ) be two relative monads in K. A

relative monad morphism (F, F0, φ) : (X, I, S)→ (Y, J, T ) consists of two 1-cells

F0 : X0 → Y0 and F : X → Y and a 2-cell φ : FS → TF0 satisfying the following

axioms:

• FI = JF0;

• unit law, i.e. the following diagram commutes

FI

FS

TF0;

Fs

φ

tF0

• extension law, i.e. for any 1-cells A, B : O → X and 2-cell k : IA→ SB the

following diagram commutes

FSA TF0A

FSB TF0B.

φA

φB

F (k†S) (φB · Fk)†T

Remark 3.3.2. A relative monad morphism (F, F0, φ) : (X, I, S) → (Y, J, T )

between monads, i.e. when X0 = X, I = 1X , Y0 = Y and J = 1Y , is the same as

a monad morphism (F, φ) : (X, S)→ (Y, T ) in Mnd(Kop)op.

Definition 3.3.3. Let (F, F0, φ), (F ′, F ′0, φ
′) : (X, I, S) → (Y, J, T ) be two

relative monad morphisms. A relative monad transformation (p, p0) : (F, F0, φ)→
(F ′, F ′0, φ

′) consists of two 2-cells p : F → F ′ and p0 : F0 → F ′0 such that:

• Jp0 = pI;
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• the following diagram commutes

FS

TF0

F ′S

TF ′0.

pS

φ φ′

Tp0

Remark 3.3.4. A relative monad transformation (p, p0) : (F, F0, φ)→ (F ′, F ′0, φ
′)

with X0 = X, I = 1X , Y0 = Y and J = 1Y is the same as a monad transformation

of the form p : (F, φ)→ (F ′, φ′) in the sense of Street [Str72].

Proposition 3.3.5. Let K be a 2-category. There is a 2-category Rel(K) of

relative monads in K with relative monads, relative monad morphisms and relative

monad transformations as 0-, 1- and 2-cells.

Using part (i) of Example 3.2.2 and Remarks 3.3.2 and 3.3.4 we get the following

proposition, which shows how our definition of Rel(K) extends Street’s definition

of Mnd(K) [Str72], the 2-category of monads in a 2-category K. Before stating

the proposition we recall the definition of full sub-2-category.

Let K and L be two 2-categories. A 2-functor J : K → L exhibits K as a full

sub-2-category of L if for all pair of objects x, y ∈ K the functor Jx,y : K(x, y)→
L(Jx, Jy) is an equivalence of categories.

Proposition 3.3.6. Mnd(Kop)op is a full locally full sub-2-category of Rel(K)

consisting of relative monads (X, I, S) with X0 = X and I = 1X .

In Section 3.6 we will describe an equivalent way to define morphisms of relative

monads using a generalised version of right modules. We will then build a 2-

category equivalent to Rel(K).

3.4. Relative Algebras

We now introduce the notion of an Eilenberg-Moore object for a relative monad,

which we will refer to as relative EM object. The approach used is the same as
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the one in [Str72]. The notion of relative algebra for a relative monad has been

already introduced in [ACU15, MW10], here we complete it using our definition

of operator (Definition 3.1.3). From now on we will consider a relative monad

(X, I, T ) ∈ Rel(K).

Definition 3.4.1. Let K ∈ K. A K-indexed relative EM-algebra (or relative left

module) consists of a 1-cell M : K → X together with an operator (−)m : [I, M ]→
[T, M ] satisfying the following axioms:

• unit law, i.e. for any span (A, B) : O → X0;K and any 2-cell h : IA→MB

the diagram below commutes

IA TA

MB;

tA

hm

h

• associativity law, i.e. for any pair of spans (A, B) : O → X0;K and C : O →
X0, and any 2-cells h : IA → MB and k : IC → TA, the diagram below

commutes

TC TA

MB.

k†

hm
(hm · k)m

Definition 3.4.2. Let K ∈ K and let (M, (−)m) and (N, (−)n) be two

K-indexed relative EM-algebras. A K-indexed relative EM-algebra morphism

f : (M, (−)m) → (N, (−)n) consists of a 2-cell f : M → N such that for any

2-cell h : IA→MB (given any span (A, B) : O → X0;K):

TA MB

NB.

hm

fB
(fB · h)n



64 3. Distributive Laws for Relative Monads

Clearly there is a category ModT (K) of K-indexed relative algebras. Therefore we

have an induced 2-functor

ModT (−) : Kop → Cat.

Definition 3.4.3. We say that a relative monad (X, I, T ) ∈ Rel(K) has a

relative EM object if ModT (−) : Kop → Cat is representable. We will denote

the representing object with XI,T .

Example 3.4.4. Let T -Alg be the category of EM-algebras for a relative monad

(X, I, T ) in Cat defined in [ACU15]. We can see that this gives us a relative EM

object for T . In order to prove it we just need to notice that, for any category K,

a K-indexed relative algebra M : K→ X is the same as endowing, for any k ∈ K,

each Mk ∈ X with a relative EM-algebra structure. Therefore each relative algebra

M induces a functor M̄ : K → T -Alg. On the other hand if we start with a

functor M̄ then its composition with U : T -Alg → X has a relative EM-algebra

structure. These constructions are clearly inverses of each other and provide a

natural isomorphism

ModT (K) ∼= Cat(K, T -Alg).

For any (X, I, T ) ∈ Rel(K), we can define U : ModT (−)→ K(−, X) the forgetful

natural transformation, sending a relative right T -module to its underlying 1-cell,

and the free relative algebra transformation F : K(−, X0)→ ModT (−) defined as,

for any indexing object K ∈ K,

K
M−→ X0 7−→ (TM, (−)†∗,M∗′).

Therefore we get a diagram in K̂ of the form

K(−, X0)

ModT (−)

K(−, X).

F

I∗ := I ◦ −

U
t
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Lemma 3.4.5. The natural transformations defined above form a relative

adjunction F I∗ a U in K̂. Moreover, the relative monad induced by it is

(K(−, X), I∗, T∗).

Proof. In order to prove the first claim we need to find, for any M ∈ K(K, X0)

and (N, (−)n) ∈ ModT (K), a natural bijection

ModT (K)(FM, (N, (−)n)) ∼= K[K, X](IM, N).

For any relative algebra map f̄ : FM = (TM, (−)†) → (N, (−)n) we define the

2-cell f̄# : IM → N as f̄ · tM . On the other hand for any 2-cell f : IM → N we

can define f [ := fn : TM → N which is a relative algebras map because, for any

A,B : O → X0 and h : IA→ TMB,

TA TMB

NB

h†

fnB = (fB)n

(fnB · h)n

which is true since (−)n is a relative algebra operator.

For any f we can see that (f [)# = fn · tM which is exactly equal to f by the unit

law of (−)n. Moreover, for any f̄ , we have

(f̄#)[ = (f̄ · tM)n (by definitions)

= f̄ · (tM)† (since f̄ is in ModT (K))

= f̄ · 1TM = f̄ (by right unital law of (−)†).

We can see that UF = T∗ and more generally the relative monad induced by

F I∗ a U is the same as the one induced by (X, I, T ) in K̂.
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Theorem 3.4.6. If K has relative EM objects, then any relative monad is induced

by a relative adjunction.

Proof. The proof is just a matter of translating Lemma 3.4.5 using the Yoneda

lemma, since the covariant Yoneda embedding reflects adjunctions [Gra74,

Proposition I,6.4] and also relative adjunctions.

3.5. Relative Distributive Laws

In this section, we will define the counterpart of distributive laws for a relative

monad I, T : X0 → X and a monad S : X → X which restricts to X0. When I is

an inclusion it is clear what we mean by this, but when I is any 1-cell we need

to define a new notion. Therefore, with the following definition, we introduce the

notion of monad compatible with a 1-cell I : X0 → X.

Definition 3.5.1. Let I : X0 → X be 1-cell in a 2-categoryK. A monad compatible

with I consists of a pair of monads (X0, S0) and (X, S) in K such that SI = IS0,

mI = Im0 and sI = Is0. We will denote it with (S, S0).

To have a monad compatible with I is the same as lifting I to a morphism

in Mnd(K) with corresponding 2-cell the identity, i.e. requiring (I, 1) : (X0, S0)→
(X, S) to be a monad morphism.

Definition 3.5.2. Let (X, I, T ) be a relative monad in K and (S, S0) a monad

compatible with I. A relative distributive law of T over (S, S0) consists of a 2-cell

d : ST → TS0 in K satisfying the following axioms:
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(D1)

S2T

STS0

TS2
0

ST

TS0

mT

Sd

d

dS0

Tm0

(D2) T

ST

TS0

d

sT

Ts0

and for any object O ∈ K, any pair of 1-cells A, B : O → X0 and any 2-cell

f : IA→ TB

(D3)

STA

STB

TS0A

TS0B

dA

Sf †T (dB · Sf)†T

dB

(D4)

SI

IS0

ST

TS0

d

St

tS0

From now on, we will always consider a relative monad (X, I, T ) and a monad

(S, S0) compatible with I.

Remark 3.5.3. We can see that, setting I = 1X , we get back the definition of a

distributive law between two monads T and S in K [MM07].

In the formal theory of monads [Str72] Street shows that a distributive law between

two monads is an object of Mnd(Mnd(K)), that is a monad in the 2-category

of monads. The next Proposition proves a similar result for relative distributive

laws.

Proposition 3.5.4. A relative distributive law is the same thing as an object of

Mnd(Rel(K)).
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Proof. The table below provides a correspondence between axioms:

Axiom In Mnd(Rel(K))

(D1) and mI = Im0 (m, m0) is a 2-cell in Rel(K)

(D2) and sI = Is0 (s, s0) is a 2-cell in Rel(K)

(D3), (D4) and SI = IS0 (S, S0, d) is a 1-cell in Rel(K)

The aim of the last part of this section is to prove a Beck-like theorem for relative

distributive laws, using liftings to the algebras of a monad (S, S0) compatible

with I. First of all, we will explicitly define a lifting of a relative monad T to the

algebras of (S, S0). Then we will show how we can go from relative distributive

laws to liftings (Lemma 3.5.7) and vice versa (Theorem 3.5.8). Finally, we show

that these constructions are inverses of each other.

Before proceeding with the definition of lifting to algebras, let us fix some notation.

Given a monad (S, S0) compatible with I : X0 → X, we always get a natural

transformation induced on indexed algebras, I∗ : S0-Alg(−)→ S-Alg(−), defined,

for any indexing object K ∈ K and any S0-algebra (M, m), as

(S0M
m−→M) 7−→ (SIM

Im−→ IM),

where Im : SIM → IM is well-defined because SI = IS0. Let us denote with U0

and U the forgetful natural transformations from S0-Alg(−) and S-Alg(−) into

K(−, X0) and K(−, X).

Definition 3.5.5. Let (X, I, T ) be a relative monad in K. A lifting of T to the

algebras of (S, S0) is a relative monad (I∗, T̂ ) : S0-Alg(−) −→ S-Alg(−), such

that:
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(i) the following diagram commutes

K(−, X0)

S-Alg(−)

K(−, X);

S0-Alg(−) T̂

U0

T ◦ −

U

(ii) the extension operator (−)†
T̂

of T̂ is induced by the one of T , i.e. for any pair

of K-indexed S0-algebras (M, m) and (N, n) if the following diagram on the

left commutes, then the one on the right commutes as well

IS0M STN

IM TN
f

Im

Sfr

T̂n ⇒

STM STN

TM TN ;
f †

T̂m

Sf †

T̂ n

(iii) the unit t̂ is induced by t, i.e. for any S0-algebra (M, m) the following diagram

commutes

IS0M STM

IM TM .
tM

Im

StM

T̂m

Proposition 3.5.6. Let T̂ be a lifting of T to the algebras of (S, S0) and let us

denote with m̂0M the S-algebra structure on TS0M given by T̂ applied to the free

S0-algebra (S0M, m0M). Then, for any other S0-algebra (M, m) the S-algebra

structure on TM given by T̂ is

STM
STs0M−−−−→ STS0M

m̂0M−−−→ TS0M
Tm−−→ TM .
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Proof. We begin noticing that, by one of the algebra axioms, m is itself a S0-

algebra morphism between (S0M, m0M) and (M, m). Therefore the diagram

below commutes, as it is the diagram making Tm a S-algebra morphism,

STS0M STM

TS0M TM .
Tm

m̂0M

STm

T̂m

Moreover, using the unit algebra axiom for m, we get the desired equality

STM STS0M STM

TS0M TM .

Tm

m̂0M

STm

T̂m

STs0M

1STM = S1TM

Lemma 3.5.7. Let d : ST → TS0 be a relative distributive law of T over (S, S0).

Then there is a lifting T̂ of T to the algebras of (S, S0) defined on K-indexed

S0-algebras (M, m) as

STM
dM−−→ TS0M

Tm−−→ TM

and on morphisms of K-indexed S0-algebras f : (M, m)→ (N, n) as

Tf : (TM, Tm · dM)→ (TN, Tn · dN).

Proof. First of all, we need to verify that the definition above gives a K-indexed

S-algebra structure. One can check this using (D1) for the compatibility axiom

and (D2) for the unit. Now we have left to prove part (ii) and (iii) of the definition

of a lifting. For the first one what we need to check is the following implication
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IS0M STN

TS0N

IM TN
f

Im

Sf

dN

Tn

⇒

STM STN

TS0M TS0N

TM TN .
f †

dM

Sf †

Tm

(dN · Sf)†

dN

Tn

Using (D3) is enough to prove that the bottom square on the right commutes

whenever the diagram on the left does.

Tn · (dN · Sf)† = (Tn · dN · Sf)† (by naturality of (−)†)

= (f · Im)† (by diagram on the left)

= f † · Tm (by naturality of (−)†)

Similarly part (iii) follows from (D4) and the naturality of t. Indeed, for any

K-indexed S0-algebra (M, m) the following diagram is commutative

IS0M STM

TS0M

IM TM .
tM

Im

StM

tS0M
dM

Tm

Theorem 3.5.8. Let T̂ be a lifting of T to the algebras of (S, S0). Then d defined

as

ST
STs0−−−→ STS0

m̂0−→ TS0

where m̂0 is the X0-indexed S-algebra structure of T̂ (S0, m0), is a relative distribu-

tive law of T over (S, S0).

Proof. We need to prove that axioms (D1), (D2), (D3) and (D4) hold. In the

following table we explain what will be used to prove each axiom.
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Axiom Axioms used in the proof

(D1) S-algebra axiom for m̂0X and Proposition 3.5.6

(D2) unit algebra axiom for m̂0X

(D3) (D4), (D1), part (ii) of Definition 3.5.5 and more

(D4) part (iii) Definition 3.5.5

For (D1), (D2) and (D4) it is enough to write down what we get explicitly using

the definition of d. The diagrams we get are the following

(D1)

S2T S2TS0 STS0 STS2
0

TS2
0

ST STS0 TS0

S2Ts0

mT

Sm̂0

mTS0

STs0S0

m̂0

m̂0S0

Tm0

STs0 m̂0

(D2)

T ST

TS0 STS0

TS0

sT

Ts0

sTS0

1TS0

STs0

m̂0

(D2)

SI ST

IS2
0 STS0

IS0 TS0.

St

SIs0

StS0

Im0

STs0

m̂0

tS0
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Let us now look at (D3). For any 2-cell α : IA→ TB in K (for any pair of 1-cells

A,B : O → X0), we need to prove that

STA STB

TS0A TS0B
(dB · Sα)†

dA

Sα†

dB i.e.

(∗)

(∗∗)

STA STB

STS0A STS0B

TA TB.
α†

STs0A

Sα†

m̂0A

S(dB · Sα)†

STs0B

m̂0B

(3.5.1)

We will proceed proving that both squares (∗) and (∗∗) in diagram (3.5.1) are

commutative. Diagram (∗) is the image through S of a diagram (∗’)

(∗’)

TA TB

TS0A TS0B,

Ts0A

α†

(dB · Sα)†

Ts0B

so it suffices to prove the commutativity of (∗’). By left naturality of (−)† and the

equality (tS0A)† = t†S0A = 1S0A

Ts0A = (tS0A · Is0A)†,

and therefore

(dB · Sα)† · Ts0A = ((dB · Sα)† · tS0A · Is0A)† (by associativity of (−)†)

= (dB · Sα · Is0A)† (by left unit of (−)†)

= (dB · sTB · α)† (by naturality of s and Is0 = sI)

= (Ts0B · α)† (by (D4))

= Ts0B · α† (by associativity of (−)†).

For (∗∗) we need to use axiom (ii) of Definition 3.5.5. We can rewrite this axiom

using Proposition 3.5.6 and the definition of d, in the following way:
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IS0M STN

TS0N

IM TN
f

Im

Sf

dN

Tn

⇒

STM STN

TS0M TS0N

TM TN
f †

dM

Sf †

Tm

dN

Tn

for (M, m) and (N, n) two S0-algebras and f a 2-cell in K. If we consider the case

with (M, m) := (S0A, m0A), (N, n) := (S0B, m0B) and f := dB · Sα we would

get (∗∗) on the right (using again Proposition 3.5.6). So it is enough to prove that

with these choices the diagram on the left is commutative, i.e.

S2IAIS2
0A S2TB STS0B

TS2
0B

SIAIS0A STB TS0B.

S2α

mIAIm0A

SdB

mTB

dS0B

Tm0B

Sα dB

The square on the left commutes because (S, S0) is compatible with I, the one

in the center commutes by naturality of m and the diagram on the right is (D1)

applied to B.

In summary, Theorem 3.5.8 and Lemma 3.5.7 give us two constructions:

Rel. Distr. Laws Lift. to Alg.

(−)[

(−)#

The following Theorem shows that these constructions are inverses of each other.
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Theorem 3.5.9. Let (X, I, T ) be a relative monad in K and (S, S0) a monad

compatible with I. Relative distributive laws d : ST → TS0 of T over (S, S0) are

equivalent to liftings of T to the algebras of (S, S0).

Proof. Let start proving that (d[)# = d:

(d[)# = d[(m0) · STs0 (by definition of (−)#)

= Tm0 · dS0 · STs0 (by definition of (−)[)

= Tm0 · TS0s0 · d (by naturality of d)

= d (by right unit of S0).

On the other hand, using Proposition 3.5.6 we can see that (T̂#)[ = T̂ .

This result gives us the first equivalence of the counterpart of Beck’s Theorem

for relative distributive laws. We will prove the second equivalence in Section 3.6

(Theorem 3.6.18), thus getting the entire counterpart (Theorem 3.6.19).

3.6. Relative Right Modules and Kleisli Objects

In the formal theory of monads [LS02, Str72], if we consider left modules (algebras)

for a monad in Kop we get what are called right modules for a monad in K.

Using this duality, all the results for algebras can be translated easily to right

modules. Unfortunately, when we consider relative monads it is not possible to

take advantage of this duality. The issue is that the objects of Rel(Kop) are not

relative monads. Indeed, we get two 1-cells, a unit 2-cell together with an extension

operator in Kop, which is not the same as an operator in K. For this reason, we

will need to define relative right modules explicitly.

In this section we will study right modules for relative monads, which we will call

relative right modules. We will start giving the definition of the category ModT (K)

of K-indexed relative right T -modules for an indexing object K ∈ K and a relative

monad (X, I, T ) in K. This construction has to satisfy a couple of conditions.
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First of all, we want that, whenever T is an actual monad in K, then the notion of

relative right module and the usual one of right module should coincide. Moreover,

when we consider K = Cat, then the Kleisli category for a relative monad defined

in [ACU15] should represent the 2-functor ModT (−) of relative right modules.

