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Abstract

This thesis presents experimental investigations into the underlying mechanisms limiting the

spin state longevity of III-V InGaAs/GaAs self-assembled quantum dots (QDs), a key step

towards realising QDs as a viable quantum computing resource. We investigate the coupled

electron and nuclear spin system within the QD using a range of optical and nuclear mag-

netic resonance techniques to provide an in-depth understanding of the sources causing spin

relaxation and decoherence.

Several InGaAs charge-tuneable structures were investigated with varying Fermi reservoir

tunnel coupling. We present a comprehensive study of the spin lifetimes, T1, for the electron

and nuclear spin systems for a range of magnetic fields, charge states and tunnel couplings.

We combine previously observed mechanisms affecting T1 to estimate the fundamental lim-

its of the spin lifetimes, in addition to demonstrating measurement of the longest observed

InGaAs QD electron spin lifetime of ≈ 1 s.

Existing work suggested nuclear spin ensemble coherence time T2,N is strongly affected by

the presence of an electron, limiting the prospects of QD qubits. We reveal a T2,N on the

scale of milliseconds in a charged QD, in addition to developing a spectral diffusion model to

explain nuclear spin decoherence in the presence of a fluctuating electron spin. We show that

the nuclear spin bath can be used as an electron spin state sensor with a readout fidelity of

F > 99.8%, improving on state of the art spin sensing techniques.

In addition to the studies on QDs, we present results from the testing of recently developed

keyhole resonators to be used for fast coherent control of electron spins using magnetic

resonance techniques. We demonstrate the ability of keyhole resonator to coherently control

electron spins in diamond with high power microwave pulses and pulse lengths on the scale

of tens of nanoseconds.
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1

Introduction

Quantum mechanics has been at the heart of developing our fundamental understanding of

the universe since its inception a century ago, in addition to being the driving force behind

many technological innovations. Its counter-intuitive properties have challenged some of

the greatest scientists of the 20th century, and further deepened our understanding of the

world around us. Despite complex theoretical and computational techniques available to

us, fundamental quantum mechanical systems are both challenging and resource-intensive to

simulate.

Several separate publications by Feynmann, Deutsch and Benioff in the early 1980’s came

to the conclusion that simulating quantum mechanical systems would ultimately require a

computer that relied on quantum mechanical properties instead of classical techniques [1–5].

Phenomena such as entanglement and superposition are extremely computationally intense

to simulate in a typical computer using binary states (0 or 1). A system built to exploit

quantum mechanics would require a fundamental change to the states used. The new states

are known as qubits - states that themselves exhibit the quantum mechanical phenomena.

The qubits are not pure binary, 0 or 1, instead possessing a wavefunction that can be an

arbitrary superposition of the two-level system basis states 0 and 1. The two-level system

wavefunction can be more accurately described by a simple equation,

1



CHAPTER 1. Introduction 2

|Ψ⟩ = α|0⟩ + β|1⟩ (1.1)

where |Ψ⟩ is the wavefunction of the qubit state, α and β are probability amplitudes describ-

ing the likelihood of the system collapsing to that state and |0⟩, |1⟩ represent the two basis

states of the qubit. Here we can see that the state can be in either the |0⟩ or |1⟩ states, or

occupy a superposition state defined by the probability amplitudes. Multiple qubit states

can be entangled, allowing shared information transfer across a quantum network which can

form the basis of a quantum computer.

Quantum algorithms were developed proving the significant impact quantum computing

could have on non-trivial computational problems, such as the Deustch-Jozsa’s algorithm

[6], Grover’s list search [7], and Shor’s prime factorization [8]. They all theoretically demon-

strated faster computation times when compared to classical computers solving the problem,

a milestone that came to be referred to as quantum supremacy. Physical realisation of the

quantum computer involves overcoming a plethora of physics and engineering challenges,

with quantum supremacy only being demonstrated for the first time as recently as 2019 by

Google’s 53-qubit superconducting quantum processor called Sycamore [9].

The criteria for implementation of quantum computing were laid out in a paper by David

P. DiVincenzo [10], describing the properties required for creation of a useful qubit system.

The criteria are as follows:

� A scalable physical system. The physical system possessing the potential qubits must

be able to be scaled up, allowing for N qubits to be used during computation. In

addition to the physical system, the supporting hardware such as lasers, cryostats and

other control hardware must also be scalable.

� Qubit state initialisation. All computational operations require the states involved

to start in a known configuration (e.g Initial state: |0⟩)

� Ability to manipulate qubit state through application of quantum gates. The state
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must be able to be changed arbitrarily by an externally controlled source (e.g Change

state: |0⟩ → |1⟩).

� Reliable readout of the qubit state. It must be possible to read the information stored

within the system at a given time.

� Long-lasting states. The qubit state will irretrievably lose information over time due

to interactions with the environment, and as such, it is critical to ensure this time is

much longer than the time over which computations are performed.

In addition to the requirements highlighted above, we must also be able to transmit and

store quantum information through the interchanging of information between a “stationary”

qubit at a fixed location and a “flying” qubit allowing transfer of the information to another

location.

A photon is generally used as a “flying” qubit, as useful information can be stored in the

polarisation of light. Travelling at the speed of light has a clear advantage for information

transfer, however, there is no way to store a photon at a single location. Properties such as

charge and spin can be found in particles, which can be spatially trapped to allow information

storage. There are a large number of candidates for “stationary” qubits that fulfill the stated

requirements, such as superconducting qubits [9, 11–13], trapped ions [14–16], donors in

silicon [17] and defects in crystals [18–20]. Particular interest was placed on solid state based

platforms as this could operate in parallel with classical computing platforms running on

silicon computing chips. One suggestion for a solid state computer was made by DiVincenzo

and Loss [21], where they provide theoretical schematics for a two qubit quantum gate based

upon the spin properties of electrons trapped within semiconductor quantum dots.

The quantum dot is an ideal candidate to fulfil the criteria laid out thus far. The majority

of self-assembled quantum work in the literature is carried out on InGaAs quantum dots due

to their excellent optical properties, displaying strong optical signals due to the large optical

dipole moment [22]. Optical emission has narrow linewidths with high photon indistinguisha-
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bility, making them ideal candidates for solid state single photon sources and fulfulling the

requirement to produce “flying” qubits [23–25]. Quantum dots are formed within a semi-

conductor matrix, making them not only scalable through having multiple QD qubits on the

same chip, but allow integration with additional fabricated devices such as optical cavities

or diodes for charge tuning [26]. Charge-tuneable devices allow on-demand occupation of

the quantum dot with an electron, stably confining the electron at the quantum dot site and

allowing use as a “stationary” spin qubit.

One major challenge of the quantum dot qubit proposals is that the growth process

results in randomly positioned quantum dots, limiting the ability to create a regular array

of quantum dots on the same substrate. Additional challenges arise when considering the

electron spin qubit in a quantum dot, as the rich nuclear spin environment provides an

intrinsic and irremovable source of environmental interaction. Initial work into optimising

the spin qubit system framed the nuclear spin bath as a limiting property of the self assembled

quantum dot spin qubit [27, 28]. More recently, the nuclear spin bath has come to be studied

as a quantum resource itself owing to the large number of long lasting spin states [29, 30].

A hybrid electron-nuclear spin qubit system has been demonstrated by which the electron is

used as a fast qubit that can transfer information to longer lasting nuclear spin memory [31].

Study of spin qubits within the self assembled InGaAs/GaAs semiconductor quantum dot

system is the focus of the work presented within this thesis. We set out to demonstrate the

initialisation, manipulation and readout of spin qubits in quantum dots through the use of

optical and magnetic resonance techniques, with major focus on investigating the dynamic

interactions that drive the loss of coherence of both electron and nuclear spins. Complete

understanding of the various environmental interactions present in the quantum dot will

allow us to determine ideal operating conditions for a long lasting coherent spin qubit.

Long lasting states form one part of the two technical challenges for coherent control of

the electron spin through electron spin resonance (ESR) techniques, something that has been

only achieved once in the literature [32]. The second technical hurdle is the requirement to
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produce magnetic resonance pulses at GHz frequencies while minimising parasitic electric

fields that will negatively affect the electron spin state. Consequently, we also investigate

new experimental resonators capable of generating the required microwave pulses for the

coherent control the InGaAs QD electron spin state.

Contents of this thesis

Chapter 2 introduces the quantum dot system, discussing the hetereoepitaxial techniques

used in quantum dot growth. We review the band structure of the quantum dot under three

dimensional confinement and the implications this has on the optical properties. Exciton

structure is discussed, in addition to the exchange interaction and external field effects upon

the excitons. Additionally, we provide a summary of the quantum dot spin system, covering

both carrier and nuclear spins within the quantum dot and their hyperfine interaction. Fi-

nally, we discuss the theory behind initialising, manipulating and readout the quantum dot

spin qubit.

Chapter 3 provides an overview of the experimental apparatus used for investigations

in this thesis, primarily focusing on the liquid helium bath cryostat, optical excitation and

detection configuration. A detailed description of the techniques for both pulsed and broad-

band nuclear magnetic resonance methods is included, in addition to an explanation about

the process of measuring resonance fluorescence.

Chapter 4 presents a published paper on results from a study of electron and nuclear

lifetimes within multiple InGaAs/GaAs quantum dot structures. The structures were de-

signed to have a varying tunnel coupling from the doped layer to quantum dots and allowed

systematic measurement of spin lifetimes for a range of tunnel couplings, magnetic field and

charge states. We present fundamental limitations placed on the lifetimes within quantum

dots, in addition to never seen before electron spin lifetimes of ≈ 1 s.

Chapter 5 is presented in the form of a preprint manuscript, which has been submitted
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to a journal for peer review. Here, we investigate the coherence times of the nuclear spin

ensemble within a charged quantum dot, providing insight into the effects of hyperfine in-

teraction on coherence. We present results providing a complete understanding of the effect

of the electron on nuclear spin coherence, in addition to a series of single shot nuclear spin

coherence measurements, which ultimately lead to development of a high fidelity (F > 99.7

%) electron spin readout technique exploiting the electron-nuclear interaction.

Chapter 6 discusses the testing of keyhole resonator designs under short 8 GHz mi-

crowave bursts, a key requirement for performing fast coherent control of the electron in

charged quantum dots. We present basic characterisation of improved designs of the recently

developed keyhole resonator [33], in addition to testing of the resonators on NV− centres in

diamond. We demonstrate pulsed electron spin resonance of the NV− centres in diamond

and compare the efficiency of the resonators to alternative designs in the literature.

Chapter 7 summarises the findings of the thesis and comments on the direction of future

research.



2

Background

2.1 Quantum dots

Quantum dots are nanostructures exploiting the confinement properties of semiconductor

materials. Early work into semiconductor epitaxial growth focused on attempting to create

new structures of heteroepitaxial materials. Heteroepitaxy is the process of layering materials

to integrate different types of crystalline structures into a single substrate. It was found that

by layering materials with differing bandgaps, a potential well could be formed, confining

carriers within a certain region of the sample. In the case of alternating layers of material,

single-dimensional confinement is found, preventing movement of charge carriers between the

layers but allowing movement in a two-dimensional plane, forming a structure known as a

Quantum Well [34]. Such a structure allowed the first study of confined charged carriers,

revealing effects such as the quantum Hall effect [35], and providing useful structures which

have been used for many applications such as quantum cascade lasers [36].

Further theoretical development endeavoured the search for higher-order confinement ef-

fects up to 3 dimensions, which would allow a particle to be confined in all spatial directions.

Such a system would act as an artificial atom, with discrete energy levels and a delta func-

tion density of states. Early work into quantum information processing realised the potential

7
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for such well-defined states, and confined atoms were being studied for qubit purposes [21].

With the semiconductor fabrication industry in full swing in the early 90s, it was recognised

that being able to fabricate artificial atoms on a crystal substrate would provide the robust-

ness of the atoms with the scalability of standard computing hardware [37]. Discovery of

structures with delta function density states occurred in the late 1980s by Goldstein et al.

[38], where imperfections in quantum well growth provided sharp lines in photoluminescent

studies. Further work into this demonstrated the imperfections could be reliably reproduced

through changing the rate of material deposition, opening up the possibility to deterministi-

cally create these artificial atoms which later became known as quantum dots [39–41].

2.1.1 Quantum dot growth

Several types of quantum dots exist, each with varying growth techniques and useful prop-

erties. The two primary growth methods are heteroepitaxy and wet chemical synthesis [39].

While the wet chemical synthesis provides interesting results, the work in this thesis focuses

on heteroepitaxial quantum dots, specifically InGaAs/GaAs self assembled quantum dots.

As mentioned previously, heteroepitaxy is the deposition of a material on to a substrate,

where the subtrate and deposition material are different. The structural and chemical dif-

ferences between the materials and other parameters such as temperature and deposition

rate determine how the deposited material “grows” on the substrate. During heteroeptiaxial

growth, there are three types of growth mode that can occur due to thermodynamics and

kinetics of the surfaces interacting. Control of these processes is determined by the interplay

of bond strength between a deposited atom and its surrounding deposited atoms, and the

bond strength of the deposited atom and the atoms forming the substrate [39].

The first case is known as the Frank-van der Merve (FvdM) growth mode and is where

deposited-substrate bonds are stronger than the bonds between deposited atoms, resulting

in perfect two dimensional layer growth [42]. The second case is known as Volmer-Weber

growth [43], and is the opposite extreme of the FvdM growth mode. Deposited-substrate
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Figure 2.1: Different growth modes in heteroepitaxial growth. Adapted from [39]

atomic bonding is weaker than inter-deposited material bonding in this scenario, resulting

in islands forming on the surface of the substrate. The third and final case is a compromise

between the two previous scenarios, and is called Stranski-Krastanow (SK) growth [44].

Here, a two dimensional layer forms followed by the nucleation of islands on this new surface.

Visualisation of these three growth modes can be seen in Fig 2.1.

Self-assembled quantum dots are grown through the SK growth mode. Deposition of the

QD material first forms a two dimension layer referred to as the wetting layer (WL), followed

by nucleation of islands which form the quantum dots. The islands form as a relaxation of the

strain built up due to the difference in lattice constants between the substrate and deposited

material. The presence of a lattice mismatch is an underlying requirement for both the VW

and SK growth modes. Careful selection of the lattice mismatch allows a range of energies

and sizes of quantum dot to be formed [45].

For the InGaAs quantum dots discussed in this thesis, InAs is deposited upon a GaAs

substrate until a wetting layer of sufficient thickness is created, at which point the relaxation

of the 7% strain mismatch between InAs and GaAs causes formation of the islands that

become quantum dots [46]. The critical thickness of the wetting layer for InGaAs dots

formation is approximately ∼ 1.7 monolayers (ML) [47–49]. Ideally, there would be no

wetting layer in order to minimise the interaction of wetting layer states with the QD states,

which causes broadening of PL linewidths and increasing sources of decoherence [50, 51].
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There has been some successful work into growing quantum dots without a wetting layer

through overgrowth of the InAs QD layer with AlAs [52].

Once the dot layer has formed on the wetting layer, it is necessary to apply another layer

of material in order to improve confinement effects [45]. QDs with this additional layer are

referred to as capped QDs. Capping of the QD changes the morphology of the quantum dot

as material from the cap can alloy with the QD, creating imperfections in the shape due to

strain decrease [53–55]. The change in morphology in the case of In(Ga)As dots introduces

Ga atoms to the QD, hence the dots being referred to as In(Ga)As QDs instead of just the

deposited dot layer InAs [45].

Formation of SK quantum dots occurs in a random manner, resulting in a layer of quantum

dots on top of the wetting layer with a range of positions and sizes. As we will see when

studying the confinement effects within the SK QDs, size has a strong effect on the emission

energy of the quantum dot. Variation in dot size across the substrate results in a broad

distribution of dot energies across the sample [39].

Density of quantum dots is an important quantity to control as a high density will not

allow optical interaction with a single quantum dot. This can be controlled by using a

low deposition rate of InAs and monitoring the surface patterns with reflection high energy

electron diffraction (RHEED), allowing the deposition of material to be halted at the desired

time during dot formation. Deposition can be halted as soon as the change starts to occur

providing a low density of self-assembled quantum dots [49].

Random formation of the dots in self-assembled growth is undesirable as the positions

of the dots cannot be reliably predicted. The majority of current research on self-assembled

dots involves searching the surface of a sample in order to find dots with desirable properties.

For a solid-state matrix of quantum dots to be used together as the basis for a quantum

computer, reliable site control of dot formation is required for precise device fabrication and

targeted control. Some success has been found in using pre-patterned substrates [56, 57],

with the drawback of poor optical linewidths of the quantum dots. Improvements have been
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made over the years, from ∼ 100s µeV [58] down to more recent linewidths of ∼ 30µeV [59].

While hopeful, site controlled dots still do not match the optical quality of self assembled

quantum dots with transform-limited linewidths (FWHM ≈ 1µeV) [60, 61].

2.1.2 Band structure of quantum dots

Materials used for III-V semiconductor quantum dots, such as InAs or GaAs, have a zincblende

crystal structure. Bulk semiconductor crystals with a zincblende structure have parabolic

band structures for the conduction (CB) and valence (VB) band near the centre of the Bril-

louin zone, as seen in Fig 2.2a [39]. Parabolic band structure of the CB and VB allows

expression of the energy dispersion relation E(k) as a second-order Taylor expansion. As the

bands are centred at k = 0, the energy of both the CB and VB be described by the following

equation [62],

Ec(k) ≈ EG +
h̄2k2

2m∗
α

Ev(k) ≈ − h̄
2k2

2m∗
α

(2.1)

where Ec(k) and Ev(k) are the energy dispersion relations of the CB and VB respectively, m∗
α

is the relevant charge carrier effective mass and k is the crystal momentum. As seen in Eqn 2.1

and Fig 2.2a, the conduction and valence bands are separated by the bandgap EG, which is

determined by the material forming the semiconductor. Minimum (maximum) energy points

for the conduction (valence) band occur at Γ for GaAs and InAs, allowing interband transfer

of carriers via optical excitation with no additional momentum k from phonons required.

Promotion of electrons from the valence band to the conduction band allows the electrons

to move freely within the crystal [62]. While useful for many applications such as diodes

and detectors, a freely moving electron is both difficult to control and experiences rapid spin

relaxation due to spin-orbit effects, preventing use in quantum information protocols.

To understand the band structure of a confined system, a picture of the bulk semiconduc-

tor band structure should first be considered. First, the conduction band states have s-like

atomic shell orbitals, and as a result, it can be inferred that they have an orbital angular
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Figure 2.2: Band structure diagrams of a) zincblende crystal semiconductor in the absence
of strain b) zincblende crystal semiconductor in the presence of uniaxial strain. Similar to
bulk zincblende crystals in the presence of uniaxial strain shown in b), QDs also experience
a heavy-hole light-hole splitting quantified by ∆hh−lh. The splitting is induced by large
confinement resulting in heavy holes becoming the lowest-lying v-band states. Both bulk
materials and QD structures experience large splitting between hole states and the split-off
(SO) band with an approximate strength of ∆SO ∼ 300 meV [63]. Figure adapted from [39]

momentum of L = 0, thus only spin angular momentum states Ŝ need to be considered. If

the system is quantized along the +z axis, the CB electron state can be defined by the spin

projection in the +z axis, Se = ±1
2

[39].

The valence band states have p-like symmetry, meaning that angular momentum is L = 1.

Due to the presence of both spin angular moment Ŝ and orbital angular momentum L̂,

consideration of the spin-orbit interaction is required for a full description of the states within

the VB. The spin orbit interaction couples the Ŝ and L̂ momentum together, resulting in

total angular momentum Ĵ = L̂ + Ŝ as the only possible description of momentum within

the VB. As a consequence, a more complex set of states are available to the carriers within
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the VB.

While under ideal conditions the VB will be completely filled with electrons, interesting

physics generally occurs once an electron has been excited to the conduction band, leaving

behind a positively charged absence of charge referred to as a hole. Due to this, the VB

states are usually described using holes with spin Jh, and are formed of three distinct bands.

For Jh = 1
2

there are two possible states Jz = ±1
2
, which forms the split-off (SO) band.

Jh = 3
2

has four states, Jz = −3
2
,−1

2
,+1

2
,+3

2
, which can be split into two more sub-bands.

The Jz = ±3
2

forms the heavy hole (hh) and the Jz = ±1
2

forms the light hole (lh) band,

named for the different effective masses of holes within each band. Typical direct bandgap

III-V semiconductors have degenerate hh and lh states at k = 0, while the SO band is offset

by some energy ∆SO [39, 62]. Bulk semiconductor band structure is visualised in Fig 2.2a.

One of the defining characteristic of a quantum dot is the strong confinement in all three

spatial dimensions [45]. Confinement creates quantized energy states, providing atom-like

energy structures and delta-function density of states. The strong confinement provides a

potential well in which freely moving carriers generated in the bulk crystal due to thermal

or optical excitation can become trapped. There are two key features of the quantum dot

band structure when discussing spins. Firstly, degeneracy of the hh and lh states is removed

through a combination of confinement effects and uniaxial strain [39], with hh becoming

the lowest lying VB state [64]. A second point to consider is the large energy difference

between the lh, hh bands and the SO band (Bulk InAs: ∆SO ∼ 370 - 410 meV, Bulk GaAs:

∆SO ∼ 340 meV [63]), such that effects from the SO band are generally not considered. A

visual representation of a bulk semiconductor under uniaxial strain is shown in Fig 2.2b and

demonstrates the effect of splitting between the hh, lh and SO states. Calculation of the

states found in a quantum dot can be modelled using potential well solutions to a high level

of accuracy.
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2.1.3 Quantum dot confinement energy states

The simplest model of a quantum dot is the spherical quantum dot. Complete confinement in

all three dimensions provides clear and discrete energy levels which can be modelled with a 3D

finite potential well. While this model is relevant for spherical dots such as collidial quantum

dots [65], the quantum dots studied in this thesis are self assembled InGaAs/GaAs QDs. The

dots grown in the SK growth mode are not spherical in nature, but instead are anisotropic,

with a small height in the +z direction and a wider base in the x-y plane [38, 44, 47]. As a

result, confinement cannot be simply described by a spherical model. Approximations can be

made for the +z direction, treating the system as a 1D finite potential well. This is effective

in providing a fully quantized system defined in the +z direction. Similar confinement lengths

in the +x and +y direction means the confinement in these dimensions can described by a 2D

parabolic potential. In reality, the relatively weak confinement of the +x and y dimensions

means the confinement is not perfectly parabolic, which can be further exacerbated by growth

anisotropy resulting in an elliptical potential. The +z 1D finite potential well and x-y

parabolic potential approximations can be considered separately [39].

Strong confinement in the +z direction results in large energy gaps between +z states in

both the conduction and valence band. The gaps are large enough that any states higher

than the ground state are not seen in experiments, as they lie above the wetting layer band,

resulting in any carriers absorbing the required energy to reach these states being removed

from the potential well rather than occupy the higher +z state. Instead, the +z confinement

can be approximated as an offset Ez,0 to the bandgap of the bulk crystal EG.

Bulk InGaAs has a bandgap which depends strongly on the ratio of In to Ga [68]. Mea-

surement of In content within self assembled quantum dots via NMR techniques has given

an estimate of ∼ 20% In composition [69], which for bulk In0.2Ga0.8As gives a bandgap of

approximately ∼ 1 eV at cryogenic temperatures T = 4 K [63, 70, 71]. Self assembled InGaAs

quantum dots emit in the range ∼ 1.3 eV [41, 64], giving an approximate value for Ez,0 ∼ 300

meV [72]. The offset Ez,0 is equal to the sum of the energy offset of the +z ground state of
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Figure 2.3: Energy level diagram of an InGaAs quantum dot. The QD acts as a potential well
due to the lower bandgap compared to the surrounding bulk material (EGaAs

G ∼ 1 eV) from
the wetting and capping layers of GaAs. Confinement effects result in an energy increase to
the lowest energy transition of magnitude Ez,0 = Ee

z,0+Ehh
z,0 ≈ 300 meV, increasing transition

energy from the bulk InGaAs EInGaAs
G ∼ 1 eV to EQD

s−s ∼ 1.3 eV. Higher level states form
similar to atomic orbitals s-, p-, d-, with equal energy spacings within the c and v band.
Experimental measurement of the shell spacings are Ee

i,j ∼ 30 meV and Ehh
i,j ∼ 15 meV

[66, 67]

both the electron Ee
z,0 and hole Ehh

z,0 from the conduction and valence band respectively, see

Fig 2.3.

Now considering the in-plane x-y confinement, we can safely assume that higher level

states in +z do not need to be considered. The two dimensional confinement can be modelled

accurately using the parabolic potential described by,

V (x, y) =
1

2
m∗

αωα(x2 + y2) (2.2)
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where α represents either an electron (e) or hole (hh), m∗
α is the carrier effective mass, ωα is

the separation frequency. This potential then provides the energy eigenvalue solutions,

Eα
m,n = h̄ωα(m+ n+ 1) (2.3)

Under the assumption of a perfectly cylindric confining potential x = y and taking the +z

confining potenial as an energy offset Eα
z,0, we can consider the quantum dot energy states

as atom like shell states s-, p-, d- shells for l = 0, 1, 2, where l = m + n. Each shell has an

increasing number of degenerate state pairs, for example, the s-shell has 1 pair, the p-shell

has 2 pairs and so on. Spacing between the shells is described by energy Eα
i−j = h̄ωα

i−j, where

i, j is the shell state s-, p-, d-. The spacing between states is different for the CB and VB due

to differing charge carriers, but remain constant within the band. Typical values for these

are Ee
i−j ∼ 30 meV and Ehh

i−j ∼ 15meV [66, 67]. The current model only considers pure hh

states due to the ∆hh−lh splitting, but mixing of these states can occur due to anisotropy of

the quantum dot, which results in a more complex system [73–75].

2.2 Optical properties

Discrete energy levels within the quantum dot system mean that energetic transitions be-

tween the states are also discrete. As mentioned previously, InGaAs/GaAs quantum dots

are formed of direct band gap semiconductors, meaning that interband transitions can occur

purely through optical (photon) energy input/output. This is in contrast to indirect bandgap

materials that may require input of crystal momentum k via phonon processes. The purely

optical addressing of states in quantum dots is one of their primary advantages.

For applications requiring low noise such as quantum information protocols, minimising

background interactions is key. Thermal energy within crystal lattice is represented by the

presence of phonons, and at room temperature the population of phonon modes is significant,

broadening and preventing potential optical transitions. Room temperature thermal energy
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(E = kBT ≈ 26 meV) is greater than the spacing between electron energy states, allowing

thermal excitation to promote electrons to higher energy states within the CB. This can

remove electrons from the QD before optical recombination, limiting optical transitions in

the low lying CB states. At low cryogenic temperatures, the population of phonon modes

is small enough such that the CB states experience minimal thermal excitation, allowing

reliable and regular promotion of carriers to the lowest lying CB state. The temperature

at which quantized energy levels can be accessed occurs when the energy spacing between

states is larger than kBT [39]. As a consequence, all the work in this thesis is carried out at

cryogenic temperatures of T ≈ 4.5 K unless stated otherwise.

The quantum dot system can absorb photons with energy equal to the quantum dot

interband transition energies, which is determined by the bandgap of the quantum dot EQD
G

and the energy states of the hole Ehh and electron Ee for the conduction and valence band

respectively,

h̄ω = EQD
G + Ee + Ehh (2.4)

Absorption of a photon allows promotion of an electron from the valence band to the con-

duction band, leaving a hole in the valence band. The hole can be considered to be a

positively charged particle within the quantum dot valence band. The electron and hole

confined within the dot form a bound state referred to as an exciton. Excitons are formed

through the Coulomb interaction of opposing charges in bulk semiconductor, with a binding

energy equal to the strength of Coulomb interaction. Within a confined structure, confine-

ment effects also increases the binding energy between charges. The quantum dots we study

are generally in the strong confinement regime, where confinement energy is greater than

Coulomb energy [39]. As seen in Section 2.1.2, Ee
z,0 and Ehh

z,0 have energies of ∼ 100 meV

and ∼ 25 meV, which is large compared to the measured Coulomb interaction energy for two

carriers of ∼ 20 meV [76]. As a consequence of the confinement being the dominant energy,

it is clear that the optical spectrum will be primarily determined by confinement length, and
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thus dependant on dot size. However, the Coulomb effect is still necessary to consider as the

attractive energy will weaken the overall binding energy created by confinement [77].

Optical selection rules determine the allowed transitions that can occur through the ab-

sorption/emission of energy. Quantum dots typically interact with photons via electron-

dipole transitions. Photons possess an angular momentum of l = ±1 and parity of −1. From

this we consider the states that are present from our previous discussion of states in both

the conduction and valence bands. Parity alternates between states (s-, p-, d-...) within a

band, and the CB and VB have opposite parities. In order to conserve parity, only interband

transitions between same sub-levels can occur, for example sv → sc [45]. Angular momentum

conservation requires a change in momentum for an interband transition. Momentum change

is determined by the polarisation of the absorbed photon (σ±), resulting in different states

being occupied under perpendicular polarisation states. Spin is conserved through optical

transitions [39].

There are two distinct categories of optical excitation. The first, resonant excitation, is

the simplest to consider from a theoretical standpoint. Photons of h̄ω = EQD
G +Ee +Ehh can

promote electrons via an interband transition to the low lying s-shell CB state, leaving a heavy

hole and creating the bound state of a neutral exciton, X0. After a short time, characterised

by the radiative lifetime τR of the exciton, the state recombines and emits a photon of the

exact same energy h̄ω, and results in the electron returning to the VB (Fig 2.4a). Direct

transitions preserve the coherence of the system, and reduce broadening effects, allowing the

true spectrum of the two level system to be revealed [39]. While resonant transitions provide

a coherent state, they are not experimentally trivial to measure due to the emitted photons

having the same energy as the excitation, resulting in any luminescence signal being lost in

scattered excitation signal. This can be circumvented through cross-polarisation techinques

[78], which will be discussed further in Chapter 3. The direct absorptions are not limited

to the low lying s-shell states, it is possible to excite the p- or d- shell transitions with a

higher energy photon. This process is known as quasi-resonant excitation, and follows the
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Figure 2.4: A schematic of off-resonant and resonant excitation. a) Optical excitation reso-
nant with the X0 transition will coherently create an X0 exciton that will shortly recombine,
the time-scale of which is defined by the radiative lifetime which for InGaAs QDs is τR ∼ 1
ns. b) Off-resonant excitation is an incoherent process that promotes an electron to the wet-
ting layer, creating a bound exciton that will become confined by the nearby QD potential
well. The exciton relaxes through intraband non-radiative processes to the low lying s-state,
allowing radiative recombination at EQD

s−s

previously mentioned requirement for interband transitions preserving angular momentum

l = ±1 and parity.

The second type of excitation is nonresonant excitation, where photons with energy higher

than the bandgap of the wetting layer, h̄ω > EWL
G , excite carriers into the wetting layer con-

duction band as seen in Fig 2.4a. The formed exciton is quickly confined by the nearby

quantum dot, where the energy relaxes to the s-shell state via intraband non-radiative pro-

cesses. The exciton can then optically recombine, releasing a photon of energy EQD
s−s. Non-

resonant excitation is not a coherent process, and so is not ideal for precise optical control

of the states within the dot. Effects such as time jitter or the trapping of charges from the

wetting layer can affect the indistinguishably of emitted photons [79, 80]. However, it is ex-

perimentally trivial, as scattered excitation will be at a different wavelength to the excitonic

recombinations observed from the quantum dot, in contrast to resonant excitation.
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2.2.1 Charged excitons

The bound electron-hole pair previously introduced is not the only form of exciton that can

be created. Additional carriers can also become bound, forming a charged exciton. An extra

electron will result in a negatively charged exciton X−, whereas a hole results in a positively

charged exciton X+. Charged excitons are not limited to singly charged states, as additional

charges can also become bound in the states such as, X2±, X3±, ...[26, 81–84]. One other

configuration is the biexciton, where two electrons and two holes form a bound state, and is

generally labelled 2X0 [67]. The four most common charge configurations studied are shown

in Fig 2.5.

For the quantum dot system, there are two methods for generating additional charges.

High power optical excitation with energy greater than the wetting layer band gap can gen-

erate many conduction band electrons, which can in turn become trapped within a quantum

dot. Optical excitation can populate the QD with valence band holes, which are generated

by promotion of electrons through photon absorption. Differing tunnelling rates for electrons

and holes can create a preferential charging of the system as one carrier is removed faster than

the other. Probability of charged states occuring is reduced compared to the simplest system

of the neutral exciton, which can be seen when studying photolumiscence measurements of

the quantum dot. The brightest peaks will indicate the neutral exciton, and charged excitons

will appear offset in wavelength due to change in bandgap as a result of Coulomb effects of

the additional charges [39].

Coulomb interaction adjusts the total binding energy of the exciton. For the neutral

complex there is an attraction due to the opposing charge states of the electron and hole,

reducing overall energy released in a radiative recombination. Addition of more charges

further modifies the total Coulomb interaction, providing different energy transitions for

different charged excitons.

It is also possible to create devices that will allow selective charge control over the quantum

dot. Diode structures allow tunnelling of charges from a doped layer through application of
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Figure 2.5: Charged excitonic carrier configurations for the most common excitons: positively
charged, neutral, negatively charged and the biexciton (from left to right). Two excitonic
states are available for each exciton depending on spin orientation of carriers. Specific con-
figurations can be accessed with circularly polarised excitation.

an electric field. Either holes or electrons can be used to fill the quantum dot, depending

on the type of doped layer (p- or n-). In the case of a charge controlled structure the

probability of observing charged excitons can be increased. For example, in the case of a

singly charged quantum dot, any exciton formed in the dot will likely include the resident

electron forming a negative trion. As a result, photoluminescence will reveal a much larger

intensity at the trion energy in contrast to an uncontrolled sample [26]. The bias to generate

a stable resident charge in the quantum dot (e.g V1e) and the bias which the equivalently

charged exciton is stable and observed in PL (VX−) are not always the same. The difference

in charging conditions for the two states is a non-trivial relationship [85].

2.2.2 Exciton fine structure

We have discussed the neutral exciton and the potential other types of charged exciton that

can exist within the quantum dot. We can now focus on the smaller effects present within

the exciton, which add further depth to the spectral profile of the quantum dot under optical
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excitation.

Considering the neutral exciton X0, we can determine how the fine structure due to spin

arises. Combination of the heavy hole spin Jh = 3
2
, Jh,z = ±3

2
and electron spin Se = 1

2
,

Se,z = ±1
2

allows us to define the total spin of the exciton as M = Jh,z + Se,z, which gives

possible spin projections of the neutral exciton as M = ±1,±2. Spin projection magnitude

determines the coupling between the exciton and a photon. The |M | = 1 states allow photonic

coupling and |M | = 2 has no coupling to incoming photons due to the optical selection rule

∆M = 1, leading to the names bright and dark excitons for the respective states [39, 72].

The fine structure of the exciton arises from the interaction of the electron and hole spins,

and is commonly referred to as the exchange interaction. Without the exchange interaction,

all four spin states of the neutral exciton X0 are degenerate. The exchange interaction can be

split into two components, isotropic and anisotropic exchange interaction. Isotropic exchange

interaction is always present, while anisotropic interaction relies on asymmetry within the

quantum dot. The general spin Hamiltonian for electron-hole spin-spin interaction is given

by,

HExchange = −
∑

i=x,y,z

(aiJh,iSe,i + biJ
3
h,iSe,i) (2.5)

where Jh,i is the spin projection in the i direction for the hole, and Se,i is the same for the

electron and ai and bi are spin-spin coupling constants [39, 86, 88]. We only consider the

heavy hole here as a result of the previously mentioned large lh-hh splitting. Expressing

the exchange interaction in the basis of the four exciton states introduced previously, M =

±1,±2, the following matrix representation is generated,

HExchange =
1

2




+δ0 +δ1 0 0

+δ1 +δ0 0 0

0 0 −δ0 +δ2

0 0 +δ2 −δ0




(2.6)

Here δN terms are simplifications of matrix elements that correspond to physical splitting
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δ0 ∼ 100-400 µeV

δ2 < 1 µeV

δ1 ∼ 0-100 µeV

|↑,⇓⟩, |↓,⇑⟩

|↑,⇑⟩, |↓,⇓⟩

1√
2
(|↑,⇑⟩ + |↓,⇓⟩)

1√
2
(|↑,⇑⟩ − |↓,⇓⟩)

1√
2
(|↑,⇓⟩ + |↓,⇑⟩)

1√
2
(|↑,⇓⟩ − |↓,⇑⟩)X0

Ve−hh ∼ 15-20 meV

Confinement Coulomb
Interaction

Isoptropic Exchange Interaction Anisoptropic Exchange
Interaction

Figure 2.6: Energy levels for neutral exciton X0 in a asymmetric quantum dot. Coulomb
interaction between the hole and electron reduces energy of exciton recombination by Ve−hh.
Isotropic exchange introduces splitting between dark and bright excitons δ0. Splitting of dark
states δ2 also occurs due to isotropic exchange interaction. Anisotropic exchange arises from
dot asymmetry and splits the bright exciton states by δ1. Values from [86, 87]

parameters, and are dependent on the spin-spin coupling constants ai, bi. Splitting between

the bright and dark exciton is represented by δ0 = 1.5(az + 2.25bz). Experimental values

of δ0 have been shown to be δ0 ∼ 100 - 400 µeV in InGaAs QDs, with an inverse relation

between dot size and δ0 [86]. For the scenario with only isotropic exchange interaction (i.e

no asymmetry in the dot, bx = by), the two bright exciton states are degenerate. The dark

excitons always hybridise and are no longer degenerate, the splitting of which is described

by δ2 = 0.75(bx + by) [86]. The splitting terms δ0 and δ2 are symmetry independant, and as

a consequence will be present in any shape quantum dot. Splitting δ2 is too small to resolve

in photoluminscent spectra [86, 89], but recent theoretical estimates give a rough value of

δ2 < 1 µeV [87].
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State Energy

M = ±1 1
2
δ0 ± 1

2
δ1

M = ±2 1
2
δ0 ± 1

2
δ1

Table 2.1: Energy levels of bright and dark excitons for Bz = 0 T in an asymmetric quantum
dot (bx ̸= by). Derivations from [86]

The anisotropic exchange interaction further modifies the exciton states, splitting the

bright exciton states by δ1 = 0.75(bx−by). It is clear from the definition of δ1 that asymmetry

(bx ̸= by) is required for a non-zero δ1. In the presence of asymmetry, the bright exciton

states are no longer pure spin states of M = ±1, but a linear combination of both states

which prevents circularly polarised transitions. Instead, the bright exciton states can only be

accessed by linearly polarised transitions [86]. Typical values for δ1 are found to be ∼ 0−100

µeV. A summary of the different splittings arising from the exchange interactions is shown

in Table 2.1 with an energy level diagram in Fig 2.6.

Charged exciton states such as the negatively charged trion X− do not experience ex-

change interaction fine structure as a consequence of Kramer’s degeneracy theorem [90].

Using X− as an example, there are two electrons and a hole present within the state, which

can be viewed as a hole spin interacting with a single electron spin doublet. As a result, the

energy levels of the charged exciton take the form of a degenerate Zeeman doublet, which

will break with the addition of magnetic field. There is only one unpaired spin, and therefore

no exchange interaction to create fine structure. This has the additional effect of the charged

excition X− states coupling to circularly polarised transitions, in contrast to the linear po-

larisation transitions found in the neutral exciton X0. Presence (absence) of fine structure

splitting in the neutral (charged) excitons is particularly useful when identifying components

of quantum dot photoluminescent spectra [86, 90].
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2.2.3 External fields

Now that we have considered quantum dots and the excitons that can be created, we can

discuss the effect of external influences on the quantum dot and any excitons created within.

Both magnetic and electric fields provide unique effects that need to be considered when

working with the quantum dot system. In addition to allowing selective tunnelling of charge

carriers at particular electric field strengths, the strength of the magnetic and electric fields

also affect the energy levels of the excitons formed within the quantum dot. This is true for

all charge states of the exciton, and so is important to consider.

Electric field

The effect of electric field on quantum dots can be used to control the charge state of the

quantum dot via semiconductor diode structures, as briefly introduced in Section 2.2.1, in

addition to allowing selective tuning of the transition energy of excitons via the Quantum

Confined Stark Effect (QCSE).

Diode structures allow tunnelling of charges from a doped layer in a structure through

application of an electric field [26]. The strength of the coupling between the doped layer

and the quantum dots is determined by the thickness of the barrier, tB, separating the two

layers, and is referred to as the tunnelling barrier. By applying an electric field, the lowest

lying energy state of the quantum dot can be brought into resonance with the Fermi Level

ϵF of the Fermi resevoir, allowing a charge carrier to tunnel into the quantum dot. The

voltage required to generate this electric field we label V1e. Further charges that tunnel into

the dot are highly likely to remain under low temperature conditions due to the Coulomb

interaction between the charge within the dot and the Fermi reservoir charge carriers. Under

the low temperature conditions, the energy difference between a single charge and two charges

occupying the quantum dot results in a plateauing effect by which a range of biases allow a

singly charged quantum dot to be held in stable operating conditions. This effect is referred

to as the Coulomb blockade and allows us to create a spin qubit on demand [26, 91, 92]. This
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2e

Fermi
resevoir

Charged
Quantum Dot

eVG

ϵF

tB

Figure 2.7: a) Energy level diagram of Schottky diode charge control strucutre. Variation of
the gate voltage applied to the diode VGate can bring occupation levels in resonance with the
Fermi energy of the n-doped layer, overcoming the Coulomb blockade and allowing additional
charges to occupy the QD. b) Energy of neutral exciton X0 (upward triangles) and biexciton
2X0 (downward triangles) PL signal with varying electric field F from GaAs island QDs
at T = 4 K. Solid lines are fitted with equation E = EG + ∆EQCSE to give a value for
p0 ≈ 4.5 × 10−29 C m. Figure from Ghali et al. [93] licensed under CC BY-NC-SA 3.0

effect can apply to both electrons (n-doped reservoir) and holes (p-doped reservoir) to allow

either to be used as a spin qubit. A diagram of a Schottky diode is shown in Fig 2.7a.

The Quantum Confined Stark Effect describes the response of a quantum state to a linear

electric field F [39, 94]. Here we focus on the DC Stark effect that occurs from electric field

applied via charge controlled structures. The AC Stark effect also exists, and is an optical

phenemona by which the oscillating electric field from many photons at high power can induce

the Stark shift [95].

As introduced previously, an exciton is formed of an electron and hole with opposing

charges. The bound charges can form an electric dipole through a small displacement. The

shift of exciton energy due to this interaction with the dipole depends on the strength of the

dipole and the external field,

∆EQCSE = −p · F (2.7)

where F is the static electric field, and p is the exciton dipole moment. It is clear from this

https://creativecommons.org/licenses/by-nc-sa/3.0/
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equation that external electric field will change the energy of transitions within the QD. It is

important to consider that within a QD the electron and hole already undergo a small degree

of separation without the influence of external electric field due to confinement effects. As

a result, there is zero-field dipole moment characterised by the displacement of the electron

and hole s0. This splits the exciton dipole moment into two parts, one intrinsic dipole p0

and one externally controlled moment pext. The externally controlled moment depends on

the external field, F , and the polarisability, β, which is a measure of how easily the electron

and hole can be separated. This gives us a new expression for the dipole moment p,

p = pext + p0 = βF + p0 (2.8)

which when substituted into our Stark shift equation (Eqn. 2.7) gives us,

∆EQCSE = −p · F = −(p0F + βF 2) (2.9)

Using this equation it is possible to fit the PL spectra of self-assembled quantum dots within

diode structures for varying electric field, as shown for GaAs island QDs in Fig 2.7b. Fitting

allows estimation of the strength of p0, which for InGaAs/InAs quantum dots used within

this thesis is ∼ 7 × 10−29 C m [96]. From the simple relation of distance between charges

and dipole strength p = er, electron-hole seperation can be estimated to be ∼ 4 Å [96, 97].

Altering the direction of the applied F electric field revealed that the electron wavefunction

is localised to the base of the dot, and the hole wavefunction localized at the top [96]. This is

a result of the increased indium content at the peak of the dot, which increases biaxial strain

and strongly localises the hole wavefunction due to the higher effective mass of holes [39].

Understanding the shift caused by the Stark effect also provides another useful appli-

cation, the tuning of the energy of emitted photons from the QD. The random nature of

self-assembled growth adds limitations to the ability to grow dots emitting at a desired wave-

length. The QCSE allows fine tuning of the QD optical resonances to bring two dots of
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similar wavelength into resonance with each other [98] or an optical cavity [99].

Magnetic field

Introduction of an external magnetic field B causes additional effects due to interaction

between the field and the electron, Se, and hole, Jh, spins. Magnetic field is generally applied

either parallel to the optical excitation axis z, or perpendicular to the optical excitation axis

in the xy-plane. We refer to fields in these geometries as either Faraday configuration, Bz, or

Voigt configuration, Bx, By for parallel and perpendicular geometries respectively. Magnetic

field parallel to the optical axis results in spin degeneracy being lifted to provide distinct spin

states, while field perpendicular to the optical axis results in mixing of heavy hole and light

hole spin states. Optical excitation is applied parallel to the growth direction of the quantum

dot +z for all experiments within this thesis. In addition to this, all experiments are carried

out with magnetic field applied parallel to the growth and optical axis, which shall be the

focus of our discussion in this section.

