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“We sit together, the mountain and I, until only the mountain remains”  
Li Bai   
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Integrating the effects of climate-change 
into the agrochemical risk assessment for 
freshwater ecosystems 
Summary 

Climate change and pollution are major drivers of global biodiversity loss and freshwater ecosystems 

are particularly at risk from diffuse pollution from agrochemical landscapes. The predicted increase in 

the impact of climate change on weather systems may have important consequences for 

environmental exposure and ecological impacts of agrochemicals. However, current consideration of 

the effects of climate change on environmental risk assessments (ERAs) is limited to qualitative 

reviews or specific case studies. Therefore, there is a need to quantify the effects of climate change 

on agrochemical exposure and ecosystem sensitivity and integrate findings within ERAs. 

This thesis aims to address three major issues relevant to freshwater ERAs: firstly, how spatial and 

seasonal variation in climate change affects agrochemical fate via the soil matrix considering chemical 

persistence. Secondly, to assess what effect species composition has on assemblage sensitivity and 

how this varies by i) chemical type, and ii) the change in composition under climate change. Finally, 

multi-stressor of chemical and temperature shock was investigated for mitigation by multi-generation 

acclimation. 

The effects of climate change exhibited spatial and seasonal variation with precipitation and chemical 

degradation being major factors affecting chemical flux into freshwaters. Assemblage composition, 

including shifts under climate change, significantly affect sensitivity, although the extent of variation 

is chemical dependent. Temperature influenced reproductive strategy, but multi-stressors and 

temperature acclimation effects were limited. 

The conclusions from each chapter were drawn together by contextualising the results within an ERA 

framework using case study chemicals. These indicated that the change to risk is spatially variable and 

beyond existing uncertainty accounted for within ERAs. This demonstrates that application of these 

results to realistic chemical uses is insightful and that existing ERAs can be adapted to include climate 

change. This is necessary as this thesis indicated that specific chemicals and locations underwent a 

large increase in risk.  
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Chapter 1. Introduction  

1.1. A changing world 

Anthropogenic impacts have altered ecosystems and landscapes throughout human history but 

human development following the industrial revolution has increased the extent and magnitude of 

effects, which now occur at a global scale (Ellis et al., 2021). Chemical pollution is one anthropogenic 

driver of change with global effects; chemical pollutants have been detected from Mount Everest to 

the Marianas Trench (Dasgupta et al., 2018; Miner et al., 2021). Agricultural land use represents 55% 

of Earth’s land area (Ellis et al., 2010), and increasing intensity and industrialisation of agriculture since 

the Green Revolution has seen agrochemical use increase rapidly; even recently, between 1990 to 

2019 global pesticide use has nearly doubled from 2.3 million tonnes to 4.2 million tonnes (FAO, 2020; 

Liu et al., 2015). Application of agrochemicals results in environmental exposure beyond the target 

ecosystem as the chemical is transported. This results in toxic effects of agrochemicals to organisms, 

ecosystems and the benefits directly and indirectly humans gain from them (ecosystem services) being 

observed ultimately leading to issue of environmental pollution entering public discourse (Carson, 

1962; Carvalho, 2017; Reid, 2005). Ultimately, this led to regulations that calculated the risk posed to 

ecosystems by considering the quantity of chemical the ecosystem is exposed to and the sensitivity at 

which an ecosystem and its functioning and services are impaired (Nienstedt et al., 2012). 

Consequently, an ecosystem services perspective forms an important contextual point when 

considering agrochemical use and the unintentional exposure of non-target ecosystems, and thus 

requires the evaluation of how increased agricultural yield weighs against the negative impacts on 

non-target ecosystems (Daryanto et al., 2018; IPBES et al., 2019; Palm et al., 2014).  Going forwards, 

increasing human population and developing dietary patterns have agrochemical use forecasts which 

predict continued pollutant pressure over the 21st century (Delcour et al., 2015; UN, 2019). However, 

agrochemicals will not be the only stressor to ecosystems and services, and the 21st century is set to 

be one increasingly affected by the rise of climate change as stressor of ecosystems and their 

biodiversity across the entire planet (Pecl. et al., 2017; Malhi et al., 2020). Indeed, climate change, 

which currently contributes to the decline of 19.4 % of threatened species (i.e., the 7th largest 

contributor), is set to increase in importance during the 21st century and to become one the major 

causes of species extinction due to rising greenhouse gas emissions exacerbating the changes to 

climate and therefore ecosystems (Maxwell et al., 2016). 

Beyond the effects of climate change itself, climate change is expected to alter the risk from 

extensively studied agrochemicals, such as pesticides, and from emerging chemical pollutants (Balbus 
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et al., 2012; EFSA et al., 2020; Fijalkowski et al., 2017; Watts et al., 2015). For example, direct effects 

of climate change on ecosystem sensitivity involve multiple stressor effects where chemical sensitivity 

of receptor organisms is mediated by climatic factors such as temperature stress or water 

availability(Birk et al., 2020) Other direct effects affect chemical exposure by altering the fate and 

behaviour of chemical transport to non-target ecosystems (Bloomfield et al., 2006; Gagnon et al., 

2016). Climate change may also mediate the effect of chemicals on ecosystems indirectly, affecting 

chemical exposure by altering the types and amounts of agrochemicals used and their use patterns 

(Bussi et al., 2018; Delcour et al., 2015; Zimmermann et al., 2017), or altering the sensitivity of the 

ecosystem indirectly by shifting community composition and hence the presence of different receptor 

organisms, all with varying chemical sensitivities. Different approaches are used to investigate each of 

these potential climate change effects, and are discussed in further detail in 1.3 below, although a full 

consideration of combined risk is needed to integrate each approach into a framework and be 

adaptable to the range of chemicals, climate effects and ecosystems worldwide.  

Freshwater ecosystems cover only 0.8% of the planet’s area, but are disproportionally biodiverse, 

representing around 6% of described species (Dudgeon et al., 2006). Within the UK, riparian 

ecosystems and their catchments have been heavily impacted with none unaffected by human activity 

(Maltby et al., 2011; Vaughan and Ormerod, 2012). Assessments of UK rivers indicate that only 14% 

of monitored river water bodies are in good ecological status while 0% are in good chemical status 

(Environment Agency, 2020, 2018). While efforts have been made to improve water quality, with 

pollutant loads to rivers reducing by 70% between 1995-2005, point source chemical pollution still 

occurs and inputs from agricultural land pose ongoing threats to river ecosystems, and agrochemical 

use continues to rise (Garthwaite, 2018; Liu et al., 2015). Furthermore, the development of more 

sensitive analytical detection techniques and fate pathways has uncovered the potential risks from 

emerging chemical pollutants (Boxall et al., 2003; Sarmah et al., 2006). For example, pharmaceuticals, 

which were previously undetected in freshwaters and therefore not considered as a pollutant, are 

now understood to be a potential risk in UK rivers following exposure from sewage systems or from 

livestock, biofertiliser and irrigation emissions onto agricultural land (Daughton and Ternes, 1999; 

Gros et al., 2019; Ternes et al., 2007).  

While the effects of climate change and chemical pollution occur globally, their effects vary spatially 

depending on the local freshwater ecosystems, climates, and anthropogenic drivers (Birk et al., 2020; 

Vaughan and Ormerod, 2014). Within Europe, existing freshwater ecosystems, their condition and 

their services have been shown to be failing the objectives set for their protection with both chemical 

pollution and climate change indicating deteriorating trends and targets largely not on track (EEA, 
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2019). Therefore, to assess and address their impacts, consideration of the risk posed by these 

stressors and the extent of variation in them is required. Environmental risk assessments (ERAs) 

provide a method with which to quantify risk to ecosystems from agrochemical application and 

therefore represent one approach to this (EFSA, 2013a). However, existing consideration of climate 

change within ERA approaches is limited and has been acknowledged as such from both a scientific 

and regulatory perspective (Brooks et al., 2013; EFSA et al., 2020; Van den Brink et al., 2018). 

Consequently, linking the different aspects of climate change and agrochemical pollution together is 

a major, but necessary, challenge to future proof ERAs and to protect freshwater ecosystems from the 

negative effects of agrochemical inputs (Reid et al., 2019). This thesis aims to investigate aspects of 

the exposure and sensitivity of ecosystems to agrochemicals and to quantify the effects of climate 

change on them by adapting specific aspects of the ERA and integrating them back into the existing 

ERA framework. In particular, it focuses on quantifying some of the effects of climate change on both 

exposure and sensitivity within a UK perspective due to the extent of existing freshwater, landscape, 

chemical and climatic data available (University of Hertfordshire, 2007a, 2007b; Met Office, 2019; 

Cranfield University, 2021; Environment Agency et al., 2021). The quantification of climate change on 

risk will be considered simultaneously with the development of a framework for considering the effect 

of climate change on ERAs that is adaptable to different chemicals, locations and climates of 

ecosystems potentially at risk. 

1.2. Agrochemicals: Context and risk assessment 

1.2.1. Emissions & fate 

Following introduction to agricultural land, agrochemicals pass through multiple processes to 

ultimately affect ecosystems and the benefits we derive from ecosystem services, such as water 

processing, purification and extraction, and pest and disease control (Figure 1.1). Chemicals applied 

to agricultural land are transported to non-target ecosystems ranging from adjacent land both 

cultivated and not, local soil ecosystems and bodies of freshwater such as ditches, rivers and ponds, 

each subject to negative effects on the constituent organisms (Gagnon et al., 2016; Steffens et al., 

2015; Wang et al., 2019). Pesticide transport by surface runoff depends on local climate, agricultural 

practices, topography, soil characteristics, crop type, and pest phenology conditions. To accurately 

assess the impact of climate change, these factors must be accounted for in a single framework by 

integrating their interaction and uncertainty. Such negative effects cascade throughout different 

species through community interactions, impacting the ability of the ecosystem to function and 

Ultimately this impairment in functioning reduces ecosystem services necessitating consideration of 

chemicals risk for ecosystem protection (Brauman et al., 2007; Nienstedt et al., 2012; Palm et al., 
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2014). Exposure of non-target ecosystems occurs following application through transport of the 

agrochemical via multiple routes including air, soil, water and trophic transfer (Bach et al., 2016; 

Lorenz et al., 2017). Consequently, there is a need to understand both the inputs and routes of 

chemical exposure. This has been done in chemical fate field trials which have quantified the 

movement of chemicals through the soil matrix and into freshwater (Capel et al., 2008; Gros et al., 

2019). As both inputs and routes of chemical exposure are sufficiently understood and quantifiable, 

equations for accurately calculating chemical fate have been discovered. This has led to the 

development of exposure models to predict the concentration of agrochemicals in freshwater bodies 

often supported and validated by field data (EFSA, 2013a; EMA et al., 2017; Parker et al., 2007; 

Schnoor, 1992). These exposure models not only enable the chemical fate, behaviour and transport 

into freshwater ecosystems to be quantified, but they can also be altered to account for specific 

scenarios, chemicals and situations (Bach et al., 2016).  

 

Chemical Exposure 

Organism-level effects 

Community-level effects 

Effects on ecosystems & 
ecosystem services 

Inputs to Agricultural 

land 

Pharmaceuticals 

Livestock manure 

Biosolid fertilizers 

Irrigation water 

Pesticides 

Treating crop 
infestation 

manure 
Treating disease 

outbreaks 
 

Controlling weeds 

Figure 1.1 Pathway of introduction of agrochemicals to agricultural land and the resultant 
pathway of effects that cascade onto to ecosystems and the services gain from them 
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Since 1993, the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) have 

attempted to integrate and harmonise the calculation of predicted environmental concentrations of 

chemicals and agree upon fate models suitable for the ERA (FOCUS, 2021). Consequently, there are a 

suite of exposure models used in regulatory risk assessment that enable chemical exposure to be 

considered for specific locations, chemical applications and uses, and meteorology, providing the 

required input data are available (Bach et al., 2017; Jarvis et al., 1997; Mullins et al., 1993; US EPA, 

2016a). In addition to ERA uses, models have been run for a series of realistic and hypothetical 

location-specific case studies, including watershed level predictions (Wang et al., 2019), with 

comparison of land-use and chemical fates (Oliver et al., 2012). There have also been efforts to create 

risk assessment scenarios for chemical exposure including for Europe-wide assessments (Blenkinsop 

et al., 2008), down-the-drain chemicals discharged directly into freshwaters (Franco et al., 2017) and 

soil-specific fate assessments (Bach et al., 2017).  

However, when considering the impacts of climate change on the effects of agrochemicals on 

freshwater ecosystems, previous studies either consist of theoretical frameworks without methods to 

quantify exposure (Biswas et al., 2018; Bloomfield et al., 2006) or highly specific case-study locations 

(e.g. the fates of persistent-organic pollutants into the Venico Lagoon (Valle et al., 2007) or agricultural 

runoff into San Joaquin Valley, California (Ficklin et al., 2010)).  Climate change will have a multitude 

of effects on chemical fate pathways, with further consideration of for example chemical transport in 

floods or chemical dynamics for intermittent waters (Ademollo et al., 2011; Boxall et al., 2009). 

Consequently a framework that quantifies the impacts of climate change on chemical fate and 

transport that is applicable across multiple locations and chemicals while accounting for 

underdeveloped pathways, requires development. 

1.2.2. Organisms under agrochemical exposure 

Concurrently with the Green Revolution, harmful effects of agrochemicals to organisms were being 

observed and acknowledgement of these issues entered public discourse (Carson, 1962; Carvalho, 

2017). Application of agrochemicals resulted in environmental exposure as the chemical was 

transported into non-target ecosystems and affected non-target organisms, with effects on 

freshwaters being particularly noted (Cairns et al., 1972; Pilli et al., 1988). Freshwater organisms may 

be exposed to agrochemicals through absorption, ingestion or filtering of contaminated water, 

sediment or food (Schwarzenbach et al., 2006; Walters et al., 2016). Upon exposure, organisms will 

begin to exhibit toxic effects dependent on the concentration of the chemical. Generally, these effects 

are categorised by the timeframe of exposure, with acute toxicity occurring over short periods of time 

(i.e., hours or days) being associated  primarily with mortality and behavioural changes. In contrast 
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chronic toxicity occurs over longer periods of time (i.e., weeks or months) either through continual or 

repeat exposure and is noted for also affecting organism growth, reproduction and development 

(Ashauer et al., 2006; EFSA, 2013a).  

In Europe, an environmental risk assessment has been required for pesticides since 1991 and for 

veterinary medicines since 1996 (Brauman et al., 2007; Nienstedt et al., 2012). This section describes 

the approach used to assess risks Regulatory ERAs are typically based on single species toxicity data 

derived from laboratory tests with standardised test species and protocols (Harrass, 1996). Such 

studies are limited by their lack of realistic community dynamics and abiotic conditions, but are 

reliable and repeatable and therefore provide a base with which to extrapolate to natural ecosystems 

within the assumption of being conservative with risk assessment (EFSA, 2013). Standard test species 

(e.g.  Daphnia magna) are selected as they are generally sensitive to chemical toxicants and capable 

of being reared and tested in a laboratory environment (Craig et al., 2012; Wu et al., 2007). Standard 

toxicity tests have defined endpoints; most commonly this is the concentration causing 50% effects 

for acute studies, although other percentiles may be used (as effect concentration x%, ECx, or lethal 

concentration for x%, LCx), and for chronic studies either the concentration at which no effects were 

observed (NOEC) or an ECx (where x is typically 10%) are commonly used (ECHA, 2008; EFSA, 2013a). 

If refinement of the toxicity data is required, additional (higher tier) approaches may be adopted that 

increase the realism of the studies either by altering the study environment (biotic and abiotic) or 

altering the chemical exposure regime from a continuous to a variable exposure regime that reflects 

exposure patterns that occur in the real environment (Boxall et al., 2002; EFSA et al., 2018b). However, 

despite these methodological alterations, there remains considerable uncertainty when extrapolating 

from laboratory or semi-field studies to natural ecosystems. These uncertainties increase when 

accounting for future climate change conditions in the assessment of ecological risk. Where possible, 

a precautionary approach is used in ERAs in conjunction with assessment factors to address 

uncertainties associated with extrapolating from standard toxicity tests to potential effects on natural 

ecosystems (Hickey et al., 2009; Kuemmerer et al., 2019; Metz and Ingold, 2017). Such assessment 

factors are intended to cover all uncertainties, including from study design, repeatability of studies, 

and the variation in the sensitivity and exposure across natural ecosystems. 

1.2.3. Communities under agrochemical stress  

Communities consist of multiple species and the community-level effect of chemical exposure will be 

a function of toxicity to individual organisms and the consequences of interspecific and intraspecific 

interactions (Preston, 2002; Relyea and Hoverman, 2006). The structure and composition of 

communities varies spatio-temporally and this complexity makes fully understanding and predicting 
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the effects of chemical exposure on natural communities difficult. Regulatory ERAs address this 

complexity by considering broad taxonomic groups of organisms (e.g., invertebrates, fish, algae, 

microbes) and identifying acceptable levels of risk for each group. The assumption being that, if risk 

to these major groups is acceptable, then risk for the entire community the risk will also be acceptable 

(EFSA, 2010; Ibrahim et al., 2013). 

The initial tier of ERAs utilises the toxicity endpoint of a single sensitive species in each of the 

taxonomic groups of interest (EFSA, 2013a). For freshwater risk assessment the major taxonomic 

groups and species are: invertebrates (cladoceran e.g., Daphnia magna), vertebrate (fish e.g., 

Oncorhynchus mykiss), and algae (unicellular green algae e.g., Raphidocelis subcapitata). This 

endpoint is used to assess the entire group with assessment factors used to represent the diversity in 

toxicity and uncertainty of different species’ responses to a chemical. The greater the uncertainty, the 

larger the assessment factor. Several approaches can be used to make the data package more robust. 

Uncertainty associated with interspecific variation in sensitivity may be addressed by testing 

additional species. These data can then be used to generate species sensitivity distributions that more 

accurately reflect the range of sensitivities in natural ecosystems (Aldenberg and Jaworska, 2000). 

Uncertainty associated with species interactions and interspecific variation in sensitivity can also be 

addressed using multispecies studies (e.g., microcosms and mesocosms) that include population 

interactions and dynamics across a range of scales and stressors (Birk et al., 2020; Juvigny-Khenafou 

et al., 2021).  Mesocosm studies that aim to replicate natural ecosystems exhibit high ecosystem 

specificity with the reduction of applicability to other community types (Miko et al., 2015).  Mesocosm 

studies are viewed as having the lowest uncertainty when extrapolating to natural ecosystems and 

accordingly have the smallest assessment factors.  

1.3 Implications of climate change on agrochemical risk 

1.3.1 Meteorology 

Increased greenhouse gases in the atmosphere retain heat, but complex interactions within 

meteorological systems affect a plethora of climatic conditions beyond warming alone (Lowe et al., 

2018; Watts et al., 2015). Consequently, climate change has and will continue to alter hydrological and 

atmospheric cycles, ultimately affecting all meteorological conditions, each of which can feedback 

onto other climate conditions (Lucarini et al., 2017). Although complex, improved meteorological 

modelling has shown that the effects of climate change will vary depending on the time of year (e.g. 

by season) and spatially down to a local level (e.g.  down to 2.6 km scale in the UK, Lowe et al., 2018). 

In addition a greater frequency of extreme events is projected (Kennedy-Asser et al., 2021; Min et al., 
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2011). On a global scale, effects from climate change vary; for example temperature changes are more 

pronounced towards the poles, yet spatial variation exists across all scales and down to sub-national 

levels (Clem et al., 2020; Maclean et al., 2017). Therefore, the effects of climate change on chemical 

exposure and effects must be considered within the context of climatically relevant spatial and 

temporal scales. 

For example, the UK climate is warming with the long-term average for 2010-2019 being 0.9oC higher 

than the long-term average for 1961-1990.  The change in long-term, average temperature has been 

greatest for spring (1.1 oC) and smallest for winter (0.7oC) (Kendon et al., 2020). Climate projections 

for the UK (Kennedy-Asser et al., 2021; Lowe et al., 2018) suggest that this trend will continue with a 

greater frequency of warmer weather and hot summers being more common.  The increased warming 

is expected to be greatest in the southern UK.  The UK has also become wetter, with the recent decade 

(2010-2019) being on average 5% wetter than 1961-1990 (Kendon et al., 2019). However, this is 

seasonally dependent, with climate projections suggesting increased rainfall in the winter, but lower 

rainfall in the summer (Watts et al., 2015). There will also be an increase in extreme precipitation 

notably due to convectional rainstorms primarily in spring and summer (Kendon et al., 2014). The 

effects of climate change on precipitation are more pronounced towards the southern and western 

parts of the UK. Overall, the projections trend towards a higher frequency of warmer and wetter 

winters and a greater frequency of hotter and drier summers.  

1.3.2 Agriculture under climate change 

Climate change will have a multitude of effects on agriculture and on the inputs of chemicals to 

agricultural ecosystems.  Warmer temperatures will affect growth rates and phenology of the crops, 

but also of the pest species associated with them (Gomez-Zavaglia et al., 2020; Tirado et al., 2010; 

Ziska and McConnell, 2016), potentially affecting the economic viability of certain crops. Future 

temperature and precipitation changes will mean that crops will be associated with different profiles 

of pests and diseases and therefore different pesticide regimes will be required (Bajwa et al., 2020; 

Teixeira et al., 2018; Zimmermann et al., 2017). These effects of climate change will alter the types of 

the agrochemicals used, when in the year they are applied and the quantity required to treat crop 

infestation (Craufurd and Wheeler, 2009; Gericke et al., 2010; McCauley et al., 2018).  

Higher temperatures also increase fertilizer breakdown, necessitating an increase in fertilizer 

application, including of manure and biosolids, and any associated emerging chemical pollutants with 

them (Di and Cameron, 2004). Decreased precipitation, particularly in summer, will necessitate the 

use of increased irrigation, potentially introducing further chemicals present in water sources (Gondim 
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et al., 2012; Kinney et al., 2006; Ternes et al., 2007; Woznicki et al., 2015). Increases in the use of 

treated wastewater for irrigation, in response to water scarcity issues resulting from climate change, 

will increase the loadings of chemical pollutants to agricultural soils (Carter et al., 2019). These 

changes will alter the timing and quantity of agrochemical applied and must be assessed alongside 

emission scenarios for emerging chemical pollutants, such as with veterinary medicines and 

pharmaceuticals that are not currently considered within ERAs (Brooks et al., 2013; EFSA et al., 2020). 

Consequently, there is a need to adapt existing methodologies to quantify the effects of shifting and 

novel chemical emissions.  

1.3.3 Fate & behaviour under climate change 

The fate and behaviour of chemicals transported into freshwater is highly dependent on the physical 

properties of the landscape, meteorology and the properties of the chemical itself (Lorenz et al., 

2017). The extent to which climate change will affect the quantity of chemicals in freshwater 

ecosystems is dependent on the pathway of introduction and transportation of the chemical from 

agricultural land to freshwaters. For example, transport of sprayed chemicals may be affected by 

changes to wind conditions under climate change. However current regulations restrict spray 

application under windy conditions and therefore future changes to wind patterns under climate 

change may alter the opportunities to apply chemicals rather than change the transport of chemicals 

that are applied (Arvidsson et al., 2011; Silva Maciel et al., 2018).  

In contrast, chemical movement through soil and water is highly dependent on meteorology with 

precipitation being a major trigger for chemical movement and temperature affecting degradation 

processes (Biswas et al., 2018; Gagnon et al., 2016). For such modes of transportation, assessing how 

climate change will affect chemical movement is particularly important for assessing ecological risk. 

For example, wetter winters may lead to more frequent runoff and therefore increased exposure 

events while warmer temperatures could increase chemical degradation (Kallenborn et al., 2012; Valle 

et al., 2007). However, research into these pathways must account for spatial and seasonal effects of 

climate change and chemical application if a realistic understanding of risk is to be calculated. In 

particular there is need to develop a framework for quantifying by how much climate change may 

affect risk that can be applied both to current agrochemicals as well as being adaptable to new 

chemical discoveries and emerging chemical pollutants of potential risk to the environment. For 

example, chemical fate models used extensively in regulatory frameworks can be used for a range of 

chemicals and climate conditions by altering the environmentally relevant chemical properties and 

meteorological inputs. 
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1.3.4 Freshwaters under climate change 

Climate change may alter the physical properties of freshwater ecosystems in multiple ways.  River 

water volume and flow will alter in line with precipitation, with the location specific increase or 

decrease depending on the season (Henriques et al., 2015; Planton, 2002). Furthermore, an increase 

in extreme weather events will results in more periods of both flooding and drought with associated 

short-term changes to volume and flow (Pall et al., 2011).  For example, UK climate projections (Lowe 

et al., 2018; Met Office, 2019) have been used to provide higher resolution projections on how climate 

change may impact river flows and flood peaks (Kay et al., 2021). Whereas, in general, there is a 

predicted increase in 20-year return flood peaks with climate change, the changes are generally 

smaller in the south-east than in the north-west. With respect to flow, low- and mid-range flows are 

predicted to decrease, but high flows are generally predicted to increase, particularly during winter 

and in upland areas (Burt and Ferranti, 2012; Hannaford and Buys, 2012). Flow changes vary between 

catchments partly due to spatial variation in climate change but also because of variation in catchment 

characteristics that influence the response to climatic inputs, such as soil and riverbed substrate and 

river width depth and flow. 

As climate change increases ambient air temperatures, the temperature of waterbodies also 

increases, although the exact relationship is dependent on both the physical characteristics of the river 

and of land and water management strategies. This trend is historical, with records indicating an 

increase in UK river water temperatures of 0.29°C per decade (Orr et al., 2010). As for future 

predictions, (Jackson et al., 2018), predicted that a 1 °C increase in summer maximum air temperature 

would result in between a 0.4 and 0.7 °C rise in maximum water temperature of UK rivers depending 

on location, with the most sensitive rivers to changing air temperatures being those in the north and 

north-west.  

Multiple chemical properties, particularly degradation in the water column and sediment, affect 

chemical fate and exposure and will alter under increasing river temperatures (Cooney et al., 1985; 

Daam and Van den Brink, 2010; Warren et al., 2003). Consequently Szalinska et al. (2021) have 

incorporated these changes into in freshwater fate models alongside climate projections for a case 

study watershed. However, rising temperatures will have effects on both how susceptible organisms 

are to pollutants and their niche compatibility, both affected by their ability to withstand climatic 

changes (Bruder et al., 2017; Kidd et al., 2014). How those changes influence other organisms and 

therefore community interactions will then alter the sensitivity of the ecosystem over multiple scales. 

Full consideration of these interacting factors and how these may be quantified for integration within 
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an ERA framework is required to accurately assess whether ecosystems are at risk and if chemical use 

should be altered (Brooks et al., 2013; EFSA et al., 2020). The existing research on these is discussed 

below. 

1.3.5 Community under climate change & agrochemical sensitivity 

Macroinvertebrate communities 

Studies of the potential impact of drought on macroinvertebrate communities have either compared 

permanent and intermittent rivers (Stubbington et al 2009; Hill et al 2019; Majdi et al 2020) or used 

mesocosms (Aspin et al 2019).  The riverbed and hyporheic zone provide a refuge for some river 

invertebrates and many species adapted to intermittent rivers have drought resistant life history 

stages. Habitat fragmentation, loss of connectivity and very low water levels may have major adverse 

effects on community structure and function.  For example, reducing water depth to 1 cm decreased 

leaf decomposition by macroinvertebrate shredders by approximately 75% (Hill et al 2019). 

Long-term monitoring datasets have been used to explore the impact of climate change on river 

macroinvertebrate communities.  A 2.0-2.4 oC increase in water temperature observed over 25 years 

in Welsh upland rivers was associated with an average 21% decrease in macroinvertebrate abundance 

(Durance & Ormerod, 2007). However, relationships between increased water temperature and 

macroinvertebrate community change are not observed in all rivers studied, due to local confounding 

factors, including improving water quality, masking any temperature effect (Durance & Ormerod 2007, 

2009; Floury et al 2013; Vaughan & Ormerod, 2014). Consequently, assessing the effects of climate 

change must be considered within the ongoing changes to adjacent agricultural practice and chemical 

regulation and use, and how changes in both climate change and chemical exposure contribute to 

shifts in macroinvertebrate communities through multiple, differing and potentially opposite 

mechanisms.   

Freshwaters are subjected to multiple stressors, both natural and anthropogenic, and many changes 

are likely to have occurred within a catchment over several decades. There are relatively few field 

manipulations of water temperature and laboratory studies tend to focus on the responses of species 

rather than changes in communities (Leberfinger et al 2010; Briffa et al 2016). Field manipulations 

include studies that have adjusted the thermal regime of rivers either by heating river water (Hogg et 

al 1995) or by exploiting the warming of rivers caused by the discharge of heated water from power 

stations (Majdi et al 2020).  These manipulation studies confirm that small changes in temperature 

(1.5-3.0 oC) can have significant impacts on the abundance and composition of river invertebrate 

communities. Indeed, within the UK long-term invertebrate monitoring has observed community 
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shifts, and temperature is known to be a factor influencing communities within the River Invertebrate 

Classification Tool (RICT) which projects the expected macroinvertebrate river communities based 

upon the characteristics of the river (Environment Agency et al., 2021; Wright, 1994). While RICT is 

primarily used for ecological water quality assessment, it also has been proposed for other uses 

including macroinvertebrate community prediction (Clarke et al., 2003; Wright et al., 1998), and could 

be integrated with other data, for example climate change temperature conditions.  

Community level chemical sensitivity 

Understanding the community level effects of climate change and agrochemical exposure is 

complicated by the extensive interactions between species within communities and the spatial and 

temporal variation in species composition (Morecroft et al., 2009; Woodward et al., 2010). It has been 

described previously (Section 1.3.4) that community composition and structure will alter under 

climate change conditions, and has already done so within the UK (Burgmer et al., 2007; Chiu et al., 

2017; Durance and Ormerod, 2007).  Each member of the community is a contributing factor to the 

sensitivity of the ecosystem, either through its response to a chemical stressor or any alteration to 

community interactions (Belanger et al., 2017).  Because species vary in their sensitivity to chemicals 

(Section 1.2.3) any changes to community composition due to climate change will also affect how the 

entire ecosystem responds to chemical stress, although this may depend on how sensitive the most 

sensitive members are and the connectivity of that species within the community (Bruder et al., 2017; 

Craig et al., 2012). The relative sensitivity of species is known to be chemical specific (Cairns, 1986; 

Hoekstra et al., 1994) and with different species compositions it would be expected that the 

sensitivities of a community would be different for depending on chemical identity. Furthermore, it 

has been established that climate change will shift the community composition (Burgmer et al., 2007; 

Vaughan and Ormerod, 2012; Zettler et al., 2013). Given variation in species sensitivity depends on 

chemical identity, differing combinations of species within varying natural community compositions 

would be expected to exhibit variable chemical sensitivities. As climate change will shift 

macroinvertebrate community compositions and species identity affects sensitivity, climate change 

may also be expected to affect the sensitivity of macroinvertebrate assemblages by shifting 

community composition. 

As described in Section 1.2.3, regulatory ERAs are based on standardised laboratory toxicity tests and 

occasionally mesocosm studies.  ERAs generate a single sensitivity value quantified as a regulatory 

acceptable concentration (RAC) for all ecosystems and do not account for temporal or spatial variation 

in community composition and hence sensitivity (Brock et al., 2006; EFSA, 2013). Thus, the RAC is 

unrepresentative of the diversity of species present in natural communities and does not capture the 
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variation in chemical sensitivities between species. RACs in current ERAs are derived from a set group 

of unchanging laboratory test species or mesocosms performed in ambient temperatures. 

Consequently, how climate change affects community composition and how this will affect risk cannot 

be assessed using the data available as part of existing ERAs alone.   

The major challenge in accounting for changes in species composition when assessing the chemical 

sensitivity of communities is the lack of toxicity data for most species in the communities of interest.  

If the sensitivity of untested species could be predicted then existing techniques for assessing the 

sensitivity of species assemblages, such as species sensitivity distributions, can be applied to generate 

a sensitivity value of a specific species assemblage and chemical combination (Aldenberg and 

Jaworska, 2000; Newman et al., 2000). One solution to this is to employ species sensitivity 

extrapolation methods, which can be used to predict the sensitivity of untested species to specific 

chemicals. By combining with existing toxicity data, such methods can extrapolate across to untested 

species; however a range of methods exist including those based on traits, relatedness and genomics, 

each with their own data demand (van den Berg et al., 2021).  