Once provided the appropriate setting, we will use ModT (−) to construct a 2-

category LiftR(K) with objects relative monads in K, 1-cells lifting to relative

right modules and 2-cells maps of liftings to relative right modules. These concepts

generalise the ones of lifting to right modules in the monad case. Then, we show

that LiftR(K) is 2-isomorphic to Rel(K). Finally, thanks to this equivalence, we

prove a Beck-like theorem stating that relative distributive laws are the same as

liftings to relative right modules, with the appropriate definition of the latter.

The Category of Relative Right Modules

From now on we will consider a fixed relative monad (X, I, T ) ∈ Rel(K) where

I : X0 → X.

Definition 3.6.1. Let K ∈ K. A K-indexed relative right T -module consists of a

1-cell M : X0 → K together with an operator (−)m : [I, T ] → [M, M ] satisfying

the following axioms:

• unit law, i.e. tm = 1M ;

• associativity, i.e. for any 2-cells h : IA → TB and k : IB → TC (given any

three 1-cells A,B,C : O → X0)

MA MB

MC.

hm

km
(k† · h)m



The Category of Relative Right Modules 77

Definition 3.6.2. Let (M, (−)m) and (N, (−)n) be two K-indexed relative

right T -modules. A K-indexed relative right module morphism f : (M, (−)m) →
(N, (−)n) consists of a 2-cell f : M → N such that for any 2-cell h : IA → TB

(given any pair of 1-cells A,B : O → X0):

MA

NA

MB

NB.

hm

fBfA

hn

Clearly the definitions above form a category ModT (K) of K-indexed relative right

modules. Therefore we have an induced 2-functor

ModT (−) : K → Cat.

Remark 3.6.3. We briefly show that if I = 1X , then ModT (K) is equal to the

category of K-indexed right modules for a monad in the usual sense. Let us

consider a relative right module for a monad (i.e. a relative monad with I = 1X),

we can prove that ρM := (1T )m is a K-indexed right module structure. We need

to prove the following axioms

MT 2

MT

MT

M

ρMT

ρMMn

ρM

M MT

M ,

Mt

ρM

where n := (1T )†. We can deduce them in the following way:

ρM ·Mn = (1T )m ·M(1T )† (by definition)

= (1T · (1T )†)m = ((1T )† · 1T 2)m (by left naturality of (−)m)

= (1T )m · (1T 2)m (by associativity of (−)m)
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= (1T )m · (1T )mT (by left naturality of (−)m)

= ρM · ρMT (by definitions)

ρM ·Mt = (1T )m ·Mt (by definitions)

= (1T · t)m = tm (by left naturality of (−)m)

= 1M (by unit law for (−)m).

On the other side, if we begin with a right module structure ρM : MT → M , we

can define a relative right module structure as

f : A→ TB 7−→ fm := ρMB ·Mf

Then by definition tm = ρM ·Mt which is equal to 1M by the unit axiom for ρM .

Therefore we have left to prove that, for any f : A → TB and g : B → TC,

gm · fm = (g† · f)m where g† = nC · Tg. We can prove this by looking at the

diagram

MA MTB MB

MT 2C MTC

MTB MTC MC.

Mf

Mf

MTg

ρMB

Mg

ρMC

Mg† ρMC

ρMC

MnC

The commutativity follows from the naturality and multiplication axiom for ρM .

Using indexing and left naturality for (−)m we can see that these two constructions

provide a bijection between relative right modules for a monad and the usual notion

of right modules.

Definition 3.6.4. We say that a relative monad (X, I, T ) ∈ Rel(K) has a relative

Kleisli object if ModT (−) is representable. We will denote a representing object

with XI,T .
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Example 3.6.5. Let Kl(T ) the Kleisli category for a relative monad (X, I, T ) in

Cat [ACU15]. We can see that this gives us a relative Kleisli object for T .

Let (M, (−)m) a K-indexed relative right module. We can define a functor

M̄ : Kl(T ) → K the same as M on objects, and for any map f : x 9 y ∈ Kl(T ),

i.e. f : Ix → Ty ∈ X, M̄f := fm : Mx → My. The unit law and associativity of

(−)m ensure that M̄ respects identities and composition respectively. Moreover,

M̄ defined in this way is such that M̄J0 = M . The equality on objects is trivially

true, whilst for the action on maps we have

M̄J0f = (Tf · tx)m (by definitions)

= Mf · (tx)m (by right naturality of (−)m)

= Mf · 1M = Mf (by unit law for (−)m).

On the other hand, if we start with a functor M̄ : Kl(T )→ K then we can define

a K-indexed relative right module in the following way. First of all we define

M : X0 → K as M̄J0. Then as operator structure we define, for any map f : Ix→
Ty, fm as M̄f : Mx→My. In an analogous way as before, the functoriality of M̄

proves the unit law and associativity for (−)m defined in this way.

In the formal theory of monads [Str72], the category of K-indexed right T -modules

is shown to be equivalent to Mnd(Kop)op[ (X, T ), (K, 1K) ], and therefore the

Kleisli object construction gives a left adjoint of the inclusion K → Mnd(Kop)op

sending an object K ∈ K to the unital monad (K, 1K). The following proposition

shows why this is not possible in our setting.

Proposition 3.6.6. Let (X, I, T ) be a relative monad in K and K ∈ K an object.

Then the category of relative monad morphisms Rel(K)[ (X, I, T ), (K, 1K , 1K) ]

is a subcategory of ModT (K).

Proof. A relative monad map (M, M0, ρ) : (X, I, T ) → (K, 1K , 1K) consists of

a pair of maps M : X → K and M0 : X0 → K such that MI = M0, and a 2-cell

ρ : MT →M0 satisfying the axioms (for any 2-cell f : IA→ TB)
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(i)

MI MT

M0

Mt

ρ (ii)

MSA M0A

MSB

MSB M0B

ρA

ρB

Mf †

Mf

ρB

.

We can endow M0 with a relative right module structure defining its operator,

for any 2-cell f : IA → TB, as fm := ρB ·Mf . The unit law is guaranteed by

diagram (i) above, while to prove associativity it is enough to precompose the two

composite in diagram (ii) with Mf .

Moreover, let (α, α0) : (M, M0, ρ) → (M ′, M ′
0, ρ

′) be a relative monad transfor-

mation. Then the diagram

M0A MIA MSB M0B

M ′
0A M ′IA M ′SB M ′

0B

Mf

αIAα0A

ρB

αSB α0B

M ′f ρ′B

is commutative using α0 = αI, the naturality of α and the axiom for a relative

monad transformation. Therefore α0 is a relative right module morphism.

An object of Rel(K)[ (X, I, T ), (K, 1K , 1K) ] is similar to the usual notion of

a right module, having a straightforward right action ρ : MT → M0 satisfying

axioms similar to the one of a right module. So, one could wonder if this would be

the appropriate definition for a relative right module over a relative monad. The

main problem with this definition is that, in a general 2-category K, is not possible

to find a morphism from K(X,K) to Rel(K)[ (X, I, T ), (K, 1K , 1K) ]. We need a

map of this kind to form a diagram like (3.6.1), which will be crucial in the next
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section, where we will define a lifting to relative right modules. Instead, for any

(X, I, T ) ∈ Rel(K) we can consider the diagram

K(X,−)

ModT (−)

K(X0,−)

U∗X

− ◦ I

J∗X0

t (3.6.1)

where J∗X0
: ModT (−) → K(X0, −) is a forgetful natural transformation, sending

a K-indexed relative right T -module to its underlying 1-cell M : X0 → K, and

U∗X : K(X, −)→ ModT (−) is a natural transformation defined as, for any K ∈ K,

(U∗X)K : K(X, K) −→ ModT (K)

(M : X → K) 7−→ (MT, M(−)†).

Remark 3.6.7. Whilst using relative algebras we were able to construct a relative

adjunction (Lemma 3.4.5), the diagram in (3.6.1) does not always represent one.

However, even if we would have such a relative adjuntion, then it would still

not seem possible to prove a similar result to Theorem 3.4.6. Indeed, to define

a relative adjunction in a 2-category we use operators, which are not self dual.

Thus the contravariant Yoneda embedding Y : Kop → [K, Cat] does not preserve

operators and so relative adjunctions, while the covariant Yoneda embedding

Y : K → [Kop, Cat] does. Nevertheless, there are some 2-categories where we

find a relative adjunction using Kleisli objects (for instance Cat, see [ACU15,

Section 2.3]).

The 2-category LiftR(K)

Given a 2-category K we want to use the notion of relative right modules to define

a 2-category LiftR(K) with the same objects as Rel(K) but 1- and 2-cells defined

as lifting to relative right modules. Let us start fixing some notation. From now on

we will consider two relative monads (X, I, S) and (Y, J, T ) in K. They induce

the following diagrams:
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K(X,−)

ModS(−)

K(X0,−),

U∗X

− ◦ I

J∗X0
s

K(Y,−)

ModT (−)

K(Y0,−).

U∗Y

− ◦ J

J∗Y0
t

Definition 3.6.8. Let (X, I, S) and (Y, J, T ) be two relative monads in K. A

lifting to relative right modules consists of two 1-cells F : X → Y and F0 : X0 → Y0,

a natural transformation F̃ : ModT (−) → ModS(−) and a modification φ̃ of the

form

ModT (−)

K(X,−)

ModS(−)

K(Y,−)
− ◦ F

U∗Y

F̃

U∗Xφ̃

satisfying the axioms:

(i) FI = JF0 and the following diagram commutes

K(Y0,−)

ModS(−)

K(X0,−).

ModT (−) F̃

J∗Y0

− ◦ F0

J∗X0

(ii) The following pasting diagrams are equal

K(Y,−)

ModT (−)

K(Y0,−)

ModS(−)

K(X0,−)

=J∗X0

U∗Y

− ◦ J

J∗Y0

F̃

− ◦ F0

t
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=
K(Y,−)

ModT (−)

K(Y0,−)

K(X,−)

ModS(−)

K(X0,−).

U∗X

− ◦ I

J∗X0

U∗Y

− ◦ J

F̃

− ◦ F0

− ◦ F

φ̃

s

(iii) Let us denote with (−)F̃m and (−)F̃ T the relative right module structure

operators of F̃ (M, (−)m) and F̃ (T, (−)†) respectively. Then, for any 2-cell

f : IA→ TB and any K-indexed relative right module (M, (−)m), the action

of F̃ has to be

fF̃m = (fF̃ T · tF0A)m.

Since the last part of the definition above might seem a bit ad hoc, let us briefly

explain where it comes from. The idea is that we want to write the action of F̃

on relative right module in terms of the free relative right modules. In the case of

relative algebras, this property followed from the other axioms (Proposition 3.5.6).

This will make sure that, in the definition of a lifting of a monad to relative right

modules (Definition 3.6.15), all of the structure of the monad is lifted. When

dealing with right modules for a monad this property follows from other axioms.

The following Lemma gives us a nice way to describe the action of F̃ in terms of

a particular 2-cell φ. Thanks to this we can prove that a lifting to relative right

modules is equivalent to a morphism of relative monads, as shown in Proposi-

tion 3.6.10.
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Lemma 3.6.9. Let (F, F0, F̃ , φ̃) be a lifting to relative right modules. Let us

denote by φ : FS → TF0 the component of J∗X0
φ̃ relative to 1Y .

ModT (Y )

K(X, Y )

ModS(Y )

K(Y, Y )
− ◦ F

U∗Y

F̃

U∗Xφ̃

K(Y0, Y ) K(X0, Y )

J∗Y0

− ◦ F0

J∗X0

1Y F

FS

T TF0

φ

Then, for any 2-cell f : IA→ SB,

fF̃m = (φB · Ff)m.

Proof. We know that φ : FS → TF0 is a map in ModS(X), where the structure

operators of FS and TF0 are respectively F (−)†S and (−)F̃ T . Therefore, the

following diagram is commutative

FIA JF0A

FSA

FSB

TF0A

TF0B.

FsA

fF̃ TFf †S

φA

φB

tF0A

Indeed, the top square commutes by part (ii) of Definition 3.6.8 and the bottom

square because φ is a relative right module map. Thus, we can deduce

fF̃m = (fF̃ T · tF0A)m (by part (iii) of Definition 3.6.8)

= (φB · Ff †S · FsA)m (diagram above)

= (φB · Ff)m (by left unit law of S).
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Proposition 3.6.10. A lifting to relative right modules is equivalent to a relative

monad morphism between relative monads.

Proof. We will start proving that given a lifting to relative right modules we get

a relative monad morphism. Let (X, I, S) and (Y, J, T ) be two relative monads

in K, (F̃ , F, F0, φ̃) a lifting between them and denote with φ : FS → TF the 2-cell

given in Lemma 3.6.9. Axiom (ii) of Definition 3.6.8 is equivalent to the unit law

for (F, F0, φ) seen as a relative monad morphism. Moreover, the extension law

for it follows from the fact that the components of φ̃ are relative right modules

morphisms and axioms (ii) and (iii) of Definition 3.6.8. More precisely, we have to

prove that for any 2-cell f : IA→ SB the following diagram is commutative

FSA

FSB

TF0A

TF0B.

(φB · Sf)†T

φA

Ff †S

φB

We know that φ : FS → TF0 is a map in ModS(X), therefore for any f : IA→ SB

we have, using that the structure operators of FS and TF0 are respectively Ff †S

and fF̃ T ,

FSA

FSB

TF0A

TF0B.

fF̃ T

φA

Ff †S

φB

Hence, we just need to prove that fF̃ T = (φB · Ff)†T , which is just a particular

instance of Lemma 3.6.9. On the other hand if we start with a relative monad

morphism (F, F0, φ), we can define F̃ : ModT (−)→ ModS(−), for any K ∈ K and

(M, (−)m) ∈ ModT (K), as

F̃ (M, (−)m) := (MF0, (φB · F−)m).
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First of all we need to prove that (φB · F−)m is a relative right module operator.

Unit Law:

(φB · Fs)m = (tF0)m (by part (ii) of Definition 3.6.8)

= 1MF0 (by unit law for (−)m).

Associativity:

(k† · h)S̃m = (φC · Fk†S · Fh) )m (by definition)

= ( (φC · Fk)†T · φB · Fh) )m (by Kleisli ext law for φ)

= (φC · Fk)m · (φB · Fh)m (by associativity of (−)m)

= kF̃m · hF̃m (by definition).

Moreover if g : (M, (−)m) → (N, (−)n) is a map in ModT (K), then applying the

axiom for g to φB·Ff we get that gF0 : F̃ (M, (−)m)→ F̃ (N, (−)n) is in ModS(K).

Therefore F̃ : ModT (−)→ ModT (−) is well defined.

Then, we can define the component of φ̃ at K ∈ K and (M, (−)m) ∈ ModT (K)

as Mφ. Looking at the definition of F̃ on relative right actions, we can see that the

axiom for Mφ to be a relative right module morphism is the same as the extension

axiom for (F, F0, φ).

Now we need to prove all the axioms of a lifting to relative right modules. The first

one follows from definition, and part (ii) is equivalent to the unit one for a relative

monad morphism. Finally, we can easily check that part (iii) of Definition 3.6.8 is

satisfied, as fF̃m = (φB · Ff)m and fF̃ T = (φB · Sf)† by definition, and so

fF̃m = (φB · Ff)m = ( (φB · Ff)† · tF0A )m = (fF̃ T · tF0A)m.

Lemma 3.6.9 guarantees that these constructions are inverses of each other.

Definition 3.6.11. Let (F, F0, F̃ , φ̃) and (F ′, F ′0, F̃
′, φ̃′) be two liftings to

relative right modules from (X, I, S) to (Y, J, T ), two relative monads in K. A

map of liftings to relative right modules (p, p0, p̃) : (F, F0, F̃ , φ̃)→ (F ′, F ′0, F̃
′, φ̃′)

consists of two 2-cells p : F → F ′ and p0 : F0 → F ′0 and a modification p̃ : F̃ → F̃ ′

such that:
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(i) Jp0 = pI and the following pasting diagrams are equal

ModT (−) ModS(−)

K(Y0,−) K(X0,−)

F̃

J∗Y0

F̃ ′

J∗X0

F̃ ′

p̃

=

ModT (−) ModS(−)

K(Y0,−) K(X0,−);

F̃

J∗Y0 J∗X0

− ◦ F ′0

− ◦ F0

− ◦ p0

(ii) the following pasting diagrams are equal

K(Y,−) K(X,−)

ModT (−) ModS(−)

− ◦ F

U∗Y

− ◦ F ′

U∗X

F̃ ′

− ◦ p

φ̃′

=

K(Y,−) K(X,−)

ModT (−) ModS(−).

− ◦ F

U∗Y U∗X

F̃ ′

F̃

p̃

φ̃

Proposition 3.6.12. Let (F, F0, F̃ , φ̃) and (F ′, F ′0, F̃
′, φ̃′) be two liftings to

relative right modules and (F, F0, φ) and (F ′, F ′0, φ) their corresponding relative

monad morphisms (using Proposition 3.6.10). A map of liftings to relative right

modules between them is equivalent to a relative monad transformation between the

corresponding relative monad maps.

Proof. Given (p, p0, p̃) we can see that (p, p0) is a relative monad transforma-

tion. This follows from J∗X0
p̃ = (− ◦ p0)J∗Y0 and part (ii) of Definition 3.6.11

applied to 1Y . On the other hand, given a relative monad transformation

p̃, to satisfy the first axiom of map of liftings to relative right modules, we

need to choose p̃ as follows: for any K ∈ K and (M, (−)M) ∈ ModT (K),
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then p̃K,M : F̃ (M, (−)m) → F̃ ′(M, (−)m) is defined as Mp0 : (MF0, (−)F̃m) →
(MF ′0, (−)F̃ ′m). Thanks to Proposition 3.6.10 we know that for any 2-cells

f : IA→ SA, fF̃m = (φB ·Ff)m and fF̃ ′m = (φ′B ·F ′f)m. Therefore, to prove that

p̃K,M is a map of relative right modules, it suffices to prove the following equality:

Mp0B · (φB · Ff)m = (Tp0BφB · Ff)m (by right naturality of (−)m)

= (φ′B · pSB · Ff)m (because (p, p0) ∈ Rel(K))

= (φ′B · F ′f · pIA)m (by naturality of p)

= (φ′B · F ′f · Jp0A)m (because (p, p0) ∈ Rel(K))

= (φ′B · F ′f)m ·Mp0A (by left naturality of (−)m).

These constructions are clearly inverses of each other.

Proposition 3.6.13. Let K be a 2-category. Then there exists a 2-category

LiftR(K) of lifting to relative right modules with objects relative monads in K,

1-cells liftings to relative right modules and 2-cells maps between them.

Proof. The composition is given by composition in K and pasting the appropriate

diagrams. The strictness of this operation follows from the strictness in K and the

pasting Theorem for 2-categories [Pow90].

In the formal theory of monads [Str72] Street proved that the 2-category of monads

in a 2-category is equivalent to the 2-category of liftings to indexed algebras. The

following Theorem provides a similar result in the setting of relative monads, which

will be useful to prove Theorem 3.6.18.

Theorem 3.6.14. Let K be a 2-category. Then the 2-categories Rel(K) and

LiftR(K) are 2-isomorphic.

Proof. Let us define a 2-functor Γ: Rel(K)→ LiftR(K). On objects we take the

identity, on 1-cells we use the correspondence seen in Proposition 3.6.10 and on

2-cells the one seen in Proposition 3.6.12. These propositions prove also that Γ is

an isomorphism on hom-categories, and therefore a 2-isomorphism.



