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Abstract

In the modern industry, the design and manufacturing processes demand
high product quality and lower production costs and times. Moreover, they
require the combination of a variety of processes in different levels. These
characteristics render them as complex systems. Therefore, the accurate
understanding and representation of these systems behaviour and dynamics
are essential for the development of new techniques aiming at improving the
product quality and minimize the costs.

The precise mathematical description of these systems is of main chal-
lenge. The combination of system identification and model reduction tech-
niques that provide full insight on the system behaviour using the minimum
possible amount of data has gained much attention in recent years. The
data driven modelling techniques offer flexibility and better accuracy when
it comes to system identification. Thus, they render as attractive tools for
system identification purposes.

These methods though, are prone to fail when it comes to models with
abrupt changes and structures that are mixing high and low frequency effects,
the so called multiscale models. This thesis addresses the existing data-
driven algorithms by presenting various examples, justifying the necessity of
the development of more efficient algorithms into this direction.

The first part of this thesis analyses the existing reduced order algo-
rithms for data-driven models for temporal and spatio-temporal datasets.
The dominant methods and their variations are presented and compared for
specific examples that comprise multiscale characteristics. Reduced order
models, such as Subspace identification method (SID) for one-dimensional
data, Principal Component Analysis (PCA), Dynamic Mode Decomposition
(DMD) and their extensions for both one and two-dimensional data will be
addressed. The estimated dynamic systems are analysed and their perfor-
mance is compared against the original datasets in each example respectively.
Their inaccuracies and incapability of fully obtaining the system behaviour
will be the foundation for the development of identification methods that are
more accurate and capable of revealing all system characteristics.

The second part of this thesis proposes a novel multiscale reduced order
POD and DMD method that gives full insight on complex system characteris-
tics. These approaches take advantage of the wavelet decomposition method
and divide the given datasets into different levels of resolution before apply-
ing the POD or DMD algorithm. By using the proposed algorithm, a novel
system identification algorithm is formulated. Complex models with mixed
frequency effects and abrupt changes can be estimated accurately. Due the
wavelet decomposition properties, they are able to address complex struc-
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tures into different levels of resolution. Therefore, they can reveal dynamics
and model behaviours that cannot be represented from a single scale model
efficiently but neither from the existing multiresolution algorithms.
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Chapter 1

Introduction

1.1 Motivation

The introduction and development of techniques that can provide better
understanding of complex processes by deriving robust and simple mathe-
matical model representations is the key motivation in this thesis. This task
becomes arduous as these processes exhibit increased complexity, leading
often to ill-conditioned circumstances during the model development. One
form of complexity emerges from the multiscale nature and the amount of
available data of the underlying processes.

Multiscale modelling was introduced in the field of physics and chemistry.
It incorporates the fundamental structure of the laws of physics [1–5]. It
aims at calculating the real system behaviour using information or models
on different levels of resolutions. A simple example of the multiscale structure
in the field of physics, as shown in Figure 1.1, indicates that the macroscale
level models can empirically be estimated and originate from the level of
continuum mechanics while the microscale models originate from the level of
quantum mechanics.

The idea of the multiscale modelling commences from the fact that in
certain occasions the available macroscale models are not accurate enough,
and/or on the other hand, the microscale models are not efficient enough
and/or offer too much information [4]. The complexity of a given system
makes the estimation of an accurate model either in the macroscale or in the
microscale level infeasible. Hence, the combination of both worlds can lead
to more attractive models striking a balance between accuracy and compu-
tational efficiency.

Multiscale modelling introduces a novel perspective in system identifica-
tion and parameter prediction. Multiscale modelling refers to a style where

1
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Figure 1.1.1: Fundamental Multiscale Model. Multi-physics hierarchy
[8].

multiple models at different scales are used simultaneously to describe a sys-
tem [3]. These scales are of different resolution and divide the signals into
different scales, offering an attractive approach in model representation, both
in time and frequency domain. These models are flexible since they capture
the essential information, making system identification methods more effi-
cient with attractive properties, such as low computational complexity and
control actions at different scales. Furthermore, these structures provide
improved abilities in noise filtering and error minimization.

Two types of multiscale models are found in nature. The type A models
are the sequential multiscale models, where the macroscale model contains
information which has been outsourced from the corresponding microscale
model. This type of models are obtained in occasions where a limited amount
of parameters are passed between the macroscale and the microscale world.
This process is called parameter passing [8].

The second type of multiscale models is the Concurrent multiscale models.
As the name of this type of models indicates, the macroscale and microscale
models are used concurrently. When a smaller amount of parameters are
needed in the macroscale world, they are computed on the fly on the mi-
croscale world and are embedded to the system. Hence, this concurrent
coupling allows the evaluation of phenomena at the locations where they are
needed [8].

The idea of multiscale structures came up in contexts where no multi-
physics models are involved. Examples of classical multiscale algorithms are:

■ Multi-grid method [6]. This is an algorithm for solving differential
equations using a hierarchy of discretization. It is evolved in the class
of multiresolution methods that are useful in obtaining the system be-
haviour in multiple scales. It comprises an iterative method that aims
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at speeding up the convergence based on a global correction on the fine
grid solution. The finite element method (FEM) is a typical example of
the multigrid approach and is used for solving differential equations in
the field of engineering and mathematical modelling. The FEM is used
for solving partial differential equations in two or three space variables
by dividing a large system into smaller, simpler parts. These parts are
called finite elements.

■ Fast multipole method [7]. The contribution of this method is to speed
up the computation of f particle forces in the field of n-body problem
or the field of electromagnetism by speeding up the solution of the
iterative method of moments (MoM). It decomposes the system into
different scales and each level of contribution is evaluated in a hierarchy
of grids.

■ Adaptive mesh refinement [9,10]. It comprises an alternative approach
where the numerical grid or mesh is chosen adaptively. Based on a
local error indicator from the current numerical solution, it modifies
the mesh in order to fit a better numerical solution. The aim is to track
features much smaller than the overall scale of the problem providing
adequate higher spatial and temporal resolution where needed such as
discontinuities, steep gradients, shocks, etc.

■ Domain decomposition [11, 12]. The computational domain is decom-
posed into several overlapping or non-overlapping subdomains. The
numerical solution is obtained over the whole domain by iterating over
the solutions on these subdomains.

■ Multi-resolution representation [13, 14, 16]. This is a general strategy
of decomposing functions or more generally signals into components at
different scales. A well-known example is the wavelet representation.
It was introduced by Stephane Mallat and Yves Meyer in 1989 and
later on by Daubechies in 1992. Its predecessors were introduced in
the micro-local analysis in the theory of differential equations and the
pyramid methods of image processing and signal processing in 1981 by
Peter J. Burt, Edward H. Adelson and James L. Crowley.

Multiscale modelling is often used to solve problems on multiple scales ei-
ther temporal or spatial. A class of multiscale systems that will be addressed
are called stiff systems. They are considered as a type of multiscale systems
in the temporal domain, though no formal definition of what constitutes a
stiff system exists. Stiff systems combine variables that respond very slowly
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while some others respond very fast. Hence, a mathematical representation
that includes the accurate estimation of all variables could be challenging.
The stiff systems are considered as two-time scale multiscale systems.

Stiff systems can also be acknowledged as a class of differential equations
for which certain numerical equation solving methods are unstable. The
solution may arise when the size step is considered to be extremely small.
Due to these characteristics, stiff system model estimation is challenging for
computational and accuracy reasons hence model estimation over them will
be of main interest [54,55].

Another class of multiscale models in the spatial domain that will be
addressed is called multiresolution analysis (MRA) [13]. This class of mod-
els provide compact representations for long-range statistical dependencies
among far-apart variables by capturing such behaviour at coarser resolutions.
The concept of multiresolution analysis is based on wavelet representations.
The observed system is divided into multiple scales in time and frequency
domain, in a hierarchical grading of time and frequency information. The
advantage of the MRA is presented in both low and high frequency scales.
In low frequency scales, there is information that tends to last and will not
change quickly over time. On the other hand, in high frequency scales, there
is less frequency resolution but there is information in smaller parts for data
that are changing faster. Therefore, the use of the MRA can optimize the
model representation.

The MRA and wavelets tend to represent a really good spectrogram.
They are tailored to spend as much information in the different regions as
necessary for the purpose of the application (i.e. low frequency does not re-
quire as much information, higher frequencies need more temporal resolution
etc.)

On the other hand, it is not possible to coarse grain (simplify) everything,
as it incurs a loss of information at each step. Coarse graining also involves
the exchange of information between the fine scale and the coarse scale. This
exchange of information between multiple scales leads to error propagation
within the multiscale model, thus the accuracy and stability of the solution
is affected [14]. The above suggests that a systematic approach to multiscale
estimation which utilises the information across scales and is numerically
conditioned, can lead to better algorithms. These specific algorithms increase
estimation accuracy. Tools such as projection and model reduction could be
used to reduce the complexity of the multiscale models in order to achieve
an insightful representation and reveal the behaviour and system structure.

For instance, application fields such as biomechanics and fluid flow are
of much attention in deriving multiscale models for defining the behaviour
of complex systems. Examples such as the interpretation of the blood cells
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behaviour or parts of the musculoskeletal system, constitute large range of
spatial and temporal dimensions. Hence, the system representation based on
a single space–time continuum is impossible and requires the consideration of
multiple space–time continua, each representing the phenomenon of interest
at a characteristic space–time scale. Consequently, the derivation of efficient
algorithms that analyse and estimate these systems as well as overcome ill-
conditioned phenomena due to system complexity is significant.

Nowadays, these high dimensional data are vast in every field, such as
statistics, finance, computer vision and image processing for monitoring man-
ufacturing processes. Therefore, reduced order representations of high dimen-
sional dataset that introduce multiscale characteristics are of high interest in
modern applications and a field that is not exploited extensively yet.

1.2 Research Aims

Modern manufacturing processes are governed by multiscale characteristics.
The complexity of the systems described in the previous section, leads to
estimation of models where the underlying system characteristics cannot be
revealed. The estimation and system identification models aim at providing
the most accurate representation of the system properties and underlying
structures with the minimum computational cost. The consecutive need of
implementing fast algorithms that combine parameters in different scales of
resolution using the minimum amount of computational resources is a big
challenge that has to be met.

The data-driven identification methods impose simple structure and esti-
mate linear or non-linear systems via compact state space model representa-
tions. On the other hand though, as will be shown in latter chapters, these
methodologies undergo inaccuracies, errors and limitations when it comes to
data with abrupt changes or added noise. The overall aim of this thesis is the
expansion and combination of multiscale structures in the field of data-driven
estimation models that can lead into estimated linear model representations
that can reveal hidden structures and characteristics.

Hence, the questions that will be addressed and answered in this thesis
are :

� How to estimate a temporal multiscale model from observed data,
avoiding ill-conditioning and with improved estimation accuracy com-
pared to the existing methods when it comes to the limitations de-
scribed above
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� What insights can be obtained from the different approaches to mul-
tiscale spatio-temporal processes and what are the gaps and problem
using these approaches

� How can multiresolution analysis be combined with mode decompo-
sition approaches in order to provide insights into the complexity of
the processes and derive the characteristics and system behaviour at
minimum computational cost

Based on these questions, the objective of this project are:

� The derivation and implementation of multiscale algorithms applied
in deterministic and stochastic temporal or spatio-temporal systems
aiming at the accurate prediction and estimation of systems behaviour
in the field of signal and image processing applied in manufacturing
applications.

� The error reduction of the obtained model parameters that are used
to reveal the different system dynamics and hidden structures for both
linear and non-linear models.

� The expansion of existing frameworks that are implemented in both
linear and non-linear cases.

Two specific examples will be exploited; one emerges in field of temporal
data, exploiting the mathematical model of the car suspension where precise
representation of the system dynamics is required. A second example will
be addressed in the field of spatio-temporal data, and more precisely in the
field of 3D printing powder manufacturing process where turbulences that
occur in different areas affect the product quality. Aim is to reveal the model
behaviour, aiming at optimizing the process for improved product quality.

1.3 Thesis Structure & Contribution

1.3.1 Contribution

The aim of this project is firstly to take a journey over the system identifi-
cation methods for temporal and spatio-temporal dataset, by presenting the
beneficial properties and, simultaneously, revealing the flaws of the existing
approaches. A detailed analysis and comparison over examples of different
nature, which is not exhibited in literature up to now, will be given. In the
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field of multiscale modelling and estimation over both temporal and spatio-
temporal data, an analytical investigation of the existing reduced order state
space identification methods will be addressed.

For temporal models, known algorithms such as Subspace and Multiscale
Subspace Algorithms (SID, ms-SID) [38, 41, 42, 62] or SID with pre-filtering
for noise reduction will be analysed, presenting the improved accuracy and
reduced computational cost of the derived models. For spatial data, POD
and DMD algorithms and their extensions in the multiscale field will be
introduced. The thesis will present various examples and evaluates the per-
formance of these methods, revealing the connections among the algorithms
and their flaws that emerge.

The ultimate goal is to propose a novel approach over the multiscale
high-dimensional datasets that lead on more accurate system representations.
Detailed simulated examples will be presented revealing the gaps in the ex-
isting identification methods, where the novel approaches will be evaluated
over them.

The first part of the thesis is concentrated on the stiff temporal systems.
The subspace identification method using the tool of δ-operator over stiff
systems for capturing fast sampling data will be presented. The δ-operator
SID method will try to link the discrete model with their continuous counter-
parts, when the sample rate is near zero. Moreover, it will be evaluated and
compared to the current SID methods in literature in an effort to create free
of ill-conditioned and non-convergence phenomena. An extensive analysis of
existing SID methods over specific examples with multiscale nature will be
presented and applied to the new identification algorithm.

In the second part of the thesis, the research will expand to high di-
mensional spatio-temporal data where computational issues and estimation
accuracy problems emerge. The POD, DMD and their expansion for higher
order systems will be evaluated. Moreover, the existing DMD approaches
will be analysed over models governed by multiresolution characteristics. Up
to now, there is no detailed analysis over the recent Hankel DMD, where the
conventional DMD methods fail. Hence, the Hankel-DMD will be applied
over various examples, presenting its beneficial properties.

In the last step, the thesis will present a novel multiscale framework for
high dimensional multiscale spatio-temporal data, called wavelet-DMD. The
new algorithm is tailored to overcome the computational boundaries of the
existing DMD and POD algorithms. Several examples will be discussed,
where the standard DMD and its extensions lack the ability to reveal hidden
structures and separate the system multiscale dynamics. Up to now, there
is no approach that is developed in order to reveal the system multiscale
characteristics and the aim of the novel wavelet-DMD algorithm is to reveal
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the locations where:

� The multiscale temporal and spatial features are exhibited.

� The temporal multiscale features within the derived multiscale modes
are exhibited.

� The DMD efficiency at revealing coherent structures is significantly
increased.

1.3.2 Thesis Structure

The rest of the thesis consists of the following chapters.

� Chapter 2

This chapter provides the literature review over the state of art data
driven system identification methods for temporal and spatio-temporal
models with multiscale properties. A review of the different reduction
order models towards that direction will be recorded presenting the
gaps in the literature that will be evaluated and addressed in latter
chapter.

� Chapter 3

The first topic of the research focuses on data driven estimation and re-
duced order model methods for temporal datasets. More precisely, the
thesis is dealing with subspace system identification methods (SID).
This chapter introduces the main principals and properties of the SID.
This is followed by the application of the SID in a stiff system that
demonstrates the example of the car suspension. More precisely, the
behaviour of SID will be evaluated on high sample rate occasions and
noisy measurements. The δ-operator SID will be proposed for these
occasions, in an effort to address the SID problems for fast sampled
datasets and also to link the discrete SID interpretations with their
continuous counterparts for high sampled dataset.

� Chapter 4

This chapter deals with the modern reduced order models for both
temporal and spatio-temporal high dimensional data. A full analy-
sis of the Principal Component Analysis (PCA), the Dynamic Mode
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Decomposition (DMD) and their extensions will be presented. These
methods reveal dominant structures that emerge and provide a state
space realization with the minimum possible information for any given
dataset. The main focus is on examples with multiscale characteris-
tics and abrupt changes, where the advantages and disadvantages in
the performance of these methods are revealed. Up to now, there is
no detailed comparison of these methods reported in literature. Fur-
thermore, the results of the simulations will constitute the basis of the
novel multiscale DMD and POD methods that will be proposed in the
next chapter.

� Chapter 5

In this chapter, the research expands over multiscale spatio-temporal
data, dealing with models and mathematical representations of com-
plex manufacturing processes. Models with multiscale characteristics
are simulated and a novel method is proposed. The new Wavelet De-
composition DMD combines the properties of the wavelet decompo-
sition, where the data are divided into different scales of resolution,
and the DMD algorithm. The goal of this algorithm is to separate the
multiscale system features and provide full insight of the system be-
haviour. Two multiscale examples are presented and the new method
is compared with the existing DMD methods.

� Chapter 6

This chapter demonstrates the examples of Chapter 5 extensively. De-
tailed simulations are presented in order to provide full insight of the
Wavelet-DMD advantages over the existing methods.

� Chapter 7

This chapter summarizes all the work accomplished in this thesis, fol-
lowing by a discussion about the contribution and the future work that
can potentially improve all referred methods in the field of reduced
order modelling.
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Chapter 2

Background to Signal
Decomposition and System
Identification

This project is dealing with reduced order techniques in the field of data-
driven models. The system identification aims at forming simple mathemat-
ical model representations for dynamical systems derived by observed data
without making any assumptions about the system dynamics. The system
identification methods are following different approaches depending on the
model class. These classes are separated into two categories, parametric or
Non-parametric and linear or non-linear.

The parametric methods estimate model dynamics where a fixed number
of parameters is used whereas the non-parametric models are more flexible in
the number of the selected parameters. Non-parametric models do not make
any particular assumptions about the kind of model structure. Therefore,
they offer flexibility and better accuracy compared to the parametric ones.
The non-parametric data driven models will be of main interest in this thesis.

This chapter is focused on providing the essential background to the ex-
isting identification and model reduction approaches. This chapter will also
highlight the gaps in existing literature and justifies the proposed contribu-
tions, described in the previous chapter.

The first section 2.1, illustrates the different reduced order data-driven
system identification methods in time domain providing an extended analysis
of the subspace identification algorithm. In Section 2.2, a detailed presenta-
tion of the reduced order modelling methods for spatio-temporal dataset is
given, presenting the literature of modern approaches such as the Proper Or-
thogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD).
All these methods will be extensively investigated in latter chapters where

11
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their flaws will be revealed and the necessity of alternative approaches will
be shown.

2.1 Reduced Order Models

As in classical estimation, the system identification methods can be broken
into three different classes of problems [57]. Parameter and state estima-
tion models originate from the known physics of the processes which give
rise to models with known model structure and known or unknown parame-
ters [8, 38]. Alternatively, if the physics of the processes are unknown, then
mathematical model classes are considered for choosing a model structure
towards the identification of the system [38].

A brief outline of the class of estimation methods for single scale and mul-
tiple scale modelling are identified below with detailed information provided.

Figure 2.1.1: Single and Multiscale System Identification Method Categories

Parameter estimation: When the physics of the underlying process is
known, but the parameters of the process are unknown, then a mathemat-
ical model structure of the process is selected but with the requirement of
estimating its unknown parameters [38, 39]. While parameter estimation of
stiff systems exists in the literature, models are either in continuous-time
and estimated deterministically or in discrete-time in the difference equation
form.

State estimation: Full knowledge of the underlying physics of the pro-
cesses and the parameters combined with only partial observations of some
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variables, means that state estimation has to be deployed to estimate the
unobserved variables [47, 56, 67, 68]. Multiscale state estimation methods in
the literature have made approximations that show performance loss when
the number of scales, in which estimation is applied, increases [?, 1–3,56].

System identification: In the absence of any known physics of an un-
derlying process, system identification offers a systematic approach to con-
struct mathematical models of its behaviour from observed input - output
data [41,42,62].

One of the challenges even in classical system identification to accuracy in
model parameter estimation is when the data are obtained by fast sampling
or show complex characteristics that cannot be revealed into single scaled
models. Hence, there is a need to incorporate methods that overcome fast
sampling issues where possible and moreover reveal and separate multiscale
structures among different scales of resolution.

Data-driven system identification models are quite attractive into this
direction due to the fact that they do not require any priori information or
knowledge of the underlying physics. This class of models are not iterative
algorithms and their main objective is to utilize models by using the mini-
mum possible amount of input data. These properties aim at computational
efficiency, especially in occasions where the given process is governed by high
dimensional data and multiscale characteristics. This class of models is called
reduced-order models and have become quite popular due to the complexity
of modern systems.

The introduction of reduced-order models (ROMs) for multiscale complex
systems, concludes a wide range of engineering applications such as mecha-
nism analysis, dynamic modelling, control law design and optimization [74].
Gaining a deep and accurate understanding of the behaviour over time and
space of linear and non-linear structures requires a form of reduced order
models or mode decomposition techniques due to the inefficient and high
computational cost when dealing with complex and high dimensional data.

The determination of control laws for any system requires the knowledge
of its dynamic model. The estimation of controllers for any system requires
the derivation of a mathematical model that describes its dynamics. The
majority of identification methods in literature, the so called predictor error
methods are based on the approximate least absolute deviation criteria [40,
63]. These methods are iterative processes that aim to minimize the error
between the actual and the estimated measures.

The disadvantage of these methods is that this iterative process can lead
to problems such as numerical instability or lack of convergence and may
get stuck into local minima [44, 64]. Moreover, in some applications, the
computational cost of estimating the parameters of a mathematical model
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using identification algorithms described above such as ARX, ARMAX is too
expensive and complex, hence the use of these methods is improbable.

Reduced order models, such as the Subspace Identification Algorithm
(SID), Eigenvalue Realisation Algorithm (ERA), Principal Component Anal-
ysis (PCA) and Dynamic Mode Decomposition (DMD) are data-driven mod-
els that appear to have common characteristics and are using the same math-
ematical tools described above.

2.1.1 Subspace Identification Method

The subspace identification algorithms (SID) is the first class of reduced order
models that will be analysed. They have gained much attention due to their
computational advantages over other estimation algorithms. Their simple
structure and robustness in the parameter estimation of process models make
them a efficient tool for estimating complex systems. The subspace identifi-
cation methods are non-iterative algorithms that are based on mathematical
tools such as SVD ( Singular Value Decomposition), QR decomposition and
projection of matrices [38,41,42,62]. The purpose of subspace methods is the
estimation of the model dynamics directly from input-output measurements
without the prior knowledge of any system information. Hence, the identifica-
tion problem becomes a linear least squares problem in the unknown system
matrices. In contrast to the classical Prediction Error (PE) approaches that
require a certain user-specified model parametrization, so-called canonical
forms. The canonical forms can lead to numerically ill-conditioned prob-
lems, meaning that the parameters are extremely sensitive to small pertur-
bations [42].

The use of mathematical tools such as QR decomposition and Singular
Value Decomposition (SVD) do not increase computational costs and addi-
tionally increase numerical robustness and convergence. SVD is analysed in
Appendix D and is shown that SVD is the main tools for detecting the opti-
mum model order [38,62]. Thus, the term ”subspace” is justified by the data
compression step which can be referred as rank reduction, which is achieved
by the SVD. The QR decomposition implementation is reassuring that ill-
conditioning of the covariance matrices are concentrated in a certain triangu-
lar matrix. This ill-conditioning usually originates from ill-conditioned noise
processes and from rounding errors [42].

The SID is stated for deterministic, pure stochastic models or most com-
monly for combined models due to the fact that most real-time models are
corrupted with noise. The subspace algorithms contributed in a direction
where the state sequences can be determined directly from the input-output
observations in contrast to the classical approaches. Therefore, the use of the
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Kalman filter states are also given directly from the input-output observa-
tions and the identification problem becomes a linear least squares problem
in the unknown system matrices. The process and measurement noise co-
variance matrices follow from the least squares residuals [38,62].

Figure 2.1.2: SID (Left hand side): The (Kalman filter) states are estimated
directly (either implicitly or explicitly) from input-output data, then the
system matrices can be obtained. Classical approach (Right hand side): first
obtain the system matrices, then estimate the states.

The SID approaches originate from Ho and Kalman in 1966, where a
scheme for recovering the system matrices from impulse response measure-
ments is presented. In this approach, the SID stores the Markov parameters
into a finite dimensional Hankel matrix where a state space realization of
the LTI system is derived [33]. The first alterations of this approach were
reported in 1974 and 1978 by McEwen and Kung respectively where the use
of SVD was introduced as a tool to reduce the sensitivity to errors in the
measured impulse response [34]. More recently, a number of algorithms fur-
ther extending these ideas have been proposed, e.g. (Ljung 1991 [35, 36]),
referred as 4SID methods, operating directly to input-output datasets.

All 4SID methods involve the extraction of the extended observability
matrix from input-output data. All the approaches differ in the way the ob-
servability matrix is estimated, and also how the derived observability matrix
is used for finding the system matrices (A,B,C and D). The most known sub-
space system identification algorithms are the numerical algorithms for sub-
space system identification (N4SID) and the multivariable output error state
space model identification (MOESP). The N4SID approach was introduced
by Van Overschee and De Moor and the MOESP approach by Verhaegen.
The main difference between these two algorithms lie in the type of pro-
jection methods in the input-output matrices which are constituted of the
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system input/output data. The N4SID is based on the oblique projection of
the input data but the MOESP is particularly based on the orthogonal of
the input data [64, 65]. Herein, these classes of 4SID methods, an estimate
of an extended observability matrix is given. The latter matrix can then be
used in various ways for obtaining a state-space model of the system under
study.

Figure 2.1.3: SID steps for state space matrices identification

There are several alternative approaches on ways to determine the order
of a state-space model or revising existing approaches due to inaccuracies of
the SID method for datasets with characteristics such as short samples or
high dimensionality but will be not stated for the purpose of this thesis. The
interest will be concentrated at revealing the flaws of the most known SID
approaches for fast sampling data. There will be an attempt for the model fit
of the SID to be optimized when it comes to fast-sampled data and moreover
to link the discrete SID with the continuous counterpart as there is no stated
connection of them in an attempt for a better interpretability.

2.1.2 Subspace Identification Method For Fast-Sampled
Datasets

In the field of fast sampled datasets, the δ-operator is introduced when the
sampling time is close to zero. Up to date, these subspace alternatives are
evaluated mostly on continuous models. In these methods, a method of
identifying a continuous-time closed-loop system based on subspace methods
is addressed. Herein, the closed-loop identification problem is transformed
into an equivalent open-loop identification problem and then a δ-operator
subspace identification method for the equivalent open-loop one in order
to obtain the estimate of open-loop plant model is developed [49, 50, 66].
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The continuous-time systems are transformed to the δ-operator state space
models which converge to the original systems with the sampling period going
to zero.

These approaches are focused on closed loop systems, as the majority
of modern systems are of this nature. The identification of continuous-time
systems is not always solved easily with the latest approach into this direction
being addressed in 2021, in an attempt is based on fault detection [50].

These algorithms are based on the continuous subspace identification
method which is not the direction of this thesis. On the other hand, there is a
gap at addressing and comparing a discrete δ-subspace identification method
with the state of art subspace approaches, as a solution for fast sampled
datasets. The application of the δ-operator in the SID will be extensively
addressed in the next chapter.

2.1.3 Spatio-temporal System Identification Methods

Several natural models are known to exhibit a spatio-temporal evolution
pattern. The reduced order data-driven methods span the development of
spatio-temporal models based on the compression of data into their most
essential features that contain the maximum possible information. The addi-
tion of them in the identification methods entrains the derivation of accurate
representations with the minimum loss of information and computational
cost in favour of simplicity. Many techniques have been developed on this
direction. The principal component analysis (PCA), Proper Orthogonal De-
composition (POD) and Dynamic Mode Decomposition (DMD) are most
widely used approaches.

PCA is one of the oldest and its simple structure made it attractive for
identification purposes. The PCA aims at reducing the dimensionality of a
dataset, while preserving as much variability, by means of information, as
possible. The term preservation of variability interprets into deriving new
variables that are linear functions of those in the original dataset, that maxi-
mize variance and that are uncorrelated with each other. It aims at obtaining
the system behaviour by extracting the dominant patterns or correlations
among the given data. By finding the directions of the maximum variance
of the input data, it provides a hierarchical coordinates system to represent
the statistical variations in any data set X.

It initiates by computing the covariance matrix of the input data which
is a m ×m symmetric matrix (where m is the number of dimensions) that
has as inputs the covariances associated with all possible pairs of the initial
variables.
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C = X⊤X/(n− 1) (2.1.1)

The sign of the covariance indicates that if:

� C > 0 : the two variables increase or decrease together (correlated)

� C < 0 : one variable increases when the other decreases (inversely
correlated)

The PCA computes the eigenvalues and eigenvectors of the computed
covariance matrix in order to determine the dominant structures.

