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Abstract

This thesis addresses the problem of automating the execution of surgical ges-

ture. In particular, the case of tissue retraction in which the surgeon or his/her

assistant handles the tissue in order to increase visibility in the workspace is

considered. In order to tackle this problem, initially a thorough analysis of the

state of the art approaches is carried out. By means of this analysis the tissue

retraction task is contextualized in the branch of autonomy in robotic surgery.

Subsequently, a feasibility study regarding the possibility of performing tissue

retraction based on image processing guidance is introduced. In this study a

dataset and Convolutional Neural Network model (namely FlapNet) are pro-

posed in order to extract the pro�le of candidate tissues for retraction in the

endoscopic scene. Incremental work on the adoption of spatio-temporal layers

such as Long Short-Term Memory cells and Attention Gates is reported show-

ing the bene�ts of their embedding in the neural network model. Consequently,

the robotic action to mobilise and retract the tissue is performed following the

guidance of experienced surgeons to design the gesture. In the second part of

the thesis a work focused on motion planning is proposed in order to address the

translation from the surgeon's guidelines to the robotic platform. Concluding,

results showed that, by means of the system proposed in the thesis it was possible

to perform tissue retraction on a phantom.
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Contribution

Minimally Invasive Surgery (MIS) presents several bene�ts to the patient such

as reduced trauma and shorter recovery time. On the other hand, the manual

dexterity required increases, resulting in long learning curves, lengthy procedures

and surgeon's cognitive stress. The last two decades have witnessed the birth

and growth of a new approach to MIS based on the adoption of robots in the

operation room (OR). These machines ease the surgeons' learning curve while

increasing the average precision of their movements, thus enhancing the proce-

dure's outcome. Thus, robotic-assisted MIS is the golden standard. Currently,

over four hundred thousands robotic-assisted procedures are conducted every

year. Starting from 1999, Intuitive Surgical introduced the �rst Da Vinci Surgi-

cal System. Since then, the surging interest in innovative technologies attracted

the attention of companies such as Cambridge Medical Robotics and Verb Surgi-

cal, fostering a multi-billion dollar industry. Although the industry has rapidly

evolved in the last twenty years, requirements for current robotic systems change

continuously, demanding continuing research to provide updated robots. In the

last decade, improvements have been focused on autonomy in surgical robotics.

However, incorporating autonomous technologies presents technical and regula-

tory challenges that hinder the deployment of commercial autonomous systems.

To date, the surgical robots commonly used in the ORs are capable of solely

replicating the surgeon movements, reducing trembling and �ltering undesired

motion, thus not performing direct actions on the patient. On the 5-level scale

of autonomy proposed in [1], the commercially available systems are mostly at

level 0, namely "No Autonomy", o�ering no autonomous features, and simply

reproducing the surgeon's movements.

In order to advance towards more e�cient and functional robots the paradigm

of zero autonomy must be overcome. The research work reported in this thesis

has the aim of proposing technical solutions to solve what are the main issues in

the automation of surgical tasks. These limitations are:

� Perception: Commercial surgical robotic systems are not capable of dis-

1



tinguishing salient features from the endoscopic camera feed. Although

many research projects focus on the detection of critical diseases and condi-

tions (like colon polyps [2]), the accurate understanding and reconstruction

of the 3D surgical workspace is still an open challenge. Such features would

enable a robot to interpret the surrounding anatomy, and lay the founda-

tion for a direct interaction with the anatomy, to pave the path towards

autonomy.

� Motion Planning: Many commercial robots are equipped with actuated

arms and their movement generally mimics the surgeon's motion. To pro-

vide a direct interaction with the target's anatomy, a surgical robot must

rapidly plan and execute a motion that accounts for the patient's anatomi-

cal structure as well as the presence of other instruments to avoid collisions

in the case of a cooperative system.

Most of the contributions in the literature on autonomous surgery focus on

execution of surgical tasks (such as suturing and tissue retraction) in a highly

controlled environment where salient features such as grasping points and ob-

stacles are either de�ned a-priori or manually highlighted with visual markers.

Although this might be satisfactory on the bench-top, real-world scenarios may

become intractable when faced with the unique variations presented from case

to case. For this reason, a robust system capable of extracting and understand-

ing the workspace is required. To this end, the study presented adopts machine

learning models for image feature extraction such as neural networks due to their

adaptability, robustness and noise rejection capabilities. The detected features

will help describe the surgical scenario in order to better plan the subsequent in-

teraction with the patient's anatomy. As far as the motion planning is concerned,

once the workspace is de�ned and the features of interest are detected, a planning

algorithm is considered to rapidly estimate a trajectory and consequently exe-

cute a smooth path. The stochastic approach guarantees a short computational

time allowing to take into consideration also the presence of obstacles such as

anatomical structures or other instruments.

The work of this thesis is carried out on a Da Vinci platform from Intu-

itive Surgical adapted for research purposes, namely the Da Vinci Research Kit

(dVRK). The dVRK [3] is an open-source library that grants access to the Da

Vinci Surgical System internal variables. The Da Vinci platform is composed of

two main parts: the patient-side robot, equipped with 3 Patient Side Manipu-

lators (PSMs) and 1 Endoscopic Camera Manipulator (ECM), and the master

console which instead presents 2 Master Tool Manipulator (MTMs) and a double

2



Figure 1: Main components of the daVinci Surgical System. The console on the left is
equipped with two Master Tool Manipulators (MTMs), while the patient cart on the right is
equipped with three Patient Side Manipulators (PSMs) and an Edoscopic Camera Manipulator
(ECM). The PSM are mounted over the Set Up Joints (SUJs)

display visor for the surgeon. With respect to the original system, it presents

an additional set of controllers to access the joints data of both the patient cart

and the master console. The PSMs are mounted on the Set-Up Joints (SUJ)

which kinematic data is not retrievable from the aforementioned controllers. This

causes the relative position of the PSMs to be unknown and for this reason, a

co-registration method is required.

The implemented trajectory planner of the dVRK allows planning a motion

starting from the initial arm position to another reachable point in the robot arm

space. This movement is constrained to have initial and �nal velocity set to zero

and prevents the smooth execution of complex trajectories. Additionally, the

movements planned are by default considered in the robot space, while usually

the user carries out tasks in the camera space.

To date, the dVRK is not provided with any autonomous control to perform

surgical gestures. In response to this, the contribution of this thesis is a frame-

work based on Deep Learning models and a stochastic planner for the execution

of autonomous tissue retraction, a common surgical task which may be challeng-

ing due to the elasticity and �exibility of human tissues. In the last two years,

four peer-reviewed papers [4, 5, 6, 7] have been published in top tier journals and

conferences, describing in detail the concepts behind the robot's awareness and

mobility skills necessary to carry out tissue retraction. These publications are

included in this document, as required by the University of Leeds' alternative

thesis format, and constitute the core of the research work herein presented. The
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Figure 2: Di�erence between the DaVinci Surgical System and the Da Vinci Research Kit.

contributions of these publications are listed below.

� Literature Review: to understand how to approach the problem of au-

tonomous surgical tasks, a thorough critical analysis of the state-of-the-art

is conducted. An initial discussion of the most relevant problems and limi-

tations of the current literature is proposed in the paper "Medical Robotics

� Regulatory, ethical, and legal considerations for increasing levels of au-

tonomy� [1]. Starting from this study, an in-depth analysis of the di�erent

levels of autonomy in surgery is conducted. On this topic, a comprehensive

review of approaches to execution of autonomous tasks in robotic surgery

is presented, sorting the most relevant ones into �ve ascending levels of

autonomy. The analysis supports and validate the original idea at the base

of this research to further develop the approaches for autonomous surgi-

cal gestures such as autonomous tissue retraction. Along with di�erent

technologies and related autonomy levels, this study considers ethical and

legal aspects. In conclusion, it is possible to draw a comparison with au-

tonomous vehicles, where the technology and the regulatory aspects, as

well as the nomenclature, are much more established. As �rst author of

this paper my contribution consisted in gathering, updating and checking

all the references while writing down each section dedicated to the levels

of autonomy as well as the conclusions. Paolo Fiorini and Pietro Valdastri
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contributed to the drafting of the introduction and Bruno Scaglioni gath-

ered the information regarding ethical and regulatory aspects of the last

section.

Relevant Publications:

� Attanasio, A., Scaglioni, B., De Momi, E., Fiorini, P. and Valdastri, P.

(2020). Autonomy in Surgical Robotics. Annual Review of Control,

Robotics, and Autonomous Systems, 4.

� Perception: in the case of tissue retraction, as well as of other ma-

jor surgical gestures such as suturing and ablation, a key aspect for au-

tonomous robotic execution is the detection and localisation of the target

tissues. The tissue �aps appearing in the surgical scene are subject to high

variability in shape, dimension and pose. Since the tissues to detect ap-

pear continuously in camera images during a procedure, an image-based

method is recommended to detect the targets candidate tissues for re-

traction. The detected �aps will be then shown to the surgeon who will

acknowledge the tissue retraction execution. Due to the high variabil-

ity of the light condition, texture, colour and shape of the tissue, tradi-

tional computer vision approaches for image segmentation are limited for

this purpose. Additionally, the re�ection of blood and the organs intro-

duce disturbance which hinders the classic computer vision approaches.

For this reason, I developed an adaptive approach for image segmentation

based on machine learning to robustly extract the portion of images be-

longing to �aps of tissue. The FlapNet dataset as well as the code used to

train the tissue detector model are available relatively at https://github.

com/Stormlabuk/FlapNet and https://github.com/Stormlabuk/dvrk_

tissueretraction. On this topic, an initial feasibility study is conducted

to explore the possibility to train a neural network model with depth maps

for tissue segmentation. Subsequently, I proposed an incremental study to

include spatio-temporal layers to �nd an optimal model for segmentation.

Similarly to the initial FlapNet model, the code for this incremental work is

publicly available at https://github.com/Stormlabuk/dvrk_ULSTM. As

�rst author my contribution consisted in: collecting, cleaning and labelling

the dataset, develop and train the neural network model and testing it

on an experimental setups. Chiara Alberti contributed to the technical

development of the LSTM model while working to her master thesis. All

the other authors supported the publications supervising and reviewing the

5

https://github.com/Stormlabuk/FlapNet
https://github.com/Stormlabuk/FlapNet
https://github.com/Stormlabuk/dvrk_tissueretraction
https://github.com/Stormlabuk/dvrk_tissueretraction
https://github.com/Stormlabuk/dvrk_ULSTM


results.

Relevant Publications:

� Attanasio, A., Scaglioni, B., Leonetti, M., Frangi, A. F., Cross, W.,

Biyani, C. S. and Valdastri, P. (2020). Autonomous Tissue Retraction

in Robotic Assisted Minimally Invasive Surgery�A Feasibility Study.

IEEE Robotics and Automation Letters, 5(4), 6528-6535.

� Attanasio, A., Alberti, C., Scaglioni, B., Marahrens, N., Frangi, A.

F., Leonetti, M., Biyani C.S., De Momi E. and Valdastri, P. (2021).

A Comparative Study of Spatio-Temporal U-Nets for Tissue Segmen-

tation in Surgical Robotics. IEEE Transactions on Medical Robotics

and Bionics, 3(1), 53-63.

� Trajectory Planning: the execution of a surgical task may require the

surgical robot to perform complex trajectories. When carried out by a

human operator, these paths are planned and executed based on the sur-

geon's visual information which closes the control loop. In conventional

teleoperated robots the continuous co-registration of the arms to the en-

doscopic camera, held by the ECM, simpli�es the control on the surgeon's

side. On the other hand, the dVRK, the PSMs and ECM controllers

are able to retrieve only the kinematic information of the distal part of

the arm, i.e. the actuated arm. The non-actuated arms connecting the

PSMs to the base of the da Vinci, called Set-Up Joints (SUJ), require

additional controllers to retrieve the joint values and close the kinematic

chain from the arm base to the instrument tip. Unfortunately, such con-

trollers are not available yet and a method to co-register these arms is

still needed. Regarding this topic, I developed a method for registering

the PSM to the ECM by means of visual markers. Secondly, an approach

for trajectory planning of complex paths was elaborated in order to pro-

vide a trajectory constrained to prede�ned waypoints. This would allow

the performance of complex trajectories that would eventually compose

the execution of a surgical task. Both the registration and planning li-

brary and scripts are available on the STORM Lab's GitHub page at

https://github.com/Stormlabuk/dvrk_stormolib. As �rst author my

contribution consisted in the literature review and technical development

of the library. More in detail, I developed the library herein proposed,

modifying the dVRK robotic arm model to interfacing it with the MoveIt!

framework. Nils Marahrens supported the testing phase by helping me
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managing the experimental setup.

Relevant Publications:

� Attanasio A., Marahrens N., Scaglioni B. and Valdastri P. (2021).

�An Open Source Motion Planning Framework for Autonomous Min-

imally Invasive Surgical Robots�. IEEE International Conference on

Autonomous Systems. [Accepted May 21st, 2021]. Third classi�ed as

Best Student Paper.

� Gesture Design: given a method to detect and localise tissue �aps in

the surgical scene and an algorithm to plan the PSM motion, an adequate

gesture must be designed. Several surgeons and doctors working at the

St. James University Hospital of Leeds were interviewed and a widespread

practice to carry out tissue retraction emerged. This has a fundamental

role in this research since an e�ective and predictable behaviour of the

robot is desired for direct and e�cient human-machine cooperation.

Relevant Publications:

� Attanasio, A., Scaglioni, B., Leonetti, M., Frangi, A. F., Cross, W.,

Biyani, C. S. and Valdastri, P. (2020). Autonomous Tissue Retraction

in Robotic Assisted Minimally Invasive Surgery�A Feasibility Study.

IEEE Robotics and Automation Letters, 5(4), 6528-6535.
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Chapter 1

Literature Review

1.1 Minimally Invasive Surgery vs. Open Surgery

Compared to open surgery, Minimally Invasive Surgery (MIS) (in particular la-

paroscopy) presents several bene�ts for the patients such as limited trauma to

anatomical structures, shorter post-operative recovery time and reduced blood

loss. In laparoscopy, the tools used are characterised by a long shaft and a

handle. These instruments allow the surgeon to operate through small incisions

(5�12 mm), thus avoiding the access to the patient's anatomy through big cuts

which will increase the post-operative recovery time. On the other hand, given

the geometry of laparoscopic tools, these happen to be more di�cult for the

surgeon to handle, thus resulting in more complex and longer operations. The

main problem related to laparoscopic tools is the so-called fulcrum e�ect. As

the tools are inserted through the incisions, being them controlled from outside

the anatomy, the movements are inverted in both direction and magnitude. An

additional problem is posed by the necessity of a member of the surgical equipe

to hold and move the endoscopic camera which gives the surgeon the possibil-

ity to see what he/she is doing. This leads the surgeon to focus on a monitor

which, in most of the cases, is not aligned with the hands. This contributes in

increasing the task di�culty by hindering the natural hand-eye coordination of

the operator. In order to manage the added complexity, a long period of training

is necessary for the surgeon to be independent during a procedure.
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1.2 Robotic Assisted Minimally Invasive Surgery

(RAMIS)

To overcome the problem of tedious training and di�cult manoeuvrability, in

1999 Intuitive Surgical introduced its �rst model of da Vinci robot. The robot

is composed of two main elements:

� Surgeon's Console: equipped with two Master Tool Manipulators (MTMs)

to control the tools and camera of the patient cart and two stereo display

for 3D vision.

� Patient Cart: provided with 3 Patient Side Manipulator (PSM) holding

tools and an Endoscopic Camera Manipulator (ECM) holding a stereo

endoscope for 3D vision.

The main purpose of this robot is to reduce the training time necessary for sur-

geons simplifying complex manoeuvrers by restoring the hand-eye coordination.

This is achieved by solving the main problems regarding the limited dexterity of

normal, non-robotic laparoscopic tools. With the da Vinci, the surgeons sight

is automatically aligned with the tools which, being controlled robotically can

better transpose the surgeons movement resulting in a more natural feeling for

the user. With the advent of the da Vinci robot, shorter training times allowed

more surgeons to operate on the platform needing less personnel in the operat-

ing room, thus granting a more e�cient human resources distribution within the

hospital.

Nowadays, Intuitive released several models of the da Vinci with new fea-

tures such as single port access for throat surgery or vertical access for a better

arm deployment in the initial phase of the intervention. Although the platform

evolved with time along with key features, the paradigm of a slave-master sys-

tem never changed. This means that no autonomous behaviour of the da Vinci

is implemented yet and all the movements of the machine are simply the mir-

roring of the surgeon's motion. The research presented in this thesis is focused

around the development of a framework for autonomous surgical gestures on a

da Vinci platform. In particular, the execution of tissue retraction is considered.

This task is frequently executed during the initial phase of the operation where

the surgeon navigates through the patient's anatomy to reach the surgical site.

In this stage, the surgeon resects and mobilises �aps of tissue in order to see

and move towards the area of interest. The surgeon's assistant uses manual la-

paroscopic tools to facilitate the surgeon's activity during the intervention. This
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Figure 1.1: Example of tissue retraction. In order to reach the target area with the operating
tool the surgeon (or the assistant) reach for the �ap of tissue in order to mobilize it away from
the region of interest. It is possible to identify the direction of retraction as represented in the
�gure.

cooperation is hindered by the delayed communication between the surgeon and

the assistant and can lead to hazardous situations.

In addition to this, in case the surgeon can't rely on the assistant, the best

solution would be to switch the con�guration of the PSM taking control over the

third da Vinci arm, retract the targeted tissue, and switch back to the original

con�guration. However, there is evidence in literature of the dangers and risks

that may arise from changing the con�guration of the arms during an operation.

While changing the con�guration of the PSMs the surgeon may accidentally move

some arms out of the endoscope sight, tearing blood vessels or damaging critical

anatomical structures. For this reason it is desired that the surgeon carries out

the initial part of the operation working on the Da Vinci along with an assistant

who would manually intervene if required by the clinician.

1.3 Autonomy in Surgical Robotics

© Annual Reviews. Adapted and reprinted, with permission, from Attanasio,

A., Scaglioni, B., De Momi, E., Fiorini, P. and Valdastri, P. (2020). Au-

tonomy in Surgical Robotics. Annual Review of Control, Robotics, and Au-

tonomous Systems, 4. Supplementary material at https://doi.org/10.1146/

annurev-control-062420-090543.
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Authors: Aleks Attanasio, Bruno Scaglioni, Elena De Momi, Paolo Fiorini and

Pietro Valdastri

Abstract: This review examines the dichotomy between automatic and au-

tonomous behaviors in surgical robots, maps the possible levels of autonomy

of these robots, and describes the primary enabling technologies that are driving

research in this �eld. It is organized in �ve main sections that cover increasing

levels of autonomy. At level 0, where the bulk of commercial platforms are, the

robot has no decision autonomy. At level 1, the robot can provide cognitive and

physical assistance to the surgeon, while at level 2, it can autonomously perform

a surgical task. Level 3 comes with conditional autonomy, enabling the robot to

plan a task and update planning during execution. Finally, robots at level 4 can

plan and execute a sequence of surgical tasks autonomously.

In the last two decades, surgical robotics became an attractive �eld with

a great potential economical impact and it is nowadays a very active research

branch. This particular �eld is the common ground for three di�erent com-

munities: surgeons see the potential of such advanced technologies, engineers

�nd rewarding the challenges posed by these technologies, and entrepreneurs un-

derstand the economical potential for future business activities. Although the

elevated number of excellent prototypes developed in research laboratories, due

to a strict and long certi�cation process associated with the high costs for man-

ufacturing, few of these project are eventually applied in clinical practice. For

this reason, the three communities must converge on establishing the scienti�c

and technological fundamentals for the current and future development.

This is the particular case of automation in surgical robotics, a challenging

�eld where the regulatory and legal issues are still a relevant issue to be addressed.