Beck’s Theorem for Relative Distributive Laws 89

Beck’s Theorem for Relative Distributive Laws

Throughout this section we will consider a relative monad (X, I, T ) ∈ Rel(K)

and monads (X, S), (X0, S0) ∈ Mnd(K) compatible with I. We will start by

introducing the generalised notion of extensions to Kleisli categories, which we call

lifting to relative right modules. Then we will prove that this concept is equivalent

to relative distributive laws, providing a Beck-type equivalence.

Definition 3.6.15. We define a lifting of S to the relative right modules of T as

a monad S̃ : ModT (−)→ ModT (−) satisfying the following properties.

(i) The pair (S̃, − ◦ S0) is a monad compatible with J∗0 .

(ii) The natural transformation U∗ : (ModT (−), S̃) → (K(X,−), − ◦ S) can be

extended to a morphism in Mnd(K̂op)op. We will refer to the 2-cell making

U∗ a monad morphism as d∗.

(iii) The modification t : (−◦ I, 1)→ (J∗0 , 1) ◦ (U∗, d∗) is a 2-cell in Mnd(K̂op)op.

(iv) Let us denote with (−)S̃m and (−)S̃T the relative right module structure

operators of S̃(M, (−)m) and S̃(T, (−)†) respectively. Then, for any 2-cell

f : IA→ TB and any K-indexed relative right module (M, (−)m), the action

of S̃ has to be

fS̃m = (fS̃T · tS0A)m.

Example 3.6.16. Let us consider the case K = Cat. In this case, part (iv) of

Definition 3.6.15 derives from the first three and properties of Cat. More precisely,

we recall that fm is equal to M̄f , with M̄ : Kl(T ) → K the functor associated to

the relative right module M , and so fS̃m = M̄S̃f . On the other hand fS̃T = (S̃f)†,

therefore we get the equality in (iv).

Let us denote with C0 and C the categories on which we take the monads S0 and S,

and relative monad T . With this notation, we can rewrite the definition above in

the following equivalent way. Let (S, S0) be a monad compatible with I : C0 → C
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and (C, I, T ) a relative monad in Cat. We denote with J0 : C0 → Kl(T ) and

U : Kl(T ) → C the functors forming the Kleisli relative adjunction (see [ACU15,

Section 2.3]). We define an extension of S to the Kleisli category of T as a monad

S̃ : Kl(T )→ Kl(T ) such that:

(i) S̃J0 = J0S0 and (J0, 1) becomes a monad morphism, i.e. m̃J0 = J0m0 and

s̃J0 = J0s0;

(ii) the functor U : Kl(T )→ C is a monad morphism (with 2-cell d);

(iii) the unit t : (I, 1)→ (U, d) ◦ (J0, 1) is a monad transformation.

Remark 3.6.17. More generally, if K has relative Kleisli objects XI,T , then we can

rewrite Definition 3.6.15 as a particular extension. First, let us notice that, if

ModT (−) is represented by XI,T , then there is a universal relative right module

(J0, (−)j0) with J0 : X0 → XI,T . Therefore, diagram 3.6.1 becomes equivalent

(using Yoneda for 2-categories) to

X0

XI,T

X,

J0

I

U
t

with UJ0 = T . Therefore, a lifting of a monad S to relative right modules of T

becomes equivalent to an extension of S to XI,T , i.e. a monad S̃ : XI,T → XI,T

such that

(i) the pair (S̃, S0) is a monad compatible with J0;

(ii) the 1-cell U : (XI,T , S̃)→ (X, S) is a monad morphism (with 2-cell d);

(iii) the 2-cell t : (I, 1)→ (U, d) ◦ (J0, 1) is a monad transformation;

(iv) for any 2-cell f : IA→ TB we have the following equality

S̃fj0 = (US̃fj0 · tS0A)j0 .
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Theorem 3.6.18. Let (X, I, T ) be a relative monad and (S, S0) a monad compat-

ible with I, both in K. Then, relative distributive laws d : ST → TS0 are equivalent

to liftings of S to the relative right modules of T .

Proof. We have already seen in Proposition 3.5.4 that relative distributive laws

are the objects of Mnd(Rel(K)). Now, using Theorem 3.6.14, we get that

Mnd(Rel(K)) ∼= Mnd(LiftR(K)).

To get the conclusion, we just need to notice that an extension of S to the Kleisli

category of T is just an object of Mnd(LiftR(K)).

Putting together Theorems 3.5.9 and 3.6.18 we get the following Theorem, which

gives us the counterpart of Beck’s Theorem for relative distributive laws.

Theorem 3.6.19. Let K be a 2-category, (X, I, T ) a relative monad in K and

(S, S0) a monad compatible with I. The following are equivalent:

(i) a relative distributive law of T over (S, S0);

(ii) a lifting T̂ : S0-Alg(−) −→ S-Alg(−) of T to the algebras of (S, S0);

(iii) a lifting S̃ : ModT (−)→ ModT (−) of S to the relative right modules of T .

Let us consider the particular case K = Cat. We know that Cat has both relative

EM objects and relative Kleisli objects (Examples 3.4.4 and 3.6.5). Using this

property of Cat and Example 3.6.16 we can show that Theorem 3.6.19 can be

rephrased in the following way.

Corollary 3.6.20. Let (C, I, T ) be a relative monad in Cat and (S, S0) a monad

compatible with I. The following are equivalent:

(i) a relative distributive law of T over (S, S0);

(ii) a lifting T̂ : S0-Alg→ S-Alg of T to the algebras of (S, S0);

(iii) an extension S̃ : Kl(T )→ Kl(T ) of S to the Kleisli category of T .
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We conclude the chapter with a pair of examples of relative distributive laws in

the 2-category of locally small categories Cat.

Example 3.6.21 (Power set and free monoids). We will consider a variation of a

distributive law between two monads. Recall that there exists a distributive law

between the power set monad P and the free monoid one SM , given by

dX : SMPX PSMX
I1...In {a1...an | ai ∈ Ii}.

A problem arises if we want to impose some restrictions on the cardinality of

sets. For example, given any infinite cardinal κ, let Set≤κ be the category of

sets with cardinality less or equal to κ. Then, the restriction of P to Set≤κ

it is not an endofunctor anymore. Nevertheless, we can recover its monad-like

structure considering it as a relative monad on the inclusion I : Set≤κ → Set.

More precisely, we can take as unit tX(x) := {x} (for any X ∈ Set and x ∈ X)

and as extension of f : X → PY the map

f † : PX PY
I

⋃
i∈I f(i).

Let us consider now the restriction of SM to Set≤κ. Let X be a set of cardinality

at most k, then SMX has cardinality

|SMX| = |
∐
n∈N

|X|n | ≤ |
∐
n∈N

κn | = |
∐
n∈N

κ| = κ

and therefore we get SMκ : Set≤κ → Set≤κ. In particular it means that (SM , SMκ ) is

compatible with I : Set≤κ → Set. With this point of view, we see that d becomes

a relative distributive law of T := Pκ : Set≤κ → Set over (SM , SMκ ).

A similar situation arises when one works in set theories that do not have the

power-set axiom, like Kripke-Platek set theory [Bar17] or Constructive Zermelo-

Frankel set theory [Acz78]. There, the power set operation can be viewed as a

relative monad over the inclusion of the category of sets into the category of classes.
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Note also that the presheaf construction can then be viewed as a categorified

version of the power-set monad [FGHW17]. See also [Hyl10].

Example 3.6.22 (Pointed vector spaces). In [ACU15, Example 1.1] is presented the

relative monad V of vector spaces. In order to define it, let us fix a semiring R. For

any set X, we will denote with δx : X → R the map sending x to 1 and everything

else to 0. Then, V is defined on the inclusion I : Fin→ Set of finite cardinals into

sets as follows:

• for any finite cardinal n, V n := Set(In, R);

• the unit vn : In→ V n is defined, for any i ∈ In, as vn(i) := δi;

• given α : In → V m we define its extension α† : V n → V m as, for any

f : In→ R,

α†(f) :=
∑
i∈n

f(i) · α(i)(−) : Im→ R.

Let us consider the monad of pointed set, i.e. SX := X+1, the unit sX : X → X+1

is the canonical inclusion and the multiplication mX : X + 2 → X + 1 fixes any

element of X and sends the two elements of 2 to the only one of 1. One can easily

prove that the category of S-algebras is the category of pointed sets.

Clearly, defining Sf as the restriction of S to finite cardinals, we can see (S, Sf )

as a monad compatible with I. Moreover, there is a lifting of V to the algebras

of (S, Sf ) defined as follows: for any finite pointed set (n, i) we set V̂ (n, i) :=

(Set(In, R), δi). Now we need to check that both the unit and the extension

operator lift. First of all, we can see straight away that vn is a map of pointed

sets, since by definition it sends each i to the map δi. Then, if we consider a

map of pointed sets α : (In, i) → (V m, δj) we need to check that the extension

α† : V n→ V m is still a map of pointed sets, i.e. the equality α†(δi) = δj holds.
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For any s ∈ m

[α†(δi)](s) =
∑
r∈n

δi(r) · [α(r)](s) (by definition of (−)†)

= α(i)(s) (by definition of δi)

= δj(s) (α map of pointed sets).

Therefore, by Theorem 3.5.9, we have a relative distributive law of V over (S, Sf ).

In particular, by Theorem 3.6.18, we have a monad S̃ induced on the Kleisli of V ,

i.e. vector spaces. What we get as algebras over this monad are pointed vector

spaces.



4. Strongly Finitary Notions of

Multicategory

Introduction

It is well known that there are various correspondences between different flavours

of monoidal category and multicategory [Her00, Man09, BL18]. For instance, in

his fundamental work [Her00] Hermida introduced representable multicategories

and proved that they are equivalent to monoidal categories. Then, if we want to

weaken the representable condition, for example considering only left representable

multicategories, we end up in the world of skew monoidal categories. In [BL18]

we can find the details of various equivalences between (skew) multicategories and

skew monoidal categories. Since monoidal categories admit a definition involving

finite data and finite axioms, it is natural to wonder if the same is possible for

multicategories. Our goal in the present chapter is to describe a finite approach to

the kinds of multicategory that arise in practise — these include representable and

closed multicategories — with the goal of making examples of such notions easier

to construct. We do this by introducing a structure called a short multicategory,

which is not itself a multicategory, since it only has multimaps of dimension at most

four. One of our main results shows that representable short multicategories are

equivalent to representable multicategories, so providing a finite description of the

latter. Moreover, we adapt all of these results to the setting of skew multicategories

and skew monoidal categories described in [BL18].
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Main Results

The main contribution of this work is to provide equivalences between different

flavours of short (skew) multicategories and (skew) multicategories. In particular,

we consider the following cases:

• Theorem 4.4.6 provides an equivalence between representable multicategories

and representable short multicategories. We prove this as a consequence of

the more general Theorem 4.4.5, which deals with left representable short

multicategories.

• Theorem 4.4.7 and Theorem 4.4.8 show the equivalences in the closed left

representable and closed representable case.

• Then, Theorem 4.5.12 proves the left representable skew case.

• Finally, Theorem 4.5.15 is about the left representable closed skew case.

We also show that these equivalences are compatible with the ones given in [Her00,

BL18] for different flavours of multicategory and monoidal category.

Outline

In Section 4.1 we review the definition of a multicategory, before giving a slight

reformulation of it better suited for our later use. We also recall some important

notions for multicategories, such as representability and closedness.

In Section 4.2 we use the reformulation given in Section 4.1 to define short multicat-

egories. We then define the notions of representability and closedness in the context

of short multicategories.

In Section 4.3 we give an overview on skew monoidal categories and skew multicat-

egories.
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Section 4.4 provides various equivalences between different flavour of short

multicategories and skew monoidal categories.

We conclude the chapter in Section 4.5 introducing short skew multicategories and

describing analogues of the results in Section 4.4 appropriate to the skew setting.

4.1. Classical Multicategories

In this section we will recall the definitions of multicategories and morphisms

between them. To begin with, a multicategory C consists of:

• a collection of objects;

• for each (possibly empty) list a1, ..., an of objects and object b, a set

Cn(a1, ..., an; b);

• for each object a an element 1a ∈ C1(a; a).

The elements of the set Cn(a1, ..., an; b) are called n-ary multimaps, with domain

the list a1, . . . , an and codomain b, whilst 1a plays the role of the identity unary

morphism. We sometimes write a for the list, and then Cn(a; b) for the set of

multimaps.

Substitution in a multicategory can be encoded in two ways. The best known one

involves substitutions into all positions simultaneously. In this case, substitution

is encoded by functions of the form

Cn(b1, ..., bn; c)×
n∏
i=1

Cki(ai; bi) −→ CK(a1, .., an; c)

(g, f1, . . . , fn) 7−→ g ◦ (f1, . . . , fn)

where K =
∑n

i=1 ki. For such substitutions, there is a straightforward associativity

axiom — see, for instance, Definition 2.1.1 of [Lei04] — and two identity axioms,

which at g ∈ Cn(a1, . . . , an; b) are captured by the two equations

1b ◦ (g) = g = g ◦ (1a1 , ..., 1an).
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The original definition of multicategory, due to Lambek [Lam69], instead involved

substitutions into a single position, and these are encoded by functions of the

following form

− ◦i − : Cn(b; c)× Cm(a; bi)→ Cn+m−1(b<i, a, b>i; c)

(g, f) 7→ g ◦i f

where b<i and b>i denote the sublists of b in indices less than and greater than i,

respectively. To encode associativity of the ◦i-type substitutions, one requires the

following two collections of equations

h ◦i (g ◦j f) = (h ◦i g) ◦j+i−1 f for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(h ◦i g) ◦n+j−1 f = (h ◦j f) ◦i g for 1 ≤ i < j ≤ m.

Finally, there are the two identity axioms which at g ∈ Cn(a1, . . . , an) are captured

by the two equations 1b ◦1 g = g = (. . . ((g ◦1 1a1) ◦2 1a2) . . . ◦n ◦1an .

Given a multicategory with ◦-type substitutions, the corresponding − ◦i − are

defined by

g ◦i f = g ◦ (1, . . . , 1, f, 1, . . . , 1)

where f is substituted in the i’th position. Given a multicategory with ◦i-type

substitutions, the corresponding − ◦ − are defined by

g ◦ (f1, . . . , fn) = (. . . ((g ◦1 f1) ◦k1+1 f2) . . . ◦k1+...kn−1+1 ◦fn.

Each multicategory C has an underlying category UC with the same objects,

and morphisms the unary ones, so that one can consider a multicategory C as

a category UC equipped with additional structure. Thinking of a multicategory C
as a category equipped with ◦i-type substitution, we obtain the following reformu-

lations, which will be our starting point in which follows. It is closely related to

[BL18, Proposition 3.4].
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Proposition 4.1.1. A multicategory C is equivalently specified by:

• a category C;

• for n ∈ N a functor Cn(−;−) : (Cn)op ×C→ Set such that, when n = 1, we

have C1(−;−) = C(−,−) : Cop × C→ Set;

• substitution functions

− ◦i − : Cn(b; c)× Cm(a; bi)→ Cn+m−1(b<i, a, b>i; c)

for i ∈ {1, . . . , n} which are natural in each variable a1, . . . , am, b1, . . . , bn, c

and satisfying the same associativity equations

h ◦i (g ◦j f) = (h ◦i g) ◦j+i−1 f for 1 ≤ i ≤ m, 1 ≤ j ≤ n (4.1.1)

(h ◦i g) ◦n+j−1 f = (h ◦j f) ◦i g for 1 ≤ i < j ≤ m (4.1.2)

as before. In this way, UC = C.

Proof. Given a structure as above, we can form a multicategory with objects those

of C, sets of multimaps Cn(a; b), identities 1a ∈ C(a, a) = C1(a; a) and substitution

functions − ◦i − as above. The only additional thing to note is that the two

identity axioms for the multicategory are encoded by the fact that the functor

Cn(−;−) : (Cn)op × C→ Set preserves identities.

In the opposite direction, given a multicategory C with ◦i-type operations,

let C = UC be its underlying category of unary morphisms. We must define a

functor Cn(−;−) : (Cn)op × C → Set sending (a; b) to Cn(a; b) on objects in such

a way that the − ◦i − substitutions are natural in the sense described above, and

such that C1(−;−) = C(−,−). In fact, the requirement that

− ◦i − : C1(b; c)× Cn(a; b)→ Cn(a; c)

be natural in b forces us to define Cn(a; f) = f ◦1 −. Naturality of the ◦i also

ensure natural of the associated ◦ operations, and in particular naturality of

− ◦ − : Cn(a1, . . . , an; b)× C1(c1, a1)× . . .× C1(cn; an)→ Cn(c1, . . . , cn; b)
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in a1, . . . , an forces us similarly to define C(f1, . . . , fn; b) = − ◦ (f1, . . . , fn). With

this definition of C(−;−) on morphisms, associativity of substitution implies that

it is a functor and that the substitution maps are natural in each variable, and

satisfy C1(−;−) = C(−,−).

These two constructions are inverse.

Let us underline the fact that this proposition relies on the existence of identity

morphisms. Instead, if we consider structures without identities these two presen-

tations are not equivalent. For the specific case of operads (which are multicate-

gories with one element) see for instance [Mar02, Part II, Section 1.3].

Naturally, there is a notion of morphism between multicategories, which we call

here multifunctor. From now on, when talking about multicategories we will mean

in the sense of Proposition 4.1.1.

Notation. From now on, when we will have a functor F : C → D and a list a of

objects a1, ..., an in C, then we will write Fa for the list of objects Fa1, ..., Fan

in D.

Definition 4.1.2. Let C and D two multicategories. A multifunctor is a functor

F : C→ D together with natural families

Fn : Cn(a; b)→ Dn(Fa;Fb)

for any n ∈ N, such that when n = 1, then F1 is the functor action. These families

must commute with all substitution operators ◦i.

Multicategories and multifunctors form a category Mult.
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Representability

An important notion for multicategories is the one of representability. First,

an n-ary map classifier for a = a1, . . . , an consists of a representation of

Cn(a1, . . . , an;−) : C→ Set – in other words, a multimap

θa : a1, . . . , an → m(a1, . . . , an)

for which the induced function −◦ θa : C1(m(a1, . . . , an); b)→ Cn(a1, . . . , an; b) is a

bijection for all b. We sometimes refer to such a multimap as a universal multimap

and write ma for m(a1, ..., an). A n-ary map classifier is said to be left universal

if, moreover, the induced function

− ◦1 θa : C1+r(ma, y; d)→ Cn+r(a1, ..., an, y; d)

is a bijection for any y of length r.

Definition 4.1.3 ([Her00, BL18]). Let C be a multicategory.

• C is said to be weakly representable when each of the functors

Cn(a;−) : C → Set is representable, i.e. if it has all n-ary map classifiers

θa.

• C is said to be left representable if it is weakly representable and all θa

are left universal.

• C is said to be representable if it is weakly representable and substitution

with universal n-multimaps θa induces bijections

Ck+1(x,ma, y; b)→ Ck+n(x, a, y; b)

for x and y tuples of appropriate length.

We will denote with Multlr and Multrep the full subcategories of Mult with

objects, respectively, left representable multicategories and representable multicat-

egories.
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Closedness

Another important notion for multicategories is the one of closedness.

Definition 4.1.4. A multicategory C is said to be closed if for all pair of objects

b and c there exists an object [b, c] and binary map eb,c : [b, c], b→ c for which the

induced function

eb,c ◦1 − : Cn(x; [b, c])→ Cn+1(x, b; c)

is a bijection, for any tuple x of length n.

