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Abstract

Variable-pitch-propeller (VPP) quadcopters are a new type of micro aerial vehicle.
Compared to conventional fixed-pitch-propeller quadcopters, VPP quadcopters can
not only generate positive but also negative thrust and hence fly upside down. They
also outperform the conventional quadcopter in terms of control bandwidth and
manoeuvrability. Despite the advantages of VPP quadcopters, their potential has
not been well explored yet, though there exist some relevant studies in the literature.
The aim of this thesis is to explore the unique features of VPP quadcopters in two
important aspects. The first aspect is about flight safety: that is, how to ensure a VPP
quadcopter fly safely even when a propeller is partially damaged. Two fault-tolerant
controllers for different types of VPP quadcopters are proposed, respectively. It is
found that fault-tolerant control of a VPP quadcopter exhibits unique and interesting
features compared to conventional quadcopters. In particular, a separated-powered
VPP quadcopter is fully controllable with only three actuators. With the proposed
control law, a faulty centralized-powered VPP quadcopter can track the reference
path. The system and simulation experiments are established and conducted in
a physical driven environment called SimScape, to verify the effectiveness of the
proposed control laws. Real experiments are conducted to verify the dynamic model
of VPP. The second aspect is about flight agility: that is how to fully utilize the
ability of VPP quadcopters to achieve highly agile flight. In particular, novel control
laws are proposed that can successfully achieve the tic-toc flight task, which is one
of the most challenging manoeuvrers of aerial vehicles. Thanks to the feature that a
VPP could generate either positive or negative thrusts, such a task is achievable by
VPP quadcopters. The tic-toc flight is challenging to achieve partially because it is
far from the hovering equilibrium state. A state-of-the-art reinforcement learning
algorithm is employed to solve this problem. An extension algorithm for performance
adjustment and controller redeployment is proposed as well. Simulation results verify
the effectiveness of our control laws.
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1.1 Background

Quadcopter unmanned aerial vehicles (UAVs) have been widely applied in both
academic and industrial domains, due to their simple mechanical and control system
structures [1, 2]. In 2010, Parrot released the world’s first commercial quadcopter
named AR Drone [3]. Since then, the public awareness of quadcopters has rapidly
raised and become popular commercial products [4]. In the last decade, with the
rapid development of micro electro mechanical system (MEMS), micro inertial
measurement unit (IMU), and artificial intelligence (AI), the number of research
groups on quadcopter UAVs in the globe has increased rapidly, such as the Institute
for Dynamic Systems and Control in Eidgenössische Technische Hochschule (ETH)
Zurich, Aerospace Engineering in Georgia Institute of Technology, University of
Pennsylvania’s General Robotics, Automation, Sensing and Perception (GRASP)
Lab, and Stanford University’s Aerospace Robotics Lab [5], to name a few.

Nowadays, quadcopters have been successfully applied in many areas [6] such
as environmental monitoring, agricultural plant protection [7], earthquake relief [8],
aviation safety [9], electronic countermeasures [10], and aerial photography [11].
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In the future, they are expected to be commonly utilised in day-to-day tasks,
such as parcel delivery (Amazon PrimeAir [12]), air rescue (Alec Momont [13]),
and passenger transportation (Ehang [14, 15]). Despite the fast development of
quadcopters, they still face some key challenges if they are applied into some tasks
such as autonomous aerial vehicles transporting human passengers. These tasks
require the flight platforms such as quadcopters to have strong safety guarantee,
high agility, anti-interference, and fault-tolerance capabilities [16–19]. Therefore, the
research on agile and safety-critical flight control of quadcopters have high application
value and broad market prospects.

It is notable that the mechanical and dynamical structures of quadcopters have
changed little since they were invented. That is because the structure is sufficiently
simple and also meets the requirement of many present tasks. In particular, a
quadcopter usually consists of a body frame and four motors. Each motor drives fixed-
pitch propeller. By adjusting the rotational speed of the four motors, a quadcopter
can adjust its attitude and fly following pre-designed trajectories. Although the
existing quadcopter structure design has the advantages of low mechanical and
control complexity, it also has disadvantages such as low control bandwidth (due to
motor speed control) and relatively weak manoeuvrability.

As a relatively new type of quadcopters, variable pitch propeller (VPP) quad-
copters exhibit superior performance than the conventional fixed-pitch ones [20]. The
difference between a VPP and a fixed-pitch propeller is that a VPP could adjust
the pitch angle the propeller by an independent actuator. This could bring some
attractive benefits. First, compared with the rotation speed control of a fixed-pitch
propellers, the pitch angle control of a VPP has higher control bandwidth, bringing
higher agility to VPP quadcopters [21, 20]. Second, a VPP can generate thrusts in
either upward or downward directions. This novel property brings benefits to flight
control performance. For example, a VPP quadcopter will be able to fly upside down
steadily, which is not possible to achieve by a fixed-pitch quadcopter. This provides
VPP quadcopters with strong manoeuvrability. It also enables VPP quadcopters to
recover swiftly from largely disturbed attitudes back to stable hovering conditions,
which is important from safety point of view.

Due to these interesting features, VPP quadcopters have attracted increasing
attention in recent years [22–24]. However, the great potential of VPP quadcopters
has not been fully explored yet. Motivated by that, this thesis aims to explore
the unique features of VPP quadcopters and further develop control algorithms to
achieve a safe and agile flight performance.
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1.2 Problem Statement

In this thesis, we focus on two aspects of VPP quadcopters.

The first aspect is about flight safety. The demand for safety-critical flight
missions of quadcopter UAVs increases rapidly. For example, parcel delivery and
passenger transportation by quadcopter UAVs are operated in urban areas. These
tasks pose high requirement on the flight safety of quadcopters to against external
disturbance and component failure. Robust control is a widely studied approach
that could overcome minor failures such as actuator efficiency loss or thrust error
[25]. For major failures such as actuator loss, specific fault-tolerant controllers must
be designed [26]. Despite the existing studies, safe-critical flight of conventional
fixed-pitch quadcopters still face big challenges. First, the current research of safety
flight control for conventional quadcopters is not good enough for practical usage.
Even under a well designed fault-tolerant controller, a quadcopter with one actuator
loss will spin rapidly. This will be a huge shortcoming for manned transportation
applications, since such an uncontrollable rapid rotation can cause serious damage to
the health of the carried passengers. Second, the research into safety control of VPP
quadcopters has been scant. Due to the difference in structural design, the control
dynamics between conventional fixed-pitch quadcopters and VPP quadcopters are
quite different. There are not many studies that detailed analyse the uniqueness of
VPP quadcopters. Its safety control potential is not fully utilized. In this thesis, we
study the dynamics of VPP quadcopters to fully explore its unique features. These
discovered features can be used to design fault-tolerant controllers to improve safe
flight performance. These controller designs contribute to the future applications of
the VPP quadcopter.

The second aspect is about flight agility. Flight agility not only reflects the ability
for entertainment but also serves as a proof of recovery ability [27, 28]. There are
many researchers studying on manoeuvrer control for conventional quadcopters, such
as passing through a vertical window [29], juggling a ball [30], and pole acrobatics
[31]. However, these results could not directly reflect the agility potential of VPP
quadcopters. VPP quadcopters have the ability to rapidly change their thrust
between positive and negative like a helicopter. In this thesis, we want to utilize such
a specific ability of VPP quadcopters by studying tic-toc manoeuvrer. Tic-toc is one
of the hardest manoeuvrers that a helicopter can do, which requires the aircraft to
have the ability to generate inverse thrust and the controller to have good balancing
capabilities. The exist research results have not shown that any control system
can achieve such a manoeuvrer without human demonstration. It is a challenging
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task because the whole tic-toc manoeuvre has no equilibrium point and metrics for
such a manoeuvre is hard to define. Since tic-toc manoeuvrer can be performed by
expert pilots through helicopter, we use the algorithm that is considered the most
likely to achieve human-level performance, namely reinforcement learning (RL) [32].
Such an algorithm is proved to have the ability to achieve good control performance
within complex systems by learning from the interaction between the agent and the
environment [33, 34]. Moreover, RL has been successfully applied to UAVs control
areas, such as helicopter manoeuvrers [35], throw-and-hover [36] and attitude control
[37]. This thesis aims to develop a RL based control algorithm that can perform
tic-toc manoeuvre through VPP quadcopters.

1.3 Objectives

The aim of this thesis is to study the unique characteristics of the VPP quadcopters
and further develop control algorithms for VPP quadcopters to achieve stable, safe,
and agile flight performance. The specific objectives of this thesis are as follows:

1. Conduct detailed literature review on the existing studies of control of conven-
tional fixed-pitch and VPP quadcopters. Especially focus on the state-of-the-art
algorithms of safety-critical and high-agility flight control.

2. Establish the dynamic model of VPP quadcopters and identify their unique
dynamic features. Conduct real experiments to verify the dynamic model of a
single VPP actuator.

3. For separated-powered VPP (SVPP) quadcopters, design fault-tolerance con-
trollers to ensure safe flight when one of the actuators is broken. Validate the
controller within simulation experiments.

4. For centralized-powered VPP (CVPP) quadcopters, design fault-tolerance
controllers to ensure safe flight when one of the propeller is stuck. Demonstrate
the controller within simulation experiments.

5. Analyse the tic-toc manoeuvrer in detail to develop several metrics for this
manoeuvrer. Apply RL algorithms to develop new controllers to realize high-
agile tic-toc flight control without human demonstration.

6. Design extension control system to further adjust the controller performance.
Demonstrate the control system within simulation environment.
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1.4 Research Contributions

The contributions of the thesis are listed as:

1. We conduct experiments on a real VPP platform to examine its mechanical
and dynamical properties. With the data obtained from the experiments, we
analyse the dynamical performance, control feasibility, and unique features of
VPP actuators. Not only the dynamical model of VPP actuators is verified
by the experiments, we also obtain a new finding that a VPP quadcopter
can control the thrust and torque of each actuator independently, which is a
favourable feature for high-performance flight control. This part of fundamental
work lays a solid foundation for further controller design.

2. We conduct controllability analysis for an SVPP quadcopter who has one
VPP actuator lost. The research shows a novel finding that a faulty SVPP
quadcopter system still remains fully controllable with merely three VPPs. We
further design a linear quadratic regulator (LQR) controller and validate the
system within simulation environment. The demonstration shows that a faulty
SVPP quadcopter can fly steadily and track desired trajectories even subject
to wind disturbance or noise. The results verify our presented findings.

3. We present the dynamic analysis of a CVPP quadcopter in the presence of one
propeller stuck. Based on a controllability decomposition method, an H∞ fault-
tolerance control system is designed for a faulty CVPP quadcopter with only
three control inputs. Such a controller can stabilize the faulty VPP quadcopter
when hovering, and can track a reference trajectory with an uncontrollable
error in the yaw angle.

4. A novel self-learning aerobatic flight control system is designed. It is the first
control system that can perform tic-toc manoeuvrer through a VPP quadcopter.
Moreover, such a controller can perform infinite flipping manoeuvrers through
a planar VPP quadcopter.

5. A reinforcement learning extension algorithm that can further adjust the flight
performance according to the requirements of deployment without retraining.
This extended algorithm can modify the parameters to delicate adjust the
tic-toc manoeuvre. It enhances the robustness and generalization capabilities
of such a control system.
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1.5 Thesis Outline

The contents of each chapter is outlined as follows.

Chapter 1 This chapter introduces the background, motivation and objectives of
the thesis. Other information, such as publications and the structure of
this thesis, is summarized in the end.

Chapter 2 This chapter first compares three types of quadcopters and then high-
lights the advantages of VPP quadcopters. We further review relevant
quadcopter control algorithms especially those for agile and safe flight
control tasks. Finally, basics of reinforcement learning are introduced
and related algorithms are reviewed.

Chapter 3 This chapter first analyses the dynamics of VPP actuators and proposes
theoretical coefficients for aerodynamic properties based on airfoil and
propeller simulation software (XFOIL and QPROP). Then, we develop
a VPP actuator testbed and verify the theoretical values. Furthermore,
the general dynamical model of the VPP quadcopter is introduced. A
simplified 2D planar model, which is subsequently used to design an RL
controller, is also given.

Chapter 4 This chapter considers flight control of an SVPP quadcopter in the
presence of one actuator loss. We first analyse the problems faced by
conventional quadcopters when dealing with such failures. In particular,
a fixed-pitch quadcopter would keep rotating with high spinning rate
when one propeller is lost. The controllability analysis of both conven-
tional and VPP quadcopters are presented in the next to find that an
SVPP quadcopter can keep fully controllable with only three VPPs.
Then, we propose a simple LQR controller based on such findings. The
simulation results show the designed controller can not only stabilize
the SVPP when one VPP is lost, but also keep the dynamic system
fully controllable. Such a property is favourable for many tasks such as
passenger transportation.

Chapter 5 This chapter considers flight control of a CVPP quadcopter when one
actuator is faulty (in particular, the propeller is stuck and could not
tune its pitch angle due to actuator fault). We first review the existing
fault controllers for CVPP and SVPP quadcopters and highlight the
differences between these two types of VPP quadcopters. Then, Kalman
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decomposition is used to decompose the quadcopter system into con-
trollable and uncontrollable components, which are subsequently used
to design a linear controller. The demonstration shows, although the
yaw angle of a faulty CVPP quadcopter is uncontrollable, it can exhibit
a slow self-spinning speed in the presence of a propeller fault.

Chapter 6 This chapter first analyses the tic-toc manoeuvrer and shows that it is
similar to a juggling called “Devil Stick”. With this idea, we simplify the
3D dynamical model to a 2D planar version. Then, we fully decompose
the tic-toc manoeuvre and define several metrics to evaluate it. After
comprehensive comparison of different types of reinforcement learning
algorithms, we apply deep deterministic policy gradient to develop a
new controller to achieve the tic-toc manoeuvrer. The performance of
the proposed controller is carefully evaluated and validated by numerical
simulation.

Chapter 7 This chapter summarizes the thesis with a synopsis of the research
findings, methods and results. In addition, the limitations of this
research are discussed and future research opportunities in this field are
speculated.

1.6 Publications

The present thesis is built associated with the following publications:

Published papers

Zhikun Wang, Roderich Groß, and Shiyu Zhao. “Controllability analysis and
controller design for variable-pitch propeller quadcopters with one propeller
failure.” Advanced Control for Applications: Engineering and Industrial Systems,
vol. 2, no. 2, p. e29, 2020.

Zhikun Wang, Roderich Groß, and Shiyu Zhao. “Control of Centrally-Powered
Variable Pitch Propeller Quadcopters Subject to Propeller Faults.” Aerospace
Science and Technology, vol. 120, p. 107245, 2022.

Zhikun Wang, Roderich Groß, and Shiyu Zhao. “Aerobatic Tic-Toc Control of
Planar Quadcopters via Reinforcement Learning.” IEEE Robotics and Automa-
tion Letters (RA-L), vol. 7, no. 2, pp. 2140-2147, 2022
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This chapter reviews the dynamics and control algorithms of quadcopters. In
particular, this chapter analyses and compares the performance and properties of
different quadcopter structures. The comparison result demonstrates that VPP
quadcopters have significant performance advantages for safety-critical and agility
required applications. Existing approaches for flight control of either helicopters or
quadcopters aspects are reviewed. Other related methods of quadcopter flight control
such as trajectory design, manoeuvrer flight control, and fault tolerance control are
also reviewed.

2.1 Quadcopter Development History

2.1.1 Overview

Recent years have witnessed the rapid development of commercial UAVs across the
world. Generally, UAVs can be divided into three types:

1) Fixed-wing aircraft. This type of UAV relies on the propulsion system to
generate forward power and then generate the lift force through aerodynamics.
Therefore, it has good flight efficiency, but cannot achieve vertical take-off
and holding performance, which makes it usually requires sufficient take-off
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and landing distance. Nowadays, many applications require UAVs to have
good manoeuvrability for operation at low-altitude and low-speed, where the
fixed-wing aircraft cannot meet these requirements.

2) Helicopters. It is an aircraft that uses the main rotor to generate lift force
and adjusts the pitch angle to change its flight attitude. It has a tail rotor
to balance the torque generated by the rotation of the main rotor. Since the
helicopter uses the lift generated by the main rotor to offset the gravity, it
can achieve vertical take-off and flying. But it also brings shortages such as
low efficiency, complex mechanical structure, and difficult control. Moreover,
due to the large and complicated structure of the main rotor, the helicopter is
dangerous when flying and has poor fault tolerance ability.

3) Multi-copter UAVs. A multi-copter UAV is composed of multiple rigid actuators,
where each actuator contains a motor and a propeller. This class of UAV usually
has a symmetrical layout which makes its control strategy simple and direct.
Since the rotors are located at the edge of the aircraft, this type of UAV can
directly control the thrust by changing the motor speed, and thereby generate
the torque by the differences of thrusts. Therefore, in addition to VTOL, the
multi-copters has the characteristics of simple structure and well-understood
operation properties. It also suffers from low endurance limited by the battery.
Among all the multi-copter aircraft types, the most typical and widely used
type is the quadcopter [38].

Compared with other UAVs, quadcopters are now widely used due to the simple
structural design and also the high-speed attitude adjustment [38]. The simplified
structure design gives highly reliable performance and the low maintenance difficulty
to itself. In addition, the advanced control theory provides the possibility for
quadcopters to achieve robust or manoeuvrable flight performance. Because of these
advantages, quadcopters have received extensive attention in the field of UAVs in
recent years [6].

The history of the quadcopters can be traced back to the first quadcopter shown
in Fig.2.1 (a), which was designed in 1907 by Louis Breguet called “Breguet-Richet
Gyroplane” [39]. It is the first vertical take-off and landing (VTOL) aircraft that can
carry people. However, this huge quadcopter can only maintain a few feet high and
cannot fly long distances. The first quadcopter that can successfully stay in the air
for minutes and move for a short distance was invented in 1920 named “Oehmichen
NO.2”. US Air army developed a quadcopter with six propellers on each actuator
called “de Bothezat helicopter” shown in Fig.2.1 (b) in the early 1920s [40]. At that
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time, the large quadcopters were controlled by mechanical methods and powered by
fuel engines. Due to the lack of modern electronic technology, the control of this
multi-copter is inaccurate and slow. All theses shortages make these prototypes hard
to resist air friction and interference to maintain stability.

(a) (b)

Figure 2.1. Examples of giant multi-rotors helicopter built in early 1900s years,
where (a) is the Breguet-Richet Gyroplane, reprinted from [39] and (b) is the De
Bothezat helicopter, reprinted from [40].

Different from the early years, with the development of manufacturing, batteries,
chips and control technology, the small size UAVs are becoming more popular in
recent years. A typical modern quadcopter includes several components such as
environmental awareness sensors (including radars, camera, inertial measurement
unit, etc.), an onboard control system (including a high-level computer responsible
for navigation and decision-making and a low-level microcontroller for high-frequency
electronic system control to achieve real-time performance), a power system (including
batteries, electronic speed controllers, motors and propellers) and a remote control
system (includes communication link, 3D tracking system and ground station or
remote controller), which are shown in Fig. 2.2. All of these systems allow the
quadcopter to know its status and how to fly [41].

In recent years, with the rapid development of the global commercial quadcopters
industry, many well-known products have been published, such as Parrot AR.Drone
[3], Da-Jiang Innovations (DJI) Phantom series [42] (see Fig. 2.3(a)) and swarm
quadcopters [43]. In addition to the small quadcopters, the requirement for urban
transit and delivery has promoted the development of large manned quadcopters,
such as Bell Boeing Quad TiltRotor (C-130 sized military transport) [44], Airbus
[45] and EHANG autonomous aerial vehicle [14] (see Fig. 2.3(b)).

In the future, quadcopter UAVs are expected to be routinely utilised in common,
day-to-day tasks, such as parcel delivery or passenger transportation. Many of these
tasks are safety-critical and require UAVs to achieve high flight performance in terms
of both agility and safety [16–19]. Thus, with the increasing and extensive application
of quadcopters, the requirements of good manoeuvrability for normal use and high
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Figure 2.2. The basic components of a typical quadcopter system.

(a) (b)

Figure 2.3. Examples of quadcopter applications. (a) is the DJI Phantom 4, reprinted
from [42], which is widely used for photography and filming. (b) is the EHANG
184 autonomous aerial vehicle, reprinted from [14], which is a well-known electric
passenger transportation autonomous aerial vehicle.

fault tolerance in emergency situations are getting higher and higher. The following
sections will investigate the improvements of the safety and agility of quadcopters,
from the structure to the controller, and the normal flight control to the emergency
control.

2.1.2 Quadcopter Platform Development

Since the quadcopters have experienced decades of development, many universities
and research institutes have established their own quadcopter experimental research
platforms. Most of the early quadcopter platforms were designed and manufactured
by the research teams. Although the construction of these platforms requires a lot of
effort, the performance of the platforms cannot be guaranteed.
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The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STAR-
MAC) is one of the quadcopter research platforms for outdoor flight. It uses the
onboard IMU to detect and calculate its own states and attitude. This platform has
been used to validate different control algorithms including trajectory planning and
aggressive manoeuvring control [46–48].

In addition to the quadcopter platform developed by the research group, many
commercial companies have published their commodity quadcopters. Therefore, most
of the research groups now turn to buying these products and customizing them to
build the platforms to meet their requirements. For example, researchers from ETH
use a customized Ascending Technologies X-3D quadcopters by replacing all original
onboard electronics by themselves to achieve a quick dynamic sensor and response
(with 800Hz sampling frequency of the gyroscope). Such a customization results in the
two control modes of quadcopters. The first mode is used for ordinary flying control,
where the quadcopter follows the usually commends via the 50 Hz communication
system. In the case of manoeuvring, which is the second control mode, the quadcopter
follows the 1 kHz open-loop command given from an onboard computer system instead.
The quadcopter shown in Fig. 2.4 (b) can perform multi-flips [49] and quadcopter
inverted pendulum [50]. Moreover, to achieve high-precision detection, ETH Flying
Machine Arena (FMA) is used. FMA is an indoor aircraft flying test environment
with a Vicon motion capture system that can provide 200 Hz detection frequency
with millimetre accuracy [51]. With such a platform, the quadcopter can complete
many demonstrations that requires quick response to different commands, such as
ball juggling [30] and cooperative ball throwing or catching [52]. Their research fully
demonstrate the agility potential and the benefits of this well-designed quadcopter
platform. Due to the superior platform performance, a similar quadcopter testing
platform (shown in Fig. 2.4 (a)) is built by the Vijay Kumar Lab at the University
of Pennsylvania to validate the minimum snap trajectory generation and geometric
control [53].

In general, a quadcopter platform with a strong power system, a fast dynamic
system, and an accurate position and attitude sensing system is very important for
research. In addition to the above quadcopter platforms, many other quadcopter
platforms have been widely used, such as the DJI Matrice series, parrot drones series,
etc.
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(a) (b)

Figure 2.4. Examples of the quadcopter platforms where (a) is the Vicon motion
capture system, reprinted from [53] and (b) is the ETH customized Ascending
Technologies X-3D quadcopter, reprinted from [51].

2.1.3 Quadcopter Structure Development

The mechanical structure of the quadcopter has not changed much since its invention.
An ordinary quadcopter structure usually has a rigid body and four actuators at the
end of its body arm. Each actuator is constructed by a straight connection of motor
and propeller, see Fig. 2.5 (a), which makes it easy to be assembled and repaired.
However, this actuator mechanism can only provide positive thrust perpendicular to
the plane of the body, resulting in a lack of agility and stability when flying [54].

To enhance the stability of the quadcopter subject to strong winds, a research
group from Tohoku University and Kanazawa Institute of Technology changes the
quadcopter tilt angle to 20 degrees, which is shown in Fig. 2.5 (d) [55]. However,
although this design can improve the stability of the quadcopter to a certain extent,
compared with ordinary structure, this structure will reduce the maximum thrust
to 94%. Moreover, the whole quadcopter system efficiency is reduced because
the horizontal components of the force cancel each other out. Therefore, such an
improvement can not meet the requirements of improving flight safety and agility.

Another type of quadcopter tends to improve the thrust efficiency of a single
actuator by applying two motors in a coaxial pair (e.g. X-8 quadcopter shown in
Fig. 2.5 (b)). These two motors rotate in the opposite directions to provide the same
direction thrust. Such a mechanism design is applied in passenger transportation
applications, shown in Fig. 2.3 (b). As can be found from Fig. 2.5 (c), two separate
coaxial propellers can counteract the torques generated by the rotation of blades [56].
In addition to this, the coaxial mechanism design can increase the lift thrust of the
quadcopter and maintain a reasonable size and enhance the control sensitivity for
the yaw angle. However, this design will increase the weight due to the structure
of coaxial propellers. The actuator efficiency will be reduced because the inflow of
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the lower motor is influenced by the upper motor [57]. Although the coaxial motor
design can increase the maximum thrust and maintains the overall diameter, it also
increases the self-weight, cost and structural complexity, the usage of the coaxial
motor pair is likely to be coupled with disadvantages.

(a) (b) (c)

(d) (e) (f)

Figure 2.5. Examples of quadcopter actuation structure comparison. (a) is an
ordinary quadcopter actuator structure of the DJI INSPIRE 2, image reprinted from
[58]. (b) is a coaxial propeller actuator structure of the 3DR X8 quadcopter, image
reprinted from [59] and (c) is the sketch of it. (d) is the Tohoku’s quadcopter with
20°tilt angle, image reprinted from [55]. (e) is the MIT’s VPP quadcopter, image
reprinted from [21] and (f) is its corresponding sketch.

In addition, the researchers from Massachusetts Institute of Technology (MIT)
use variable pitch quadcopter to bridge the gap between agility and efficiency [22].
The variable pitch actuator is derived from a fixed-wing aircraft where the motor
shaft is connected with the propeller at one end and a servo at the other. The servo
can provide additional translational force to the shaft to change the angle of the
propeller and thereby change the thrust, shown in Fig. 2.5 (e) and (f).

According to the result of the simulated and practical experiments, the response
time of changing the propeller pitch angle to reach the target thrust is much faster
than that of changing motor spinning speed. Moreover, compared with the normal
actuators, VPP actuators can provide double the thrust change rate (change motor
speed and pitch angle together) [21]. As what the MIT research group demonstrated in
experiments, VPP quadcopters can perform inverted flight and 360 degrees translating
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back-flip [20]. The results show that the VPP actuator structure makes the quadcopter
more flexible and well balances the control complexity and manoeuvrability.