A �rst proposal to structure these research e�orts was the Editorial �Medical

robotics�Regulatory, ethical, and legal considerations for increasing levels of

autonomy�, appeared on Science Robotics in 2017 [1] that classi�ed the autonomy

achievable by a surgical robot into six levels: no autonomy, robot assistance,

task autonomy, conditional autonomy, high autonomy, and full autonomy. This

classi�cation is inspired by the �Automated Driving� level de�nition in the �eld

of automotive [8], and adapts these concepts to robotic surgery. However, the

transition from the road to the operating room adds additional complexity to the

autonomy problem. This is observable also by the fact that while autonomous

driving has already achieved Level-3 of autonomy, surgical robots still rest at

Level-0 for what concerns commercially available platforms.

Before exploring the possibilities of autonomous surgery, it is fundamental
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to specify the di�erence between "autonomous" and "automatic". Automatic

behaviors are completely predictable, as they follow well established theories,

either deterministic or probabilistic. Although there are variations of behaviors

for an automatic system, these are due to small adaptations of the controller

parameters to external conditions. If variations are too large, an automatic

system cannot adapt and consequently fails. An autonomous system instead, is

able to make large adaptations to a change in the external conditions by planning

its tasks. The planning function requires a wider domain knowledge and the use

of cognitive tools, e.g. ontologies or logical rules that do not exist within an

automatic system.

The current COVID-19 pandemic, transforming safe places such as schools

and hospitals into hostile environments, made even higher the demand for au-

tonomous technologies with the potential to remotely perform a given task. Dur-

ing the pandemic's peak, the majority of the non-emergency surgical interven-

tions were suspended to prevent a possible infection between medical sta� and

patient. In this context, tele-operated robots and in particular surgical robots

could prove extremely bene�cial, potentially allowing a remote controlled or au-

tonomous operation to be carried out without additional risks. These capabilities

map the levels of autonomy de�ned in [1] and could inject new resources and ideas

into autonomous robotics research. In robotic surgery however, the levels of au-

tonomy have not been clearly mapped to speci�c surgical functions and, so far,

there is an ample debate on which level of autonomy is appropriate for a given

surgical task.

In this chapter the technologies that have already been developed towards

the implementation of the desired autonomy level are discussed. In particular,

since the terms used in research so far can be ambiguous, we provide here a clear

map of the autonomy levels in surgical robotics.

1.4 Level 0 - No Autonomy

A vast amount of literature is available on systems at Level-0, often aimed at de-

scribing the commercial scenario and the platforms in a translational stage. The

literature suggests a great commercial interest in the �eld of surgical robotics.

The expiration of several patents owned by Intuitive Surgical has attracted the

interests of venture capitals, consequently triggering the inception of many new

robotic platforms. In year 2000, the DaVinci system from Intuitive Surgical intro-

duced the paradigm of transparent teleoperation, where movements performed
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Figure 1.2: Commercially available systems organised by clinical application: (a) CyberKnife,
M6 (b) NeuroMate, Renishaw (c) ROSA ONE, Zimmer Biomet Robotics (d) Magellan, Hansen
Medical Inc. (e) Monarch, Auris Health (f) Niobe, Stereotaxis (g) Renaissance, Mazor Robotics
(h) Mako, Stryker (i) Senhance, Transenterix (j) Da Vinci Xi, Intuitive Surgical (k) AquaBeam,
Procept BioRobotics (l) SPORT, Titan Medical (m) Flex Robotic System, Medrobotics (n)
Da Vinci SP, Intuitive Surgical.

by the surgeon on the control interface are exactly replicated by the surgical

instruments on the patient side. This is the main characteristic of the Level-0

devices and the key feature that led to regulatory approval of surgical robotic

platforms so far. The absence of a decision-making process by the machine in

the transparent teleoperation paradigm leaves complete control to the surgeon.

This feature has allowed Intuitive Surgical to claim that, in the absence of tech-

nical failures, the responsibility is totally held by the surgeon. This approach

resulted in just two lawsuits reaching trial out of more than 3000 �led against

the company up to 2016.

In light of the vast amount of literature available and the speci�c focus of this

thesis on autonomy, we will only provide a brief overview of Level-0 platforms by

citing existing review papers in the �eld. The interested reader can refer to [9] for
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an exhaustive list of surgical robotic platforms approved by the American Food

and Drug Administration (FDA) as of 2018. In [10], a comprehensive description

of the commercial systems intended for research purposes as of 2015 is provided.

The platforms are classi�ed in commercially available / developed for commercial

use (but not on the market) and advanced research prototypes.

Several reviews are dedicated to speci�c sub-�elds; in 2010 [11] provided a de-

tailed description of micro-robots for surgical applications. The paper highlights

how the target surgery (ranging from drug delivery to vessels repair) in�uences

the design. The miniaturization trend is described in [12], where the research

platforms are mapped on a decreasing dimensional scale. The paper predicts a

considerable spread of intracorporeal devices, aimed at tackling pathologies at a

cellular level. In a review published in 2013 [13], the authors map platforms in

relation to their access route into the patient's body (intralumenal, extralume-

nal, translumenal and hybrid). For each category, strengths and weaknesses are

discussed, along with the open challenges in each particular �eld.

Another popular classi�cation method is toward clinical applications; in a

2018 review [14], robotic systems for otologic surgery are described, highlight-

ing the need for a robot able to perform cholesteatoma surgery and indicating

miniaturization as the main technical issue yet to be solved. In the �eld of

neurosurgery, [15] provides a comprehensive review of the available systems as

of 2016, while [16] reviews the available robotic systems for stereo-tactic ap-

proaches. From a di�erent perspective, the work in [17] reports an interesting

cross section of the evolution of surgical robotic systems, starting from the �rst

commercially available devices: the voice-controlled endoscopic holders AESOP

and ZEUS, both discontinued. In the �eld of colorectal surgery, [18] reviews �exi-

ble devices for ednolumenal and translumenal interventions, making a distinction

between mechanical and robotic systems, and concluding that mechanical design

of both would require massive upgrades to address the clinical needs of surgical

endoscopy. Interestingly, no technical review is available in the �eld of urology,

as the Intuitive's daVinci robot is dominating the �eld. As new competitors (e.g.

Cambridge Medical Robotics, Transenterix) enter the market, reviews comparing

robotic platforms for abdominal surgery in general, and urology in particular,

may be expected.

The literature reviewed in this section suggests a clear trend: while the com-

mercial scenario is �ourishing in many directions, the research at Level-0 is fo-

cused on development of platforms for unmet clinical needs, such as microsurgery

[19], endoscopic intervention [20] and MRI-compatible surgery [21]. On the other

hand, for clinical applications where robotics is already well established (e.g. ab-
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Figure 1.3: Representation of a Level-1 system. The surgeon interacts with the robot which,
in turn, provides the clinician with manual guidance or virtual �xtures. In this case, the control
loop is closed by the surgeon, who has the full control of the machine for the whole duration
of the procedure.

dominal surgery), research is progressing towards higher levels of autonomy, as

discussed in the following sections.

1.5 Level 1 - Robot Assistance

De�ned as �Robot Assistance�, this level includes platforms that provide some

support to the operator/user, but never take control of the action being per-

formed, as represented in Fig. 1.3. It is worth noting that, in the context of

surgical robotics, the operator/user can always be identi�ed with the surgeon

in charge of the procedure, while the patient, often sedated, is the target. This

is clearly di�erent from other �elds in medical robotics, such as rehabilitation,

where the patient often plays the role of user and target at the same time.

The fundamental role of these technologies is detailed in the following section

which is mainly focused on systems dedicated to supporting the surgeon in the

execution of a speci�c surgical action. In our analysis, we �rst identify a number

of enabling technologies that are crucial to achieve Level-1 autonomy. Then, we

review approaches that provide passive assistance, producing information before

and during robotic surgery and, thus, allowing a robot with Level-0 autonomy to

reach Level-1. Examples include systems that suggest optimal robot deployment

and ports placement, and systems providing augmented reality. We then analyse

solutions that actively interact with the surgeon by providing mechanical support

(i.e. guidance or compensation of periodic motion) and, lastly, we discuss the

role of haptic feedback.
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1.5.1 Enabling Technologies

Most research platforms operating at Level-1 acquire a limited amount of infor-

mation characterized by relatively low complexity, typically related to either the

robot, the surgeon, or the target tissues. Therefore, tool tracking, eye tracking

and tissue interaction sensing can be considered as three enabling technologies

to achieve Level-1 autonomy. In addition, surgical robot controls paradigms are

the foundation on which all the autonomy levels poses [22]. However, as the

control speci�cations varies for every medical application, an in-depth analysis

of control methods for surgical robotics is not discussed.

1.5.1.1 Tool Tracking

Surgical tools tracking is a core component for developing assistive technologies

such as augmented reality and haptic feedback. Tracking the appearance of a tool

from an endoscopic view and project it to the robot space can in fact provide the

required information to enrich the scene with augmented reality elements such

as the pressure applied to an anatomical area or the force to which a tissue �ap

is subject while grasped. Di�erent methods were proposed in the last twenty

years starting from computer vision to sensor fusion of both cameras feed and

kinematic information. Approaches in literature can be clustered in three main

groups. During the �rst half of 2000's, just computer vision was used [23]. Then,

with the launch of surgical open research platforms such as the daVinci Research

Kit (dVRK) [24] and Raven II [25] and with the availability of kinematic data

from the robot manipulators, new approaches were developed with improved ro-

bustness and lower dependency from light conditions [26, 27]. More recently,

machine and deep learning became popular, with papers using either Gaussian

Mixture Models (GMM), Convolutional Neural Network (CNN) [28] and Ran-

dom Forests [29]. Video stream and kinematic data were combined to strengthen

the generalisation capabilities of machine learning models such as Random Trees

[30]. A 3D-CNN structure was implemented to account for the correlation be-

tween subsequent frames in [31]. Ultrasound imaging was implemented in [32]

to enhance accuracy.

Overall, works from the literature show that it is possible to track surgical

tools at a rate of 29-30 Hz [28], thus guaranteeing a smooth real-time video

stream, while maintaining a sub-mm tracking error for most applications.
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1.5.1.2 Eye tracking

Eye-tracking is nowadays an established technology, commonly adopted in re-

search �elds outside surgery (e.g. customer behaviour and user experience). In

robotic surgery, it can be used to capture the surgeon's gaze in augmented and

mixed reality applications or to study surgical task recognition.

In open or laparoscopic surgery the most common approach is the adoption

of head-mounted devices (HMD). Such systems include glasses with tracking

cameras [33] or optical trackers for estimating the pose of the head [34]. However,

acceptance of HMDs by the surgical community is limited and a convincing

clinical application, demonstrating e�ectiveness in a real surgical scenario, is

still missing [35]. On the other hand, whenever a visualization device is already

in use (i.e. surgical microscope, immersive user console), eye tracking is not

disrupting the clinical work�ow and can be easily adopted for guiding assistive

tasks, such as instruments control by surgeon's gaze [36, 37].

Overall, despite the availability of commercial systems for eye-tracking (e.g.

Tobii [38] Pro or EyeLink by Sr Research), translating this technology to surgical

applications is not immediate as a strong case for its adoption has yet to be

demonstrated via convincing clinical studies.

1.5.1.3 Tissue Interaction Sensing

A feedback on the interaction between instrument and tissue is crucial for safety

and e�cacy in both open and minimally invasive surgery. Research in providing

surgical instruments with force/torque/grasping/contact sensing capabilities has

been extensive in the last two decades [39, 40]. However, this e�ort has been ham-

pered by the additional complexity and cost that sensing adds to instruments that

either need autoclave sterilization (if reusable) or extremely low fabrication costs

(if disposable). For this reason, sensor-less options using force and torque esti-

mation [41] or data-driven vision-based sensing [42] have recently gained traction

in the research literature. More complex approaches adopt convex optimisation

[43] or screw theory [44] to estimate tool dynamics. While extremely promising

and straightforward to implement in a controlled environment, these approaches

have yet to be demonstrated outside a research lab environment [42].

1.5.2 Passive Assistance

In the context of this section, passive assistance technologies are intended as

systems that assist the surgical activity by providing additional information to
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Figure 1.4: Readiness level of enabling technologies and research areas for the di�erent
levels of autonomy. ∗1 in orthopaedics the problem of assistive systems is solved for speci�c
applications (see the Mako, Stryker for joint replacement), the problem is not solved yet for soft
tissue surgery. ∗2 Ablation for speci�c application such as the treatment of benign prostatic
hyperplasia is a commercially solved problem (see AquaBeam, Procept Biorobotics), however,
ablation in endoscopic surgery is still matter of research. ∗3 In neurosurgery the segmentation
of tumors from MRI images is already implemented in the Brainlab technology. The challenge
remains open for thoracic and abdominal surgery.

the surgeon. A considerable amount of work has been carried out in this �eld,

particularly during the �rst decade of the century. Here, we focus on two spe-

ci�c research streams: assisted planning, relevant before the surgery starts, and

augmented reality, which is available during the procedure to amplify surgeon's

cognitive capabilities.
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1.5.2.1 Assisted Planning

Optimal ports placement is a common issue in minimally invasive surgery (MIS)

due to the limited reach, articulation and dexterity o�ered by endoscopic in-

struments. A poor placement at the beginning of the procedure may introduce

undesirable delays and require re-placement while the patient is under anesthesia.

Laser pointers and light emitting diodes (LED) mounted on the tip of surgical

tools were adopted in [45] to simplify the deployment of laparoscopic instruments.

Other approaches capitalize on pre-operative analysis, such as computer tomog-

raphy (CT) and magnetic resonance imaging (MRI), to develop virtual reality

for planning in neurosurgery [46] or to minimize collisions in abdominal and

thoracic surgery [47]. In orthopaedics, pre-operative 3D scans are used to man-

ufacture patient-speci�c tool guides, thus increasing surgeons' accuracy during

osteotomies [48]. All the mentioned contributions deal with hard tissues or in-

struments' geometry. Planning algorithms involving soft tissues are still an open

challenge, due to the inherent complexities in modelling of the tissue and the

lower reliability of registration with pre-operative imaging as reported in [49].

1.5.2.2 Augmented Reality

Introduced in surgery in 1986 [50], Augmented Reality (AR) gained momentum

in the last three decades, enabled by the increased amount of computational

power. With AR, additional information such as tumor location or hidden in-

struments can be shown to the clinician by superimposing virtual objects to

the endoscopic image. Pre-operative images (CT, MRI, ultrasound) are used

to extract the shape and location of the target. Subsequently, 3D models are

registered to the anatomy. MRI- and CT-compatible �ducial markers can be

adopted to address issues in registration [51]. Fluorescent �ducials are proposed

to account for intra-operative deformations in [52]. The fusion of pre-operative

annotated MRI and intra-operative trans-anal ultrasound is proposed in [53]. To

provide high-level information in AR, context-awareness is required. An example

is provided by [54] where di�erent visualisations are proposed to the user depend-

ing on the tumor resection phase, autonomously detected by the system. The

visualisation includes the targeted area, the resection margins or vital structures

nearby the region of interest.

While most of the research target the surgeon as end user of the technology,

[55] introduced ARssistant, an HMD that shows the location of robot instruments

inside the patient's body to the assistant. This approach is particularly interest-

ing from the clinical perspective, as literature reports many adverse events [56]
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caused by a lack of coordination between assistant and surgeon.

An exception worth mentioning is

Overall, research in the �eld of AR for surgery and robotic surgery is well

established and is gaining momentum as a product. An example worth men-

tioning is the success of AR for surgical training [57], with several commercially

available platforms already in use [58], and clear potential for expanding training

programs to low-resource settings around the world [59].

1.5.3 Active Assistance

Robotic systems actively interacting with the surgeon at Level-1 are classi�ed as

active assistance systems. These devices perform actions that a�ect the surgical

procedure, such as applying forces to the user interface or restricting motion of

the surgical instruments, based on a limited knowledge of the environment (i.e.

force sensors, pre-computed forbidden areas, periodic inputs, etc.). In this case,

the robot does not have the ability to control the execution of tasks, but rather

reacts to actions initiated by the surgeon.

1.5.3.1 Assistive Systems

Minimally invasive surgery on soft tissues may be a�ected by periodic movements

such as respiration or heart beat. Compensation of oscillatory motions has the

potential of reducing undesired interaction with the anatomy. Techniques such

as Smith predictors [60] and Fourier series models [61] were adopted for heart

beating motion forecasting. Validation tests proved the system to be able to

reduce by a factor �ve the tracking error of the system compared to state of the

art. Experimental results reported in [62] show that such technology enhances

the clinicians' dexterity reducing by a third the rate of missed hits in a suturing

task.

In surgeries where the environment is more "stable" or better constrained,

such as neurosurgery, microsurgery or orthopaedic surgery, robot assistance can

be provided to prevent undesired interactions with delicate structures. In this

case, arti�cial repulsive force �elds are generated and applied to the surgical tool

tip. Passive control schema have been developed to guarantee the stability of

the tool-tissue interaction [63].

In orthopaedic surgery, active constraints are already part of commercial plat-

forms, such as the Stryker Mako and the Zimmer Biomet ROSA, shown in Fig.

1.5, which improve precision during interventions such as knee cap replacement,
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Figure 1.5: The Mako from Stryker (a) and the ROSA platform by Zimmer Biomet Robotics
(b) are used in orthopaedics for joint replacement.

total knee arthroplasty, or total hip replacement. On the other hand, in cardiol-

ogy a �rst example of a commercial platform employed for automated surgery is

proposed by Corindus Vascular Robotics which provide a �Rotate-on-Retraction"

gesture to simplify the navigation of a guidewire within blood vessels [64].

1.5.3.2 Haptic Feedback

Surgeons heavily rely on tactile and force feedback during open surgery. Such

feedback is severely hampered in MIS and completely lost in current robotic

surgery. Robotics o�ers the opportunity to restore haptic sensation by means of

sensors placed at the instrument and actuators integrated within the user inter-

face. A large body of research exist in this �eld, mainly driven by technological

advancements in sensing and actuation.

The most common approach is based on mechatronics [65], but pneumatic

[66] and hydraulic [67] systems have also been proposed. Haptic feedback can

be used for tissue palpation, thus identifying buried tissue structures or sti�er

regions, to develop assisted guidance of surgical tools in a con�ned space [68],

or to prevent instrument collision [69]. So far, the consensus from the surgical

community has been that high de�nition 3D vision, combined with the high

dexterity and precision of robotic tools, were su�cient to cope with the lack of

haptic feedback [70]. Nevertheless, platforms such as the Transenterix Senhance

[71], that recently entered the market, are equipped with haptic feedback. It

will be extremely interesting to see if clinical data from surgeries performed with

new robotic platforms will be convincing enough to modify the opinion of the

surgical community.
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Figure 1.6: In systems belonging to Level-2, the surgeon provides the necessary information
for the robot to accomplish a given task. Since during the autonomous execution the control
passes from the surgeon to the machine for the time needed to perform the action, we refer to
this as discrete control, represented by the switch.

1.6 Level 2 - Task Autonomy

The second level of autonomy is de�ned as �Task Autonomy�. At this level,

the robot can take control of the procedure, but does not possess the ability to

de�ne any parameter for planning the task. The surgeon provides the information

required to perform the action and the robot executes. The aim of task autonomy

is to free the surgeon from the cognitive burden and/or fatigue associated to

complex and/or repetitive tasks.

An example is tip retro�exion in magnetic colonoscopy. In colonoscopy, ret-

rograde vision allows the operator to investigate a larger portion of the bowel.

However, predicting how to change the controlling magnetic �eld and �eld gra-

dient to achieve the desired motion at the tip of the endoscope is extremely

complex for a human operator. In [72], an autonomous algorithm is proposed

that tracks in real-time the pose of the endoscope tip and adjusts the pose of

the external driving magnet accordingly in order to achieve retro�exion. The

robotic colonoscopy platform normally works in transparent teleoperation with

active constraints (Level-1) and, when the operator needs retro�exion, the algo-

rithm kicks in.

Similarly to retro�exion in endoscopy, tasks such as tissue retraction, su-

turing and ablation can be automated in robotic surgery. To enable these and

other autonomous tasks execution at Level-2, technologies like task recognition

and tissue palpation are essential. Papers discussing these lines of research are

reviewed in this section.