We will denote with Multcllr the full subcategory of Mult with objects left

representable closed multicategories.

4.2. Short Multicategories

In this section, we will present a finite definition of certain multicategory-like

structures, which we call short multicategories. Later on, under further assump-

tions, we will show that they are equivalent to known types of multicategory. We

will take Proposition 4.1.1 as the grounds for our definition.

A short multicategory consists, to begin with, of a category C together with:

• for n ≤ 4 a functor Cn(−;−) : (Cn)op × C→ Set such that, when n = 1, we

have C1(−;−) = C(−,−) : Cop × C→ Set.

Remark 4.2.1. This says that for n ≤ 4 we have sets Cn(x1, . . . , xn; y) of n-ary

multimaps (where the unary morphisms are those of C) and n-ary multimaps can

be precomposed and postcomposed by unary ones in a compatible manner. We

sometimes refer to these compatibilities as profunctoriality of n-ary multimaps.

Furthermore, we require substitution functions

− ◦i − : Cn(b; c)× Cm(a; bi)→ Cn+m−1(b<i, a, b>i; c)

for i ∈ {1, . . . , n} which are natural in each variable a1, . . . , am, b1, . . . , bn, c, where:
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• n = 2, 3, m = 2 (substitution of binary into binary and ternary);

• n = 2, m = 3 (substitution of ternary into binary);

• n = 2, 3, m = 0 (substitution of nullary into binary and ternary).

In the context of multimaps f, g and h of arity 2, n and p respectively, one can

consider associativity equations of the form:

f ◦i (g ◦j h) = (f ◦i g) ◦j+i−1 h for 1 ≤ i ≤ 2, 1 ≤ j ≤ n (4.2.1)

(f ◦1 g) ◦n+1 h = (f ◦2 h) ◦1 g (4.2.2)

These are particular casse of the associativity equations (4.1.1,4.1.2) in Section 4.1.

We require these equations in the following cases:

(a) n = p = 2;

(b) n = 2, p = 0;

(c) only for (4.2.2), n = 0, p = 2;

(d) only for (4.2.2), n = p = 0.

Let us explain these equations in a more digestible form, using diagrams.

• (4.2.1.a) corresponds to the four equations

(f ◦i g) ◦i−j+1 h = f ◦i (g ◦j h)

where 1 ≤ i, j ≤ 2 with f, g and h binary. These amount to the fact that

certain string diagrams are well-defined. For instance, if we set i = 1 and j =

2, we get that the two possible interpretations of the following string diagram

are the same.

h

a1

a2

g
b1

b2
f

c1

c2

c
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• (4.2.2.a) corresponds to the equation below.

h

g

f

b1

b2
h

g

f

b1

b2

c

a1

a2

a3

a4

=
c

a1

a2

a3

a4

• (4.2.1.b) correspond to the four equations

(f ◦i g) ◦i−j+1 h = f ◦i (g ◦j h)

with f, g binary, h nullary and 1 ≤ i, j ≤ 2. For instance, if we set i = 2 and

j = 1 it says that the following string diagram is well-defined.

h
g

a1

a2

f

b1

b2

c

• (4.2.2.b) is the equation below.

h

g

f

b1

b2
h

g

f

b1

b2

c

a1

a2
=

c

a1

a2

• (4.2.2.c) is the equation below.

h

g

f

b1

b2
h

g

f

b1

b2

c

a3

a4

=
c

a3

a4
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• (4.2.2.d) is the equation below.

h

g

f

b1

b2

h

g

f

b1

b2

c
=

c

Definition 4.2.2. Let C and D two short multicategories. A morphism of short

multicategories is a functor F : C→ D together with natural families

Fi : Ci(a; b)→ Di(Fa;Fb)

for any 0 ≤ i ≤ 4, with i = 1 the functor action. These families must commute

with all substitution operators − ◦i −.

Short multicategories and their morphisms form a category ShMult. Naturally,

there is a forgetful functor U : Mult → ShMult which takes a multicategory C
and forgets all the structure involving n-ary multimaps with n ≥ 4. In particular,

this functor forgets all substitutions which have as a result any n-ary multimaps

with n ≥ 4. For instance, it will not consider the substitution of ternary maps

into ternary maps, since it gives out 5-ary multimaps.

Representability for Short Multicategories

We can define a n-ary map classifier for a also in ShMult as a representation

of Cn(a;−) : C→ Set, i.e. a multimap

θa : a1, ..., an → ma

for which the induced function −◦1 θa : C1(ma; b)→ Cn(a; b) is a bijection for all b.

Then, a binary map classifier is said to be left universal if, moreover, the induced

function (where we write ab for m(a, b))

− ◦1 θa,b : Cn(ab, x; d)→ Cn+1(a, b, x; d)
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is a bijection for n = 2, 3 and x a tuple of the appropriate length. Similarly a

nullary map classifier u ∈ C0(−; i) is said to be left universal if, moreover, the

function (where we write i for m( ))

− ◦1 u : C1+n(i, x; d)→ Cn(x; d)

is a bijection for n = 1, 2 and x a tuple of the appropriate length. We remark

that here we consider only n = 1, 2 and not n = 3 because in definition of short

multicategory we have only substitution of nullary into binary and ternary.

We will denote a binary multimap classifier as below

θa,b

a

b

ab

and the nullary map classifier by the following.

u
i

Proposition 4.2.3. Suppose that binary map classifiers and nullary map classi-

fiers exist and are left universal. Then the multimaps

θa,b
θab,c

ab

c

a

b

(ab)c
(4.2.3)

and

θa,b
θab,c

ab

c
θ(ab)c,d

(ab)c

d

a

b
((ab)c)d

(4.2.4)
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are 3-ary and 4-ary map classifiers and

u

θ

i

a

ia
(4.2.5)

is a unary map classifier.

Proof. Left universality implies that each component of the composite maps

C1((ab)c; d)
−◦θab,c // C2(ab, c; d)

−◦1θa,b // C3(a, b, c; d)

C1(((ab)c)d; e)
−◦θ(ab)c,d // C2((ab)c, d; e)

−◦1θab,c // C3(ab, c, d; e)
−◦1θa,b // C4(a, b, c, d; e)

and

C1(ia; b)
−◦θi,a // C2(i, a; b)

−◦1u // C1(a, b)

is a bijection; it follows that the composites are bijections, which says exactly that

the three claimed multimaps are universal.

Now, following the style of Definition 4.1.3, we will define the notion of

representability for short multicategories. We will denote with | x | the length

of a list x.

Definition 4.2.4. Let C be a short multicategory.

• C is said to be left representable if it admits left universal nullary and

binary map classifiers.

• C is said to be representable if it admits nullary and binary map classifiers

such that the induced maps are bijections

− ◦j u : Cn(x, i, y; z)→ Cn−1(x, y; z) for 1 ≤ n ≤ 3

− ◦j θa,b : Cn(x, ab, y; z)→ Cn+1(x, a, b, y; z) for 1 ≤ n ≤ 3

where 0 ≤| x |, | y |≤ n− 1 and j =| x | +1.
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We will denote by ShMultlr and ShMultrep the full subcategories of ShMult

with objects left representable/representable short multicategories. Naturally, the

forgetful functor U : Mult→ ShMult restricts to forgetful functors

Ulr : Multlr → ShMultlr

Urep : Multrep → ShMultrep.

Notation. Let C be a short multicategory with a left universal binary classi-

fier. Then we will use (−)′ : Cn(a; b) → Cn−1(a1a2, a3, ..., an; b) for the inverse of

−◦1 θa1, a2: in other words, for any n-multimap f , f ′ is the unique (n−1)-multimap

such that f ′ ◦1 θ = f .

Lemma 4.2.5. Let C and D be left representable short multicategories. A

morphism F : C → D is uniquely specified by:

• A functor F : C → D.

• Natural families Fi : Ci(a; b) → Di(Fa;Fb) for i = 0, 2 commuting with the

substitutions

u
f

a

b

c

v

f

a

b

c
(4.2.6)

and such that if we define, for any ternary map h ∈ C3(a; b), F3h := F2h
′ ◦1

F2θ, then F3 also commutes with

f
a

b

g

x

y

c

.

(4.2.7)

Proof. Let us check F commutes with g◦1 f for g : x, c→ d and f : a, b→ x binary

maps. By left representability, we know that f = f ′ ◦ θa,b.

F3(g ◦1 f) = F2(g ◦1 f
′) ◦1 F2(θa,b) (definition ofF3)
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= [F2(g) ◦1 F1(f ′)] ◦1 F2(θa,b) (naturality of F2)

= F2(g) ◦1 [F1(f ′) ◦1 F2(θa,b)] (extranat. of sub. of bin. into bin. inD)

= F2(g) ◦1 F2(f ′ ◦ θa,b) (naturality of F2)

= F2(g) ◦1 F2(f) (definition of f ′).

By definition F commutes with substitutions of binary maps into the second

variable of other binary maps. Let us now consider the substitutions of nullary

maps into ternary. Let v ∈ C0(−; b) and h ∈ C3(b, c, d; e).

v

h

b

c

d

e

By left representability, we know that h = h′ ◦1 θb,c.

F2(h ◦1 v) = F2( (h′ ◦1 θb,c) ◦1 v) (by left representability)

= F2(h′ ◦1 (θb,c ◦1 v) ) (by (4.2.1.b) of C)

= F2(h′) ◦1 F1(θb,c ◦1 v) (naturality ofF2)

= F2(h′) ◦1 (F2(θb,c) ◦1 F0(v) ) (by first one in (4.2.6))

= (F2(h′) ◦1 F2(θb,c) ) ◦1 F0(v) (by (4.2.1.b) of D)

= F2(h′ ◦1 θb,c) ◦1 F0(v) (by part above)

= F2(h) ◦1 F0(v) (by left representability).

The proof for substitution of a nullary map in the third variable of a ternary one

is analogous. For substitution of a nullary map in the second variable of a ternary

one instead, we use the second part of (4.2.6).

Now we should prove that F also respects substitution of binary into ternary and

viceversa. In order to prove this we need to first define F4. Let k ∈ C4(a, b, c, d; e).

By left representability we have k = k′ ◦1 θa,b, therefore we are forced to define

F4(k) := F3k
′ ◦1 F2θa,b = (F2k

′′ ◦1 F2θab,c) ◦1 F2θa,b.
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Let h : c, d, e→ y be a ternary map and f : a, b→ c a binary map. Then

F4(h ◦1 f) = F3( (h ◦1 f)′ ) ◦1 F2(θa,b) (by definition ofF4)

= F3(h ◦1 f
′) ◦1 F2(θa,b) (one checks that (h ◦1 f)′ = h ◦1 f

′)

= [F3(h) ◦1 F1(f ′)] ◦1 F2(θa,b) (naturality ofF3)

= F3(h) ◦1 [F1(f ′) ◦1 F2(θa,b)] (properties ofD)

= F3(h) ◦1 F2(f) (naturality ofF2 and left representability).

Using this, it is straightforward to prove that F preserves substitution of a ternary

map into the first component of a binary one.

Next let h : c, x, d→ y be a ternary map and f : a, b→ x a binary map. We want

to prove that F respects substitution of a binary map into the second variable of

a ternary one. So, writing h = h′ ◦1 θc,x,

F4(h ◦2 f)

= F3( (h ◦2 f)′ ) ◦1 F2(θc,a) (by definition ofF4)

= [F2( (h ◦2 f)′′ ) ◦1 F2(θca,b) ] ◦1 F2(θc,a) (by definition ofF3)

= [F2(h′ ◦1 (cf ′ ◦ αc,a,b) ) ◦1 F2(θca,b) ] ◦1 F2(θc,a) (by (h ◦2 f)′′ = h′ ◦1 (cf ◦ α) )

= [ (F2(h′) ◦1 F1(cf ′ ◦ αc,a,b) ) ◦1 F2(θca,b) ] ◦1 F2(θc,a) (profunct. binary maps)

= [F2(h′) ◦1 (F1(cf ′ ◦ αc,a,b) ◦1 F2(θca,b) ) ] ◦1 F2(θc,a) (nat. sub. bin. into bin.)

= F2(h′) ◦1 [ (F1(cf ′ ◦ αc,a,b) ◦1 F2(θca,b) ) ◦1 F2(θc,a) ] (by axiom (4.2.1.b) in D)

= F2(h′) ◦1 F3( ((cf ′ ◦ αc,a,b) ◦1 θca,b) ◦1 θc,a ) (parts before and profunct.)

= F2(h′) ◦1 F3(θc,x ◦2 f) (routine checks)

= F2(h′) ◦1 (F2(θc,x) ◦2 F2(f) ) (parts before)

= (F2(h′) ◦1 F2(θc,x) ) ◦2 F2(f) (by axiom (4.2.1.b) in D)

= F3(h′ ◦1 θc,x) ◦2 F2(f) = F3(h) ◦2 F2(f) (parts before and left represent.).

Finally, substitution of a binary into the third variable of a ternary is similar to

the previous cases, and we can use that to prove ternary into second input of a

binary one.
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Closedness for Short Multicategories

We can adapt Definition 4.1.4 to short multicategories with the following.

Definition 4.2.6. A short multicategory is said to be closed if for all b, c there

exists an object [b, c] and binary map eb,c : [b, c], b → c for which the induced

function

eb,c ◦1 − : Cn(x; [b, c])→ Cn+1(x, b; c)

is a bijection, for n = 0, 1, 2, 3.

In a closed short multicategory the assignment (b, c) 7→ [b, c], using the profuncto-

riality of binary maps, can be extended to a functor C× C→ C. We will denote

with ShMultcllr the full subcategory of ShMult with objects left representable

closed short multicategories. Naturally, the forgetful functor U : Mult→ ShMult

restricts to a forgetful functor

U cl
lr : Multcllr → ShMultcllr.

The next proposition gives a characterisation of closed short multicategories which

are also left representable.

Proposition 4.2.7. A closed short multicategory is left representable if and only

if it has nullary map classifier and each [b,−] has a left adjoint.

Proof. If it is left representable and closed then the natural bijections

C1(ab; c) ∼= C2(a, b; c) ∼= C1(a; [b, c])

show that −b a [b,−]. Conversely, if [b,−] has left adjoint −b, then we have

natural bijections

C(ab, c) ∼= C1(a; [b, c]) ∼= C2(a, b; c)

and, by Yoneda, the composite is of the form − ◦1 θa,b for a binary map classifier

θa,b : a, b → ab (which corresponds to 1ab). It remains to show that this and the
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nullary map classifer are left universal. For the binary map classifier, we must

show that − ◦ θa,b : Cn+1(ab, x; c)→ Cn+2(a, b, x; c) is a bijection for all x of length

1 or 2, the case 0 being known. For an inductive style argument, suppose it is true

for x of length i ≤ 1. We should show that the bottom line below is a bijection

Ci+1(ab, x; [y, c])

ey,c◦1−
��

−◦1θa,b // Ci+2(a, b, x; [y, c])

ey,c◦1−
��

Ci+2(ab, x, y; c)
−◦1θa,b

// Ci+3(a, b, x, y; c])

but this follows from the fact that the square commutes, by associativity axiom

(4.2.1.a), and the other three morphisms are bijections, by assumption. The case

of the nullary map classifier is similar in form.

4.3. Skew Notions

Now that we have introduced short multicategories, we shall review some

important skew notions. In particular, we will recall the definitions of skew

monoidal category [Szl12] and skew multicategory [BL18]. The first concept will

be useful in Section 4.4 when we will consider various correspondences between

different flavours of monoidal category and multicategory. Then, in Section 4.5 we

will generalise the results of Section 4.4 to skew multicategories.

Skew Monoidal Categories

We start reviewing the definition of skew monoidal categories and morphisms

between them. A (left) skew monoidal category (C,⊗, i, α, λ, ρ) [Szl12] is

a category C together with a functor

⊗ : C× C→ C

(a, b) 7→ ab,
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a unit object i ∈ C, and natural families αa,b,c : (ab)c → a(bc) (the associator),

λa : ia → a (the left unit) and ρa : a → ai (the right unit) satisfying five axioms

which are neatly labelled by the five words

abcd

iab aib abi

ii

of which the first refers to MacLane’s pentagon axiom. More precisely, the axioms

are the following

(ab)(cd)

((ab)c)d a(b(cd))

(a(bc))d a((bc)d)

αa,b,cd

αa,bc,d

aαb,c,d

αab,c,d αa,b,cd

(4.3.1)

(ia)b i(ab)

ab

αi,a,b

λab
λab

(4.3.2)

ab (ab)i

a(bi)

ρab

αa,b,iaρb
(4.3.3)

ab (ai)b a(ib)

ab

ρab αa,i,b

aλb
1ab

(4.3.4)

i ii

i.

ρi

λi
1i

(4.3.5)

Example 4.3.1. Given a ring R, any R-bialgebroid defines a (right) skew monoidal

structure on the category of right R-modules [Szl12, Section 3].

Definition 4.3.2. Let (C,⊗, i, α, λ, ρ) be a skew monoidal category.

• C is said to be left normal if λ is invertible.

• C is said to be (left) closed if the endofunctor − ⊗ b has a right adjoint

[b,−] for any b ∈ C. We will sometime refer to left closed skew monoidal

categories simply as closed skew monoidal.
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Let (C,⊗, iC , αC , λC , ρC) and (D,⊗, iD, αD, λD, ρD) be two skew monoidal

categories. A lax monoidal functor (F, f0, f2) [Szl12] consists of a functor

F : C→ D, a map

f0 : iD → FiC

and a family of maps

f2 : FaFb→ F (ab)

natural in a and b and satisfying the following axioms:

(FaFb)Fc F (ab)Fc F ( (ab)c )

Fa(FbFc) FaF (bc) F ( a(bc) )

f2·Fc f2

αD FαC

Fa·f2 f2

(4.3.6)

iFa Fa

FiFa F (ia)

λD

f0Fa

f2

FλC (4.3.7)

Fa F (ai)

Fa.i FaF i.

FρC

ρD

Fa·f0

f2

(4.3.8)

With an abuse of notation, we may write the associators, left/right unit maps as

α, λ and ρ both in C and D, omitting the superscript. Skew monoidal categories

and lax monoidal functors form a category Skew. We will denote with Skewln,

Skewcl and Skewcl
lr the full subcategories with objects left normal/closed/left

normal and closed skew monoidal categories.

Skew Multicategories

In this section we will recall the definition of skew multicategory and some other

important notions, all of which can be found in [BL18].

Definition 4.3.3. [BL18, Definition 4.2] A skew multicategory consists of, a

category C together with:

• for each a ∈ C a set Cl0(−; a) of nullary maps ;
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• for each n > 0, each a1, ..., an ∈ C and each b ∈ C a set Ctn(a; b) of tight

n-ary maps natural in all components and such that, when n = 1, then

Ct1(a; b) = C(a, b);

• for each n > 0, each a1, ..., an ∈ C and each b ∈ C a set Cln(a; b) of loose

n-ary maps natural in all components;

• for each n > 0, each a1, ..., an ∈ C and each b ∈ C a function

ja,b : Ctn(a; b)→ Cln(a; b).

On top of this there is further structure:

• substitution gives us multimaps g(f1, ..., fn), which are tight just when g

and f1 are; these substitutions, moreover, commute with the comparisons

viewing tight multimaps as loose.

Finally the usual associativity and unit axioms must be satisfied.

Example 4.3.4. In [BL18, Section 4.2] we can find some examples of skew multicat-

egories. One of them is the skew multicategory of categories equipped with a choice

of finite products. In this case loose multimaps are functors C1 × ... × Cn → D
preserving products in each variable in the usual up to isomorphism sense, whereas

tight multimaps preserve the given products strictly in the first variable.