Compared to fixed-pitch propellers, VPPs have higher thrust change rate, higher
actuator saturation limitation and the ability to provide reversed thrust. These
features enhance the manoeuvrability of VPP quadcopters [21]. The ability of
autonomous flip and inverted flight indicates that the VPP quadcopter has high
manoeuvrability when flying in complex and harsh environments. Compared with
ordinary quadcopters, its manoeuvrability is more practical in enhancing flight safety.

Although the high complexity of the VPP quadcopter structure increases the
cost and difficulty of manufacturing and maintenance of the quadcopter system,
the benefits of rapid response control of torque and thrust are more valuable for
recovering from disturbances. The good recovery ability of the VPP quadcopter
indicates that the system has strong stability in the face of safety-critical tasks.

These advantages propose that the VPP quadcopter meets the targets of this
project, which is to improve the safety, mobility and stability of exciting quadcopters.
The hardness of designing a suitable controller for this complex actuator can be
solved by using modern control algorithms. As a result, the VPP quadcopter is very
suitable for this project.

However, this VPP actuator structure shown in Fig. 2.5(e) will cause problems
such as the deformation of the motor shaft, large vertical space occupation and the
slow responding speed. Therefore, a helicopter tail rotor structure is much better
where the servo is connected to a mechanical device that slides on the motor shaft
and the connection structure controls the propeller pitch angle, where the figures are
shown in Fig. 2.6.

In addition, based on the structure of helicopter tail rotor, the VPP quadcopter
can use a central motor to power all the propellers, which is called centralized-
powered variable pitch propeller (CVPP) quadcopter [61]. Correspondingly, the
VPP quadcopter with each propeller powered by an independent motor is called a
separated-powered variable pitch propeller (SVPP) quadcopter. The comparison
between SVPP and CVPP quadcopters is shown in Fig. 2.7. Because the CVPP
quadcopter can use a gasoline engine to power the whole system, the short flight
time caused by battery life is not a problem any more (the gasoline-engine CVPP
quadcopter can fly for almost four hours according to [62]). Meanwhile, both
CVPP ans SVPP quadcopters can achieve this flipping flight because their VPP
structures are the same. However, compared to SVPP actuators, CVPP actuators
can only change the pitch angle to control the thrust and torque which impair its
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(a) (b)

(c)

Figure 2.6. The VPP structure comparison between helicopter tail rotor and VPP
quadcopter actuator where (a) is the VPP mechanism on VCTRC 450 helicopter
tail rotor, reprinted from [60], (b) is the actuator mechanism of a CVPP quadcopter
taken by the author, and (c) is the VPP mechanism on an SVPP quadcopter that
applied from a fixed-wing aircraft, reprinted form [22].

manoeuvrability [63]. In a nutshell, both two types of VPP quadcopters have their
own merits, the specific choice of the VPP quadcopter depends on the needs of the
application.

2.1.4 Actuator Control Comparison

There are three actuator configurations widely used in VTOLs including the main
actuator for helicopter main rotor system, actuators for ordinary quadcopters, and
actuators for VPP quadcopters.
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(a)

(b)

Figure 2.7. The VPP quadcopter comparison based on the propeller-motor types
where (a) shows a CVPP gasoline-engine quadcopter prototype, reprinted from [62]
and (b) shows an SVPP quadcopter prototype, reprinted from [64].

The main rotor system of the helicopter is constructed by an active shaft and
several propellers. The shaft is connected to the engine and it rotates at a fixed speed.
The propellers are rigidly fixed to the main rotor hub (connected with the shaft)
and the pitch of the propellers can be adjusted by a swash-plate. The swash-plate
controls the pitch and roll of the helicopter main rotor by basically mechanically
connection, while the pitch angle of the propellers of the main rotor will be able
to achieve the varying angle criterion of the propellers. The swash-plate will tilt
forward when the control command calls for the helicopter to fly forward, which
means the propellers can tilt at a positive pitch angle at the rear and a negative
angle at the front portion of the rotor disk to provide forward power. Therefore,
the dynamical control of the helicopter highly depends on the control of propellers
pitch angles. The control of the swash plate requires at least three servos and the
autopilot design has to be established with the complex dynamical model. Although
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Figure 2.8. The basic components of a typical quadcopter system.

the automatic control design of the helicopter actuator is very complex, this control
design also provides the helicopter main actuator with great manoeuvrability.

The actuator structure of a common quadcopter is usually a direct connection
between the propeller and the motor, and thus has the advantage of mechanical
simplicity. However, since quadcopter dynamics control usually relies on the change
of rotational speed to achieve, the manoeuvrability is poor compared to the other
two types of actuators, especially for large scale aircraft.

VPP actuator is a hybrid structure that compromises the merits of helicopter
and quadcopter actuator structures. It can be controlled by the rotation speed of
the propeller and by its propeller pitch angle. Unlike the helicopter main actuator
that can control the pitch angle of each propeller individually, the VPP actuators are
simplified to control only the pitch angles of all propellers simultaneously. This not
only greatly reduces the mechanical complexity of the actuator, but also preserves
its manoeuvrability, such as the ability to rapidly achieve thrust changes and the
ability to provide thrust in either positive or negative direction. Moreover, similar to
ordinary quadcopters, VPP actuators can change their rotation speed to optimal
control themselves to reach the desired dynamics.

In summary, the variable pitch control is a hybrid control includes blade pitch
angle and rotating speed. It can achieve a good balance among the control complexity
of mechanical, electronic and programming.

2.1.5 Summary

Overall, a quadcopter control system usually contains several subsystems includes
a guidance system, state estimation and perception system, decision and planning
system, control system, power and dynamic system and fault detection and isolation
system. The relationship of the subsystems is shown in Fig. 2.8.
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These subsystems can be divided into 3 parts, namely, perception, decision-making
and dynamics. For the perception part, a global visual motion capture system (like
Vicon) can provide accurate states feedback indoors. For outdoor environments, the
multi-sensor fusion system can be used to combine IMU, Global Positioning System
(GPS) and vision systems to obtain its attitude and position instead.

The decision-making subsystem is the brain of the quadcopter which designs the
control signals for the dynamic system according to the tasks and the states feedback.
The computation speed depends on the processor performance and the algorithm
complexity. Since the computation delay will directly affect the control bandwidth
of the system, the faster the decision-making subsystem calculates, the higher the
control bandwidth is.

A good quadcopter dynamics should have a high control bandwidth and can
thereby quickly follow the fast-changing command inputs. The higher the control
bandwidth, the stronger the ability of the control system is to reproduce rapidly
changing signals, and the shorter the response time of the dynamic system has. In
addition, the stability of hovering and the range of the maximum thrusts are also
very important.

2.2 Quadcopter Control Theories

2.2.1 Ordinary Flying Control Algorithms

The most basic algorithm is proportional integral derivative (PID) control, which is
now widely used in practice [65]. The PID controller uses feedback error as the input
to minimize the error value by using three parameters: proportional parameter (P),
integral parameter (I), and derivative parameter (D). The equation can be explained
as: proportional value multiplies the state difference now, the integral value used for
the state error from the past and the future overshoot depending on derivative value.
PID controller is the most basic way to control the quadcopter such as [66–68].

There are several ways to improve this basic controller, such as the fuzzy PID
presents in [69] and fault-tolerant fuzzy gain-scheduled PID in [70]. In recent years,
machine learning becomes popular and powerful such as masting the game of Go
with only reinforcement learning (RL) [71]. After that, the idea of combining neural
networks and PID comes out. In [72], the neural network assisted computationally
simple PID is given.
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Optimal control is a classic control law developed based on the works of Pontrya-
gin’s maximum (or minimum) principle and dynamic programming [73, 74]. The
control strategy relies on the knowledge of the system dynamics or models [75]. The
control target of the optimal control theory is to minimize the desired objective
function over a certain period of time. One of the most commonly used optimal
targets is to minimize the energy cost [76].

Moreover, when a quadcopter is hovering or near hovering (flying at a low speed
with small pitch and roll angles), the dynamic model can be approximately linearised
into a linear model which can be represented by a set of linear differential equations
via the first-order Taylor expansion. By designing a quadratic objective function,
the control system can be regarded as a linear quadratic Gaussian (LQG) problem.
Therefore, an LQG controller that combines a Kalman filter and a linear quadratic
regulator (LQR) can be designed. According to the separation principle, the Kalman
filter and LQR controller can be designed separately. LQR is a typical optimal
control method that was designed to solve to problem of finding an optimal action
from multi possible options in a linear model [77]. The basic idea of this algorithm is
to reduce the cost function of the state space equation by using the weight parameters
provided by the user. There are many objective functions for different goals. Some
of the researchers want the quadcopter to be highly energy-efficient, while other
researchers want to achieve a balance between accuracy and efficiency [78].

However, it shows that there is not a huge difference in the effectiveness of the
control system for a quadcopter platform when the same feedback environment is
given to PID and LQR controllers [79]. All of them can have a good performance
when applied to an indoor micro quadcopter [80], while the LQR controller has a
better robustness performance in the comparison [81]. We use this algorithm in
Chapter 4 of this thesis.

Normally, the linear control law is only valid near the equilibrium point [82]. To
extend the applicability of the controller, the quadcopter system can be modelled as
a linear parameters varying system. Then a linear parameter varying controller is
designed to control the quadcopter attitude and validate in the practical environment
[83].

Since the quadcopter system is nonlinear, the controllers designed based on
linearised models usually only have good control performance near the equilibrium
point [84]. Therefore, more algorithms studied based on nonlinear UAV dynamics
have been proposed. Sliding mode control (SMC) is one of the most widely used
nonlinear methods in quadcopter controller design. The basic idea of SMC is to
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generate several discontinuous control structures and switch among them based on
the states. This algorithm has been validated on a Qball-X4 quadcopter [85].

Besides, many nonlinear methods can transform a nonlinear system into an
equivalent linear system and then design a linear controller, such as input-output
linearisation, full state linearisation [86], feedback linearisation [87] etc. For example,
the full-state linearisation can be used to simplify the quadcopter model to control
the system with the linear control method [88]. Feedback linearisation can be used
for control strategy designing to handle the non-linear dynamic behaviour [89].

In addition to the control algorithm improvement, quadcopter dynamic modelling
has been improved as well. Since Euler angles suffer from singularities, the quaternion
is, therefore, a good substitution to represent the rotation of a rigid body. Quaternion
based controllers are globally nonsingular and have been validated in simulated
quadcopter dynamics [90].

Usually, a quadcopter task requires the aircraft to move from one position to
another with constrained conditions. As a result, an entire quadcopter controller
requires a path plan generator in addition to an onboard controller. Path plan
is a method that can guide-way to the quadcopter [91] which is widely used in
quadcopter control systems. The dynamic control methods investigated above can
be used together with path planning algorithm [92]. It is a high-level controller of
a quadcopter that generates a geometric path passing through some pre-defined
key points and connected the initial to final position [93]. A good path generation
algorithm can reduce the movement error and increase the efficiency [53].

2.2.2 Fault Tolerant Control

In addition to the normal flight control methods mentioned before, safety-critical
quadcopter control is also important in the future applications. According to different
damaged parts, there are many different types of system failures, including actuator
fault (effectiveness), signal fault (uncertainty), sensors fault (no feedback) and plant
fault (dynamics changed), etc. The actuator fault also has many different situations
depending on the sources of fault (signals or motors), number of damaged motors
and the fault level of them (loss of effectiveness). Depends on the varying degrees
of destruction, the dynamic of the quadcopter will be affected, which will cause
the controller designed for the original quadcopter dynamic to become invalidated.
Such a situation will thereby endanger the quadcopter and the passenger. Since the
quadcopter failure during operation is unavoidable, a controller design for such a
consideration is required.
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(a) (b)

Figure 2.9. System structure comparison of FTC algorithms, where (a) is PFTC and
(b) is AFTC.

Fault-tolerant control (FTC) is a method to solve the problem of the system
fault. FTC is a set of methods that can increase the availability and safety of
the quadcopter when faults happen and are especially necessary for future passage
transportation and emergency rescue fields. There are two main types of algorithms
in FTC systems, which are active FTC (AFTC) and passive FTC (PFTC) [94].

PFTC is normally considered as a robust controller that can accommodate
actuator failures without receiving feedback from the sensor, shown in Fig. 2.9 (a).

PFTC is more direct to accommodate the fault and keep the system stable
by treating faults as disturbances, which has been applied to quadcopters such as
feedback linearisation approaches [95, 96]. However, the fault-tolerant capability of
PFTC is limited, because the system fault is unknown, and the PFTC controller is
the same. Different from that, AFTC can set up alternative controllers for different
situations [97].

AFTC is a method of switching a normal controller to a prepared emergency
controller when faults are detected, shown in Fig. 2.9 (b). Normally, an AFTC
system includes not only the reconfigurable controller part but also the fault detection
and isolation (FD / FDI) mechanism. Since the system knows what faults happen,
corresponding control methods can be applied to the system [98, 99]. With the
development of machine learning theory, a AFTC is designed through neuron network-
based control method [100]. Due to the reason that an AFTC contains two parts
(FDI and fault controller), it may delay the time of fault compensation and reduce
the stability and safety of the system [101].

In addition to the overall AFTC design, some researchers focus on one part of
AFTC, that is, the reconfigurable fault controller. Sun et al. implement a triple
loop controller to control a quadcopter fly at high speed (9 m/s maximum) with
loss of a single motor in reality [102]. Furthermore, some researchers considered
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more complex situations, such as two and three actuators failure. The algorithm is
designed to control the malfunctioned quadcopter quickly spin around a designed
axis and thereby holding its position [26]. It is noticeable that when the adjacent
actuators are at fault, the quadcopter is considered as one actuator available situation.
However, due to the quadcopter platform limitation, the faulty quadcopter gives up
control for the attitude. This will cause the quadcopter to spin during flight. With
the help of the VPP quadcopter platform, such a problem will be alleviated to some
extent in this thesis.

Overall, FTC can reduce the risk of safety hazards of the malfunctioned aircraft
and plays an important role in the safety-critical research. Since there are many
types of VPP quadcopter failures, this project will focus on the most common
circumstances, one actuator failure including the stuck of propeller and completely
broken. Furthermore, it is also analysed that the loss of two adjacent actuators
situation are based on the simplified model which makes the future development of
the safety-critical quadcopter possible. As a result, we use FTC in Chapter 5 of this
thesis.

2.2.3 Manoeuvrer Control Algorithms

In addition to controlling quadcopters near the hovering equilibrium, manoeuvring
flight of quadcopters is also a hot research field.

Controller Design

For the first time, the research of quadcopter stall turn aerobatic manoeuvre flight
was realized based on the STARMAC platform [47]. They find that the quadcopter
has different aerodynamic effects when running at high speed and therefore a thrust
compensation control is presented. The results show that the compensate algorithm
can reduce the tracking error and is more conducive to performing manoeuvre flight.
Later, the same research group presents an autonomous backflip manoeuvre [48].
They divide the whole action into three modes (impulse, drift and recovery) and
analyse the mode switching algorithm based on different angle speed to ensure a
safe transition between different modes. The quadcopter first reaches the desired
states (enough backflip rotation speed) in the first mode. Then, it will turn off
the rotors in the drift part and rotating by inertia to achieve a backflip manoeuvre.
After the backflip, the recovery controller will bring the quadcopter back to the
stable. The algorithm is demonstrated on STARMAC platform in a practical outdoor
environment shown in Fig. 2.10 (a). However, this algorithm is workable but not
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robust nor intelligent. The performing result highly depends on the parameter
settings and the quadcopter motors are turned off when the quadcopter enter the
drift mode. All these shortages lead to successful but unsafe performance.

In addition, a research based on a planar quadcopter model to achieve a multi-flip
manoeuvre within a 2D plane is proposed [49]. The basic idea of the algorithm is
to design a five-step action with five parameters and then update the parameters
via policy gradient adjustment. This multi flip motion can be implemented on a 3D
practical quadcopter by applying iterative learning control, shown in Fig. 2.10 (b).
Similar results show that the controller designed based on a 2D planar quadcopter
can be applied to a 3D practical environment [103]. This algorithm can improve the
control performance by learning from working in a repetitive mode. Moreover, a
time-optimal control method is applied to study the shortest time trajectory between
two states on a 2D plane [104]. All these studies imply that when studying a 3D
motion but with 2D features, we can first simplify the 3D model into 2D model
and then design a controller within a 2D plane. Finally, we can migrate the whole
controller to a practical environment to achieve target performance.

Like ordinary flight controllers, because the quaternion model solves the singularity
of the Euler angle model, it is widely used in manoeuvrer flight control. However,
quaternion model has its own problem, that is, one rotation can be represented by
two different quaternions, which is called three-sphere double-covers 3D rotation.
This may cause the unnecessarily large rotation of the quadcopter when quaternion
based controllers are used [105]. Therefore, a control algorithm based on SO(3) to
control the attitude of the quadcopter is proposed [106].

To achieve a better control performance of the quadcopter, the geometric control
is given out [107]. Since the quadcopter has 4 input DOFs, this algorithm designs
a geometric controller that can control 3 position variables of the airframe and a
body-fixed axis direction. This method changes the model of the quadcopter from a
special orthogonal group in three dimensions (SO(3)) to a special Euclidean group
in three dimensions (SE(3)) to achieve almost global controllable (initial attitude
error is less than π

2 ). Geometric control uses a rotation matrix to define attitude
tracking error and thereby design a controller. The results show that the quadcopter
can perform complicated manoeuvres [108].

Trajectory Planning and Generation

In order to achieve high manoeuvring flight, a normal path planning algorithm
is not good enough. Therefore, trajectory planning and generation algorithm is
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10. Examples of quadcopter projects that have good manoeuvrability. (a)
shows the backflip manoeuvrer performed in an outdoor environment by a Stanford
quadcopter, reprinted from [48], (b) shows the multi-flip manoeuvrer, reprinted
from [103], (c) shows a quadcopter performing inverted pendulum and pole balance,
reprinted from [31], (d) shows the inverted flip performed by an SVPP quadcopter,
reprinted from [21], (e) shows the manoeuvrers that quadcopters passing through
windows, reprinted from [29], and (f) shows the ball juggling by a customized
quadcopter equipped with a racket, reprinted from [30].

considered, which contains path planning and time constraints [109]. Since the
trajectory planning algorithms not only generate the kinematic plan but also the
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time plan at each keyframe, they can be used to optimise the trajectory by designing
an objective function. The objective is to design according to different targets,
such as minimum time, energy, jerk etc. There is also a method that can find a
time-optimal trajectory to increase the path generating speed [110, 54]. Therefore, a
reliable and reasonable planned trajectory can largely enhance the performance.

To have an accurate trajectory tracking performance, a precise sensing environ-
ment is needed. The ETH D’Andrea group uses a rapid and accurate quadcopter
platform. The high-order system dynamics of the motor are considered to be ignored.
Then, the rotational dynamics of the quadcopter can be regarded as a rapid response
system. The angular acceleration and corresponding thrust can always follow the
given command. Therefore, the researchers can design a controller that aims to
control the angular velocity of the quadcopter, and directly plan the angular velocity
trajectory of the aircraft. Relying on a precise positioning system, the control system
could estimate the motion, the target impact position and the corresponding time.
Then, the trajectory optimization system can plan a reasonable trajectory for the
quadcopter to move from an initial state to the target state (contains pitch and roll
angles, velocity towards the ball and position coordinate) at an estimated time. As
a result, the presented control systems can allow the quadcopter to juggle a ball [30]
(as shown in Fig. 2.10 (f)).

Besides, researchers form ETH also study how to balance an inverted pendulum
on a quadcopter [31] (shown in Fig. 2.10 (c)). Optimal control and trajectory plan
are used together to catch the throwing pole and then keep balance with it. In
general, it is found that the trajectory plan is a very important research area that
can lead to outstanding manoeuvre performance. The key of their research is to plan
a reasonable real-time trajectory for the quadcopter to follow by using an accurate
indoor vision capture system.

Based on the geometric control theory, researchers from Pennsylvania University
design a controller and trajectory generation algorithm that can control a quadcopter
to implement aggressive manoeuvre motions such as flying through windows and
vertical perching [29], show in Fig. 2.10 (e). It is shown in [29] that, the controller
and trajectory are designed separately, and a low latency experimental environment
similar to Flying Machine Arena (FMA) is provided to reduce the error between
the target trajectory and the actual trajectory. They design a full state tracking
controller via differential flatness. A differential flatness system is a dynamic system
that can use a group of outputs of the system and their derivatives to represent
all the states and inputs. By choosing a group of reasonable output variables, the
system dimensions can be effectively reduced. Furthermore, the motion plan of the
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states and the trajectory constraints can be mapped to the flat output space to plan
the optimal trajectory and thereby mapped back to the original dynamics. This
method reduces the calculation time of the trajectory optimization so that it can be
implemented in real-time in practical applications.

Based on this foundation, a trajectory optimization algorithm is designed which is
called minimum snap trajectory generation. The basic idea is to find a trajectory that
can minimize the objective function of snap (the fourth derivative of position and
yaw states of each keyframe) and enable the quadcopter to fly through each keyframe
smoothly. Moreover, by setting the target states of keyframes as constraints, the
trajectory can guide the quadcopter to perform desired motion at certain keyframe
positions.

As can be seen from the previous investigations that manoeuvring control is an
important research field in quadcopter researching. This is mainly because that,
with the need for aerial tasks increased, the requirements of quadcopters becomes
higher. It requires the quadcopter to improve its performance in different aspects to
increase employability. However, in most of these investigations, the quadcopter is
uncontrollable during the manoeuvring. Other studies that use trajectory planning
also have shortcomings. For example, the control system need to know the flying
path in advance for planning instead of generating manoeuvrers in time. But in
most practical situations where manoeuvring is actually required, such a path is not
always available. Therefore, in order to overcome the shortcomings of the existing
manoeuvring controllers, a robust controller that can perform controllable manoeuvre
in time is needed. To the author’s knowledge, a learning-based controller can use
helicopters to achieve such a goal, thereby proposing a new direction for the current
study.

Learning Based Algorithms

Normally, a controller design needs to analyse the dynamic model of the quadcopter.
An accurate quadcopter model is usually very complicated and thereby hard for con-
troller design when considering gyroscopic effects and aerodynamic effects. Therefore,
learning-based algorithms aim to enhance the capabilities of controllers designed
based on simple models or generate controllers by themselves.

Iterative learning control (ILC) is a typical controller improvement method used
in a repeatable task, such as a quadcopter follows a certain trajectory. For such
a task, a controller always yields the same error each time. The objective of ILC
is to help the original controller have a better performance by adding a correction
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(a) (b)

Figure 2.11. Examples of UAV projects that have good manoeuvrability or recover-
ability based on RL algorithms where (a) shows the manoeuvrers performed on a
Stanford helicopter through inverse RL, reprinted from [114] and (b) shows the hand
throw recovery implemented on a ETH quadcopter through RL, reprinted from [36].

signal to the controller output and update the signal repeatedly according to the
error [111].

ILC has been widely used in nonlinear system controller designs such as enabling
a quadcopter to perform the flip manoeuvre with a simple model [103]. Moreover, a
quadcopter can learn to fly aggressively through the tunnel while avoiding obstacles
via using ILC for navigation [112]. Unlike other machine learning controllers, the
ILC plays the role of augmenting and tuning the control signal [113]. Since ILC does
not have a lot of parameters to train, it can quickly converge.

Despite the control theory, machine learning can also implement UAV manoeuvres.
A machine learning-based control system that enables the helicopter to teach itself to
fly several manoeuvres (as shown in Fig. 2.11 (b)) is developed. It learns to perform
the same actions from other pilot controlled helicopters [114]. Since helicopters
and quadcopters have similar dynamic models, the control algorithm applied to
helicopters can be regarded as the proof that machine learning has the ability to
control the manoeuvring flight of quadcopters.

Furthermore, with the development of machine learning, a quadcopter has been
trained to learn how to recover from random initial states (with random initial
translational and rotational speed) [36], shown in Fig. 2.11 (b).

These machine learning-based controllers are designed by model-free algorithms
which do not require an accurate dynamic model. Due to the self-leaning ability, the
machine learning controller will have human-level control performance in the future.
This algorithm is presented in Chapter 6 of this thesis.
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2.2.4 Summary

In recent years, the control algorithm has developed rapidly, and the current quad-
copter flying performance has made great progress compared with the one in the past.
Relying on geometric control and trajectory planning, the quadcopter can now almost
achieve smooth control in the full SE(3) space, although this performance requires
an indoor system that provides accurate perception and rapid control response.
However, when using such a quadcopter in actual outdoor applications, we cannot
provide the same experimental environment, a robust and rapid response control
algorithm is needed to develop in the future. To achieve human-level performance,
we regard machine learning as its future development direction because it can it-
eratively improve control performance during multiple flights. Moreover, with the
development of machine learning, more attention has been paid to applying such
an end to end method (directly connected the image input and the control output
through a network) to quadcopter control problems.

2.3 Machine Learning Algorithms

Machine learning is a general method that tries to let the algorithm learn by itself
from dataset. Because the algorithm has to learn from big data, it needs huge
computing power to support it. In recent years, due to technological developments
(improved data availability and increased computing power) in this field, significant
progress has been made in machine learning capabilities like good robustness [115].
In a general way, machine learning can be divided into several parts by different
situations as:

1) Supervised learning: This algorithm tries to extract and fit the relationship
between different data with the same label. A well-labelled training set is very
important for supervised learning. The solution is then validated in a testing
data set and can be further improved after being deployed.

2) Unsupervised learning: This method aims to cluster and distinguished the data
without being labelled. No labels are given to the training set for unsupervised
learning. The algorithm perceives the relationship within the data set in an
abstract way. Because there are no pre-defined labels, the solution can adapt
to the data autonomously.

3) Reinforcement learning (RL): Compared with the above two data analysis
algorithms, reinforcement learning is more like a controller. The training
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data are created by the states feedback of the interaction between the agent
controlled by the reinforcement learning algorithm and the environment. This
algorithm encourages the agent to achieve higher values according to the
pre-defined reward function.

It should be noticed that RL is more suitable to train a model to learn how to
behave when the environment can give feedbacks accurately [32]. Consequently, this
algorithm has been widely used in many different applications, such as, game theory
[116], autopilot [117], robot control [118] and also quadcopter fly control [119].

In particular, the agent needs to observe the environment and its states, and then
decides the action to achieve the desired goal. The agent is the active entity of the
RL algorithm. After that, based on the environment system feedback, the agent will
be rewarded or punished and therefore learn from the performance evaluation. In a
nutshell, RL is a type of algorithm that can learn the mapping function where the
input of the mapping function is environmental information, and the output is the
action. The evaluation of mapping the function performance is a designed function
based on the degree to which the goal is achieved.