From an ethical standpoint, task autonomy is the �rst level where the ma-

chine takes full control of the surgical instruments, although for speci�c gestures

and under the supervision of the surgeon. This "discrete shared control" intro-

duces a paradigm shift in the ethical and regulatory framework that needs to

be addressed by noti�ed bodies and surgical robotics companies alike to allow
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autonomy to get into the operating rooms. This topic is discussed in more detail

in Section 1.9.

1.6.1 Enabling Technologies

At Level-2, the robot does not own the ability to elaborate decisions; nevertheless,

it is required to retrieve information with higher complexity with respect to Level-

1. For this reason, we selected a technology that has a great impact on systems

at this level: Gesture Classi�cation. In robotic surgery, by gesture it is intended

a sequence of actions (e.g. move towards a needle, grasp a thread, pierce a tissue

with a needle). A surgical procedure is composed of a sequence of gestures aimed

at, for example, navigate through the anatomy, reach a speci�c anatomical area,

operate the target usually by removing the compromised tissue and recover the

tools after having secured the anatomy. Gesture Classi�cation can enhance the

ability to activate the robot at the right time and minimize the disruption to

the surgical work�ow. By means of gesture classi�cation, the robot is capable to

follow the clinician's work plan, thus providing dedicated support depending on

the phase of the operation.

1.6.1.1 Gesture Classi�cation

A correct surgeon-assistant interaction is crucial to reduce the chance of mistakes

during surgery [56]. In Level-2 the robot can be considered as an assistant, ex-

ecuting basic sub-tasks. To achieve a satisfactory coordination between surgeon

and robot, the identi�cation of the surgical task is crucial. To achieve this, sev-

eral solutions have been proposed using source of information such as endoscopic

videos [73], real [74] and simulated kinematic data [75] and depth images [76].

Video streams and kinematic data can introduce signi�cant computational bur-

den, preventing the system to work in real-time. To tackle this issue, machine

learning models such as Hidden Markov Models [77], weakly supervised Gaussian

Mixture Model [74], multiple kernel learning [73] and Recurrent Neural Networks

[78] have been adopted. Promising results have been achieved on bench-top test

scenarios. However, as the complexity and variability of real tasks increases, the

model accuracy, generally ranging between 70% and 85%, tends to decrease, thus

limiting applicability in their current implementations.
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1.6.2 Suturing

Although widely performed in many surgeries, suturing remains a critical task as

failures might lead to disastrous consequences. Surgeon ability and experience

play a crucial role in the quality of a suture, thus automating this repetitive task

would guarantee more uniform outcomes and relax the cognitive burden on the

surgeon.

The execution of autonomous suturing is generally divided in two stages:

the insertion of the needle, during which the needle pierces the tissue and is

re-grasped at the exit point, and the tying of a knot to secure the suture with

a surgical thread. A signi�cant amount of literature regarding each sub-task is

available.

1.6.2.1 Needle Insertion

The needle insertion stage entails high precision in estimating the optimal po-

sition, angle and applied force required to pierce the tissue. Moreover, the dis-

continuous grasp of the needle generates uncertainties in the pose estimation.

Finally, as the needle pushes through the surface, the tissue is subject to deforma-

tion, thus increasing the needle pose uncertainty. For these reasons, autonomous

needle insertion raises interesting technical challenges, mainly related to the nee-

dle geometrical model and tissue deformation. A combination of kinematic and

geometric modelling is proposed in [79], where the trajectory is generated to min-

imize the tissue deformation. Estimation approaches such as Unscented Kalman

Filter [80] and an online evaluated deformation matrix [81] were used to estimate

the tissue and needle deformation.

A crucial aspect of needle insertion is the de�nition of the entry points. In

order to simplify this problem, optical markers [82] and laser pointers [83] were

integrated with optimisation techniques, with the aim of minimising the tissue

strain. However, the intra-operative placement of optical markers could be un-

desirable in surgery, thus reducing the advantages of autonomous execution. [84]

proposed a solution for a single-master dual-slave platform for semi-autonomous

needle insertion. The surgeon controls one arm to insert the needle while the

second arm, triggered by the insertion force, collects the needle and returns it to

the surgeon.

More advanced approaches improve the success rate by adopting transfer

learning (a method to transfer the learnt knowledge from an arti�cial intelligence

model to address a di�erent problem) [85], which reports a success rate of 87%

in needle driving, or Sequential Convex Programming [86].
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Even though satisfying results are reported on bench-top trials, validation

on a realistic scenario considering tissue-speci�c mechanical properties and the

presence of anatomical structure at risk, such as nerves and blood vessels, is still

missing.

1.6.2.2 Knot Tying

The last step in suturing consists of tying a knot .The main technical challenge

is related to the deformability and resistance of the thread, which could lead to

undesired entanglement, thus damaging the tissue. The complexity of the task

is further increased by limited dexterity, con�ned workspace and lack of tactile

feedback. To mitigate uncertainties on the thread deformation, [87] proposed

to apply a constant tension. The paper shows the feasibility of two di�erent

knots with performance comparable to human execution (nearly 10 seconds).

Interestingly, during retraction, the tissue is subjected to external forces and de-

formation, thus requiring a continuous re-planning. More advanced techniques

enhance the robustness of the autonomous system by using machine learning

approaches such as Learning by Observation (LbO, also known as Learning by

Demonstration) to extract the fundamental features from human gestures. In

[88], manually performed tasks are used to train Long Short Term Memory Re-

current Neural Networks. This type of neural network is particularly interesting

as it is capable of considering temporal evolution of features, thus allowing the

algorithm to learn complex sequences of gestures typical of knot tying. In [89],

LbO is used to generate trajectories on a phantom starting from recorded manual

sutures, achieving an accuracy of 2 mm in the path execution.

As the methods proposed in the literature vary signi�cantly, an objective com-

parative assessment of the performance is not straightforward. For this reason,

[90] proposed an evaluation metrics, comparing 4 di�erent approaches. However,

thread deformation still hinders satisfactory results. The adoption of high vis-

ibility threads may simplify the tracking problem, reducing the uncertainty on

the pose detection of the string.

1.6.2.3 Supervised Suturing

Literature that simultaneously tackle needle insertion and knot-tying on com-

mercial robotic systems is limited. The most convincing solution at the moment

entails the development of a dedicated platform, the Smart Tissue Autonomous

Robot (STAR), for full autonomous anastomosis [91]. The system is composed of

a 7-DOF KUKA LBR arm equipped with a custom suturing tool [92] (Figure 1.7).
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Two working modes are available: in automatic mode, the system autonomously

evaluates the position of each entry point, starting from the suturing outline de-

�ned by the surgeon, in manual mode each entry point is de�ned manually. Tests

on phantoms demonstrated that the system is capable of completing a suturing

task 5 times faster than a robot-assisted procedure and 9 times faster than an

operator. It is worth to point out that, in both working modalities, the surgeon

is required to de�ne the suturing pro�le of the anastomosis. Systems capable

of autonomously retrieving the suturing task speci�cations will be introduced in

Section 1.7.3, at Level-3 of autonomy.

Figure 1.7: The Smart Tissue Anastomosis Robot (STAR) system (a). The system is
equipped with Plenoptic camera to retrieve depth information while the Near Infra-Red (NIR)
camera detects hidden structures in the tissue (b).

1.6.3 Tissue Retraction

During MIS procedures, a signi�cant amount of time is spent mobilising and

dissecting tissue to reach the area of interest. In this context, dissected tis-

sue is often retracted to expose the surrounding area. Although this gesture

is performed frequently and, thus, would make a good candidate for task au-

tomation, few contributions are available in literature. This may be due to the

complexity associated with detecting and tracking deformable soft tissue during

surgery. Simulation frameworks have been developed in [93, 94] to plan a grasp-

and-retract gesture. The strategy aims at minimising the tissue strain, simul-

taneously avoiding tearing and guaranteeing an obstacle-free trajectory. Recent

studies [95, 96] present tissue retraction on a dVRK involving visual markers to

identify the �ap grasping point and fuzzy logic to execute the gesture. Despite

the promising results, only bench-top experiments are available. In a real sce-

nario, the complexity of tissue detection may be signi�cantly higher, considering
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the tissue elasticity and the presence of tools. For this reason, automating tissue

retraction remains an open challenge.

1.6.4 Sti�ness Mapping

Manual palpation is commonly used in conventional surgery to identify and dis-

sect malignant masses below the surface of organs (i.e. kidneys, lungs). In

robotic surgery, the lack of tactile feedback hinders the surgeons' ability to eval-

uate the tissue properties. Haptics, discussed in 1.5.3.2, aims at restoring this

ability. A further step towards the execution of autonomous tasks such ad dis-

section and ablation (see Section 1.6.5) is the ability to autonomously estimate

the tissue properties by mechanical contact. To provide palpation, array sensors

based on di�erent principles such as the measure of distributed pressure on a sur-

face [97] and the Bernoulli pipe structure [98] have been adopted, detecting hard

inclusions with a precision of 97%. Hall sensors were implemented on a daVinci

instrument tip [99] to localise blood vessels to a maximum depth of 5 mm. A

di�erent approach for prostate palpation [100] is based on the adoption of an

attachable sensor matrix. Approaches based on sensors are limited by increased

complexity, cost and sterilization requirements. In a seminal paper, [101] demon-

strate sensorless palpation with a multi-backbone continuum robots for the �rst

time. Based on this work, [102] proposes a smart navigation approach supported

by pre-operative images.

In [103], elastography had been used to collect a dataset and develop a ma-

chine learning model for autonomous detection of hard inclusions in a phantom.

Most of the proposed strategies for palpation adopt custom, hand-held instru-

ments, thus increasing the number of surgical accesses required. A solution

integrated with commercial systems would be preferred. Moreover, the adoption

of dedicated mechanical devices introduces complexities associated to reprocess-

ing, possible contamination and production costs, thus signi�cantly limiting the

potential for clinical translation.

1.6.5 Ablation

Ablation consists in eradicating a portion of compromised tissue by transferring

a high amount of energy to the target by means of electric cauterizers, cryoprobes

or High Intensity Focused Ultrasound (HIFU). The major risk is undesired re-

moval of healthy tissue from surrounding structures such as blood vessels or

nerves bundles. The correct localization of the target tissue to remove and the
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precise identi�cation of its margins pose technical challenges, especially in sur-

gical excision of cancer, where tumors may be concealed underneath healthy

tissue. In these procedures, it is also crucial to spare as much healthy tissue as

possible to prevent organ failure and subsequent need of a transplant, should this

be an available option. A possible approach is to perform mechanical palpation

to create a local sti�ness map for guiding ablation [104, 105], as discussed in

Section 1.6.4. Alternative imaging methods such as ultrasound [106] and optical

coherence tomography [107] may be adopted to guide cardiac ablation.

Following a common practice in surgery, several works considered laser abla-

tion to reduce direct interaction with the anatomy [108, 109, 110]. Nonetheless,

the lack of physical contact complicates the identi�cation of the target area,

which is manually selected by the surgeon before starting the procedure [109].

To relax the input required from the surgeon and increase the autonomy in de-

tecting the target, preoperative scanning and voxel-growing on the 3D anatomic

model were successfully implemented [108].

In order to avoid heat generation [111] adopted cryoprobes, while [112] used

pressurized water jets. The latter is a commercially available system (branded

as AquaBeam [113]) designed for the treatment of benign prostatic hyperplasia.

Although the prostate pro�le is identi�ed by the surgeon, on ultrasound scan,

the resection is autonomously performed by a high-pressure water jet. This is

a remarkable example of a Level-2 system reaching the operating room, enabled

by the simultaneous use of intra-operative ultrasound imaging and robotics. Ex-

tending Level-2 systems for autonomous ablation to other surgical procedures

will be challenging whenever the localisation of the target area is hindered either

by tissue deformation or lack of visualization.

1.7 Level 3 - Conditional Autonomy

The main characteristic of Level-3, de�ned as �Conditional Autonomy', is the

ability to conceive strategies to perform a speci�c task, always relying on the

human operator to approve the most suitable to be implemented. In the con-

text of robotic surgery, this re�ects the ability to autonomously extract the

parameters required to plan a speci�c task from the information available to the

system. During task execution, the environment is constantly monitored and the

plan is updated in real-time. In case of performing a suturing task at Level-3,

for example, the system would be able to extract the suturing points and the

length of each suture from real-time imaging, then plan and execute the suture

28



Figure 1.8: Systems belonging to Level-3 are capable of autonomously de�ne the speci�cations
to plan and execute a surgical task, di�erently from Level-2 systems where the surgeon was
supposed to provide them to the system. Similarly to Level-2, discrete control takes place, as
represented by the switch.

autonomously. At Level-2 this task would have required the intervention of a

surgeon to explicitly designate the insertion point of the needle, while at Level-3

the system is capable of estimating the scene and retrieve the required feature

without the human intervention. Real-time imaging would also provide contin-

uous updates to the plan as the task is performed. This example is discussed

in detail in Section 1.7.3. Other examples are autonomous navigation of �exible

endoscopic robots in unstructured environments [114], autonomous navigation

in the abdominal anatomy, and autonomous anastomosis.

1.7.1 Enabling Technologies

At Level-3, the system requires the ability to perceive, extract and analyze con-

textual elements to plan how to execute a task and to update the plan during

execution. Similarly to the surgeon's cognitive process, systems at Level-3 are

expected to extract high-level features from the surgical scenario and to act upon

them in real-time. Some of the key elements to achieve this are computationally-

e�cient tissue models, advanced imaging capabilities, and algorithms to track

high-level features in the environment.

A signi�cant help in this context comes from the giant leap in computational

power of graphic processing units (GPUs) that we have experienced in the last

decade. Current GPUs, mainly developed for the gaming industry, can be used

to run complex algorithms at an unprecedented speed.

1.7.1.1 Tissue Modelling

Predicting tissue deformation plays a crucial role in manipulating soft tissues.

Understanding the mechanical properties is essential to avoid unintentional dam-

ages. Additionally the machine performances de�ned by the hardware setup

heavily impacts the outcome of such technology. In fact, tissue modelling, de-
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manding a signi�cant amount of calculation for 3D rendering and physical anal-

ysis, puts a considerable stress on the computational hardware. In practice this

translates to a trade o� between �delity, thus how realistic the analysis is, and

computational speed. Considering how these two aspects a�ect the outcome of

a surgical procedure an correct balance must be achieved to guarantee optimal

procedures' outcome. Research has focused on deformation assessment by means

of data-driven approaches in needle insertion [115], and real-time detection of

tissue perforation during spine interventions [116]. Intra-operative real-time im-

ages [117] and pre-operatory CT scans [118] were used to obtain anatomy-speci�c

deformation models. However, one of the main challenges is the intra-operative

real-time identi�cation of tissue parameters describing the elasticity and sti�ness

of a given surface. Recently, 3D displacements and kinematic data were com-

bined to evaluate the deformation through optimization techniques in [119, 120].

Results demonstrated the system ability to evaluate the parameters in real-time,

but quantitative assessments of the performances are not available. Only one

work presented an approach to model the cardiac atrium for guided manual

ablation with a Stereotaxis platform [121] with successful intraoperative results.

1.7.1.2 Advanced Imaging

Real-time feature extraction from sensing sources is crucial for the automation of

surgical tasks. Even with state-of-the-art white light stereoscopic imaging, it is

still a major challenge to have reliable online understanding of the surgical scene.

For this reason, a number of advanced imaging approaches have been proposed,

including "plenoptic" vision to retrieve depth from the scene. Plenoptic cam-

eras are equipped with a micro-lens array capable of acquiring di�erent points

of view of the same scene in a single acquisition, thus allowing an accurate 3D

reconstruction [122]. Tridimensional reconstruction accuracy is strengthen by

the possibility of perceiving the light direction by this type of cameras. If com-

bined with �uoroscopy imaging as in [122], plenoptic cameras allow to identify

internal hidden structures such as blood vessels and nerves. Although a small

amount of contributions is available in literature, interesting results have been

obtained so far, such as the completion of a needle insertion [123], Level-3 su-

turing (as detailed in Section 1.7.3), and vitreoretinal surgery [124]. Alternative

imaging technologies currently under evaluation to enhance feature extraction

are hyperspectral imaging [125] and TeraHertz vision [126].

Considering the novelty of the �eld and the promising results achieved, future

developments of these technologies will play a crucial role in surgical robotic
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research.

1.7.1.3 High Level Feature Tracking

Di�erently from the tracking discussed in Section 1.5.1.1, where the surgical tool

was intended as a physical extension of the robotic platform, here we focus on

tracking of tools or features that are physically disconnected from the surgical

robot.

In the context of suturing, moving from Level-2 to Level-3 without taking

advantage of a dedicated tool, as in the work discussed in Section 1.6.2.3, requires

the ability to track the suturing needle and thread throughout the execution of

the task. In the �eld of suturing thread detection a combination of color and

geometry segmentation [127] are adopted to detect and model the thread as a

spline. However, given the thin structure of a suturing thread, basic computer

vision algorithm may su�er critical loss of performances in a real scenario where

the light condition is insu�cient and the environment is cluttered. For this

reason, data-driven analysis of images to retrieve the 3D pose of the thread

[128], image-based optimization techniques [129] and Markov Random Fields-

based solutions [130] are presented to reject such disturbances.

In the context of suturing needle tracking, an e�ective approach consists of

equipping the needle with highly visible markers [131], detectable by conventional

white-light cameras. In [86], the detection by means of coloured markers is

supported by a custom gripper that reduces the needle mobility.

Another interesting tracking problem is related to reconstructing in real-time

the shape of biopsy or injection needles under ultrasound guidance. To address

this challenge, motion features are explored in [132], while a Kalman �lter is

proposed in [133]. Optimization techniques based on gradient descent algorithms

are adopted in [134] along with geometric needle models for tracking. Although

the results of [132] reports a localization accuracy of 1.70mm while respecting

the real-time constraint [129], there are no contributions addressing the problem

of high level feature tracking in a realistic scenario, thus motivating further

investigation in the �eld.

1.7.2 Navigation of Continuum Surgical Devices

Continuum surgical devices include, among others, steerable needles for biopsy

sampling or local drug delivery and cardiovascular catheters. In this section, we

discuss robotic platforms pursuing Level-3 navigation of these types of devices.
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Robotically controlled needles may introduce a relevant bene�t in brain,

prostate and lung surgery, where the di�cult access to the anatomy increases

the complexity of the task. Due to their thin structures and tortuous paths, the

manual navigation of these needles is demanding, if not impossible. To enable an

e�ective use of these devices, autonomous navigation is crucial and continuous

updates of the external forces acting on the needle are required to safely navigate

towards the target. Moreover, as the needle pushes through, the system must

compensate the tissue deformation to avoid undesired interaction with periph-

eral anatomical structures. [135] proposes a kinematic and a mechanics-based

approach to evaluate needle-tissue interaction, thus predicting tissue deforma-

tion. A crucial aspect of steerable needles is localisation and registration to the

anatomy. Ultrasound imaging is widely adopted [136] to develop image-based

control strategies: as the needle advances through the tissue, an ultrasound

transducer tracks and follows the tip. Alternative imaging approaches used for

autonomous needle navigation include intra-operative MRI to localise and avoid

obstacles [137] and Fiber Bragg Grating to track the needle tip [138]. Robotic

needle guidance is a relatively new approach in robotic surgery, therefore no cur-

rently available clinical platform embeds this technology. However, promising

results have been recently obtained in human cadaver trials [139] and with the

support of preoperative analysis[140], demonstrating a possible translation to

Level-4 autonomy in the near future.

In the context of autonomous navigation of cardiovascular catheters, a very

advanced work is presented in [141], where force sensing and palpation are

adopted to drive an autonomous catheter through blood vessels, up to the heart.

The approach is validated by an in-vivo trial, demonstrating performances com-

parable to the manual execution.

