
Efficient Meta-Reinforcement
Learning

Ricardo Luna Gutierrez

Submitted in accordance with the requirements for the

degree of Doctor of Philosophy

The University of Leeds

School of Computing

March 2022

The candidate confirms that the work submitted is his/her/theirown, except where

work which has formed part of jointly authored publications has been included.

The contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of others.

Some parts of the work presented in this thesis have been published in the following

articles. The publications are primarily the work of the candidate.

Luna Gutierrez, R.; and Leonetti, M. 2020. "Information-theoretic Task Selection

for Meta-Reinforcement Learning". In Conference on Neural Information

Processing Systems (NeurIPS).

Luna Gutierrez, R.; and Leonetti, M. 2021. "Meta-Reinforcement Learning for

Heuristic Planning". In the International Conference on Automated Plan-

ning and Scheduling (ICAPS).

This copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowl-

edgement.

© 2022 The University of Leeds, Ricardo Luna Gutierrez

Acknowledgements

First and foremost, I thank my supervisors, Doctor Matteo Leonetti and Professor

Anthony Cohn, for their invaluable guidance and support throughout the years.

Thank you for all of our countless meetings and constant advice. And thank you

for believing in me, it was a great privilege to be your student.

I thank my colleagues of the Robotics Lab, who were always willing to help and

share their expertise. I’m grateful for all the interesting conversations and moments

that we shared, you always made me feel welcome.

I thank my friends, who were with me during this journey, even though many of

you were thousands of miles away, you always were there to share a good laugh.

Thanks to my parents, who have supported me my entire life, no matter where

I go. I also thank my wife Cinthia for her constant love and patience, always

pushing me and supporting to become better.

Thanks to my examiners, Netta Cohen and Stefano V. Albrecht for reviewing my

thesis and give me their priceless feedback.

Finally, I want to acknowledge CONACYT-SENER for funding my research. With-

out their support none of this would be possible.

Abstract

In Meta-Reinforcement Learning (meta-RL) agents are trained on a set of tasks to

prepare for and learn faster in new, unseen, but related tasks. The standard prac-

tice to build training sets in meta-RL is to use dense coverage of task distributions,

generating a very large set of training tasks.

This thesis introduces a novel framework for meta-RL, in which models have access

to a limited number of tasks to train on. With this framework in mind we propose

task selection methods as well as an application that can benefit from it.

We introduce ITTS, a task selection method that select tasks that are different

from one another and relevant a set of tasks sampled from the target distribution.

The output is a smaller training set which can be learnt faster and performs better

than training with all the available tasks. We experimentally evaluate the perfor-

mance of ITTS in a variety of domains and show that ITTS improves the final

performance of the agents in all of them.

We build insight on the learnt behaviours by meta-RL and propose FETA, a task

selection method that improves over ITTS. FETA is a simpler and more cost

efficient tasks selection method that filters tasks by taking advantage of policy

transfer between tasks. We experimentally evaluate FETA and demonstrate that

even tough the task selection process is more efficient, FETA performs equally or

better than ITTS.

Finally, we make the first connection between meta-RL and heuristic planning,

showing that heuristic functions meta-learned from planning problems can out-

perform both popular domain-independent heuristics and heuristics learned by

supervised learning.