Therefore, in this thesis, RL is more suitable than the others because controlling
a quadcopter is a typical environmental interaction problem. Here we use RL
algorithms within Chapter 6.

2.3.1 Markov Decision Process

The basic idea of the RL algorithm is to maximise the reward R with the agent
acting in the environment, knowing the current state (observation) and the action
[120].

This process can be abstracted into a Markov Reward Process (MDP) [121, 122]
4-tuple < S ,A,P ,R > by three steps together with Bellman equations [123]:

1) The subsequent state value s′ ∈ S is proposed by previous state s ∈ S and
action a ∈ A while there is no influence with previous states, where S is the
state set and A is the action set. There is a special state called the termination
state, after reaching this state, there will no more subsequent states. Then
collects all the states fo n steps {S0, A0, S1, A1, . . . , Sn, An}i and reward values
{R1, R2, . . . Rn}i by using the same policy π in a serial episodes i(i = 1 . . . N).
Here, lowercase letters indicate a specific state, action or reward, and capital
letters with subscript t indicate any of which at specific time t.
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2) The agent chooses the action a based on state s under the policy π(a|s). The
probability between states change can be described with value p(s′|s, a), where
p ∈ P .

3) According to the action taken, the agent will get a new state s′ and a reward
value r(s′|s, a). The discounted return after the time step t is given as

Gt =
n∑
t=0

γtRt+1,

where γ ∈ [0, 1] is the discount factor. In addition, according to Bellman
equations, state-action value function under policy π is given by

Qπ(s, a) = Eπ[Gt|St = s, At = a], (2.1)

and the state value function of s under policy π is given by

Vπ(s) = Eπ[Gt|St = s] =
∑
a

π(a|s)Qπ(s, a).

Here expectation Eπ indicates N episodes average value of G(s) under a certain
policy π. At the end, the agent aims to find a optimal policy π to maximize
the discounted return.

If the states transition probability model in MDP tuple is known, the process is
called model-based RL [124]. Otherwise, if the agent has to learn the states transition
probability, the process is called model-free RL. The agent can predict changes in
the next few steps before exploring the environment, and then plan based on the
environment model to reduce the number of interactions with the environment. This
method is suitable for the tasks where the transition of the state P is discrete such
as AlphaZero[125].

However, in most situations, the agent acting in the environment can not know
the probability and reward value of all the actions. If a RL algorithm is constructed
without this information, it is called model-free RL. The agent can no longer knows
the values of p(s′|s, a) and Qπ(s, a) but have to interact with environment and then
get the feedback to predict these values.

2.3.2 Discrete Action Space

Monte Carlo Method is a typical algorithm in order to solve this kind of situation.
This algorithm uses the average discounted return value Gt from multiple episodes of
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experience to estimate the state action value function Q(s, a) instead of V (s), which
is equivalent to the true value when the episode is large.

Although Monte Carlo Method can reach a good performance for unknown
environment exploration, it is still a low-efficiency algorithm because it has to update
the policy π after each full episode. The methods like Monte Carlo tree search
(MCTS) require high learning computation requirement [126] when facing continuous
controlling problems.

In order to improve the efficiency, a temporal-difference (TD) algorithm can be
applied. Instead of requesting a full episode reward, the TD algorithm uses one step
reward r to update the policy [127].

A typical TD RL algorithm named Q-learning [128] is a method that use greedy
action γmaxa′ Q(s′, a′) to update the policy by

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)], (2.2)

with α represents the learning rate. Because it use maximum action instead of old
policy, this makes it become an off-policy method [129].

Different from that, another TD RL algorithm named SARSA [130] which uses 5
sequenced values (state s, action a, reward r, estimate state s′ and, estimate action
a′) to update the policy by

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)].

SARSA is an on-policy algorithm because it only uses the original policy to calculate
Q(s′, a′) to update Q(s, a). In [131], a helicopter trained based on SARSA is able to
give an inverted flying performance.

When using relevant data to train the reinforcement learning neuron network,
the result performance of the training is unstable. Inspired by the biological research,
an experience replay program can enhance the learning performance [132]. The deep
Q-learning network (DQN) algorithm uses a reply buffer (replay memory) to store
the state and action information to break the time sequence. Every training time,
several random experience vectors (s, a, r, s′) are picked from memory (named batch)
as the training set. Moreover, DQN creates a mirror NN Q′ to temporarily hold the
NN updating. It separates the updating speed of running action-value function Q

and target action-value function Q′ to prevent overfitting. The target action-value
function Q′ will be updated after certain time rather than every trail. To enhance
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the training stability, double DQN train double Q NNs and select the less one to
reduce the overestimation to update the TD-error [133].

The DQN can achieve a good learning result in the Atari games [134]. In the
years 2016 and 2017, Google AlphaGo learned the Go game by reinforcement learning
methods and won the world’s rank number one player Lee Sedol in the Go match [135].
Research shows that the AlphaGo uses MCTS and DQN to achieve human-level
gaming performance [136]. However, these algorithms can only choose a discrete
output from the existing action space. Since the real control problems are often
high-dimensional, it is difficult to implement these algorithms in practical control
applications.

2.3.3 Continuous Action Space

Policy Gradient

To solve the problems shown above, that control output usually has to be a continuous,
another type of RL called policy based RL method is investigated. Policy gradient
(PG) methods select output action according to a policy function rather than a
value. Therefore, instead of using the action value function Q(s, a) to determine the
action, PG uses a probability policy function πθ(s, a) = Pr{a|s,θ} to indicates the
probability of selected action under states s and policy θ.

Similar to (2.1), a long term expectation value is proposed by

J(θ) = Eπθ
[r(s, a)] ,

which is expected to be high at the end [137]. In order to get the maximum value of
J(θ), the gradient decent of J(θ) is provided by

∇θJ(θ) = 1
N

N∑
i=1

[
T∑
t=0
∇θ log πθ(ai,t|si,t)

T∑
t=0

r(si,t, ai,t)
]
,

where N is the number of trajectories and T is the length of each trajectory. And
therefore, update the policy θ by

θ ← θ + α∇J(θ). (2.3)

In a nutshell, PG aims to increase the probability of positive rewards and reduce the
probability of negative rewards.
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However, the agent can not choose all the available actions during the training.
Some of the state-action trajectories can not give accurate exception value feedback.
It is hard for the algorithm to search all the actions within the continuous action
space.

To solve these problems, therefore, actor-critic algorithm is released [138]. It is
an algorithm that uses a policy gradient NN as an actor to act in the environment
and a value-based policy NN to evaluate the actor performance which is called critic,
where the sketch is shown in Fig. 2.12(a).

Because the critic is an off-policy training NN, the actor-critic algorithm is
able to have many agents work at the same time and update the policy reward
at the end of the episode. The asynchronous advantage actor-critic (A3C) comes
out in [139] to implement the idea. This is a great improvement because it can
greatly shorten the learning time and improve the stability of reinforcement learning.
This algorithm enables several actors to work independently and update the results
asynchronously to increase the batch size and also cut the relevance of the data
within the batch A3C can use multi-core working together which means the samples
are low correlated, shown in Fig. 2.12(b). In addition to this, the asynchronous
theory uses one multi-core CPU on the same machine to reduce the transfer cost
from multi-PCs cooperation in [140].

(a) (b)

Figure 2.12. Examples of Actor-Critic serial methods, where (a) shows the single
Actor-Critic structure (AC) and (b) shows the distributed Actor-Critic structure
(A3C) used for parallel computation.

Deterministic Policy Gradient

Inspired by the DQN and PG methods, the deterministic policy gradient (DPG)
uses deterministic value rather than the stochastic value used by PG to choose the
action, which has the same function also proved by [141]. This algorithm increases



36 Literature Review

the speed of action sampling if the action has a high dimension. More than this,
researchers prove that the model-free deterministic strategy through mathematical
derivation is exist [141]. After that, the deep neural network is applied to train
both the actor and the critic network by Deepmind called deep deterministic policy
gradient (DDPG) [33]. This algorithm is a widely used baseline for reinforcement
learning. It uses a separate target network to create two NNs (a target network and
an estimated network) in both actor and critic structures. It also uses soft target
update and batch normalization to further improve the performance. In Chapter 6,
DDPG was chosen as the target algorithm because it has a good balance between
program complexity and effectiveness.

Because the critic NN in DDPG uses the same value-based NN compared with
DQN, inspired by double DQN, a similar method can be applied to DDPG as well.
Therefore, a method named Twin Delay DDPG (TD3) uses double critic NNs to
decide the update value [142]. However, these deterministic policies has to design a
noise function with hyper-parameters to explore the environment which makes this
algorithm training slowly.

Stochastic Policy Gradient

Therefore, a new stochastic policy gradient algorithm called trust region policy
optimization (TRPO) comes out [143]. It uses the trust region to restrict the policy
update by adding KL divergence, so as to limit the differences between the new
and old policies and prevent the updates from being too divergent. However, the
calculation of trust region is complicated. Some researchers try to achieve the same
target of limiting the update step size through some simple tricks, such as using a
clip function, which is called proximal policy optimization (PPO-clip) [144].

This algorithm improves the data efficiency by ensuring that control training is
maintained within a certain KL divergence change. Almost at the same time, the
distributed proximal policy optimization (DDPO) has been put forward in [145]
based on the PPO and A3C. DPPO uses distributed computing learned from A3C to
speed up the learning process of PPO which makes it become possible to use parallel
computation for accelerated calculation.

Researchers implement a complete reinforcement learning-based quadcopter con-
troller that can stabilize the quadcopter from harsh initial state [36], which indicates
that the RL controller has strong robustness. They use the method based on DPPO
and enhanced the ability of exploration. The controller here is self-learning and
model-free. The controller learns how to keep stabilized within the simulation train-
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ing environment. After that, it is used to control a quadcopter in reality. Therefore
the successful quadcopter control performance can give a good reference of VPP
quadcopter controlling.

Other Related RL Algorithms

Due to the existing shortcomings of reinforcement learning methods, some researchers
have adopted the principles of reinforcement learning algorithms and combined with
other methods to develop learning based algorithms to achieve their control targets,
for example, inverse RL.

Typically, reinforcement learning agent explores the training environment under
the guidance of the reward function which is designed to reinforce the good action
of the agent (normally the larger the better) and punish its bad action. However,
there are some situations in reality where the reward function is unknown or difficult
to design, but the desired action can be shown. Inverse reinforcement learning is
developed to solve this problem. It has been shown that this algorithm enables the
helicopter to perform complex manoeuvres learnt from pilot [114]. This algorithm
first learns the reward function from the recorded manoeuvre flight experience and
then use the learned reward function to teach the helicopter to perform manoeuvres.
However, this method requires an expert helicopter pilot to perform this manoeuvre
action which also limits its use.

Unlike the RL that learns to be a controller, learning based algorithms can be
used to enhance the performance of the original controller as well. Due to the gap
between the reality and the control design, there will always be some errors and
differences in the practical use of the controller. It is useful to add a learning based
algorithm to the controller to correct these errors if such a control process is required
to be repeatable. Iterative learning control (ILC) is a system feedback controller used
in repetitive operations. In the loop, the system will perform the same action again
in order to improve tracking accuracy for the reason that the learning process uses
the previous tracking error to improve the control signal by subsequent iterations
[111]. The theory is feasible in a quadcopter 2D model such as [49]. The example
gives a triple-flip action to prove the improvement of agility. Since the RL controller
itself is also designed based on simulation, there is such a simulation-to-reality gap for
actual implementation. This method can help reduce the gap and help RL controller
to be implemented in the real world.
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2.3.4 Summary

Compared to the classic control laws, the reinforcement learning-based controllers
have several advantages: (i) less dependence on the controlled object model; (ii) less
controller parameter tuning difficulty; and (iii) self-improvement capability. Therefore,
it is undoubtedly a cutting-edge technology that has the potential to be implemented
in the real world. However, this method still suffers from several shortages [146, 147]:
(i) reward functions are often difficult to design, for example, a network learns
cheating rather than expected behaviour; (ii) the network architecture and other
hyper-parameters affect the performance; (iii) low migration ability, a trained network
can only be applied on one type of mission; and (iv) low sample efficiency, long
training time, high hardware performance requirements, for example, training a
RL network for Atari games requires hundreds of hours of play experience while
AlphaGo Zero requires 40 days of training to learn to play the game of Go from
scratch. Although RL has these shortcomings, its novel learning characteristics are
still worth looking forward to. From the relationship and development of RL methods,
shown in Fig. 2.13, it can be found that RL is moving in the direction of continuous
action space which is more close to reality. Moreover, RL is developing towards the
easy building, quick and stable convergence and better network migration capability.
Based on self-learning ability, reinforcement learning has great potential to improve
its own control performance after being deployed. Other algorithms, such as ILC,
can be adapted to help the RL controller overcome these shortcomings and become
robust. Overall, the use of reinforcement learning algorithms in control problems is
both a challenge and an opportunity.

2.4 Summary

In this chapter, we reviewed the development history and existing control methods
for quadcopters. Although researchers have tried different methods to improve the
control performance of conventional fixed-pitch quadcopters, the limit of the flight
performance could not breakthrough due to the intrinsic limitation of fixed-pitch
quadcopters. Therefore, we will study VPP quadcopters because it has high efficiency
under various flight conditions.
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Figure 2.13. The figure of RL algorithms development.
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3.1 Introduction

In this chapter, we will focus on the dynamics of VPP quadcopters. This chapter
first introduces the model of VPP actuators and validates its dynamical equations
by experiments. We construct a VPP actuator testbed that could be used to verify
the dynamic equations and parameters. The difference between two different types
of VPP quadcopters is discussed as well. Finally, the dynamical models of VPP
quadcopters are presented for both 3D and 2D cases.

3.2 Actuator Model

This section compares the dynamics of a conventional fixed pitch propeller and a
VPP.
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3.2.1 Fixed Pitch Propeller

An ordinary quadcopter actuator contains a fixed-pitch propeller and a brushless
motor. The propeller usually has two or three blades, depending on the thrust
demand. The propeller can provide more thrust under the same rotation speed with
more blades but will cause extra power consumption and noise. The propeller rotates
in the air mainly to produce thrust, which is parallel to the rotation axis. The torque
is the aerodynamic drag caused by the propeller rotation, which is in the opposite
direction to the rotation.

Assume the propeller is rotationally symmetric, the surrounding air around the
quadcopter is stationary relative, the motor runs near the rated speed, and the
thrust generated by the actuator has a linear relationship with motor rotational rate.
Normally a quadcopter actuator model can be describe as following dynamic model

T = CLω
2, (3.1)

M = CMω
2 + IM ω̇, (3.2)

where T represents the thrust provide by an actuator, M is the torque, ω is the
motor speed, CM is the drag coefficient, thrust coefficient CL and IM are inertia
moments of the rotor [148]. Most of the researchers ignore the effect of ω̇ as the value
is small [149]. Using a simple model of the motor [150, 151], the actuator thrust and
torque Eq. (3.1) can be simplified as

T = CLω
2,

M = CMω
2,

which is only an approximation for the fixed pitch propeller actuator.

Overall, as a kind of aerodynamic force, torque and thrust can be considered to be
proportional to the quadratic in the propeller angular velocity, where the coefficients
are determined by the propeller and environment properties.

3.2.2 Variable Pitch Propeller

The VPP mechanism is adapted from the tail rotor of the helicopter. A servo
can change the VPP pitch angle by pulling or pushing the connection, thereby
generating forces in either positive or negative directions, where Fig. 3.1 shows the
two force generation status of the VPP. Compared to ordinary quadcopter propellers,
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(a)

(b)

Figure 3.1. A VPP actuator can use spinning speed and propeller pitch angle to
change the required force and torque. A counter-clockwise rotating VPP generates a
positive force with a positive propeller angle (a) and a negative force with a negative
propeller angle (b). Both pictures were taken by the author.

this mechanism provides negative thrust, thus enhancing the agility and safety of
quadcopters.

Figure 3.2 illustrates the schematic structure of a VPP, where the rotating speed
is given by ωi and pitch angle is αi. Here i indicates the corresponding order of the
VPP. Assuming that the angle control can be reached instantly, the rotation speed
is relatively stable, and the pitch angle and rated speed can be controlled separately.
According to [152, 153], when considering the propeller pitch angle α, the overall
thrust and torque equations can be rewritten as

T = K0ω
2α,

M = K1ω
2 +K2α

2ω2 +K3ωα,
(3.3)

where K0, K1, K2 and K3 are lift and drag coefficient parameters related to the
practical aerodynamic properties of the VPP and the resistance of the motor.

The thrust generated by a propeller is generally determined in a number of ways,
including airfoil profile, blade length, number of blades, rotating speed and pitch
angle. For a ordinary quadcopter actuator, most of these parameters are already
determined at design time, and only the rotation speed can be used for control.
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αi

ωi

αi

Figure 3.2. The schematic structure diagram of a counter-clockwise rotating VPP.

In addition to changing the rated speed of the motor like a fixed pitch propeller
actuator, we can also modify the pitch angle of the VPP to adjust the thrust and
torque of the actuator. However, any change of the propeller pitch angle impacts the
motor dynamic and therefore affect thrust output. Still, this negative impact is so
small that the propeller pitch angle adjustment can quickly compensate for it.

3.2.3 Experiment Validation

To further analyse the VPP actuator performance and evaluate the simulation
equations from Section 3.2, we build a VPP testing hardware platform based on
RCbenchmark Series 1585 Test Stand, as shown in Fig. 3.3. The main VPP structure
is derived from a GARTT 450 helicopter tail rotor, which only retains the blade
drive and connecting parts. A SUNNYSKY x2305 brushless motor and a pair of
65 mm NACA 0012 propellers are used to rebuild the VPP mechanism. A DEKO
HV1295 digital servo is applied at the side to control the propeller pitch angle. The
servo and the brushless motor of the VPP actuator can be controlled independently.
Other connecting parts are designed according to the actual situation, and then 3D
printing technology is used to complete the production. All 3D printed mechanical
design parts are detailed in Appendix A.

The experiment platform can directly measure the torque (Nm), thrust (N),
rotation speed (RPM) and also power (W) of the actuator. The specifications of the
corresponding testing hardware platform are shown in Table 3.1.

Here, the accuracy of thrust and torque is given according to parameters of the
thrust sensor. Although the accuracy of the thrust sensor is generally higher than
this number, the accuracy will be reduced due to the effects of vibration during
the operation of the test stand. Because the blade pitch angle is the same as the
servo angle, we can define it based on the servo accuracy, which is 0.01 rad in our
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Figure 3.3. The VPP actuator testing platform developed by the author.

Table 3.1. VPP actuator test platform parameters.

Specification Min Max Accuracy Unit

Thrust -49 49 0.01 N
Torque -1.5 1.5 0.001 Nm
Power 0 250 2.5 W
Rotation Speed 0 30k 300 RPM
Pitch Angle -0.3 0.3 0.01 rad

experiment. Therefore, although the range limitation of thrust and pitch angle are
different, their accuracy is similar.

The power sensor accuracy is determined by the average deviation over the entire
detection range of the sensor, which is 2.5 W. The rotation speed range is tested
with a motor photoelectric sensor and the average accuracy is 300 RPM. However,
the accuracy of the photoelectric sensor is much higher when the target is rotating
at low speed than when it is rotating at high speed. It has better accuracy when
the target is moving in low speed. In our case, the maximum rotational speed is
11000 RPM, which is much smaller than the upper limit of the range the sensor can
measure into, so it can give a more accurate result.

According to the experiment preparation, the propellers used on the variable-pitch
actuator are symmetric, tapered, 65 mm diameter blades. A NACA 0012 airfoil
is chosen to model the propeller. Assume the propeller is rotating at 600 rad/s
which gives an operating Reynolds number of around 50,000. Using XFOIL [154]
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and QPROP [155], the coefficients used in Eq. (3.3) can be estimated and are listed
in Table 3.2 for reference.

Table 3.2. Estimated VPP aerodynamic coefficients

K0 K1 K2 K3

4.65 · 10−6 5.36 · 10−9 2.58 · 10−7 2.52 · 10−6

We set the maximum adjustable angle range of the propeller to 0.35 rad, which
is smaller than the stall angle by a safe margin. The stall angle of the variable pitch
propeller depends on the size of the propeller and also the running velocity. As the
size of the propeller and the speed increases, the adjustment range of the variable
pitch angle will become larger [62].

Therefore, we use the constructed experiment platform to test the thrust, torque
and also overall efficiency of the VPP actuator. The thrust and torque generated
at different motor speeds and propeller pitch angles according to requirements are
tested, where details are shown in Appendix A.

The thrust comparison and error between simulation estimation and experiment
validation are shown in Figs. 3.4 (a) and 3.4 (b), correspondingly. The torque
comparison and error between the simulation estimation and the experiment are
shown in Figs. 3.5 (a) and 3.5 (b), respectively.

Black dots are the points collected from the experiment and the colourful surface
is calculated by applying the parameters from Table. 3.2 to Eq. (3.3).

The result shows that the torque equation can fit the experiment very well,
but the force equation has some errors when the detected forces are large. The
difference may be caused by problems such as sensor accuracy, instrument vibration,
measurement error, propeller stall, and inaccuracy of the simulation model. The
symmetrical force and torque diagrams also show that the experimental results are
consistent with the predictions, verifying that the symmetrical propeller has similar
dynamic performance through positive and negative propeller pitch angles.

It is notable that, under our experiment environment, the torque is mainly affected
by the motor rotation speed, and the thrust can be adjusted by the motor rotation
speed and the propeller pitch angle. With a high rotation speed, the VPP can quickly
change its thrust and torque but with a large energy cost.

Moreover, we analyse the VPP efficiency by E = T/P , where P is the power of
the motor and T is the thrust. The efficiency graph is shown in Fig. 3.6 which shows
that when the pitch angle of the VPP actuator is within the adjustable range, the
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Figure 3.4. The comparison for the thrust of a VPP actuator between simulation and
experimental validation, where (a) is the comparison and (b) is the error between
them, with 20.4 sum squared error.

larger the angle and the smaller the motor rotation speed, the higher the efficiency.
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Figure 3.5. The comparison for the torque of a VPP actuator between simulation
and experimental validation where (a) is the comparison and (b) is the error between
them, with 0.0036 sum squared error.

The graph also shows that the stall propeller pitch angle of the actuator is a function
of the motor speed.



3.2 Actuator Model 49

0

0.01

0.02

1000

0.03

0.04

E
ff
ic

ie
n
c
y
 (

N
/W

)
0.05

0.2

Speed (rad/s)

0.06

500

0.07

Angle (rad)

0

-0.2

0

(a)

0.012895

0
.0

1
2
8
9
5

0
.0

1
2
8
9
5

0.012895

0.0
25791

0
.0

2
5
7
9
1

0
.0

2
5
7
9
1

0.025791

0.038686

0
.0

3
8
6
8
6

0.
03

86
86

0.038686

0
.0

5
1
5
8
2

0
.0

5
1
5
8
2

0
.0

5
1
5
8
2

0.051582

0
.0

5
1
5
8
2

0
.0

5
1
5
8
2

0.051582

0
.0

6
4
4
7
7

0.064477

0
.0

6
4
4
7
7

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Angle (rad)

0

200

400

600

800

1000

S
p

e
e

d
 (

ra
d

/s
)

(b)

Figure 3.6. The VPP actuator efficiency evaluation based on the experiment validation
where (a) shows the overall 3D view and (b) shows the detailed work efficiency of a
VPP actuator.

The relation among power, efficiency and thrust is shown in Fig. 3.7. It is notable
that when the VPP actuator generates the same thrust, different combinations
of rotation speed and propeller angle can result in different efficiency. Generally
speaking, within the rated range, the larger the propeller angle, the higher the
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Figure 3.7. The surface (from grey to white) of thrust and lines of efficiency (curves,
from green to yellow) and power (horizontal lines, from purple to blue), as a function
of propeller pitch angle and rotation speed.

efficiency, the higher the motor speed, and the greater the energy consumption.
Besides, it shows that the best work efficiency pitch angle of the propeller is around
0.28 rad and the best work efficiency motor speed is around 400 rad/s.

During the experiment, the vibration generated by the actuator becomes larger
as the motor speed increases, shown in Fig. 3.8, especially when the propeller pitch
angle is small. The excessive vibration generated by the actuator makes the actuator
become unsafe to use. Due to the reason that the CVPP quadcopter usually maintains
a rated propeller rotation speed within the flight, in order to ensure safety, the rated
speed has to be kept always within the working area, which may lead to efficiency
loss and manoeuvrability reduction. But this will not be a big problem for the
SVPP quadcopter. Because the SVPP quadcopter can independently change the
motor speed and propeller pitch angle of each actuator to maximize its efficiency
and manoeuvrability.

Overall, the experiment validates that Eq. (3.3) can be used to describe the
dynamic of the VPP actuator when both propeller pitch angle and motor rotation
speed are within the working area. Moreover, the torque and thrust equations
indicate that different combinations of speed and propeller angle can be used to
make the VPP run at the same target thrust.
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3.2.4 Actuator Comparison

In order to further compare the difference among quadcopters with different types
of actuators, the same parameters generated from the experiment are applied to
calculate the difference in response time of thrust requests for each type of actuator.
We assume that the dynamics of the actuator response is regarded as a second-order
model. Usually, the thrust control of the actuator is the main requirement. Assuming
that the initial states are with the subscript 0, the target states are with the subscript
t. According to Eq. (3.3), the equation for a VPP actuator to change from initial
states [α0, ω0] to the desired thrust Tt is given by

Tt = K0(α0 + ∆α)(∆ω + ω0)2,

where ∆ω and ∆α are desired changing state values. The running time t of achieving
the target thrust Tt from T0 is chosen as

t = max
(

∆α
Vα

+ tα,
∆ω
Vω

+ tω

)
,
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where Vω is the value of motor rotating speed acceleration (decided by motor), Vα is
the propeller angle changing speed (decided by servo), tα and tω are constants delay
parameters according to servo and motor, respectively. Therefore, the target force T
is a function of running time t, given by

T (t) = K0[α0 + Vα(t− tα)][ω0 + Vω(t− tω)]2. (3.4)

In order to analyse the control difference among these three types of quadcopter
actuator, we applied the parameters from our hardware platform and also and
referenced the literature [21], where the values are summarized in Table 3.3.

Table 3.3. VPP actuator technical specifications

T0 tα tω Vα Vω

0.25 N 0.003 s 0.001 s 10.47 rad/s 6833 rad/s2

Due to the reason that the VPP can individually change the pitch angle and
rotating speed, there are three ways to control the VPP to reach the desired thrust
and can be considered as three types of actuator:

1) Ordinary quadcopter actuator. It only controls the motor speed (∆α = 0) to
change the thrust which has a low delay time tω. However, with the size of the
propeller increases, the speed change will become slower.