C = VΛV⊤ (2.1.2)

where V is an eigenvector matrix (each column is an eigenvector) and Λ
is a diagonal matrix with eigenvalues λi which are arranged in a decreasing
order.

The eigenvectors indicating where the most variance (most information
concentration) is shown, are called Principal Components. The eigenvalues
indicate the coefficients attached to eigenvectors, which give the amount of
variance carried in each principal component.

By that process, the PCA is squeezing the data in order to derive the
maximum possible information of the initial given data by using only the
first components. Hence, the components with the maximum variance are
determined, meaning the maximum information in order not to sacrifice the
accuracy in favour of reducing the amount of information.

The equation 2.1.2 links the PCA and SVD. PCA is closely related to the
SVD where the actual SVD is the PCA. SVD as mentioned in the previous
section is equal to:

X = UΣV T

Substituting the SVD equation to the covariance equation 2.1.1 of the
PCA, it gives:

C = VSU⊤USV⊤/(n− 1) = V
S2

n− 1
V⊤ (2.1.3)
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Hence, the right singular vectors V are principal directions and that sin-
gular values are related to the eigenvalues of covariance matrix via λi =
s2i /(n− 1).

PCA and SVD are similar but they are not comparable. SVD comprises
a more general method and can be applied over non-square matrices, indi-
cating that any arbitrary matrix can be decomposed to an orthogonal matrix
(rotation), a diagonal matrix (stretch) and another orthogonal matrix [95].
The use of SVD to perform PCA ,numerically, is more plausible than working
over the covariance matrix that can cause loss of precision.

Figure 2.1.4: The Singular Value Decomposition (SVD)
[79]

The first modal decomposition technique is called Proper Orthogonal De-
composition (POD) and was introduced in fluid flow dynamics in 1967 by
Lumley as an attempt to decompose the random vector fields representing
turbulent fluid motion into a set of functions that capture some portion of the
total fluctuating kinetic energy in the flow [78]. The POD is also known as
the Karhunen-Loeve decomposition (KLD) and for finite dimensional cases
which are truncated after a few terms, the POD is equivalent to principal
component analysis (PCA) [80].

The proper orthogonal decomposition (POD) is a multi-variate statistical
method that aims at obtaining a compact representation of the given data.
This method may serve two purposes, the order reduction by projecting high-
dimensional data into a lower-dimensional space and feature extraction by
revealing relevant structures hidden in the data.

The key idea of the POD is the reduction of a large number of variables
to a much smaller amount of uncorrelated variables while retaining as much
as possible of the variation-information in the original variables. An orthog-
onal transformation to the basis of the eigenvectors of the sample covariance
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matrix is performed, and the data are projected onto the subspace spanned
by the eigenvectors corresponding to the largest eigenvalues. This transfor-
mation decorrelates the signal components and maximizes variance [79].

Due to the large amount of computations required to derive the POD
modes, the technique was unused until the middle of the 20th century. The
POD has now gained popularity and is being used in numerous fields. The
fundamental use of POD comes in the context of turbulences, extracting
coherent structures [80]. POD was raised in the field of signal processing
and was firstly suggested for the detection of the number of signals in a
multichannel time-series [81]. Additionally, in the field of chemistry, POD
modes were used to capture the reaction-diffusion of chemical processes [83].
POD also gained a lot of attention in the field of fluid flows, starting from 1995
in an attempt to describe quantitative changes in spatial complexity during
extended episodes of ventricular fibrillation [84] and obtaining reduced-order
models of unsteady viscous flows [85]. POD was also employed for forecasting
in meteorology [86] and as a means of classifying speech data [87].

Additional applications of the POD are recorded in the 1990s in the
field of structural dynamics for determining low-dimensional models of dis-
tributed systems [88], the control of self-excited vibrations of long torsional
strings [89], creation of low-dimensional models of an overhung rotor [90],
damage detection [91], finite element modelling [92], multi-body systems [93],
stochastic structural dynamics [94] etc.

An extension of POD which was appeared in 2008, is called the Dynamic
Mode Decomposition (DMD) [69]. The DMD is a data-driven model which,
like the POD, does not rely on any prior assumptions or knowledge of the dy-
namics of the system. DMD has the ability to extract the coherent structures
that dominate the observed spatio-temporal data and obtains linear reduced
order models based on the eigendecomposition of the dominant modes [102].

Figure 2.1.5: The Dynamic Mode Decomposition (DMD)
[72]
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In contrast to the POD, DMD modes are based on their dynamics rather
than the energy content. Hence, linear and non-linear systems are determined
by a superposition of modes whose dynamics are governed by the eigenvalues,
describing a low - order dynamic model. Additionally, other dimensionality
reduction methods such as Principal Component Analysis (PCA) or Proper
Orthogonal Decomposition (POD), lack temporal representation and the fact
that POD arranges modes in the order of energy contents, and not in the
order of the dynamical importance which is accomplished through DMD.
Therefore, DMD can be efficient in the identification of dominant frequencies.
In occasions where the system contains relatively small energy, but is strongly
connected with other structures sharing the same frequency, these structures
are likely to be ignored by POD analysis but would be captured by the
DMD [82].

The dynamic mode decomposition (DMD) is applied in both temporal or
spatial domain, covering various aspects of data processing for experimen-
tal measurements, such as, the low-dimensional representation of a dynamic
process, the filtering of data based on structural and dynamic coherence, and
the recovery of data from gappy measurements or signals [106].

The DMD shows a vast range of applications, especially in several flow
configurations. For instance, DMD has been applied in the study of the wake
behind a flexible membrane [73], the flow around high-speed trains [103],
instabilities in annular liquid sheets [104], shock wave-turbulent boundary
layer interactions [105] and various jets [70, 102, 106–108]. There have also
been a number of efforts regarding the numerics of the DMD algorithm,
including the development of memory-efficient algorithms [110] and error
analysis of DMD growth rates [111]. Variants of the DMD algorithm have also
been proposed, including optimized DMD [112], optimal mode decomposition
[113], multi-resolution dynamic mode decomposition [99] and higher order
DMD [76, 77]. DMD is also been used extensively in modelling complex
systems in the life sciences, such as brain neural activity [114], blood flow
[115] and many more applications.

The DMD apart from the connection with POD and PCA, it is connected
with other well-known reduced order methods, such as the ERA which is
presented in Appendix. The ERA is a control-theoretic method for system
identification of linear systems. In applications where the same datasets are
used, the DMD eigenvalues reduce to poles of an ERA model [70].

In latter chapter, an extended analysis and comparison of the dominant
DMD approaches will take place. In literature, there are many applications
of these modal reduction methods by up to now, there is no straight compar-
ison of the various approaches over examples that show linear dependencies
and oscillatory patterns in the multiscale field. Modern applications and
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processes are complex, governed by multiscale characteristic, hence the de-
termination of the performance of these methods is of quite interest.

These data-driven algorithms are applied in complex models which often
introduce multiscale characteristics or high-dimensional data. Approaches
that take advantage of the multiresolution analysis (MRA) that was pre-
sented in Chapter 1 and the POD or DMD algorithms have come up recently.
The first approach that was encountered in the multiresolution DMD (mr-
DMD) by N.Kutz [99]. It was introduced in the field of video analysis and
background noise removal by observing and separating the slow-moving and
fast-moving modes. The mr-DMD is performing the DMD into segments of
the given frames. In each step-scale, the length of the window over which
DMD is applied is repeatedly halved, and the low frequency components
of each iteration are separated from the rest of the dynamics. The process
is repeated in an attempt to separate the slowest modes in terms of their
frequency.

An extension of the mr-DMD is called windowed-DMD which is a gener-
alization of the mr-DMD in the direction to deal with a broader variety of
multiscale systems and reconstruct their isolated components more success-
fully. In contrast to the mr-DMD, this approach takes advantage of DMD
sensitivity to the duration and sampling rate of the time series inputs [75].
The key difference is that the segments where the DMD is applied in the
mr-DMD approach are limited to some base time span and power of-two
subdivisions. This fixed segmentation can be problematic in systems whose
frequency content does not follow that pattern. Therefore, the windowed
DMD was introduced as an optimization of the mr-DMD, using sliding and
overlapping windows that can cover the models described.

The most recent approach in the multiresolution analysis field is called
multiresolution POD (mPOD) which combines the Multiresolution Analysis
(MRA) with a standard POD. In this approach, the mPOD splits the cor-
relation matrix of the input data into the contribution of different scales,
retaining non-overlapping portions of the correlation spectra. Thus, by util-
ising the standard POD, the mPOD extracts the optimal basis from each
scale [95]. The difference with the previous multiresolution algorithms, is
that the actual multiresolution analysis is based on 1-D and 2-D filter banks
via the discrete wavelet transform. The mPOD will be extensively analysed
in Chapter 4 and is of main interest for the purpose of this thesis. The
mPOD is the closest related algorithm to the novel Wavelet-DMD approach
that will be introduced in this thesis.
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2.2 Conclusion

This chapter has provided a background in the state of art reduced order
identification methods for both temporal and spatio-temporal models. These
models are the foundation of the derived ideas and algorithms that will be
proposed and analysed in the next chapters. Moreover, the connection among
all the different data driven identification methods is presented which are
based on the same mathematical tools.

More precisely, in the temporal domain, the evolution and background of
the subspace identification algorithms is provided, leading to their application
in the modern complex systems. The subspace identification algorithms are
shown to be robust and many alternatives are proposed. On the other hand,
special attention requires to be given for fast sampled data where there is no
extensive literature and comparison of the SID alternatives for this type of
data with the existing SID methods.

In the field of modal analysis for temporal and spatio-temporal datasets,
the most modern approaches of POD, DMD and their alternatives are in-
troduced for single and multiscale models. These approaches will be the
foundation of the extended analysis and comparisons in the latter chapters.
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Chapter 3

Identification of Temporal
Multiscale Systems

3.1 Introduction

The multiscale systems are inextricably linked to the stiff systems that are
excessively appeared in industrial applications such as in chemical, biomed-
ical and mechanical engineering. Various parameter and state estimation
algorithms are established for identification purposes but the computation
cost and complexity of stiff systems, makes the identification slow, inaccu-
rate and in some cases even impossible. By definition, stiff systems combine
slow and fast moving variables. Hence an additional problem of the fast
sampling data arises. Ill-conditioned system dynamic matrices are estimated
when defined for data sampled at sampling rates that are high relative to
the dynamics of the underlying continuous-time processes being sampled.
The practical difficulty in stiff systems is that the existing methods cannot
resolve the microscopic-fast variables and thus model errors through vari-
ous parametrizations are unavoidable when applied on the macroscopic-slow
level [52,55]. As the sampling rate increases, the covariance matrix of the ob-
served data becomes increasingly stiff and therefore numerical conditioning
becomes a serious problem [66]. A related difficulty occurs in the represen-
tation of sampled data by linear state-space models due to the increase of
sampling rate.

In this chapter, a full analysis of the subspace identification (SID) method
under the special occasions described above is presented. Full results of the
SID approach are given over an example where the dynamics and behaviour
are known. Moreover, an alternative approach introducing the δ-operator to
the input data to the SID approach is analysed and compared to the standard

25
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SID over the same example. The aim to reveal whether the δ algorithm can
minimize the estimation error but moreover link accurately the discrete time
approaches to the continuous counterparts which is not addressed up to date.

3.2 Subspace System Identification Algorithm

The main topic of this thesis is the investigation of existing methods and
derivation of reduced order data-driven system identification methods with
increased accuracy over stiff systems. In this chapter, the subspace identifi-
cation method (SID) will be applied over stiff systems and will be the main
topic of research. As mentioned in Chapter 2, the SID is a powerful identi-
fication method and has gained much attention due to its simple structure
and the connection with fundamental methods such as ERA and the use of
simple and powerful tools such as SVD and projection properties.

As stated, there are various approaches based on the nature of the input-
output data. With the majority of modern system being complex, the SID
method that was selected to be investigated for the purpose of this the-
sis is the combined deterministic- stochastic SID [62]. Therefore, the SID
method will be exposed to an example with multiscale characteristics for
both, noisy-free and corrupted with noise measurements. In order to add an
extra level of difficulty, the simulations will take place for different sampling
rates too. Thus, the performance of the SID will be tested under extreme
conditions. The alternative δ-SID will be compared with the existing dis-
crete SID methods in order to address the necessity of an alternative SID
approach for datasets when sampled time is close to zero. The δ-SID will
also be compared with the initial continuous model in an attempt to address
if this approach can link the discrete model to the continuous counterpart.

The following algorithm illustrates the combined deterministic- stochastic
SID which will be used for this example. As shown in Appendix E, the input-
output data are formed into Hankel matrices, based on equations (E.5), (E.6)
and (E.7). The order reduction is achieved based on the SVD over the
oblique (MOESP) or orthogonal projection (N4SID) (see Equation (E.23)).
As a next step, the extended observability matrix is derived, from where the
state matrices A and C are estimated. Following that, the B and D matrices
are determined based on least square regression and uncertainties based on
Kalman filter when applicable.
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Algorithm 1 Robust combined algorithm [62]

1. Calculate the oblique and orthogonal projections:

Oi = Yf/Uf
W p , Zi = Yf/

(
W p

U f

)
, Zi+1 = Y −

f /

(
W+

p

U−
f

)
.

2. Calculate the SVD of the weighted oblique projection (MOESP) or or-
thogonal projection (N4SID):

W1OiW2 = USV T .

3. Determine the order by inspecting the singular values in S and partition
the SVD accordingly to obtain U1 and S1. 4. Determine Γi and Γi−1 as:

Γi = W1U1S
1/2
1 , Γi−1 = Γi.

5. Solve the set of linear equations for A and C :(
Γ†
i−1,Zi+1

Yi|i

)
=

(
A

C

)
,Γ†

i ,Zi +K · Uf +
(
ρw
ρv

)
.

Recompute Γi and Γi−1 from A and C. 6. Solve B and D from:

B,D = argmin
B,D

∥∥∥∥( Γ†
i−1 · Zi+1

Yi|i

)
−
(
A
C

)
Γ†
i · Zi −K(B,D), UI

∥∥∥∥2
F

7. Finally, determine the covariance matrices Q,S and R as:(
Q S
ST R

)
= Ej

[(
ρw
ρv

)
·
(
ρTw ρTv

)]

3.2.1 δ-operator Subspace System Identification Algo-
rithm

Before the implementation of the SID algorithms, the δ-SID will be anal-
ysed. As mentioned, it will be used when the datasets are governed by fast
sampling rates which could lead in ill-conditioning in the covariance matri-
ces of the state space representation. In that occasion, the signal can be
reformulated via a delta, or divided-difference, dynamical operator and an
alternative framework that ameliorates such ill-conditioning.
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The δ operator is formed in the SID method as follows. It is known that
any discrete time state space model via zero-order hold is represented as
follows:

qx(k) = Aqx(k) +Bqu(k) + wδ(k) (3.2.1)

y(k) = Cqx(k) +Dqu(k) + eδ(k) (3.2.2)

where the state space matrices are in the form :

Aq = eA∆T (3.2.3)

Bq =

∫ ∆T

0

eA(∆T−τ)Bdτ (3.2.4)

Cq = C (3.2.5)

Dq = D (3.2.6)

where A,B,C,D are the state matrices of the continuous model.
It is easily shown that when the sample time tends to be zero, meaning

that the sampling frequency is high, the matrices Aq and Bq are in the
following form:

lim
∆→0

Aq = I (3.2.7)

lim
∆→0

Bq = 0 (3.2.8)

This results to a discrete model that has no counterpart to the contin-
uous model and the system could be unstable as the z-plane poles are all
approximately unity.

On the other hand, by introducing the δ operator which is a divided
difference operator, it ameliorates the previous problem. This Delta form is
a shifted and scaled version of the z-domain and is derived by transforming
the discrete state space model according to the following equation:

q = δ∆T + 1 (3.2.9)

The δ-operator discrete state space model is the following:

δx(k) = Aδx(k) +Bδu(k) + wδ(k) (3.2.10)

y(k) = Cδx(k) +Dδu(k) + eδ(k) (3.2.11)
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where in this occasion, the state space matrices Aδ, Bδ, Cδ and Dδ have
the following form:

Aδ =
Aq − I

∆

Bδ =
Bq

∆
Cδ = Cq = C

Dδ = Dq = D

wδ =
wq
∆

eδ = eq

In this occasion when the sampling time tends to zero, the delta-based
discrete state space model converges to the continuous time system, meaning
that:

lim
∆→0

Aδ = A (3.2.12)

lim
∆→0

Bδ = B (3.2.13)

Based on the previous, the subspace identification algorithm (SID) is
modified in that case. Following the SID matrix derivation in Appendix
C, the extended observability matrix which is used to derive the A and C
matrices is transformed as follows:

Γi =


Cδ
CδAδ
CδA

2
δ

...
CδA

i−1
δ

 ϵRli×n (3.2.14)

Moreover, the Hankel formed input-output matrices are reconstructed in
the following form.

The past input Hankel matrix is given by:

Up =

 u(0) u(1) . . . u(j − 1)
δu(1) δu(2) . . . δu(j)

...
...

...
...

δk−1u(i− 1) δk−1u(i) . . . δk−1u(i+ j − 2)

 (3.2.15)
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The future input Hankel matrix is given by:

Uf =

 δku(i) δku(i+ 1) . . . δku(i+ j − 1)
δk+1u(i+ 1) δk+1u(i+ 2) . . . δk+1u(i+ j)

...
...

...
...

δ2k−1u(2i− 1) δ2k−1u(2i) . . . δ2k−1u(2i+ j − 2)

 (3.2.16)

The past output Hankel matrix is given by:

Yp =

 y(0) y(1) . . . y(j − 1)
δy(1) δy(2) . . . δy(j)

...
...

...
...

δk−1y(i− 1) δk−1y(i) . . . δk−1y(i+ j − 2)

 (3.2.17)

The future output Hankel matrix is given by:

Yf =

 δky(i) δky(i+ 1) . . . δky(i+ j − 1)
δk+1y(i+ 1) δk+1y(i+ 2) . . . δk+1y(i+ j)

..

.
..
.

..

.
...

δ2i−1y(2i) δ2iy(2i+ 1) . . . δ2k−1y(2i+ j − 2)

 (3.2.18)

where i is the number of block rows and j is the number of sampled data.
The extended controllability matrix is defined as follows:

∆i =
[
Ai−1
δ Bδ Ai−2

δ B . . . AδBδ Bδ

]
(3.2.19)

Accordingly, the lower triangular Toeplitz matrix is defined as follows:

Hd
i =


Dδ 0 0 . . . 0
CδBδ Dδ 0 . . . 0
CδAδBδ CδBδ Dδ . . . 0

. . . . . . . . .
. . . . . .

CδA
i−2
δ Bδ CδA

i−3
δ Bδ CδA

i−4
δ Bδ . . . Dδ

 (3.2.20)

The process of estimating the state space matrices Aδ,Bδ,Cδ,Dδ is the
same as in the standard discrete time subspace system identification based
on the MOESP or N4SID approaches.

In the following section, the effectiveness, the performance and the neces-
sity of the δ-operator subspace identification algorithm, will be evaluated and
compared to the MOESP and N4SID algorithms described in the previous
section for fast sampling data.
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3.3 SID of Stiff Systems

For the purpose of this section, a stiff system that represents a quarter car
model is presented. The active car suspension will be simulated and its state
space model will be estimated using the three subspace system identification
algorithms.

The vehicle suspension model is represented as a linear system. It consists
of a single sprung mass (vehicle body-m1) connected to two unsprung masses
(front and rear wheel assembly masses) at each corner.

The unsprung mass represents the wishbone arms, wheel hub, knuckle,
tire, rim, brake caliper, disc plate etc. it means that the components that are
suspended(swinging, hanging ) from the frame are mentioned as unsprung
mass. Each mass of the individual unsprung components are represented as a
whole and it is named as unsprung mass. The same is applied for the sprung
mass but the sprung mass represents the components which are mounted on
the frame.

Figure 3.3.1: Vehicle suspension & Physics Representation

The sprung mass is free to heave and pitch, while the unsprung masses
(m2) are free to bounce vertically with respect to the sprung mass. The
suspensions between the sprung mass and unsprung masses are modelled as
linear viscous dampers and spring elements, while the tyres are modelled as
simple linear springs without damping components in half car model while
in quarter car model damping is also included for tyre.

Given two masses m1 ∈ R and m2 ∈ R- representing the sprung and
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the unsprung mass respectively- that are attached via a spring with spring
constant k1 ∈ R and a second spring with spring constant k2 ∈ R attached
mass m2 to a forcing plane with displacement from equilibrium f(t) ∈ R.
Damping d1, d2 ∈ R is introduced and is the same for both springs.

The states x1(t) ∈ R is defined as the displacement ofm1 from equilibrium
and similarly x2(t) ∈ R as the displacement of m2 from equilibrium. The
following equations describe the dynamics of the system:

ẍ1(t) + d1ẋ1(t)− εd1ẋ2(t) + k̄1 (x1(t)− x2(t)) = 0, (3.3.1)

εẍ2(t)− d1ẋ1(t) + ε(d1 + d2)ẋ2(t) + k̄1 (x2(t)− x1(t))+

k̄2 (x2(t)− f(t)) = 0, (3.3.2)

where ẍ := d2x/dt2, ε := m2/m1, k̄1 := k1/m1 and k̄2 := k2/m1.
The stiff parameter ε dictates the multi-time-scale behaviour of the sys-

tem. As ε → 0 the disparity between the frequencies of signals x1(t) and
x2(t) increases, with x1(t) being the “slow” state (i.e. low frequency) and
x2(t) being the “fast” state (i.e. high frequency).

The continuous system can be represented as a state-space system such
as:

x(t) =
[
ẋ1(t) εẋ2(t) x1(t) x2(t)

]⊤
,

A =


−d1 d1 −k̄1 k̄1
d1 −(d1 + d2) k̄1 −(k̄1 + k̄2)
1 0 0 0
0 1 0 0



B =


0
k̄2
0
0



C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


D =

(
0 0 0 0

)
The discrete model is simulated for different samples rates and for random

inputs with added white noise and the system outputs are computed. These
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inputs and outputs are fed into the subspace methods and a new state space
representation will be derived in every case. The new model will be compared
to the initial state space model and their performance and robustness will be
evaluated.

The subspace system identification algorithms are designed and simulated
using the platform of MATLAB. The simulations were implemented and re-
sults are obtained for various sampling frequencies beginning from Fs = 25Hz
up to Fs = 220Hz. Moreover, various stiff ratio ε values were tested, start-
ing from 0.1 up to 10−6. The algorithm precision under extreme conditions
of stiffness and fast sampling where ill-conditioned phenomena emerge, will
be evaluated. As a next step, the outputs of the initial state space system
will be corrupted with white noise and the performance of the SID will be
presented too.

3.3.1 Experimental Results & Simulations

In this section, various simulations were implemented for the following occa-
sions:

� Fixed sampling rate and varying ε

� Varying sampling rate and fixed ε

� Noise free measurements

� Noisy measurements

The behaviour and performance of subspace identification algorithms
is investigated for various stiffness ratios combined with different sampling
rates.

3.3.2 Noise Free Measurements

The first simulations are exploited for different sampling rates and stiffness
ratio. The aim is to reveal the behaviour and the possibility of ill conditioned
cases of the algorithm matrices that may emerge as the sample rate increases.
Theoretically, fast sampling rates could lead in singular matrices making the
accurate state space model estimation impossible.

The tables 3.1, 3.2, 3.3 & 3.4 illustrate the norm of the difference between
the given discrete model outputs and the estimated one based on the differ-
ent SID algorithms for occasions where no added measurement noise on the
output Hankel matrices is introduced.
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More specifically, the table 3.1 demonstrates the norm of the difference
between the given model and the 3 different subspace models where sysSID
is the subspace MOESP model,sysδSID is the subspace methods based on
δ-operator and sysN4SID is based on N4SID, for different sampling rates.

Sample Rate | sysd − sysSID | | sysd − sysδSID | | sysd − sysN4SID |
26 6.36× 10−12 3.39× 10−12 3.87× 10−13

28 8.88× 10−10 2.8× 10−10 9.15× 10−12

210 5.86× 10−9 3.5× 10−8 1.14× 10−11

211 2.41× 10−9 2.04× 10−7 2.74× 10−11

212 9.33× 10−8 7.78× 10−11 1.75× 10−8

214 2.62× 10−6 2.34× 10−5 2.48× 10−9

216 3.04× 10−4 0.03 5.08× 10−8

218 6.46× 10−4 0.0338 2.82× 10−5

Table 3.1: Difference of given discrete state space model & subspace models
for fixed stiffness ratio ϵ=0.1

Based on the results above, it is shown that all SID algorithms manage to
identify an accurate model representation for all fast sampling data occasions.
The sample rate is increased up to 219 for fixed ϵ = 0.1 and even in these
occasions, the algorithms are robust, estimating accurate models.

As a second example, the performance of the SID algorithms is evaluated
for fixed sample rate and varying ε values. The aim is to evaluate the accu-
racy of these algorithms when the stiffness ratio is increased and the system
is governed by multiscale characteristics.

Table 3.2 presents the results of a stiff system with a high sampling fre-
quency. Simulations are provided for varying ε and sampling frequency 218

Hz.
According to tables 3.2, 3.3 and 3.4, for the extreme occasions where the

sampling rate is increased up to 219 Hz and the stiffness ratio is high, the
Delta subspace identification method deals with difficulties at identifying a
representative and additionally stable dynamic model in contract with the
MOESP and N4SID that manage to deal with the occasions. This indicates
that the fundamental SID algorithms are efficient under extreme occasions
where the model presents multiscale characteristics.

As the sampling rate decreases, the subspace identification methods are
becoming more efficient and manage to identify more accurate models. The
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ϵ | sysd − sysSID | | sysd − sysδSID | | sysd − sysN4SID |
10−3 1.63× 10−4 0.0234 0.9130

10−4 4.41× 10−4 0.0071 0.0051

10−5 8.34× 10−4 0.0137 0.0835

10−6 0.0668 0.0243 0.1164

Table 3.2: Difference of given discrete state space model & subspace models
for fixed sampling rate Fs=218 Hz

ϵ | sysd − sysSID | | sysd − sysδSID | | sysd − sysN4SID |

10−3 1.6742× 10−4 0.0025 4.9804× 10−6

10−4 1.2346× 10−4 0.0015 4.2390× 10−8

10−5 1.5866× 10−4 0.0017 4.0263× 10−8

Table 3.3: Difference of given discrete state space model & subspace models
for fixed sampling rate Fs=216 Hz

ϵ | sysd − sysSID | | sysd − sysδSID | | sysd − sysN4SID |

10−3 1.6742× 10−4 6.23× 10−5 1.58× 10−9

10−4 1.41× 10−5 3.65× 10−4 8.69× 10−10

10−5 8.51× 10−8 1.5866× 10−4 4.049× 10−10

Table 3.4: Difference of given discrete state space model & subspace models
for fixed sampling rate Fs=214 Hz

robustness of these methods can be seen in extreme occasions where the
sampling frequency is as high as F = 214 Hz and the stiffness ratio as low as
ϵ = 10−5, estimating accurate models and manage to reveal the multiscale
nature of initial dynamic model.

Following the tables above, it is of interest to present the system response
of the three different identification methods. The plots below demonstrate
the system outputs for every different occasion and are compared to the
initial model. Additionally, the eigendecomposition of the derived models
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are presented and compared with initial discrete model.

Figure 3.3.2: System response of the derived state space model using sub-
space system identification methods for Fs = 216 Hz and ε = 10−5

Figure 3.3.3: Poles of the derived state space model using subspace system
identification methods for Fs = 216 Hz and ϵ = 10−5



3.3. SID OF STIFF SYSTEMS Page 37

Figure 3.3.4: Poles of the derived state space model using subspace system
identification methods for Fs = 216 Hz and ϵ = 10−5

Figure 3.3.5: System response of the derived state space model using sub-
space system identification methods for Fs = 212 Hz and ϵ = 10−4
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The simulations above justify the assumption that the SID algorithms
manage to identify the system dynamics successfully. Moreover, according
to the simulations, the δ-SID did not manage to improve the algorithm per-
formance as was initially surmised. The following images demonstrate a com-
parison between the output measurements of the initial continuous model and
the ones from the derived model from the δ-SID method.

Figure 3.3.6: System response comparison of the derived state space model
using δ subspace system identification methods for Fs = 216 Hz and ε =
10−5 & initial continuos system

Figure 3.3.7: System response comparison of the derived state space model
using δ subspace system identification methods for Fs = 212 Hz and ε =
10−4 & initial continuos system

3.3.3 Measurements With Added Noise

In the previous section, the identification algorithms presented very high ac-
curacy, even for exceptionally high sampling rates and stiffness ratios. In this
section, the behaviour and performance of the three identification algorithms
will be studied for data with additive white noise, for varying Signal-to-Noise
Ratios (SNRs) and number of samples.
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It is known that the noise is square root proportional to the noise spectral
width. And the noise spectral width is related to the sampling rate by the
time-bandwidth relation. As a result, as the sampling rate increases, the
noise spectrum becomes wider, resulting to an increased measurement noise.
Hence, as the SNR decreases, the subspace algorithms have to deal with the
effects of increased noise.