Contents

1 Introduction 1

1.1 Task Selection . 3

1.2 Heuristic Planning . 4

1.3 Contributions . 5

1.4 Thesis Outline . 6

2 Background 7

2.1 Reinforcement Learning . 7

2.1.1 Policy Gradient . 8

2.2 Deep Reinforcement Learning . 9

2.3 Proximal Policy Optimization . 9

2.4 Meta-Reinforcement Learning . 10

2.5 Planning . 12

3 Related Work 15

3.1 Gradient-based methods . 15

3.1.1 Model-Agnostic Meta-Learning (MAML) 16

3.1.2 First-Order MAML (FOMAML) 17

3.1.3 Reptile . 19

3.1.4 Evolved Policy Gradients (EPG) 19

3.1.5 Meta-Gradient Reinforcement Learning 20

Contents

3.1.6 Meta-Reinforcement Learning of Structured Exploration Strate-

gies (MAESN) . 22

3.2 Context-based methods . 23

3.2.1 RL2 . 23

3.2.2 Simple Neural Attentive Meta-Learner (SNAIL) 24

3.2.3 Efficient Off-Policy Meta-Reinforcement Learning via Prob-

abilistic Context Variables (PEARL) 25

3.2.4 Small Sample Meta-RL . 26

3.3 Task Selection for Reinforcement Learning 27

3.3.1 Transfer Learning . 27

3.3.2 Curriculum Learning . 29

3.3.3 Meta-Learning . 31

3.4 Learning Planning Heuristics . 32

3.5 Summary . 34

4 Information-theoretic Task Selection for Meta-Reinforcement Learn-

ing 37

4.1 Introduction . 37

4.2 Task Selection for Meta-Reinforcement Learning 38

4.3 Experimental Evaluation . 42

4.3.1 Domains . 43

4.3.1.1 CartPole . 43

4.3.1.2 MiniGrid . 44

4.3.1.3 Locomotion . 44

4.3.1.4 KrazyWorld . 45

4.3.1.5 MGEnv . 45

4.3.2 Results . 46

Contents

4.3.3 Parameter Evaluation . 47

4.3.4 Ablation Study . 47

4.3.5 Transfer Results . 48

4.4 Summary . 49

5 Few-Task Meta-Reinforcement Learning 51

5.1 Introduction . 51

5.2 Meta-Policy Analysis . 52

5.3 Filtering Tasks in Meta-RL . 57

5.4 Experimental Evaluation . 59

5.5 Transfer Results . 59

5.6 Task Selection Sequence . 60

5.7 Optimal Task Selection . 62

5.8 Computational Costs . 63

5.9 Summary . 64

6 Meta-Reinforcement Learning for Heuristic Planning 67

6.1 Introduction . 67

6.2 Learning Planning Heuristics . 68

6.2.1 Learning Problem Definition 68

6.2.2 Training Task Generation and Selection 69

6.2.3 Model Training . 70

6.3 Experimental Evaluation . 70

6.3.1 Domains . 71

6.3.1.1 Snake . 71

6.3.1.2 Sokoban . 72

6.3.1.3 Gripper . 72

Contents

6.3.1.4 Blocksworld . 72

6.3.1.5 Ferry . 73

6.3.1.6 Nurikabe . 73

6.3.2 Results . 76

6.4 Summary . 78

7 Future Work and Conclusions 79

7.1 Results Summary . 79

7.2 Limitations . 80

7.3 Future Work . 81

7.4 Conclusions . 82

A Experimental Details 99

List of Figures

3.1 Diagram adapted from the MAML original paper [6], optimizing

meta-parameters θ to quickly adapt to new tasks. 16

4.1 Representation of the CartPole domain 43

4.2 Representation of the MiniGrid domain 44

4.3 Representation of the Cheetah domain. 45

4.4 Representation of the Ant domain. 45

4.5 Results of parameter evaluation. Values shown on the x-axis rep-

resent the normalized values used for ε while the y-axis shows nor-

malized returns . 48

4.6 Ablation study. The plot shows average performance on test tasks

of the agents trained using only relevance, only difference, and both

(ITTS). "T " is the performance obtained using all training tasks,

without task selection. The error bars are 95% confidence intervals. 48

4.7 Results on CartPole domain. 49

4.8 Results on MiniGrid domain. 49

4.9 Results on Ant domain. 20 rollouts per gradient were used. 50

4.10 Results on Cheetah domain. 20 rollouts per gradient were used. . . 50

4.11 Results on KrazyWorld domain . 50

4.12 Results on MGEnv domain. Returns are normalized 50

List of Figures

5.1 Representation of the Gridworld domain. Green squares represent

the goals while the red square the initial position of agent. One goal

per task. 54

5.2 Map of the probability distribution over the actions of πT on the

Gridworld domain. Each cell group represents a state (position) on

the grid, while each number in a cell the probability of taking the

action in the plotted direction. 55

5.3 Map of similarity between optimal policies of handpicked tasks C

and the meta-policy trained on all available tasks T . Each hand-

picked task is represented by a different color. The color plotted

shows which optimal policy is closest to the meta-policy in that

sate. G represents the position of a goal. 55

5.4 Map of the probability distribution over the actions of πC on the

Gridworld domain. Each cell group represents a state (position) on

the grid, while each number in a cell the probability of taking the

action in the plotted direction. 56

5.5 Map of the KL-Divergence between policies πT and πC. 56

5.6 Results on Cheetah. 60

5.7 Results on Ant domain. 60

5.8 Results on MGEnv. Returns are normalized. 60

5.9 Results on Krazyworld domain. 60

5.10 Task selection changing order of tasks T on the Gridworld domain.

Each line represents the performance of an agent trained on unique

set of tasks selected by FETA. 61

List of Figures

5.11 Task selection changing order of tasks T on the Ant domain. Each

line represents the performance of an agent trained on unique set of

tasks selected by FETA. 61

5.12 Results of FETA’s local optimality evaluation on the Gridworld

domain. 63

5.13 Results of FETA’s local optimality evaluation on the Ant domain. . 63

5.14 Results of the wall-clock time required for one full loop of FETA,

ITTS and training with all available tasks (ALL) on the KrazyWorld

domain. Y axis show the time required in minutes 65

5.15 Results of the wall-clock time required for one full loop of FETA,

ITTS and training with all available tasks (ALL) on the Ant domain.

Y axis show the time required in minutes. 65

6.1 Comparison of hMRL against domain-independent planning heuris-

tics. Error bars in the bar plot, and shaded areas in the line plot,

show the standard deviation of the learning method. The Y axis

shows the number of nodes expanded to find a plan, the lower the

better. 74

6.2 Comparison of the learning methods. Y axis shows the number of

nodes expanded to find a plan, the lower the better. Error bars in

the bar plot represent standard deviation over 5 repetitions. The

shaded area in the Normalized Expanded Nodes (NEN) shows the

95% confidence interval, since this is the mean over all instances.