1.7.3 Advanced Suturing

In order to achieve Level-3 suturing, plenoptic cameras have been adopted to

extract the 3D pro�le of the scene and autonomously de�ne the suture entry

points in [123]. The algorithm is based on human demonstrations and validated

on ex-vivo tissues, showing a superior performance in terms of time and accu-

racy when compared to a human operator. Point clouds were used in [142] to

autonomously plan the needle path, including the entry points. In particular,

the region of interest is identi�ed manually by the surgeon to reduce the com-

putational burden, but then the system takes over by extracting all the task

speci�cations autonomously. The system is evaluated on a suturing phantom by
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assessing the thread tension and the displacement of the entry points. Results

show a consistency almost three times higher than a human operator. While cur-

rent results on advanced suturing are extremely encouraging, they are limited to

anatomical phantoms or ex-vivo tissue models. As the approach is translated to

a more realistic scenario, the performance of the suturing robot may be heavily

a�ected. From the small amount of literature available, it is clear that full au-

tonomous suturing is still far from being commercially available. Moreover, due

to the high complexity of the task, no studies addressing the problem of failure

modes, such as the accidental drop of the needle or the entanglement of the

thread, have been carried out. Embedding the technologies included in Section

1.7.1.3 could potentially revolutionise the approach to autonomous suturing by

providing a robust and continuous tracking of needle and thread, thus allowing

the system to consider their presence in the scene.

1.8 Level 4 - High autonomy

Figure 1.9: In "High Autonomy" systems, pre-operative and intra-operative information
are used to devise an interventional plan composed by a sequence of tasks, and execute it
autonomously, re-planning if necessary. A surgeon always supervises the procedure and can
get back control at any time.

The fundamental characteristic of Level-4 systems is their ability to au-

tonomously make clinical decisions and execute them, under constant supervision

by the surgeon.

Beyond clear technical challenges, this level poses very relevant issues in terms

of ethical and regulatory aspects.

While concrete examples are not yet available, we can easily see where these

systems would clearly contribute to healthcare delivery, i.e. intelligent removal

of cancerous tissue, from registration with pre-operative imaging, adaptation of

the plan with real-time data, and ablation of cancer while maximising sparing of

healthy tissue.

In this Section, we discuss how progresses in organ and tumor segmenta-

tion represent a stepping stone towards debridement and tumor resection. This
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section is then followed by a discussion of ethical and regulatory issues around

autonomy in sugical robotics.

1.8.1 Enabling Technologies

1.8.1.1 Organ and Tumor Segmentation

Interpretation of pre-operative imaging (MRI, CT and US) is a requisite for a

Level-4 system. Autonomous segmentation of organs such as brain [143], liver

[144] and prostate [145] were investigated using di�erent imaging techniques

including CT [146], MRI [145]. Tumor pro�les can be extracted from CT scans

by adopting optimization techniques [145] and deep learning models [146, 144].

Subsequently, the extracted regions are merged together to obtain a 3D model of

the target. Usually, the accuracy achieved with the help of these models is very

high (mostly over 90%) since the feature to be recognized are highlighted in the

capture thanks to the high contrast typical of both MRI and CT scans. These

performance are not achievable in endoscopic images where, due to variation of

lightning, presence of blood and re�ection of the organs, usually the same type

of model does not perform at a comparable level of accuracy.

Autonomous segmentation techniques are embedded in commercially avail-

able systems such as the Brainlab iPlan [147], which is capable of segmenting

MRI scans and integrating them with other imaging techniques like ultrasound

and elastography. Using this platform, the surgeon can validate the software

segmentation, plan and deliver radiotherapy by means of robotic platforms, i.e.

GammaKnife and CyberKnife. Although already implemented and used in the

operating room for neurosurgery, autonomous segmentation remains an open

challenge for thoracic and abdominal surgery, where tissue deformability pre-

vents satisfactory results to be achieved.

Figure 1.10: Stages of autonomous tumor debridement on a phantom reported in [99]. Ini-
tially, a palpation probe scans the tissue to de�ne the tumor boundaries (a). Subsequently,
an incision is performed (b) and the tumor removed (c). Eventually, the incision is sealed by
means of surgical glue.
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1.8.2 Debridement and Tumor Resection

To perform tumor resection, surgeons are required to fuse pre-operative (e.g.

MRI, CT, US) with intra-operative (e.g. white-light endoscopy, �uoroscopy,

Near Infrared (NIRF)) imaging modalities. Systems with "High Autonomy"

must possess a similar ability. In [148], NIRF markers were adopted to retrieve

the tumor boundaries and guide resection via electrosurgery, while maintaining

a minimum margin of 4-mm. Despite the markers were applied manually, this

shows the feasibility of a NIRF-based visual servoing for debridement on phan-

tom, achieving a margin of 3.67± 0.89 mm. A similar approach is presented in

[149], where the target area is detected by applying coloured markers on a phan-

tom. The debridement is modelled by means of Finite State Machines (FSM),

allowing a gesture execution time of 20.8 seconds. Alternatively, a palpation

probe [99] mounted on a daVinci manipulator was used to identify and excise

a tumor hidden below the tissue surface (Figure 1.10. Subsequently, the wound

was sealed with surgical glue [150]. The probe initially scanned the area of inter-

est, localising hard inclusions in the tissue and tracking the tumor pro�le. Then,

a surgical scalpel performed the incision and grasped the tumor. Experimental

results on phantoms showed a success rate of 50% in tumor excision. Despite the

preliminary results, the system addressed some of the major challenges in surgical

autonomy at Level-4 and did not require any intervention from the operator.

1.9 Legal and ethical aspects of autonomous sur-

gical robots

The taxonomy and de�nition of the levels of autonomy are directly inspired by the

SAE J3016[8] standard, which de�nes the same levels for on-road Autonomous

Vehicles (AV). Despite the standard was published in January 2014, the �rst ex-

amples of semi-autonomous cars date back to the 1970's. The sector experienced

great advancements in the last two decades with the support of initiatives like

the DARPA Grand Challenge, attracting interest from private companies. The

recent technical and regulatory advancements have been massive, to the point

that the US department of transportation issued a document entitled "Ensur-

ing American Leadership in Automated Vehicle Technologies" and pilot trials of

Level-4 and above have started on public roads in US, Canada and Europe. In

the context of surgical robotics, the �rst (baby) steps to move autonomous plat-

forms (Level-3 or higher) out of university labs are in the military �eld, with the
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US department of defense issuing a call for autonomous systems in combat zones

[151]. However, in less extreme frameworks, ethical concerns arise regarding the

consequences of decision errors and incorrect robot behaviours, potentially lead-

ing to serious injuries or even death. Being such a novel and fast-paced �eld of

research, literature on this topic is scarce and mostly speculative. An interesting

perspective is given by [152], in which three elements of responsibility are high-

lighted: Accountability, Liability and culpability. The �rst element is related to

the ability of explaining decisions, which decreases as the system complexity in-

creases and could be addressed by a combination of explainable AI and recording

black boxes, similarly to aircraft. The element of liability, much discussed also

for AVs, could be addressed by insurance coverage or alternative approaches, like

the concept of electronic personhood, introduced by the European resolution of

16 February 2017 [153]. On the topic of liability, other documents issued by the

EU discusses issues related to AI and robotics [154]. Finally, culpability (i.e. the

possibility of punishing) constitutes the most complex topic, and could pose a

signi�cant legal and ethical barrier, having in�uence on the surgeons' role.

An interesting contribution [155] focuses on the ethical aspects of autopsies,

concluding that explainable AI and machine learning could give powerful support

to forensic analysis only in a context of human-robot collaboration.

On the topic of patients' perspective, initiatives like the iRobotSurgeon survey

[156] tries to assess the public acceptance of autonomous surgical robots, while

[157] discusses the issues related to privacy, suggesting to adopt the �contextual

integrity� theory.

From the regulatory perspective, noti�ed bodies such as the American FDA,

the British Medicine and Healthcare Regulatory Agency (MHRA) and the Ger-

man Federal Institute for Drugs and Medical Devices (BfArM, in German) do

not have speci�c frameworks for autonomous robots. The FDA currently clas-

si�es surgical robots as Class-IIb devices, while implantable and self-activating

devices like peacemakers (which have some degree of autonomy, not requiring any

human intervention) belong to Class III. One reason for the current classi�cation

of robots is the absence of autonomy. On the other hand, Class-III devices are

limited to low-complexity and simple functional mechanisms in which the failure

modes and operating conditions can be evaluated extensively, thus performing a

complete risk evaluation, as required by all the medical devices standards (e.g.

ISO 13485, 14791, 62304). Moreover, di�erent approval pathways for Class-II

and Class-III devices require signi�cantly increased investment, as thoroughly

described in [158]. As discussed in [159], at low autonomy levels, the current

legal frameworks could be suitable to evaluate new devices. A common ap-
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proach to introduce autonomy is to leave the surgeon in charge of activating

the autonomous features. Despite being simple, this method greatly limits the

e�ectiveness of the devices.

The use of machine learning algorithms also presents several issues in current

regulatory schemes. All the medical devices standards prescribe a development

process based on risk evaluation and minimization, but modern deep-learning

approaches treat information in such a way to prevent a detailed risk analysis.

State-of-the art approaches based on the novel topic of explainable AI could solve

this issue.

At high autonomy levels, the robotic systems are supposed to make clinically-

relevant decisions. This could introduce another regulatory dilemma: noti�ed

bodies like FDA lack the legal authority to regulate medicine, as this practice is

usually left to medical societies. The latter, on the other hand, lack the technical

competence to dominate complex and continuously evolving technologies such as

robotics. A possible solution is proposed in [160], suggesting to include ethical

elements in the engineering development process from the very beginning. In

this way, any further technical development paired to an ethical discussion in

order to speed up the process of general acceptance.

1.10 Background Summary

The development of intelligent machines will be a long and di�cult endeavor,

marked by a number of incremental steps in which science and technology will

drive changes in societal behavior and legislative framework. This is particu-

larly evident in medicine, where novel solutions motivate regulatory changes and

societal perception of how healthcare should be o�ered. Robotic surgery is no ex-

ception and the success of the daVinci surgical system demonstrates the gradual

acceptance, and now the preference, of new robotic technology with respect to

traditional surgical approaches. The addition of reasoning capabilities to surgical

robots will require some time, primarily because of the many open regulatory

and liability issues. However, if clear bene�ts are demonstrated, patients will

accept and eventually demand devices that can provide additional cognitive and

physical support to the surgeons.

This section aimed at providing a �rst comprehensive mapping of levels of au-

tonomy that could eventually be added to surgical robots, their implementation

through enabling technologies, and the translation of these abstract concepts into

practical clinical examples (Figure 1.4). So far, only few laboratory experiments
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have shown a clear advantage of autonomy in surgical robotics when compared

to conventional approaches, and no clinical evidence exists yet. However, if re-

search keeps the current pace, positive evidence will soon emerge and build up

to an extent that will motivate noti�ed bodies and hospital's ethical committees

to consider transition to clinical trials.

This progress will require unprecedented levels of collaboration among engi-

neers, surgeons and healthcare operators to ensure that communication among

all actors in the operating theatre is improved by the new technology. Human-

machine interaction will be a key factor for the success of autonomy in surgical

robotics. Only platforms that possess an e�ective way to communicate their in-

tent and "explain" their decision to their human companions will �nd their way

into the operating room of the future.

1.11 Tissue Retraction

Starting from the debate about autonomy in surgical robotics we can �nd a mo-

tivation for the following technical contribution of the thesis. As it is possible to

notice from Figure 1.4 very few applications reached an adequate level of devel-

oping that allows its commercialisation. Augmented reality, Suturing and Tissue

retraction are just some examples of such technologies. However, the technical

issues related to each one of these tasks is particularly di�erent and it is not

possible to �nd a universal solution for all of them. Augmented reality is a set-

tled and well established technology in other �elds and even in surgery many

works have been carried out to implement this technology in such a complex and

dynamic environment. The same thing is true also referred to suturing: even

if the problem is not solved yet, many studies have been carried out to �nd an

optimal solution to this task. On the other hand, minor tasks such as tissue

retraction or sti�ness mapping are far away from being solved in an automated

context. Surprisingly, even if these problems have not been solved yet, very few

e�orts have been put in this direction. As these problems are not less important

than others, more focus is required on these tasks to allow their evolution and

development towards commercialisation. For this reason, this thesis develops a

framework for autonomous tissue retraction which aims to solve both the percep-

tion problem of understanding the surgical scene where the surgeon is operating,

and the control problem to guarantee a safe interaction with tissues. The work of

this thesis is divided as follows: in Section 2 a paper published in IEEE Robotics

and Automation Letters about a feasibility study for tissue retraction is pre-
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sented, in Section 3 an incremental work regarding the neural network model

for tissue �aps segmentation is shown and Section 4 reports a paper where a

motion planning framework is developed and adapted to work on a dVRK plat-

form. Eventually, 5 terminates the thesis presenting the conclusions of this thesis.
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Chapter 2

Autonomous Tissue Retracion:

Surgical Gesture Design

The following chapters detail the technical contribution of this study. As men-

tioned in the introduction, the main contribution of this thesis consists of a

method to assess both the perception and control problems related to the repli-

cation of a speci�c surgical task, namely tissue retraction. In this chapter, the

surgical gesture model emerged from interviews carried out with surgeons is re-

ported. From a thorough analysis of the clinicians' opinion, a good practice of

tissue retraction is de�ned and algorithmically described. This chapter details

the technical contribution to transfer the surgeon knowledge and common prac-

tice to the robotic framework. The test results proved the e�ectiveness of this

method in clearing the clinician's �eld of view enhancing the visibility of the

surgical scene, thus simplifying the anatomy access.

In order to plan an intelligent motion, an accurate estimation of the workspace

is required. Once the key features for motion planning are identi�ed, it is crucial

to de�ne a way to estimate the possible trajectory of the surgical tools. Finally, a

motion planner must be implemented to estimate the joint velocities at every step

in order to control the arm motion. The following chapters reports the contents

of part of the publications where these problems have been analysed. Chapter 3

presents a comparative study of di�erent neural network structures to accurately

identify and segment �aps of tissue in the scene. The models are trained and esti-

mated over a dataset collected at the Anatomy Facility of the Faculty of Medicine

at the University of Leeds. In this case, the adoption of spatio-temporal layers

in the model architecture proves to be e�ective in segmenting tissue �aps from

depth maps, thus achieving a satisfactory level of accuracy for the next phases

which guarantee a solid basis to perform the target task. Chapter 4 describes
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how the detected features coming from the previous phase are used in order to

plan and execute a particular trajectory with the Da Vinci arm. By means of

the MoveIt! environment, the PSM arm kinematic model is de�ned and used to

plan and execute smooth trajectories in a 3D space. The chapter's conclusions

present experimental validation to demonstrate that the robot is capable of fol-

lowing a smoothed trajectory constrained to the waypoints extracted from the

previous analysis.

2.1 Autonomous Tissue Retraction in Robotic As-

sisted Minimally Invasive Surgery � A Feasi-

bility Study

© IEEE. Adapted and reprinted, with permission, from Attanasio, A., Scaglioni,

B., Leonetti, M., Frangi, A. F., Cross, W., Biyani, C. S. and Valdastri, P.

(2020). Autonomous Tissue Retraction in Robotic Assisted Minimally Invasive

Surgery�A Feasibility Study. IEEE Robotics and Automation Letters, 5(4), 6528-

6535. Supplementary material at 10. 1109/ LRA. 2020. 3013914

Authors: Aleks Attanasio, Bruno Scaglioni, Matteo Leonetti, Alejandro F. Frangi,

William Cross, Chandra Shekhar Biyani, Pietro Valdastri

Abstract: In this work, we describe a novel framework for planning and executing

semi-autonomous tissue retraction in minimally invasive robotic surgery. The

approach is aimed at removing tissue �aps or connective tissue from the surgical

area autonomously, thus exposing the underlying anatomical structures. First, a

deep neural network is used to analyse the endoscopic image and detect candidate

tissue �aps obstructing the surgical �eld. A procedural algorithm for planning

and executing the retraction gesture is then developed from extended discussions

with clinicians. Experimental validation, carried out on a DaVinci Research Kit,

shows an average 25% increase of the visible background after retraction. Another

signi�cant contribution of this paper is a dataset containing 1,080 labelled surgical

stereo images and the associated depth maps, representing tissue �aps in di�erent

scenarios. The work described in this paper is a fundamental step towards the

autonomous execution of tissue retraction, and the �rst example of simultaneous

use of deep learning and procedural algorithms. The same framework could be

applied to a wide range of autonomous tasks, such as debridement and placement

of laparoscopic clips.

41

10.1109/LRA.2020.3013914


Figure 2.1: DVRK setup composed of a PSM and a stereo endoscope. A phantom and a
printed laparoscopic background have been used to validate the semi-retraction approach.

2.1.1 Introduction

Minimally Invasive Surgery (MIS) presents several bene�ts for patients compared

to open surgery, such as reduced trauma to the anatomical structures, shorter

recovery time, and reduced blood loss [161]. A signi�cant portion of each MIS

procedure is devoted to Tissue Retraction (TR), which is conducted to access

the area of interest (e.g. tumour) [162]. Exposing the surgical area is therefore

a crucial task in MIS, as surgeons rely mainly on visual information, given that

tactile feedback is absent or extremely limited. This is especially problematic in

urology, where access to the bladder and prostate is obstructed by bowels and

connective tissue [162]. In this clinical practice, robotic MIS is nowadays a com-

mon approach, with platforms such as the DaVinci Surgical System (DVSS) from

Intuitive Surgical widely used worldwide. The DVSS is a master-slave teleoper-

ated system, i.e. the movements of the surgeon on two Master Tool Manipulators

(MTM) are replicated on the tip of laparoscopic instruments by means of three

Patient Side Manipulators (PSM). During a typical robotic MIS procedure, the

surgeon temporarily assigns one of the MTMs to the third PSM to perform

tissue retraction, or requires the support of an assistant to carry out the task

with an additional manual instrument. Retraction often involves manipulation

of connective tissues or organs (e.g., liver or bowel). Switching robotic arms, or
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instructing an assistant on the desired retraction motion, signi�cantly increases

the surgeon's cognitive load [163] and raises severe risks with potentially catas-

trophic consequences [164]. TR can also be challenging in the context of manual

laparoscopy, where the lack of coordination between surgeon and assistant can

lead to hazardous situations, such as instruments collisions, tissue damage or

unintentional tearing [165]. To tackle these issues, this paper presents a semi-

autonomous system for TR that can be applied to surgical procedures using

a robot-controlled instrument (i.e., full robotic MIS or hybrid manual-robotic

procedures).

Our approach focuses on detecting tissue �aps obstructing the surgical �eld

by using U-Net [166], a particular convolutional neural network structure, widely

adopted in the segmentation of medical images. The network (henceforth: U-

Net), fed with the endoscopic video stream, is trained via a dataset of surgical

images recorded during procedures performed on Thiel-embalmed cadavers (i.e.

an embalming technique that preserves the softness of human tissues [167]), and

subsequently labelled manually. An algorithm is developed to identify the re-

traction grasping point and direction based on the size and shape of the detected

�aps. This enables the TR to be planned and then planned and performed

autonomously.

This methodology was validated on a DaVinci Research Kit (DVRK) [3] and

experiments were performed on a benchtop platform. However, the proposed

approach could be applied to any other surgical MIS platform �tted with stereo

vision and at least one instrument manipulated by a robot [168].

Research in surgical robotics has recently focused on increasing the level of

robots' autonomy, with examples of automating tasks such as suturing [92], and

resection [150]. The research on task autonomy aims at relieving the surgeon of

manual and repetitive tasks in a collaborative framework, rather than substitut-

ing the human action completely [169, 170]. Research in autonomous suturing

and related sub-tasks, discussed in [86, 171] has been greatly facilitated by the

availability of datasets dedicated to the analysis and automation of surgical ges-

tures (JIGSAWS [172]). The use of automation for 3D tissue debridement of

soft tissues presented in [173] is particularly interesting. In order to provide an

accurate 3D mapping from the surgical scene, the method proposed in on stereo-

scopic imaging is proposed in [174] is capable of identifying the tool by means

of marker and the tissue by the 3D reconstruction of the stereo pairs. The lit-

erature on TR is limited, despite this task being repeatedly performed during

all typical procedures. In [94] a simulation framework to perform a grasp-and-

retract task is presented along with a path planning method for retraction in the
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presence of an obstacle is reported. More recently, advanced approaches have

been proposed in [95], where retraction is controlled by an image-based system,

and in [96, 175], where three di�erent approaches based on proportional con-

trol, hidden Markov models and fuzzy logic are developed. In these works, the

start and end points of the retraction are manually indicated by the surgeon

thus entailing no autonomous planning. Concerning the use of deep learning

algorithms in the context of surgical data, the U-Net neural network has been

developed for segmentation of biomedical images [166], and subsequently widely

adopted in various surgical scenarios such as brain tumour detection [176], liver

tumour tracking [146], and surgical tool detection [31]. In [177], segmentation

is performed on MRI images, aiming at localising tumours by means of 3D re-

construction. However, U-net has not yet been applied to the detection of tissue

�aps for the automation of retraction.