2) CVPP quadcopter actuator. It only controls propeller pitch angle (∆ω = 0) to
change the thrust where it can also deal with the negative force target. Due to
the servo control, this method has a high delay time tα.

3) SVPP quadcopter actuator. It is a hybrid control mode where pitch angle and
motor speed can be controlled individually. This is a unique way that can
be used to have both advantages of the other two control modes but increase
the actuator mechanical complexity. Due to the control redundancy in this
way, the desired thrust and torque can be better adjusted. Furthermore, it
can obtain a specific torque (within achievable range) under a certain thrust
requirement by adjusting the corresponding rotation speed and propeller angle.

Because tα > tω, motor rotating speed will start to change before the servo begins,
which gives the control thrust threshold

Tthreshold = K0α0
(
[Vω(tα − tω)]2 + 2Vω(tα − tω)ω0

)
.



3.2 Actuator Model 53

When the desired thrust variation target is small where |Tt−T0| = |∆T | <= Tthreshold,
only motor spinning change ∆ω is enough to achieve the target force. Therefore,
when the actuator has a high control bandwidth and requires a small range of thrust
demand, the motor speed control has a better effect.

However, when the thrust variation target is large where |∆T | > Tthreshold, the
propeller pitch angle controlled actuator has better force acceleration performance
comparing with an ordinary actuator, shown in Fig. 3.9. The comparison between
Figs. 3.9(a) and 3.9(b) show that when an agile flight is desired, a configuration with
low propeller pitch angle and high motor speed is recommended. In order words,
this configuration can provide fast thrust response speed but its efficiency is low.
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Figure 3.9. Comparison between different initial settings, where (a) starts from
α0 = 0.1, ω0 = 733 is an efficient configuration and (b) starts from α0 = 0.2, ω0 = 518
is an agile configuration.

The thrust response simulation indicates that compared with ordinary quad-
copters, VPP quadcopters can quickly achieve the thrust command and provide more
control redundancy for the system. Furthermore, propeller pitch angle control enables
the quadcopter to provides a negative force which highly expands the control range
and also provides better dynamic performance. In addition, research shows that
when the control bandwidth is high (over 50 Hz), compared with CVPP quadcopters,
SVPP quadcopters have the best control performance among these three types of
quadcopters.

Overall, while it has obtained VPP actuators with better manoeuvrability from
the helicopter, the VPP quadcopter exhibits great potential in many applications
that require high-performance flight. On the other hand, VPP actuators also bring
other problems that are different from conventional ones to the VPP quadcopters,
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such as propeller angle stuck or large vibration during flight. This stems from the
extra mechanical structure that can generate rapid thrust change. In general, this
shows that although the VPP actuator can benefit the quadcopter for better agile
flight, it requires extra system designs to guarantee its safe performance.

To further explore the performance of the VPP quadcopters, including both
separately-powered and centrally-powered, general dynamic equations based on Euler
angles and rotation matrix are constructed and compared in the following.

3.3 Quadcopter Euler Model

3.3.1 Thrust and Torque Model

Configuration Comparison

Normally, a VPP quadcopter has two different structure configurations, as shown
in Fig. 3.10. To facilitate the follow-up description, we use a “X” configuration
structure, where the quadcopter heads to the positive direction of the x-axis, as
shown in Fig. 3.10 (a). The propeller number is defined from 1 to 4 through clockwise
direction, where propeller P1 is on the x-axis.

Define the propellers P1 and P3 rotate clockwise and propellers P2 and P4 rotate
counter-clockwise to offset the propeller rotation torque. Define the torque and
force generate by each propeller according to Eq. (3.3) as Mi and Ti where i is the
propeller number. Define the force and torque act on the quadcopter are F and τ ,
we can construct the input of the quadcopter system as

F
τ

 =


T1 + T2 + T3 + T4

l(T3 − T1)
l(T4 − T2)

−M1 +M2 −M3 +M4

 , (3.5)

where l is the half length of the diagonal wheelbase of the VPP quadcopter.
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Figure 3.10. The schematic figures of two different quadcopter configurations where
(a) is the plus configuration and (b) is the cross configuration.

When the quadcopter structure configuration changes to “X”, shown in Fig. 3.10 (b),
Eq. (3.5) changes to

F
τ

 =



T1 + T2 + T3 + T4√
2

2 l(−T1 + T2 + T3 − T4)
√

2
2 l(−T1 − T2 + T3 + T4)
−M1 +M2 −M3 +M4


.

Define a virtual input vector u instead of the actual control inputs F and τ by

u = [u1, u2, u3, u4]T = [F, τ ]T . (3.6)

In the following section, we will use the plus configuration quadcopter as the
standard, and the result is no different than the cross configuration.

VPP Quadcopter Comparison

Since there are two different kinds of VPP quadcopters according to the way of
propeller transmission mode, the overall force and torque dynamic equations of the
actuator can be different. Suppose the target quadcopter is a CVPP quadcopter,
where the spin of all propellers is powered by a central motor placed at the centre
of the quadcopter [156]. In this case, all the propellers have the same and fixed
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spinning speed ω0, which gives

T = K0ω
2
0α := b0α,

M = K1ω
2
0 +K2α

2ω2
0 +K3ωα := b1 + b2α

2 + b3α,
(3.7)

where b0 = K0ω
2
0, b1 = K1ω

2
0, b2 = K2ω

2
0, and b3 = K3ω0 are constant parameters.

Substituting Eq. (3.7) and (3.6) into Eq. (3.5) gives

u1 =b0(α1 + α2 + α3 + α4),

u2 =b0l(α3 − α1),

u3 =b0l(α4 − α2),

u4 =b2(−α2
1 + α2

2 − α2
3 + α2

4) + b3(−α1 + α2 − α3 + α4).

(3.8)

In addition, when using a CVPP quadcopter under normal circumstances, the fixed
spinning speed ω0 will be uncontrollable to make it running efficiently. Therefore,
only 4 propeller pitch angles can be controlled for ordinary use. However, when the
CVPP quadcopter is in an emergency situation, the spinning speed ω0 will become
controllable.

Consider another type of VPP quadcopter, where the spin of each propeller is
powered by an independent motor, named SVPP quadcopter. In this case, the
spinning speeds of different propellers can be different [20], therefore, each actuator
of the quadcopter can automatically adjust its own spinning speed and propeller
pitch angle according to the requirements. Substituting Eq. (3.3) and (3.6) into
Eq. (3.5) gives

u1 =K0(ω2
1α1 + ω2

2α2 + ω2
3α3 + ω2

4α4),

u2 =K0l(ω2
3α3 − ω2

1α1),

u3 =K0l(ω2
4α4 − ω2

2α2),

u4 =K1(ω2
3 + ω2

1 − ω2
2 − ω2

4) +K2(ω2
3α

2
3 + ω2

1α
2
1 − ω2

2α
2
2 − ω2

4α
2
4)+

K3(ω3α3 + ω1α1 − ω2α2 − ω4α4).

(3.9)

Overall, a comparison between an SVPP quadcopter and a CVPP quadcopter is
proposed in Table 3.4 to give a clear statement.
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Table 3.4. SVPP and CVPP comparison

CVPP SVPP
Power Mode all of four VPPs are powered

by the same motor placed in
the centre of the quadcopter,
connected by belts

an SVPP actuator can control
its rotating speed (and pro-
peller angle) separately

Control Inputs propeller angle αi rotating speed ωi and propeller
angle αi

Thrust Ti = b0αi Ti = K1ω
2
i αi

Torque Mi = b1 + b2α
2
i + b3αi Mi = K1ω

2
i +K2ω

2
i α

2
i +K3ωiαi

Parameters b0 = K0ω
2
0, b1 = K1ω

2
0, b2 =

K2ω
2
0, and b3 = K3ω0

3.3.2 Rigid Body Model

The overall dynamics model of the VPP quadcopter is the same as that of the fixed-
pitch propeller quadcopter. We make the following assumptions when modelling the
quadcopter dynamics:

1) The quadcopter is a rigid body with a symmetrical physical structure and
uniform mass distribution.

2) The moment of inertia is constant.

3) The earth is regarded as a horizontal plane.

4) Gravitational acceleration does not change with height.

5) The gyro effect should be ignored.

Two frames are used to build the dynamic model: a global frame {Og, xg, yg, zg}
and a body frame {Ob, xb, yb, zb}, where Ob is fixed to the centre of the quadcopter,
which is shown in Fig. 3.11. Og is related to Ob by a position vector [x, y, z]T . Angle
vector [ϕ, θ, ψ]T represents the orientation angle from body frame to global frame,
using yaw-pitch-roll notation. The angular rate in the body frame is given by [p, q, r]T .
The linear speed in global frame is given by [u, v, w]T . Therefore, the state vector
can be constructed as x =

[
x, y, z, ϕ, θ, ψ, p, q, r, u, v, w

]T
.
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Figure 3.11. The schematic diagram of a quadcopter.

Translation Model

Since the quadcopter does not have a significant lift surface, it seems that the air
resistance can be expressed by the following formula

FD = −kβ|v|v, (3.10)

where kβ is the linear air resistance coefficient. Define the mass of the CVPP
quadcopter as m, and the gravitational acceleration constant as g. According to
Newton’s law, the translation equation of the quadcopter is given by

u̇

v̇

ẇ

 = Rg
b


0
0

u1/m

−


0
0
g

+ FD/m, (3.11)

where Rg
b transfer the quadcopter kinematics from body frame to global frame, which

is constructed according to the order of rotation (roll-pitch-yaw) as follows

Rg
b =


cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ

 .

In general, substituting Eq. (3.10) to Eq. 3.11 gives the translational motion of
the quadcopter contains coordinate transformation from the body frame to the global
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frame as follows:



ẋ

ẏ

ż

u̇

v̇

ẇ


=



u

v

w
(cosψ sin θ cosϕ+ sinψ sinϕ)u1 − kβu|u|

m
(sinψ sin θ cosϕ− cosψ sinϕ)u1 − kβv|v|

m
(cos θ cosϕ)u1 − kβw|w|

m
− g


. (3.12)

Rotation Model

According to the rigid body rotation, the quadcopter rotation is presented by angular
velocities, given by 

ṗ

q̇

ṙ

 = I−1



p

q

r

× I


p

q

r

+


u2

u3

u4


 ,

where I is the inertia matrix. From the assumptions of the symmetry structure of
the quadcopter, I is given as

I =


Ix 0 0
0 Iy 0
0 0 Iz

 , (3.13)

where Ix, Iy and Iz are moments of inertia in body frame.

When consider the rotations of the quadcopter are large, suppose the Euler angle
notion is given by Z, Y,X, it gives

p

q

r

 =


ϕ̇

0
0

+ Rϕ


0
θ̇

0

+ RϕRθ


0
0
ψ̇

 , (3.14)

where

Rϕ =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 , Rθ =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 .
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Therefore, simplify Eq. (3.14) and invert the matrix gives the relation between
the deviation of Euler angles and angular velocity vector as


ϕ̇

θ̇

ψ̇

 =


1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ



p

q

r

 . (3.15)

Finally from Eq.(3.15), the rotational motion of the quadcopter can be presented
as:



ϕ̇

θ̇

ψ̇

ṗ

q̇

ṙ


=



p+ q sinϕ tan θ + r cosϕ tan θ
q cosϕ− r sinϕ

q sinϕ sec θ + r cosϕ sec θ

qr
Iz − Iy
Ix

+ u3
1
Ix
− p|p|kγ

Ix

rp
Ix − Iz
Iy

+ u2
1
Iy
− q|q|kγ

Iy

u4
1
Iz
− r|r|kγ

Iz



. (3.16)

where kγ is the rotation air resistance coefficient.

In addition, when the quadcopter only flies at a small rotation angle, the deviation
of Euler angles and angular velocity vector can be considered as the same, thus
simplifying the model.

Since the dynamic model of the VPP quadcopter is similar to that of conventional
ones, the VPP quadcopter can have similar characteristics, such as simple structure
and fast dynamic response.

3.4 Quadcopter Rational Matrix Model

Although the Euler angle model is easy to build and understand, there are some
shortcomings. First, Euler angles have different adopted notations (such as yaw-pitch-
roll convention). Euler angles decompose one orientation of a rigid body with respect
to a fixed reference coordination, into three rotations to along with, for example, z-y-x
axis (depends on the notation). With the different notations, the same orientation
can be expressed by different Euler angles but with the same rotational matrix.
Second, when using Euler angles, the system will lose one degree of freedom in a
three-dimensional mechanism when one of the Euler angles reaches π/2, which is
also called Gimbal lock. This will not be a serious problem when only considering
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ṙg

rg

Figure 3.12. The schematic diagram of rotation velocity.

the stable flight of the quadcopter but it will cause consequences when used for agile
flight, such as a crash.

One of our motivations, specifically, regarding the tic-toc manoeuvrer control,
will be heavily affected by Gimbal lock. Tic-toc is one of the typical operations that
need the quadcopter to fly around such a Gimbal lock angle. Therefore, the angle
ambiguities caused by the Gimbal lock will lead to the loss of one degree of freedom
of the quadcopter model, which is a big problem for our research. For this reason,
further research on manoeuvring will use the rotation matrix to build a dynamic
system.

Therefore, we can use the same frame setting (Og and Ob) with the Euler angle
model where Og is related to Ob by a position vector x. The linear speed vector in
the global frame is given by v. Rotation matrix R ∈ SO(3) represents the orientation
from the body frame to the global frame. The angular rate vector in the body frame
is given by ωb.

As shown in Fig. 3.12, it gives the derivative equation of a vector rg rotating
around a fixed axis as

ṙg = ωg × rg. (3.17)

Set a rotation matrix Rr
b that can transfer coordinate from body frame to reference

frame, as a combination of 3 body frame unit vectors b1, b2, b3 in reference frame as
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Rr
b = [b1 b2 b3]. Substituting (3.17) to Ṙr

b gives

Ṙr

b =
[
ḃ1 ḃ2 ḃ3

]
= [ωr × b1 ωr × b2 ωr × b3]

= [Rr
bωb × b1 Rr

bωb × b2 Rr
bωb × b3]

= [Rr
bωb ×Rr

be1 Rr
bωb ×Rr

be2 Rr
bωb ×Rr

be3]

= [Rr
b(ωb × e1) Rr

b(ωb × e2) Rr
b(ωb × e3)]

= Rr
b [ωb × e1 ωb × e2 ωb × e3]

= Rr
bω̂b, (3.18)

where

e1 = [1 0 0]T ,

e2 = [0 1 0]T ,

e3 = [0 0 1]T ,

are defined in the body frame and ω̂b is a skew-symmetric matrix formed from ωb

which can be written as

ω̂b =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

The equations of motion of this quadcopter can be written according to definitions
as

ẋg = vg, (3.19)

v̇g = F

m
Re3 − ge3, (3.20)

Ṙ = Rω̂b, (3.21)

Iω̇b = −ωb × Iωb + τ , (3.22)

where τ = [u2, u3, u4]T and I is the inertia matrix expressed in the body frame.

The analysis of the dynamics makes the manoeuvrer simulation of quadcopter
become possible and can be used to better analyse the VPP quadcopter system.
Moreover, a 2D version of the VPP quadcopter dynamics is utilised in next section
to simplify the manoeuvrers and assist manoeuvrer analysis.



3.5 Planar Quadcopter Model 63

3.5 Planar Quadcopter Model

Next, we present the planar quadcopter model. This model is special since it is
a simplified planar quadcopter model that can represent the characteristics of the
two-dimensional motion of the quadcopter. The reason why we consider using this
model is firstly because the controller based on the 2D model design can be further
studied and implemented in the 3D environment. It is inspired by [31] and [49],
where a 2D simplified model is used to design a flipping action controller. Then, the
designed 2D controller was further extended to a 3D environment and validated in
the practical. Their work shows the feasibility of this simplifying process. Secondly,
it is complicated and difficult to directly analyse the manoeuvrer motion in 3D
environment. Because there are almost double degrees of freedom (DOFs) compared
to the 2D environment (6 DOFs in 3D and 3 DOFs in 2D). Another important reason
to use a 2D model is that one of the goals of this research is to analyse and study a
tic-toc manoeuvrer with plane motion as the mainstay. This manoeuvrer requires
the quadcopter to operate like an inverse simple gravity pendulum, which can be
regarded as an idealized planar motion mathematical model [157].

Although this work can approximate the study of the tic-toc manoeuvrer by a
simplified model, there is still a gap between 2D and 3D. One of the most important
problems is that the tic-toc manoeuvrer can not be equivalent to a mathematical
pendulum model. Because a real quadcopter is flown in the air, it is interpreted as
being vulnerable to external disturbances, such as friction, interference, etc., and
loses its stability.

A 2D controller can not deal with such controllability loss problems caused by
the lack of DOFs. Extra controllers are required to be designed for these problems.
Further research will try to bridge this gap through learning-based algorithms.

In general, using a plane model to analyse tic-toc manoeuvrers has the advantages
of simplifying the dynamic model, clarifying the manipulation process, and facilitating
the algorithm design. Therefore, the use of a simplified model is of critical significance
for this work to analyse and realize this tic-toc manoeuvrer.

As the first step of planar quadcopter analysis, a primary concern of the con-
sistency between 2D and 3D environments is needed. This work considers the plus
configuration quadcopter where thrust T1 and T3 are within the control plane (xz
plane), shown in Fig. 3.13.

According to the analysis shown in Section 3.2, the VPP actuator can control
its torque and thrust separately. It is noticeable that substitutes α = 0 to Eq. (3.3)
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Figure 3.13. The planar quadcopter model.

gives

T = 0,

M = K1ω
2.

Therefore, we could make an assumption that the thrust T2 and T4 can balance
the angles, ϕ and ψ, to 0, which gives

ϕ, ϕ̇→ 0,

ψ, ψ̇ → 0,

T2 − T4 → 0,

u4 → 0.

(3.23)

Substituting Eq. (3.23) to Eqs. (3.12) and (3.16) gives the overall planar quadcopter
dynamic equations as

maz = (T1 + T2 + T3 + T4) cos θ −mg,

max = (T1 + T2 + T3 + T4) sin θ,

Ixaθ = L(T3 − T1)/2,

(3.24)

where m is the mass of the planar quadcopter, L is the length between No.1 and 3
propellers, and ax, az and aθ indicate the second derivative of x, z and θ.

To prevent interference with T1 and T3, the value of T2 and T4 should be as low
as possible, which gives

T2 + T4 → 0. (3.25)
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Therefore, rebuild the model Eq. 3.24 with the input parameters T1, T3 gives

az = (T1 + T3) cos θ/m− g,

ax = (T1 + T3) sin θ/m,

Ixaθ = L(T3 − T1)/2.

(3.26)

To avoid confusion from the symbols, the planar model uses the parameters along
the following definitions shown in Table. 3.5.

Table 3.5. Planar quadcopter notations list.

Symbol Description Symbol Description
sx, sz position m mass
vx, vz velocity L length
T1, T3 thrust I moment of inertia
θ angle w angle velocity
g acceleration of gravity

Defined a new input vector

u =
u1

u2

 =
T1 + T3

T3 − T1

 (3.27)

and a state vector

x = [sx, sz, vx, vz, θ, w]T .

Then, combine Eqs. (3.27) and (3.26) gives

ẋ = f(x, u) =



ṡx

ṡz

v̇x

v̇z

θ̇

ẇ


=



vx

vz

−sin θ
m

u1

cos θ
m

u1 − g

w
L

2I u2


, (3.28)

where I = 1
12mL

2.
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Eq. (3.28) can be rewritten as

ẋ = f(x) +
2∑
i=1

gi(x)ui, (3.29)

where

f(x) =



vx

vz

0
−g
w

0


,

and

g1(x) =
[
0, 0,−sin θ

m
,
cos θ
m

, 0, 0
]T
,

g2(x) =
[
0, 0, 0, 0, 0,− L2I

]T
.

In addition, this research also considers the situation that only one force T1 is
available at the end of the planar quadcopter. Therefore, the planar quadcopter can
no longer be regarded as a stick rotating around the centre. Assume the distance
between the rotation centre and the end of the stick is d = kL, shown in Fig. 3.14.
The moment of inertia is given by

I =
∫ L−d

−d
d2m

L
dd = mL2(k2 − k + 1

3),

and the total thrust fT and torque τT are given by

fT =f,

τT =(L− d)f.
(3.30)

A related juggling named ‘Devil Stick’ shows a movement similar to our research
target, the tic-toc manoeuvrer. The significance of establishing a plane quadcopter
model that only has one thrust is to imitate the dynamics of juggling and analyse
the relationship between the motion of the rigid body and the rotating centre, so as
to finally realize the fine control of the tic-toc manoeuvrer.
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Figure 3.14. The planar quadcopter model with one force.

3.6 Summary

This chapter details the actuator and body dynamics of the VPP quadcopters. In
Section 3.2, we first give the dynamic equations of VPPs from the literature. Then,
a VPP actuator experimental hardware platform that can validate the dynamic
equations is designed and constructed. Both positive and negative propeller pitch
angles are tested and analysed. Although the data with high motor speed will
vibrate and cause inaccuracy, the overall data trend verifies the dynamic equations.
It indicates that the VPP quadcopter does not have a large difference compared with
ordinary quadcopters except for its inversion flight ability. The actuator efficient
working area is analysed according to the experiment as well. According to the
features we present, in the following chapters, these capabilities are further analysed
and fault-tolerant control laws are developed to explore the safety-critic flight of the
VPP quadcopters.

Furthermore, we compare the actuator dynamic performance between CVPP,
SVPP and ordinary quadcopters according to the simulation and experiment results.
It shows that VPP actuators can have a faster thrust response speed which can
further extend the manoeuvrability and safety-critic performance of the quadcopter
applications.

A commonly used Euler model to describe the quadcopter dynamic is presented
in Section 3.3. However, since the quadcopter has to fly with a large manoeuvrer,
a dynamic model based on the rational matrix is presented in Section 3.4. Finally,
a simplified 2D planar model of the VPP quadcopter is presented for designing a
tic-toc manoeuvrer controller.

In summary, this chapter points out that the VPP actuator can provide different
torques while maintaining the same thrust. This is the first feature of VPP found in
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this thesis, which is the basis for the extended research of Chapter 4 and 5. Then,
this chapter shows the second feature that a VPP actuator can quickly change the
thrust to positive and negative by adjusting the propeller pitch angle. Chapter 6
shows the research content inspired by this feature. In order to ensure the efficiency,
safety and agility of the VPP actuator, the rotation speed and propeller angle range
are analysed according to the efficiency curves and working areas. Based on the
presented VPP actuator features, it shows that the VPP quadcopter is capable of
overcoming the failure of one of the actuators and is able to perform many agile
movements that ordinary quadcopters cannot.
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4.1 Introduction

Attributable to the wide range of recreational or commercial needs, urban air parcel
delivery and passenger transmit are becoming an important part of many day-to-
day applications in the future. Compared to many other types of usages, such as
photography and detection, the tasks of transportation have higher requirements for
flight safety. Since many of these tasks require VPP quadcopters to achieve high
flight performance in terms of both reliability and safety, the fault-tolerant control
research of them is very important [101].

Fault-tolerant control is to control the quadcopter to maintain a relatively stable
state in the presence of some faults such as rotor failures [158, 98]. Fault-tolerant
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control of quadcopters is of great importance and have attracted extensive studies
[94, 99, 159, 160].

However, the conventional quadcopter which has simple structural design, has
certain limitations when facing safety-critical flight tasks. For conventional quad-
copters, when one or more rotors/propellers fail to work properly, the platforms
usually become extremely hard to control and sophisticated controllers must be
designed [26, 161]. More importantly, even under fault-tolerant controllers, conven-
tional quadcopters with faults are only able to fly in very special manners such as
continuously rotating [95, 162, 163]. As a comparison, SVPP quadcopters shows
strong fault-tolerant ability as we show in this chapter.

In addition, although fault-tolerant control of quadcopters has been studied exten-
sively [164, 165, 158, 166], the case of VPP quadcopters remains largely unexplored.

The contributions of this chapter are stated as the following. First, we explore
a new fault-tolerant feature of SVPP quadcopters based on the findings shown in
Chapter 3. Then, we conduct the controllability analysis of a VPP quadcopter with
one propeller failure based on the linearised dynamical model. It is shown that, when
one propeller fails, a faulty SVPP quadcopter still remains fully controllable. For
comparison purposes, we also analyse the controllability of conventional quadcopters
with one rotor failure and show that they are uncontrollable with rotor failures.
Secondly, we identify the equilibrium point and derive the linearised dynamical
model of VPP quadcopters. Based on the linearised model, we design an LQR
controller to handle quadcopter control under one actuator failure. Based on such
a simple controller, the VPP quadcopter could accurately track a given trajectory
subject to wind disturbances or noises. This property is important for safety-critical
tasks such as flying taxis, where it is necessary to transport the human passengers
safely back to a safe place in the presence of propeller failures. Thanks to this
property, VPP quadcopters provide an important alternative type of platform for
safety-critical aerial tasks.

It is worth mentioning that we do not consider fault detection, isolation, or
switching controllers in this chapter. These important topics will be addressed in
the future work. The focus of this chapter is to explore the fault-tolerant ability of
VPP quadcopters which has not been reported in the literature.
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4.2 Problem Setup

Consider the scenario that one of the actuators (contain propeller and motor) is
broken. Without loss of generality, suppose the FDI system can immediately detect
the failure of propeller 1. Then, actuator 1 provides zero force and zero torque. That
is f1 and τ1 are always zero. Here, we consider a ’+’ configuration SVPP quadcopter
where Eq. (3.9) becomes

u1 =K0(ω2
2α2 + ω2

3α3 + ω2
4α4),

u2 =K0ω
2
3α3,

u3 =K0(ω2
4α4 − ω2

2α2),

u4 =K1(ω2
3 − ω2

2 − ω2
4) +K2(ω2

3α
2
3 − ω2

2α
2
2 − ω2

4α
2
4)+

K3(ω3α3 − ω2α2 − ω4α4), (4.1)

where the parameter settings are shown in Table. 4.1.

Although propeller 1 fails, there remain six independent control quantities,
ω2, ω3, ω4 and α2, α3, α4. To generate desired u, the six control quantities are still
redundant, which is the fundamental reason why the system remains controllable in
the presence of propeller failures.