The number after the + sign refers to the number of tasks added to

the original training set for hSUPER. 75

List of Tables

4.1 Number of tasks selected by ITTS. 49

5.1 Number of tasks selected by FETA. 60

6.1 Average number of expanded states over all domains, normalized

with respect to the Blind heuristic. 77

A.1 Architecture and hyperparameters of the models trained with MAML

for ITTS and FETA experiments. LR refers to learning rate. 99

A.2 Architecture and hyperparameters of the models trained with RL2

for the ITTS and FETA experiments. LR refers to learning rate. . . 100

A.3 Architecture and hyperparameters of the models trained with RL2

for the hMRL experiments. LR refers to learning rate. 100

A.4 Architecture and hyperparameters of the models used to learn the

hSUPER heuristic. LR refers to learning rate. 100

1

Chapter 1

Introduction

Deep Reinforcement Learning has received a lot of attention in recent years due

to impressive results in complex tasks such as Go [1], Starcraft [2] and Dota 2 [3],

demonstrating the capabilities of Reinforcement Learning (RL) to surpass human

performance in challenging tasks. Such accomplishments can be ascribed to the

use of expressive neural networks in conjunction with RL methods. That success,

however, came at a high cost, since massive quantities of training experience and

computational resources were required. To achieve expert level performance in a

game like Dota 2, for example, over 10,000 years of playing time were used to train

the RL agents.

Standard RL methods require a large number of training iterations to learn a policy

that is good enough to solve a task. Because no prior knowledge is carried over,

this procedure is repeated each time the RL agent faces a new task. Humans, on

the other hand, learn and build on previous experience; we use previously acquired

information to tackle novel problems and swiftly adapt to new situations. For RL

to have a real impact in the real world, it must be able to replicate these traits of

the human intelligence.

The concept of building on prior knowledge to quickly adapt to new tasks or learn

to learn, also known as meta-learning, has it roots in the 90s [4, 5]. However, recent

2 Chapter 1. Introduction

advances in deep learning and the fast growth of computer resources have sparked

a new generation of meta-learning research in the scope of deep reinforcement

learning, which is rapidly expanding [6, 7, 8, 9].

In Meta-Reinforcement Learning (meta-RL) agents are trained on a collection of

tasks so that they can learn shared features across the tasks, and exploit the ob-

tained knowledge to carry out unseen tasks that share properties with the training

set. Despite the fact that various techniques utilize distinct optimization objectives

and model architectures, meta-RL is usually presented as two learning systems.

A low-level system that is in charge of adapting to new tasks and has a relatively

short learning time, and a high-level system that learns slowly through a series of

training tasks to enhance the low-level system [9]. Meta-RL has shown promising

results in real-world tasks [10, 11], lending it credence.

Training tasks in meta-RL are designed with the intention of being representative

of a family of test tasks, or a skill the agent is expected to learn. A common

framework consists in modeling the range of tasks the agent may encounter as a

distribution over all possible tasks. The standard practice in meta-RL is to use

dense coverage of task distributions, generating a very large set of training tasks,

which go up to the thousands [9], to meta-train a policy that can quickly adapt

to new, unseen, tasks. However, dense sampling of tasks is highly computationally

expensive, and in some cases infeasible. Standard meta-RL methods have not

considered these scenarios where a limited number of training tasks is available.

Furthermore, they have so far not considered that the training tasks may not be

equally informative, beneficial, or promoting generalization. For Meta-RL to be

considered practical, methods must be developed to constrain and overcome this

task hunger issue, allowing meta-RL to succeed in settings when training tasks

and resources are limited.

1.1. Task Selection 3

1.1 Task Selection

Tasks selection has been widely employed in different RL contexts, such as transfer

learning [12, 13, 14, 15, 16, 17] and curriculum learning [18, 19, 20, 21, 22]. The

goal of task selection is to create a training set that the performance of RL agents

and improves the training process, by reducing training costs or increasing sample

efficiency. Although task selection yielded promising results in the previously

stated contexts, it has not been investigated in meta-RL.

In cases when there are few training tasks available or the training process must

be limited, providing the agent access to a small fixed set of training tasks, task

selection might be beneficial. Furthermore, even if the aim is to densely sample

from a task distribution, the number of tasks sampled is always finite, and task

selection can still be useful in many of those instances.

In this thesis, we make the first attempt to develop and employ task-selection meth-

ods to improve meta-RL agents’ performance. We propose, ITTS, an Information-

theoretic task selection algorithm for meta-RL. ITTS filters a set of training tasks

identifying a subset of tasks that are both different enough from one another, and

relevant to tasks sampled from the target distribution which we refer to as val-

idation tasks. The outcome is a smaller training set, which can be learnt more

quickly and results in better performance than the original set.

The results obtained with ITTS demonstrate the great impact that task selection

can have on meta-RL agents, improving significantly their performance in all the

6 domains it was evaluated; however, ITTS has a few shortcomings. For ITTS to

work and calculate its difference metric, the optimal policies of all the available

tasks must be learnt. Moreover, ITTS makes use of a hyperparameter threshold

to identify when two tasks are different enough, which needs to be correctly tuned

4 Chapter 1. Introduction

for ITTS to successfully work.

Building on the insight we got from ITTS and to address its shortcomings, we

developed FETA, a different and more efficient task selection method. FETA

selects tasks by leveraging the policy transfer properties of RL to discard poten-

tially redundant data, improving the performance and sample efficiency of the

meta-learned policy. During its task selection process FETA does not require the

optimal policies of all the available tasks and only learns the optimal policies of

the tasks that are being selected. During FETA’s experimental evaluation we show

that its simplicity does not affect performance, since it is able to perform similarly

or better than ITTS.