The accuracy of the algorithms is affected disproportionately by factors
such as the amount of samples, the noise margin and the sampling rate.
Different simulations took place where the SID algorithms performance is
investigated in order to validate their performance. The simulations are
shown below for various combinations of the parameters described previously.

Samples, SNR | sysd − sysSID | | sysd − sysDELSID | | sysd − sysN4SID |

500, 40dB Inf Inf 0.2204

4000, 40dB Inf Inf 0.0161

10000, 40dB Inf 2.5534 0.0043

20000, 40dB 2.2413 2.2526 0.0073

40000, 40dB 2.2461 2.2447 0.0108

60000, 40dB 2.2468 2.2507 0.1995

Table 3.5: Difference of given discrete state space model and subspace models
for sampling rate Fs = 26 Hz and ε = 0.1

As illustrated in the previous tables, Table 3.5 demonstrates the norm
of the difference between the given system response and the response of the
three different models derived by the SID for different SNRs and number of
input data. It is important to note, that for high number of samples ( ≥
80.000) and high sampling frequencies (≥ 210), all identification method fail
to identify a representative model of the input data.

The table 3.8, presents a conclusive table of the 3 different methods accu-
racy for four different amount of samples and three different SNRs, for higher
sampling frequency F = 210 Hz, confirming the difficulties of the subspace
methods to estimate representative models compared to the given one. Espe-
cially in simulations, where the SNR is lower than 60dB, the Delta subspace
identification method estimates an unstable dynamic model and for lower
than 40dB, all the methods estimate unstable dynamic models too.

Following the results presented above, it is shown that for low SNRs
and as the sampling rate and the number of the available samples increases,
the identification methods deal with difficulties in identifying representative
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Samples, SNR | sysd − sysSID | | sysd − sysDELSID | | sysd − sysN4SID |

500, 60dB Inf Inf 0.0186

4000, 60dB 2.1785 2.1959 0.0019

10000, 60dB Inf 2.1760 0.0036

20000, 60dB 0.2831 1.9876 0.0163

40000, 60dB 2.0869 2.0831 0.0011

60000, 60dB 2.0875 Inf 0.0194

Table 3.6: Difference of given discrete state space model & subspace models
for sampling rate Fs = 26 and ε = 0.1

Samples, SNR | sysd − sysSID | | sysd − sysDELSID | | sysd − sysN4SID |

500, 60dB 0.0360 0.3441 0.0106

4000, 60dB 0.1047 0.9493 0.0010

10000, 60dB 0.0469 0.0776 0.0031

20000, 60dB 0.0246 0.0707 0.0010

40000, 60dB 0.0089 0.1135 0.0001

60000, 60dB 0.0171 0.1374 0.0012

Table 3.7: Difference of given discrete state space model & subspace models
for sampling rate Fs = 25 Hz and ε = 0.1

dynamic models to the initial one. In all occasions though, as the SNR
increases, the algorithms manage to deal with the additive noise indicating
that the use of any possible data pre-filtering method that improves the SNR,
can lead to accurate model representations.

For sampling frequencies greater than 213 Hz, the algorithms performance
is deteriorated, hence the SNR had to be increased significantly (SNR≥ 70dB
) in order to obtain satisfactory results.

The following plots demonstrate the Bode plots of the singular values
response of the derived dynamic systems in a transfer function form. These
plots present the damped natural frequencies within the accuracy of the
frequency-resolution and corresponding non-scaled mode shapes and solu-
tions.

The plots will confirm the problem of the derived methods at identifying
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Samples, SNR | sysd − sysSID | | sysd − sysDELSID | | sysd − sysN4SID |
5000,20dB Inf 0.6517 0.571

10000,20dB Inf 0.9196 Inf

15000,20dB Inf Inf Inf

20000,20dB 3.436 Inf 0.5174

5000,40dB 127.65 0.6151 117.9995

10000,40dB 0.6067 Inf 0.3353

15000,40dB Inf Inf Inf

20000,40dB 20.81 0.61 23.81

5000,60dB 15.11 Inf 0.096

10000,60dB 0.7198 0.633 0.024

15000,60dB 21.52 Inf 0.095

20000,60dB 0.1551 Inf 0.1551

Table 3.8: Difference of given discrete state space model & subspace models
for sampling rate Fs = 210 Hz and ε = 0.1

and estimating the behaviour and system response when noise is added in
different occasions, such as increased samples or increased sampling ratio and
stiffness ratio.
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Figure 3.3.8: Singular values of the derived state space models for : Fs= 216

Hz, N=200.000 samples and SNR = 70db

Figure 3.3.9: Singular values of the derived state space model using subspace
system identification methods for Fs= 213 Hz, N=20000 Samples and SNR
= 70db
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Figure 3.3.10: Singular values of the derived state space model using subspace
system identification methods for Fs = 212, ε = 10−4 and SNR = 70dB

The following images demonstrate a comparison between the output mea-
surements of the initial continuous model and the ones from the derived
model from the δ-SID method for different SNR.

Figure 3.3.11: System response comparison of the derived state space model
using δ subspace system identification methods for Fs = 212 Hz and ε =
10−4 & initial continuos system

Figure 3.3.12: System response comparison of the derived state space model
using δ subspace system identification methods for Fs = 216 Hz and ε =
10−5 & initial continuos system
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3.4 Summary

In conclusion, in this chapter the SID method was applied over a system
with multiscale characteristics and high sampling frequency. The aim was to
identify the threshold where the SID could potentially struggle at revealing
all system structures for both noise-free and noisy input-output data and
enhance its performance by introducing the δ-operator SID.

By simulating both methods for the noise free measurements, all identi-
fication algorithms estimate accurate dynamic models which are identical to
the initial discrete dynamic model as shown from their frequency responses
and singular value plots. This indicates that no SID alternative with single-
scale or multiscale structure needs to be obtained.

In the occasions, where white noise is added to the measurements, it is
shown that as the sampling frequency increases and as the SNR reduces, the
more inaccurate the algorithms are in terms of estimating a representative
model to the initial one which is justified by the results. As the number of
samples corrupted with noise increases, the more difficult becomes for the
algorithms to obtain accurate estimations.

The subspace algorithms deal with these difficulties in most of occasions
when the SNR = 20dB and various number of samples. In occasions where
the SNR is higher such as SNR = 60dB or even higher, all algorithms manage
to estimate accurate models and especially N4SID is estimating state space
models that are almost identical to the initial discrete one. On the other
hand, as the number of samples increases, the δ subspace identification al-
gorithm deals with problems due to noise. Consequently , for the occasions
where the SNR is low, the measurements could be filtered using methods such
as Kalman Smoothing, accomplishing higher SNRs where the identification
methods are efficient.

Additionally, all algorithms are immune to added noise to the inputs, con-
firming the theory presented in chapter 3 where it was proven that through
projection of data, the input noise is filtered in every occasion.

As a conclusion, the proposed δ-operator state space model does not offer
any higher accuracy in the temporal model estimation when the sampling
frequency is very high, indicating the robustness of the conventional subspace
identification method. The main use of the δ-operator could be that of linking
the continuous counterpart of the derived discrete model when the sampling
time tends to zero.



Chapter 4

Multiscale Spatio-temporal
Signal Modelling

The development of reduced-order models (ROMs) for high dimensional com-
plex systems, concludes a wide range of engineering applications including
mechanism analysis, dynamic modelling, control law design and optimization.
Reduced-order models based on input-output data, provide satisfactory re-
sults as described in previous chapters for modelling dynamic systems for
forecast and control purposes.

Gaining a deep and accurate understanding of the behaviour over time
of linear and non-linear systems requires a form of reduced order models or
mode decomposition techniques due to the inefficient and high computational
cost when dealing with high dimensional data.

Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposi-
tion (DMD) and their expansions are fundamental and powerful methods in
analysing linear and non-linear spatio-temporal systems. They are designed
to extract the system dominant coherent structures, without requiring the
explicit prior knowledge of the governing equations. These methods were
initially introduced in Computational Fluid Dynamics (CFD) for gaining a
better understanding of complex fluid dynamics overall behaviour over time.
Fast though, they gained much attention in many more fields due to their
simple structure and computational power.

These methods are referred as modal decomposition methods and inte-
grate mathematical techniques that extract energetically and dynamically
important features of the introduced process. The spatial extracted features
are called (spatial) modes and they are followed by characteristic values that
correspond to the energy concentration levels or growth rates and frequencies
of each mode [71].

In this chapter, an extended analysis of these modal decomposition meth-

45
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ods will be presented. The POD, DMD algorithm and their expansions will
be analytically presented and applied over different examples. Up to date,
there is no analysis in literature revealing the advantages and drawbacks of
the different alternatives. Hence, a detailed discussion over various exam-
ples with periodical behaviour and multi-scale characteristics will be given.
This analysis will reveal the necessity of alternative approaches considering
systems with multiscale dynamics and mixed frequency effects.

4.1 Proper Orthogonal Decomposition

As introduced in Chapter 2, the Proper Orthogonal Decomposition (POD)
is a post-processing technique. It obtains a given set of data and extracts
basis functions, that contain as much information as possible. The POD
method creates an orthogonal basis for representing a given set of data in
a certain least-squares optimal sense. In fact, it offers ways to find optimal
lower-dimensional approximations for the given data set and that justifies
the term ”proper” in the orthogonal decomposition process [79].

These approximations are also referred by the term “energy” [79, 80].
The energy of a dynamical system through POD is typically expressed as a
Singular Value Decomposition. The SVD extracts spatio-temporal coherent
structures arranged in descending order according to their energy contribu-
tion to the dynamic system. These coherent structures are called modes.
The SVD is a decomposition technique for rectangular matrices and POD
can be seen as a decomposition formalism where SVD has the advantage of
being robust against round error [80].

POD is a multi-variate statistical method, known for handling high di-
mensional data sets. The POD modes and the corresponding eigenvalues are
thus characterized by the eigensolutions of the sample covariance matrix C.

C =
1

n
XXT

Given that the SVD computes the matrices:

XXT = US2UT

XTX = VS2VT (4.1.1)

It is known that the singular values of X are equal to the square roots
of the eigenvalues of XXT or XTX. The left and right singular vectors of X
are the eigenvectors of XXT and XTX respectively. The POD modes, which
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are determined as the eigenvectors of the covariance matrix C, are equal to
the left singular vectors of X. The proper orthogonal values, which designate
the eigenvalues of matrix C, are the square of the singular values divided by
the number of samples.

Hence, POD is simply given by the computation of the reduced SVD of
the X matrix :

X = UrSrV
∗
r (4.1.2)

where Ur has a size of mn× r representing the dominant coherent structures
or else the POD Modes
Sr has a size of r × r
Vr has a size of mn× r , with r being the number of modes selected.

The POD modes are organized from most important to least important
in terms of capturing the variance of X. The order of the modes indicates
which modes are dominating in the data structure in terms of the energy
concentration. The number of selected modes differs and depends on the
application demands based on criteria such as accuracy and amount of infor-
mation needed.

4.2 Dynamic Mode Decomposition (DMD)

The Dynamic mode decomposition (DMD) is an expansion of POD which was
initially introduced in Fluid Mechanics, forming a powerful tool for analysing
linear and non-linear dynamic models described by high-dimensional data
models [70]. As presented in Chapter 2, the DMD algorithm is arranging
the data based on their dynamical importance and not simply by the energy
content, thus dynamics that contain small energy can be captured in contrast
to the POD methods.

The DMD intents to represent the linear or non-linear dynamics with a
simple linear dynamic model :

X′ = AX (4.2.1)

The ultimate goal is to estimate the best linear fit operator Ã that can
approximate the dynamics of the high dimensional data. The DMD modes
and eigenvalues are computed in order to represent the system with the dom-
inant eigenvalues and eigenvectors.
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The DMD algorithm is summarized in the following steps.

� The first step of the DMD is the data collection and their resizing into
high-dimensional column matrices. Let xi be the ith video frame or
snapshot, of size m × n, arranged in a column vector of size mn× 1.
The data are arranged into two matrices of size mn× (n− 1).

X = [x1,x2,x3, · · · ,xN−1] =

 x11 x12 . . . x1N−1
...

...
...

...
xmn1 xmn2 . . . xmnN−1

 (4.2.2)

and its time shifted counterpart :

X′ = [x2,x3,x4, · · · ,xN ] =

 x12 x13 . . . x1N
...

...
...

...
xmn2 xmn3 . . . xmnN

 (4.2.3)

where each snapshot xN has a size of mn× 1 and X ′ are one step time
advanced data. Aim of the DMD is to compute a matrix A that satisfies
the equation X′=AX. Thus

A = X′X† (4.2.4)

The X† is a least square regression algorithm, called Moore-Perolds
algorithm.

� There is a dimensionally problem in the equation 4.2.4. The two ma-
trices are high dimensional, hence their outer product will be a massive
matrix causing computational problems. As a result, the second step
includes the computation of the reduced SVD of the X matrix and the
extraction of the dominant coherent structures.

X = UrΣrV
∗
r (4.2.5)

where Ur has a size of mn × r representing the dominant coherent
structures or else the POD Modes
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Σr has a size of r × r and
Vr has a size of mn× r , with r being the number of modes selected.

Hence using equation 4.2.4 and 4.2.5:

X′ = AUrΣrV
∗
r

A = X′VrΣ
−1
r U∗

r (4.2.6)

There is no specific selection criteria for the amount of the dominant
modes. The selection is mainly based on the energy concentration ratio
of the first r modes and the total system energy.

� The third step evaluates the projection of the high dimensional matrix
A to the Ur matrix that includes the dominant modes. The objective
of DMD is not to work directly with the matrix A, due to the size of
A which is massive due to the high dimensional data X′. Hence, DMD
will be work with a similarity transform of A, called Ã with a nice set
of variables, Ur.

Thus, a truncated matrix Ã is derived and described as:

Ã = U∗
rAUr (4.2.7)

The combination of equation 4.2.6 and 4.2.7 gives :

Ã = U∗
r [X

′VrΣ
−1
r U∗

r ]Ur

Ã = U∗
r [X

′VrΣ
−1
r ] (4.2.8)

where Ã is of size r × r.

� Solving the eigenvalue problem of Ã is easier than solving the one for
A directly. The eigevalues λ and the eigenvectors ω of the Ã that
approximate some of the eigenvalues of the full system A are given by:

AUr ≈ UrÃ

AUr ≈ Urωλω
−1

A(Urω) ≈ (Urω)λ (4.2.9)

� The DMD modes that represent the high dimensional data are given
by:
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Φ = Uω

Φ = X′V Σ−1ω (4.2.10)

The dynamic modes do not only contain information about dynamic
structures, but also about the temporal evolution of patterns within a
data sequence.

� After deriving the truncated linear model using the Ãmatrix, the DMD
modes can be used to reconstruct and predict the future response of the
dynamic system. This is obtained by using the known linear solution
equation of the discrete linear system:

X̂(t) = Φλtb0 (4.2.11)

where b0 ≈ Φ†x1, Φ
† denotes the Moore-Penrose pseudo-inverse.

Taking the λi as the diagonal elements of the eigenvalues of the dynamic
modes, the growth-decay and frequencies of the corresponding DMD
modes are contained. Hence the temporal evolution is then formed via
the Vandermonde matrix V (f), which raises its column vector to the
appropriate power. V (f) has a size of (L− 1)× (f + 1) where f is the
number of future vectors that are to be forecast and is defined as:

V (f) =


1 λ11 λ21 . . . λf1
1 λ12 λ22 . . . λf2

. . . . . . . . . . . .

1 λ1L−1 λ2L−1 . . . λfL−1

 (4.2.12)

If f > L , the Vandermonde matrix is estimating a forecast.

The continuous counterpart of the linear solution is :

x(t) =
n∑
j=1

bjϕj exp (µjt) = Φdiag(exp (µjt))b0 (4.2.13)

Each of DMD modes consists of the corresponding frequency µj that
is defined by:

µi =
log(λj)

dt
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where dt is the lag between the vectors xi and xi+1. The real part of µi
indicates the growth or decay of the DMD modes, while the imaginary
part of µi drives oscillations in the DMD modes.

� The DMD reconstruction of the data X at any instance f after the
initial vector X̄ is given by :

X = Φ(V (f) ◦ b0) (4.2.14)

Where b0 ≈ Φ−1X and contains the initial amplitudes of the dynamic
modes and the ◦ indicates the element-wise multiplication of b0 with
every column of V(f).

4.2.1 Hankel DMD

The Hankel DMD or else HAVOK (Hankel Alternative Of Koopman) is an
alternative approach of the traditional DMD algorithm. It has gained lots of
attention due to its ability of revealing hidden structures of the given data,
where the DMD fails to [76].

Although DMD was originally designed for analysing and predicting fluid
flow spatial-temporal data, it is also used for temporal series. DMD analy-
ses data-driven spatial-temporal or temporal data, exploiting the low order
structure of the data using the minimum amount of computational resources.

DMD generates a linear time-invariant state space system that tries to
span the time-series principal modes of the given data set. While approxi-
mating systems with oscillatory or quasi-periodic behaviour, the DMD fails
to identify a representative model. Hidden structures that are not revealed
in the Singular Value Decomposition step of the DMD, render the DMD
incapable of identifying the system dynamics [76].

The Hankel matrix DMD is an alternative approach that enables the
estimation of linear models that can capture the oscillatory or periodic be-
haviour of non linear systems. The Hankel introduces new block series of
the input data by introducing time delayed block series of them [77]. Hence,
it increases artificially the system’s order. As a consequence, the amount of
available information for model prediction is increased without the need of
inserting new data. Hence, DMD manages to capture modes that could not
be available in a first order system.

The Hankel matrix of the input data has the following structure:
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X1 =


x1 x2 · · · xj
x2 x3 · · · xj+1
...

...
...

...
xi xi+1 · · · xj+i−1

 (4.2.15)

Re-arranging the input data into the Hankel form, new state variables
are created. Hence, the number of modes is also increased, maintaining the
system order as low as possible. Furthermore, in the reconstruction step of
the linear system, the initial condition b0 includes more information due to
the increased model size, leading to more accurate forecast model.

The drawback of the Hankel matrix form DMD is that the introduction of
the new variables reduces the number of samples of the training data set as
shown in equation 4.2.15. Hence, the number of these new variables (number
of rows the Hankel matrix) has to be a balance between the ability to detect
dominant modes and the accuracy of the estimated model.

The behaviour of DMD for long term forecasting time-series with a peri-
odical or quasi-periodical behaviour will be addressed below and a straight
comparison with the HAVOK will be evaluated. Moreover, these methods
will be compared over objects moving on a periodic fashion and systems with
linear dependencies, revealing the advantages and flaws of these approaches.

4.3 Multiresolution Model Representations

The dynamic mode decomposition is used to decompose big set of data into
their first principal components, investigating the behaviour and also predict-
ing the future behaviour of the given high dimensional dynamic system with
the minimum computational cost. Forecasting is a broad and important con-
cept in many fields such us decease modelling, robotics, neuroscience, finance
and many more and the DMD is extensively used in these applications.

As discussed in Chapter 1, modern systems in engineering are governed by
multiscale characteristics. Therefore, different multiscale POD and DMD ap-
proaches are developed into this direction. Hence, before the demonstration
of the various examples, two DMD algorithms in the field of multiresolu-
tion analysis will be addressed, the multiscale POD and the multiresolution
DMD.
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4.3.1 Multiscale POD

The multiscale POD (mPOD) combines the Multi-resolution Analysis (MRA)
and the standard Proper Orthogonal Decomposition (POD) in order to allow
for the optimal compromise between decomposition convergence and district
separation of its modes [95–97]. The fundamental idea behind the mPOD
is that POD is applied at different scales of resolution, each retaining non-
overlapping fraction of the frequency spectra. Hence, the temporal basis is
computed via a combination of the Multi-resolution analysis and the eigen-
value decomposition.

The mPOD applies the multiresolution analysis MRA over the temporal
correlation matrix K = XTX aiming at reducing the computational cost of
this operation. The multiresolution analysis (MRA) in the frequency domain
is introduced via the 2D Fourier transform of the correlation matrix [97]. The
mPOD links three Fourier pairs which are related to the time evolution of
the data (X, row-wise ), the temporal structures of the POD modes (VP ,
column-wise) and the temporal correlation matrix (K, over both columns
and rows). These equations are written as follows:

X̂ = XV̄F ⇐⇒ X = X̂VF (4.3.1)

V̂P = V̄FVP ⇐⇒ VP = VF V̂P (4.3.2)

K̂ = V̄FKV̄F ⇐⇒ K = VFK̂VF . (4.3.3)

The correlation matrix K can be described in the frequency domain as
follows:

KF = X̂†X̂ = VF
[
X†X

]
V̄F = VFKΨ̄F ⇐⇒ K = V̄FKFVF (4.3.4)

The mPOD is based on the MRA, meaning that the correlation matrix is
decomposed into different scales based on filter banks, designed to separate
fractions of the frequency spectra. The idea is to split the spectra of the
Fourier transform of the temporal evolution (row-wise) of the data X̂p =
XpV̄F , for a given location ip, that is xp[k] = X [ip, k] into M scales, each
retaining a fraction with imperceptible overlapping as illustrated in figure
4.3.1. The frequency bandwidths of these scales ∆fm = f cm+1 − f cm, with
m ∈ [1, . . . ,M−1], are defined by a frequency vector FV =

[
f c1 , f

c
0 , . . . f

c
M−1

]
.

As figure 4.3.1 shows, a low-pass filter with cut off frequency f c1 , a high-
pass filter with cut off f cM−1, and M − 2 band-pass filters between these, are
required. These filters are constructed from the set of m low-pass filters with
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Figure 4.3.1: Multiscale POD
[98]

transfer function HLm . Only the first low pass filter (HL1) is recovered and
the remaining are only used to build the bandpass filters as complementary
differences HHM

= HLm+1 − HLm . The finest one is expressed by HHM
=

1−HLM
[98].

The set of the derived filter transfer functions are by construction such
that HL1 + HH1 + · · · + HHM−1

= 1. As a result the entire spectra of the
dataset is reconstructed and is expressed as follows.

Xm =

X̂m︷ ︸︸ ︷
[
(
XV̄F

)︸ ︷︷ ︸
X̂

⊙H ′
m]VF . (4.3.5)

Extending the equation 4.3.5, the correlation matrix Km = X†
mXm from

each scale contribution is written as:

Km = V̄F

[(
X̂⊙H ′

m

)† (
X̂⊙H ′

m

)]
VF = V̄F

[(
X̂†X̂

)
⊙
(
(H ′

m)
† ⊙H ′

m

)]
VF

(4.3.6)

Introducing the cross-spectral density matrix KF in equation 4.3.4 and
expanding it in the 2D spectrum by using the 2D transfer function of the
filter banks as Hm = (H ′

m)
† ⊙H ′

m, it yields:
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Km = V̄F [KF ⊙Hm]︸ ︷︷ ︸
KFm

VF = VF

[
K̂ ⊙Hm

]
︸ ︷︷ ︸

K̂m

VF (4.3.7)

The equation 4.3.7 reveals the foundation of the mPOD. The filtered
cross-spectral density KFm = KF ⊙ Hm shares the same eigenvalues of the
correlation of filtered data Km = X†

mXm.
Secondly, the eigenvectors of KF are the DFT of the POD modes of Xm

:

KFm = VFKmV̄F = VF

[
VPmΣ

2
PmΨ

†
Pm

]
V̄F =

(
PπV̂Pm

)
Σ2

Pm

(
PπV̂Pm

)†
(4.3.8)

where the permutation matrix Pπ can be recovered by applying the DFT
operator twice:

Pπ = ΨFΨF = Ψ̄FΨ̄F =


1 0 . . . 0 0
0 0 0 1

0 0 1
...

...
... .

...
0 1 0 . . . 0

 (4.3.9)

The impact of the filter on the POD modes is revealed by the diagonal
entries of KFm and KF . Finally using equation 4.3.8:

KFm[i, j] = KF [i, j]⊙Hm[i, j] =
nt∑
r=1

σ2
Pmrψ̂Pmr[i]ψ̂

†

Pmr[j] (4.3.10)

In occasions where there is no frequency-overlapping, the eigenspaces of
the approximation terms are orthogonal complements. This property is the
main characteristic that consists the mPOD different to other multi-scale
methods such as Continuous Wavelet Transform (CWT). In CWT, the tem-
poral basis is constructed by shifting and dilating a ’mother’ function. It is
different to the occasion of the multi-resolution DMD (mr-DMD), where the
temporal basis is constructed by performing DMD on different portions of
the datasets [98].

These decompositions potentially produce high redundancy and poor con-
vergence since the basis is larger than nt. On the other hand, each of the
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basis elements in the mPOD exist over the entire time domain, while CWT or
mr-DMD produce different bases for different portions of the time domain.
This leads to decompositions more complex but could be of better use on
more complicated models [98].

The mPOD will be evaluated into various examples and will be compared
with all relevant multiscale reduced order models.

In a nutshell, the mPOD algorithm is summarized as follows:

4.3.2 Multiresolution DMD

This method implements a Fourier decomposition of correlated spatial ac-
tivity of the video frames in time. Multiresolution DMD (mr-DMD) has the
ability to distinguish the stationary background from the dynamic foreground
by differentiating between the near-zero Fourier modes and the remaining
modes bounded away from the origin, respectively [95].

The innovation of the multi-resolution DMD is that it allows for further
separation of dynamic content in the video or in the selected snapshot se-
ries. As a result, it allows the separation of components that are happening
on different time scales. Hence, the multi-resolution framework reveals the
multiscale characteristics of the given data-driven system.

Initially, multiresolution DMD was introduced for implementing the back-
ground/foreground separation in video frames sequences, removing low fre-
quency contents but can be also used for multiscale systems, connecting
macroscale and microscale structures. By recursively refining the sampling
time of the data of interest, this method removes temporal or spatial features
in every scale [97]. Each DMD mode has a corresponding frequency (Fourier
mode). By removing the slow modes in every scale, a full separation of the
slow (low-rank) and fast (sparse) information is accomplished.

The main concept of every step in multiresolution DMD is summarized
in the following equation, where ωj ≤ ϵ, where ϵ is a low frequency threshold.

X = XLow−Rank
DMD +XSparse

DMD (4.3.14)

XDMD = bpϕpe
µpt︸ ︷︷ ︸

Background Video

+
∑
j ̸=p

bjϕje
µjt

︸ ︷︷ ︸
Foreground Video

(4.3.15)

Based on Fig.4.3.2, in the initial pass, the slowest m1 modes are removed

and DMD is once again performed with now only
M

2
snapshots and the

process is continued.
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Algorithm 2 Multiscale POD Algorithm

1. Assembly of the data matrix

2. Computation of the temporal correlation matrix K and its Fourier
transform K̂

3. Computation of the frequency splitting vector FV and construction
of the set of filter banks transfer functions

4. Computation of the approximation and diagonal detail terms of the 2D

transfer functions , that are HL1 =
(
H ′

L1

)†⊙H ′
L1

and HHm =
(
H ′

Hm

)†⊙H ′
Hm

.
Subtracting the horizontal and vertical details in each scale, the correlation
matrix is approximated as:

K ≈ VF

[
K̂ ⊙HL1

]
VF +

M∑
m=1

VF

[
K̂ ⊙HHm

]
VF ≈ KL1 +

M−1∑
m=1

KHm

(4.3.11)

Each of these contributions is a symmetric, real and positive definite matrix:

K ≈ VL1Σ
2
L1
V T
L1

+
M−1∑
m=1

VH⇕Σ
2
Hm
V T
Hm

(4.3.12)

5. Computation of all the contributions of all the scales into V 0
M

as:

V 0
M =

[
VL1 , VH1 , VH2 . . . VHM−1

]
PΣ (4.3.13)

6. Computation of the spatial basis VM = DVMΣ−1
M and sort VM in

descending order of energy contribution
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Figure 4.3.2: Multiresolution DMD
[99]

In the first step, mathematically, DMD is represented as:

xmr−DMD(t) =
M∑
k=1

bkϕk
(1)(t) exp (µkt)

=

m1∑
k=1

bkϕk
(1)(t) exp (µkt) +

M∑
k=m1+1

bkϕk
(1)(t) exp (µkt) (4.3.16)

where the ϕk
(1) represent the DMD modes computed from the full M

snapshots. The first part of the sum in equation 4.3.16 indicates the slow
modes and the second part of the sum indicates the fast modes.

In the next step, DMD is performed on the
M

2
snapshots, meaning the

fast modes of the previous scale. This fragment is separated into a new of
matrices:

XM/2 = X
(1)
M/2 +X

(2)
M/2 (4.3.17)

where the first matrix contains the first M/2 snapshots and the second

matrix contains the remaining
M

2
snapshots.