Considering a general Hamiltonian for spin interaction with an external magnetic field, we

can derive an expression for the specific scenario of field applied in the z-direction [72, 88, 100],

HZeeman(B) = −µB

∑

i

(+ge,iSe,i − gh,iJh,i)Bi (2.10)

Applying field in the z-direction results in simplification of Eqn. 2.10 due to B = (0, 0, Bz),

giving us an expression for magnetic field interaction strength for magnetic field parallel to

the growth axis,

HZeeman(B) = −µB(+ge,zSe,z − gh,zJh,z)Bz (2.11)

where ge,z, ge,h are the g-factors for the electron and hole respectively. The Zeeman Hamil-

tonian in Faraday geometry is a diagonal matrix comprised of two terms which we call

β1 = µB(ge + gh)Bz and β2 = −µB(ge − gh)Bz [86]. As expected for Zeeman splitting, we see

a linear dependence of interaction strength with magnetic field. We can combine HZeeman(B)
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Figure 2.8: Energy of bright and dark excitons from a) InGaAs/GaAs and b) GaAs/AlGaAs
QDs in Faraday magnetic field Bz, demonstrating the effect of the Zeeman splitting and
diamagnetic shift experienced by the excitons. Solid lines are fits from the energy equations
described in Table 2.3, providing estimates of γ2 and ge for a) InGaAs QDs: γ2 = 7 µeV
T−2, ge = −0.35 and gh = 1.9 b) GaAs QDs: γ2 = 10 µeV T−2, ge = 0.3 and gh = 1.8.
Reprinted figure with permission from [89]. Copyright (2021) by the American Physical
Society. doi:10.1103/PhysRevB.88.045306

and HExchange (Eqn 2.6) and diagonalise the total Hamiltonian H = HZeeman + HExchange to

calculate the effect of exchange and Zeeman interaction on the energy levels of the exciton

states, as shown in Table 2.2.

The
√
δN + βN term results in a quadratic splitting of exciton states for low Bz, which

transitions to a linear dependence for βN ≫ δN . Strong magnetic field also results in coupling

of bright exciton states to circularly polarised light, breaking the linear polarisation basis

created by exchange interaction [39, 86].

Considering experimental measurement of photoluminescence over a range of magnetic

fields, such as the results from Puebla et al. [89] shown in Fig 2.8, we can observe that there

is a shift in the centre of mass of the Zeeman split bright exciton states. This is caused by a

diamagnetic shift characterised by γ2, which is quadratically dependant on the field, leading

 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.045306
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State Energy

M = ±1 +1
2
δ0 ± 1

2

√
δ21 + β2

1

M = ±2 −1
2
δ0 ± 1

2

√
δ22 + β2

2

Table 2.2: Energy shift of bright (M = ±1) and dark (M = ±2) excitons calculated from
H = HZeeman + HExchange, to quantify shifts of exciton energy as a result of exchange and
Zeeman interaction for magnetic fields Bz > 0 T in Faraday geometry [86, 89].

to the average energy of the Zeeman doublet increasing with magnetic field. The diamagnetic

shift γ2 arises from the strong confinement squeezing the exciton wavefunction.

Fitting the trend line for exciton energies over magnetic field allows measurement of both

the electron and hole g-factors, as well as the diamagnetic parameter γ2. For the InGaAs

quantum dots shown in Fig 2.8, values for these parameters are ge = −0.35, gh = 1.9 and

γ2 = 7 µeV T−2 [89]. Energy levels for an anisotropic quantum dot in a Faraday-geometry

magnetic field are displayed in Table 2.3 using a combination of parameters discussed here

and the exchange interaction parameters introduced in Section 2.2.2.

State Energy

M = ±1 E0 + γ2B
2
z + 1

2
δ0 ± 1

2

√
δ21 + β2

1

M = ±2 E0 + γ2B
2
z − 1

2
δ0 ± 1

2

√
δ22 + β2

2

Table 2.3: Total energy levels of bright (M = ±1) and dark (M = ±2) excitons in Faraday
configuration external magnetic field Bz > 0 T, combining the QD band-gap energy E0,
diamagnetic shift, exchange interaction HExchange and Zeeman interaction HZeeman [86, 89].

2.3 Spin system of a quantum dot

We have so far considered the growth of quantum dots, in addition to the band structure

and exciton properties of quantum dots. Quantum dot applications in quantum computing

requires use of the available spin states within the dot as a basis for a spin qubit. For

use in any quantum information protocol, we need to be able to achieve reliable spin state

preparation, coherent control and fast readout in order to store, process and read information



CHAPTER 2. Background 31

as described in Chapter 1. A further underlying requirement is long lasting spin states to

prevent loss of information to the environment.

Spins within the quantum dot come in two forms, carrier spin (electron Se or hole Jh)

and the nuclear spin system formed of 103 - 105 nuclear spins, I. The two systems are

inherently coupled together, and as such can be studied under the framework of the central

spin model, where a single carrier spin interacts with a fluctuating bath of spins. It is critical

to understand the mechanisms affecting both spin systems in order to optimize the quantum

dot for long lasting qubit states. In this section we will discuss the complete spin system

found within a quantum dot, followed by a discussion on the ways to interact with the spin

states.

2.3.1 Carrier spins

We can first consider the spin system that describes the carrier spin within a quantum

dot. As mentioned previously (Section 2.2.3), stable charge states can be created through

the use of diodes. In this section we will consider a quantum dot charged with a single

carrier, as even-numbered carriers cannot change spin state within the s-shell due to Pauli’s

exclusion principle, and higher energy states in other shells such as the p-shell add unnecessary

complexity to the system.

Considering an electron charge first, we have a quantum dot charged with a carrier Se =

1
2
. We call the two spin states ms = ±1

2
the spin-up state (ms = +1

2
= |↑⟩) and the

spin-down state (ms = −1
2

= |↓⟩), where spin-up and spin-down refers to the direction of

the spin component in the +z-axis. In the absence of magnetic field B = 0 T, the spin-

up and spin-down states are degenerate, causing rapid loss of quantum information due to

energy conserving spin-flips with the nuclear environment allowed via Fermi contact hyperfine

interaction [39]. This results in flucations of the electron spin occurs on a timescale of ∼ 1

ns for the electron at B = 0 T [101]. Addition of a magnetic field, B > 0 T, breaks the

degeneracy, providing energetically distinct spin levels and adding a energy requirement to
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∆EZeeman = µBge,hBz

|↓⟩, |̃⇑⟩

|↑⟩, |̃⇓⟩

Bz

∆EZeeman = µBge,hBxy

1√
2
(|↑⟩ + |↓⟩)

Bxy

1√
2
(|↑⟩ − |↓⟩)

1√
2
(|̃⇓⟩ − |̃⇑⟩)

1√
2
(|̃⇓⟩ + |̃⇑⟩)

Figure 2.9: Energy level diagram of the carrier spins Se or Jhh in Faraday (left) or Voigt
(right) geometry along the growth/optical axis basis +z.

electron-nuclear spin flips [28, 101, 102].

For the electron, the spin states now form a two level system that can be used as a qubit

basis. As for excitons, direction of the magnetic field is important to consider relative to

the optical axis. Considering the states in the growth axis basis +z, Faraday geometry,

B = (0, 0, Bz), results in pure splitting of the states |↑⟩, |↓⟩. If carrier states are initialised

orthogonal to the magnetic field, as described by the Voigt geometry, B = (Bx, By, 0) the

states will create of superpositions between the two states, described by 1√
2
(|↑⟩ ± |↓⟩), which

causes a precession of spins of frequency Ω = geµBB [45].

Carrier holes can also be used to charge the quantum dot and provide a spin basis. As

previously mentioned (Section 2.1.2), the heavy-hole light-hole splitting is non-zero due to

the in-built strain of the quantum dot. Consequently, the lowest-lying hole states are heavy

hole in nature (Jh = ±3
2
) but due to asymmetry in the quantum dot, the heavy hole state

undergoes mixing with the light hole state (Jh = ±3
2
) and can be treated as a pseudo spin-1

2
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with states,

|̃⇑⟩ = |3/2⟩ + β|−1/2⟩

|̃⇓⟩ = |−3/2⟩ − β|+1/2⟩
(2.12)

where β is the valence band mixing parameter [103, 104]. In applied magnetic field B > 0

T, the holes pseudo-state can then form two stable spin states for Faraday geometry |̃⇓⟩, |̃⇑⟩,

while for Voigt geometry, the two level system is defined by superposition states similar to

that found for the electron 1√
2
(|̃⇓⟩ ± |̃⇑⟩) [46, 105, 106].

The most interesting difference between the electron and hole is that the hole state is pri-

marily p-like, which has no overlap with the nuclear spin sites, resulting in minimal coupling

to the nuclear spin bath via Fermi-contact hyperfine interaction (see Section 2.3.3). Initial

research into hole spins suggested that there would be no coupling to the nuclear sites at all,

making the hole spin an ideal spin qubit candidate. However, further investigation revealed

the hole spin couples to the nuclear spin sites through the dipolar interaction, with the hole

hyperfine coupling being a factor of 10 lower than the electron hyperfine coupling [103, 107].

Further hole decoherence mechanisms also arise from an admixture of p-shell and d-shell

orbit states, with a ∼ 20% contribution from the d-shell, allowing hole spin flips without

exchange of spins with nuclei [108]. Despite these interaction mechanisms, optical hole spin

state preparation schemes have been created at B = 0 T using the fluctuation of the electron

spin in a positively charged exciton X+ to preferentially shelve hole spins into a desired state

[103, 109].

2.3.2 Nuclear spins

While the carrier spin may be the best way to have a controllable spin qubit, it is important

to consider the second type of spin within the system, the bath of nuclear spins Ii that form

the quantum dot. All of the nuclei present within the dot possess magnetic moments µ in

InGaAs systems, with nuclear spins of I ≥ 3/2, illustrated in Fig 2.10. A list of nuclear spin
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69,71Ga, I = 3
2

75As, I = 3
2

115In, I = 9
2

µi
H dd

M =
∑

iµi

Figure 2.10: Nuclear spin bath in an InGaAs quantum dot structure. Nuclear spins I with
magnetic moment µi = γh̄I form an overall magnetization M . In the case of a fully polarised
spin bath, maximum magnetization is achieved in the direction of the spin projection M =
±M . Nuclear dipole-dipole interaction can induce transfer of spin across the dot through
spin flips flops illustrated by the Hdd interaction.

properties of different isotopes in InGaAs QDs is found in Table 2.4.

The effect of a large quantity of spins is an overall magnetization M generated by the

nuclear spin bath, which is defined by,

M =
∑

i

µi (2.13)

where µi is the magnetic moment generated by the i-th nuclear spin. In thermal equilibrium,

µ is randomly distributed among the spin states of the nuclei Iz,i, which for infinite nuclear

spins would cause the effect of the nuclear spin bath to average out and M = 0. However,

the finite number of spins ∼ 104 results in statistical fluctuations becoming an important

consideration. Input of energy via optical pulses can alter this state to provide a non-zero

magnetization. Nuclear spins can interact with other nuclear spins and also interact with the

carrier spins in the QD via the hyperfine interaction, which we discuss in Section 2.3.3. In

this section, we consider the internal dynamics of a rich nuclear spin bath found within the

InGaAs QD system.
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Nuclear dipolar interaction

The nuclear spin bath is a complex system of spins which can interact among the constituent

nuclei within the nuclear spin bath and nearby nuclei in the wetting layer. For GaAs and

InAs, this manifests primarily in the form of nuclei dipole-dipole interaction, Hdd. In the

simple case of two nuclear spins Ii, Ij separated by a distance rij can be considered for the

whole system as such,

Hdd =
µ2
N

2

∑

i ̸=j

gigj
r3ij

(IiIj − 3
(Iirij)(Ijrij)

r2ij
) (2.14)

where µN is the nuclear magneton, and gi,j is the g-factor of the nuclear isotope at site i, j.

The dipole-dipole interaction allows spin-flips with other nuclei of the same isotope within

the quantum dot, allowing spin polarisation to be transferred (shown in Fig 2.10). Spreading

of the spin polarisation is called spin diffusion, and can result in loss of spin polarisation to

the material surrounding the quantum dot [110]. Overall spin is lost to the crystal due to the

nonsecular part of the equation at magnetic fields lower or similar to the dipolar field ∼ 0.1

T [104, 111]. Each nuclei interacts with an effective field generated by the summation of the

dipole-dipole interaction with every other nuclei. Dipole-dipole nuclear interaction can cause

significant loss of spin polarisation through diffusion in bulk crystal semiconductors, however,

quantum dots experience strong Knight fields and quadrupole effects which overcome the

effects of the dipole-dipole interaction induced spin diffusion. While these effects limit dipole-

dipole interaction, nuclear spin-flip flops within the quantum dot still occur and can become

a limitation in maintaining coherence of a nuclear spin bath [112].

Nuclear electric quadrupolar effects

Atomic nuclei do not possess an electric dipole moment, resulting in no interaction with static

electric fields. However, any nuclei with I > 1/2 do posses an electric quadrupolar moment,

arising from a non-spherical distribution of charges within the nucleus. Quadrupolar moments
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do not interact with static electric fields but instead interact with electric field gradients

arising from local stain variations at each crystal lattice site [111]. Cubic structures such as

bulk InAs or GaAs possess no electric field gradient, but the presence of strain and defects

created by QD formation can break local symmetry and result in quadrupolar coupling of

the nuclei near the electric field gradient. To quantify the effect of strain on electric field

gradients, a gradient field tensor is introduced Sijkl, such that the electric field gradient is

described by,

Vij =
∑

k,l

Sijklϵkl (2.15)

where ϵkl is the symmetric strain tensor. In the principle axis reference frame +z, nuclear

quadrupole coupling to the electric field gradient Vij can be described by the Hamiltonian

HQ [111],

HQ =
eQ

4I(2I − 1)
(Vzz(3I

2
z − I2) + (Vxx − Vyy)(I

2
x − I2y )) (2.16)

where Q is the quadrupolar moment for a particular nucleus. Quadrupolar moment for the

relevant nuclei can be found in Table 2.4. We can simplify the electric field gradient terms

into two expressions, an asymmetry parameter η = (Vxx − Vyy)/Vzz and the field gradient

parameter q, where eq = Vzz. Often the axial symmetry assumption is made, resulting in

Vxx = Vyy and therefore η = 0. The overall Hamiltonian for the principal axis frame +z can

then simplified to,

HQ =
e2qQ

4I(2I − 1)
(3I2z − I2) (2.17)

The general Hamiltonian for nuclear spin states in a magnetic field considering the Zeeman

effect and quadrupolar coupling can be written as such:

H = HZ +HQ (2.18)

For the majority of experiments in this thesis, we operate at high magnetic field in the Faraday

geometry. We can assume that the magnetic interaction is stronger than the quadrupolar
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coupling (HZ ≫ HQ), allowing a treatment of the quadrupolar effect with perturbation

theory [113]. Considering a simple scenario where there are no quadrupolar effects HQ = 0.

We can see in Fig 2.11 that all nuclear spin states for a particular nuclei would have equal

energy splitting due to the Zeeman effect HZ = h̄ωLI, where ωL is the Larmor precession

frequency of the nuclei. Now considering the presence of the quadrupolar effects, we can

define a new set of axes with the electric field gradient principal axis along z′. The angle

between the electric field gradient axis z′ and the static magnetic field axis z is defined as θ.

The angular momentum projection on to the principle axis of the electric field gradient can

be defined as Iz′ . It is possible to use the assumption Iz′ = Iz cos(θ) + Ix sin(θ) without loss

of generality to give an expression for HQ in terms of the growth axis z [104, 111, 113]. The

energy levels of the Hamiltonian can then be expressed as the Zeeman effect with first and

second order perturbations due to the quadrupolar interaction.

Em = E(0)
m + E(1)

m + E(2)
m (2.19)

Transition energies from some spin state m to (m + 1) can then be calculated to varying

orders in terms of the Larmor precession frequency ωL = −γNBz, quadrupolar frequency

ωQ =
3e2qQ

h2I(2I − 1)
, and the angular displacement θ of the electric field gradient principal

axis and static magnetic field [111].

∆E(0) =h̄ωL

∆E(1) = − h̄ωQ(Iz + 1
2
)
3 cos2 θ − 1

2

∆E(2) = − h̄
ω2
Q

32ωL

sin2(θ)(6Iz(Iz + 1)

(1 − 17 cos2(θ)) − 2I(I + 1)(1 − 9 cos2(θ))

+ 3(1 − 13 cos2(θ))

(2.20)
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We now have a reasonable approximation to how the energy levels of the nuclear spin will

be affected by the quadrupolar effect. We can consider the effect of the perturbative terms

∆E(β) on the resulting dipole transition frequencies using ω(β) = ∆E(β)/h̄ where β is the

perturbation order. A visualisation of these effects for a nucleus of I = 3
2

under compressive

strain is shown in Fig 2.11.

The next simplest scenario beyond HQ = 0 is the scenario with the electric field gradient

axis z′ being parallel to the growth axis z, such that θ = 0. The second order term vanishes

due to the sin2(θ) term, and the first order term becomes −ωQ(Iz+
1
2
). The resulting transition

frequencies will be equally shifted by ωQ. More generally, we can expect an offset between the

z axis and the electric field gradient principal axis z′, requiring consideration of the second

term. For the central transition −1
2
↔ 1

2
, the (Iz + 1

2
) term becomes zero, indicating the first

order quadrupolar interaction has no effect on this transition. As a consquence the −1
2
↔ 1

2

transition energy becomes ωL + ω
(2)
Q .

For the satellite transitions (STs) we do however observe a shift in energies causing

an increase (decrease) in energy for the 1
2
↔ 3

2
(−3

2
↔ −1

2
) transitions for compressive

elastic strain. It is usually the case that ∆E(1) ≫ ∆E(2), and so the satellite transitions are

unaffected by the second order term [113]. In the specific case of the self-assembled InGaAs

QDs studied within this thesis, there is large inhomogeneous strain arising from the self-

assembly process. Inhomogeneity of the strain causes local strain variations which results in

each nuclei experiencing a different ∆E(1), which causes significant broadening of the STs in

nuclear magnetic resonance studies [104, 114].

The presence of the quadrupolar effect ultimately results in distinct energies for transitions

between different spin states, lifting the single frequency transition found in the absence of

quadrupolar interaction HQ = 0, which provides two useful applications.

Firstly, the differing energy levels of nuclei spin states due to the presence of quadrupolar

interaction can suppress the dipole-dipole flip-flops introduced in Section 2.3.2. Mismatch in

energy levels between nuclear sites results in dipolar spin flip flops requiring energy input,
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2
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2
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2

Satellite Transition (ST)

Central Transition (CT)

Satellite Transition (ST)

Figure 2.11: Splitting of nuclear spin state energies of a I = 3/2 nucleus in the presence of
Zeeman and quadrupolar interaction. This schematic assumes compressive strain resulting
in a positive quadrupolar contribution +ωQ. Absence of quadrupolar interaction, HQ = 0,
results in identical transition energies for all spin states. Presence of quadrupolar effectsHQ >
0 results in energetically distinct transitions. Central transition is unaffected as ∆E(1) = 0
for this transition, leaving only the second order term. The second order effect can also be
ignored for satellite transitions as generally ∆E(1) ≫ ∆E(2) [113].

effectively suppressing the interaction. Furthermore, this mechanism suppresses nuclear spin

diffusion with nuclei in the material surrounding the quantum dot. A highly strained dot

causes large energy mismatch when compared to the nuclei in the material surrounding,

preventing transfer of spin polarisation out of the QD [115]. Secondly, the unique transitions

for each spin allow each nuclear spin transition to be addressed induvidually, allowing full

control of the nuclear spin basis. This has been recently used to create a nuclear spin register

within a strain-free GaAs quantum dot [29].

It is also necessary to consider the scenario at lower magnetic field where HQ ≫ HZ ,

at which point the Zeeman effect is negligible. In this regime, the quadrupole splitting will

dominate separation between nuclear spin states, resulting in degenerate ±m spin states,
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but an energy difference between (±m) and ±(m+ 1) allowing nuclear quadrupole resonance

[113]. For InGaAs quantum dots, the quadrupolar shifts become comparable to the Zeeman

splitting at approximately Bz = 1 T, indicating that fields below this threshold will observe

deviation from the described model of HZ ≫ HQ [112].

Isotope Nuclear Spin I Hyperfine Constant A (µeV) Quadrupolar moment Q (b)

69Ga 3/2 43 +0.171
71Ga 3/2 54 +0.107
75As 3/2 46 +0.314
115In 9/2 56 +0.770

Table 2.4: List of nuclear spin properties for materials within InGaAs quantum dots. Hy-
perfine constants were taken from [104, 116]. Quadrupolar moments were taken from [117].

2.3.3 Hyperfine interaction

A perfect spin qubit would have no source of interaction to cause decoherence. An isolated

spin-1
2

system is unfortunately not possible within the quantum dot system due to the nuclear

spin bath discussed in the last section. Estimates for the quantity of nuclear spins within a

typical InGaAs quantum dot suggests N ∼ 104 - 105 [104]. Even with a factor of ∼ 1000

difference between the carrier and nuclear magnetic moment, the large number of nuclear

spins results in strong interaction with the charge carrier residing in the quantum dot via

the hyperfine interaction, HHF. Despite the adverse effect on carrier spin longevity, the

presence of a large nuclear spin bath provides a platform for creating quantum memory

storage due to the long lived nuclear spin states [115, 118]. Exploitation of the electron-

nuclear interactions also can allow the carrier to transfer information to a long lived spin

bath [31]. It is therefore important to understand the hyperfine interaction in order to

minimise unwanted interactions.

The hyperfine interaction is the interaction between a nuclear spin and the magnetic field
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produced by an electron, and is described by,

HHF = 2µBγh̄I(
l

r3
− s

r3
+ 3

r(s · r)

r5
+

8

3
πsδ(r)) (2.21)

HHF =HOrb
HF +HDip

HF +HFC
HF

HOrb
HF =2µBγh̄I(

l

r3
)

HDip
HF =2µBγh̄I(3

r(s · r)

r5
− s

r3
)

HFC
HF =2µBγh̄I(

8

3
πsδ(r))

where µB is the Bohr magneton, γ is the nuclear gyromagnetic ratio, l and s are the orbital

and spin angular momentum operators respectively, I is the nuclear spin operator and r is the

distance between the electron and nucleus. The first term, HOrb
HF is the spin-orbit interaction.

The second term, HDip
HF , describes the dipolar interaction between carrier and nuclei over a

long distance. The final term, HFC
HF , describes the Fermi-contact hyperfine interaction, arising

from the overlap of nuclear and electron wavefunctions [111].

Fermi-Contact hyperfine interaction

The Fermi-contact hyperfine interaction is the dominant process affecting the electron, owing

to its s-like state symmetry, enabling interaction through spatial overlap of the nuclear and

electron wavefunction. The electron envelope wavefunction spreads over the whole quantum

dot system, providing a channel to interact with the entire nuclear system of up to 105 spins

[27, 119, 120]. Holes are unaffected by this interaction as their p-like state symmetry results

in no spatial overlap with the nuclear lattice sites.

The Fermi-contact hyperfine interaction can also be expressed as:

HFC
HF =

ν0
2

∑

i

Ai|ψ(Ri)|2(2Ŝe
z Î

i
z + (Î i+Ŝ

e
− + Î i−Ŝ

e
+)) (2.22)

where ν0 is the volume of the unit cell, S is the electron spin, |ψ(Ri)|2 is the electron density
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at the ith nuclear site, I i and Rj are the spin and coordinate of the ith nucleus and Ai

is the hyperfine interaction constant. As we have a single carrier interacting with a large

nuclear spin bath, it is possible to approximate the nuclear interaction under the mean field

approximation. Here we now observe an overall effective magnetic field BN , which interacts

with the electron as such:

HFC
HF =

1

2
A⟨Iz⟩Ŝe

z = (µB)geŜ
e
zBN (2.23)

where ⟨Iz⟩ is the average nuclear spin, and A =
∑

iA
i. The value of Ai varies for different

nuclear types, which directly determines the strength of interaction each isotope in the dot

contributes to the overall hyperfine interaction [121]. Ai can be expressed as such:

Ai = −µ0

4π
· 8π

3
γSγN,i|ψ(0)|2 (2.24)

where µ0 is the vacuum permeability, γS is the electron gyomagnetic ratio, γN,i is the nuclear

gyromagnetic ratio of a given isotope and |ψ(0)| represents the electron wavefunction overlap

with the nuclear site. A list of hyperfine constants for isotopes present in InGaAs QDs is

found in Table 2.4.

The effective field created by the polarisation of nuclear spins is known as the Overhauser

field, and its presence can induce further splitting of the spin states with the QD. Total

Zeeman splitting of the electron can be expressed as HZeeman = µBgeBTot where BTot =

Bz +BOH . As such, we can directly measure the average polarisation of the nuclear spin bath

from measuring the change in Zeeman splitting in QD photoluminescence measurements due

to variations in the Overhauser field. A more technical description of how this is implemented

experimentally can be found in Chapter 3 .

As a consequence of the hyperfine interaction, the nuclei spins also experience an effective

field from the electron’s averaged spin projection known as the Knight field, BK , which is

quantified by the following expression:
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BK,i = fe
ν0Ai

gNµN

|ψ(Ri)|2⟨Ŝe⟩ (2.25)

where fe describes the occupation state of an electron within the quantum dot fe ∈ [0, 1],

and ⟨Ŝe⟩ is the electron spin polarisation. The instantaneous electron spin polarisation can

be used for scenarios where electron spin correlation time τe is similar or greater than the

nuclear precession period 2π/ωL. For the scenario where the electron correlation time is

much faster than nuclear precession period τe ≪ 2π/ωL, electron spin polarisation can be

time-averaged.

The presence of an electron induces a Knight field on the nuclei, shifting the nuclear

Zeeman splitting, resulting in HZeeman = µNgNBTot for a single nuclei, where BTot = Bz+BK .

The effect is complicated by the non-uniform distribution of the envelope of the electron

wavefunction density, resulting in nuclei in the centre of the dot being more strongly affected

than the nuclei on the edges [104, 122]. Further implications of the effect of the Knight field

are explored in Chapter 5.

Carrier-nuclei dipole interaction

After studying the Fermi-contact hyperfine interaction, there are two other terms in Eqn. 2.21.

These two terms become key when considering the hole spin hyperfine interaction with nuclear

spins. As mentioned in the previous section, p-like symmetry of the hole spin states result

in vanishing wavefunction overlap at the nuclear spin sites, resulting in no coupling of the

hole to the nuclei via Fermi-contact hyperfine interaction. Consequently, the most significant

hyperfine interaction affecting the carrier hole is a combination of the electro-nuclear dipole

interaction HDip
HF and the nuclear-orbital interaction HOrb

HF .

Previous discussions of the carrier hole within a quantum dot has been limited to a simple

model considering only heavy hole states Jh = ±3
2
. However, to consider the interactions of

the hole with nuclei via dipole interaction, it is important to include valence band mixing for

a full description. Dipole interaction results in a spin flip-flop between the carrier hole and a
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nuclei, with a required transfer of angular momentum ∆J = ±1. Finite heavy-hole light-hole

splitting causes the heavy-hole Jh = 3/2 to be the lowest lying hole state separated from

the light-hole state by ∆lh−hh. Transfer of spin to a nuclei from the heavy hole via spin flip-

flop would require energy input to overcome the splitting ∆lh−hh. The energy requirement

is circumvented through valence band mixing, where an admixture of the heavy and light

hole states occurs due to the anisotropic strain and shape of the QD. Valence band mixing

is quantified by the parameter β, and is related to a term known as the anisotropy factor

α = 2|β|/
√

3. Now that light hole states Jh = 1/2 may arise with no energy input, dipolar

flip flops of the hole and the nuclei can occur. By accounting for small valence band mixing

(β ≪ 1), the following expression for hole-nuclei dipolar coupling is found [104]:

HDip = ν0
∑

i

Ah
i

1 + β2
|ψ(ri)|2(I izJh

z +
α

2
(I i+J

h
− + I i−J

h
+)) (2.26)

where Ah
i is the dipole-dipole hyperfine constant. Due to the direct dependence on dot

anisotropy, the dipolar interaction can also be referred to as the anisotropic hyperfine inter-

action.

Nuclei-orbital interaction

The final contribution to hyperfine interaction is the coupling of the momentum of the carrier

to the field generated by the nuclear magnetic moments, and is known as the nuclei-orbital

interaction HOrb
HF . The effect is very relevant for holes as it has a large effect on bands of

non-zero angular momentum, such as the p-like band the carrier holes occupy. It is described

with the following expression

HOrb
HF = geµBγN h̄

I ·L
r3
i

(2.27)

where L is the angular momentum of the carrier hole. Occurances of hole-nuclei spin flips

can arise from contribution of the d-shell orbitals which induce spin flip-flops. Inclusion of
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d-shell orbitals also reduces the symmetry of the system from spherical to the real crystal

symmetry, resulting in a hyperfine interaction that does not conserve angular momentum and

allows spin flips between the two heavy hole states |⇑⟩, |⇓⟩ [108]. Combination of these effects

results in a significant hole-nuclei hyperfine interaction Ah. Experimental measurement of Ah

reveals that the hole spin states couple to the nuclei by a factor of 10 weaker than the electron

Ah/A ∼ 0.1 [107, 109, 123]. Considering both HOrb
HF and HDip

HF completes the specific picture

of hole-nuclear hyperfine interaction, and provides a full description of hyperfine interaction

within a quantum dot [39, 104, 124].

2.4 Controlling spins within quantum dots

We now have a complete picture of the spins within the quantum dot system. It is now possi-

ble to discuss what implementation of quantum computing protocols would look like within a

quantum dot spin qubit. This is achieved in three key steps as described in Chapter 1, state

preparation, state manipulation and state readout. State preparation involves establishing

an initial spin condition which is a known state. State manipulation then can arbitrarily

rotate and control the spin to carry out computations using the spin qubit. Finally, a mea-

surement of the state needs to be made in order to extract information. A fourth underlying

key step is also required, long lasting quantum states such that information is not lost during

computation. In this section, we will discuss how this is achieved for both the electron and

nuclear spin system within an InGaAs quantum dot.

2.4.1 State preparation

Initialisation and readout of the both the electron and nuclear spin systems involve the input

of energy to the quantum dot via optical excitation. Any precise spin state measurement will

require some initialisation process first.

First, we can study the state preparation of carrier spins within a quantum dot. Generally
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we are most interested in the electron spin as this is the focus of experiments in this thesis,

but we shall also include brief discussion of hole spins for completeness. Consider the system

discussed in Section 2.3.1. We have two spin states |↑⟩ and |↓⟩ (|̃⇑⟩ and |̃⇓⟩) for the electron

(hole) spin. Both carriers experience state degeneracy at Bz = 0 T, with the electron coher-

ence time being only ∼ 1 ns due to Fermi-contact hyperfine interaction with the Overhauser

field. The addition of a magnetic field breaks the degeneracy, suppresses this decoherence

mechanism and provides two distinct electron spin states. The hole spin also experiences

fast decoherence on a timescale of ∼ 14 ns [125] as a result of hyperfine hole-nuclei dipole

interaction, instead of the Fermi-contact hyperfine interaction as discussed in Section 2.3.3

[109, 125].

From these spin systems, we need to be able to quickly initialise the states into some

known initial conditions, for example, the spin-up |↑⟩ (|̃⇑⟩) state. The energy level diagram

demonstrating the initialising of the electron spin state is illustrated in Fig 2.12a. To the

first order, there is no interaction between the two spin states once degeneracy is broken.

The spin will therefore be stable once initialised, and so we can use resonant excitation to

spin pump the state. Two distinct optical transitions occur in the presence of Bz due to the

selection rules that arise from Faraday geometry, one for each of the spin states. Application

of a photon with frequency tuned to one of the transitions, for example |↑⟩, will result in

resonance fluorescence at a rate of Γ, where by the two level system will emit photons at the

same frequency as excitation in a scattering process [126].

Presence of a weakly allowed mechanism, γ, allows relaxation of the trion state into the

opposing carrier spin state (|↓⟩). The γ transition is forbidden via optical selection rules

but is weakly allowed due to misalignment of static magnetic field to confinement axis or

heavy-hole light-hole mixing [126]. The spin in the opposing state cannot trivially relax

into the original spin state through a spin-flip process ϵ↑↓, and it is now detuned from the

resonant optical excitation as a consequence of the magnetic field [126, 127]. This results

in the spin becoming “shelved” in the opposing spin state. The spin will eventually relax
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Figure 2.12: Optical spin initialisation techniques for both the carrier and nuclear spins. a)
Resonant optical spin pumping allows initialisation of a spin state to the spin down state |↓⟩
by exciting the spin-up to trion transition Γ until the weakly allowed recombination γ occurs
b) High power circularly polarised excitation of a QD allows spin to be quickly transferred
to the nuclear spin bath (yellow) by hyperfine induced electro-nuclear spin flip-flops (green
arrows) mediated by the Fermi-contact hyperfine interaction HFC

HF .

on the timescale of ϵ↑↓ = 1/T1 due to spin-flip processes such as cotunnelling or phonon

mediated transitions, further discussed in Section 2.4.4 and studied in detail in Chapter 4.

Repeated resonant excitation of the Γ optical transition will eventually result in the weakly

allowed transition γ occurring, successfully initialising the spin to a known state |↓⟩, allowing

computational operations to be performed.

A similar scheme can be used to initialise the hole spin state, but instead of utilising the

weakly allowed γ transitions it is possible to take advantage of electron-nuclear hyperfine

interaction [103]. Generation of a trion via circularly polarised resonant optical excitation

of a hole |⇓⟩ creates a trion of |⇑⇓, ↓⟩. The most likely relaxation mechanism will release a

photon at the same energy as the excitation, as seen for the electron initialisation scheme.

However, a weakly allowed interaction between the electron in the trion and the in-plane

field of the nuclear spin bath BNuc
xy can occur. This results in electron precession of ∼ 1 ns

and is the reason electron spin state are short-lived at Bz = 0. The rotation of the electron

spin results in the recombination of the |⇓⟩ with the electron spin instead of the orignal |⇑⟩.
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As a result, the hole now occupies the opposing spin state and is shelved here, shielded from

optical excitation due to polarisation of the incoming excitation [103]. The scheme works

at Bz = 0 T due to small hole-nuclear hyperfine interaction as discussed in 2.3.3 . Another

scheme has been developed by preferentially tunnelling carrier electrons from the QD while

forcing the hole to remain with a thick blocking barrier, allowing high fidelity (F > 99%)

and fast control (∼ 30 ps) [105].

The nuclear spin system is somewhat different to the electron spin system owing to the

presence of many spins as opposed to one. Polarisation of the nuclear spin bath can be

achieved through both resonant and non-resonant excitation. Non-resonant excitation uses

circularly polarised light σ± to pump the electron spin. Electron-nuclear spin flips can then

occur via the hyperfine interaction, polarising a single nuclear spin in the bath [128]. High

power nonresonant excitation results in repeated spin polarisation transfer to the spin bath,

polarising the majority of the nuclear spins in short period of time. This is not completely

efficient however, as the hyperfine interaction can cause spin flips and reduce the overall spin

bath polarisation. Measurements of DNP via non-resonant excitation in III-V quantum dots

have shown consistent results above 50% [128–130] with the highest nuclear polarisation of

∼ 80% [131].

Resonant excitation of the exciton states can also successfully induce significant DNP. One

techinque involves resonant excitation of the neutral exciton X0 while operating a charge

controlled structure at a bias corresponding to fast electron tunnelling [132]. During the

radiative lifetime of the exciton X0 exciton τr ∼ 1 ns, an additional electron tunnels on a

much shorter time scale of τIn ∼ 35 ps creating a trion. The trion recombines leaving an

electron within the QD for a short period of time τOut ∼ 5 ps, in which time the electron

can undergo a spin flip-flop with a nuclei via the Fermi-contact hyperfine interaction. After

a short time τOut ∼ 5 ps the electron leaves the dot, allowing resonant excitation to repeat

the cycle generating a build up of DNP to a maximum of ∼ 13% [132].

Another resonant nuclear spin pumping technique is achieved through spin-forbidden
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transitions [128]. Excitation of weakly allowed transitions γ described earlier in this section

can induces a second order process that is allowed through the spin flip of an electron and

a nuclei. The weakly allowed transition is difficult to saturate as a consequence of the

weak coupling, allowing continuous excitation for transfer of spin to the nuclear spin bath.

This techinque can achieve DNP levels of ∼ 65% [128] . Both resonant and non-resonant

excitation generate spin bath that are not fully polarised, which although not ideal, still

provides a substantial number of spins available for coherent manipulation.

2.4.2 Spin manipulation

Once the spin states are prepared, it is possible to start attempting to control them. Com-

bined with our previous discussions on spin interaction, we can now discuss the fundamentals

of coherent spin control, to allow arbitrary rotation of spins within the Bloch sphere, provid-

ing a spin qubit basis for use in a quantum computer.

Consider a simple system of a single spin with S = 1/2. When placed in some static

magnetic field B0 along the z axis, the degenerate spin states split via the Zeeman effect as

mentioned in previous sections. We then have a two-level system with states ms = ±1/2

where the splitting of the states is quantified by ∆E = gµBz. In large enough B0, the spins

will precess around the field at the Larmor frequency ωL [113]. Control over the spin state

can be achieved through the application of an oscillating magnetic field generally referred to

as B1. The field oscillates at a frequency of ωrf , and when ωrf = ωL the system responds

resonantly to the field. The technique of applying an alternating magnetic field to spins in

some static field was originally developed to probe atomic nuclei, and is known as nuclear

magnetic resonance (NMR). However, the technique can be extended to control electron spins

through electron spin resonance (ESR) [32]. Both are powerful tools for manipulating spin

systems within quantum dots, as we will discuss below.

The alternating field Bx applied perpendicular to the system is described by a simple
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oscillating function,

Bx(t) = Bx,0 cos(ωrf t) (2.28)

where Bx,0 is the perpendicular field amplitude. The easiest analysis of the effect of Bx comes

from breaking it down into two opposite rotating components with amplitude B1 [113],

BR = B1(x̂ cos(ωrf t) + ŷ sin(ωrf t))

BL = B1(x̂ cos(ωrf t) − ŷ sin(ωrf t))

(2.29)

One term will rotate in the same direction as precession of the spin, the other will rotate in

the opposite direction and are related to Eqn 2.28 through the expression Bx = (BR +BL)/2.

It is possible to neglect the opposing rotation under the conditions of resonance when the

static field is much stronger than the alternating field B0 ≫ B1. This allows us to only

consider a single rotating field represented by B1 = B1(x̂ cos(ωrf t) + ŷ sin(ωrf t)). It is now

possible to write an equation of motion describing the spin in the presence of both B0 and

B1. We write this in terms of the classical magnetic moment of the spin µ,

dµ

dt
= µ× γ(B0 + B1(t)) (2.30)

where B0 = B0ẑ and γ is the gyromagnetic ratio of the spin. Oscillation of B1 creates a

time dependence of the field, which can be removed if we consider the spin system within the

rotating frame. The rotating frame coordinate system is defined such that the coordinates

rotate at angular frequency ωL of precession around ẑ. This causes B1 to become static

when strictly resonant with ωL. The static field in the laboratory frame, B0, remains static

as the coordinates are rotating about its axis. Converting the equation of motion to a frame

of reference along the axis of B1 results in the following expression of the equation of motion

in terms of static fields B0 and B1.

dµ

dt
= µ× γ((B0 −

ωL

γ
)ẑ +B1x̂) (2.31)
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This can also be expressed in terms of the effective magnetic field Beff felt by the moment.

dµ

dt
= µ× γBeff

Beff = (B0 −
ωL

γ
)ẑ +B1x̂

(2.32)

This equation demonstrates the effect of application of an oscillating field, as we would

expect the moment to precess around Beff by moving away from the static field ẑ and

then return after some time defined by the frequency γBeff . As we want to resonantly

excite the transition between spin states, it is important to consider what happens under

resonant conditions where ωrf = ωL. Here, ωrf = γB0 resulting in the equation of motion

depending entirely upon the perpendicular field B1. Under these conditions, the nuclear

magnetic moment will precess perpendicular to the applied field in the yz plane, periodically

becoming parallel and antiparallel to the static field [113].

Selective application of B1 allows control of the spin state of the system. Applying B1

for a length of time t will cause rotation of the spin by angle θ = γB1t. This allows arbitrary

control of the spin projection by applying different length pulses. Common pulse lengths are

rotations of π and π/2, referred to as 90 degree and 180 degree pulses, where t90 = π
2
/(γB1)

and t180 = π/(γB1).

In the scenario described so far, the spin will precess infinitely under application of B1.

However, this is not a realistic scenario, as we expect loss of energy to the lattice and interac-

tions with other spins nearby. The longitudinal spin-lattice decay T1, transverse decay due to

spin-spin interaction T2 and transverse decay due to field inhomogeneities T ∗
2 determine the

time scales of relaxation parallel and perpendicular to the static field. In the presence of the

static magnetic field B0, any macroscopic magnetic moment will eventually become parallel

to the static field. Considering some magnetization M(t) = Mx(t)x̂ +My(t)ŷ +Mz(t)ẑ in

the static field along ẑ, eventually M(t) = Mz(t). To account for this relaxation towards
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the static field, we can write the equation of motion for the Mz component.

dMz

dt
=
M0 −Mz

T1
(2.33)

From this equation we can see that the system will reach equilibrium once Mz equals the

magnitude of the equilibrium magnetisation vector M0. If the magnetic moment is aligned

along the ẑ axis in equilibrium, we require the Mx,y components to tend to zero.

dMx

dt
= γ(M ×B)x −

Mx

T2
dMy

dt
= γ(M ×B)y −

My

T2

(2.34)

The equations above (Eqn 2.34) are known as the Bloch equations and were first introduced

by Bloch in 1946 [133]. It is now possible to calculate the expressions for the magnetization

components and observe that we expect exponential decay of magnetisation on two separate

time scales T1 and T2. Consider a system in the rotating frame with no oscillating field.

The effective field in this scenario is therefore B = 0, resulting in simple linear differential

equations. Solving these provides the following solutions to the Bloch equations, which clearly

indicate the loss of magnetization in the x-y plane over time scale T2 and complete alignment

to the thermal equilibrium magnetization M0 over time scale T1.

Mx = Mx(0)e−t/T2

My = My(0)e−t/T2

Mz = M0 − (M0 −Mz(0))e−t/T1

(2.35)

The nuclear spins within a quantum dot require slight adjustment to the above model, as the

nuclear spin bath forms a total magnetization as a consequence of the sum of the magnetic

moments of all i nuclei M =
∑

i µi. An additional consideration also needs to be made for

the larger total spin for nuclei within InGaAs/GaAs quantum dots, where all nuclei have
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I > 3/2, which is accounted for by a generalisation of the above model.

Nuclear magnetic resonance within semiconductor quantum dots is a well researched field,

with much success in investigating the relaxation mechanisms within the nuclear spin system,

as well as the effect of the hyperfine interaction on the nuclear spin bath [114, 123, 134–136].

Electron spin resonance (ESR) in optically active quantum dots on the other hand has

only been achieved once using standard oscillating field techniques [32]. A major difference

between the nuclear and carrier spin system is the difference in splitting between spin states.

For a nuclear spin within an InGaAs quantum dot experincing a static magnetic field of 8T,

the NMR resonances are in the range ωrf ∼ 50−120 MHz [123]. In contrast, an electron spin

in a self assembled QD, with typical g-factors of -0.7 to -0.35 [89, 137, 138], would require an

oscillating field of frequency ωrf ≈ 4 to 9 GHz at a field of 1 T, which proves challenging to

generate without significant technical difficulties. High frequency resonators generate high

fluctuating electric field which will interact with the spin states within the QD. Recent work

on keyhole resonators have given some hope to generating the required fields from resonators

off chip [33], but the majority of work on coherent control of electrons in InGaAs QDs so far

has been carried out under Voigt geometry using optical control of the spin [31]. We explore

microwave resonator designs for ESR applications in more detail in Chapter 6.

2.4.3 State readout

Once we have prepared and applied the desired manipulation to the spin states, optical

readout can be achieved for both the carrier and nuclear spin systems. Readout of the carrier

spin system can be achieved using resonant optical pulses to detect the presence (or absence)

of optical emission from a specific spin state, indicating which state the carrier was in the

time of measurement [126]. Nuclear spin readout uses the Overhauser field generated by a

polarised nuclear spin bath. The additional shift in Zeeman splitting can be measured through

photoluminescence, giving a direct measurement of the ensemble polarisation [128, 139].
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Further details on these techniques will be discussed Chapter 3.

2.4.4 Spin relaxation

Long spin lifetimes, T1 and coherence times T2 are desirable if quantum dots are to be

used in spin qubit applications. The primary findings of this thesis investigate the various

mechanisms affecting T1 in both the electron and nuclei, in addition to coherence times of the

nuclei T2,N , and as such we will limit discussion here to a brief overview of the mechanisms

affecting these parameters.

We shall quickly reconsider the physical meaning of T1 and T2. Consider a spin initialised

into the spin-up state |↑⟩, parallel to some static magnetic field (B0) along the quantization

axis (+z). The relaxation of the spin magnetization can be described by two parameters.

The first, longitudinal relaxation T1, describes loss of energy from the spin to the surrounding

environment. This manifests as a loss of the magnetization towards the thermal equilibrium

state of magnetization as shown in Fig 2.13. Once the spin system has fully relaxed longi-

tudinally, it has returned to its equilibrium state, and will require re-initialising before more

operations can be carried out. As a result, longitudinal relaxation T1 is often referred to as

lifetime of the spin.

The second, transverse relaxation T2, describes the loss of magnetization in the x-y plane,

and is essentially a loss of phase information over time. Transversal relaxation can occur

without energy transfer, resulting in T2 being faster than T1 in dipolar rigid solids where

spins are located at a fixed point. Loss of phase can occur by random spin-spin interactions

which over time will result in total loss of magnetization and the information stored within

the phases of the spins. This can also be described as decoherence and as such T2 is often

referred to as coherence time.

Additional loss of transverse magnetization can occur through inhomogeneities in the

magnetic field. Local fluctuations in field cause different spins to precess at marginally dif-

ferent rates, resulting in the spin precession becoming out of phase. This process is known
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a) b) c)

Figure 2.13: Relaxation times T1, T2 and dephasing time T ∗
2 of a spin in the rotating frame.