1.2 Heuristic Planning

In recent years there has been a increasing interest in learning heuristic functions

for classical planning with the aid of Deep Learning [23, 24, 25, 26, 27, 28]. These

approaches are based on supervised learning, and learn from the optimal plans

of previously solved planning problems. A crucial problem of heuristic learning

is generalizing across different instances of the same planning domain, so that

previous instances can inform the search on new, unseen, instances. Learning

from optimal plans implies obtaining only information about a very limited area

of the state space (the states along the optimal plan), and requires a high number

of solved planning instances to achieve satisfactory generalization.

RL algorithms, on the other hand, learn a value function for tasks modelled as

Markov Decision Processes (MDPs). The value function guides the exploration

of the agent just like a heuristic function for the planner, but the estimate of

the value function is made increasingly accurate through learning, and eventually

1.3. Contributions 5

converges to the lowest cost (or equivalently, highest reward) from any state to a

goal state. Since the optimal value function v∗ is also the best possible heuristic, it

seems natural to consider RL as a method to learn heuristic functions. Value func-

tions, however, are specific to a particular task so for each new planning instance

presented we would need to learn a new value function from scratch.

In this thesis, we make the first connection between meta-RL and classical heuris-

tics, to overcome this RL shortcoming, and learn a heuristic function that can

generalize to many different instances of a domain. Moreover, by employing task-

selection to filter and select an ideal set of training tasks, we are able to learn

good heuristic functions using a small number tasks and reduce training costs, an

important feature in classical planning.

1.3 Contributions

The contributions of this thesis are as follows:

• We define the small sample framework for meta-RL, in which agents have

access to a limited number of training tasks, and study the effect that tasks

selection can have in those scenarios.

• We propose an Information-theoretic method for task selection in meta-RL

(ITTS) that enhances the performance of meta-RL agents and reduces train-

ing costs.

• We identify ITTS shortcomings and propose FETA to address them. We

show that FETA is able to perform equally of better than ITTS while being

a more simple and efficient task selection process.

• We propose the use of meta-RL and task selection to learn domain-dependent

6 Chapter 1. Introduction

heuristic functions for classical planning, and experimentally show its effec-

tiveness.

1.4 Thesis Outline

In Chapter 2 we introduce basic concepts and terminology to allow better un-

derstanding of the presented work. In Chapter 3 we present relevant literature,

surveying different meta-RL algorithms, presenting different task selection meth-

ods that have been proposed for RL and discussing different approaches that have

been proposed to learn heuristic functions using Deep Learning. In Chapter 4 we

introduce ITTS, describing the task selection process and performing an experi-

mental evaluation in different domains. In Chapter 5 we analyze and build insights

on the policies learnt by a meta-RL method and introduce FETA, our improved

task selection method. In Chapter 6 we present our approach to learn heuristic

functions with meta-RL and proper task selection. In Chapter 7 we conclude this

thesis, highlighting the contributions presented and discussing future work.

7

Chapter 2

Background

2.1 Reinforcement Learning

We consider the traditional RL setup, where a task is represented as a Markov

Decision Process (MDP) m = 〈S,A, r, p, p0, γ,H〉, where S is the set of states,

A is the set of actions, r : S × A → R is a reward function, P (sst+1 |st, at) is a

transition distribution, P0 is the initial state distribution, 0 ≤ γ ≤ 1 is the discount

factor and H the horizon. The agent’s behavior is described by a policy π(a|s)

that returns the probability of taking action a in state s. An MDP m and a policy

π induce an on-policy distribution dmπ (s) as the fraction of time steps spent in s

during an episode. We assume that tasks are episodic, which means that the agent

ultimately reaches an absorbing state that can never be left and from which the

agent only receives 0 rewards.

With a possible trajectory τ := (s0, a0, ..., sH−1, aH−1, sH), we define the expected

return as G(τ) = E[
∑H−1

t=0 γtr(st, at)]. The goal of the agent is to calculate an

optimal policy π∗, which maximizes the expected return. The value function

vπ(s) = Eπ[G(h)] represents the expected return obtained by taking actions ac-

cording to policy π starting from state s.

8 Chapter 2. Background

2.1.1 Policy Gradient

Policy gradient methods are a class of RL methods that aims to directly model and

optimize the policy [29]. The policy is parametrized by a differentiable function

with parameters θ and is learned on-policy, which means that the policy utilized

for evaluation and exploration is the same policy that we are improving trough

training. In policy gradient methods the objective is maximize the expected return

by following its gradient, using the following update rule:

θ ← θ + α∇J(θ). (2.1)

where J(θ) is defined as:

J(θ) = Eπθ [
∑
t=0

γtr(st, at)] (2.2)

The gradient of this loss function J(θ) is:

∇θJ(θ) = Eπθ [Ψt∇θlogπθ(at|st)], (2.3)

where Ψt varies depending on the implementation. One of the most commonly

used is:

Ψt = Aπ(st, r(st, at), st+1) = r(st, at) + vπ(st+1)− vπ(st) (2.4)

The implementation shown in equation 2.4 makes use of the advantage function

Aπ(st, r(st, at), st+1), which estimates how much better or worse is action at, taken

by the agent at state st, when compared to the average return expected at st. If

the learning approach learns the value function vπ, it falls into a class of methods

called Actor-Critic, where the Actor represents the policy and the Critic the value

2.2. Deep Reinforcement Learning 9

function.