The main contribution of this work is a framework for semi-autonomous tis-

sue retraction, including endoscopic image analysis and gesture planning. This

contribution advances the �eld of robotic-assisted MIS, laying the foundations

for future developments in the �eld of autonomous surgical assistance. Com-

pared to other works in soft tissue retraction, such as [95] and [96], we increase

the level of autonomy by providing autonomous tissue segmentation and ges-

ture planning abilities directly on the endoscopic video sequence. Our system

is capable of automatically extracting start and end points for tissue retraction,

thus reducing the input required from the surgeon in de�ning task speci�ca-

tions. Other works, such as [178], adopt a similar work�ow but focus on a

di�erent task (i.e. debridement) and therefore develop algorithms speci�cally

dedicated to debris detection. Another major contribution of the present work

is the introduction of FlapNet, a dataset of labelled surgical images dedicated to

retraction, available at https://github.com/Stormlabuk/FlapNet. The dataset

o�ers a valuable resource for research in the �eld of anatomy navigation. The

approach described here leverages both deep learning techniques, well-suited to

image analysis, and procedural algorithms, which o�er the advantage of pre-

dictable behaviour and repeatability. The same approach can be adopted to per-

form other semi-autonomous tasks such as ablation, placement of laparoscopic

clips, and debridement.

2.1.2 Materials and Methods

In Figure 2.2, a schematic diagram of the proposed method is represented. The

approach is composed of three main elements: Tissue �aps detection (Fig. 2.2-a),
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Figure 2.2: Tissue retraction pipeline: a U-Net is trained using manually labelled disparity
maps evaluated from stereo images of a cadaveric lobectomy. Subsequently, 2D features such
as grasping point, background and tissue centroids are identi�ed on the tissue mask output by
the network. Finally, the features are projected in the 3D space by means of epipolar geometry,
allowing the DVRK controller to plan and perform the retraction.

extraction of relevant features (Fig. 2.2-b), and gesture planning and execution

(Fig. 2.2-c). The output of each stage corresponds to the input of the following

stage. In this work, a �detect-plan-execute" approach is adopted to allow the

surgeon to maintain control over the execution of the gestures. The system is

designed to plan the retraction and subsequently show the surgeon the grasping

point, the retraction direction and the �nal position of the tool. The surgeon can

acknowledge the execution by means of a pedal or voice control. The retraction

gesture is performed for as long as the surgeon maintains pressure on the pedal.

To avoid loss of visual control on the instrument, the camera �eld of view is

mapped on the workspace, and motion of the tool is limited within the image's

boundaries, whereby the boundaries correspond to the full-size image cropped

by 5%. This restrained the motion to the visible workspace area without limiting

the e�ectiveness of the retraction.

2.1.2.1 Tissue Flap Detection

The initial stage of the retraction process is the detection of the tissue �ap to

be retracted. This feature is provided by a U-Net developed in the Tensor�ow

[179] framework. The network is characterised by 5 encoder and decoder blocks.

Each encoder, composed of 2 convolutional layers with batch normalisation and
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Figure 2.3: Detailed structure architecture of the U-Net model used for tissue segmentation.

a Recti�ed Linear Unit (ReLU) acting as activation function, outputs into a

max pooling layer with pool size 2. The decoder is composed of 3 convolutional

layers with batch normalisation and ReLU activation function and the feature

map is expanded by a factor of 2. The output is a convolutional layer with

sigmoid activation function and 1 neuron. In order to avoid over�tting, dropout

is applied to the 3 encoders and decoders closer to the centre of the network.

Starting from the �rst encoder, which includes 32 units, the following encoders

are characterised by an increasing number of neurons (i.e. double at every step),

to reach a maximum of 1,024 at the centre of the network. Conversely, the

number of units per encoder is decreased by a factor of 2 moving from the centre

to the output layer. In order to enhance the network capabilities to generalize

with respect to di�erent anatomical structures and colours, RGB depth maps

(DM) are adopted as input for the neural network. DMs are images [180] in

which the intensity of every pixel is associated to a de�ned distance from the

camera lens. In this work, DMs are created base on the disparity between left

and right images produced by the DVSS stereo camera. For this reason, they

are robust to di�erent lighting conditions and tissue re�ections. Moreover, DMs

are colour-blind, thus not varying based on the colour of di�erent organs and

tissues. As the goal of the U-Net is to detect the candidate �aps for retraction, a

grayscale mask of the same size of the input DM is chosen as output, where the

value of each pixel, from 0 to 1, describes the likelihood of a tissue �ap appearing

in that pixel. An example is shown in Figure 2.4.
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2.1.2.2 Dataset Collection

In order to create a training dataset for the U-Net, video streams of surgical

procedures (lobectomy) performed on a single Thiel-embalmed cadaver by expe-

rienced surgeons using a DaVinci Xi have been collected. Starting from stereo

image pairs (i.e., left and right cameras), DMs are generated by means of the

stereo_img_proc ROS package, which is based on a modi�ed version of the

Semi-Global Matching algorithm [181], available in OpenCV [182]. Under the

assumption of consecutive images being very similar, as the movement of the

camera is slow and discontinuous, a three-steps approach is adopted to max-

imise the variability between images before manual labelling.

� The 356 minutes long video �le of the procedure is reduced manually to 62

minutes by selecting the most relevant parts of the procedure where one or

more retraction is performed.

� One pair of images is sampled every second, resulting in a set of 3,720 pairs.

� The structural similarity index [183] is evaluated and stereo pairs with a

similarity higher than 70% are discarded, thus leading to a dataset con-

taining 368 pairs.

Cameras, with baseline b = 5 mm and focal length fc = 863 px, are calibrated

by the camera_calibration ROS package which uses the OpenCV calibration

function, based on [184]. Subsequently, DMs are created for every pair of RGB

images using the stereo_img_proc package in which recti�cation is addressed as

detailed in [185]. To validate the calibration process, nine calibrations are eval-

uated and the re-projection error of 0.44± 0.06 px is estimated in the projection

of the checkerboard points on the image plane. Subsequently, a checkerboard is

used to detect four di�erent points showing an error of 7.8± 4.4 mm in the 3D

estimation.

DMs are manually labelled by means of the MATLAB 2017b Ground Truth

Labeler. For a human user, DMs can be di�cult to read and understand; there-

fore, during the labelling process, the user is shown both left and right images

in addition to the DM. In order to de�ne a general description of the target

tissue �ap, during the labelling process the user is asked to highlight the image

region containing foreground tissues, if any are present. In every image, two

separate labels are created: one representing the tissue �ap to be retracted and

one representing the DVSS instruments, visible in the scene. Figure 2.4 shows a

sample of endoscopic image (on the left), a DM (in the centre) and a label (on
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Figure 2.4: Example of tool, tissue and background labelling. The coloured DM is manually
labelled to highlight the areas containing either a tool (gray) or a candidate tissue �ap (white).
Note that when the tool touches any anatomical structure, it disappears from the depth map
and merges with the background.

the right). While the purpose of the �ap label is to generate the training dataset

for the U-Net network, the tool labels are only used to augment the dataset, as

described in the following section. The tools' labels are not included in the U-net

training set.

2.1.2.3 Dataset Augmentation

The presence of tools in laparoscopic images can obstruct the view and detec-

tion of tissue �aps. Moreover, tools introduce a signi�cant disturbance in DMs.

In order to enhance the robustness of the U-Net against disturbances generated

by tools in the DM, such disturbances must be represented su�ciently in the

dataset. An augmentation technique is adopted to improve the network perfor-

mances. Initially, arti�cial DMs are generated by extracting the DMs of tools

from previously labelled images. Since at the time of the development of this

work technologies such as GAN and arti�cial dataset generation where not partic-

ularly established, portions of the DMs corresponding to the tools are overlapped

on images in which no tools were originally present, as shown in Figure 2.5. With

this technique, the dataset initially containing 368 images is increased to 1,080

images. In addition to this technique, random rotation, �ipping and zooming are

also applied to the dataset using the Keras library [186], thus obtaining a �nal

dataset of 2,160 images.

2.1.2.4 Model Training

The resolution required to identify �aps is lower than the original RGB images

produced by the endoscope. Moreover, high resolution images would unneces-

sarily increase the time required to train the U-Net. Consequently, size of input

and target images are reduced from 506x466 (DM valid window) to 64x64, thus

allowing for faster training. The network is trained for 200 epochs with a learn-
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Figure 2.5: Augmentation algorithm pipeline. The tool depth map is extracted from the
scene (on the left) and superimposed on a depth map where no tools are present or visible
(centre). The result is a new image (on the right) which is added to the dataset.

ing rate of 0.001 and a batch size of 30 images. The Dice loss function [187] is

adopted to compute accuracy and the Adam optimiser [188] is used to update

the neurons' weights at every epoch.

The augmented dataset is split into a training set (90%) and a test set (10%).

In order to assess the robustness of the U-Net against data variability, a training

approach based on K-fold [189] cross-validation is adopted. The training process

is repeated K = 10 times using di�erent subsets of the dataset as training and

validation sets.

In Figure 2.6, the performance of the network over the entire training process

is shown for the worst (K=1), average (K=2) and best (K=3) performing model.

The network accuracy, de�ned as the pixel-wise di�erence between the ground

truth and the network prediction, is 80.9%± 1.3% over the K repetitions during

the validation phase. The model performance is computed by means of the

precision P, de�ned as P = TP
TP+FP

where TP and FP are the true and false

positives over the test set respectively. At the end of the training phase, an

experimental value of P = 72.6% ± 1.9% is obtained. The network is fed with

64x64 colour depth maps and it outputs 64x64 grayscale masks, with an inference

time lower than 42 ms (24 FPS), as measured during the experimental validation
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Figure 2.6: Accuracy during testing of the K=10 models considered for K-Fold cross-
validation. To simplify the data visualisation, only the worst (K=1), the average (K=2) and
the best (K=3) cases are shown.

phase. The pixel values in the output masks represent the con�dence (between

0 and 1) used by the network to identify either the background (0) or the tissue

(1). Among the possible detection errors that can a�ect the U-Net, false positives

present the highest risk. In order to reduce the number of false positives, pixels

with a con�dence value below 80% are classi�ed as background by setting their

value to 0 in the tissue mask. The output mask is thus binarised, reducing the

noise in the prediction.

2.1.2.5 Gesture execution and planning

After a candidate �ap of tissue is identi�ed, the retraction must be planned

and subsequently executed. In order to reproduce the gesture, interviews on

the standard best practice were conducted with ten experienced clinicians (4

urologists, 3 colorectal surgeons, 2 thoracic surgeons, 1 Ear, Nose and Throat

(ENT) surgeon). All clinicians had performed more than 100 robotic surgeries.

From the interviews, the following guidelines emerged:

� The tissue is not grasped; rather,it is mobilised by using the rounded side of

the instrument in order to minimise the risk of tissues damage and bleeding.

� The area of interest is the centre of the endoscopic image; therefore, re-

traction aims to clear the central area from obstructing tissue.

50



Algorithm 1 Retraction planning and execution
1: if tissue not detected then return

2: else

3: (CT,CB, tissueBorder) = readFromImage();
4: (sl, inter) = computeLine(CT,CB);
5: GP = intersection(tissueBorder, sl, inter);
6: GP = get3DProjection(GP )
7: (X, Y ) = findIntermediatePoint(GP,CB, 25%)
8: Z = getQuote(CT ) ∗ 1.1
9: moveTo(X, Y, Z)
10: align(Z)
11: OpenGripper()
12: Z = getQuote(CB)
13: moveTo(X, Y, Z)
14: while toolV isible() ∨ commandPressed() do
15: moveAlong(slope)

� Instruments approach the surgical area following the direction of the en-

doscopic view, so to avoid unintentional contact with tissues.

� A suitable point where the instruments approach the tissue is the most

central part of the �ap, and the retraction is usually performed within the

visible area by moving the tissue towards the border of the image.

These guidelines are formalised in the pseudocode reported in Algorithm

1. Based on the labels generated by the U-Net, a set of geometric features is

de�ned (readFromImage()). Subsequently, the retraction trajectory is generated

(computeLine(), �ndIntermedatePoint(). The cartesian coordinates, shown in

Figure 2.7, are assumed to be in the camera frame - X and Y correspond to the

width and height of the image, while the Z coordinate is the depth of the scene

based on the direction of the endoscopic view. On the X-Y plane, the centroid

of the background (CB, red) and the centroid of the tissue �ap (CT, blue) are

computed on the b/w image generated by the U-Net, as shown in Figure 2.8.

The grasping point (GP, green) is computed as the intersection between the line

connecting the centroids and the border of the tissue (instersection()). The 3D

position of the aforementioned points is computed by projecting their 2D values

on the depth map by applying Z = fc·b
d
, where Z is the distance from the camera

frame, d is the disparity value of the point, while fc and b are the camera focal

length and baseline respectively (get3DProjection()).

Initially, the tool is positioned as follows:

� On the X-Y plane, the tool is positioned in an intermediate position be-
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Figure 2.7: Representation of the endoscope frame: the X-Y plane of the camera is parallel to
the image frame, while the Z axis represent the distance from the origin of the camera frame.

tween GP and CB, namely at 25% of the distance in the direction of the

GP.

� On Z, the tool pose is set to a z-coordinate evaluated as 0.9 times the

distance between zCT and the camera frame origin, in such a way that it

avoids contact with the tissue.

� The tool is aligned along Z.

Subsequently, the tool is moved along Z to the depth of the background and,

then, along the direction de�ned by the line connecting CT to CB. The gesture

terminates whether the surgeon releases the pedal or if the tool approaches the

boundaries of the image.

2.1.3 Experimental Validation

2.1.3.1 Experimental Platform

In order to test the approach described above, an experimental platform is used,

consisting of the simpli�ed setup shown in Figure 2.1. A silicone phantom rep-

resenting a colon is extracted from a training platform for colonoscopy (Kyoto

Kagaku M40). A section of the phantom is placed on a background image repre-

senting the surgical scene, simulating the presence of a tissue �ap (i.e. the large

bowel) obstructing the surgical view. The network is fed with DMs. Hence, the

di�erence between the surgical images of the training set and the experimental
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Figure 2.8: Feature extracted from the output mask of the U-Net. The tissue (CT) and
background point (CB) are estimated as centroids of the areas representing the two classes:
tissue �ap (white) and background (black). The intersection between the line connecting CT
to CB and the edges of the tissue de�nes the grasping point (GP).

Figure 2.9: Examples of initial conditions in the three retraction cases: from the left (a),
right (b) and bottom (c). The region of interest (ROI) are highlighted in green.

scene has a minimal impact in terms of tissue detection. The platform is placed

into a plastic box (36× 26.5× 11 cm) to simulate the restricted area available in

the abdominal cavity.

Three di�erent scenarios where the arti�cial bowel segment is placed on the

left (Figure 2.9a), right (Figure 2.9b) and bottom (Figure 2.9c) of the scene are

investigated to validate the performance of the �aps detection system as well as

the trajectory computation. Every test is repeated 5 times. These scene have

the role of solely represent the situation and don't take into account any real

case disturbance such as blood and organ re�ections.

The goal of the retraction is to remove tissues obstructing the scene of interest.

Hence, a quantitative approach to assess the quality of retraction consists of

measuring the area of background image visible after the action is executed. In

order to validate the proposed approach, a green checkerboard is superimposed

on an endoscopic image of the abdominal cavity, as represented in Fig. 9. The
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number of visible green background pixels before and after the retraction is

evaluated by adopting a Hue Saturation Value (HSV) �lter, used as a metric to

assess the quality of the procedure. The test is then repeated for a sixth time

with the background image without the green checkerboard (i.e. Fig. 9a) to

verify that results are comparable. In order to measure the visibility before and

after the retraction, the number of visible pixels after the retraction is compared

to the number of pixels of an optimal image where no tissues occludes the scene.

The same tests are repeated with a background image representing a laparoscopic

view, to demonstrate that the algorithm relying on depth maps is a�ected neither

by the presence of the checkerboard, nor by the background.

Figure 2.10: Di�erent backgrounds used during the tests. The original endoscopic image
of abdominal organs (a) and a version with a superimposed green checkerboard (b), used to
quantify the amount of background visible before and after the retraction.

The hardware setup is composed of a single PSM and a stereo endoscope,

as shown in Figure 2.1. Regarding the computing nodes, a Robot Operating

System (ROS)-based network of two computers is used.

The DVRK low level controller, including joint control loops, is installed on

a Linux PC (Control PC in Fig. 2.11) with a ROS interface. This machine is

equipped with an Intel Core i5-6400 (2.70 GHz) CPU, HD Graphics 530 and

16GB DD4 (2666 MHz). The computation of the disparity map, the tissue

detection U-Net, the feature extraction and the gesture controller are deployed

on independent ROS nodes running on a separate machine (Graphics PC in

Fig. 2.11), to prevent instability of the computer running the real-time DVRK

controller. The calculator is equipped with an Intel Xeon Gold 6140 (2.30 GHz)

CPU, an Nvidia Quadro P1000 GPU, and 128 GB DDR4 2666 MHz RAM. The

Da Vinci endoscope used during the tests, calibrated via the procedure detailed

in Section 2.1.2.2, is di�erent from the Da Vinci Xi endoscope used for data

collection. The U-Net model used in the detection phase was previously trained

on a separate hardware, using the TensorFlow framework.
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The surgeon's attention is usually focused on the centre of the surgical scene.

For this reason, a region of interest (ROI) is de�ned as a rectangle placed at the

image centre with width and height of half the entire frame. The percentage of

visible background is computed for the entire area and for the central ROI.
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Figure 2.11: Experimental setup: DMs are evaluated from endoscopic stereo images and
input to the U-Net which estimates the candidate �aps for retraction. Subsequently, features
are extracted from the network outputs in order to plan the retraction gesture. Through
a DVRK controller installed on a second machine the control is applied to the PSM which
performs retraction on the phantom.

2.1.3.2 Experimental Results

Numerical results are summarised in Figure 2.12. Before the retraction, the visi-

ble area is 47.7%±4.9%, increasing to 83.4%±3.3% after the action takes place.

On the other hand, the right retraction presents slightly lower performance, in-

creasing from 54.2%± 3.4% to 79.6%± 3.3%. This di�erent performance can be

explained considering that the PSM is positioned on the left side of the surgical

scene, thus performing opposite movements in the two di�erent scenarios. This

result suggests that, despite the great dexterity of the DVSS arms, the place-

ment of the PSM with respect to the scene may in�uence the e�ectiveness of the

retraction.

The worst performance is displayed by the bottom retraction, going from

41.1%±3.0% to 55%±2.8%. This performance decrease is due to the positioning
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Figure 2.12: Field of view enhancement on the entire endoscopic scene expressed in percent-
age of visible background before and after retraction, accounting for the entire background and
the ROI. The performance is calculated as the means over 5 repetition of the three di�erent
retraction cases.

of the arm, which, similarly to the right retraction case, is subject to a constrained

motion. Moreover, the orientation of the arm does not allow the instrument shaft

to mobilise the tissue, thus reducing the portion of tool capable of exerting force

to the tool tip. The results show that this approach can lead to signi�cant

and replicable results. Since the proposed method is new, our results are not

comparable with other studies.