According to the features we found in Chapter 3, the thrust and torque of the
VPP actuator can be independently controlled by the rotation speed and propeller
pitch angle. And because we consider the separated-powered VPP quadcopter as
the target platform, where both ωi and αi can be adjusted independently by each
propeller. As a result, the torque and thrust of each actuator of the SVPP quadcopter
can be regarded as independent control inputs.

In addition, torque is generated by a variety of factors, including frictional drag
and the drag component from propeller motion. Therefore, even if the pitch angle
and thrust are zero, the torque generated by the actuator of the SVPP quadcopter
can be non-zero.

4.3 Linearisation and Controllability Analysis

In this section, we identify the equilibrium point of the system in the presence
of a propeller failure, linearise the system at the equilibrium point, and conduct
controllability analysis. Due to the rotational symmetry structure of the quadcopter,
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Table 4.1. SVPP quadcopter parameters.

Parameters Name Value Unit

Mass m 1 kg
Arm length l 0.35 m
Gravitational acceleration g 9.8 m/s2

Pitch angle limit αmax 0.26 rad
αmin −0.26 rad

Motor speed limit ωmax 1047 rad/s
ωmin 0 rad

Force coefficient K0 4.5 · 10−5 -
Torque coefficient K1 9.1 · 10−7 -

K2 1.8 · 10−8 -
K3 3.8 · 10−6 -

the control algorithm developed with the same principle can be implemented on the
SVPP quadcopter with failure on another actuator.

4.3.1 Equilibrium Point

Consider the state

x∗ =
[
x∗, y∗, z∗, 0, 0, ψ∗, 0, 0, 0, 0, 0, 0

]T
.

In order to keep the system at this state, the input must be

u∗ = [mg, 0, 0, 0]T . (4.2)

Substituting Eq. (4.2) into Eq. (4.1) yields

mg =K0ω
2
2α2 + k1ω

2
4α4, (4.3)

0 =K0ω
2
4α4 − k1ω

2
2α2, (4.4)

0 =K0ω
2
3α3, (4.5)

0 =K1(ω2
3 − ω2

2 − ω2
4) +K2(ω2

3α
2
3 − ω2

2α
2
2 − ω2

4α
2
4)+

K3(ω3α3 − ω2α2 − ω4α4). (4.6)

The next step is to solve the above equations. Equation (4.5) implies that ω2
3α3 = 0.

It is implied from Eq. (4.6) that ω3 ̸= 0; otherwise, the right-hand side of Eq. (4.6)
is less than zero. As a result, we know α3 = 0 and ω3 ̸= 0, which means propeller
3 still spins but with zero pitch angle. On the other hand, equations Eq. (4.3) and
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Eq. (4.4) imply

K0ω
2
2α2 = K0ω

2
4α4 = mg

2 , (4.7)

which means propellers 2 and 4 provide forces to counter gravity. Without loss of
generality, suppose

ω2 = ω4. (4.8)

As a result,

α2 = α4, (4.9)

Substituting Eq. (4.5), (4.8), (4.9) into Eq. (4.6) gives

K1ω
2
3 =2(K1ω

2
2 +K2ω

2
2α

2
2 +K3ω2α2). (4.10)

Substituting Eq. (4.7) to Eq. (4.10) yields

K1ω
2
3 = 2

[
K1ω

2
2 + K2

K2
0

(
mg

2ω2

)2
+ K3mg

2K0ω2

]
:= r(ω2), (4.11)

where r(ω2) represents the right-hand side of Eq. (4.11).

Next we identify the range of the value of r(ω2). The derivative of r(ω2) with
respect to ω2 is

dr(ω2)
dω2

=2
(

2K1ω2 −
K2m

2g2

2K2
0ω

3
2
− K3mg

2K0ω2
2

)
. (4.12)

By analyzing Eq. (4.12), we notice that r(ω2) is a monotonically increasing function
when ω3 ∈ [0, 1047]. In addition, Eq. (4.7) implies that, when the pitch angle takes
the maximum value α2 = 0.26, the rotating speed would take the minimum value
ω2 = 649. As a result, ω2 ∈ [649, 1047]. Substituting the interval into Eq. (4.11) gives
r(ω2) ∈ [0.7714, 2]. Meanwhile, the left-hand side of Eq. (4.11) satisfies K1ω

2
3 ∈ [0, 1]

when ω3 ∈ [0, 1047]. By combining the bounds of the left- and right-hand sides of
Eq. (4.11), we know

K1ω
2
3 = r(ω2) ∈ [0.7714, 1]. (4.13)
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Substituting Eq. (4.13) to Eq. (4.11) yields ω2 ∈ [649, 740] and ω3 ∈ [919, 1047]. We
simply choose ω3 = 942, a intermediate value in [919, 1047]. Note that ω3 is fixed all
the time.

By substituting ω3 = 942 into Eq. (4.11), we can obtain four solutions: ω∗
2 = −23,

23, 665, and −665. Since ω2 ∈ [649, 740] as aforementioned, ω∗
2 = 665 in the only

feasible solution. Then, substituting ω∗
2 into Eq. (4.7) gives α∗

2 = 0.2476.

Let z = [ω2, α2, α3, α4]T . It follows from the above analysis that, in order to keep
the system at the state x∗, z∗ should be

z∗ =
[
ω∗

2, α
∗
2, α

∗
3, α

∗
4

]T
=
[
665, 0.2476, 0, 0.2476

]T
.

4.3.2 Linearised Model

To linearise the nonlinear dynamical system, consider z̄ = z−z∗ and x̄ = x−x∗. Let
F(x̄, z̄) ∈ R12 be the right-hand side of Eq. (3.12) and (3.16). Then, the linearised
model is

˙̄x = Ax̄ + Bz̄,

where

A = ∂F(x̄, z̄)
∂x

∣∣∣∣∣
x=x∗,z=z∗

=


03×3 03×3 03×3 I3×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3

03×3 E3×3 03×3 03×3

 ∈ R12×12,

E3×3 =


g sinψ∗ g cosψ∗ 0
−g cosψ∗ g sinψ∗ 0

0 0 0

 ,

I3×3 =


1 0 0
0 1 0
0 0 1

 ,

03×3 =


0 0 0
0 0 0
0 0 0
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and

B = ∂F(x̄, z̄)
∂z

∣∣∣∣∣
x=x∗,z=z∗

=



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 h3

l
Ix

0 0
−h2

l
Iy

0 −h4
l
Iy

n4 − n2

−m2 m3 −m4 −o2 − o4

0 0 0 0
0 0 0 0

k1
m
ω∗2

2
k1
m
ω∗2

3
k1
m
ω∗2

4 p4 + p2



∈ R12×4,

with

hi = K0ω
∗2
i ,

mi = 2K2α
∗
iω

∗2
i +K3ω

∗
i ,

ni = 2K0ω
∗
i α

∗
i

l

Iy
,

oi = (2K1ω
∗
i + 2K2ω

∗
i α

∗2
i +K3α

∗
i )

1
Iz
,

pi = 2K0

m
ω∗
i α

∗
i .

4.3.3 Controllability Analysis of VPP Quadcopters

It can be calculated that the rank of the controllability matrix is rank(QC) =
rank[B AB A2B ... A11B] = 12. As a result, the controllability matrix is of full row
rank. Hence, all the states remain controllable when one propeller fails. Although
this controllability is analysed based on the linearised system, we show later by
simulation that the nonlinear model of a VPP quadcopter would be able to be
fully controlled around the equilibrium point. This is a significant merit of VPP
quadcopters compared to the conventional ones. The fundamental reason for this
merit is that the VPP control system has eight independent control inputs whereas
a conventional quadcopter only has four. In the future, we will study the control of
VPP quadcopters subject to two or more propeller failures.
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4.3.4 Controllability Analysis of Conventional Quadcopters

For comparison purposes, we analyse the controllability of conventional fixed-pitch
quadcopters with one rotor failure in this section. We consider a specific mechanical
configuration where rotors located on the same arm spin in opposite directions. For
such a configuration, a fixed-pitch quadcopter could have an equilibrium when one
rotor fails.

Suppose propeller 1 of a conventional quadcopter fails to provide any thrust or
torque. The dynamical model Eqs. (3.12) and (3.16) and input Eq. (4.1) also apply
to the conventional quadcopter. The only difference is that the pitch angles αi in
Eq. (4.1) are fixed and hence could be merged with the coefficients ki in Eq. (4.1) to
form a new coefficient kci, where the subscript c denotes “conventional”. Note that
rotor 2 and rotor 4 spin in opposite directions such that there exists an equilibrium
state when rotor 1 fails. As a result, Eq. (4.1) becomes

uc1 =kc0(ω2
c2 + ω2

c3 + ω2
c4),

uc2 =kc0ω
2
c3,

uc3 =kc0(ω2
c4 − ω2

c2),

uc4 =kc1(ω2
c3 − ω2

c2 − ω2
c4) + kc2(ωc3 − ωc2 − ωc4), (4.14)

with kc0, kc1, kc2 as constant parameters. As can be seen from Eq. (4.14), ωci with
i = 2, 3, 4 are the independent control quantities. Denote zc = [ωc2, ωc3, ωc4]T .

Next we need to identify the equilibrium point and linearise the model. Consider
the equilibrium state

x∗
c =

[
x∗

c, y
∗
c , z

∗
c , 0, 0, ψ∗

c , 0, 0, 0, 0, 0, 0
]T
.

It can be calculated that, in order to stay at the equilibrium state, the control
quantities should be

z∗
c = [ω∗

c2, ω
∗
c3, ω

∗
c4] =

[
mg

2kc0
, 0, mg2kc0

]
.

Let z̄c = zc − z∗
c and x̄c = xc − x∗

c. The linearised dynamical equation is

˙̄xc = Acx̄c + Bcz̄c, (4.15)
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where

Ac = ∂Fc(xc, zc)
∂xc

∣∣∣∣∣
xc=x∗

c ,zc=z∗
c

=


03×3 03×3 03×3 I3×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3

03×3 Ec3×3 03×3 03×3

 ∈ R12×12,

Ec3×3 =


g sinψ∗

c g cosψ∗
c 0

−g cosψ∗
c g sinψ∗

c 0
0 0 0

 ,

and

Bc = ∂Fc(xc, zc)
∂zc

∣∣∣∣∣
xc=x∗

c ,zc=z∗
c

=



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 kc0ω

∗
c3

l
Ix

0
−kc0ω

∗
c2

l
Iy

0 kc0ω
∗
c4

l
Iy

r2 −r3 −r4

0 0 0
0 0 0

2kc0
m
ω∗

c2
2kc0
m
ω∗

c3
2kc0
m
ω∗

c4



∈ R12×3,

ri = −2kc1ω
∗
ci + kc2

1
Iz
,

with I3×3 as identity matrix.

Denote kc0lω
∗
c3/Ix = c1, −kc0lω

∗
c2/Iy = c2, r2 = r4 = c3 and 2kc0ω

∗
c2/m = c4.

Then, the controllability matrix Qcc is given in Eq. (4.16). It can be counted that
the rank of controllability matrix is rank(Qcc) = 8. Since the full row rank of Qcc

is 12, the linearised system is not fully controllable and there are 4 uncontrollable
modes.
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Qcc = [B AB A2B ... A11B]

=



0 0 0 0 0 0 0 0 0 −c2g 0 c2g
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 c4 0 c4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −c2 0 c2 0 0 0 0 0 0
0 0 0 c3

kc2
Iz
−c3 0 0 0 0 0 0 012×24

0 0 0 0 0 0 0 0 0 0 0 0
−c2 0 c2 0 0 0 0 0 0 0 0 0
c3

kc2
Iz
−c3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −c2g 0 c2g 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
c4 0 c4 0 0 0 0 0 0 0 0 0



.

(4.16)

Next, we conduct controllability decomposition to identify the uncontrollable
states. Define a new state as x̃c = T−1

c x̄c, where Tc is a transformation matrix. It
follows from the linearised model in Eq. (4.15) that

˙̃xc = T−1
c AcTcx̃c + T−1

c Bcz̄c. (4.17)

Following the controllability decomposition procedure [167], take 10 linearly indepen-
dent columns of Eq. (4.16) and add four custom columns to make Tc nonsingular, as
in Eq. (4.18). Then, the new state could be partitioned into controllable component

Tc =



0 0 0 0 0 0 0 −c2g 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 c4 0 c4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 −c2 0 c2 0 0 0 0 0 0
0 0 0 c3

kc2
Iz
−c3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0
−c2 0 c2 0 0 0 0 0 0 0 0 0
c3

kc2
Iz
−c3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −c2g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
c4 0 c4 0 0 0 0 0 0 0 0 0



. (4.18)



4.4 Controller Design and Simulation Validation 79

x̃c and uncontrollable component x̃uc, and Eq. (4.17) becomes
 x̃c

x̃uc

′

=
 Ac A12

0 Auc

 x̃c

x̃uc

+
 Bc

0

 z̄c. (4.19)

Substituting Eq. (4.18) into x̃c = T−1
c x̄c yields

x̃c =



x12m
2c4
− x8

2c2
x9
c5

+ c3x8
c2c5

x8
2c2

+ x12
2c4

x3
2c4
− x5

2c2
x6
c5

+ c3x5
c2c5

x5
2c2

+ x3
2c4

−x10
c2g

− x1
c2g

x2

x4

x7

x11



.

According to Eq. (4.19), the last four elements of x̃c correspond to uncontrollable
modes. Hence x2, x4, x7, and x11 are uncontrollable. Here, x4 and x7 represent ϕ and
p, respectively; and x2 and x11 represent y and v, respectively.

4.4 Controller Design and Simulation Validation

4.4.1 Controller Design

Unlike conventional quadcopters, a VPP quadcopter remains controllable in the
presence of one propeller failure. Therefore, simple LQR controllers could be designed
based on the linearised model derived in the preceding sections. This is an advantage
of VPP quadcopters compared to conventional ones.

4.4.2 Simulation Examples

We next present three simulation examples to verify the effectiveness of the proposed
controller design. In the simulation, suppose propeller 1 fails to work and hence it
gives zero thrust force and zero torque. Since there will be no manoeuvrer actions
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within the whole process, the quadcopter dynamic system is built based on the Euler
model. In the simulation, we model the actuator and speed control of a VPP as a
first-order transfer function to approximate their dynamics. The cut-off frequency is
chosen as 10 Hz.

Figure 4.1. 3D trajectory in scenario 1.

Scenario 1: No Noise nor Disturbance

In this simulation scenario, suppose all the states could be measured perfectly and
there are no external disturbances. The trajectory reference is a continuous circle
together with altitude increasing and orientation varying.

Simulation results are shown in Figs. 4.1 and 4.2. As can be seen, the quadcopter
remains fully controllable through one propeller fails. Here, the reference tracking is
achieved by tracking a moving target point with desired position and altitude.

Scenario 2: Measurement with Noise

In scenario 2, the quadcopter needs to track the target points varying from [0, 0, 0],
[0, 0, 5], [5, 0, 5], and finally to [5, 5, 5] at time t = 0, 2, 5, 10, respectively. The desired
yaw angle changes from zero to 0.1 rad at t = 1. During the whole process, noises
with the signal-to-noise ratio as 15 dB are added to all the feedback states.
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Figure 4.2. Simulation results for scenario 1.
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Figure 4.3. 3D trajectory in scenario 2.

Figures 4.3 and 4.4 show the tracking performance of the VPP quadcopter. The
quadcopter can quickly track to the reference in the presence of noises.

Scenario 3: Noise and External Disturbance

In scenario 3, we suppose all the state measurements are corrupted by 15 dB signal-
to-noise-ratio noises. More importantly, wind disturbance is considered. In particular,
the wind disturbance is 4 m/s along x-axis and 4 m/s along y-axis when t ≥ 1. The
desired states are all set to 0.

Figure 4.5 presents the reaction of a VPP quadcopter facing an external dis-
turbance and measurement noises. As can be seen in Fig. 4.6, the pitch and roll
angles of the quadcopter converge to constant non-zero values to counter the wind
disturbance.

4.5 Summary

In this chapter, we study the control of an SVPP quadcopter in the presence
of a propeller failure. If one VPP is faulty, an SVPP quadcopter still has six
independent control inputs (i.e., three motor spinning speeds and three pitch angles),
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Figure 4.4. Simulation results for scenario 2.
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Figure 4.5. 3D trajectory in scenario 3.

and the entire system remains controllable. Although the controllability analysis
and controller design are both based on the linearised model, numerical simulation
incorporating external disturbances and measurement noise has verified that the
theoretical findings are still valid for the nonlinear dynamical model. It is suggested
that VPP quadcopters provide a promising platform for various aerial tasks.

The contributions of this chapter are as follows. First, we conduct the con-
trollability analysis of a VPP quadcopter with one propeller failure based on the
linearised dynamical model. It is shown that, when one propeller fails, all states
of the quadcopter remain controllable. For comparison purposes, we also analyse
the controllability of fixed-pitch quadcopters with one rotor failure and show that
fixed-pitch quadcopters are uncontrollable with rotor failures. Second, we identify
the equilibrium point and derive the linearised dynamical model of VPP quadcopters.
Based on the linearised model, we design an LQR controller to handle propeller
failure. Based on such a simple controller, the VPP quadcopter could accurately track
a given trajectory subject to wind disturbances or noises. This property is important
to safety-critical tasks such as flying taxis, where it is necessary to transport the
human passengers safely back to a safe place in the presence of propeller failures.
Thanks to this property, SVPP quadcopters provide an important alternative type
of platform for safety-critical aerial tasks.
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Figure 4.6. Simulation results for scenario 3.
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5.1 Introduction

According to the review of the VPP quadcopter structure, we could find that the
CVPP quadcopter is another popular type of VPP quadcopter. It is a generalised
variant of the SVPP quadcopter, which retains the feature of the VPP actuator
that can realize the inverse thrust, and integrates all independent power units into a
total one. For a CVPP quadcopter, all propellers spin at the same constant speed
and they are driven by the same motor located at the centre of the body [24, 168].
Therefore, a CVPP quadcopter will still be able to fly upside down steadily and
recover swiftly from largely disturbed attitudes back to stable hovering conditions,
which is important considering the safety of the system. In addition, a CVPP
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quadcopter equipped with a fuel engine can lift the energy consumption constraints
caused by the battery.

Although SVPP and CVPP quadcopters have similar mechanism actuator struc-
tures, their dynamic inputs are quite different. As we have presented in Chapter 4, if
one actuator is faulty, an SVPP quadcopter still has six independent control inputs
(i.e., three motor spinning speeds and three pitch angles), and the entire system
remains controllable. By contrast, if one propeller of a CVPP quadcopter fails, there
would only be three independent control inputs, and the entire system becomes
uncontrollable, so it is more challenging to deal with than the SVPP case is. But
according to our analysis shown in Chapter 3, it still exhibits great potential for safe
and agile flight in future applications. This research has not been studied in the
literature.

In this chapter, we present the flight control of a CVPP quadcopter in the
presence of a propeller fault. We analyse the equilibrium trajectory, identify the
uncontrollable modes, and propose a linear controller. It is shown that the yaw angle
and angular velocity become uncontrollable in the presence of a VPP fault, yet the
quadcopter can still accurately track a desired trajectory. It is also discovered that
the quadcopter exhibits different and favourable behaviour due to its structure, such
as slow self-spinning speed. We also analyse the relationship under certain parameter
conditions and identify the parameter conditions that lead to zero self-spinning. Our
analysis could contribute to the development of high-performance quadcopters that
are both agile and robust with respect to faults. Simulation results are presented to
verify the theoretical findings.

5.2 Problem Setup

We consider a CVPP quadcopter with a “plus” configuration where propellers 1
and 3 rotate clockwise and propellers 2 and 4 rotate counter-clockwise. In this
chapter, fault detection or isolation is not considered, which is, however, important
for the research. We consider the faulty scenario where the pitch angle of propeller 1
becomes stuck at a constant value c. Substituting α1 = c to Eq. (3.8) gives

u1 =b0(c+ α2 + α3 + α4), (5.1)

u2 =b0(α3 − c), (5.2)

u3 =b0(α4 − α2), (5.3)

u4 =b1(−c2 + α2
2 − α2

3 + α2
4) + b2(−c+ α2 − α3 + α4). (5.4)
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Table 5.1. CVPP quadcopter parameters.

Parameters Name Value Unit

Mass m 1 kg
Gravitational acceleration g 9.8 m/s2

Inertia about xb, yb Ix,Iy 0.125 kg·m2

Inertia about zb Iz 0.25 kg·m2

Arm length l 1 m
Force coefficient K0 2.86 · 10−5 -
Torque coefficient K1 1 · 10−8 -

K2 6.56 · 10−7 -
K3 2.29 · 10−5 -

Pitch angle limit αsat 0.3142 rad
Pitch angle rate limit dα 11.62 rad/s
Motor speed limit ωmax 1047.19 rad/s
Motor speed rate limit dω 6047 rad/s2

Linear resistance coefficient Kβ 0.01 N·s/m
Rotation resistance coefficient Kγ 0.05 N·s·m

In this case, u1, u2, u3, u4 are not independent anymore since there are merely
three degrees of freedom.

The overall dynamic model for a CVPP quadcopter is identical to that of a
fixed-pitch propeller quadcopter. The translational motion of the quadcopter is given
by Eq. (3.12) and the rotational motion of the quadcopter is described by Eq. (3.16).

The parameter values are shown in Table 5.1.

5.3 Equilibrium Analysis

In this section, we first identify the equilibrium of the nonlinear faulty system, and
then present a quantitative study of the equilibrium points which reveals some
interesting and unique properties of CVPP quadcopters.

5.3.1 Equilibrium Trajectory

In the presence of a faulty actuator, the CVPP quadcopter would not be able to
remain at any static equilibrium point. However, it is able to remain along a family
of equilibrium points. In particular, consider a state trajectory

x∗(t) = [x∗, y∗, z∗, ϕ∗, θ∗, ψ∗(t), p∗, q∗, r∗, u∗, v∗, w∗]T

= [x∗, y∗, z∗, 0, 0, ψ∗(t), 0, 0, r∗, 0, 0, 0]T ,
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where x∗, y∗, z∗, r∗ are constant values and ψ∗(t) = r∗t + ψ∗
0. The state trajectory

x∗(t) corresponds to the case where the yaw angle ψ∗(t) varies at a constant value r∗

while all the other states are constant.

Along x∗(t), we have u̇∗, v̇∗, ẇ∗, ṗ∗, and q̇∗ equal to 0. It then follows from
Eqs. (3.12) and (3.16) that u∗

1 = mg, u∗
2 = 0, and u∗

3 = 0, substituting which into
Eqs. (5.1)-(5.3) gives

α∗
2 = α∗

4 = mg

2b0
− c, α∗

3 = c. (5.5)

Furthermore, substituting α∗
2, α

∗
3, α

∗
4 into Eq. (5.4) yields

u∗
4 = 2b2

[(
mg

2b0
− c

)2
− c2

]
+ 2b3

[(
mg

2b0
− c

)
− c

]
. (5.6)

Moreover, substitute ṙ∗ = 0 to Eq. (3.16) gives

r∗ = sgn(u∗
4)

√√√√ |u∗
4|l
Kγ

, (5.7)

where sgn(·) denotes the sign function.

In terms of control inputs, since there are only three functional servos, we choose
the three pitch angles as the new inputs. Along the equilibrium trajectory, we have

u∗
F = [α∗

2, α
∗
3, α

∗
4]T

=
[
mg

2b0
− c, c, mg2b0

− c
]T
,

where the subscript F represents ‘fault’.

5.3.2 Quantitative Study of the Equilibrium

Along the equilibrium trajectory, the quadcopter would rotate at a constant rate
of r∗ as given in Eq. (5.7). It is of great interest to see the specific values of r∗,
especially whether r∗ could be zero.

Substituting b0 = K0ω
2
0, b2 = K1ω

2
0, and b2 = K2ω0 into Eq. (5.6) gives

u∗
4 = K2m

2g2

2K2
1ω

2
0

+ K3mg

K1ω0
−
(2mgK2

K1
+ 4K3ω0

)
c, (5.8)
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substituting which into Eq. (5.7) yields

r∗ =

√√√√[K2m2g2

2K2
1ω

2
0

+ K3mg

K1ω0
−
(2mgK2

K1
+ 4K3ω0

)
c

]
l

kγ
. (5.9)

Although we assume ω0 is fixed in each control process, we would like to analyse
the impact of different values of ω0 on r∗. First, suppose that the physically achievable
interval of ω0 is [0, ωmax]. Second, since ω0 must satisfy Eq. (5.5), we have

ω0 =
√

mg

2K1(α∗
2 + c) . (5.10)

Suppose the physically achievable pitch angle is saturated by [−αsat, αsat], where
αsat = 0.314 rad following [20]. Since α∗

2 > −c by Eq. (5.5), we know α2 ∈ (−c, αsat].
It then follows from Eq. (5.10) that ω0 ∈ Ω2 =

[√
mg

2K1(αsat+c) ,+∞
)

. Thus, ω0 must
satisfy

ω0 ∈ Ω1 ∩ Ω2 =
[√

mg

2K1(αsat + c) , ωmax

]

:= [ωmin, ωmax]. (5.11)

To determine the admissible interval of c, we note that Eq. (5.11) implies

0 ≤ mg

2K1(αsat + c) ≤ ω2
max,

which gives c ≥ mg
2K1ω2

max
− αsat. Furthermore, since c ∈ [−αsat, αsat], we have

cmin := mg

2K1ω2
max
− αsat ≤ c ≤ αsat. (5.12)

The interpretation is that, if the faulty propeller became stuck at the angle c < cmin,
then Eq. (5.10) could not hold and hence the system could not reach the equilibrium
point.

When c varies in [cmin, αsat], the values of r∗ against w0 are shown in Fig. 5.1. This
figure suggests two important properties. First, the values of r∗ for different c are
within a small interval: [−0.13, 0.13] rad/s. As a result, the quadcopter self-rotates
slowly at the equilibrium. Second, surprisingly, we could tune w0 to make r∗ = 0 for
certain c (see blue dotted curves in Fig. 5.1). In this case, a CVPP quadcopter could
hover steadily without self-rotation in the presence of a propeller fault.
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To examine the case of r∗ = 0 more closely, substituting r∗ = 0 into Eq. (5.9)
gives

K2m
2g2

2K2
1ω

2
0

+ K3mg

K1ω0
=
(2mgK2

K1
+ 4K3ω0

)
c, (5.13)

which implies

c = mg

4K1ω2
0

(5.14)

or equivalently

ω∗
0 =

√
mg

4K1c
. (5.15)

Therefore, given a specific value of ω0, if angle c at which propeller 1 became stuck
satisfies Eq. (5.14), then we have r∗ = 0. On the other hand, given a specific value
of c, if ω0 satisfies Eq. (5.15), then we have r∗ = 0.