2.2 Deep Reinforcement Learning

In Deep Reinforcement Learning (Deep RL) the policy and/or value function are

modeled by neural networks (NN). In the standard Deep RL training cycle an

agent collects samples by acting in the environment following certain policy, and

the acquired samples are then utilized to update the parameters of the NN via

back-propagation. By intrinsically learning key abstract properties to estimate the

value function or build a policy, NNs are able generalize over large and continuous

state spaces.

However, NN have high sample complexity and require data to be independent and

identically distributed. This property makes it difficult for a sequential process like

RL because the data is highly correlated, which can cause problems in the stability

of the learning process. Much RL research has been devoted to resolving these

issues, and methods for doing so have been developed, one of which is Proximal

Policy Optimization, a popular method that we employ extensively in this thesis.

2.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [30] is an on-policy Actor-Critic RL learning

algorithm. A problem presented in Actor-Critic methods is that the stability of

the learning process is highly sensitive to changes in the policy and, as a result,

the generated transition samples, since both the policy and the value function are

updated based on the samples collected by the agent. A large faulty policy update

may result in a stream of transition samples with weak or no reward signal from

the environment, causing the estimate of the advantage function to become less

10 Chapter 2. Background

accurate, further altering the policy and making recovery difficult (catastrophic

forgetting).

To address this issue, PPO provides a simple first-order optimisation mechanism

for limiting policy updates by clipping the policy ratio. PPO optimizes a policy

πθ, represented as a neural network with parameters θ, using gradient ascent on

the objective function:

L(st, at, θk, θ) = E[
πθ(at|st)
πθk(at|st)

Aπθk (at|st)),

clip(
πθ(at|st)
πθk(at|st)

, 1− ε, 1 + ε)Aπθk (at|st)]

where πθk is the policy at the start of an episode, before the weights are updated.

The hyperparameter ε ensures that the policy does not change drastically, and

takes small values, usually in [0.1, 0.2].

The goal of this formulation is to ensure that policy changes are minor at each gra-

dient step, lowering the likelihood of catastrophic forgetting and making learning

more stable.

2.4 Meta-Reinforcement Learning

An agent in the Meta-Reinforcement Learning framework has access to a variety

of different tasks to train on, allowing it to learn about the domain and adapt fast

to new tasks. Given a potentially infinite set tasksM and a distribution over the

tasks p(M), the agent is presented T tasks T = {mi}Ti=1 to train on. A common

meta-RL problem formulation is that the agent is expected to learn an optimal

policy of a new task mj ∼ p(M), such that mj /∈ T within a "few samples". Since,

in general, it is not possible to established whether a learned policy is, indeed,

2.4. Meta-Reinforcement Learning 11

optimal, we formulate our objective in terms of achieving sufficient transfer, as

measured by a binary function f : ΠT × T → {0, 1}, where ΠT is the set of all

possible policies of the tasks in T . The function f(π,mj) = 1 if the meta-learned

policy π is a sufficient policy for mj. The function f is application dependent.

Examples of possible implementations are: computing whether π is optimal formj,

whether it achieves an expected return above a threshold, or whether it reaches

a goal state. Since we consider only episodic tasks, we will measure samples in

terms of episodes, expecting the learned policy π to be such that f(π,mj) on test

tasks mj within a number of episodes Ne.

Although, at an architectural level, most of meta-learning methods can be de-

scribed as a combination of two learning systems, a lower-level system which is

responsible for adapting to new tasks and has relatively fast learning time, and a

higher-level system that slowly learns across the set of training tasks to improve

the lower-level system [7], the optimization objective varies between each Meta-RL

method.

Meta-RL can be divided into two categories [8]: gradient-based methods and

context-based methods. Gradient-based methods use hyperparameters, meta-

learned loss functions or policy gradients to learn from sampled transitions from

tasks [6, 31, 32, 33, 34, 35, 36, 37]. Context-based methods, on the other hand,

train models to utilize prior states and actions sequences or latent variables as

a form of task-specific context [7, 8, 9, 38]. In gradient-based methods the agent

adapts to the new tasks through further learning, adapting their parameters, while

context-based methods adapt by feeding in experience into a latent space repre-

sentation.

The commonly assumed meta-RL framework does not guarantee that the set of

tasks inM are at all related, or that transfer is even possible. This is in general

12 Chapter 2. Background

left to the intuition of the designer, and much ingenuity has been employed in ex-

isting meta-RL applications to generate appropriate set of tasks and corresponding

distributions p(M) [39].

2.5 Planning

We address learning heuristics for classical planning, that is, for deterministic,

sequential planning problems, in part of this work. The classical MDP-based

RL framework is more broad, and permits immediate extensions to probabilistic

planning. One of the most popular ways to represent deterministic and fully

observable planning tasks is PDDL [40, 41].