The trajectories executed by the DaVinci instrument in the left and right

retractions are reported in Figure 2.13. The solid blue and dashed red lines

represent the experiments with and without the checkerboard used as back-

ground (Figure 2.10b and 2.10a), respectively. The start and end points are

shown in green and cyan respectively. The red and blue trajectories are very

similar, con�rming that background does not signi�cantly a�ect the task execu-

tion. In the trajectories, the di�erent stages of the gesture execution are clearly

visible.Although the retraction is planned and executed in separate steps, the

last sections of all the trajectories (towards the cyan dot) are very similar and

grouped in space, demonstrating that the approach is stable against disturbances

and small variations between repetitions. All reported experiments were termi-

nated when the tool reached the edge of the image. Moreover, the di�erent start

points (green dots) in�uence the initial part of the trajectory, before the contact

between the tool and tissue takes place. It should be noted that the accuracy of
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Figure 2.13: Tool trajectories during the left (a) right (b) and bottom (c) tissue retraction.
The tool starts retracting the phantom tissue from a random position (green). The retraction
ends when the tool reaches the edges of the �eld of view (cyan). Trajectories obtained using
the checkerboard background (Fig. 2.10b) are plotted in blue, while the control experiments
performed with the endoscopic background (Fig. 2.10a) are plotted with a dashed red line.

the trajectory execution is completely dependent on the low-level control of the

DVRK and is therefore beyond the scope of this work.
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2.1.4 Conclusions

A novel method for the semi-autonomous planning and execution of tissue re-

traction is proposed. The combined adoption of deep neural network techniques

for image analysis and procedural algorithms for gesture planning is shown as

a feasible approach for the execution of tissue retraction in robotic MIS. Plan-

ning and execution of the surgical gesture in the proposed approach can lead to

satisfactory and replicable results in a su�ciently controlled environment. The

dependability and accuracy of the robot motions o�ered by this approach can

positively impact e�ciency. Experimental results show an average increase in

the visible area of 25% on the whole image and of 42.9% on the ROI. In order to

conduct the �ap detection stage using a deep learning algorithm, a novel dataset

of labelled endoscopic images is developed and released to the community.

To ease the requirement for extensive manual labelling, future developments

will concern the adoption of weak labelling [190], unsupervised learning [191]

or generative adversarial networks [192] for image segmentation. Improvements

in tissue detection may also include procedure-speci�c detection of organs and

the extension of our dataset to images not containing any candidate tissue for

retraction. With minor modi�cations, this will allow to identify when retractable

tissue is present in the scene. Detection of large bowel in prostatectomy and liver

in cholecystectomy may be bene�cial to adjust the parameters of the retraction.

Advancements to the procedural algorithm for gesture planning and execution

will involve validation on ex-vivo cadaveric models performed by expert surgeons.

In addition, further developments to provide a smoother interaction will involve

real-time update for the gesture trajectory. The system has been designed in such

a way that a clinical DVSS, including the left and right MTMs and two PSMs,

can be controlled independently by the surgeon, while the third PSM can be

connected to the DVRK control system. As a result, the system can be integrated

into a cadaver test for further validation. The system could be combined with

a manual laparoscopic procedure or other robotic platforms, where a robotic

arm could be used to perform the gesture while the surgeon is operating with

conventional instruments.

The main focus of this work is the removal of obstructing tissues in a static

scene, which is a simplifying assumption in a realistic scenario. Consequently,

future developments should address maintaining the visibility of the surgical area

in a dynamic scene and achieving a more accurate depth estimation, possibly by

integrating additional sensors and pre-operative analysis. In particular, the on-

line evaluation of the visible area is a promising development and will provide an
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additional step towards its adoption in realistic scenarios. Although the approach

described here is developed to reduce interaction with the surgeon, the user

interface ergonomics should be considered in the future. A simple yet e�ective

method for displaying the �ap and retraction direction is especially required, in

conjunction with a robust method for receiving the surgeon's acknowledgement.
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Chapter 3

Autonomous Tissue Retraction:

Perception

3.1 A Comparative Study of Spatio-Temporal U-

Nets for Tissue Segmentation in Surgical Robotics

© IEEE. Adapted and reprinted, with permission, from Attanasio, A., Alberti,

C., Scaglioni, B., Marahrens, N., Frangi, A. F., Leonetti, M., Biyani, C. S.,

De Momi E. and Valdastri, P. (2021). A Comparative Study of Spatio-Temporal

U-Nets for Tissue Segmentation in Surgical Robotics. IEEE Transactions on

Medical Robotics and Bionics, 3(1), 53-63 Supplementary material at 10. 1109/

TMRB. 2021. 3054326

Authors: Aleks Attanasio, Chiara Alberti, Bruno Scaglioni, Nils Marahrens,

Alejandro F. Frangi, Matteo Leonetti, Chandra Shekhar Biyani, Elena De Momi

and Pietro Valdastri

Abstract: In surgical robotics, the ability to achieve high levels of autonomy is of-

ten limited by the complexity of the surgical scene. Autonomous interaction with

soft tissues requires machines able to examine and understand the endoscopic

video streams in real-time and identify the features of interest. In this work, we

show the �rst example of spatio-temporal neural networks, based on the U-Net,

aimed at segmenting soft tissues in endoscopic images. The networks, equipped

with Long Short-Term Memory and Attention Gate cells, can extract the corre-

lation between consecutive frames in an endoscopic video stream, thus enhancing

the segmentation's accuracy with respect to the standard U-Net. Initially, three

con�gurations of the spatio-temporal layers are compared to select the best archi-

tecture. Afterwards, the parameters of the network are optimised and �nally the

60

10.1109/TMRB.2021.3054326
10.1109/TMRB.2021.3054326


results are compared with the standard U-Net. An accuracy of 83.77% ± 2.18%

and a precision of 78.42%±7.38% are achieved by implementing both Long Short

Term Memory (LSTM) convolutional layers and Attention Gate blocks. The re-

sults, although originated in the context of surgical tissue retraction, could bene�t

many autonomous tasks such as ablation, suturing and debridement.

3.1.1 Introduction

Compared to open surgery, Robotic Minimally Invasive Surgery (rMIS) provides

substantial bene�ts to the patient, such as reduced blood loss, decreased tissue

trauma and shortened post-operative recovery. Although manual laparoscopy

o�ers similar advantages, the skills required to perform complex procedures with

manually manipulated instruments demand expensive and time-consuming train-

ing for surgeons. The use of such instruments signi�cantly increases the cognitive

load, with potential negative e�ects on the procedure outcomes. For these rea-

sons, rMIS became popular in surgical disciplines with limited anatomical access,

such as urology, gynaecology and thoracic surgery and is gaining momentum in

other practices like Ear-Nose-Throat (ENT) and gastric surgery. Signi�cant por-

tions of rMIS procedures consist of dissecting and mobilising healthy tissues to

reach the diseased area. During this phase, the surgeon heavily relies on the assis-

tant to clear the surgical �eld from obstructing tissues, facilitating the surgeon's

navigation in the anatomy.

The coordination between surgeon and assistant can be di�cult and requires

highly specialised personnel. Immersive consoles, such as the one in the Intuitive

Surgical DaVinci robot, limit the communication between members of the clinical

sta�. In particular scenarios such as newly formed teams or lack of adeguate

training on emergency situations, the limited communication could increase the

risk of adverse events. Some robotic systems, (e.g. the DaVinci robot), allow the

clinician to operate three arms, thus reducing the need for external assistance,

but the switching process could increase the cognitive load on the clinician [163],

particularly for less experienced surgeons.

A semi-autonomous assistance system, capable of operating one arm of the

surgical robot and supporting the clinician during the manipulation of soft tis-

sues would solve many issues and open the way for a shared control paradigm,

in which the clinician can rely on the robot to perform minor repetitive tasks

and focus on the clinical aspects of the procedure. The �rst step towards the

autonomous execution of surgical tasks is the analysis of the scene. The au-

tonomous system must segment the endoscopic scene and isolate the tissue �aps
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Figure 3.1: Tissue �ap segmentation work�ow. The stereo images acquired by the endoscope
are combined to evaluate Depth Maps fed into a neural network to detect the shape and
boundaries of the tissue �ap. The tissue �ap pro�le is used to de�ne three waypoints which
are used to plan the retraction gesture.
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that can be manipulated to plan and execute the gesture. This is a crucial step

in the accomplishment of many tasks, as any lack of accuracy at this stage could

negatively a�ect the execution of the gesture and possibly lead to hazardous

situations. For this reason, it is extremely important to provide an accurate

segmentation system, capable of o�ering the best possible performance.

In previous work [4], we proposed a feasibility study on autonomous tissue

retraction, developed on a DaVinci Research Kit (DVRK). To detect a candidate

�ap of tissue for the retraction, a single endoscopic Depth Map was segmented

with deep-learning techniques, and the system was autonomously executing the

retraction, based on the analysis of the image. The experimental setup is shown

in Figure 3.1: the images captured by the endoscopic stereo-camera were seg-

mented by means of a deep neural network (i.e. the U-Net [166]), the result of

the segmentation was subsequently used to de�ne starting and end point of the

retraction. Although the images processed by the system were part of a video

stream, the segmentation stage was performed on a single image, thus discarding

the obvious relation between consecutive images in the stream. This approach

neglects the information provided by the relation between consecutive images

and therefore is sub-optimal, with negative consequences on the performance of

the segmentation and of the whole task.

In this work, we propose a new approach to the segmentation of soft tissues

in surgical endoscopic video streams. We take advantage of the correlation be-

tween consecutive images and demonstrate that, by considering sequences as an

alternative to single images, the segmentation system outperforms our previous

architecture. The main goal of the work is to provide a method to segment soft

tissues in abdominal surgery. The approach, based on deep-learning, could be ap-

plied to a wide range of surgical tasks and is suitable for real-time tracking of the

tissue motion. The main technical contribution of this work is the development

of three deep-learning network models for video stream segmentation. Starting

from a standard network architecture such as the U-Net, we combine the use of

Long Short-Term Memory (LSTM) [193] and Attention Gate blocks [194, 195]

to develop three network variants. Since literature lacks work performed in the

same experimental setup and domain, the performances of these networks are

compared to our previous work only, the process of parameters optimisation is

discussed in detail and the e�ectiveness of a pre-training stage is evaluated. Ad-

ditionally, a dataset, based on the FlapNet [4] containing real tissue images, is

developed to train and verify the performances of the networks. The dataset,

comprising labels and training images, and the code are publicly available for

the research community at https://github.com/Stormlabuk/dvrk_ULSTM. Al-
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though the techniques described in this work originate in the context of retrac-

tion, robust segmentation of soft tissues could be used in developing many au-

tonomous surgical tasks such as ablation [109], resection [110] and suturing [123].

The paper is organised as follows: in Section 3.1.2 the dataset processing and

organisation (Section 3.1.2.1), the model architecture (3.1.2.2) and the training

setup (Section 3.1.2.3) are desribed. Then, in Section 3.1.3 the performances

of the three architectures are discussed. Additionally, a comparison with a pre-

trained model [196] and our previous work [4] is carried out, to demonstrate

the bene�ts in adopting LSTM layers and Attention Gate blocks in video seg-

mentation. Section 3.1.4 concludes the paper, summarising the contribution and

discussing future developments.

3.1.1.1 Technical Contribution

Despite the great interest on autonomy in surgical robotics, demonstrated by the

amount of literature [1], research on soft tissues manipulation is limited. The

vast majority of the literature focuses on the automation of tasks [5] involving

extraneous elements such as suturing [131], [87] and interventional needle passing

[110] [86]. On the other hand, automation of tasks that involve tissue manipu-

lation are challenging due to the complex geometry and compliance of the soft

tissues. Few examples of autonomous tissue manipulation are available [95, 96],

mostly demonstrated in simpli�ed scenarios with reduced complexity. The main

barrier for development of realistic applications is the complexity of the scene,

di�cult to analyse autonomously. A signi�cant contribution can be provided by

machine learning. Techniques based on neural networks are widely adopted for

medical and surgical image analysis [197]. Deep Learning models have been em-

ployed in medicine for the segmentation from MRI and CT scans [198] of either

organs [143, 144] or compromised tissue such as polyps [199] and tumours [146].

The U-Net [166] is commonly used in segmentation of medical images such as

the segmentation of blood vessels, brain and skin tumours [200, 201, 202]. This

network consists of an encoder-decoder architecture which captures contextual

information, simultaneously providing accurate detection of the image features.

The main drawback of the standard U-Net is the incapacity to correlate frames

in a video sequence, thus not taking advantage of the tissues motion and con-

sequently o�ering limited performances in continuous tissue manipulation. To

overcome this limitation, a simplistic approach could consist in linearly merging

several independent U-Nets. However, literature has shown outstanding results

with the adoption of recurrent neural network architectures such as the Long
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Short-Term Memory (LSTM) cells [193]. LSTM provide memory to the model,

thus allowing a representation of the features' evolution in time. Adding LSTMs

on top of fully convolutional network proved to signi�cantly enhance the accu-

racy of video segmentation [203] of street scenes. In medical imaging, LSTMs

have been used to predict the growth of tumours from 4D patient's data [204]

with a simple encoder/decoder model. LSTM cells have been adopted on top of

a U-Net model for cell segmentation, showing a remarkable ability in discrimi-

nating both the cell's body and its boundaries from the background [196]. An

alternative recurrent structure used for video segmentation is the Gated Recur-

rent Unit (GRU) [205]. These units, signi�cantly simpler than LSTMs, have

been implemented by means of convolutional networks to enhance the precision

in prostate [206] and brain [207] segmentation. Additionally, an approach for

video segmentation adopting 3D convolutional layers to extract the temporal

information from image sequences was recently proposed in [31]. These blocks

are particular structures that support the network's training and inference by

identifying focus regions of the image where relevant information is contained.

These blocks have shown e�ectiveness in medical image segmentation [194] for

pancreas segmentation and classi�cation [208].

3.1.2 Methods

3.1.2.1 Data Setup

The �rst step in the development of a tissue segmentation system is the condi-

tioning of the input data. Since most surgical robots and advanced endoscopic

systems are equipped with stereo-vision, we take advantage of the stereoscopic

endoscope by considering pairs of stereo images as starting point. With a mod-

i�ed version of the Semi-Global Matching algorithm [181] implemented in the

stereo_img_proc ROS package, each pair of stereo images generates a Depth

Map (DM). Depth Maps are single-channel images in which pixel intensity rep-

resent the distance of each pixel from the camera frame. Distances are computed

from the features' disparity in the left and right images. As DMs do not contain

light and colour information, their use guarantees robustness against variations

of lighting conditions and tissue colours. This aspect is particularly important

in this work, as the instruments frequently cross the endoscope �eld of view

during tissue manipulation, therefore, it is crucial to guarantee satisfactory per-

formances in presence of the instruments. Additionally, as the colour information

is represented in images with three channels (RGB), DMs allow to work on single-

channel images, thus speeding up the training phase. The �nal model should be
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Figure 3.2: The dataset is created from images collected with a stereoscopic endoscope. Depth
Maps are evaluated from the stereo pairs and manually labelled. Subsequently, sequences are
created by extracting the previous 4 frames from the whole operation video and batching them
with the corresponding label of the 5th frame.
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able to extract the tissues of candidates tissue for retraction. These tissues are

usually located closer to the camera and will present a peculiar shape in the

depth maps. However, the detection of candidate tissues may presents problems

while the surgeon is operating due to the appearance of tools in the scene which

are in general closer to the camera than the tissues. Given the particular ge-

ometry of these tools it is easy to �lter out their presence and correctly detect

the background tissue. In order to properly de�ne the speci�c appearance of the

tissue candidate for retraction, experienced surgeon where interviewed and the

dataset was labelled following their direction.

In order to train the networks, DMs must be associated with labels high-

lighting the areas of the image covered by tissue �aps and by the surgical tools.

In a previous work [4], our group developed FlapNet: a dataset of 1080 DMs

extracted from images collected during a robotic surgery course, performed with

a DaVinci Xi at the University of Leeds, on Thiel-embalmed cadavers [167] by

experienced surgeons. Starting from the full stereo video stream of a lobectomy,

the most relevant frames of the stream are extracted and labelled: for each DM,

a binary mask is created, classifying each pixel as background (0) or tissue (1).

The labelling process is carried out by the authors following the direction of

experienced urological and colorectal surgeons. Initially, the video sequences

containing tissue �aps are identi�ed and isolated. Subsequently, a set of single

frames is manually selected. Depth Maps are generated for the identi�ed images.

The labelling process is carried out manually on the Depth Map. However, dur-

ing the process, the user can visualize the RGB image to ease the label creation.

Labels with Structural Similarity Index higher than 70% have been discarded to

avoid similarity between the dataset entries, guaranteeing a signi�cant variety of

samples. To represent the tool's appearance in the endoscopic scene, regions of

the DM containing surgical instruments are labelled, extracted from the original

DM and superimposed over scenes where tools are not present. The instruments'

labels are not available in the FlapNet, as the tissue �aps are the only targets

for the segmentation.

The networks developed in this work require a sequence of images. To this

end, the FlapNet dataset has been enriched by adding the four frames preceding

every labelled image already available in the dataset. To account for this, entries

of the original dataset are grouped with the four stereo-frames preceding every

labelled image, thus obtaining a set of sequences, in which the last image of each

set associated to a binary label (Figure 3.2). Since the majority of the samples

(712 images) contained in the FlapNet are arti�cial images (i.e. created by the

superposition of tools on the scene), no preceding frames are available for these
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Figure 3.3: Comparison between di�erent extensions of the U-Net[166]. The Enc-ULSTM
contains LSTM cells in the encoding branch, the Full-ULSTM model incorporates LSTMs in
both branches. Finally, the Att-ULSTM includes Attention Gate blocks in the decoding block.
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entries, reducing the size of the dataset to 368 sequences. The images contained

in the dataset are reduced to a size of 64x64. During preliminary tests this proved

to be a satisfactory compromise between the amount of detail available in the

image and time required to train the model. If required by a speci�c application,

the output of the network can be up-sampled and linearised to the original size

of the input image. Over the whole set of images, the pixels associated with

the background are 70% of the total, leading to a slightly unbalanced dataset.

Therefore, particular attention is required during the training phase to limit

the amount of predicted false negative and false positive. It is well known in the

literature [209] that unbalanced datasets may create issues in the modeling of the

less-represented response, leading to a degradation in performance. The original

dataset contains only DMs where at least one area is classi�ed as tissue. In order

to represent the case in which no foreground tissue is present in the scene, 88

new sequences associated with black mask (only background) are added to the

dataset, raising the number of the total sequences to 456.

Given the limited size of the dataset, data augmentation is required. Standard

augmentation computer vision techniques are adopted to enlarge the dataset, in-

cluding: contrast and brightness adjustment, horizontal and vertical �ipping, im-

age shifting and rotation. These transformations, randomly selected, are equally

applied to every image and label of the sequence to maintain coherence between

the input and the target. Moreover, elastic deformation [210] is applied to en-

hance the variety among the augmented entries by distorting the input image.

This technique consists of convoluting two random displacement �elds ∆x and

∆y with a Gaussian �lter having standard deviation σ, which represents the

elasticity coe�cient. The resulting displacement �elds are scaled by a factor α

that de�nes the deformation intensity. An additional method for video augmen-

tation comprising the inversion of the sequences' frames to obtain new sequences

is herein adopted. This technique allows to create new sequences of images with

a coherent time evolution of the scene, thus doubling the number of entries while

maintain the correlation within subsequent frames. By means of this augmen-

tation, the initial 456 sequences are doubled to 912, additionally every single

sequence is distorted with the aforementioned computer vision techniques up to

3 times, thus increasing the number of entries to 2736 sequences.

3.1.2.2 Neural Networks Development

One of the most common neural network architectures utilised for the segmenta-

tion of medical images is the U-Net [166]. Satisfactory performances are reported
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Table 3.1: Summary of the implemented feature and architectures in the three di�erent
models proposed.