Graphical projection of a pure two level spin state in the rotating frame as shown in the
figures provides visualisation of the spin state space and is known as a Bloch sphere. a)
Longitudinal relaxation (pink) returns the systems magnetization to the thermal equilibrium
state over time T1, represented by a loss of magnitude of magnetization vector over time M(t)
in Bloch sphere. b) Transversal relaxation (orange) of the magnetization vector occurs on
time scale T2 due to spin-spin interactions, resulting in irretrievable loss of phase information.
c) Pure dephasing (blue) results in a loss of phase information due to inhomogeneities in the
magnetic field which can be visualised as a spreading out of the magnetization vector of the
spin, and as a consequence losing spin state information over time T ∗

2 . Dephasing can be
refocused through the technique of spin echoes as discussed in Section 2.4.2.

as dephasing and is quantified by the dephasing time T ∗
2 . Loss of energy to the environ-

ment through longitudinal relaxation will eventually cause a loss in phase information. The

magnitude of the effect of T1 on T2 is given as such:

1

T2
=

1

2T1
+

1

T ∗
2

(2.36)

Measurement of T1 and T2 for both the electron and nuclear subsystems will provide

a complete understanding of the timescales available for quantum computing algorithms.

The mechanisms affecting the relaxation/coherence terms need to be understood in order

to mitigate or remove their effect, prolonging spin states and allowing more computational

operations to be performed in a single initialisation sequence.

Nuclear spin relaxation T1,N can be measured through the observation of loss of dynamic

nuclear polarisation. Extremely long T1,N > 10000 s observed for uncharged self assembled
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InGaAs dots in the literature [139–141] indicate that nuclear spin diffusion is not a dominant

source of relaxation. This is explained due to nuclear spin diffusion being suppressed by the

quadrupolar freezing [128, 140, 142] of nuclear spin flip flops, as discussed in Section 2.3.2.

The primary contributor to loss of nuclear polarisation in charged InGaAs QDs is the electron-

nuclear spin flip-flops caused by the hyperfine interaction, allowing the electron to act as a

mediator to transfer the spin polarisation to another system such as phonon modes or the

Fermi sea. This has been clearly observed both in the literature and in our work shown

in Chapter 4 as a reduction in T1,N for a singly charged quantum dot when compared to

uncharged/doubly charged quantum dots.

Electron spin lifetime T1,e is affected by two key processes, phonon mediated spin flip

interaction and cotunnelling effects. Spin orbit interaction creates an admixture between

opposing spin states in the electron, allowing transitions to occur via phonon related effects.

This dependance has a strong relationship with magnetic field, T1,e ∝ B−5, which was pre-

dicted [143] and experimentally measured [144]. Cotunnelling is an exchange of electron spin

with the Fermi resevoir and has no field dependence, instead depending on the strength of

coupling between the dot and the Fermi resevoir [145]. A full description of spin relaxation

of quantum dots is considered in Chapter 4.

Coherence time of the electron T2,e is usually approached using the Merkulov-Efros-Rosen

(MER) model [28], considering an electron in the absence of magnetic field. Here we define

three distinct time scales to describe interactions between the electron and the nuclei causing

decoherence of the electron. The first describes electron precession around nuclear field

fluctuations and causes dephasing of ∼ 1 ns. The second is the nuclear precession around the

Knight field, limiting coherence to ∼ 1 µs. Dipole-dipole nuclear flip flops near the electron

can also reduce coherence, placing a limit of ∼ 100 µs on coherence time [28, 104]. Application

of a magnetic field to split the spin states was predicted and proven experimentally to remove

the first effect by stabilising the electron spin along the static field axis [28, 101]. The effects

of the electron precession around nuclear field fluctuations are suppressed for fields as small
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as B ∼ 10 mT. As the majority of experiments in this thesis are carried out with a static

magnetic field B ∼ 0.5 - 8 T, only the second and third processes would need to be considered

for investigations into T2,e. Longest reported coherence times for the electron are T2,e ∼ 4

µs, utilising spin echo techniques to suppress nuclear field fluctuations and prolong electron

coherence time [104, 146]

Nuclear coherence times in InGaAs dots are measured through pulsed NMR techniques

such as Hahn echo. Pure dephasing T ∗
2 results in loss of phase over a short time for transverse

magnetization in the x-y plane. It was shown by Hahn in 1950 that the application of resonant

RF pulse of length t180 would rotate the in-plane magnetisation and cause the magnetization

to refocus [147]. The technique of applying refocusing pulses was named spin-echoes and

provides direct measurement of true T2 through the elimination of the trivial inhomogeneous

broadening caused by dephasing T ∗
2 . Further discussion of spin echo techniques is carried out

in Chapter 5.

Measurement of T2,N for the various isotopes within an uncharged InGaAs dots gives

T2,N ∼ 0.5 - 10 ms depending on the isotope [112]. Decoherence is attributed to nuclear

dipole-dipole interaction, which can be suppressed through the use of dynamical decoupling

sequences such as Carr-Purcell (CP), Carr-Purcell-Meibloom-Gills (CPMG) or the more re-

cently developed CHASE sequence [114]. Dynamical decoupling techinques allow further

prolonging of nuclear coherence times with up to a factor of 5 improvement [114]. Addition

of an electron to charge the quantum dot was thought to provide a source of fast nuclear

decoherence via the hyperfine interaction, with nuclear coherence times reduced by a factor

of 100 [136]. In fact, we have shown millisecond length nuclear coherence times T2,N, which

is discussed in further detail in Chapter 5.
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3

Experimental techniques

3.1 Samples

The quantum dot structures studied in this thesis are a series of charge-tuneable InGaAs/GaAs

samples grown using MBE. The SK growth mode allows the formation of InAs quantum dots

as discussed in Section 2.1.1. All samples were grown at the National Epitaxy Facility in

Sheffield by E. Clarke. In order to create charge tunable structures, an n-doped layer is

grown and separated from the single InAs quantum dot layer by a GaAs tunnelling barrier

of thickness tB. The aim of this series of samples was to alter the thickness of the tunnelling

barrier tB in order to investigate the effect of QD coupling to the Fermi reservoir on the

longevity of the spin states within the QD.

A total of four samples were grown with tunnelling barrier thickness’s tB = 37, 42, 47, 52

nm. A full layer diagram of the charge-tuneable structures can be seen in Fig 3.1, which we

shall now describe in detail. The tunnelling barrier separating the dot layer from the doped

layer were grown in a two-step process, first a 15 nm layer of GaAs at 470 ◦C and then a

(tB − 15) nm layer at 580 ◦C. Starting with cold growth of the tunnelling barrier limits Si

segregation and diffusion from the doped layer.

In addition to the layer required for charge controlled structures, an asymmetric DBR

59
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cavity was grown. Fewer layers are used above the QD layer to enhance optical emission in

the +z axis for photoluminescent studies. The DBR is formed of alternating GaAs/AlAs

layers, with 15 repeats below the dot layer and 2 repeats above. The cavity is centred at

∼ 950 nm for cryogenic temperatures, enhancing the larger quantum dots emitting at a longer

wavelength. Focusing on longer wavelength dots in the tail of the broad QD PL distribution

allows for spectrally isolated quantum dots to be measured, limiting inter-QD interaction for

experiments. The samples grown were also designed to have a low density of QDs to further

limit inter-QD interaction, achieved through low InAs deposition rates during growth of the

dot layer (Section 2.1.1).

Top contact

DBR x2

InAs Dot Layer
Tunnelling barrier

Si doped n-layer

DBR x15

GaAs Buffer

Figure 3.1: Layer diagram of the charge-tuneable InGaAs quantum dot structure with a DBR
cavity centred at λ = 950 nm. Asymmetric DBR enhances optical emission in +z direction.
Bonded gold wiring connects the top and back contact to allow electric field F to be applied
across the n-doped and QD layers for charge tuning. QD layer is separated from the Si doped
n-layer by a tunnelling barrier of thickness tB.

Charge control is achieved by fabricating a Schottky diode structure after MBE growth is

completed. Fabrication of the diode structures on the samples used in this thesis was carried

out by I. M. Griffiths. A gold back contact is deposited first, and can be seen in Fig 3.2 as

a gold strip surrounding the dark area with 4 diodes. The sample is then annealed to allow
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Diodes

tB = 52 nm
Sample

tB = 37 nm
Sample

tB = 52 nm
RF Coil

Markers

Bond Pads

b)a)

Figure 3.2: a) Microscope image of tB = 37 and 52 nm processed samples. Rows of 4 diodes
are cleaved near the edge of diode to allow close proximity of sample to RF coil. b) Closer
zoom image of tB = 52 nm sample. Bond pads have gold wire bonded to the surface allow
application of bias. Below the bond pads is an unmasked region allowing optical access and
to dots within the diode, with gold markers deposited on the unmasked region to use as
positional reference when moving across the sample. An RF coil sits close to the sample
below the view of the image, discussed further in Section 3.2.

gold diffusion down to the n-doped layer to create the back contact. A thin titanium (Ti)

layer of thickness ≈ 5 nm is deposited in 4 locations as the base of the Schottky diode top

contacts. Careful calibration of the Ti layer thickness is required as too much Ti severely

limits optical transmission from the QDs, but a layer too thin does not allow for a high

quality electrical contact. Gold bond pads and markers are then deposited on top of the Ti

layer. A 10 x 10 square of markers with labels for each column and row allows more reliable

location and relocation of desirable QDs for experimental study. Samples are cleaved close

to the bottom of a row of diodes in order to maximise proximity to the RF coil. The sample

is then mounted on to a copper block with indium epoxy. Ball bonding is used to bond a

thin gold wire to the bond pad and connect the sample to a printed circuit board (PCB)

(seen in top of Fig 3.2a), which can be connected to any desired circuit for external control

of applied voltage to the diodes.

Photoluminescence spectra of the quantum dots present in both tB = 37 and 52 nm

samples were carried out for optical characterisation, as shown in Fig 3.3. PL was carried
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Figure 3.3: PL spectra at T ≈ 4.5 K for the tB = 52 and 37 nm samples at an arbitrary
position on each sample. Optical excitation was performed using a λ = 850 nm diode laser
with an optical power of PExc = 1 µW. A distribution of QDs are visible at 1.4 eV, but bright
dots are found at longer wavelengths as emission is enhanced by DBR cavity.

out at ≈ 4.5 K in the bath cryostat described in Section 3.2, using optical excitation from an

850 nm diode laser with an excitation power of PExc = 1 µW. Bulk GaAs can be observed

at ∼ 870 nm, next to a broad spectrum of QD signals observed at 900 nm. The broad

distribution of dots is optically active but not individually resolvable. The effect of the DBR

cavity can be seen as longer wavelength dots are bright compared to the broad distribution,

which is a direct consequence of the cavity being centred at 950 nm. The long tail of the

QD distribution demonstrates the desired low density of long wavelength quantum dots was

achieved.

3.2 Bath cryostat set-up

All experimental work in this thesis has been carried out at T ≈ 4.5 K unless specified

otherwise. To achieve stable cryogenic temperatures at all times for the quantum dot samples
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Figure 3.4: Schematic of Attocube bath cryostat set up. The cryostat is filled with liquid
helium to keep samples at temperatures of T ≈ 4.5 K. Optical excitation passes through
a window into the sealed insert and through a lens to focus on the sample. RF pulses are
transmitted and measured by copper coils connected to BNC cables at the top of the cryostat.
12-pin connectors allow control of the piezo stages and readout of the temperature sensor
below the sample. A BNC connector at the top of the insert allows application of bias to the
sample in order to provide charge control of diode samples.

studied, we use an Attocube bath cryostat set-up. Liquid helium is stored within the cryostat

with a long metal insert submerged inside it. The quantum dot samples are stored inside the

insert, which has a small amount of helium exchange gas added after vacuum pumping. A

full schematic of the bath cryostat set-up is shown in Fig 3.4.

At the base of the cryostat there is a superconducting ring magnet surrounding the

insert, allowing generation of static magnetic fields parallel to the insert axis. The magnet

is controlled via a Mercury iPS control unit and allows largely homogeneous static magnetic

fields of up to B = 8 T to be generated.
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Within the metal insert, a cage system holds 3 nanopositioner stages to allow translation

in x-, y- and z-directions, allowing accurate alignment of optical signal. A small window sits

at the top of the insert to allow optical excitation to enter the insert and excite the sample.

The optical excitation is focused by a lens near the sample and collimates any emission from

the sample.

At the top of the insert, there are several BNC connections in addition to two 12-pin

connectors. Two of the BNC connectors are for application and detection of radio-frequency

(RF) pulses. A non-magnetic coaxial cable is routed from the “RF In” port at top of the

insert (Fig 3.4) down to the sample, which allows attachment of a small copper coil used to

generate oscillating magnetic fields for NMR experiments. The RF coil can be positioned

an arbitrary distance from the sample in order to strengthen applied B1 fields. Ideally, the

sample needs to reside as close as possible to the coil for maximum B1 for a given power

(see Section 3.6.5 for more detail). Minimising proximity of the sample and coil needs to be

balanced with ensuring there is no contact between the coil and sample due to the heating

effects that arise from high power RF. Additionally, we require enough room for movement

of the piezo stages, providing a usable area of the sample to allow search for QDs. On the

opposite side of the RF coil there is a pickup coil that can detect emitted RF signal and

transmits it back up the insert to the “RF Out” BNC connector. This can then be connected

to a spectral analyzer to allow information about the applied fields to be monitored.

The remaining BNC connectors are connected to the diodes of charged-tuneable samples.

Bias can be applied from a generator to allow arbitrary control of sample charge. This is

critical when running measurements investigating charged quantum dots. Cables are con-

nected to the sample by soldering wiring between the insert cabling and the PCB sample

mount (Section 3.1.)

One of the 12-pin connectors links the Attocube ANC150 piezo control unit with the

stages underneath the sample, allowing translation of the sample in the x-y plane. The

movement of the sample in the x-y plane allows different parts of the sample to be excited



CHAPTER 3. Experimental techniques 65

and therefore different quantum dots to be investigated. This is significantly easier than

moving the optical beam. The ANC150 allows control of the step size and frequency of each

piezo stage, providing the ability for broad movement around the sample and fine-tuning of

single quantum dot excitation. An additional piezo stage allows movement of the sample in

the z-plane, adjusting the distance between the sample and the lens focusing on the optical

excitation. Most efficient optical excitation occurs when the beam focuses on the surface of

the sample, which can be easily tuned with the z-direction piezo stage.

The other 12-pin connector links with a resistive temperature sensor underneath the

sample in the cryostat, allowing a CryoCon 1200 cryogenic temperature monitor to provide

readout of sample temperature. Application of high power optical or RF excitation can

cause heating and as a result damage the diode structure or quantum dot and so monitoring

temperature allows all experiments to be tuned to run at safe power levels without damage

to the sample. In addition to the sensor, there is a heater placed underneath the sample

allowing deliberate increase in sample temperature for temperature dependant investigations

(see Chapter 4).

3.3 Optical spectroscopy

Optical excitation of quantum dot samples is the most common form of investigation into

quantum dots. Microphotoluminesence (µ-PL) techniques are well reported in the literature

as it provides insight into the states within the QD system, and is relatively simple to imple-

ment. Here we provide a full description of the optical set-up to accompany the schematic in

Fig 3.5, allowing photoluminescence investigations of quantum dot samples within the bath

cryostat.

Optical excitation is sent to the sample via a window in the top of the sample insert

described in the previous section. For the InGaAs quantum dots studied within this thesis,

optical excitation is generated by various lasers ranging from 600 - 950 nm in wavelength.
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An optical breadboard resides on top of the insert with a central aperture allowing optical

beams to be directed towards the sample through the insert window. The lens above the

sample (Fig 3.4) is aspheric to allow focusing and collection of large aperture beams to areas

of ∼ 1 µm2, providing optical resolution which enables precise excitation of a single quantum

dot. Optical emission from the QD is collimated by the same aspheric lens and transmitted

back out of the insert window.

There are two primary configurations of the optical breadboard used in the work con-

ducted throughout this thesis. The first is configured to allow transmission of pulses of both

the high power pump laser and the below-saturation power probe, which allows us to pump

and readout the state of nuclear spins within the quantum dot. Tuning of the laser pow-

ers allows either the pump or probe laser to be used for standard µ-PL or more complex

pump-probe measurements. The second configuration is for resonance fluorescence investi-

gations, where the excitation wavelength matches the signal wavelength, requiring polarisers

and waveplates to create a cross-polarised signal arm to compensate for the large background.

Both configurations are displayed in Fig 3.5.

3.3.1 Photoluminescence configuration

The majority of experiments within this thesis use an optical pump-probe scheme to study

QDs. Optics involved in pump-probe measurements are displayed in Fig 3.5 in red, with

each component labelled for ease of reference. In order to perform pump-probe measurement

schemes, two arms of the set-up exist, the primary arm referred to as the “pump” arm,

and the secondary “probe” arm. Two fibre couplers allow the two separate laser excitation

sources to be input in to one of the two arms.

For pump-probe measurements, a high power pump laser and a low power probe laser

are used. Both lasers are set up separately from the optical breadboard and coupled into

a fibre leading to the pump (1) and probe (2) arm out couplers shown in Fig 3.5. For

the work carried out in this thesis, a 850 nm Thorlabs diode laser (250 mW) was used for
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optical pumping, and a 850 nm Roithner diode laser (30 mW) was used for optical probing,

providing non-resonant excitation for efficient polarisation generation and optical emission.

Laser excitation passes through half-wave plates (HWPs) (3) after the outcouplers to allow

rotation of the laser polarisation for maximum laser power.

The pump arm excitation (1) enters a linear polariser (4) to ensure the excitation is po-

larised. A motorised HWP (5) follows the linear polariser providing control of polarisation

during automated measurements. The beam is then routed through a 90:10 pellicle beam-

splitter (6) and into the 50:50 broadband beamsplitter (BS) (8) situated above the input

window of the sample insert. The 50:50 BS can also be replaced with a dichroic mirror that

reflects wavelength excitation at ∼ 800 - 900 nm and transmits longer wavelength QD emis-

sion at ∼ 920 - 960 nm instead of splitting the beam in half, avoiding the 50% loss in signal

present with the beamsplitter.

The probe arm (2) is routed into the 90:10 BS (6) to add the probe beam to the main

optical pathway. The asymmetry in the BS allows high pump power to be transmitted while

attenuating the probe beam. This is an acceptable attenuation as the probe pulse is only

required to be low power (PExc < 20 µW) to acquire PL spectra of the QDs.

Once either beam has entered the 50:50 BS (8), the beams are directed down towards a

quarter waveplate (QWP). Both beams pass through the QWP (9) which linearly polarises

the probe beam and transforms the pump beam from linearly to circularly polarised light.

The QWP is also motorised, allowing changing of circularly polarised basis for pump exci-

tation to allow access to different spin states (see Section 2.1.2). After this, light is directed

down to the sample (10) where it is is focused on to the sample by an aspheric lens and is

either absorbed or reflected.

Returning light from the sample will pass through the 50:50 BS upwards towards a mirror

which then couples the optical signal into a fibre to be sent to a detector (15). A second

pellicle BS (11) on a flipper mount can be added/removed as needed before the fibre to divert

some laser power towards a Thorlabs CCD detector (12). The camera can provide imaging
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Figure 3.5: Schematic of the optical configuration above the cryostat to provide both pump-
probe (red components) and resonance fluorescence (orange components). Pump/Probe sig-
nal enters the central 50:50 beamsplitter and is directed down towards the sample. For the
nuclear Pump-Probe configuration, a combination of a half wave plate (HWP) (5) and a
quarter wave plate (QWP) (6) allow control of pump laser circular polarisation (σ±). Res-
onance fluorescence measurements rely on a linear polariser (13) and a variable waveplate
(compensator) (14) to minimise reflected excitation laser through cross-polarisation (see Sec-
tion 3.4). Optical excitation power of pump and probe is monitored using a powermeter (7)
sampling the beam at the pellicle beamsplitter (6).

of the sample surface, aiding focusing of the lasers and identification of key features on the

sample (e.g markers) during QD searches.

Optical excitation is coupled to the breadboard via optical fibre out couplers owing to a

lack of space on the breadboard. Consequently, lasers are set up on a separate optical table

which allows a variety of different laser types to be trivially coupled into the probe and pump

arms and directed towards the set-up on top of the bath cryostat. A variety of static and

tunable neutral density filters can be placed in the laser beam path for investigations into

optical excitation power PExc. Both arms have shutters allowing fast modulation of laser
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pulses with resolution of 1 ms and ensures essentially infinite on/off ratio. Shutters are the

preferable method of optical modulation, as the alternative is switching the laser current on

and off which results in reduced stability of the diodes.

Once signal has been emitted from the sample and coupled into the signal out fibre, the

signal is outcoupled at a separate location where it is routed through a lens to focus the light

onto a double grating spectrometer (U1000 Jobyn Yvon), which is then projected on to a

CCD camera for measurement. The exposure time of the CCD can be arbitrarily set and the

acquisition window triggered automatically. Short constant exposure times can be used for a

live spectrum of the quantum dot sample allowing precise alignment of optical signal through

changing the sample position. Long exposures can be used in conjunction with automated

experiments and a shutter in front of the spectrometer to set one acquisition for several cycles

of pump-probe measurements.

3.3.2 Resonance fluorescence configuration

In addition to high power optical pump-probe measurements, we also carry out resonance

fluorescence (ResFl) studies through low power resonant excitation of QDs. ResFl measure-

ments require a cross-polarised detection scheme in order to separate the spectrally similar

laser reflection and optical ResFl signal. Implementation of a cross-polarisation scheme re-

quires modification to the set-up described previously, using the second configuration of optics

shown in yellow in Fig 3.5. The motorised waveplates (5, 9) used in pump-probe schemes

are removed, leaving a half waveplate (3) and linear polariser (4) in the pump arm, to en-

sure excitation is a single polarisation. The excitation laser is a tunable single-mode diode

laser with a spectral range of 920 - 960 nm, as precise matching of laser excitation to dot

transition energy is required. The condition for resonance fluorescence is that the excitation

linewidth should be much less than the optical transition rate (≈ 2 GHz) of the InGaAs QDs,

and therefore we use a laser with narrow optical linewidth (<100 MHz). Linear polarised

resonant light is then sent down the bath cryostat to the sample where it is either absorbed
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and re-emitted or scattered from the surface of the sample.

Both signal and scattered light is sent back up to the beamsplitter, where it is then

passed through a compensator (13) which acts as a tunable waveplate. The compensator

has two degrees of freedom; the compensator retardation and the orientation of the fast axis.

Alteration of the fast axis orientation allows broad suppression for maximum signal to noise

ratio of resonant signal. Signal and scatter then pass through a linear polariser (14), which

allows further tuning of cross-polarisation through rotation of the polariser angle. Finally, the

compensator retardation can be adjusted for fine tuning of laser suppression. Suppression is

strong enough once ResFl signal is observable against the background of the scattered laser.

Ratio of ResFl signal to laser background is easily measured by turning the relevant exciton

transmission on and off with sample bias. The suppression of the described configuration

provides an extinction ratio of laser scatter up to 108.

Signal from resonant excitation can be routed into the spectrometer, as seen for other

experiments. However, signal from resonant excitation is relatively low, and as such we use an

avalanche photo diode (APD) to provide single photon detection in addition to time-resolved

detection. The APD will measure all incoming photons regardless of spectral properties,

giving a measure of the total photons emitted in a certain time window. It is important to

use differential measurements to remove any background from either scattered laser signal or

background light.

The simplest method for a differential measurement would be to turn the laser on and

off. This would provide a measurement of the background signal compared to the measured

signal of the quantum dot. However, this would not account for the detected scattered laser.

Changing the wavelength of the laser from resonant to off-resonant of the QD transition would

remove the QD signal and somewhat account for laser scatter. This also has issues as the

suppression of the scatter signal can be wavelength dependant. The most accurate method

of measuring differential resonant measurements takes advantage of the charge controlled

samples used in this thesis. The resonant laser can be kept at a specific wavelength while
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the quantum dot charge state can be modulated to provide QD On/Off signal, accounting

for all background and scattered laser signal and providing an accurate measurement of the

QD system.

3.4 Resonance fluorescence

Resonant optical excitation measurements allow coherent excitation of the excitonic states

within a quantum dot, and are a key step in controlling carrier charges within the QD.

Subsequent readout of the states can be achieved through the measurement of resonance

fluorescence signal. As introduced previously in Section 2.4.2, the identical energies of ex-

citation and emission adds the challenge of seperating the fluorescence from the reflected

laser. Some success has been found with collecting signal in an orthogonal orientation to the

excitation [148]. However, due to the spatial limitations within the bath cryostat system,

it is considerably easier to implement a cross-polarisation set-up [78]. As discussed in the

previous section, we filter out the reflected excitation with polarisation orthogonal to the

ResFl signal, leaving only the signal to pass through the detectors.

3.4.1 Resonance fluorescence excitation spectroscopy

In order to characterise the QD transitions under resonant excitation, we need to first find the

transition energy of a desired exciton state. The experiments within this thesis are generally

focused on the single electron regime, and as such we will focus discussion on the negatively

charged trion state in this section.

The basic premise of measuring the resonant frequency fRes of the trion involves taking

exposures with an APD at different frequencies of excitation fExc. By scanning the laser fre-

quency over the frequency of the trion transition estimated from PL, an excitation spectrum

can be measured based on the number of counts measured for each laser excitation frequency

fExc.
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Despite the cross-polarisation set-up used to remove scatted laser excitation, there will

still be a non-negligible quantity of scattered laser detected by the APD, which changes as the

excitation frequency fExc is altered. This can be accounted for by carrying out a differential

ResFl measurement. The measurement is made differential through switching the QD trion

transition “On” and “Off” by modulating sample bias between V1e and V0e. In the “Off”

state, we directly measure the laser scatter signal IOff at a given fExc, while the “On” state

measures both ResFl signal from the QD and laser scatter IOn. ResFl signal is calculated by

taking the difference between IOn and IOff , removing the scattered laser at the current fRes

and giving an direct measurement of ResFl signal IResFl = (IOn − IOff).

The resonant laser frequency is finely tuned via a piezo and allows automated tuning

through a range of approximately 20 GHz. Coarse tuning through a micrometer screw is

possible but does not reliably produce stable laser modes, and as such can not reliably be

tuned through the narrow resonance of the QD (∼ 2 GHz). As a consequence, we find a

stable laser mode as close to the QD resonance as possible and then use fine piezo tuning

to run the measurements. Due to the hysteresis present in tuning the piezo controls, the

same voltage will not always correspond to the same laser frequency. To ensure reliable

recording of counts for a given laser frequency fExc, we pass the resonant laser through a

90:10 beamsplitter and couple the low power arm into a wavelength meter. The high power

arm continues to a single-mode fibre connected to the pump arm of the optical breadboard

seen in Fig 3.5. Laser frequency is measured synchronously with the APD acquisition to give

the most accurate spectrum, an example of which is shown in Fig 3.6.

Continuous wave resonance fluorescence measurements are the simplest to run, where

resonant light excites the sample for a fixed exposure time-window, allowing collection of

RF signal. There are no shutters required and acquisition time can be arbitrarily set for

the APD. However, continuous resonant excitation of the quantum dot can induce dynamic

nuclear polarisation build up in the nuclear spin bath through transfer of angular momentum

of light to the nuclei (See Section 3.5). Presence of DNP will alter the transition energy of the
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Figure 3.6: An example of typical resonance fluorescence excitation spectroscopy. A tuneable
laser steps the excitation frequency fExc across one of the states in an X− Zeeman doublet,
emitting ResFl photons at the frequency of the transition fRes. A pulsed excitation scheme
is used to prevent DNP build up, as demonstrated in the inset. Short laser pulses limit spin
transfer to the nuclei, and each pulse is followed by a flush of DNP by setting the bias to
a resonant tunnelling bias VFlush where fast electron tunnelling depolarises the nuclear spin
bath. Additional accuracy is achieved by using a differential measurement that measures
emission from the transmission with the dot turned “On” and “Off”. Measurement of the
“Off” signal for a given laser frequency accounts for any variation in laser power or suppression
strength of reflected laser.

trion, changing the required excitation frequency. The dynamics of this effect are described

by a dragging effect [149, 150], and effectively broadens the measured resonance fluorescence

spectrum.

To counteract this effect, we use pulsed resonance fluorescence measurements where the

quantum dot is exposed to laser light for a short period of time at the desired bias, followed by

a period of bias in a region of fast electron tunnelling. Switching the quantum dot to the flush

bias VFlush allows fast transfer of spin from the nuclear spin bath to the Fermi reservoir via
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the tunnelling electron, effectively resetting DNP and therefore the QD resonance frequency.

Combination of short optical pulses (TOpt ≈ 1 - 10µs) and flushing the QD (TFlush ≈ 50 µs)

after each cycle results in reliable excitation of the QD resonance. An example of a resonance

fluorescence spectra is shown in Fig 3.6.

3.4.2 Time-resolved resonance fluorescence

We have previously introduced the use of resonant excitation as a means to prepare and

readout the spin state of an electron residing within a quantum dot (see Section 2.4.1). To

quickly summarise electron spin state preparation, we reintroduce the system of a negatively

charged quantum dot placed in an external magnetic field, where we have two energetically

distinct optical transitions for the spin-up and spin-down states. Resonant excitation of the

spin-down state |↓⟩ creates a trion that can either recombine to the spin down state |↓⟩,

or relax to the opposing spin up state |↑⟩ through a weakly coupled relaxation enabled via

admixture of spin states caused by the spin-orbit interaction. Relaxation results in a shelved

electron spin that on short time scales is stable.

To observe the dynamics of the spin state preparation we can use time-resolved resonance

fluorescence (TRRF). Photon signals are time binned and stored while the system under-

goes many cycles of resonant optical excitation. By monitoring the detected signal during

an optical pulse, we will initially see a strong resonance fluorescence signal as the transition

matching the laser frequency emits photons at the same frequency as resonant excitation.

ResFl signal will drop as the electron is shelved to the opposing spin state through a weakly

coupled transition, effectively blocking further resonant excitations. Individual decays of

electron spin state will be abrupt, which when averaged over many repeats gives an expo-

nential decay in signal (Fig 3.7) that can be used to estimate the typical time for the spin

to be shelved, referred to as the spin build-up time. Typical values for spin build-up time

are ∼ 0.5 - 1 µs. A resonant optical pulse longer than the spin build-up time can act as the

initialisation stage of any measurement involving the electron spin directly, such as electron
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Figure 3.7: Illustration of time-resolved resonance fluorescence measurement scheme. a) The
timing diagram demonstrates how the laser pulses are synchronised with activation of the
single charged dot at VOn to allow optical access to the trion transitions. In between the
pump and probe pulses the dot is left in the dark for some time under arbitrary charging
conditions VDark to allow the electron spin state to evolve or undergo coherent control. After
each cycle, the dot is flushed at VFlush, where fast electron tunnelling occurs removing any
DNP build up. b) Time trace of ResFl signal, acquisition of photo counts at the APD
are time binned to give full dynamics of the QD spin state. Optical signal indicates the
electron resides in the spin state resonant with excitation. Reduction in amplitude represents
the shelving of the electron in the opposing spin state. Polarisation of the electron spin
after the probe pulse can be calculated through the difference in pump and probe signals
⟨Sz⟩/S0 = (APump − AProbe)/APump.

spin resonance or measurement of electron lifetimes.

For the time resolved measurements, we run a pump-probe scheme to initialise (pump)

and readout (probe) the electron spin state. After initialising (shelving) the spin into a

known state, the readout pulse provides a direct measurement of the electron spin state after

a certain period of time TDark. If a peak in the time binned signal is observed, the electron

has returned either through coherent control or has decayed back to the pre-initialisation

state, and thus can be excited by resonant excitation. If there is no optical signal, the
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Figure 3.8: A simplified schematic of the pulsed resonant laser set-up. A tuneable laser
is passed through an electro-optical modulator (EOM) and two acousto-optical modulators
(AOMs) to provide high On/Off ratio for transmittion of photons to the sample. Gating of
the EOM/AOMs is controlled by a signal generator and synchronised with the rest of the
set-up as shown in the timing diagrams for Fig 3.6 and Fig 3.7. A 90:10 beamsplitter provides
enough light for the laser wavelength to be recorded throughout the measurement and allows
monitoring of shifts in wavelength due to ambient temperature or optical misalignment.

electron has remained shelved. An illustration of this can be seen in the TRRF traces seen

in Fig 3.7. By measuring repeats of the pump-probe cycle, we can approximate the average

electron spin projection ⟨Sz⟩ at the probe pulse. An unpolarised electron ⟨Sz⟩ = 0 signal

is demonstrated in the pump pulse with amplitude APump. By calculating the difference in

amplitudes of TRRF peaks in the pump and probe, we obtain the average spin projection

⟨Sz⟩/S0 = (APump − AProbe)/APump, where S0 is the initial state of the electron spin. This

enables measurement of the electron spin after any desired manipulation steps have been

performed.

Time binning of ResFl requires many repeats of the sample cycle to collect enough signal.

Resonant optical pulses are generally 1 - 10 µs long, allowing the full pulse to be acquired

within a single trace on the oscilloscope. Once spacing between the pump and probe pulse
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becomes large, both pulses cannot be acquired at the same time, and so pump and probe

pulses are acquired in separate trace acquisitions with different trigger times to account for

the temporal offset, illustrated in Fig 3.7.

Control over the bias of the quantum dot is critical to effective repeat measurements of the

electron spin. Pump and probe pulses are set to the same bias corresponding to the centre

of the single-electron charging plateau, resulting in a charged quantum dot and allowing

trion creation. Between the pump and probe pulses, a dark bias can be set to investigate

changes in electron dynamics with different biases VDark, as demonstrated in Fig 3.7 (also see

Chapter 4). After a pump-probe cycle, a flush bias is applied for ∼ 500 - 1000 µs, and set to

a bias level corresponding to fast electron tunnelling between the 0e and 1e state, efficiently

removing DNP as we also do for pulsed resonance fluorescence measurements.

The short optical pulse requirements of the time-resolved measurements require high-

quality modulation of the input laser signal. Mechanical shutters can only modulate light on

a time scale of ∼ 1 ms, which is far too long for the required optical pulses of ∼ 5 µs. We

use a series of acousto-optical modulators (AOMs) and electro-optical modulators (EOMs)

that allow fast modulation of the optical excitation as seen in Fig 3.8. All the modulators

can provide optical pulses down to ∼ 500 ns, and are all controlled by a single trigger from

a generator, allowing a short arbitrary length optical pulse to pass through to the sample.

One disadvantage of the modulators is they do not perfectly prevent light transmission, with

each AOM providing an optical power On/Off ratio of ∼ 1100, and the EOM providing

∼ 180. To completely remove any stray resonant photons being emitted during the dark

parts of the measurement, we combined two AOMs and a single EOM to provide an overall

On/Off Ratio of ∼ 2.25× 108. As a result, long delays between pump and probe can be used

with minimal parasitic optical excitation during dark time-windows. This becomes critical

when performing experiments with long delays between the probe and pump pulse such as

in Chapter 4.
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3.5 Optimizing dynamic nuclear polarisation

Measurements of the nuclear spin bath are carried out through the study of the change in

Zeeman splitting of an exciton to determine the effective magnetic field generated by the

polarised nuclei. Introduced in Chapter 2, the effective magnetic field causes a shift in the

Zeeman splitting referred to as the Overhauser shift, and is a direct measure of the net

magnetization of the nuclear spins. An example of the effect of the Overhauser shift on a

Zeeman split doublet is shown in Fig 3.9. Circularly polarised light direction σ± determines

whether the Overhauser shift increases or decrease the Zeeman splitting ∆EZeeman ±∆EOHS.

1 2 9 8 . 5 1 2 9 9 . 0 1 2 9 9 . 5 1 3 0 0 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0 E Z e e m a n  -  E M a xO H S

PL
 In

ten
sity

 (a
rb.

)

E n e r g y  ( m e V )

 E O H S  =  E M a xO H S
 E O H S  =  0 x 5

E Z e e m a n

Figure 3.9: PL spectra of QD Zeeman doublet in the absence (circles) and presence (squares)
of an Overhauser field. The Zeeman doublet is split by a static magnetic field Bz giving
a splitting of EZeeman. Changes in Zeeman splitting due to the Overhauser field is referred
to as Overhauser shift (OHS) ∆EOHS. Measurement of Overhauser shift ∆EOHS provides
an insight to the overall polarisation of the nuclear spin bath and forms the basis for all
measurements on the nuclear spin states within this thesis. PL Intensity for EOHS = 0 is
multiplied by 5 for convenient comparison.

To measure the dynamics of the nuclear spins, it is first important to generate large levels

of nuclear polarisation. High power off-resonant optical excitation transfers momentum from

the photons in the circularly polarised light to electron spins, which in turn is transferred to

the nuclear spin bath via the hyperfine interaction. The polarisation generated during this

excitation is known as dynamic nuclear polarisation (DNP), and represents the number of
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nuclei polarised in the same direction. The highest values of DNP have been measured up

to ∼ 80 % [131]. It is critical to maximise generation of DNP possible in order to provide a

larger observable change in Zeeman splitting and allow observation of smaller changes to the

spin bath polarisation.
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Figure 3.10: Pump and Probe Rise time calibration for opposing circular polarisations σ± of
optical excitation for optimal DNP generation. Calibrations were carried out at a magnetic
field Bz as indicated in each figure. a) Measurement of variation in splitting of Zeeman
doublet energies due to changing Overhauser shift ∆EOHS for pump-probe cycle with varying
pump times TPump at PPump = 8 mW. A clear increase in Zeeman splitting for increased TPump

is observed. c) Same as a) for TProbe, showing a decrease in DNP as nuclei are depolarised for
longer probe pulses and high optical power. b, d) Differential version of a, c showing the sum
of Overhauser shifts ETot

OHS = ∆Eσ+
OHS − ∆Eσ−

OHS further demonstrating the trends observed in
a and c. Symmetry of the σ± datasets allows ETot

OHS to be used as a metric for efficiency DNP
generation, but could be meaningless in asymmetric data.

We use a well-known pump-probe measurement scheme to measure DNP [128, 139]. A

long high power pump laser polarises the nuclear spin bath, then after some time, a probe

pulse arrives to allow measurement of a PL spectrum. The Zeeman splitting of the quantum

dot can then be analysed to provide a value for DNP for the current measurement.
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Careful calibration of the parameters is required for efficient generation of DNP and mea-

surement of the Zeeman doublet in PL, which is signalled by the largest change in Zeeman

splitting ∆EZeeman and strongest optical signal. Firstly, it is important to calibrate the length

of time of both the pump, TPump, and probe, TProbe. Signal generators control the length of

time for which the pump and probe shutters are open. A series of measurements on the quan-

tum dot with varying TPump allows selection of a pump time that provides maximum DNP

while keeping experimental runtime relatively short. An example of pump time calibration

is shown in Fig 3.10a and b, in which we choose TPump = 8 s.

Calibrating probe time has the inverse timing requirements to the pump pulse, valuing

short pulses as optical excitation will quickly destroy built up DNP. It is important to balance

the destruction of DNP against receiving enough optical signal for accurate measurements. A

plot showing the results of a TProbe calibration is shown in Fig 3.10c. Probe times are usually

TProbe = 5 - 40ms. A single spectral acquisition requires several cycles of pump-probe to

give a good amount of signal. Shorter probe pulses requires a higher number of pump-probe

cycles increasing experimental runtime.

In addition to investigating pulse lengths, we also need to optimise optical excitation

power PExc. Probe power requirements are sensitive as high probe power will be above QD

saturation and limit signal. We measure DNP vs TProbe for different powers PProbe in Fig 3.10c,

and it is clear from this figure that more photons per unit time results in higher DNP loss.

However, taking a ratio of measured DNP against the magnitude of the optical signal provides

insight into the most efficient power for high signal and low DNP disruption. We find in the

samples studied that a probe pulse of TProbe ∼ 5 - 30 ms with power near optical saturation

of the QD, PProbe ∼ 13 µW, gives the highest signal with minimal disruption to DNP.

For charge-tuneable structures we also require calibrations that can be used to optimize

DNP generation in bias dependant measurements. The pump-probe measurement scheme

can be aligned with a cycle of diode bias states to optimize the necessary charging mechanisms

within the QD. By changing the bias during the pump or probe, we can measure the change
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Figure 3.11: Optimisation of pump pulse parameters for optimal DNP generation. Calibra-
tions were carried out at a magnetic field Bz as indicated in each figure. a) Change in Zeeman
doublet splitting ∆EZeeman due to varying EOHS as the sample bias during the pump pulse
VPump is changed, with optimal DNP at VPump = −0.6 V b) Optical pump pulse power PPump

dependence of Zeeman splitting ∆EZeeman, where a larger shift in splitting demonstrates ef-
ficient DNP generation at high power PPump > 5 mW.

in DNP to determine the most effective biases for each pulse.

Pump pulse biases VPump are calibrated for maximum DNP, with the results demonstrating

strongest DNP at VPump above single electron QD charging plateau VPump > +1.0 V, or far

below, VPump < 0 V, an example of which can be seen in Fig 3.11a. The change of bias alters

the charging environment allowing faster/slower transfer of spin via optical pulses depending

on the charges available.

Probe pulse bias VProbe calibrations are primarily to ensure the maximum optical signal

of the desired exciton. In most scenarios we use the PL of the charged exciton to monitor

the state of the nuclear spin bath, where the optimal probe bias varies through the range

0.2 < VProbe < 0.8 V.

Finally, we must calibrate the optical powers of the optical excitation. Pump laser power,

PPump, is calibrated for maximum DNP generation for which an example calibration is shown

in Fig 3.11b. Similar results were found for all of the samples studied in this thesis. A high

power laser provides strong DNP with no evidence of saturation, and so we use the maximum
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power possible of PPump ≈ 8 - 12 mW. Probe pulse power, PProbe, is set for maximum optical

signal, which is usually comparable to optical saturation of the QDs resulting in PProbe ≈ 1

- 10 µW

A combination of all the above calibration results allows an optimal pump-probe cycle to

be generated, in which maximum DNP is generated and the fastest readout can be achieved.

This provides a platform to reliably prepare the nuclear spin bath, perform studies upon the

bath and then read out the nuclear state, forming the basis of all nuclear spin work in this

thesis.

3.6 Nuclear magnetic resonance

Control over the nuclear spin bath within a quantum dot is possible through the use of nuclear

magnetic resonance. Radio frequency (RF) pulses applied to QDs within a static magnetic

field can induce rotations and allow control of the spin states. A detailed description of the

theory behind NMR was discussed in Section 2.4.2. We can now lay out the experimental

implementation of this technique.

3.6.1 Optically detected NMR

NMR experiments on quantum dot systems can be carried out by using optical signals to

provide a measure of the effect of NMR on the nuclear spins within the system, a technique

which is known as optically detected NMR (ODNMR). In Section 3.5 we briefly covered

the techniques used for pump-probe measurements of the nuclear spin bath via high power

optical pumping and fast optical probing of the system. Modifications to the pump-probe

scheme can be used to study the effects of NMR by introducing NMR pulses between the

pump and probe pulse.

To quickly recap, a high power circularly polarised (σ±) optical excitation is applied to the

quantum dot to generate dynamic nuclear polarisation. Angular momentum is transferred
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from the light to the nuclear spins via electro-nuclear hyperfine interaction, creating DNP. The

DNP builds up parallel (anti-parallel) to the static magnetic field for σ− (σ+) polarised light,

increasing (decreasing) the Zeeman splitting by the strength of the Overhauser field EOHS

[131, 151]. Optimal generation of DNP is carried out by altering a variety of experimental

parameters discussed in Section 3.5.

The application of radio frequency pulses can now be applied in order to coherently rotate

or depolarise spins within the nuclear bath. The NMR resonant frequency is determined

by the Zeeman splitting of the nuclear spin states, which varies depending on the nuclear

isotope and magnetic field. Within the InGaAs system, inhomogeneous strain results in a

strong broadening of satellite transitions. As a consequence, NMR experiments are usually

only carried out on the central transition −1
2
↔ 1

2
.

Once the desired manipulation of nuclear spin states has been applied, the resulting

state of the nuclear spin bath can be optically probed. A short linearly polarised optical

pulse produces PL of the QD, where the splitting of the Zeeman doublet can be measured to

observe the shift in Overhauser field ∆EOHS. Additional accuracy can be introduced through

the use of a differential measurement, by which two separate spectra are measured with RF

On/RF Off. The difference between the two Zeeman splitting provides a direct measurement

of NMR signal within the quantum dot system and is used in the majority of experiments

within this thesis.

3.6.2 Inverse NMR

The population of the spin states within the nuclei is an important consideration when

measuring NMR. Our previous discussion of optical spin pumping of the nuclear spin bath

described the polarising of the nuclear spins with σ± polarised light, aligning nuclei parallel

or anti-parallel to the static magnetic field. As all nuclei within InGaAs QDs have I > 3/2,

there are multiple spin transitions and states to occupy. Pumping of the nuclear spins with

σ+ (σ−) excitation shifts the overall spin bath population towards Iz = −3/2 (Iz = +3/2)
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Figure 3.12: Illustration of the change in nuclear spin populations for a I = 3/2 spin in an
InGaAs QD subject to an electric field gradient that lifts the degeneracy of dipolar tran-
sitions (see Section 2.3.2) a) Optical spin pumping with circularly polarised light σ+ (σ−)
shifts the nuclei spin population towards the −3/2 (+3/2) spin state, leaving Boltzmann dis-
tribution of populations across the spin basis. Transitions between spin states are shown in
red and blue. b) Saturation NMR applies a band of frequencies, wBand, to full cover a specific
transition, depolarising the spins and therefore equalising the populations of the relevant
states. c) Demonstration of complete spin depolarisation through application of wide band
RF frequency excitation, equalising populations across all states. d) Inverse NMR applies
two wide bands of frequencies, wBand, with a gap in between, wGap, in order to fully depolarise
all nuclei except those with frequencies within the gap. This leaves the populations of the
relevant transitions unchanged, while depolarising the rest of the transitions, resulting in a
large reduction in ∆EOHS and thus large ODNMR signal.