Remark 4.3.5. We can identify multicategories as skew multicategories in which

all multimorphisms are tight and loose, i.e. j is the indentity.

Skew multicategories have a notion of morphism between them, which we call here

skew multifunctor. We recall that, given a functor F : C → D, with Fa we mean

the list Fa1, ..., Fan.
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Definition 4.3.6. [BL18] Let C and D be skew multicategories. A skew

multifunctor is a functor F : C→ D together with natural families

F t
n : Ctn(a; b)→ Dtn(Fa;Fb) for 1 ≥ n

F l
n : Cln(a; b)→ Dln(Fa;Fb) for 0 ≥ n

such that F t
1 ≡ F . These families must commute with all substitution operators

and j.

Skew multicategories and skew multifunctors form a category SkMult.

Left Representability and Closedness

A skew multicategory C is weakly representable [BL18, Section 4.4] if for each

pair x = t, l and a ∈ Cn there exists an object mxa ∈ C and multimap

θxa ∈ Cxn(a;mxa)

with the property that the induced function

− ◦1 θ
x
a : Ct1(mxa; b)→ Cxn(a; b)

is a bijection for all b ∈ C. We call θta a tight n-ary map classifier and θla a

loose n-ary map classifier. Moreover, we say that θxa is left universal if the

induced function

− ◦1 θ
x
a : Ct1+r(m

xa, x; b)→ Cxn+r(a, x; b)

for each r ≥ 0, x ∈ Cr and b ∈ C.

Definition 4.3.7. [BL18, Definition 4.4] A skew multicategory C is said to be left

representable if it is weakly representable and all universal multimaps θxa are left

universal.

We will denote with SkMultlr the full subcategory of SkMult with objects left

representable skew multicategories.



Skew Multicategories 117

Definition 4.3.8. [BL18, Definition 4.6] A skew multicategory C is said to

be closed if for all b, c ∈ C there exists an object [b, c] and tight multimap

eb,c ∈ Ct2([b, c], b; c) with the universal property that the induced function

eb,c ◦1 − : Cxn(a; [b, c])→ Cxn+1(a, b; c)

is a bijection for all a1, ..., an ∈ C and x = t, l.

We will denote with SkMultcllr the full subcategory of SkMult with objects left

representable closed skew multicategories.

We conclude this section explaining briefly how to construct an equivalence

T cllr : Multcllr → Skewcl
ln between left representable closed multicategories and left

normal skew monoidal closed categories. Even though this equivalence is not

explicitly presented in [BL18], it follows directly from some of their results. In

particular let us recall three.

Theorem 4.3.9. [BL18, Theorem 6.1] There is a 2-equivalence between the 2-

category Skew of skew monoidal categories and the 2-category of left representable

skew multicategories.

From this theorem they then deduce the following result.

Theorem 4.3.10. [BL18, Theorem 6.3] There is a 2-equivalence between the

2-categories of left normal skew monoidal categories and of left representable

multicategories.

In the same way, one can prove that the existence of the equivalence T cllr : Multcllr →
Skewcl

ln follows from the following result.

Theorem 4.3.11. [BL18, Theorem 6.4] The 2-equivalence of Theorem 4.3.10

restricts to a 2-equivalence between the 2-category Skewcl
ln of closed skew monoidal

categories and the 2-category Multcllr of left representable closed skew multicate-

gories.
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4.4. Short Multicategories vs Skew Monoidal

Categories

In this section we will show that certain kinds of short multicategories are

equivalent to certain kinds of multicategories. We will mostly consider

kinds of representable multicategories because it will make proofs easier

and many examples in the literature are of this kind (see for instance

[Her00, Section 2.2]). The strategy will be to use known equivalences

between different flavours of monoidal category and multicategory [Her00,

BL18]. For example, the left representable case gives us the following picture
Multlr

ShMultlr

Skewln.

T

Ulr

K

We will start showing how to construct the functor K and then prove it is an

equivalence. The proof of the other cases will have the same structure.

The Left Representable and Representable Cases

The first equivalence we will use is T : Multlr → Skewln between left representable

multicategories and left normal skew monoidal categories [BL18, Theorem 6.3].

Notation. From now on, to increase readability of proofs, we will often mix

algebraic parts and diagrams. For clarity, we shall explain what we mean with this.

In a short multicategory any diagram has multiple interpretations, which are given

by the order of the substitutions we apply. We presented some examples of this

at the start of Section 4.2, when we explained how to interpret the associativity

equations. For this reason, the formal proofs are always given by the algebraic

expressions. However, the chain of equations can be quite long. We therefore add

diagrams whenever the maps involved in the equations change and not only the

bracketing.
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Lemma 4.4.1. Given a left representable short multicategory C we can construct

a left normal skew monoidal category KC in which:

• The tensor product ab of two objects a and b is the binary map classifier;

• The unit i is the nullary map classifier;

• Given f : a → b and g : c → d the tensor product fg : ac → bd is the unique

morphism such that

θa,c

a

c

fg
g

f
θb,d

b

d

ac

c

a
bd

=
bd

(4.4.1)

• The associator α : (ab)c→ a(bc) is defined as the unique map such that

θb,c

θa,bc

a

bc

θa,b
θab,c

ab

c

α
a(bc)

b

c

=
(ab)c a(bc)

a

b

(4.4.2)

• The left unit map λ : ia→ a is defined as the unique map such that

1a
u

θi,a

i

a

λa
aa

=
ia a

(4.4.3)

(which is invertible by left representability).

• The right unit map ρ : a→ ai is defined as

u
θa,i

a

i

ai
(4.4.4)
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Proof. Functoriality of C2 → C : (a, b) 7→ ab follows from the universal property

of the binary map classifier and profunctoriality of C2(−;−). It remains to

verify the five axioms for a skew monoidal category. We will start with the

pentagon axiom (4.3.1). Since we need to prove an equality between two maps

((ab)c)d→ a(b(cd)), by left representability, it is enough to prove that these maps

become equal on precomposition with the left universal multimaps. Let us start

with the top part, when we precompose with the universal 4-ary multimap of

Proposition 4.2.3 we get

θa,b
θab,c

ab

c
θ(ab)c,d

(ab)c

d

αab,c,d αa,b,cd
((ab)c)d (ab)(cd) a(b(cd))

a

b

More precisely, we have

(αa,b,cd ◦ αab,c,d) ◦ [ (θ(ab)c,d ◦1 θab,c) ◦1 θa,b ]

= [ (αa,b,cd ◦ αab,c,d) ◦ (θ(ab)c,d ◦1 θab,c) ] ◦1 θa,b (nat. sub. bin. into tern.)

= [αa,b,cd ◦ [αab,c,d ◦ (θ(ab)c,d ◦1 θab,c)] ] ◦1 θa,b (profunctoriality tern.)

= [αa,b,cd ◦ (θab,cd ◦2 θc,d) ] ◦1 θa,b (definition ofα)

θc,d

θa,b

θab,cd

ab

cd

αa,b,cd
(ab)(cd) a(b(cd))

a

b

c

d

= αa,b,cd ◦ [ (θab,cd ◦2 θc,d) ◦1 θa,b ] (nat. sub. bin. into tern.)

= αa,b,cd ◦ [ (θab,cd ◦1 θa,b) ◦3 θc,d ] (by axiom (4.2.2.a))
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θc,d

θa,b

θab,cd

ab

cd

αa,b,cd
(ab)(cd) a(b(cd))

a

b

c

d

= [αa,b,cd ◦ (θab,cd ◦1 θa,b) ] ◦3 θc,d (nat. sub. bin. into tern.)

= (θa,b(cd) ◦2 θb,cd) ◦3 θc,d (by definition ofα)

θc,d
θb,cd

b

cd

θa,b(cd)

a

b(cd)

a(b(cd))

c

d .

(4.4.5)

Now let us consider the bottom part of the pentagon axiom. Let us recall that

αa,b,c · d is defined as the unique map such that

θ(ab)c,d

(ab)c

d

αa,b,cd

αa,b,c

θa(bc),d

a(bc)

d

(a(bc))d((ab)c)d
=

(ab)c

(a(bc))d

and a · αb,c,d is defined similarly. Then, the bottom part of the pentagon pre-

composed with left universal maps is equal to

θa,b
θab,c

ab

c
θ(ab)c,d

(ab)c

d

αa,b,cd αa,bc,d aαb,c,d

a

b

.
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More precisely, we have

[ (a · αb,c,d ◦ αa,bc,d) ◦ αa,b,c · d ] ◦ [ (θ(ab)c,d ◦1 θab,c) ◦1 θa,b ]

= [ [ (a · αb,c,d ◦ αa,bc,d) ◦ αa,b,c · d ] ◦ (θ(ab)c,d ◦1 θab,c) ] ◦1 θa,b (nat. sub. bin. into tern.)

= [ (a · αb,c,d ◦ αa,bc,d) ◦ [αa,b,c · d ◦ (θ(ab)c,d ◦1 θab,c) ] ] ◦1 θa,b (profunctoriality tern.)

= [ (a · αb,c,d ◦ αa,bc,d) ◦ [ (αa,b,c · d ◦ θ(ab)c,d) ◦1 θab,c ] ] ◦1 θa,b (nat. sub. bin. into bin.)

= [ (a · αb,c,d ◦ αa,bc,d) ◦ [ (θa(bc),d ◦1 αa,b,c) ◦1 θab,c ] ] ◦1 θa,b (by definition of α · d)

θa,b
θab,c

ab

c

αa,b,c
θa(bc),d

a(bc)

d

αa,bc,d aαb,c,d

(ab)c

a

b

= [ (a · αb,c,d ◦ αa,bc,d) ◦ [ θa(bc),d ◦1 (αa,b,c ◦ θab,c) ] ] ◦1 θa,b (extranat. sub. bin. into bin.)

= (a · αb,c,d ◦ αa,bc,d) ◦ [ [ θa(bc),d ◦1 (αa,b,c ◦ θab,c) ] ◦1 θa,b ] (nat. sub. bin. into tern.)

= (a · αb,c,d ◦ αa,bc,d) ◦ [ θa(bc),d ◦1 [ (αa,b,c ◦ θab,c) ◦1 θa,b ] ] (by axiom (4.2.1.a))

= (a · αb,c,d ◦ αa,bc,d) ◦ [ θa(bc),d ◦1 (θa,bc ◦2 θb,c) ] (by definition ofα)

θb,c
θa,bc

a

bc
θa(bc),d

a(bc)

d

αa,bc,d aαb,c,d

b

c

= (a · αb,c,d ◦ αa,bc,d) ◦ [ (θa(bc),d ◦1 θa,bc) ◦2 θb,c ] (by axiom (4.2.1.a))

= [ (a · αb,c,d ◦ αa,bc,d) ◦ (θa(bc),d ◦1 θa,bc) ] ◦2 θb,c (by nat. sub. bin. into tern.)

= [ a · αb,c,d ◦ [αa,bc,d ◦ (θa(bc),d ◦1 θa,bc) ] ] ◦2 θb,c (profunctoriality tern.)

= [ a · αb,c,d ◦ (θa,(bc)d ◦2 θbc,d) ] ◦2 θb,c (by definition ofα)
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θb,c
θbc,d

bc

d

θa,(bc)d

a

(bc)d

aαb,c,d

b

c

= [ ( a · αb,c,d ◦ θa,(bc)d ) ◦2 θbc,d ] ◦2 θb,c (by nat. sub. bin. into bin.)

= [ ( θa,b(cd) ◦2 αb,c,d ) ◦2 θbc,d ] ◦2 θb,c (by definition of aαb,c,d)

θb,c
θbc,d

bc

d

αb,c,d
θa,b(cd)

a

b(cd)
(bc)d

b

c

= [ θa,b(cd) ◦2 (αb,c,d ◦ θbc,d ) ] ◦2 θb,c (extranat. sub. bin. into bin.)

= θa,b(cd) ◦2 [ (αb,c,d ◦ θbc,d ) ◦1 θb,c ] (by axiom (4.2.1.a))

= θa,b(cd) ◦2 ( θb,cd ◦2 θc,d ) (by definition ofα)

= ( θa,b(cd) ◦2 θb,cd ) ◦3 θc,d (by axiom (4.2.1.a))

which is exactly (4.4.5). Similarly we use axioms (4.2.1.b) and (4.2.2.c) to prove

the left unit axiom (4.3.2), which we recall below,

(ia)b i(ab)

ab.

αi,a,b

λab
λab

Using left representability it is enough to prove the equality precomposing with

the universal nullary map u and binary maps θ. So,

u
θi,a

i

a
θia,b

ia

b

λa · b
(ia)b ab
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λa · b ◦ [ ( θia,b ◦1 θi,a ) ◦1 u ]

= [λa · b ◦ ( θia,b ◦1 θi,a ) ] ◦1 u (nat. sub. null. into bin.)

= [ (λa · b ◦ θia,b ) ◦1 θi,a ] ◦1 u (nat. sub. bin. into bin.)

= [ ( θa,b ◦1 λa ) ◦1 θi,a ] ◦1 u (definition ofλa · b)

u
θi,a

i

a

λa
θa,b

a

b

ia
ab

= [ θa,b ◦1 (λa ◦1 θi,a ) ] ◦1 u (extranat. sub. bin. into bin.)

= θa,b ◦1 [ (λa ◦1 θi,a ) ◦1 u ] (by axiom (4.2.1.b))

= θa,b ◦1 1a = θa,b (by definition ofλ).

On the other hand,

u
θi,a

i

a
θia,b

ia

b

αi,a,b λab
(ia)b i(ab) ab

[ [ (λab ◦ αi,a,b) ◦ θia,b ] ◦1 θi,a ] ◦1 u

= [ [λab ◦ (αi,a,b ◦ θia,b) ] ◦1 θi,a ] ◦1 u (profunctoriality bin.)

= [ λab ◦ [ (αi,a,b ◦ θia,b) ◦1 θi,a ] ] ◦1 u (nat. sub. bin. into bin.)

= [ λab ◦ ( θi,ab ◦2 θa,b ) ] ◦1 u (by definition ofα)

u

θa,b

a

b

θi,ab

i

ab

λab
i(ab) ab
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= λab ◦ [ ( θi,ab ◦2 θa,b ) ◦1 u ] (nat. sub. null. into bin.)

= λab ◦ [ ( θi,ab ◦1 u ) ◦ θa,b ] = (by axiom (4.2.2.c))

u

θa,b

a

b

θi,ab

i

ab

λab
i(ab) ab

= [ λab ◦ ( θi,ab ◦1 u ) ] ◦ θa,b (profunctoriality bin.)

= 1a,b ◦ θa,b = θa,b (definition ofλ).

Similarly, we use axioms (4.2.1.b) and (4.2.2.b) to prove the right unit axiom

(4.3.3). Instead for the axiom (4.3.4)

ab (ai)b a(ib)

ab

ρab αa,i,b

aλb
1ab

we use axiom (4.2.1.b), more precisely:

θa,b

a

b

ρab αa,i,b aλb
ab (ai)b a(ib) ab

(aλb ◦ αa,i,b ◦ ρab) ◦ θa,b
= (aλb ◦ αa,i,b) ◦ (ρab ◦ θa,b) (profunctoriality of binary maps)

= (aλb ◦ αa,i,b) ◦ (θai,b ◦ ρa) (definition of ρb)

= (aλb ◦ αa,i,b) ◦ [ θai,b ◦1 (θa,i ◦2 u) ] (definition of ρ)

u
θa,i

a

i
θai,b

ai

b

αa,i,b aλb
(ai)b a(ib) ab
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= (aλb ◦ αa,i,b) ◦ [ (θai,b ◦1 θa,i) ◦2 u ] (by axiom (4.2.1.b))

= [ (aλb ◦ αa,i,b) ◦ (θai,b ◦1 θa,i) ] ◦2 u (nat. sub. nullary into ternary)

= [ aλb ◦ (αa,i,b ◦ (θai,b ◦1 θa,i) ) ] ◦2 u (profunctoriality ternary)

= [ aλb ◦ (θa,ib ◦2 θi,b) ] ◦2 u (definition ofα)

u
θi,b

i

b

θa,ib

a

ib

aλb
a(ib) ab

= [ (aλb ◦ θa,ib) ◦2 θi,b ] ◦2 u (nat. sub. bin. into bin.)

= [ (θa,b ◦2 λb) ◦2 θi,b ] ◦2 u (definition of aλ)

u
θi,b

i

b

λb

θa,b

a

b

ib
ab

= [ θa,b ◦2 (λb ◦ θi,b) ] ◦2 u (extranat sub bin-into-bin)

= θa,b ◦2 [ (λb ◦ θi,b) ◦2 u ] (by axiom (4.2.1.b))

= θa,b ◦2 [λb ◦ (θi,b ◦2 u) ] (nat. sub. null. into bin.)

= θa,b ◦2 1b = θa,b (definition ofλ).

Finally, we use axiom (4.2.2.d) to prove the axiom (4.3.5)

i ii

i.

ρi

λi
1i

More precisely, we have to prove that (λi ◦ ρi) ◦ u = u (by left representability).
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(λi ◦ ρi) ◦ u = λi ◦ (ρi ◦ u) (profunctoriality of nullary maps)

= λi ◦ [ (θi,i ◦2 u) ◦ u ] (definition of ρ)

= λi ◦ [ (θi,i ◦1 u) ◦ u ] (by axiom (4.2.2.d))

= [λi ◦ (θi,i ◦1 u) ] ◦ u (profunctoriality of nullary maps)

= 1i ◦ u = u (definition ofλ).

Before defining the functor K : ShMultlr → Skewln on morphisms, we prove the

following easy lemma.

Lemma 4.4.2. Consider C,D ∈ ShMultlr and a functor F : C→ D. There is a

bijection between natural families

Fa,b : Ci(a; b)→ Di(Fa;Fb)

and natural families

fa : m(Fa)→ F (ma)

where ma and m(Fa) are the n-ary map classifiers of the appropriate arity.

Proof. The bijection is governed by the following diagram

Ci(a;−)
Fa,− // Di(Fa;F−)

C1(ma,−)

−◦1θa

OO

F−◦fa
// D1(m(Fa), F−)

−◦1θFa

OO
(4.4.6)

in which the vertical arrows are natural bijections and the lower horizontal arrow

corresponds to the upper one using the Yoneda lemma.

Remark 4.4.3. Given a morphism F : C → D ∈ ShMultlr we obtain, applying the

above lemma, natural families f2 : FaFb → F (ab) and f0 : i → Fi defining the

data for a lax monoidal functor KF : KC → KD. We will prove that is is a lax

monoidal functor in Proposition 4.4.4.

Explicitly, f2 : FaFb → F (ab) is the unique morphism such that f2 ◦1 θFa,Fb =

F2(θa,b) whilst f0 is the unique morphism such that f0 ◦ u = Fu.
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Notation. Let C be a short multicategory with a left universal nullary map classifier.

Then we will use (−)∗ : Cn(a; b) → Cn+1(i, a; b) for the inverse of − ◦1 u: in other

words, for any n-multimap f , then f ∗ is the unique (n + 1)-multimap such that

f ∗ ◦1 u = f .

Proposition 4.4.4. With the definition on objects given in Lemma 4.4.1 and on

morphisms in Remark 4.4.3, we obtain a fully faithful functor K : ShMultlr →
Skewln.

Proof. By Lemma 4.2.5 a morphism of ShMultlr(C,D) is uniquely specified by a

functor F : C → D and natural families (F2, F0) satisfying three equations.

By Lemma 4.4.2, these natural families (F2, F0) bijectively correspond to natural

families (f2, f0).