U-Net Enc-ULSTM Full-ULSTM Att-ULSTM
Conv. Layers 4 4 4 4

Encoder LSTM 7 4 4 4

Decoder LSTM 7 7 4 7

Attention Gate 7 7 7 4

in literature regarding image segmentation adopting this class of network even

with limited amount of data and with high resolution images. As show in Fig-

ure 3.4, the network comprises two symmetric encoding and decoding branches,

with parallel connections linking the encoders to the decoders. The standard

U-Net architecture is suitable for segmenting single images in endoscopic scenar-

ios, as demonstrated by our previous work [4], but cannot correlate consecutive

frames (e.g. a video stream) and therefore has limited robustness. For this

reason, we build upon the basic U-Net architecture by adding features that im-

plement memory (i.e. recurrency) and take advantage of the relation between

consecutive frames to enhance performances. We use recurrent structures such as

LSTMs, proposing three network architectures. Additionally, in one of the net-

work variants, the use of attention gates is explored. A summary of the features

implemented is reported in Table 3.1.

All the U-Net variants are developed in the TensorFlow [179] framework.

The basic structure, identical for all the networks, is composed of 4 encoding

and 4 decoding blocks that constitute the contracting and expanding paths,

respectively. The encoding blocks consist of 2 convolutional layers with batch

normalisation and adopt the Recti�er Linear Unit (ReLU) activation function.

Subsequently, a layer with pool size of 2 halves the output size, grouping the

features detected by the previous layers to reduce over-�tting, while limiting the

memory allocation required. In parallel, the decoding blocks are composed of 2

convolutional layers. The output of each block is up-sampled by a factor 2 with

bilinear interpolation, to restore the original image size. The up-sampled outputs

are subsequently combined with the feature maps from the encoding branch by

means of parallel skip connections. The number of kernels, set to 64 for the

encoding block, is doubled for every contraction step in the encoding branch and

halved for every expansion step in the decoding branch, resulting in a symmetric

structure. To save memory in the training phase, 128 kernels are maintained

between the second and third encoder and decoder. The two branches of the

network are connected by a single convolutional layer with 512 kernels. The

output layer comprises a convolutional layer with a sigmoid activation function.
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Starting from the basic structure, we propose three empirically de�ned vari-

ations implementing LSTM and attention gates starting from the structure pro-

posed in [196] for cells segementation:

� Enc-ULSTM: the U-Net model contains convolutional LSTM layers at the

beginning of each encoding block.

� Full-ULSTM: the U-Net model contains convolutional LSTM layers in the

encoding and decoding branch.

� Att-ULSTM: using the Enc-USLTM as base model, attention gate blocks

are added before each decoder block.

In the Enc-ULSTM and Full-ULSTM, convolutional LSTMs are used. The

detailed structure of an LSTM is described in Figure 3.4. LSTMs are composed

of three gates (forget, input and output) which, combined with the previous

cell state ct−1, the previous hidden state ht−1 and the input xt, allow to extract

the correlation between subsequent frames, thus rejecting lower-level responses.

By means of the forgetting gate contained in the LSTM cells, the non-relevant

information at time t is discarded, enhancing the accuracy of the response at time

t+1. In this particular application, LSTM cells support the network in detecting

relevant information such as the position and geometry of a tissue while ignoring

and forgetting the appearance of tools. This contributes to the robustness of the

network against instruments crossing the endoscopic scene.

In the Att-ULSTM, each decoding block includes a �rst layer composed of

attention gates. In these blocks, capitalising on a gating signal g, the lower

activations are discarded, thus allowing the network to autonomously �nd the

relevant areas of the image to focus on, hence resulting in a precise segmentation.

The Attention Gate unit takes xt as input. The gating signal g is applied to every

pixel in order to de�ne the focus regions. Three linear transformation Wg, Wx

and Σ de�ne the set of parameters of the single unit and are evaluated with

channel-wise [1x1x1] convolutions. These blocks contribute to the extraction of

focus regions, thus helping identifying the candidate areas of the image where a

�ap could be found.

3.1.2.3 Models Training

The adoption of convolutional LSTM layers allows the networks to rely on both

temporal and spatial features. For this recurrent architecture, a modi�ed version

of the Back Propagation Through Time algorithm has been adopted, namely the
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Figure 3.4: The structure of the Att-ULSTM model comprises 4 encoders, 4 decoders and the
central block connecting the two branches. Each encoding block is composed of a LSTM cell,
two convolutional and one max pooling layers, while the decoding blocks present an Attention
Gate block, two convolutional layers and a linear upsampling layer. The output layer is a
convolutional layer with sigmoid activation function.

Truncated Back Propagation Through Time [211]. This algorithm, commonly

adopted for recurrent networks, periodically updates the gradient a �xed amount

of times over the batch. In this work, this parameter was set to τ = 5. Hence, the

gradient is weighted on the previous input and hidden state, yielding a simulta-

neous evaluation of the temporal and spatial features in the convolutional layers.

The networks are trained for 10.000 iterations over 650 epochs using the Adam

[188] optimiser, capable of managing sparse gradients and preventing noise, as

well as vanishing of weak gradients.

A step pro�le is scheduled for the value of the learning rate, decreasing from

an initial value of 10−3 to 10−5 to speed-up the initial phase of the training. The

kernel's weights are randomly initialised with the He uniform distribution [212]

which allows to regulate the initial values depending on the preceding layers'

dimension, thus reducing the time required for training. Dropout is applied in

the LSTM layers and in the central block to limit over-�tting. While standard
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dropout is implemented for convolutional layers, the same approach is not suit-

able for long-term memory. As standard dropout applies a mask to the layer to

randomly deactivate the neurons, if applied to LSTM cells it would resets the

forget gate at each iteration, thus ereasing the cell's memory. For this reason,

a recurrent of dropout [213] is applied to LSTM layers to maintain the dropout

mask �xed, preventing the loss of memory of the cells. The dataset is split into

75% training set, 15% validation and 10% test set. The models are trained on a

Linux (Ubuntu 18.04) machine equipped with an Intel Xeon Gold 6140 (2.30GHz)

CPU, an Nvidia Quadro 5000 RTX GPU and 128 GB DDR4 2666MHz RAM.

Two loss functions are compared in this work. The Combo Loss (CL) [214]

is the weighted Dice Loss DL = 2·P ·G
P+G

, where G is the ground truth and P the

sigmoid output, [187] and the Weighted Cross-Entropy (WCEL) de�ned as:

WCEL = p · −log(p̂) · β + (1− p) · −log(1− p̂) (3.1)

where p is the ground truth label, p̂ is the sigmoid activation of the logits

and β is a trade-o� factor to foster either false negatives or false positives. The

CL is �nally de�ned as:

CL = α ·WCEL+ (1− α)DL (3.2)

where α controls the contribution of the single DL and WCEL. Given the un-

balanced dataset and considering that for the surgical application false positives

must be minimised, we de�ned β = 0.8 and α = 0.6 to favour the contribution

of the WCEL over the DL.

The other function considered here is the Tversky Loss (TL) [215], widely

used in medical image segmentation for its ability to train over highly unbalanced

training sets. The TL formula is a generalisation of the DL:

TL =
2 · P ·G

P +G+ γ · P \G+ η ·G \ P
(3.3)

where G is the ground truth, P is the prediction, P \ G = P · (1 − G) is

the relative complement and γ, η are weights to balance false positives or false

negatives.

3.1.3 Results

In this section, the performance of the three networks models is evaluated. Four

metrics, all aimed at evaluating the ratio between True Positive (TP), True
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Figure 3.5: Predictions examples of the Att-ULSTM model at the end of the training phase.
The tissue is placed in di�erent regions of the endoscopic scene to verify the robust inferring
of the model, independently from the tissue position.

Negative (TN) and False Positive (FP), False Negative (FN), are proposed:

� The Precision: P = TP
TP+FP

, represents the capability of the algorithm to

reject false postives.

� The Recall: R = TP
TP+FN

describes the sensitivity of the network in detect-

ing TP and TN. Combined with Precision, it provides a reliable measure

of the network robustness. The Recall is particularly meaningful with un-

balanced datasets.

� The Accuracy: A = TP+TN
TP+TN+FP+FN

, reports correct predictions over the

full testing set.

� The Jaccard Index: J = TP
TP+FP+FN

, estimates the similarity between the

ground truth and the prediction, computing the ratio between intersection

and union of the two. If used in conjunction with the accuracy, accurately

predicts the quality of the segmentation.

The joint analysis of these metrics provide a comprehensive insight of the

networks' performance in terms of rejection to disturbances and management of

false positives/negatives. A K-fold cross-validation with K = 10 is adopted to
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Figure 3.6: Performance comparison among the three proposed models. The metrics consid-
ered for this comparison are Accuracy, Precision, Recall and Jaccard Index. Results show that
the best performance is achieved by the Att-ULSTM model in terms of accuracy, precision and
Jaccard index while the Full-ULSTM show the best performance in terms of Recall.

validate the network's robustness against data variability. Initially, the models

are trained and tested using the CL, discussed in Section 3.1.2.3. As in Figure

3.6, the Att-ULSTM model provides better performances in terms of accuracy,

precision and Jaccard Index, while the best values of Recall is given by the Full-

ULSTM network. The Att-ULSTM structure provides superior identi�cation

of the tissue �aps and a su�cient rejection to FP and FN as shown in Figure

3.5. Further analysis will be carried out only on Att-ULSTM model, comparing

this architecture with the state of the art. To further improve the network

performances, the Att-ULSTM is trained using the Tversky Loss instead of the

Combo Loss. The results are reported in Table 3.2 and compared with the

performance of the same network structure trained with the CL.

Table 3.2: Performance comparison of the model trained with both Tversky and Combo loss
functions

Tversky Loss Combo Loss
Accuracy 82.25% ± 2.80% 83.77% ± 2.18%
Precision 74.89% ± 9.35% 78.42% ± 7.38%
Recall 70.60% ± 6.49% 74.32% ± 3.83%

Jaccard Index 72.53% ± 7.54% 75.83% ± 3.38%

The adoption of the Tversky Loss entails a slight loss of performance in the

Att-ULSTM model with respect to the Combo Loss. For this reason, the combo

Loss is selected. In Figure 3.7 and 3.1 the precision and accuracy during the

training phase are reported for the worst (K = 1), the average (K = 2) and the
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best (K = 3) performing model over the K validations.

Given the restricted data available for this particular application, pre-training

is evaluated, with the aim of limiting the over-�tting during training. The neu-

ral network model proposed in [196] is considered, due to its similarity with the

Enc-ULSTM structure. Despite the similar structure, the pre-trained convolu-

tional layers are characterised by an higher number of �lters, thus increasing the

model complexity. As shown in Table 3.3, the pre-trained model o�ers no perfor-

mances improvement. This is motivated by the higher amount of kernels in the

convolutional layers of the pre-trained model which increases the complexity of

the model. Moreover, the model is pre-trained with microscopic images of cells,

requiring a smaller amount of data augmentation with respect to endoscopic

images, in which the geometrical constraints of the anatomy limit the image

augmentation. Moreover, the amount of images contained in the pre-training

dataset is limited, thus preventing the model to generalise the predictions.

Table 3.3: Performance comparison between the pre-trained model [196] and the model
trained from scratch.

P-ConvULSTM Att-ULSTM
Accuracy 77.59% ± 2.30% 83.77% ± 2.18%
Precision 73.31% ± 5.64% 78.42% ± 7.38%
Recall 58.76% ± 5.59% 74.32% ± 3.83%

Jaccard Index 64.65% ± 4.83% 75.83% ± 3.38%

Finally, to demonstrate the increased performances provided by the approach

in this work regarding the segmentation of single images, the Att-ULSTM model

and the standard U-Net presented in [4] are compared. In Section 3.1.2.1, the

U-Net implemented in our previous work is fed with single images from the

video stream and produces a single prediction for each frame. By comparing

these two networks it is possible to assert if the adoption of LSTM layers and

attention gates is bene�cial for tissue �ap segmentation in video. The networks

performances are evaluated in terms of accuracy and precision, as de�ned in

Section 3.1.2.3.

Table 3.4: Performance comparison between the original FlapNet and the proposed Att-
ULSTM

Accuracy Precision
U-Net [4] 80.90% ± 1.32% 72.63% ± 1.94%
Att-ULSTM 83.77% ± 2.18% 78.42% ± 7.38%

p-value 0.0173 0.0376

With the adoption of spatio-temporal layers and Attention Gates blocks in

the Att-ULSTM, the model outperforms a standard feed-forward U-Net model,
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Figure 3.7: Precision (A) and accuracy (B) reported during training of the K=10 models for
K-fold cross-validation. Only the best (K=3), the average (K=2) and the worst (K=1) are
represent on the plot to simplify its visualisation. As the plateau is reached within the �rst
200 epochs, only 350 epochs are shown.
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as shown in Table 3.4. In particular, the adoption of LSTM provides the abil-

ity to extract temporal information from subsequent frames, thus guaranteeing

a more robust prediction. It is worth to mention that both the Att-ULSTM

and U-Net models are trained over the same DMs, thus no evaluation bias is

introduced in the comparison of the two models. The standard deviation of the

precision is slightly higher for the Att-ULSTM. This is related to a better char-

acterisation of the tools' presence in the augmented entries of the FlapNet, which

are omitted in the training of the Att-ULSTM, as explained in Section 3.1.2.1.

This enhances the robustness of the the U-Net with respect to the presence of

tools, compared to the Att-ULSTM model. However, as shown by the other

metrics, the segmentation of the Att-ULSTM is more reliable. Using the com-

puter mentioned in Section 3.1.2.3, an inference time of ti = 0.5 s was recorded,

with a maximum speed of 2 FPS against the recorded ti < 42 ms recorded for

the standard feed-forward U-Net. This result is acceptable, considering that the

surgeon motion are generally relatively slow to guarantee a safe interaction with

the anatomy.

Given the limited training and testing data for the Att-ULSTM, a non-

parametric test is required to prove the normal distribution of the two groups. A

Wilcoxon rank sum test [216] is carried out for accuracy and precision to assess

statistical signi�cance of the two models' performances. This test assesses the

null hypothesis that the two groups are continuous distribution with equal me-

dians. In Table 3.4, the comparison between the models' accuracy and precision

are shown. The p-value indicates a low probability for the two distribution to

have equal median, thus there is a statistically signi�cant improvement in the

prediction performances using the Att-ULSTM model.

3.1.4 Conclusion

A novel approach to the segmentation of tissue in endoscopic video streams is

herein discussed. Three neural network architectures for tissue segmentation in

endoscopic images are proposed. The tissue detection and segmentation are con-

sidered the initial step towards intelligent interaction with the anatomy. On top

of this, an estimation of the physical interaction is needed to accomplish a par-

ticular task. This evaluation however varies depending on the speci�c objective

task to reproduce. The adoption of attention gates and recurrent structures such

as LSTMs enhance the accuracy of the tissue detection, compared to a standard

feed-forward network. The performances of the three variants are compared and

the Att-ULSTM is selected for further investigation. For this network, di�erent
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cost functions are compared, and the use of pre-training is evaluated. Experi-

mental results show enhanced performances with respect to our previous work

for what concerns the network's precision (78.42 % ± 7.38 %) and prediction

stability. The adoption of LSTM and attention gates to take advantage of the

time-related features, embedded in the images sequence, can improve the per-

formances and robustness of the detection in the context of endoscopic images

for surgical robotics. To achieve this result, the FlapNet dataset is enhanced to

meet the requirements of the recurrent network's structure, thus resulting in a

new dataset, now available to the research community.

The approach discussed in this work, demonstrating an enhanced ability to

segment candidate soft tissues for retraction in the foreground of the scene, can

signi�cantly improve the implementation of autonomous tissue retraction base on

the elaboration of endoscopic images only, meaning that no additional hardware

is required in the da Vinci platform. Examples range from laparoscopic proce-

dures, to non-autonomous robotic and semi-autonomous robot-assisted surgical

tasks such as ablation, retraction and suturing. Localising the target tissue �ap

is indeed a key step towards surgical gesture automation and, given the variety

and complexity of the human anatomy, this task is extremely challenging.

The major limitation of this work is the limited availability of labelled medical

images. As pre-training over di�erent dataset did not show promising results [4],

weak labelling and unsupervised learning could be bene�cial in dealing with such

limited amount of data. As discussed above, the pre-training does not provide

improved results, due to the unique characteristics of the surgical images. In

conclusion, the most promising approach to increase the networks performances

would consist of an increased number of entries in the dataset. However, labelling

endoscopic images is time-consuming and requires specialised medical knowledge,

thus hindering the process. The adoption of generative adversarial networks

(GANs) could be bene�cial to improve the network's ability to reject the surgical

instrument, thus guaranteeing a correct and precise segmentation of the tissue

�aps. Future work could include the adoption of endoscopic RGB image along

with DMs to enhance the performance of the proposed model.
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Chapter 4

Trajectory Planning

As anticipated in the Contribution Paragraph a signi�cant limitation in using

the dVRK platform is the impossibility to automatically register the camera held

by the ECM to the tools equipped in the PSMs. This is due to fact that the

SUJs information is not retrievable from the dVRK controllers and, being the

SUJs the connection to the robot base, severs the kinematic chain of all the arms

making impossible to use the inverse kinematic straight-forwardly. In order to

recover the missing SUJs information an external frame is introduced to relate

the camera to the tool in the scene. By means of a visual marker it is in fact

possible to establish a transform between the camera and the SUJs thus allowing

the planning and execution of trajectories in the camera frame. This is a crucial

requirement for autonomous surgical task which are based on image processing

of the endoscopic camera feed.

4.1 An Open Source Motion Planning Framework

for Autonomous Minimally Invasive Surgical

Robots

© IEEE. Adapted and reprinted, with permission, from Attanasio, A., Marahrens,

N., Scaglioni, B., & Valdastri, P. (2021, August). An Open Source Motion

Planning Framework for Autonomous Minimally Invasive Surgical Robots. In

2021 IEEE International Conference on Autonomous Systems (ICAS) (pp. 1-

5). IEEE.

Authors: Aleks Attanasio, Nils Marahrens, Bruno Scaglioni and Pietro Valdastri

Abstract: Planning and execution of autonomous tasks in minimally invasive sur-
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gical robotics are signi�cantly more complex with respect to generic manipulators.

Narrow abdominal cavities and limited entry points restrain the use of external

vision systems and specialized kinematics prevent the straightforward use of stan-

dard planning algorithms. In this work, we present a novel implementation of

a motion planning framework for minimally invasive surgical robots, composed

of two subsystems: An arm-camera registration method only requiring the endo-

scopic camera and a graspable device, compatible with a 12mm trocar port, and a

specialized trajectory planning algorithm, designed to generate smooth, non piece-

wise trajectories. The approach is tested on a DaVinci Research Kit obtaining

an accuracy of 2.71± 0.89 cm in the arm-camera registration and of 1.30± 0.39

cm during trajectory execution. The code is organised into STORM Motion Li-

brary (STOR-MoLib), an open source library, publicly available for the research

community.

4.1.1 Introduction

Trajectory planning lies at the heart of most robotic manipulation tasks and is

crucial to enable high levels of autonomy [217]. While tasks usually de�ne a set of

di�erent poses to be achieved, how the robot should move in between these poses

is often left to motion planning algorithms. Common motion planners integrate

a plethora of robot models, but surgical minimally invasive surgical systems are

not well represented. This may attributed to their complex kinematic structures,

often including parallel chains that are not supported by most inverse kinematics

solvers and can be numerically challenging. Moreover, the software frameworks

used to control surgical robots such as the Collaborative Robot Toolkit (CRTK)

[218] and the DaVinci Research Kit (dVRK) [3] only provide the ability to reach

a �nal pose with zero velocity, thus not supporting the execution of complex

trajectories.

In the particular case of the dVRK, one of the most popular surgical robotics

research platform [219], a point to point trajectory in the joint space is generated

from the current end e�ector pose to the goal by means of the Re�exxes RML II

[220] library. The resulting trajectory might be optimized in joint space but is

generally neither smooth nor optimal in Cartesian space. The available literature

on motion planning for surgical robots is scarce. In [221] the problem is addressed

for the dVRK platform using the MoveIt![222] motion platform. However, the

extended abstract is silent on how the problem of parallel kinematics, not sup-

ported in MoveIt!, is solved, nor is their code publicly available to the community.

Recent works have focused on employing machine learning techniques, such as
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Figure 4.1: Transformations of the di�erent frames considered for the registration of the arm
to the camera frame.