[131, 151], creating a Boltzmann distribution across all spin states, as shown in Fig 3.12a.

Probing of nuclear resonances can be achieved simply by measuring the ODNMR signal

for a range of different continuous wave (CW) radio frequency excitations fRF , providing an

NMR spectrum of one of the isotopes within the QD. Application of a continuous transverse

magnetic field with a band of frequencies of width wBand centred at an arbitrary frequency

fRF will selectively depolarise nuclei with Larmor frequencies within the frequency range.

Depolarisation of nuclei reduces the magnitude of the Overhauser shift ∆EOHS compared to

the fully polarised spin bath. It is this reduction that quantifies the ODNMR signal. The
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nuclear spin state populations of the transitions excited (e.g CT −1/2 ↔ +1/2) will equalise

through selective depolarisation as shown in Fig 3.12b. Full depolarisation of the nuclear

spin bath can be achieved through applying CW RF with a bandwidth much greater than

the frequency width of all nuclei spin states, driving all transitions and returning the system

to thermal equilibrium, illustrated in Fig 3.12c.

In order to improve the ODNMR signal amplitude of the measurement, we use a technique

known as Inverse NMR. Two broad RF bands of width, wBand, are created with a small gap

in between of width wGap. Both bands are shifted relative to the central frequency in the gap,

fRF, depolarising all nuclei within the quantum dot except those whose Larmor frequencies

lie within the gap. The result is the equalisation of all spin populations for transitions outside

of the gap, while preserving the populations of states in the transition lying within the gap.

Consequently, the difference in populations is larger, resulting in a greater ODNMR signal.

An illustration of the Inverse NMR technique is shown in Fig 3.12d. Selective depolarisa-

tion of all populations except the targeted transition gives a greater signal differential for

more accurate measurements. The effect of broad and low power frequency bands provides

additional utility in InGaAs dots as the strongly broadened satellite transitions require wide

bands of RF to fully depolarise, which with conventional NMR would require RF pulses with

∼MHz bandwidths. In order to fully depolarise the broad nuclear frequency spectrum, the

RF bands are set to widths of 12 MHz each. Alteration of the gap width wGap can change the

balance of the measurement between the ODNMR signal amplitude and resolution, allowing

detailed measurement of the narrow CT (∼ 2 - 100 kHz).

3.6.3 Pulsed NMR

Continuous wave NMR provides useful insight into the resonance frequencies of the quantum

dot, but does not allow coherent rotations of nuclear spins. To achieve coherent control of

nuclear spins, we use short pulse bursts of single-frequency high power RF to induce rotations

around a chosen equatorial axis on the Bloch sphere. Due to the broad STs in InGaAs dots,
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all pulsed NMR experiments are performed on the narrow CT transition fCT . As discussed

in Section 3.6, the angle of rotation of the spin projection in the Bloch sphere is controlled by

the length of the RF pulses, with π/2- and π-pulses corresponding to the times for rotation to

the equatorial plane or opposing spin state respectively. A combination of different pulses can

form complex spin-echo sequences used to dynamically decouple the system from decoherence

effects thus lengthening T2 times [114, 147]. A more detailed discussion of spin-echo schemes

is carried out in Chapter 5.

Pulsed NMR sequences are created using an arbitrary waveform generator, allowing us

to create sequences of RF pulse bursts with given burst lengths and amplitudes. Bursts

are a carrier sine signal of frequency fRF which is amplitude modulated by a pulse. Pulse

burst length controls the angle of rotation in the Bloch sphere θ with respect to the +z axis,

while the phase of the carrier sine signal ϕ controls the projection in the x-y plane. Larger

amplitudes increase the B1 RF field and therefore the frequency of rotations, as described in

Section 2.4.2. Higher amplitude pulse bursts can shorten the amount of time the burst needs

to be applied for a given rotation angle θ.

An example pulse burst sequence (Hahn echo) is shown as an oscillogram in Fig 3.13.

Design of pulse burst sequences are limited by a minimum pulse burst length in addition

to a minimum delay between consecutive bursts due to hardware limitations. Slow rise and

fall of waveform amplitude of the bursts generated is required to avoid generating frequency

components that cannot be absorbed by the RF coil, resulting in potentially dangerous

reflection amplitudes that may damage the amplifier. The length of time needed for the slow

rising and falling of amplitude is carefully calibrated through monitoring reflections through

a bidirectional coupler and is set to TRiseFall = 0.6 µs. The requirement of a rise and fall

section in the pulse limits the minimum pulse burst length to 2TRiseFall = 1.2 µs.

The minimum delay TMinDelay between consecutive bursts is due to the strong reflections

occurring at the end of the bursts that can constructively interfere with the forward voltages

in the amplifier transistors. This effect becomes very significant for pulses with opposing
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Figure 3.13: Oscilloscope measurement of a sample of the RF signal directed the RF coil in
pulsed NMR measurements, with sample coupling -50 dB. This pulse sequence is known as
Hahn Echo and is formed of a pulse train of π/2, π and π/2. The phase of the pulse bursts
relative to each other is critical to the proper rotation of nuclear spin states around the Bloch
sphere. We define pulses as X, -X, Y, -Y for pulse bursts with RF carrier phases of ϕ = 0, π,
π/2, 3π/2. Each burst has a rising and falling part of length TRiseFall to prevent sharp high
amplitude reflections to the amplifier.

phase and can result in excessively high voltage on the output of the amplifier, which can

damage the output stage transistors. In order to determine safe operating parameters, we

generated two opposing phase pulses (to maximise constructive interference) and gradually

decreased the delay TDelay to observe when the amplifier mismatch fail-safe started to trigger.

Consequently we determined the minimum delay between pulses to be TMinDelay = 0.45 µs.

3.6.4 Adiabatic sweep NMR

An additional step is required for pulsed NMR measurements on InGaAs QDs. Optical

pumping of a I > 3/2 nuclear spin bath creates a Boltzmann distribution of populations

as described in Section 3.6.2. Single-frequency pulsed NMR can be used to excite a specific
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transition, either of the STs or the CT, coherently rotating the spin state projection between

the relevant spin states. Strong broadening of the STs makes coherent control of satellite

transitions difficult as a broad range of frequencies would be required to rotate all nuclei.

This is in contrast to the spectrally narrow CT transition allowing rotation of most spins

in the Iz = ±1/2 states. As a result, we only apply single-frequency pulsed NMR to the

CT and observe population change between the CT states Iz = ±1/2 in ODNMR. In order

to improve the measurement signal, we use a technique known as adiabatic sweeps which

are used to shift the population to the two central states, increasing the number of nuclei

undergoing rotations and therefore increasing ODNMR signal [112].

Two single-frequency NMR signals are applied through the broadband cascade at fre-

quencies starting far from the CT, fCT ± fSw
Start. In order to transfer the population of all

Iz > ±1/2 states, we require the starting frequency to be larger than the largest nuclear spin

quadrupolar splitting |fSw
Start| > fCT+fQ(I+ 1

2
), where fQ = ωQ/2π as defined in Section 2.3.2.

The pulses are swept in frequency towards the CT, stopping just before the CT at fCT±fSw
End

to prevent population change between Iz = ±1/2, and is illustrated in Fig 3.14. The rate at

which the frequency is swept across the STs, fSw
Rate, is carefully tuned in order to ensure the

conditions for adiabatic transfer is met. The result is the Iz = ±I states transferring popu-

lation to the CT states, increasing the number of potential nuclei to be rotated and creating

a greater shift in the Overhauser field for pulsed NMR experiments. Typical values for the

frequency offsets and rates are starting frequencies of fSw
Start ∼ 5 - 10 MHz, end frequencies of

fSw
End ∼ 20 - 100 kHz and rate of frequency change fSw

Rate ∼ 1 - 15 MHz/s. The strength of the

adiabatic NMR magnetic field B1 varied up to a maximum of ≈ 1 mT to prevent excessive

heat generation. Sweeps are applied as an additional step after optical spin pumping and

before coherent nuclear spin rotation to enhance the signal for pulsed NMR measurements.
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Figure 3.14: Illustration of adiabatic sweep NMR. a) An idealised NMR spectrum of a spin-
3/2 nuclei in InGaAs, with three distinct transitions. The CT (solid) is a spectrally narrow
transition ∆fCT ≈ 1 - 10 kHz, in contrast to the broad STs (dashed). InGaAs STs have broad
spectra on the scale of MHz due to quadrupolar interaction effects as seen in Section 2.3.2.
b) Adiabatic sweeps are carried out as two RF signals are swept from above/below the STs,
fCT ± fSw

Start, to just before the CT, ±fSw
End, at a rate of fSw

Rate. c) Populations of I = 3/2
nuclear spin states before and after adiabatic sweeps. The nuclear spin population from
the ST states, Iz = ±3/2, is transferred to the CT states Iz = ±1/2, increasing number of
available nuclei that can be rotated during the application of pulsed RF to the CT.

3.6.5 NMR set-up

Generation of a transverse radio frequency magnetic field is achieved through transmitting

an oscillating voltage to a copper coil. Strength of the magnetic field B1 some distance x

along the central axis of the coil can be calculated using the following equation,

B1(x) =
µ0

4π

2nIπR2

(x2 +R2)3/2
(3.1)

where µ0 is the permittivity of free space, R is the radius of the coil, I is the current through

the coil and n is the number of turns in the coil. From this equation, we can see that for
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the point in the centre of the coil x = 0, the smallest radius of the coil R, will generate the

largest B1. In our experimental NMR set-up the centre of the coil is aligned perpendicular

to the sample and positioned to be in close proximity with the sample such that x ≈ 0.5 mm

(Fig 3.4), resulting in an optimal radius of R ≈ 0.65 mm. The small gap is required between

the sample and the coil in order to limit heating of the sample, in addition to reducing the

risk of collision of the sample and coil during translation of the piezo stages. The RF coil

used in experiments is made of enamelled copper wire with thickness 0.1 mm looped with a

radius of ≈ 0.5 mm, with n = 10 turns for increased B1.

RF pulses are created by a signal generator and then passed through an amplifier in order

to achieve the desired strength of the transverse magnetic field B1. We use two primary types

of RF signal, precise single frequency NMR pulse bursts or broadband NMR signals. Pulsed

NMR can be used to coherently rotate the nuclear spins by applying a single frequency pulse

at high power. Probing the broad frequency distribution of nuclear resonances requires a

wide range of frequencies.

Pulsed NMR waveforms are generated by an arbitrary waveform generator as a pulse

burst train of different length sine waves in order to provide precise control of nuclear spin

state. The frequency of the sine waves corresponds to the resonant frequency of the desired

transition, which is typically the CT for the desired isotope within InGaAs quantum dots.

Amplitude of output waveforms can be set at a given value. Waveforms are then sent to

a 1 kW Tomco pulsed class-AB amplifier. Amplifier gain is constant so control over the

power of applied RF pulses is adjusted through the amplitude of the outputted waveform

from the generator. The strongest amplitude RF bursts can create rotating frame magnetic

fields of up to B1 ≈ 10 mT. Applied RF amplitudes PRF are limited by the 1 kW amplifier

compression regime at which amplification of pulses becomes non-linear, PRF ≈ 59 dBm,

increasing potentially damaging reflections due to amplification of higher order harmonics.

Efficiency of the RF coil can be defined by the ratio of rotating frame amplitude to the

amplitude of outputted RF from the amplifier, B1/
√
PRF, giving a value of 0.35 ×10−3 T
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Figure 3.15: Schematic of NMR circuitry used for broadband (pink, solid) and pulsed (green,
wide dashed) NMR measurements. Both circuits have signals created by separate signal
generators. Carrier and envelope signals are passed through an RF mixer to create the
desired signal. High power pulsed RF pulses are monitored by an oscilloscope connected to
the forward and reverse channels of the bidirectional coupler in order to ensure no damage to
the sample or amplifier. The pickup coil can also be used for RF monitoring of both pulsed
and broadband signals. Variable cable lengths are indicated by dashed lines and allow tuning
of the impedance matching of each circuit to ensure efficient RF transmission from the coil.

W−1/2.

High power RF pulses are passed through a bidirectional coupler and then are sent down

a 1.5 + l BNC cable to be converted to B1 by the RF coil, where l is the length of a “shunt

stub”. To ensure maximum power is delivered to the RF coil at the desired frequency fRF , it is

important to consider the impedance matching of the load (RF coil) to the source (amplifier).

A mismatch of loads is present in the circuit by default due to the 50 Ω impedance amplifier

sending signal to the the RF coil, which acts approximately as an inductor with a small series

resistance such that impedence Z is less than 50 Ω. Effective transmission of fRF frequency

pulses can be enabled by the addition of a “shunt stub” cable of length l to allow alteration of

the impedance of the cascade (see Fig 3.15). The shunt stub acts as a resonant transformer
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by which change in the shunt stub cable length l achieves impedence matching at a fixed

frequency. A change in the desired fRF requires alteration of the shunt stub length l. A

more detailed description of impedance matching and the use of shunt stubs can be found in

Chapter 5 of Microwave Engineering [152].
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Figure 3.16: a) Reflection spectrum of pulsed NMR cascade circuit optimized to transmit ∼20
MHz RF. Reflection obtained from the reverse port of the directional coupler while applying
broadband white noise to the pulsed NMR circuit. Adjustment of shunt stub length l will
alter the central frequency of reflection dip. Dip in reflection indicates successful absorption
of RF energy by the NMR coil, while high reflection sidebands are demonstrating impedance
mismatched frequencies. b) Detected RF signal on the pickup coil generated by broadband
white noise applied to the broadband NMR circuit and transmitted by the RF coil. Peak
at target ∼20 MHz indicates efficient generation of RF magnetic field B1 for CW NMR
applications.

Scattering parameters (S-parameters) between ports in a distributed network describe the

input-output relationship between each port. Outputted signal from port 1 (amplifier) to port

2 (RF Coil) is partially reflected back to port 1 and quantified by the S11 parameter. The S11

parameter of the pulsed cascade network can be observed by applying low power broadband

white noise and monitoring the reflection on the reverse channel of the bidirectional coupler,

as shown in Fig 3.16a. Dips in S11 provide an indicator of frequencies absorbed by the RF

coil, and the width of the transmission spectrum gives a measure of the range of frequencies
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that can be applied, which for Fig 3.16a is ∼ 0.8 MHz. This information is critical to

ensure most efficient generation of RF signals at frequency fRF and to safely protect the 1

kW amplifier. Pulses sent at non-transmissive frequencies will reflect back to the amplifier,

causing a mismatch and potentially damaging the amplifier.

For measurements that require a wide range of frequencies, such as inverse NMR or

adiabatic sweeps, a different set-up is used. Broadband RF signal is transmitted to a Class-

A 30 W broadband amplifier, separate from the 1 kW pulsed amplifier. It is not possible to

create transmission profiles valid for the many required frequencies for the desired frequency

bands fBand. We instead use a separate broadband matching circuit with no stub and simply

change the length of cable between the 30 W amplifier and a switching relay. As a consequence

of inefficient transmission over the wide range of desired frequencies for CW NMR, reflections

are inevitable when applying broadband RF. The 30 W amplifier used for broadband signals

is capable of withstanding full reflection of waveforms over a wide range of frequencies,

removing any concerns with potentially high power RF reflections.

To set up broadband matching over a wide range of frequencies, we use the detection

spectrum of broadband white noise measured by the pickup coil placed on the opposite side

of the RF coil to the sample (shown in Fig 3.15). A variation in the transmission profile

of the RF coil over broadband frequency ranges is observed. Adjustment of the broadband

matching circuit attempts to mitigate this variation in transmission through changing cable

length. It is usually possible to achieve a cascade where conversion of RF power to B1

is sufficiently uniform (±5 dB) within the required frequency range of ±5 - 10 MHz. An

example of detection of broadband white noise is shown in Fig 3.16b.

Broadband RF signals are created through mixing of a carrier and envelope signal allow-

ing creation of wide band CW RF. The inverse NMR technique introduced in Section 3.6.2

requires wide bandwidth CW RF. A full range of frequencies for the desired ±12 MHz fre-

quency band would require sophisticated generators and would provide challenges in main-

taining consistent power across the spectrum. Instead we use a techinque called frequency
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combs, where many discrete frequencie modes of RF are generated with a small mode spac-

ing fMS ≈ 120 Hz. The frequency combs work approximately as a white noise continuum

of frequencies provided the mode spacing is less than the homogeneous NMR linewidth and

will efficiently depolarise the nuclei based on the strength of B1 [153].

We cannot meet the requirements for the two types of RF signals in a single impedance

matched cascade, as it impossible to achieve perfect and broadband impedance matching

[152]. Consequently we create two separate cascades and combine the signal to allow both

broadband and pulsed NMR techniques to be used in a single experiment. In order to combine

both cascade set-ups for use during automated measurements, the cascades are input to a

fast mechanical switching relay. The switching relay multiplexes the two RF signals, the

broadband inverse NMR and the pulsed NMR bursts, into a single load. In the “Off” state

(0 V), the relay allows the signal from the broadband cascade to be transmitted to the sample.

When a voltage of 10 V is applied, the relay will switch to the “On” state, transmitting RF

from the pulsed cascade. Automated measurements synchronise relay switching and pulsed

NMR gating in order to create a short window for any pulsed NMR sequences that are to be

applied to the sample.



4

Fundamental limits of electron and

nuclear spin qubit lifetimes in an

isolated self-assembled quantum dot

We require any “stationary” qubit to possess long-lasting states to allow the initialisation,

manipulation and readout of the system, as introduced in Chapter 1. In order to improve

the overall quality of the quantum dot spin qubits, and to open up opportunities for us to

attempt electron spin resonance in QDs in the future, we must consider closely how design

and operating conditions of QD structures affect the lifetimes and coherence times of both

the electron and nuclear spins.

In this chapter, we focus on the spin lifetimes T1 within InGaAs/GaAs quantum dots.

Spin lifetimes define the timescale at which longitudinal magnetization is lost, and the spin

system returns to the thermal equilibrium magnetization, as described by the Bloch equa-

tions introduced in Section 2.4.2. Practically, for the electron lifetime T1,e this means that in

the case of a spin initialised to |↑⟩, relaxation to the |↓⟩ state will occur on a time scale of

T1,e. Similarly, in a nuclear spin bath optically polarised to achieve a spin polarisation degree

of ≈ 60 - 80 %, nuclear spin lifetime T1,N is a measure of how long it takes the average nu-

95
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clear spin bath polarisation to return to its unpolarised thermal equilibrium. Understanding

the mechanisms limiting T1 is a critical component of selecting qubit candidates. Previous

independent studies of nuclear [140] and electron [144] lifetimes in InGaAs QDs have been

carried out with great success, but no systematic set of measurements for the electron T1,e

and the nuclear T1,N spin systems have been made.

Our first investigation into self-assembled quantum dots set out to fully characterise the

effect of magnetic field, charging bias and tunnelling coupling to the electron Fermi reservoir

on the lifetimes T1 of spins within the quantum dot. We study a series of InGaAs/GaAs QDs

Schottky diode structures with a varying tunnelling barrier thickness, tB = 37, 42, 52 nm,

intending to investigate the effect of tunnel coupling between the QD and the Fermi reser-

voir on spin lifetimes. Here, we used time-resolved resonance fluorescence and pump-probe

measurements to measure electron and nuclear lifetimes respectively. Fidelity of electron

spin initialisation is studied for varying tB, with a thicker barrier causing a reduction due to

Auger recombination effects. Bias dependant measurement of lifetimes reveals the expected

single charging plateau arising due to the Coulomb blockade, while magnetic field dependant

measurements allowed us to create a model for prediction of electron and nuclear T1. The

models ultimately lead to an estimate on the fundamental limits of spin lifetimes within the

quantum dot system, which applies universally to all self-assembled QDs.

The results in this chapter are presented in the form of a paper for which I am first author

and was published on 24th February 2021:

G. Gillard, I. M. Griffiths, G. Ragunathan, A. Ulhaq, C. McEwan, E. A. Chekhovich.

“Fundamental limits of electron and nuclear spin qubit lifetimes in an isolated self-assembled

quantum dot”. npj Quantum Information, 7, 43 (2021), doi:10.1038/s41534-021-00378-2.

https://doi.org/10.1038/s41534-021-00378-2
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Fundamental limits of electron and nuclear spin qubit lifetimes
in an isolated self-assembled quantum dot
George Gillard 1, Ian M. Griffiths1, Gautham Ragunathan1, Ata Ulhaq1,3, Callum McEwan1, Edmund Clarke 2 and
Evgeny A. Chekhovich 1✉

Combining external control with long spin lifetime and coherence is a key challenge for solid state spin qubits. Tunnel coupling
with electron Fermi reservoir provides robust charge state control in semiconductor quantum dots, but results in undesired
relaxation of electron and nuclear spins through mechanisms that lack complete understanding. Here, we unravel the contributions
of tunnelling-assisted and phonon-assisted spin relaxation mechanisms by systematically adjusting the tunnelling coupling in a
wide range, including the limit of an isolated quantum dot. These experiments reveal fundamental limits and trade-offs of quantum
dot spin dynamics: while reduced tunnelling can be used to achieve electron spin qubit lifetimes exceeding 1 s, the optical spin
initialisation fidelity is reduced below 80%, limited by Auger recombination. Comprehensive understanding of electron-nuclear spin
relaxation attained here provides a roadmap for design of the optimal operating conditions in quantum dot spin qubits.

npj Quantum Information            (2021) 7:43 ; https://doi.org/10.1038/s41534-021-00378-2

INTRODUCTION
Semiconductor quantum dots (QDs) offer excellent quantum
optical properties and well-defined quantum states of individual
spins—an attractive combination for quantum information
processing devices1. Recent proof-of-concept demonstrations
with QDs include heralded entanglement of two remote spins2,
generation of photonic cluster states3, spin-controlled photon
switching4 as well as implementation of electron–nuclear
quantum spin interfaces5 and nuclear spin quantum computing6.
The stability of the spin states, measured by their lifetimes, is
crucial in all these applications.
Quantum dot is described by a central spin of a single charge

(electron or hole) coupled to N ≈ 103−105 nuclear spins via
hyperfine interaction7. The lack of translational motion combined
with the mismatch in electron and nuclear spin energies
suppresses relaxation8, providing long spin lifetimes required for
spin qubits. However, thorough understanding of spin relaxation
is complicated by the multitude and complexity of the residual
environment couplings, which include electron–phonon interac-
tions9–12, quadrupolar coupling of nuclear spins to strain13,
nuclear spin diffusion, and electron cotunneling14,15 arising from
proximity of the Fermi reservoir. Moreover, impurity charge
traps16,17 adjacent to QDs degrade spin qubit lifetimes. Thus, it
remains an open question to establish the maximum (intrinsic)
spin lifetimes that can be achieved at any given magnetic field
and temperature, as opposed to spin relaxation arising from QD
device design and imperfections.
Phonon-assisted electron spin relaxation enabled by spin–orbit

interaction is a dominant mechanism9,10,18 at high magnetic field
Bz≳ 2 T, but the limit to electron spin lifetime T1,e at low fields
remains unexplored. In case of nuclear spins, cotunneling-
mediated relaxation was identified as dominant mechanism15,
while direct verification is lacking, since bias control of cotunnel-
ing is restricted to a narrow range compatible with single-electron
QD state.

Here we study a series of structures where electron cotunneling
is controlled directly by the thickness tB of the tunnel barrier
separating the dot from the Fermi reservoir. We find that at Bz≳
2 T and temperatures θ > 4.2 K nuclear spin relaxation is domi-
nated by a higher-order process assisted by phonons19,20 and
noncollinear hyperfine interaction13, rather than by cotunneling,
which is dominant only at low fields Bz≲ 2 T. Electron spin
lifetimes exceeding T1,e > 1 s are found at Bz ≈ 0.4 T, with a
fundamental maximum T1,e ≈ 20 s estimated for an isolated dot
at θ= 4.2 K, bounded by phonon relaxation and direct hyperfine
interaction at high and low magnetic fields, respectively. While
coupling to Fermi reservoir degrades T1,e, it is shown to play a
crucial role in counteracting Auger recombination21 and enabling
electron spin initialisation with near-unity fidelity22.

RESULTS
Quantum dot structures and experimental techniques
Figure 1a sketches conduction band energy profile which is
controlled with external bias VS to tune an InAs QD into Coulomb
blockade regime, where it is charged deterministically23 with a
single electron (1e). The trion state with two electrons and one
hole can be accessed through resonant optical excitation, and
observed in resonance fluorescence (ResFl). Magnetic field Bz
along the sample growth axis splits the electron spin-up "j i and
spin-down #j i energies (Fig. 1b), enabling selective excitation of
the optically allowed transition between "j i electron and the trion
"#*j i with a spin-up hole *j i. Weak recombination enabled by
hyperfine and heavy–light hole mixing β≪ 1 can ‘shelve’ the
dot14 into #j i state, quenching ResFl intensity IResFl until electron
returns to "j i through a spin flip with rate ξ↑↓. Such shelving
provides an efficient way both for initialisation and readout of the
electron spin14,22. Furthermore, hyperfine interaction Ĥhf / ð̂IŝÞ of
electron spin s with nuclear spins I enables electron–nuclear
flip–flops, so that repeated electron spin initialisation creates a net
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nuclear spin polarisation PN, which can be monitored through
optically measured hyperfine shifts Ehf in the splitting of the "j i
and #j i states7,17.
Electron and nuclear spin dynamics are measured using a

pump-delay-probe protocol (Fig. 1c). The decay of optically
pumped electron [nuclear] spin polarisation over dark period
TDark is probed by measuring IResFl [Ehf]. Figure 1d shows an
example of time-resolved ResFl, which is used to derive the
residual electron spin polarisation Pe after a delay TDark (see the
“Methods” section). Measurements of Pe at different TDark reveal
electron spin relaxation (symbols in Fig. 1e), while examples of
nuclear spin relaxation Ehf(TDark) are shown in Fig. 1f. Fitting (lines
in Fig. 1e, f) is used to derive the intrinsic spin-relaxation rates of
electron Γe= 1/T1,e= 2ξ↑↓ and nuclei ΓN= 1/T1,N.

Effect of Auger recombination on spin initialisation
We make a systematic comparison of spin dynamics in a thin-
barrier sample (tB= 37 nm, Fig. 2a–c), similar to structures used
previously10,14,15, and a thick-barrier structure (tB= 52 nm, Fig.
2d–f), approximating a QD isolated from the Fermi reservoir.
Examining the bias dependence of continuous excitation reso-
nance flourescence intensity IResFl in a thin-barrier sample, we
observe a 1e plateau at Bz= 0 T (triangles in Fig. 2a), while at high
Bz (circles and squares in Fig. 2a) ResFl is strongly suppressed,
indicating spin ‘shelving’10,14. A striking difference is observed in a
thick-barrier sample (Fig. 2d), where fluorescence intensity and
spin ‘shelving’ contrast are reduced (Fig. 2a), which may at first
suggest the lack of electron spin initialisation. However, this is

ruled out by time-resolved ResFl (e.g. Fig. 1d), which reveals spin-
pumping fluorescence pulses of similar intensity for all tB. We
ascribe the reduction in IResFl and the peculiar two-stage electron
spin decay in a thick-barrier sample (squares in Fig. 1e) to the
Auger process21,24, where electron–hole recombination ejects the
second electron with a rate γA (Fig. 1b). Following the ejection, an
empty QD does not contribute to ResFl, hence Pe ≈ 1 observed
initially. During TDark an unpolarised electron can return from the
Fermi reservoir with recharging rate r, giving rise to the fast
component of the Pe(TDark) decay (squares in Fig. 1e at TDark <
100 μs), whereas the slow component corresponds to resident
electron spin relaxation with rate Γe.
Using rate equation modelling (see details in the “Methods”

section) of the four-level system shown in Fig. 1b, we find good
description of the experiments (dashed line Fig. 1e) and derive r ≈
1.26 × 105 s−1, Γe ¼ T�1

1;e � 3:3 s−1. Importantly, the level Pe ≈ 0.77
reached after dot recharging (TDark ≈ 100 μs) gives a direct
measure of the electron spin initialisation fidelity in a thick-
barrier sample, revealing the fundamental limitations arising in an
isolated (tB→∞) QD. In a thin-barrier sample, Auger recombina-
tion is counteracted by fast recharging: the resulting spin
initialisation fidelity is higher, but can never reach unity. The
maximum spin initialisation fidelity is an algebraic function of QD
properties such as relaxation rates and heavy-light hole mixing.
(The exact expression can be found in Supplementary Note 2.)
Analysis shows that fidelity is improved for faster recharging r,
larger trion mixing β and slower spin flip ξ↑↓. Conversely, in the
limit of infinitely slow recharging r→ 0 spin initialisation becomes

Fig. 1 Electron and nuclear spins in a quantum dot. a Schematic of an InAs quantum dot embedded in a n–i–Schottky diode structure.
Electron spin is coupled to nuclei via hyperfine interaction (Ĥhf ) and to phonons (Ĥe�ph). Tunnel barrier thickness tB controls the cotunneling
interaction (Ĥcotun). Quantum dot charge state is controlled with bias VS, which tunes the energies of one-electron (1e) and two-electron (2e)
states with respect to Fermi energy EF. b Energy levels of an empty dot 0j i, electron with spin up ( "j i, sz=+1/2) or down ( #j i, sz=−1/2), and a
trion "#*j i with hole moment jz=+3/2, which has a small admixture β≪ 1 of a trion "#+j i with opposite hole moment jz=−3/2. Arrow labels
show the rates of radiative recombination γR, Auger recombination γA, recharging r, and electron spin flip ξ↑↓. Electron spin splitting is due to
Zeeman effect (μBgeBz, where ge is electron g-factor and μB is Bohr magneton) and nuclear hyperfine shift Ehf∝ AhfPN. c Timing diagram of a
pump-delay-probe experiment where optical excitation is used to initialise and probe the spins of either the electron or nuclei. d Time-
resolved resonance fluorescence (ResFl) in a pump-probe experiment. Resonance fluorescence pulses of intensities IResFl,Pump and IResFl,Probe
indicate electron spin pumping and are used to calculate the residual (i.e. relative to initial) electron spin polarisation Pe= (IResFl,Pump− IResFl,
Probe)/IResFl,Pump after time TDark. e Electron spin decay measured in Coulomb blockade regime as Pe(TDark) in diode sample structures with
different tB (symbols). Lines show exponential (solid) or rate-equation (dashed) fitting. f Nuclear spin decay obtained by measuring hyperfine
shift Ehf as a function of dark time TDark in a pump-delay-probe experiment. Lines show fitting with stretched exponential function.
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impossible (Pe→ 0), imposing a practical lower limit on the tunnel
coupling with the Fermi reservoir.

Fundamental limits of electron spin lifetimes
Figure 2 shows that electron (Fig. 2b, e) and nuclear (Fig. 2c, f) spin
relaxation rates are reduced at the centre of the 1e plateau15,25.
This Coulomb blockade regime is of most interest, as it
corresponds to a stable electron spin qubit, and is examined in
more detail in Fig. 3. The dependence of Γe on magnetic field is
well described (solid lines in Fig. 3a) by

Γe ¼ Γe;cotun þ Γe;phB
kph
z (1)

where for the field-dependent mechanism assisted by spin–orbit
interaction and phonons we find Γe;ph � 2:27 ± 0:48 s�1 ´ T�kph

and kph ≈ 4.1 ± 0.13 in both samples. The exponent is in good
agreement with kph= 4 predicted26 and observed experimentally9

for this mechanism in high-temperature regime μBgeBz≲ kBθ,
where phonon thermal occupation factor gives rise to an
additional /B�1

z factor in Γe. This condition is well satisfied for
our experiments at Bz ≤ 8 T, θ ≥ 4.5 K and typical g-factor values
∣ge∣ ≈ 0.4. By contrast, in previous studies at Bz ≤ 12 T, θ ≈ 1 K the
onset of low-temperature regime was observed9, where phonon
thermal occupation factor is ≈1, resulting in kph= 5.
Cotunneling involves virtual injection of a second electron into

the dot, followed by return of a spin-flipped electron to the Fermi
reservoir14,27. The fitted cotunneling-induced relaxation rate in a
thin-barrier (tB= 37 nm) sample Γe,cotun ≈ 532 ± 65 s−1= (0.0019 ±
0.0002 s)−1 is larger than Γe,cotun ≈ (1.65 ± 0.21 s)−1 found for a

thicker tB= 52 nm. Since Γe,cotun is field independent, the increase
in Γe at very low Bz≲ 0.2 T (squares in Fig. 3a) is likely due to
energy-conserving electron–nuclear flip–flops, which become
allowed when electron Zeeman energy is comparable to nuclear
quadrupolar energy. By extrapolating the phonon (dotted line)
and hyperfine (dash-dotted line) mechanisms we roughly estimate
the fundamental minimum of the electron spin relaxation rate in
an isolated (tB→∞) QD as Γe;min\ð20 sÞ�1, expected to occur at
Bz ≈ 0.4 T for θ ≈ 4.5 K. Similarly slow electron spin relaxation rates
were reported in strain-free III–V QDs28, although at lower
temperatures θ < 0.1 K.
Figure 3b shows Γe measured in cotunneling-dominated low-

field regime in samples with different barriers. A considerable
variation between individual dots for the thin barrier tB= 37 nm
can be due to random atomic-scale positioning of the individual
Si dopants29 and Si segregation30 at the interface between
tunnel barrier and Fermi reservoir. By contrast, in a thick-barrier
sample (tB= 52 nm) the dot is coupled to a large number of
dopants, smoothing out atomic-scale variations and leading to
consistent Γe.
In low-field regime the barrier thickness tB controls both the

electron spin relaxation rate Γe and recharging rate r, but we find
that r exceeds Γe by approximately five orders of magnitude, as
exemplified in Fig. 1e. The recharging of an empty QD is a first-
order tunnelling process, whereas cotunneling in a charged QD is
a second-order process31,32, which qualititatively explains the
difference in rates. Moreover, the charge state of the dot itself may
affect the conduction band energy profile, altering the tunnel

0.0 0.1 0.2 0.3 0.4

0.0 0.1 0.2 0.3 0.4

0.3 0.4 0.5 0.6

0.2 0.3 0.4 0.5 0.6

101
102
103
104
105
106
107
108
109

101
102
103
104
105
106
107
108
109

10-3
10-2
10-1
100
101
102

10-3
10-2
10-1
100
101
102

0.0 0.1 0.2 0.3 0.4

102

103

104

Bz
0T
1T
8T

Sample bias, VS (V)

R
es
Fl
in
te
ns
ity
,

I R
es
Fl
(s
-1
)

tB=37 nm
=4.5 K

0e 1e 2e

Sample bias, VS (V)

0e 1e 2e

0.3 0.4 0.5 0.6

102

103

104

R
es
Fl
in
te
ns
ity
,

I R
es
Fl
(s
-1
)

Bz
0T
1T
8T

Sample bias, VS (V)

tB=52 nm
=4.5 K

0e 1e 2ea

b

c

a

b

c

d

e

f

Sample bias, VS (V)

0e 1e 2e

El
ec
tro
n
sp
in

re
la
xa
tio
n
ra
te
,

e
(s
-1
)

El
ec
tro
n
sp
in

re
la
xa
tio
n
ra
te
,

e
(s
-1
)

N
uc
le
ar
sp
in

re
la
xa
tio
n
ra
te
,

N
(s
-1
)

N
uc
le
ar
sp
in

re
la
xa
tio
n
ra
te
,

N
(s
-1
)

Fig. 2 Bias dependence of electron and nuclear spin dynamics. a Bias dependence of resonance fluorescence (ResFl) intensity IResFl in a QD
sample with tB= 37 nm. At Bz= 0 T (triangles) a clear Coulomb blockade (1e plateau) is observed, with IResFl decreasing when the dot is
emptied (0e, VS≲ 0.1 V) or filled with a second electron (2e, VS≳ 0.33 V). At non-zero Bz= 1 T (circles) and Bz= 8 T (squares) the centre of the 1e
plateau is suppressed due to spin ‘shelving’, leaving two peaks arising from resonant tunnel coupling to the Fermi reservoir. b Bias
dependence of the electron spin relaxation rate measured at Bz= 1 T (circles) and Bz= 8 T (squares). c Bias dependence of the nuclear spin
relaxation rate measured for the same QD as in a and b. Note the offset in the horizontal axis, which is likely due to additional electric fields
arising from the optically generated trapped charges near the QD. Vertical dashed lines separate different charge states 0e, 1e, 2e. d–f Same as
a–c but for a QD from a thick-barrier sample (tB= 52 nm). All error bars are 95% confidence intervals.
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coupling. An accurate first-principle quantitative description of the
rates would require development of a detailed theoretical model.

Nuclear spin relaxation mechanisms
The marked difference in nuclear spin relaxation rate ΓN (solid
symbols in Fig. 3a) of the two samples at low magnetic fields
suggest cotunneling as the dominant channel, whereas at Bz≳ 2 T
cotunneling is negligible. This is in contrast to previous studies
under similar conditions (tB= 35 nm, Bz= 5 T), which identified
cotunneling and nuclear spin diffusion15 as dominant mechan-
isms. We examine diffusion by varying the spin pumping time
(squares in Fig. 3c): Taking the difference in ΓN at short and long

pumping, the diffusion rate is estimated to be as small as ΓN,diff≲
10−4 s−1 (at Bz= 8 T). Slow diffusion is due to quadrupolar freezing
of nuclear spin flip–flops15,17. Moreover, optical pumping through
wetting layer states used in this work (as opposed to resonant
optical pumping in ref. 15), is likely to polarise nuclear spins not
only in the dot but also in its vicinity, further suppressing the
diffusion. Thus cotunneling and spin diffusion alone do not
account for all the relevant nuclear spin relaxation mechanisms.
To explain the entire ΓN(Bz) dependence, we treat the average

spin of the QD electron as a random process. Uniquely for self-
assembled QDs, noncollinear hyperfine interaction permits
nuclear spin relaxation without electron spin flip13—this mechan-
ism is expected to be more efficient than direct electron–nuclear
spin flips15. The transition rate ΓN,ij between states ij i and jj i of a
single nuclear spin is proportional to spectral power density33 of
the fluctuating electron spin sz(t) at the nuclear spin transition
frequency νij. Using first-order perturbation theory13 we have

ΓN;ij ¼ Ahf

N_

� �2 2jMijj2τe
1þ 4π2τ2eν

2
ij

(2)

where Ahf is the hyperfine constant, Mij ¼ hiĵIz jji is the matrix
element of the nuclear spin operator Îz , and electron spin
correlation time is approximated by τe ≈ 1/Γe. This model describes
a higher-order nuclear spin relaxation process, mediating by
electron spin relaxation, which in turn is dominated by phonons at
high fields or cotunneling at low fields. In the high field limit
jMijj2 / B�2

z , Γe / B4z and ν2ij / B2z (see the “Methods” section)
leading to ΓN / const, which agrees with the weak field
dependence of ΓN observed for both samples at Bz≳ 4 T (solid
symbols in Fig. 3a). Moreover, temperature dependence at high
field (Fig. 3d) is close to linear ΓN∝ θ at θ≲ 15 K, matching the
Γe∝ θ dependence34 of the underlying phonon-mediated electron
spin relaxation process. Superlinear growth of ΓN at θ≳ 15 K is
likely due to two-phonon processes26,35, with scaling predicted to
range between∝θ2 and∝θ9.
For quantitative description (see the “Methods” section) we use

experimentally measured Γe and estimate νij and Mij from
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Fig. 3 Electron and nuclear spin dynamics in Coulomb blockade regime. a Magnetic field dependence of the electron (Γe, open symbols)
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magnetic resonance spectra36,37. The results (dashed lines in Fig.
3a) are in good agreement for the thin barrier (tB= 37 nm), where
electron correlation time is short. The discrepancy for the thick-
barrier sample (tB= 52 nm) is most prominent at Bz≲ 2.5 T,
revealing the limitations of the electron-spin fluctuation model
(Eq. (2)) in the previously unexplored regime of a nearly isolated
long-lived electron spin. To examine the cause, we note that
τ2eν

2
ij � 1 except for possible quadrupolar anti-crossings of the

nuclear spin levels37,38, so that Eq. (2) can be rewritten as

ΓN;ijτe ¼ AhfjMijjffiffiffi
2

p
πN_νij

 !2

(3)

The right side of this equation is a function of magnetic field and
quantum dot structural properties, such as chemical composition
and strain inhomogeneity, but it does not depend on tunnel
coupling to Fermi reservoir. If τe= 1/Γe, the equation predicts
independence of ΓN/Γe on tunnel barrier. This is seen to be the
case in Fig. 4 for samples with tB= 37 and 42 nm, whereas the
thick barrier sample (tB= 52 nm) shows excessive ΓN/Γe.
The exact reason for the increased ΓN/Γe in the thick barrier

sample is not clear. One likely possibility is additional nuclear spin
relaxation mechanisms where hyperfine interaction fluctuates
without electron spin flips, resulting in τe < 1/Γe. For example,
modulation of the hyperfine interaction can occur through
electron wavefunction density shifts, arising from fluctuating
electric fields of the itinerant carriers in the Fermi reservoir33,39, or
charge traps16. Charge noise in the studied structures is indeed
present and evidenced, e.g. by fluctuating electron spin relaxation
rates at the edges of 1e plateau (circles in Fig. 3e). Future
experiments using, e.g. bias modulation spectroscopy may
elucidate the roles of different nuclear spin relaxation mechanisms
and lead to more accurate theoretical models. Further improve-
ments to nuclear spin relaxation description can be sought
through a microscopic model that takes into account quadrupolar
anti-crossings of the individual nuclear spin levels37,38, which may
accelerate relaxation and reenable frozen spin diffusion. A
contribution of direct nuclear–phonon interaction33,40 is also
possible, as its rate ΓN ≈ 10−4−10−3 s−1 is comparable to the
lowest ΓN observed here in electron-charged QDs.

DISCUSSION
Experiments presented here establish a comprehensive picture of
electron–nuclear spin relaxation in self-assembled QDs in a wide
range of practically accessible conditions. Present experiments
require Bz≳ 0.15 T to initialise the spins22 and resolve the Zeeman-
split optical transitions for spin probing. Extension to lower fields
could shed light on the less explored regime where electron spin
relaxation abruptly slows down from Γe ≈ 109 s−1 at zero field8,41

to Γe ≈ 1 s−1 observed here at 0.15 T. For the practically interesting
range Bz≳ 0.15 T, electron spin relaxation is fundamentally limited
by phonon coupling, which is similar in other types of QDs. Hence,
electron spin lifetimes exceeding 1 s should be achievable in GaAs
electrostatic28 and epitaxial42 QDs, as well as in II–VI QDs43,44. By
contrast, nuclear spin relaxation studied here is specific to self-
assembled III–V QDs, and is governed by noncollinear hyperfine
interaction. All experiments here were conducted in Faraday
geometry, whereas noncollinear interaction is expected to be
even stronger for magnetic field tilted away from the sample
growth axis37, which may lead to faster nuclear spin relaxation in
Voigt geometry. The techniques employed here, can also be
applied to establish the less explored fundamental limits of
nuclear spin dynamics in electron-charged strain-free QDs28,42,
where noncollinear interaction will be small, but nuclear spin
diffusion might be more prominent.