A PDDL-defined planning job is divided into two parts: domain description and

problem description. A planning domain is a tuple 〈D,A〉, where D is a collection

of predicates, which define the state of the objects we are interested and can take

a true or false value, and A is a set of parametrized actions, which define how

the world can be changed. These actions are restricted by a set of precondition

predicates that must be met in order for the action to be executed, and they

provide a description of the effects that will be applied to the current state if the

execution is successful.

A planning problem is described as 〈O, I,G, c〉 where O is a set of domain objects,

which are the different components presented in a planning task, I is the starting

state, G is a set of goals, and c(s, a, s′) is the cost of the transition landing in s′

after performing action a in state s. For shortest planning problems we assume

c(s, a, s′) = 1 for every transition. The starting state is defined as the set of objects

O and predicates D that are true before any action is done.

A heuristic function h(s) estimates the cost of achieving the goal from state s, and

2.5. Planning 13

is used to guide the planning search by selecting states with low cost estimations.

When a heuristic never overestimates the cost of attaining a goal, it is deemed

admissible, and an A* planner would find an optimal solution when using it [42].

Since an optimal value function v∗ gives the expected cost to achieve the goal

under the optimal policy, h(s) = v∗(s) would be a perfect heuristic, and a planner

such as A* would only expand states along the optimal plan by following it.

In classical planning, the hmax, hadd and LM-cut heuristics, which can be found

in the FastDownward system [43, 44], are some of the most prominent heuristic

functions. All these heuristics work by considering a relaxed version of the problem,

meaning that once a predicate has been achieved and its value has changed to true,

it stays achieved during all the planning search. hmax and hadd take a state in the

planning graph and use all possible actions to make every predicate in that state

true and the heuristic value they create is based on the cost of the actions required

to achieve that. The heuristic for a given state for hadd is the total cost of achieving

every predicate in that state, whereas the heuristic for a given state for hmax is

the cost of the most costly predicate in that state. LM-Cut on the other hand, is

calculated by iteratively computing hmax, finding a disjunctive action landmark,

and reducing the cost of these actions until the the value of hmax becomes zero.

15

Chapter 3

Related Work

In meta-RL, agents are trained with the aim of preparing them to perform and

adapt swiftly to tasks that have not been seen by the agent before but that share

some properties with the tasks in the meta-RL agent’s training set. Many suc-

cessful reinforcement learning applications, such as navigation tasks [6, 7, 9, 38],

classic control tasks [31, 34, 45, 46], and locomotion tasks [6, 8, 47], have demon-

strated the potential of using meta-learning in RL. In this section, we first present

a survey of the most relevant methods in meta-RL. We then present different task

selection methods that have been employed in RL to improve performance and

sample efficiency. Finally, we describe different deep learning techniques that have

been developed for heuristic planning, a research topic in which meta-RL has not

been studied but that we investigate in this thesis.

3.1 Gradient-based methods

In meta-RL, gradient-based methods use hyperparameters, meta-learned loss func-

tions or policy gradients to learn from sampled tasks’ transitions. This category

of methods adapts to the new tasks through further learning, adapting their pa-

rameters. Since gradient-based approaches will be used extensively in this work,

16 Chapter 3. Related Work

we describe the most important methods in this category below.

3.1.1 Model-Agnostic Meta-Learning (MAML)

MAML [6] is one of the most popular approaches in meta-learning. MAML is a

model-agnostic meta-learning approach that works with any model that learns by

gradient descent and can be used to a variety of problems including classification,

regression, and reinforcement learning. In MAML, a model’s parameters are ex-

plicitly trained on variety of tasks, during the meta-training process, so that a

small number of gradient steps with little training data from a new task produces

maximally effective behaviour on a new task at test time.

Figure 3.1: Diagram adapted from the MAML original paper [6], optimizing meta-
parameters θ to quickly adapt to new tasks.

In a model or neural network represented by a parametrized function fθ with

parameters θ, given a task mi, the model’s parameters θ become θ′ when adapting

to the task mi. One or more gradient steps on task mi are used to compute the

updated parameters θ′. In the case of one gradient step, this update is calculated

3.1. Gradient-based methods 17

as follows:

θ′ = θ − α∇θLmi(fθ) (3.1)

where Lmi is the loss computed using samples from mi and α is the step size,

which can be fixed as a hyperparameter. This step is known as the inner loop.

The above equation optimizes for one task. However, to achieve good general-

ization, we must find the optimal parameters θ from which we can achieve fast

adaptation to a new task. To achieve this, the model’s parameters θ are optimized

across a large set of tasks T . This meta-optimization (outer loop) is done via

stochastic gradient descent as follows:

θ ← θ − β∇θ

∑
mi∈T

Lmi(fθ−α∇θLmi (fθ)) (3.2)

where β is the meta step size. During meta-training, this optimization is repeated

many times collecting new samples in each instance of the loop.

The optimization loops are general and can be applied to both supervised learning

and reinforcement learning. In RL, the loss is defined as the negative return, with

the goal of maximizing it.

3.1.2 First-Order MAML (FOMAML)

MAML’s meta-gradient update comprises a gradient through a gradient as shown

in equation 3.1, therefore its meta update relies on second order derivatives. FO-

MAML is a modified version of MAML, with the same goal and training procedure,

that omits second derivatives making computation less expensive and simpler to

implement [48, 6].