This iterative algorithm functions in a recursively pattern by removing

slow frequency dynamics for the remaining
M

4
,
M

8
etc dataset, till a repre-

sentative multiresolution model is achieved according to the needs of each
application.
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The full approximate solution of the multiresolution DMD in n scales is
presented as:

xDMD(t) =

m1∑
k=1

b
(1)
k ϕk

(1)(x) exp
(
µ
(1)
k t
)

+

m2∑
k=1

b
(2)
k ϕk

(2)(x) exp
(
µ
(2)
k t
)

+

m3∑
k=1

b
(3)
k ϕk

(3)(x) exp
(
µ
(3)
k t
)
+ · · ·

(4.3.18)

where the ϕk
(k) and µ

(k)
k are the DMD modes and DMD eigenvalues at

the kth level of decomposition, the b
(k)
k are the initial amplitudes of the DMD

modes, and themk are the number of slow-modes retained at each level of de-
composition. This decomposition method reveals different spatial-temporal
DMD modes that are used to represent key multi-scale features. Thus, there
is not a single set of modes that dominates the SVD decomposition and
potentially marginalizes features at other time scales [99].

4.4 Comparison of DMD Methods

In this section, the different DMD methods that described above, are applied
into several temporal and spatial examples. The aim is to present the oc-
casions where vanilla DMD is incapable of creating representative dynamic
models. Moreover, it will be shown that there are occasions where the mul-
tiresolution DMD and POD methods are superior than the vanilla DMD but
they are yet dealing with problems when it comes to dataset with abrupt
changes among the selected segments of data. Hence, different examples
that will compare all existing DMD algorithms will be illustrated and re-
veal the occasions where more accurate multiresolution algorithms need to
be derived.

In a ntushell, the problems of the DMD alternatives to forecast long term
time-series with a periodical or quasi-periodical behaviour will be addressed.
Approaches such as Multiresolution DMD, Wavelet DMD and the Hankel
DMD or higher order dynamic mode decomposition (HODMD) or HAVOK
(Hankel Alternative View Of Koopman) will be exhibited. The HAVOK will
be addressed analytically and will be shown that outperforms all methods
mentioned above when it comes to capture the periodic or almost periodic
dynamics of non-linear systems in a nearly perfect way.
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Different examples of periodic or almost periodic dynamics will be illus-
trated, as well as examples with hidden structures where the vanilla DMD
fails to identify a representative model. A complete analysis will reveal which
methods outperform vanilla DMD and which method is the most consistent
among all DMD alternatives.

4.4.1 Periodical time series

In this first example, a straight comparison of the standard DMD and Han-
kel formed DMD will be addressed over some simple oscillatory temporal
series. It will be shown that the Hankel DMD reveals hidden structures and
outperforms the original DMD.

The first example that will be investigated is the time series evolution
of a square wave. The square wave is a special case of a pulse wave which
allows variable durations at minimum and maximum and is extensively used
in engineering and signal processing. The ratio between the total period of
the pulse and the high period is called duty cycle and in the case of the square
wave, it is fixed to 50%. The square wave can be expressed mathematically
as a sum of sinusoidal terms.

The following equation represents a zero mean square wave expanding in
time.

x(t) = sgn

(
sin

2πt

T

)
= sgn(sin 2πft) (4.4.1)

In this example, the simulated data will be collected and will be feed
into a DMD model that will try to identify a reduced order model. The
validity and accuracy of the derived dynamical model will be investigated by
reconstructing the data and comparing them with the input data.

The figure 4.4.1 illustrates the behaviour of the DMD when it comes on
reconstructing the given dataset. It is shown that DMD fails to identify the
oscillatory behaviour of the introduced data. A simple way to identify the
source of this issue, is by checking the eigenvalues of the derived linear model
in the DMD algorithm. It is shown that the DMD model includes only one
real eigenvalue, hence the derived model is losing insight of the oscillatory
behaviour of the introduced data.

The weakness of DMD to reconstruct the input data will be attempted to
be resolved by using Hankel DMD. In the following images, different sizes of
Hankel blocks are used in the DMD input data. As described in the previous
chapter, the introduction of Hankel form block rows of the input data leads
to an artificial increase of the system order, forming higher order models.
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(a) Simulation of zero mean
square wave over time internal 0-
5s

(b) Recontructed data of the
DMD model

Figure 4.4.1: Comparison of the given dataset and the output series of the
derived dynamic model after applying the conventional DMD

Figure 4.4.1 demonstrates and compares the reconstructed data after the
derivation of second order model using DMD with modified input data using
two block rows.

(a) Simulation of zero mean
square wave over time internal 0-
5s

(b) Recontructed data of the
DMD model with a two block row
Hankel input matrix

Figure 4.4.2: Comparison of the given dataset and the output series of the
derived dynamic model after applying the Hankel-2 DMD

It is shown that the augmented DMD method still fails to reconstruct the
given data. Hence, the size of the Hankel matrix will be increased gradu-
ally, identifying the threshold where the order of the introduced data is high
enough, in order to fully reconstruct the given data.

It will be shown that each additional block row introduces an extra odd
sinusoidal term to the derived dynamic system. Hence, after a specific num-
ber of block rows, the number of sinusoidal terms is adequate enough to
reveal the oscillatory behaviour of the input data. Each additional block
row, adds an extra complex conjugate pair of eigenvalues. Hence, after a
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specific number of block rows, the amount of sinusoidal terms is adequate
enough to identify the oscillatory behaviour of the input data.

The figures below, demonstrate the reconstructed data from the derived
DMD dynamic model, using 16 and 32 block rows for the input data re-
spectively. Figures indicate that the model starts to identify the oscillatory
behaviour, but it lacks accuracy.

(a) Recontructed data of the
DMD model with 16 block row
Hankel input matrix

(b) Recontructed data of the
DMD model with 32 block row
Hankel input matrix

Figure 4.4.3: Comparison of the output series of the derived dynamic model
after applying Hankel-16 and Hankel-32 DMD

(a) Eigenvalues of the derived
DMD model using a 16 block row
Hankel input matrix

(b) Eigenvalues of the derived
DMD model using a 32 block row
Hankel input matrix

Figure 4.4.4: Eigenvalues presentation of the derived dynamic model after
applying Hankel-16 and Hankel-32 DMD

Even by using 40 Hankel block rows, DMD still fails to approximate the
introduced data set. A fully representative data reconstruction comes after
using 50 Hankel block row input data.

In order to justify that, the Singular Value Decomposition step of the
augmented DMD is presented. The SVD step identifies the amount of dom-
inant modes of the introduced system. In order to make it more clear, we
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(a) Recontructed data of the
DMD model with 40 block row
Hankel input matrix

(b) Recontructed data of the
DMD model with 48 block row
Hankel input matrix

Figure 4.4.5: Comparison of the output series of the derived dynamic model
after applying Hankel-40 and Hankel-48 DMD

(a) Recontructed data of the
DMD model with 50 block row
Hankel input matrix

(b) Recontructed data of the
DMD model with 51 block row
Hankel input matrix

created a 100 block row Hankel input data and we applied the SVD step
of the DMD on this amount of data. It is clearly shown that there are 51
dominant modes in this system, so in order to fully reconstruct the initial
system, we need 51 modes. Even with 50, it is shown that there is some error
when the data makes a jump from the negative to the positive values.

This example shows the importance of the Hankel DMD and its capa-
bility of identifying hidden structures and system characteristics over the
conventional DMD when it comes to oscillatory or higher order data.

4.4.2 Sinusoidal time series

A second example where Hankel DMD outperforms the conventional DMD
will be analysed in this section. We will analyse DMD and Hankel DMD
behaviour over a sinusoidal temporal series.
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Figure 4.4.6: Singular Value Decomposition plot of the given dataset

A sinusoidal signal is described under the following equation:

x(t) = A cos (ω0t) =
A

2
exp (jω0t) +

A

2
exp (−jω0t) (4.4.2)

Analysing equation 4.4.2, every sinusoidal signal contains two modes, the
exp (jω0t) and exp (−jω0t) and this is the reason why DMD fails to identify
a representative model due to the fact that it extracts a first order model
with contains only one mode. The following figure verifies this speculation.

(a) Simulation of sinusoidal wave (b) Reconstructed data of the
DMD model

Figure 4.4.7: Comparison of the given dataset and the output series of the
derived dynamic model after applying the conventional DMD

In this example, the DMD requires at least two modes in order to identify
the oscillatory behaviour of the system. Using the conventional DMD, for
this example of a sinusoidal signal with frequency fs = 3Hz, there is only
one eigenvalue λ1 = 0.9807 in contrast to the Hankel-2 DMD where there
are two complex conjugate eigenvalues λ1 = 0.9823 + 0.1874i and λ1 =
0.9823 − 0.1874i revealing the oscillatory characteristics of the introduced
dynamics.

In conclusion, Hankel DMD is a powerful that can increase the amount of
the available data and the system order without the need of additional data.
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(a) Simulation of sinusoidal wave (b) Recontructed data of the
DMD model with 2 block row
Hankel input matrix

Figure 4.4.8: Comparison of the given dataset and the output series of the
derived dynamic model after applying the Hankel-2 DMD

(a) Mean Square Error of recon-
tructed data based on DMD and
input data

(b) Mean Square Error of recon-
tructed data based on 2 block
row Hankel input DMD and in-
put data

Figure 4.4.9: Comparison of the MSE of output series between the derived dy-
namic models after applying the conventional DMD and the Hankel-2 DMD

This property makes the estimation of a dynamic model more accurate and
precise compared to the conventional DMD.

4.4.3 Diffusion Equation Modelling

The DMD fails when it comes to periodical temporal data series. In this
section, the behaviour of DMD and Hankel DMD over spatio-temporal data
will be analysed. In these datasets, there is more information available per
data set, consisting DMD a more suitable tool.

The two methods will be further analysed and their performance will be
evaluated over the diffusion equation. The diffusion equation is given by the
following equation:
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∂ϕ(r, t)

∂t
= ∇ · [D(ϕ, r)∇ϕ(r, t)] (4.4.3)

where, D(ϕ, r) is the collective diffusion coefficient for density ϕ at lo-
cation r. When D is constant, then the equation is identical to the heat
equation.

The eigenvalues of the conventional DMD and the Hankel-2 DMD are
shown in the following figure. In this example, based on the SVD graph, the
standard DMD demonstrates 11 dominant modes. Additionally, it is shown
that there are complex conjugate eigenvalues, indicating that the DMD cap-
tures the oscillatory behaviour of the given system. On the other hand, the
Hankel DMD, by introducing extra variables, the amount of available modes
is higher, 20 in this example. The biggest difference is that the eigenvalues
of the Hankel-DMD are not concentrated entirely on the unity circle. This
is an indication that the Hankel-DMD reveals different dynamics inside the
system. In order to check the importance and necessity of these extra modes,
the Mean Square Error (MSE) in both approaches is examined.

(a) DMD Eigenvalues (b) Hankel-2 DMD Eigenvalues

Figure 4.4.10: Eigendecomposition of the two derived dynamic models based
on conventional DMD and the Hankel-2 DMD

By observing the Mean Square Error both in time and space for the DMD
and the Hankel DMD, it is clearly shown that the Hankel-DMD significantly
improves the performance of the derived dynamic model over the one of the
standard DMD.

The artificial increase of the number of introduced data and the arrange-
ment into Hankel block rows, turns DMD into a very efficient tool for fore-
casting the temporal evolution of the given data. In all cases, the Mean
Square Error is significantly decreased and even in the last example where
the standard DMD provides better results compared to the previous example,
the Hankel DMD outperforms significantly the standard DMD.
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(a) DMD Mean Square Error (b) Hankel-2 Mean Square Error

Figure 4.4.11: Comparison of the output MSE between the dynamic models
derived from conventional DMD and Hankel-2 DMD

(a) DMD Mean Square Error (b) Hankel-2 Mean Square Error

4.4.4 Moving Image Data

The final example where the performance of the two different DMD methods
will be investigated, concerns the motion of a image inside another image in
a periodical fashion. A 10×20 pixels steady image will be introduced where
another smaller image 3×4 pixels is moving vertically one pixel per time-step
for a specific time period t.

The images below illustrate this example in different time steps, present-
ing the motion of the smaller image inside the bigger blue image.

The oscillatory behaviour and the ability of the DMD to capture the
periodical and recurrent behaviour of the introduced data, can be easily
seen by the eigendecomposition of the derived linear model. Plotting the
eigenvalues of each method, it is shown that the DMD presents only real
eigenvalues that will result in a poor forecasting performance.

On the other hand, the eigendecomposition of the derived dynamic model
based on the Hankel-DMD using two block rows, introduces eigenvalues that
react as complex conjugate pairs. This denotes that the system presents a
completely different behaviour to the conventional DMD model, which will
be illustrated below.
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(a) 1st Snapshot of
Simulation Of Moving
Image

(b) 10th Snapshot of
Simulation Of Moving
Image

(c) 25th Snapshot of
Simulation Of Moving
Image

(d) 35th Snapshot of
Simulation Of Moving
Image

Figure 4.4.12: Simulation of the model of small 3 ×3 image moving inside a
10 ×10 image

(a) Eigenvalues of DMD (b) Eigenvalues of Hankel-2 DMD

Figure 4.4.13: Eigendecomposition plot of the conventional DMD & the
Hankel-2 DMD methods

Plotting the system solutions for the standard DMD and the Hankel-2
DMD respectively, it is clearly shown that the standard DMD shows poor
approximation and fails to identify the one step movement of the image per
time step.

(a) 1st Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using DMD

(b) 10th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using DMD

(c) 25th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using DMD

(d) 35th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using DMD

Figure 4.4.14: Simulation of specific reconstructed snapshots of the moving
image based on the standard DMD method
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On the other hand, the Hankel-2 DMD manages to reconstruct the given
dataset perfectly as was predicted from the eigenvalue decomposition plot.

(a) 1st Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using Hankel-2
DMD

(b) 10th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using Hankel-2
DMD

(c) 25th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using Hankel-2
DMD

(d) 35th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using Hankel-2
DMD

Figure 4.4.15: Simulation of specific reconstructed snapshots of the moving
image based on Hankel-2 DMD method

The Hankel DMD by using only 2 block rows, shows great results and it
is also enhanced by the Mean Square Error (MSE) plot. The MSE of the
Hankel-DMD is of order 10−10 compared to the introduced data which is
close to 1.

Figure 4.4.16: Comparison of the Mean Square Error in the reconstruction
step between standard DMD and Hankel - 2 DMD

In all examples where the nature of data is or tends to be periodical
and recurrent, the Hankel DMD outperforms the standard DMD in all cases.
The dimension increase of the signal achieves to contain all principal modes
making DMD a very effective tool.
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4.4.5 Multiresolution POD and DMD over moving im-
age

The same example will be addressed using the multiresolution POD and
DMD algorithms in order to evaluate the performance of the existing mul-
tiresolution algorithms.

4.4.5.1 Multiresolution DMD

In these example, the multiresolution DMD (mr-DMD), as described, sepa-
rates the slow and fast moving dynamics according to the user needs and as
a next step, it divides into half the remaining data and applies the method
again. This process is repeated till the need of every example is achieved.
It will be shown that the multiresolution DMD deals with issues when it
comes to abrupt changes. Multiresolution DMD separates the data into sec-
tions and the fact that there is a small amount of available data, the DMD
method is sensitive to abrupt changes and cannot reconstruct effectively the
dataset. Data with abrupt changes as shown in the previous examples, can
cause the DMD to fail deriving a representative model.

The same problems are revealed with the multiresolution DMD. Even in
the occasion where the mr-DMD uses the Hankel formation on the input
data, the algorithm is dealing with the same problems. The simulations took
place with even 8 Hankel block rows that had a big computational cost and
the mr-DMD could not solve the previous problem too.

In the following images, the Mean square error (MSE) between the initial
data and the two multiresolution DMDmethods (mr-DMD), the conventional
mr-DMD and the Hankel-6 mr-DMD is presented.

(a) MSE of mr-DMD (b) MSE of Hankel-6 mr-DMD

Figure 4.4.17: Comparison of the Mean Square Error in the reconstruction
step of the mr-DMD using respectively

The abrupt changes into the different data segments render the mr-DMD
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incapable of reconstructing the given data. The division of data in small seg-
ments hold the DMD performance back, which requires high amount of data
in order to be efficient. The same example was repeated using more blocks
of data into the Hankel matrices without any improvements in performance.

Hence, the mr-DMD does not serve its purpose in these occasions, hence
an alternative multiresolution approach needs to be considered when it comes
to data with abrupt changes.

4.4.5.2 Multiresolution POD

The multiresolution POD (mr-POD) will be encountered too. The mr-POD
algorithm will be tested in the same example as the mr-DMD. As presented
above, the reconstructed images will be presented directly revealing if the
segmentation of the data puts a toll on the loss of information.

Performing the mr-POD, it is shown that the algorithm cannot reveal the
correct image motion. The MSE remains in the same levels as the one in the
mr-DMD.

(a) 1st Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using mr-POD

(b) 10th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using mr-POD

(c) 25th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using mr-POD

(d) 35th Snapshot of
Simulation Of Recon-
structed Moving Im-
age Using mr-POD

Figure 4.4.18: Simulation of specific snapshots of the moving image by using
the vanilla DMD method

Hence, in occasions where the data needs to be divided into different
levels of resolution, a more efficient approach needs to be considered. In
chapter 5, a novel multiresolution POD and DMD algorithm will be derived,
overcoming the problems presented in this section.

4.5 Conclusions

In this chapter, the dominant reduced order identification methods were pre-
sented. POD and DMD are applied over various examples and the weaknesses
of these methods were revealed. The key finding is that the standard DMD
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and POD methods fail to derive accurate representations when it comes to
data with abrupt changes and oscillatory behaviours. Hence, the importance
of alternative solutions such the Hankel-DMD was addressed and presented
over the same examples. Moreover, the multiresolution counterparts of these
methods were addressed and applied in the same examples which dealt with
the same issues.

Therefore, alternative solutions, especially for the multiresolution DMD
and POD that manage to overcome these problems need to be encountered.
Moreover, the performance of the Hankel-DMD needs to be evaluated in
more complex datasets.

In the following chapter, a novel multiresolution DMD algorithm will
be derived that will attempt to address the issues shown above. Moreover,
the novel approach will be compared with the existing DMD algorithms in
complex real time applications where their performance will be evaluated.



Chapter 5

Spatial Multiscale DMD

In the previous chapter, the dominance of the DMD method using Hankel
input matrices over examples with abrupt changes, oscillatory behaviour and
objects moving in periodic fashion was shown.

In this chapter, various examples comprising multiscale characteristics,
mixed frequency effects and linear dependencies will be considered. It will
be shown that the existing methods lack of accuracy and interpretability of
all effects taking place. Therefore, the institution of multiscale reduced order
approaches is essential.

A novel multiscale DMD and POD algorithm will be introduced. These
approaches are based on wavelets which have the ability to isolate and present
localized structures. By using wavelets, the DMD algorithm is capable of
capturing basic features and details in different scale of resolution simultane-
ously. The wavelet decomposition method is modified in order to encapsulate
as much information as possible and minimize the computational resources
in terms of the number of DMD algorithms used simultaneously. Hence,
they will give rise to characteristics and effects that cannot be revealed using
single-scaled approaches or even the existing multiscale algorithms.

In this chapter, the Wavelet decomposition mathematical derivation will
be introduced and modified for the purpose of DMD algorithms. It will be
proven that the novel approach is consistent to the conventional and Hankel-
DMD properties, hence it can substitute them. The proposed Wavelet-DMD
algorithm will create modes that include only specific patterns in each scale
of resolution and can separate mixed frequency effects.

Two complex examples will be considered. The first example simulates a
system of two waves oscillating in different frequencies and amplitudes cre-
ating a system with mixed effects and dynamics. The target is to apply and
compare the different DMD approaches, investigating their ability to give full
insight of the different system dynamics. The second example introduces a

73
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real problem in manufacturing. The data where received from the university
of Leeds. During the production of the powder used in 3D printers, turbu-
lences are observed, resulting in poor quality. The aim is to reveal the area
where turbulences occur, meaning the concentration of powder particles in
small areas, guiding the user to alter the direction and speed of the nozzles
used to spray air and molten material.

5.1 2-D Wavelet Decomposition

The wavelet decomposition is applied over time-series signals but it is also
applied over images under the multiresolution formulation with broad appli-
cations. It can reveal hidden characteristics in images for filtering purposes
such as smoothing, sharpening, removing noise, and edge detection. The
wavelet decomposition method applies a low pass and a high pass filter over
the image coefficients. Therefore, in every scale of resolution, it derives a
series of low and high frequency coefficients. Typically, the mathematical
representation of a 2D wavelet decomposition of the low frequency coeffi-
cients Wϕ (j,m, n) is represented by:

Wϕ (j0,m, n) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f(x, y)ϕj0,m,n(x, y) (5.1.1)

The corresponding wavelet function of the high frequency representation
is given from the following equation:

Wψ (j0,m, n) =
1√
MN

M−1∑
m=0

N−1∑
n=0

f(x, y)ψj0,m,n(x, y) (5.1.2)

where m = (0,1,· · ·M − 1), n = (0,1,· · ·N − 1), j is equal to the number
of selected scales j= 1,2,· · · , J , where J is the number of scales and M,N
are the rotations of x, y in Z domain.

The high frequency representations are applied in both x and y axis,
so three sub-band images are derived, the horizontal, vertical and diagonal
representation of the images.

The low pass filters are fundamental tools for the majority of smoothing
methods. An image is smoothed by decreasing the discrepancy between pixel
values by averaging neighbouring pixels [27, 32]. Therefore, the use of low
pass filters leads to retain the low frequency information while reducing the
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high frequency information. It is used for computing the approximation
coefficients and the process is called blurring.

The high pass filters are used for computing the detail coefficients. The
high pass filters are fundamental tools for sharpening methods. An image is
sharpened when the image contrast is enhanced between neighbouring areas
with little variation in brightness or darkness [27, 32].

Figure 5.1.1: Simulation of a DWT of an image
[28]

In every scale, the low and high pass filters are applied along both x and y
axis. Thus, four sub-band images are generated and called as LL1, LH1, HL1,
and HH1. The images LH1, HL1and HH1 contain the horizontal, vertical,
and diagonal information of the image after applying the high pass filter
respectively. LL1 represents the approximation coefficients and contains the
maximum information of the image obtained by the convolution of the signal
with the low pass filter. These are described in a more detail:

LL(i): The upper left quadrant consists of all coefficients, which were
filtered by the analysis low pass filter along the rows and then filtered along
the corresponding columns with the analysis low pass filter again. This sub-
block is denoted by LL(i) and represents the approximated version of the
original at half the resolution.

HL(i)/LH(i): The lower left and the upper right blocks were filtered along
the rows and columns with low pass filter and high pass filter, alternatively.
The LH(i) block contains vertical edges, mostly. In contrast, theHL(i) blocks
shows horizontal edges very clearly.

HH(i): The lower right quadrant was derived analogously to the upper
left quadrant but with the use of the analysis high pass filter which belongs
to the given wavelet. It interprets and allocates edges of the original image
in the diagonal direction.

In the 2-D Wavelet decomposition, a one-dimensional multiresolution
analysis as defined for the 1-D wavelet decomposition is considered, where:

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R)
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and defines the spaces Vj, j ∈ Z, by

Vj = Vj ⊗ Vj = {F (x, y) | F (x, y) = f(x)g(y), f, g ∈ Vj}

The subspaces Vj form a separable multiresolution analysis of L2 (R2) , with
an increasing sequence of linear subspaces of L2 (R2).

{0} ⊂ · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2
(
R2
)

satisfying

� (i)
⋂
j∈Z Vj = {0},

⋃
j∈Z Vj = L2 (R2)

� (ii) f(x, y) ∈ Vj ⇐⇒ f(2x, 2y) ∈ Vj+1

� (iii) f(x, y) ∈ Vj ⇐⇒ f (2jm− x, 2jn− y) ∈ Vj, for all m,n ∈ Z

The scaling function associated with this L2 (R2) multiresolution analysis
is then given by

ϕj(x, y) = ϕ(x)ϕ(y) =
1

2j
φ

(
2jx−m

2j

)
φ

(
2jy − n

2j

)
(5.1.3)

where ϕ(x) is the scaling function as opposed in the 1D wavelet. For each
j ∈ Z, the set {ϕj,k(x) = 2j/2ϕ (2jx− k) , k ∈ Z

}
is an orthonormal basis for

Vj,, hence it follows that the set

ϕj,m,n(x, y) = ϕj,m(x)ϕj,n(y) = 2jϕ
(
2jx−m

)
ϕ
(
2jy − n

)
, m, n ∈ Z

(5.1.4)

is an orthonormal basis for Vj. For each j ∈ Z, denoted by Wj, the
orthogonal complement of Vj in Vj+1. Then, we have the wavelet spaces
Wj given by:

Wj = (Wj ⊗Wj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj) , j ∈ Z (5.1.5)

Hence four different filters are required in order to define the orthogonal
complement of Vj in Vj+1:

LL(j) = ϕj0,m,n(x, y) = ϕj0,m(x)ϕj0,n(y)
LH(j) = ψHjm,n

(x, y) = ψj,m(x)ϕj,n(y)

HL(j) = ψVjm,n
(x, y) = ϕj,m(x)ψj,n(y)

HH(j) = ψDjm,n
(x, y) = ψj,m(x)ψj,n(y)

(5.1.6)
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The corresponding wavelet function of the horizontal, vertical and diag-
onal representation of the images are as follows:

1. Horizontal sub-band representation

WH
ψ (j,m, n) =

1√
MN

M−1∑
m=0

N−1∑
n=0

f(x, y)ψHj,m,n(x, y)

2. Vertical sub-band representation

W V
ψ (j,m, n) =

1√
MN

M−1∑
m=0

N−1∑
n=0

f(x, y)ψVj,m,n(x, y)

3. Diagonal sub-band representation

WD
ψ (j,m, n) =

1√
MN

M−1∑
m=0

N−1∑
n=0

f(x, y)ψDj,m,n(x, y)

On the other hand, any image can be reconstructed and for that purpose
the Inverse Wavelet Transform is used which is the transpose of the forward
transform matrix and is given by :

f(x, y) =
1√
MN

∑
m

∑
n

Wϕ (j0,m, n)ϕjo,m,n(x, y)

+
1√
MN

∑
I=H,V,D

∞∑
j=j0

∑
m

∑
n

W I
ψ(j,m, n)ψ

I
j,m,n(x, y) (5.1.7)

The 2-D wavelet decomposition can be represented in matrix multiplica-
tion form as in the matrix multiplication form of the 1-D wavelet decomposi-
tion, with the difference that the 1-D wavelet is applied in all image columns
and rows.

For the purpose of this application, V and W define two vector spaces of
functions defined on the intervals [0,M) and [0,N), respectively, and suppose
that f1ϵV and f2ϵW. The tensor product of f1 and f2, denoted f1⊗f2, denotes
the function in two variables defined on [0,M)×[0,N) given by f1(x1)f2(x2).

From equation 5.1.5, if the spaces Vj and Wj can be used to approxi-
mate functions in one variable as stated above, then Vj ⊗Wj can be used to
approximate functions in two variables space.

Given the equation 5.1.3 and 5.1.5:
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ϕj ⊗ ϕj = {ϕj,m,n ⊗ ϕj,m,n}

and
(ϕj−1 ⊕ ψj−1)⊗ (ϕj−1 ⊕ ψj−1)

= {ϕj−1,m,n ⊗ ϕj−1,m,n

ϕj−1,m,n ⊗ ψj−1,m,n

ψj−1,m,n ⊗ ϕj−1,m,n

ψj−1,m,n ⊗ ψj−1,m,n}

The space ψHjm,n
defined in equation 5.1.6 is spanned by {ϕj,m ⊗ ψj,n}m,n,

which is called LHj-sub-band.
The space ψVjm,n

spanned by {ψj,m ⊗ ϕj,n}m,n, which is called the HLj-
sub-band.

The space ψDjm,n
spanned by {ψj,m ⊗ ψj,n}m,n, which is called the HHj-

sub-band.
Hence, the equations above in each level of wavelet reconstruction can be

summarized as :

Vj ⊗ Vj = (Vj+1 ⊗ Vj+1)⊕WH
j+1 ⊕W V

j+1 ⊕WD
j+1 =

∑
m,n

Wϕ,j+1,m,nϕj+1,m,n(x, y) +
∑
m,n

WH
ψ,j+1,m,nψ

H
j+1,m,n(x, y)+∑

m,n

W V
ψ,j+1,m,nψ

V
j+1,m,n(x, y) +

∑
m,n

WD
ψ,j+1,m,nψ

D
j+1,m,n(x, y) (5.1.8)

The coefficients WH
j,m,n,W

V
j,m,n, and W

D
j,m,n are as mentioned the horizon-

tal, vertical, and diagonal detail coefficients respectively, and I=H,V,D. The
first level detail coefficients are computed by the inner product of the given
image and the corresponding wavelet function ψIj+1,m,n.