METHODS
Samples and experimental techniques
The samples are low-density InAs self-assembled QDs (≲1 QD per μm2)
grown on a GaAs substrate. The dot layer is positioned at the centre of a λ/
2 optical cavity formed by a bottom Bragg mirror consisting of 15 GaAs/
AlAs pairs and a top reflector with 2 pairs (estimated quality factor Q ≈ 60).
Cavity mode is centred at 950 nm, which matches the long-wavelength tail
of the QD wavelength distribution. The Fermi reservoir is formed by a
doped GaAs layer (Si concentration of 1.1 × 1018 cm−3, thickness ≈ 80 nm).
The doped layer is located beneath QDs and is separated by a GaAs layer
of thickness tB= 37–52 nm, depending on the structure. Each sample is
processed into a Schottky diode structure with an Au/(In–Ge) ohmic back
contact45 annealed from the top surface, and a 5 nm-thick semitransparent
Ti Schottky top contact. External bias is applied to the top contract and
controls the charge states of QDs. In order to form an electron spin qubit,
the dot is charged deterministically with one electron (1e). This is achieved
by tuning the energy of the 1e state to ≈10meV below the Fermi energy EF
(Fig. 1a), while the two-electron (2e) state remains depopulated, since its
energy exceeds EF by ≈10meV, which is ≳20 times the thermal energy kBθ
at liquid helium temperature θ ≈ 4.2 K (Boltzmann constant kB ≈ 86.17 μeV
K−1). The dot is then charged by an electron tunnelling from the Fermi
reservoir.
The sample is mounted in a bath cryostat equipped with a super-

conducting coil producing magnetic field up to 8 T in Faraday geometry
(field parallel to sample growth direction and optical axis z). An aspheric
lens mounted near the sample is used for optical excitation of the QD and
for light collection. Photoluminescence (PL) spectroscopy (see Supple-
mentary Fig. 1) is used for initial QD characterisation. In nuclear spin
dynamics experiments the dot is excited using diode lasers operating at
850 nm (resonant with InGaAs wetting layer). Nuclear spin polarisation
(cooling) is achieved with a circularly polarised high power (≳100 times the
power of ground state exciton saturation) laser, with typical pump pulse
duration of TPump ≈ 8 s. A short (TProbe ≈ 10ms) low power (approximately
corresponding to ground state exciton saturation) probe pulse is used to
excite PL, which is then analysed on a double grating spectrometer to
derive the hyperfine shifts Ehf in the splitting of a QD Zeeman doublet. The
relaxation of the nuclear spin polarisation is derived by measuring Ehf in
the probe as a function of delay TDark between the pump and the probe.
The resulting Ehf(TDark) dependencies (e.g. Fig. 1f) are fitted with stretched
or compressed exponentials /e�ðTDark=T1;NÞη , where η is the parameter
describing stretching (η < 1) or compression (η > 1).
In ResFl experiments the dot is excited with a linearly polarised single-

mode tunable diode laser. The scattered laser is rejected using cross-
polarised detection46, and the collected fluorescence is directed to an
avalanche photodiode detector, whose photon-counting pulses are
measured with a pulse counter and a digital oscilloscope. Typical
linewidths measured in continuous excitation ResFl spectra on a negatively
charged trion are ≈0.5 GHz at low power (non-saturating excitation).
Electron spin initialisation at finite magnetic field is witnessed through
ResFl intensity IResFl, which is significantly reduced when electron is
initialised into the #j i state, taking the dot out of resonance with optical
driving of the "j i $ "#*j i transition (compare squares and circles with
triangles in Fig. 2a). Electron spin relaxation is accelerated and spin
shelving is destroyed when the bias is tuned to the level where Fermi
reservoir is resonantly tunnel-coupled with 1e (VS ≈ 0.1 V in Fig. 2a) or 2e
(VS ≈ 0.33 V in Fig. 2a) quantum dot state, resulting in two peaks in the
IResFl(VS) dependence (squares and circles in Fig. 2a).
In electron spin dynamics measurements pulsing of the resonant laser is

achieved with acousto-optical modulators providing on/off ratio better
than 107. The power of the pump and probe pulses is close to ResFl
saturation conditions and typical duration is TPump ≈ TProbe ≈ 5–10 μs, which
is significantly longer than the spin pumping time. As a result, time-
resolved ResFl exhibits short pulses (Fig. 1d) with amplitudes IResFl,Pump and
IResFl,Probe. At the start of each measurement cycle, and prior to optical
pump pulse, the bias is adjusted for resonant electron tunnelling in order
to counteract optical nuclear spin pumping and depolarise the electron
(see further details in Supplementary Note 1). The rising edge of the
fluorescence pulse corresponds to the rise time of the laser intensity in a
pulse that pumps the initially depolarised electron. The exponentially
decaying falling edge of the fluorescence pulse traces the gradual shelving
(initialisation) of the dot into the #j i electron spin state. The loss of electron
spin polarisation during the delay TDark results in partial recovery of the
fluorescence intensity measured in the probe pulse. The residual
polarisation Pe (i.e. electron spin polarisation at the start of the probe
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normalised by polarisation at the end of the pump pulse) is then derived as
Pe= (IResFl,Pump− IResFl,Probe)/IResFl,Pump. This way complete loss of electron
polarisation (Pe= 0) is observed as IResFl,Probe= IResFl,Pump, while IResFl,Probe
= 0 implies no loss (Pe= 1) or Auger recombination that empties the dot.
By measuring Pe at different TDark the decay of electron spin polarisation is
obtained as shown in Fig. 1e by the symbols.
Unless stated otherwise, all error estimates in the text and error bars in

figures are 95% confidence intervals.

Modelling of the electron spin relaxation dynamics
We simulate the dynamics of the four-level system shown in Fig. 1b using a
simplified noncoherent rate equation model. The relaxation rates of all
possible transitions are shown in Fig. 1b, and when resonant optical
pumping is present we add a transition "j i ! "#*j i with rate P. We
assume symmetric rates in electron spin flips "j i $ #j i, which is justified
when electron Zeeman energy is smaller than the thermal energy kBθ. The
system of first-order differential rate equations is

∂

∂t

p 0j iðtÞ
p "j iðtÞ
p #j iðtÞ
p "#*j iðtÞ

0
BBB@

1
CCCA ¼ R

p 0j iðtÞ
p "j iðtÞ
p #j iðtÞ
p "#*j iðtÞ

0
BBB@

1
CCCA (4)

R ¼

�r 0 0 γA

r=2 �P � ξ"# ξ"# γR

r=2 ξ"# �ξ"# βγR

0 P 0 �ð1þ βÞγR � γA

0
BBB@

1
CCCA (5)

In simulations we set γR= 109 s−1, which is typical for InAs/GaAs QDs47. In
order to simulate the pump-delay-probe experiment we use initial
population probabilities ðp 0j i; p "j i; p #j i; p "#*j iÞ ¼ ð0; 1=2; 1=2; 0Þ, and pro-
pagate the equations numerically over pump pulse (with P ≠ 0), dark delay
(P= 0), and probe (P ≠ 0). The values of γA, P, β, r, ξ↑↓ are used as fitting
parameters. The evolution of the trion state population p "#*j iðtÞ
reproduces the experimentally measured time-resolved ResFl (e.g. Fig.
1d). The simulated p "#*j iðtÞ traces are integrated over pump and probe
intervals and are used to calculate the residual electron polarisation Pe in
the same way IResFl,Pump and IResFl,Probe are used to calculate Pe from
experimental data (e.g. Fig. 1e). The fitting parameters are adjusted to
achieve two-objective optimisation: one objective is to minimise the root
mean square difference between simulated and experimental Pe(TDark)
traces, the other objective is to match the characteristic exponential time
in the falling edge of the ResFl intensity produced by the pump pulse. An
example of the Pareto-optimal fitted Pe(TDark) is shown by the dashed line
in Fig. 1e, in good agreement with experiment (squares). The calculated
falling edge time (87 ns) is also in good agreement with the experimental
value ≈91 ns.
From fitting we find r ≈ 1.26 × 105 s−1 (95% confidence interval [0.47 ×

105 s−1, 3.34 × 105 s−1]) and ξ↑↓ ≈ 1.65 s−1 [1.16 s−1, 2.34 s−1], which
correspond to the characteristic timescales of the fast and slow
components, respectively, in the two-stage decay (squares in Fig. 1e).
For Auger rate we obtain γA ≈ 1.09 × 107 s−1 [0.66 × 107 s−1, 3.11 × 107 s−1].
This is approximately five times higher than γA ≈ 0.23 × 107 s−1 reported
previously from time-resolved ResFl experiments21. The discrepancy could
be due to the difference in QD structures, high optical pump power used
in our experiments, limitations of a non-coherent rate equation model, and
uncertainty in the fitted parameters. The uncertainty is increased by the
interdependence of the fitting parameters γA, P, β, r, ξ↑↓, which is inevitable
since five parameters are used to fit essentially four degrees of freedom
(fast and slow rates of the two stage Pe(TDark) decay, Pe following fast decay
and the characteristic time of the falling edges in fluorescence pulses). This
uncertainty can also be understood to arise from the limited information
provided by the ResFl measurement, which does not distinguish between
spin shelving into the #j i state and Auger recombination into the 0j i state,
restricting the ability to monitor the full dynamics of the four-level system.
The remaining best fit values are P ≈ 2.5 × 109 s−1 [0.34 × 109 s−1, 3.16 ×
109 s−1] and β ≈ 5.2 × 10−3 [0.75 × 10−3, 20.1 × 10−3].

Modelling of the nuclear spin relaxation rate
We start by noting that at all magnetic fields used in this study (Bz=
0.15–8 T) nuclear spin relaxation in an empty dot (0e) is at least an order of
magnitude slower than at the centre of the 1e charging plateau. (In 0e

regime we measure ΓN ≈ 6.0 × 10−4 s−1 at Bz= 0.15 T, which reduces at
higher fields below the minimum measurable level of ΓN < 10−4 s−1.) This
suggests that electron is the dominant mediator of nuclear spin relaxation
in a Coulomb blockade regime (1e). Electron–nuclear coupling is given by
the hyperfine Hamiltonian

Ĥhf ¼
X
k

Ahf;k ð̂sx Îx;k þ ŝy Îy;k þ ŝz Îz;kÞ; (6)

where the summation goes over all nuclei, Ahf,k is the hyperfine constant of
the kth nucleus, ð̂sx ; ŝy ; ŝzÞ are the components of the electron spin-1/2
operator and ð̂Ix;k ; Îy;k ; Îz;kÞ are the components of the spin operator of the
kth nucleus. The flip–flop term / ð̂sx Îx þ ŝy ÎyÞ of this interaction permits
spin exchange between nuclear spin I and electron spin s, but at
sufficiently large magnetic field, where electron Zeeman energy signifi-
cantly exceeds nuclear Zeeman and quadrupolar spin splitting, such
flip–flops are strongly suppressed. For a depolarised nuclear spin ensemble
in an InAs QD, this threshold field would be on the order of 0.03 T,
corresponding to statistical fluctuation / Ahf;k

ffiffiffiffi
N

p
of the nuclear hyperfine

field acting on the electron. However, in self-assembled QDs the principal
strain axis is generally misaligned36,37 from the growth axis z, resulting in
nuclear eigenstates which are superpositions of Îz eigenstates. Under these
conditions nuclear spin states are mixed by the non-flip–flop part of the
hyperfine interaction Ahf;k Îz;k ŝz . This noncollinear interaction enables
transitions between nuclear spin states ij i and jj i without transfer of spin
to the electron. Using first-order perturbation and Weisskopf–Wigner
approximation one arrives to Eq. (2) for nuclear spin relaxation rate
between the pair of states ij i and jj i, where we have assumed the same
hyperfine constant Ahf,k= Ahf/N for all nuclei.
In order to calculate matrix elementMij of Îz we consider spin I= 3/2 and

assume that the principal component of electric field gradient is
characterised by quadrupolar shift frequency νQ, and is tilted by angle α
from the z-axis. Using first-order perturbation approach we calculate Mij in
the opposite limits of small magnetic field (γNBz≪ νQ, where γN is the
nuclear gyromagnetic ratio) and high magnetic field (γNBz≫ νQ). For each
individual nucleus the pair ( ij i, jj i) with the largest off-diagonal matrix
element is then selected leading to:

jMj2Bz!0 ¼
3
4
cos2 α sin2 α (7)

jMj2Bz!1 ¼ 3πν2Q
8γ2NB

2
z

sin4 α; (8)

For intermediate fields we interpolate the matrix element with a
monotonic function: jMðBzÞj2 ¼ 1=ðjMj�2

Bz!0 þ jMj�2
Bz!1Þ, and the nuclear

spin transition frequency is taken to be ν2ij ¼ ðγN=2πÞ2ðB2z þ B2z;minÞ, where
non-zero Bz;min reflects the fact that at Bz= 0 the spin states are split by
nuclear quadrupolar effects. This model is a simplification since nuclear
spin levels (anti)cross38 at Bz ≈ 2πνQ/γN, where nucleus experiences a nearly
zero effective magnetic field. The perturbative approach breaks down as
Mij is enhanced and νij ≈ 0 at these anticrossing points (typically occurring
at Bz ≈ 1 T)37, hence the introduction of Bz;min which softens the
singularities in Eq. (2). While spin relaxation would be enhanced in such
resonant nuclei, it would also prevent their optical polarisation, thus we
effectively neglect their contribution to the overall measured nuclear spin
decay in our simplified model.
In order to calculate the nuclear spin decay rate according to Eq. (2), we

take τe ¼ Γ�1
e , equivalent to assuming that electron spin flips are the only

source of noise acting on the nuclear spins. For Γe we use Eq. (1) taking
best fit parameters for each QD sample. Based on NMR spectroscopy of
similar QDs36,37, we model strain inhomogeneity within the quantum dot
by considering a uniformly distributed quadrupolar shift νQ∈ [0, 16] MHz
with principal axis uniformly distributed on a part of a sphere with α∈ [0°,
76°]. The large values of α ≈ 76° account for As nuclei, whose quadrupolar
shifts are dominated by atomic scale disorder, arising from Ga and In
alloying36. The gyromagnetic ratio is also varied uniformly γN/2π∈ [7.4, 9.2]
MHz T−1 to account for five different isotopes48 present in the dot (113In,
115In, 69Ga, 71Ga, 75As). We take Bz;min ¼ 0:06 T and use an average value
Ahf= 50 μeV for all the isotopes49. The number of nuclei is taken to be N=
4 × 104. The nuclear spin relaxation rate at a given magnetic field Bz is then
calculated by averaging over all parameter distributions to take into
account the contributions of the individual nuclei in a QD.
Despite the simplifications, the model is in good agreement with

experimental dependence ΓN(Bz) in the tB= 37 nm sample (thin dashed
line in Fig. 3a) and tB= 42 nm sample (Supplementary Fig. 2). Qualitative
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comparison with Eq. (2) is possible in the high field limit where Γe / B4z ,
jMijj2 / B�2

z and ν2ij / B2z leading to ΓN / const, which agrees with the
weak field dependence observed for all samples at Bz≳ 4 T. By contrast, at
fields Bz≲ 4 T, nuclear spin relaxation rate is determined by a combination
of different factors prohibiting simple analytical description. Better
description of the ΓN(Bz) dependence, including the discrepancies with
the thick-barrier (tB= 52 nm) sample experiments, would require a more
detailed model, which takes into account hyperfine fluctuations unrelated
to electron spin flips, contributions of both noncollinear and direct
hyperfine interaction, electron–nuclear spin feedback17, quadrupolar
anticrossings36,37 of the individual nuclear spin levels and electron-
mediated nuclear–nuclear interactions15.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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Supplementary Information: Fundamental limits of electron and nuclear spin

qubit lifetimes in an isolated self-assembled quantum dot
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Supplementary Figure 1. Photoluminescence (PL) spectroscopy of quantum dots. a, Photolumi-

nescence spectra of an individual quantum dot in a sample with tunnel barrier thickens tB = 37 nm. Color

plots show spectra measured at different values of sample bias VS. b, Same for a sample with tB = 52 nm.

All spectra are taken at a temperature of θ ≈ 6 K using 850 nm laser excitation, resonant with the wetting

layer states. The neutral exciton X0 and biexciton XX0 states are identified from the doublet structure

(visible in a) and additional measurements with linearly polarised luminescence detection. The emission of

a negatively charged trion X− is redshifted from X0 by ≈ 7 meV, which is typical for InAs/GaAs dots1.

Note that stability conditions of a resident charge are generally different from stability conditions of the

corresponding exciton complex with an extra electron-hole pair1. As a result of this difference X− PL is

observed in a wide range of biases (from VS ≈ −1.5 V to +1 V in a), while the single-electron state 1e is

stable in a narrower range (from VS ≈ +0.1 V to +0.3 V in Fig. 2a-c).
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Supplementary Figure 2. Magnetic field dependence of electron and nuclear spin dynamics in

Coulomb blockade regime. This figure reproduces Fig. 3a with the addition of the data for a sample

with an intermediate tunnel barrier tB = 42 nm (diamonds). Electron spin relaxation rate Γe is shown by

the open symbols (experiment) and solid lines (model fitting). Nuclear spin relaxation rate ΓN is shown by

the solid symbols (experiment) and dashed lines (model fitting). For each sample Γe and ΓN are measured

on the same individual quantum dot at a base temperature θ ≈ 4.5 K.

Supplementary Note 1. DESIGN OF THE SPIN DYNAMICS EXPERIMENTS

A. Electron spin dynamics

In order to observe QD electron spin dynamics, we employ time-resolved resonance fluorescence.

Pump and probe laser pulses that produce fluorescence signal are synchronized with sample bias VS

pulses, which control the state of the dot and the tunnel coupling to Fermi reservoir (Supplementary

Fig. 3a).

Between the measurement cycles the dot is ‘flushed’ under bias VFlush over time TFlush = 2000 µs.

We choose VFlush to match one of the resonance fluorescence intensity peaks at the edges of the
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Supplementary Figure 3. Design of the spin dynamics experiments. a, Timing diagram of one cycle

of the electron spin dynamics measurements. The lines show (from top to bottom): resonant laser pulses,

photon counting gating, sample bias VS. b, Cycle diagram in a nuclear spin decay experiment showing (from

top to bottom): nonresonant pump laser pulse, nonresonant probe laser pulse and PL gating, sample bias

VS. See discussion in Supplementary Note 2

1e plateau (e.g. VS = 0.1 V or VS = 0.32 V in Fig. 2a). Under these conditions fast resonant

tunneling of the electron depolarises the nuclear spin bath of the quantum dot and suppresses the

undesired fluctuations of the optical transition energy due to ‘dragging’ effects2. After flushing,

the bias is changed to VPump/Probe, corresponding to the centre of the 1e plateau (e.g. VS = 0.2 V

in Fig. 2a), and kept for TPrebias = 300 µs to ensure the dot achieves a steady-state charging with

one electron prior to optical spin pumping. After the resonant laser pump pulse with duration

in the range TPump = 5 − 10 µs, the bias is switched to VDark, which can be stepped over the 1e

plateau in bias dependent experiments (e.g. Fig. 2b,e). Following the dark delay TDark, the bias

is once again switched to VPump/Probe and a probe laser pulse identical to the pump is applied.

Finally, after a short delay TPostbias = 10 µs, the bias is tuned to flush and experiment proceeds

to the next cycle. Photon counting pulses of the resonance fluorescence signal are recorded on a

digital oscilloscope and, when averaged, produce traces such as in Fig. 1d. Delays in the triggering



5

system of the oscilloscope mean that only a fraction of experimental cycles can be collected. For

that reason the pulses are additionally accumulated over the initial time windows TDet = 0.5 µs

of the pump and probe pulses using gated digital counters. While the counters do not provide

temporal resolution, the signal is collected in full, providing accurate measurement of the residual

electron spin polarisation Pe (e.g. Fig. 1e).

B. Nuclear spin dynamics

The timing of a nuclear spin decay measurement cycle is shown in Supplementary Fig. 3b. The

sample bias is synchronized with pump and probe pulses. Nuclear spins are polarised with a high

power optical pump with duration in the range TPump = 3−90 s. During the pump the bias VPump

is kept in the range from −1.0 V to +1.3 V, depending on the sample and individual QD. VPump

is chosen from additional calibration experiments to maximize the nuclear spin polarisation and in

some QDs corresponds to forward bias of the structure. Optical illumination under forward bias

generates trapped charges, which quench PL and may affect the spin dynamics. To avoid this,

the dot is flushed in the dark for TFlush,1 = 0.1 s at VFlush = −1.5 V after each optical pump

to remove the charges. Nuclear spin relaxation is very slow at VFlush = −1.5 V, so the flush has

minimal effect on the measured nuclear spin decay. After the flush, the bias is switched to the

desired level VDark for time TDark. Before the optical probe, the sample is flushed once again for

TFlush,2 = 0.02 s. The bias of the probe pulse VProbe = 0.6 − 0.65 V is chosen to maximize PL

intensity of the negatively charged trion X−, and its duration TProbe = 0.01 − 0.015 s coincides

with the time window for PL collection and spectral analysis. Between the measurement cycles the

dot is kept under flush bias for TFlush,0 = 0.015 s. Optical pump and probe pulses, as well as gating

of PL collection are implemented using mechanical shutters. To account for their finite switching

time, a short delay TSw = 0.008 s is introduced between fast bias switching and electrical pulses

controlling the shutters.

Supplementary Note 2. FIDELITY OF ELECTRON SPIN INITIALISATION

We analyse the effect of Auger recombination and quantum dot recharging on the fidelity of

electron spin optical initialisation. To this end we derive an analytical steady-state solution of the

rate equation (Eq. 4 of the main text). The steady-state solution vector (p|0〉, p|↑〉, p|↓〉, p|↑↓⇑〉) under

resonant optical excitation is found as a null space of the equation matrix (Eq. 5). Once optical
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excitation is turned off, the probability p|↑↓⇑〉 will quickly decay to zero due to trion recombination.

This is taken into account by redistributing p|↑↓⇑〉 into the remaining probabilities p|0〉, p|↑〉, p|↓〉

with weights given by the rates of the corresponding processes γA, γR, βγR. After that, if the dot

is emptied by Auger recombination, recharging takes place, which corresponds to redistributing

p|0〉 with equal weights into p|↑〉 and p|↓〉. This completes the process of electron spin optical

initialisation, which leaves electron in either of the two spin states | ↑〉 or | ↓〉. The fidelity of

initialisation is then given by the electron spin polarisation degree:

Pe = p|↑〉 − p|↓〉 =
rP (− (γA + 2βγR) (γA + (β + 1)γR)− 2(β − 1)ξ↑↓γR)

(γA + (β + 1)γR) (γA(P (2ξ↑↓ + r) + 4ξ↑↓r) + 2r (ξ↑↓P + γR(2(β + 1)ξ↑↓ + βP )))
(S1)

The fidelity depends on different relaxation rates and the expression is somewhat bulky. How-

ever, by analyzing the derivatives it is possible to show that for all practically relevant cases faster

recharging rate r gives better fidelity (larger absolute value |Pe|). Moreover, fidelity is generally

improved by slower electron spin relaxation ξ↑↓ and larger trion state admixture parameter β. On

the other hand, the effect of the Auger rate γA depends on the values of other relaxation rates.

According to Eq. S1 spin initialisation becomes impossible (Pe → 0) in the absence of reliable

recharging (r → 0): indeed, to form a qubit the QD needs to be charge with an electron in the

first place either from a Fermi reservoir or from a nearby semiconductor impurity.

Supplementary Note 3. TABULATED DATA

Here we present tabulated data, including the raw data used in the figures.

A. Electron spin lifetimes

Here we present electron spin lifetimes T1,e measured as a function of magnetic field Bz in

quantum dot samples with different tunnel barriers tB. The numbers are obtained from exponential

fitting of the measured electron spin depolarisation. Error estimates are 95% confidence intervals.
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Results for tB = 37 nm (open triangles in Supplementary Fig. 2):

Bz (T) T1,e (s)

0.15 0.00189869± 0.000151588

0.5 0.00195518± 0.000126302

1 0.00171756± 0.0000744649

2.3 0.00148989± 0.00008131

3 0.00148683± 0.000053571

4 0.000916972± 0.0000599

5 0.000457006± 0.0000389

6 0.000262523± 0.0000115

7 0.00014334± 0.00000748

8 0.0000860168± 0.00000806

(S2)

Results for tB = 42 nm (open diamonds in Supplementary Fig. 2):

Bz (T) T1,e (s)

0.15 0.00309782± 0.000640384

0.25 0.0041252± 0.000722782

0.4 0.00389998± 0.000614786

0.63 0.00355091± 0.000362972

1 0.00475734± 0.000327926

2 0.00475795± 0.000590551

3 0.00218± 0.000377752

4 0.000864482± 0.000131119

8 0.0000675538± 0.000009148

(S3)
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Results for tB = 52 nm (open squares in Supplementary Fig. 2):

Bz (T) T1,e (s)

0.12 0.650457± 0.349529

0.16 1.79786± 0.623995

0.22 1.73346± 0.350849

0.33 1.61519± 0.199896

0.43 1.25995± 0.186163

0.6 1.09469± 0.0987524

1 0.339526± 0.0952452

2 0.0273806± 0.00243508

3 0.00477182± 0.00021804

4 0.00138957± 0.00012975

5 0.000596735± 0.00008352

6 0.000282641± 0.00003359

7 0.000159886± 0.00001909

8 0.0000888053± 0.00000608

(S4)

B. Nuclear spin lifetimes

Here we present nuclear spin lifetimes T1,N measured as a function of magnetic field Bz in quan-

tum dot samples with different tunnel barriers tB. Error estimates are 95% confidence intervals.
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Results for tB = 37 nm (solid triangles in Supplementary Fig. 2):

Bz (T) T1,N (s)

0.15 0.128887± 0.0200696

0.2 0.36857± 0.0559658

0.27 0.738735± 0.126206

0.38 2.01091± 0.320033

0.5 3.25741± 0.553301

0.72 8.28599± 1.33143

1 20.4342± 2.93934

1.44 79.1195± 10.882

2 196.939± 23.6121

2.5 371.864± 40.8411

3 550.259± 61.2703

4 907.88± 89.556

5 1226.49± 106.751

6 1405.36± 106.601

7 1620.3± 122.295

8 1830.19± 130.303

(S5)

Results for tB = 42 nm (solid diamonds in Supplementary Fig. 2):

Bz (T) T1,N (s)

0.15 0.476704± 0.060443

0.3 2.60955± 0.328726

0.63 16.4288± 2.04592

1 54.6469± 5.89249

1.5 162.594± 15.5768

2 296.841± 29.4867

2.5 390.403± 62.7901

5 1012.91± 113.703

8 1689.63± 157.518

(S6)
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Results for tB = 52 nm (solid squares in Supplementary Fig. 2):

Bz (T) T1,N (s)

0.15 89.4321± 51.4728

0.21 128.526± 54.506

0.29 188.409± 49.8251

0.4 227.143± 37.287

0.63 225.879± 33.7603

1 234.635± 25.3402

1.6 351.177± 44.1603

2.5 468.241± 49.8137

3.5 794.271± 59.6212

5 1100.9± 87.0357

7 1632.23± 225.801

8 2082.21± 172.213

(S7)

Here we present nuclear spin lifetimes T1,N measured as a function of sample temperature θ at

magnetic field Bz = 8 T in a quantum dot sample with tunnel barrier thickness tB = 52 nm. Error

estimates of T1,N are 95% confidence intervals. The uncertainty in sample temperature is ±0.5 K.

Results are shown by the symbols in Fig. 3d of the main text:

θ (K) T1,N (s)

4.5± 0.5 1547.79± 123.901

8.17± 0.5 947.942± 61.6851

12.3± 0.5 678.778± 40.066

15.3± 0.5 433.259± 25.4814

20.1± 0.5 177.321± 9.73723

(S8)
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Using nuclear spins for millisecond

coherence storage and single-shot

readout of an electron spin qubit

So far we have studied the loss of energy of the spin states to the environment, quantified

by T1. Now we must consider the loss of phase information of a coherent state, defined by

the coherence time T2. To investigate T2, we require the ability to coherently rotate the

spin projection into the equatorial plane of the Bloch sphere, allowing us to perform the

necessary spin echo sequences for measurement of T2. As highlighted previously, coherent

control of the electron can be carried out using either optical [31] or magnetic resonance [32]

techniques. The use of magnetic resonance techniques for coherent electron spin control has

proven challenging, however, there is extensive work on pulsed nuclear magnetic resonance

which allows us to investigate the coherence of the nuclear spin ensemble T2,N. Understand-

ing the mechanisms limiting nuclear coherence will provide a more complete description of

the environment of the electron spin qubit, in addition to exploring the possibility of using

the nuclear spins as a quantum resource. We have briefly covered the limiting factors of

nuclear spin ensemble coherence T2,N in Section 2.4.2. The constituent nuclei of the I > 3/2

97
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nuclear spin bath within the InGaAs/GaAs QD system are coupled via dipole-dipole inter-

action, fundamentally limiting coherence time T2,N to ≈ 1 - 10 ms in an uncharged QD [112].

Extension to T2,N through dynamical decoupling techniques is successful in uncharged QDs

[114], however, the charging of a QD with an electron complicates the nuclear spin bath

coherence as the system takes the form of the central spin model. Here, a central spin with a

large magnetic moment interacts with a bath of spins with comparatively smaller magnetic

moments, ultimately limiting the coherence of both systems. Previous investigations have

found that nuclear spin ensemble coherence time for a charged QD, T
(1e)
2,N , is dramatically

reduced to T
(1e)
2,N ≈ 20 µs. The reduction was attributed to a hyperfine-mediated decoherence

mechanism [136], which would vary depending on both hyperfine coupling strength and mag-

netic field T
(1e)
2,N ∝ B2

zA
−3. Ultimately, these results led to the conclusion that long nuclear

spin coherence in the presence of an electron would prove challenging.

The promising long lifetime results from Chapter 4 opened up a new opportunity to

investigate charged QD nuclear spin coherence in the limit of slow electron spin fluctuations

(Γe = 1/T1,e ≈ 1 s−1). Here, we investigate the dynamics of the nuclear spin ensemble

in the transverse plane using pulsed NMR. We measure pure dephasing T ∗
2,N through free

induction decay measurements for both a charged and uncharged QD, in addition to the

coherence T2,N from Hahn echo pulse sequences. From the study of T2,N in a charged QD at

a variety of static magnetic fields Bz, we can develop a spectral diffusion model describing

the effect of a fluctuating electron spin on the nuclear spin ensemble. In addition to this,

we demonstrate for the first time that the recently developed CHASE dynamical decoupling

sequence [114] is successful in extending nuclear spin ensemble coherence in a charged QD.

Further investigation into the effect of the fluctuating electron spin enabled us to develop

a novel single-shot electron spin readout technique utilising the Knight shift to encode the

electron spin state onto the nuclear spin bath collective coherence.

The results in this chapter are presented in the form of a manuscript that has been

submitted for peer review.
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The original approach to quantum dot spin
qubits viewed the environment nuclear spins as
a decoherence source [1–3]. Recently, attention
shifted to hybrid approaches, where nuclear spins
are interfaced to the electron spin qubit [4, 5] and
used as quantum memory [6] or qubit registers
[7]. These approaches require long-term collec-
tive nuclear spin coherence, which proved to be
evasive due to the decoherence induced by the
electron spin [8]. Here we successfully address
this problem by demonstrating millisecond long
nuclear spin coherence in InGaAs semiconductor
quantum dots, which can be extended further us-
ing dynamical decoupling [9]. Similarly long co-
herence is achieved when quantum dot is empty
or charged with a single electron, which we ex-
plain in terms of spectral diffusion theory [10, 11].
These results provide understanding of the many-
body coherence in central spin systems, required
for development of electron-nuclear spin qubits –
as a demonstration, we implement here a condi-
tional gate that encodes electron spin state onto
collective nuclear spin coherence, and use it for
a single-shot readout of the electron spin qubit
with > 99.8% fidelity.

Central spin model describes a single electron spin
s whose hyperfine interaction with an ensemble of nu-
clear spins Ij is characterized by coupling constants Aj

(Fig. 1a). Magnetic interactions between the nuclei with
pairwise coupling constants bj,k, together with inhomo-
geneity in Aj , result in complex spin dynamics [3, 12].
This problem is of interest, as it describes solid-state
qubit systems developed for quantum information pro-
cessing. Nuclear spins offer uniquely long coherence stor-
age, making them attractive as buffer memories in pho-
tonic quantum information processing systems [13]. In
group IV materials, such as diamond and silicon, nuclear
spins can be diluted, allowing quantum states of individ-
ual nuclei to be addressed in point defects [14] and gate-
defined quantum dots (QDs) [4]. In the optically active
III-V QDs all nuclei have spins – understanding their col-
lective dynamics, characterised by coherence time T2,N,
is crucial for the design of qubits.

In a typical epitaxial device (Fig. 1a) a Fermi reservoir
of electrons is introduced, and electric field is applied

∗ ggillard1@sheffield.ac.uk
† e.chekhovich@sheffield.ac.uk

through the gate voltage VG, to control the charge state
of the QD. In an empty (0e) InGaAs QD the nuclear-
nuclear interactions limit the coherence time to a few
millisecond range [8, 9] (T

(0e)
2,N ∝ 1/max (h|bj,k|), where

h is Planck’s constant). The spin of a single electron (1e)
induces hyperfine shifts in precession frequencies, ranging
from max (|Aj |)/h ≈ 100 kHz for nuclei at the centre of
the QD to zero. These shifts, known as Knight shifts, re-

sult in short nuclear spin dephasing times T
∗,(1e)
2,N ≈ 3 µs.

Refocusing this inhomogeneity with spin echo [15] previ-
ously gave little improvement [8], with nuclear coherence

limited to T
(1e)
2,N ≈ 20 µs. However, to fully understand

the QD coherence, one must take into account the effects
of the electron Fermi reservoir.

By minimizing the tunnel coupling between QD and
the Fermi reservoir, we achieve isolated-qubit regime,
with a two orders of magnitude improvement in collec-
tive nuclear spin coherence, exceeding milliseconds. For
a wide range of magnetic fields Bz = 0.25− 8 T, nuclear
spin coherence is well described as spectral diffusion in-
duced by a randomly fluctuating electron central spin.
Our results show that electron central spin is not an ob-
stacle for long nuclear spin ensemble coherence, enabling
a variety of nanoscale designs using quantum states of
electron and nuclear spins.

We study diode structures (Fig. 1a) with tunnel bar-
rier tB = 37 or 52 nm, thick enough to ensure long sin-
gle electron spin lifetimes T1,e of ≈ 1 ms or ≈ 1 s, re-
spectively [16]. We investigate spin-3/2 nuclei of 75As,
69Ga and 71Ga. With magnetic field Bz applied along
the sample growth axis, nuclear states with spin projec-
tions Iz = ±1/2 form effective spin-1/2 ensembles that
we focus on. Hyperfine interaction between the electron
spin and nuclear spins (see Supplementary Note 1) pro-
vides a tool both for hyperpolarisation of the nuclei via
optical pumping, and for detection of the nuclear ensem-
ble polarisation via hyperfine shifts Ehf in the optical
emission spectra of the QD electrons [17]. The recipro-
cal hyperfine effect of the electron spin is characterised
by the Knight shifts in the nuclear magnetic resonance
(NMR) frequencies.

We examine the collective coherence of the QD nuclear
spins using optically detected NMR protocol (Fig. 1b).
Figure 1c shows the result of an NMR experiment, where
a single resonant radio-frequency (rf) burst of dura-
tion trf induces coherent Rabi oscillations between the
Iz = −1/2 and +1/2 nuclear spin states. The inhomo-
geneous Knight shifts νe,j ∝ Aj induced by the electron
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FIG. 1. Coherent control of nuclear spins coupled to quantum dot electron spin qubit. a, Schematic of a conduction
band edge in an n-i-Schottky diode structure containing InGaAs QDs, separated from the electron Fermi reservoir by a tunnel
barrier of thickness tB. Gate voltage VG is adjusted with respect to Fermi energy EF to achieve single-electron (1e) QD
charging. The electron spin s (ball and arrow) couples to the nuclear spin ensemble Ij (small arrows) via inhomogeneous
hyperfine interaction. Relaxation between electron spin-up (↑, sz = +1/2) and spin-down (↓, sz = −1/2) states is characterized
by rate Γe. b, NMR experiment timing diagram showing optical pump and probe pulses, used to polarise and measure
polarization of the nuclear spins, respectively. Radio frequency (rf) pulses implementing coherent nuclear spin control at an
arbitrary VG are sketched for spin echo sequence (π/2)x − τ0 − (π)x − τ − (π/2)x. The electron spin sz undergoes random
transitions between its two states. c, Rabi oscillations of the 69Ga nuclear spins induced by a resonant rf pulse of variable
duration trf in an empty (0e, circles) and charged (1e, squares) QD in the tB = 52 nm sample at Bz = 7.8 T. Lines are a guide
to the eye. d, Spin echo evolution as a function of the second delay τ in the tB = 37 nm sample at Bz = 7.8 T, revealing free
induction decay in 0e (circles, τ0 = 150 µs) and 1e states (squares, τ0 = 7.5 µs, data multiplied by 3). Lines show compressed
exponential fits used to derive the nuclear spin dephasing times T ∗

2,N. e, Fourier transform of d, showing spectral broadening
and the average Knight shift ⟨νe⟩ ≈ −35 kHz induced by equilibrium electron spin polarisation. Data for 1e is multiplied by
10. f, Spin echo decay measured by varying the total free evolution times τevol = τ0 + τ at τ0 = τ . Lines show fitting used to
derive the nuclear spin coherence times T2,N.

(1e) result in faster damping of coherent nuclear spin ro-
tations compared to an empty QD (0e). To characterise
this inhomogeneity we use a spin echo sequence (Fig. 1b),
where the initial π/2 pulse transforms nuclear spin po-
larization into collective coherence, followed by free evo-
lution over time τ0, a refocusing π pulse, and a further
free evolution time τ , before the final π/2 pulse converts
the remaining coherence back into optically detectable
nuclear spin polarization. The width of the spin echo
peak observed around τ = τ0 (Fig. 1d) is proportional

to dephasing time, which reduces from T
∗,(0e)
2,N ≈ 35 µs

to T
∗,(1e)
2,N ≈ 4.3 µs when QD is charged with a single

electron. This corresponds to spectral broadening from
≈ 13 kHz in an empty QD, to ≈ 126 kHz in presence of

inhomogeneous Knight shifts (Fig. 1e).

By fixing τ = τ0 we remove the dephasing and examine
pure nuclear spin decoherence by measuring spin echo
amplitude decay with increasing total free evolution time
τevol = τ0 + τ (Fig. 1f). From exponential fitting we find

the coherence time T
(0e)
2,N ≈ 1.8 ms in a bare 69Ga nuclear

spin ensemble, in good agreement with previous studies

[8, 9]. By contrast, the coherence time T
(1e)
2,N ≈ 0.7 ms

in presence of a single QD electron is a factor of ≈ 30
longer than reported earlier [8]. By varying the gate bias
VG (Fig. 2a) we observe a clear plateau in T2,N around
VG ≈ 0.42 V, confirming that QD is in single electron

(1e) Coulomb blockade. Nuclear coherence time T
(1e)
2,N in

this regime is measured as a function of magnetic field Bz
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(solid symbols in Fig. 2b). At low fields T
(1e)
2,N is nearly

independent of Bz, but changes over to T
(1e)
2,N ∝ B−4

z

scaling at Bz ≳ 4 T, in stark contrast to T
(1e)
2,N ∝ B2

zA
−3

law predicted previously for hyperfine-mediated nuclear
spin decoherence mechanism [8]. Furthermore, at high

field Bz ≈ 7.8 T we find similar T
(1e)
2,N ≈ 130 µs for 75As

and 71Ga nuclei, despite a factor of ≈ 1.8 difference in
their hyperfine constants A.

To explain the observed T
(1e)
2,N values we invoke the

spectral diffusion model, where the fluctuating environ-
ment is the single central electron spin, making uncor-
related random jumps between the sz = ±1/2 states
as sketched in Fig. 1b. The rate of electron spin flips
1/(2T1,e) ≲ 6000 s−1 in the studied QDs is small com-
pared to root mean square Knight shift ∆νe ≈ 30 kHz,
derived from NMR spectra of Fig. 1e. In this regime
of slow fluctuations, the nuclear spin decoherence time
due to spectral diffusion approximately equals the elec-
tron spin lifetime T2,N,SD ≈ 1.38T1,e (see derivation in
Supplementary Note 2). Spectral diffusion dominates nu-
clear spin decoherence at high magnetic fields where elec-
tron spin lifetimes shorten as T1,e ∝ B−4

z . In an empty
QD nuclear dipole-dipole interaction causes nuclear spin

ensemble decoherence on a timescale T
(0e)
2,N – including

this mechanism, we find the following approximation for
nuclear spin coherence time in presence of the electron
central spin:

1/T
(1e)
2,N = 1/T

(0e)
2,N + 1/(1.38T1,e). (1)

This model fully describes the experimental dependence

of T
(1e)
2,N on Bz (lines in Fig. 2b), as well as isotope-

independent T
(1e)
2,N at high Bz. In the tB = 52 nm sample

T1,e is very long at Bz ≲ 3 T, making the dipole-dipole

mechanism dominant – and indeed we find T
(1e)
2,N ≈ T

(0e)
2,N

in that case.
Qualitative understanding of spectral diffusion is found

by considering two scenarios: In the absence of electron
spin flips, the static inhomogeneous Knight shifts are
fully refocused to form nuclear spin echo. By contrast,
even a single electron spin flip unbalances the phases ac-
quired by the nuclei before and after the refocusing π
pulse (except for those rare flips occurring within a short

interval ≈ T
∗,(1e)
2,N at the start or the end or the spin echo

sequence). The probability to have zero electron flips in
an increasing time interval decreases exponentially, and
with it decays exponentially the average nuclear spin co-
herence on a timescale T2,N,SD ≈ 1.38T1,e. A direct ob-
servation of this process is shown in Fig. 3a, where we
plot histograms of the spin echo amplitude ∆Ehf detected
with single shot probe pulses, as opposed to averaging
over multiple pump-rf-probe cycles used for the data of
Figs. 1, 2. At long evolution times τevol ≈ 1300 µs the
echo is destroyed by decoherence, resulting in a single
peak at ∆Ehf ≈ 0. At short τevol ≈ 0.4 µs the nuclear
coherence is preserved in most cases, leading to a peak at
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FIG. 2. Coherence time of the nuclear spins coupled to
quantum dot electron spin qubit. a, Gate bias (VG) de-
pendence of the 69Ga nuclear spin echo decay time T2,N in the
tB = 52 nm sample at Bz = 1.94 T (circles) and Bz = 7.8 T
(squares). Solid lines are a guide to the eye. Resonant cotun-
neling between QD and the Fermi reservoir leads to reduction

of T2,N down to dephasing time ≈ T
∗,(1e)
2,N (dashed line), ob-

served as dips at VG ≈ 0.33 V and ≈ 0.5 V, which separate
the Coulomb blockade plateaus corresponding to stable QD
charge states 0e, 1e and 2e. b, Nuclear spin coherence in an

empty QD (T
(0e)
2,N , open symbols) and electron-charged QD

(T
(1e)
2,N solid symbols) measured as a function of magnetic field

Bz for spin-3/2 isotopes in samples with different tB. Lines
show T 1e

2,N of 69Ga calculated according to the model of Eq. 1
for tB = 37 nm (solid line) and tB = 52 nm (dashed line)
samples. Error bars are 95% confidence intervals.

∆Ehf ≈ 1.9 µeV. At intermediate τevol a bimodal distri-
bution is observed, demonstrating the two discrete pos-
sibilities of nuclear spin echo preservation or destruction,
if electron spin does not or does flip, respectively.

Figures 3b, c show single shot NMR measurement with
a sequences (π/2)x − τevol − (π/2)y, which generates col-
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FIG. 3. Single shot NMR detection of the electron spin state. a, Spin echo of 75As nuclei in a tB = 37 nm sample
at Bz ≈ 7.8 T measured with single shot detection of the resulting hyperfine shift variation ∆Ehf . Measurement sequence is
(π/2)x−(τevol/2)−(π)x−(τevol/2)−(π/2)x with several values of the total free evolution time τevol = 0.4−1300 µs. Results are
shown as histograms of the detected spin echo amplitudes ∆Ehf . Lines show double Gaussian fits. Schematic shows electron spin
in an sz = +1/2 or −1/2 states (balls with up or down arrows). After the initial (π/2)x pulse all nuclear spins point along the
same axis orthogonal to z (dashed small arrow) and then precess around the z axis to point along generally different directions
prior to the final (π/2)x pulse (solid small arrows). An electron spin flip during the nuclear spin precession dephases the spins,
resulting in ∆Ehf ≈ 0, whereas in the absence of electron flips, nuclear spin echo is formed, resulting in ∆Ehf ≈ 1.9 µeV. b,
Single shot measurement of the free induction decay in an empty QD (0e), using sequence (π/2)x − (τevol) − (π/2)y, where
subscripts x, y denote the equatorial axes in the rotating frame towards which the spins are flipped by the rf pulses. Line shows

Gaussian fit. c, Same sequence as in b applied to a charged QD (1e). For a sufficiently short evolution time τevol ≲ T
∗,(1e)
2,N the

spin sz = −1/2 (sz = +1/2) of a single electron pointing down (up) gives rise to a negative (positive) quadruature nuclear spin
polarisation ∆Ehf , observed as a bimodal distribution of the detected ∆Ehf . Lines show double Gaussian fits.

lective nuclear spin coherence and probes its quadrature
component ∆Ehf following the free evolution time τevol.
In an empty QD (0e, Fig. 3b) the distribution of detected
∆Ehf is unimodal with a width given by the optical read-
out noise. By contrast, a clear bimodal distribution is
observed with a single electron in a QD (1e, Fig. 3c) at
τevol ≈ 0.3 µs. The two modes correspond to the two dis-
crete electron spin qubit states sz = ±1/2, that add pos-
itive or negative phase ∝ τevol to the nuclear spin coher-
ence, thus implementing a controlled phase (CPHASE)
quantum logic gate in the hybrid electron-nuclear spin
system. The (π/2)y pulse converts this phase into the
optically detected hyperfine shift, thus implementing a
single-shot readout of the electron spin qubit, which is a

key ingredient in quantum information processing. The
readout is achieved using a small fraction (< 13%, see
Methods) of the QD nuclei, so that the remaining nu-
clear spins can be used as a quantum resource. Using
Gaussian fitting (lines in Fig. 3c) to calculate the over-
lap (see Methods) of the two modes, we estimate the
readout fidelity > 99.8%, which can be improved fur-
ther by optimizing the collection efficiency of the QD
optical emission. Our method of qubit readout via spin
environment offers notable improvement over previously
achieved fidelities in solid state spin systems (80− 95%,
Refs. [18–21]) and superconducting qubits (> 97− 99%,
Refs. [22, 23]). The relative weights of the two modes
in Fig. 3c reveal the electron spin polarization degree
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ρe ≈ 0.35, corresponding to equilibrium of an electron
with ge ≈ −0.63, in good agreement with electron g-
factors found in similar QDs [24]. At long evolution times

τevol ≫ T
∗,(1e)
2,N the coherence imprinted by the electron

spin is dephased, resulting in a unimodal distribution
around ∆Ehf ≈ 0 (e.g. at τevol ≈ 500 µs).

Using the long nuclear spin coherence T2,N and fast
(bang-bang) rf control we implement dynamical decou-
pling [25] protocols, which increase T2,N by filtering out
the unwanted interactions under an increasing pulse rep-
etition rate. Applying a 5-pulse sequence CHASE-5
(Ref. [9]) to 69Ga nuclei in the low field regime (Bz =
2.5 T), where T1,e is long, we find an improved coher-

ence T
(1e)
2,N ≈ 2.2 ms compared to a single-pulse spin echo

T
(1e)
2,N ≈ 1.5 ms. Due to the Knight shift broadening, de-

coupling sequences with more pulses are found to reduce
the echo amplitude to unmeasurable levels (see Supple-
mentary Note 5). However, this limitation is technical,
and can be addressed by increasing the rf control band-
width. Since nuclear spin decoherence in both neutral
(0e) and charged (1e) QDs is governed by the same mech-
anisms of inhomogeneous broadening and nuclear dipo-

lar interactions, we expect that T
(1e)
2,N can be as large as

T
(0e)
2,N > 10 ms, found previously in neutral QDs [7, 9].