18 Chapter 3. Related Work

For MAML computing k inner gradients, k ≥ 1, starting from the initial meta

parameters θ is done as:

θ0 = θ

θ1 = θ0 − α∇θL(θ0)

θ2 = θ1 − α∇θL(θ1)

...

θk = θk−1 − α∇θL(θk−1)

while the outer loop samples new samples of data to update the meta-objective:

θ ← θ − βgMAML (3.3)

where the MAML gradient gMAML is defined as:

gMAML = ∇θL(θk) · ∇θk−1
θk...∇θ0θ1 · ∇θθ0

= ∇θL(θk) · (
k∏
i=1

∇θi−1
θi) · I

= ∇θL(θk) · (
k∏
i=1

I − α∇θi−1
(∇θL(θi−1)))

FOMAML simplifies the meta update to the derivative of the last inner gradient

update ignoring the second order derivatives as:

gFOMAML = ∇θkL(θk) (3.4)

3.1. Gradient-based methods 19

3.1.3 Reptile

Reptile [48] is a simple meta-learning method similar to FOMAML, that has been

used mainly for supervised learning, but that can be extended to RL. Learning is

used in Reptile to initialize the parameters of a neural network so that when a new

task is provided, the model can generalize to the new task learning from a limited

number of examples.

Reptile’s optimization works directly with the parameters of the model used. With

a neural model parametrized by θ that trains on T tasks, Reptile’s update rule is:

θ ← θ + β
1

T

N∑
i=1

(θ′i − θ) (3.5)

where β is meta step size and θ′i are the parameters obtained after updating θ

using data sampled from a task mi with Stochastic Gradient Descent (SGD) or

the Adam optimizer. Similar to MAML, Reptile’s update rule is run in a loop,

collecting new samples from the training tasks each iteration.

Although, Reptile’s optimization process is simple, it has shown similar perfor-

mance to FOMAML in some applications [48].

3.1.4 Evolved Policy Gradients (EPG)

EPG [33] encode knowledge obtained from past experiences implicitly through a

learned loss function instead of encoding it explicitly through a behaviour policy.

The aim is to learn a loss function that a RL agent could use to learn quickly a

novel task.

Similar to most meta-learning methods, EPG consist of two optimization loops.

An inner loop in which the agent learns to solve a task by minimizing a loss function

provided by the outer loop. And an outer loop that adjusts the parameters of the

20 Chapter 3. Related Work

loss function to maximize the agent’s final returns after learning in the inner loop.

While the inner loop is optimized in the standard way with SGD, the optimization

of the outer loop cannot be written explicitly as a differentiable equation. To face

this optimization challenge, EPG turned to evolution strategies [49].

In EPG a set of N agents is trained with a loss function Lφ+σεn parameterized by

φ adding Gaussian noise εn ∼ N (0, I) of standard deviation σ.

In the inner loop EPG’s updates the policy parameters θ through SGD according

to the loss function Lφ+σεn using trajectories τ sampled from steps i−M, ..., i for

each agent as follows:

θi ← θ − α∇θLφ+σεi(πθ, τi−M,...,i) (3.6)

At the end of the inner loop, each policy πi is evaluated in multiple random sampled

trajectories to calculate the mean return Gn. The outer-loop then uses the returns

{Gn}Nn=1 from all agents to update the loss function parameters φ as:

φ← φ− β 1

σN

N∑
n=1

εnGn (3.7)

where β is the outer loop learning rate. At test time, the parameters φ are fixed

while parameters policy parameters θ are updated by training on the test task.

3.1.5 Meta-Gradient Reinforcement Learning

In RL the return function Gt depends on a few hyperparameters that are often set

and held fixed during training such as the discount factor γ and the bootstrapping

parameter λ. This bootstrapping parameter λ can be found in some RL algorithms

and defines how much credit or weight is assigned to further back states and ac-

tions. In the Meta-Gradient RL [32] framework, parameters η(γ, λ) are considered

3.1. Gradient-based methods 21

meta-parameters which can be learned during training. The idea is that the return

Gt becomes a function with meta-parameters η that adapt online when the agent

interacts with the environment, allowing the return Gt to adjust to a specific new

task and the changes in the learning context, to improve the performance of Deep

RL agents on large scale applications.

In the training process, policy parameters θ are updated following an underlying

RL algorithm which results in new parameters θ’. The update is defined as:

θ′ = θ + f(τ, θ, η) (3.8)

where τ is a sequence of trajectories. The gradient of these updates is repre-

sented as (dθ/dη) and illustrates how the meta-parameters η influenced the new

parameters.

With a meta-objective J(τ, θ, η), their training process starts with a collection

samples τ to update policy parameters θ which results in the updated parame-

ters θ’. The updated policy πθ′ is used to collect a new set of samples τ ′ and

performance is measured with fixed parameters η as J(η′, θ′, η).

The chain rule is used in meta-gradient RL to determine the gradient of the meta-

objective with regard to parameters η:

∂J(η′, θ′, η)

∂η
=
∂J(η′, θ′, η)

∂η

dθ′

dη
(3.9)

which is simplified to get:

∆η = −β∂J(η′, θ′, η)

∂η

∂J(η, θ′, η)

∂η
(3.10)

22 Chapter 3. Related Work

To optimize the meta-objective, meta-parameters η are updated using an optimiza-

tion method such as SGD, which updates η in the direction of the meta-gradient.