Since c ∈ [cmin, αsat] and ω0 ∈ [ωmin, ωmax], we need to examine under what
conditions Eq. (5.14) holds. Since ω0 ∈ [ωmin, ωmax], it follows from Eq. (5.14) that

c = mg

4K1ω2
0
≤ mg

4K1ω2
min

= αsat, (5.16)

c = mg

4K1ω2
0
≥ mg

4K1ω2
max

:= c† ≈ 0.05. (5.17)

Inequality Eq. (5.16) always holds because c ≤ αsat. Then, it follows from Eq. (5.17)
that if

c ≥ c†,

then r∗ could be zero by setting ω0 as in Eq. (5.15). This result is illustrated by
Fig. 5.1, when c ≥ c† (blue dotted curves), there exists ω0 that could achieve r∗ = 0.

5.3.3 Linearised Model

Define x̄ = x− x∗ and ūF = uF − u∗
F . Since ẋ∗ = f(x∗,u∗), we have

˙̄x = ẋ− ẋ∗ = f(x̄ + x∗, ūF + u∗
F )− ẋ∗

≈ f(x∗,u∗
F ) + A(ψ∗)x̄ + BūF − ẋ∗

= A(ψ∗)x̄ + BūF (5.18)
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Figure 5.1. The relationship between a VPP quadcopter’s self rotation speed r∗

and its centrally-controlled propeller spinning speed w0, as expressed by Eq. (5.9).
Shown for different angles c (in degree) at which faulty propeller 1 became stuck.
The interval of ω0 for each curve is given in Eq. (5.11).

where

A(ψ∗) = ∂F(x̄, ūF )
∂x

∣∣∣∣∣
x=x∗,uF =u∗

F

=


03×3 03×3 03×3 I3×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3

03×3 E3×3 03×3 03×3

 ∈ R12×12,

with I3×3 as the identity matrix and

E3×3 =


g sinψ∗(t) g cosψ∗(t) 0
−g cosψ∗(t) g sinψ∗(t) 0

0 0 0

 ,

and

B = ∂F(x̄, ūF )
∂uF

∣∣∣∣∣
x=x∗,uF =u∗

F

=[03×3,03×3,QT
c1,QT

c2]T ∈ R12×3
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where

Qc1 =


0 b0l

Ix
0

− b0l
Iy

0 b0l
Iy

n2
Iz

−n3
Iz

n4
Iz

 ,Qc2 =


0 0 0
0 0 0
b0
m

b0
m

b0
m

 ,

and ni = 2α∗
i b2 + b3.

5.3.4 Controllability Analysis

The controllability matrix Qc of system Eq. (5.18) is

Qc =
[
B AB A2B . . . A11B

]

=


03×3 Qc2 03×3 Qc3

03×3 Qc1 03×3 03×3 012×24

Qc1 03×3 03×3 03×3

Qc2 03×3 Qc3 03×3

 ∈ R12×36.

where

Qc3 =


−Pc

Iy

Ps

Ix

Pc

Iy

−Ps

Iy
−Pc

Ix

Ps

Iy

0 0 0

 ,
Pc = b0lg cosψ∗(t), Ps = b0lg sinψ∗(t).

Matrix Qc is sparse and highly structured. It can be verified that rank(Qc) = 10
when the rated speed ω0 > 0. Since there are 12 states, we know that two modes are
uncontrollable.
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To further identify the uncontrollable modes, we conduct a controllability decom-
position as follows. Following [167, 169], we design

T =


03×3 Qc2 03×2 Qc4 03×2

03×3 Qc1 03×2 03×2 Qc5

Qc1 03×3 03×2 03×2 Qc6

Qc2 03×3 Qc4 03×2 03×2

 ,

Qc4 =


−Pc

Iy

Ps

Ix

−Ps

Iy
−Pc

Ix

0 0

 ,

Qc5 =


0 0
0 0
0 1

 ,Qc6 =


0 0
0 0
1 0

 ,

where T ∈ R12×12 is invertible. Then we define

x̃ = T−1x̄. (5.19)

Substituting Eq. (5.19) into Eq. (5.18) leads to ˙̃x = T−1ATx̃ + T−1BūF . Let
Ã = T−1AT and B̃ = T−1B. Then, we have ˙̃x = Ãx̃ + B̃ūF , whose sub-block
matrix form is  ˙̃xc

˙̃xc̄

 =
 Ãc Ã12

02×10 Ãc̄

 x̃c

x̃c̄

+
 B̃c

02×3

 ūF , (5.20)

where

Ãc =


03×3 03×3 03×2 03×2

I3×3 03×3 03×2 03×2

02×3 H2×3 02×2 02×2

02×3 02×3 I2×2 02×2

 ,

H2×3 =
 1 0 −1

0 1 0

 , Ã12 = 010×2,

Ãc̄ =
 0 0

1 0

 , B̃c =


I3×3

03×3

02×3

02×3

 .
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Figure 5.2. Block diagram of the CVPP quadcopter control scheme.

Equation (5.20) shows that the system is decomposed into an uncontrollable sub-
system ˙̃xc̄ = Ãc̄x̃c̄ and a controllable subsystem ˙̃xc = Ãcx̃c + Ã12x̃c̄ + B̃cūF . The
transformed states are

 x̃c

x̃c̄

 = T−1x̄ =



mx12
2b0
− Ixx7

2lb0
− Iyx8

2lb0
Ixx7
lb0

mx12
2b0
− Ixx7

2lb0
+ Iyx8

2lb0
mx3
2b0
− Ixx4

2lb0
− Iyx5

2lb0
Ixx4
lb0

mx3
2b0
− Ixx4

2lb0
+ Iyx5

2lb0

− Iy(x10 cosψ∗+x11 sinψ∗)
lb0g

− Ix(x11 cosψ∗−x10 sinψ∗)
lb0g

− Iy(x1 cosψ∗+x2 sinψ∗)
lb0g

− Ix(x2 cosψ∗−x1 sinψ∗)
lb0g

x9 + x12kc̄1 − x8kc̄2 + x7kc̄3

x6 + x3kc̄1 − x5kc̄2 + x4kc̄3



, (5.21)

kc̄1 = m(n2 − n4)
2Izb0

, kc̄2 = Iy(n2 + n4)
2Izb0

,

kc̄3 = Ix(2n3 − n2 + n4)
2Izb0

,

where xi (i ranges from 1 to 12) are the elements of x̄, and x̃c and x̃c̄ are controllable
and uncontrollable modes, respectively.

As can be seen from Eq. (5.21), the uncontrollable states in x̃c̄, which correspond
to the last two elements of the vector, contain x9 and x6 that correspond to r and ψ,
respectively. As a result, the yaw angle and its angular rate are uncontrollable.

5.3.5 A Linear Controller Design

Figure 5.2 shows a block diagram of the control scheme for a faulty CVPP quadcopter.
In this chapter, we present an H∞ controller to enhance the robustness of the system.
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Other control methods could also be used. According to the faulty system Eq. (5.20),
the H∞ controller is designed as

˙̃x = Ãx̃ + B̃1w + B̃2u,

z∞ = C̃1x̃ + D12u,

ỹ = C̃2x̃,

(5.22)

where

Ã =


03×3 03×3 03×2 03×2

I3×3 03×3 03×2 03×2

02×3 H2×3 02×2 02×2

02×3 02×3 I2×2 02×2

 , B̃1 =


I3×3

03×3

02×3

02×3

 , B̃2 =


I3×3

03×3

02×3

02×3

 ,

C̃2 =


03×3 Qc2 03×2 Qc4

02×3 S 02×2 02×2

S 02×3 02×2 02×2

Qc2 03×3 Qc4 03×2

 , C̃1 =
I10×10

03×10

 , D12 =
010×3

I3×3

 ,

S =
 0 b1l

Ix
0

− b1l
Iy

0 b1l
Iy

 .
It can be found in Eq. (5.22) that, x̃ is the decomposed state, w is the disturbance,
u represents the control signal, and z∞ is the error value that needs to be minimized.

5.4 Simulation Validation

This section presents two simulation experiments to verify the theoretical findings.
The simulation is conducted in a physical environment built in Simscape in Matlab.
It combines detailed physical component models based on first principles. We use
a low pass filter with a 10 Hz cut-off frequency to represent the dynamics of the
propeller actuator. The input of the low pass filter is the expected value of the pitch
angle and the output is the response value. Noise with 20 dB signal-to-noise ratio is
added to all states as measurement noise.

5.4.1 Scenario 1: Trajectory Tracking

In the first experiment, it is assumed that the propeller 1 has malfunctioned from the
beginning with a fixed pitch angle of 0.18 rad and a spinning speed of 707.7 rad/s.
Moreover, we assume that these values can be measured and used by the controller.
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The quadcopter is required to track a trajectory simulating taking off, moving along
a square trajectory with 10 m length on each side, and landing, shown in Fig. 5.3.

Figure 5.3. Trajectory tracking results. The blue dotted curves represent the actual
flying trajectory and the red line is the reference square trajectory with 10 m length
on each side. The faulty propeller is highlighted in red.

The results are shown in Fig. 5.4. As can be seen, although the yaw angle and
its rate are uncontrollable, a CVPP quadcopter with a faulty actuator is still able to
accurately track the desired position trajectory and the value of r remains close to
zero, which is consistent with our analysis.

5.4.2 Scenario 2: Random Initialization

In the second experiment, we examine the performance of the proposed controller
given a variety of initial conditions. The initial state is [x0, y0, z0, ϕ0, θ0] = [0, 0, 0, ϕr, θr]
and the target state is [x∗, y∗, z∗, ϕ∗, θ∗] = [0, 0, 0, 0, 0], where the values of ϕr and θr
are generated randomly from a uniform distribution in [-1.57,1.57] rad. Assume the
quadcopter VPP 1 stuck at 0.05 rad. When the state gets sufficiently close to the
target state after 5 s, the quadcopter is regarded as stable; otherwise it is unstable.

We conducted 100 trials, each with a different initial condition (ϕr and θr).
Figure 5.5 shows that the controller works well under a wide range of initial conditions,
with a success rate of 95 percent. We observe that the quadcopter does not cope
well when both pitch (θ) and roll (ϕ) are large negative angles. At this point, the
quadcopter needs to be relied upon to generate a high rotation speed and thus
stabilize its attitude. However, due to the propeller faults, the angular velocity and
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Figure 5.4. Simulation results of a CVPP quadcopter subject to propeller faults.
The reference trajectory is defined by points [0,0,1], [0,1,1], [1,1,1], [1,0,1], [0,0,1],
[0,0,0] at 1 s, 5 s, 10 s, 20 s, 25 s, 30 s, respectively. The yaw angle ψ and angular
rate r are uncontrollable but approach the theoretical prediction.

angular acceleration that the faulty quadcopter can achieve becomes small, causing it
to fall and then crash on the ground, shown in Fig. 5.6. Figure 5.7 shows the results
of a typical successful simulation trial, demonstrating the control law to work well.
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Figure 5.5. Results from physics-based simulations for 100 random initial states.
The x-axis and y-axis show the initial pitch (θ0) and roll (ϕ0) angles respectively. A
black circle indicates that the faulty quadcopter achieved stability, whereas the red
cross indicates that it lost stability.

It can be found in Figs. 5.4 and 5.7 that the yaw rate is not zero during the
translational flight but reaches 0 when hovering. It indicates that the relation between
the attainable yaw rate and propeller speeds for several propeller pitch angles (shown
in Fig 5.1) is only valid for hovering. Because this work only considers the dynamic
system with 3 control inputs (3 available pitch angles) where the rotating speed
remains constant during operation. If the quadcopter has to change the centre rotor
speed to have a 0 yaw rate in translation, this leads to the dynamic system changing
from three control inputs to four control inputs, which can be further researched in
the future.

5.5 Summary

In this chapter, we study the dynamics and control of CVPP quadcopters in the
presence of a faulty propeller, that is, a propeller that can no longer adjust its pitch
angle. We analyse the equilibrium trajectory, identify the uncontrollable modes,
and propose a linear controller. The correlation between the self-rotation speed
and the common propeller spinning rate is characterized. The specific condition
under which a faulty CVPP quadcopter could hover steadily without self-rotation
is given. We believe the new findings could further enhance the development of
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Figure 5.6. Result of the failure trail (crash to the ground), where the initial state is
[x, y, z, ϕ, θ] = [0, 0, 0,−1.2,−1.2]

CVPP quadcopters for high-performance flights in the future. The finds are further
validated by physics-based simulation experiments.

The main theoretical contribution of this chapter is to discover that a CVPP
quadcopter can exhibit different but favourable behaviour such as a slow self-spinning
speed in the presence of a propeller fault. We also analyse the relationship between
the self-spinning speed and the parameter conditions and identify the parameter
conditions that lead to zero self-spinning in the presence of one propeller fault.
Such a discovery is favourably surprising. The theoretical findings are supported by
analysing the equilibrium trajectory, identifying the uncontrollable modes, proposing
an H∞ controller and simulating it in two validation experiments. The aforementioned
properties make CVPP quadcopters an attractive platform and may stimulate further
research and application in the future.
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Figure 5.7. Simulation results of random initial angle scenario where the initial
state is [x, y, z, ϕ, θ] = [0, 0, 0,−0.7,−1.26] and the target state is [x∗, y∗, z∗, ϕ∗, θ∗] =
[0, 0, 0, 0, 0].
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6.1 Introduction

Although VPP quadcopters have received increasing attention in recent years, studies
mainly focus on fault-tolerant control [170, 171]. The great potential in manoeuvring
flight has not been well explored up to now. In fact, VPP quadcopters are suitable for
a variety of aerobatic flight manoeuvres. Exploring these manoeuvres could broaden
the flight envelope and help address complex flight scenarios. They could be relevant
in entertainment and military applications as well as in applications requiring aircraft
to navigate narrow confined spaces, all of which have received increased attention in
recent years.
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Figure 6.1. A typical tic-toc (also known as “the pendulum”) manoeuvrer of the
devil sticks.

Among aerobatic flight manoeuvres, tic-toc is one of the most challenging to be
achieved autonomously. The tic-toc manoeuvre attempts to fly the UAV in a vertical
plane rather than a horizontal plane. As the UAV is not able to fly steadily in a
vertical plane due to the lack of vertical lift, it has to periodically swing back and
forth to approximately keep a vertical flight pose. Such a periodic movement can be
observed in juggling (see Fig. 6.1). It is a typical aerobatic manoeuvre of helicopters
[172]. The work in [114, 35] realized autonomous tic-toc control of a helicopter using
inverse reinforcement learning. Such a method, however, requires data of tic-toc
trajectories generated by expert pilots in advance.

Up to now, an autonomous tic-toc manoeuvre of a quadcopter has not yet been
reported in the literature. Moreover, how to realize it by self-learning without data
generated by a skilled pilot is still an open problem. This chapter studies this
problem. As the dynamical system is extremely complex, we consider a simplified
planar quadcopter model to simulate a VPP quadcopter [173, 174]. Even though
the dynamic model is simplified to be two-dimensional, we still face many of the
challenges. In particular, as the tic-toc movement is not around any equilibrium
point, equilibrium-based control approaches are not applicable.

As far as the authors are aware, the tic-toc manoeuvre has not been achieved
by any conventional control approaches in the literature. In this chapter, we design
controllers for tic-toc aerobatic flight for planar VPP quadcopters via reinforcement
learning (RL). RL is a method that enables an agent to use the reward obtained
from its interactions with the environment to generate its control policy [32]. It has
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received significant attention in recent years due to its potential to address problems
that are challenging to solve by conventional control approaches [33, 34]. Although
RL has been applied to the control of multi-rotor drones, it is mainly used to achieve
flight near the equilibrium point, such as throw-and-hover [36] and attitude control
[37].

We use the deep deterministic policy gradient (DDPG) approach to train RL
controllers based on carefully designed rewards. The obtained RL controllers are
shown to generate two flight modes: spin and tic-toc. The flight performance of
either mode is carefully analysed. Then, we evaluate and screen out unfavourable
RL controllers by a non-dominated sorting approach [175]. Finally, we extend the
remaining RL controller by introducing a compensation control, so that the tic-toc
motion can follow a moving reference point, and an LQR-based recovery control, so
that the quadcopter can recover from tic-toc to hovering flight. A series of studies
are conducted in simulation to verify the proposed approach.

6.2 Tic-toc Manoeuvrer

6.2.1 Introduction

Among the aerobatic flight movements, tic-toc is one of the most challenging to
be achieved autonomously, shown in Fig. 6.2. Tic-toc manoeuvrer is to fly the
helicopter in a vertical plane rather than a horizontal plane. Since the helicopter
cannot fly steadily in a vertical plane due to the lack of vertical lift, the aircraft has to
periodically swing back and forth around the vertical plane in order to approximately
maintain a vertical flight status. Since the main propeller is located in the centre of
the helicopter, the thrust always acts on its centre of mass, so the helicopter always
has a large position movement during the tic-toc manoeuvrer. Therefore, the tic-toc
manoeuvrer standard of a helicopter is generally to evaluate the displacement of
its tail rotor as it acts as its fulcrum during the manoeuvrer while the fuselage is
rotating about the vertical axis by 90° back and forth.

Such a manoeuvrer is not achievable for the ordinary quadcopters since their
actuators can not provide inverse forces. With the reverse thrust capability of the
VPP actuators, a VPP quadcopter can try to achieve such a manoeuvrer. However,
different from helicopters, where the thrust acts in the centre of the UAV, the
quadcopters generate thrust from the ends of their frames. As a result, the VPP
quadcopter may not have such a large displacement during the tic-toc manoeuvring.
Such a periodic movement can be observed in juggling (see Fig. 6.1). The performer



106
Aerobatic Tic-Toc Control of Variable Pitch Propeller Quadcopters via

Reinforcement Learning

Figure 6.2. A helicopter tic-toc manoeuvrer handbook, reprinted from [176].

uses three sticks (two in his hands namely a beating stick and one with coloured
wool balls on each end in the air namely a flying stick). Each time, the player takes
turns using the left and right beating sticks to strike at the end of the flying stick,
so that it swings in the air without falling. Moreover, the flying stick can maintain
its position without large displacement. Inspired by this juggling, we build a planar
VPP quadcopter model where only one side of the quadcopter can provide thrust.
The aim of this environment is to perform such a tic-toc manoeuvrer by a planar
quadcopter to keep its centroid position as constant as possible.

6.2.2 Problem Statement

The planar VPP quadcopter is modelled as a stick with uniform mass distribution
which is illustrated in Fig. 6.3. A force f is applied at one end of the stick. Its
direction is always perpendicular to the stick. Its sign can be positive or negative
(see Fig. 3.1). We consider only a single force as doing so is already sufficient to
achieve the tic-toc manoeuvre as demonstrated by Fig. 6.1. Interestingly, a single
force acting on the stick end is not sufficient for a quadcopter to hover. Tic-toc is
one of a few flight modes that a quadcopter could use to stay in the air under these
constraints.

Let d be the distance between the centre point and a reference point (i.e., the
red point in Fig. 6.3). The control objective is to design f such that d is as small as
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Figure 6.3. The schematic diagram of the whole period of the VPP quadcopter
tic-toc manoeuvrer.

possible. As there are no equilibrium states, it is challenging to formally define the
target state. We will later quantify the objective by using rewards when designing
RL algorithms.

It is shown that different types of indicators and features can describe the
manoeuvrer. Some of them, such as periodic time, the centre point of the motion,
maximum angle, position deviation and force requirement, can be obtained by direct
measurement. Other indicators, such as the space occupation requirements (cl and
cr), need further calculated. In addition, some of these indicators can be measured
every moment, such as the position and angle deviation, while some of them can only
be measured at the end of the operation, such as periodic time and maximum force.
Since there are no equilibrium states, it is challenging to accurately define the target
state. Since the tic-toc manoeuvrer standard is hard to describe, we simplify the
control objective to design a f to make d as small as possible while keeping σl and
σr close to 0. We will later quantify the objectives by using rewards when designing
RL algorithms.

In the following part, the states of the stick and the dynamic model are presented.
The position and velocity of the centre point of the stick are [x, z] and [u,w],
respectively. The attitude of the planar quadcopter is described by θ, which is the
angle between the stick and the x-axis. The spinning rate is q. Let m and l denote
the mass and half length of the stick, respectively, I is the moment of inertia, g is
the gravitational constant, and fT is the total thrust, and τT is the torque. Then,
the overall state vector is [x, z, θ, u, w, q] and the dynamic model is .
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The position and velocity of the centre point of the stick are [x, z] and [u,w],
respectively. The attitude of the planar quadcopter is described by θ, which is the
angle between the stick and the x-axis. The spinning rate is q. Let m and l denote
the mass and half length of the stick, respectively, I the moment of inertia, g the
gravitational constant, and fT and τT the total thrust and torque. Then, the overall
state vector is [x, z, θ, u, w, q]

Recall Eqs. (3.28) and (3.30), the dynamic models of the simplified 2D VPP
quadcopter are given by 

ẋ

ż

θ̇

u̇

ẇ

q̇


=



u

w

q

−fT sin θ/m
fT cos θ/m− g
−τT/I


. (6.1)

and

fT =f,

τT =fl.
(6.2)

6.3 Reinforcement Learning Controller: Compar-
ison

Based on the literature, this work selects four typical algorithms for comparison,
namely DDPG, PPO, SAC and TD3. This section mainly introduces the DDPG
algorithm, and the contents of other algorithms are detailed in Appendix B.

6.3.1 Deep Deterministic Policy Gradient Methodology

We apply the DDPG approach reported in [33] to train the RL controller. The
approach comprises two parts, an actor Neural Network (NN) and a critic NN. The
actor NN is an agent that works in the environment whereas the critic NN evaluates
the performance of the agent. The actor NN decides which action should be taken
based on the state get from the environment. All experiences, including rewards,
states, and actions that the actor gathered from the environment, are stored in
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(a) Actor Critic structure of the DDPG.
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Figure 6.4. DDPG NN working example.

memory. The critic NN evaluates the performance of the actor NN based on the
experiences randomly drawn from the memory buffer and generate the temporary
difference error to guide the update of the actor NN. A deterministic policy gradient
algorithm is used to update the actor NN. The critic NN is a value based deep
Q-learning NN that uses state feedback and reward as input while its output is a
temporal-difference error used to evaluate the performance of the actor. The overall
network structure is presented in Fig. 6.4(a).

The whole training process can be divided into three parts, as shown in Fig-
ure 6.4 (b). Firstly, the parameters of the NNs are initialized. We choose Q(s, a,w)
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and µ(a|s,θ) to represent the main critic and actor network, respectively. Here,
w and θ are the weights of the critic and actor networks. Since DDPG uses tar-
get networks to improve the stability of the optimization, we use Q′(s, a,w′) and
µ′(a|s,θ′) to represent the target critic and actor network respectively. These two
target networks are updated periodically.

Secondly, data in the environment is sampled. Suppose the current time is t,
define the state of the model to be st, action as at and the reward value as rt.
After that, set st+1 to be the next state of taking action at at states st. Since
DDPG uses an experiences buffer R to store experiences, design an experience set
< si, ai, ri, si+1, di > and store it in R.

Finally, the main NN is periodically updated by selecting a batch of M experience
sets from experiences buffer R, where the update frequency is a hyperparameter.
The actor network is updated according to Eq. (2.3), given by

∇θ ≈
1
M

M∑
i=1

(∇aQ(s, µ(s,θ),w)∇θµ(si,θ)) .

The first ∇a part describes how the actor gets a high Q value according to the critic
network. The second ∇θ part presents how to change the parameters to allow the
actor network to select the action with high probability [33]. The critic network
updates the policy with two Q networks to minimize the loss according to Eq. (2.2),
given by

L = 1
M

M∑
i=1

(ri + γQ′(si+1, µ
′(si+1,θ

′),w′)−Q(si, ai,w))2,

where γ is the discounting factor. At last, target network is updated by

θ′ ← τθ′ + (1− τ)θ,

w′ ← τw′ + (1− τ)w.

The experience set < si, ai, ri, si+1, di > comes from the memory set, and the
policy will be trained according to the selected mini-batch. The larger the batch size
used for training, the better the results presented, but the slower the calculation
speed is. The pseudocode is shown in Algorithm 1.
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Algorithm 1: Deep Deterministic Policy Gradient
Input: episodes K, steps per episode T , batch size M
Init: actor policy NN µ(a|s,θ) with parameters θ, critic value NN Q(s, a,w)

with parameters w, replay experience R
Init: target policy NN parameters µ′(a|s,θ′)← µ(a|s,θ), target value NN

parameters Q′(s, a,w′)← Q(s, a,w)
begin

for k ∈ K do
Reset the environment and the noise model N
for t ∈ T do

Take action at = µ(s,θ) + ϵ, ϵ ∈ N by observe state st
Observe next time step states st+1, done signal dt and reward rt
Store experience set < st, at, rt, st+1, dt > in R
if it is time to update then

Sample M random experience sets < si, ai, ri, si+1, di > from R
Compute targets

if dt == done then yi = ri
else yi = ri + γQ′(si+1, µ

′(si+1,θ
′),w′)

Update the critic value NN paramters w to minimize the loss
(gradient descent) by

L = 1
M

M∑
i=1

(yi −Q(si, ai,w))2

Update the actor policy NN paramters θ to maxmize the
expected reward (gradient ascent) by

∇θ ≈ 1
M

M∑
i=1

(∇aQ(s, µ(s,θ),w)∇θµ(si,θ))

Soft target update:
θ′ ← τθ′ + (1− τ)θ
w′ ← τw′ + (1− τ)w

if dt == done then quit episode



112
Aerobatic Tic-Toc Control of Variable Pitch Propeller Quadcopters via

Reinforcement Learning

6.3.2 Reinforcement Learning Methods Comparison

Besides DDPG, detailed pseudocodes of the other three RL algorithms are presented
in Appendix B.

Since our target may be too hard for the agent NN to learn and the time
requirement is so long, we use the standard pendulum environment instead of
the planar quadcopter tic-toc environment for a quick comparison. The standard
pendulum environment is essentially a rotation pendulum with one end fixed in a
gravity environment. It hangs in a downward position in the initial. The target is to
train the NN to control the pendulum to stand upward without falling by applying a
limited torque. The closer the pendulum is to the target upward position, the larger
the reward is given. A slight punishment coefficient is given for the torque action. It
is an environment that the RL NN has to learn from failure and can hardly attempt
to complete the holding target through exploration.