Genomics based methods can compare the genetic basis of biochemical pathways and enzymes of 

species using the molecular target site of chemical toxicity through adverse outcome pathways and 

therefore represent the most accurate method of extrapolation (Ankley et al., 2010; LaLone et al., 

2013). However, genomics-based methods require the adverse outcome pathway to be fully 

understood and the sequenced genome of each species, and thus have a large data requirement 

meaning these methods are more suitable for the smaller number of species higher up food chains 

(e.g.  fish, mammals, birds), rather than diverse groupings such as macroinvertebrates (Farmahin et 

al., 2012; Fedorenkova et al., 2010). Trait based methods have a lower data requirement that only 

requires major traits of the untested species be known (e.g.  body size, diet, location within 

freshwater) and has been applied to pre-defined communities (Van den Berg et al., 2019). While the 

coverage of trait databases is building, they have incomplete coverage of macroinvertebrate species. 

Most notably they are dominated by Copeopod and Cladoceran taxa (87.0%, or 341 of 392 

macroinvertebrate species in Hébert et al., 2016; Usseglio-Polatera et al., 2000) leaving many 

taxonomic groups, especially outside Crustacea, poorly represented. In contrast, UK freshwater 

invertebrate species are extensively sampled and identified with complete taxonomic structure 

(Wright et al., 1996). This leads to relatedness-based methods being the most broadly applicable 

currently to macroinvertebrate communities of the UK (noting the advantages that currently 

undeveloped methods combining traits and relatedness may offer), and could be adapted for use with 

current, historic and projected macroinvertebrate assemblages. 



22 

 

1.3.6 Multi-stressor effects on organisms 

Warming is one of the main predicted impacts of climate change and both increased temperature and 

chemical exposure may result in adverse effects on organisms (Noyes and Lema, 2015).  Higher 

temperatures reduce the oxygen content of water and hence increase ventilation rates of aquatic 

organisms, which in turn may increase the uptake and movement of the chemical into the organism, 

potentially worsening toxic effects (Op de Beeck et al., 2017; Pereira et al., 2019). However, increased 

temperatures also increase the degradation of chemicals and the metabolic rates of poikilotherms, 

potentially increasing the depuration of absorbed toxicants thereby reducing risk (de Beeck et al., 

2017; Norhave et al., 2014; Pereira et al., 2019). The effect of changing temperature on organism 

chemical sensitivity represents the most extensively studied direct effect of climate change on 

organism sensitivity. However, multi-stressor effects at the organism level are complex with the 

effects of temperature on an organism and its internal metabolic processes varying between species 

and chemicals (Nieto et al., 2016; Rathore and Khangarot, 2002; Willming et al., 2013). However, 

organism status is an important factor, and multigenerational effects of evolution and long-term 

acclimation and adaptation of organisms exposed to multiple stressors are observed (Contador et al., 

2014; Macaulay et al., 2021; Tran et al., 2019). Consequently, understanding how temperature and 

chemical sensitivity changes for the diversity of species present in natural ecosystems is a challenge 

and requires investigation from the population scale to molecular pathways (Knillmann et al., 2013).  

Most multi-stressor studies have investigated sudden short-term temperature changes (de Beeck et 

al., 2017; Malaj et al., 2016; Op de Beeck et al., 2018).  Such findings from temperature shock 

experiments may provide insight into the combined effect of chemical exposure and heat waves, but 

it is less certain how the findings from these studies relate to the combined effects of chemical 

exposure and warming events that occur over the lifetime of multiple generations of a species Long-

term effects of climate change, such as shifts in mean annual river temperature, occur gradually over 

decades (Watts et al., 2015). This timeframe will span multiple generations of macroinvertebrates 

providing an opportunity for species to acclimate or adapt to the changing conditions. While a few 

studies have investigated the effect of short-term acclimation and toxic effects over multiple 

generations (Bae et al., 2016; Silva et al., 2020), there is a major knowledge gap over the effect of 

gradual temperature acclimation of multiple generations on chemical sensitivity. 
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1. Aim and objectives 

The aim of this thesis is to explore the implications of climate change for the exposure and sensitivity 

of freshwater ecosystems to agrochemicals, focusing on the pathways shown in Figure 1.2. This aim is 

addressed by considering different aspects of the environmental risk assessment (ERA) under climate 

change conditions before contextualising with chemical case studies in chapter 5.  
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Chapter 2 addresses how climate change interacts with chemical flux from agricultural land to 

freshwater and utilises UKCP18 data from the UK Met Office and the PRZM fate modelling 

program to quantify flux into freshwaters. The chapter considers the application of 24 pesticides 

and pharmaceuticals to six locations across each of the climate groups within England & Wales 

and its main objectives are: 

● Establish how temperature and precipitation (meteorology expected to alter under 

climate change) will affect chemical flux via soil for hypothetical chemicals with 

varying persistence in soil 

● To what extent are the relationships established in the previous objective relevant to 

actual climate conditions, chemical properties and sites under baseline and future 

climate change 

● Assess how the season of application for a chemical affects chemical flux under 

climate change conditions given the different degradation rates of chemicals 

● Quantify the effect of climate change on chemical flux via soil for agrochemicals 

applied under realistic timings 

Chapter 3 addresses assemblage sensitivity utilising the RICT model and reference data set with 

the hSSD model to predict toxicity values for species without toxicity data for both baseline and 

future communities. The associated objectives are: 

● Run the hSSD model for the collated toxicity datasets and evaluate the ability of 

the hSSD model to accurately predict sensitivity of taxa 

● Assess to what extent the sensitivity between assemblages varies and the 

variation in sensitivity patterned across chemicals with different toxic modes of 

action 

● Assess whether the sensitivity of an assemblage relates to the physical landscape 

characteristics of where that freshwater body where the assemblage is located 

● To quantify how the shifting of community composition under climate change 

alters the assemblage sensitivity 

Chapter 4 considers gradual changes to organism sensitivity under climate change by a case study 

of how the growth and reproduction of Daphnia gradually acclimatised to different temperatures 

is affected by copper exposure. The laboratory experiment aims to reflect the gradual changes 
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expected from climate change rather than the short period of acclimatisation and temperature 

shock common to most toxicity studies. The associated objectives are: 

● Determine to what extent does temperature acclimation affect organism 

reproductive parameters and reproductive strategy of organisms, and are the same 

patterns observed following temperature shock 

● Calculate endpoints for reproductive parameters for organisms experiencing rises in 

temperature, and does acclimation mitigate the multi-stressor effect 

● Evaluate whether the magnitude of thermal shock affects the relationship of the 

multiple-stressor effects on reproduction 

Chapter 5 sets to draw a broad conclusion over the effect of climate change on agrochemical risk 

by considering case study ERAs accounting for the implications from the previous chapters as well 

as integrating the previous finding into a general framework of how climate change could be 

considered within an ERA. It does so by considering three case study chemicals: glyphosate, a 

chemical investigated in Chapters 2 and 3; copper which was investigated in Chapter 3 and 4, and 

a theoretical new chemical to show how the framework can be adapted beyond the agrochemicals 

used within this thesis. 
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 Chapter 2. Impacts of weather and chemical persistence on freshwater 
flux through soil under climate change conditions 
2.1.      Introduction 

2.1.1.      Meteorology, climate change and chemical fate 

When considering the fate and behaviour of chemicals applied to agricultural land, localised weather 

represents a major factor affecting movement, and in particular, precipitation represents the largest 

determinant of transport as it triggers and directly moves chemicals through the soil matrix (Hutson, 1993; 

Lewan et al., 2009; Nolan et al., 2008). When considering the exposure of surface waters, the major routes 

of transport are via spray drift and through soil, with soil based transport tending to be the predominant 

route (Bach et al., 2016; Zhang et al., 2018). Spray drift is highly wind dependent, and relatively unaffected 

by other meteorological conditions, and as such agrochemical application is frequently limited if local wind 

speeds are too high (Arvidsson et al., 2011; Gil et al., 2015; Silva Maciel et al., 2018).  

In contrast, transport of chemicals through the soil matrix into freshwaters is driven by water and is highly 

affected by multiple meteorological conditions. Temperature, humidity and wind speed affect 

evapotranspiration and therefore soil moisture content, while precipitation introduces water (and any 

agrochemical solute) to the soil saturating it. Precipitation is highly important to chemical fate as it causes 

water flow in saturated soil triggering runoff of the chemical dissolved in the solvent or in erosion of soil 

particles that the chemical has bound to (Bach et al., 2016; Winton and Weber, 1996). In addition to the 

precipitation events, other meteorological factors impacting chemical fate are ambient air temperature, 

which affects chemical degradation (Matthies and Beulke, 2017; Valle et al., 2007), and the water content 

of the soil, which influences the amount of precipitation required to cause water flow (Lewan et al., 2009). 

While an increase in temperature retention by greenhouse gasses is the ultimate cause of climate change, 

complex alterations in atmospheric movements and the water cycle will result in climate change affecting 

multiple meteorological factors beyond temperature, including precipitation and wind movements (Lowe 

et al., 2018; Stocker, 2014). Changes in temperature, precipitation and wind movements, in turn affect 

humidity, evaporation rates and solar flux via feedback networks (Bony et al., 2006; Cess, 1976). Many of 

the meteorological factors that will alter under climate change are also important for determining chemical 

fate (Table 2.1). From this, climate change will potentially alter flux into freshwater, posing a potential for 

both an increase and decrease in edge of field flux. Consequently, there is a need to evaluate the combined 

impact of all these factors which could affect chemical fate to fully assess the effect of climate change on 

chemical exposure.  
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Table 2. 1 Summary of chemical fate affecting factors of the agricultural land and its associated meteorology. How such factors may be affected by climate change conditions is described and 
the likely effect of how climate change may affect the quantity of chemical flux reaching freshwater ecosystems predicted. Note that effects are simply increases (+) or decreases (-) 
and do not indicate the expected magnitude of change. 

Factor Fate process 
affected 

Effect of 
climate 
change 

Climate change process Effect on 
chemical 
exposure 

References 

Climate – 
temperature 

Degradation + Higher temperatures increase the kinetic energy of 
chemical reactions, including degradation 
reducing the quantity of chemical in the soil 
system to be transported 

- Biswas et al., 2018; 
Cáceres et al., 2008; 
Cavoski et al., 2008; Delnat 
et al., 2021; Ficklin et al., 
2010; Kookana et al., 
2010; Matthies and 
Beulke, 2017; Noyes et al., 
2009; Valle et al., 2007 

Climate – winter 
precipitation 

Runoff, erosion + Increased winter precipitation directly increases 
the amount of water in the soil compartment 
increasing soil saturation and the volume of 
precipitation required to trigger runoff and erosion 
events 

+ Bloomfield et al., 2006; 
Dunn et al., 2012; Ficklin et 
al., 2010; Oliver et al., 
2012 

Climate & extreme 
weather – summer 
meteorology & 
drought  

Runoff, erosion + Decreased summer precipitation, increased 
temperatures and increased solar flux from 
reduced cloud cover, reducing the amount of 
water in the soil compartment by direct input and 
evaporation meaning greater precipitation is 
required for saturation and triggering of flow 

- García-Prieto et al., 2012; 
Hrdinka et al., 2012; 
Miralles et al., 2012; 
Mosley, 2015; Whitehead 
et al., 2009 

Extreme weather – 
precipitation 

Runoff, erosion + More frequent and larger water surges through 
the soil compartment, particularly during summer 
from convection, trigger large runoff and erosion 
events 

+ Enanga et al., 2016; 
Hrdinka et al., 2012; Hudak 
and Banks, 2006; Mayes et 
al., 2021; Whitehead et al., 
2009 
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Soil – fissurisation  Runoff, erosion + Warmer temperatures increase occurrence and 
length of soil fissures permitting more flowthrough 

+ Correa et al., 2019 

Crop – drilling  Interception Later Warmer temperatures permit the drilling of crops 
later resulting in less crop interception 

+ Craufurd and Wheeler, 
2009; Pawel Marcinkowski 
and Piniewski, 2018; 
Olesen et al., 2012; 
Zimmermann et al., 2017 

Crop – maturation  Interception Earlier Higher temperatures mature crops faster, covering 
more soil and increasing interception 

- 

Crop – harvest  Interception Earlier Earlier harvesting results in longer period of 
exposed soil 

+ 

Irrigation Application rate, 
runoff, erosion 

+ Reduced summer precipitation and increased 
drought rates may necessitate use of irrigation. 
This may also introduce chemicals from treated 
water to freshwater 

+ Gondim et al., 2012; 
Woznicki et al., 2015 
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In addition to the varied effects of climate change on flux into freshwaters, both existing climates and 

the effects of climate change exhibit spatial and temporal variation on global (Ruosteenoja et al., 2003) 

and local scales (Kendon et al., 2020; Lowe et al., 2018). This results in climate change altering both 

the general climate of the area as well as an increase in the frequency of extreme weather events, 

including extreme rainfall and storm events (Hirabayashi et al., 2008; Min et al., 2011; Ohba and 

Sugimoto, 2019) and of periods of drought and heatwaves (Hirabayashi et al., 2008; Stott, 2016). 

Consequently, any consideration of the risk posed by agrochemicals and how this will alter under 

climate change conditions must consider the local effects of meteorology. 

While climate change can affect the transport of agrochemicals through soil directly by changing 

meteorological parameters (Berg et al., 2017; van der Putten et al., 2016), the behaviour of 

agrochemicals themselves and how they interact with the soil matrix under climate change conditions 

must also be considered (Steffens et al., 2015; Szalinska et al., 2021; Valle et al., 2007).  This is because 

the combination of chemical properties, climate and soil determine fate. Climate change effects 

depend on specific soil and agrochemical properties resulting in variation in fate within and between 

agrochemicals in response to climate change (Kookana et al., 2010; Lammoglia et al., 2018). A 

summary of the expected results of climate change on soil and chemical properties is presented in 

Table 2.2. Given that effects of chemical properties on flux are not independent of chemical type and 

interact with meteorology, there may also be an interaction between effects of climate change and 

chemical properties. Consequently, considering how climate change will affect chemical flux with 

chemical properties will require isolating specific properties of interest that are most impactful. 

Degradation of the chemical, by microbial activity, hydrolysis, photolysis or spontaneous breakdown 

within the soil matrix represents the largest ultimate fate of agrochemicals (Jackson, 2004; Xuan et 

al., 2008). Thus, the DT50 (reported as degradation rate in days for the chemical to reach half of its 

initial mass in soil at 20°C in standard laboratory studies) of a chemical is a major factor for influencing 

flux. However, degradation reaction rate is temperature dependent and therefore likely to increase 

under climate change (Cáceres et al., 2008). As both the chemical’s DT50 value and the environmental 

temperature represent how persistent the chemical will be in the soil matrix, the increased 

temperatures from climate change may increase degradation rate, reducing the quantity of chemical 

present leading to decreased chemical flux (Cavoski et al., 2008; Matthies and Beulke, 2017).  

In contrast, precipitation-induced chemical transport is affected by multiple chemical properties. 

Highly soluble, low molecular weight chemicals are more easily moved by water flow. In contrast, 
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chemicals that bind strongly to organic matter (high kOC) will therefore bind more strongly to organic 

matter in soil reducing movement by runoff. Any erosion and movement of the soil itself can transport 

large quantities of such high kOC chemicals. Although several environmental, soil and meteorological 

factors affect chemical fate, chemical flux into freshwaters is driven by two factors: the persistence of 

the chemical in the soil matrix (a function of chemical degradation rate and temperature) and the 

occurrence of extreme precipitation events (Nolan et al., 2008; Steffens et al., 2015; Webster et al., 

2004).  

Table 2.2 Comparison of major environmental flux relevant chemical and soil properties, and how they may alter chemical 
flux under the meteorological changes to temperature and precipitation 

Property Expected effect on exposure References 

Increased temperature Increased precipitation 

C
h

em
ic

al
 p

ro
p

er
ti

es
 

DT50 Decrease, due to faster 
degradation 

Predominantly 
unaffected 

Cáceres et al., 2008; 
Cavoski et al., 2008; 
Kookana et al., 2010; 
Ma et al., 2004; 
Matthies and Beulke, 
2017; Noyes et al., 
2009; Valle et al., 
2007; Wolt et al., 
2002 

kOC Increase, due to decreased 
binding to soil enabling 
increased mobility 

Increase, more flushing of 
chemicals bound to 
carbon 

Farenhorst et al., 
2009; Oliver et al., 
2012; Paasivirta et al., 
1999; Wolt et al., 
2002 

Molecular 
weight 

Predominantly unaffected Increase, more flushing of 
low-mobility heavy 
chemicals 

Mangas et al., 1998 

Solubility Increase, greater 
concentration can be dissolved 

Increase, more fluid to 
dissolve into 

Paasivirta et al., 1999; 
Wolt et al., 2002 

So
il 

p
ro

p
er

ti
es

 Bulk 
density 

Increase in due to drying and 
compaction, reduces water 
holding capacity of the soil 

Increase, saturated 
ground triggers runoff 
more rapidly 

Correa et al., 2019; 
Ma et al., 2004; Wolt 
et al., 2002 

Organic 
carbon 
percent 

Increase, due to decreased 
chemical binding soil enabling 
increased mobility 

Predominantly 
unaffected 

Cáceres et al., 2008; 
Conant et al., 2011; 
Farenhorst et al., 
2009 

 

2.1.2. Agrochemical fate and freshwaters in the UK 

Agrochemicals are a vital component of food production and farming systems within the UK, but the 

transport of such agrochemicals beyond the field can have adverse effects on biodiversity, with 

freshwaters adjacent to agricultural land representing an ecosystem often exposed and shaped by 
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agrochemical pollution (Lorenz et al., 2017; Malaj et al., 2014; Nordborg et al., 2017). When 

considering chemical transport through soil, adjacent freshwaters represent high risk ecosystems 

subject to pollutant exposure with chemical flux causing toxic effects to freshwater species (Berger et 

al., 2017; Ceschin et al., 2021; Reid et al., 2019). 

Agrochemicals fall into a series of broad groups relating to their use. For example, pesticides represent 

a broad collection of chemicals including both organic compounds and metals and are grouped by 

their target organism e.g. fungicides, insecticides, herbicides, while pharmaceuticals see input in 

manure, irrigation water and biosolid fertiliser following their use in livestock and humans (Fijalkowski 

et al., 2017; Pollard and Morra, 2018; Wu et al., 2010). Given these differing uses, the time of the year 

when application to agricultural land occurs will vary depending on the chemical. The timing of 

chemical application is important as the UK exhibits seasonal climates with precipitation and 

particularly temperature varying throughout the year. Consequently, the timing of applications will 

match that of the crop and pest phenology (Bajwa et al., 2020; Rhodes and McCarl, 2020a).  

For example, in the UK, rising temperatures and changes to precipitation and humidity will increase 

crop susceptibility and spread of fungal infections in spring and summer (Lasram et al., 2010; West et 

al., 2012a), and favour the growth of weed plants necessitating earlier herbicide application. For 

insects, the population and range of agricultural insect pests has increased with pest outbreaks 

occurring earlier in the year (Kattwinkel et al., 2011; Ladányi and Horváth, 2010).  However, climate 

change has also increased the numbers of specific insect natural predators and parasitoids (Thomson 

et al., 2010). These changes have been associated with both increases and decreases to insecticide 

use depending on the type and location of crop grown. Equally, the shifting in crop phenology will 

mean application of pre-drilling insecticides will move to match later crop drilling while herbicide 

desiccants are being applied earlier matching the shift to earlier summer harvesting times (Craufurd 

and Wheeler, 2009; Gericke et al., 2010; Olesen et al., 2012).  

More recent understanding of emerging chemical pollutants and chemical fate pathways have also 

highlighted the risk posed by pharmaceuticals entering agricultural systems via livestock manure or 

biosolids as fertiliser or water used for irrigation (Michael et al., 2013; Wu et al., 2010). Fertilizers are 

applied in autumn and spring prior to crop emergence and during major growth phases (Liu et al., 

2015; Sarmah et al., 2006), while irrigation will occur during periods of drought, the frequency of which 

is set to increase under climate change (Gondim et al., 2012; Woznicki et al., 2015). While climate 

change will have impacts on the timings and application of agrochemicals, there is also a need to 

understand how the effects of climate change will affect the transport of such chemicals into 
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freshwaters if full consideration of the change to risk climate change poses to ecosystems is accounted 

for and mitigated. 

In addition to climate varying throughout the year, there are also spatial differences in the climate 

across the UK. Broadly the UK climate is associated with a North-South temperature gradient and an 

East-West precipitation gradient with higher temperatures occurring further south and greater 

precipitation in the West (Kendon et al., 2020). Furthermore, there are coastal-inland differences, with 

coastal areas having their temperatures buffered by the sea resulting in a decreased range of 

temperatures compared to inland areas. Another spatially varying aspect that can affect chemical fate 

is the soil and landscape properties: for example, the extent and slope of a field can increase water 

and soil movement (Morselli et al., 2018). Across the UK there are a wide range of soil types each 

exhibiting different structures and compositions across their component horizons, with a 

comprehensive dataset available for the UK as LandIS: The Soils Guide (Cranfield University, 2021). 

Loamy soils tend to have higher organic carbon content leading to different flux patterns particularly 

for chemicals with high kOC (Farenhorst et al., 2009). Broadly both sandy and loamy soils tend to permit 

water flow while clay soils restrict flow. In addition, clay based soils in the UK are commonly drained 

leading to an additional route of exposure for freshwater ecosystems (Bach et al., 2017; EFSA, 2013a).  

How some soil properties that may alter flux under climate change are shown in Table 2.2. Given the 

large number of landscape, cropping and soil parameters, and how they interact with multiple 

chemical properties, on top of assessing spatial effects of climate and climate change, the impacts of 

spatial variation on flux are varied and complex. Thus there is need to isolate factors for consideration 

by keeping others constant with the ultimate goal of developing scenarios for encompassing the range 

of risks that spatial variation covers (Blenkinsop et al., 2008; Vernier et al., 2017). 

The risk posed by pesticides to freshwater ecosystems is highly regulated within the UK and is assessed 

within an environmental risk assessment framework (EFSA, 2013a). For pesticides, existing regulation 

focuses on predicting probabilistic chemical flux based upon models integrating meteorological 

conditions, chemical properties, and soil and landscape characteristics that have been standardised 

into generic scenarios. The climatic condition from multiple years is used for several example locations 

that capture reasonable representative scenarios. Given standardised climatic scenarios are used 

when calculating fate ERAs and the effect that changing meteorology has on flux, the effect of climate 

change could drastically alter the quantity of chemical flux and ultimately freshwater chemical 

exposure. Currently, consideration of how climate change can affect flux has predominantly focused 

on case study areas that may not be representative of the risk posed under climate change conditions, 
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although there is increasing acknowledgement of the issue beyond academic and research sectors 

(Biswas et al., 2018; EFSA et al., 2020; Ma et al., 2016; Valle et al., 2007). 

In contrast to pesticides, other chemical groups such as pharmaceuticals, do not have the same 

regulation and environmental risk assessment performed. Furthermore, where there is consideration 

of agriculturally relevant pharmaceuticals, this generally focuses on the adjacent topic of human 

health and anti-microbial resistance rather than ecotoxicity (Boxall et al., 2003; Wolstenholme et al., 

2004). Consequently, the ecotoxicological risk posed by pharmaceuticals is largely unconsidered and 

associated with uncertainty, although increasing research on the effects of climate change and 

pharmaceuticals is being performed (Balbus et al., 2012; Boxall et al., 2009). Therefore, there is a need 

to develop a methodology that considers the risk for pharmaceuticals and other emerging chemical 

pollutants in addition to pesticide risk. 

2.1.3. Aim and objectives 

The aim of this chapter is to consider the effect of climate change on agrochemical fate to UK 

freshwaters. While multiple meteorological conditions affect chemical fate, two are notable for being 

the largest contributors to change in fate: precipitation as the trigger of chemical movement and 

temperature as a major factor of degradation rate (Biswas et al., 2018; Elrashidi et al., 2013). This is 

because both have extensive effects on chemical flux and are expected to change extensively and 

spatio-temporally under climate change conditions (Bloomfield et al., 2006; Hawkins and Sutton, 

2011). For example, across England, year-round average temperatures are expected to rise by 3.51 °C 

with temperature extremes increasing by 4.73 °C representing a 24% and 45% increase respectively 

(Met Office, 2019). Equally for precipitation, maximum precipitation is set to increase by 6.27mm (22% 

increase), while overall mean precipitation and the number of precipitation days exhibit much less 

change (1.6% and 1.0% decrease respectively). However, this does not reflect the spatial and seasonal 

differences under climate change which also affect flux. Ultimately, any consideration of the effect of 

climate change on chemical flux must be both relevant to and suitable for existing pesticide ERAs while 

being adaptable and generic enough to consider the risk for pharmaceuticals and other emerging 

chemical pollutants. 

Assessing the effect of climate change on chemical fate can be split into two broad topics of interest: 

firstly, how the seasonal effects of predicted climate change, particularly precipitation, will alter 

chemical fate and secondly, what is the relationship between the spatial differences expected under 

climate change and varying properties of agrochemicals. Therefore, the following objectives and 

specific research questions have been explored: 
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1. Establish the relationship between how meteorological parameters that will alter under 

climate change (temperature and precipitation) will affect flux for a series of hypothetical 

chemicals with varying persistence in soil 

● Does the relationship between precipitation and flux deviate from a 1:1 relationship? 

● Does the degradation of chemical over time mean that increasing the delay to large 

precipitation events (and therefore time for degradation to occur) reduce flux? 

● Is the temperature-degradation rate relationship non-linear and variable among 

chemicals? 

 

2. Establish if the predicted relationships investigated above hold for actual and climatically 

divergent agricultural sites under both baseline and future climate conditions 

 

● Does the amount of precipitation that triggers major chemical flux events increase as 

DT50 increases, and to what extent is there climatic spatial variation? 

● Does the delay to the precipitation that triggers major chemical flux events increase 

as DT50 increases, and to what extent is there climatic spatial variation? 

 

● Given the results of the two above, does the amount of chemical flux from major 

events increase as DT50 increases, and to what extent is there climatic spatial 

variation? 

 

● Does the quantity of chemical flux in extreme chemical flux events increase under 

climate change, and does this vary spatially? 

● Does the degradation rate-flux relationship change under climate change conditions 

and to what extent is there climatic spatial variation? 

 

3. Consider to what extent does the season of application affect the change in chemical flux 

under climate change conditions, and how does this vary spatially, and by the persistence of 

the chemical in soil. 

 

● Are there variable differences between the change in chemical flux over degradation 

rate between sites and additionally from differing seasons of application within a site? 
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● Given the effect of higher DT50 values on the delay and size of precipitation event, 

does the variation of chemical flux between seasons decrease with increasing DT50? 

● Does the season of application, and the meteorological events linked to season, affect 

the relationship between change in chemical flux and the delay to or precipitation 

amount in the event that triggered it? How does this relationship vary depending on 

chemical degradation rate? 

 

4. Quantify the effect of climate change on flux via soil with actual agrochemicals with realistic 

application timings, and is the change in flux patterned by chemical persistence across 

different sites 

Approach to answer research questions 

A core requirement to address the research questions is  a method to quantify chemical fate from 

agricultural soil compartments to freshwater. When considering methods for calculating chemical 

transport into freshwater via runoff and erosion several models have been developed (Jarvis et al., 

1997; US EPA, 2016a). Since their initial development in the 1980s, chemical fate models for soil 

transport have been validated by field trials and have been refined to improve their fate predictions 

(Bach et al., 2016; Carsel et al., 1985; EFSA, 2006). The predicted chemical exposures from these 

models have been and continue to be used within ERAs to assess chemical flux to freshwaters via soil 

and to approve chemicals for use. One such model, PRZM (Pesticide Root Zone Model) calculates edge 

of field exposure for chemicals transported via runoff and erosion and predicts all the necessary 

information to address the research questions of this chapter.  

PRZM was first developed in 1984 to calculate chemical fate from agricultural land to freshwater 

(Carsel et al., 1985; Wagenet and Rao, 1990). However, the applicability of the model led to the 

adoption of PRZM within regulatory environments (EFSA, 2006; US EPA, 2020). A diagram of the inputs 

and process of PRZM is presented in Figure 2.1. The PRZM model calculates chemical input, transport 

within the soil matrix and eventual exit from the system by degradation, to freshwater or to 

groundwater. PRZM calculates input into freshwater from both erosion and runoff and does so daily. 

In addition, it provides the option to export and water flow and chemical quantity remaining within 

the modelled compartments (soil at cm divided depths, surface and on crops) to track chemical 

movement and status. 

Importantly, PRZM can accept custom daily climate data, enabling climate change projections to be 

read into the model and their effects predicted.  Because the climate data can be taken at the daily 



37 

 

level, extreme localised rainstorm and heat-wave events can be represented in the model that would 

not be captured with coarser timescales. Other timed events can also be simulated, particularly crop 

phenology, dates of chemical applications and irrigation. For chemicals, PRZM incorporates 

degradation rate as half-life (DT50) for multiple contexts including within soil, as utilised in this study, 

in addition to foliar, water column, photolysis and aquatic sediment. Furthermore, the range of 

environmentally relevant properties used by PRZM to calculate chemical fate includes the molecular 

mass, solubility in water, Henry’s coefficient and organic carbon partitioning coefficient of the 

chemical. 

 

Figure 2.1 Diagram of chemical transport including movement through the soil matrix modelled by the Pesticide Root Zone 
Model (PRZM) 
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2.2. Methodology 

2.2.1. Overview 

To address the research questions, three stages of investigation were necessary. First, changes in 

chemical flux under different meteorological conditions and interactions between chemical 

degradation and persistence in soil were established. Hypothetical climate data and hypothetical 

chemicals were used to establish relationships between: 

1. Size of precipitation on edge of field chemical flux 

2. Delay to precipitation event and persistence in soil (as a function of soil degradation rate) on 

edge of field chemical flux 

3. Air temperature and soil degradation rate on chemical persistence in soil 

Secondly, climate change projections were used to evaluate whether the patterns investigated in the 

first objective hold for actual chemical, climatic and landscape data. This was investigated using 

scenarios with actual chemical properties applied to spatially variable climates in England and Wales 

with comparisons between sites, and baseline (1980-2000) and future end of century (2060-2080) 

conditions.  

Third, the importance of seasonality in the effects of climate change and local meteorology were 

investigated. Given that meteorology affects chemical transport, chemical flux would be expected to 

vary depending on when in the year a chemical was applied. As site, season of application and 

chemical degradation rate were all considered, complex interactions were expected, so analysis 

focused on the relationship between season of application and chemical degradation rate. 

Finally, the results from the third objective were contextualised by being combined with the actual 

application time of the various agrochemicals to quantify how climate change will increase or decrease 

in percentage the 90th percentile edge of field chemical flux under future conditions compared to 

baseline climates.  

2.2.2. Data collection and processing 

PRZM requires a suite of data from across geographic, agronomic and chemical studies (Table 2.3). 

Each of the major data groups is associated with their own set of references depending on the type 

and ubiquity of data. The collection process and justification for each group is described in further 

detail below. 
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Table 2.3 Data collected and used to run PRZM as part of chemical exposure modelling 

Data group Parameters Reference 

Meteorology Temperature (mean, minimum, maximum), Precipitation, 
Solar radiation, Wind speed at 10m, Pan-evapotranspiration 

Met Office, 2019, 

Soil Soil layers, density, Saturation (minimum, maximum), 
Organic carbon content, Soil erodibility 

Cranfield University, 
2021; Hallett et al., 
2017 

Landscape Slope, Field runoff, Field area, Slope length-gradient, 
Farming practice (slope, contour or strip) 

EFSA, 2013; Mullins 
et al., 1993 

Crop Crop type, Date of: emergence, maturation, and harvest; 
Root depth, Canopy cover, height, and holdup; Interception 
factor, Area of field cropped, Tillage method 

Craufurd and 
Wheeler, 2009; 
EFSA, 2013; Olesen 
et al., 2012 

Chemical KOC, DT50 in: water column, benthic, aqueous photolysis, 
hydrolysis, in soil, and on foliage; Molecular weight, Vapour 
pressure, Solubility, Henry’s constant, Date(s) of application, 
Quantity of application 

EFSA, 2013; 
University of 
Hertfordshire, 
2007a, 2007b 

 

Chemical data 

Chemicals were selected to provide a range of soil DT50, molecular mass, organic carbon partition 

coefficient (kOC) and solubility values representative of agrochemical pollutants. Chemicals selected 

were primarily across two classes: pesticides and pharmaceuticals, with preference given to the most 

commonly applied chemicals. This was to both represent multiple groups of agrochemical pollutants 

and to ensure full coverage of the chemical property space. For example, pharmaceuticals had half-

lives in soil of up to an order of magnitude less than pesticides (Figure 2.2). 