W I
ψ,j,m,n =

〈
f, ψIj+1,m,n

〉
=
∑

f(x, y)ψIj+1,m,n(x, y) (5.1.9)

Every next scale j, the wavelet coefficients are derived by the inner prod-
uct of wavelet function of the previous level of decomposition and the ap-
proximation coefficients derived in the previous step.

W I
ψ,j,m,n =

〈
Wϕ,j+1,m,n, ψ

I
j+1,m,n

〉
=
∑

Wϕ,j+1,m,nψ
I
j+1,m,n(x, y) (5.1.10)
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Each space vector Vj is spanned on a interval of the form [k2−j, (k + 1)2−j),
Vj ⊗ Vj is the vector space of functions in two variables which are constant
on any square of the form [m2−j, (m+ 1) 2−j)× [n2−j, (n+ 1) 2−j).

This relationship can be further expanded recursively for all j scales:

Vj = Vj−1 ⊕Wj−1 = Vj−2 ⊕Wj−2 ⊕Wj−1 = . . . = V0 ⊕
j−1⊕
l=0

Wl (5.1.11)

Hence, from the Inverse Wavelet Decomposition equation given in 5.1.7
based on equation 5.1.4,5.1.9 and 5.1.10 is given by:

f(x, y) =
∑
m,n

Wϕ,j0,m,nϕj0,m(x)ϕj0,n(y)
T +

∑
m,n

WH
ψ,j0,m,n

ψj0,m(x)ϕj,n(y)
T

+
∑
m,n

W V
ψ,j0,m,n

ψj0,m(x)ψj0,n(y)
T +

∑
m,n

WD
ψ,j0,m,n

ϕj0,m(x)ψj0,n(y)
T+

+
∑
m,n

WH
ψ,j0+1,m,nψj0+1,m(x)ϕj0+1,n(y)

T +
∑
m,n

W V
ψ,j0+1,m,nψj0+1,m(x)ϕj0+1,n(y)

T

+ · · · (5.1.12)

Rephrasing equation 5.1.12 in matrix multiplication form:

F = Φj0,MWΦ,j0Φ
T
j0,N

+Ψj0,MW
H
Ψ,j0

Φj0,N
T +Ψj0,MW

V
Ψ,j0

Ψj0,N
T

+Φj0,MW
D
Ψ,j0

Ψj0,N
T +Ψj0+1,MW

H
Ψ,j0+1Φj0+1,N

T

+Ψj0+1,MW
V
Ψ,j0+1Ψj0+1,N

T + Φj0+1,MW
D
Ψ,j0+1Ψj0+1,N

T + · · · (5.1.13)

In other words, any function can be considered as a combination of in-
finitely many approximations of different levels of details.

The equation 5.1.13 is of main attention and is used in the Wavelet DMD
algorithm, were the input image data are transformed in single column form.
Hence, it is required that all data to be in vector form and this is applied
by the introduction of Kronecker product. The Kronecker equation of the
scaling function will be introduced, where the wavelet functions for I=H,V,D
are following the same pattern. Based on the equations 5.1.13 and 5.1.11 :

aΦj0
= vec(Φj0,MWΦ,j0Φ

T
j0,N

) = (Φj0,N ⊗ Φj0,M)vec(WΦ,j0) (5.1.14)

aHΨj0
= vec(Ψj0,MWΨ,j0Φ

T
j0,M

) = (Φj0,N ⊗Ψj0,M)vec(WH
Ψ,j0

) (5.1.15)
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aVΨj0
= vec(Φj0,MWΨ,j0Ψ

T
j0,N

) = (Ψj0,N ⊗Ψj0,M)vec(W V
Ψ,j0

) (5.1.16)

aDΨj0
= vec(Ψj0,MWΨ,j0Ψ

T
j0,N

) = (Ψj0,N ⊗Ψj0,M)vec(WD
Ψ,j0

) (5.1.17)

The above equations are based on the Kronecker product properties and
for that purpose the proof of Kronecker product property will be written.
Any vector that is a product of three matrices is given as follows:

aΦj0
= vec(Φj0,MWΦ,j0Φ

T
j0,N

) =
M∑
m=1

N∑
n=1

Wmn vec
(
Φj0,M,mΦj0,N,n

T
)

=
N∑
m=1

P∑
n=1

Wmn

(
ΦT
j0,N,n

T ⊗ Φj0,M,m

)
=

P∑
n=1

(ΦN,t,n ⊗ Φj0,M,m)Wn

= (Φj0,N ⊗ Φj0,M) vec(Wϕj0) (5.1.18)

The combination of the wavelet decomposition in multiple scales equal
to J , the scaling function based on equation 5.1.13 and the expression of
every next level wavelet function reconstruction from 5.1.10 and equations
5.1.14-5.1.17 is summing up in the following equation:

F = aΦj0
+ aHΨj0

+ aVΨj0
+ aDΨj0

=

F = (Φj0,N ⊗ Φj0,M)vec(WΦ,j0) + (Φj0,N ⊗Ψj0,M)vec(WH
Ψ,j0

)+

(Ψj0,N ⊗Ψj0,M)vec(W V
Ψ,j0

) + (Ψj0,N ⊗Ψj0,M)vec(WD
Ψ,j0

) + · · · (5.1.19)

where one can express the wavelet functions in all scales as Φtot which is
equal to:

Φtot =


(Φj0,N ⊗ Φj0,M)

(Φj0,N ⊗Ψj0,M)
(Ψj0,N ⊗Ψj0,M)

(Ψj0,N ⊗Ψj0,M)
. . .


(5.1.20)

and the vector of the image coefficients from all levels of decomposition
is expressed as:



5.2. WAVELET DECOMPOSITION DMD Page 81

ak =


vec(W k

Φ,j0
)

vec(WH
Ψ,j0

)
vec(W V

Ψ,j0
)

vec(WD
Ψ,j0

)
...

 (5.1.21)

which is summarized :

vec(F ) = Φtotak (5.1.22)

Any block of the Φtot matrix has the following properties as described in
chapter 2 for the one dimensional wavelets:

(Φj0,N ⊗ Φj0,M)(Φj0,N ⊗ Φj0,M)T =

(Φj0,NΦ
T
j0,N

)⊗ (Φj0,MΦT
j0,M

) =

{
I ⊗ I = I,m = n
0, otherwise

(5.1.23)

(Φj0,N ⊗Ψj0,M)(Φj0,N ⊗Ψj0,M)T =

(Φj0,NΦ
T
j0,N

)⊗ (Ψj0,MΨT
j0,M

) =

{
I ⊗ I = I,m = n
0, otherwise

(5.1.24)

The equations 5.1.12, 5.1.20, 5.2.1 and 5.1.22 will be the reference equa-
tions for the theorem derivation of the novel wavelet DMD algorithm.

5.2 Wavelet Decomposition DMD

The principal idea of introducing the wavelets in the dynamic mode decom-
position, is to reveal hidden structures that emerge in higher order complex
systems. It aims at revealing the multiscale nature of the input data by
means of deriving modes that separate the mixed frequency dynamic effects
where other DMD algorithms are unable to identify. It will be shown that
the use of wavelets, will force the dynamic mode decomposition to identify
and separate the multiscale features using the minimum possible amount of
dominant modes. Therefore, the computational efficiency will be increased.

A novel alternative approach called Wavelet Decomposition DMD is de-
rived and analysed in this section. In the proposed algorithm, the wavelet
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decomposition is applied over the input images, creating j scales of approx-
imation and detail image coefficients. The first alteration to the standard
wavelet reconstruction steps is that the detail coefficients in each level are
merged together instead of taking every sub-band image LHj, HLjand HHj

separately. Hence, the reconstruction of images that include information
from all the high frequency coefficients is accomplished in each level.

For instance, the wavelet reconstruction from the detail coefficients in
level j is given by:

WψHV D
j

(j,m, n) =
[
WH
ψj
(j,m, n) W V

ψj
(j,m, n) WD

ψj
(j,m, n)

]
(5.2.1)

The inverse wavelet transform algorithm reconstructs images based only
on the selected coefficients. Therefore, images are reconstructed by the ap-
proximation coefficientsWϕj0

(j0,m, n) and the merged coefficientsWψHV D
j

(j,m, n)

separately instead of the complete reconstruction from all coefficients as the
original Inverse Wavelet transform claims. The ultimate goal is to create im-
ages that include only specific patterns in each scale of resolution, which are
fed into the DMD algorithm separately. Due to this separation, the derived
DMD models reveal hidden structures in specific areas that may emerge,
which cannot be obtained from the existing reduced order models. More-
over, based on this novel method, the DMD is applied over smaller amount
of datasets, hence the computation cost is also reduced.

Figure 5.2.1: Example of a reconstructed Image based only on the Approxi-
mation Coefficients of the coarsest scale

The wavelet-based DMD will be analysed in order to verify if it is compu-
tationally more efficient than the other DMD methods such as Hankel DMD
in terms of the number of modes needed to reveal the system behaviour. The
aim is to evaluate if Wavelet-DMD is capable of revealing and also separating
multiscale features that the standard DMD methods are incapable of.

The algorithm is summarized in the following steps.
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Algorithm 3 Wavelet DMD Algorithm

1. Initialization: Input data are inserted in the Wavelet Transform
algorithm.

2. Decomposition: The data are decomposed in j scales based on
the selected wavelet function according to the application needs. j + 1
datasets are created based on the equations for the approximation and detail
coefficients.

W I
ψ,j,m,n = Ψj,MW

H
Ψ,jΦj,N

T +Ψj,MW
V
Ψ,jΨj,N

T + Φj,MW
D
Ψ,jΨj,N

T

Wϕ,j0,m,n = Φj0,MWΦ,j0Φ
T
j0,N

3. Reconstruction: Each of the W I
ψ,j,m,n and Wϕ,j0,m,n are recon-

structed separately to create images that contain low and high frequency
dynamics separately. As a pre-step, the details coefficient in each level are
merged as shown in equation 5.2.1. j +1 image sets are reconstructed based
on the equations:

aΦj0
= Φj0,MWΦ,j0Φ

T
j0,N

aΨj0
= Ψj0,MW

H
Ψ,j0

Φj0,N
T +Ψj0,MW

V
Ψ,j0

Ψj0,N
T + Φj0,MW

D
Ψ,j0

Ψj0,N
T

and for every remaining j scale :

aΨj
= Ψj,MW

H
Ψ,jΦj,N

T +Ψj,MW
V
Ψ,jΨj,N

T + Φj,MW
D
Ψ,jΨj,N

T

In order to preserve the size of initial images, for instance, when the image is
reconstructed from the approximation coefficients, the remaining coefficients
are set to zero (see Fig.5.2.1).

4. Modes extraction: DMD is applied separately to the different
image sets. The amount of selected modes is equal among the different
models. j + 1 state space models are created based on equations (4.2.2 -
4.2.10).
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5.2.1 Analysis of the similarity between Hankel-DMD
& Wavelet DMD

The purpose of the proposed method is to substitute the standard DMD and
help the user understand the system dynamics in a better way compared to
the existing models derived by the DMD algorithms. Hence, it is important
to find the connection between each scale DMD model after the wavelet
decomposition and the DMD model derived from the standard DMD.

The following proof will demonstrate that theWavelet-DMD and standard-
DMD method share the same eigenvalues, hence the derived DMD modes are
not changing. Therefore, the Wavelet-DMD can be used in any stage without
the loss or alteration of information.

Theorem 1 Let A be the estimated dynamic matrix of the standard DMD
algorithm and let B be the estimated dynamic matrix of the wavelet-DMD
algorithm. For every given wavelet basis, the matrix A is a linear transfor-
mation of the matrix B, A = ΦtotBΦ−1

tot . Therefore, the standard DMD and
its extensions share the same eigenvalues with the Wavelet-DMD, meaning
that the Wavelet-DMD is consistent with the standard DMD approaches, yet
revealing additional characteristics.

Proof :

The dynamic mode decomposition is an equation-free data driven model
that approximates the best linear dynamic model of a given data set X. It is
known that a linear system derived by the DMD is expressed by :

X′ = AX (5.2.2)

where,X contains the snapshotsXk in vectorized form. Each of the snapshots
X are derived from the vectorization of the F matrix in equation 5.1.22,
meaning that Xk = vec(F ).

The idea of Wavelet-DMD is to estimate a set of linear systems, estimating
one dynamical model per scale j for each of the approximation and merged
detail coefficients, that can substitutes the dynamic model of equation 5.2.2.

a′ = Ba (5.2.3)

The vectorization of equations 5.2.2 and 5.2.3 for a single snapshot is
defined as :
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Xk+1 = AXk (5.2.4)

ak+1 = Bak (5.2.5)

By multiplying both legs of the equation (5.2.5) by Φtot, it is given that:

Φtotak+1 = ΦtotBak (5.2.6)

The first leg of the equation 5.2.6, based on equations 5.1.20 and 5.1.21
is equal to:

Xk+1 = Φtotak+1 (5.2.7)

Hence, the first leg of equation (5.2.6) and the second leg of equation
(5.2.7) are the same, thus:

Xk+1 = ΦtotBak (5.2.8)

Moreover, combining equation 5.2.4 and equation 5.2.7, one gets:

Xk+1 = AΦtotak (5.2.9)

Finally, the combination of the equations 5.2.8 and 5.2.9, derives that :

ΦtotBak = AΦtotak

ΦtotB = AΦtot

B = Φ−1
totAΦtot (5.2.10)

or

A = ΦtotBΦ−1
tot (5.2.11)

The equation 5.2.11 indicates that the state matrix of the standard DMD
is a linear transformation of the state matrix of the Wavelet-DMD. It is
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proven that the new system based on the wavelet transform and the initial
dynamic system have the same eigenvalues.

It is known that the eigenvalues are the roots of the characteristic poly-
nomial. Hence, the characteristic polynomial is given as:

χA(λ) = det(A− λI) = det
(
ΦtotBΦ−1

tot − λI
)

The argument of the determinant above is equal to :

ΦtotBΦ−1
tot − λI =

ΦtotBΦ−1
tot − λΦtotIΦ

−1
tot =

Φtot(B − λI)Φ−1
tot (5.2.12)

Thus, the characteristic polynomial can be written as:

χA(λ) = det
(
Φtot(B − λI)Φ−1

tot

)
(5.2.13)

Based on the orthonormality property proven in section 2.3.2

χA(λ) = det(B − λI)

= χB(λ) (5.2.14)

Since similar matrices A and B have the same characteristic polynomial,
they also have the same eigenvalues. Based on that, the eigenvector relation-
ship between the two matrices is given by:

If A = ΦtotBΦ−1
tot and v ̸= 0 is an eigenvector of B (say Bv = λv) then

consider:

A(Φtotv) = ΦtotBΦ−1
tot(Φv)

= ΦtotB(Φ−1
totΦtot)v

= ΦtotBv

= λ(Φtot · v) (5.2.15)

Thus Φtotv (which is non-zero since Φtot is invertible) is an eigenvector
for B with eigenvalue λ. Similarly, if u is an eigenvector for B then Φ−1

totv is
an eigenvector for A.
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It can also be shown that it can be related to the inverse part. If
A = ΦtotBΦ−1

tot and as proven above λA = λB = λ, then :

Suppose that the eigenvectors of A is a transformation of the eigenvectors
of B, meaning that va = Φvb.

Ava = AΦtotvb

Ava = ΦtotBvb

Ava = Φtotλvb

Ava = λΦtotvb

Ava = λva (5.2.16)

In conclusion, this proof demonstrates that the temporal modes remain
the same in contrast to the spatial modes that differ between the two ap-
proaches where the modes of the standard DMD are actually a transforma-
tion of the Wavelet-DMD modes. Hence, the two methods display the same
behaviour and evolution, leading to the fact that the Wavelet-DMD can be
chosen over the Hankel-DMD when needed.

Moreover, it is proven that the spatial modes of the one approach based
on the eigenvalues in every model, is a transformation of the second based
on the mother wavelet. This indicates that the spatial modes among the
different scales are able to obtain features of the initial images in different
sampling frequencies, revealing hidden structures.

In the following examples, it will be shown that the Wavelet-DMDmethod
outperforms the standard Hankel DMD and multiscale POD and DMD in
terms of revealing hidden structures and separating the mixed frequency
effects of the given system. The spatial modes of the wavelet DMD methods
will be able provide full insight of the different dynamics of any given system,
making this algorithm a powerful tool for complex systems.

5.3 Wavelet-DMD Examples

Following the proof that was derived in the previous chapter, the novel mul-
tiscale DMD method based on the modified Wavelet transform will be ap-
plied into two different examples and its performance will be evaluated and
compared with all existing single scale and multiscale DMD methods. Key
feature will be to investigate the ability of the new method to reveal hidden
structures and behaviour of the system that cannot be revealed while using
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the existing methods. In this section, the key results and comparisons will
be demonstrated, followed by analytical simulations in Chapter 6.

For the purpose of this project, the chosen wavelet basis is based on
the family of Symlet wavelets. The Symlet wavelets are an extension of
the Daubechies wavelet family which are orthogonal and have compact sup-
port abilities for feature analysis. There are smoother than the simple Haar
wavelets and are more capable at identifying abrupt changes [27]. The Sym-
let wavelets are nearly symmetrical wavelets in contrast to the Daubechies
and they are preferred for the purpose of this project [29].

5.3.1 Wave Diffusion Example

The first example where the performance of the DMD methods will be com-
pared is on the wave diffusion model. Two independent waves oscillating
in different frequency and amplitude will be created and combined into one
dynamic model, simulating an oil and a water drop. The frequency ratio
and amplitude of the two drops will be such that a model with multiscale
characteristics will be obtained.

The general equation of the wave diffusion is described as:

∂ϕ(r, t)

∂t
= ∇ · [D(ϕ, r)∇ϕ(r, t)] (5.3.1)

where ϕ(r, t) is the density of the diffusing material at location r and time t
and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r;
and ∇ represents the vector differential operator.

The parameter D is constant,in order for the equation to reduce to the
following linear differential equation:

∂ϕ(r, t)

∂t
= D∇2ϕ(r, t) (5.3.2)

∂2δ

∂t2
= c2

∂2δ

∂x2
+ c2

∂2δ

∂y2
+ f

which can be discretized as

δ
(n+1)
ij − 2δ

(n)
ij + δ

(n−1)
i,j

∆t2
= c2

δ
(n)
i+1,j − 2δ

(n)
ij + δ

(n)
i−1,j

∆x2
+ c2

δ
(n)
i,j+1 − 2δ

(n)
i,j + δ

(n)
i,j−1

∆y2
+ f

(n)
i

(5.3.3)
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or letting ∆x = ∆y

δ
(n+1)
ij = 2δ

(n)
ij − δ

(n−1)
ij +

[
c
∆t

∆τ

]2 (
δ
(n)
i+1,j + δ

(n)
i−1,j − 4δ

(n)
ij + δ

(n)
ij+1 + δ

(n)
ij−1

)
+∆t2f

(n)
i

(5.3.4)

The purpose of this example is to compare the new wavelet DMD algo-
rithm with the existing DMD methods over a system with multiscale charac-
teristics. The dominant modes and the estimated dynamic model in all cases
will be derived and a straight comparison of the mode characteristics will be
performed among all different algorithms.

The wavelet-DMD will derive (j+1) different dynamic models, one for
each of the merged detail coefficients and one for the approximation coeffi-
cients, where j is the number of scales. For the sake of a fair comparison
between the two methods, the amount of dominant modes per wavelet DMD
dynamic model will be (j+1) times smaller than the standard DMD meth-
ods. Hence, the total amount of modes between the two methods will be the
same. Following the SVD plot, the minimum number of dominant modes k
is selected and will be used in this example.

As discussed above, in order to determine a model with multiscale char-
acteristics, the wave that simulates the water drop amplitude and frequency,
is 4 and 10 times greater than the oil drop parameters respectively. The
figures below simulate the two waves in a total of 150 time-steps, hence the
DMD will be performed over a total of 150 input images. The simulations
below, demonstrate the 2 wave system at different time steps.

From the images above it can be seen that two different waves are simu-
lated, where the amplitude of the fast moving one is noticeably greater than
the second wave and after the 50th time-step, the two waves are merged. Ad-
ditionally, the frequency spectrum of the fast moving wave is much greater
than the slow one, so the system can be entitled as a multiscale system.

The following reduced order approaches will be compared and the Wavelet
methods advantages will be addressed over the following methods :

� Proper Orthogonal Decomposition POD

� Dynamic Mode Decomposition DMD ( Hankel Form )

� Wavelet Proper Orthogonal Decomposition W-POD

5.3.1.1 Hankel - DMD

The simulation will start by applying the Hankel-DMD algorithm over the
simulated waves. A full analysis of the eigendecomposition and DMD spatial
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(a) Wave Diffusion Sim-
ulation of oil and water
drop in step k=1

(b) Wave Diffusion Sim-
ulation of oil and water
drop in step k=10

(c) Wave Diffusion Sim-
ulation of oil and water
drop in step k=20

(d) Wave Diffusion Sim-
ulation of oil and water
drop in step k=40

(e) Wave Diffusion Sim-
ulation of oil and water
drop in step k=60

(f) Wave Diffusion Sim-
ulation of oil and water
drop in step k=100

modes will be presented addressing the performance of the Hankel-DMD al-
gorithm. Purpose of this example, is to investigate if the DMD can separate
and reveal in discrete modes, the fast and slow moving dynamics and addi-
tionally to investigate the total amount of modes needed in order to reveal
all dynamics separately.

The example will start by plotting the singular values in the SVD step
in order for the amount of dominant modes to be determined. A total of 48
dominant modes is selected for this example out of the total 150 modes. The
following figures present the computed DMD modes after applying the DMD
algorithm.

It is shown that for the first 39 modes, the DMD cannot separate the slow
and fast dynamics and the system is dominated by high frequency effects.
The DMD performance can majorly be affected in cases where the user selects
a smaller amount of modes in the SVD step, leading into a model that is
incapable of revealing both slow and fast dynamics. Following the images
below, the most dominant modes ( see mode 1 and mode 3), are showing only
high frequency or mixed data of both waves. Hence, it is not clear where the
different dynamics are located.

The slow dynamics (second wave) are picked up only past the 40th dom-
inant mode. Figure 5.5 shows Modes 40 and 42 where only the slow moving
wave is shown. The same pattern continues for the remaining modes, where
only the low frequency dynamics are shown.

Although the DMD manages to separate the slow and fast dynamics in
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(a) DMD Mode 1 (b) DMD Mode 3

(c) DMD Mode 5 (d) DMD Mode 7

Figure 5.3.1: Presentation of the first 7 DMD mode after applying the
Hankel-2 DMD

(a) DMD Mode 40 (b) DMD Mode 42

(c) DMD Mode 46 (d) DMD Mode 48

Figure 5.3.2: Presentation of the DMD modes of the low frequency effects
after applying the Hankel-2 DMD

this example, the number of modes needed in order to reveal the slow dy-
namics is appeared after the 40th mode. The high number of modes required
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in order to reveal the various system dynamics is causing an increase in the
computational cost. Moreover, it can mislead the user about the system
behaviour in cases where a smaller amount of modes is selected.

The introduction of the Wavelet-DMD will try to address these problems
in the following section.

5.3.1.2 Wavelet Decomposition DMD

The Hankel-DMD manages to separate the slow and fast dynamics but the
amount of modes needed for this purpose is high ( approximately 30% of total
data required ), putting a toll in the computational cost and time. Moreover,
it is not clear if the dominant modes contain mixed or only high frequency
dynamics. The aim of the wavelet decomposition DMD is to minimize these
issues by minimizing the amount of modes needed in order for the DMD
to separate the different system dynamics and separate all mixed dynamics
successfully.

For the sake of this example, three (3) scales of decomposition are se-
lected. Hence, based on the proposed theory, the Wavelet DMD will create 4
different dynamic models, one for each scale of the merged detail coefficients
and one for the approximation coefficients. Thus, 12 modes per scale are se-
lected for a fair comparison with the previous DMD algorithm. The Wavelet
Decomposition in applied over the input data. The reconstructed images per
scale are given as an input on the DMD algorithm separately and the DMD
derives a dynamic model for each one of them.

After determining the DMD modes, the first two images below demon-
strate the two most dominant modes of the DMD in the first scale of decom-
position.

The second mode is not presented due to being the same as the first mode
with its eigenvalue being the complex conjugate of the eigenvalue of the first
mode. These mods contain information of the reconstructed images based on
the detail coefficients in scale one. By observing the remaining modes, it is
shown that only the high frequency system dynamics are revealed indicating
that the system is governed by high frequency dynamics. The key point is to
investigate if the wavelet decomposition manages to separate the slow and
fast system dynamics successfully and faster than the conventional DMD.

Applying the DMD method over the reconstructed images on the second
scale of decomposition, it is shown that after the 5th dominant mode, the slow
frequency dynamics are revealed and are separated from the fast dynamics.

By observing the dynamic model on the second scale, the user can iden-
tify and locate the different system dynamics. The mode No5 reveals only
dynamics from the slow moving wave. The high frequency dynamics are
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(a) WD-DMD Scale 1 Mode 1 (b) WD-DMD Scale 1 Mode 3

(c) WD-DMD Scale 1 Mode 5 (d) WD-DMD Scale 1 Mode 7

Figure 5.3.3: Presentation of the first 7 DMD mode in the first scale of
decomposition using the Symlet mother wavelet, revealing only the fast dy-
namics

(a) WD-DMD Scale 2 Mode 1 (b) WD-DMD Scale 2 Mode 3

(c) WD-DMD Scale 2 Mode 5 (d) WD-DMD Scale 2 Mode 7

Figure 5.3.4: Presentation of the first 7 DMD mode in the second scale of
decomposition using the Symlet mother wavelet, revealing the slow dynamics
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showed only the first 4 modes. Hence, the use of the wavelets manages to
separate the mixed dynamics successfully.

The beneficial properties of the pre-application of the wavelet decompo-
sition are even more obvious in the third scale of decomposition, where only
the slow dynamics are shown, even from the first modes.

(a) WD-DMD Scale 3 Mode 1 (b) WD-DMD Scale 3 Mode 3

(c) WD-DMD Scale 3 Mode 5 (d) WD-DMD Scale 3 Mode 7

Figure 5.3.5: Presentation of the first 7 DMD mode in the third scale of
decomposition using the Symlet mother wavelet, revealing immediately the
slow dynamics of these modes

The first mode includes some fast moving dynamics that are based on the
fast moving wave but the first mode reveals dynamics only in the position
where the slow moving wave is located. The phenomenon is even more clear
in the next modes. The wavelet decomposition DMD manages to separate
successfully the slow and fast dynamics of a given multiscale system. More-
over, the derived method manages to use the minimum amount of dominant
modes in order to reveal the different system dynamics increasing the accu-
racy and minimizing the computational cost in contrast to the Hankel-DMD
method.

Depending on the application purposes, the user can use wavelets in
deeper scales. For instance, by applying the Wavelet DMD in deeper scales
for this example, the beneficial properties of the wavelet decomposition are
even more realistic.

Comparing the modes of the third and forth scale, it can be seen that the
forth scale contains low frequency dynamics that are completely separated
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(a) WD-DMD Scale 4 Mode 1 (b) WD-DMD Scale 4 Mode 3

(c) WD-DMD Scale 4 Mode 5 (d) WD-DMD Scale 4 Mode 7

Figure 5.3.6: Presentation of the first 7 DMD mode in the forth scale of
decomposition using the Symlet mother wavelet, revealing immediately the
slow dynamics of these modes

from the high frequency ones.

(a) WD-DMD Scale 1 Mode 1 (b) WD-DMD Scale 2 Mode 1

(c) WD-DMD Scale 3 Mode 1 (d) WD-DMD Scale 4 Mode 1

Figure 5.3.7: Conclusive presentation of the first DMD mode at the different
scales of resolution
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In conclusion, the wavelet decomposition manages to separate the high
frequency and low frequency dynamics in each mode successfully. By observ-
ing each mode separately, in the first scale of decomposition, the modes are
governed by information with high frequency characteristics, where when a
deeper level of decomposition is achieved, the same modes are governed by
the slow frequency dynamics. Hence, the user can identify and reveal all
system patterns at all times.

5.3.1.3 Proper Orthogonal Decomposition POD

As described in the previous chapter, POD is designed to decompose the
vectorized data into a set of deterministic spatial modes, that give an insight
about the fluctuation and the time evolution of the given data, followed by
their time coefficients showing each mode time evolution.

The following figures illustrate the spatial modes and their corresponding
time evolution after applying the POD algorithm over the input images.
As described in the previous chapter, in order for the fair comparison with
the identification methods presented above, the selection of the number of
dominant modes are exactly the same as the ones selected for the Hankel
DMD.