In order to avoid the interference of hyperparameters, all these algorithms have
the same neural network structure. Both the actor and the critic NN are double
hidden layer NNs, each layer has 400 and 300 nodes, and all nodes between layers
are fully connected. Among them, due to the TD3 algorithm design, it has two critic
NNs with the same structure.

Figure 6.5. Comparison of the learning process of four RL algorithms. The colour
of red, blue, brown and green represents the result of DDPG, PPO, SAC and TD3
algorithms, respectively. The translucent areas indicate the upper and lower reward
limitation of the multi-trials training process, and the solid line represents the mean
reward calculated from 6 trials.
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To give an overall evaluation of these RL algorithms, we train each algorithm 6
trials with different random seeds where all RL algorithms use the same sequence of
random seeds. Each trial has 10000 episodes and each episode is a complete plane
quadcopter movement from the beginning (start from initialization) to the end (reach
the end of time). Each episode contains 20 seconds with 0.05 second a step.

The overall comparison for pendulum environment among these four RL algo-
rithms is given in Fig. 6.5 and the detailed results are shown in Appendix B.

The test results show that all RL algorithms can learn how to control the system
to reach our target, but with different speeds. Compare with the on-policy algorithm
(PPO), the off-policy algorithms (DDPG, TD3 and SAC) can train NN more efficiently
because they can use the experience stored in the experience buffer to train the NN
as well.

It is worth noting that PPO does not seem to have reached its target reward, but
we find the NN is still possible to stabilize the pendulum after training. Because of
its randomness, PPO has the lowest reward value when it can stabilize the pendulum,
which makes it still considered to have learned how to stabilize the pendulum.

It can be found that although TD3 improves the stability of the DDPG by adding
a double critic NN, it also makes the algorithm sensitive to hyperparameters. TD3
can quickly learn to the desired position in some of the trials, but it performs the
worst in other trials that start with a different initialization random seed.

In conclusion, DDPG is more suitable for the use of our project compare with
the other three popular RL algorithms.

6.3.3 Flight Control Comparison

Because the control of the pendulum environment is successful, we also implement
a training section for DDPG to learn to control the plane quadcopter to achieve
balance. In order to have an evaluation standard for comparison, we first designed
an LQR controller through a linearised model.

LQR based Recovery Controller Comparison

The study starts with a linear control algorithm design based on the input-output
linearisation process [177, 178]. In order to control the 2D model shown in Fig. 3.13,
it is better to change the output function as the position (x, y) . So the new output
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will be

y = h(x) = [sx, sy]T .

Then, if the control state x is available, it is possible to find a fully new feedback
control law

u = α(x) + β(x)v, (6.3)

where v is a new input defined later.
Create a new series number ri (i is the number of the output) which means the
relative degree of the system

[yr1
1 , y

r2
2 ]T = b(x) + ϕ(x)u,

where

ϕ(x) =
Lg1L

r1−1
f h1(x) Lg2L

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x)

 , (6.4)

b(x) =
Lr1

f h1(x)
Lr2
f h2(x)

 . (6.5)

The system is solvable only if the matrix ϕ(x) is nonsingular. Therefore, the equation
(6.3) with

α(x) = −ϕ−1(x)b(x),

β(x) = ϕ−1(x).

For the system (3.29) above, the parameters are

r1 = r2 = 2,

with

ϕ(x) =
− sin θ

m
0

cos θ
m

0

 .
It is easy to find that ϕ(x) is singular for all x. In order to find a nonsingular ϕ(x),
it is an ideal to get an extra parameter instead of u1. So consider a new set of the
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input values

u1 = ζ,

ζ̇ = ξ,

ξ̇ = u1,

u2 = u2.

The new state space will be presented by

ẋ = f(x) +
2∑
i=1

gi(x)ui, (6.6)

where

x = [sx, sy, vx, vy, ζ, ξ, θ, w]T ,

u = [u1, u2]T ,

f(x) =



vx

vy

− sin θ
m
ζ

−g + cos θ
m
ζ

w

ξ

0
0



,

and

g1(x) = [0, 0, 0, 0, 0, 0, 1, 0]T ,

g2(x) = [0, 0, 0, 0, 0, 0, 0,− L2I ]T .

As a result, the system (6.6) is solvable with the relative degree

r1 = r2 = 4,

and

[yr1
1 , y

r2
2 ]T = b(x̄) + ϕ(x̄)u.

Recall the calculation formula (6.4), the feedback control law ū = α(x̄) + β(x̄)v can
be computed and shown in Fig. 6.6.
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Figure 6.6. The control law sketch.

The new system (6.6) has 8 dimensions which is equal to the sum of ri. Then,
the new system (6.6) is fully linear and controllable. The new coordinate z = Φ(x̄) is

z1 = h1(x) = x, z5 = h2(x) = y,

z2 = Lfh1(x) = ẋ, z6 = Lfh2(x) = ẏ,

z3 = L2
fh1(x) = ẍ, z7 = L2

fh2(x) = ÿ,

z4 = L3
fh1(x) = ...

x , z8 = L3
fh2(x) = ...

y ,

which is linear and also controllable.

Figure 6.7. The block diagram of the linear control system.

After the coordinate changed, the system shown in Fig. 6.7 is changed to

ż = Az + Bv

y = Cz
(6.7)

with

z = [z1, z2, ..., z8]T ,

v = [v1, v2]T .
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Figure 6.8. Result of LQR based on the simple model experiment. (a) is the force
changing with time; (b) is the degree changing with time; (c)is the trajectory of the
stick, the blue line is the trajectory and the thick red line is the stick.

A =
A1 0

0 A1

 , B =
B1

B2

 , C =
C1 0

0 C1

 ,

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B1 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 ,

C1 =
[
1 0 0 0

]
.

In the linear Eq. (6.7), a feedback controller like LQR can be used. After the
calculation, the LQR controller can be placed in the Matlab environment. The result
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is shown in Fig. 6.8, which can achieve a good result. However, the controller can
not self-improve the control performance. Therefore, we will test if the RL algorithm
can handle the same experiment environment.

RL based Recovery Controller

According to the comparison result shown in the preview section, we choose DDPG
as our basic RL algorithm [33]. The experiment environment is shown in Fig. 6.9 (d).
The environment is set to be the one only affected by gravity and ignore the
aerodynamic resistance. The 2D quadcopter is a simplified model that needs to be
controlled, which is shown as the red stick. The blue line is the trajectory of the
quadcopter and the red square is the target place. In every episode, the quadcopter
is set to start from the original point with all states being set to 0. At the beginning
of each episode, instead of changing the quadcopter initial state, the target is set to
a random position within a circular range of 50 m from the centre. Inputs are two
vertical forces from two ends which can be set to any value smaller than 15 N, up or
down direction.

The basic network structure we use is a four-layered perception structure, including
an input layer, two hidden layers and an output layer, all layers are fully connected.
The input layer collects states patterns, and the output layer has action signals
to which input patterns may map. Two hidden layers have 400 and 300 nodes
respectively. This neural network structure design achieves a good balance between
the time efficiency and performance. Both actor and critic NN use this network
structure.

In the experiment, the reward is designed by

r = 0.1t− 0.1
√
s2
x + s2

y − 0.1θ2, (6.8)

where t is the running time, sx and sy are the normalized position distance of between
the centre of the stick and the target position along x and y axis and θ is the angle.

Inputs of the DDPG algorithm contain 6 states error values (2 positions, 2
velocities and 2 accelerations), 3 attitudes error values (1 angle, 1 angle velocities
and 1 angle acceleration), 2 forces form equation and 1 labelled reward value (show
if the quadcopter reaches the target). The output values are the forces on the ends.

Figure 6.9 (a),(b) and (c) claim that after 150 seconds running, the model reaches
to period of oscillation. Every time the stick reaches the target with non-zero speed,
which makes it fly away from the target state. Despite this, the stick knows how to
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Figure 6.9. The result of the RL planar quadcopter position tracking experiment.
(a) is the distance changing with time; (b) is the degree changing with time; (c) is
the velocity changed with time; (d) shows the trajectory of the stick.

control itself to reach the target by self-learning. Such performance can be further
improved by tuning the weight parameters of the reward function to increase the
punishment importance of the velocity. However, there is no general standard for
the design of the reward function, and most adjustments are based on experience.

Overall, comparing between Figs. 6.8 and 6.9, it can be found that the RL control
performance is not as good as the LQR controller for the hover control of planar
quadcopter. This indicates that for problems that are easy to implement by using
control theory, designing a controller based on control theory is a more effective
method. However, to some difficult problems, it is better to use RL to design a
controller and enhance its performance by adding other extension algorithms, such
as the Tic-toc manoeuvrer.
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Figure 6.10. The neural network of the DDPG training algorithm.

6.4 Reinforcement Learning Controller: Training
and Analysis

6.4.1 Algorithm Structure

We apply the DDPG approach reported in [33] to train the RL controller. The
approach comprises two parts, an actor Neural Network (NN) and a critic NN. The
actor NN is an agent that works in the environment whereas the critic NN evaluates
the performance of the agent. A deterministic policy gradient algorithm is used to
update the actor NN. The critic NN is a value-based deep Q-learning NN that uses
state feedback and reward as input while its output is a temporal-difference error
used to evaluate the performance of the actor.

The NN structures are shown in Fig. 6.10. Subsequent layers are fully connected.
The output of the actor NN is the force f that acts at the end of the planar quadcopter.
To avoid non-linearity, we use cos θ and sin θ instead of θ as the environmental output
states. As a result, there are 7 feedback states which are obtained by the agent from
its interaction with the environment:

[
sin(θ), cos(θ), θ̇, x, z, ẋ, ż

]
. These feedback
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Figure 6.11. Position holding simulation results of the spin mode, where colour bar
represents time. (a) shows the first 2 seconds timeline simulation results of a spin
mode NN and (b) shows the full 20 seconds states simulation results of spin mode.
It takes about 2 seconds for the initialization phase to achieve the manoeuvre phase.

states are also used to design rewards. The whole NN is built in the Matlab Deep
Reinforcement Learning toolbox environment.

6.4.2 Training Process

Since there is no target equilibrium states, we must design appreciate reward to reflect
our control objective. The rewards are designed as below. Positive and negative
rewards, respectively, represent encouragement and penalty of certain behaviour.
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Figure 6.12. Simulation result comparison of the tic-toc mode where colour bar
represents time. (a) shows the simulation results of first 2 seconds timeline for a
tic-toc mode NN and (b) shows the full 20 seconds states results of it. The planar
quadcopter quickly switched to the tic-toc manoeuvrer with very little initialization
time.

1) To reward the centre point of the quadcopter for approaching the target location,
we design the following distance deviation penalty function:

r(d) = −0.1d2 − 100dfar,
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where

dfar =

0, if d < 4;

1, if d ≥ 4.

Here, dfar gives a strong penalty when the centre point gets too far away from
the reference point. When dfar = 1, the episode is stopped.

2) To reward the quadcopter for assuming a vertical attitude (i.e. θ close to
−π/2), we use reward function

r(θ) = −0.01(θ + π/2)2,

where θ ∈ [−π, π).

3) To minimize the required force magnitude, a force penalty is designed as

r(f) = −0.01f 2.

4) To encourage the quadcopter to remain in the air for a long time, we increase
the reward with the flying time by

r(t) = 0.1t,

where t is the time elapsed since the start of the episode.

In total, the reward function is

R = r(d) + r(θ) + r(f) + r(t). (6.9)

According to Eq. (6.1), we can estimate whether the attitude of the plane
quadcopter meets our expectation by the position and angle. Relatively speaking,
the deviation of position can be compensated by the later design of the trajectory
planning system, but the compensation of angle error is difficult to achieve. Therefore,
the consideration of angle needs to be the most important one among all reward
designs.

For each episode, the quadcopter starts from the initial hovering state, which
is x0 = 0, z0 = 0, θ0 = 0. The target reference position is randomly generated,
xt, zt ∈ [−1, 1]. The randomness helps strengthen the RL controller’s generalization
ability and stability [179]. Within each episode, the quadcopter tries to reach, and
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remain close to the target position. If the quadcopter flies too far away (more than
4 m), the episode will be marked as a failure and stop. We train the DDPG agent
for 30000 episodes, with each episode lasting at most 10 s with 0.02 s sampling time.
All episodes whose returns are greater than -50 are saved for further analysis.

6.4.3 Result Analysis

The trained RL controllers exhibit two flight modes. The first is a spin mode, where
the planar quadcopter spins around a fixed position, therefore θ varies from 0 to 360
degrees (see Fig. 6.11). The second is a tic-toc mode, where the planar quadcopter
swings around a point back and forth, therefore θ is constrained in a bounded interval
(see Fig. 6.12).

In either of the flight modes, the entire flight can be split into two phases. The
first is a settling phase, in which the planar quadcopter starts from a horizontal
attitude and then gradually converges to a steady periodic motion. During this
phase, there will be large position and attitude deviations. The second is a steady
periodic phase, in which the states vary in a steady periodic manner.

In order to quantify the settling time, we use trigonometric functions to fit
the steady periodic curve. As illustrated in Fig. 6.13, the distance d between the
quadcopter centre point and the reference point is shown by the blue curve. We can
fit the blue curve in the steady periodic phase by

df (t) = A0 + A1 cos(ωt) + A2 sin(ωt).

Once |d(t)− df (t)| remains below a threshold (for example, 0.1) the settling phase
ends and the corresponding time is the settling time. We have checked all the trained
controllers and noticed that it takes a longer settling time for the spin mode (around
6 s) than for the tic-toc mode (around 3 s).

By comparing the performance of the spin and tic-toc modes as shown in Figs. 6.11
and 6.12, the tic-toc mode does not exhibit significant fluctuations during the settling
phase and reaches the steady periodic phase faster. In terms of space occupation,
the spin mode takes more space than the tic-toc mode (observed from the XZ plane).
In terms of required force, the spin mode requires high force (70 N maximum) in the
settling phase and then much less force (25 N maximum) in the steady periodic phase.
As a comparison, the required force of the tic-toc mode does not vary significantly
during different phases and the maximum value is 50 N.



6.5 Reinforcement Learning Controller: Further Evaluation and Screening 125

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

original data

FFT

Figure 6.13. Settling time quantification through comparison of the original distance
curve and the Fourier fitting curve. To avoid interference via the initialization
phase, we exclude the first 5 seconds when generating the Fourier fitting curve. The
fitting distance function shown in the figure is df(t) = 0.76 + 0.11 cos(14.46t) −
0.001 sin(14.46t), and the settling time is around 2.8 s.

Table 6.1. Comparison among three tic-toc manoeuvrer NNs with different speeds.

High-speed Middle-speed Low-speed
Swing Angle (rad) 1.12 1.38 2.26
Time Period (s) 0.45 0.56 0.94
Maximum Force (N)(+) 73.68 50.34 32.65
Maximum Force (N)(-) -46.43 -55.28 -48.34

While we have incorporated an angle penalty reward function r(θ), why could
the controller still learn the spin mode? This is because the total reward function
considers other properties as well and we stored all the RL NNs whose overall rewards
were greater than the set threshold.

6.5 Reinforcement Learning Controller: Further
Evaluation and Screening

In the last section, we show that the tic-toc flight mode has less settling time and
lower space occupation than the spin mode. It should be noted that different training
episodes can lead to different controllers. These controllers may all implement the
tic-toc manoeuvre, but their performance is very different. The inherent diversity of
solutions (and performance) is fundamentally due to the total reward function being
composed of a mixture of metrics, and the trained controllers may place different
emphasis on different metrics. In this section, we evaluate different tic-toc controllers
and show how to screen out solutions according to additional metrics.
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(a) A high-speed tic-toc mode NN, where the manoeuvre
frequency is 3 Hz.

(b) A middle-speed tic-toc mode NN, where the manoeuvre
frequency is 2 Hz.

(c) A low-speed tic-toc mode NN, where the manoeuvre fre-
quency is 1 Hz.

Figure 6.14. Simulation result comparison of different NNs that have similar reward
value. It indicates that it is difficult to distinguish different performance qualities
only by the reward function.
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Figures 6.14 shows examples to demonstrate the performance of different con-
trollers. The three examples could be classified to be high-speed, medium-speed,
low-speed controllers based on the periodic time of their steady phases. The specific
values of the maximum swing angles, periodic time, and maximum forces of these
examples are given in Table 6.1. The sign of force only represents the direction. As
can be seen, the smaller the swing angle and the shorter the time period, the larger
the force that is required.

In the rest of the section, we introduce three metrics to evaluate different RL
controllers and propose a method to screen the unfavourable ones out.

6.5.1 Evaluation Metrics

To give an overall evaluation of the performance of the NN, we use the following
three metrics:

1) The first metric is the mean distance between the centre and reference points.
It is denoted as dmean.

2) The second metric is the maximum space occupation smax, which is defined as

smax = max (|er| , |el|) , (6.10)

where er and el denote respectively the rightmost and leftmost distance of the
stick’s top end from the vertical plane (see Fig. 6.3).

3) The third metric, fmax, is the maximum magnitude of the force during the
entire control process including both settling and steady periodic phases. This
metric would be relevant for practical realizations of the RL controller.

It must be noted that the three metrics could not be designed as rewards during
the training process. That is because they are defined for the entire control process
and can not be used for timely feedback to evaluate the performance of the training
NN controller.

It is favourable if dmean, smax, and fmax are small; the smaller the better.

In general, to fully describe the qualities of the manoeuvrer, we can construct
other 4 different objective functions based on indicators and features of the tic-toc
manoeuvrer as follows:

1) Maximum angle θmax. It is determined by the larger value between θl and θr,
where θmax = max(θl, θr).
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2) Reward value R. It is the reward value to measure the performance of the
action in RL training.

3) Maximum central distance deviation cmax. It is a value that can describe the
horizontal movement of the centre of mass.

4) Initialization phase time ti. It is the time of the initialization phase which is
calculated by the first time entering periodic movement.

It is favourable if dmean, smax, and fmax are small. Next, we will use a multi-
objective optimization method to further screen the trained NNs.

6.5.2 Network Screening

This subsection addresses how to screen a large number of RL controllers based on
the aforementioned three metrics.

One approach is to assign different weights to the three metrics according to ones’
own preferences and then use a weighted summation of the three metrics as a single
metric. Since many networks perform well on one metric but worse on another, one
overall metric may not be sufficient to choose a suitable controller. Therefore, we
use a screening algorithm to identify the set of best NNs from all the trained NNs.
Here “best” refers to NNs that are not dominated by other NNs.

Figure 6.15(a) shows all trained NNs as a point cloud in the metric space,
where the axes correspond to the three metrics dmean, smax and fmax, respectively.
Figure 6.15(b) shows the corresponding Pareto-efficient frontier.

While this method screens out a large portion of unfavourable NNs, we can
further reduce the selection based on our preferences. For example, if we want the
space occupation to be as small as possible, we could choose the bottom-left red dot
in Fig. 6.15(b). The corresponding curves of the states for this RL controller are
given in Fig. 6.16. In addition, we can choose NNs from anywhere on the Pareto
optimal surface to meet multiple metric requirements.

Based on the requirements from the task, we could determine which NN meets our
requirements from the optimized result. In most cases, we may pay more attention to
the maximum force requirements and the maximum space occupation requirements.
Therefore, the experimental results of the comparative test for two preferences are
shown in Fig. 6.16, where the summarized comparison is given as follows:

1) Minimum force preference. In this scenario, the actuator power of the planar
quadcopter is insufficient, and it is difficult to provide a large thrust. We aim
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Figure 6.15. Screening of trained NN controllers. (a) shows the Point cloud of all
trained NNs and (b) shows the Pareto-efficient frontier point cloud of all trained
NNs.

to control the planar quadcopter that can move around the target position
with minimum force, and space constraints are weak. Simulation results are
shown in Fig. 6.16(a), where the maximum force is less than 40 N, but the
space occupation requirement is larger than 1.16 m.

2) Minimum space occupation preference. In this scenario, the quadcopter needs
to pass through an extremely narrow passage. We aim to find the minimum
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(a)

(b)

Figure 6.16. Simulation results of the planar quadcopter controlled by RL NN
performing tic-toc manoeuvrer with different tendencies. Performance of an RL
controller selected from the Pareto-efficient frontier. (a) is the controller that uses
the minimum force (less than 35 N) and (b) is the controller that uses the minimum
space occupation (about 0.74 m).

space occupation along with a release of force requirement and error constraint.
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Simulation results are shown in Fig. 6.16(b), where the space occupation
requirement is about 0.56 m and the force requirement reaches up to 89 N.

6.6 Reinforcement Learning Controller: An Ex-
tension

This section extends the RL controllers to further improve their performance. In
addition, a recovery controller is designed to restore hovering flight and a NN
migration method is provided to realize the control of different dynamic models by
the target NN.

6.6.1 Trajectory Compensation

A problem of the RL controllers is that there may exist steady-state errors between
the average position of the centre point and the reference point. We now seek to
suppress this steady error. Moreover, we seek to further decrease the maximum space
occupation smax.

We design a trajectory compensation method that uses a PID controller to
compensate the steady-state error and reduce smax. The idea of this method is to
design a swing trajectory to offset unnecessary displacement, thereby reducing the
maximum manoeuvrer distance deviation. In our scenario, the error between actual
and desired trajectories is given to the PID controller as the input where the output
value is the trajectory that needs to be compensated.

Figure 6.17 verifies the effectiveness of the proposed controller. As can be seen, the
compensation method can reduce the average steady-state error from [−0.54,−0.22]
to [−0.05,−0.12]. Moreover, smax decreased from 0.98 m to 0.51 m. However, this
result comes at the cost of the maximum force increasing from 78 N to 165 N.

The advantage of this compensation controller is that we can flexibly enhance
the flight performance of an existing trained RL controller according to our needs,
instead of training new RL controllers.
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Figure 6.17. Simulation results (steady periodic phase) of the planar quadcopter with
or without trajectory compensation. The trained NN strikes a good balance among
all three objective functions (dmean, smax and fmax). (a) shows the simulation results
of the NN controller without trajectory compensation and (b) shows the simulation
results of the NN controller with trajectory compensation. The overall maximum
space occupation is decreased by 53%.
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Figure 6.18. Overall control system structure used for the narrow space passing
simulation. The structure is divided into three parts, trajectory generation (shown
in blue block), controller decision (shown in red block) and simulation environment.

6.6.2 Recovery Controller System

Our trained RL controller can only achieve tic-toc flight. If the planar quadcopter
wants to restore hovering flight, a new controller would need to be designed and
integrated.

We introduce an LQR controller for hovering flight control based on a modified
version of Eqs. (6.2) and (3.5). The modification is to change the single force as in
Eq. (6.2) to two forces applied on the two ends of the stick. As a result, Eq. (6.2)
becomes

fT =fr + fl,

τT =(fr − fl)l,

where fr and fl are the forces acting on right and left ends of the VPP quadcopter,
respectively. The design of the LQR controller is standard and omitted here.

By combining such a controller with the RL controller, a quadcopter could start
from a hovering position, switch to the tic-toc flight, and finally switch back to the
hovering mode. It should be noted that two forces are required for hovering and
only one force is needed for tic-toc. The overall control structure is illustrated in
Fig. 6.18.

6.6.3 Network Migration

Developing artificial neural networks and porting them from a learnt environment to a
new environment is one of the current research emphases in the field of reinforcement
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Figure 6.19. Simulation results of passing through vertical obstacles with the
extension NN controller, where overall maximum force is 164 N and space occupation
is 0.52 m. (a) shows the 2D rainbow movement and (b) shows its feedback states
and forces.
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learning [180, 181]. There are three different models within the whole learning based
control system deployment process:

1. The first model is what the control system has learnt about the world. Because
we use a model-free reinforcement learning method, the control system has
to learn not only the controller but also the model of the environment (the
dynamics of the planar quadcopter in our situation).

2. The second model is what we build in the simulation environment. It is the
model used for RL based controller training.

3. The third model is the new validation model. It is a different platform on
which we aim the controller to be deployed.

And since the model mismatch exists, apply the trained policy from simulation to a
new environment will inevitably generate errors. This chapter provides two different
methods to reduce these errors and enhance the policy migration ability.

1. The first aspect is the learning mismatch, where the trained control system
can not fully learn the model of the simulation environment. This helps to
train the controller to explore more states and situations.

2. The second aspect is the model parameters mismatch, where parameter values
of the simulation model may differ from those in the target situation. We can
adjust the parameters within Eq. (6.11) to approach the deployment situations
in reality.

3. The third mismatch comes from the model structure mismatch between the
training environment and the target environment. There are methods that
can potentially reduce this mismatch. After deploying the trained controller,
data feedback collected from the target flying tests can be used to train the
controller to reduce the model mismatch [182].

In our work, we initialize the training agent target at a random position to reduce
the first type of mismatches.

To solve the second type of mismatches, we could adjust the force and torque
generated by the trained RL controller according to the specific parameters of the
target platform to

fn = mn

mo

fo,

τn = loIn
Ioln

τo,
(6.11)
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where parameters and variables with subscript o and n correspond to the original
and new parameters, respectively.

Substituting the migration equations Eq. (6.11) to Eq. (3.5) gives

fo sin θ/mo = fn sin θ/mn,

fo cos θ/mo = fn cos θ/mn,

τolo/Io = τnln/In.

Therefore, once the parameters of the standard training model and the target model
are known, we can migrate the RL controller to the target model to make their
performance consistent.

Since the third method requires to use the data collected from real experiments,
this method can be considered to reduce the model mismatch in further practical
deployment research.

6.6.4 Simulation Validation

We study three simulation scenarios to examine the performance of the integrated
system, comprising the RL controller, compensation controller, network migration
subsystem and hovering recovery controller.

The simulation is conducted in Simscape, a physical simulation environment in
Matlab. We discard aerodynamic forces caused by the obstacles. Table 6.2 lists the
physical parameters of the VPP quadcopter model as used in training (with subscript
o) and simulation (with subscript n).

In the first scenario, as shown in Fig. 6.20, from t = 0 to t = 5, the quadcopter
switches from a hovering position to a tic-toc flight mode. Starting from t = 5, it
tracks a moving reference point upward thereby passing a narrow passage. At t = 12,
it switches successfully back to hovering.