Chemical properties were collected from three sources: EFSA reports on the chemical, papers 

investigating the environmental properties of the chemical, and the Pesticide/Veterinary Properties 

Database (University of Hertfordshire, 2007a, 2007b). Only chemicals that had the full suite of 

environmental properties to run PRZM and that expanded the chemical space were selected.   Twenty-

four chemicals were selected (14 pesticides and 10 pharmaceuticals) and full chemical properties are 

presented in Table A2.1. 
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Figure 2.2 Comparison of the soil degradation rates (DT50) in days for the 24 chemicals over a log base 10 scale 

Climate data 

United Kingdom Climate Projections simulated by the UK Met Office in 2018 (UKCP18) were used in 

this study (Met Office, 2019).   Met Office projections represent the most extensive set of localised 

climate projections for England and Wales and are based on historic climate measurements collected 

from weather stations since the 1940s. UKCP18 projections, which utilise probabilistic projections and 

convection-permitting meteorology, run from 1980-2080 and have a resolution of 5 km (Met Office 

Hadley Centre, 2017; Met Office UKCP, 2018).   High resolution climate projections capture high impact 

events that would be averaged at larger resolutions, such as localised heavy rainfall, making them 

particularly relevant to chemical transport. However, these high-resolution projections have some 

limitations: probabilistic limits are not available and they were only projected for the RCP 8.5 climate 

scenario and therefore the most extreme outcome. While probabilistic projections would be 

preferable for assessing the variation of climate change impacts, data were only available at the 

coarser 12km scale, therefore missing localised extreme rainfall events, and did not include two 

variables essential for running PRZM: surface wind speed and net long wave flux.  
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To accurately run PRZM the meteorology file must represent the range of meteorological events 

projected under climate change. However, it must also avoid taking the results from a single extreme 

or outlying year unrepresentative of future climate conditions. Consequently, baseline and future 

climate scenarios were created from 20-year time steps from the 50th percentile value taken from the 

central unperturbed version of the ensemble of projections the Met Office produced for these data. 

Daily data was subsetted from 1980-2000 for the baseline scenario and 2060-2080 for the future 

scenario.  

Site data 

Sites were selected according to the UK climate districts as defined by the UK Met Office (Figure 2.3). 

In total, six sites were selected, one from each of the districts across England and Wales. The UK 

climate districts are represented in Figure 2.3 and fall across a north-south temperature gradient and 

the east-west precipitation gradient with cooler temperatures associated with northerly sites and 

reduced precipitation at easterly sites. The location in each climate district was selected to ensure that 

they are representative of both the climate district as a whole and the meteorological gradients of the 

England and Wales while ensuring that the selected sites were not too geographically close to one 

another. 

 

Figure 2.3 UK climate districts as defined by the UK (image adapted from Met Office, 2021) compared to the six sites selected 
for investigation in this study 

 

Lancashire 

 Durham 

Cornwall Kent 

Essex 

Oxford
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2.2.3. PRZM setup and running 

The US EPA fate modelling suite PWC (Pesticide Water Calculator, version 2.001) contains the latest 

version of PRZM (version 5.0+) within the program and was run for PRZM outputs only. When saving 

the PRZM outputs, the following calculated values were included in the output (in zts format): runoff 

volume, erosion volume, mass of chemical in runoff, mass of chemical in erosion, daily volatilisation 

of the chemical, leaching into groundwater, decay in soil profile, chemical mass remaining in soil 

profile and the chemical mass on foliage. The zts formatted files were then converted to csv format 

within R. 

To address the meteorology-degradation relationships, PRZM was run using the hypothetical 

chemical, an azoxystrobin clone with customised soil degradation values of 0.5, 2.5, 12.5, 62.5, 312.5 

days and a hypothetical weather file altered to investigate each weather parameter of interest on the 

standard site, with no crop modelled to avoid the crop dynamics being an additional factor affecting 

the relationship.  For investigating the precipitation-flux relationship, precipitation amounts of 1, 2, 4, 

8, 16 and 32mm occurred 4 days after chemical application and the total amount of edge of field 

chemical flux totalled. The delay-degradation-flux relationship was measured by running the 

hypothetical chemical suite for meteorology files with a single precipitation event of 10 mm occurring 

at 1, 4, 9, 23, 58, 144 or 360 days after each hypothetical chemical was applied. The temperature-

degradation relationship was investigated by measuring the amount of chemical degraded by the day 

after each hypothetical chemical application under different meteorology files with no precipitation 

and different temperatures of 0 to 40 °C in 5 °C steps. 

To assess the effects of climate change on chemical fate, PRZM was then run for the 24 chemicals 

across each of the 6 sites and for 4 different application times of spring, summer, autumn and winter 

(on the 1st of April, July, October and January respectively). Edge of field chemical flux was totalled 

from calculated chemical flux from both erosion and runoff. From these files, the effects of chemical 

degradation rate, site specific meteorology and seasonality could be assessed depending on how the 

PRZM outputs were processed and analysed. 

2.2.4. Analysing PRZM outputs 

Weather conditions and chemical fate considering degradation 

All statistical analysis were performed within R with processing and visualisation supported by the 

tidyverse package(Wickham et al., 2019). To address the first objective, meteorology-degradation 

relationships with the hypothetical chemicals and set weather files were plotted and analysed. As it is 

necessary to isolate the effects of degradation on flux under differing meteorological conditions, a 
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series of hypothetical chemicals were established where all the chemical parameters were kept 

constant while the DT50 value was altered. This was done because all other chemical properties did 

not affect the degradation of the hypothetical chemical and therefore were not necessary to 

investigate the hypothesis. While the values of chemical properties kept constant were unimportant, 

they are required to run PRZM. As the identity of these values was not important, all non-degradation 

chemical properties were cloned from those of azoxystrobin as it was the first chemical alphabetically. 

The relationships were fitted based upon the expected interactions among chemical fate and 

meteorology or chemical properties from the literature (EFSA, 2008; Ma et al., 2004; Nolan et al., 

2008; Wolt et al., 2002). For precipitation and flux, this was a linear model, while both the degradation 

over time plots and temperature degradation plots had logarithmic curves fitted. As chemical 

degradation occurs in a natural logarithmic fashion, the remaining chemical in the soil (relevant to the 

effects of delay on flux) were fitted with curves fitting the following equation: 

𝑦 = 𝑎 + 𝑟 𝑙𝑛(𝑥) 

Where y is the chemical flux, a is the static coefficient representing the flux, r is the gradient coefficient 

representing the shape of the decay curve and x is the days after application (>0). 

In contrast, the effect of temperature on chemical degradation in soil is of exponential form with a 

Q10 value a representative ratio of chemical degradation given a 10°C rise (EFSA, 2008). This informed 

the fitting of curves to the temperature-degradation relationships within PRZM for the landscape and 

soil characteristics used within this study. Consequently, the following equation was used: 

𝑦 = 𝑎 𝑒(𝑟𝑥) 

Where y is the degradation rate, a is the static coefficient representing the intercept, r is the gradient 

coefficient which alters the shape of the exponential curve and therefore Q10 value, and x is the 

temperature of the chemical undergoing degradation. 

Relationships between flux, precipitation and degradation for agrochemicals 

All other objectives dealt with flux into freshwater meaning a suitable threshold value for assessing 

flux was required. The edge of field 90th percentile chemical flux (EFF90) was calculated across the 20-

year periods of each the baseline and future climate scenarios. This 90th percentile was selected as it 

is generally considered to cover reasonable worst-case scenario resulting from meteorological and 

subsequent chemical fate conditions and has precedence for both pesticides and pharmaceuticals 

(Cunningham, 2006; EFSA, 2014).  
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The relationship of EFF90 and meteorology (precipitation that triggered the EFF90 event, and the time 

after application that the EFF90 event occurred) from soil degradation rate was assessed using linear 

models for each site and for baseline and future climates using generalised linear models.  

The interactions between site, climate change scenario and degradation rate were investigated with 

3-way ANCOVA. From this, Tukey’s HSD test with Sidak correction were used to compare the effect of 

different sites’ climate on the DT50-EFF90 relationship, including for the delay to and size of 

precipitation event that triggered the EFF90. The Tukey’s HSD test with Sidak correction was separately 

performed for both baseline and future climate conditions and then compared.  

To investigate the direct effect of climate change on chemical flux, a paired t-test was performed on 

the data from all chemicals applied in all seasons but each site considered separately. Bonferroni 

correction was applied to account for the paired t-test being run for each of the six sites.  

Effects of seasonal application and DT50 on flux under climate change 

In contrast,  site and season are associated with different meteorological patterns that both influence 

EFF90 together. Degradation effects on the change to EFF90 under climate change were non-linear in 

response to meteorology, meaning different patterns between the sites and season of chemical 

application. Instead, the inter-seasonal variation of EFF90 under climate change was compared based 

upon the degradation rates of the chemical to address the third objective.  

Variation was calculated on a chemical basis for the variation in flux (EFF90) between different seasons 

of application at the same site. As site was separated at this point, the relationship of variation and 

DT50 was investigated using ANOVA with Tukey’s HSD test with Sidak correction used to compare the 

relationships in a pairwise fashion between sites. 

Effects of climate change on flux for agrochemicals and application times 

As the final objective focused on actual chemicals with realistic application dates, the change in flux 

under climate change conditions was quantified as a change of the EFF90 of the future climate as a 

percentage of the EFF90 of the baseline climate, with percentages >100% representing an increase in 

flux under climate change conditions, <100% a decrease, and 100% itself no change under climate 

change. 
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2.2. Results 

2.2.4. Climate change on UK weather 

For the six sites in England and Wales, the effects of climate change on meteorological conditions were 

site, season and parameter dependent. In England & Wales, mean daily temperature exhibits a north-

south gradient with southerly sites having higher mean daily temperatures. Under climate change 

conditions (Figure 2.4), the effects on mean daily temperature were consistent across sites, with an 

increase in temperature throughout the year that was more pronounced in the summer and autumn 

months (3.7°C to 5.0°C), compared to spring and winter (2.1°C to 2.8°C). In contrast, maximum daily 

temperature, representative of extreme climate conditions, exhibits greater variation between sites 

and the seasonality of the temperature change.  Projected increases were reduced in the westerly 

(5.4°C Lancashire and Cornwall 4.2°C) sites compared to other locations (range of 8.6°C to 10.0°C). 

Precipitation in England & Wales Mean occurs throughout the year although precipitation is generally 

lowest during late summer. While seasonal variation is generally minimal across sites compared to 

other global climates, northerly (Lancashire and Durham) and westerly (Lancashire and Cornwall) sites 

exhibit greater variation with wetter winters and dryer summers than other sites. Future climate 

conditions tend to exacerbate the seasonal differences in mean daily precipitation resulting in wetter 

winters (17.3% to 42.7%) and dryer summers (-16.2% to -35.6%) across all sites, with less change in 

spring and autumn. Maximum precipitation exhibited greater monthly variation for both baseline and 

future scenarios. Consequently, when in the year the maximum precipitation event occurred was 

different for each site and changed under future climate conditions. Generally, maximum precipitation 

increases in summer under climate change for most sites (13.9% to 67.4%), except for Cornwall (-

11.4%) and Durham (-33.1%). Notably, maximum spring precipitation in Oxfordshire sees an increase 

of 103% under future conditions, much greater than any other sites (next largest is Essex with a rise 

of 28.1%). Equally Essex exhibited a much larger increase to maximum precipitation in Autumn (58.7%) 

than other sites (next largest is Kent with an increase of 8.0%)
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Figure 2.4 Effects of climate change on mean and maximum daily A) air temperatures (absolute change) and B) precipitation (percentage change) across each season, between baseline (1980-

2000) and future (2060-2080) UKCP18 climate scenarios for six UK sites representing different UK Met Office climate regions (A1-6 & B1-6 respectively). Mean daily values across the season are 
shown as dots while maximum daily values for the whole season are triangles 
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2.3.2. Weather and chemical fate 

Precipitation quantity and flux 

The amount of precipitation directly increases edge of field chemical flux (Figure 2.5). Following a lag 

phase for precipitation values below 4mm, chemical flux increases linearly with precipitation (gradient 

of 0.00326 mg ha-1 mm-1, p <0.01, df = 5). The maximum single precipitation event across all sites and 

time scenarios was 94.4 mm while the mean precipitation value that triggered the 99th percentile 

chemical flux events across baseline and future scenarios was 50.1mm (sd = 1.89, range = 12.6-94.4 

mm). Credible precipitation and chemical flux events are represented would not be expected to 

deviate from the relationship exhibited in Figure 2.5. 

 

Figure 2.5 Relationship between individual precipitation (mm) events and edge of field chemical flux (mg/ha) for the generic 
hypothetical site using precipitation values along an exponential scale. Precipitation events occurred the day 
following the application of the generic hypothetical chemical with slow degradation (DT50 of 312.5 days) at 1 kg/ha 
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Precipitation delay, degradation and flux 

Edge of field chemical flux reduced in a logarithmic relationship as the delay to a precipitation event 

increased (Figure 2.6). This was true for all DT50 values of the chemicals meaning that the edge of field 

flux is proportional to the decreasing quantity of chemical remaining within the soil matrix due to 

degradation. Hypothetical chemicals with lower DT50 values (0.5, 2.5 and 12.5 days) resulted in 

negligible chemical flux before the end of a year due to near complete degradation, while slower 

degrading chemicals (62.5 and 312.5 days) remained within the soil matrix and could be liable to 

transport beyond the year timeframe where chemical application may occur again leading to 

accumulation in the soil. Natural logarithmic models fitted to the flux curves in Figure 2.6 varied 

depending on their degradation rate, with the coefficients shown in Table A2.2.  The static factors (a) 

for the lowest DT50 values of 0.5 and 2.5 days (a of 0.003 and 0.016 respectively) result in a much lower 

initial flux than from the higher DT50 values (a of 0.024 to 0.026). In contrast the gradient factor (r) for 

a DT50 value of 0.5 days is lower than all other DT50 values (r of -0.0007 compared to r of -0.0028 to -

0.0042) reflecting the different shape of the decay curve for this DT50 value. 

 

Figure 2.6 Effect of increasing the delay to a precipitation event after application of a chemical to the resultant edge of field 
chemical flux. The hypothetical chemical was altered with differing degradation values 
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Temperature and degradation 

For all DT50 values chemical degradation rates increase as temperature increases, although the 

hypothetical chemicals have different relationships of temperature and degradation. For most DT50 

values the rate of change to degradation increases with temperature increases, equivalent to the 

degradation rate increasing with an exponential relationship to temperature increases (Figure 2.7). 

The relevant coefficients calculated for these standardised degradation curves and their respective 

Q10 values are presented in Table A2.3. For chemicals with increasing DT50 , the calculated Q10 

converges to 1.77 for the soil and landscape parameters tested. While the 0.5 day DT50 hypothetical 

chemical exhibits the inverse relationship to increasing temperature, this is due to increased depletion 

of the chemical from higher temperature degradation. This results in a large enough reduction to 

chemical capable of undergoing degradation that degradation rate within the soil matrix decreases. It 

is the effect of reduced chemical to undergo degradation that reduces the Q10 value for more rapidly 

degrading chemicals. 
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Figure 2.7. Effects of increasing air temperature on chemical degradation rate for five hypothetical chemicals with a range of 
degradation rates (A-E DT50) including a plot where the percentage of chemical degraded was standardised 
according to the minimum and maximum percentages degraded for each chemical (F) 

 

A B DT50 Days DT50 Days 

C D DT50 Days DT50 Days 

E F DT50 Days 
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2.3.2. Interactions of climate change and chemical properties on fate 

Chemical persistence and extreme flux events 

Relationship of DT50 and the delay to and size of precipitation triggering 90th percentile flux 

For the 24 chemicals with environmental properties tested in PRZM, grouping all sites over both 

baseline and future conditions as the DT50 of the chemical increased, the size of threshold precipitation 

events triggering the edge of field 90th percentile chemical flux (EFF90) also increased (log-transformed 

linear model, p < 0.001, linear model R2 = 0.71). The equivalent consideration for how the delay to the 

threshold precipitation events triggering the 90th percentile edge of field chemical flux varied by DT50 

found a similar relationship (log-transformed linear model, p < 0.001, linear model R2 = 0.46). 

 

Figure 2.8 Relationship between how the size of threshold precipitation events triggering the EFF90 varies by chemical soil 
DT50 across 6 sites (panels A to F) in England and Wales and all seasons of chemical application when predicted 
within PRZM. Shared lowercase letters following the site indicate pairwise comparisons between sites that are not 
significantly different (p<0.05) following a Tukey’s HSD test with Sidak correction where colour represents a 
baseline (orange, 1980-2000) or future (purple, 2060-2080) climate 

While all sites and climate scenarios exhibited positive relationships between delay and degradation, 

there is spatial variation between sites in this relationship over both baseline and future climate 

conditions, as shown by the orange and purple letters in Figure 2.8. For baseline conditions the central 
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and south-eastern locations of Oxfordshire, Essex and Kent all share a non-significantly different DT50-

precipitation relationship, while all other sites exhibited steeper and had significantly different 

relationships.  In contrast, under the future climate scenario, the grouping is more homogenous 

following a north south gradient. A full table including the individual pair-wise comparisons is available 

in Table A2.5A and Table A2.5B. 

 

Figure 2.9 Relationship between how the delay to threshold precipitation events triggering the EFF90 varies by chemical soil 
DT50 across 6 sites (panels A to F) in England and Wales and all seasons of chemical application when predicted 
within PRZM. Shared lowercase letters following the site indicate pairwise comparisons between sites that are not 
significantly different (p<0.05) following a Tukey’s HSD test with Sidak correction where colour represents a 
baseline (orange, 1980-2000) or future (purple, 2060-2080) climate 

Again, although all sites and climate scenarios exhibited positive relationships, there is spatial 

variation between sites Figure 2.9. This manifests with a broadly northern group typified by 

Lancashire, and a central and southeast group with Oxford and Kent with the other sites falling 

between these two. Specific p-values for pairwise comparisons are shown in Table A2.5C and Table 

A2.5D. However, in contrast to the DT50-precipitation relationship, the DT50-delay relationship 

exhibited little change in the groupings of sites between baseline and future climates with only Essex 

becoming more distanced from the Durham and Cornwall relationships. Additionally, both Durham 
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and Kent see significant shallowing of the DT50-delay relationship under climate change conditions 

associated with increased frequency of extreme precipitation events (p = 0.003 and 0.032 respectively, 

df = 2303, 2280, 3-way ANCOVA).  

Relationship between DT50 and 90th percentile flux 

For the 24 chemicals with environmental properties tested in PRZM, grouping all sites over both 

baseline and future conditions as the DT50 of the chemical increased the edge of field 90th percentile 

chemical flux (EFF90) also increased (log-transformed linear model, p < 0.001, linear model R2 = 0.65). 

There was spatial variation between the sites for the DT50-EFF90 relationship as shown from pair-wise 

comparisons (Figure 2.10), and these groupings differed to those for the DT50-delay and DT50-

precipitation (Table A2.5E and Table A2.5F, compared to A-D). For baseline climates three patterns 

formed; this was a western group (Lancashire and Cornwall), and a central and southeast group 

(Oxfordshire, Essex and Kent), with Durham significantly different to all others. However, under 

climate change this shifted to a southern group composed of Cornwall and Kent, and a central group 

of Oxfordshire and Essex, but with Essex was no longer significantly different from Lancashire. Again, 

Durham was significantly different to all other sites. 

Climate change impacts on flux 

The overall effect of climate change on EFF90 was assessed with paired t-tests investigating whether 

flux altered under climate change conditions over the 24 chemicals and 4 seasons of application. Such 

tests were performed separately each site, and indicated spatial variation between them. The central 

and southeast sites of Oxfordshire, Essex and Kent all exhibited significant increases in flux under 

climate change conditions while Cornwall exhibited a significant decrease (all p <0.001, df = 91, paired 

t-test). In contrast, the northern sites of Lancashire and Durham exhibited no significant difference in 

flux between baseline and future conditions (p = 0.88 and p= 0.982 respectively, df = 91, paired t-test). 
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Figure 2.10 Relationship between how the threshold precipitation event that triggered the EFF90 varies by chemical soil DT50 
across 6 sites (panels A to F) in England and Wales and all seasons of chemical application when predicted within 
PRZM. Shared lowercase letters following the site indicate pairwise comparisons between sites that are not 
significantly different (p<0.05) following a Tukey’s HSD test with Sidak correction where colour represents a 
baseline (orange, 1980-2000) or future (purple, 2060-2080) climate 

2.3.3. Season and degradation on flux 

When comparing how the percentage of edge of field 90th percentile chemical flux (EFF90) changes 

under the climate change scenario, all of site, season of application and the degradation rate of the 

chemical (DT50) affect the percentage change. This can be seen in Figure 2.11 where the effect of 

increasing DT50 has differing effects of change to flux for each site and season combination. 

Qualitatively, the pairings of Oxfordshire & Essex, and Cornwall & Durham appear most similar, but 

even then, differences are notable, particularly in autumn for Oxfordshire & Essex, and in spring for 

Cornwall & Durham. In contrast, Kent is notable for the maintaining of a large percentage increase to 

flux for summer applications beyond equivalent DT50 values of all the other sites. 
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Figure 2.11 The percentage change to the EFF90 due to future (2060-2080) climate conditions compared to the 
baseline scenario (1980-2000) considering the effects of 24 chemicals with differing degradation rates. The effect 
of seasonal differences to weather under climate change was considered with applications of the chemical being 
modelled for each season. Lines between and are not indicative of any model fit but rather to show how change in 
chemical flux changes over the differing DT50 values 
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One aspect common across all sites is the reduced effect of the season of application on the 

percentage change to edge of field 90th percentile chemical flux (EFF90) as the DT50 of the chemical 

increases. This is demonstrated in Figure 2.12 by the reduction in variation of flux between seasons 

for increasing DT50 values (p < 0.001, linear model, R2 = 0.71). The results from pair-wise comparisons 

between the sites indicate that all sites exhibit a similar relationship between the extent of seasonal 

variation in chemical flux depending on the degradation rate of the chemical. 

 
Figure 2.12 Variation (σ2) between different seasons of chemical application for the percentage change in EFF90 between 

baseline (1980-2000) and future (2060-2080) scenarios across the degradation rate range of the chemicals. Shared 
lowercase letters following the site indicate pairwise comparisons between sites that are not significantly different 
(p<0.05) following a Tukey’s HSD test with Sidak correction 
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2.3.4. Effects of climate for realistic chemical application scenarios 

Pesticides have specific times of application so they are most efficacious against their target 

organisms. As pests life histories are variable among plants, animals, fungi and microorganisms, the 

timing of pest infestation and therefore season of pesticide application vary. However, most 

commonly application tends to occur during major crop growth periods (spring and summer) when 

conditions are also favourable for pest growth and few applied in winter. This is reflected in the 

application times for the pesticides investigated within this study (Table 2.4). Generally, there is a large 

variation in the effect of climate change on edge of field 90th percentile chemical flux (EFF90), with 

percentage changes ranging from -97% to 249%. Chemicals applied in Cornwall always exhibited a 

decrease in EFF90 while aside for those which rapidly degrade (DT50 < 5 days), all chemicals exhibited 

an increase in Essex and Oxfordshire. Season of application affected both the direction and magnitude 

of change, but this depended on the site. For example, fluvalinate and imidacloprid have similar DT50 

values (31 and 38.9 days respectively), but are applied in different seasons (summer and autumn). 

Consequently, when applied in Kent imidacloprid increases by 249%, while fluvalinate increases by 

just 18%. In contrast when applied in Durham, fluvalinate sees a 9% rise while imidacloprid sees a 

decrease of 23%. These changes to EFF90 mean that the reasonable worst-case quantity of chemical 

entering freshwater bodies is enough to alter the outcome of existing ERAs. Consequently, the effects 

of climate change on the shift to chemical flux is significant and requires consideration at a spatial and 

chemical specific level, including accounting for when in the year the chemical is applied. 
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Table 2.4 Effect of climate change on EFF90 for 14 different pesticides applied under realistic application times in accordance 
with good agricultural practice across six sites representing the climatic groups of England & Wales. All values at 
100% or below represent no change or an decreasing in EFF90 and are coloured green. Values >100% represent an 
increase in flux under climate change and become increasingly red as the change in flux increases 

Chemical Chemical 
DT50 

in soil 
(days) 

Season 

Change in 90th percentile edge of field flux under climate change 
conditions over 20 years (%, 1980-2000 to 2060-2080) 

Cornwall Durham Essex Kent Lancashire Oxfordshire 

Prothioconazole Fungicide 0.5 Spring -97 -14 -89 -97 248 -71 

Fluroxypyr Herbicide 0.7 Spring -97 -33 -90 -97 209 -73 
Thifensulfuron 
methyl 

Herbicide 1.39 Spring 
-90 -58 -92 -92 100 -31 

Chlorothalonil Fungicide 4.29 Spring -46 -54 -40 0 -12 231 

Pyraclostrobin Fungicide 62 Spring -29 -15 159 28 -29 80 

Azoxystrobin Fungicide 78 Spring -27 -12 155 25 -27 84 

Cypermethrin Insecticide 141.3 Spring -22 -7 176 35 -15 75 

Glyphosate Herbicide 20.5 Summer -46 15 40 24 91 37 

MCPA Herbicide 21 Summer -46 52 70 43 104 77 

Fluvalinate Insecticide 31 Summer -45 9 38 18 85 40 

Cyproconazole Fungicide 126 Summer -40 -17 47 -25 -9 95 

Imidacloprid Insecticide 38.9 Autumn -31 -16 129 249 40 127 

Tri-allate Herbicide 58.2 Autumn -31 -23 124 207 24 112 

Diflufenican Herbicide 141.8 Winter -25 29 44 4 -2 91 
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Currently, pharmaceuticals primarily see introduction onto crops within manure and biosolid fertiliser 

use which is associated with application in autumn and spring for winter wheat. As for pesticides, the 

effects of climate change are highly spatially variable and chemical specific for pharmaceuticals with 

variable percentage changes to edge of field 90th percentile chemical flux (EFF90) of -97% to 343% with 

distinct patterns forming over both site and chemical degradation rate. Autumn application in Kent 

see the largest rise of 96 – 343%, but this pattern is not seen for Kent spring application which exhibit 

both decreases (up to -97%) and increases (up to 46%). Cornwall see universal decreases in EFF90, aside 

from the rapidly degrading diclofenac in Autumn, while Oxfordshire sees universal increases aside 

from diclofenac in spring. Patterns of DT50 are qualitatively visible for some site and season 

combinations, such as a positive correlation of DT50 and EFF90 in Essex, both autumn and spring, while 

the reverse relationship is observed for autumn applications in Durham. 

Table 2.5 Effect of climate change on EFF90 for 10 different pharmaceuticals applied under realistic application times as 
fertiliser either in autumn or spring across six sites representing the climatic groups of England & Wales. All values at 100% 
or below represents no change or an decreasing in EFF90 and are coloured green. Values >100% represent an increase in flux 
under climate change and become increasingly red as the change in flux increases 

Chemical 

DT50 
in soil 
(days
) 

Season of 
fertiliser 
application 

Change in 90th percentile edge of field flux under climate change 
conditions over 20 years (%, 1980-2000 to 2060-2080) 

Cornwall Durham Essex Kent Lancashire 
Oxfordshir
e 

Diclofenac 0.5 Autumn 53 99 -9 297 -18 72 

Naproxen 2 Autumn -4 89 16 270 -37 100 

Metformin Hydrochloride 5 Autumn -19 38 32 327 -31 96 

Metronidazole 5.7 Autumn -19 37 33 330 -30 92 

Orlistat 6.4 Autumn -21 20 39 329 -23 94 

Diazinon 9.1 Autumn -24 5 61 326 -13 92 

Erythromycin 20 Autumn -27 5 69 343 2 147 

Ivermectin 27 Autumn -33 -16 128 266 34 136 

Carbamazepine 36.5 Autumn -32 -16 131 250 40 131 

Trimethoprim 110 Autumn -33 -17 104 96 9 97 

Diclofenac 0.5 Spring -97 -14 -89 -97 248 -71 

Naproxen 2 Spring -61 -68 -76 -63 16 143 

Metformin Hydrochloride 5 Spring -46 -48 -33 13 -15 217 

Metronidazole 5.7 Spring -36 -39 -24 21 -12 219 

Orlistat 6.4 Spring -46 -40 -8 30 -16 189 

Diazinon 9.1 Spring -47 -33 64 46 -23 160 

Erythromycin 20 Spring -21 3 174 45 3 158 

Ivermectin 27 Spring -36 -21 181 43 -30 102 

Carbamazepine 36.5 Spring -32 -18 188 39 -27 97 

Trimethoprim 110 Spring -27 -9 132 20 -25 72 
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2.4. Discussion 

The aim of this chapter was to assess the effect of climate change on the edge of field agrochemical 

flux the via soil matrix while considering the spatial variation in local climates and the persistence of 

agrochemicals in soil. The impact of future weather patterns on seasonal variation in the edge of field 

flux of 24 different agrochemicals was investigated for six sites across different climatic zones of 

England and Wales. This study had four main objectives: first to assess how climate parameters and 

chemical degradation affect flux, secondly to see if these relationships hold using the properties of 

actual chemicals and accounting for spatial variation of climates and future projections, third to  assess 

how the season of application influences the effects of climate change in accordance with chemical 

degradation, and finally to quantify the effects of climate change on flux accounting for actual 

agrochemical uses and application times. 

2.4.1 Factors influencing chemical flux under climate change 

Meteorological parameters, chemical degradation and flux 

UK climates  

Using the climate data for the six specified UK sites representative of the UK Met Office climate zones 

for England and Wales, 5km scale UKCP18 data were extracted and processed for visualisation and 

inputting into PRZM (Met Office, 2021, 2019). The UK is set to undergo seasonally variable climate 

change with hotter dryer summers and warmer wetter winters with an overall increase in extreme 

events, both floods and droughts, throughout the year (Lowe et al., 2018).  However, visualisation of 

the UKCP18 data here also revealed where there was spatial variation in the effects of climate change. 

For example, with mean daily temperature, the westerly sites of Lancashire and Cornwall exhibited 

more marginal increases in maximum autumn temperatures compared to other sites, while the 

changes to maximum precipitation were more varied between sites and seasons affecting the 

precipitation events triggering chemical flux. In contrast, the rise in mean temperature was relatively 

consistent between sites, although the increase was more pronounced in summer and autumn (3.7°C 

to 5.0°C across all sites and both seasons) than spring and winter (2.1°C to 2.8°C across all sites and 

both seasons), thus degradation rates would be expected to increase year-round, but particularly so 

in summer and autumn. 

Processes underlying flux and degradation 

Chemical flux is established to be primarily determined by the size and frequency of precipitation, and 

here both within examples using hypothetical chemicals, sites and climate conditions to specifically 

test the effects of size of precipitation event, delay to precipitation event for differing DT50 values and 
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how temperature affects degradation in soil for differing DT50 values. These supported the existing 

laboratory data on degradation mechanics which also find logarithmic models of decay and quantity 

of chemical to undergo transport including for pharmaceuticals (Lammoglia et al., 2018; Pollard and 

Morra, 2018; Xuan et al., 2008), and the results are comparable to prior outputs from PRZM 

(Farenhorst et al., 2009). However, the calculated Q10 of 1.77 was lower than the standard of 2.2 used 

in ERAs (EFSA, 2008). Given the variation in soil properties that can affect the Q10, in particular organic 

matter and water holding capacity, this may not be unexpected and was within the range of Q10 

values from laboratory studies (Cavoski et al., 2008). 

Seasonality of climate change and chemical flux 

Within the UK, it has been projected that the effects of climate change vary throughout the year, with 

temperatures rising more in summer than winter, and summer becoming dryer and winter wetter. In 

reality this has been demonstrated to be more nuanced by spatial variation in the effect of climate 

change on local climates (section 2.4.2.1). As climate conditions affect chemical transport, the effects 

of climate change on chemical transport and flux would be expected to change seasonally too. Equally, 

the climate and effect of seasons with climate change will both vary spatially. Consequently, seasonal 

effects on flux were expected to vary extensively across different UK climate zones, which was present 

in the results and shows the complex influence of seasonality. This supports previous studies which 

exhibit strong patterning in chemical fate depending on the season of chemical sampling and occurs 

across multiple freshwater ecosystems (Johnson et al., 1997; Varty et al., 2021). Both spatial and 

chemical identity, particularly around the degradation rate in soil affected the seasonal impact on the 

change in flux. This emphasises the complex relationship between these factors and the difficulty in 

extrapolating the effects of climate change from single site studies. However, some broad 

characteristics common across all sites and seasons could be observed, most notably that the effect 

of season of application made less difference to the change in flux for slower degrading chemicals. 