(a) POD Mode 1 (b) POD Mode 2 (c) POD Mode 10

(d) POD Mode 11 (e) POD Mode 20 (f) POD Mode 30

Figure 5.3.8: Presentation of POD mode and their temporal evolution, re-
vealing that as the number of POD modes increases, the modes are revealing
fast dynamics

It can be seen that the POD computes in the first 10 modes only the
low frequency dynamics and only after the 11th mode, the high frequency
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dynamics are presented. The POD manages to create modes that reveal
low to high frequency dynamics in a ascending order. The POD manages
to distinct the slow and fast dynamics directly from the first modes which
makes it a powerful tool that deals successfully with models with multiscale
characteristics.

5.3.1.4 Wavelet Decomposition POD

The POD performed significantly good in the simulated example of the two
wave model. The challenge is to evaluate if the wavelet POD can outperform
the conventional POD. As proposed, in the previous section for the Wavelet-
DMD, the wavelet decomposition is applied over the input data and then the
POD is applied over the reconstructed images from the approximation and
detail coefficients separately in the different scales.

In the following images, the first dominant modes in all selected scales are
presented. The Wavelet-POD manages to separate the slow and fast moving
dynamics in every single selected mode. It can be seen that even in the first
mode, the reconstructed image from the approximation coefficients contains
only the low frequency dynamics as presented in the single scale POD too.
But the difference is that at the reconstructed images from the detail coef-
ficients different dynamics emerge in the different scales of decomposition.
The first scale image contains high frequency effects and in coarser scales,
low frequency effects.

Presenting the results of the second POD mode, the same pattern is
repeated. The wavelet-POD manages to separate the low and high effect in
this mode among the different scales in the images reconstructed for the detail
and approximation coefficients. Special interest shows the approximation
representation. If it is compared to the one in the first mode, it can be seen
that it starts to capture patterns of higher frequency.

Selecting the final dominant mode which for the sake of fair comparison
with the previous methods, is the 12th, mode, the approximation coefficient
mode representation contains high frequency dynamics too. This implies that
the wavelet-POD approach can successfully reveal the system hidden charac-
teristics using a small amount of modes, compared to the conventional single
scale POD and approximates multiple state space models among the different
scales that can describe the low and high frequency dynamics separately.

In a nutshell, each POD mode among the different scales, contains the
high frequency dynamics in specific scales and the low frequency in finer scales
separately. This introduces the big advantage of using multiple models based
on the needs and purpose of the corresponding application and can give full
insight of the behaviour of a given system.
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(a) WD-POD Scale 1 Mode
1 Merged Detail Coeffi-
cients

(b) WD-POD Scale 2 Mode
1 Merged Detail Coefficient

(c) WD-POD Scale 3 Mode
1 Merged Detail Coeffi-
cients

(d) WD-POD Scale 3 Mode
1 Approximation Coeffi-
cients

Figure 5.3.9: Presentation of the first 4 POD modes in the third scale of the
detail and approximation coefficients of the wavelet decomposition using the
Symlet mother wavelet, revealing that in the third scale, the slow dynamics
are revealed

5.3.1.5 Conclusions

In conclusion, the novel DMD algorithm that is developed, gives rise to a
novel class of multiscale reduced order identification methods that clearly
reveals characteristics and hidden structures of a given system. Each single
mode is decomposed into different scales of resolution and low and high
frequency hidden dynamics are revealed separately. The second interesting
point is that the hidden structures are revealed by using the minimum amount
of modes and data.

These characteristics shape a powerful tool when it comes to computa-
tional efficiency and model representation of multiscale systems.

5.3.2 Manufacturing of 3D Printing Powder Process

The wavelet based POD and DMD showed significant improvements over the
existing methods at pattern recognition and behaviour representation in the
first example. A second, more complex example will be investigated that will
test the consistency of the proposed method.
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(a) WD-POD Scale 1 Mode
2 Merged Detail Coeffi-
cients

(b) WD-POD Scale 2 Mode
2 Merged Detail Coeffi-
cients

(c) WD-POD Scale 3 Mode
2 Merged Detail Coefficient

(d) WD-POD Scale 3 Mode
2 Approximation Coeffi-
cients

Figure 5.3.10: Presentation of the second POD mode of the detail and
approximation coefficients of the wavelet decomposition using the Symlet
mother wavelet, revealing that in the third scale, the slow dynamics are re-
vealed

The new example presents a real-time manufacturing problem and the
data were received from the university of Leeds and concern the manufac-
turing process of the 3-D printing powder that is used in the 3-D engraving
printing process. During that process, one nozzle is spaying the powder and
two nozzles are spraying air in order to compress the powder particles aiming
at creating powder with more compact form and stronger particle connec-
tions. The problem that arises is that turbulences occur in certain areas that
result in a poor quality in the final product. The aim is to reveal where the
powder concentrations occur and in which areas they are most commonly
presented. This will lead the user to adjust the nozzle spray speed and an-
gle with ultimate goal the improvement of the overall process and the final
product quality.

A high resolution camera is used to capture consequent image frames of
the whole process in order to gather the necessary data. These frames will
be used as the input dataset for the different DMD and POD algorithms. As
shown in the previous example, it will be investigated if the extracted POD
and DMD modes can potentially reveal coherent and dominant structures
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(a) WD-POD Scale 1 Mode 12
Merged Detail Coefficients

(b) WD-POD Scale 2 Mode 12
Merged Detail Coefficient

(c) WD-POD Scale 3 Mode 12
Merged Detail Coefficient

(d) WD-POD Scale 3 Mode 12
Approximation Coefficients

Figure 5.3.11: Presentation of the last POD mode of the detail and approx-
imation coefficients of the wavelet decomposition using the Symlet mother
wavelet, revealing that in the third scale, the slow dynamics are revealed

of the particle concentrations of these high dimensional images. The modes
will target where and in which amount the turbulences occur and how much
the process performance is affected.

An amount of 2100 images of size 800 × 312 is given. This sequence of
images will be used in the DMD algorithms and each of them will be trans-
formed into a single column vector for the purpose of the method. Due to
the high dimensionality of the images and due to computational and memory
issues, the examples use a total amount of 300 images in this example.

The following figures illustrate specific snapshots presenting the manu-
facturing process. Each figure contains the image of the process but also its
contour counterpart in order to illustrate the image variations in a more clear
way.

5.3.2.1 Hankel-DMD

As presented in the previous example, the existing reduced order identifi-
cation methods will be evaluated and compared with the new multiscale



5.3. WAVELET-DMD EXAMPLES Page 101

(a) Snapshot of 3D-
Printing Powder Par-
ticles

(b) Snapshot of 3D-
Printing Powder Par-
ticle

(c) Snapshot of 3D-
Printing Powder Par-
ticles

(d) Snapshot of 3D-
Printing Powder Par-
ticle

(a) Snapshot of 3D-
Printing Powder Par-
ticles

(b) Snapshot of 3D-
Printing Powder Par-
ticle

(c) Snapshot of 3D-
Printing Powder Par-
ticles

(d) Snapshot of 3D-
Printing Powder Par-
ticle

Figure 5.3.12: Simulation of the real-time process of the powder flow based
on frames taken by high resolution camera

identification method. In this section, the performance and results of the
Hankel-DMD will be presented.

Given 300 consequent images of the particles flow, the selection of the
dominant POD modes is taken by examining the SVD plot given below. A
total amount of 60 modes representing the 90% of the total system energy,
is selected.

(a) Singular Value Decompo-
sition of the initial images
given by the 3D printing pow-
der particles

(b) Eigenvalues of the derived
state space model of DMD
given by the 3D printing pow-
der particles

Figure 5.3.13: Analysis of the Hankel-DMD

Based on these modes, the DMD creates a state space model that best
describes the given data. Examining the eigen-decomposition of the derived
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model, it is shown that the eigenvalues are concentrated in the edge of the
unitary circle, indicating that the new state space model is governed by high
frequency dynamics.

The following images demonstrate the dominant DMD modes of the de-
rived state space system. These modes should give insight of where the
particles are concentrated, indicating the location of where the turbulences
occur.

(a) Snapshot of 3D-Printing
Powder Particles

(b) Snapshot of 3D-Printing
Powder Particle

(c) Snapshot of 3D-Printing
Powder Particles

(d) Snapshot of 3D-Printing
Powder Particle

Figure 5.3.14: Simulation of the particles flow

The first impression is that all the DMD modes can only reveal high fre-
quency dynamics and by observing the DMD modes, it is not clear how the
system energy is spread and where the turbulences are occurring. Especially,
by observing the first mode, it can be seen that the dominant mode is gov-
erned by noise which can justify the poor performance of the DMD algorithm
at revealing the dominant structures of the system. This will be addressed
by using the Wavelet Decomposition DMD.

5.3.2.2 Wavelet Decomposition DMD

As presented in the previous example, the initial data will be decomposed into
multiple levels using the Wavelet Decomposition based on the same wavelet
function, the Symlet mother wavelet. The Hankel-DMD algorithm will be
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applied over the data in all scales of resolution. The amount of selected
dominant modes is given by observing the SVD plot of all POD modes and
the amount of them is the same for all approximation and detail level of
coefficients. The following figures present the SVD decomposition step and
the energy concentration of first dominant modes for the approximation and
detail coefficients respectively

(a) SVD at Scale 3 -
Approximation Coef-
ficients

(b) SVD at Scale 3 -
Detail Coefficients

(c) SVD at Scale 2 -
Detail Coefficients

(d) SVD at Scale 1 -
Detail Coefficients

Figure 5.3.15: SVD plots of the approximation and detail coefficients for the
3 level wavelet decomposition

Following the same idea as in the previous example, the data will be
decomposed into 5 levels in this case, hence a total amount of 12 dominant
modes per scale is selected. Based on the SVD plots, the amount of 12
modes is totally adequate for the purpose of this project. Following the SVD
step, the Hankel-DMD is applied over each set of detail and approximation
coefficients in every scale, deriving one dynamic model per set of coefficients.

(a) Eigenvalues of the derived
state space model of DMD given
by the 3D printing powder parti-
cles

As a first comparison with the single scale Hankel-DMD where all eigen-
values are concentrated around the unity circle, in the multiscale Hankel-
DMD using Wavelet Decomposition, there is presence of eigenvalues inside
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the unit circle. This indicates the unveiling of slow-slower dynamics among
the scales. Hence, the wavelet DMD can possibly reveal various dynamics
that the conventional DMD is not capable of.

The analysis will start by the following images that present the dominant
DMD modes of the reconstructed images from the coefficients in scale 5.

(a) 1st Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(b) 3nd Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(c) 5rd Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(d) 7th Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

Figure 5.3.16: DMD modes of the approximation coefficients at coarser level
of decomposition

The modes derived from the reconstruction of the approximation coeffi-
cients indicate that the particles are concentrated mostly in the left hand side
of the powder flow. In comparison to the modes derived in the Hankel DMD
shown in Fig. 5.3.14, the particle concentration is more clear in the proposed
method. Especially by observing the first mode of the Hankel DMD which
is governed by noise, the wavelet DMD provides better results in order to
understand the behaviour of the system.

The following images demonstrate the modes derived from the DMD when
applied over reconstructed images of the wavelet detail coefficients. The
results are quite interesting. The DMD modes unfold patterns that were not
present in any of the DMD modes when the single scale DMD is applied
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(see Fig.5.3.17). The first modes proclaim similar dynamics as shown in the
single-scale DMD but in the following modes the patterns are changing.

(a) 1st Snapshot of Detail
Mode Coefficient of 3D-
Printing Powder Particles in
level-5

(b) 3rd Snapshot of De-
tail Mode Coefficient of 3D-
Printing Powder Particles in
level-5

(c) 11th Snapshot of De-
tail Mode Coefficient of 3D-
Printing Powder Particles in
level-5

(d) 12th Snapshot of De-
tail Mode Coefficient of 3D-
Printing Powder Particles in
level-5

Figure 5.3.17: DMD modes of the detail coefficients at the coarser level 5 of
decomposition

The images below present the 11th mode of the reconstructed images in
scale 5. The images show an energy concentration in the whole top end area
of the image which is close to the nozzles. These patterns give a more precise
insight about the area where particles are concentrated and how the nozzles
need to be adjusted.

The 11th mode performs a completely different pattern compared to the
other modes in all DMD algorithms. Hence, the group of figures below illus-
trate the 11th DMD mode in every scale of decomposition. It is shown that
in the first scales, the modes are governed by the horizontal detail coefficients
effects and do not demonstrate any figures that can rise to multiscale char-
acteristics or structures that cannot be seen in single scale decomposition.

In coarser scales, the DMD modes illustrate new patterns that are not
shown in any single-scaled DMD algorithm. These patterns are not shown
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only in the coarsest scale but also in scale No3 and No4, meaning that there
are occasions where the user can see effects in finer scales without the need
of decomposing in deep scales, in favour of computational cost and time.

(a) 11th Snapshot of Detail
Mode Coefficient of 3D-
Printing Powder Particles
in level-3

(b) 11th Snapshot of Detail
Mode Coefficient of 3D-
Printing Powder Particles
in level-4

(c) 11th Snapshot of Detail
Mode Coefficient of 3D-
Printing Powder Particles
in level-5

Figure 5.3.18: Example of a specific DMD mode presenting the detail coef-
ficients at all levels of decomposition

This diversity in pattern recognition is repeated in multiple modes, giving
the confidence that the wavelet decomposition DMD can help massively in
understanding the behaviour of complex models with high dimensional data.

5.3.2.3 POD

In occasions where the derivation of a state space realisation model is not
needed, the POD algorithm could be more of use for the purpose of the
application. Apart from the DMD methods, a comparison between the con-
ventional POD and the multiscale POD via wavelet decomposition will be
given. Similarly to the previous algorithm, the following images demonstrate
the POD modes and their temporal evolution in descending order in terms
of their energy concentration.

The POD is indeed arranging the modes in descending order, in terms
of the energy but it cannot reveal any hidden structure as opposed in the
previous methods. The POD modes present the same pattern as the modes in
the single-scale DMD where the most dominant mode is governed by noise.
The modes indicate specific patterns which are similar but do not reveal
any particle concentrations or structures that could guide the user over the
system behaviour.

5.3.2.4 Wavelet Decomposition POD

As proposed in the Wavelet decomposition DMD where hidden structures
and patterns where revealed, the use of the Wavelet POD will try to reveal
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(a) Snapshot of the 1st

3D-Printing Powder Particle
POD Mode

(b) Snapshot of the 2nd

3D-Printing Powder Particle
POD Mode

(c) Snapshot of the 3rd

3D-Printing Powder Particle
POD Mode

Figure 5.3.19: Presentation of the most dominant POD modes

similar behaviour that was not shown by using the conventional POD. The
following images demonstrate the modes from the reconstructed images based
on the approximation coefficients.

(a) 1st Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(b) 2nd Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(c) 4th Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

(d) 5th Snapshot of Approx-
imation Mode Coefficient of
3D-Printing Powder Particles
in level-5

Figure 5.3.20: Presentation of the dominant POD modes of the approxima-
tion coefficients in the coarsest level 5

A closer observation between the first dominant modes of this method and
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the one from the conventional POD, indicates the beneficial characteristics
of the wavelets that filter the high frequency effects. The above POD modes
show a concentration of particles in the top areas and in the top right and
left corners. These patterns show a match with the wavelet DMD modes
giving the user the confidence about the particles allocation.

Similar results are shown if the user compares the remaining modes of
the conventional POD with the ones of the approximation coefficients in the
finest scale.

The POD modes at coarser scales of resolution are representing concen-
trated energy in locations where the conventional POD cannot reveal. In
fact, they present similarities with the wavelet DMD modes, enhancing the
assumptions that the wavelet based reduced order algorithms, reveal hidden
structures and behaviours that cannot be seen with singled scaled methods.

It is of a great interest to demonstrate the variation of a single mode
across the different scales. The following images present the most dominant
mode of the wavelet DMD across the 5 scales of decomposition. It is shown
that there is a big variation in the patterns that are captured among the
scales for the modes derived from the reconstructed images of the detail
coefficients. The mode in the first scale is corrupted with noise while the rest
of the modes reveal patterns of the actual system behaviour. As modes of
coarser scales are presented, different patterns are unfolded, presenting the
concentration of the particles. As shown in the application of the wavelet
DMD, the POD modes show high particle concentration in the top areas of
the images.

(a) 1st Snapshot of De-
tail Mode Coefficient
of 3D-Printing Powder
Particles in level-1

(b) 1st Mode of De-
tail Coefficient of 3D-
Printing Powder Parti-
cles in level-2

(c) 1st Mode of De-
tail Coefficient of 3D-
Printing Powder Parti-
cles in level-3
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(a) 1st Mode of De-
tail Coefficient of 3D-
Printing Powder Parti-
cles in level-4

(b) 1st Mode of De-
tail Coefficient of 3D-
Printing Powder Parti-
cles in level-5

5.4 Summary

In this chapter, a novel algorithm based on the DMD is created for models
with multiscale characteristics. The novel multiscale algorithm combines the
properties of the wavelet decomposition and the DMD in order to create a
framework that can deal with complex multiscale models. The use of the
wavelets allows a pre-stage the filtering of the input data and secondly the
wavelet properties have the ability to separate the system mixed dynamics
among the different scales of decomposition. Moreover, due to the nature of
the wavelets, they are able to capture abrupt changes and behaviours in the
system that conventional methods cannot reveal.

The wavelet DMD was applied over two multiscale examples, one that was
designed and simulated for the purpose of the thesis and one for a real time
application for dataset with unknown characteristics. A straight comparison
with the existing DMD and POD methods was applied showing the fact
that the wavelet DMD outperforms the other methods. The wavelet DMD
manages to reveal structures inside the data that cannot be shown with other
methods. Mixed frequency patterns are separated and the system behaviour
is clear to the user.

Hence, the wavelet DMD comprises a new very useful tool in data-driven
system identification techniques with broad application in data of any nature;
linear, non-linear, time-invariant or time-varying.

In the next chapter, the two presented examples will be demonstrated in
detail in order to indicate the consistency of the proposed Wavelet-DMD and
POD approaches.
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Chapter 6

Results & Discussions

This chapter will present extensively the simulations of the two examples
described above. In each of the two examples, the details simulations of the
initial models, the derived DMD modes for each case will be demonstrated,
providing an image to image comparison of the proposed method to the
existing algorithms. In this chapter, the ascendancy of the Wavelet-DMD
will be lucid over the existing single-scale and multi-scale DMD methods.

6.1 Wave Diffusion Simulation

As exhibited in the previous chapter, the first example that will be analysed is
the simulation of a two wave system that oscillate in different frequencies and
amplitudes, generating a two scale dynamic system. The following images
present the initial model behaviour over the first 85 out of 150 time steps.

(a) Wave Diffusion Simula-
tion of oil and water drop
in step k=1

(b) Wave Diffusion Simula-
tion of oil and water drop
in step k=5

(c) Wave Diffusion Simula-
tion of oil and water drop
in step k=10
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(a) Wave Diffusion Simula-
tion of oil and water drop
in step k=15

(b) Wave Diffusion Simula-
tion of oil and water drop
in step k=20

(c) Wave Diffusion Simula-
tion of oil and water drop
in step k=25

(d) Wave Diffusion Simula-
tion of oil and water drop
in step k=30

(e) Wave Diffusion Simula-
tion of oil and water drop
in step k=35

(f) Wave Diffusion Simula-
tion of oil and water drop
in step k=40

(g) Wave Diffusion Simula-
tion of oil and water drop
in step k=45

(h) Wave Diffusion Simula-
tion of oil and water drop
in step k=50

(i) Wave Diffusion Simula-
tion of oil and water drop
in step k=55

(j) Wave Diffusion Simula-
tion of oil and water drop
in step k=60

(k) Wave Diffusion Simula-
tion of oil and water drop
in step k=65

(l) Wave Diffusion Simula-
tion of oil and water drop
in step k=70

(m) Wave Diffusion Simu-
lation of oil and water drop
in step k=75

(n) Wave Diffusion Simula-
tion of oil and water drop
in step k=80

(o) Wave Diffusion Simula-
tion of oil and water drop
in step k=85



6.1. WAVE DIFFUSION SIMULATION Page 113

The following images demonstrate the modes derived after applying Hankel-
2 DMD algorithm.

(a) Standard DMD 1st

mode
(b) Standard DMD 2nd

mode
(c) Standard DMD 3rd

mode

(d) Standard DMD 4th

mode
(e) Standard DMD 5th

mode
(f) Standard DMD 6th

mode

(g) Standard DMD 7th

mode
(h) Standard DMD 8th

mode
(i) Standard DMD 9th

mode

(j) Standard DMD 10th

mode
(k) Standard DMD 11th

mode
(l) Standard DMD 12th

mode
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(a) Standard DMD 15th

mode
(b) Standard DMD 18th

mode
(c) Standard DMD 21st

mode

(d) Standard DMD 24th

mode
(e) Standard DMD 27th

mode
(f) Standard DMD 30th

mode

(g) Standard DMD 33rd

mode
(h) Standard DMD 36th

mode
(i) Standard DMD 39th

mode

(j) Standard DMD 42th

mode
(k) Standard DMD 45th

mode
(l) Standard DMD 48th

mode

As presented in the previous chapter, the Hankel-2 DMD manages to sep-
arate the different frequency dynamics after using a minimum of 30 modes.
This indicates that 20% of the amount of given images are used for determin-
ing the different dynamics. This poses a problem in cases where a smaller
amount of modes is selected.

The wavelet-DMD will be presented below, addressing and resolving this
problem. As shown in the previous chapter, when the wavelet-DMD is ap-
plied, every mode reveals the dynamic effects in different scales. Therefore,
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this approach can provide full insight on the system behaviour.

(a) Wavelet-DMD 1st

Mode at Scale 4
(b) Wavelet-DMD 1st

Mode at Scale 3
(c) Wavelet-DMD 1st

Mode at Scale 2
(d) Wavelet-DMD 1st

Mode at Scale 1

(a) Wavelet-DMD 3rd

Mode at Scale 4
(b) Wavelet-DMD 3rd

Mode at Scale 3
(c) Wavelet-DMD 3rd

Mode at Scale 2
(d) Wavelet-DMD 3rd

Mode at Scale 1

(a) Wavelet-DMD 5th

Mode at Scale 4
(b) Wavelet-DMD 5th

Mode at Scale 3
(c) Wavelet-DMD 5th

Mode at Scale 2
(d) Wavelet-DMD 5th

Mode at Scale 1

(a) Wavelet-DMD 7th

Mode at Scale 4
(b) Wavelet-DMD 7th

Mode at Scale 3
(c) Wavelet-DMD 7th

Mode at Scale 2
(d) Wavelet-DMD 7th

Mode at Scale 1
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(a) Wavelet-DMD 9th

Mode at Scale 4
(b) Wavelet-DMD 9th

Mode at Scale 3
(c) Wavelet-DMD 9th

Mode at Scale 2
(d) Wavelet-DMD 9th

Mode at Scale 1

In occasions where the user does not require to extract a new dynamic
model, the POD algorithms can be used in order to separate the given model
into its dominant structures. Therefore, a comparison between the standard
POD and Wavelet-POD was given.

The following images, demonstrate the POD modes derived by using the
standard POD.

(a) POD 1st Mode (b) POD 2nd Mode (c) POD 3rd Mode (d) POD 4th Mode

(e) POD 5th Mode (f) POD 6th Mode (g) POD 7th Mode (h) POD 8th Mode

(i) POD 9th Mode (j) POD 10th Mode (k) POD 11th Mode (l) POD 12th Mode

(m) POD 13th Mode (n) POD 14th Mode (o) POD 15th Mode (p) POD 16th Mode

As discussed in the previous chapter, the standard POD has shown good
performance at separating the different system effects. The first 9 modes
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contain the low frequency spatial dynamics and the latter modes comprise
the high frequency dynamics.

The following images include the first ten dominant modes of the Wavelet-
POD. In each row, the modes derived from the reconstructed approximation
and detail coefficients are presented. It is clearly shown, that in each scale,
the modes derived for the reconstructed images from the detail and approx-
imation coefficients, include different dynamics and the mixed effects are
separated.

(a) Wavelet-POD 1th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 1th

Mode Scale-1
(c) Wavelet-POD 1th

Mode Scale-2
(d) Wavelet-POD 1th

Mode Scale-3

(a) Wavelet-POD 2nd

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 2nd

Mode Scale-1
(c) Wavelet-POD 2nd

Mode Scale-2
(d) Wavelet-POD 2nd

Mode Scale-3

(a) Wavelet-POD 3rd

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 3rd

Mode Scale-3
(c) Wavelet-POD 3rd

Mode Scale-1
(d) Wavelet-POD 3rd

Mode Scale-2
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(a) Wavelet-POD 4th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 4th

Mode Scale-3
(c) Wavelet-POD 4th

Mode Scale-1
(d) Wavelet-POD 4th

Mode Scale-2

(a) Wavelet-POD 5th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 5th

Mode Scale-3
(c) Wavelet-POD 5th

Mode Scale-1
(d) Wavelet-POD 5th

Mode Scale-2

(a) Wavelet-POD 6th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 6th

Mode Scale-3
(c) Wavelet-POD 6th

Mode Scale-1
(d) Wavelet-POD 6th

Mode Scale-2

(a) Wavelet-POD 7th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 7th

Mode Scale-3
(c) Wavelet-POD 7th

Mode Scale-1
(d) Wavelet-POD 7th

Mode Scale-2
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(a) Wavelet-POD 8th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 8th

Mode Scale-3
(c) Wavelet-POD 8th

Mode Scale-1
(d) Wavelet-POD 8th

Mode Scale-2

(a) Wavelet-POD 9th

Mode Scale-3 (Ap-
prx.)

(b) Wavelet-POD 9th

Mode Scale-3
(c) Wavelet-POD 9th

Mode Scale-1
(d) Wavelet-POD 9th

Mode Scale-2

(a) Wavelet-POD
10th Mode Scale-3
(Apprx.)

(b) Wavelet-POD
10th Mode Scale-3

(c) Wavelet-POD
10th Mode Scale-1

(d) Wavelet-POD
10th Mode Scale-2

(a) Wavelet-POD
12th Mode Scale-3
(Apprx.)

(b) Wavelet-POD
12th Mode Scale-1

(c) Wavelet-POD
12th Mode Scale-2

(d) Wavelet-POD
12th Mode Scale-3

6.2 Flow of molten 3-D printing powder

The second example that was evaluated concerned the process during man-
ufacturing the powder of 3D printers. In this process, the flow of molten
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powder particles is disturbed by turbulences occurring in certain areas. Key
target is the identification of these areas and the configuration of the 3 nozzle-
system in order to avoid that phenomenon and optimize the product quality.

The following images demonstrate the particles flow analytically, provid-
ing an understanding of the model behaviour.

(a) 1st Snapshot (b) 10th Snapshot (c) 20th Snapshot (d) 30th Snapshot

(e) 40th Snapshot (f) 50th Snapshot (g) 60th Snapshot (h) 70th Snapshot

(i) 80th Snapshot (j) 90th Snapshot (k) 100th Snapshot (l) 110th Snapshot

(m) 120th Snapshot (n) 130th Snapshot (o) 140th Snapshot (p) 150th Snapshot

(q) 160th Snapshot (r) 170th Snapshot (s) 180th Snapshot (t) 190th Snapshot

The following images present the DMDmodes as derived by implementing
the Hankel-2 DMD algorithm. It is interesting to mention that the dominant
mode is governed by noise. Moreover, by observing the different modes, it is
shown that this approach cannot provide specific patterns that could reveal
where the particles are concentrated.
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(a) DMD 1st Mode (b) DMD 2nd Mode (c) DMD 4rd Mode (d) DMD 6th Mode

(e) DMD 8th Mode (f) DMD 10th Mode (g) DMD 12th Mode (h) DMD 14th Mode

(i) DMD 16th Mode (j) DMD 18th Mode (k) DMD 20th Mode (l) DMD 22th Mode

(m) DMD 24th Mode (n) DMD 26th Mode (o) DMD 28th Mode (p) DMD 30th Mode

(q) DMD 32th Mode (r) DMD 34th Mode (s) DMD 36th Mode (t) DMD 38th Mode

(u) DMD 40th Mode (v) DMD 42th Mode (w) DMD 44th Mode (x) DMD 46th Mode

The following images present the performance of the Wavelet-DMD al-
gorithm over the same example for 5 scales of decomposition. Therefore 12
modes where selected for the Wavelet-DMD approach. As discussed in Chap-
ter 5, the wavelet-DMD manages to reveal structures where the alternative
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approaches cannot identify even by using a substantially smaller amount of
modes.