Therefore, if we can prove that (F2, F0) satisfy the equations of Lemma 4.2.5 if

and only if (f2, f0) satisfy the equations for a lax monoidal functor, then we will

have described a bijection KC,D : ShMultlr(C,D)→ Skewln(KC, KD).

Let us start assuming that (F2, F0) satisfy the equations of Lemma 4.2.5 and then

prove that (f2, f0) satisfy the equations for a lax monoidal functor. The axiom

(4.3.6)

(FaFb)Fc F (ab)Fc F ( (ab)c )

Fa(FbFc) FaF (bc) F ( a(bc) )

f2·Fc f2

α Fα

Fa·f2 f2

is checked by precomposing with the universal ternary multimap. From now on,

we will write only a diagramatic schema of these proofs, as the algebraic part is

analogous to the previous ones. We start considering Fα ◦ f2 ◦ f2 · Fc, which,

after precomposing with the universal ternary map, corresponds to the following

picture
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θ

Fa

Fb
θ

FaFb

Fc

f2Fc f2 Fα
F ( a(bc) )

by definition of f2 · Fc

= θ

Fa

Fb

f2

θ

F (ab)

Fc

f2 Fα

FaFb
F ( a(bc) )

by definition of f2

= Fθ

Fa

Fb
Fθ

F (ab)

Fc

Fα
F ( (ab)c ) F ( a(bc) )

= Fα ◦ F2θ ◦1 F2θ

= F2(α ◦ θ) ◦1 F2θ (by naturality ofF2)

= F3( (α ◦ θa,b) ◦1 θab,c ) (by Lemma 4.2.5)

= F3( θb,c ◦2 θa,bc ) (by definition ofα)

= F2θa,bc ◦2 F2θb,c (by Lemma 4.2.5)

= [ f2 ◦ θFa,F (bc) ] ◦2 [ f2 ◦ θFb,Fc ] (by definition of f2)

=
θ

Fb

Fc

f2

θ

Fa

F (bc)

f2

FbFc

F ( (ab)c )

by definition of Fa · f2

=
θ

Fb

Fc

θ

Fa

FbFc

Faf2 f2

F ( (ab)c )
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by definition of α

= θ

Fa

Fb
θ

FaFb

Fc

α Faf2 f2

F ( a(bc) )

The last diagram corresponds to f2 ◦ Fa · f2 ◦ α, therefore the diagram (4.3.6) is

commutative. Let us now prove the unit axioms, starting from (4.3.7)

iFa Fa

FiFa F (ia).

λ

f0Fa

f2

Fλ

We will prove this axioms showing that Fλ · f2 · f0Fa satisfy the defining property

(4.4.3) of λ.

u

θ

i

Fa

f0Fa f2 Fλ
iFa FiFa F (ia) Fa

by definition of f0 · Fa

=
u f0

θ

F i

Fa

f2 Fλ

i
F iFa F (ia) Fa

by definition of f0 and f2

= Fu
Fθ

Fi

Fa

Fλ
F (ia) Fa

= Fλ ◦ F2θ ◦1 F0u

= F2(λ ◦ θ) ◦1 F0u (by naturality ofF2)

= F ( (λ ◦ θi,a) ◦1 u ) (by Lemma 4.2.5)

= F (1a) = 1Fa (by defining property (4.4.3) ofλ).
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Finally, we prove the right unit axiom (4.3.8)

Fa F (ai)

Fa.i FaF i.

Fρ

ρ

Fa·f0

f2

We recall that the definition of ρ is given in (4.4.4).

u
θ

Fa

i

Fa · f0 f2
Fa.i FaF i F (ai)

by definition of Fa · f0

=
u

θ

Fa

i
f0

f2i
FaF i F (ai)

by definition of f0 and f2

=
Fu

Fθ

Fa

i

F (ai)

Then, by Lemma 4.2.5 F2θ◦2Fu = F ( θ◦2u) which is exactly the definition of Fρ.

Finally, let us prove that if (f2, f0) satisfy the equations for a lax monoidal functor

then (F2, F0) satisfy the equations of Lemma 4.2.5. Let us start with equations

(4.2.6). Let v ∈ C0(−; a) and f ∈ C2(a, b; c), then F2f ◦1 F0v is defined as

u f0 Fv∗

θ

Fa

Fb

f2 Ff ′

i F i
FaFb F (ab) Fc

where v∗ and f ′ correspond to v and f through left representability. Then, by

definition of Fv∗ · Fb we can rewrite the map above as
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u f0

θ

Fa

Fb

Fv∗ · Fb f2 Ff ′

i
F iFb FaFb F (ab) Fc

by naturality of f2

=
u f0

θ

Fa

Fb

f2 F (v∗ · b) Ff ′

i
F iFb F (ib) F (ab) Fc

since one can check that f ′ ◦ v∗b = (f ◦1 v) ◦ λb and functoriality of F

=
u f0

θ

Fa

Fb

f2 Fλ F (f ◦1 v)

i
F iFb F (ib) Fb Fc

by definition of f0Fb

=
u

f0Fbθ

i

Fb

f2 Fλ F (f ◦1 v)
iF b F iFb F (ib) Fb Fc

which is equal to F (f ◦1 v) by (4.3.7). Then, let us consider s ∈ C0(−; b) and

f ∈ C2(a, b; c). Similarly, using (4.3.8) we can prove that F (f ◦2 s) = F2f ◦2 F0v.

We have left to prove the equation (4.2.7). Let f ∈ C2(b, c;x) and g ∈ C2(a, x; d),

then F2g ◦2 F2g is defined as

θ

Fb

Fc

f2 Ff ′
θ

Fa

Fx

f2 Fg′
FbFc F (bc)

FaFx F (ax) Fd
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by definition of Fa · f2 and Fa · f ′

=
θ

Fb

Fc

θ

Fa

FbFc

Fa · f2 Fa · Ff ′ f2 Fg′
Fd

by naturality of f2

=
θ

Fb

Fc

θ

Fa

FbFc

Fa · f2 f2 F (a · f ′) Fg′
Fd

by definition of α

= θ

Fa

Fb
θ

FaFb

Fc

α Fa · f2 f2 F (a · f ′) Fg′
Fd

by diagram (4.3.6)

= θ

Fa

Fb
θ

FaFb

Fc

f2Fc f2 Fα F (a · f ′) Fg′
Fd

On the other hand, it is not hard to see that

f

g

a

x

θ
θ

ab

c

α a · f ′ g′
db

c

=

a

b

d

F3(g ◦2 f) = F3( g′ ◦ a · f ′ ◦ α ◦ (θ ◦1 θ) ) ◦1 F2θ (by equation above)

= Fg′ ◦ F (a · f ′) ◦ Fα ◦ F3(θ ◦1 θ) (naturality ofF3).
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We conclude noticing that F3(θ ◦1 θ) = f2 ◦ f2Fc ◦ (θ ◦1 θ) by definition of F3. In

the end, Table 4.1 describes the correspondence between axioms.

(F0, F2) (f0, f2)

(4.2.7) Associator axiom

(4.2.6.a) Left unit axiom

(4.2.6.b) Right unit axiom

Table 4.1

Functoriality of K follows routinely from the definition of f2 and f0.

Let us recall that there is a forgetful functor Ulr : Multlr → ShMultlr and the

authors of [BL18] construct an equivalence T : Multlr → Skewln. Moreover,

comparing the construction of K with that given in [BL18, Section 6.2], we see

that the triangle

Multlr

ShMultlr

Skewln

T

Ulr

K

is commutative.

Theorem 4.4.5. The functor K : ShMultlr → Skewln is an equivalence of

categories, as is the forgetful functor Ulr : Multlr → ShMultlr.

Proof. Let us show that K is an equivalence first. Since K is fully faithful by

the preceding result, it remains to show that it is essentially surjective on objects.

Since T = KU and the equivalence T is essentially surjective, so is K, as required.

Finally, since T = KU and both T and K are equivalences, so is Ulr.

Then, if we consider the forgetful functor Urep : Multrep → ShMultrep and the

equivalence Trep : Multrep →Mon given in [Her00], we get the following result.
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Theorem 4.4.6. The equivalence K : ShMultlr → Skewln of Theorem 4.4.5

restricts to an equivalence Krep : ShMultrep → Mon between representable short

multicategories and monoidal categories, which fits in the commutative triangle of

equivalences

Multrep

ShMultrep

Mon.

Trep

Urep

Krep

Proof. Let C ∈ ShMultlr. If C is representable then KC has invertible left unit λ

since it is skew left normal. Therefore, we have left to prove that α and ρ are

isomorphisms as well. First, we can define the inverse of α through the chain of

bijections

C3(a, b, c; (ab)c) ∼= C2(a, bc; (ab)c) ∼= C1(a(bc); (ab)c)

θab,c ◦1 θa,b 7−→ α−1

Using the universal properties of (ab)c and a(bc) we can show that α and α−1 are

inverses of each other. Then, ρ is defined as θ ◦2 u, see (4.4.4). We define ρ−1 as

the map corresponding to 1a through the following bijection

C1(ai; a) ∼= C2(a, i; a) ∼= C1(a; a),

i.e. ρ−1 is the unique map such that

1a
u

θa,i

a

i

ρ−1aa
=

ai a
(4.4.7)

which means that ρ−1ρ = 1a. Using the universal property of ai we can also prove

that ρρ−1 = 1ai.

On the other side, if KC is monoidal, then α and ρ are invertible. Then

C3(x, ab, y; z) ∼= C2(x(ab), y; z) ∼= C2((xa)b, y; z) ∼= C3(xa, b, y) ∼= C4(x, a, b, y; z)
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where the second isomorphism is given by pre-composition with αx,a,b and the

rest by left representability. We can see how this isomorphism sends a map

f : x, ab, y → z to

[ (f ′ ◦1 α) ◦1 θxa,b ] ◦1 θx,a =

θ

x

a θ

xa

b

α
f ′

x(ab)

y

(xa)b

z

which can be proven to be equal to f◦2θa,b using the definition of α and associativity

equations in C.

[ (f ′ ◦1 α) ◦1 θxa,b ] ◦1 θx,a

= [ f ′ ◦1 (α ◦ θxa,b) ] ◦1 θx,a (by extranat. sub. binary into binary)

= f ′ ◦1 [ (α ◦ θxa,b) ◦1 θx,a ] (by axiom (4.2.1.a))

= f ′ ◦1 ( θx,ab ◦2 θa,b ) (by definition ofα)

= ( f ′ ◦1 θx,ab ) ◦2 θa,b (by axiom (4.2.1.a))

= f ◦2 θa,b (by definition of f ′).

Then, the isomorphisms

C2(x, ab; z) ∼= C3(x, a, b; z) and C3(x, y, ab; z) ∼= C4(x, y, a, b; z)

are constructed and shown to be induced by pre-composition with θa,b in a similar

way. Finally, we show how u induces the required isomorphisms for a representable

short multicategory. By left representability, the map

− ◦ u : Cn(i, a; z)→ Cn−1(a; z)

is an isomorphism (for a of length n−1). Then, since ρ is invertible, we can define

the following isomorphism

C3(a, i, b; z) ∼= C2(ai, b; z) ∼= C2(a, b; z)
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where the last map is given by pre-composition with ρ in the first variable and

the first one by left representability. Thus, a ternary map k : a, i, b→ z is sent to

k′ ◦1 ρ.

k′ ◦1 ρa = k′ ◦1 (θa,i ◦2 u) (by definition of ρ)

= (k′ ◦1 θa,i) ◦2 u (by axiom (4.2.1.b))

= k ◦2 u (by definition of k′).

Similarly, we can construct the isomorphism C2(a, i; z) ∼= C1(a; z) and prove that

it is induced by pre-composition with u.

Since ShMultrep and Mon are full subcategories of ShMultlr and Skewln, the

fully faithfulness of Krep follows from the one of K. Hence, Urep is an equivalence

as well.

The Closed Left Representable Case

In this section we will consider the equivalence T cllr : Multcllr → Skewcl
ln between

left representable closed multicategories and left normal skew monoidal closed

categories. The existence of this equivalence follows from [BL18, Theorem 6.4] in

the same way as [BL18, Theorem 6.3] follows from [BL18, Theorem 6.1].

Theorem 4.4.7. The equivalence K : ShMultlr → Skewln restricts to an equiva-

lence Kcl
lr : ShMultcllr → Skewcl

ln between left representable closed short multicate-

gories and left normal skew closed monoidal categories, which fits in the commuta-

tive triangle of equivalences

Multcllr

ShMultcllr

Skewcl
ln.

T cllr

Ucllr

Kcl
lr
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Proof. Let C be in ShMultlr. If C is closed then we have natural isomorphisms

C(ab, c) = C1(ab; c) ∼= C2(a, b; c) ∼= C1(a, [b, c]) = C(a, [b, c])

so that KC is monoidal skew closed, as required. If KC is closed, then we

have natural isomorphisms C1(a; [b, c]) ∼= C1(ab; c) for all a, b, c. By Yoneda, the

composite

C1(a; [b, c]) ∼= C1(ab; c) ∼= C2(a, b; c)

is of the form eb,c ◦1 − for a binary map eb,c : [b, c], b → c, and to show that C is

closed we must prove that the function on the bottom row below is a bijection for

tuples a of length 0 to 3.

C1(m(a); [b, c])

−◦1θa
��

eb,c◦1− // C2(m(a), b; c)

−◦1θa
��

Cn(a; [b, c])
eb,c◦1−

// Cn+1(a, b; c)

Since C underlies a left representable multicategory, there exists a left universal

multimap θa : a → m(a) and we have a commutative diagram as above in which

the upper horizontal is invertible, as already established, and the two vertical

functions by left universality, so that the lower horizontal is a bijection too.

Putting together Theorem 4.4.6 and Theorem 4.4.7 we get the following result.

Theorem 4.4.8. The equivalence K : ShMultlr → Skewl, defined in

Theorem 4.4.5, restricts to an equivalence Kcl
rep : ShMultclrep → Moncl between

short representable closed multicategories and closed monoidal categories, which

fits in the commutative triangle of equivalences

Multclrep

ShMultclrep

Moncl.

T clrep

Uclrep

Kcl
rep
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4.5. Short Skew Multicategories

In this section we will adapt the definitions in Section 4.2 and the results in

Section 4.4 to the skew setting. Once again, we will follow the style of Proposi-

tion 4.1.1.

A short skew multicategory consists, to begin with, of a category C together

with:

• For 1 ≤ n ≤ 4 a functor Ctn(−;−) : (Cn)op×C→ Set such that, when n = 1,

we have C1(−;−) = C(−,−) : Cop × C→ Set.

• For n = 0, 1, 2 an additional functor Cln(−;−) : (Cn)op × C → Set and

dinatural transformation jn : Ctn(−;−)→ Cln(−;−).

Remark 4.5.1. The l-typed multimaps, i.e. the elements of Cln(a; b), are thought of

as loose, whereas the t-typed multimaps, i.e. the elements of Ctn(a; b), are thought

of as tight. The function j lets us view tights as loose. Nullary maps are thought of

as loose. The tight unary maps are precisely the morphisms of C. Both tight and

loose n-ary multimaps f admit compatible precomposition and postcomposition

by tight unary maps — that is, by the morphisms g of C — which we write as

f ◦ g and g ◦ f respectively.

For x, y ∈ {t, l}, let us write

x ◦i y =


t, if x = y = t and i = 1

t, if x = t and i 6= 1

l, otherwise

Then in certain cases we require functions

− ◦i − : Cxn(b; c)× Cym(a; bi) −→ Cx◦iyn+m−1(b<i, a, b>i; c)

for i ∈ {1, . . . , n} which are natural in each variable a1, . . . , am, b1, . . . , bn, c.

Analogous to those from before, we require:
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• m = 2, n = 2, 3 and x = y = t (substitution of tight binary into tight

binary/ternary);

• m = 3, n = 2 and x = y = t (substitution of tight ternary into tight binary);

• m = 0, n = 2, 3 and x = t (substitution of nullary into tight binary/ternary).

but also:

• m = 0, n = 1 and x = y = l (substitution of nullary into loose unary);

• m = 1, y = l, n = 2 and x = t (substitution of loose unary into tight binary);

• m = 2, y = t, n = 1 and x = l (substitution of tight binary into loose unary).

In the context of a binary multimap f , and multimaps g and h of arity n and p

respectively (all tight except nullary ones), one can consider associativity equations

of the form:

f ◦i (g ◦j h) = (f ◦i g) ◦ hj+i−1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.5.1)

(f ◦i g) ◦j h = (f ◦j h) ◦p+i g for 1 ≤ i ≤ m, j < m− i. (4.5.2)

We require these equations in the following cases:

(a) n = p = 2;

(b) n = 2, p = 0;

(c) only for (4.5.2), n = 0, p = 2;

(d) only for (4.5.2), n = p = 0.

Remark 4.5.2. Let us unfold what naturality of jn means. Let g be a tight binary

map, p and q two tight unary maps and v a nullary map. Naturality of jn means

that the following equations hold:

g ◦2 jp = g ◦2 p g ◦1 jp = j(g ◦1 p) q ◦ jp = j(q ◦ p)

jp ◦ g = j(p ◦ g) jp ◦ v = p ◦ v.
(4.5.3)
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Moreover, if we consider the second and third naturality equation with p = 1. We

get the following description for jg and jq:

jg = j(g ◦1 1) = g ◦1 j1

jq = j(q ◦1 1) = q ◦1 j1.

Notation. We will denote a tight n-ary multimaps as

f...

a1

an

b

.

and a loose n-ary multimaps as

p...

a1

an

b

Definition 4.5.3. Let C and D two short skew multicategories. A morphism of

short skew multicategories is a functor F : C → D together with natural families

F t
i : Cti (a; b)→ Dti(Fa;Fb) for 1 ≤ i ≤ 4

F l
i : Cli(a; b)→ Dli(Fa;Fb) for 0 ≤ i ≤ 2

such that F t
1 ≡ F (with Fa we mean the list Fa1, ..., Fan). These families must

commute with all substitution operators ◦i and j.

Short skew multicategories and their morphisms form a category ShSkMult.

Naturally, there is a forgetful functor U s : SkMult→ ShSkMult.
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The Left Representable Case

A tight binary map classifier for a and b consists of a representation of

C2(a, b;−) : C → Set – in other words, a tight binary map θa,b : a, b → ab for

which the induced function

− ◦ θa,b : Ct
1(ab; c)→ Ct

n(a, b; c)

is a bijection for all c. It is left universal if, moreover, the induced function

− ◦1 θa,b : Ct
n(ab, x; d)→ Ct

n+1(a, b, x; d)

is a bijection for n = 2, 3 and x a tuple of the appropriate length. A nullary map

classifier is a representation of Cl
2(−;−) : C → Set — thus, a certain nullary map

u ∈ Cl
2(−; i). It is left universal if the induced function

− ◦1 u : Ct
n+1(i, x; d)→ Cl

n(x; d)

is a bijection for each d and tuple x of length 1 and 2.

Definition 4.5.4. A short skew multicategory C is said to be left representable

if it admits left universal nullary and tight binary map classifiers.

We will denote by ShSkMultlr the full subcategory of ShSkMult with

objects left representable short multicategories. Naturally, the forgetful functor

U s : SkMult → ShSkMult restricts to a forgetful functor U s
lr : SkMultlr →

ShSkMultlr.