This relationship was common across all sites and has implications when considering how the timings 

of chemicals may shift or how new chemicals may respond under future conditions, particularly for 

the care required when timing the application of rapidly degrading chemicals so application does not 

result in chemical flux (Gros et al., 2019). 
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2.4.2. Implications & applications 

Considering climate change with agrochemical exposure 

Increasing realism: Agrochemicals & application times 

By considering realistic application times for different chemicals the actual effects of climate change 

on chemical flux were quantified and placed into a context that could inform chemical use and risk to 

non-target ecosystems. The need for this has been previously highlighted by both regulatory and 

scientific perspectives (Brooks et al., 2013; EFSA et al., 2020). It should be noted that within PRZM 

pesticides and pharmaceuticals are treated equally with all chemicals based off their environmental 

properties (Mullins et al., 1993). The only difference with regards to fate is the timing of application 

which contextualises pharmaceutical input to match that of manure or biosolid fertiliser application 

in spring and autumn (Gogos et al., 2012; Gros et al., 2019). Across all sites and chemicals, climate 

change causes a wide range of effects, from decreases of up to 97% to increases of 343% compared 

to the baseline scenario. Previous studies investigating the effects of climate change on chemical fate 

are limited either by lack of scalability or being fit to specific water systems. Szalinska et al., (2021) has 

shown an increase of 75% for six metals at a watershed level in 2046–2055 under RCP 8.5 conditions 

while Valle et al. (2007) focused on chemical degradation and distribution following input predicted 

decreases in chlorinated polyaromatic hydrocarbons but increased mobility under higher 

temperatures. However, when considering these realistic application times within an ERA perspective 

the large changes, both positive and negative, to chemical flux would drastically affect the outcome 

of ERAs. Equally the extent of spatial variation from climate alone mean that any ERA should either 

consider the effects of climate change on a spatially explicit scale, or create representative worst case 

scenarios to be run in a manner similar to the spatially explicit soil and climate scenarios used for 

FOCUS surface water modelling in ERAs (Fabrega and Carapeto, 2020; Hommen et al., 2010; A. S. 

Pereira et al., 2017). Overall, the effects of climate change on chemical flux have been shown to be a 

necessary point of consideration if the future risk to ecosystems from agrochemicals is to be accurately 

assessed. 

Accounting for phenology 

Regarding how the timings of agrochemical input may shift in response to climatic change will depend 

on how the phenology of agricultural crops and their pests requiring chemical application shift under 

climate change conditions. For example, the effect of climate change to the timing of commonly grown 

crops such as winter wheat has been investigated with aspects such as emergence, maturation and 

harvest shifting by 14-28 days by the end of the century (Craufurd and Wheeler, 2009; Paweł 

Marcinkowski and Piniewski, 2018; Olesen et al., 2012). This in turn will require altering the timing of 
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fertiliser and pre-emergence herbicide use to optimise crop yield (Zimmermann et al., 2017). Equally, 

some pests are expected to track their phrenology to that of crops, leading to shifting times for 

chemical application (Bajwa et al., 2020). Furthermore, the climatic conditions may change the profile 

and magnitude of negative effects, and therefore the type and quantity chemical used to address the 

pest. For example hotter, dryer summers may increase the susceptibility and spread of fungal diseases 

to wheat crops (Rhodes and McCarl, 2020b; West et al., 2012b) necessitating increased use of 

fungicides at times of the year not currently applied.  Adapting the methods used within this study 

may help address the possible risk these timing or chemical shifts may pose, noting a greater focus on 

faster degrading chemicals that are more liable to seasonal variability.  

Integration and expansion within fate research 

Future developments of climate projections 

The UKCP18 climate data used here were high resolution 5km scale which can accurately project the 

occurrence and magnitude of localised extreme weather events which are associated with the largest 

chemical fluxes, and therefore important to realistically represent future risk (Lowe et al., 2018; Met 

Office, 2019). However, these projections are only available for RCP 8.5, which is the business-as-usual 

high emissions scenario. However, RCP 8.5 is currently viewed as an extreme scenario with little to no 

climate change mitigation, and therefore not the most likely climate change scenario (Christensen et 

al., 2018; Van Vuuren et al., 2011). Thus, these results accurately capture convectional precipitation 

dynamics but represent a worse case climate change scenario and therefore should be protective of 

future risk. However, PRZM is limited in that it can only accept daily data but the UKCP18 5km scale 

data is available down to hourly time periods (Carsel et al., 1985). Using another regulatory fate model, 

such as MACRO, could expand upon the work here and incorporate hourly data (Jarvis et al., 1997).  

Building upon fate research and regulation 

While the above results can provide some insight into potential changes to chemical risk, there are 

limitations that were necessary as part of the methodology to isolate the effects of climate and 

chemical. However, existing research into fate, agricultural and soil dynamics could be integrated with 

the work presented here to improve the realism and expand the scenarios that could be represented 

with this methodology. Notably the soil, landscape and cropping was kept consistent throughout the 

sites, but there exists great heterogeneity across the UK for which data already exists and could be 

directly integrated into this research (Cranfield University, 2021; Garthwaite, 2018). For example, soil 

is a major factor affecting chemical fate and behaviour and would have interacted with chemical 

properties, most notably kOC (Farenhorst et al., 2009; Oliver et al., 2012; Paasivirta et al., 1999). Equally 

different crops would have differing phenologies, pests, root structures and interceptions and each 
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will have their own shifts under climate change conditions, all of which can be accounted for within 

PRZM (Bajwa et al., 2020; Craufurd and Wheeler, 2009; Squire et al., 2016).  

Equally, the downstream processes from edge of field flux occur in the freshwater body and can alter 

the quantity and location of the chemical. These include the degradation or transport of the chemical 

out of the freshwater body, and the partitioning of the chemical into river sediment (Bach et al., 2016; 

Gavrilescu et al., 2015). This may enable exposure of the chemical to new ecosystems and organism 

groups (e.g.  downstream water bodies and sediment dwelling organisms). Considering dynamics 

within freshwater bodies also permits the consideration of chronic risk. This is because long-term 

chemical exposure can be calculated rather than just acute peak concentrations associated with edge 

of field flux (Pereira et al., 2017). Just as models such as PRZM consider fate dynamics and transport 

in soil, extensively researched models exist for chemical fate in freshwater; TOXSWA, a regulatory 

model for chemical fate in freshwater bodies, can take the outputs directly from PRZM and are 

combined together pesticide ERAs to form the modelling suite of SWASH (Adriaanse, 1996; Te Roller 

et al., 2015).  

In contrast SWAT is a combined soil and water fate model that functions at the watershed level rather 

than the field-scale explored here (Di Luzio et al., 2002; Wang et al., 2019). Indeed, Szalinska et al. 

(2021) used SWAT to consider the effects of climate change on fate at the watershed level projecting 

increases in metal loadings by 75%, while noting the specificity of these results to the location 

modelled (Carpathian basin, Hungary). Consequently, while the results here may prove indicative of 

overall trends of chemical fate into freshwater ecosystems, the major advancement here is the  

adaptability of this method to different chemicals and climates, which can be directly integrated with 

other models such as TOXSWA as done in existing ERAs (Van den Berg et al., 2015), expanding the 

consideration of climate change to freshwater fate represents a logical next step for contextualising 

the effects of climate change on chemical flux presented here. 

Overall, this study has demonstrated a functional methodology from which the change to 

agrochemical risk from climate change can be quantified and built upon by including real chemical 

agricultural practices policies for regulation could be determined. For example, rapidly degrading 

chemicals (DT50 < 2 days), often pharmaceuticals can see drastic rises under climate change associated 

with an increase in rainfall events following application that can be mitigated if there is no 

precipitation immediately following application. An example regulation would be “avoiding the use of 

manure or biosolid fertilizer within the three days prior to predicted precipitation events”. 

Furthermore, the spatial aspect of risk has been highlighted, with specific sites, such as Cornwall 
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tending to have the largest decrease in percentage risk for most chemicals, while those applied in 

Oxfordshire tend to see an increase regardless of season of application. Consequently, a spatially 

differential risk assessment could restrict or allow application on a site and seasonal basis, like existing 

regulation restricting the application of specific insecticides in spring during flowering time to avoid 

ecotoxicological exposure to bees and other pollinators that is high risk at that time of year. Beyond 

consideration of edge of field flux, contextualising the result by simulating dynamics of the freshwater 

ecosystem could improve the realism of the risk assessment. Existing freshwater fated models exist, 

but would need adapting to future climate change conditions, but can be integrated to provide a full 

ecosystem perspective on chemical exposure (US EPA, 2016a; Wang et al., 2019). To summarise, this 

study has shown how localised climate projections can be adapted to existing ERAs and landscape 

characteristics to predict how climate change can alter the flux of various agrochemicals. These results 

highlighted the need to assess the effects of climate change accounting for spatial variation in climate 

change itself which resulted in divergent changes in flux for the same chemical with different climate 

data. Equally, the method here has shown how PRZM can be tailored to a wide range of climate, 

chemical, crop and location scenarios.
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Chapter 3. Assessing the effect of taxonomic composition on chemical 
sensitivity at an assemblage scale 

3.1 Introduction 

3.1.1 Sensitivity on scales above the organisms 

Because species vary in their geographical distribution and life histories, the species composition of 

communities varies in space and time in response to biogeographic factors (Cleland et al., 2013; 

Legendre et al., 2005; Silvertown et al., 1994). The sensitivity of species to chemical pollutants also 

varies and their relative sensitivity is chemical specific (Cairns, 1986; Craig et al., 2012). Consequently, 

the sensitivity of spatially-varying communities to chemical pollutants is also expected to differ (Relyea 

and Hoverman, 2006). Yet current chemical environmental risk assessments (ERAs) have no option to 

consider the spatial differences in taxa and to what extent this affects the sensitivity of the ecosystem 

(EFSA, 2013a; Hickey et al., 2009). Consequently, ERAs fail to account for spatial variation, only aiming 

to acknowledge this uncertainty by using assessment factors (ECHA, 2008).  

Issues of the ERA at an assemblage scale 

Existing ERAs consider sensitivity from species from toxicity tests but are associated with two issues 

relating to the species tested. Firstly, ERAs for regulated chemicals are generic and are applied over 

broad taxonomic groups (e.g.  fish, macroinvertebrates, algae). A single regulatory acceptable 

concentration for each group is used irrespective of any spatial variation in the sensitivity of potentially 

exposed communities (Vaal et al., 2000; Verschoor et al., 2011). Secondly, testing of species is limited 

compared to the diversity of species exposed in nature (Liess and von der Ohe, 2005; Lorenz et al., 

2017). For example, in the RICT reference site dataset which is meant to be reflective of the 

macroinvertebrate diversity of the UK in minimally impacted rivers has recorded 617 species (Wright, 

1994). In contrast the agrochemical tested on the most species in the publicly-collating ECOTOX 

database is malathion with 176 unique species from a global distribution with uneven taxonomic 

testing (e.g.  16 species were tested in the Aedes genus, US EPA, 2021). Consequently, there is a need 

to assess to what extent differences in assemblage composition among natural ecosystems has on the 

variation in sensitivity and whether such variation has any bearing on the outcome ERAs, improving 

realism and making the protection of ecosystems spatially explicit. 

Accounting for the sensitivity of multiple species within an assemblage has been investigated using 

empirical approaches such as mesocosm studies that include species expected to be found in natural 

habitats or statistical approaches such as species sensitivity distributions (SSDs) that collate toxicity 

data from multiple laboratory studies (EFSA, 2013a). However, neither approach is primarily used to 
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address the relationship between community composition and sensitivity to chemical exposure. 

Instead, mesocosm studies are designed to incorporate biotic interactions and community dynamics 

in the assessment of risk (Boyle and Fairchild, 1997). While mesocosm studies include some natural 

species and can account for some community dynamics, they are limited by the not fully representing 

interspecific and food web interactions, notably missing the top trophic level provided by fish, and the 

migration and recolonisation of natural river ecosystems once perturbed (Van den Brink et al. 2005; 

Preston, 2002). In addition they are time and capital intensive and therefore only performed for most 

chemicals’ ERAs as a refinement of unacceptable risk at lower tiers of the ERA (Boxall et al., 2002). 

Furthermore, this impracticability means that research into the effects of assemblage composition on 

sensitivity between mesocosms is limited with studies focusing on the dynamics of one community 

(King et al., 2016; Rohr and Crumrine, 2005).  

In contrast, SSDs are used to represent risk to a theoretical universe of potentially exposed species 

and calculate a hazard concentration value (HCx), the chemical concentration for which a specific 

percentage (x%) of species are affected (Wagner and Løkke, 1991). The data requirement for SSDs is 

sufficient toxicity endpoints (recommended at least eight, minimum five) for a chemical to fit a 

suitable (log-normal distribution, EFSA, 2013a). For SSDs, the availability of toxicity data limits their 

use for spatially variable communities. This is because toxicity tests are performed on limited numbers 

of species compared to the diversity in natural ecosystems, and those that are suitable for laboratory 

testing tend to be unrepresentative of species in natural ecosystems (Liess and von der Ohe, 2005; 

Lorenz et al., 2017). While SSDs can be applied broadly and altered to be spatially explicit (Posthuma 

et al., 2019), they remain limited in scope within ERAs by a limited species pool and therefore are 

unreflective of natural assemblages. Equally from a chemical identity perspective, Verschoor et al., 

2011 has shown that SSDs for different metals vary and exhibit spatio-temporal variation in risk, 

although this was due to differences in chemical-environment interactions rather than community 

structure which was the same across sites. 

Another issue is that SSDs assume that the sensitivities of species are independent and that for a 

species, its sensitivity ranking for one chemical is uninformative to another (Aldenberg and Jaworska, 

2000). This means an SSD assumes that the identity of the species tested does not matter. Yet, the 

non-exchangeability of chemical sensitivity between species has been shown (Craig et al., 2012). This 

means some species tend to be more sensitive to chemicals than others, and closely related species 

share chemical sensitivity due to relatedness being correlated with increased sharing of genetics and 

traits for chemical sensitivity.  Consequently, because different combinations of taxa can be used in 

SSDs they can reflect different spatial and temporal scales of natural assemblages. The limited 
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taxonomic diversity of toxicity data mean the SSD produced is generic and used to represent all 

communities (Belanger et al., 2017). This means the question of whether the sensitivity profile varies 

between assemblages beyond the coverage of a generic SSD and how chemical identity affects such 

variation is not considered and requires investigation.  

Given the potential for species composition to influence sensitivity at the assemblage level (eg a set 

proportion of species exhibiting toxic effects as with a hazard concentration value, HCx), the range of 

communities play an important role for the variation in assemblage sensitivity.  Within the UK the RICT 

(River Invertebrate Classification Tool) model is used as a measure of ecological water quality by 

predicting expected macroinvertebrate communities for an unimpacted freshwater river given the 

landscape characteristics of a specific river (Environment Agency et al., 2021; Wright, 1994). However, 

the model itself was built upon an extensive reference dataset of 835 minimally impacted sites (those 

experiencing only minor changes to river structure, watershed and pollution since pre-industrial 

times) in the UK and reflects how the variation in river typologies and properties influence the 

macroinvertebrate community (Davy-Bowker et al., 2006; Wright et al., 1996). Additional to spatial 

variation, climate change, in particular temperature, is known to influence the macroinvertebrate 

communities of the UK (Durance and Ormerod, 2007; Vaughan and Ormerod, 2012). Consequently, 

climate change over the 21st century could affect sensitivity by shifting community composition. Again, 

RICT can be adapted to use different river parameters, including temperature, permitting the effects 

of climate change on macroinvertebrate communities to be predicted (Armitage, 2000). This means 

that the diversity in assemblage composition which varies both spatially due to freshwater landscape 

and typology, and temporally due to the effects climate change, will need i) a way of assessing 

assemblage sensitivity, and ii) a consideration to what extent variation in assemblage sensitivity is 

down to taxonomic composition. 

Methods for predicting taxa sensitivity 

One approach capable of addressing both the genericism of ERAs and the lack of toxicity data for 

species in natural ecosystems is to predict the toxicological sensitivity of untested species and 

integrate these results into spatially explicit ERAs (van den Berg et al., 2021). There are multiple 

methods for predicting assemblage sensitivity and each has differing data requirements, explanatory 

power for the predictions, and limitations and assumptions, but none are currently employed within 

risk assessments (Baird and Van den Brink, 2007; Craig, 2013; Guenard et al., 2011; US EPA, 2016b). 

The calculation of a value of sensitivity is dependent on how the methodology utilises environmental 

and ecosystem data. For example, two common protection goals, i) ecosystem functioning because of 

the traits of organisms (e.g.  shredders and decomposers), and ii) the genetic and taxonomic diversity 
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of the communities themselves can each be protected using predicted sensitivities from examples of 

these predictive methodologies (Loreau and Mazancourt, 2013; Nienstedt et al., 2012). These are 

reflected in two of the predictive methods, trait-based and relatedness-based which are discussed in 

further detail in the next paragraph. Genomics-based methods represent a highly accurate 

methodology for species prediction by basing sensitivity prediction on the genetic basis of biochemical 

pathways and enzymes of species using the molecular target site of chemical toxicity. However to 

know the molecular pathways, genomics-based methods require genetic sequencing of every taxon 

to be predicted. Although sequencing of macroinvertebrates is improving, sequencing of the genetics 

underlying the relevant target site is limited for most species (Fedorenkova et al., 2010; LaLone et al., 

2013).  

Traits based predictive methods work on the assumption that organisms exhibiting similar traits will 

have similar chemical uptake (e.g.  diet, oxygenation mechanism, location within freshwater) and 

depuration (e.g.  body size, lipid content, metabolic rate) will therefore exhibit similar chemical 

sensitivity (Rubach et al., 2010; Van den Berg et al., 2019). In contrast relatedness-based methods use 

the fact that closely related species tend to exhibit similar sensitivities to chemicals by acting as a 

proxy for the extent of shared sensitivity-influencing factors (e.g. body size, metabolic pathways, 

target receptors, Blomberg et al., 2003). This occurs as closely related species share more of their 

genetics and niches, affecting traits, compared to distally related species. This is due to a shared 

distance from a common ancestor resulting in similar biochemistry and phenotype and therefore a 

shared susceptibility to specific chemicals (Guenard et al., 2011; Malaj et al., 2016). Ideally 

phylogenetics would be used as the basis of relatedness. However, the phylogenetic tree for UK 

macroinvertebrates remains unresolved and so it is not possible to be used currently, although 

advancements in sequencing mean that this is becoming increasingly resolved (Guenard et al., 2014).  

The data requirements for trait-based methods are a list of relevant traits for the predicted taxa (Baird 

and Van den Brink, 2007) and while macroinvertebrate trait databases are available and improving, 

coverage of freshwater macroinvertebrate taxa is incomplete, for example coverage of Crustacea and 

Insecta is good but more limited for less studied groups such as Mollusca and Annelida (Hébert et al., 

2016; Rubach et al., 2010; Usseglio-Polatera et al., 2000). In contrast, relatedness-based methods that 

utilise taxonomic ranking and structure have known relatedness relationships of UK freshwater 

macroinvertebrates making such methods suitable for predicting sensitivity (Craig, 2013).  
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Hierarchical species sensitivity distributions (hSSDs) 

Hierarchical species sensitivity distributions (hSSDs) are a relatedness-based predictive model that 

integrates taxonomic information to predict toxicity endpoints for a group of species with known 

taxonomy permitting the fitting of SSDs (Craig, 2013, and described in the methods below). The hSSD 

method is based upon hierarchical taxonomy and the establishment of the following from toxicity 

data: firstly, that there is a sensitivity tendency of a species and that these tendencies vary between 

species making species non-exchangeable, and secondly that interspecies correlation occurs with the 

strength of correlation decreasing with relatedness such that the uncertainty surrounding taxa 

sensitivity predictions will vary based on the relatedness of available toxicity data. This is in contrast 

to existing SSDs in that chemical identity will determine if a taxon is sensitive to that chemical or not, 

and therefore assemblage composition will affect the structure of the SSD curve on a chemical basis, 

a limitation noted for SSDs in current ERAs (Belanger et al., 2017). Acknowledging this, the hSSD 

method uses a Bayesian approach of different hierarchical model relationships depending on the 

degree of taxonomic relationship between the toxicity data and predicted taxa to calculate a 

sensitivity value, then collates the predictions for multiple taxa to calculate a HC5 value representing 

assemblage sensitivity. More detail on the hSSD method is presented in Appendix A3.1. 

Considering the existing literature above, the identified research gaps this chapter aims to address are 

to what extent do species assemblages vary in their sensitivity to chemicals and secondly, how is this 

variation affected by species composition and chemical toxic mode of action. Sensitivity prediction 

methods, in particular the relatedness-based hSSD method, can approach this by predicting sensitivity 

values for taxa with described taxonomy noting that the predictive capability of the model improves 

with a greater quantity of and more closely related toxicity dataset for the predicted taxon. It has been 

noted how such methods can improve upon the genericism of existing SSD methods, enabling spatially 

specific predictions of assemblage sensitivity. Furthermore, providing the effects of climate change on 

community composition can be projected, predictions for climate change affected assemblages could 

be calculated and compared to baseline predictions enabling some insight into the effects of climate 

change on the sensitivity of freshwater ecosystems. Contextualizing within an ERA perspective, this 

method could be used to inform locations where existing risk assessments are over or under 

protective, both currently and in a climate change affected future, avoiding excessive mitigation or 

highlighting areas that currently are or will undergo environmental degradation but are not 

considered within current ERAs.  

Consequently, the suitability of addressing these two issues with the hSSD method here by posing the 

following questions: 1) Given that organism sensitivity varies depending on the chemical, does the 
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sensitivity of a species assemblage vary with the chemical and its mode of action? 2) Given 

communities vary spatially and have different species compositions, does the calculated sensitivity 

threshold decrease in accordance with sensitive species presence? 3) How will the shift in taxa 

composition from climate change affect assemblage sensitivity compared to baseline conditions? 

These questions were addressed by: 1) Considering the magnitude of variation and the correlation co-

efficient of predicted values for common species between different chemical and mode of action 

groupings, 2) Comparing the calculated assemblage sensitivity values for different natural 

assemblages and linking the patterns in sensitivity to sensitive taxa and river typology, 3) Predicting 

the expected assemblages at a series of locations under baseline and future climate conditions and 

comparing the change in sensitivity between the same location for a series of agrochemicals. 

3.1.2 Hypotheses and Objectives 

1. Run the hSSD model for the collated toxicity datasets and evaluate the ability of the hSSD 

model to accurately predict sensitivity of taxa 

How strong is the correlation of using a leave one out analysis based on the toxicity 

datasets alone where taxonomic distances vary? 

How strong is the correlation between predicted and laboratory sensitivities for 

taxonomically closely related species (ie. members of the same genus and family) 

where similar sensitivity values would be expected? 

2. Assess to what extent the sensitivity between assemblages varies and is the variation in 

sensitivity patterned across chemicals with different toxic modes of action 

Over how many orders of magnitude are the differences in assemblage sensitivity? 

Do chemicals with modes of action targeting specific taxa (eg insecticides) exhibit a 

greater range in predicted assemblage sensitivities? 

3. Assess whether the sensitivity of an assemblage relates to the physical landscape 

characteristics of where that freshwater body and its macroinvertebrate assemblage is 

located 

To what extent does site typology relate to the type of taxa present? 

Are the most sensitive assemblages linked to typologies associated with taxa 

particularly sensitive to that chemical? 
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4. To quantify how the shifting of community composition under climate change alters the 

assemblage sensitivity 

By how much does assemblage composition change under climate change? 

Does the shift in assemblage from climate change increase mean assemblage 

sensitivity, and is this pattern the same for all chemical types? 

Does the shift in assemblage from climate change increase the range of assemblage 

sensitivities, and is this pattern the same for all chemical types? 

3.2 Methods 

3.2.1 The hSSD Model 

Natural assemblages contain a large number of species, only a few of which will have toxicity data for 

any specific chemical. To generate a species sensitivity distribution (SSD) for a specific assemblage, 

predicting the toxicant sensitivity of untested species is therefore usually necessary. The hSSD model 

was developed to assess the toxicant sensitivity of an assemblage that contains species whose 

sensitivity to the focal chemical is unknown (i.e. no toxicity data). It also accounts for the inherent 

uncertainty surrounding laboratory toxicity testing (EFSA et al., 2018a, (Forbes and Calow, 2002; 

Hickey et al., 2012). The hSSD model uses the EC50 (effect concentration affecting 50% of individuals 

of that species) values as a measure of toxicant sensitivity. The hSSD model used within this thesis is 

based on Craig (2013) and is model version 122 as this includes all taxonomic ranks (kingdom, phylum, 

class, order, family, genus, species) but not any ranks between these levels (e.g.  subphylum or 

superclass). Consequently, a description of the model and how it was adapted to the toxicity data used 

in this thesis, and how the model predicts taxa and assemblage sensitivity is included below. 

At the simplest level, an EC50 value (y) of a species (j) sensitivity to a chemical (i) considering the 

uncertainty of laboratory testing (k), a single EC50 can be calculated using Equation 1. 

𝑦𝑖𝑗𝑘 =  𝛼𝑖 + 𝛽𝑗 +  𝛿𝑖𝑗 + 𝜀𝑖𝑗𝑘           Equation 1 

Where yijk is the predicted EC50 value, αi represents the “true” average toxicity of the chemical i to a 

species across all species, βj the tendency of species j to be more or less sensitive on average to 

chemical exposure, δij the interaction factor of chemical i and species j representing per species 

chemical effects and εijk the inter-test variation when performing a laboratory toxicity study k featuring 

chemical i and species j, representing the measurement error from performing toxicity tests. 
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While δij is assumed to normally distributed for different species j, the shape of the distribution would 

be expected to be different for differing chemicals. For example, the range of sensitivities for a general 

narcotic would be less than for a highly specific insecticide. Consequently, a scaling factor (φ) for 

chemical i is incorporated into the hSSD model to represent this variation between chemicals 

(Equation 2). 

𝑦𝑖𝑗𝑘 =  𝛼𝑖 + 𝛽𝑗 +  𝜑𝑖𝛿𝑖𝑗 + 𝜀𝑖𝑗𝑘        Equation 2 

Factor αi was assumed to be represented by the inputted toxicity data and calculated from a normal 

distribution of all available EC50 values for chemical j in format N(σ2 α) with N representing the normal 

distribution and σ the standard deviation of the available toxicity endpoints (α) for chemical j. In 

contrast, εijk the inter test variation was modelled using a t distribution due to test variation tending 

to have one extreme tailed distribution as previously demonstrated from analysis of toxicity datasets 

(Craig et al., 2012). Consequently, the distribution for εijk can be summarised as t(σ2ε) with t 

representing the t-distribution and σ the standard deviation of what would be expected to be the 

outcome from differing toxicity tests.  

The sensitivity tendency of species (βj) and the chemical-species interaction (δij) can be further broken 

down to reflect the taxonomic structure of species and allow extrapolation from known species 

sensitivities and interaction factors from more distally related species at a higher taxonomic rank 

(Equation 3a and Equation 3b). This permits the hSSD model to predict sensitivity values even when 

toxicity studies on that specific species are unavailable. Nine taxonomic ranks were incorporated into 

the hSSD model: species, genus, family, class, superclass, sub-phylum, phylum, kingdom (numbered 1 

to 9 in Equation 3a and 3b) to align with the range of taxonomic ranks covered by invertebrate species.  

𝛽𝑗 =   𝛽1 (𝑗) + 𝛽2 (𝑗) + ⋯ +  𝛽9(𝑗)         Equation 3a 

𝛿𝑗 =   𝛿1 (𝑖𝑗) + 𝛿2 (𝑖𝑗) + ⋯ + 𝛿9(𝑖𝑗)       Equation 3b 

Where all members at a specific taxonomic rank n (ie. 1 through 9) are incorporated to each βn (j) and 

δn (ij) factor. Each individual taxonomic ranking component is sampled from a normal distribution of 

inputted data in the format N(σ2βn) or N(σ2δn) with N representing the normal distribution and σ the 

standard deviation in for data at taxonomic rank n.  

3.2.2 Chemical selection and processing 

To run the hSSD model, chemicals with acute toxicity data were collated for the most taxonomically 

diverse selection of species possible. Chemicals were only selected for inclusion if they had suitable 
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acute endpoints from at least 10 different taxa and represented at least 80% of the major invertebrate 

phyla found in UK freshwater ecosystems. The criteria for suitable endpoints were that they must be 

calculated EC50 or LC50 values for mortality or immobility from aquatic exposure via the medium. 

While the study must be aquatic, freshwater, brackish or marine species across a global distribution 

were considered acceptable as Maltby et al. (2005) indicated that taxonomic identity was an 

important factor influencing HC5 calculated values, but the geographic distribution and test media of 

the species was not. Where laboratory test guidelines are available (e.g.  OECD 202 for Daphnia, OECD 

(2004)), studies should ideally follow them without alteration to the media or test set-up. Any media 

concentration regime was acceptable, although preference was given to renewal or flow through 

studies as a consistent concentration is more likely to be maintained. The time frame for the study 

endpoint must be between 1-7 days, although ideally 96h endpoints were taken, or 48h for species 

where 96h studies are not performed as standard. This was done to increase the number of studies 

where the toxic effects would occur over the same timeframe. While both measured and nominal 

concentrations were considered acceptable, measured concentrations were taken in preference 

where available as they represent a more accurate exposure of the test organism.  

Datasets were collated from two sources, the toxicity datasets previously collected for Maltby et al., 

2005, and the publicly available US EPA ECOTOX database (US EPA, 2018). The chemicals included in 

Maltby et al., 2005 were supplemented with additional datapoints from the ECOTOX database. 

Endpoints from the ECOTOX database that were outliers compared to other values or were potentially 

from studies with multiple-stressors or non-standard methodologies had the original studies 

consulted to ensure suitability for inclusion. From these 40 chemicals were collected and grouped into 

three main types depending on their chemical properties and toxic effect on macroinvertebrates; 

metals formed one group, while organic chemicals were separated out based on whether they had a 

mode of action that specifically targeted a macroinvertebrate group, of which insecticides were the 

only group. All other organic chemicals were not specifically acting to one group of macro 

invertebrates and have been treated as general narcotics. 

For the hSSD model to read the chemical data, each taxa needed the current Linnean taxonomy for 

each of the ranks included in the hSSD model (kingdom, phylum, subphylum, superclass, class, order, 

family, genus, species). To ensure consistent taxonomy when filling in the taxonomic ranks the taxize 

package for R was used to complete the taxonomy using taxa and classification as listed in the NCBI 

database (Chamberlain and Szöcs, 2013; NCBI, 2021). The taxonomy for each file was then checked 

with the taxonomy database within the hSSD model and corrected to ensure the two align and would 

in intelligible by the hSSD model. Any taxa with toxicity data at a higher rank than species was assumed 
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to be a generic taxon in that rank rather than removing that toxicity endpoint. To make these data 

readable by the hSSD model the previously blank lower taxonomic ranks were replaced with Unknown 

(x rank) where x is the taxa and rank the taxonomic rank which is known (e.g.  Unknown (Coleoptera 

family) where a toxicity endpoint for Coleoptera was available only at the family level of classification). 

3.2.3 Testing the hSSD model 

Prior to use of the hSSD model for species sensitivity prediction, the model needed validation with the 

toxicity datasets collected above to ensure that the model would produce suitable output from these 

data. Firstly, a whole dataset leave one out analysis was performed to the following method. A taxon 

from the toxicity dataset was removed and the hSSD model run to predict a sensitivity value for the 

removed taxon from the other toxicity data. This was repeated for each taxon in the dataset. However, 

the distance in taxonomic ranks between each left out taxa and the remaining toxicity data varies. 

Consequently, due to the rank distance related uncertainty included in the hSSD model, the analysis 

will include predictions over both close relatedness e.g. shared genus, with low uncertainty factor, 

and distally related e.g. over phylum, where the expected strength of correlation is much weaker. 

While this analysis gives insight into the general predictive nature of the hSSD mode over broad 

taxonomic coverage, the inclusion of an uncertainty factor obscures the predictive power of the model 

alone.  

To address this, a secondary leave one out analysis was performed with a different methodology that 

predicted over consistent taxonomic distances. Again, each taxon in the dataset for a chemical was 

isolated but was converted into a generic taxon that shared a genus with the isolated taxon in the 

same form for where lower taxonomy is not known; for example, the species Daphnia magna would 

become Unknown (Daphnia genus). The hSSD model was then run for the generic genus taxa. If 

multiple members of the same genus were within the toxicity dataset for that chemical, the hSSD 

model was run for a taxon with that generic genus once. The strength of correlation between the 

actual toxicity value for that genus (with a geometric mean taken for multiple values in the same 

genus) and the prediction from the hSSD model was measured with Pearson’s method and was 

calculated independently for each chemical. 

3.2.4 Assemblage selection and processing 

To apply the hSSD model to UK freshwater ecosystems, a comprehensive list of macroinvertebrate 

assemblages representative of differing ecosystems across the country is required. The River 

Invertebrate Classification Tool (RICT) is a tool featuring a model to classify water quality based on 

macroinvertebrate biotic indices. The modelling aspect of RICT was constructed from a series of 835 
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reference sites across the UK reflecting a range of macroinvertebrate assemblages from the local 

climatic and landscape characteristics in rivers minimally impacted from anthropogenic action. Due to 

being minimally impacted they are representative of how chemicals would affect an otherwise 

unaffected macroinvertebrate assemblage. Again, the taxize package linked to the NCBI database was 

used to complete the taxonomy which was then aligned with the taxonomy database within the hSSD 

model and blank taxonomic ranks filled with the same Unknown (x rank) format. 