Pyramid Stereo Matching Network (PSMNet) [223] and reinforcement learning

[224]. While these methods show impressive results on speci�c tasks, they are

not generally applicable and easily adaptable. Moreover, they are highly de-

pendent on large amounts of labelled data, obtained via computationally and

time-intensive simulations. Another common problem limiting the development

of autonomous tasks in MIS robotics platforms is the co-registration between the

camera and the robotic arms, since the two subsystems are usually connected to

di�erent bases. This issue is commonly solved for generic manipulators using ex-

ternal optical trackers [225]. This approach has been adopted for surgical robots

[223, 226] by attaching markers on the tip of the surgical instruments. Although

accurate, this method requires the use of an external camera, which is a major

limitation in a small and delicate environment such as the abdominal cavity, and

is prone to inaccuracies due to the presence blood or debris in the surgical scene.

In this work, we: (1) Present a software framework aimed at solving the problem

of co-registration for robotic platforms speci�c to MIS, focused on the ease of use

and the potential transferability of the application to a clinical environment. (2)

Present an approach to the planning and execution of complex trajectories on

surgical robots, integrated with ROS and easily adaptable to any platform. (3)

Provide public and documented code in a web repository to bene�t the surgical

robotics research community.
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4.1.2 Co-registration algorithm

This section describes the approach adopted to determine the transformation

between the endoscopic camera and the surgical instrument held by the robot.

This step is crucial to plan and execute autonomous tasks based on visual servo-

ing in scenarios where the endoscope and the robotic arm do not share the same

reference frame. This is the case with robots such as the dVRK, the Raven [227]

and modular robots like CMR Versyus or Medtronic's Hugo RAS. The goal is to

compute the transformation from the camera frame to the origin of the robotic

arm. This can be solved by evaluating a sequence of transformations that start

from the pose of the robot end-e�ector with respect to the camera. In robots

equipped with cameras, this can be achieved by adopting a computer vision algo-

rithm to detect one or more visual markers mounted on the end-e�ector. To this

end, we adopt the ArUco markers [228] and mount them on a custom 3D printed

pick-up device, designed to be held by standard surgical instruments and be in-

serted through standard 12mm trocar ports. These markers have been adopted

for their simple implementation, however, other forms of data matrix markers

or passive lighting markers can be adopted to reject the disturbance of blood in

the scene. Once the pick-up device with ArUco marker is grasped by the robotic

instrument (Fenestrated Bipolar Forceps), exposed to the camera and recognized

by the vision algorithm, the transformation T p0
C between the PSM's base frame

Tp0 and the endoscope's base frame TC is calculated as follows:

T p0
C = TM

C T pee
M T p0

pee (4.1)

where TM
C is the transformation between camera and a visual marker held by the

end-e�ector, T pee
M is the transformation between the marker and the end-e�ector

reference frame, and �nally T p0
pee is the pose of the end-e�ector with respect to

the robot base frame. The transformations are shown in Figure 4.1 on a DaVinci

Patient Side Manipulator (PSM), in which the base frame is placed in the remote

centre of motion, on the trocar. Assuming that T p0
pee can be extracted from the

robot kinematics and that T pee
M is known by design of the marker holder, TM

C can

be estimated by using the endoscope in conjunction with software packages like

tuw_marker_detection [229] available on GitHub. Finally, the transformation

T pee
M is applied to align the marker frame with the tool tip frame of the robot.

To increase robustness of the results, we combine both detected transformations

from the left and right endoscopic camera and average the results over 100 frames,

each 100ms apart.
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RCM RCM

Original PSM Model Simplified PSM Model

Figure 4.2: Original PSM model and the simpli�ed model used in this work. In our simpli�ed
model, the base of the robot is omitted, thus removing the parallel kinematic chain and allowing
the usage of the MoveIt! package without any loss of generality in the trajectory planning.

4.1.3 Trajectory planning

The co-registration algorithm enables to evaluate and control the position of the

robot end-e�ector in the camera workspace. This feature facilitates the de�nition

of points of interest based on computer vision or deep-learning algorithms and

to relate them to the position of the end-e�ector. In many autonomous tasks, it

is required to generate a trajectory based on the points identi�ed in this step,

and to execute it smoothly. One goal of this paper is to provide a framework

for planning and smoothing of the trajectory dedicated of surgical robotic tools.

For this purpose, the MoveIt! [230] framework has been used, due to the wide

adoption in the research community. MoveIt! is based on the widely used Open

Motion Planning Library (OMPL) [231] that includes state-of-the-art algorithms

for trajectory planning, manipulation and navigation and is integrated into ROS

[232]. In order to plan a trajectory for a speci�c robot, and therefore produce

a feasible trajectory in joint and Cartesian spaces, MoveIt! gathers information

about the robot layout from two �les: the Uni�ed Robot Description Format

�le (URDF), used in the ROS ecosystem to de�ne robots kinematics, and the

Semantic Robot Description Format �le (SRDF), which includes additional infor-

mation to the URDF such as default robot con�guration and collision checking.

The trajectory planning is carried out in four steps: (1) The robot URDF and

SRDF are loaded onto Moveit!. (2) The robot starting position, way-points and

goal of the trajectory are de�ned. (3) The MoveIt! function computeCartesian-

Path() is used to evaluate a sequence of points on straight lines from the starting
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position, through the way-points, to the �nal goal. (4) The Stochastic Trajectory

Optimization for Motion Planning (STOMP) [233] is used to plan trajectory in

the joint space using the previously generated points as seeds and produce the

�nal trajectory, represented as a set of points in the 3D workspace. STOMP

is adopted for its capability of avoiding local minima while allowing a faster

convergence to the solution if compared to other planners such as Covariant

Hamiltonian Optimization for Motion Planning (CHOMP) [234].

A C++ library, STORM Motion Library (STOR-MoLib) is developed to

provide the code to the community. The library requires minimal user input

and can be utilized by means of the following methods: compileMotionPlanRe-

quest(waypoints_constraint, trajectory_seed) and transformTrajectory(trajectory,

base_frame). The �rst populates the MoveIt! motion request constraining the

passage through the desired way-points. The trajectory seeds are the output of

the computeCartesianPath function included in MoveIt!. The second function

transforms the trajectory points from the robot frame to the user-de�ned base

frame, in our case the camera frame. The MoveIt! motion request is then solved

by the STOMP Planner which returns a smoothed trajectory. In summary, these

functions allow a straight forward implementation of trajectory planning based

on the previous co-registration of the ECM and PSMs exploiting the capabilities

of the MoveIt! framework.

4.1.4 Experimental validation

The validation of our approach is composed of two steps: the evaluation of the

accuracy for the camera-arm registration and the assessment of the trajectories

planning and execution. Although the application of the framework could be

generalized to any robot, in this work we focus on the dVRK due to its ubiquity

and the availability of an open source simulation software, thus circumventing the

need for a physical platform, to replicate the results described here. In particular,

we adopt a subset of the full DaVinci system composed of one PSM and one

stereoscopic endoscope mounted on an independent base. A Linux (Ubuntu

18.04) machine equipped with an Intel Xeon Gold 6140 (2.30GHz) CPU, an

Nvidia Quadro 5000 RTX GPU and 128 GB DDR4 2666MHz RAM was adopted

to carry out the planning. While the use of a speci�c robot is transparent to

the co-registration algorithm, the trajectory planning depends on the features

of each robotic arm through the URDF and SRDF �les. Initially, the PSM

description �les provided with the dVRK library [3] are used. However, the

PSM adopts a parallel mechanism to ensure a �xed remote centre of motion.
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Figure 4.3: 3D-printed rigid body used for the validation of the marker-based co-registration
(a). 3D-printed rigid body used to validate the precision during the trajectory execution (b).
A marker has been attached to the body to allow the registration of the points via the camera.

This type of kinematics is not supported in MoveIt!. In order to overcome this

issue, a modi�ed version of the PSM excluding the parallel link is developed

(Figure 4.2). Despite the di�erent physical layout, the kinematics of the robot

is correctly reproduced by maintaining the Remote Centre of Mass �xed and

eliminating the parallel link and the preceding links in the kinematic chain.

To quantify the registration error, a 3D-printed calibration body attachable to

the endoscope's tip was designed. The calibration body contains nine landmark

points (p1C - p9C) with known distance with respect to the camera's base frame TC

(Figure 4.3a). By touching the landmarks with the tip of the surgical instrument,

we acquired the location of these positions in the PSM's base frame Tp0.By

performing several registrations (n = 5) and averaging the position of each of

the nine points over all runs we obtain p1p0 - p9p0. With a con�dence interval of

0.0734 mm (c = 0.95), we assume the robot's positional accuracy to be fairly high

and consistent compared to the camera. In order to assess the accuracy of the co-

registration approach on our surgical setup, �ve registrations are performed using

the ArUco marker with di�ering tool positions and thus di�erent placements of

the marker with respect to the camera. With the acquired transformations T p0
C

from the visual marker registrations, we transform the points p1C - p9C on the

calibration body from the camera's base frame TC to the PSM's base frame

Tp0 and calculate the euclidean distance to the respective points obtained via

landmark registration. Our results indicate a mean positional error of 2.71±0.89

cm (c = 0.95) over all registered points and registration runs compared to the
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position obtained via the camera calibration body. We believe the main source

of inaccuracy to be the camera distortion. Despite a thorough calibration, the

�sh-eye lenses of the endoscope produce a signi�cant distortion that negatively

a�ects the accuracy of the marker detection, particular when the marker is not

place directly at the center of the image. Additionally, the small distance between

the two cameras limits the usage of further information from the 3D scene via

stereo matching or similar techniques.

In order to evaluate the accuracy of the trajectory planning and execution,

a 3D-printed reference body with four vertical pegs was designed. The tip of

each peg represents either a way-point or the goal of the trajectory (Figure

4.3b). The reference body also integrates an ArUco marker, added to obtain

a transformation from its local reference frame to the camera frame TRB
C . The

coordinates of each way-point are transformed into the PSM's base frame Tp0 by

combining the two previously obtained transformations (TRB
p0 = TC

p0T
RB
C ). The

planner evaluates a trajectory starting from the current position of the instru-

ment, passing along the way-points and ending in the goal position. Two di�erent

trajectory scenarios have been considered with three and four way-points, respec-

tively. Each trajectory has been repeated 8 times and, for each repetition, the

surgical instrument was initially manually placed in a varying position around

the starting point. Although the planner can consider variable instrument ori-

entations, we maintained a constant, randomly selected, orientation during the

whole trajectory.

The planner's output consists of a trajectory de�ned as an array of joint val-

ues, one set for every trajectory point. These are converted to the Cartesian

space by means of forward kinematics and eventually organised in a vector of

poses sent to the dVRK software. The dVRK only allows a point to point tra-

jectory, constraining the initial and goal velocity to zero. To perform a smooth

trajectory, we published the new poses at a rate of 20Hz, sending a new command

before the robot had reached the previous goal and thus avoiding the condition

of zero velocity. Before executing each trajectory, the position of each way-point

with respect to the robot's base frame Tp0 was collected by manually positioning

the surgical instrument (large needle driver) onto a landmark on each peg's tip

and recording its position. Figure 4.4 shows the 8 trajectories for both the three

and four point case. The start and end point of the trajectory are represented in

blue and green, respectively. The way-points are represented in red. It must be

pointed out that the sequence of the way-points is di�erent for the two trajecto-

ries. The sequence chosen in the four point case is aimed at demonstrating the

ability of the planner to �nd a solution in the even in the case of more involved
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trajectories, containing a indirect path with back and forth motion.

Figure 4.4: Repetitions for the trajectory planning and execution for three point (a) and four
point (b) case. The initial point is shown in blue, the goal point in green and the way-points
in red. The red dashed lines depict the seeds used by the STOMP planner.

The evaluation of the trajectories is carried out by considering the minimum

distance between the path executed by the robot and each way-point measured

before the trajectory execution via the robots tool tip. With this reference, the

average error amounts to 1.09 ± 0.59 cm (c = 0.95) for the three point and
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1.30± 0.39 cm (c = 0.95) in the four point case.

4.1.5 Conclusions

In this paper, we presented a comprehensive library to manage the trajectory

planning of surgical robots with the speci�c aim of developing a method that

does not require dedicated hardware such as optical trackers or external cam-

eras, thus applicable in the context of minimally invasive surgery. Initially, we

presented a method for arm-to-camera registration based on the ArUco mark-

ers. We showed the method to be a feasible approach in robotic systems where

the arms and the camera do not share the same kinematic base. Subsequently,

we demonstrated an approach for planning and executing trajectories based on

Moveit! and integrated with ROS. For our evaluation, we applied our framework

and approach to the dVRK platform. The registration makes it possible to plan

trajectories with respect to the camera frame, thus supporting the execution of

vision-based autonomous surgical gestures. Moreover, the registration algorithm

can be useful in setups, such as the dVRK, in which teleoperation is challenging

due to the lack of a simple built-in co-registration protocol. Although the dVRK

Setup Joints controller will be available in the future, not all the research groups

have access to the full platform. We believe that this library could signi�cantly

bene�t the research community. STOR-MoLib code is open source and publicly

available 1.

Further development of this library, currently under investigation, include

the implementation of a collision avoidance algorithm, useful in collaboration

scenarios in which a human operator is controlling one arm, while the other arm

is autonomously operated. Other improvements, particularly regarding the reg-

istration accuracy, might be obtained by further investigations on the distortion

of the cameras' lenses which majorly contributes to the registration error.

1https://github.com/Stormlabuk/dvrk_stormolib
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Chapter 5

Conclusions

The results presented in this work de�ne a new paradigm of autonomy in surgical

robotics and validate the feasibility of an approach for autonomous tissue retrac-

tion. The formulation of the hypothesis of an autonomous surgical gesture is

driven by a thorough survey of the state-of-the-art. Starting from an established

de�nition of autonomy for medical robotics [1], our analysis consisted in extend-

ing this paradigm and deepening its aspects for what concerns surgical robotics.

Focusing on this technology branch revealed both strong and weak points of the

research reported to date, further helping to de�ne the scope of this thesis. Ad-

ditionally, gathering knowledge from di�erent case studies allowed implementing

the most trending approaches and moving towards their adoption for the work

conducted in this thesis.

Inspired by these trending technologies, this thesis is founded on data-based

approaches to guarantee adaptability and transferability to di�erent application

domains. In order to train di�erent machine learning models for tissue segmen-

tation, data were collected under the guidance of experienced surgeons. With

their support it was possible to both gather data from a realistic scenario and

properly categorise and label the activity carried out during collection. The

images gathered during this initial phase and collected in the FlapNet dataset

were afterwards used to train neural network models in order to detect tissue

�aps candidates for retraction in the surgical scene. The FlapNet dataset, which

is publicly available at STORM Lab GitHub repositories for the research com-

munity, constitutes the foundation and �rst contribution of this thesis. The

dataset, collected and labelled alongside with experienced surgeon, is fundamen-

tal to tackle the main technical issues related to the perception, planning and

execution described in the introduction of this work. In order to understand and

detect the surgical workspace it is fundamental to reconstruct its 3D features.
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To this end, the dVRK stereo cameras proved to be an e�ective instrument to

extract depth maps. Although the high distortion of the endoscopic lenses pre-

vents an accurate 3D reconstruction of the workspace, the fusion of cameras'

feeds and neural network models trained with FlapNet proved to be an e�cient

way to de�ne 3D features in the workspace allowing a subsequent interaction

with the anatomy.

The 3D features detected by the model trained on our collected dataset are

fundamental to plan a safe and precise interaction with anatomical structures.

Since the dVRK kinematic chain results severed without the Set Up Joint con-

trollers, planning motion and interaction within the camera space proves to be

impossible. This thesis presented an image-based method using visual mark-

ers to retrieve the missing joint information and restore the otherwise severed

kinematic chain, thus allowing the planning and execution of controlled motions

within the camera space. Moreover, as the dVRK does not provide any motion

planner for complex trajectories, an additional contribution of this work con-

sisted in the development of a user-friendly C++ library to plan and execute a

trajectory with the PSM arms in an arbitrarily chosen reference frame, in our

case the camera one. The library is based on the well-known MoveIt! environ-

ment and presents functions with the purpose of minimising the user input while

planning a trajectory on the dVRK, simplifying the task. The code, as well as

examples on how to use it, is publicly available on the STORM Lab repository

knowing that this will support research groups in de�ning future approaches and

methods to tackle autonomous tasks.

The �nal contribution of in this thesis was the de�nition of the tissue retrac-

tion gesture, achieved by merging both the previous elements with the knowledge

gathered from experienced clinicians. In fact, by interviewing them about the

details on when and how a tissue �ap should be retracted and moved away from

the scene, it was possible to characterise and replicate a pattern in their mo-

tions, de�ning a gesture model that can be applied to automate the task. This

knowledge, along with a perception model capable of extracting tissue �aps bor-

der from the camera view and a motion planner able to generate smooth and

controlled robotic arm trajectories, allowed the replication of the surgeon's or an

assistant's activity during a procedure. The e�ectiveness and robustness of this

approach has been tested and validated in a controlled environment proving the

feasibility of this approach.

Although the presented method proved to be e�ective under speci�c cir-

cumstances, major limitations have been recorded. The �rst issue faced during

development was given by the data-driven aspect of this work. In fact, however
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advantageous for dynamic environments such as the human anatomy, machine

learning models such as neural networks demand a high quantity of data to be

properly trained. In the surgical domain these data are either hard to collect or

di�cult to label, requiring the expertise of competent clinicians. This constitutes

a noticeable obstacle in training the models and requires advanced techniques

and powerful computers to compensate for. Future work may include the enrich-

ment of the FlapNet dataset as well as other available datasets for training in the

surgical domain. This can only be achieved with the collaboration between engi-

neers and surgeons moving towards a more data-driven technology environment.

An alternative approach could also consist in the generation of image through

GAN or using 3D simulated environment in Unity. This would signi�cantly help

the data gathering process, removing the labelling procedure bottleneck. Addi-

tionally, the generation of dataset base on speci�c anatomical structure could

guarantee extended generality of the herein proposed method. Additionally to a

more extended dataset, another approach worth of testing regards the �ap de-

tection part. Recently, vision transformers have been used in computer vision.

These models have been increasingly adopted in the last 2 to 3 years and showed

a remarkable capability in generalizing, thus allowing a more convenient and

accurate classi�cation. The adoption of models such has XCiT could provide

enhanced performance during the �ap detection process, thus allowing a more

precise gesture. Another impediment reported during the development of this

thesis was the remarkably high distortion of the dVRK stereo endoscopic lenses.

These were designed to guarantee a wide �eld of view to the surgeon who can

easily spot salient aspects of the anatomy during an intervention. From a robotic

perspective, this distortion is hard to map on a camera and even a small error

in the estimation of the model causes a noticeable error during 3D scene recon-

struction. This generates errors in the order of magnitude (1 cm to 2 cm) which

can be easily ignored in everyday applications, but that are not neglectable in a

surgical environment. Usually problems related to the camera distortion is tack-

led using other cameras from the one provided with the dVRK. However, further

studies must include possible solution to either reduce the camera distortion or

to increase the accuracy of the camera model estimation. This can be done either

with conventional computer vision algorithm or with more recent data based ap-

proaches to extract the intrinsic camera matrix. An alternative approach, could

be to use di�erent cameras which would present a reduced distortion guaran-

teeing a more robust 3D reconstruction. This has not been done in this work

since one of the objective of this thesis was to demonstrate the feasibility of

autonomous task based on visual feedback without additional equipment other
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than the one provided with the Da Vinci platform. Concluding, an additional

feature necessary for a compliant implementation of autonomous tissue retrac-

tion in a real OR consists in the obstacle avoidance for the PSM motion planner.

Since, ideally, this autonomous system is supposed to work along with a human

operator, being able to prevent collisions with the human driven tools becomes

mandatory to avoid continuous work�ow disruptions. This can be achieved ex-

panding the work of the already available StorMoLib library with the obstacle

avoidance approaches already implemented in the MoveIt! framework. This part

of work has not been addressed in the thesis due to lack of time, however this

can signi�cantly enhance the performance of autonomous tissue retraction.
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