We expect that optimal dynamical decoupling would be
achieved by synchronizing the control pulses applied to
the nuclear spin ensemble and the central spin qubit.

Our results show that spectral diffusion, observed pre-

viously in dilute spin systems [26], applies to 100% abun-
dant spin ensembles of III-V semiconductor quantum
dots, predicting long spin ensemble coherence required
to implement recent proposals for QD spin-photon net-
works with nuclear spin quantum memories [6] and reg-
isters [7]. In contrast to previous studies [8], we find no
signature of decoherence arising from hyperfine-mediated
nuclear-nuclear interactions down to Bz ≈ 0.25 T – this
however is consistent with earlier estimates [27] that
such interactions play a role only for magnetic fields
≲ 0.02 T. While our experiments are conducted on col-
lective, multi-quanta coherent excitations of the nuclear
spin ensemble, we expect the same mechanisms and sim-
ilar coherence times for the low-energy excitations such
as magnon modes [5]. The findings of this work on
InAs/GaAs QDs are expected to apply to high-quality
optically active GaAs/AlGaAs QDs [7], where small in-
trinsic strain holds a promise for even longer coherence
and complete control of the hybrid electron-nuclear spin
quantum system. Future work will include development
of quantum gates for reversible coherent state transfer
between electron and nuclear spins. The detrimental
effect of electron-nuclear interaction inhomogeneity on
such gates can be alleviated by operating on small nu-
clear spin sub-ensembles via spectrally-selective rf con-
trol pulses [28] – the sensitivity of the techniques demon-
strated here is sufficient for that and can be improved
further.
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METHODS

Sample structures. The studied semiconductor
structures have been examined previously [16] using
photoluminescence and spin lifetime measurement tech-
niques. The samples are low-density InAs self-assembled
QDs grown on a GaAs substrate using molecular beam
epitaxy. The dots are placed between two distributed
Bragg reflectors consisting of GaAs and AlAs layers and
forming a λ/2 optical cavity. The low temperature
ground-state optical emission of the studied QDs is at
≈ 950 nm. The Fermi reservoir is a Si doped GaAs
layer (Si concentration ≈ 1.1 × 1018 cm−3), separated
from QDs by a GaAs tunnel barrier layer of thickness tB.
The samples are processed into planar Schottky diode
structure, allowing for the charge state of the dots to be
controlled by applying external bias VG to the top metal
gate.
Electron spin relaxation rates Γe = 1/T1,e measured

at low temperature T = 4.5 K are well described by the
following model [16]:

Γe = Γe,cotun + Γe,phB
kph
z (2)

where the first term Γe,cotun accounts for the field-
independent relaxation induced by electron cotunneling
and the second term describes the field-dependent relax-
ation induced by acoustic phonons. Equation 2 is then
substituted into Eq. 1 to find a closed form dependence
of the nuclear spin coherence time on the external mag-
netic field Bz. The phonon mechanism parameters are
Γe,ph ≈ 2.27± 0.48 s−1 × T−kph and kph ≈ 4.1± 0.13 in
both samples. Cotunneling depends on the barrier thick-
ness. For the tB = 52 nm sample the range of values is
1/Γe,cotun ≈ 1.26 − 1.65 s for different individual QDs.
For the tB = 37 nm sample the dot-to-dot variation is
more pronounced 1/Γe,cotun ≈ 1.2 − 5.8 ms. Electron
spin lifetimes have not been measured for the particular
QDs used here for nuclear spin coherence studies, and
thus we treat Γe,cotun in the tB = 37 nm sample as the
only adjustable parameter. The best fit value plotted by
the solid line in Fig. 2b is 1/Γe,cotun ≈ 1.1 ms, in good
agreement with relaxation rates found from direct mea-
surements on other QDs in the same sample.

Experimental techniques. The sample is placed in
a liquid helium bath cryostat equipped with a supercon-
ducting magnet, providing a field up to Bz = 8 T, parallel
to sample growth direction and optical axis z (Faraday
geometry). An aspheric lens is used for optical excita-
tion of the QD and photoluminescence (PL) collection.
Diode lasers emitting at 850 nm are used both for optical
polarization of the nuclear spins (optical pump pulses)
and PL excitation (optical probe pulses). The collected
PL is dispersed with a 1 m double grating spectrometer
and recorded with a charge-coupled device camera. The
changes in the spectral splitting of a negatively charged
trion X−, derived from the PL spectra, are used to mea-
sure the hyperfine shifts Ehf proportional to the nuclear
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spin polarisation degree. The oscillating magnetic field
Bx ⊥ z implementing the coherent control of the collec-
tive nuclear spin state is produced by a coil placed at a
distance of ≈ 0.5 mm from the QD sample. The coil is
made of 10 turns of a 0.1 mm diameter enameled copper
wire wound on a ≈ 0.4 mm diameter spool in 5 layers,
with 2 turns in each layer. The coil is fed by a 1 kW
rf amplifier through a resonant impedance matching net-
work made of 50 Ω coaxial cables.

Optically detected NMR. The details of NMR im-
plementation are given in Supplementary Note 3. Over-
all the experimental cycle follows the timing diagram
shown in Fig. 1b. As in previous work [8, 9, 29], the
optically induced nuclear spin state is augmented with
adiabatic rf frequency sweeps over the inhomogeneously
broadened satellite NMR transitions −3/2 ↔ −1/2 and
+1/2 ↔ +3/2. The sweeps exchange the populations
of the Iz = −3/2 and −1/2 pair of states, as well as
populations of the Iz = +1/2 and +3/2 pair. This way
the population difference of the Iz = ±1/2 pair is max-
imised, prior to coherent manipulation of the Iz = ±1/2
subspace. The amplitude of the frequency-swept rf ex-
citation is chosen to produce Rabi frequency between
≈ 1 − 4 kHz, and the typical sweep rates are between
5−10 MHz s−1. In some experiments, such as single-shot
measurements of Fig. 3, the same adiabatic sweeps are
applied for the second time, after the coherent manipula-
tion, transferring the final populations of the Iz = ±1/2
states back into Iz = ±3/2 states. This gives a factor of 3
increase in the variation of the optically detected hyper-
fine shifts ∆Ehf at the expense of a longer experimental
time. In the case such second set of sweeps is used, all
the measured ∆Ehf are divided by 3 to obtain the values
directly comparable with the measurements where adia-
batic sweeps are applied only after the optical pumping.
In all experiments, except for single shot measurements,
the hyperfine shift ∆Ehf is acquired by averaging over
15− 60 pump-rf-probe cycles shown in Fig. 1b to obtain
an approximation to a statistical average NMR signal.
In echo decay experiments, such as shown in Fig. 1f, the
dependence of the echo amplitude on the total free evo-
lution time τevol is fitted with stretched or compressed
exponentials ∝ e−(τevol/T2,N)η , where η is the parameter
describing stretching (η < 1) or compression (η > 1).

Coherent control of the nuclear spins is achieved using
high power rf pulse bursts with rotating frame amplitude
of up to B1 ≈ 10 mT, which corresponds to laboratory
frame amplitude Bx ≈ 20 mT and 75As Rabi frequency
ν1 = 2γB1/(2π) ≈ 140 kHz, where the additional factor
of two is from the matrix element of the spin-3/2 opera-
tor projected onto the Iz = ±1/2 subspace. In order to
achieve broadband uniform rotation of a spin ensemble,
ν1 must be larger than the resonance spectral broaden-
ing. While larger B1 can be achieved by increasing the rf
power, the practical limitations arise from the parasitic
effects of the rf electric field. Above certain level, typi-
cally corresponding to B1 ≈ 5 mT, high power rf pulses
are found to induce electron spin flips, which then dis-

rupt the formation of the nuclear spin echo. In single shot
spin echo experiments with short τevol the rf-induced elec-
tron spin flips are observed as nearly equal weights of the
two modes in the histogram. Consequently, experiments
shown in Fig. 3a are conducted at a reduced B1 ≈ 5 mT,
where the probability of parasitic electron spin flipping is
estimated to be within < 0.05 from fitting. The downside
of a low B1 is the reduced spectral bandwidth of the con-
trol pulses, which leads to incomplete rotation for some
of the spins and a reduced spin echo amplitude. In those
spin echo experiments where the readout is averaged over
multiple pump-probe cycles, the contributions of the cy-
cles where electron spin is flipped by the rf field can be

ignored, leading to correct spin echo decay time T
(1e)
2,N but

with a reduced echo amplitude. Future work may include
optimisation of rf circuitry with the aim of maximising
B1 while reducing the parasitic rf electric field.
Most of the pulsed nuclear magnetic resonance exper-

iments are conducted on the 69Ga isotope due to its
favourable balance between the hyperfine shift ampli-
tude, Knight shift inhomogeneity, and the quadrupolar
inhomogeneity. Additional results for 75As isotope can
be found in Supplementary Note 4.
Estimate of the number of nuclei used for sin-

gle shot electron spin detection. The single-shot
NMR experiments presented in Fig. 3 are conducted on
75As nuclei, which have 100% natural abundance and
thus make up 50% of all the nuclei in a QD, the rest
being the group-III Ga, In and possibly some Al nuclei.
The nuclear spin polarization degree produced by opti-
cal pumping is estimated to be |ρN| ≈ 0.65 [30], which
corresponds to a dimensionless inverse spin temperature
|β| ≈ 0.98 in a Boltzmann distribution of the nuclear
spin level population probabilities p(Iz) ∝ exp(−βIz).
The nuclei that are initially in the Iz = ±3/2 states are
transferred into the Iz = ±1/2 states by adiabatic rf fre-
quency sweeps – only these nuclei contribute to NMR
signal, and from the p(Iz) distribution their fraction is
≈ 0.67. Finally, the reduced rf amplitude used in single-
shot NMR (75As CT Rabi frequency ν1 ≈ 70 kHz) results
in selective rf pulses, which excite only the nuclei whose
NMR frequencies are within the pulse bandwidth ∝ ν1.
In spin echo experiments, such lowering of the rf ampli-
tude results in spin echo amplitude that is a factor of
≈ 0.38 smaller compared to the echo amplitude in exper-
iments conducted with the highest possible rf amplitude.
Combining all these factors we find an upper estimate
< 0.5× 0.67× 0.38 ≈ 0.13 of the fraction of the QD nu-
clei taking part in a single-shot detection of the electron
spin state. With the total number of nuclei estimated to
be N ≈ 4× 104 in the studied dots [16], this corresponds
to ≈ 5000 nuclei participating in electron spin detection.

Estimate of the single-shot electron spin read-
out fidelity. The histograms of the single-shot quadra-
ture NMR signal ∆Ehf shown in Fig. 3c are fitted with

a double Gaussian function A(−)2
−
(

∆Ehf+∆Ehf,0/2

w/2

)2

+

A(+)2
−
(

∆Ehf−∆Ehf,0/2

w/2

)2

, where ∆Ehf,0 is the splitting of
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the two modes, w is the full width at half maximum of
each mode peak and A(+) (A(−)) is the amplitude of the
mode corresponding to positive (negative) average hyper-
fine shift variation ∆Ehf . The relative difference of the
amplitudes reflects the electron spin polarization degree
ρe = (A(+)−A(−))/(A(+)+A(−)). For the measurement
at τevol = 0.3 µs in Fig. 3c we find ∆Ehf,0 ≈ 1.75 µeV
and the width w ≈ 0.67 µeV determined by collection
efficiency and spectral resolution of the instruments used
to analyze QD PL. When the quadrature NMR signal
∆Ehf is measured it is interpreted as electron spin state
sz = +1/2 (sz = −1/2) for ∆Ehf > 0 (∆Ehf < 0). Thus
the total probability of correct detection is

F =

(
(A(−) +A(+))

∫ ∞

−∞
2−(

x
w/2 )

2

dx

)−1

×
(∫ 0

−∞
A(−)2

−
(

x+∆Ehf,0/2

w/2

)2

dx+

∫ ∞

0

A(+)2
−
(

x−∆Ehf,0/2

w/2

)2

dx

)
.

Taking the integrals we find for the readout fidelity:

F =
1

2

(
1 + erf

[√
ln 2∆Ehf,0

w

])
, (3)

where erf is the standard Gauss error function. Evalu-
ating this for the τevol = 0.3 µs measurement we find
F ≈ 0.9989. This is the value quoted in the main text
above and it is determined by the accuracy with which
the collective nuclear spin polarization of the quantum
dot is read out optically.

Some additional loss of fidelity can occur if the electron
spin flips during the free evolution interval τevol, which

encodes the electron spin state into collective nuclear spin
coherence, or during the subsequent (π/2)y final rf pulse,
whose duration is tπ/2 = 3.75 µs for the results shown in
Fig. 3c. The Rabi frequency of the rf pulse ν1 ≈ 70 kHz
is sufficiently large to dominate over the Knight shift
broadening ∆νe ≈ 30 kHz and cause nuclear spin lock-
ing [31]. Under spin locking, electron spin flips during
the (π/2)y pulse can no longer change the sign of the
detected quadrature nuclear spin polarization. Thus we
only need to consider the probability ≈ 1 − (τevol/T1,e)
that the electron spin is preserved during the free evo-
lution time τevol. This probability is ≈ 0.9967 for the
results of Fig. 3c where τevol = 0.3 µs and T1,e ≈ 90 µs,
estimated for high magnetic field Bz = 7.8 T. Electron
spin flips occurring at random times during τevol result
in quadrature nuclear spin polarization values over the
entire range [−∆Ehf,0/2,+∆Ehf,0/2]. Such signal as-
sociated with electron spin flips must appear as broad
background in the histograms of Fig. 3c, but in practice
is too small to be observed directly. At lower magnetic
fields the electron spin lifetimes are considerably longer.
For T1,e ≥ 10 ms electron spin flips during the detection
sequence become negligible, and the fidelity is governed
by the statistical uncertainty in the optically detected
hyperfine shift ∆Ehf . Increasing the optical probe du-
ration TProbe increases the number of the PL photons
collected and reduces w, improving the measurement ac-
curacy of the spectral splitting variation ∆Ehf . However,
if TProbe is too long, it depolarizes the nuclei and reduces
the separation ∆Ehf,0 of the histogram modes, reducing
the readout fidelity. Thus there is an optimal probe du-
ration TProbe which maximizes the fidelity F . Further
improvement of the electron spin readout fidelity can be
achieved using e.g. solid immersion lenses [32] in order
to increase probe PL photon collection without the need
for a longer TProbe.
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Supplementary Note 1. ELECTRON-NUCLEAR SPIN SYSTEM OF A QUANTUM DOT.

The Hamiltonian of the electron central spin s and the nuclear spin bath Ij , where 1 ≤ j ≤ N

and N is the number of nuclei in the dot, can be written as the following sum of terms:

H = HZ,N +HQ,N +HDD,N +HZ,e +Hhf +HEnv,e (S1)

The first Zeeman term describes interaction of the QD nuclear spins Ij with the static magnetic

field Bz aligned along the z axis:

HZ,N = −
∑

j

ℏγjBzÎz,j , (S2)

where ℏ = h/(2π) is the reduced Planck constant, γj is the gyromagnetic ratio of the j-th nuclear

spin and Îj is a vector of spin operators with Cartesian components (Îx,j , Îy,j , Îz,j). The result of

the Zeeman term alone is a spectrum of equidistant single-spin energies ℏγjBzIz, corresponding

to 2I + 1 eigenstates with nuclear spin z-projections Iz, where −I ≤ Iz ≤ +I. The interaction of

the nuclear electric quadrupolar moment with the electric field gradients is described by the term

(Ch. 10 in Ref. [1]):

HQ,N =
∑

j

qj
6
[3Î2z′,j − I2j + ηj(Î

2
x′,j − Î2y′,j)], (S3)

where qj and ηj describe the magnitude and asymmetry of the electric field gradient tensor, whose

principal axes are x′y′z′. In self-assembled QDs the electric field gradients at the nuclear sites are as

large as hqj ≈ 10 MHz and are dominated by the elastic strains [2, 3]. The strain is inhomogeneous

within the QD volume, so that qj and ηj vary strongly between individual nuclei. The axes x′y′z′

are different for each nucleus and generally do not coincide with crystalographic axes or magnetic

field direction. At sufficiently strong magnetic fields |ℏγjBz| ≫ qj , quadrupolar effects can be

treated perturbatively – the main effect is the nonharmonicity of the nuclear spin energies and

the splitting of the NMR spectrum into a quadrupolar multiplet of 2I resolved transitions. The

Iz = ±1/2 states of a half-integer nuclear spin are influenced by quadrupolar effects only in the

second order, resulting in a smaller inhomogeneous broadening, compared to the broadening of
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the |Iz| > 1/2 state energies. This allows for spectral isolation of the Iz = ±1/2 subspaces, which

can then be treated as effective spin-1/2 nuclei. Within the Iz = ±1/2 subspace, the quadrupolar

Hamiltonian is identical to the Zeeman term, so that we can replace HQ,N → −∑j ℏγj∆BzÎz,j ,

where inhomogeneous quadrupolar shifts qj are emulated by magnetic field inhomogeneity on the

scale of ∆Bz,j ∝ q2j /(ℏγjBz).

Direct interaction between the nuclei is described by the dipole-dipole Hamiltonian:

HDD =
∑

j<k

bj,k

(
3Îj,zÎk,z − Îj ·Îk

)
,

bj,k =
µ0
4π

γjγk
2

1− 3 cos2 θj,k
r3j,k

(S4)

Here, µ0 = 4π×10−7 NA−2 is the magnetic constant and rj,k denotes the length of the vector, which

forms an angle θ with the z axis and connects the two spins j and k. The typical magnitude of the

interaction constants for the nearby nuclei in InGaAa is max (h|bj,k|) ≈ 100 Hz. The Hamiltonian

of Eq. S4 has been truncated to eliminate all spin non-conserving terms – this is justified for static

magnetic field exceeding ≳ 1 mT. Due to its bilinear form in terms of spin operators, the dipolar

interaction is not refocused by the nuclear spin echo sequences, and is responsible for collective

nuclear spin decoherence on a timescale T2,N,DD ∝ 1/max (h|bj,k|).
The electron Zeeman term is

HZ,e = µBgeBzŝz, (S5)

where µB is the Bohr magneton and ge is the effective conduction-band electron g-factor, estimated

to be ge ≈ −0.67 in the studied QDs.

The interaction of the conduction band electron spin s with the ensemble of the QD nuclear

spins is dominated by the contact (Fermi) hyperfine interaction, with the following Hamiltonian:

Hhf =
∑

j

Aj(ŝxÎx,j + ŝyÎy,j + ŝzÎz,j), (S6)

where the hypefine constant of an individual nucleus j is Aj = A(j)|ψ(rj)|2v . Unlike Aj , the A
(j)

hyperfine constant is a parameter dependent only on the material and the isotope type to which

nucleus j belongs, |ψ(rj)|2 is the density of the electron envelope wavefunction at the nuclear site rj ,

and v is the crystal volume per one cation or one anion. The definitions of the hyperfine constants

differ between different sources. With the definition adopted here, a fully polarized isotope with

spin I, hyperfine constant A and a 100% abundance (e.g. 75As), would shift the energies of the
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electron spin states sz = ±1/2 by ±AI, irrespective of the shape of |ψ(rj)|2. In that case, the

typical values in InGaAs are A ≈ 50 µeV (Refs. [4–6]).

The three orders of magnitude disparity in the energy scales of HZ,e and HZ,N suppresses at high

magnetic field the direct (first-order) electron nuclear spin flip-flops governed by the ∝ ŝxÎx,j+ŝyÎy,j

term. The remaining secular term ŝzÎz,j is responsible for the Knight shifts of the nuclear magnetic

resonance frequencies and the electron spin hyperfine shift (Overhauser shift) Ehf . In the second

order perturbation expansion, Hhf gives rise to hyperfine-mediated nuclear-nuclear spin flip-flops.

The effective coupling strength of the two nuclei j and k is ∝ AjAk/∆EZ, where ∆EZ is the

energy splitting of the electron spin levels, which includes both the Zeeman splitting µBgeBz and

the electron hyperfine shifts Ehf due to the polarized nuclei [7]. Thus, unlike the Knight shifts,

the hyperfine-mediated nuclear-nuclear interaction is field dependent, and is expected to have the

most pronounced effect, such as shorter nuclear spin coherence, at low magnetic fields [8].

The coupling of the electron spin to external environments is described by the term HEnv,e in the

total Hamiltonian of Eq. S1. Interaction of the electron spin with phonons, mediated by spin-orbit

coupling, induces electron spin relaxation with rate Γe ∝ B4
z (or Γe ∝ B5

z at low temperatures),

strongly dependent on magnetic field Bz (Ref. [9]). Cotunneling coupling between the quantum dot

and the nearby electron Fermi reservoir also gives rise to QD electron spin relaxation, whose rate

depends weakly on magnetic field, but is strongly affected by the gate bias VG that controls the

energies of the QD states with respect to the Fermi level [9]. Additional electron spin relaxation

mechanisms may arise for example from the charge fluctuations of the defects in proximity to the

QD. Full description of electron spin dynamics is a complex problem. However, as we show in this

work, in order to explain the collective coherence of the QD nuclear spin bath, it is sufficient to

use a simplified spectral diffusion model, where environment-driven electron spin flips are treated

as random events, described by the experimentally measurable electron spin relaxation rate Γe.

Supplementary Note 2. SPECTRAL DIFFUSION MODEL.

We consider evolution of the nuclear spin ensemble in the frame rotating at nuclear Larmor

frequency determined by the strong static magnetic field Bz. Since all NMR experiments are

conducted on the (Iz = −1/2) ↔ (Iz = +1/2) transitions, the nuclei can be treated for simplicity

as spin-1/2 particles. Optical cooling is used to create nonequilibrium longitudinal nuclear spin

magnetization along the z axis. The initial (π/2)x rf pulse of the sequence flips the spins, so

that magnetization points along the equatorial x axis of the rotating frame. In the absence of any
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interactions, the spins remain static in the rotating frame indefinitely, corresponding to unperturbed

Larmor precession in the laboratory frame. Various interactions cause dephasing and decoherence

of the nuclear spin ensemble – here we focus on the effect of the central electron spin s coupled

to the nuclear spins Ij via contact hyperfine interaction (see Supplementary Note 1). With large

static magnetic field applied, electron-nuclear flip-flops are energetically forbidden, truncating the

hyperfine Hamiltonian to Aj ŝzÎj,z. Here Aj is the hyperfine constant of the j-th nucleus, which

is proportional to the electron envelope wavefunction density Aj ∝ |ψ(rj)|2 at the site rj of the

nucleus. We assume that the electron can only occupy two discrete spin states with z-projections

sz = +1/2 (↑) or sz = −1/2 (↓). For each nucleus j, the hyperfine field of the electron gives rise to

a Knight shift νe,j = Ajsz/h of the NMR frequency. For a static electron spin and in the absence

of nuclear-nuclear interactions, the π pulse of the nuclear spin echo sequence (π/2)x − (τevol/2)−
(π)x − (τevol/2) − (π/2)x can completely refocus the effect of inhomogeneous (Aj ̸= Ak) Knight

shifts resulting in an echo in transverse nuclear spin magnetization at time τevol after the initial

π/2 pulse. It is the temporal evolution of the electron spin sz(t) during the nuclear spin evolution

that leads to irreversible decay of the echo amplitude through decoherence.

In order to model the time evolution of the electron spin we assume that it is governed

by a memoryless random telegraph process. We denote the rate of transition from ↑ to ↓ as

w↑→↓ = Γe(1 − ρe)/2 and the rate of the reverse process as w↓→↑ = Γe(1 + ρe)/2. The sta-

tionary population probabilities are then p↑ = (1 + ρe)/2 and p↓ = (1 − ρe)/2. Here we ex-

press the quantities in terms of the experimentally measurable electron spin relaxation rate Γe

(Γe = 1/T1,e, where T1,e is the electron spin lifetime) and the equilibrium polarization degree

ρe = tanh[−µBgeBz/(2kBT )] of an electron spin with g-factor ge at a temperature T (kB is the

Boltzmann constant). Due to the electron spin flips the Knight shift experienced by each nucleus

is a random process νe,j(t) = Ajsz(t)/h. In order to evaluate the relative spin echo amplitude of an

individual nuclear spin we consider the total rotation of the magnetization vector in the xy plane of

the rotating frame caused by the Knight shift, and find cos[2π
∫ τevol/2
0 νe,j(t)dt−2π

∫ τevol
τevol/2

νe,j(t)dt].

The echo amplitude observed in optically detected NMR is a sum of contributions from the indi-

vidual nuclei, weighted by the electron wavefunction density. Moreover, we take the average over

all possible implementations of the random process sz(t). The amplitude of the QD nuclear spin

echo as a function of free evolution time τevol is then modeled as

E(τevol) =


Nhist

N∑

j=1

Aj




−1
Nhist∑

i=1

N∑

j=1

Aj cos[
2πAj

h

(∫ τevol
2

0
sz,i(t)dt−

∫ τevol

τevol
2

sz,i(t)dt

)
], (S7)

The integral over t = [τevol/2, τevol] is taken with a negative sign since the reversal of the nuclear spin
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magnetization by the π pulse at t = τevol/2 changes the direction of the nuclear spin precession. The

contributions of the N QD nuclei are weighted by Aj ∝ |ψ(rj)|2 to describe the optical detection

of NMR via electron hyperfine shifts Ehf . The sum over i implements the averaging over a finite

number Nhist of electron spin evolution histories sz,i(t). The ideal echo amplitude at zero free

evolution time is E(0) = 1.

There is no universal closed-form solution to Eq. S7. A simple approximation of E(τevol) can

be found in the limiting case, relevant to experimental results of this work. If the rate of electron

spin flip events = Γe/2 is small compared to a typical Knight shift νe, then one or more flips of

the electron spin are likely to lead to a complete loss of the nuclear spin echo. Indeed, unless the

electron spin flip occurs within a short time interval ∆t ≈ T
∗,(1e)
2,N ∝ 1/∆νe near the start or the end

of the nuclear spin echo sequences, the precession phases acquired by the nuclear spins before and

after the electron spin flip do not cancel out, and no echo is observed. The same reasoning holds

for multiple electron spin flips during the nuclear spin echo sequence. Thus the formation of the

collective nuclear spin echo is conditional on no electron spin flips occurring during the entire nuclear

spin evolution. In equilibrium, the probability of having no electron spin flips in a short time period

dt is 1−w↑→↓p↑dt−w↓→↑p↓dt. For a finite evolution time τevol the probability to have no electron

spin flips is then limdt→0(1 − w↑→↓p↑dt − w↓→↑p↓dt)τevol/dt = exp[−(w↑→↓p↑ + w↓→↑p↓)τevol] =

exp(−Γe(1− ρ2e)τevol/2). For this regime of spectral diffusion under slow electron central spin flips

(Γe/∆νe ≪ 1), averaging over electron spin-flip histories leads to an exponential decay of the echo

amplitude with a characteristic coherence time T2,N,SD ∝ 2/(Γe(1− ρ2e)) = 2T1,e/(1− ρ2e), linearly

proportional to the central spin lifetime T1,e.

We perform numerical evaluation of the full Equation S7 to compute T2,N,SD for arbitrary Γe,

ρe and νe,j without any simplifying assumptions about Γe. We use Nhist ≥ 10000 and the set of

the Knight shifts νe,j for nuclei within the quantum dot is modeled by taking N = 1000 samples

from a random distribution. We use uniform or Gaussian distribution – for the practically relevant

slow-electron-flip regime the root mean square broadening ∆νe =
√

⟨ν2e,j⟩ and the actual shape of

the distribution make no difference (here, ⟨⟩ denotes averaging over QD nuclei). The dependence

of T2,N,SD on Γe/∆νe is shown in Supplementary Fig. 1 for the case of uniform distribution. In the

slow-electron-flip limit (Γe/∆νe ≪ 1), we find T2,N,SD ≈ 1.38T1,e/(1−ρ2e), in good agreement with a

simple estimate presented in the paragraph above. At Γe/∆νe ≈ 10, the spin bath decoherence time

reaches its minimum T2,N,SD ≈ 0.4/∆νe. Further increase of the electron spin flip rate Γe/∆νe ≫ 1

results in increasing T2,N,SD: In this motional narrowing regime the electron flips take place faster

than it takes the nuclei to make any significant precession under the effect of the Knight shift, so
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Supplementary Figure 1. Numerical simulation of decoherence induced by spectral diffusion.

Coherence time T2,N,SD of the nuclear spin bath as a function of the relaxation rate Γe = 1/T1,e of the central

electron spin. Results are for an unpolarized electron ρe = 0. The characteristic root mean square width

∆νe of the uniform distribution of the Knight shifts is used to scale T2,N,SD and Γe and plot dimensionless

values on both axes.

that the Knight shifts are effectively averaged to zero, leading to an extended spin bath coherence

time T2,N,SD.

Dipole-dipole coupling between the nuclei of an empty QD (0e) itself causes spin bath de-

coherence [10–12] with a characteristic time T2,N,DD ∝ 1/max (h|bj,k|). In order to model the

experimentally measured nuclear spin coherence time T
(1e)
2,N in presence of an electron we combine

the dipole-dipole and spectral diffusion decoherence rates 1/T
(1e)
2,N = 1/T2,N,DD + 1/T2,N,SD. The

dipolar decoherence time T2,N,DD is taken to be the measured empty-QD (0e) time T
(0e)
2,N , which

is nearly independent of magnetic field in the studied structures. We can then write the model

equation for T
(1e)
2,N in a closed form:

1/T
(1e)
2,N = 1/T

(0e)
2,N + (1− tanh2[−µBgeBz

2kBT
])/(1.38T1,e), (S8)

where all quantities are either measurable (ge, T1,e(Bz), T
(0e)
2,N ) or controlled in the experiment

(Bz, T ). Equation 1 of the main text is a special case of this Eq. S8 in the high-temperature or

low-field limit where equilibrium electron spin polarization ρe is small. The model plots of Fig. 2b

of the main text take into account the electron spin polarization, although the difference with the

simplified model of ρe ≈ 0 is relatively small for the studied range of magnetic fields Bz < 8 T at
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T ≈ 4.5 K.

Supplementary Note 3. DETAILS OF PULSED NMR IMPLEMENTATION

A schematic of the timing sequence used in the pulsed NMR experiments is shown in Supple-

mentary Fig. 2. The gate bias VG applied to the structure is varied together with optical and

radio frequency pulses in order to provide optimal charging conditions for each stage. High power

(PPump ≈ 8 mW) circularly polarized optical excitation with a wavelength λ ≈ 850 nm, corre-

sponding to the ground states of the InAs wetting layer, is applied for pumping time TPump ≈ 8 s.

Such optical pumping produces a state of the QD nuclear spin ensemble that is well described by

a Boltzmann distribution [6]. A bias of VPump = −1.5 V to 1.0 V applied during optical pumping

produces large dynamic nuclear polarisation (DNP), characterised by the hyperfine shifts of up to

Ehf ≈ ±120 µeV. It is found that negative values of VPump generate a somewhat reduced DNP but

produce the most stable results, whereas VPump exceeding the single-electron Coulomb blockade

bias V1e leads to intermittent ejection of the electron during the application of the high power rf

pulses. This undesired effect is found to be particularly pronounced in the thickest barrier sample

with tB = 52 nm. In order to avoid this parasitic electron ejection we use VPump = −1.5 V in all

measurements, and the presence of the electron in a QD during the NMR sequences can be verified

directly by observing a bimodal distribution in single-shot measurements, such as those shown in

Figs. 3c of the main text. A short delay TDel ≈ 5 ms is introduced between switching the gate bias

and the optical excitation, in order to account for delays of the mechanical shutters implementing

the pump and probe laser pulses.

Frequency swept rf excitation is applied after optical pumping to implement adiabatic pop-

ulation transfer [13], which transforms the Iz = ±3/2 nuclear spin states into the Iz = ±1/2

states. This increases the difference in the number of Iz = −1/2 and Iz = +1/2 nuclei that are

coherently controlled under pulsed rf excitation that follows. The frequency sweeps start 5 to

10 MHz away from the −1/2 ↔ +1/2 central transition (CT) frequency and end 50 to 200 kHz

near the CT frequency, depending on the isotope. These sweep ranges are chosen to fully cover the

strain-broadened satellite transitions (STs) −3/2 ↔ −1/2 and +1/2 ↔ +3/2, while maintaining

sufficient detuning from the CT frequency. A frequency sweep rate ranging from 5 to 10 MHz s−1

is used, depending on the isotope, to achieve adiabatic inversion. Adiabatic sweeps are applied

while the sample is kept at large reverse bias VFlush = −1.5 V to ensure any charges generated

during optical pumping are flushed out of the QD leaving it empty (0e state). High power radio
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Supplementary Figure 2. Pulsed NMR measurement timing diagram. Timing sequence of one cycle

used in pulsed NMR experiments on Iz = ±1/2 spin states of half-integer quadrupolar nuclei. Optical

excitation includes pump and probe laser pulses (red), frequency swept rf implementing adiabatic population

transfer (green), high power rf pulsed implementing coherent control of the nuclear spins (orange) and

applied sample bias VG controlling the charge state of the QD (blue). The bars in the bottom row sketch

the population probabilities p(Iz) of the spin states Iz at the end of each stage of the cycle. For discussion

see Supplementary Note 3.

frequency pulses are then applied while the sample is at an arbitrary bias VHardPul to study nuclear

spin bath coherence under various QD charge states and tunneling conditions. The same adiabatic

sweeps that precede the high power rf sequence are applied in some measurements once again

afterwards, transferring the final populations of the Iz = ±1/2 states back into Iz = ±3/2 states,

respectively. This provides a factor of 3 increase in the optically detected hyperfine shift variations

∆Ehf at the expense of a longer experimental cycle. After all the rf excitations have completed, a

short delay of TRfCool ≈ 60 ms at VFlush is used to ensure dissipation of any rf-induced heat before

optical probing is done. Optical probe is a low power (PProbe = 1− 10 µW) laser pulse of duration

TProbe = 5− 20 ms, at a bias of VProbe ≈ 0.3− 0.65 V, chosen to maximise optical PL intensity of

the negatively charged trion X−. After each cycle the sample is returned to the flush bias VFlush

for a time TFlush = 30 ms to remove any residual charges before the next cycle begins.
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Supplementary Figure 3. Bias dependant 75As Rabi oscillations. Rf induced variation of the hyperfine

shift ∆Ehf as a function of rf pulse duration trf measured at Bz = 8 T in the tB = 52 nm sample for

a range of gate biases VG across the single-electron (1e) charging plateau centered at VG ≈ 0.4 V. Each

point is obtained by averaging over multiple measurements. Inhomogeneous Knight shifts and electron spin

flips occurring during the rf pulse lead to dephasing, resulting in reduced oscillation amplitude in the single

electron regime (1e). In a doubly charged state (2e, VG > 0.55 V) Rabi oscillations are similar to oscillations

in an empty dot (0e, VG < 0.25 V) confirming that the damping of the oscillation is due to the unpaired

spin of a single electron.

Supplementary Note 4. ADDITIONAL RESULTS FOR 75As NUCLEAR SPINS

Supplementary Fig. 3 shows the results of bias dependent Rabi oscillation measurements. Clear

oscillations with a period of ≈ 4.4 µs are observed. At VG ≈ 0.4 V, corresponding to single-electron

charging of the QD, the damping of the Rabi oscillations is accelerated by the inhomogeneous

Knight shifts.

Supplementary Fig. 4 shows the results of free induction decay NMR measured using the spin

echo sequences with a fixed τ0 and variable τ . The experiments are similar to those presented in

Figs. 1d, e of the main text for 69Ga. The time resolved measurements with a sequence (π/2)x−τ0−
(π)x − τ − (π/2)x shown in Supplementary Fig. 4a provide estimates of the nuclear spin dephasing

time T ∗
2,N. In order to derive the spectral information we also implement the (π/2)x − τ0 − (π)x −

τ−(π/2)y sequence. The rotation by the (π/2)y pulse is around the axes orthogonal to the rotation

axis of the (π/2)x pulse. Thus the sequences with the (π/2)y final pulse measures the quadrature
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Supplementary Figure 4. Free induction decay spectroscopy of 75As nuclei in a single quantum

dot. a, Spin echo evolution as a function of the second delay τ in the tB = 37 nm sample at Bz = 7.8 T,

revealing free induction decay in 0e (circles, τ0 = 150 µs) and 1e charge states (squares, τ0 = 7.5 µs, data

multiplied is by 3). Lines show compressed exponential fitting used to derive the nuclear spin dephasing

times T ∗
2,N. b, Fourier transform of a, data for 1e is multiplied by 5.

component of the echo nuclear spin polarization. By performing the Fourier transform on both the

in-phase and the quadrature data we obtain the NMR lineshapes such as shown in Supplementary

Fig. 4b and Fig. 1e of the main text. The lineshapes are then fitted with compressed exponential

profiles to derive the full width at half maximum (FWHM) spectral broadening.

For 69Ga at Bz = 7.8 T we find T
∗,(0e)
2,N ≈ 34.6 µs in an empty QD, and a corresponding spectral

profile with a FWHM of ≈ 13.3 kHz and a compression parameter η ≈ 1.6 (Figs. 1e, d of the main

text). For 75As at Bz = 7.8 T (Supplementary Fig. 4) we find T
∗,(0e)
2,N ≈ 7.4 µs, η ≈ 1.38, and a

FWHM of ≈ 53.8 kHz. The larger spectral broadening of 75As is due to its larger quadrupolar

moment and the stronger second order quadrupolar shifts arising from the lattice constant scale

strain, induced by the random alloying of Ga and In atoms [3].

When a single electron is added to the dot we find for 69Ga at Bz = 7.8 T the dephasing time

of T
∗,(1e)
2,N ≈ 4.3 µs and a spectral profile with η ≈ 1.88, and a FWHM of ≈ 126 kHz. For 75As we

find T
∗,(1e)
2,N ≈ 4.5 µs, η ≈ 2.05, and a FWHM of ≈ 116 kHz. The additional broadening due to

electron charging characterises the magnitude and inhomogeneity of the electron-induced Knight

shifts of the individual nuclei in the dot. The Knight shifts of 75As are smaller due to its smaller

gyromagnetic ratio and smaller hyperfine constant compared to 69Ga.

At a reduced magnetic field of Bz = 1.94 T (data not shown) we find for 69Ga the dephasing
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times of T
∗,(0e)
2,N ≈ 13.6 µs and T

∗,(1e)
2,N ≈ 3.6 µs. The spectral profile for an empty quantum dot is

characterised by η ≈ 1.03, and a FWHM of ≈ 23 kHz, which is twice larger than at high magnetic

field, as expected for broadening related to second order quadrupolar effects [10]. For the nuclear

spin spectral lineshape in presence of a single electron we find η ≈ 2.04, and a FWHM of ≈ 150 kHz,

consistent with the results obtained at high fields. Unlike at high fields, the average Knight shift

⟨νe⟩ is very small at Bz = 1.94 T due to the small equilibrium electron spin polarization. For 75As

at low magnetic fields the quadrupolar induced spectral broadening becomes too large to conduct

reliable pulsed NMR spectroscopy.

Supplementary Note 5. DYNAMICAL DECOUPLING OF THE NUCLEAR SPIN

ENSEMBLE IN PRESENCE OF A SINGLE ELECTRON SPIN.

Dynamical decoupling is a technique used to suppress decoherence arising from unwanted in-

teractions of a quantum system. A commonly used implementation relies on a series of short

(bang-bang) control pulses [14, 15] that transform the effective Hamiltonian governing the inter-

actions in the free evolution intervals following each pulse. The control sequence can be chosen to

selectively remove some of the interactions or can be chosen to implement ‘time-suspension’ where

all the interactions are suppressed. Here we discuss experimental results on dynamical decou-

pling of the nuclear spins in an individual quantum dot in presence of a single electron (1e). The

methodology follows the previous work [12] conducted on neutral QDs (0e state). Each NMR pulse

sequences starts with a (π/2)x or (π/2)y pulse creating transverse nuclear spin polarization along

the x or y axis of the rotating frame, respectively (sequences labeled as -X and -Y, respectively).

A dynamical decoupling sequence of rf pulses is then applied, followed by a final π/2 pulse of the

same phase (same rotation axis) as the initial pulse to convert the preserved fraction of the nuclear

spin coherence into an optically detectable longitudinal nuclear spin polarization. The decay of

coherence as a function of the total free evolution time τevol between the initial and the final pulses

is fitted with a stretched or compressed exponent to derive the coherence time T2,N.

We start by examining 69Ga nuclei in the low field regime (Bz = 2.5 T) where electron spin

flips, characterised by T1,e ≈ 10 ms, are slow compared to dipolar-dominated nuclear spin coherence

time T
(0e)
2,N ≈ 1.69 ms in an empty QD. For each decoupling sequence the resulting T2,N is shown

in Supplementary Fig. 5a as a function of the total duration of the control pulses, excluding the

initial and final pulses, and measured in units of a π-pulse duration tπ. The Carr Purcell sequence

(CP-X) consists of a train of periodic π pulses with the same phase as the initial and final pulses
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Supplementary Figure 5. Coherence of 69Ga nuclear spins under dynamical decoupling. a, Measure-

ments of T
(0e)
2,N (open symbols) and T

(1e)
2,N (solid symbols) on a QD in the tB = 52 nm sample at Bz = 2.5 T.

The coherence times are plotted as a function of the total rf sequence gate time in units of π-pulse duration

tπ with initial and final pulses excluded. b, Same as a but for Bz = 7.8 T.

[12]. Spin echo is a particular case with just one π pulse. The CP sequence removes the dephasing

induced by inhomogeneous broadening, but does not affect the dipolar nuclear-nuclear interactions.

For ideal (infinitely fast) control pulses and a static inhomogeneous broadening, T2,N is expected

to be constant for any number of π pulses. By contrast, in experiment on an empty QD (0e, open

triangles) we find an increase in T2,N with an increasing number of π pulses applied during the

τevol interval. This increase in T2,N is a pulsed spin locking effect [12, 16] resulting from coherent

evolution of the interacting nuclear spins during the non-ideal (finite-duration) rf control pulses. In

presence of an electron (1e, solid triangles) spin locking is observed as well, although the maximum

T2,N is smaller than in the 0e case, most likely limited by T2,N approaching the T1,e, when it becomes

probable that the nuclear spin decoupling echo is destroyed by an electron spin flip occurring during

the τevol interval.

To implement the time-suspension we use CHASE-5 sequence [12], which suppresses both the

ensemble inhomogeneous broadening and the nuclear-nuclear interactions. Unlike the spin locking,

which preserves the coherence only along the preferential direction of the rotating frame, the

CHASE sequence is designed to preserve a coherent state with an arbitrary phase. This is verified
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Supplementary Figure 6. Coherence of 75As nuclear spins under dynamical decoupling. a, Measure-

ments of T
(0e)
2,N (open symbols) and T

(1e)
2,N (solid symbols) on a QD in the tB = 37 nm sample at Bz = 7.8 T.

The coherence times are plotted as a function of the total rf sequence gate time in units of π-pulse duration

tπ with initial and final pulses excluded. The points at 3π correspond to one cycle of CHASE-5 sequence,

the points at 6π correspond to one cycle of CHASE-10 and the points at ≥ 12π are for integer numbers of

CHASE-20 cycles.

by measuring the decay of the echo initialised either along the x or the y axis of the rotating frame,

with results shown in Supplementary Fig. 5a by the squares and circles, respectively. In agreement

with previous studies [12], in an empty QD (0e) CHASE-5 leads to approximately a factor of 2

increase in coherence time, from T
(0e)
2,N ≈ 1.69 ± 0.085 ms for spin echo to T

(0e)
2,N ≈ 3.59 ± 0.24 ms

and T
(0e)
2,N ≈ 2.96± 0.24 ms for CHASE-X-5 and CHASE-Y-5 sequences, respectively. In presence

of the electron spin (1e) CHASE-X-5 is equally effective in improving the spin echo coherence time

T
(1e)
2,N ≈ 1.50 ± 0.15 ms to T

(1e)
2,N ≈ 3.7 ± 1.0 ms (solid square in Supplementary Fig. 5a). In the

worst case scenario of a coherent state with polarisation along the y axis of the rotating frame

(CHASE-Y-5, solid circle in Supplementary Fig. 5a) the observed T
(1e)
2,N ≈ 2.2 ± 0.4 ms is still

a significant improvement over the single-pulse spin echo. Longer decoupling sequences, such as

CHASE-10 and CHASE-20 lead to accumulation of pulse control errors, and reduction of the echo

amplitude which prevents reliable T
(1e)
2,N measurement. Nevertheless, the CHASE-5 results confirm

that the central spin is not a fundamental obstacle for dynamical decoupling of the nuclear spin

bath.
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In the high field regime (Bz = 7.8 T, Supplementary Fig. 5b) the addition of the electron

spin to the quantum dot results in a pronounced reduction of the 69Ga nuclear spin coherence.