3.2.5 Running the hSSD model 

A single list of all taxa present in the 835 reference sites was collated from the RICT reference dataset, 

while a separate list was collated for all taxa predicted to occur at these sites under either baseline or 

future climate conditions based on the output of the RICT model with altered temperature values. The 

hSSD model was then performed for 6000 runs of the Monte-Carlo sampler for each taxon in these 

lists for all chemicals, and one run of the hSSD model generates a predicted EC50 value for each taxon 

in the list. The first 1000 runs were discarded to ensure convergence of the Monte-Carlo sampler. The 

next 5000 runs of the hSSD model were retained and for each taxon a geometric mean of these values 

calculated to give a predicted EC50 value for each taxon. The master list of predicted EC50 values was 

the subsetted for each reference, baseline and future assemblage to generate a list of species and EC50 

values for each of the 40 study chemicals, which were then used to calculate assemblage level 

sensitivity.  

The hazard concentration affecting 5% of taxa (HC5) is an established measure of assemblage 

sensitivity and is calculated by determining the species sensitivity distributions (SSDs, ECHA, 2008; 

Raimondo et al., 2008). A lognormal distribution was fitted to the predicted EC50 values for the 

component taxa of each site to generate assemblage-specific SSDs. The 5th percentile for the SSD was 

calculated and represents the HC5 for that assemblage. Confidence intervals for HC5 values were 

generated using parametric bootstrapping using the method described by (Grist et al., 2002). For each 

assemblage, a random value was generated from the original SSD distribution, then fitted with the 

original EC50 values to a new lognormal distribution followed by HC5 calculation. This process was 

repeated 1000 times and the HC5 value from each forming a normal distribution with the 50th 

percentile value forming the HC5 value for that assemblage and the 95% intervals of the bootstrapped 

values derived to give the confidence intervals of the HC5. 

3.2.6 Variation in chemical sensitivity across reference sites  

A total of 33,400 assemblage-specific HC5 values were generated (i.e. 835 sites by 40 chemicals). To 

ensure comparability between chemicals, the HC5 for each site and chemical combination was 
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standardised using the 50th percentile HC5 value for that chemical by dividing all assemblage HC5 

values by the 50th percentile assemblage HC5 for that chemical. The distribution of predicted HC5 

values across all chemicals (33,400 HC5 values) was visualised using a violin plot and the magnitude of 

difference of HC5 values across all sites and chemicals was calculated considering the range in the 

standardised HC5 values. To compare between different chemical types across the range and 

distribution (here taken as difference between 95% and 5% quantiles of the HC5 values), the properties 

of the HC5 distribution for each chemical were compared. The ranges and distributions for each 

chemical were calculated and then grouped by chemical type.  To analyse whether ranges and 

distribution differed between chemical types, a one-way ANOVA featuring chemical type as the factor 

and Tukey tests used to distinguish between chemical types.  

3.2.7 Influence of typology on assemblage composition and chemical sensitivity  

To visualise the link between typology and assemblage composition, a non-metric multi-dimensional 

scaling (NMDS) plot was fitted to presence/absence data for the assemblages of 835 sites grouping 

taxa at the order rank. Bray-Curtis was the distance metric used and the NMDS attempted 20 fittings 

with goodness-of-fit being measured as stress with the aim of minimising stress. Loadings were 

calculated for each taxonomic order with adjustment for the frequency of each order such that higher 

frequency increases loading strength.  Typologies were assigned to each site based upon those 

recorded in the RICT reference database (Wright, 1994), and visualised across two dimensions with 

adjusted loadings according to typology.  

The Water Framework Directive categorises typology as being based upon the altitude, catchment 

area size and geology of the river sampled (Davy-Bowker et al., 2006). Each of these is subdivided into 

different categories: altitude above sea level into low (< 100 m), medium (100-1000m) and high (> 

1000 m), catchment area into very small (<10m2), small (10 - 100 km2), medium (100 - 1000 km2), and 

large (> 1000 km2), and finally geology into calcareous, silicious or organic.  Typologies have seen use 

within the WFD as the type and quantity of taxa expected in river ecosystems are associated with 

specific river typologies. The RICT reference sites have been categorised into each WFD category as 

part of inclusion in the database (Wright, 1994). For each chemical type, to analyse the link between 

typology and the most sensitive sites, a Chi squared test was used to compare the proportion of 

typologies represented across the 5% most sensitive assemblages for each chemical type and the 

overall proportion of each typology represented by the RICT reference sites. 
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3.2.8 Effects of climate change on assemblages 

RICT is used for assessing water quality by comparing the sampled macroinvertebrate assemblage 

from a site to the theoretical expected macroinvertebrate assemblage that would be present in 

optimal water quality conditions as predicted by RICT (Wright et al., 1998). RICT does so by comparing 

the landscape and climate characteristics from the sampled site and to the properties of the reference 

sites. RICT then predicts the assemblage for the sampled site probabilistically for each taxon based 

upon on the similarity of landscape and climate characteristics between the sampled and reference 

sites. For reference sites more in common with the sampled sites, the taxa that were present at the 

reference sites are more probable in the sampled site. Therefore, RICT can also be used to predict the 

expected macroinvertebrate assemblage for a given set of climate and landscape characteristics.  

When RICT predicts the assemblage, it utilises a series of landscape and climatic characteristics of the 

site. Under climate change conditions, landscape parameters intrinsically associated with the site such 

as river geology (as calcareous, siliceous and organic) and altitude will not be expected to change. 

Thus, of the parameters used by RICT, mean air temperature and discharge are the two categories 

that are influenced by the climate. RICT uses four discharge categories each an order of magnitude 

apart. Projected changes to mean river flow across various river catchments across the UK are 

expected to be between a -8.9% to +2.2% for UKCP18 projections for the A1B emission scenario, 

supporting similar findings for projections from UKCP09 datasets (Kay et al., 2021, 2020; Prudhomme 

et al., 2012). This change is far less than the order of magnitude difference between discharge 

categories used by RICT. Consequently, the change to mean air temperature will be the largest effect 

of climate change on RICT.  

Projected mean air temperatures for the UK are produced by the UK Met Office (Lowe et al., 2018). 

The latest version of the United Kingdom Climate Projections (UKCP) are from 2018 (with revisions in 

2019) are known as UKCP18 and are the climate projections used in this study (Met Office, 2019). The 

UKCP18 dataset is available at a variety of time periods and resolutions. To reflect the local climate of 

each reference sites and to match the climate data used within Chapter 2, UKCP18 data at the 5km 

resolution was used. The 5km resolution uses projections for the RCP 8.5 pathway and mean 

temperature projections between 1980-2000 (baseline) and 2060-2080 (future) were used matching 

the scenarios in Chapter 2. Each of the 835 sites were linked to the nearest UKCP18 5km grid square 

and the daily mean air temperature data across the scenario period extracted and then averaged 

annually to form the baseline and future air temperature value for each site. Mean daily air 

temperature at 10m was used as this was the value used in constructing RIVPACS, the original model 

underlying RICT. 
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Using these UKCP18 values, the built-in air temperature value for the reference sites was replaced 

with the respective baseline or future temperature and then run within RICT. RICT predicted the 

probability of taxa being present at the site and a cut off probability of occurrence of 0.5 was used in 

accordance with the cut off originally used within RICT (Wright et al., 1996). By repeating this process 

for each of the 835 reference sites, 1670 macroinvertebrate assemblages for each site under baseline 

and future conditions was formed. To fill the necessary taxonomic rankings for running the hSSD 

model, the NCBI database was used for macroinvertebrate taxonomy with the taxize package 

(Chamberlain and Szöcs, 2013). This completed missing taxonomic ranks from the taxa RICT predicted 

with any remaining blank taxonomic ranks filled with the format Unknown (x rank) where x is the taxa 

and rank the taxonomic rank which is known (e.g.  Unknown (Coleoptera family) where a toxicity 

endpoint for Coleoptera was available only at the family level of classification). 

3.2.9 Assemblage composition under climate change and chemical sensitivity 

When accounting for the effect of climate change on assemblage composition it was necessary to 

quantify by how much macroinvertebrate composition shifts under climate change (using the RICT 

predictions from 3.2.8). Jaccard similarity (Jaccard, 1912) was calculated to compare assemblage 

composition at each of the 835 sites under baseline and future climate conditions. The Jaccard 

Similarity (j) was calculated as below, where two assemblages have the number of taxa A and B, and 

A∩B is the number of taxa in common between the two assemblages. 

𝑗 =  
𝐴 ∩ 𝐵

𝐴 + 𝐵 −  𝐴 ∩ 𝐵
 

The hSSD model was then applied to the baseline and future assemblages for each chemical to 

calculate HC5 values according to the same methodology as the RICT reference sites (see 3.2.5, 6000 

runs with first 1000 burned, SSD fitted with a log-normal function) 

To compare the assemblage sensitivity (as HC5 values) of baseline and future assemblages for one 

chemical, a paired t-test was used including the HC5 values from each site. This was repeated for all 

chemicals, the results from which were then grouped by chemical type (i.e. insecticides, metals and 

narcotics).  To analyse the effect of climate change on the change to HC5 between baseline and future 

sites and whether this varied depending on chemical type, a two-way ANOVA incorporating both 

climate change and chemical type was performed, with Tukey tests to compare the chemical types. 

These analyses were performed for both the mean change in HC5 and the distribution (here taken as 

difference between 95% and 5% quantiles of the HC5 values) of HC5  values across sites. 
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3.3 Results 

3.3.1 Chemical and assemblage taxonomy with model predictions 

Using the chemical selection methodology described in 3.2.2, 40 chemicals were considered suitable 

with all having between 12 and 177 suitable toxicity endpoints depending on the chemical across phyla 

coverage of between 82.3% and 98.2% of the RICT reference dataset. A full breakdown of the toxicity 

data on a per chemical basis is presented in Appendix Table A3.1 

The hSSD model was constructed with the following relationship; as the taxonomic distance between 

the taxon to be predicted and the nearest taxonomic rank for which toxicity data is available increases, 

the strength of correlation between the prediction and toxicity data decreases and the uncertainty 

surrounding the prediction increases. A comparison of the overlap in taxonomy of the assemblages at 

835 reference sites compared to the toxicity datasets for the 40 chemicals is presented in Figure 3.1 

for different taxonomic levels (a full breakdown on a chemical type and individual chemical basis is 

presented in Table A3.1). At the phylum level, at least 93% of phyla in reference assemblages were 

represented in toxicity data sets for metals (98%), insecticides (95%), and narcotics (93%). The phyla 

not represented in toxicity data sets were those most infrequently tested and were also rarely 

recorded within the RICT reference dataset such as Tardigrada, Porifera and Cnidaria. The proportion 

taxa to be predicted that overlapped with the taxa in the toxicity data decreased at lower taxonomic 

ranks (Figure 3.1), with only 6-10% of the 635 taxa in the reference sites sharing a genus with the 

toxicity data (mean across chemicals grouped by type, for individual chemicals the range was 0.1 – 

22.5%).  

The hSSD model was first tested with a leave one out analysis using the toxicity datasets from 40 

chemicals. For each of the 40 chemicals, the EC50 value for each taxon in the toxicity dataset was 

predicted from the EC50 data for other taxa in that dataset. The Pearson R2 value calculated between 

the actual and predicted toxicity data ranged between 0.4 to 0.5 across all taxonomic ranks (i.e. 

species-specific predictions based on toxicity data for taxa in the same genus, family, order, class or 

phylum). A second leave one out analysis, using family and genus data only in the extrapolation, 

resulted in an R2 value of 0.83 across all chemicals for species-specific predictions based on taxa in the 

same family and 0.85 for species-specific predictions based on taxa in the same genus.  
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Figure 3.1 Mean percentage overlap at differing taxonomic ranks between taxonomy in the reference 835 sites and toxicity 
data for 40 chemicals grouped by chemical type (with the number of chemicals in each type being 24 insecticides, 
5 metals and 11 narcotics).  Boxplots representing the 25th, 50th and 75th percentile across all combinations with 
whiskers representing the media plus 1.5 times the inter-quartile range 

3.3.2 Distribution of chemical sensitivity across reference sites 

The 122 version hSSD model was used to calculate the EC50 values for all species present at the 

reference sites, then specific HC5 values were calculated for each of the 835 site-specific assemblages 

and for each of the 40 study chemicals. Assemblage-specific HC5 values were standardised across 

different chemicals by dividing by the 50th percentile HC5 for that chemical and the distribution of the 

resulting 33,400 HC5 values is presented in Figure 3.2. Most sites fell around the 50th percentile (ie. a 

standardised log10[predicted HC5] of 0 in Figure 3.2), although the range if HC5 values among sites was 

large, with different assemblages having HC5 values of over 3 orders of magnitude apart. There was a 

positive skew to this range with the upper tail for sites with high HC5 extending further beyond the 

50th percentile than sites with smaller HC% values. On a per chemical basis, the distribution of HC5 

values for specific chemicals and their chemical type without standardisation of the HC5 is presented 

in the appendix (Figure 3.3). 
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Figure 3.2 Distribution of 33,400 predicted HC5 values from across 835 reference sites in the UK and 40 chemicals presented 
on a base 10 logarithmic axis. As species and therefore assemblages have chemical-dependent sensitivity, the site 
HC5 values have been standardised by dividing by the 50th percentile site HC5 for that chemical. 

The proportional range of HC5 values (maximum HC5 divided by the minimum HC5) varied depending 

on chemical type. Insecticides, which have a toxic mode of action targeting insect species, exhibited a 

significantly greater range of HC5 values than narcotics, which exhibit general toxic effects (Figure 3.4, 

F value = 30, DF = 2, 37, p = <0.001). On average, the proportional range of HC5 values for assemblages 

at references sites varied by a factor of 25.2 for insecticides, much greater than the factor of a factor 

of 2.68 for metals and a factor of 2.51 for narcotics.
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Figure 3.3 Comparison of the calculated HC5 values across the 835 RICT reference sites for 40 different chemicals. Chemicals have been coloured by chemical type representing their grouping and effect on 
macroinvertebrate taxa
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Figure 3.4 Proportional difference between the predicted HC5 values for  the maximum and minimum range across site-
specific assemblages across sites where the proportional range is the maximum HC5 divided by the minimum HC5. 
Letters denote results of pair-wise comparisons (Tukey’s HSD test) and means values sharing the same letter are 
not significant different (p < 0.05). Results have been presented on a logarithmic base 10 scale with the mean 
represented as the central point with 95% confidence interval error bars while values for individual chemicals are 
represented as smaller points  

3.3.3 Influence of typology on assemblage composition and chemical sensitivity 

Reference sites differ in the composition of their macroinvertebrate assemblage in accordance with 

the physical properties of the site included in the Water Framework Directive (WFD) as presented in 

Figure 3.5. The NMDS plots in Figure 3.5 show the ordination of 835 RICT reference sites based on the 

presence of macroinvertebrate families in each site-specific assemblage. Sites are colour-coded to 

indicate WFD classifications of river geology, altitude above sea level and river catchment size. The 

NMDS plot of site-specific assemblages had Spearman correlation of 0.867, and the loadings collated 

at the order rank are shown on the plot. In general, loadings were more strongly aligned with the 

NMDS1 axis than the NMDS2 axis, and the NMDS1 axis was the primary differentiator between sites. 

Major Insecta orders including Plecoptera, Odonata and Ephemeroptera among others, and the worm 

order Lumbriculida were associated with negative NMDS1 values. In contrast most soft bodied 

invertebrate orders, such as Mollusca (including Bivalva and Gastropoda) and leeches 

(Arhynchobdellida and Rhynchobdellida) with positive NMDS1 values. Positive NMDS1 values were 

also associated with a different set of Arthropod taxa including Isopoda Crustacea, Trombidiformes 

(freshwater mites) and multiple Insecta clades: Hemiptera, Lepidoptera, Megaloptera, and 

Neuroptera. 
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Figure 3.5 Ordination of the 835 RICT reference sites based upon family level assemblage composition with non-metric 
dimensional scaling across two axes with arrows demoting loadings at the order level. Typologies have been 
separated out based upon the classification according to Water Framework Directive with the three component 
categories of riverbed geology (A), altitude (B, ≤100m above sea level low, > 100m above sea level medium), and 
river catchment size (<10m2, 10 - 100 km2, 100 - 1000 km2, > 1000 km2 from very small to large respectively) 
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All the typological categories of geology, altitude and catchment size exhibited differentiation in the 

NMDS, particularly along the NMDS1 axis (Figure 3.5). Figure 3.6 shows that the midpoint for organic 

sites at all altitudes, and both calcareous and silicious sites at medium altitude was at NMDS1 values 

of below one, while lowland (<100m altitude) calcareous sites had their midpoint at a positive value 

of 0.31 and was significantly higher than all other typologies. Low silicious sites had a midpoint of 0.00 

and again, were significantly different to all other typologies. River catchment size is partially 

autocorrelated with altitude; upland sites are nearer to river source and therefore have both smaller 

catchment sizes and are at higher altitudes compared to the large drainage basins associated with 

lowland rivers. Supporting this, catchment size increased positively along the NMDS1 axis. 

Consequently, these patterns of typology align with the effect of taxonomy on the NMDS scales. 

Smaller upland rivers and those with silicious and organic geologies tend to have more of specific 

Insecta taxa such as stoneflies (Plecoptera), mayflies (Ephemeroptera), beetles (Coleoptera) and 

caddisflies (Trichoptera) than large lowland and calcareous rivers which are more associated with 

other Insecta species (e.g.  Heteroptera), Isopoda Crustacea, and Mollusca taxa. 

 

Figure 3.6 Violin plots indicating the distribution of assemblages and their associated NMDS1 scores based upon ordination 
at the Order level for the taxonomy of 835 RICT reference sites separated by typology with the midpoint of each 
displayed as a point in the violin plot. Letters denote results of pair-wise comparisons (Tukey’s HSD test) and means 
values sharing the same letter are not significant different (p < 0.05). Typologies have been separated out based 
upon the classification according to Water Framework Directive with the three component categories of riverbed 
geology and altitude (≤100m above sea level low, > 100m above sea level medium) 
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When considering the most sensitive assemblages for each chemical (here the 5% most sensitive), the 

proportion of sites belonging to each typology (where typology is one of six combining the WFD geology 

and altitude classification) varied depending on chemical type (Figure 3.7B ). Compared to the proportion 

of these typologies in the reference sites (Figure 3.7A) there were significant differences in the 5% most 

sensitive assemblages for metals (Χ-squared = 115, df = 5, p < 0.001) and narcotics (Χ-squared = 24, df = 5, 

p < 0.001).  In contrast there was no significant difference between the proportion of typologies in the 5% 

most sensitive sites for insecticides and the proportion of typologies in the RICT reference sites (Χ-squared 

= 2.9, df = 5, p > 0.99). Metals were associated with low calcareous sites where they were proportionally 

more of the sensitive sites (77%) than for both insecticides (38%) and narcotics (52%). Concurrently, 

proportionally fewer of the most sensitive sites were of medium silicious typology for metals (4%) than for 

insecticides (25%) and narcotics (22%). For some typologies, comparatively few of the 835 reference sites 

were of these typologies (e.g.  medium organic and low organic composed only 4 and 14 sites or 2.5% and 

4.5% of total sites respectively in the RICT reference dataset) meaning drawing conclusions for such 

typologies is difficult. 

 

Figure 3.7 Plots displaying the typological distribution of the sites associated with A, each assemblage from the RICT 
reference sites and B amongst the 5% most sensitive assemblages based on the predicted HC5 values for each 
chemical grouped by chemical type. Typologies were defined based on geology and altitude three component 
categories of riverbed geology, altitude (≤100m above sea level low, > 100m above sea level medium) On B, * 
indicate chemical types where the typologies from the sites of the 5% most sensitive assemblages are significantly 
(p < 0.05) different to the proportion of assemblages associated with the site typologies of the RICT reference sites 
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3.3.4 Effects of future climates on assemblages and their chemical sensitivity 

Running RICT with the reference site data but with meteorological characteristics altered resulted in 

two scenarios for each site, a baseline and future assemblage. The amount of change in taxonomic 

composition was not the same over all sites, as shown in Figure 3.8 where Jaccard similarity indicated 

how similar the assemblage compositions are, and Jaccard similarity decreases with an increase in 

temperature change between baseline and future conditions (linear model, gradient = -0.16, df = 835, 

834, t value = 16.9, p value < 0.001). There are notable peaks at similarities of 0.3 and 0.5 not 

associated with any typology (ANOVA, df = 5, F value = 1.91, p value = 0.09) likely corresponding to 

thresholds within the RICT model.  

 

Figure 3.8 Jaccard index measuring similarity between the assemblage composition of the future scenario compared to the 
assemblage composition of the baseline scenario for each of the 835 reference sites, where a Jaccard index of 0 is 
total dissimilarity and 1 is total similarity. Both baseline and future assemblages were predicted by RICT utilising 
UKCP18 climate data for mean daily temperature and range at a 5km scale for each site 

The shift in taxonomic composition also altered the sensitivity of the sites as the predicted HC5 values 

changed across chemical types. Considering the mean HC5 across each site for all chemicals (Figure 

3.9A), when grouping by chemical types both insecticides and narcotics exhibited a significant increase 

to mean HC5 of 16.1% and 2.7% respectively and therefore an average decrease in site sensitivity due 

to future assemblage composition compared to baseline assemblages (t value = 45, DF = 19031, p < 

0.001 and t value = 12.25, DF = 8722, p < 0.001 respectively). There was no significant change in the 

mean HC5 between the baseline and future scenarios for metals (2.7% increase, t value = 1.54, DF = 

3964, p = 0.12). However, there was a significant difference between the mean HC5 value for 

insecticides and narcotics with assemblages shifting to become increasingly less sensitive to 

insecticides than narcotics (F value = 3.78, DF = 2, 37, p = 0.032).  

In contrast, the range between the 5% least and most sensitive sites is set to significantly decrease 

under climate change for all chemical types, with the 50th percentile range for insecticides, metals and 
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narcotics having a decreased range of 32%, 27% and 16% respectively (Figure 3.9B). Although this 

pattern was common across all chemical types, insecticides exhibited a significantly greater decrease 

to this range than narcotic chemicals (F value = 7.93, DF = 2, 37, p = 0.014). 

 

Figure 3.9 The percentage change to A, the mean HC5 across sites and B, the change range between the 5% lowest and highest 
HC5 values for each chemical grouped by type when predicting HC5 values for assemblages predicted under future 
climate conditions (2060-2080) compared to baseline conditions (1980-2000). The results have been grouped by 
chemical type with letters denoting results of pair-wise comparisons (Tukey’s HSD test) and means values sharing 
the same letter are not significant different (p < 0.05). For plot A, * denote chemical types where the change to HC5 
was significantly (<0.05) different from 0%, representing a change to mean HC5 from shifting assemblage 
composition. For B, all chemicals were significantly (<0.05) different from 0% 
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3.4 Discussion 

Spatial and temporal variation in the taxonomic composition of stream macroinvertebrate 

communities is well established and based upon records on macroinvertebrate samples in the UIK 

dating back to 1980s (Bradley and Ormerod, 2001; Vaughan and Ormerod, 2012). Such communities 

change in composition due to environmental stressors, such as pollutants or changes in temperature, 

changing species’ niche compatibility and interspecific interactions, driving population changes, 

migration and colonisation. On the other hand, understanding of how species composition translates 

into ecosystem sensitivity to chemicals is poorly understood (Gessner and Tlili, 2016). Any 

consideration of the threat posed by chemicals to natural species assemblages faces a major 

challenge; toxicity data are only available for a limited number of species meaning the sensitivity of 

each of the diverse species in natural ecosystems is unknown. Therefore, there is a need to develop 

and improve approaches capable of extrapolating toxicity data from tested species to multiple 

untested species in assemblages of interest. In this chapter, the hSSD model has been used to predict 

the sensitivity of untested species in natural assemblages and to investigate how variation in the 

taxonomic composition of natural assemblages influences their sensitivity to chemical pollutants.  

To capture the likely effects of agrochemicals on natural ecosystems, 835 minimally impacted sites 

(those experiencing only minor changes to river structure, watershed and pollution since pre-

industrial times) in the UK formed the base assemblages for predicting sensitivity (Wright et al., 1996). 

To represent the suite of agrochemicals, toxicity datasets for 40 chemicals, grouped by chemical type 

and effect on invertebrate taxa, were investigated to establish whether the variation in sensitivity 

would affect the outcome of Environmental Risk Assessments (ERAs) and if there was any linkage 

between the spatially variable typological properties of the site and therefore assemblage and 

chemical sensitivity. Furthermore, a reinterpretation of the RICT model, usually used for assessing 

water quality, has been used to predict the effect of rising temperatures associated with future climate 

change on invertebrate composition. While this option for the RICT model has been previously 

highlighted (Armitage, 2000), it has not seen applied use and thus this research represents a novel 

reinterpretation of RICT. By combining predicted changes to taxonomic composition with species-

specific toxicity predictions from the hSSD model, a novel use for RICT has been found. This is as a way 

to quantify how taxonomic composition changes under climate change affect the sensitivity of natural 

ecosystems. 
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3.4.1 Model functionality and applicability 

The hSSD model provides a way to predict chemical-specific sensitivity values for taxa without toxicity 

data (i.e. untested taxa for the focal chemical) that can be integrated into an SSD for the entire 

assemblage and used to calculate an assemblage-specific HC5 value for a specific chemical. The 

predictive power of the model is a function of the toxicity dataset for each chemical to the assemblage 

being predicted, namely the taxonomic distance being extrapolated over, and the quantity and extent 

of concordance of the toxicity data at each taxonomic rank. Although the hSSD model has was 

developed and tested for functionality and statistical robustness (Craig, 2013), this study is the first 

time it has applied to naturally occurring assemblages. Consequently, additional analyses were 

performed to evaluate the robustness of the hSSD model. Two types of leave-one-out analyses were 

performed; the first predicted a sensitivity value for each taxon in the toxicity dataset using all other 

toxicity datapoints and resulted in a of correlation > 0.4 for all chemicals reflecting the expected 

relationship of taxonomic distance and sensitivity from taxonomically diverse sensitivity datasets 

(Craig, 2012). The second leave-one-out analysis tested extrapolations where a high degree of 

correlation would be expected ie. a taxonomic distance of the family and genus level between the 

toxicity data to the predicted species. Predictions to taxonomic data separated at the at the family 

and genus level resulted in mean correlations of 0.83 and 0.85 respectively across all chemicals 

demonstrating the functionality of the model and applicability to species in natural ecosystems.  

The hSSD model is only one approach to addressing prediction of species toxicity, but while genomics-

based or trait-based methods may be able to provide greater insight into assemblage sensitivity, both 

methods are limited by their data requirements not covering the genomes and full trait profiles for 

the 637 taxa recorded in the RICT reference data (Blomberg et al., 2003; Guenard et al., 2014; van den 

Berg et al., 2021). Thus, given the ubiquity of organism taxonomy, the major data requirement for the 

hSSD model is for a wide range of taxonomic data that covers a sufficiently broad range of the phyla, 

classes and families to be predicted making the hSSD method easier to apply than other predictive 

methods. For extensively researched chemicals with a broad taxonomic coverage the hSSD model 

provides a useful method for predicting assemblage sensitivity but has limited utility for data-poor 

chemicals such as newly synthesised pesticides or emerging chemical contaminants (US EPA, 2018). 

This limitation has been shown within the datasets; using the selection criteria described in 3.2.5 (10 

acute EC50 endpoints for at least 10 unique taxa and coverage of at least 80% of the phyla represented 

in the RICT dataset) there are no pharmaceuticals with taxonomically rich enough datasets to run the 

hSSD model and therefore provide reliable sensitivity predictions.  
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While the use of taxonomy as the basis of sensitivity predictions allows the application of the hSSD to 

a diverse set of macroinvertebrates, there are limitations: taxonomic ranks represent differing levels 

of phylogenetic distance and therefore genetic similarity between different invertebrate clades, yet 

rank is being used as a discrete proxy for genetic similarity of chemical sensitivity (Barraclough, 2010; 

Pfrender et al., 2010). Secondly the genetic difference between taxa does not necessarily relate 

directly to sensitivity, with some sensitivity influencing traits (e.g.  body size, lipid content) being highly 

labile between members of the same genus (Blomberg et al., 2003; Rubach et al., 2010). Regarding 

the former, while phylogenetic methods exist, but have poor applicability to natural ecosystems as 

the phylogenetic tree for all macroinvertebrates has not been resolved (Guenard et al., 2014; Malaj 

et al., 2016). This means that the extent of genetic similarity between many macroinvertebrate taxa 

is currently unknown, although improvements to mass sequencing may permit this method in the 

future and supplant taxonomy utilising relatedness-based methods of predicting species sensitivity. 

Regarding the second point, there are cases of closely related species e.g. those separated at the genus 

level and even intraspecific phenotypic differences, that exhibit drastically different sensitivities to the 

same toxicant, due to the traits of the organisms that are not currently accounted for in traits-based 

methods (van den Berg et al., 2019). Again applicability to a wide range of macroinvertebrates is an 

issue as trait knowledge is a limiting factor with many non-arthropod clades being incomplete, 

although this is improving (Hébert et al., 2016; Rubach et al., 2010). Ideally, an integrated predictive 

methodology combining the hSSD with other sensitivity prediction methods, such as genomics-based 

and trait-based approaches may provide the most suitable and accurate method of predicting species 

sensitivity (van den Berg et al., 2021). However, given the early stage of research into predictive 

sensitivity, a proof of application for the hSSD model has been demonstrated here that can be built 

upon.  

3.4.2 Assemblage sensitivity considering chemical type and site typology 

The predicted HC5 values for each site-specific assemblage demonstrate that chemical sensitivity 

varies between assemblages, and that the magnitude of this variation is influenced both by type of 

chemical being studied and the river typologies of the sites being compared. The range of assemblage 

sensitivity (measured as chemical-adjusted HC5) averaged out over all chemicals as a factor of 16.1, 

although this varied greatly by chemical identity. While some chemicals, such as tolulene exhibited 

little difference in sensitivity (factor of 0.9), 21 chemicals varied by a factor greater than 5, and 15 

chemicals had sensitivities vary by orders of magnitude (factor of >10) including endrin with largest 

factor of difference at 154. This extent of between assemblage variation in sensitivity means the 

location of chemical exposure is important as specific locations may be more prone to chemical 
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exposure, supporting existing literature on the site variability on the effects of chemical pollution 

(Beketov et al., 2009; Berger et al., 2017), while also providing a quantitative and chemical specific 

sensitivity value. Contextualising in an ERA perspective, over half the chemicals investigated would 

exhibit greater sensitivity between sites than covered by the assessment factor of 5 recommended for 

ERAs based upon SSDs to account for spatial variation, among other sources of uncertainty (ECHA, 

2008; EFSA, 2013a). 

Moving beyond pan-chemical considerations, the range in assemblage sensitivity varies between 

chemical types. Some chemicals target particular groups of invertebrate species (i.e. specifically acting 

chemicals) whereas other have a broader spectrum of activity (i.e. generally acting chemicals). In this 

study, insecticides, which specifically target arthropods, are notable for having significantly larger 

between-assemblage variation in sensitivity than other chemicals studied (i.e. metals and narcotics). 

This supports the hypothesis postulated in the Introduction that assemblages will exhibit a greater 

range in sensitivity for specifically acting chemicals as the differences in taxonomic composition will in 

the sensitive taxa in the assemblage determining the HC5. This result represents the first broadscale 

investigation of how assemblage composition can affect sensitivity; Posthuma et al. (2019) have 

calculated SSDs for 1760 chemicals and over 22,000 waterbodies but only considered variation in 

chemical fate dynamics without any consideration on how spatial variation in assemblage composition 

affects the SSDs and therefore sensitivity. In contrast, Birk et al. (2020) investigated multistressor 

effects, including agrochemical toxicity, on a series of 33 mesocosm and 36 watershed basins. While 

taxon-sensitivity indices were used within the study, these were to inform biodiversity as a response 

to multiple stressors rather than a factor driving variation in sensitivity to agrochemicals. Thus, the 

hSSD methodology of predicting and assessing assemblage specific HC5 could represent nuanced 

assessment of agrochemical risk not currently given due consideration. 

Given that it has been established that variation in assemblage sensitivity (HC5) that is dependent on 

the taxonomic composition of assemblage, any environmental factors that influence assemblage 

composition could therefore also influence chemical sensitivity. River typology, defined in terms of 

altitude, geology and catchment size, has been shown to be an important determinant of UK 

macroinvertebrate assemblage composition (Davy-Bowker et al., 2006; Townsend et al., 2003). 