Notation. Let C be a short skew multicategory with a left universal tight binary

and nullary classifier. Then we will use (−)′ : Ctn(a; b) → Ctn−1(a1a2, a3, ..., an; b)

for the inverse of − ◦1 θa1, a2 and (−)∗ : Cln(a; b) → Ctn+1(i, a; b) for the inverse of

− ◦1 u. More precisely, for any tight n-multimap f , f ′ is the unique tight (n− 1)-

multimap such that f ′ ◦1 θ = f and, for any loose n-multimap q, q∗ the unique

tight (n+ 1)-multimap such that q∗ ◦1 u = q.
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We start proving Lemma 4.5.5 which will be useful in the proof of Lemma 4.5.6,

which gives a characterisation of morphisms between left representable short skew

multicategories.

Lemma 4.5.5. Let C and D be left representable short skew multicategories and

F l
0 : Cl0(−; a) → Dl0(−;Fa) and F t

2 : Ct2(a, b; c) → Dt2(Fa, Fb;Fc) two natural

families. If we define, for any loose unary map q, F l
1q := F t

2q
∗ ◦1 F

l
0u (where u is

the universal nullary map in C and q∗ is the unique binary map such q∗ ◦1 u = q),

then for any v ∈ Cl0(−; a) and f ∈ Ct2(a, b; c), we have

F l
1(f ◦1 v) = F t

2(f) ◦1 F
l
0(v).

Proof. Let us consider v ∈ Cl0(−; a) and f ∈ Ct2(a, b; c). Then

F l
1(f ◦1 v)

= F t
2( (f ◦1 v)∗ ) ◦1 F

l
0(u) (by definition ofF l

1)

= F t
2( f ◦1 v

∗ ) ◦1 F
l
0(u) (because (f ◦1 v)∗ = f ◦1 v

∗)

= (F t
2(f) ◦1 F (v∗) ) ◦1 F

l
0(u) (by naturality ofF t

2)

= F t
2(f) ◦1 (F (v∗) ◦1 F

l
0(u) ) (by extranat. sub. nullary into tight binary)

= F t
2(f) ◦1 F

l
0(v∗ ◦1 u) = F t

2(f) ◦1 F
l
0(v) (by naturality ofF l

0).

Lemma 4.5.6. Let C and D be left representable short skew multicategories. A

morphism F : C → D is uniquely specified by:

• A functor F : C→ D (where C and D have as maps the tight unary maps of

C and D respectively).

• Natural families F l
0 : Cl0(−; a) → Dl0(−;Fa) and F t

2 : Ct2(a, b; c) →
Dt2(Fa, Fb;Fc) such that F commutes with

v

f

a

b

c
(4.5.4)
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and such that if we define, for any ternary tight map h ∈ Ct3(a; b), F t
3h :=

F t
2h
′ ◦1 F

t
2θ, then F also commutes with

f
a

b

g

x

y

c

(4.5.5)

and such that if we define, for any loose unary map q, F l
1q := F t

2q
∗ ◦1 F

l
0u,

then, for any tight unary map p,

F l
1j(p) = jF t

1p. (4.5.6)

Proof. First of all, we need to define all of the natural families needed for a

morphism in ShSkMultlr. We start with F l
0, F t

1 ≡ F and F t
2 given and we

already defined F l
1 and F t

3. So, we have left to define F t
4 and F l

2:

• for k ∈ Ct4(a, b, c, d; e) we define F t
4k := F t

3k
′ ◦1 F

t
2θ,

• for r ∈ Cl2(a, b; c) we define F l
2r := F t

3r
∗ ◦1 F

l
0u.

Then, we need to prove that these natural families commute with all substitu-

tions, i.e.

(i) Tight binary into tight binary/ternary.

(ii) Tight ternary into tight binary.

(iii) Nullary into tight binary/ternary.

(iv) Nullary into loose unary.

(v) Loose unary into tight binary.

(vi) Tight binary into loose unary.
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Almost all of the first three can be all proved in an analogous way as in

Lemma 4.2.5. For instance, to prove that F preserves g ◦1 f for f and g binary,

we use (4.5.5) and naturality of F t
2 (in tight maps).The only exceptions are the

substitution of a nullary map into the first component of a binary/tight ternary.

Lemma 4.5.5 proves the nullary into tight binary case. To prove the nullary into

ternary case instead, we will assume substitution of loose unary in the first variable

of a tight binary, which we will refer to as (v.1). Similarly, we will refer to substi-

tution of loose unary in the second variable of a tight binary with (v.2).

v

h

b

c

d

e
=

v
θb,c

b

c h′

bc

d

e

We need to prove that F t
3(h) ◦1 F

l
0(v) = F l

2(h ◦1 v).

F t
3(h) ◦1 F

l
0(v)

= (F t
2(h′) ◦1 F

t
2(θb,c) ) ◦1 F

l
0(v) (by definition ofF t

3)

= F t
2(h′) ◦1 (F t

2(θb,c) ◦1 F
l
0(v) ) (by axiom (4.5.1.b) inD)

= F t
2(h′) ◦1 F

l
1(θb,c ◦1 v) (by (4.5.4))

= F l
2(h′ ◦1 (θb,c ◦1 v) ) (by (v.1))

= F l
2( (h′ ◦1 θb,c) ◦1 v ) = F l

2(h ◦1 v ) (by axiom (4.5.1.b) in C).

(iv) Let v ∈ Cl0(−; a) and p ∈ Cl1(a; a′), then

F l
1(p) ◦ F l

0(v)

= (F t
2(p∗) ◦1 F

l
0(u) ) ◦ F l

0(v) (by definition ofF l
1)

= (F t
2(p∗) ◦2 F

l
0(v) ) ◦ F l

0(u) (by axiom (4.5.2.d) inD)

= F t
1(p∗ ◦2 v) ◦ F l

0(u) (by (4.5.4.b))

= F l
0( (p∗ ◦2 v) ◦ u ) (by naturality ofF l

0)

= F l
0( (p∗ ◦1 u) ◦ v ) = F l

0(p ◦ v) (by axiom (4.5.2.d) in C).
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(v.1) Let p ∈ Cl1(a; a′) and f ∈ Ct2(a′, b; c), then

F l
2(f ◦1 p)

= F t
3( (f ◦1 p)

∗ ) ◦1 F
l
0(u) (by definition ofF l

2)

= F t
3( f ◦1 p

∗ ) ◦1 F
l
0(u) (since (f ◦1 p)

∗ = f ◦1 p
∗)

= (F t
2(f) ◦1 F

t
2(p∗) ) ◦1 F

l
0(u) (by (i))

= F t
2(f) ◦1 (F t

2(p∗) ◦1 F
l
0(u) ) (by axiom (4.5.1.b) in C)

= F t
2(f) ◦1 (F l

1(p∗ ◦1 u) ) = F t
2(f) ◦1 F

l
1(p) (by axiom (4.5.4.a)).

(v.2) Let q ∈ Cl1(b; b′) and f ∈ Ct2(a′, b; c), then

F t
2(f) ◦2 F

l
1(q)

= F t
2(f) ◦2 (F t

2(q∗) ◦1 F
l
0(u) ) (by definition ofF l

1)

= (F t
2(f) ◦2 F

t
2(q∗) ) ◦2 F

l
0(u) (by axiom (4.5.1.b))

= F t
3(f ◦2 q

∗) ◦2 F
l
0(u) (by (i))

= F t
2( (f ◦2 q

∗) ◦2 u ) (by (iii))

= F t
2( f ◦2 (q∗ ◦1 u) ) = F t

2( f ◦2 q) (by axiom (4.5.2.b) in C).

(vi) Let f ∈ Ct2(a′, b; c) and p ∈ Cl1(c; c′), then

F l
2(p ◦ f)

= F t
3( (p ◦ f)∗ ) ◦1 F

l
0(u) (by definition ofF l

2)

= F t
3( p∗ ◦2 f ) ◦1 F

l
0(u) (since (p ◦ f)∗ = p∗ ◦2 f)

= (F t
2(p∗) ◦2 F

t
2(f) ) ◦1 F

l
0(u) (by (i))

= (F t
2(p∗) ◦1 F

l
0(u) ) ◦ F t

2(f) = F l
1(p) ◦ F t

2(f) (by axiom (4.5.2.b) in C).

Finally, let us prove that F commutes with j1 and j2. The assumption (4.5.6) is

literally commutativity of F with j1. So, let f ∈ Ct2(a, b; c),

F l
2jf = F l

2( f ◦1 j1a ) = F t
2f ◦1 F

l
1(j1a) = F t

2f ◦1 jF
t
11a = F t

2f ◦1 j1Fa = j(F t
2f).

Here we have used naturality of j (in the style of Remark 4.5.2, assumption (4.5.6)

and F t
11a = 1Fa (since F t

1 is a functor).
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Remark 4.5.7. Let us briefly see what happens to this characterisation when we

consider j = 1 both in C and D, i.e. when they are left representable short

multicategories. We can see that condition (4.5.6) implies that F t
1 = F l

1, which,

together with Lemma 4.5.5, gives back equation (4.2.6.a) in Lemma 4.2.5. Further-

more, conditions (4.5.4) and (4.5.5) correspond directly to (4.2.6.b) and (4.2.7),

respectively. This shows how Lemma 4.5.6 corresponds to Lemma 4.2.5.

Now, let us recall that there is an equivalence T s : SkMultlr → Skew between

left representable skew multicategories and skew monoidal categories [BL18,

Theorem 6.1].

Lemma 4.5.8. Given a left representable short skew multicategory C we can

construct a skew monoidal category KsC in which:

• The tensor product ab of two objects a and b is the tight binary map classifier;

• The unit i is the nullary map classifier;

• Given tight unary maps f : a→ b and g : c→ d, the tensor product fg : ac→
bd is the unique morphism such that

θa,c

a

c

fg
g

f
θb,d

b

d

ac

c

a
bd

=
bd

(4.5.7)

• The associator α : (ab)c→ a(bc) is defined as the unique tight map such that

θb,c

θa,bc

a

bc

θa,b
θab,c

ab

c

α
a(bc)

b

c

=
(ab)c a(bc)

a

b

(4.5.8)
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• The left unit map λ : ia → a is defined as the unique tight unary map such

that

j(1a)
u

θi,a

i

a

λ
aa

=
ia a

(4.5.9)

• The right unit map ρ : a→ ai is the tight unary map defined as

u
θa,i

a

i

ai
(4.5.10)

Proof. Functoriality of C2 → C : (a, b) 7→ ab follows from the universal property

of the tight binary map classifier and profunctoriality of Ct2(−;−). It remains to

verify the 5 axioms for a skew monoidal category. Some of them have the same

proof as short multicategories, we will give details only of the ones where we need

to use new axioms. For instance, in the pentagon axiom (4.3.1) all the maps are

tight, so the proof does not change (naturality and profunctoriality are defined

using tight unary maps). Also the right unit axiom (4.3.3) has the same proof.

We will prove the other three cases. Let us consider the axiom (4.3.2), which we

recall below,

(ia)b i(ab)

ab.

αi,a,b

λab
λab

The strategy will be again to prove the equality pre-composing with the universal

nullary map u and binary maps θ. So,

u
θi,a

i

a
θia,b

ia

b

λa · b
(ia)b ab
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λa · b ◦ [ ( θia,b ◦1 θi,a ) ◦1 u ]

= [λa · b ◦ ( θia,b ◦1 θi,a ) ] ◦1 u (nat., in tight unary, sub. null into tight bin.)

= [ (λa · b ◦ θia,b ) ◦1 θi,a ] ◦1 u (nat. sub. tight bin. into tight bin.)

= [ ( θa,b ◦1 λa ) ◦1 θi,a ] ◦1 u (definition ofλa · b)

u
θi,a

i

a

λa
θa,b

a

b

ia
ab

= [ θa,b ◦1 (λa ◦1 θi,a ) ] ◦1 u (extranat. sub tight bin. into tight bin.)

= θa,b ◦1 [ (λa ◦1 θi,a ) ◦1 u ] (by axiom (4.5.1.b))

= θa,b ◦1 j1a (by definition ofλ)

= j(θa,b ◦1 1a) = jθa,b (by naturality of j).

Let us emphasise the last line, which is different from the normal short multicat-

egories case. On the other hand, we start from

u
θi,a

i

a
θia,b

ia

b

αi,a,b λab
(ia)b i(ab) ab

and we arrive to

u

θa,b

a

b

θi,ab

i

ab

λab
i(ab) ab



150 The Left Representable Case

in the same way as the not-skew case. Then from here,

= [ λab ◦ ( θi,ab ◦1 u ) ] ◦ θa,b (nat. of sub. of tight bin. into loose unary)

= j1a,b ◦ θa,b (definition ofλ)

= j(1a,b ◦ θa,b) = jθa,b (by naturality of j).

Again, we point out how this part changed from the not-skew case. In this case,

in addition to naturality of j, we have to interpret the first line differently to the

not-skew case. Here we view it as naturality of substitution of tight binary into

loose unary, whereas with short multicategories we can see it as profunctoriality

of binary maps. Then, we need to prove the axiom (4.3.4), which we recall below,

ab (ai)b a(ib)

ab.

1ab

ρ·b α

a·λ

Pre-composing with the universal (tight) binary map we get

θ

a

b

ρb α aλ
abab (ai)b a(ib)

( aλb ◦ αa,i,b ◦ aρab ) ◦ θa,b
= ( aλb ◦ αa,i,b ) ◦ ( aρab ◦ θa,b ) (profunctoriality of tight bin.)

= ( aλb ◦ αa,i,b ) ◦ ( θai,b ◦1 ρa ) (definition of ρa · b)

= ( aλb ◦ αa,i,b ) ◦ [ θai,b ◦1 (θa,i ◦2 u) ] (definition of ρa)

u
θa,i

a

i
θai,b

ai

b

αa,i,b aλb
(ai)b a(ib) ab
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= ( aλb ◦ αa,i,b ) ◦ [ (θai,b ◦1 θa,i) ◦2 u ] (by axiom (4.5.1.b))

= [ (aλb ◦ αa,i,b) ◦ (θai,b ◦1 θa,i) ] ◦2 u ] (nat. sub. null. into tight tern.)

= [ aλb ◦ (αa,i,b ◦ (θai,b ◦1 θa,i) ) ] ◦2 u ] (profunctoriality tight tern)

= [ aλb ◦ (θa,ib ◦2 θi,b) ] ◦2 u ] (definition ofα)

u
θi,b

i

b

θa,ib

a

ib

aλb
a(ib) ab

= [ (aλb ◦ θa,ib) ◦2 θi,b ] ◦2 u (nat. sub. tight bin. into tight bin.)

= [ (θa,b ◦2 λb) ◦2 θi,b ] ◦2 u (definition of aλ)

u
θi,b

i

b

λb

θa,b

a

b

ib
ab

= [ θa,b ◦2 (λb ◦ θi,b) ] ◦2 u (extranat. sub. tight bin. into tight bin.)

= θa,b ◦2 [ (λb ◦ θi,b) ◦2 u ] (by axiom (4.5.1.b))

= θa,b ◦2 [λb ◦ (θi,b ◦2 u) ] (nat. sub. null. into tight bin.)

= θa,b ◦2 j(1b) (by definition ofλ)

= θa,b ◦2 1b = θa,b (by naturality of j)∗.

Finally, we prove the axiom (4.3.5), which we recall below,

i ii

i.

ρi

λi
1i

More precisely, we have to prove that (λi ◦ ρi) ◦ u = u (by left representability).
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(λi ◦ ρi) ◦ u

= λi ◦ (ρi ◦ u) (profunctoriality of nullary maps)

= λi ◦ [ (θi,i ◦2 u) ◦ u ] (definition of ρ)

= λi ◦ [ (θi,i ◦1 u) ◦ u ] (by axiom (4.5.2.d))

= [λi ◦ (θi,i ◦1 u) ] ◦ u (nat. of sub. of nullary into loose unary)∗

= j(1i) ◦ u (definition ofλ)

= 1i ◦ u = u (by naturality of j)∗.

The main differences with respect to the not-skew case are underlined with a ∗.

Before defining the functor Ks : ShSkMultlr → Skew, we prove the following

easy lemma, which is the counterpart of Lemma 4.4.2.

Lemma 4.5.9. Consider C,D ∈ ShSkMultlr and a functor F : C → D. There

is a bijection between natural families, with x ∈ {t < l},

F x
a,b : Cxi (a; b)→ Dxi (Fa;Fb)

and natural families

fxa : mx(Fa)→ F (mxa)

where mxa and mx(Fa) are the n-ary x-map classifiers of the appropriate arity.

Proof. The bijection is governed by the following diagram

Cxi (a;−)
Fxa,− // Dxi (Fa;F−)

Ct1(mxa,−)

−◦1θxa

OO

F−◦fxa
// Dt1(mx(Fa), F−)

−◦1θxFa

OO
(4.5.11)

in which the vertical arrows are natural bijections and the lower horizontal arrow

corresponds to the upper one using the Yoneda lemma.
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Remark 4.5.10. Given a morphism F : C → D ∈ ShSkMultlr we obtain, on

applying the above lemma, natural families of tight maps f2 : FaFb→ F (ab) and

f0 : i→ Fi defining the data for a lax monoidal functor KsF : KsC → KsD. That

it is a lax monoidal functor follows directly from the following result.

Explicitly, f2 : FaFb → F (ab) is the unique morphism such that f2 ◦1 θFa,Fb =

F t
2(θa,b) whilst f0 is the unique morphism such that f0 ◦ u = F l

0u.

Proposition 4.5.11. With the definition on objects given in Lemma 4.5.8

and on morphisms in Remark 4.5.10, we obtain a fully faithful functor

Ks : ShSkMultlr → Skew.

Proof. The proof is quite similar to the proof of Proposition 4.4.4. Using

Lemma 4.5.6 and 4.5.9, it is enough to prove that (F l
0, F

t
2) satisfy the equations

(4.5.4, 4.5.5, 4.5.6) if and only if (f0, f2) satisfy the equations for a lax monoidal

functor (4.3.6, 4.3.7, 4.3.8). Equation (4.5.5) corresponds to the associator axiom

(4.3.6) for a lax monoidal functor. Since all maps involved are tight, this follows

by the same proof in Proposition 4.4.4. In a similar way, we can prove how (4.5.4)

corresponds to the right unit axiom (4.3.8) of a lax monoidal functor. The only

part that changes significantly is the one regarding the left unit axiom (4.3.7). We

need to change the proof because the substitution of a nullary map into the first

variable of a tight binary gives a loose unary map. Let us start proving that if

(F l
0, F

t
2) satisfy (4.5.6), then (f0, f2) satisfy the left unit axiom (4.3.7). We will

prove this axioms showing that Fλ · f2 · f0Fa satisfy the defining property (4.5.9)

of λ.

u

θ

i

Fa

f0Fa f2 Fλ
iFa FiFa F (ia) Fa

by definition of f0 · Fa, f0 and f2

= Fu
Fθ

Fi

Fa

Fλ
F (ia) Fa
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(Fλ ◦ F t
2θ ) ◦1 F

l
0u

= F t
2(λ ◦ θ) ◦1 F

l
0u (by naturality ofF t

2)

= F l
1( (λ ◦ θi,a) ◦1 u ) (by Lemma 4.5.5)

= F l
1(j1a) (by defining property (4.5.9) ofλ)

= j1Fa (by assumption (4.5.6)).

On the other hand, let us assume (f0, f2) satisfy the left unit axiom (4.3.7). Then,

by universal property of λ, j1Fa is equal to

Fu
θ

i

Fa

λ
iFa Fa

by left unit axiom (4.3.7)

=
u

f0Faθ

i

Fa

f2 Fλ
FaiFa FiFa F (ia)

by definition of f0Fb

=
u f0

θ

F i

Fa

f2 Fλ
Fa

i
F iFa F (ia)

= (Fλa ◦ F t
2θi,a ) ◦1 F

l
0u (by definition ofF l

0 andF t
2)

= F t
2(λ ◦ θi,a ) ◦1 F

l
0u (by naturality ofF t

2)

= F l
1( (λ ◦ θi,a) ◦1 u ) (by Lemma 4.5.5)

= F l
1(j1a) (by defining property (4.5.9) ofλ).