(a) Wavelet-DMD 1st

Mode Scale-5
(b) Wavelet-DMD 1st

Mode Scale-4
(c) Wavelet-DMD 1st

Mode Scale-3
(d) Wavelet-DMD 1st

Mode Scale-2

(a) Wavelet-DMD 3rd

Mode Scale-5
(b) Wavelet-DMD 3rd

Mode Scale-4
(c) Wavelet-DMD 3rd

Mode Scale-3
(d) Wavelet-DMD 3rd

Mode Scale-2

(a) Wavelet-DMD 5th

Mode Scale-5
(b) Wavelet-DMD 5th

Mode Scale-4
(c) Wavelet-DMD 5th

Mode Scale-3
(d) Wavelet-DMD 5th

Mode Scale-2

(a) Wavelet-DMD 7th

Mode Scale-5
(b) Wavelet-DMD 7th

Mode Scale-4
(c) Wavelet-DMD 7th

Mode Scale-3
(d) Wavelet-DMD 7th

Mode Scale-2
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(a) Wavelet-DMD 9th

Mode Scale-5
(b) Wavelet-DMD 9th

Mode Scale-4
(c) Wavelet-DMD 9th

Mode Scale-3
(d) Wavelet-DMD 9th

Mode Scale-2

(e) Wavelet-DMD
11th Mode Scale-5

(f) Wavelet-DMD
11th Mode Scale-4

(g) Wavelet-DMD
11th Mode Scale-3

(h) Wavelet-DMD
11th Mode Scale-2

By observing these modes, it can be seen that the first DMD modes in
the first scales separating the noise from the actual dynamic effects and as
the scales are increased, different patterns are revealed. Special attention
should be given in the last modes, where patterns that were not revealed in
any DMD or POD approach are reveal. These patterns are indicating where
the particle are concentrated that could possibly lead into turbulences to the
manufacturing process.

As presented in the previous example, the standard Hankel POD and the
Wavelet-POD are compared in this occasion too. Firstly, the POD modes
are demonstrated. It can be observed that the POD is unable to reveal
the possible areas where there is particles concentration in contrast to the
previous example.

(a) POD 1st Mode (b) POD 2nd Mode (c) POD 3rd Mode (d) POD 4th Mode

(e) POD 5th Mode (f) POD 6th Mode (g) POD 7th Mode (h) POD 8th Mode
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(a) POD 9th Mode (b) POD 10th Mode (c) POD 11th Mode (d) POD 12th Mode

(e) POD 13th Mode (f) POD 14th Mode (g) POD 15th Mode (h) POD 16th Mode

The standard Hankel-POD is unable to reveal in this complex real time
example the areas of particles concentration, as followed by the standard
Hankel-DMD. It is interesting to exhibit the consistency of the wavelet based
approaches The wavelet-POD is presented below.

The modes from the reconstructed images from the detail coefficients in
each scale are presented. In this example, the level of depth of the wavelet
decomposition was selected to be 5 in order to reveal as many details as
possible.

(a) Wavelet-POD 1st

Mode Scale-5
(b) Wavelet-POD 1st

Mode Scale-4
(c) Wavelet-POD 1st

Mode Scale-3
(d) Wavelet-POD 1st

Mode Scale-2

(a) Wavelet-POD 2nd

Mode Scale-5
(b) Wavelet-POD 2nd

Mode Scale-4
(c) Wavelet-POD 2nd

Mode Scale-3
(d) Wavelet-POD 2nd

Mode Scale-2
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(a) Wavelet-POD 3rd

Mode Scale-5
(b) Wavelet-POD 3rd

Mode Scale-4
(c) Wavelet-POD 3rd

Mode Scale-3
(d) Wavelet-POD 3rd

Mode Scale-2

(a) Wavelet-POD 4th

Mode Scale-5
(b) Wavelet-POD 4th

Mode Scale-4
(c) Wavelet-POD 4th

Mode Scale-3
(d) Wavelet-POD 4th

Mode Scale-2

(a) Wavelet-POD 5th

Mode Scale-5
(b) Wavelet-POD 5th

Mode Scale-4
(c) Wavelet-POD 5th

Mode Scale-3
(d) Wavelet-POD 5th

Mode Scale-2

(a) Wavelet-POD 6th

Mode Scale-5
(b) Wavelet-POD 6th

Mode Scale-4
(c) Wavelet-POD 6th

Mode Scale-3
(d) Wavelet-POD 6th

Mode Scale-2
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(a) Wavelet-POD 7th

Mode Scale-5
(b) Wavelet-POD 7th

Mode Scale-4
(c) Wavelet-POD 7th

Mode Scale-3
(d) Wavelet-POD 7th

Mode Scale-2

(a) Wavelet-POD 8th

Mode Scale-5
(b) Wavelet-POD 8th

Mode Scale-4
(c) Wavelet-POD 8th

Mode Scale-3
(d) Wavelet-POD 8th

Mode Scale-2

(a) Wavelet-POD 9th

Mode Scale-5
(b) Wavelet-POD 9th

Mode Scale-4
(c) Wavelet-POD 9th

Mode Scale-3
(d) Wavelet-POD 9th

Mode Scale-2

(a) Wavelet-POD
10th Mode Scale-5

(b) Wavelet-POD
10th Mode Scale-4

(c) Wavelet-POD
10th Mode Scale-3

(d) Wavelet-POD
10th Mode Scale-2

Additionally, the modes from the reconstructed images from the approx-
imation coefficients in the coarsest scale are presented.
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(a) Wavelet-POD 1st

Mode
(b) Wavelet-POD 2nd

Mode
(c) Wavelet-POD 3rd

Mode
(d) Wavelet-POD 4th

Mode

(a) Wavelet-POD 5th

Mode
(b) Wavelet-POD 6th

Mode
(c) Wavelet-POD 7th

Mode
(d) Wavelet-POD 8th

Mode

(a) Wavelet-POD 9th

Mode
(b) Wavelet-POD
10th Mode

In conclusion, the proposed wavelet-based reduced order methods are ca-
pable of revealing hidden structures and system characteristics that cannot
be revealed with the standard decomposition methods. All these approaches
were tested on models with multiscale characteristics, abrupt changes and
linear dependencies and managed to exhibit the system dynamics success-
fully.
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Chapter 7

Conclusions & Future Work

7.1 Summary of Contributions

The thesis investigated temporal and spatial multiscale models where the
catholic understanding of the underlying dynamics of these complex systems
is of main importance in many fields. Data-driven models offer flexibility
in the field of system identification due to the fact that they make use of
raw dataset and do not require any, in advance,speculation about the sys-
tem dynamics. The ultimate goal of this thesis was to address the gaps of
the data-driven identification methods in the multiscale world and propose
alternative solutions for improving precision and accuracy.

In the field of temporal systems, the performance of the δ-operator was
introduced in the SID algorithms. The aim was to improve the performance
of the SID methods over fast-sampled single-scale and multiscale models
due to singularities that can emerge. Moreover, the use of the δ- operator
can link the discrete SID method with its continuous counterpart for better
interpretability.

In the field of spatio-temporal systems, a comprehensive analysis and
investigation of the performance boundaries for the existing reduced order
identification algorithms was addressed. Up to date, there was no detailed
analysis of the various POD and DMD algorithms over signals with abrupt
changes and linear dependencies. Moreover, the performance of these ap-
proaches over systems with multiscale and mixed frequency characteristics
is considered. Their limitations are revealed, unfolding the necessity of new
multiscale approaches that could overcome the boundaries discussed.

All previous led to the development of a novel spatial multiscale DMD
algorithm. The novel multiscale POD and DMD approaches were tailored
to resolve the problems of the existing ROM methods. The novel algorithm

129
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combines the properties of the wavelet decomposition and the higher or-
der DMD algorithms. The wavelet-DMD algorithm is proven to preserve the
eigenvalues of any conventional DMD algorithm, hence it can substitute them
without loss of information. The performance of the proposed algorithm was
evaluated for complex multiscale models with mixed frequency and multiscale
dynamics. The results showed that the wavelet DMD is outperforming all
existing identification methods in terms of separating and revealing struc-
tures that give insight into the system behaviour. At the same time, the
wavelet-DMD introduces a multiscale model that can accentuate different
dynamic effects simultaneously.

In chapter 3, in the field of temporal series of data, a detailed analysis of
the SID methods was addressed where a new SID algorithm was proposed for
high sampled data. The SID methods saw excellent performance at identify-
ing accurately a system when it comes to noise-free measurements. The new
algorithm based on the δ-operator was introduced for high sampled datasets.
Moreover, it was introduced due to the fact that till now, all SID methods
are based on discrete model datasets. Hence, a model that could link and
interpret the discrete models to their continuous counterpart had to be ad-
dressed. The results and comparisons, though, to the existing methods did
not show an improvement in the SID algorithm accuracy and efficiency. On
the other hand, all methods have shown weaknesses when it comes to noisy
measurements, especially for occasions where the SNR was very low.

7.2 Future Work

The PhD investigated identification of systems that showed both temporal
and spatial characteristics. The thesis made some contributions towards
advancing the analysis in this area. However, this work can be extended
further in a number of different ways.

In the case of the SID methods, it was shown that no SID method man-
ages to deal with the noisy measurements when introduced to the system.
Following this, a preprocessing of the input data using Kalman filters could
be introduced and analysed aiming at more accurate representations when
it comes to noisy datasets. A recent study based on the wavelet decompo-
sition as a preprocessing step showed promise. Hence, it would be of great
interest the use of other filtering methods, such as Kalman filters or Multi-
scale Kalman filters combined with the SID and investigate whether it offers
performance gains.

In the case of the wavelet DMD, new criteria for the number of the selected
modes can be exploited. The DMD performance is indissolubly linked to the
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number of selected modes in the SVD step. Up to now, the amount of modes
is selected empirically only by observing the singular values plot of the SVD or
MSE criteria. System identification literature has developed model selection
methods that trade-off reconstruction error against complexity. Such an
approach can be adapted to the selection of the number of DMD modes.
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Appendices
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Appendix A

Orthogonality Properties

Proof No 1: Based on the multiresolution properties,, it will be proven
that the set {ψ0k = ψ(x− k), k ∈ Z} is orthonormal. For any k, l ∈ Z, the
following inner product is computed:

⟨ψk, ψl⟩ = ⟨ψ(x− k), ψ(x− l)⟩ (A.1)

Combining equation G.8 and using G.9:

ψ(x− k) =
∑
m∈Z

gm
√
2ϕ(2x− 2k −m). (A.2)

Substitution into A.1 yields

⟨ψ(x− k), ψ(x− l)⟩ =

〈∑
m∈Z

gm
√
2ϕ(2x− 2k −m),

∑
n∈Z

gn
√
2ϕ(2x− 2l − n)

〉
=
∑
m∈Z

gmgm+2k−2l (2k +m = 2l + n⇒ n = m+ 2k − 2l)

=
∑
m∈Z

(−1)mh1−m(−1)mh1−m−2k+2l

=
∑
m∈Z

h1−mh1−m−2k+2l (A.3)

The above expression is zero for k ̸= l and 1 for k = l due to the corre-
sponding orthogonality relations for the translated scaling functions.
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⟨ϕ(x− k), ϕ(x− l)⟩ =

〈∑
m∈Z

hm
√
2ϕ(2x− 2k −m),

∑
n∈Z

hn
√
2ϕ(2x− 2l − n)

〉
=
∑
m∈Z

hmhm+2k−2l (2k +m = 2l + n⇒ n = m+ 2k − 2l)

= δkl
(A.4)

Replacement of m with 1−m and substitution into A.3 yields the desired
result

⟨ψ(x− k), ψ(x− l)⟩ = δkl .

Proof No 2: It will be proven that the set {ψ0k(x) = ψ(x− k), k ∈ Z}
is orthogonal to V0. It is sufficient to show that

⟨ϕ(x− k), ψ(x− l)⟩ = 0.

From the scaling results,

⟨ϕ(x− k), ψ(x− l)⟩ =

〈∑
m∈Z

hm
√
2ϕ(2t− 2k −m),

∑
n∈Z

gn
√
2ϕ(2t− 2l − n)

〉
=
∑
m∈Z

hmgm+2k−2l (2k +m = 2l + n⇒ n = m+ 2k − 2l)

=
∑
m∈Z

(−1)m+2k−2lhmh1−m−2k+2l

=
∑
m∈Z

(−1)mhmh1−m−2k+2l. (A.5)

It has to be shown that:∑
m∈Z

(−1)mhmh1−m+2p = 0, for any p ∈ Z

It is shown from equation A.4 that is true for value of p is equal to p = 0 :
The series becomes a ”cancelling sum” about the terms h0h1 and h1h0. Recall
that this was the basis of the definition of the gk in terms of the hk. But
for a shift of 2p in one of the arguments, it is also a ”cancelling sum” about
m = p and m = p+ 1 :
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∑
m∈Z

(−1)mhmh1−m+2p = · · ·+ (−1)phph1+p + (−1)p+1hp+1hp + · · ·

= 0. (A.6)

Since −2k + 2l is an even number, it follows that

⟨ϕ(x− k), ψ(x− l)⟩ = 0.

Proof No 3: Any element y ∈ W0 admits an expansion in the functions
ψ(x− k). It will be shown that the space V1 is spanned by integer translates
of ϕ and corresponding translates of ψ.

Recall the fact that the functions ϕ1k = 21/2ϕ(2x − k) span V1. It ll be
shown that for each j,

ϕ(2x− j) =
∑
k

akϕ(x− k) + bkψ(x− k) (A.7)

for an appropriate set of constants ak and bk. From the orthogonality of the
ϕ(x− k), it follows that:

ak = ⟨ϕ(2x− j), ϕ(x− k)⟩

=

〈
ϕ(2x− j),

∑
l

hl
√
2ϕ(2x− 2k − l)

〉
=

1√
2
hj−2k (j = 2k + l ⇒ l = j − 2k) (A.8)

Likewise, we find that

bk = ⟨ϕ(2x− j), ψ(x− k)

=

〈
ϕ(2x− j),

∑
l

gl
√
2ϕ(2x− 2k − l)

〉
=

1√
2
gj−2k

=
1√
2
(−1)jh1−j+2k (A.9)
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If the equality in A.7 holds, in the L2 -sense, then the following result
must hold:

⟨ϕ(2x− j), ϕ(2x− j)⟩ = 1

2
=
∑
k

[
|ak|2 + |bk|2

]
.

But from the scaling equation G.5:

⟨ϕ(x), ϕ(x)⟩ =
∑
k

|hk|2 = 1 (A.10)

In summary, any element u ∈ V1 admits a unique expansion in terms of
the functions ϕ(2x− j) which, in turn, admit unique expansions in terms of
the ϕ(x− k) and ψ(x− k) functions. Since the ϕ(x− k) span V0, it follows
that the ψ(x− k) span W0.



Appendix B

Kalman Filtering & Kalman
Smoothing

The Kalman filter is a optimal estimation algorithm for stochastic state space
estimation from noisy sensor measurements with broad applications in the
field of signal processing and control. Kalman filter is predictor-corrector
estimation algorithm that creates a cost-loss function that minimizes the es-
timated error covariance in an optimal way. Objective of the Kalman filter
algorithm is to minimise the mean squared error between the actual and
estimated data. The term optimal means that all noise is Gaussian, thus
the Kalman filter minimises the mean square error of the estimated param-
eters. In occasions where the noise does not present these characteristics,
other non-linear estimators may be a better approach, such as the Extended
Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) which will not
be analysed and used for the purposes of this thesis. [21, 22,68]

The Discrete Kalman filter (DKF) will be demonstrated due to its use in
the next chapter for the system identification purposes. The DKF estimates
the state x ∈ ℜn of a discrete-time controlled process that is governed by the
linear stochastic difference equation:

xk = Axk−1 +Buk + wk−1 (B.1)

with a measurement y ∈ ℜm that is

yk = Cxk + vk (B.2)

where wk and vk represent the input and measurement noise respectively.
They are independent from each other and present normal probability dis-
tributions.
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p(wk) ∼ N(0, Q),

p(vk) ∼ N(0, R) (B.3)

where Q is the process noise covariance and R is the measurement noise
covariance.

Kalman filtering requires a derived state space model based on the a priori
state x̂−k ∈ ℜn knowledge and obtains the optimal state by minimizing the
error:

e−k ≡ xk − x̂−k , and

ek ≡ xk − x̂k (B.4)

where x̂k ∈ ℜn is the posteriori state.
The a priori estimate error covariance is then

P−
k = E

[
e−k e

−T
k

]
(B.5)

and the a posteriori estimate error covariance is

Pk = E
[
eke

T
k

]
= E

[
(xk − x̂k) (xk − x̂k)

T
]

(B.6)

An update equation for the new estimate, combining the old estimate
with measurement data is given by:

x̂k = x̂−k +Kk

(
yk − Cx̂−k

)
(B.7)

where Kk is the Kalman gain, which will be derived in the next step. The
term yk − Cx̂−k is known as the innovation or measurement residual:

ik = yk − Cx̂k (B.8)

Substituting equation B.2 into equation B.7 gives:

x̂k = x̂−k +Kk

(
Cxk + vk − Cx̂−k

)
(B.9)

Substituting equation B.9 into equation B.6, the expectation equation is
given by:



Page 141

Pk = E [[(I −KkC) (xk − x̂′k)−Kkvk]

[(I −KkC) (xk − x̂′k)−Kkvk]
T
]

(B.10)

The term (xk − x̂′k) indicates the error of the prior estimate. There is no
correlation of the error with the measurement noise, therefore the expectation
is expressed as follows:

Pk = (I −KkC)E
[
(xk − x̂′k) (xk − x̂′k)

T
]
(I −KkC)

+KkE
[
vkv

T
k

]
KT
k (B.11)

The expectation P ′
k can be expressed as P ′

k = E
[
(xk − x̂′k) (xk − x̂′k)

T
]

and the E
[
vkv

T
k

]
is the measurement noise covariance R. Therefore:

Pk = (I −KkC)P
′
k (I −KkC)

T +KkRK
T
k

Pk = P−
k −KkCP

−
k − P−

k C
TKT

k +Kk

(
CP−

k C
T +R

)
KT
k (B.12)

The trace of a matrix is equal to the trace of its transpose, therefore it
may written as:

T [Pk] = T
[
P−
k

]
− 2T

[
KkCP

−
k

]
+ T

[
Kk

(
CP−

k C
T +R

)
KT
k

]
(B.13)

where T [Pk] is the trace of the matrix Pk.
Differentiating with respect to Kk gives:

dT [Pk]

dKk

= −2
(
CP−

k

)T
+ 2Kk

(
CP−

k C
T +R

)
(B.14)

The optimal solution is given by setting dT [Pk]
dKk

= 0. Therefore:

(
CP−

k

)T
= Kk

(
CP−

k C
T +R

)
(B.15)

Solving this equation for Kk, it gives:

Kk = P−
k C

T
(
CP−

k C
T +R

)−1
(B.16)
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This last equation represents the Kalman gain equation. The innovation,
ik has an associated measurement prediction covariance. This is given by:

Sk = CP−
k C

T +R (B.17)

Finally, substituting the last equation into equation B.12 gives:

Pk = P−
k − P−

k C
T
(
CP−

k C
T +R

)−1
CP−

k

= P−
k −KkCP

−
k

= (I −KkC)P
−
k (B.18)

The equation B.18 represents the update equation for the error covariance
matrix with optimal gain. The three equations B.4, B.7 and B.9 develop an
estimate of the variable xk. The state projection is achieved by:

x̂−k+1 = A′x̂k (B.19)

In order for the recursion step to be completed, an equation that projects
the error covariance matrix into the next time interval, k + 1 needs to be
obtained. This is achieved by first expressing an equation for the prior error:

e−k+1 = xk+1 − x̂−k+1 (B.20)

= (A′xk + wk)− A′x̂k (B.21)

= A′ek + wk (B.22)

Extending equation B.6 to time-step k + 1, gives:

P−
k+1 = E

[
e−k+1e

T−
k+1

]
= E

[
(A′ek + wk) (A

′ek + wk)
T
]

(B.23)

The error ek and input noise wk have zero cross-correlation because the
noise wk actually accumulates between k and k + 1 whereas the error ek is
the error up until time k. Therefore:

P−
k+1 = E

[
e−k+1e

T−

k+1

]
= E

[
A′ek (A

′ek)
T
]
+ E

[
wkw

T
k

]
= A′PkA

′T +Q (B.24)
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Figure B.1: A schematic presenting of the Kalman filter steps

This is the recursive Kalman filter. The algorithm is repeated till the
error tends to reach very small values. The following diagram summarizes
the Kalman filter algorithm steps.

An extension of the traditional Kalman filtering can be given by the
Kalman smoother. The smoothed version improves the standard one, by
adding future measurements instead of only the a priori data. Kalman
smoother is an offline estimation algorithm, that improves the Kalman filter
performance when it comes to estimate the sequence of states and is based
on backwards recursion.

There are three times of Kalman smoothing algorithms :

� Fixed-lag smoothing: Estimate x̂j|j+ℓ0 , for j = 0, 1, . . .

� Fixed-point smoothing: Estimate x̂j0|k, for k = j0, j0 + 1, . . .

� Fixed-interval smoothing: Estimate x̂j|k0 , for j = 0, . . . , k0

The most common type is the fixed-interval smoothing. There are two
types of smoothing algorithms in this category known as:

� Two-pass smoother or RTS (Rauch-Tung-Striebel) smoother where the
standard Kalman filter is computed in a forward pass, and the smoothed
values are computed in a backward pass.
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� Forward-backward smoother where the smoother combines two esti-
mates of the state, one given the past and the other given the future

Figure B.2: A schematic presenting the Kalman smoothing steps

The Kalman filter is used in system identification methods such as the
Subspace identification method in order to derive the uncertainties when they
are present. On the other hand, all data-driven models do not require making
any priori assumptions about the model, for deterministic and stochastic
systems. Hence, non of these iterative methods are applied on them. The
aim is to overcome the difficulties and ill-conditioned situations of the above
iterative methods by introducing computationally efficient and non-iterative
algorithms. Extensions of these approaches will be applied for data with
multiscale characteristics. Hence, non-iterative reduced order models will be
introduced in order to overcome these obstacles.



Appendix C

Parameter Estimation

C.1 Autoregressive Model with exogenous in-

put (ARX)

The commonly used model structure of a linear time-invariant deterministic
or stochastic system is the simple linear input-output difference equation
called Autoregressive Model with exogenous input (ARX). ARX structure is
simple and can capture the linear relationship in different real world problems
but implementing simple L2-norm related solutions [39,63]. The ARX model
is a linear difference equation formed as follows:

y(t) + a1y(t− 1) + . . .+ anay (t− na) = b0u(t− d) + . . .+

+ bnb
u (t− d− nb) + e(t) (C.1)

which relates the current output y(t) to a finite number of past outputs
y(t − d) and inputs u(t − d). e(t) is a random white-noise which indicates
the error in the difference equation.

The aim is to estimate the adjustable model parameters ai and bi which
can be summarized as:

θ =
⌊
a1 a2 . . . ana b0 b2 . . . bnb

⌋
(C.2)

Similarly, the input-output data can be written as:

φTt = (−yt−1, . . . ,−yt−na , ut−1, . . . , ut−nb
)T (C.3)
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In the special case where the na = 0, the model is no longer called ARX
but finite impulse response (FIR) model. Then, equation C.1 can be written
as:

y(t) = φTt (t)θ + e(t) (C.4)

As a summary, the input-output structure of the ARX model can be given
in a transfer function form as:

y(t) =
B (q−1)

A (q−1)
u(t) +

1

A (q−1)
e(t) (C.5)

where

A(q−1) =
[
1 a1 a2 a3 . . . an

]
B(q−1) =

[
1 b1 b2 b3 . . . bn

]
The ARX models can be estimated using prediction error methods by

solving a linear regression problem. The disadvantage of the ARX model is
that disturbances are part of the system dynamics. The transfer function of
the input part ( deterministic ) and the transfer function of the disturbance
share the same poles which is unrealistic [39,63].

C.2 Autoregressive moving-average with ex-

ogenous input (ARMAX)

A more flexible parameter estimation model is the autoregressive moving-
average with exogenous input (ARMAX) models. Unlike the ARX model,
the ARMAX model structure introduces an extra term called disturbance
dynamics. The advantage of the ARMAX over the ARX is the flexibility of
handling the disturbances, when applied on a system [39,63].

The ARMAX model is described by the following relationship between
the input-output data:

y(t) + a1y(t− 1) + . . .+ anay (t− na)

= b0u(t− d) + . . .+ bnb
u (t− d− nb)

+ e(t) + c1e(t− 1) + . . .+ cnee (t− nc) (C.1)
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where the unknown adjustable variables are expressed as:

θ =
[
a1 a2 . . . ana b0 b2 . . . bnb

c1 c2 . . . cnc

]T
(C.2)

and the input-output data as:

φTt = (−yt−1, . . . ,−yt−na , ut−1, . . . , ut−nb
)T (C.3)

Hence the system in either the ARX model or the ARMAX model can be
expressed in the same way but the ARMAX model contains the disturbance
parameters:

yt = φTt θ + et,∀t = . . . , 0, 1, , 2, . . . (C.4)

The general ARMAX model is given by the transfer function equation :

y(t) =
B (q−1)

A (q−1)
u(t) +

C (q−1)

A (q−1)
e(t) (C.5)

where

A(q−1) =
[
1 a1 a2 a3 . . . an

]
B(q−1) =

[
1 b1 b2 b3 . . . bn

]
C(q−1) =

[
1 c1 c2 c3 . . . cn

]
The ARMAX model is suitable in areas of control, processes and econo-

metrics for both system modelling and control scheme design. The input-
output equation model structure can equivalently be given by:

The existence of the numerator C(q, θ) in the ARMAX model introduces
some independence in the parametrization, but similarly to the ARX model,
the noise sequence {et} is still filtered by the same denominator dynamics as
the input, having the same poles.
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C.3 Box-Jenkins (BJ)

An even more flexible model description compared to the ARX and ARMAX
models is given by Box-Jenkins structure. BJ models introduce models where
the disturbance properties are modelled separately from system dynamics,
as opposed in ARMAX models [39,63].

The general BJ model is given by the transfer function equation:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
,

where

A(q, θ) = 1 + a1q
−1 + · · ·+ anaq

−na ,
B(q, θ) = b1q

−1 + · · ·+ bnb
q−nb

C(q, θ) = 1 + c1q
−1 + · · ·+ cncq

−nc

D(q, θ) = 1 + d1q
−1 + · · ·+ dnd

q−nd

Here, the parameter vector to be estimated is written as:

θ =

[
a1 · · · ana b1 · · · bnb

c1 · · · cnc d1 · · · dnd

]⊤
∈ Rna+nb+nc+nd .

This model is called Box-Jenkins (BJ), as it was proposed by Box and
Jenkins in [26]. Its main advantage is the completely independent parametriza-
tion of G(q, θ) and H(q, θ), both parametrized with numerator and denomi-
nator polynomials. It is, thus, a quite general and flexible parametrization.

In the case where the additive output disturbance is white noise, then the
nd = 0 = nc. In terms of G(q, θ) and H(q, θ), it gives that:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) = 1.

This is called an output-error (OE) model.
All parametric models can be described either in continuous or discrete

time. The equivalent discrete time model of the ARX and ARMAX model
equation C.4 can be described as follows:

y[k] = φT [k]θ + e[k] (C.1)

where in discrete time, the input-output data are written as

φ[k] =
[
y[k − 1] · · · y[k − n] u[k] u[k − 1] · · · u[k −m]

]T ∈ Rn+m×1

(C.2)
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and the unknown adjustable variables for the ARX model as:

θ =
[
a1 · · · an b0 b1 · · · bm

]T ∈ Rn+m×1 (C.3)

or

θ =
[
a1 · · · an b0 b1 · · · bm c0 c1 · · · cm

]T ∈ Rn+m×1 (C.4)

for the ARMAX model.
The parameter e[k] indicates the usual zero-mean Gaussian white noise

process.

e = [e [k0] e [k0 + 1] · · · e [k0 +M − 1]]T (C.5)
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Appendix D

SVD Geometrical Derivation

Geometrically, SVD represents the decomposition of a given vector onto two
orthogonal axis. For instance, the unit vectors (u1 and u2 ) represent the
directions of the vectors. The lengths of projection ( the line segments sa1
and sa2 ) indicate the amount of the vector contained in each direction of
projection. The vectors of projection ( pa1 and pa2 ) are used to reconstruct
the original vector a by adding them together ( as a vector sum ). It is
obvious to verify that pa1=sa1u1 and pa2=sa2u2.

(a) Orthogonal Projection (b) Obligue projection

Figure D.1: Projection of vector ai

Based on the image above, every vector sai is equal to:

aT · v1 =
(
ax ay

)
·
(
v1x
v1y

)
= sa1

aT · v2 =
(
ax ay

)
·
(
v2x
v2y

)
= sa2

The two different vectors can be merged into one matrix and can be
expressed as:
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aT · V =
(
ax ay

)
·
(
v1x v2x
v1y v2y

)
=
(
sa1 sa2

)
This process can be expanded for more points, which may illustrate the

pixel points in images. Therefore, the previous equation can be rewritten as:

Figure D.2: Projection

A · V =

 ax ay . . .
bx by . . .
...