Landscape typology acts as a factor influencing assemblage composition, with patterns between 

taxonomy and geology, and the linked variables of altitude and catchment size observed. Investigating 

how the link related to agrochemical sensitivity, the hypothesis that assemblage sensitivity would also 

vary between river typologies was supported. Assemblages sensitive to metals and narcotics were 

more abundant in low altitude calcareous rivers compared to the proportion of reference sites with 
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this typology. Low altitude calcareous sites were associated with Isopoda Crustacea and soft bodied 

taxa such as Hirudinea (leeches), and Mollusca. Molluscs are known to be particularly sensitive to 

metals, such as copper (Bjerregaard et al., 2015; Verschoor et al., 2011). In contrast the distribution 

of assemblages sensitive to insecticides was not significantly different to the proportion of each 

typology in the RICT reference dataset. Insecta and Crustacea are highly sensitive to insecticides and 

therefore drive the sensitive end of the SSD shape and therefore greatly influence the HC5 (Forbes and 

Calow, 2002). However, unlike other invertebrate clades which are associate only with zero to positive 

NMDS1 values, Insecta and Crustacea taxa are ubiquitous in UK freshwater ecosystems irrespective of 

typology, albeit with different clades being found at positive and negative NMDS1 values.  This also 

meant that the sensitive insecticide taxa are likely to be present across NMDS1 scales irrespective of 

the river typology. 

3.4.3 Accounting for climate change on assemblage composition 

The implications of climate change for freshwater communities has been investigated and the 

combined influences of changing climate and water quality have been observed on broad large scale 

patterns (EFSA et al., 2020; Pearson et al., 2016; Vaughan and Ormerod, 2014). Equally, Chiu et al., 

(2017) investigated a specific Californian watershed as a case study area on the effects of climate 

change on invertebrate communities and their response to chemical contamination. However, 

currently no methodologies exist for quantifying the consequences of climate-induces changes in 

assemblage composition on chemical sensitivity that can be adapted to different chemicals and sites. 

This was addressed here by using the RICT model to predict site-specific assemblages under baseline 

(1980-2000) and future (2060-2080) climate conditions using site-specific temperature predictions 

from UKCP18 RCP 8.5 and then comparing the predicted HC5 values between the baseline and future 

assemblages. 

The RICT model is primarily used to calculate the water quality of a location based on the presence of 

freshwater invertebrate species given the physical parameters of the site (Clarke et al., 2003). 

However, by effectively running the model using altered physical parameters, the model can be used 

to predict species compositions rather than assess quality (Armitage, 2000). There are some 

limitations of using RICT for these purposes not encountered during the normal use of the RICT model, 

particularly where temperatures rise beyond those in any of the reference sites. Following extreme 

climate change, some locations will have moved their meteorology beyond any of the reference sites 

in the model resulting in increased uncertainty over the results. Moving forwards, with the WFD 

directive seeing use across multiple countries, including those who currently experience climate 

conditions comparable to future UK river sites, integration of such sites with the RICT model could 
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prove useful for evaluating shifts in community composition under climate change (Kochskämper et 

al., 2016; Wilby et al., 2006).  

The similarity in the predicted baseline and future assemblages at the 835 reference sites varied 

between 0.13 and 1.0 (ie. no change), with the median similarity being exactly 0.5. Future changes in 

assemblage composition were associated with decreases in the sensitivity of assemblages to chemical 

exposure (i.e. increase in HC5), although this was only statistically significant for assemblages exposed 

to insecticides or narcotics. The quantification of the effects of climate change on chemical sensitivity 

from assemblage composition represent a novel application little investigated; Chiu et al. (2017) noted 

little to no change in the SPEAR index in agricultural land and an increase in some upland streams. 

However, the SPEAR index is not chemical specific and could not be used to compare the change in 

risk on a per-chemical basis as considered here (Beketov and Liess, 2008; Liess and von der Ohe, 2005).  

The results from this chapter are that the shifts to assemblage composition from climate change will 

have relatively limited effect on the site sensitivity with a slight increase in median site tolerance 

across all chemical types. However, it should be noted that there was a corresponding decrease to the 

range of sensitivities between sites by varying percentages (45 – 106%) for all chemicals, and therefore 

an decrease to the proportion of sites below the 5% most sensitive sites under baseline conditions not 

reflected in the change to the 50th percentile HC5. While the overall increase in the median tolerance 

of assemblages to chemicals under climate warming was common across all chemical types, at the 

individual species level, many studies have reported additive or synergistic effects between warming 

and chemical exposure (Cuco et al., 2016; Janssens et al., 2017; Khoma et al., 2021; Nieto et al., 2016; 

Rathore and Khangarot, 2002; Silva et al., 2020; Tran et al., 2018), which may counteract the increase 

in chemical tolerance due to compositional changes.  

3.4.4 Applied use of the hSSD model 

The use of the hSSD model to assess assemblage specific sensitivity has relevance to status of 

freshwaters and water quality, including under climate change scenarios. Biological monitoring 

remains important in the assessment of pollution, and will remain relevant for where long-term 

chemical exposure is expected to occur, but the hSSD model provides an opportunity to highlight 

locations with taxonomic compositions vulnerable to specific chemicals of interest and pre-empt 

necessary action (Camargo, 1994; Vernier et al., 2017). In addition, chemicals themselves may 

influence communities, so complex interactions may occur as chemical risk is alleviated or alters but 

climate change worsens (Berger et al., 2017; Vaughan and Ormerod, 2012). This also highlights the 

need for forecasting and for regular invertebrate sampling to identify both sites affected by chemical 
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pollution and climate change, but also those who have undergone shifts in community structure and 

are now vulnerable to different chemical types. 

One use of the hSSD method could be as a refinement within the ERAs for chemicals in the same way 

that SSDs themselves are used as a refinement with sufficient toxicity data (EFSA, 2013). However, the 

advantage of the hSSD method is increased realism compared to SSDs alone given the same number 

of toxicity data available. This is due to considering the sensitivity of natural taxa and reflecting 

variation in taxonomic composition between sites the toxicity data that exiting SSDs do not reflect 

(Newman et al., 2000; Posthuma et al., 2019; Raimondo et al., 2008).  

The results here show that the range of sensitivities between site-specific assemblages goes beyond 

the current extrapolation factors used in ERAs when risk is considered (usually 5 for an SSD, and 10 or 

100 for chronic and acute data alone respectively, EFSA, 2013). Furthermore, this is chemical 

dependent with chemicals with specific toxic modes of action, such as pesticides targeting specific 

organisms, are often those undergoing extensive regulation already and exhibit larger ranges in 

assemblage sensitivity (a mean factor of difference in the range of 25.2 for insecticides, compared to 

2.68 for metals and 2.51 for narcotics). Consequently, the results here show that by not considering 

risk on a per-site basis, current risk assessments may be both not conservative enough for some 

specific sites and chemicals, and concurrently too conservative for others. 

 This study has demonstrated the potential for river typologies to be used to inform assemblage 

sensitivity, permitting a spatially variable risk assessment that can target locations with typologies 

associated with the most vulnerable taxonomic compositions. This could enable both a triage of at-

risk sites based upon typology, as well as forming the basis of hypothetical risk scenarios with differing 

taxonomic compositions that would need to be passed for acceptable risk, enabling a spatially variable 

risk assessment. Existing freshwater risk assessments primarily account for spatial variation in risk 

from exposure with limited consideration of how biota influence sensitivity and therefore risk (EFSA, 

2013a; Franco et al., 2017). While the toxicity data requirement of a diverse toxicity dataset to run the 

hSSD method may currently limit use to chemicals with taxonomically diverse datasets, one proposal 

could be for integration with ERAs as a higher tier refinement. To use the hSSD method within an ERA 

a suite a taxonomic ranks (e.g.  Insecta, Crustacea, all major macroinvertebrate phyla) covered within 

the toxicity dataset could be specified that would be sufficient for the hSSD model to accurately run. 

The results here show how the hSSD model can be used to predict assemblage sensitivity, and have 

assessed how climate change influences assemblage sensitivity across different chemical types. 

Chemicals that target specific organisms (e.g.  the insecticides investigated here) exhibit the greatest 
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spatial variation in macroinvertebrate communities and represent a risk not currently covered by 

existing ERAs. Additionally, the relevance of river typologies and their associated macroinvertebrate 

assemblages is noted, for example with for lowland calcareous sites being vulnerable to metal 

pollutants. However, these observations form one aspect of the complexity surrounding the sensitivity 

aspect of chemical risk. For climate change, the shifts to assemblage composition from rising 

temperatures will on average not change or increase the tolerance of an average site to chemical 

pollution depending on the chemical.  

While taxonomic composition informs one aspect of ecosystem sensitivity, it fails to account for 

community and population level dynamics, in particular food webs and interspecific interactions 

(Brose et al., 2019; Kidd et al., 2014). Furthermore, these dynamics themselves are affected by climate 

change independently of chemical pollution (Woodward et al., 2010), and understanding the multiple 

stressor conditions of chemical pollution and climate change add an additional layer of complexity. 

However, the hSSD method has shown to be a useful and novel tool for predicting assemblage risk of 

natural ecosystems that has previously not been investigated and paves the way for integration into 

a tiered ERA, for considerations of water quality, or with RICT and theoretical community and 

organism level consideration, the first step in a conceptual framework of the effects of climate change 

on ecosystem sensitivity. 
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Chapter 4. Multi-stressor impacts in a warming world: the 

importance of multigenerational thermal acclimation 

4.1 Introduction 

Freshwater ecosystems are potentially at risk from multiple chemical, physical and biological stressors 

(Reid et al, 2019), whose combined effects on individuals may have consequences for community 

structure and functioning (Birk et al., 2020; Vaughan and Ormerod, 2012). Climate change and 

pollution have been identified as major threats to freshwater biodiversity (IPBES, 2019) but the effects 

of temperature shock and toxic effects start by acting on the organism scale on acute and chronic 

timeframes.  Negative effects on organisms go on to affect population and community dynamics, 

ultimately reducing ecosystems services., for example, knockout of organic matter decomposition 

following pollution events (Fent et al., 2006; Giller et al., 1998; Sokolova and Lannig, 2008). However, 

the co-occurrence of temperature stress and chemical exposure has a combined effect that can be 

described as antagonistic, additive or synergistic depending on whether the negative effects on the 

organism are less than, equal to or greater than those of each stressor independently.  

4.1.1 Interactions and mechanisms of temperature and toxicants 

To investigate the existing research on the multi-stressor effects a literature search was performed 

using standardised search strings to capture ecotoxicological studies that investigate the interactions 

between temperature and chemical toxicity on invertebrate species. The search aimed to accounting 

for different types of macroinvertebrate taxa and climate change effects (e.g.  heat wave, temperature 

rise, intermittent flow). Studies were filtered based on their relevance to the topic and must contain 

both temperature and chemical toxicity effects. In addition, they must be relevant to UK freshwater 

ecosystems meaning any marine studies or freshwater from non-relevant ecosystems were not 

considered. These studies cover a wide range of temperature increases, taxonomic and chemical 

groups, although the most common temperature increase studied was 3-5°C, which is the mean 

increase expected in the UK by the mid-end of the century based on the current climate projections 

(Lowe et al., 2018). From this search 35 suitable studies were considered, and the breakdown of study 

taxa, chemical, multi-stressor effect and endpoint type is presented in Figure 4.1.  

Previous studies investigating multi-stressor effects indicate additive or synergistic effects of higher 

temperatures on toxicant sensitivity (Bae et al., 2016; Boeckman and Bidwell, 2006; C. M. S. Pereira 

et al., 2017).  Synergistic interactions between climate change variables (including temperature) and 

toxic chemicals may be a result of the effect of chemical exposure on an organism’s response to 
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climate change (i.e. toxicant-induced climate change sensitivity, TICS) or the effect of climate change 

on an organism’s chemical sensitivity (i.e. climate change-induced toxicant sensitivity, CITS) (Hooper 

et al, 2013; Moe et al; 2013).  Antagonistic temperature-chemical interactions may be a result of a 

temperature-induced change in exposure either via increase degradation rate of toxicant in the 

environment, increase detoxification, sequestration, or depuration the toxicant within the organism 

(toxicokinetics), or increase growth rate and body size resulting in dilution of internal toxicant 

concentrations (de Beeck et al., 2017; Verheyen and Stoks, 2020). 

Figure 4.1 Flow chart collating 119 multi-stressor toxicity endpoints under temperature change collected from a 
systematic review into the multistressor effects of climate change on macroinvertebrate chemical sensitivity  
Endpoints are separated proportionally based upon four factors: invertebrate taxa tested at the class rank, 
chemical type grouped according to metal or pesticide target organism, multi-stressor response observed and the 
toxic endpoint calculated within the study  

One limitation of the existing research investigating the combined effects of temperature stress and 

chemical toxicity is that the temperature change organisms experience is in the form of temperature 

shock or short-term (i.e. less than one generation) acclimation periods to temperature change. In 

natural ecosystems the effects of climate change are gradual, leaving time for organisms to acclimatise 

and adapt to different temperature regimes. Bae et al., (2016), Haap et al., (2016) and Tran et al., 

(2018) all investigated combined temperature and chemical stress on reproductive and growth 

parameters over two to four generations. However, these studies investigated temperature and 

chemical stressor co-occurrence, and therefore not representing any CITS effects from temperature 

altering chemical sensitivity. Furthermore, all studies were performed over a small number of 

generations (maximum 3) therefore not reflecting any potential long-term phenotypic changes in 

organisms that may mitigate the effects of temperature change. In contrast, another approach is to 

sample test taxa from populations exposed to differing temperature regimes either spatially (Dinh Van 
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et al., 2014; Op de Beeck et al., 2017) or temporally (Cuenca Cambronero et al., 2018). However, these 

are associated with two caveats: firstly, adaptations to environmental factors other than just 

temperature will have occurred that may also affect organism sensitivity, and secondly that the 

populations undergo sexual reproduction and therefore genetic adaptation as well as phenotypic 

acclimation occurs. Consequently, there is a need to establish whether similar results would occur 

from multi-generational asexual laboratory temperature acclimation alone. 

4.1.2 Thermal acclimation and multi-stressor effects 

Short-term temperature changes are known to affect the functioning, life history and reproduction of 

organisms, for example with increased temperatures elevating biochemical stress responses and 

triggering life-stage changes and metamorphoses (Clark and Peck, 2009; Hofmann and Somero, 1995; 

Kroiher et al., 1992; Morgan and Jangoux, 2002).  However, many organisms exhibit some level of 

adaptability to environmental changes, including temperature, with acclimation and evolutionary 

adaption occurring over multi-generational timescales (Brans and De Meester, 2018; Clarke, 1987; 

Reger et al., 2018). The impacts of temperature changes on organisms are therefore a function of 

thermal history, physiological acclimation and genetic adaptation.  It is therefore hypothesised that 

organisms would exhibit reduced effects of temperature change (e.g.  changes to generation time, 

time to first brood, reproductive investment) when acclimated to that temperature over multiple 

generations (Hypothesis 1).  

The reproductive strategy exhibited by an organism can vary depending on environment, and 

temperature is one factor that influences how an organism invests resources in reproduction. For 

invertebrates, increasing temperatures have been associated with shorter generation times observed 

in all cases, and specifically increased fecundity at a less mature, smaller adult size (Brans and De 

Meester, 2018), a greater short-term reproductive investment (Clarke, 1987) and early maturation 

(Morgan and Jangoux, 2002). Chen and Stillman, (2012) demonstrated that Daphnia acclimatised at 

25°C and 30°C exhibited little metabolic variation after 6 generations compared to those cultured at 

the original temperature of 15°C, but time to first brood decreased as acclimation temperature 

increased. Considering multi-stressor effects, with multi-generation phenotypic adjustment from 

acclimation, the reproductive strategy would be expected to alter towards that of the acclimatised 

temperature strategy. For example, it may be expected that higher temperatures lead to shorter 

generation times meaning investment in a smaller number of larger offspring at first brood 

(Hypothesis 2).  
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Most multi-stressor studies have either not acclimated study organisms to the test temperature or 

tested temperature change and chemical stress over multiple generations together.  However, some 

have investigated the effects of short term acclimation on chemical sensitivity; Silva et al. (2020) 

acclimated Daphnia to different temperatures with a acclimation period of neonate to adult then 

introduced glyphosate testing for acute effects with acclimation being protective of the synergistic 

effects of increased temperature and glyphosate exposure. Moller et al. (1994) instead investigated 

the effect of two-month temperature acclimation on snails, followed by cadmium exposure. Again, 

acute toxicity was measured and increasing temperatures increased toxicity, although acclimation 

appeared to worsen the effects of cadmium exposure. If Hypothesis 1 is correct, and temperature 

does affect reproduction (Hypothesis 2) then it follows that multi-generation temperature acclimation 

will mitigate temperature-toxicant interactions (Hypothesis 3), noting that existing literature on the 

topic is both limited and has mixed outcomes relative to this hypothesis. 

The effects of increasing temperature on an organism and their metabolic processes is non-linear with 

organisms reaching thermal maxima after going beyond a point of increased biochemical and 

metabolic rate (Dallas and Rivers-Moore, 2012a; Ernst et al., 1984; Williams et al., 2012). Thus, it would 

be expected that larger temperature increases are associated with greater multi-stressor effects than 

expected for a smaller temperature rise alongside exposure. Thus it is hypothesised that CITS will be 

greater for organisms experiencing larger temperature increases. Furthermore, the magnitude of CITS 

is expected to be greater for organisms acclimated at the higher temperatures as greater temperature 

increases are expected to be associated more stress to the organism and its ability to metabolise 

toxicants (Hypothesis 4).  

4.1.3 Approach, and hypotheses and objectives 

The importance of multigenerational acclimation to temperature change on temperature-toxicant 

interactions was investigated using Daphnia magna as the model system and copper as the exemplar 

toxicant. Daphnia magna is a common member of the zooplankton community in many lentic 

freshwater ecosystems, it is well suited to laboratory conditions, has a short generation time and is 

generally more susceptible to chemical stressors than other tested invertebrate species (Craig et al., 

2012). Daphnia are extensively used within a regulatory environment as the standard invertebrate 

species being tested for both lethal (i.e.  immobility) and sublethal (e.g. reproduction) effects (EFSA, 

2013a; OECD, 2012, 2004).  Copper is released into environments from mining and industrial activities 

and from agricultural land, where sources include pesticides and biosolid fertilizer applications, with 

known effects on freshwater ecosystems (de Oliveira et al., 2004; Gogos et al., 2012; Howard et al., 

2015). Furthermore, as copper is a metal ion in solution it does not degrade; this means that 
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degradation can be ruled out. However, copper concentrations in the test solutions may change from 

uptake by and binding to organic matter (e.g.  Daphnia, algal food, waste) or reacting and precipitating 

out of solution. Daphnia from a single clone were acclimated to different temperatures over multiple 

generations before exposing organisms from each acclimation temperature to copper at different test 

temperatures.  The acclimation and test temperatures were 15 oC, 20 oC and 25 oC and the specific 

predictions tested were: 

● Do Daphnia exhibit reduced effects of temperature when acclimated to that temperature over 

multiple generations? 

● Does multigeneration temperature acclimation shift reproductive strategy between number 

of offspring and offspring size such that higher temperatures are associated with fewer, but 

larger offspring? Does combined temperature shock and copper exposure alter this 

relationship? 

● What are the effects of temperature shock on the sensitivity of macroinvertebrates exposed 

to copper and does multigeneration temperature acclimation mitigate the effect of CITS on 

copper sensitivity? 

● Are multistressor effects greater for larger magnitudes of temperature increase (i.e. 

acclimation at 15°C tested at 25°C) when compared to a temperature increase at lower 

temperatures (i.e. acclimation at 15°C tested at 20°C)? 

4.2 Methods 

4.2.1 Daphnia culture 

Daphnia magna were obtained from the clonal line maintained at the University of Sheffield (Clone S-

1, the historic line from Sheffield, UK, (Baird et al., 1991). These Daphnia had been maintained under 

complete darkness in a temperature-controlled room at 20°C, with feeding every other day with 1 mL 

of algae solution (Chlorella species, culture sustained under complete light conditions at 20 °C in Ebert 

medium) and weekly media changeovers in 1L plastic vessels. Aside from temperature and use 

isolated test vessels per individual, the test conditions were maintained within those recommended 

in OECD 211 (OECD, 2012) throughout the study. They are explained in further detail along with the 

methods for the acclimation process and copper exposure tests below. The media used for culturing 

Daphnia was a hard ASTM (American Society for Testing and Materials) solution enriched with 4 mL 

marinure/L with a hardness of 170 mg CaCO3 /L and a pH of 7.4 (ASTM, 1980). 
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4.2.2 Acclimation process 

Acclimation began with 75 individuals from a clonal line that had exhibited no signs of stress, including 

atypical behaviour, limited mobility, discolorations, developmental defects or ephippia in their prior 

generations. Groups of five individuals were placed in approximately 260 mL glass jars with 250 mL of 

ASTM media and a set of five jars were placed in a temperature-controlled room and in two 

temperature-controlled cabinets, all of which were set at 20oC ±1°C in complete darkness. As before, 

feeding occurred every other day, with media changes every week with hard ASTM media. Jars were 

checked daily and all first brood neonates and any dead Daphnia were removed and discarded. All 

other neonates were isolated into new 260 mL glass jars with 250 mL of ASTM media to form the next 

generation. Once at least 25 neonates were ready from the next generation, the previous generation 

were maintained under the same conditions but not used for testing then disposed of once the next 

generation produced neonates. Following a one-week acclimation period at 20 °C, the temperature 

one of the temperature-controlled cabinets was decreased by 0.5°C a week and the other was 

increased by 0.5 °C a week. Weekly 0.5°C temperature changes to the temperature-controlled 

cabinets occurred over a ten-week period until they reached the final acclimation temperatures of 15 

and 25 °C. The temperature-controlled room was maintained at 20°C throughout in darkness. 

4.2.3 Copper concentrations 

Six concentrations of copper were selected across a range that would cover a value above the 

immobility EC50 at 25°C (34 µg Cu/L (Bae et al., 2016)) down to concentrations that would ensure that 

sub-lethal effects (including behavioural, growth and reproductive) would be triggered without the 

death of the test organisms. The test concentrations were 6, 9, 13, 20, 45 and 68 µg Cu /L and a control 

without any added copper. Hydrated copper (II) sulfate (from Timstar Laboratories, 40.0% copper 

content in ion form) was used as the source of copper ions and stock solutions were created by 

dissolving this 105compound in fresh ASTM solution. Test solutions were created by serial dilutions 

from a stock of 20 mg Cu/L, itself diluted from a 1 g Cu/L stock solution. The studies were semi-static 

with weekly renewals of test solutions prepared from stock solutions that were recreated on a weekly 

basis.  

Copper samples were taken from the stock solutions, the initial and final test concentrations with a 

sample taken of the fresh test solutions at each concentration and sample taken from each test vessel 

at the end. Following filtration through a 0.45 µm filter, 10 mL samples were fixed in solution using 

0.1 mL of concentrated nitric acid grade >99%, and stored in darkness and under refrigeration at 4°C. 

The nitrified samples for the stock solutions were then analysed via spectrophotometric analysis using 
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a Perkin Elmer Optima 7300 V. This instrument analysed the concentration of copper using five 

wavelengths of 213.6, 222.5, 222.8, 224.7 and 327.4 nm using a 2mg/L Yttrium internal standard.   

4.2.4 Toxicity test design 

Tests to assess the toxicity of copper to Daphnia were performed according to OECD 211 (OECD, 2012) 

where possible, although test duration was extended beyond 21 days to account for slower 

reproduction and generation times at 15°C. Except for the test temperatures and concentrations of 

copper, test conditions were as for the acclimation period (i.e. complete darkness, with feeding every 

other day and weekly media changeovers). Food was the same algae culture as for the acclimation 

period. Toxicity tests were performed with Daphnia from all three lines (15, 20 and 25 °C) exposed to 

all three test temperatures (15, 20 and 25 °C) in a Latin square format, resulting in nine acclimation x 

test temperature combinations. Triplicate copper toxicity tests were performed for each acclimation 

x test temperature combination.  For each toxicity test (acclimation-test temperature replicate), seven 

non-first brood neonates (i.e. <24 hours old) were each placed in a 60 mL jar and exposed to 50 mL of 

ASTM with no additional copper added (control) or to 50 mL of copper spiked ASTM (for each of the 

following concentrations: 6, 9, 13, 20, 45 and 68 µg Cu/L).  

4.2.5 Measurement and parameters 

Dissolved oxygen concentration and pH of the initial and final test solutions was measured with a YSI 

Professional Plus probe capable of measuring both parameters. Temperature was recorded daily for 

each temperature-controlled room or cabinet. Daphnia were checked daily to observe and measure 

toxic effects. The following parameters were investigated during the experiment: immobility (no 

movement including after gentle stimulation with a pipette), time to first reproduction, number in 

first brood, size of parent at first brood, size of neonates at first brood and the presence and size of 

any ephippia. Daphnia were checked for toxic effects (immobility, atypical behaviour, limited mobility, 

discolorations, developmental defects or ephippia) and neonates daily. Tests were run for 30 days if a 

full first brood of Daphnia had occurred, otherwise the test was extended to 40 days to enable more 

time for a first brood to occur.  

The size of adults and neonate Daphnia was measured from photographs. Photographs taken with a 

USB camera attachment with 30 times magnification and the photographs measured with the 

program Measuring Body Length developed by Agatz et al., (2015). Body length was defined as the 

distance from the top of the head above the compound eye down to the base of the apical spine and 

average of three measurements taken (Comber et al., 1993; Green, 1956). Daphnia were measured at 

death where possible and on the day of every brood with neonates or ephippia being photographed 
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with the parents when present. Each brood was treated as separate, and each brood defined by the 

presence of neonates when no neonates had been observed on the prior day, thereby grouping 

neonates on consecutive days together. 

4.2.6 Data analysis 

Data were analysed within R and three different analyses of reproductive parameters were performed 

based upon the research questions. Here the reproductive parameters used were time to first 

reproduction, size of parent at first brood, and the reproductive investment of the adult. Reproductive 

investment was calculated as the number of neonates multiplied by the mean size of neonates in that 

brood. The first analysis tested the effects of acclimation temperature on reproductive parameters 

and compared them to how temperature shock affected reproductive parameters. The second 

analysis assessed the relationship between how acclimation and test temperature alongside chemical 

exposure affected the reproductive parameters. Finally, a calculation of how acclimation and test 

temperature affected the calculated EC50 values for each reproductive parameter was performed.  

The effects of acclimation and shock test temperature were compared by comparing how the 

reproductive parameters changed between acclimation-test temperature combinations using a two-

way ANOVA with differences between combinations statistically compared with Tukey’s honest 

significant difference tests. Reproductive investment was calculated as an index of the number of 

offspring multiplied by average neonate size, and the shifts between neonate size and number were 

assessed as for the reproductive parameters with a two-way ANOVA with differences between 

combinations statistically compared with Tukey’s honest significant difference tests. 

Direct toxic effects were considered using the shifts in reproductive parameters and reproductive 

strategy (increasing number of neonates against increasing neonate size) under increasing copper 

exposure for the acclimation-test temperature combinations relevant to investigating whether 

acclimation mitigated effects and whether magnitude of change was relevant. Due to the large 

number of combinations affecting toxicity (acclimation temperature, test temperature, chemical 

concentration, endpoint type) a MANOVA was performed to avoid replicating repeat statistical 

analysis and inappropriately low p values. 

Dose response curves were fitted to acclimation-test temperature combinations across all replicates 

with non-linear log-logistic models. Dose response curves and effect concentrations (ECx) were 

calculated and visualised using the drm and ED functions of the drc package respectively which 

calculates dose response curves for the data; curve fitting was fitted to a four-parameter log-logistic 

function (Noel et al., 2018; Ritz, 2010). Comparisons directly between EC50 values for different 
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acclimation-test combinations were the result of two categorical factors, acclimation and test 

temperature. Consequently, as for investigating the effects of temperature on reproductive 

parameters, to investigate the effect of acclimation-test temperature combinations on EC50 for each 

parameter two-way ANOVA with differences between combinations statistically compared with 

Tukey’s honest significant difference tests were applied. 

4.3 Results 

4.3.1 Experimental parameters 

Across all the controls (acclimation and test temperature the same and no additional concentration 

of copper) there was an overall mortality of 8.3%. This was due to one mortality for a Daphnia 

acclimated and tested at 20°C. All other control Daphnia did not appear to exhibit toxic effects 

throughout the study. 

The temperature of the temperature-controlled rooms and cabinets did not vary by more than ±1°C 

throughout the study except for one 23.9°C recording for 25°C acclimation temperature. Temperature 

ranges were 14.0°C to 15.6°C for 15°C acclimation, 20.1°C to 20.3°C for 20°C acclimation and 23.9°C 

to 24.7°C for 25°C acclimation. All temperatures were within the ±2°C recommended within OECD 211 

(OECD, 2012). Dissolved oxygen content of the test jars ranged between 88.6% to 102.7% throughout, 

well above the OECD 211 (OECD, 2012) recommended minimum oxygen concentration of >3 mg/L 

(roughly >40% oxygenation). For pH values recorded, the range was between 7.72 to 8.30 across all 

jars, within the ranges of and pH 6-9 and with a difference of less than 1.5 throughout the test 

recommended within OECD 211 (OECD, 2012).  
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Figure 4.2 Effects of shock temperature change (test temperature) on the reproductive and growth parameters of control 
Daphnia (no copper exposure) acclimated over multiple generations to 15°C, 20°C or 25°C (acclimation temperature). A, the 
time to first brood, B, adult size at their first brood and C, the reproductive investment of the adult in the first brood 
calculated as a measure of both the number and size of neonates. Boxplots represent the 25th, median and 75th percentiles, 
with whiskers the minimum and maximum values. Letters denote results of pair-wise comparison tests; values sharing the 
same letter are not significantly different (p > 0.05), for B and C no significant differences were observed. 

The stock solutions of 20 mg Cu/L (from which test solutions were created), and 1 g Cu/L (from which 

the 20mg/L solution was created) underwent duplicate spectrophotometric analysis. The analysis 

across the five wavelengths were 96% and 98% of the nominal for the duplicate analysis on the 20 mg 

Cu/L solutions, and 96% and 94% of the nominal for the duplicate analysis of the 1 g Cu/L solutions. 
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4.3.2 Reproductive parameters 

Temperature on reproduction 

Multigenerational temperature acclimation affected the reproductive performance of Daphnia, 

including before copper exposure. Temperature acclimation resulted in the Daphnia acclimatised at 

15°C being on generation 8, while those acclimatised at 20 °C and 25 °C being on generation 11 and 

12 respectively at the end of the 36-week acclimation period, indicating an increase time between 

generations. Within the study itself, for the controls the time to first brood was significantly affected 

by the test temperature (DF = 2, F = 72.8, p <0.001) and notable for the interaction between 

acclimation and test temperature (DF = 4, F value = 4.0, p value = 0.066), but not affected by 

acclimation temperature alone (DF = 2, F value = 0.009, p value = 0.99).  Figure 4.3A shows these 

patterns and highlights that acclimation and testing at 15°C was significantly different to Daphnia 

tested at higher temperatures regardless of acclimation. 

Regarding the size of adults at first brood in the controls (Figure 4.3B), there was no significant effect 

of acclimation temperature (DF = 2, F value = 0.5, p value = 0.61) or test temperature (DF = 2, F value 

= 0.25, p value = 0.78), and no significant interaction between the two (DF = 4, F value = 1.56, p value 

= 0.23). In contrast, for the reproductive investment of the controls (Figure 4.3C), there was a 

significant effect of acclimation temperature (DF = 2, F value = 4.2, p value = 0.03), although no 

significant effects of either test temperature alone (DF = 2, F value = 0.13, p value = 0.88) or the 

interaction of acclimation and test temperature (DF = 4, F value = 2.1, p value = 0.11) were observed. 

Shifts to reproductive strategy 

Although significant changes to reproductive investment were observed depending on the acclimation 

temperature, reproductive investment here was a measure of neonate size and number of neonates. 

Considering the number of neonates at first brood in the controls, there was a significant effect of 

acclimation temperature (DF = 2, F value = 3.6, p value = 0.046) and the interaction of acclimation 

temperature and test temperature (DF = 4, F value = 3.22, p value = 0.034), with no significant effects 

for test temperature (DF = 2, F value = 0.03, p value = 0.97). In contrast the only significant effect on 

neonate size was the interaction between acclimation and test temperature (DF = 4, F value = 3.6, p 

value = 0.02), with no significant effects for either acclimation temperature (DF = 2, F value = 0.25, p 

value = 0.78) or test temperature alone (DF = 2, F value = 2.1, p value = 0.15). As shown in Figure 4.3, 

the only significant multi-comparison difference between acclimation-test temperature combinations 
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was for the size of neonates of Daphnia acclimatised at 25°C and tested at 25°C being larger than those 

acclimatised at 25°C and tested at 20°C.  