In the second scenario, noises and wind disturbance are considered during val-
idation. Noise with a signal-to-noise ratio of 15 dB is added to all the feedback
states. The wind disturbance is 2 N along x-axis and 2 N along z-axis from 3 s to
6 s. Moreover, actuator constraints are added to the simulation where the maximum
thrust of the actuator is limited to 25 N and the maximum thrust changing rate
is limited to 1000 N/s [183]. The result presented in Fig. 6.21 indicates that our
designed control system has good robustness (green lines represent the duration of
the wind disturbance).
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Table 6.2. Planar quadcopter parameters

Parameters Symbols Values Unit
Original Mass mo 1 kg
Mass mn 0.665 kg
Gravitational acceleration g 9.8 m/s2

Original Moment of inertia Io 0.083 kg·m2

Moment of inertia In 0.007 kg·m2

Original Length lo 1 m
Length ln 0.44 m
Force Limit fmax 200 N

In the third scenario, we assume that the parameters of the real system can not
be measured accurately. The values of the parameters used in (6.11) are mismatched,
with different degrees of uncertainty. In particular, these parameters are sampled from
uniform distributions within a mismatch percentage as follows an = ar(1 + ka), ka ∈
[−b, b], where ar is the real value of the parameter, an is the inaccurate value of the
parameter used in Eq. (5), ka is a random variable drawn uniformly from [−b, b], and
b is the model parameters mismatch percentage. We test the controller with different
model parameters mismatch percentage b ∈ {0.1, 0.2, . . . , 0.8}. For each tested
mismatch percentage, we repeated the simulation for 100 episodes and calculate the
average success rate. The episode is marked as success when the agent can perform
the tic-toc manoeuvrer for 5 seconds. The result is shown in Fig. 6.22. It indicates
that our trained controller reliably performs the tic-toc manoeuvre if the mismatch
is not large. This suggests that the reinforcement learning based control system has
certain generalization ability to handle model mismatches.

The findings demonstrate the potential application of the proposed control
approach. To the best of our knowledge, no other methods has previously achieved
autonomous tic-toc manoeuvrer with a quadcopter model.

6.7 Summary

In this chapter, we employ the DDPG approach to train RL controllers based on
well-designed rewards. While the obtained RL controllers could generate two flight
modes, spin and tic-toc, we further analyse the properties of these flight modes and
screen unfavourable RL controllers out by multi-objective optimization. Finally, the
RL controller is strengthened by additional PID and LQR controllers to achieve
better flight performance such as tracking a moving reference point and recovering to
hovering flight status. The proposed control system is validated by a quadcopter in a
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physical environment named Simscape. Although the tic-toc manoeuvrer controller
is designed in the 2D frame, the experiments were simulated in a simplified 3D
environment with no noise or errors. The results demonstrate that the designed
controller can achieve our manoeuvrer target and can be further extended. Although
this is the first step to achieve tic-toc manoeuvrer control, there are still many
challenges to overcome in order to deploy such a controller in reality.

Alternative solutions for real implementation could include 1) an agile quadcopter
platform that includes the dynamics, perception and control system, and 2) appro-
priate methods to extend the controller from 2D environment to 3D environment.

1) As mentioned in Section 2.1, quadcopter with rapid dynamic response and
corresponding accurate sensing system is a key concern in actual implementation.
In particular, the SVPP quadcopter is more suitable for manoeuvring than the
CVPP quadcopter, because it can provide precise and independent thrust and
torque control.

2) Methods like ILC and deep RL can be efficient to extend the controller to adapt
to the practical 3D environment (e.g. [103]). Since tic-toc manoeuvrer is an
iterative motion, other learning-based methods (such as RL) can also be used to
extend the controller to stabilize the quadcopter flying in the air.

In summary, the main theoretical contribution of this chapter is to present for
the first time an RL NN controller which was trained on a planar quadcopter model
to successfully perform the tic-toc manoeuvre. Moreover, we extended the controller
and demonstrated its ability to perform position tracking and narrow vertical tunnel
passage in a simulation environment.
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Figure 6.20. Simulation results of passing through vertical obstacles with the NN
migration method, where the overall maximum force was 84 N and maximum space
occupation was 0.4 m. (a) shows the 2D rainbow movement and (b) shows its
feedback states and forces.
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Figure 6.21. Results of a VPP quadcopter in the tic-toc mode facing external
disturbances and noises.
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7.1 Thesis Summary

The VPP quadcopter is a promising aerial platform with many potential applications.
However, the existing research has not fully explored its capabilities. In this study,
we investigate one theoretical contribution and three novel control systems that
enhance the flight safety and agility of VPP quadcopters.

The first novel theoretical contribution of this study is to discover that the thrust
and torque control of a VPP quadcopter actuator can be independently controlled,
as presented in Chapter 3. This enhancement lays a foundation for the subsequent
VPP quadcopter flight safety control.

Another novel concept is the design of a fault tolerance controller for SVPP
quadcopters. We find that an SVPP quadcopter can fly with three available actuators.
Therefore, as described in Chapter 4, we design a fault tolerance control system for
an SVPP quadcopter with one inoperative actuator. Simulations indicate that a
faulty SVPP quadcopter system with three available actuators can accurately track
the desired trajectory, even when subject to wind disturbance or noise. Subsequent
demonstrations verify that an SVPP quadcopter using our new controller possesses
great potential for safety-critical tasks.

Additionally, in this thesis, we study the case where one propeller of a CVPP
quadcopter is stuck and cannot adjust its pitch angle. This is one of the most
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common failures that occurs in CVPP quadcopters and it is also a unique fault
that only occurs on VPP quadcopters. A unique fault tolerance control system is
devised after decomposing the uncontrollable modes from the system. In Chapter 5,
we describe how the proposed controller is validated in a simulated environment to
demonstrate its stabilising ability on the faulty CVPP quadcopter.

Finally, we investigate the agility control of VPP quadcopters in Chapter 6. This
chapter includes tic-toc manoeuvre metrics analysis, self-learning control system
design, and systematic solutions for control performance adaption. Results from
simulations show that a planar quadcopter can perform tic-toc manoeuvres in the
simulated environment. The simulation results also prove that the learning-based
control system we designed can enhance the flight agility of VPP quadcopters
with good generalisation ability. It also provides the additional possibility for
an autonomous autopilot system to learn manoeuvres by itself without human
demonstration.

However, the design of this control system is based on the assumption that a
planar quadcopter can be considered as a simplified real quadcopter. It is difficult
to implement this assumption in reality, and the findings of the current study are
not a perfect solution for actual VPP quadcopters to perform the tic-toc manoeuvre.
Nevertheless, the proposed method, an RL-based controller that can achieve such a
manoeuvre within a 2D frame, is one step closer to demonstrating that the manoeuvre
is possible in practice.

In this study, we demonstrate that the VPP quadcopter is an aircraft with
both agility and safety potential. Although the mechanical structure of the VPP
quadcopter is more complicated than conventional models, the complexity can be
overcome by designing appropriate control systems. We believe that our work
provides a good foundation for realising the safe and agile flight of VPP quadcopters
in the future.

7.2 Future Work

In this thesis, we have proposed several different methods that may improve the
flight performance of the VPP quadcopter. However, some of them have not been
fully investigated and deserve further research, such as optimal control for the power
distribution of a VPP quadcopter and practical validation experiments for existing
algorithms. Therefore, in the future, the following research directions may be studied:
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1. In the VPP dynamic model described in Chapter 3, we only use second-order
polynomial equations to model the thrust and torque dynamics. In the future,
we can use machine learning algorithms to identify more complex models using
data that have been collected.

2. In Chapter 4, we confirm that an SVPP quadcopter can maintain its position
when only three actuators are functional. Although the analysis in Chapter 4
is based on a manually selected actuator spinning speed, the spinning speed
can actually be selected from an interval. Further research can analyse how to
optimally select this spinning speed to maximise the endurance of the VPP
quadcopter.

3. Although the actuator rotation speed is considered as a fixed value for the
CVPP quadcopter in Chapter 5, some CVPP quadcopters can vary their speed.
For this case, we can design new controllers that adjust the propeller speed
to reduce the yaw angle offset. Such a method can further improve safety
performance.

4. In Chapter 6, we propose an extension method that can migrate the tic-
toc manoeuvre to another quadcopter. This method also adjusts the tic-toc
manoeuvre performance by setting different parameter values. Further research
can use algorithms to optimise the parameter values and delicately adjust
the manoeuvrability. As a result, the control system can be employed in
applications with different requirements, such as maximum thrust or horizontal
occupation limitation.

5. We present the tic-toc manoeuvre of a VPP quadcopter within the 2D plane
in Chapter 6. This is the basis for accomplishing the tic-toc manoeuvre in a
practical environment. With further research, we can transfer the designed
control system from a 2D simulation environment to a 3D environment. Besides,
methods such as RL or iterative learning control can be applied.

Overall, we believe that the approaches, designs, implementation, and analysis
demonstrated in this thesis pave the way for the future realisation of VPP quadcopters.
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A.1 Variable Pitch Propeller Actuator

A standard VPP actuator contains two control inputs, a propeller pitch angle and a
propeller rotation speed. These two control inputs are determined by a servo and
a brushless motor, respectively. In this project, we choose to use a GARTT 450
helicopter tail rotor as the designed structure basis. We only retained the propeller
connection and propeller pitch adjustment mechanism of this helicopter tail rotor.
The original belt driven connection is replaced by a motor shaft. This design aims
to directly power the VPP propeller through a brushless motor. In order to balance
the VPP safety and performance, a pair of 65 mm NACA 0012 propellers are used
to replace the original propellers. We use the standard symmetrical rectangular
NACA0012 series propellers to maintain consistency with the simulation experiment.
The servo motor is designed to be placed parallel to the motor shaft and close to the
motor. Such a mechanical design aims to reduce space occupation and balance mass
distribution.

Other connection designs are designed based on the previous structure basis
to achieve a firm structure and convenient installation. Most of these connections
are built by 3D printing where the overall structure design is shown in Fig. A.1.
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Generally, the coaxiality error between the motor and the shaft will cause vibration.
Therefore, we use a motor shaft produced by high-precision CNC machining to reduce
this coaxiality error.

(a) front (b) side

(c) top (d) perspective

(e) construction

Figure A.1. VPP actuator design. (a)-(d) show the mechanical design from different
perspectives and (e) shows the actual construction.
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Due to the certain deviation between the actual model purchased and the 3D
printed accessories, the design sketch is somewhat different from the actual one and
the actual construction is shown in Fig. A.1 (e). However, this does not affect the
overall VPP actuator performance.

A.2 Test Stand

The actuator test stand we used is a standard general mechanical structure designed
by RCbenchmark 1 [184], shown in Fig. A.2 (a). The test stand is mainly constructed
by three force sensors, one vertical and two horizontal aligned, as shown in Fig. A.2 (b).
In addition, an RPM probe is used to measure the rotation speed of the motor and
a Futaba R6208SB receiver is used for servo control. A connection board is designed
to connect VPP actuators and test stand as well.

This actuator test stand also provides testing software to control the dynamic
VPP actuator system through test scripts. It can also record and save the sensor
feedbacks autonomously. This makes the platform an excellent candidate for this
work.

A.3 Implementation Design

This section extends Chapter 3 and provides how the thrust and torque testing
experiments are implemented. Since the software only provides the function of
controlling the motor, the servo is designed to be controlled through a wireless
remote controller.

The experiment begins with zero thrust pitch angle calibration to reduce assembly
errors. We test the thrust produced by the VPP, which runs at 60% full speed, and
the pitch angle sweep from -5 to 5 degrees. The angle that generates the minimum
thrust is considered as the zero thrust pitch angle.

For practical reasons, we use an ESC to control the VPP rotation speed. Instead
of directly setting the target motor rotation speed, we used an evenly distributed
50 Hz PWM signal as the reference motor control input. However, due to the dead
zone of the ESC, our VPP actuator can not run with low rotation speed. In our
case, the VPP actuator starts to rotate when the PWM signal provided to its ESC
is higher than 1455 ms.

1For more details visit: http://www.tytororobotics.com
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(a) (b)

(c)

Figure A.2. The actuator test sand, where (a) is the sketch diagram reprinted from
[184] and (b)-(c) are the actual constructions.

A testing script is designed to test the thrust and torque generated by the
VPP under different control combinations (include motor speeds and propeller pitch
angles). The script uses step function signals to control the rotation speed of the
motor with the same propeller pitch angle to test the thrust and torque. In order to
test different control combinations, we need to run the script multiple times. We call
each full run of the script a trial.

In each trial, we set 21 data collection points from 1450 ms (about to rotate) to
2000 ms (maximum speed) according to PWM frequency. After reaching the target
signal, the VPP actuator sets a settling time of 5 seconds in order to avoid dynamic
interference. Then the platform collects sensor data. To reduce random noise, each
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sampling data we recorded is the average value of the sensor feedbacks within 10
seconds.

In addition, the propeller angle is fixed during each trial, and there will be slight
changes between the two trials. The VPP pitch angle ranges from -0.35 rad to
0.35 rad, with an increase of 0.0436 rad for each trial. Instrument calibration is
performed at the beginning of each trial.

The testing code is written in JavaScript and the pseudocode is presented in
Algorithm 2

Algorithm 2: VPP Actuator Step Testing Program
Input: minimum input Value vmin = 1450, maximum input Value

vmax = 2000, step numbers Q = 21, settling time ts = 5, average
sampling ta = 10

begin
Creat a sequence N of Q numbers that are equally distributed from vmin

to vmax
for v ← N do

set motor PWM to v
running for ts seconds
collect the sensor data for ta seconds
calculate the average of the feedback data during ta seconds
if Vibration too large then

exit for

store the data into a record file
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In addition to the DDPG algorithm we presented in Chapter 6, we also compared it
with three other RL algorithms. This section outlines the comparison of the principles
and performances of these three methods. To compare the training performance, all
these algorithms run in the same pendulum environment for 6 trials, each trial with
a different random seed. Random seeds will determine the initial network parameter
settings and have a great impact on the learning performance. In order to test the
algorithm with the same initializations, a variable-controlling approach is used. All
these algorithms use the same random seed sequence. In addition, in order to speed
up the training process, when the network reaches the reward threshold (-740) for 10
consecutive episodes, the program will stop training in advance.

All of these algorithms are tested in the Matlab R2021a version, on the same
computer equipped with Intel Core i9-9900K, 64 GB RAM, and without using GPU.
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x

y

θ

Figure B.1. RL training environment.

B.1 Environment Setting

The training environment is shown in Fig. B.1, where the pendulum starts from
downward. The aim of this environment is to control and stabilize the pendulum to
the upward direction align with y axis. The angle between the stick and y axis is
given as θ ∈ [−π, π), where θ is positive when the pendulum is in the area of the
negative x-axis. Assume the mass of the stick for connection is ignored, the mass of
the red ball is 1 kg, and the distance between the ball and the centre of rotation is
1 m. The torque τ is acted on the end and is limited from -2 to 2 N·m. To reduce
nonlinear parameters, the observations of this environment is set as

[
cos θ, sin θ, θ̇

]
.

Therefore, the reward function is set as

R = −(θ2 + 0.1θ̇2 + 0.001τ 2).

B.2 Deep Deterministic Policy Gradient

In addition to the principles presented in Chapter 6, the detailed experiment results
are given in this section.

B.2.1 Evaluation

The results of 6 trials are shown in Fig. B.2. Training results show that DDPG
algorithm can pre-stop the training section within 350 episodes. DDPG shows great
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training performance compare with the other three algorithms both in training time
(average 4.5 hours) and final results (≤ −740).

In addition, DDPG can provide the same action when the states are the same.
This is more similar to our expected controller output.
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Figure B.2. DDPG training results, where each subplot is a trial result. The largest
learnt reward are -729, -725, -739, -733 and -728, corresponding to the subplots from
left to right and up to down.

B.3 Twin Delayed Deep Deterministic Policy Gra-
dient

B.3.1 Principles

Twin delayed deep deterministic policy gradient (TD3) is a successor of DDPG
algorithm. It aims to solve the problem that DDPG will overestimate the Q-values
[142]. It uses three tricks to achieve such a target:

1. Double Q NN. TD3 uses two Q-networks to criticize the agent performance
and choose the lower one to compute the target network. This method can
update the policy network to prevent overestimation. Therefore, the overall
algorithm has six networks in total.
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2. Delayed Policy Update. Once a poor policy network is overestimated, it will
lead to agent diverges. A less frequently updated policy network can have more
stable training.

3. Target Policy Smoothing. TD3 uses a regularization strategy for the value
function update. It adds clip noise to the action in order to achieve the
target that similar actions should have similar estimate values. This makes the
estimation of the target network becomes robust and accurate.

The pseudocode of TD3 is shown in Algorithm 3.

B.3.2 Evaluation

The training results are shown in Fig. B.3. Except for the unfinished learning of one
episode, the average learning time of TD3 is 8.9 hours. It is notable that, compared
with other algorithms, TD3 is more susceptible to the influence of randomized seeds.
Results show that TD3 training performance is only competitive in well-initialized
trials. However, when the initialization is not good, there will be a huge gap in the
performance of TD3 training.
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Figure B.3. TD3 training results, where each subplot is an average trial result. The
largest learnt reward are -734, -740, -727, -3469, -745 and -739, corresponding to the
subplots from left to right and up to down.
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Algorithm 3: Twin Delayed Deep Deterministic Policy Gradient
Input: episodes K, steps per episode T , batch size M
Init: actor policy NN µ(a|s,θ) with parameters θ, critic value NNs

Q1(s, a,w1) with parameters w1 and Q2(s, a,w2) with parameters w2,
replay experience R

Init: target policy NN parameters µ′(a|s,θ′)← µ(a|s,θ), target value NN
parameters Q′

1(s, a,w′
1)← Q1(s, a,w1) and

Q′
2(s, a,w′

2)← Q2(s, a,w2)
begin

for k ∈ K do
Reset the environment and the noise model N
for t ∈ T do

Take action at = µ(s,θ) + ϵ, ϵ ∈ N by observe state st
Observe next time step states st+1, done signal dt and reward rt
Store experience set < st, at, rt, st+1, dt > in R
if it is time to update then

Sample M random experience sets < si, ai, ri, si+1, di > from R
Compute targets

if dt == done then yi = ri
else yi = ri + γ min

j=1,2
Q′
j(si+1, clip(µ′(si+1,θ

′ + ϵ)),w′
j)

Update the critic value NN paramters w1 and w2 to minimize
the loss (gradient descent) by

Lj = 1
M

M∑
i=1

(yi −Qj(si, ai,wj))2 for j = 1, 2

if policy update delay then
Update the actor policy NN paramters θ to maxmize the
expected reward (gradient ascent) by

∇θ ≈
1
M

M∑
i=1

(
∇a min

j=1,2
Qj(s, µ(s,θ),wj)∇θµ(si,θ)

)
Soft target update:

θ′ ← τθ′ + (1− τ)θ
w′

1 ← τw′
1 + (1− τ)w1

w′
2 ← τw′

2 + (1− τ)w2

if dt == done then quit episode

B.4 Proximal Policy Optimization

B.4.1 Principles

Proximal policy optimization (PPO) is an on-policy algorithm that the agent takes
action according to policy probability and update the policy by taking the great
possible improvement step without stepping so far. There are two variants of PPO,
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namely PPO-penalty and PPO-clip, where the difference is the policy update rule.
Because PPO-Clip uses a clipping function to keep the policy improvement step, it
is simple to implement. Here, we use the PPO-clip according to [144].

In order to speed up the training process and keep the new policy not quite
different from the old policy, PPO only uses the policy from the previous learning
epoch as the old-policy to collect experience sets. Therefore, PPO is still considered
as an on-policy algorithm. In order to update the policy by using the experience sets
collected from the old policy, PPO first defines the probability ratio by d = p(a|s,θ)

p(a|s,θold) ,
where θold is the old policy and θ is the new policy. Then, according to the
importance sampling algorithm, PPO can update the new policy via dAn, where
An is the advantage estimation of the old policy. Moreover, a clip function given by
clip(d, 1 + ϵ, 1− ϵ) is built to limit the update step value d between 1 + ϵ and 1− ϵ.
If the probability ratio d is far from 1, the gradient becomes 0 and the policy will
not be updated. The clip factor ϵ is normally defined by 0.2.

The pseudocode of PPO is shown in Algorithm 4.

Algorithm 4: Proximal Policy Optimization
Input: episodes K, steps per episode T , batch size M , learning epoch E
Init: actor policy NN p(a|s,θ) with parameters θ, critic value NNs

Q(s, a,w) with parameters w
begin

for k ∈ K do
Running the current agent policy NN p(a|s,θk) and collect sequence
sets of N experience started from t as
< st, at, rt+1, st+1, . . . , rt+N , st+N >

Compute the generalized advantage estimation An of N step
n ∈ (1, . . . , N) by generalized advantage estimator, based on the
current value policy Q(s, a,wk)

θ → θold
for e ∈ E do

Sample M experience sets

Update Critic Network by L = 1
M

M∑
i=1

(ri + γQi+1 −Qi)2

Calculate the clip action difference by d = p(a|s,θ)
p(a|s,θold)

Update Actor Network by

∇θ = − 1
M

M∑
i=1

min(dAi, clip(d, 1 + ϵ, 1− ϵ)Ai)
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B.4.2 Evaluation

The training results are shown in Fig. B.4, where all trials have not finished the
training target within 1000 episodes. The average training time is 2.5 hours and
the average best reward is -1225. The results indicate that, within our training
environment, PPO algorithm has no outstanding performance compared with other
algorithms.
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Figure B.4. PPO training results, where each subplot is an average trial result. The
largest learnt reward are -1152, -1160, -1316, -1288, -1176 and -1184, corresponding
to the subplots from left to right and up to down.

In addition, we find that although reward value did not meet expectations, the
trained PPO network may stabilize the pendulum. This may occur because the PPO
is a scholastic RL algorithm and it use a Gaussian distribution to select the action.
Because of this randomness, the trained network can not always take the same action
even under the same states. That is the main reason why the PPO algorithm can
not reach the reward threshold and pre-stop the training.
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B.5 Soft Actor-Critic

B.5.1 Principles

Soft Actor-Critic (SAC) is an off-policy algorithm that optimize the stochastic policy
in a TD3-style approaches. It uses double Q NN and target NN structure from TD3
and Gaussian probability distribution action policy similar to PPO.

Moreover, SAC uses entropy regularization to balance exploration and exploitation
for the policy training. Entropy is a quantity that represents the randomness of the
distribution of the action policy. Increasing entropy leads to closer possibilities for
all actions and encourages actors to explore more. Entropy of action a who obeys
the distribution of p(a) is given by H(p) = αEa∼p[− log p(a)], where α is the entropy
weight.

Moreover, SAC can prevent the policy from prematurely converging to a local
optimum.

The pseudocode of SAC is shown in Algorithm 5.

B.5.2 Evaluation

The training results are shown in Fig. B.4, where the average finish time is 12.8 h.
Compare with PPO, which has same stochastic policy, SAC shows better training
performance. Compare with DDPG, which has similar training performance, SAC
requires twice the training time.

B.6 Summary

Comparing the results from Fig. B.2 to B.5, it can be found that PPO and TD3 can not
achieve good training results as we expected in the simulated pendulum environment.
SAC has almost the same good training performance compare with DDPG, whether
it is from the final convergence speed (episodes) or the final performance. However,
SAC requires more than twice the training time of DDPG.

We also notice that the training performance of these algorithms differs between
our research and the literature. This difference may be caused by the coding
environment, hyperparameters, or other advanced tricks.

In addition, to further analyse the controller performance, we test four RL
algorithm NNs in the same environment. The chosen NN of each RL algorithm is
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Algorithm 5: Soft Actor-Critic
Input: episodes K, steps per episode T , batch size M , reply buffer R, target

entropy weight Ht

Init: actor policy NN p(a|s,θ) with parameters θ, critic value NNs
Q1(s, a,w1) with parameters w1 and Q2(s, a,w2) with parameters w2

Init: target policy NN parameters p′(a|s,θ′)← p(a|s,θ), target value NN
parameters Q′

1(s, a,w′
1)← Q1(s, a,w1) and

Q′
2(s, a,w′

2)← Q2(s, a,w2)
begin

for k ∈ K do
Take action at = p(st) by observe state st
Observe next time step states st+1, done signal dt and reward rt
Store experience set < st, at, rt, st+1, dt > in R
if it is time to update then

Sample M random experience sets < si, ai, ri, si+1, di > from R
Compute targets

if dt == done then yi = ri
else yi = ri + γ(min

j=1,2
Q′
j(si+1, ai+1,w

′
j)−H(p(si+1,θ)))

Update the critic value NN paramters w1 and w2 to minimize the
loss (gradient descent) by

Lj = 1
M

M∑
i=1

(yi −Qj(si, ai,wj))2 for j = 1, 2

if policy update delay then
Update the actor policy NN paramters θ to maxmize the
expected reward (gradient ascent) by

∇θ = 1
M

M∑
i=1

(
min
j=1,2

Q′
j(si, ai,w′

j)−H(p(si,θ)))
)

Update the entropy weight :

Lα = 1
M

M∑
i=1

(αHt −H(p(si,θ))2)

Soft target update:
θ′ ← τθ′ + (1− τ)θ
w′

1 ← τw′
1 + (1− τ)w1

w′
2 ← τw′

2 + (1− τ)w2

if dt == done then quit episode

the one who has the highest reward value within all 6 trials. Results are shown in
Fig. B.6.

Results indicate that all these four RL methods can successfully achieve the
upward control goal in the pendulum balancing environment. Figures B.6(a) and
B.6(b) clearly show that DDPG and TD3 NNs can take deterministic action for the
same state and generate torque value smoothly. Since the random algorithms SAC
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Figure B.5. SAC training results, where each subplot is an average trial result. The
largest learnt reward are -735, -728, -730, -735, -737 and -729, corresponding to the
subplots from left to right and up to down.

and PPO use probability distribution to select actions, their action outputs are an
fluctuating curves, shown in Figs B.6(c) and B.6(d).

In this study, we aim to control a VPP quadcopter to realize tic-toc manoeuvrer
through RL algorithms. Therefore, RL policies that can generate smooth action
output are closer to the real situation and are worthy of recommendation. In contrast,
stochastic reinforcement learning algorithms cannot meet our expectations. Overall,
we choose DDPG as our baseline training algorithm for tic-toc manoeuvrer training.



B.6 Summary 175

0 5 10 15 20
-4

-2

0

2

4

0 5 10 15 20
-2

0

2

(a)

0 5 10 15 20
-4

-2

0

2

4

0 5 10 15 20
-2

0

2

(b)

0 5 10 15 20
-4

-2

0

2

4

0 5 10 15 20
-2

0

2

(c)

0 5 10 15 20
-4

-2

0

2

4

0 5 10 15 20
-2

0

2

(d)

Figure B.6. State feedback of four RL algorithms in a pendulum simulation envi-
ronment. From (a) to (d) are simulation results of DDPG, TD3, PPO and SAC
correspondingly. The left sub-figures are the pendulum angles and the right ones are
the torques (actions).
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