This is expected since the significantly shortened T1,e ≈ 90 µs makes spectral diffusion mechanism

dominant over the intrinsic dipolar-induced decoherence. The accuracy is not sufficient to evaluate

the trends in T
(1e)
2,N as a function of the rf gate time, but it can be seen that neither CP nor CHASE

sequences provide any reliable improvement in T
(1e)
2,N , suggesting that both the pulsed spin locking

and time-suspension are disrupted. The mechanism is similar to the one that governs the spin echo

decoherence under spectral diffusion in the limit of slow fluctuations (see details in Supplementary

Note 2). Owing to the strong Knight shift inhomogeneity, characterised by short dephasing time

T
∗,(1e)
2,N , the probability that a single electron flip destroys the nuclear spin echo ≈ 1− T

∗,(1e)
2,N /T

(0e)
2,N

is close to unity. This is also the case for CP and CHASE sequences: just as for spin echo,

these dynamical decoupling sequences rely on rf pulses periodically transforming the instantaneous

interaction Hamiltonian to converge the average Hamiltonian to zero. A single electron flip is

sufficient to disrupt the decoupling by breaking the balance of phases accumulated by spins in

the free evolution intervals of the sequence. As a result, nuclear spin coherence is essentially

limited by the electron spin lifetime T
(1e)
2,N ≲ 1.38T1,e. Under these conditions, an improvement of

T
(1e)
2,N with CHASE can be expected only if a large number of decoupling pulses is applied with

intervals much shorter than the timescale T1,e of the electron spin flips. This regime is currently

not achievable in our experiments on 69Ga, and would require improvement of the echo amplitude

through optimisation of the rf circuits to attain larger rf magnetic field while reducing the parasitic

rf electric field.

We also examine dynamical decoupling of 75As nuclei in the high field regime (Bz = 7.8 T).

The results shown in Supplementary Fig. 6 are consistent with the high field results for 69Ga

(Supplementary Fig. 5b), showing that dynamical decoupling provides no reliable improvement

when nuclear spin decoherence is dominated by random electron spin flips rather than by the

nuclear spin-spin interactions. Due to the 100% natural abundance, 75As gives a larger NMR signal

making it possible to measure T
(1e)
2,N under longer decoupling sequences than in 69Ga. From these

measurements shown in Supplementary Fig. 6 we observe a non-monotonic dependence of T
(1e)
2,N on

the number of CP-X cycles (solid triangles). The coherence time first decreases to T
(1e)
2,N ≈ 65 µs

under a sequence with 4 and 8 π-pulses. Such decrease can be ascribed to the heating of the spins by

frequent control pulses, which reenables the dipolar flip-flops, otherwise frozen by inhomogeneous

quadrupolar shifts [12]. The coherence is then seen to increase to T
(1e)
2,N ≈ 110 µs under 16 π-pulses.

This increase would be consistent with dynamical decoupling overcoming the random electron spin
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flips by periodically inverting the nuclear spins faster than T1,e. However, validation of these trends

in T
(1e)
2,N would require further studies with improved measurement accuracy.
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Fast microwave control of electron

spins

6.1 Introduction

We have so far studied the dynamics of spins in self-assembled quantum dots, determining the

ideal operating conditions for long-lasting spin states. We have also demonstrated coherent

control of nuclear isotopes within the quantum dots, allowing the use of the nuclear spin

bath as a quantum computing resource. We now turn to coherent control of an electron

spin, which as discussed previously (Section 2.4.2), can be achieved through optical control

in Voigt [31] or electron spin resonance (ESR) in Faraday geometry [32].

Electron spin resonance on quantum dots would coherently control the electron spin in

a charged QD, allowing rotation of the spin state between |↑⟩ and |↓⟩. Similar to NMR

measurements, electron spin resonance requires a rotating magnetic field B1 oscillating at

a frequency equal to the splitting of the electron spin states fESR = ∆EZeeman = geµBBz,

where ge is the electron g-factor. For an electron residing in a charged InGaAs quantum

dot, the g-factor can vary from g
(QD)
e ≈ −0.7 to −0.3 [89, 137, 138]. We observed a value

of g
(QD)
e = −0.67 for the QD measured in Chapter 5, which in a moderate magnetic field of

99
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Bz = 0.5 - 1 T results in an estimate of fESR ≈ 4.5 - 9.5 GHz, corresponding to the X-band

of microwave (MW) frequencies.

The rate of coherent control is defined by the Rabi frequency fRabi, and to allow coherent

control must meet the condition that the Rabi frequency is less than the frequency of the

spin state transition fRabi < fESR. We desire the fastest possible spin control to allow an

increase in the number of gate operations that can be performed before the electron spin

state decoheres. As such, operating ESR measurements at a higher fESR is desirable to allow

the opportunity to provide faster rotations through increased fRabi.

The high-frequency requirement for electron spin control can not be generated from a

simple copper coil as we used for NMR experiments. Broadband linear conductors can

produce the required frequencies but have to be geometrically small and close to the target

spin [154]. This is not a suitable solution for the ODMR protocols used on QD structures

throughout this thesis, nor any other system that requires optical access. In addition to

limited optical access, the simple antenna can also cause parasitic electric fields and heating

effects which will destroy the coherence of a charged QD spin [33].

To mitigate these issues we require a microwave source that can be operated at a reason-

able separation to the sample, as for the RF coil described in Chapter 3. To achieve this we

use resonator structures that can produce a sufficiently strong oscillating magnetic field B1

to compensate for the separation. Resonators operate at fixed resonant frequencies fRes and

require careful design to achieve the desired frequency. The requirements for the resonators

are the need to efficiently generate and propagate microwave pulses at a high power PMW,

with minimal electric field E⃗ generation to prevent disturbing the quantum dot charge state.

There is also the additional requirement to operate at cryogenic temperatures for use in the

bath cryostat set-up described in Chapter 3.

In this chapter we set out to test keyhole resonators (KHR) [33] designed to operate at

fRes = 8 GHz, selected to allow sufficiently fast Rabi oscillations fRabi of the QD electron spin

resonance. Testing of the KHR resonator design was carried out recently at low microwave
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powers (PMW = 3 W) on silicon carbide (SiC) vacancies, with reasonable success [33]. Here,

we test a further optimisation to the previously successful KHR designs in order to push

the resonator frequency mode to fRes = 8 GHz and more importantly test their ability

to operate at higher microwave powers (up to PMW = 250 W), allowing for fast electron

spin control. We test the resonators on a benchmark sample of NV centres in diamond

at room temperature. NV Centres in diamond provide a system with non-degenerate spin

states allowing coherent control through optically detected magnetic resonance techniques

(ODMR) at room temperature and is well studied through the literature [155, 156]. Room

temperature operation allows ease of access to the set-up for iterative improvement, which

is preferable to the time-consuming process of loading test resonators into the bath cryostat

used in the QD studies (Section 3.2). We present a basic characterisation of the resonator

properties and of the NV centres, followed by magnetic field dependence of ESR and finally

present Rabi oscillations from pulsed ESR of the NV− spin states.

6.2 Microwave resonator design for pulsed ESR mea-

surements

A microwave resonator to be used in coherent control of electron spins has several critical

requirements as laid out in Ref [33], and are used to design the keyhole resonators used in

this chapter. To summarise some of the key requirements, we desire a resonator that can

efficiently generate a strong oscillating magnetic field B1 at fRes ≈ 8 GHz, while producing

minimal parasitic electric fields E⃗. We also require the ability to generate short bursts of

B1 to allow coherent control of electron spins and thus require lower Q-factor cavities. The

resonator also must allow optical excitation to reach the sample, or in other words, must not

obscure the sample surface in any way.
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6.2.1 Loop-gap resonators

Before discussing the keyhole resonator design, we can first discuss more established resonator

designs. Simple high Q-factor rectangular microwave resonators are undesirable for pulsed

coherent control techniques, as the high Q limits the operational bandwidth, preventing

short pulses from being generated. A solution to this was developed known as the loop-gap

resonator (LGR). These were designed with pulsed electron spin resonance measurements in

mind by providing moderate Q-factors while maintaining a strong conversion of microwave

power PMW to emitted magnetic field B1 [157]. A simple schematic of an LGR is displayed

in Fig 6.1.

Z
r

w

g

Top View

E⃗

B⃗

Figure 6.1: Schematic of a typical loop gap resonator (LGR). Dimensions of the LGR are
defined by the inner bore radius r, the conducting loop width w, the gap width g and the
resonator height Z. Electric field E⃗ (blue arrows) is confined to the gap region which acts

as a capacitor, while magnetic field B⃗ (pink arrows) propagates parallel to the central axis
of the conducting loop.

The resonator can be considered as two primary components, a loop with inductance L

and a gap with capacitance C. Both L and C are determined by the geometry and material
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properties of the resonator, as defined by the following equations.

C =
(ϵ0ϵr)wZ

g
L =

µ0πr
2

Z
(6.1)

where Z, w, r and g are defined by the various dimensions of the LGR, Fig 6.1, µ0 is the per-

meability of free space, ϵ0 is the permittivity of free space. The medium within the conductive

gap g has dielectric constant ϵr, which can be an air gap ϵr ≈ 1, or filled with a dielectric

material ϵr > 1. For simplicity we use a lumped circuit approximation, which neglects the

effect of distance on the circuitry, instead assuming that the dimensions of the circuit are

much smaller than the wavelength of the microwaves. The resonant mode frequency of the

LGR can thus be approximated by 2πfRes = 1/
√
LC, effectively demonstrating that careful

selection of the LGR dimensions is required to produce a resonator capable of generating mi-

crowaves at the desired frequency. Real resonant frequency modes will be different, but can

only be calculated from solving Maxwell’s equations or testing the system experimentally.

Continuing to use the lumped circuit approximation, we can make a simple estimate for

the Q-factor of the LGR:

Q ≈ r

δ
where δ =

√
2ρ

(2πfRes)µ0

(6.2)

where r is defined as in Fig 6.1, δ is the skin depth of the conductive material defined by

resistivity ρ, and the resonant frequency of the LGR fRes [157, 158]. Practically, this is an

overestimate of Q due conductive losses in the capacitor and loss of magnetic field to free

space, the latter of which can be limited by surrounding the LGR in a cylindrical cavity to

act as a shield [157].

In order to design a resonator for a specific scenario, there are several key properties that

need to be considered in the design phase. The frequency of the resonant mode fRes and the

Q-factor of the cavity are critical, in addition to efficient conversion of input microwave power

PMW to outputted microwave magnetic field B1, which can be quantified by the microwave
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conversion factor B1/
√
PMW.

For the work in this chapter, we require the resonators to have resonant frequencies of

fRes ≈ 8 GHz to achieve fast electron spin control. The geometry of the structure must

then be designed to operate at the target frequency fRes in addition to providing maximum

B1/
√
PMW. Both the Q-factor and the resonator mode volume can affect the microwave

conversion efficiency. However, there is an upper limit on Q, imposed due to the need

for sufficient bandwidth to allow generation of the short bursts of microwaves required to

achieve coherent control of electron spins. Generating a rectangular pulse of 10 ns requires

a bandwidth of fBW ≈ 88 MHz according to the Mims’ criterion [159, 160]. This results

in an upper limit of Q =
fRes

fBW

≈ 90. Consequently, once the desired Q has been achieved,

minimising the mode volume is the primary method of improving the microwave conversion

factor B1/
√
PMW of the resonators [33].

For the simple LGR described so far, the reduction of mode volume is achievable by

reducing the height of the LGR. To take this to its extreme, surface LGRs can be created

through deposition of conductive material on a dielectric substrate, allowing thin LGRs of

Z ∼ 0.1 to 1 µm [161]. Reduction of resonator height z will alter both L and C. As the

frequency of the resonator is determined by ≈ 1/
√
LC, appropriate adjustment of the other

resonator dimensions is required to prevent unwanted deviation from the desired frequency.

Results from Ref. [161] demonstrate successful surface LGRs with varying geometries, the

simplest of which is an LGR with a small Z and large w, while other designs incorporate

more complex Ω-shaped structures. Further research into surface LGRs and other surface

resonators can be found in Refs. [162–164].

6.2.2 Keyhole resonator

The surface LGRs discussed so far solve two of the four critical conditions for the desired

resonator design by providing moderate Q-factors and strong conversion of PMW to B1. We

now also need to consider minimising the electric field E⃗ to prevent unwanted electrostatic
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Figure 6.2: Schematic of the keyhole resonator (KHR). Dimensions of the KHR are defined
by the inner loop radius r and gap height l, forming the characteristic keyhole shape in the
conductor (orange). Width of the conductor either side of the resonator loop is quantified
by w, while the distance between the loop and top of the conductive material is c. The
capacitive gap width is defined by g. Conductor thickness is a constant, Z = 35 µm, while
the dielectric substrate has a thickness of tSubs = 0.254 mm. Similar to the LGR, the electric
field E⃗ (blue arrows) is confined to the gap region which acts as a capacitor. The magnetic

field B⃗ (pink arrows) propagates parallel to the central axis of the conducting loop, out of
plane of the resonator.

interaction with the spin qubits, and creating a resonator that will allow optical access to

the sample to allow hybrid optical-microwave studies of electron spin systems. This can

be achieved through a design of resonator known as the keyhole resonator (KHR). A full

description of the design, modelling and initial tests of the KHRs can be found in [33]. Here

we provide a brief summary of the key characteristics of the KHRs.

A schematic of a KHR is shown in Fig 6.2. The resonator is designed to be used at

some separation LMW from the optically excited area. This both allows the desired optical

access and limits heating effects from high power microwaves. With regards to the KHR

geometry, there are three key differences when compared to the surface LGRs introduced

in the previous section. Firstly, the conducting loop is now not just a simple ring, but a

rectangular conductor, with asymmetric distances along the sides w and top c of the loop
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radius r. The rectangular shape is easier to fabricate and allows for a simpler mounting and

shielding system to be used. Secondly, the length of the gap is large, much greater than the

resonator radius r. A large gap length moves the electric field E⃗ away from the centre of

the resonator loop, reducing the overlap between magnetic field B⃗ and E⃗, ensuring minimal

electric field fluctuations are felt by the target of the microwave magnetic field. Finally, the

position of the centre of the resonator is close to the top of the substrate instead of placed at

the centre, which allows the resonator to be placed closer to the aspheric lens typically used

in confocal microscope set-ups designed for microphotoluminescence.

The KHRs used in this chapter are printed circuit board (PCBs) designs made by deposit-

ing Z = 35 µm (1 oz) of copper cladding (conductor) on to a Rogers laminate RO3003 dielec-

tric substrate, which was tSubs = 0.254 mm thick and has a dielectric constant ϵr = 3 ± 0.04.

The conducting area of the PCBs had an Immersion Silver finish to maximise conductivity.

A series of keyhole resonators (LGR) were designed to provide a range of frequencies from

7.5 to 8.5 GHz. Testing was required to verify the frequency of the resonator modes un-

der practical operating conditions, as opposed to the theoretically predicted frequency from

the modelling and design phase. Resonators are referred to by their theoretically expected

resonator frequency from the design phase of the structures.

Several different types of KHR were used in the characterisation of the new KHR designs,

but for all ESR work we use a 7.58 GHz KHR resonator shown in Fig 6.2. The parameters

of the structure are: conductive thickness Z = 35 µm, substrate thickness tSubs = 0.254

mm, gap width g = 0.559 mm, gap length l = 2.382 mm and loop radius r = 0.878 mm.

The width between side of rectangular metallization and the side of the circle has thickness

w = 3.088 mm and width between circle and top of metallization has thickness c = 0.861

mm. The thickness of the dielectric around the edges of the conductive face varies as the

substrate is a fixed size while metallisation size varies.
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Figure 6.3: Circuit diagram for microwave reflectometry testing of resonators. A microwave
generator (SMB100) generates sinusoidal microwave signals of frequency fMW which is passed
into a circulator. Unidirectional circulator ensures signal only travels to the next numbered
port (1 → 2 → 3 → 1). Microwaves are sent to the coupling loop driving a resonator, which
absorbs microwaves matching the frequency of the resonator mode. Reflections indicate
partial or no coupling of the frequency applied, which can be measured by a spectrum analyzer
after being passed sufficient attenuation (-20dB) and a fail-safe RF limiter.

6.3 Resonator testing

In order to experimentally measure the properties of the KHRs, microwave reflectometry

measurements were used. Microwave reflectometry measurements were carried out by gen-

erating a sinusoidal MW signal at a particular frequency fMW, transmitting the MW to the

resonator and measuring the amplitude of reflection at the MW frequency on a spectrum

analyser. Repeating this sequence over a range of frequencies fMW gives a detailed spectra of

the KHR’s reflection profile and allows the properties of the resonator mode to be observed.

In order to carry out microwave reflectometry measurements, we use the circuit shown

in Fig 6.3. A microwave generator (SMB100) is used to generate arbitrary waveforms with

a frequency of up to 40 GHz. Sinusoidal microwave signal of frequency fMW is passed into

port 1 of a 3-port circulator. RF circulators are unidirectional, and thus transmit signal

in only one direction (1 → 2 → 3 → 1), preventing any reflections of microwaves back to

the generator. Port 2 of the circulator is connected to a single loop copper coil, acting as
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a coupling loop which will drive the resonator at fMW. The resonator coupling to applied

microwaves varies with fMW, where the strongest coupling is at the resonator mode frequency

fRes. Frequencies outside the mode are partially or completed uncoupled to the resonator

resulting in reflection. All reflected microwave signals are directed to port 3 of the circulator.

Port 3 outputs reflected microwaves through a -20 dB attenuator, an RF limiter (PE8022,

2 - 18 GHz) and then to a spectrum analyser (N9010). The limiter acts as a fail-safe for

high amplitude microwave reflections, and prevents spikes in amplitude that may damage the

sensitive spectrum analyser. The spectrum analyser allows measurement of reflection spectra

to characterise the resonator modes, which will appear as a characteristic dip indicative of

the resonator mode frequency and bandwidth.

6.3.1 Critical coupling of coupling loop and resonator

Testing of LGR resonator modes was carried out by attaching a KHR to a copper resonator

mount, a schematic of which is shown in Fig 6.4. Inside the resonator mount resides a

single loop of copper wire soldered to a coaxial cable which acts as the coupling loop for

the resonator. The coaxial cable is connected to port 2 of the MW circulator, as described

previously. Once the resonator is attached, the coupling loop is completely enclosed by both

the copper mount and thin conductive surface on the resonator, minimising the effects of

spurious electric fields generated by the coupling loop.

Careful positioning of the copper coil is required in order to critically couple the elec-

tromagnetic field from the coupling loop to the resonator. Critical coupling corresponds to

maximal energy transfer from the coupling loop to the resonator [152]. The distance between

the coupling loop and the resonator can be adjusted by loosening a screw on the side of the

resonator mount and moving the coaxial cable to shift the coil. Coupling is most efficient

(critically coupled) when the resonator mode provides the strongest absorption of the coupling

loop microwaves, which is detected as the largest dip in reflection spectra measurements.

To investigate the coupling of the coupling loop and resonator, reflection spectra were
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Figure 6.4: Schematic of copper resonator mounting block. A coupling loop connected to
a coaxial cable is fed into the mounting block and secured with a screw (not shown), while
the resonator is positioned on the front of the mount. Critical coupling of the coupling
loop to the resonator can be adjusted through alteration of the spacing between the loop
and the resonator, quantified by xCoup. The copper block and resonator form a container
around the coupling loop, acting as a shield from additional electrical fields generated by the
coupling loop, minimising the effect of the coupling loop on any sample undergoing microwave
excitation.

measured as the position of the coupling loop was iterated until the ideal conditions were met.

The ideal conditions required for this work is a compromise between the critical coupling of

the coupling loop and keyhole resonator and ensuring the resonator mode frequency is close

to the specified frequency of our high power pulsed amplifier, fAmp = 8 GHz. Once the

ideal position of the coil was found, the coil was fixed in place to be used for the rest of

the experiments. Some representative results demonstrating the effect of the distance xCoup

between the coupling loop and the resonator on the resonator modes are shown in Fig 6.5.

Coupling configuration 3 is close to critical coupling, as indicated by the low reflection (high

transmission) of the resonator mode. However, in the final configuration (thick, black) we

chose to slightly increase the coupling loop separation in order to match the resonator mode

to the pulsed amplifier frequency fAmp. Analysis of the width of the transmission dip at -3

dB in Fig 6.5 gives an estimate of the bandwidth fBW ≈ 102 MHz. This allows an estimate of

the loaded Q-factor of the resonator, which is calculated to be Q =
fRes

fBW

≈ 79, demonstrating
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Figure 6.5: Reflection spectrum of a 7.75 GHz keyhole resonator with different iterations of
drive coil position inside the resonator mount. Resonant mode is required to be as close to
the pulsed amplifier’s peak operation frequency at fAmp = 8 GHz (dashed line).

the resonator meets the requirement laid out in Section 6.2.1 for a 10 ns pulses at 8 GHz.

6.3.2 Effect of nearby conductors on resonator modes

In an ideal scenario, the resonator generates electromagnetic fields into the free space in

front of the resonator. However, in reality, there are likely to be nearby objects that may

impede the efficiency of MW transmission and may distort the shape of the magnetic field

in the resonant mode. The set-up used for ESR measurements places the resonator close to

the conducting copper sample mount in addition to the cage system supporting the optical

components.

In order to test the effect of nearby conductive objects, we first test a simple scenario

where a copper block was placed in front of the resonator, as shown in Fig 6.6, simulating
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Figure 6.6: Schematic of set up for investigating effect of nearby conductor on resonator
modes. Microwave reflectometry measurements were carried out for a range of separations
LMW between the KHR (green) and a copper block. The copper block interferes with the
transmission (pink) of microwave magnetic field and alters the properties of the resonator.

the effect of a semi-infinite conductor. The separation between the block and resonator was

changed to observe the effect on the resonator modes. Microwave reflectometry spectra were

measured between 7 - 9 GHz for a range of separations, and are presented in Fig 6.7. Above

1.5 mm separation, there is no change in the frequency of the resonator mode, indicating

the copper block has minimal effect on the behaviour of the resonator. Below 1.5 mm the

resonator mode is shifted to lower frequencies until even small changes in LMW cause a

significant shift in the resonator frequency mode fRes. These tests suggest that separation of

LMW = 1.5 mm between the resonator and nearby conductors is sufficient to limit change in

the resonator mode. Calculation of the loaded Q-factor of the resonator modes as LMW is

stepped demonstrates an approximate value of Q ≈ 80. Constant Q-factor is an indication

that the copper block absorbs a minimal amount of microwave energy.

The geometry of the experimental set-up is more complex than a simple metal block, and

as such, it was important to characterise the shift in fRes for the keyhole resonator design
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Figure 6.7: a) Microwave reflectometry spectra for a range of LMW. Nearly constant resonator
modes at ≈ 8450 MHz above 1.5 mm separation indicates the copper block has minimal effect
in this regime and coincides with a reduction in resonator loaded Q-factor. The block strongly
affects resonator frequencies fRes below this regime, with sharp resonance modes experiencing
strong frequency shifts for small changes to LMW. b) Loaded Q-factor values of resonator
mode for different separations LMW of an 8.1 GHz KHR to a copper block.

when positioned for ESR experiments. Quantifying the shift between free space transmission

and transmission in presence of the set-up components (sample mount, lens, magnets) was

key to selecting the correct resonator geometry, as testing every resonator design is time-

consuming. As such, we made a comparison of the resonator mode for transmission into

free space versus the resonator mode while mounted to the full ESR set-up described in

Section 6.5. The resonator was not critically coupled for either measurement, but coupling

was not altered between the two configurations. We observed a minor shift of resonator mode

frequency of ≈ 10 MHz indicating the set-up has minimal effect on the KHR resonator mode.
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6.3.3 Effect of cryogenic temperatures on resonator modes

For the purpose of measuring ESR on NV centres in diamond, the resonators have been suffi-

ciently characterised and can be used for experiments at fMW ≈ 8 GHz at room temperature

(T = 293 K). However, to use the resonators for their future intended purpose of ESR on

quantum dots, we need to understand the effect of cryogenic temperatures on the resonator

modes. Temperature alters the dielectric properties of the keyhole resonator substrate, and

therefore the resonance properties will also be altered. The coupling between the coupling

loop and resonator may also change due to thermal contraction as a result of the reduced

temperature.
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Figure 6.8: Microwave reflectometry of an 8.1 GHz keyhole resonator at temperatures T =
273 K (black) and T = 77 K (orange). An increase in the resonance mode frequency is
observed at lower temperature, with the frequency shifting by ∆f = 50 MHz. Increase in the
reflection at the peak of the mode for T = 77 K indicates critical coupling may have been
lost due to reduced resistance of conductive components in the coupling loop and resonator.
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A simple temperature test was carried out on a resonator design to operate at 8.1 GHz

with no conductors nearby. Two microwave reflectometry spectra were measured, one at

room temperature (T = 293 K) and one after the resonator had been cooled to T = 77 K.

We achieved a stable thermal equilibrium at T = 77 K by submerging a screw attached to

the resonator mount in liquid nitrogen for 10 minutes. This allowed the cooling of the res-

onator without direct contact with the liquid nitrogen, which may have affected the reflection

spectra.

Results of the thermal testing are shown in Fig 6.8, demonstrating an increase in resonator

mode frequency of ∆f = 50 MHz. A shift of the resonator mode frequency is observed and is

attributed to the temperature-dependent dielectric constant of the KHR substrate, altering

the resonator mode as the temperature changes. It is also clear that the coupling efficiency

has deviated from the critical condition observed at T = 293 K, in addition to a ∼ 10%

increase in resonator Q-factor. Both of these effects likely arise from the reduced resistance

of conductive components in the circuit due to temperature change. Quantum dot ESR

experiments will be carried out at T = 4 K, where we would expect even stronger effects of

temperature on the resonators. However, the T = 77 K results allow us to better anticipate

the shifts in resonator properties and coupling efficiency, which is critical due to the time-

consuming process of iterating resonator configuration in the quantum dot set-up.

6.4 NV centres in diamond

Once preliminary characterisation of the keyhole resonators had been carried out, we needed

to test the resonators ability to be used in coherent control measurements on spin qubits.

Initial investigations for these types of resonators were carried out on the vacancies found in

SiC, with successful ESR measurement up to 6.5 GHz at microwave powers of up to 3 W [33].

We set out to test updated designs of the keyhole resonator developed to operate at fRes = 8

GHz on the nitrogen vacancy (NV) defect in diamond, using a 300 W pulsed amplifier to
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allow fast coherent control. NV centres were selected due to the predicted increase in optically

detected magnetic resonance signal compared to the previously tested SiC vacancies.

NV centres are a point defect occurring within the lattice of diamond and are formed from

a Carbon-12 vacancy site adjacent to a Nitrogen-14 (14N) site. Diamond samples fabricated

through chemical vapour deposition (CVD) can be additionally implanted with nitrogen

atoms, which bond with carbon vacancy sites to form the NV centres [165]. The neutral NV

centre, NV0, is formed entirely of dangling bonds from the surrounding three carbon and

one nitrogen lattice sites, resulting in the vacancy being occupied by five electrons (one for

each 12C and two for the 14N) [155, 166, 167]. An additional charge can occupy the vacancy

through a nearby donor lattice site, generally another nitrogen atom, or through the use of

charge-tunable structures, forming the negatively charged nitrogen-vacancy centre NV−. The

NV centre defect axis typically forms in equal densities along one of four orientations [111],

[11̄1̄], [1̄11̄], [1̄1̄1], resulting in only 25% of NV centres being accessible in most experiments

[168]. However, there have been some successful attempts at controlling the growth of the

NV centres to orientate the defect axis along only one of the 4 crystallographic directions,

allowing full access to the entire population of NV centres [169, 170].

The additional charge in the NV− forms a spin triplet ground state S = 1 of the form

3A2, with the three spin projections ms = 0, ±1 [155, 156, 171]. An energy level diagram of

the NV− is shown in Fig 6.9. An intrinsic splitting of the ms = 0 and ms = ±1 occurs due to

spin-spin interaction between the electrons in the vacancy, and is referred to as the zero-field

splitting, quantified by DGS
ZFS ≈ 2.87 GHz at room temperature [155]. Additional strain and

electric field effects can cause mixing between the ms = ±1 states, which can be quantified

by the EZFS parameter and is usually on the order of several MHz [172].

The excited state of the NV− is also a spin triplet state of the form 3E, and lies ∼ 1.9

eV above the ground state, allowing optical transitions in the visible band to occur. The

radiative recombination rate of the NV− is approximately ≈ (12 ns)−1, and transitions are

generally spin conserving, resulting in the triplet returning to the original state after optical
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Figure 6.9: Energy Level diagram of NV− centres in diamond. Optical excitation promotes
electrons to the 3A2 state, which radiatively recombines on the scale of ∼ (12 ns)−1. Alterna-
tively, relaxation can occur to a cascade of singlet states that are treated as one metastable
state known as the inter-state crossing (ISC). Ground state 3E spin triplet (S = 1) has a zero-
field splitting of DGS

ZFS = 2.870 GHz, splitting the ms = 0 and ms = ±1 states. For Bz > 0
T, the ms = ±1 degeneracy is lifted allowing excitation of specific transitions (ms = 0 ↔ +1
or ms = 0 ↔ −1) as a two-level spin system.

excitation [173, 174]. A secondary relaxation pathway occurs through a series of spin singlet

states, which are generally considered as a single metastate known as the inter-system crossing

(ISC). The ISC has comparatively slow relaxation on the scale of 200 - 400 ns as the electrons

cascade through the series of spin singlet states via infrared optical and/or non-radiative

vibronic recombination [175, 176].

Relaxation to the ISC is strongly coupled to the ms = ±1 levels in the excited state

(3E), while relaxation from the ISC has strong probability to return to the ms = 0 level in

the ground state (3A2). Consequently, repeated cycles of optical excitation can preferentially

populate the ms = 0 state. Spins in the ms = 0 are likely to return after an optical
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excitation/recombination cycle, while spins in the ms = ±1 state are likely to recombine

through the ISC, and thus into the ground state ms = 0, providing a mechanism for optical

initialisation of the NV centre spins [177]. The energy level diagram in Fig 6.9 provides a

schematic of the various transitions and relative coupling strengths in the optical initialisation

scheme.

Zero field splitting between the spin states ms = 0 and ms = ±1 within the NV− allows

selective microwave excitation of the spin transition [166, 172, 178]. However, it can be more

useful to address a pure two-level system, which can be achieved through the application of a

static magnetic field B0. The Zeeman effect splits the ms = ±1 states by ±geµBB, providing

two addressable transitions of ms = 0 ↔ +1 and ms = 0 ↔ −1, allowing a two-level spin

qubit to created. It is by using a static magnetic field that allows us to tune the NV− centre

transition energies to 8 GHz, allowing us to use it as a test structure for optically detected

electron spin resonance measurements with the keyhole resonator design.

6.5 Room temperature experimental set-up

In order to test the resonators on NV− centres in diamond, we require a set-up allowing close

proximity of the keyhole resonator (KHRs) to a diamond sample under optical excitation. The

sample used in these experiments is an Element 6 DNV-B1 diamond sample, with dimensions

3 mm x 3 mm x 0.5 mm and was grown using chemical vapour deposition (CVD). The sample

has a 1.1% abundance of 13C and an NV centre density of 300 parts per billion.

The experimental set-up is comprised of two main sections, the optics required for mi-

crophotoluminescence (µ-PL) and the hardware for microwave generation and resonator po-

sitioning, both of which are critical to perform optically detected electron spin resonance

experiments. Both parts of the set up are controlled synchronously with a four channel

TGA1244 signal generator. An overall schematic is shown in Fig 6.10.

Optical excitation of the diamond sample is carried out using a µ-PL set-up operating
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Figure 6.10: Schematic of ESR set-up, a modified version of the set-up described in Ref [33].
A PC using LabView sets up the various components in the system. Triggers for each
component is generated by a master generator TGA1244. Microwave circuitry is indicated in
orange (full description in text) and allows the generation of microwave magnetic fields from
the coupling loop, which in turn can drive the keyhole resonators studied in this chapter. The
coupling loop can be replaced with a simple single loop coil for microwave generation below
the KHR frequency range fRes < 6.5 GHz. Microwaves are directed along the z-axis towards
the diamond sample for optically detected electron spin resonance. The diamond sample
is positioned below a µ-PL set-up to allow optical excitation and measurement. Digital
laser modulation is controlled by TGA1244, allowing fast pulses of optical excitation to be
sent to the sample. Signal collection routes detectable photons to the APD after filtering
unwanted wavelengths (FEL650, FEL600). APD detection signal is passed through an SPDT
demultiplexer (ZASWA-2-50D+) to allow rapid alternating of signal detection between two
pulse counters (TF930) to allow differential microwave “On” and “Off” measurements.
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under a similar principle to the set-up used for quantum dots described in Chapter 3, without

the requirement for a cryostat. We use a λ = 561 nm laser to perform optical excitation, which

is coupled to the set-up via single-mode fibre. A dichroic mirror (DMLP650) with a threshold

wavelength of 650 nm is used in order to provide maximum reflection of laser down to the

sample, and maximum transmission of signal (λ > 650 nm) up to the collection coupler.

Optical excitation is focused with an aspheric lens (C390TME-B), with the lens aligned

so the focal point resides below the sample surface in the centre of the sample thickness.

Photoluminescent emission is collimated by the aspheric lens and is then transmitted through

the dichroic mirror into a fibre coupler for signal detection. The optical signal is measured

either with a single spectrometer connected to an electrically cooled CCD, or an avalanche

photodiode (APD).

The diamond sample is attached to a custom made mount that allows rotation of the

sample around the z-axis to align the NV− defect axis with the static magnetic field applied

along the x-axis (Fig 6.11). The sample’s y-axis position is adjusted so the centre of the

loop in the KHR is level with the part of the sample under optical excitation for maximum

absorption of microwave magnetic field, and is then fixed for the duration of experiments.

Density of NV centres in the diamond sample and the size of the laser spot (≈ 1 µm2) is

high enough that optical illumination will provide PL signal regardless of the position on the

sample, eliminating the need for control of sample position after the initial alignment.

Application of the microwaves required for ESR is achieved through the circuitry described

in Section 6.3, with the addition of a microwave amplifier before the circulator port 1. To

quickly summarise, a microwave generator (SMB100) generates arbitrary waveforms to be

sent to a microwave amplifier. The amplifier can be either a 3 W continuous wave (CW)

amplifier (ZVE-3W-83+) or a 300 W pulsed amplifier (AM61-7.5-8.5-55-55). For the 3 W

amplifier, we use a broadband 4 - 8 GHz circulator (PE8402), while for the 300 W pulsed

amplifier we use the amplifier’s internal narrow-band high power circulator. The amplified

signal is passed into port 1 of the circulator, transmitting microwaves to the coupling loop
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and resonator out of port 2. Port 2 is configured to drive a KHR through a coupling loop

for experiments at fESR ≈ 8 GHz. For experiments at fMW ≤ 6.5 GHz, we used a bare

copper coil as a mismatched broadband microwave antenna for microwave generation. Port

3 outputs any reflected microwave signal to be monitored on the spectrum analyser.
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Figure 6.11: Schematic of full experimental set-up for electron spin resonance measurements.
a) Side view of the resonator mount where a cylinder (dark orange) rests inside a mounting
block (orange) to allow rotation of the diamond. Optical excitation (green) is focused on to
the diamond sample (blue) with an aspheric lens. Spacing LMW between the resonator and
the sample is as small as possible to increase the strength of microwave field B1 at the focal
point of optical excitation within the crystal, resulting in maximum detectable ESR signal.
b) View of the sample mount along z-axis. Rotation of the diamond sample is quantified by
θ.

6.6 Photoluminescence of NV− centres in diamond

Optically detected ESR required understanding of the PL signal emitted by the NV− ensem-

ble, and as such we first had to characterise the optical emission of the sample through a series

of PL investigations. For this, we used the µ-PL set-up introduced in Section 6.5, allowing

the sample to be illuminated with λ = 561 nm optical excitation, where the subsequent signal

can be sent to a spectrometer for data acquisition.

Initial characterisation spectra were measured with optical excitation orthogonal to the

sample surface θ = 0◦, as shown in Fig 6.12. The charged NV centre optical zero phonon
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Figure 6.12: Optical power (PExc) dependant photoluminescent (PL) spectra of NV centres
in diamond. Excitation of λ = 561 nm was applied orthogonal to the sample surface θ = 0◦,
providing strong PL amplitude. Saturation of PL signal occurs at PExc ≈ 160 µW. The small
peak at ∼ 1.88 eV (∼ 660 nm) is the NV− optical zero phonon line emission X−, with the
NV− vibronic band vacancy making up the bulk of the broad signal 1.6 - 1.9 eV (∼ 680 - 780
nm). The sudden drop in signal at 1.92 eV (650 nm) is due to the 650 nm long pass filter
placed in the collection arm of the µ-PL set-up

line (ZPL) is visible at ∼ 1.88 eV, with a broad spectrum at lower energies representing the

vibronic band of the NV− centre [179]. Saturation occurs at an optical power of PExc = 160

µW, which allows maximum signal to be collected.

As introduced in Section 6.4, NV− defects in the diamond lattice can be orientated in four

ways [168]. In order to maximise the population of addressable electron spin states to provide

the strongest ESR signal, we must align one of the four defect axes along the static magnetic

field. A schematic of diamond sample orientation with respect to the sample rotation θ axis

z and static magnetic field B⃗ axis x is shown in Fig 6.13. Sample cleaving orientates the
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Figure 6.13: Schematic of diamond sample orientation with respect to the sample rotation θ
axis z and static magnetic field B⃗ axis x. a) Top view (y-axis) of diamond sample. Sample
cleaving orientates the [100] and [010] crystal axes at a 45◦ angle to the edges of the sample.
b) A crystallographic projection of the target [111] NV− defect demonstrates the angle θ
between the [001] axis and the defect axis. c) View of θ from the z-axis, where it is clear
that θ can be calculated from tan(θ) = 1/

√
2, giving a sample rotation value of θ = 35.3◦.

[100] and [010] crystal axes at a 45◦ angle to the edges of the sample. Orientating the sample

so that one of the four NV− orientations is parallel to the static field requires alteration of θ.

We arbitrarily chose the [111] orientation NV−, whose crystallographic projection is shown

in Fig 6.13b. The bottom edge ([010]-[100] plane) of the unit cell shown creates a 45◦ angle

with the crystal axes [010] and [100], and as such the direction of the NV− in this plane aligns

parallel with the edges of the cleaved sample. Consequently, alignment of the [111] NV−

centre can be achieved purely through rotation of the sample around the z-axis. Fig 6.13c

shows the sample layout from the rotation axis perspective (z-axis), demonstrating how θ

describes the angle between the [111] plane and the static magnetic field along the x-axis. A

simple calculation tan θ = a/(
√

2a) = 1/
√

2 gives us the desired sample rotation of θ = 35.3◦.

We measure PL of the NV centres at the desired sample rotation θ = 35.3◦, shown in

Fig 6.14. The primary disadvantage of rotating the sample is loss of optical signal as the

cone of emission from NV centres orthogonal to the sample surface becomes misaligned with
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the cone of collection of the aspheric lens due to the θ = 35.3◦ rotation. This effect can

be observed by the factor of ∼ 20 reduction in PL amplitude seen in the θ = 35.3◦ spectra

(Fig 6.14) when compared to the θ = 0◦ spectra (Fig 6.12).
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Figure 6.14: Optical power (PExc) dependant photoluminescent (PL) spectra of NV centres
in diamond, where excitation was applied at θ = 35.3◦ to the sample surface, demonstrating
similar but weaker PL spectra when compared to the θ = 0◦ spectra Fig 6.12. Saturation of
PL signal occurs at PExc = 50 - 160 µW.

6.7 Electron spin resonance

We have shown that our set-up is capable of photoluminescence measurements on NV centres,

and that the KHR design provides modes at the targeted fRes ∼ 8 GHz. Now we can bring

both of these components together to measure electron spin resonance of the NV− centres in

the diamond sample, and characterise the strength of the microwave magnetic field produced
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by the KHR. We achieve this through optically detected magnetic resonance (ODMR), where

change in the optical signal is observed as a result of microwave control of electron spins in

the NV centres.

Measurement of ESR requires us to follow the three steps for coherent control of spins

laid out in Chapter 2, which are initialisation, manipulation and readout. The spin state

of the S = 1 triplet in the ground state of the NV− can be optically addressed to initialise

the spin to the ms = 0 state. Optical excitation promotes the electron to the E3 state,

where it optically recombines generating a photon with a high probability. There is also

a small probability of non-radiative relaxation through the ISC. Relaxation from the ISC

has a higher probability of relaxation to the ms = 0 state than the ms = ±1 states. As a

consequence, repeated optical excitation cycles will populate the ms = 0 state, achieving the

state initialisation part of the spin control process [156, 177].

In order to control the spins within the NV− centres, microwave radiation of frequency

fMW is applied resonant with the splitting between ms = 0 and either one of the ms = ±1

states, manipulating the electron spins through electron spin resonance. As introduced in

Section 6.4, the transition energies are determined by the zero-field splitting DZFS and the

Zeeman effect ∆EZeeman = geµBBz. Successful application of microwave magnetic field results

in manipulation of the electron spin states which can be detected by optical readout of the

electron spin state.

Readout of the NV− electron spin state is possible due to the difference in radiative

recombination rates for the ms = 0 and ms = ±1 states. Once the system is optically

excited to the 3E state, relaxation to the ISC is dependant on the spin state. The ms = ±1

states couple more strongly to the non-radiative relaxation via the ISC, reducing optical

recombination rate when the ms = ±1 is optically excited. In contrast, ms = 0 is only

weakly coupled with the non-radiative ISC relaxation, resulting in more frequent optical

recombination of the ms = 0 state. Enhanced rates of ms = 0 radiative recombination

increases the optical emission from the sample. Therefore, high optical signal is an indicator
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that the ensemble is in the ms = 0 state and can be used as a readout technique for the spin

state.

6.7.1 Continuous wave electron spin resonance

For initial ESR investigations, we carry out continuous wave (CW) ESR measurements in

order to determine the frequency of ESR resonance fESR of the NV− centres. The expected

resonance of the NV− centres at B = 0 T is DZFS = 2.87 GHz, and acts as benchmark to test

the CW ESR measurement scheme. The resonators will not be suitable for MW generation

at 2.87 GHz, and so we instead we used a simple coil as a broadband microwave emitter

for measurements at B = 0 T, and any other ESR measurements below 6.5 GHz. For ESR

measurements close to 8 GHz, we use a nominal 7.58 GHz KHR which is fully described in

Section 6.2.2.

A full schematic of the measurement cycle for CW ESR is shown in Fig 6.15. CW ESR

measurements require differential measurement to accurately determine the optically detected

signal. We use an avalanche photodiode (APD) for precise photon counting. Detection signal

from the APD is routed to a SPDT demultiplexer switch that alternates between two pulse

counters, which allow measurement of optical intensity I. The differential measurement mod-

ulates microwave signal on and off whilst the gate synchronously switches between the two

pulse counters, allowing data acquisition of both MW On and MW Off components of the

measurement cycle. Change in optical signal is proportional to variation of electron spin po-

larization degree induced by microwave pulses, and therefore is the ODMR signal. Enhanced

rates of radiative recombination from the ms = 0 state results in application of ESR reducing

optical signal as the spins transfer to the ms = ±1 state. As such, we expect the “MW On”

signal to be lower than the “MW Off” for successful ESR. Differential measurements com-

paring MW “On” and “Off” gives the optically detected magnetic resonance signal. In order

to account for drift in optical signal due to optical excitation power or collection alignment,

we normalise the difference in “On” and “Off” signal with respect to the total counts during
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Figure 6.15: Experimental sequences for CW ESR. Optical excitation is continuously applied
to the sample, populating the ms = 0 state of the NV− ensemble, providing maximum radia-
tive recombination. A burst of microwave field excitation is applied for TMW to depolarise the
ms = 0 state, reducing overall optical intensity. The duty cycle of TMW compared to TCycle is
altered to limit heating of the resonator, with a duty cycle of 50% for the 3 W amplifier, and
10% for the 300 W amplifier. Optical signal collection switches between two photon pulse
counters depending on whether MW excitation is being applied, allowing relative differential
signal (IOff − IOn)/(IOff + IOn) to be calculated, which quantifies the final electron spin po-
larization degree. The sequence is repeated N times for a desired acquisition time TAcq such
that N = TAcq/TCycle.

the acquisition window:

IODMR =
IOff − IOn

IOn + IOff

(6.3)

We average over many measurement cycles in order to provide an accurate measurement. In

the case of CW ESR spectra, the microwave frequency fMW is stepped for each acquisition

window, allowing measurement of the ESR spectrum.

The first measurements studied the NV− centre ESR spectrum at B = 0 with no sample

rotation θ = 0◦, and is shown in Fig 6.16. We can clearly see two multiplets, with the centre

of the two at the expected fMW = DZFS. It is also clear that there is a fine structure present,

with 4 distinct peaks being observed in both multiplets. This is the result of hyperfine

interaction of the NV− electron spin with the constituent 14N and neighbouring 13C nuclear
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Figure 6.16: Continuous wave ESR measurements of NV− centres in diamond at B = 0 T for
two sample orientations. a) 0 T ESR with sample orientation θ = 0◦. Two clear multiplets
are present, equally offset from the expected DZFS = 2780 MHz resonance. Both multiplets
consist of 4 fine structure peaks, which likely arise from hyperfine interaction between the
NV− electron and nearby nuclear spins (14N and 13C nuclei). b) 0 T ESR with sample
orientation θ = 35.3◦. A primary multiplet consisting of 6 fine structure peaks occurs at
the zero field splitting value DZFS = 2870 MHz, with two satellite multiplets consisting of 3
peaks each.

spins. The presence of two multiplets split by ≈ 25 MHz suggest additional effects are present,

as only six peaks are predicted due to hyperfine interaction when the ms = 0 ↔ −1 and

ms = 0 ↔ +1 transitions are degenerate. The symmetry of the two multiplets around 2870

MHz suggests the ms = ±1 states are non-degenerate, indicating presence of a combination

of a small residual magnetic field and strain [180].

Due to the 4 possible orientations of the NV− centres, we rotate the sample by θ = 35.3◦,

as described in Section 6.6, to ensure the applied magnetic field acts parallel to the defect

axis of the [111] NV centre. Despite reduced PL amplitude (Fig 6.14), we still can clearly

see ODMR signal as shown in Fig 6.16. The two multiplets observed at θ = 0◦ have now

separated into three multiplets, with the satellites having 3 fine structure peaks, and the

central resonance displaying 6.