 

Figure 4.3 Effects of shock-term temperature change (test temperature) reproductive investment parameters for control 
Daphnia (no copper exposure) acclimated over multiple generations to 15°C, 20°C or 25°C (acclimation 
temperature). A, first brood neonate count, B, mean neonate size in the first brood. Boxplots represent the 25th, 
median and 75th percentiles, with whiskers the minimum and maximum values. Letters denote results of pair-wise 
comparison tests; values sharing the same letter are not significantly different (p > 0.05) 

4.3.3 Effects of temperature on copper toxicity and endpoints 

Temperature acclimation and toxicity 

When assessing the multi-stressor effects of copper and temperature, any temperature shock was 

considered in comparison to the Daphnia acclimated and tested at the same temperature (i.e. 

acclimation-test temperature combinations of 15-15°C, 20-20°C and 25-25°C). A full set of calculated 

EC50 values is presented in the Table A4.1 of the appendix. Notably, the Daphnia acclimatised at 20°C 

and tested at 20°C were the least sensitive Daphnia tested. For these Daphnia the calculated EC50 

values for all reproductive parameters (EC50 time to 1st brood = 41.1 μg/L, EC50 size of adult at 1st brood = 45.3 μg/L, 

EC50 reproductive investment in 1st brood = 42.9 μg/L) were significantly less sensitive than all other acclimation-
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test temperature combinations (except for the endpoint of adult size at first brood for Daphnia 

acclimatised at 15°C and tested at 20°C). In contrast, between Daphnia acclimatised at 15°C and tested 

at 15°C and Daphnia acclimatised at 25°C and tested at 25°C there was no significant difference in 

sensitivity in the endpoints for size of adult at first brood (EC50 of for 15-15°C and for 25-25°C) and the 

reproductive investment (EC50 of for 15-15°C and for 25-25°C). However, Daphnia acclimatised at 25°C 

and tested at 25°C resulted in a significantly more sensitive endpoint (EC50 of 2.8 µg/L) for the time to 

first brood compared to those Daphnia acclimatised at 15°C and tested at 15°C (EC50 of 17.2 µg/L). 
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Figure 4.4 Effects of shock temperature increase (test temperature) on the reproductive and growth endpoints (EC50) of 
Daphnia exposed to copper following acclimation over multiple generations to 15°C, 20°C or 25°C (acclimation 
temperature).Plots are A, the time to first brood, B, adult size at their first brood and C, the reproductive 
investment of the adult in the first brood calculated as a measure of both the number and size of neonates. 
Boxplots represent the 25th, median and 75th percentiles, with whiskers the minimum and maximum values. 
Letters denote results of pair-wise comparison tests; values sharing the same letter are not significantly different 
(p > 0.05) 



114 

 

 
Three sets of Daphnia experienced a shock rise in temperature that could be directly compared to 

Daphnia acclimatised and test tested at the same temperature. Daphnia acclimatised at 15°C and 

tested at 20°C, and Daphnia acclimatised at 20°C and tested at 25°C both experienced a shock 

temperature rise of 5°C alongside copper exposure. A 10°C shock temperature rise was experienced 

by Daphnia acclimatised at 15°C and tested at 25°C.  

Comparing a shock 5°C rise to test temperature for Daphnia acclimatised at 15°C did not increase 

sensitivity compared to those Daphnia acclimatised at 15°C and tested at 15°C indicating no effect of 

heat shock on sensitivity. In contrast, shock 5°C rise to test temperature for Daphnia acclimatised at 

20°C saw a significant increase in sensitivity for all reproductive parameters compared to those 

Daphnia acclimatised at 20°C and tested at 20°C. However, given there is no significant difference 

when comparing the EC50 values between Daphnia acclimatised at 20°C and tested at 25°C (ie a shock 

temperature rise of 5°C) and Daphnia acclimatised at 25°C and tested at 25°C (acclimation to the 

higher temperature), it cannot be concluded that there is an effect of heat shock on sensitivity. 

The 10°C rise is a greater thermal increase than the other Daphnia that only experienced a 5°C rise in 

temperature. However, none of the reproductive endpoints considered here indicated that a larger 

temperature rise was associated with a significant increase of sensitivity (Figure 4.4). Equally, the 

Daphnia acclimatised at 15°C and tested at 15°C did not have any significantly different endpoints 

compared to those Daphnia acclimatised at 15°C undergoing a shock rise in temperatures. 

4.4 Discussion 

Most previous studies investigating the toxicity of copper to Daphnia at different temperatures use 

non-acclimated animals (i.e. temperature shock). Climate change is not necessarily associated with 

temperature shocks alone, but the gradual increase in freshwater temperatures compared to baseline 

conditions (Watts et al., 2015). Given the effects of long-term acclimation currently have limited 

consideration, there is a need to assess how multi-generational temperature acclimation can influence 

the multi-stressor response to temperature increase and chemical exposure. Consequently, the aim 

of this study was to investigate importance of multigenerational acclimation to temperature change 

on temperature-toxicant interactions.  In particular, it addressed the following hypotheses: 

1. Organisms would exhibit reduced effects of temperature on reproductive parameters when 

acclimated to that temperature over multiple generations  

2. Higher temperatures lead to an investment in a smaller number of larger offspring 
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3. Multi-generation temperature acclimatisation will mitigate temperature-toxicant interactions 

reducing the effect of CITS 

4. The effects of a given temperature increase on CITS will be magnitude dependent such that a 

greater change to chemical sensitivity will occur for greater temperature increases 

The effects of copper exposure and temperature increase on Daphnia magna reproduction was used 

to investigate these hypotheses. 

4.4.1 Effects of temperature acclimation and shock 

Organisms have the capacity to acclimate to changing temperatures, and gradual temperature 

increases have been demonstrated to mitigate the stress from heat shock (impairment of body and 

metabolic functions) associated with temperature increases over short periods of time (Ernst et al., 

1984; Moulton et al., 1993, Paul et al., 2004). Indeed, gradual acclimation can increase the threshold 

temperature at which stressor effects begin to occur (Dallas and Rivers-Moore, 2012b).   Previous 

studies have demonstrated that Daphnia acclimated to higher temperatures, including over multiple 

generations (Lamkemeyer et al., 2003), had increased metabolic rate, physical movements and 

swimming rates (Paul et al., 2004), increased growth rates (Chopelet et al., 2008) and shorter 

generation times (Chen and Stillman, 2012). Thus changes to reproductive parameters alter the 

organism’s ability to respond to stress and undergo recovery when population decreases from stressor 

events occur (Woodward et al, 2016). 

Gradually acclimatising a single Daphnia clone to different temperatures over 8-12 generations 

resulted in significant changes in reproductive parameters. A gradual 5°C decrease from the long-term 

culturing temperature of this clone (i.e. 20°C) resulted in an increase in time to first brood and increase 

in reproductive investment but no change in adult size, whereas a gradual 5°C increase resulted in no 

change in the time or size at first reproduction but did cause a significant reduction in reproductive 

investment.  

4.4.2 Shifts to reproductive strategy 

An increase in acclimation and test temperature from 20°C to 25°C resulted in a significant reduction 

in reproductive investment. However, given reproductive investment here was a measure of the 

number and size of neonates, the reduction in reproductive investment was the result of a shift in 

reproductive strategy. Daphnia acclimatised and tested at 25°C increased their average size of 

neonates at the expense of a smaller number of neonates in total for the first brood. This occurred 

alongside significantly faster times to first brood than those tested at 15°C. Previous studies have also 
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reported significantly longer times to first brood for Daphnia maintained at lower temperatures (Chen 

and Stillman, 2012; Im et al., 2019), although an increase in temperature has not previously been 

associated with a change to the number of neonates (Im et al., 2019).  

4.4.3 Acclimation and mitigation of temperature and chemical stress 

With regards to temperature as a combined stressor with copper exposure, broadly speaking the 

results here indicate limited multi-stressor effect of copper and temperature increase. Aside from 

Daphnia acclimatised at 20°C and tested at 20°C which are discussed in more detail below, the only 

significant change in sensitivity was the EC50 for time to first brood where Daphnia acclimatised at 

25°C and tested at 25°C were significantly more sensitive than those acclimatised at 15°C and tested 

at 15°C. The second objective explored here was with regards to the magnitude of temperature 

change on multi-stressor effects of copper and temperature. Daphnia acclimatised at 15°C 

experienced temperature shocks of 0°C, 5°C and 10°C, but there was no significant difference in 

sensitivity between these Daphnia for all reproductive endpoints tested. As discussed above, in this 

study temperature appears to have had little effect on Daphnia sensitivity to copper, and larger 

magnitudes of thermal change did not significantly affect the calculated EC50 values.  

Notably the Daphnia acclimatised at 20°C and tested at 20°C were consistently the least sensitive to 

copper exposure for all reproductive parameters and was the case even after Daphnia had been 

acclimatised to differing temperatures over many generations. Existing literature has observed similar 

patterns before. Lamkemeyer et al. (2003) did not investigate chemical toxicity, but did acclimate 

Daphnia over multiple generations and discovered that the optimum temperature for Daphnia was 

between 16.2 and 19.5°C for Daphnia acclimatised at 20°C and between 21.4 and 21.7°C for those 

acclimatised at 30°C indicating an optimum temperature around 20°C. Similar results were observed 

by Chen and Stillman (2012) where the optimum temperature for Daphnia metabolism was found to 

be around 20°C.  

However, two previous studies have investigated the effect of copper on Daphnia after short-term (2 

generations) temperature acclimation (Hochmuth et al., 2016; Pereira et al., 2017). The results 

presented here are consistent with those of Hochmuth et al. (2016), who reported that Daphnia 

reproduction (number of neonates) was less sensitive to copper when tested at 19°C (compared to 

15°C and 23°C). This contrasts with the results from Pereira et al. (2017), which reported that Daphnia 

reproduction (number of neonates) was most sensitive to copper when tested at 15°C and that there 

was no difference in sensitivity between Daphnia tested at 20 and 25°C.  This may be reflective of this 

clonal line being well adapted to laboratory testing at 20°C, and 20°C has been shown to be the 
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metabolic optimum for Daphnia in previous studies (Chen and Stillman, 2012; Lamkemeyer et al., 

2003). From an applied perspective, Daphnia are tested in ecotoxicological tests at 20°C by standard 

(OECD, 2012, OECD, 2004), but the applicability of such studies may need to be reconsidered under 

the context of a warming planet given the effects that a 5°C increase would have on the sensitivity of 

Daphnia and other test organisms to chemical exposure. 

4.4.4 Implications and limitations 

The main thrust of this research was to investigate multiple stressor effects of temperature and 

chemical exposure. Consequently, the controls here were designed in number of replicates and format 

to match those exposed to copper, meaning the results from the controls may not be reflective or 

have enough power to represent the outcomes of a study designed to test the effects of 

acclimatisation and temperature shock alone. Furthermore, when considering the effect on 

macroinvertebrates, one natural route of improving the realism of the experiment to simulate natural 

day night temperature cycles as has been done for other invertebrate species and has been shown to 

be a major factor that can affect organism sensitivity (Delnat et al., 2021, 2019; Willming et al., 2013).  

Overall, where suitable, the results from the controls here support the previous findings on changes 

to temperature and Daphnia. Testing Daphnia at 15°C consistently led to significantly slower times to 

first brood than Daphnia tested at higher temperatures in line with the findings from other studies 

(Chen and Stillman, 2012; Im et al., 2019). Otherwise, no significant conclusions could be drawn for 

the other reproductive and growth parameters. However, the influence of both test and acclimatised 

temperature affected the reproductive strategy; higher temperatures, both during acclimation and 

testing saw an investment in a smaller number of larger offspring earlier on in the Daphnia’s life stage. 

Equally, for a multi-stressor perspective the results here show limited effect of warming on Daphnia 

sensitivity, with the exception of Daphnia cultured at 20°C, which may have relevance for the use of 

Daphnia as a model ecotoxicological species for climate change conditions. 
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Chapter 5. Agrochemical and climate change effects on freshwaters: 
implications for environmental risk assessment 

5.1 Introduction 

The aim of this thesis was to evaluate how climate change will alter the risk agrochemicals pose to 

freshwater ecosystems, taking England and Wales as a case study. The thesis focused on the transport 

of agrochemicals from field to ecosystem via soil, the sensitivity of and shift in composition of 

macroinvertebrate assemblages and the effect of long-term adaptation on the response of organisms 

to multiple stressor exposure. This chapter aims to draw together these results by i) exploring the 

implications of climate change on different components of the environmental risk assessment (ERA) 

process; ii) based on the results from i), develop a framework that incorporates climate change into 

the ERA, and iii) illustrated the application of the framework for some case study compounds to 

explore how the risks of agrochemical pollution for these chemicals might alter in the future due to 

climate change. This chapter first discusses the main findings of the preceding chapters, and then 

proposes ERA framework that integrates these findings and that accounts for the effects of climate 

change on agrochemical risk.  Figure 5.1 outlines how the research described in Chapters 2 to 4, links 

to the ERA framework. The proposed framework is then applied to potential real-life scenarios with 

three case study risk assessments (glyphosate, copper and a theoretical new chemical) that provide 

both a practical application of the research within this thesis while noting the data requirements for 

integration with existing ERAs. 

 

5.2 Main findings 

5.2.1 Interaction between climate change and chemical flux 

The effect of climate change on localised climatic patterns in 2060-2080 was considered for the edge 

of field chemical flux for 24 agrochemicals and compared to baseline (1980-2000) values using the 

high resolution 5 km2 UKCP18 data (Met Office, 2019). Broadly, climate change projections are for 

warmer wetter winters and hotter dryer summers, with an increase in extreme precipitation events, 

although this expected to be spatially variable across the UK (Lowe et al., 2018). Consequently, the 

effects of climate change on chemical flux was evaluated across six sites representing the climatic 

zones of England and Wales (Met Office, 2021). Chemical transport in soil is affected primarily by the 

size of precipitation events that trigger chemical movement, and secondarily by the quantity of 

chemical in the soil matrix when precipitation events occur, which itself is determined by the 

persistence of the chemical (Biswas et al., 2018; Elrashidi et al., 2013). The persistence of a chemical 
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is determined by the degradation rate of the chemical, which is influenced by temperature (Cavoski 

et al., 2008; FOCUS, 2006; Matthies and Beulke, 2017).  

As climate change-induced alterations in precipitation patterns and temperatures vary in space and 

time, and soil characteristics vary spatially, it was expected that the site, season of application and 

chemical identity would all influence the effects of climate change on chemical flux from soil to surface 

waters. This was supported in the results where range in effects of climate change (in 2060-2080) on 

edge of field flux differed markedly between sites (e.g.  for prothioconazole from -97% in Cornwall to 
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Figure 5.1 Flow diagram of how climate change was integrated into the ERA for considering the exposure 
and sensitivity aspects of the risk with the databases and models utilised for each aspect shown in 
brackets: UKCP18 (Met Office, 2019), Pesticide Root Zone Model (PRZM, Carsel et al., 1985; US EPA, 
2016), Pesticide Properties Data Base (PPDB, University of Hertfordshire, 2007), River Invertebrate 
Classification Tool  (RICT, Environment Agency et al., 2021), hierarchical Species Sensitivity Distribution  
(hSSD, Craig, 2013),  ECOTOX database (US EPA, 2021) 
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knowledgebase (ECOTOX)","URL":"https://cfpub.epa.gov/ecotox/","author":[{"family":"US 
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+248% in Lancashire of baseline (1980-2000) edge of field chemical flux), and seasons of application 

(e.g.  for diclofenac in Kent from -97% in Kent to +248% in Lancashire of baseline (1980-2000) edge of 

field chemical flux). 

To consider how these different factors would influence flux, the commonly used fate model PRZM 

was used to quantify the change in flux accounting for the effects of climate change (Carsel et al., 

1985). The underlying hypothesis was that compared to baseline conditions, persistent chemicals with 

slow degradation rates exhibited less seasonal variation and generally exhibited decreases in flux, due 

to increased degradation, under future climate conditions, which was supported by the decrease in 

variation of the effects of climate change for slowly degrading chemicals. Where flux increased for 

slowly degrading chemicals, this was due to an increase in the intensity of rainfall events under future 

climate conditions. In contrast, rapidly degrading chemicals (DT50 < ~5 days) were highly dependent 

on the weather following application and flux varied greatly between sites; with the largest changes 

between baseline and future conditions due to precipitation events occurring days after application. 

Thus, intensity of precipitation events change under future climates and therefore the probability of 

exposure of freshwater ecosystems also change in line with the probable climate conditions post 

application. 

By using the high resolution UKCP18 data at the 5km scale, highly localised extreme weather events, 

that drive chemical flux, cannot be discerned at coarser scales, and so could be captured when 

modelling change of flux at a site specific level (Kennedy-Asser et al., 2021). Given the different 

climatic zones of the UK that were represented by selected sites, the effects of climate change were 

found to be both site and season specific. Site, season of application and chemical identity were all 

factors affecting flux and with edge of field flux being the result of complex interactions among all 

three. However, distinct patterns between chemical persistence and change to flux under climate 

change were observed across all agrochemicals, although this was more obvious for pharmaceuticals 

as chemicals with a range of DT50 values were applied at the same seasons and sites. Equally the 

variation in flux from site and season of application emphasised the importance ensuring chemicals 

are modelled with accurate application times and locations, and as shown within chapter 2, 

quantification of spatial variation of climate change on a per-chemical basis is possible.  

Overall, this chapter has shown how meteorology under the effect of climate change will significantly 

alter agrochemical flux into freshwaters. The magnitude and direction of change in flux relates to 

chemical degradation, forming distinct patterns on a site and season of application specific level. 

Furthermore, chapter 2 has highlighted how climate projections can be integrated with spatially 
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explicit fate models to quantify how climate change conditions will affect chemical flux into freshwater 

ecosystems. 

5.2.2 Assemblage sensitivity 

The biodiversity of natural ecosystems means that the community composition varies spatially, and 

the non-exchangeability of chemical sensitivity between species (Craig, 2012) mean some species tend 

to be more sensitive to specific chemicals than others. Given both of these, it is postulated that 

variation in the taxa composing an ecosystem will mean that the sensitivity of that ecosystem is also 

expected to vary (Schmitt-Jansen et al., 2008). However, climate change conditions are also set to shift 

the composition of freshwater ecosystems (Durance and Ormerod, 2007; Niggebrugge et al., 2007). 

The relative sensitivity of species is chemical specific and is driven by the mode of action of the 

chemical, for example Arthropoda to tend to be the most sensitive macroinvertebrates to insecticide 

exposure (Maltby et al., 2005). Consequently, chemicals were grouped into three types in chapter 3, 

insecticides, metals and narcotics.  

Thus chapter 3 aimed to assess the extent that spatial variation in the composition of freshwater 

macroinvertebrate assemblages influences assemblage sensitivity and whether this varied by 

chemical type. Equally, how the shift in assemblage composition under climate change would affect 

assemblage sensitivity on top of existing spatial variation was also investigated.  This research 

considered the response of macroinvertebrate assemblages from 835 minimally impacted sites (those 

that underwent macroinvertebrate sampling for the RIVPACS reference database (Wright et al., 1996) 

that underlies RICT) to 40 chemicals under baseline (1980-2000) and future (2060-2080) climate 

conditions. An issue was that the sensitivity of most natural taxa have not been studied in toxicity tests 

and remain unknown. To address this a hierarchical species sensitivity model (hSSD, Craig, 2013) was 

used to predict macroinvertebrate assemblage sensitivity for each chemical while the multivariate 

model River Invertebrate Classification Tool (RICT, Wright et al., 1996) was used to predict expected 

assemblage composition under future conditions.  

The 40 chemicals studied were grouped into three chemical types: insecticides, metals and narcotics. 

It was hypothesised that different assemblage compositions would have differing sensitivities to the 

chemicals and that variation of assemblage sensitivity would be greatest for chemicals that target a 

specific group of macroinvertebrates (e.g., Insecta and closely related Arthropoda clades such as 

Crustacea for insecticides). This was supported by the results that indicated that there was a greater 

magnitude of range between both the maximum and minimum HC5 values for the insecticides 

compared to metals and generally acting chemicals, here classified as narcotics.  
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Secondly, assemblage composition aligns to river typology (Davy-Bowker et al., 2006) and given 

assemblage composition has been shown to affect sensitivity in the previous results from this chapter 

it was hypothesised that specific typologies may be associated with toxicant prone or tolerant 

assemblages. Here the results indicated that the 5% most sensitive sites for both narcotics and metals 

was composed of a different proportion of site typologies compared to the reference sites. Large 

lowland calcareous sites tended to be the only locations with snails, mussels and leeches, and such 

soft-bodied taxa are known to be highly sensitive to metals such as copper (Bjerregaard et al., 2015; 

Verschoor et al., 2011). This was reflected in the results with 77.1% of the most sensitive sites for 

metals being low calcareous typology compared to 38.9% of the RICT reference sites. In contrast for 

insecticides, Insecta and Crustacea are highly sensitive to insecticides and therefore drive the 

assemblage sensitivity when SSDs are fitted to insecticide toxicity data (Forbes and Calow, 2002). The 

ubiquity of Arthropoda meant sensitive taxa for insecticides could be found across all typologies 

equally. 

Although these two hypotheses do not directly address the effect of climate change on assemblage 

sensitivity, these results address another pertinent question for environmental risk assessments: to 

what extent is there spatial variation in the sensitivities of assemblages? Current risk assessments do 

not take spatial variation in the species composition of exposed ecosystems into account explicitly. 

Spatial uncertainty, along with other uncertainties, are lumped together and covered within a single 

assessment factor and are applied to Tier 1 ecotoxicity data and HC5 values, but the results here show 

that for some chemicals the range of HC5 values goes beyond the recommended assessment factors 

for HC5s of three to six depending on the quality and quantity of toxicity data (ECHA, 2008; EFSA, 

2013a). If between-site variation in species composition has a pronounced effect on assemblage 

sensitivity, any effect of climate change on composition will therefore affect sensitivity.  Moreover, 

because the meteorological consequences of climate change vary spatially, the impact of climate 

change on species composition and hence assemblage sensitivity may also vary spatially.   

The hypothesis that shifts in species composition due to climate change would result in a change in 

assemblage sensitivity (i.e. HC5 value) was investigated by using RICT to predict the macroinvertebrate 

composition of 835 sites under baseline and future temperature conditions and comparing their HC5 

values for 40 chemicals.  On average, assemblages were less sensitive under future climate scenarios 

although the magnitude of change compared to the HC5 of baseline assemblages varied between 

chemical groups: 16% decrease for insecticides, 2% decrease for narcotics.  Within chemical groups 

there were examples of chemicals that exhibited increased sensitivity (e.g., benzamine (9.5% 

increase), dieldrin (5.3% increase) and cadmium (3.5% increase)) and some chemical with particularly 
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large decreases in assemblage sensitivity (e.g., bifenthrin (34% decrease), deltamethrin and 

permethrin (61% decrease), all pyrethroid insecticides, (79% decrease).   

Overall, this chapter has developed and applied sensitivity predictive methods to quantify risk at the 

assemblage level for a range of natural ecosystems. The results have shown that the spatial variation 

in community composition influences assemblage sensitivity. However, this variation is currently not 

accounted for in existing ERAs outside of assessment factors (that also aim to account for other 

sources of uncertainty). Yet the results here show that the variation in sensitivity between natural 

assemblages is greater than these assessment factors for some chemicals making the ERA not 

protective of natural ecosystems. Furthermore, the effects of climate on community composition will 

affect assemblage level sensitivity resulting in both increases and decreases to sensitivity depending 

on the chemical meaning a chemical specific assessment of future risk is necessary. 

5.2.3 Multi-generation adaption and organism sensitivity 

In addition to influencing assemblage sensitivity by changing species composition, climate change may 

also affect the sensitivity of individual species to chemical exposure. Most studies investigating the 

effect of warming on chemical sensitivity have been heat shock experiments with limited temperature 

acclimation of test organisms.  However, warming due to climate change will occur gradually providing 

an opportunity for species to adapt or acclimate to new temperature regimes.  The hypothesis that 

gradual, multi-generation temperature acclimation will influence the effect of heat shock on chemical 

toxicity was investigated using the Cladocera, Daphnia magna, exposed to copper. 

Daphnia neonates, originally cultured at 20°C, were allocated into three cultures, which had the target 

temperatures of 15, 20 and 25°C.  Culture temperature was changed gradually by 0.5°C a week until 

the target temperatures were reached. Temperature acclimatised Daphnia were then maintained at 

their target temperature until used in a chronic toxicity study.  The toxicity study was modelled on 

OECD 211 with an extended study duration to account for slower growth and reproduction at 15°C 

(OECD, 2012).  

Over the course of acclimation, generation times began to increase with higher temperatures with 

Daphnia acclimatised to 15°C being on generation 8 at test start, compared to generation 11 and 12 

for 20°C and 25°C respectively. This was supported in the results from the test itself where Daphnia 

tested at 15°C had significantly longer times to first brood than those tested at 20°C and 25°C. Another 

hypothesis tested was that Daphnia would shift reproductive strategy depending on temperature with 

higher temperatures associated with faster maturation and smaller reproductive investment per 

brood (Bonada et al., 2007; Contador et al., 2014). This hypothesis was supported by Daphnia 
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acclimated and tested at 15°C exhibiting longer times to first brood than those at 20°C and 25°C, while 

those at 25°C had lower reproductive investment, primarily caused by shift in strategy for a reduced 

number of larger neonates.  

The hypothesis that a temperature shock increases the sensitivity of Daphnia to copper, was not well 

supported given the results from Chapter 4. In particular, the only Daphnia that were significantly less 

sensitive for the reproductive parameters tested were those acclimatised at 20°C and tested at 20° 

(EC50 values of 41-45 µg/). Otherwise, temperature shock did not appear to affect calculated EC50 

values of copper toxicity, including when the magnitude of temperature rise was greater (10°C against 

5°C or no temperature change). Previous studies have investigated the multi-stressor effects of copper 

and temperature to Daphnia, but without multi-generation acclimation. However such studies, 

including those that investigated reproductive effects, found that increasing temperatures tended to 

increase copper toxicity with either additive or synergistic toxicity (Bae et al., 2016; Boeckman and 

Bidwell, 2006), although some Daphnia and copper studies, including two investigating reproductive 

effects, indicated little change in toxicity due to temperature supporting the results here (Cuco et al., 

2016; Hochmuth et al., 2016; C. M. S. Pereira et al., 2017). One explanation for these results is that 

the optimum temperature for Daphnia is near 20°C; Lamkemeyer et al. (2003) and Chen and Stiller 

(2012) did not investigate chemical toxicity, but did acclimate Daphnia over multiple generations . 

Both discovered that the optimum temperature for Daphnia tended towards a value around 20°C. 

However, acclimation did shift the optimum temperature slightly towards the acclimation 

temperature. 

The results from Chapter 4 indicate that the multi-stressor effects of copper and temperature increase 

to Daphnia did not indicate an increase in Daphnia sensitivity to copper, noting the similarities and 

differences observed in the literature. However, both temperature acclimation and shock 

temperature change affected the reproductive parameters alone. These changes included a shift in 

reproductive strategy associated with fewer larger offspring in a shorter time to first brood for those 

acclimatised and tested at higher temperatures. Such results may still impact sensitivity, for example 

larger organisms are known to be more tolerant of chemical exposure. However, the tolerance of 

Daphnia acclimatised at 20°C and tested at 20° compared to other temperatures may have important 

consequences when considering climate change in ecotoxicological studies, as altering the test 

temperature would be associated with a change in chemical sensitivity regardless of any multi-

generation acclimation. 
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5.3 Application of findings to environmental risk assessment 

5.3.1 Framework for considering climate change 

The results presented in Chapters 2 to 4 demonstrate that climate change can influence both the 

exposure and sensitivity of freshwater organisms to chemicals and therefore affect the outcome of 

ERAs. However, the effect of climate change is both chemical and site dependent meaning that any 

proposed ERA framework should consider spatial variation in environmental and ecological factors in 

addition to chemical properties. Existing ERAs have spatially specific scenarios for considering 

chemical exposure, although the results of Chapter 2 have shown that the effects of climate change 

on chemical flux are substantial and spatially variable. Therefore in light of climate change, such 

scenario sites may need to be reconsidered to account how the future change in meteorology will 

affect the risk posed by chemical exposure. This could be done either by updating such sites with 

future projections or selecting additional locations particularly prone to increases in risk under climate 

change conditions to act as climate change scenarios. Equally, when assessing freshwater sensitivity 

there is no specific consideration of spatial variation in species composition; instead an assessment 

factor is used to represent all sources of uncertainty including variation of species sensitivity across 

different sites (ECHA, 2008; EFSA, 2013a). 

A spatially specific framework accounting for climate change that includes all the aspects considered 

in this thesis is shown in Figure 5.1. The framework includes both the elements of risk assessment 

covered within this thesis, and the models, methods and databases necessary to quantify them. Figure 

5.1 shows how each aspect of agrochemical exposure and ecosystem sensitivity considered in this 

thesis can be drawn together to calculate risk. The effects of climate change explored in this thesis are 

divided into i) the effects of temperature and precipitation on chemical degradation and the resultant 

change in runoff and erosion on chemical flux, ii) how temperature may shift the taxonomic 

composition of natural ecosystems and how such a shift in taxonomic composition affects assemblage 

sensitivity and iii) how long-term temperature acclimation has notable or negligible effects on the 

results of laboratory ecotoxicity testing, upon which endpoints used for calculating ecosystem 

sensitivity are based. 

Note, this framework, and the case studies used to illustrate it, represent only a sub-set of the 

considerations required for a complete picture of risk under climate change. Ideally, a more complete 

risk assessment would also account for other routes of exposure (spray drift, drainage and 

groundwater), chemical fate processes within freshwaters, recovery of both species and ecosystems, 

and community and food web dynamics (Moe et al., 2013; Schmitt-Jansen et al., 2008; Stahl et al., 
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2013). However, considering that some of these are not accounted within existing ERAs that do not 

consider climate change, considerable research effort would be required to integrate them into the 

ERA. Furthermore, while the extent of spatial variation of the effects of climate change on sensitivity 

and exposure has been demonstrated, such spatial variation reflects only two aspects of the risk 

assessment.  Equally only one taxonomic group assessed in ERAs, macroinvertebrates, was 

investigated here, while for chemical fate in-field flux only considered one soil and crop type. 

Furthermore, these spatially variable effects of climate change would be additional to any existing 

variation among sites. Noting these limitations, the next section explores how a proposed framework 

of Figure 5.1 could be used to consider the change in ERA risk for three agrochemicals: glyphosate, 

copper and a theoretical new chemical. 

5.3.2 Case study: Glyphosate 

Glyphosate is a non-specific systemic herbicide and plant desiccant and represents the single most 

used herbicide in the UK representing 21% of herbicide use on arable land (Garthwaite, 2018). This 

case study assumes a 1.44 kg glyphosate/ha pre-harvest summer application on winter cereals to treat 

broad-leaved weeds and couch grass prior to combining the crop (EFSA, 2015). The effects of climate 

change on glyphosate flux were calculated for suitable locations for growing winter wheat in the UK 

(Chapter 2, Table 2.4). The six locations selected within Chapter 2 have cognate river locations to the 

RICT reference sites nearby that were used in Chapter 3 so that the invertebrate community would be 

reflective of one receiving input for the agricultural land.  

One additional factor that can affect chemical risk is changes to chemical input, effectively the amount 

and frequency of glyphosate application. Climate change conditions will increase overall weed growth, 

a shift to agricultural patters and herbicide resistance is set to be a continuing problem over the 21st 

century that may necessitate shifts in glyphosate use (Dayan, 2019; Helander et al., 2012; Ziska, 2020). 

However, studies so far predominantly indicate that increases in temperature do not reduce the 

efficacy of glyphosate to several weed species, including where there was increased growth from 

elevated CO2 concentrations, and forecast use on wheat is projected to stay approximately the same 

(Bajwa et al., 2020; Iqbal et al., 2021; Jabran and Doğan, 2018; Rasche, 2021). 

The nearest site combinations were calculated on the minimum trigonometric distance in latitude and 

longitude of the 835 RICT reference sites to each of the 6 sites in Chapter 2 in turn; the range of 

distances between sites ranged between 10.58km to 26.74km. Thus, it is possible to consider how the 

change in flux at each site could be related to the assemblage-specific sensitivity of an ecologically 
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similar nearby river that could potentially undergo exposure. The effect of climate change on flux and 

assemblage sensitivity for the six sites is presented in Table 5.1.  