...
. . .

 ·

 v1x v2x . . .
v1y v2y . . .
...

...
. . .

 =

 sa1 sa2 . . .
sb1 sb2 . . .
...

...
. . .

 = S

(D.1)

S =

 sa1 sa2 . . .
sb1 sb2 . . .
...

...
. . .

 (D.2)

where the square root of the sum of the square in every column of the
matrix S, is referred as the magnitude of the column vector and is expressed
as follows:

Magnitude of 1st column = σ1 =

√
(sa1)

2 + (sb1)
2 + · · ·+ (si1)

2 (D.3)

Magnitude of 2nd column = σ2 =

√
(sa2)

2 + (sb2)
2 + · · ·+ (si2)

2 (D.4)

Therefore, for a set of n different vectors, the matrix S can be normalized
as:
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S =


sa1
σ1

sa2
σ2

. . .
sb1
σ1

sb2
σ2

. . .
...

...
. . .


 σ1 0 . . .

0 σ2 . . .
...

...
. . .

 =

 ua1 ua2 . . .
ub1 ub2 . . .
...

...
. . .


 σ1 0 . . .

0 σ2 . . .
...

...
. . .


(D.5)

Hence Σ is the normalized valued matrix :

Σ =

 σ1 0 . . .
0 σ2 . . .
...

...
. . .

 (D.6)

The SVD of a matrix A of size m × n is summarized as:

A = UΣV T (D.7)

In a nutshell:

� U is called the left singular vectors and is orthogonal of size m × m.

� Σ is called the singular values and is diagonal of size m × n.

� V is called the right singular vectors and is orthogonal of size n × n

Mathematically, the SVD is derived as follows. The singular values σi are
defined by finding the eigenvalues of ATA. The right singular vectors, mean-
ing the columns of the matrix V, are computed by finding an orthonormal set
of eigenvectors of ATA. The eigendecomposition for the symmetric positive
(semi) definite matrix ATA gives rise to the Σ and V matrices. Finally, the
U is defined by using the equation AV= UΣ.

The beneficial property of the SVD is that it can be applied over any
matrix, not just diagonalizable ones and additionally, it uses orthonormal
basis (unitary matrices), not just unitarily diagonalizable matrices.

The values of the diagonal matrix Σ are organized in descending order
from the most to the least important value. Hence, this matrix indicates
the energy concentration of the input-output matrix in descenting mode and
therefore the rank of the system can be determined based on the dominant
patterns of this matrix, called modes. There is no clear selection criteria for
the optimum amount of modes. The selection of the dominant modes, hence
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Figure D.3: The SVD of a m × n matrix

the system rank, varies in terms of the accuracy needed for the estimated
model.

SVD is the fundamental tool for all reduction order methods mentioned
above and is the key feature that indicates the rank of the reduced order
model according to the dominant values of the Σ matrix and extracts dom-
inant features of a high dimensional dynamical systems, used for analysing,
understanding and describing the data.



Appendix E

Combined (Stochastic -
Deterministic) SID

The subspace identification methods are developed to handle successfully
multiple-input and multiple-output (MIMO) linear systems. The objective
of these algorithms is to estimate linear and time invariant state space model
directly from input- outputs without any prior information about the system.

Any state space system with given output measurements yk and inputs
uk is expressed in the following form:

x(k + 1) = Ax(k) +Bu(k) +Gw(t), (E.1)

y(k) = Cx(k) +Du(k) + v(t), (E.2)

The subspace identification algorithm estimates a state space model where
the order n and A,B,C,D,K matrices are determined through the projection
of input and output data. These algorithms are convergent (non-iterative)
and numerically stable since they are based on the QR Decomposition and
Singular Value Decomposition.

The subspace identification algorithm is initiated by forming the Hankel
matrices of the input- output data. Hankel matrices are found to be useful for
decomposition of non-stationary signals and time-frequency representation
and definition of a state space realization.

U0|2i−1 =


u0 u1 . . . uj−1

u1 u2 . . . uj
...

...
...

...
ui−1 ui . . . ui+j−2

ui ui+1 . . . ui+j−1

...
...

...
...

u2i−1 u2i+1 . . . 2i+j−2

 (E.3)
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which can be rephrased to:

U0|2i−1 =
Up
Uf

(E.4)

where i is the number of block rows and j is the number of sampled data.
The number of block rows i is user defined and has to be at least greater
than the order of the system that will be defined [62]. Moreover, the number
of columns is equal to s = 2i+ j − 2, assuming that all given data are used
in the identification process.

Analysing equation E.3, the past and future inputs are defined as:

Up =


u0 u1 . . . uj−1

u1 u2 . . . uj
...

...
...

...
ui−1 ui . . . ui+j−2

 (E.5)

Uf =


ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j
...

...
...

...
u2i−1 u2i+1 . . . 2i+j−2

 (E.6)

Accordingly, the Hankel matrices of past and future outputs as Yp and
Yf can be defined. Moreover, the matrix Wp presents the past inputs and
outputs is shown below:

Wp =
Up
Yp

(E.7)

The state sequence matrices for the deterministic and stochastic states
that play an important role in deriving the state space matrices in the sub-
space identification algorithms are shown below.

Deterministic state matrix:

xi
d =

[
xi
d xi+1

d xi+2
d . . . xi+j−1

d
]

(E.8)

Stochastic state matrix:



Page 157

xi
s =

[
xi
s xi+1

s xi+2
s . . . xi+j−1

s
]

(E.9)

The subspace identification algorithm derivation is based on the observ-
ability and controllability matrices. It will be shown that through the ex-
traction of these matrices, the state space model will be defined (see ERA
algorithm).

The observability matrix is given by the equation:

Γi =


C
CA
CA2

...
CAi−1

 ϵRli×n (E.10)

and the controllability matrix is given by the equation:

∆i =
[
Ai−1B Ai−2B . . . AB B

]
(E.11)

and finally the lower triangular Toeplitz matrix is defined as follows:

Hd
i =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

. . . . . . . . .
. . . . . .

CAi−2B CAi−3B CAi−4B . . . D

 (E.12)

The subspace system identification is based on the projection of outputs
over inputs. It will be proven that by defining this projection, the observabil-
ity matrix is obtained, from which the A and C matrices of the state space
model can be determined. There are two main algorithms on the SID. The
N4SID that is based on the oblique projection and the MOESP that is based
on orthogonal between the input-output matrices respectively.

The subspace identification algorithm proof begins from the innovation
form of a linear discrete state space model:

Yp = ΓiX
d
p +Hd

i Up + Y s
p (E.13)

Yf = ΓiX
d
f +Hd

i Uf + Y s
f (E.14)

Xd
f = AiX

d
p +∆d

iUp (E.15)

(E.16)
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For the determination of the stochastic terms based on the Kalman filter,
the following equation is given:

Zi = Yf/

(
W p

U f

)
= ΓiX̂i +Hd

i Uf (E.17)

where X̂i are the Kalman filter states as derived from the Kalman filter
presented in Chapter 2, working in parallel on each of the columns of the
block Hankel matrix of past inputs and outputs Wp.

Solving the state space equation E.13 of Yp for X
d
p with the simplicity of

the equations whereas Y s
p and Y s

f are zero, we get:

Xd
p = Γ†

iYp − Γ†
iH

d
i Up (E.18)

Solving equation E.15 for Xd
f and substituting equation E.18, it gives :

Xd
f = AiX

d
p +∆d

iUp

Xd
f = Ai[Γ

†
iYp − Γ†

iH
d
i Up] + ∆d

iUp

Xd
f = LpWp (E.19)

where:

Lp = ∆d
i − AiΓ

†
iH

d
i |AiΓ

†
i & Wp =

Up
Yp

By taking equation E.14 and substituting in equation E.19:

Yf = ΓiLpWp +Hd
i Uf

YfΠU⊥
f
= ΓiLpWpΠU⊥

f
+Hd

i UfΠU⊥
f

YfΠU⊥
f
= ΓiLpWpΠU⊥

f

YfΠU⊥
f
=

ΓiLpWp

U⊥
f

[YfΠU⊥
f
][
Wp

U⊥
f

]Wp = ΓiLpWp (E.20)

The above equation can be rephrased as follows:
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Oi = ΓiX
d
f (E.21)

or alternatively :

Oi = [
Yf
Uf

][
Wp

U⊥
f

]Wp

Oi = Yf /Uf
Wp (E.22)

The importance of projection is clearly shown. The projection of the row
space of a matrix onto the orthogonal complement to the row space of the
matrix B, ΠB

⊥, a filtering on the inputs Uf is accomplished. Hence, the
subspace system identification is immune to input noise and the extended
observability matrix Γi can be derived directly from input-output Hankel
matrices.

The extended observability matrix Γi and the system order can be ex-
tracted from the SVD (Singular Value Decomposition) of Oi. Appling Sin-
gular Value Decomposition on Oi, the observability matrix Γi can be deter-
mined.

W10iW2 =
[
U1 U2

] [S1 0
0 0

] [
V1
V2

]
(E.23)

The user-defined weighted matricesW1 andW2 are such thatW1 is of full
rank andW2 obeys: Wp= rank(Wp W2), whereWp is the block Hankel matrix
containing past inputs and outputs. The selection of the weighted matrices
of the SVD in equation E.23 plays an important role in the robustness of the
SID algorithm [38,62] and they define which part of the original row space of
the Oi will be obtained for the state space matrices estimation. The following
table indicates the weight matrices used in SVD of the projection matrix in
each subspace system identification algorithm.

There are two major algorithm that determine different values for the
matrices W1 and W2, called the Numerical algorithm for subspace system
identification (N4SID) and the Multivariate output error state space MOESP
which will be analysed below.

W1 W2

N4SID Ili Ij
MOESP Ili ΠU⊥

f
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MOESP is based on the orthogonal projection of Uf and Yf Hankel ma-
trices. On the other hand, N4SID is based on the oblique projection of these
matrices. There is no clear selection criteria of the algorithm that can be
used and is user defined depending on the nature of the data.

The order of the state space system is equal to the number of the non
negative singular values of SVD. Hence, the extended observability matrix is
expressed as:

Γi = W1U1S

1

2 (E.24)

where U1 comes from the first n rows of the SVD, where n is the order of
the system. S is the diagonal matrix with non negative values greater than
zero.

A & C Matrices Determination

By determining the Γi matrix, the A and C matrices can be defined. The
combination of the first n rows of Γi matrix in equation E.10 and the defini-
tion of the observability matrix in equation E.24 gives:

C = Γi(1 : n) (E.25)

The matrix A is determined from the shift structure of Γi based on the
determination of the observability matrix in equation E.10. Hence given that:

ΓiA = Γi (E.26)

where Γi is the matrix Γi without the last n rows and:

Γi =
[
C CA CA2 ... CAi−2

]
ϵRli×n (E.27)

Γi =
[
CA CA2 ... CAi−1

]
ϵRli×n (E.28)

The matrix A is defined such as

A = Γi
†Γi (E.29)
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B & D Matrices Determination

Given the fundamental equations of a state space model, matrices B and
D could be determined from the following equation:

[
X̂i+1

Yi|i

]
=

[
A B
C D

] [
X̂i

Ui|i

]
+

[
ρw
ρu

]
(E.30)

Unfortunately, the state sequences X̂i+1 and X̂i cannot be determined di-
rectly from the input-output data, thus they have to be determined following
a different process.

Following equation E.10 by shifting the border of the input-output ma-
trices between “past” and “future” , the matrix in equation E.17 can be
transformed in the following form :

Zi+1 = Γi−1X̂i+1 +Hd
i−1U

−
f (E.31)

where in that case the shifted state X̂i+1 is a Kalman filter state and the
equation E.31 is summarized as:

Zi+1 = Y −
f /

(
W+
p

U−
f

)
(E.32)

Combining equations E.17 and E.32, the X̂i and X̂i+1 can be determined
as:

X̂i = Γ†
i ·
[
Zi −Hd

i · Uf
]

(E.33)

X̂i+1 = Γ†
i−1 ·

[
Zi+1 −Hd

i−1 · U−
f

]
(E.34)

Solving these equation in terms of X̂i and X̂i+1 respectively, B and D
can be determined as follows:

(
Γ†
i−1Zi+1

Yi|i

)
=

(
A

C

)
Γ†
iZi +KUf +

(
ρw
ρu

)
(E.35)

where K is equal to :
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K =

(B|(Γ†
i−1H

d
i−1)− AΓiH

d
i

)
(D|0)− CΓ†

iH
d
i

 (E.36)

Moreover, for illustrating purposes, terms of the equation E.35 can be
defined as:

L =

(
A
C

)
Γ†
i =

(
L1|1 L1|2 . . . L1|i
L2|1 L2|2 . . . L2|i

)
(E.37)

M = Γ†
i−1 =

(
M1 M2 . . .Mi−1

)
(E.38)

K =

(
K1|1 K1|2 . . . K1|i
K2|1 K2|2 . . . K2|i

)
(E.39)

Hence, the combination of equations E.32 - E.39, leads to the following
equation:



K1|1
K1|2
K1|3
...

K1|i
K2|1

K2|2
K2|3
...

K2|i


= N

(
D
B

)
(E.40)

where
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N =


−L1|1 M1 − L1|2 . . . Mi − L1|i

M1 − L1|2 M1 − L1|3 . . . 0
M2 − L1|3 M3 − L1|4 . . . 0

. . . . . . . . .
Mi − L1|i . . . . . .



−I1|1 − L2|1 L2|2 . . . L2|i−1 L2|i

L2|2 L2|3 . . . L2|i 0
L2|3 L2|4 . . . 0 0

. . . . . . . . . . . .
L2|i 0 . . . 0 0


×
(
Il 0
0 Γi− 1

)
(E.41)

The last formula is an overdetermined set of linear equations in the un-
knowns B and D, which could for instance be solved using least squares.

This approach can lead to poor performance when the input Hankel ma-
trix is badly conditioned due to the introduction of a large correlation in the
sample error when multiplying with U †

f in order to compute the matrix K.
Hence, an alternative approach for more accurate estimation for general

purpose is given by:

B,D = argmin ∥
(
Γ†
i−1Zi+1

Yi|i

)
−
(
A

C

)
Γ†
iZi +K(B,D)Uf ∥2F (E.42)

Rewriting equation E.42, we obtain:

P =

(
Γ†
i−1Zi+1

Yi|i

)
−
(
A

C

)
Γ†
iZi

Q = Uf

which are known values.

Hence:

B,D = argmin ∥ vecP −
∑

QT
k

⊗
Nkvec

(
D
B

)
∥2F (E.43)

By solving equation E.43, B and D are estimated via least square method.

vec

(
D
B

)
=

[∑
QT
k

⊗
Nk

]†
vecP (E.44)
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Appendix F

ERA

The eigenvalue realization algorithm (ERA) is a fundamental control method
for both system identification and model reduction. The ERA is a data driven
method that accepts input-output data and estimates a minimal realization
of the underlying system dynamics [70].

The ERA originates from the combination of the observability and con-
trollability matrices, creating time lagged data structures, hence it creates
Hankel form matrices of the input-output data in order to take advantage of
the Hankel matrix properties.

The Markov parameters of an linear time invariant (LTI) system is a
Hankel matrix of the multiplication of the observability Pα and controllability
Qβ matrix.

H0 = PαQβ (F.1)

Substituting, the matrices for Pα and Qβ, the Hankel matrix can be
expressed as follows:

H0 =


C
CA
CA2

...
CA(α−1)


(
B AB A2B · · · A(β−2)B A(β−1)B

)

By multiplying the observability and controllability matrices, it follows:
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H0 =


CB CAB CA2B · · · CA(β−2)B CA(β−1)B
CAB CA2B CA3B · · · CA(β−1)B CA(β)B
CA2B CA3B CA4B · · · CA(β)B CA(β+1)B

...
...

...
...

CA(α−1)B CA(α)B CA(α+1)B · · · CA(α−1+β−2)B CA(α−1+β−1))B


The matrix above proves that this Hankel matrix describes the Markov

parameters of the input-output data:

H0 =


Y1 Y2 Y3 · · · Yβ−1 Yβ
Y2 Y3 Y4 · · · Yβ Yβ+1

Y3 Y4 Y5 · · · Yβ+1 Yβ+2
...

...
...

...
...

Yα Yα+1 Yα+2 · · · Yα+β−2 Yα+β−1


The structure of the latest equation is identical to the Hankel matrix.
The one-step forward shifted form of the previous Hankel form, gives rise

to the following equation:

H1 = PαAQβ (F.2)

H1 =


C
CA
CA2

...
CA(n−1)

A
(
B AB A2B · · · A(n−2)B A(n−1)B

)

By multiplying the observability and controllability matrices, it derives:

H1 =


CAB CA2B CA3B · · · CA(β−1)B CA(β)B
CA2B CA3B CA4B · · · CA(β)B CA(β+1)B
CA3B CA4B CA5B · · · CA(β+1)B CA(β+2)B

...
...

...
...

...
CA(α)B CA(α+1)B CA(α+2)B · · · CA(α+β−2)B CA(α+β−1)B
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Again, the matrix above describes the Markov parameters of the one step
shifted input-output data:

H1 =


Y2 Y3 Y4 · · · Yn−1 Yn
Y3 Y4 Y5 · · · Yn+1 Yn+2

Y4 Y5 Y6 · · · Yn+2 Yn+3
...

...
...

...
...

Yα+1 Yα+2 Yα+3 · · · Yα+β−1 Yα+β


The controllability and observability matrices are thus computed by the

SVD over the equation F.1.

H0 ≈ UnΣnV
T
n =

(
UnΣ

(1/2)
n

)
TT−1

(
Σ(1/2)
n V T

n

)
= PαQβ (F.3)

The matrix T is an arbitrary unitary transformation matrix.
The system dynamic matrix A is derived by the equation F.2.

H1 = PαAQβ

H1 = UnΣ
1/2AΣ1/2V T

n

U⊤
n H1Vn = Σ1/2

n AΣ1/2
n

Σ−1/2UT
nH1VnΣ

−1/2
n ≡ An (F.4)

On the other hand, the estimate of the input matrix Bn is computed
as the first n columns of Qβ and the estimate of the output matrix Cm is
recovered as the first m rows of Pα. and the estimate of the feed-through
matrix Dn is recovered from the first n columns of the sequence of Markov
parameters.

The ERA introduces the Hankel matrix form through the combination
of the input-output data via the system Markov parameters and estimates a
reduced order model using the SVD for capturing the dominant structures.
In the following chapters more reduced order model system identification
methods will be deployed which are linked to the ERA.
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Appendix G

1-D Wavelet Transform

The Fourier analysis is represented by the Fourier transform which originates
from the sum of the given signal multiplied by a complex exponential either
in continuous or discrete time. The Fourier transform is expressed for both
occasions below:

F (ω) =

∫ ∞

−∞
f(x)e−jωxdx, in continuous time

F (ω) =
N−1∑
n=0

fn · e−
i2π
N
kn, in discrete time

=
N−1∑
n=0

fn ·
[
cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)]
(G.1)

On the other hand, the wavelet transform is the sum of the signal mul-
tiplied by scaled, shifted versions of the selected wavelet function, called
mother wavelet. A simple continuous time 1-D wavelet transform is described
as:

W (s, τ) =

∫ ∞

−∞
f(x)ϕ∗

s,τ (x)dx, in continuous time

W (j, k) =
∑
k

f(x)ϕj,k(x), in discrete time (G.2)

For the continuous time wavelet transformation, f(x) is the input signal
and ϕ∗

s,τ (t) is the wavelet analysing function. The output signal W(s,τ) is
a coefficient matrix that is identified by two terms: dilation-scale (s) and
translation-shift (τ).
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ϕs,τ =
1√
s
· ϕ(x− τ

s
) (G.3)

The term translation indicates the shifting of the corresponding wavelet
in time as the signal is analysed.

The term dilation indicates the amount of compression of the wavelet
signal in every scale. A low frequency scale (high scale) wavelet is a wavelet
stretched out and a high frequency scale (low scale) wavelet is a wavelet
compressed. This means that in low frequencies it becomes less accurate to
identify the time where a low frequency occurs. High frequencies show better
localization in time due to the fact that the wavelet is much shorter. In few
words, short scale wavelets can be used to isolate very fine details in a signal,
while large scale wavelets can identify coarse details [27].

In every decomposition level, the continuous wavelet decomposition is
represented by the convolution of the wavelet function and the given signal.
Based on equation G.3 the wavelet transform signal is obtained by :

W (s, τ) = f(x) ∗ ϕs,τ (x) =
1√
s

∫ ∞

−∞
f(x)ϕ(

x− τ

s
)du (G.4)

where s= 2−j and τ = k2−j and j represents the scale step and k is the shift
step.

In every scale, the wavelet decomposes the signal into high and low fre-
quency components, called approximation and detail coefficients. The signal
is passing through two filters (one high- and one low-pass) and derives two
separate signals. In every next level of decomposition, the approximation co-
efficients pass through the same filters and are decomposed into two new sets
of detail and approximation coefficients. The wavelet decomposition process
can be repeated, so that the input signal can be broken down into many
lower resolution components.

G.0.0.1 Wavelet tree structure and multiresolution analysis

The wavelet decomposition is analysing signals both in time and frequency
where the given dataset is expanded in terms of the basis function which can
be scaled in multiple scales of resolution. This multilevel representation is
linked and relied on concepts of the multiresolution signal analysis, a tool
that was invented by Mallat [32].

A Multiresolutional Analysis (MRA) generated by the function ϕ(j, k),
consists of a sequence of closed subspaces Vj , j ϵZ, of L2(R) satisfying :
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� (i) (nested) Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R) for all j ∈ Z

� (ii) (density) ∪j∈ZVj = L2(R)

� (iii) (separation) ∩j∈ZVj = {0}

� (iv) (scaling) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for all j ∈ Z

� (v) (Basis) There exists a function ϕ ∈ V0 such that {ϕ(x− k) : k ∈ Z}
is an orthonormal basis or a Riesz basis for V0.

Analysing the multiresolution properties starting from the property num-
ber (ii), indicates that for every f ∈ Vj ⇐⇒ g ∈ Vj+1, where g(x) = f(2x).
Moreover, the function ϕ(x) in property (v) is also called the scaling func-
tion associated with the multiresolution analysis. In fact, the multiresolution
analysis is also defined with the set {ϕ0,k(x) = ϕ(x− k), k ∈ Z} being a mere
Riesz basis of V0.

Since ϕ(x) ∈ V0 ⊂ V1, there exists a sequence, {hk, k ∈ Z} ,, where hk are
the signal coefficients, such that:

ϕ(x) =
∑
k

hkϕ1,k(x) =
√
2
∑
k

hkϕ(2x− k) (G.5)

This equation G.5 is known by several different names, such as the dilation
equation, the two-scale difference equation, or the refinement equation. As an
expansion to the multiscale decomposition of a j number of scales, it follows
directly that the collection of functions {ϕj,k, k ∈ Z} are given by:

ϕj,k(x) = 2j/2ϕ
(
2jx− k

)
, k ∈ Z (G.6)

and constitutes an orthonormal basis of Vj. The scaling function ϕ is
uniquely defined by its dilation equation G.5 and the normalization that lays
: ∑

k

ϕ(x)dx = 1

The equation G.5 contains the low frequency coefficients, called approx-
imation coefficients. A wavelet is a function ψ such that the collection of
functions {ψ(x − k), k ∈ Z} constitutes an orthonormal basis of W0, where
V1 = V0 ⊕W0. Therefore, the collection of wavelet functions {ψj,k, j, k ∈ Z}
is an orthonormal basis of L2(R) and contains the high frequency coefficients,
called detail coefficients.
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The definition of the wavelet function ψj,k per scale j is similar to the
definition of ϕj,k :

ψj,k(x) = 2j/2ψ
(
2jx− k

)
(G.7)

.
The wavelet function ψ satisfies an equation similar to that of the scaling

function ϕ:

ψ(x) =
√
2
∑
k

gkϕ(2x− k) (G.8)

where the coefficients gk are given by

gk = (−1)kh−k+1

As the scales of decomposition are increased, the scaling and wavelet
functions are subsampled by a factor of 2, thus the wavelet function is every
next scale is given by:

ψ(2x− k) =
∑
m∈Z

gm
√
2ϕ(2(2x− k)−m)

=
∑
m∈Z

gm
√
2ϕ
(
2j+1x− 2k −m

)
(G.9)

where m replaces k for the next level of decomposition and this transform
is continued till a desired level of decomposition is reached.

As opposed, every scaling-approximation function in spaces Vj+1, allows
the wavelet Wj to be its orthogonal complement subspace . An orthogonal
complement has the quality that every vector in Wj is orthogonal to every
basis in Vj . In addition, the space Vj+1 is the direct sum of Wj and Vj .

This can be summarized to the following two useful properties :

� Vj ⊥ Vj,Vj ⊥ Wj,W1 ⊥ W2 ⊥ Wj−1

� Vj+1 = Vj ⊕Wj

The spaces Wj contain adequate detail information to jump from an ap-
proximation at the resolution scale j to an approximation at the resolution
scale j + 1. Consequently:
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Figure G.1: A two-level signal breakdown into approximation and detail
coefficients

⊕
j

Wj = L2(R)

The wavelet subspaces are perpendicular to each other, meaning that the
wavelets are orthogonal too. The orthogonal basis functions allow simple
calculation of expansion coefficients and allow a partitioning of the signal
energy in the wavelet transform domain. The following properties imply
for the wavelet and scaling functions, shaping the wavelet decomposition
as a very efficient mathematical tool. In the following section, the wavelet
properties will be analysed and proven and will be of main use for the purpose
of this thesis.

In a nutshell, the Discrete time wavelet decomposition (DWT) deploys
the wavelet transform that uses a discrete set of the wavelet scales and trans-
lations. The transform decomposes the signal into mutually orthogonal set
of wavelets as mentioned above and are represented by discrete dyadic grids
using the scaling parameter j and the shift parameter k as introduced for the
continuous wavelet transform.

In each level of decomposition, two signals are derived that contain the
approximation and the detail coefficients.

Wϕ (j, k) =
1√
s

∑
f(x)ϕj,k(x)

Wψ(j, k) =
1√
s

∑
f(x)ψj,k(x)

(G.10)

where b = 2−j · n is the position of the wavelet (see translation), s is the
scaling factor and s = 2−j. Wϕ (j, k) contains the image approximation coef-
ficients in the level j of decomposition andWψ (j, k) contains the detail ( high
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frequency ) coefficients in the level j of decomposition and after employing
the refinement equation of ϕ and ψ, the scaling function ϕj,k(x) and wavelet
function ψj,k(x) are defined us :

ϕj,k(x) = 2−
j
2ϕ (2jx− k)

ψj,k(x) = 2−
j
2ψ (2jx− k)

(G.11)

The scaling function is orthogonal to the wavelet function by construction
and hence the discrete wavelets are called orthogonal wavelets. Thus, they
decompose signals into well-behaved orthogonal signal spaces. [27]

There are several equivalent viewpoints from which the DWT can be
regarded. The wavelet decomposition implementation can be formulated by
cascade filters where the low pass and high pass filters are estimating the
approximation and detail signal in every scale respectively. The wavelets
employ filter banks consisting of a low-pass filter hϕ and a high-pass filter
hψ. In every level j of decomposition, the approximation signal ϕj,k and the
detail signal ψj,k are derived from a given discrete-time signal f [k]. The
same process is repeated to the approximation signal Wϕ(j, k) in every level
of decomposition where a new set of Wϕ(j + 1, k) and Wψ(j + 1, k) that are
subsampled by a factor of 2 are derived till a desired level of decomposition
is achieved.

Figure G.2: One Scale Image Wavelet Decomposition

The wavelet function is every level of decomposition is described as:

Wψ(j, k) =
1√
M

∑
x

f(x)2j/2

[∑
p

gp
√
2ϕ
(
2(2

j+1 − 2k − p
)]

(G.12)

which is equal to:



Page 175

Wψ(j, k) =
∑
x

gpWϕ(j + 1, k). (G.13)

The scaling process creates a set of coefficients in each scale that represent
the given signal among the different scales providing full insight of the signal
properties and hidden details in respect to the number of selected scales.
Moreover, the convolution of the input signal with the corresponding wavelet
offers a signal noise filtering in every scale.

In every next level of decomposition, the approximation coefficients are
downsampled by a factor of 2 and a new set of approximation and detailed
coefficients are obtained. The process is continued till a desired level of
decomposition is obtained.

In summary, the wavelet decomposition has the property of being local
in space and frequency. They introduce a compact support (localization in
space), which is smooth (decay towards high frequencies), and which have
vanishing moments (decay towards low frequencies). The order of a wavelet
transform is typically given by the number of vanishing moments of the anal-
ysis wavelet. More vanishing moments means that the scaling function can
represent more complex functions and the wavelet is unbiased. The higher
the number of zero moments, the higher the number of zero derivatives mak-
ing smoother the signal decays from mid frequency to DC in the frequency
domain.
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