At low magnetic fields (Bz < 5 mT), additional splitting of the spin states occurs due

to the hyperfine interaction present within the NV− centre [181]. Electron spins S within
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the vacancy can interact with nearby nuclear spins I, arising from the constituent I = 1

14N site, or with nearby I = 1/2 13C sites. Results from the scenario where the sample is

oriented at θ = 35.3◦ (Fig 6.16b) can be explained through the hyperfine interaction. A

Hamiltonian predicting hyperfine transitions energies from the ms = 0 states to the ms = ±1

states is presented in Ref [181]. We show a modified version here, in which we replace the

Zeeman splitting with a more general splitting term F that will encapsulate any splitting of

the ms = ±1 states as a result of strain, magnetic field and electric field.

H = DZFSS
2
z + P (I(N)

z )2 +

(
F

2
· S
)

+ S · (AN · I(N) + A · I) (6.4)

where S is the spin operator of the NV− ground state spin triplet, with Sz as the projection

operator in the z-direction (parallel to defect axis [111]), µB is the Bohr magneton, ge is the

free electron g-factor, I(N) (I) is the spin of the consituent 14N (neighbouring 13C ) nuclei

with a gyromagnetic ratio of γN (γ) and a hyperfine coupling of AN (A). The first term

describes the zero field splitting previously introduced. The second term is a correction to

the zero field splitting that arises from quadrupolar interaction of the 14N nuclei, with a

quadrupolar moment of P ≈ 5 MHz [181]. The third term is a general term quantifying the

splitting F of the electron spin states ms = ±1. The final term is the hyperfine interaction

of the NV− spin triplet with the 13C and 14N nuclei, with the strength of the interactions

defined by the hyperfine constants A (A(N)).

Evaluating Eqn 6.4 for all permutations of the NV− electron spin S ∈ [−1,+1], the

13C nuclear spin I ∈ [−1

2
,+

1

2
] and the 14N nuclear spin I(N) ∈ [−1, 0, 1] allows us to

create a series of 12 transitions matching the observed peaks found in Fig 6.16b. We fit

the CW ESR spectra with a function defined by the summation of Gaussian peaks y =
∑N

i=1Aie
−((x−xi)/wi)

2
. The central frequency of the peaks are all related through Eqn 6.4,

allowing us to find optimal values, which are summarised in Table 6.1. The result of the fit

is shown in Fig 6.17.

Fitted value of the 14N quadrupolar splitting P = −4 MHz slightly deviated from the
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Figure 6.17: Fitting of θ = 35.3◦ CW ESR data with a function of the summation of 12
Gaussian peaks y =

∑N=12
i=1 Aie

−((x−xi)/wi)
2
, defined by shared constants and different spin

permutations of Eqn 6.4. Fitted parameters are the hyperfine constants A(N), A, splitting
F of the ms = ±1, zero field splitting DZFS and the nitrogen quadrupole interaction strength
P , the values of which are found in Table 6.1. The top schematic demonstrates how all valid
permutations of I(N), I and S create 12 distinct energetic transitions.

known value of P = −5 MHz [181, 182]. The hyperfine splitting from 14N (A(N) = −2.16

MHz) matches well with previous work [182] and the 13C hyperfine shift (A = 17.4 MHz) falls

within the region of expected values 2 - 20 MHz [181]. Zero field splitting DZFS = 2874.5 MHz

was higher than the widely accepted DZFS ≈ 2870 MHz [155], likely due to the unaccounted

effect of strain on the zero field splitting, characterised by a shift EZFS, typically in the

range usually 1 - 10 MHz [172]. The electron spin state splitting F of the ground state spin

triplet can arise from a combination of local strain and magnetic field splitting. The earth’s
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Parameter Fitted Value Units

A(N) -2.07 MHz
A 17.4 MHz
P -4.07 MHz
DZFS 2874.5 MHz
F 23.2 MHz

Table 6.1: Values for fitted parameters fitting Eqn 6.4 to the θ = 35.3◦ CW ESR scan in
Fig 6.17.

magnetic field is ≈ 0.05 mT, which would correspond to a Zeeman splitting of 2geµBB ≈ 2

MHz, and so cannot fully explain the observed splitting. Local strain has been reported to

cause splitting on the order of tens of MHz [180], and so we conclude this is the cause of the

additional splitting.

Experiments have been carried out in the literature providing a full description of the

ms = ±1 electron spin state splitting F , considering applied electric field, magnetic field

and local strain [180]. A full investigation of these features would require systematic study

of magnetic field strength B, orientation θ and applied electric field E on the NV− ESR

resonance, and was not required for testing of the keyhole resonator designs. Detection of

the hyperfine effects is promising as it demonstrates the possibility of using the NV− centres

as a test structure for the design of the hybrid electron-nuclear coherent control measurements

using both NMR and ESR techniques, which has been previously demonstrated on up to 27

nuclear spins in diamond [18].

6.7.2 Magnetic field dependence of NV− CW ESR

In order to test keyhole resonators for ESR measurements, we require the application of a

static magnetic field along the defect axis of NV− to fully exploit the Zeeman effect and

increase the frequency of one of the NV− ESR transitions to fESR ≈ 7.5 - 8.5 GHz. As shown

in Fig 6.9, the splitting of the ms = ±1 states results in an increase in the ms = 0 ↔ 1

frequency, whereas the ms = 0 ↔ −1 transition decreases in frequency until the ms = −1
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Figure 6.18: a) ESR frequencies fESR of the NV− ensemble for increasing magnetic field Bx

(decreasing magnet position xMag). Frequencies were calculated from fitting ESR peaks with
a Gaussian. Microwave excitation below 6.5 GHz are generated by a bare copper coil, and
above 6.5 GHz were measured using an 7.75 GHz KHR resonator. b) ESR spectra for points
in blue box found in a). Fine tuning of magnetic field using a motor-driven translation stage
for small adjustments xOffs to the position of one of the magnets. Incrementing xOffs allows
tuning of NV− resonance to match resonator frequency mode fRes = 8006 MHz.

state crosses the ms = 0 state. To minimise the required magnetic field, all results for ESR

where B > 0 T are performed on the ms = 0 ↔ +1 transition.

Once the defect axis has been aligned parallel to the x-axis, magnetic field is introduced

by placing two neodymium permanent magnets on a sliding rail either side of the sample

at xMag > 0 and xMag < 0, where xMag is the spacing between the excited area of the

sample and a magnet. The spacing between both magnets is 2xMag, and the sample is kept

directly in the centre to keep the spacing between the sample and either magnet symmetric.

This preserves static field homogeneity, limiting the effects of field inhomogeneities on the NV

centre ensemble. Local variation in magnetic field results in different NV centres experiencing

different magnetic fields, thus broadening the ESR resonance. We systematically decrease

the spacing of the magnets xMag to increase the magnetic field experienced by the NV centre

ensemble, and measure ESR spectra at each magnet spacing. Results from the gradual

increase in field are shown in Fig 6.18a, where a clear increase in frequency with magnetic

field is observed. The ESR frequency of each field is calculated through fitting of the ESR
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spectra with a Gaussian function.

Once the ESR frequency is close to the resonator mode frequency fRes, small adjustments

to the field are required to tune fESR into resonance with the resonator mode. Minor adjust-

ments to the magnetic field were made by attaching one magnet to a motor-driven translation

stage with a 0.01 mm accuracy. We could then systematically measure ESR spectra for small

changes in the magnet position, xOffs, as shown in Fig 6.18b. As we know the resonator mode

frequency fRes from microwave reflectometry, we can ensure the ESR frequency is optimally

tuned such that fESR = fRes. When correctly tuned, microwave transmission will be most

efficient at the NV− centre resonance.

6.8 Pulsed electron spin resonance

Experiments so far have used CW ESR to non-coherently depolarise the electron spin. In

order to provide coherent rotation of the NV− electron spin, we must use short pulses of

microwave excitation. The underlying theory of electron spin control is much the same as for

pulsed NMR measurements, for which a detailed description can be found in Section 3.6.3.

In order to provide a quick breakdown of coherent control of the electron spins in NV−,

we can consider the ms = 0 ↔ +1 as a two level spin system [113, 183]. The spin system in

a static magnetic field B0 with an applied alternating perpendicular driving field B1(t) can

be studied in the rotating frame with a frequency ωL = geµBB0. In this rotating frame, the

alternating magnetic field B1(t) becomes static and causes the spin projection to oscillate

between the ms = 0 and ms = +1 state. This process is what is referred to as a Rabi

oscillation and occurs at rate defined by the previously introduced Rabi frequency fRabi =
∣∣∣ γe

2π

∣∣∣B1/
√

2, where
∣∣∣ γe

2π

∣∣∣ = 28 024 MHz T−1 is the free electron gyromagnetic ratio. The

1/
√

2 term arises from the Sx matrix elements for a spin-1 system [183]. Consequently,

it can be seen how increased strength of the oscillating magnetic field will increase the

rate of coherent spin control. It is worth noting that B1 amplitude in the rotating frame
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corresponds to an oscillating magnetic field in the lab frame with an amplitude of 2B1 due

to decomposition of rotating and corotating components in the rotating frame [113].

Faster rotation of spins allows more quantum gate operations to be performed in a fixed

time window, and so it is desirable to apply the strongest microwave field possible. In order

to achieve this, we use a customized 300 W pulsed microwave amplifier (AM61-7.5-8.5-55-

55) specified to produce maximum amplification at 8 GHz with a 1 GHz bandwidth. As a

consequence, it is vital to use a keyhole resonator with fRes as close to 8 GHz as possible

in order to fully utilise both the amplifier and resonator for maximum PMW. We can define

the efficiency of the resonator as the ratio of applied microwave power to the strength of the

resulting microwave magnetic field 2B1. The strength of the oscillating field is related to the

microwave power through 2B1 ∝
√
PMW, and as such, the efficiency can be quantified by the

microwave conversion factor 2B1/
√
PMW. We can also quantify the microwave conversion

factor in terms of Rabi frequency fRabi/
√
PMW, demonstrating the amount of microwave

power converted to coherent rotation of the NV− spin ensemble. In this section, we measure

Rabi oscillations of the NV− ensemble in order to measure the efficiency of the keyhole

resonator designs and compare them with other designs used in the literature.

6.8.1 Optical pump and probe pulse length calibrations

A schematic of the timing sequence used for pulsed ESR is shown in Fig 6.19. The mea-

surement is differential, with a microwave “On” sequence and “Off” sequence within a full

measurement cycle TCycle. For an acquisition window TAcq, the full measurement cycle is

then repeated N times such that N = TAcq/TCycle, to ensure a sufficient amount of signal is

detected.

To carry out pulsed ESR measurements, we can no longer use continuous optical excitation

as this may destroy the coherent spin state. Instead, we switch to an optical pump-probe

scheme where short optical pulses initialise (readout) the spin state before (after) coherent

spin rotation. In order to optimise the length of the optical pulses for maximum ESR signal
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Figure 6.19: Timing diagram for pump-probe pulsed ESR measurements. A single optical
pulse of length TPump is repeated twice for a full cycle. The first sub-cycle starts with a pump
pulse TPump, after which a MW pulse of length TMW is applied to the sample, coherently
exciting the electron spin in the NV− ensemble. The second pump pulse starts in sync with
the APD gate for MW On. The APD gate remains open for TProbe, acting as a probe pulse
by capturing signal from a portion of the optical pump pulse. The ratio of pump and probe
duration is kept at a constant TPump/TProbe = 30. Once APD gating has stopped, a new
sub-cycle is started where no MW field is applied, with optical signal being sent to the other
APD detection channel. Comparison of signal from MW On (Pink) and MW Off (Orange)
gives the differential optical signal and therefore the ODMR signal. For pump-probe time
calibrations, a small modification to this scheme using long TMW is used to non-coherently
depolarise the electron spins.

from the NV−, we carried out a calibration of the pump and probe time. ODMR signal

was measured for a range of pump, TPump, and probe, TProbe, times. The ratio of TPump to

TProbe is fixed to 30. We require a differential measurement with “On” and “Off” microwave

excitation for this calibration to allow us to determine the change in PL as a result of electron

spin polarisation. Efficient optical pumping will increase ensemble electron spin polarisation

and therefore we will observe a stronger change in PL with a differential MW measurement.

Several measurements were carried out, with the first series investigating the effect of

optical excitation power on ODMR signal at Bz = 0 T using a bare copper coil as the
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Figure 6.20: Optical pump time TPump and probe time TProbe calibration. A range of probe
times TProbe ∼ 0.1 - 400 µs were tested to observe the effect on ODMR signal. Pump time
TPump was also altered to maintain a fixed ratio of TPump/TProbe = 30. Measurements were
carried out at Bz = 0 (red, black) and Bz = 0.183 T (where fESR = 8 GHz) to ensure no
change in the optical pulse lengths as field changes. Maximum ODMR was found to occur
with TProbe ∼ 7 µs (TPump ∼ 210 µs), with a clear reduction in ODMR signal at higher field.
Saturation of optical excitation due to excitation power PExc must occur between 160 - 350
µW as the ODMR signal is similar for both.

microwave source. As shown in Fig 6.20, the increase in optical power makes no difference to

detected ODMR signal. As such, we use PExc = 160 µW for all pump-probe measurements.

Signal is maximum at approximately TProbe ∼ 7 µs (TPump ∼ 210 µs), providing optimal pulse

lengths for maximum ODMR signal. These values match well with the literature, which show

typical values TProbe ∼ 0.5 - 10 µs (TPump ∼ 50 - 300 µs) [176, 184, 185].

Additional investigation was required to see if the pump-probe parameters remained the

same in the presence of applied magnetic field. A measurement was made at a magnetic field

of B = 0.183 T, which corresponds to the frequency fESR = 8 GHz at which the KHR was
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used for microwave generation. As shown in Fig 6.20, ODMR signal is significantly reduced,

but follows the same trend as the B = 0 T measurements, allowing us to use the same

pump-probe parameters for pulsed ESR with the keyhole resonators as used for the bare coil.

6.8.2 Hardware limitations

Before performing pulsed experiments, we need to increase the power generated by the set-up

for fast coherent spin rotation. We replace the 3 W amplifier with a 300 W pulsed amplifier

and set out to investigate the maximum power that could be generated by the KHR. Firstly,

we test long bursts of fMW = 8 GHz microwaves with TMW = 1000 ns to investigate the

maximum continuous driving power that can be used. A fraction of the reflected pulse was

passed through an RF detector, a device that demodulates the microwave signal and allows

observation of changes in amplitude. As power was increased, we observed an intermittent

but dramatic increase in reflected amplitude as the input power reached PMW = 51.5 dBm.

Further increase of the power caused the effect to occur consistently. We attribute these

sporadic and sudden jumps in amplitude to an arcing effect, whereby electrical breakdown

occurs in the volumes with the highest electric field. For the KHR structures, this will occur

in the conductive gap, which can be seen by electric field distribution simulations in Ref. [33].

The presence of arcing effects are unwanted side effects of the strong electric fields gen-

erated by the resonator, potentially causing damage to studied samples through heating or

sudden electrical discharges, and thus need to be avoided. It is also worth considering that

these resonators are designed to work in the low pressure helium insert used in the bath

cryostat system described in Chapter 3. Low density helium exchange gas will have a lower

threshold for arcing to occur, and so understanding the practical limits of the arcing effects

to arise is critical for future use.

For pulsed ESR experiments, we require the use of pulses much shorter than the TMW =

1000 ns used in the previous test. Consequently, the total dissipated energy per pulse is

reduced, potentially allowing higher powers to be used for the shorter pulses. It is important
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Figure 6.21: Time trace of reflected MW amplitude from an RF detector attached to reflected
channel of pulsed amplifier. This test is for a pulse length of TMW = 120 ns. There is a
significant increase in amplitude in the coloured curves at ≈ 40 ns when compared to the
standard pulse (black), which is attributed to arcing effects.

to note that the 300 W pulsed amplifier has a maximum output of 54 dBm, and so we

wanted to find the longest pulse TMW that can be operated at PMW = 54 dBm. Gradual

increase of TMW for a fixed PMW = 54 dBm reveals that arcing effects occur once TMW ≥ 120

ns. Interestingly, arcing effects begin at ≈ 40 ns during the TMW = 120 ns pulse test (as

seen by arcing curves in Fig 6.21) despite tests of TMW = 40 ns pulses showing no signs of

arcing. This is explained through the repeated application of the microwave pulse for a fixed

measurement cycle period TPeriod with increased TMW, effectively increasing the duty cycle

TMW/TPeriod of applied MW. Subsequently, pulse duration at PMW = 54 dBm could likely be

improved with a longer measurement cycle, at the cost of increased experimental time.

An alternative solution to increasing the measurement period is the alteration of the
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resonator design in order to minimise the strength of the electric field generated by high

PMW and transmitted towards the sample. Modifications to the current KHR design could

include the introduction of a “bridge” across the conductive gap, creating a bridged LGR

(BLGR). The conductive bridge acts as an electrical shield, limiting the generation of electric

field into free space [186], and thus limiting the voltage that the gas is exposed to.

6.8.3 Fast coherent control of electron spins

Coherent rotation of the electron spin projection between the ms = 0 ↔ +1 states is quan-

tified by θ = TMW/fESR. We measured pulsed ESR by varying microwave pulse length

TMW, which allows us to observe Rabi oscillations as seen in Fig 6.22. Microwave power of

P In
MW = −25 dBm was selected to be as high as possible while ensuring no arcing effects

occurred during longer pulses, corresponding to an output power of PMW = 44.1 dBm. The

Rabi oscillation data was fitted with a damped sine wave fit of the form:

A cos(
2πt

TRabi

) exp(− t

TRabi
2

)

where the first term is a simple cosine function, and the second introduces an exponential

decay to account for loss of amplitude over time. Oscillation period is described by TRabi,

while the oscillation amplitude is determined by the scaling factor A. The rate at which the

oscillations are damped is characterised by the driven coherence time TRabi
2 ≈ 400 ns, and

arises due to both inhomogenities in applied B1 and inhomogenous broadening of the NV−

ensemble [187, 188]. We obtain a Rabi oscillation period of TRabi = 40.3 ns, corresponding

to a Rabi frequency of fRabi = 24.8 MHz, which allows us to calculate the strength of the

oscillating magnetic field in the lab frame 2B1 through fRabi =
∣∣∣ γe

2π

∣∣∣B1/
√

2. This yields

a value of 2B1 = 2.5 mT, where the factor of 2 accounts for the transformation from the

rotating frame to lab frame. Calculation of the microwave conversion factor for an input

power of PMW = 44.1 dBm (25.9 W) gives a value of 2B1/
√
PMW = 0.49 × 10−3 T W−1/2
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(4.89 MHz W−1/2).
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Figure 6.22: Rabi oscillations (black, squares) of the ms = 0 ↔ +1 transition in the NV−

ensemble by varying length of MW pulses TMW for a fixed power PMW. MW pulses were
applied at fMW = 8.006 GHz to match the resonator mode fRes, at a power of PMW = 44.1
dBm. Fitting the data (green) with a damped exponential function gives a Rabi period of
TRabi = 40.3 ns, which can also be expressed as the Rabi frequency fRabi = 1/TRabi = 24.8
MHz.

Low resolution of the TMW time varied measurement was limited by the microwave gener-

ator (SMB100) resolution of 10 ns. In order to circumvent this, we ran another measurement

with a fixed TMW and varied PMW. This allows much more detailed oscillations to be mea-

sured due to the precise control over microwave waveform power. Variation in PMW will

change the rate at which coherent control of the spin occurs, which for a fixed TMW will

result in the spin projection rotating as PMW changes. Results from this measurement are

shown in Fig 6.23, and show Rabi oscillation curves for several different TMW. Above -10

dBm, a clear plateauing of the ODMR signal is observed, arising from the compression of
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Figure 6.23: Rabi oscillations of the ms = 0 ↔ +1 transition in the NV− ensemble by varying
the power of MW excitation PMW for fixed length MW pulses TMW. MW pulses were applied
at fMW = 8.006 GHz, as for Fig 6.22. A clear reduction in coherent rotation rate is present
for decrease pulse lengths due to the reduced microwave energy input.

the amplifier when maximum output power is reached.

Compression is the limiting factor in maximum power output from an amplifier. The

amplifier adds power to an input waveform, and is quantified by gain G. Under standard

operating conditions and considering input power P In
MW in dBm, the gain is simply added

to the input power such that PMW = P In
MW + G. Conversion between microwave power in

Watts to dBm is achieved through P dBm
MW = 10 log10(P

Watts
MW /1mW). However, as the input

power approaches the compression point of the amplifier, the gain regime becomes nonlinear,

resulting in imperfect amplification of the input signal [152]. Measurement of the change in

gain for higher input powers is critical for accurate calibration of the outputted microwave

power PMW. As such, we ran calibrations measuring the gain G of the input microwave
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signal P In
MW through the 300 W pulsed amplifier. The measurement was carried out by using

an RF detector to measure the time trace of the amplified signal and calculating the area

under the curve. Area under the curve corresponds to the pulse area, defined by the product

of the pulse length and pulse amplitude APA = TMWVp−p. The ratio of input pulse area to

outputted pulse area gives a measurement of the effective amplitude gain GEff of the amplifier

for a given input TMW and PMW, the results of which are shown in Fig 6.24. A clear reduction

in effective gain GEff occurs from P In
MW = −20 dBm, with shorter pulses experiencing an even

stronger reduction in GEff .
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Figure 6.24: Effective gain of 300 W pulsed amplifier for a range of microwave pulse powers
P In
MW and pulse lengths TMW. Effective gain is calculated by taking the ratio of the amplifier

microwave output pulse area AOut
PA to the input pulse area AIn

PA = V In
p−pTMW. A clear reduction

in amplifier gain is observed for higher input power pulses P In
MW. It is also clear from reduced

gain for shorter TMW that the amplifier is less efficient as the pulse length approaches the
minimum pulse length of TMW = 10 ns.

Considering the reduction in gain above P In
MW = −20 dBm, it is important to adjust
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the results in Fig 6.23 to reflect the actual microwave power emitted. To achieve this, we

convert the input power to outputted pulse area through the following expression AIn
PA =

GEff(T In
MWV

In
MW), where V In

MW is the input microwave peak-to-peak amplitude measures and

V In
MW ∝

√
P In
MW. Fig 6.25 shows the results of Rabi oscillations with fixed TMW and varying

PMW in terms of pulse area APA.
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Figure 6.25: Rabi oscillations of the ms = 0 ↔ +1 transition in the NV− ensemble as function
of pulse area APA = PMW ∗TMW by varying the power of MW excitation PMW for fixed length
MW pulses TMW. MW pulses were applied at fMW = 8.006 GHz, as for Fig 6.22. A clear
reduction in coherent rotation rate is present for decrease pulse lengths due to the reduced
energy input.

There are two factors that limit number of electron spin rotations that can be achieved

with our current set-up. Firstly, the non-linear regime of the pulse amplifier ultimately limits

the maximum power that can be outputted with the current hardware configuration. This

can be seen most clearly in the TMW = 20 ns results in Fig 6.25, where the data appears

to “reflect” at a critical pulse area of APA ≈ 2200 V ns. Here, measurements with power



CHAPTER 6. Fast microwave control of electron spins 143

P In
MW > −15 dBm have smaller pulse areas APA due to compression effects, reducing the

amount of rotation during the 20 ns pulse. As a result, we can see for the TMW = 20 ns

curve that measurements above the -15 dBm limit effectively repeat the lower pulse area

measurements. This is indicated by the high density of data points in Fig 6.25, and can also

be seen in the other TMW curves.

We observe a single π-pulse for the TMW = 10 ns pulse at the maximum power PMW = 54

dBm (Fig 6.25), which allows us to calculate a new Rabi frequency of fRabi = 1/(2tπ) ≈ 50

MHz. We can then calculate a new microwave conversion efficiency of 0.32×10−3 T W−1/2 for

the fastest coherent control of the electron spin achieved in these experiments. A hard limit on

the amount of power PMW that can be generated by the amplifier means increased pulse length

is required for an increased number of spin rotations. However, as described in Section 6.8.2,

a second limit on rotations arises due to arcing effects that arise for pulse lengths above

TMW ≥ 120 ns, acting as hard limit for the pulse length TMW. Consequently, the maximum

amount of continuous rotation that can be generated using the current KHR design is shown

in the TMW = 80 ns in Fig 6.25, where we observe 11 π-pulse rotations. In order to increase

the number of π rotations that can be achieved in our set-up, we require improvements to

the maximum PMW by modifying the KHR design to limit arcing effects for longer pulses and

higher powers (e.g BLGRs introduced in Sec 6.8.2). It is worth noting that 11 continuous

rotations is the worst-case scenario, as most coherent control schemes such as dynamical

decoupling sequences that are formed of a train of π-pulses. As a result, the interpulse delays

between each π-pulse may allow more pulses to be applied before approaching the arcing

limit.

6.8.4 Comparison to alternative resonator designs

The microwave conversion factor introduced in Section 6.8 can be used to compare the

effectiveness of the KHR against other work in the literature. A summary of the comparisons

can be found in Table 6.2.
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Reference Type
Approx.
Size

LMW

(mm)
fRes

(GHz)
fMax
Rabi

(MHz)
2B1/

√
PMW

(T W−1/2)
Limiting
Condition of fMax

Rabi

This work KHR
5 mm
× 10 mm

≈ 0.5 8.0 50 0.32×10−3 Arcing Effects

Chekhovich [33] KHR
5 mm
× 10 mm

≈ 0.5 6.58 14.2 1.04×10−3 Limited source
power

Childress et al. [185]
Thin
copper
wire

20 µm
diameter

< 0.05 2.87 15 1.0×10−3 Limited source
power

Gaebel et al. [189]
Miniaturized
loop

Not
Provided

< 0.05 2.87 16.7 0.4×10−3 Limited source
power

Fuchs et al. [154] CPW
Not
Provided

< 0.05 0.49 440 87.8×10−3

Breakdown of
RWA due to
low fRes

de Lange et al. [190] CPW
Not
Provided

< 0.05 0.3 20.5 4.9×10−3 Limited source
power

Aslam et al. [191] CPW
0.1 mm
× 1 mm

< 0.05
66 to 70
(Broadband)

< 1 2.7×10−3 Limited source
power

Jia et al. [192] CPW
80 µm
× 0.4 mm

< 0.05
0.5 to 17
(Broadband)

6 - 12 0.68×10−3 Limited source
power

Table 6.2: Summary of resonator characteristics of this work compared to alternative res-
onator designs found in the literature.

Firstly, we can compare our result 0.32 × 10−3 T W−1/2 with the previous iteration of

KHR design tested on SiC vacancies, which yielded a conversion factor of 1.04 × 10−3 T

W−1/2, demonstrating a factor ≈ 3 reduction in microwave conversion. The KHR tested in

this work successfully operated at fRes = 8 GHz, an improvement on the Ref [33] fRes = 6.58

GHz. Both the SiC and NV− KHR tests were carried out at similar separations of LMW ≈ 0.5

mm. While a decrease in conversion efficiency was observed compared to the previous design

in Ref [33], the KHR design tested in this chapter was shown to operate up to microwave

powers of PMW = 54 dBm, while SiC testing on the older design only was tested to powers
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of PMW ≈ 30 dBm. This was an important step, as high power operation is critical to future

applications on quantum dots, where the lower quantum dot electron g-factor, g
(QD)
e ≈ 0.25ge

results in a factor of ≈ 4 times higher power requirements for similar Rabi frequencies.

The microwave conversion efficiency can also be compared to other resonator designs used

for ODMR on NV− spins in the literature. One simple design is a copper wire stretched across

the surface of a diamond sample, which allowed a maximum Rabi frequency of fMax
Rabi = 15

MHz to be achieved with a conversion factor of 1.0×10−3 T W−1/2 [185], similar to that of first

work with the KHR design [33]. Another example using a sample resting on a miniaturized

loop yielded similar values with fMax
Rabi = 16.7 MHz, but with a reduced conversion efficiency

of 0.4 × 10−3 T W−1/2 [189]. Both of these examples are positioned close to the sample such

that the separation is LMW < 50 µm, and so does not appropriately address the generation

of parasitic electric fields.

The most common type of microwave source used for solid-state ODMR measurements

are coplanar waveguides (CPW) [154, 190–192]. The CPW resonators are fabricated on to

the surface of the sample, and are also in close proximity to the target spin, LMW < 0.05

mm, similar to the copper wire and miniaturized loop examples discussed so far. The typical

CPW structure sizes is approximately 0.1 to 1 mm.

Some of the fastest demonstrations of coherent control of NV− spins in the literature

used a coplanar waveguide fabricated on to the surface of a diamond sample [154]. The

ms = 0 ↔ −1 NV− transition was shifted with magnetic field such that the resonance

frequency was fRes = 0.49 GHz, and allowed generating Rabi frequencies of fRabi = 109

MHz at an input power of PMW = 12 dB, yielding a conversion factor of 87.8 × 10−3 T

W−1/2 (865.8 MHz W−1/2) [154]. Rabi frequencies of up to 440 MHz were achieved, but with

significant non-linear behaviour as fRabi approaches the small transition frequency fRes =

0.49 GHz, resulting in the rotating wave approximation (fRabi ≪ fRes) no longer being valid.

Breakdown of the RWA can be avoided by operating at a higher fRes, allowing linear Rabi

oscillations to be observed at a higher fRabi at the cost of increased difficulty in achieving high
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microwave conversion factor. Another example of CPW use for ODMR on NV− achieved

fast rotations with a higher transition frequency of fRes ≈ 3 GHz, but was less efficient with

a microwave conversion factor of 4.9 × 10−3 T W−1/2 [190].

Broadband coplanar waveguide (CPW) designs have also been shown to be operable from

0 to 15.8 GHz, resolving the issue with small fRes, and demonstrating a conversion factor of

0.68 × 10−3 T W−1/2 (6.8 MHz W−1/2) at fRes ≈ 7.3 GHz. The highest power tested was

only 1 W, and as such Rabi frequencies of only fRabi = 6.8 Mhz were achieved [192]. Similar

results were found with CPW designs operating in the range 60 - 90 GHz [191], where a

conversion factor of 2.7 × 10−3 T W−1/2 (0.85 MHz W−1/2) was measured at fRes ≈ 68 GHz.

Achieving strong microwave power at high frequencies (E-band, 60 - 90 GHz) is difficult, with

amplifiers only being able to operate up to 28 dBm (≈ 0.6 W), yielding Rabi frequencies of

fRabi < 1 MHz.

The CPW designs do provide optical access to the samples measured, but are fabricated

directly onto the sample or positioned nearby, giving resonator-sample separations of LMW ≈

1 - 50 µm. As mentioned for the non-CPW designs, small LMW means that these resonator

designs are likely to create the parasitic electric fields that we are trying to avoid. The KHR

design used in this work provides microwave conversion factors similar to CPW designs, but

with the addition of a large LMW ≈ 0.5 mm, allowing global control of many electron spins

within a device. The limiting factor of Rabi frequencies from the KHRs are arcing effects that

begin to occur at high microwave powers. These can be eliminated in principle by operating

the KHR in a vacuum, allowing a strong voltage to be applied, increasing microwave power

and therefore Rabi frequency.

6.9 Summary

In this chapter we have introduced the keyhole resonator (KHR) design first introduced in

Ref. [33], a planar structure designed to amplify microwave frequency oscillating magnetic
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fields for use in pulsed electron spin resonance experiments. We experimentally tested an

improved KHR design and verify that the resonator mode is at the targeted fRes = 8 GHz, in

addition to studying the effect of nearby conductors and temperature on the resonator mode

frequency. The experimentally measured loaded Q-factor of ≈ 80 demonstrated the viability

of the resonator to produce high power microwave pulses as short as TMW = 10 ns.

Optically detected electron spin resonance measurements were successfully performed

with the KHR design on the NV− ensemble found in diamond. The KHR was separated

from the diamond sample by a distance LMW ≈ 0.5 mm to minimise parasitic electric fields

while maintaining strong microwave conversion. A static magnetic field of B0 = 0.183 T

shifted the ms = 0 ↔ +1 transition in the 3A2 ground state to 8 GHz, allowing coherent

control of the electron spins in the ensemble using the KHR.

High power testing revealed the resonator produces arcing effects through electrical break-

down of the air occupying the space between the resonator and sample. Continuous wave

testing revealed the resonator could be operated without arcing at PMW = 51.5 dBm, while

the longest pulse at the highest available P In
MW = 54 dBm was TMW = 100 ns. This resulted

in a maximum achievable Rabi frequency of fRabi = 50 MHz, and the shortest π-pulse length

of ≈ 10 ns. Taking in to account gQD
e ≈ 0.25ge, we can expect electron spin π-pulse lengths

of approximately 40 ns, which is much less than the longest measured electron spin state

decoherence time T2,e ≈ 4 µs [104, 146], allowing many gate operations to be performed on

QD electron spin qubits before decoherence.

A Rabi frequency of fRabi = 50 MHz with PMW = 54 dBm corresponds to a microwave

conversion factor of 0.32 × 10−3 T W−1/2. This is comparable with other designs in the

literature (e.g CPWs) but with the added advantage of a large LMW, validating the design

as a strong choice to be used in quantum computing protocols. More specifically, the KHR

has demonstrated it can fulfill the requirements for a microwave resonator to be used in

ESR experiments on the InGaAs QDs measured throughout the rest of this thesis, or other

suitable systems such as strain-free GaAs QDs [29, 33].
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7

Conclusion

The quantum dot spin qubit addresses many of the requirements described in Chapter 1 to be

a viable choice for the building blocks of a quantum computer. Much research has gone into

techniques to initialise and readout both the electron spin qubit and the rich nuclear spin bath

through optical and magnetic resonance control schemes. One of the major requirements is

longevity of any state used as a quantum resource, and in this thesis we have endeavoured to

explore the mechanisms involved in relaxation and decoherence of the self-assembled QD spin

states. A major driving component for this investigation into spin dynamics was determining

the conditions required for a long-lasting electron spin state for future experiments of coherent

control using magnetic resonance techniques. In this thesis we have presented several key

findings that demonstrate steady progress towards a long lasting controllable QD spin qubit.

The development of a series of charge-tunable samples with varying tunnel coupling al-

lowed investigation in to the effect of a proximal doped layer on the quantum dot spin

lifetimes, as presented in Chapter 4. We showed that the quantum dot is effectively isolated

in the tB = 52 nm sample, with the longest demonstrated electron spin lifetime T1 ≈ 1

s in self-assembled quantum dots. Extended electron lifetime came at the cost of reduced

electron spin state preparation fidelity due to Auger recombination effects. We found that

a coupling dependant cotunnelling process Γe,cotun combined with the previously measured

149
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[143, 144] phonon-assisted spin orbit mechanism Γe,ph gave an accurate description of electron

spin lifetimes in a wide range of magnetic fields Bz. Extrapolation of the modelled relaxation

mechanisms allowed estimation of a fundamental lower limit Γe,min ≥ (20 s)−1 of electron

spin flip rate in the case of an isolated quantum dot (tB = ∞). Nuclear lifetimes T1,N varia-

tion for a range of magnetic fields is explained through a process mediated by electron spin

relaxation, resulting in a field-independent lifetime at high magnetic field and tB dependant

nuclear lifetime at low field.

An isolated quantum dot with long electron lifetimes gave the opportunity to study nu-

clear ensemble coherence in a charged quantum dot, which we presented in Chapter 5. Elec-

tron spin fluctuations occurred at a much slower rate to similar work [136], which allowed us

to measure millisecond length nuclear ensemble coherence times T2,N, demonstrating charged

QD nuclear ensemble coherence times similar to that of an uncharged quantum dot. In this

regime, the electron is no longer the primary source of decoherence, and the nuclear spin

ensemble coherence is instead limited by direct nuclear dipole-dipole interaction. Further in-

vestigation in the form of a magnetic field and tunnel coupling dependence allowed a model

to be developed to quantify the effect of a fluctuating electron spin on T2,N. Spectral diffusion

accurately describes the effect observed and led us to the conclusion that a single electron

spin flip will result in complete loss of nuclear coherence. Stated conversely, the nuclear spin

ensemble is limited only by nuclear-nuclear interactions in the presence of a static electron,

allowing reliable single shot measurement of the ensemble spin state. Development of the

single shot measurement technique allowed us to use the directionality of the Knight field ±νe
(due to electron spin Se = ±1/2) to encode the state of the electron spin onto the nuclear spin

ensemble collective coherence. This allowed measurement of the electron spin state Se with

a fidelity of above 99.7% - demonstrating improvement when compared to other solid state

systems showing fidelities 80 - 95 % [193–195], and superconducting qubits with fidelities 97

- 99 % [9, 196] that includes Google’s 53-qubit Sycamore processor introduced in Chapter 1.

Long-lasting coherent spin states are only one of the major requirements laid out in
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Chapter 1. The improvements in spin lifetimes and coherence time made in Chapter 4 and

Chapter 5 addressed one of the major challenges for attempting coherent control of the

electron spin state using magnetic resonance. Another technical hurdle that lay in the way

of coherent electron control was the generation of microwave frequency oscillating magnetic

fields, a higher frequency version of the NMR pulse discussed in detail within this thesis.

Developments of a new type of resonator with minimal electric field generation were recently

made [33], and we set out to investigate their suitability for generating high power short pulses

of microwave magnetic fields for use in fast coherent electron spin control. A test bed sample

of diamond was used to exploit well-studied NV− electron spins for ESR experiments at room

temperature, allowing easy iterative improvements to the ESR configuration. Electron spin

resonance was successful, demonstrating high power microwave generation at a frequency

similar to that of the Zeeman splitting of the electron in InGaAs quantum dots. The keyhole

resonator design provides high power microwaves with minimal parasitic electric field, which

when used on the QD system will prevent unwanted ejection of the electron spin.

Combining the advancements in understanding of ideal operating conditions for long lived

spin lifetimes and coherence with the keyhole resonator platform places us in a strong posi-

tion to attempt electron spin resonance on QDs, something that has remained elusive since

the first and only demonstration of ESR by Kroner et al. [32]. Placement of the keyhole

resonator within the setup described in this thesis, with the pulsed amplifier described in

Chapter 6 should allow strong enough microwave pulses to be generated for ESR measure-

ments. Coherent control via this method would be a major step in realising the quantum dot

spin qubit. While the work we have presented here considers self-assembled InGaAs/GaAs

quantum dots, it has become apparent that the inhomogeneous strain present due to the self

assembly process is ultimately a limiting factor of using these QDs as spin qubits [29, 31, 104].

Promising research from strain-free droplet GaAs quantum dots reveals well defined nuclear

spin state transitions, allowing full access to the I = 3/2 state space present in both Gal-

lium and Arsenic, and has been successfully used to create a nuclear qubit register [29]. State
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preparation and readout of the electron spin have been demonstrated in droplet-etched GaAs

QDs, with electron lifetimes of T1 ≈ 50 µs that may be limited by cotunnelling effects [197].

Additional T1,e measurements close to the fundemental limit (Γe,min) predicted in Chapter 4

have been measured in gate-defined GaAs QDs [198]. Despite the recent shift in focus away

from the InGaAs QD system, the results concerning spin dynamics in this thesis are not

limited to InGaAs QDs and as such are likely to still play a critical role in the future of III-V

semiconductor QD spin qubit design.
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[61] M. C. Löbl, et al., “Narrow optical linewidths and spin pumping on charge-tunable

close-to-surface self-assembled quantum dots in an ultrathin diode,” Phys. Rev. B,

vol. 96, p. 165440, Oct 2017. doi:10.1103/PhysRevB.96.165440.

[62] C. Kittel, Introduction to Solid State Physics, 8th Edition. Wiley, 2007.

[63] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for iii–v com-

pound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, no. 11,

pp. 5815–5875, 2001. doi:10.1063/1.1368156.

[64] P. W. Fry, et al., “Photocurrent spectroscopy of InAs/GaAs self-assembled

quantum dots,” Phys. Rev. B, vol. 62, pp. 16784–16791, Dec 2000.

doi:10.1103/PhysRevB.62.16784.

[65] J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, and D. D. Awschalom, “Ini-

tialization and read-out of spins in coupled core–shell quantum dots,” Nature Physics,

vol. 2, pp. 831–834, Nov. 2006. doi:10.1038/nphys458.

[66] A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, “Electronic structure and magneto-

optics of self-assembled quantum dots,” Phys. Rev. B, vol. 54, pp. 5604–5608, Aug

1996. doi:10.1103/PhysRevB.54.5604.

[67] J. J. Finley, et al., “Observation of multicharged excitons and biexcitons in

a single InGaAs quantum dot,” Phys. Rev. B, vol. 63, p. 161305, Apr 2001.

doi:10.1103/PhysRevB.63.161305.

[68] W. Porod and D. K. Ferry, “Modification of the virtual-crystal approximation

for ternary III-V compounds,” Phys. Rev. B, vol. 27, pp. 2587–2589, Feb 1983.

doi:10.1103/PhysRevB.27.2587.

[69] E. A. Chekhovich, K. V. Kavokin, J. Puebla, A. B. Krysa, M. Hopkinson, A. D. An-

dreev, A. M. Sanchez, R. Beanland, M. S. Skolnick, and A. I. Tartakovskii, “Structural

analysis of strained quantum dots using nuclear magnetic resonance,” Nature Nan-

otechnology, vol. 7, pp. 646–650, Aug. 2012. doi:10.1038/nnano.2012.142.

http://dx.doi.org/10.1063/5.0013718
http://dx.doi.org/10.1038/ncomms9204
http://dx.doi.org/10.1103/PhysRevB.96.165440
http://dx.doi.org/10.1063/1.1368156
http://dx.doi.org/10.1103/PhysRevB.62.16784
http://dx.doi.org/10.1038/nphys458
http://dx.doi.org/10.1103/PhysRevB.54.5604
http://dx.doi.org/10.1103/PhysRevB.63.161305
http://dx.doi.org/10.1103/PhysRevB.27.2587
http://dx.doi.org/10.1038/nnano.2012.142


BIBLIOGRAPHY 160

[70] C. P. Kuo, S. K. Vong, R. M. Cohen, and G. B. Stringfellow, “Effect of mismatch

strain on band gap in III-V semiconductors,” Journal of Applied Physics, vol. 57,

no. 12, pp. 5428–5432, 1985. doi:10.1063/1.334817.

[71] S. Paul, J. B. Roy, and P. K. Basu, “Empirical expressions for the alloy composition and

temperature dependence of the band gap and intrinsic carrier density in GaxIn1xAs,”

Journal of Applied Physics, vol. 69, no. 2, pp. 827–829, 1991. doi:10.1063/1.348919.

[72] M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, “Hidden symmetries in

the energy levels of excitonic ‘artificial atoms’,” Nature, vol. 405, pp. 923–926, June

2000. doi:10.1038/35016020.

[73] O. Krebs and P. Voisin, “Giant optical anisotropy of semiconductor heterostructures

with no common atom and the quantum-confined pockels effect,” Physical Review Let-

ters, vol. 77, pp. 1829–1832, Aug. 1996. doi:10.1103/physrevlett.77.1829.

[74] D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skol-

nick, and M. Hopkinson, “Individual neutral and charged InxGa1−xAs−GaAs quantum

dots with strong in-plane optical anisotropy,” Phys. Rev. B, vol. 72, p. 161312, Oct

2005. doi:10.1103/PhysRevB.72.161312.

[75] T. Belhadj, et al., “Impact of heavy hole-light hole coupling on optical selection rules

in GaAs quantum dots,” Applied Physics Letters, vol. 97, p. 051111, Aug. 2010.

doi:10.1063/1.3473824.

[76] B. Miller, W. Hansen, S. Manus, R. Luyken, A. Lorke, J. Kotthaus, and S. Huant,

“Few-electron ground states of charge-tunable self-assembled quantum dots,” Physical

Review B - Condensed Matter and Materials Physics, vol. 56, no. 11, pp. 6764–6769,

1997. doi:10.1103/PhysRevB.56.6764.

[77] R. J. Warburton, B. T. Miller, C. S. Dürr, C. Bödefeld, K. Karrai, J. P. Kotthaus,
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A. Imamoglu, “Nuclear spin physics in quantum dots an optical investigation,” Rev.

Mod. Phys., vol. 85, pp. 79–133, Jan 2013. doi:10.1103/RevModPhys.85.79.

[105] T. M. Godden, S. J. Boyle, A. J. Ramsay, A. M. Fox, and M. S. Skolnick, “Fast

high fidelity hole spin initialization in a single InGaAs quantum dot,” Applied Physics

Letters, vol. 97, p. 061113, Aug. 2010. doi:10.1063/1.3476353.

[106] T. M. Godden, J. H. Quilter, A. J. Ramsay, Y. Wu, P. Brereton, I. J. Luxmoore,

J. Puebla, A. M. Fox, and M. S. Skolnick, “Fast preparation of a single-hole spin in an

InAs/GaAs quantum dot in a Voigt-geometry magnetic field,” Phys. Rev. B, vol. 85,

p. 155310, Apr 2012. doi:10.1103/PhysRevB.85.155310.

http://dx.doi.org/10.1038/nphoton.2010.161
http://dx.doi.org/10.1088/1367-2630/11/2/023034
http://dx.doi.org/10.1103/PhysRevB.50.14246
http://dx.doi.org/10.1103/PhysRevLett.94.116601
http://dx.doi.org/10.1103/PhysRevB.67.073301
http://dx.doi.org/10.1038/nature06472
http://dx.doi.org/10.1103/RevModPhys.85.79
http://dx.doi.org/10.1063/1.3476353
http://dx.doi.org/10.1103/PhysRevB.85.155310


BIBLIOGRAPHY 164

[107] C. Testelin, F. Bernardot, B. Eble, and M. Chamarro, “Hole–spin dephasing time as-

sociated with hyperfine interaction in quantum dots,” Phys. Rev. B, vol. 79, p. 195440,

May 2009. doi:10.1103/PhysRevB.79.195440.

[108] E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson, P. Senellart, A. Lemâıtre,
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