Table 5.1. Effect of climate change on chemical flux and assemblage sensitivity and the overall effect on the risk quotient for 
glyphosate applied to winter wheat across six sites representative of the different climatic zones of England and 
Wales. Percentages here represent the change to edge of field chemical flux and calculated HC5 under future 
climate conditions (2060-2080) compared to the baseline (1980-2000) with overall risk being calculated 
multiplicatively from these values. The locations used in Chapters 2 and 3 were compared to find the nearest RICT 
reference site to each site selected for flux prediction to ensure that the assemblage sensitivity would be calculated 
for an assemblage of a similar ecological profile and change in temperature under climate change 

 Location Climate zone Increase of 
flux (%) 

Increased sensitivity 
of assemblage (%) 

Overall increase 
of risk (%) 

Ratio of 
change to risk 

Cornwall S Wales & 
England SW 

+136 +21 +185.6 1:2.86 

Durham England E & NE 
 

+4 +5 +9.2 1:1.09 

Lancashire England NW & 
N Wales 

-33 +23 -17.6 1.21:1 

Kent England SE & 
central south 

-32 +5 -28.1 1.39:1 

Essex East Anglia 
 

-44 +23 -31.1 1.45:1 

Oxfordshire Midlands 
 

-56 -21 -65.2 2.88:1 

The existing ERA upon which glyphosate is approved concluding a low risk to freshwater organisms 

with the highest FOCUS step 2 PECsw values for all the representative uses, and with 

macroinvertebrates not being the organisms driving the risk (EFSA, 2015). In this case study the change 

to flux is the largest influencer on the change in the overall risk with value of -56% to +136% compared 

to only a shift of -21% to +23% in assemblage sensitivity. Despite this, the changes to the risk predicted 

in Table 5.1 emphasise the difference spatial variation has on the outcome of environmental risk 

assessments and how both exposure (as edge of field flux) and receptor sensitivity (as assemblage 

HC5) can combine to affect overall risk. Considering the effects of climate change on both and receptor 

sensitivity, between the most and least sensitive sites (Cornwall and Oxfordshire respectively) there 

is a factor of 8.2 difference between the change to the risk quotient under future climate conditions. 

At an organism level, there are a limited number of studies performed on macroinvertebrate species 

investigating the multiple stressor effects of temperature increase and glyphosate exposure. Silva et 

al. (2020), investigated the effect of short-term temperature acclimation (from neonate to adult) of 

the cladoceran Ceriodaphnia silvestrii on their acute sensitivity (as mortality) to glyphosate compared 

to a shock temperature change. In general, increasing test temperature increased sensitivity to 

glyphosate. 
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Overall, the effects of climate change on the risk posed by glyphosate in light of the calculation and 

literature presented here are quantifiable and exhibit distinct spatial variation resulting in both 

increase and decreases to risk under climate change. The most recent UK and EU aquatic risk 

assessment for glyphosate was resolved as low risk to all aquatic organisms without any higher tier 

refinements (EFSA, 2015). Given that the sensitivity of aquatic macroinvertebrates is not driving the 

risk assessment, the effects of climate change may not alter the outcome of the environmental risk 

assessment for glyphosate. However, even without the effects of climate change, the output from the 

hSSD model on the RICT reference sites indicates that there is a 4.8-fold difference in sensitivity 

between different assemblages. This nears the most conservative assessment factor of 5 for an 

equivalent SSD of the toxicity data, which is intended to cover all sources of uncertainty, including 

spatial variation in sensitivity (ECHA, 2008; EFSA, 2013a). Consequently, the question of how well 

assessment factors cover existing environmental risk assessments is raised. 

5.3.3 Case study: Copper  

The use of copper as a pesticide is primarily within organic farming practices as a fungicide and general 

bactericide (Garthwaite, 2018). Although copper is used for treating fungal and bacterial infestations, 

the toxic effects of copper to many organisms are acknowledged, and soft-bodied invertebrates 

organisms, such as annelid worm and molluscs are particularly sensitive (Bjerregaard et al., 2015; 

Verschoor et al., 2011). When copper is applied as a pesticide it is in the form of dissolved copper salts 

such as copper sulphate, copper oxychloride, copper hydroxide or copper oxide, however all share the 

same risk assessment within the UK, currently based on prior EU  authorisation (EFSA et al., 2018; HSE, 

2021).  As copper is a metal, its fate and behaviour in soil is different to that of organic chemical 

compounds. For example, while its speciation might change, copper does not degrade and many fate 

models have lower suitability for predicting its transport compared to organic compounds.  Current 

environmental risk assessment is based upon FOCUS modelling although the limitations of using such 

a methodology and the associated uncertainties are acknowledged (EFSA, 2013b; E. F. S. EFSA et al., 

2018). 

Copper is considered to be of high risk to aquatic macroinvertebrates (EFSA et al., 2018) and therefore  

the results from Chapters 3 and 4 are combined to consider how future climate conditions may affect 

the sensitivity of freshwater macroinvertebrate assemblages to copper exposure. Given the limited 

suitability of PRZM for accurately predicting metal fate and the fact that copper is approved for use in 

orchards and grapevines, rather than cereals, it was not used as a study chemical in Chapter 2. 
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Future climate change had little effect on the average sensitivity of 835 macroinvertebrate 

assemblages to copper: overall there was a 2.2% decrease in sensitivity. However, when considering 

the spatial variation of the effect of climate change, changes in sensitivity ranged from a 139% increase 

in the HC5 value to 58.8% decrease, equivalent difference in ratio of 1:3.4 between the two. In 

addition, the effect of raising temperatures by 5°C for Daphnia acclimatised at 20°C (i.e., temperature 

used in the standard for toxicity tests for Daphnia: OECD 202 and OECD 211 (OECD, 2012, 2004)) was 

associated with an increase in copper toxicity on size of adult (by a factor of 5.5) and reproductive 

investment at first brood (by a factor of 5.4).  Daphnia acclimated at 25°C still exhibited an increase in 

sensitivity compared to those acclimated and tested at 20°C, but the magnitude of effect was reduced 

to 4.5 for adult size and 3.2 for reproductive investment and must be considered within the caveat 

that Daphnia appear to have an optimum temperature near 20°C that may not be present in other 

organisms (Lamkemeyer et al., 2003). Overall, the effect of future climate change on increasing the 

sensitivity of macroinvertebrates to copper is greater at an organism level than from shifts in 

assemblage composition. However, as some sites will experience large increases in sensitivity due to 

composition change and another increase in sensitivity when moving away from Daphnia tested at 

20°C, an overall increase in sensitivity for some sites under climate change is expected. The outcome 

of the existing ERA for copper already has macroinvertebrates on the boundary of unacceptable risk 

(EFSA et al., 2018). Consequently, any increases to sensitivity from climate change could result in the 

overall conclusion of unacceptable risk from copper. 

From a chemical input perspective, shifting spring and summer temperature and precipitation 

patterns under future climate projections favour fungal infestation and may therefore require an 

increase in the use of copper-based pesticides (Bajwa et al., 2020; Rhodes and McCarl, 2020a; West 

et al., 2012a). However, accumulation of copper in the field is already restricted to 6 kg copper ha-1 

year-1 (EU Commission, 2002), and increased application rates would need to remain within these 

limits unless there was a change in regulation. All the assumptions of future copper use, however, are 

reliant on the continued approval of copper. Given the results presented here, an overall increase in 

sensitivity to copper may be expected under future climate conditions.  Consequently, a future 

environmental risk assessment for copper may find fewer or no agricultural uses with acceptable risk. 

5.3.4 Case study: Theoretical new chemical 

While the case studies for copper and glyphosate demonstrate the application of the framework to 

existing chemicals, this case study assesses how it may applied to new pesticide active substances or 

emerging chemical pollutants relevant to agriculture, such as pharmaceuticals applied to agricultural 
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land within irrigation water, manure and biosolid fertiliser (Chefetz et al., 2008; Fijalkowski et al., 2017; 

Pollard and Morra, 2018; Wu et al., 2010).  

Spatial variation in climate change projections mean that location should be considered within the 

ERA. Consequently, either likely areas of exposure or generic scenario sites applicable for the entire 

UK need to be selected, which would permit the use of localised climate data (e.g., the 5km resolution 

UKCP18 data to run any exposure assessment (Met Office, 2019). In a manner similar to existing ERAs, 

specific fate scenarios could be created for the risks of climate change on fate, as demonstrated here 

within Chapter 2 that covers the major climatic zones of England and Wales. By also incorporating 

spatial variation in soil (e.g. using the LAND IS database, Cranfield University, 2021) the assessment 

can tailored to accurately represent a specific site. Equally for considering the local assemblage, RICT 

and the landscape parameters of a nearby river can be used with the same UKCP18 data to predict 

baseline and future assemblages to assess assemblage sensitivity (Environment Agency et al., 2021). 

To assess the effect of climate change on chemical flux and to run through the risk assessment 

framework shown in Figure 5.1, first the quantity of the chemical applied should be known. New 

pesticides will have proposed application rates as part of their approved GAP (Good Agricultural 

Practice), which indicates when, how, in what quantity and on what crop the chemical may be applied. 

However, methods for calculating input of chemicals via irrigation water, manure and biosolid fertiliser 

require development (Fijalkowski et al., 2017). Even without any specific exposure rates, PRZM can 

still be used with a generic application rate kept consistent between the base and future climate 

scenarios to assess the effects of climate change as was done here with all chemical being applied at 

1 kg/ha.  

To run PRZM a suite of environmental chemical properties must be known, including various 

degradation rates, kOC, solubility in water, vapour pressure and Henry’s constant, which may be 

available in existing databases (University of Hertfordshire, 2007a, 2007b). However, as shown in 

Chapter 2, persistence is a large determinator of flux and knowing the degradation rate of the chemical 

in soil and the season of application alone means that a chemical could be compared with the outputs 

from chemicals with similar properties and approximate effects estimated. 

Regarding sensitivity, the hSSD model can address the question of spatial or climate change variation 

in assemblage and therefore assemblage sensitivity but running the model does require a toxicity 

dataset of sufficient taxonomic richness for the chemical of interest. Ideally such a toxicity dataset 

would need to be composed of at least 20 different species covering all the major phyla of 

macroinvertebrates relevant to UK freshwater ecosystems (Annelida worms, Mollusca, Platyhelminth 
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worms and Arthropoda (including Insecta and Crustacea). At an organism sensitivity level some 

indication of the multi-stressor effects of temperature and chemicals could inform future change in 

sensitivity. It could be envisaged that Daphnia could be cultured to different temperatures and toxicity 

tests run on the individuals acclimatised to each of the relevant temperatures, rather than just the 

20°C cultures which are currently standard. 

5.4 Conclusion 

5.4.1 Uncertainties, limitations and recommendations 

While this thesis has addressed the effects of climate change on agrochemical risk to freshwaters, the 

scope of potential impacts goes beyond what has been considered here. Consequently, the 

uncertainties and limitations surrounding the method and results from each chapter have been 

discussed below along with recommendations for mitigating and improvement upon these in future 

research.  

Within Chapter 2, spatial variation considered both current and future climates. However, other 

landscape parameters, particularly soil, can drastically affect exposure (Biswas et al., 2018). Equally 

the chemical property of kOC can become a determining factor of fate depending on the soil 

(Farenhorst et al., 2009; Wolt et al., 2002). Furthermore, the effect on flux was only considered for 

fields growing winter cereals, and the known impacts of climate change on crop phenology (eg. later 

drilling and earlier maturation and harvest) were not considered (Craufurd and Wheeler, 2009; Olesen 

et al., 2012). However, given different soils, crops and their phenologies can be directly inputted into 

PRZM, this research could be customised to represent unconsidered or updated ERA scenarios. This 

improves the spatial explicitness and adaptability of this research to changes in crop economics, 

viability and phenology (Cranfield University, 2021). Equally, within the UK fields can be drained, 

particularly on clay soils, representing an additional route of exposure via the soil not considered here 

as clay soils were not modelled (Brown and van Beinum, 2009). However, PRZM is not capable of 

modelling drain flow, therefore necessitating the use of additional fate models, such as MACRO, that 

can be run to calculate drainflow and gain a more complete picture of exposure (Jarvis et al., 1997). 

Finally, fate dynamics in freshwater were not considered, although PRZM itself forms one of a series 

of integrated models used within ERAs to predict soil and water fate (TOXSWA in FOCUS-SWASH, (Te 

Roller et al., 2015; Van den Berg et al., 2015)). As there is already direct links between PRZM and 

TOXSWA, assessing the effects of climate change on freshwater fate represents a logical next step. 

While the hSSD model has shown that it can predict species sensitivity, there are two major limitations 

surrounding the use of taxonomy as the basis of sensitivity extrapolation: firstly that taxonomic ranks 
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represent differing levels of phylogenetic distance (Barraclough, 2010), and secondly that some 

sensitivity influencing traits are highly labile (Blomberg et al., 2003; Rubach et al., 2010). Both mean 

that taxonomy may misrepresent the similarity of sensitivity between two taxa.  One solution to this 

would be a holistic approach integrating the results from multiple sensitivity predictive methods (van 

den Berg et al., 2021). While the traits database remains incomplete for macroinvertebrates, it is being 

built upon and is increasing in its taxonomic coverage (Hébert et al., 2016; Usseglio-Polatera et al., 

2000). Thus, integrating with the hSSD model with trait-based approaches of predicting chemical 

sensitivity may result in a more accurate predictor of species sensitivity. Equally, while RICT can be 

used for predicting communities, it is limited by the range of sites in its reference database to the UK. 

Consequently, predictions become increasingly uncertain as temperatures rise beyond those of the 

reference sites (Clarke et al., 2003). Improving upon this would require integrating water framework 

directive data from warmer locations (Wilby et al., 2006). 

While Chapter 4 investigated the effects of rising temperatures and multi-generational acclimation on 

chemical sensitivity for a single species, Chapter 3 has explicitly shown that there is interspecific 

variation in sensitivity. Therefore, there is a question on how representative the results from Chapter 

4 are of how thermal change would affect chemical sensitivity when extrapolating to all 

macroinvertebrates. Given that the species and chemical investigated were Daphnia magna and 

copper, both have already been extensively studied (Bae et al., 2016; Hochmuth et al., 2016; Pereira 

et al., 2017). Thus these results are therefore representative of the first tier of ERAs where Daphnia 

magna is the most frequent species tested. Still, Chapter 3 has highlighted the need for toxicity data 

on as wide a range of taxonomically diverse species as possible to improve predictions. This may work 

hand-in-hand with assessing the effects of acclimation and toxicity on a wider range of species, as in 

the methodology of Chapter 4 which tested species under both standard laboratory (20°C, OECD, 

2004) and increased temperatures. 

With regards to case studies considered within this chapter, the effect of climate change on input has 

been contextualised within each case study, but not explored within this thesis. Reviews have 

considered how climate change may shift timing of chemicals and the amounts applied to treat the 

changing pest phenologies (Delcour et al., 2015; Tudi et al., 2021) and how droughts may increase 

irrigation (Woznicki et al., 2015). A natural next step would be to integrate a method for quantifying 

how climate change affects chemical use and application rate. However, predicting future use is 

innately uncertain; economics and agricultural subsidies shift the viability of planting different crops 

and using the chemicals applied to them, regulation may see the banning or restriction of currently 

applied agrochemicals, while future technology and research may uncover new chemical active 
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substances or discover emerging chemical pollutants of relevance to ecosystems (Christensen et al., 

2018; Gavrilescu et al., 2015). 

5.4.2 Conclusion 

Overall, this thesis has integrated the effects of climate change on the risk posed to freshwater 

ecosystems by building upon the existing body of scientific knowledge and environmental risk 

assessment (ERA) with modelling and laboratory data. Primarily this thesis has demonstrated how 

climate change can alter environmental risk by shifting agrochemical exposure and ecosystem 

sensitivity. This resulted in both increases and decreases to risk depending on the specific location and 

agrochemical in question. One recurring result present within Chapters 2 and 3 is the importance of 

spatial variation both now and in the future that arises from variation in climates and community 

compositions respectively. Thus, a major novel finding of this thesis is that for freshwater ecosystems, 

both agrochemical exposure via soil and assemblage sensitivity of macroinvertebrates are spatially 

explicit. The variation in risk shown in the results here can increase risk beyond the uncertainty 

included within existing ERAs. This means risk is currently being underestimated for some site and 

chemical combinations and may become worse under climate change.  

As demonstrated above, this thesis has shown how multiple aspects of the ERA can be further 

investigated and refined to account for the effects of climate change. This has been practically applied 

to existing chemicals which could alter the conclusions of their respective ERAs as well as define the 

package of data required to consider a similar process for another chemical. An ERA which can 

functionally consider the effects of climate change can inform and refine future agrochemical use 

while providing suitable protection of ecosystems and their services. However, the work here only 

approached three aspects of the ERA; future steps adapting and integrating additional aspects will 

permit a full picture of the change. This will involve a wider range relevant aspects, as discussed in 

5.4.1. As constructing a comprehensive environmental risk assessment system requires knowledge of 

meteorology, chemistry, agronomy, soil science, toxicology, ecology and economics, an 

interdisciplinary approach is required to accurately capture the effects of climate change is. However, 

any system developed should be simple enough to be utilised and rolled-out within industrial, water 

quality-assessment and regulatory environments to make assessment of the effects of climate change 

on agrochemical risk accessible. 
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Appendices 
Appendix A2 for Chapter 2 
 
Table A2.1 Relevant environmental properties of 24 chemicals. 14 pesticides and 10 pharmaceuticals. Chemical properties were sourced from the relevant of the Veterinary Substances DataBase (University of 
Hertfordshire, 2007b) or the Pesticide Properties Database (University of Hertfordshire, 2007a) for pharmaceuticals and pesticides respectively. 

Chemical Target Time of Application DT50 Soil (day) kOC 
Solubility 

(mg/L) 
Molecular 

weight 
Vapour 

pressure 
Henry's 

coefficient 
DT50 Water 

(day) 
DT50 Sediment 

(day) 

Azoxystrobin Fungicide Spring 78 427 6.7 403.4 1.10E-10 7.40E-09 1000 205 

Carbamazepine Pharmaceutical Autumn 36.5 419.08 17.7 236.27 1.80E-07 1.08E-07 100 328 

Chlorothalonil Fungicide Spring 4.29 1288 0.81 265.9 7.62E-05 0.025 1.97 1000 

Cypermethrin Insecticide Spring 141.3 89 93 416.3 2E-05 5E-05 22.2 1000 

Cyproconazole Fungicide Summer 126 130031 0.00121 291.8 2.6 E-05 2.6E-05 1000 1000 

Diazinon Pharmaceutical Autumn 9.1 609 60 304.35 9.01E-05  6.25E-8 4.3 10.4 

Diclofenac Pharmaceutical Autumn 0.5 833 2.37 296.15 6.14E-08 4.73E-12 5 8 

Diflufenican Herbicide Winter 141.8 1989 0.05 394 4.25E-06 7.40E-09 31.7 214 

Erythromycin Pharmaceutical Autumn 20 10 2000 733.93 2.10E-25 5.42E-29 17.63 6.8 

Fluroxypyr Herbicide Spring 0.7 19550 0.009 367.3 1.35E-06 0.027 38.1 38.1 

Fluvalinate Insecticide Summer 31 750746 0.00103 502.9 9.10E-11 1.2E-04 1.96 87.32 

Glyphosate Herbicide Summer 20.51 15844 10500 169.07 1.31E-05 2.1E-07 67.74 67.74 

Imidacloprid Insecticide Autumn 38.9 242 514 255.7 7E-07 6.50E-11 168.58 27.1 

Ivermectin Pharmaceutical Autumn 27 12600 4.1 874.7 1.5E-09 4.80E-26 2.9 15 

MCPA Herbicide Summer 21 24 29390 214.65 1.4E-04 5.50E-07 141 1000 

Metformin Hydrochloride Pharmaceutical Autumn 5 1693 1060000 165.66 7.60E-05 7.64E-16 20.3 14 

Metronidazole Pharmaceutical Autumn 5.7 38 11000 171.15 3.10E-07 1.70E-11 385 74.5 

Naproxen Pharmaceutical Autumn 2 349 15.9 230.26 1.90E-06 3.39E-10 14 7.7 

Orlistat Pharmaceutical Autumn 6.4 49937 0.0919 495.74 9.77E-14 1.13E-09 18.9 18.9 

Prothioconazole Fungicide Spring 0.5 1765 0.3 344.3 4E-07 3E-05 1 2.8 

Pyraclostrobin Fungicide Spring 62 9304 1.9 387.8 2.6 E-06 5.3E-06 28 28 

Thifensulfuron-methyl Herbicide Spring 1.39 9 2240 387.4 5.20E-09 3.25E-08 22.8 22.8 

Tri-allate Herbicide Autumn 58.2 4301.4 4.1 304.7 0.012 0.89 103.8 68.2 

Trimethoprim Pharmaceutical Autumn 110 301 400 290.32 9.90E-09 2.40E-14 20 75 
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Table A2.2 Coefficients for the static coefficient (a) and gradient coefficient (r) of logarithmic models base e fitted to the degradation 
of hypothetical chemicals with varying DT50 in a hypothetical soil over a 360-day period 

DT50 

(days) a r 

0.5 
0.00

3 
-

0.0007 

2.5 
0.01

6 
-

0.0034 

12.5 
0.02

4 
-

0.0042 

62.5 
0.02

6 
-

0.0036 

312.5 
0.02

5 
-

0.0028 

Table A2.3 Coefficients for the static coefficient (a) and gradient coefficient (r) of exponential models fitted to the degradation of 
hypothetical chemicals with varying DT50 over a temperature increase from 0°C to 40°C 

DT50 

(days) a r 
Q10 

0.5 
0.20

4 
0.04

2 
1.5

2 

2.5 
0.12

5 
0.05

3 
1.7

1 

12.5 
0.10

9 
0.05

7 
1.7

6 

62.5 
0.10

6 
0.05

7 
1.7

7 

312.5 
0.10

7 
0.05

7 
1.7

7 
 

Table A2.4 Calculated p-values from the inter-seasonal variation in EFF90 between the six sites from the Tukey’s HSD test with Sidak 
correction. Sites with differing letters were statistically significant (P<0.05) from each other 

 
Lancashir

e 
Durha

m 
Oxfordshir

e 
Essex 

Cornwal
l 

Ken
t 

Lancashire a           

Durham 0.995 a         

Oxfordshir
e 

<0.001 <0.001 b       

Essex 0.999 0.938 <0.001 a     

Cornwall 0.996 0.908 <0.001 
0.99

9 
a   

Kent 0.965 0.759 <0.001 
0.99

8 
0.999 a 
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Table A2.5 Calculated p-values for the size (A & B) and delay (C & D) to the precipitation event triggering the EFF90 (E & F) from baseline (A, C & E) and future (B, D & F) climate scenarios between the six sites from 
the Tukey’s HSD test with Sidak correction. Sites with differing letters were statistically significant (p<0.05) from each other 

 Baseline (1980-2000)  Future (2060-2080) 

p
-v

al
u

e
s 

fo
r 

lo
g1

0
 

(P
re

ci
p

it
at

io
n

 t
ri

gg
er

in
g 

9
0

th
 p

er
ce

n
ti

le
 f

lu
x)

 

A Lancashire Durham Oxfordshire Essex Cornwall Kent  B Lancashire Durham Oxfordshire Essex Cornwall Kent 

Lancashire a            Lancashire a           

Durham <0.001 b          Durham 0.896 a         

Oxfordshire <0.001 <0.001 c        Oxfordshire 0.848 0.220 ab       

Essex <0.001 <0.001 0.080 cd      Essex 0.001 <0.001 0.061 b     

Cornwall 0.002 <0.001 <0.001 
<0.00

1 
e    Cornwall <0.001 <0.001 <0.001 

<0.00
1 

c   

Kent <0.001 <0.001 0.048 0.999 <0.001 d  Kent <0.001 <0.001 <0.001 
<0.00

1 
0.824 c 

                

p
-v

al
u

e
s 

fo
r 

lo
g1

0
(D

ay
s 

to
 9

0
th

 p
er

ce
n

ti
le

 f
lu

x)
 C Lancashire Durham Oxfordshire Essex Cornwall Kent  D Lancashire Durham Oxfordshire Essex Cornwall Kent 

Lancashire a            Lancashire a           

Durham 0.992 ab          Durham 0.829 ab         

Oxfordshire <0.001 <0.001 c        Oxfordshire <0.001 <0.001 c       

Essex 0.012 0.067 0.065 bc      Essex <0.001 <0.001 0.999 c     

Cornwall 0.027 0.130 0.031 0.999 b    Cornwall 0.044 0.542 <0.001 
<0.00

1 
b   

Kent <0.001 <0.001 0.967 0.005 0.002 c  Kent <0.001 <0.001 0.535 0.778 <0.001 c 

                

p
-v

al
u

e
s 

fo
r 

lo
g1

0
 (

Ed
ge

 o
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fi
el

d
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h
e

m
ic

al
 f

lu
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E Lancashire Durham Oxfordshire Essex Cornwall Kent  F Lancashire Durham Oxfordshire Essex Cornwall Kent 

Lancashire a            Lancashire a           

Durham <0.001 b          Durham <0.001 b         

Oxfordshire <0.001 <0.001 c        Oxfordshire 0.012 <0.001 c       

Essex <0.001 <0.001 0.941 c      Essex 0.068 <0.001 0.992 ac     

Cornwall 0.549 <0.001 <0.001 
<0.00

1 
a    Cornwall <0.001 <0.001 0.004 

<0.00
1 

d   

Kent <0.001 <0.001 0.996 0.720 <0.001 c  Kent <0.001 <0.001 <0.001 
<0.00

1 
0.869 d 
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Appendix A3 for Chapter 3 
Table A3.1 Breakdown of the percentage taxonomic coverage of various toxicity datasets collated from the US EPA ECOTOX 
database compared to the freshwater taxa present across all 835 RICT reference sites grouped by chemical type 

Chemical 
Number of 

taxa 

Coverage of RICT reference taxa in chemical toxicity dataset (%) 

Phylum Class Order Family Genus 

Insecticides Average 68 94.6 87.2 67.6 30.6 7.1 

Aldrin 26 82.3 77.6 47.9 17.3 2.7 

Azinphos-Methyl 30 96.9 85.3 68.2 28.7 6.5 

Bifenthrin 29 74.6 73.4 71.5 25.9 7.9 

Carbofuran 24 96.9 85.9 35.4 20.3 3.6 

Carbaryl 141 96.9 95.7 91.1 41.2 3.3 

Cypermethrin 81 96.9 90.7 60.8 28.9 7.4 

Chlorpyriphos 137 98.2 90.8 69.4 33.9 3.7 

DDT 109 98.2 90.8 88.9 35.9 12.9 

Diflubenzuron 49 98.2 85.1 65.2 30.2 9.6 

Dieldrin 40 89.2 79.6 61.1 24.6 4.8 

Deltamethrin 81 96.9 89.5 63.8 32.7 11.1 

Diazinon 60 98.2 97.0 75.8 37.0 10.1 

Endrin 59 98.2 93.4 78.2 40.6 13.3 

Endosulfan 71 96.9 89.5 85.2 29.1 4.0 

Fenitrothion 120 98.2 90.8 90.2 40.6 6.6 

Fenvalerate 21 82.3 77.6 32.5 13.7 0.4 

Lambda-Cyhalothrin 45 89.2 79.6 61.8 31.3 13.9 

Lindane 70 96.9 85.9 81.6 38.5 15.2 

Malathion 176 98.2 97.0 93.2 44.1 12.5 

Methyl Parathion 39 98.2 87.2 36.6 20.3 2.9 

Methoxychlor 35 96.9 87.3 66.0 25.6 2.8 

Parathion-Ethyl 62 96.9 81.1 78.7 34.4 7.0 

Parathion-Methyl 38 98.2 90.8 37.6 21.4 3.1 

Permethrin 90 98.2 90.8 82.7 39.6 5.6 

Metals Average 47 97.7 96.4 59.4 31.6 9.6 

Cadmium 80 98.2 97.0 53.9 35.5 13.8 

Copper 59 96.9 95.7 77.1 32.6 9.8 

Nickel 26 98.2 97.0 63.8 27.7 5.1 

Lead 24 96.9 95.7 50.4 28.8 8.6 

Zinc 47 98.2 97.0 52.0 33.1 10.5 

Narcotics Average 44 93.0 87.4 50.3 25.4 6.1 

Acenapthalene 12 89.2 73.4 31.5 14.5 2.4 

Atrazine 27 82.3 81.1 45.5 17.9 2.6 

Benzamine 25 98.2 85.1 49.3 25.2 4.1 

Fluoranthene 40 96.9 95.7 49.3 23.9 2.3 

Glyphosate 35 98.2 88.6 39.0 19.7 6.0 

Linear-Alkyl Sulfonate 40 98.2 97.0 87.1 50.6 22.5 

Nonyl-Phenol 35 98.2 88.6 32.9 16.2 0.4 

Pentachlorophenol 69 98.2 97.0 80.1 38.3 6.5 

Phenol 157 98.2 98.2 96.3 56.9 18.2 

Sodium Dodecyl Sulfate 26 83.6 75.3 5.4 1.5 0.1 
Toluene 23 82.3 81.1 37.2 14.8 2.1 
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Table A3.2 Leave one out analysis with the strength of correlation between actual toxicity data endpoints and the predicted 
values when predicting the toxicity from all other toxicity datapoints and across the taxonomic ranks of family and genus 

Chemical 

Correlation between toxicity data and prediction 

Toxicity dataset Family Genus 

Aldrin 0.424 0.695 0.703 

Acenapthalene -0.158 0.737 0.776 

Atrazine 0.464 0.920 0.933 

Azinphos-Methyl 0.643 0.897 0.906 

Benzamine 0.688 0.907 0.920 

Bifenthrin 0.823 0.950 0.954 

Carbofuran 0.344 0.906 0.942 

Carbaryl 0.808 0.892 0.903 

Cadmium 0.491 0.738 0.738 

Chlorpyriphos 0.609 0.882 0.919 

Cypermethrin 0.620 0.800 0.854 

Copper 0.357 0.617 0.618 

DDT 0.487 0.797 0.847 

Diflubenzuron 0.785 0.906 0.910 

Dieldrin 0.259 0.684 0.705 

Deltamethrin 0.316 0.789 0.817 

Diazinon 0.746 0.916 0.920 

Endrin 0.580 0.905 0.932 

Endosulfan 0.428 0.821 0.829 

Fluoranthene 0.238 0.798 0.809 

Fenitrothion 0.633 0.838 0.884 

Fenvalerate 0.583 0.931 0.948 

Fluoranthene 0.422 0.780 0.830 

Glyphosate 0.369 0.800 0.827 

Linear-Alkyl Sulfonate 0.425 0.677 0.696 

Lambda-Cyhalothrin 0.565 0.847 0.872 

Lindane 0.727 0.844 0.852 

Malathion 0.766 0.894 0.900 

Methyl Parathion 0.714 0.894 0.913 

Methoxychlor 0.795 0.946 0.952 

Nickel 0.479 0.920 0.930 

Nonyl-Phenol 0.398 0.862 0.898 

Parathion-Ethyl 0.750 0.876 0.891 

Parathion-Methyl 0.845 0.945 0.954 

Lead 0.541 0.743 0.747 

Pentachlorophenol 0.420 0.776 0.793 

Phenol 0.547 0.609 0.626 

Permethrin 0.352 0.697 0.705 

Sodium dodecyl sulfate 0.587 0.908 0.922 
Toluene 0.458 0.839 0.853 
Zinc 0.377 0.878 0.889 
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Appendix A4 for Chapter 4 

Table A4.1 Calculated EC50 values for the different reproductive endpoints tested within this study for Daphnia acclimatised 
and tested at 15°C, 20°C or 25°C . EC50 values were calculated form dose response curves fitted with non-linear log-logistic 
models 

Endpoint 
parameter 

Acclimation 
Temperature 

(°C) 

Test 
Temperature 

(°C) 

Change in 
temperature 

(°C) 

Estimate EC50 

(μg/L)  
Standard 

Error 

Time to first 
brood 
 
 
 

15 15 0 17.2 9.2 

15 20 5 13.0 0.7 

15 25 10 14.7 13.2 

20 20 0 41.1 15.6 

20 25 5 5.1 2.2 

25 25 0 2.8 5.6 

Adult size at 
first brood 
 
 
 

15 15 0 10.6 3.8 

15 20 5 24.9 49.8 

15 25 10 13.7 12.6 

20 20 0 45.3 3.5 

20 25 5 8.3 18.6 

25 25 0 10.1 12.0 

First brood 
reproductive 
investment 
 
 
 

15 15 0 10.9 4.7 

15 20 5 11.9 4.2 

15 25 10 8.4 3.2 

20 20 0 42.9 16.7 

20 25 5 8.0 9.2 

25 25 0 13.3 3.6 

 