Therefore, we get a correspondence analogous to the one in Table 4.1, which is

described in Table 4.2.



The Left Representable Case 155

(F l
0, F

t
2) (f0, f2)

(4.5.5) Associator axiom (4.3.6)

(4.5.6) Left unit axiom (4.3.7)

(4.5.4) Right unit axiom (4.3.8)

Table 4.2

We recall that there is a forgetful functor U s
lr : SkMultlr → ShSkMultlr and an

equivalence T s : SkMultlr → Skew between left representable skew multicate-

gories and skew monoidal categories. Moreover, comparing the construction of Ks

with that given in [BL18, Section 6.2], we see that the triangle

SkMultlr

ShSkMultlr

Skew.

T s

Uslr

Ks

is commutative.

Theorem 4.5.12. The functor Ks : ShSkMultlr → Skew is an equivalence of

categories, as is the forgetful functor U s : SkMultlr → ShSkMultlr.

Proof. Let us show that Ks is an equivalence first. Since Ks is fully faithful by

Proposition 4.5.11, it remains to show that is essentially surjective on objects.

Since T s = KsU s and the equivalence T s is essentially surjective, so is Ks, as

required. Finally, since T s = KsU s and both T s and Ks are equivalences, so

is U s.
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The Closed Left Representable Case

Definition 4.5.13. A short skew multicategory is said to be closed if all b, c ∈ C
there exists an object [b, c] and a tight binary map eb,c : [b, c], b→ c for which the

induced functions

eb,c ◦1 − : Ctn(x; [b, c])→ Ctn+1(x, b; c), for n = 1, 2, 3,

eb,c ◦1 − : Cln(x; [b, c])→ Cln+1(x, b; c), for n = 0, 1,

are isomorphisms.

Once again, let us notice that the condition on n are determined by the definition

of a short skew multicategory. For instance, when dealing with loose maps we

only consider n = 0, 1 because we do not have ternary loose maps in a short skew

multicategory.

We will denote with ShSkMultcllr the fullsubcategory of ShSkMult with objects

left representable closed short skew multicategories. Naturally, the forgetful

functor U s
lr : SkMultlr → ShSkMultlr restricts to a forgetful functor

U s,cl
lr : SkMultcllr → ShSkMultcllr.

Adapting Proposition 4.2.7, we get a characterisation of closed short skew multicat-

egories which are also left representable.

Proposition 4.5.14. A closed short skew multicategory is left representable if and

only if it has a nullary map classifier and each [b,−] has a left adjoint.

Proof. If C is closed and left representable, then the natural bijections

C(ab, c) = Ct1(ab; c) ∼= Ct2(a, b; c) ∼= Ct1(a; [b, c]) = C(a, [b, c])

show that −b a [b,−]. Conversely, if [b,−] has a left adjoint. then we have natural

isomorphisms

Ct1(ab; c) = C(ab, c) ∼= C(a, [b, c]) = Ct1(a; [b, c]) ∼= Ct2(a, b; c)
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and, by Yoneda, the composite is of the form − ◦1 θa,b for a tight binary map

classifier θa,b : a, b → ab. It remains to show that this and the nullary map classi-

fier are left universal. For the tight binary map classifier, we must show that

−◦ θa,b : Ctn+1(ab, x; c)→ Ctn+2(a, b, x; c) is a bijection for all x of length 1 or 2, the

case 0 being known. For an inductive style argument, suppose it is true for x of

length i ≤ 1. We should show that the bottom line below is a bijection

Cti+1(ab, x; [y, c])

ey,c◦1−
��

−◦1θa,b // Cti+2(a, b, x; [y, c])

ey,c◦1−
��

Cti+2(ab, x, y; c)
−◦1θa,b

// Cti+3(a, b, x, y; c])

but this follows from the fact that the square commutes, by associativity axiom

(4.5.1.a), and the other three morphisms are bijections, by assumption. The case of

the nullary map classifier is similar in form but uses associativity axiom (4.5.1.b).

We recall that [BL18, Theorem 6.4] gives an equivalence T sc : SkMultcllr → Skewcl

between left representable closed skew multicategories and skew closed monoidal

categories.

Theorem 4.5.15. The equivalence Ks : ShSkMultlr → Skew restricts to an

equivalence Ks
c : ShSkMultcllr → Skewcl between left representable closed short

skew multicategories and skew closed monoidal categories, which fits in the

commutative triangle of equivalences

SkMultcllr

ShSkMultcllr

Skewcl.

T sc

Us,cllr

Ks
c
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Proof. Let C be in ShSkMultlr. If C is closed then we have natural isomorphisms

C(ab, c) = Ct1(ab; c) ∼= Ct2(a, b; c) ∼= Ct1(a, [b, c]) = C(a, [b, c])

so that KsC is monoidal skew closed, as required. If KsC is closed, then we

have natural isomorphisms Ct1(a; [b, c]) ∼= Ct1(ab; c) for all a, b, c. By Yoneda, the

composite

Ct1(a; [b, c]) ∼= Ct1(ab; c) ∼= Ct2(a, b; c)

is of the form eb,c ◦1− for a tight binary map eb,c : [b, c], b→ c, and to show that C
is closed we must prove that

eb,c ◦1 − : Ctn(a; [b, c])→ Ctn+1(a, b; c), for n = 2, 3,

eb,c ◦1 − : Cln(a; [b, c])→ Cln+1(a, b; c), for n = 0, 1,

are bijections. For the tight maps case we can consider the diagram

Ct1(mt(a); [b, c])

−◦1θa
��

eb,c◦1− // Ct2(mt(a), b; c)

−◦1θa
��

Ctn(a; [b, c])
eb,c◦1−

// Ctn+1(a, b; c)

where θa : a→ mt(a) is the left universal tight n-multimap. More precisely,

for n = 2, mt(a1, a2) := a1a2, and θa := θa1,a2 ,

for n = 3, mt(a1, a2, a3) := (a1a2)a3, and θa := θa1a2,a3 ◦1 θa1,a2 .

The commutativity of the diagram with n = 2 follows from extranaturality of

substitution of tight binary into tight ternary, whereas the one with n = 3 follows

from the associativity axiom (4.5.1.a). Thus, since the two vertical functions are

invertible by left representability and the upper horizontal by construction, the

lower horizontal is invertible as well. Similarly, for the loose case we consider the

diagram
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Ct1(ml(a); [b, c])

−◦1θla
��

eb,c◦1− // Ct2(ml(a), b; c)

−◦1θla
��

Cln(a; [b, c])
eb,c◦1−

// Cln+1(a, b; c)

where θla : a→ m(a) is the left universal loose n-multimap, i.e.

for n = 0, ml(−) := i, and θl− := u,

for n = 1, ml(a) := a, and θla := θi,a ◦1 u.

This time, when n = 0, the commutativity of the diagram follows from extranatu-

rality of substitution of nullary into tight binary, whereas when n = 1 follows from

the associativity axiom (4.5.1.b). Then, since the other three maps are invertible,

the lower horizontal map is an isomorphism.
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Conclusions

We conclude by summarising what we have done in this thesis and outlining some

possible directions for future work.

In Chapter 1 we have answered a question raised in [Lac00] by showing

that for every Gray-category K , there is a Gray-category Psm(K ) of

pseudomonads, pseudomonad morphisms, pseudomonad transformations and

pseudomonad modifications in K (Theorem 1.2.5). Then, in Chapter 2 we

contributed to the formal theory of pseudomonads with Theorem 2.1.4, Proposi-

tion 2.2.4 and Theorem 2.2.5. A natural question that arises is whether the

construction of Psm(−) extends easily to tricategories, i.e. if given a tricategory T

then Psm(T) is a tricategory as well. The coherence theorem for tricategories

could be helpful. We leave this to future work.

We also introduced a possible approach to the formal theory of relative monads in

Chapter 3 and proved a counterpart of Beck’s equivalence for relative distributive

laws in Theorem 3.6.19. We believe that our definition of the 2-category of relative

monads in any 2-category K will be useful in the future, as there have been already

some works presented in seminars and conferences using this notion (see The Nerve

of a Relative Monad by C. Walker at Masaryk University Algebra Seminar and

The formal theory of theories by N. Arkor at CT 2021). Nonetheless, there are a

lot of aspects that have not yet been investigated. For instance, one could study

more in detail relative adjunctions in a 2-category. Another interesting direction

to take is to put together Chapter 1, Chapter 2 and Chapter 3 to continue the

study of relative pseudomonads started in [FGHW17].

http://www.math.muni.cz/~bourkej/BAS.html
https://sites.google.com/view/ct2021/programme-speakers
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Finally, in Chapter 4 we showed how we can construct different kinds of

representable (skew) multicategories starting from a structure involving only

multimaps of dimension at most 4. We needed 4-ary multimaps to encode the

pentagon axiom in a skew monoidal category. For this reason, we believe that

it would be impossible to prove such a result for fewer dimensions, even though

we do not have a proof yet. It should be possible to prove similar results for the

closed and biclosed setting and we intend to investigate this work soon. Another

interesting case to consider is the one of braided and symmetric multicategories.

We believe that using the results in [BL20, Appendix A] we will be able to get a

finite description of braided and symmetric skew multicategories. More precisely,

this would mean that to give a braided skew multicategory it will be enough to

have four isomorphisms satisfying three equations.



A. Pseudomonads Diagrams

A.1. Coherence Conditions for Pseudodistribu-

tive Laws

We limit ourselves to drawing the boundaries of these diagrams and explain in

text which 3-cells should be inserted in them, except for the 3-cells coming from

the structure of a Gray-category of K .

S3T S2TS

STS2

S2T
S2T STS

ST TS

TS2

S2d //

mST

��

SmT

��

SdS

��

mT

��

STm

��
Sd //

mT

��

dS

��

Tm

��

d
//

=
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S3T S2TS

S2T STS

S2T

TS2

TS3 STS

ST TS

TS2

S2d //

mST

��

mTS

��

SdS

��

Sd //

mT

��

dS ��

dS2

��

TmS

��

TSm

��

STm

��

Tm

��

dS

��

Tm

��

d
//

(C1)

In (C1), the left-hand side pasting is obtained using Sm̄, m̄, and the associativity

3-cell of the pseudomonad S; the right-hand side pasting is obtained using the

associativity 3-cell of the pseudomonad S and m̄.

ST

S2T STS

TS2

ST TS

STs

""

1ST

��

dS

��

Tm

��

mT

��

SsT

��
Sd //

d
//

=

ST

TS
STS

TS2

TS

STs

""
d

��

TSs

))

dS

��

Tm

��

Id

((

(C2)

In (C2), the left-hand side pasting is obtained using Ss̄, m̄, and the left unit 3-cell

of the pseudomonad S; the right-hand side pasting is obtained using the left unit

3-cell of the pseudomonad S.
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S2 S2T

S

STS

TS2

TS

S2t //

m

��

Sd

��
StS ..

tS2

++

tS ..

Tm

��

dS

��

=

S2 S2T

S

STS

TS2

TS

ST

S2t //

Sd

��

dS

��

Tm

��

d

��

m

��
St //

mT

��

tS ..

(C3)

For (C3), the left-hand side pasting is obtained using St̄, t̄S; the right-hand side

is obtained using m̄ and m̄.

1X T

S ST

TS

t //

sT

��

d
��

s

��
St //

Ts

��tS ,,

=

1X T

S

TS

t //

Ts

��

s

��

tS ,,

(C4)

For (C4), the left-hand side pasting is obtained using s̄ and t̄; the right-hand side

is obtained from pseudonaturality of t.
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S2T 2 S2T

TS2T

STST

ST 2S STS

T 2S2 TS2

TSTS

ST 2

TST

T 2S TS

S2n //

mT 2

��

SdT

��

STd

��

Sd

��
SnS //

dTS

��

TdS

��

dS

��
nS2

//

dST

��

TmT

��

TSd ��

T 2m

��
Tm

��

dT ��

Td ��

nS
//

=

S2T 2 S2T

ST
STS

TS2

ST 2

T 2S TS

TST

S2n //

Sd

��

dS
��

Tm

��

mT 2

��

dT ��

Sn //

Td ��

nS
//

mT

��

d

��

(C5)

For (C5), the left-hand side pasting is obtained using Sn̄, n̄S and m̄T ; the right-

hand side pasting is obtained using m̄ and n̄.
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T 2 T

ST 2 ST

TST

T 2S TS

n //

Sn //

nS //

sT 2

��

sT

��

dT
��

Td

��

d

��

Ts



=

T 2 T

ST 2

TST

T 2S TS

sT 2

��

Td
��

n //

Ts



T 2s



dT
��

nS
//

TsT

��

(C6)

In (C6), the left-hand side pasting is obtained using s̄ and n̄; the right-hand side

pasting is obtained using s̄T .

ST 3 ST

TST 2

T 2ST

T 3S TS

ST 2

S2T

TST

T 2S

dT 2

��

TdT

��

T 2d

��

d

��

dT

��

Td

��

STn 22 Sn

##

SnT ,,

nST
,,

nTS ,,

Sn

::

nS

;;

=

ST 3 ST

TST 2

T 2ST

T 3S TS

ST 2

TST

T 2S

T 2S

dT 2

��

TdT

��

T 2d

��

d

��

dT

��

Td

��

STn 22 Sn

##

TSn 22

TnS 22

nTS ,,

nS

$$

nS

;;

(C7)

For (C7), the left-hand side pasting is obtained using the associativity 3-cell of the

pseudomonad T , n̄ and n̄T ; the right-hand side pasting is obtained using T n̄, n̄

and the associativity 3-cell of the pseudomonad T .
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ST ST

TS TS

ST 2

TST

T 2S

d

��

d

��

dT

��

Td

��

1ST

$$

StT
,,

tST

��

tTS ,,

Sn
::

nS

;;

=

ST

TS TS

T 2S

d

��

1TS

$$

tTS ,, nS

;;

(C8)

For (C8), the left-hand side pasting is obtained using the right unit 3-cell of the

pseudomonad T , n̄, t̄S; the right-hand side pasting is the right unit 3-cell of the

pseudomonad T .

ST TS

ST TS

S2T STS

TS2

d
//

d //

sST

��

mT

''

Tm

%%

dS
&&

sTS

��
Sd //

TsS

��

1TS

��

=

ST TS

ST

S2T

d
//

sST

��

mT

��

1ST

��

(C9)

For (C9), the left-hand side pasting is obtained using the right unit 3-cell of the

pseudomonad S, s̄S and m̄; the right-hand side pasting is obtained using the right

unit 3-cell of the pseudomonad S.
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ST ST

TS

ST 2

d

��

STt 22 Sn

##

1ST

::

=

ST ST

TS TS

ST 2

TST

T 2S

d

��

d

��

dT

��

Td

��

STt 22 Sn

##

TSt

@@

TtS

22

1TS

::

nS $$

(C10)

For (C10), the left-hand side pasting uses the left unit 3-cell of the pseudomonad

T . The right-hand side pasting is obtained using n̄ and the left unit 3-cell of the

pseudomonad T .

A.2. Some Technical Proofs

Coherence diagrams for (GF, Gφ · ψF )

We show only equation in (1.2.2). Using the coherence diagram (1.2.2) for (G, ψ)

and for (F, φ), it suffices to prove that the following two diagrams are equal:
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QGTF

GT 2F

GTF

QGFS

GTFS

GFS2

GFS

QGF

GTF

QGtF

QGFs

ψF

1GTF

GTtF
ψTF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

Gφ̄

ψφ

ψtF

GηTF

QGφ̃

QGF

GTF

QGFS

GTFS

GFS2

GFS.

GT 2F

GTF

QGFs

ψF

GTFs

1GTF

GTtF

Gψ

ψFS

GφS

GTφ

GnF

GFm

ψFs

GTφ̃

Gφ̄

GηTF

This equality holds using (1.1.1) and (1.1.2).
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Fφ is well-defined

Given a pseudomonad transformation (q, q̄) : (G, ψ) → (G′, ψ′) in

PK ( (Y, T ), (Z, Q) ) we want to show that (qF, qF ) is a pseudomonad transfor-

mation as well. We will show just equation (1.2.3), since (1.2.4) can be proved

similarly. The required equality follows from equation (1.2.3) for q and the

equation below, which can be proved using (1.1.1) twice.

=

QGTF

GT 2F

GTF

QGFS

GTFS

GFS2

GFS

QG′TF

QG′FS

G′TFS

G′FS2

G′FS

ψTF

GnF

QGφ

ψFS

GTφ

GφS

GFm

Gφ

QqTF

QG′φ

QqFS

ψ′FS

qTFS

G′φS

qFS2

G′Fm

qFS

Gφ̄

ψφ

Qqφ
−1

q̄FS

qφS
−1

qFm
−1
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=

QG′TF

G′T 2F

G′TF

QG′FS

G′TFS

G′FS2

G′FS

GTF

GFS

QG′TF

GT 2F

ψ′TF

G′nF

QG′φ

ψ′FS

G′Tφ

G′φS

G′FmG′φ

QqTF

ψTF

qT 2F

GnF

qTF

Gφ

qFS

G′φ̄

ψ′φ

qφ
−1

q̄TF

qnF

Let

(q, q̄), (q′, q̄′) : (G, ψ)→ (G′, ψ′)

be pseudomonads transformations in PK ( (Y, T ), (Z, Q) ). Given a pseudomonad

modification β : (q, q̄) → (q′, q̄′) we want to show that βF is a pseudomonad

modification from (qF, ¯qF ) to (q′F, ¯q′F ). So we need to show the following

equation
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QGF QG′F

GTF G′TF

GFS G′FS

QqF

ψF

Qq′F

ψ′F

q′TF

Gφ G′φ

q′FS

QβF

q̄′F

q′φ
−1

=

QGF QG′F

GTF G′TF

GFS G′FS.

QqF

ψF ψ′F

qTF

Gφ G′φ

q′FS

qFS

βFS

q̄F

qφ
−1

This can be shown to hold using the coherence axiom for β and (1.1.3).

Coherence for qp

Given (p, p̄) : (F, φ) → (F ′, φ′) and (q, q̄) : (G, ψ) → (G′, ψ′) two 2-cells in PK

we want to prove that qp : G′p · qF → qF ′ ·Gp is a 3-cell in PK . First of all, it is

useful to note that

=

GFS

GTF

GF ′S

G′FS

G′TF

G′F ′S

G′TF ′

GpS

qFS

qTF

Gφ

qF ′S

G′Tp

G′φ

G′φ′

G′pS

qpS
−1

qφ
−1 G′p̄

GFS

GTF

GF ′S

GTF ′

G′TF

G′F ′S.

G′TF ′

GpS

qTF

GTp

Gφ

qF ′S

qTF ′

Gφ′

G′Tp

G′φ′

qTp
−1 = (qT )p

−1

Gp̄ qφ′
−1

This equality is true since both diagrams are equal to the following one, using

(1.1.3) for the one on the left-hand side and (1.1.1) for the one on the right-hand

side.
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GTF G′TF

GF ′S G′F ′S

qTF

G(pS · φ) G′(φ′ · Tp)

G′(pS · φ)

g′F

q(pS·φ)
−1

G′p̄

The proof can be concluded using the invertibility of the 3-cells involved and

(1.1.1).
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