3.1.6 Meta-Reinforcement Learning of Structured Explo-

ration Strategies (MAESN)

One of the main reasons for RL sample inefficiency is poor exploration, in which

the agent spends much time in states that do not provide any relevant information

to achieve the desired objective or goal. MAESN [47] is a meta-RL algorithm that

adapts to new tasks by injecting learnt structured stochasticity into a latent space

to facilitate effective exploration and following the policy gradient. The objective

of MAESN is to obtain high quality exploration strategies by integrating learnt

time-correlated noise via its meta-learned latent space, and actively training both

the policy parameters and the latent exploration space for quick adaptation.

MAESN conditions the policy on a per-task learnt latent distribution z ∼ qwi(z)

with variational parameters wi for tasksmi = 1,2,. . . ,T resulting in policy π(a|s, z).

The latent variable is used to inject temporally correlated, coherent stochasticity

into a policy to improve exploration of an agent when facing a new task. The idea

is to achieve coherent exploration by randomly sampling from useful behaviours

and omit behaviours that might not be useful.

During the meta-training procedure MAESN optimizes both the policy parameters

θ and the parameters wi to maximize the expected reward after a policy gradient

update. Additionally the Kullback–Leibler divergence (KL-divergence) between

the per-task latent distribution qwi(z) and prior p(z) is added to the loss function,

to reduce overfitting over the training set, so at meta-test time sampling from the

prior p(z) for a new task still produces effective exploration.

For each meta-training iteration MAESN performs an inner gradient update on

3.2. Context-based methods 23

parameters θ and wi training on task mi ∈ T , where T is the set of training tasks,

which results in parameters θ′ and w′i, optimizing both parameters as follows:

max
θ,wi

∑
mi∈T

Eat∼π(at|st;θ′i,z′i)
z′
i
∼q
w′
i
(.)

[∑
t

Ri(st)

]
−

∑
m∈T

DKL(qwi(.)||p(z)) (3.11)

w′i = wi + αw · ∇wiEat∼π(at|st;θi,zi)
zi∼qwi(.)

[∑
t

Ri(st)

]
(3.12)

θ′i = θ + αθ · ∇θEat∼π(at|st;θi,zi)
zi∼qwi(.)

[∑
t

Ri(st)

]
(3.13)

where α are the per-parameter step sizes.

3.2 Context-based methods

The second category of meta-RL methods are context-based methods. Context-

based methods, as opposed to gradient-based, train models to use past states

and action sequences or latent variables as a form of task-specific context. These

methods adapt by feeding in experience into a latent space representation which

conditions the agent’s behaviour. Context-based methods do not require to adapt

their parameters during the test phase, making them more desirable for applica-

tions such as heuristic planning, where the goal is to discover a successful plan as

quickly as feasible. To better understand how they work, we will describe relevant

methods in this category.

3.2.1 RL2

In the RL2 [7, 9] framework the previous reward rt−1 and previous action at−1

are integrated with the current state st to form the observation, at time step t,

to be fed to the training model. The purpose is to allow the model to learn the

24 Chapter 3. Related Work

interactions between states, actions and rewards in the current domain, building a

context that identifies key properties of the task at hand and conditions the policy

to previous interactions.

RL2 makes use of an Long short-term memory network (LSTM) [50] in which its

hidden states serve as memory for monitoring the observed trajectories. The agent

is trained with a set of different tasks in an episodic manner. At the start of each

training episode, a task m ∈ T is sampled and the internal state of the LSTM

is reset. The agent then interacts with the environment executing its policy and

collecting experience (in the form of state, action, and reward samples) as results

of these interactions. The collected experience is used to train the network weights

to learn a policy and a value function that enable the agent to maximize the sum

of the rewards obtained over all the episodes. The idea is to train the LSTM to

represent the process that underlies learning each task so that it can learn efficiently

when faced with new, unseen tasks. At test time, adjustment of the value function

and policy to the new task takes place observing the first few transitions, as the

internal memory fills up and creates the context to adapt the value function and

policy to the current task, without training.

3.2.2 Simple Neural Attentive Meta-Learner (SNAIL)

SNAIL [38] is meta-learning method which is applicable to both supervised-learning

and RL. In contrast to RL2, it does not make use of Recurrent Neural Networks

to serve as memory, but instead they make use of an architecture which combines

temporal convolutions (TC) [51] and a soft attention mechanism [52]. The TCs

allow the meta-learner to collect contextual information from previous experience,

whereas attention is utilized to pinpoint individual pieces of information within

that context.

3.2. Context-based methods 25

SNAIL is composed of a few building blocks [53]. The first is a dense block that

performs a single causal 1D-convolution to the input and then concatenates the

result with its input. The second is a TC block that is made up of a succession

of dense blocks with dilation rates of the temporal convolutions which rise expo-

nentially. The third block is an attention block which learns to focus on the most

important aspects of previous experience.

During meta-training, SNAIL is presented with a series of state-action-reward

tuples (s1,-,-),...,(st,at−1,rt−1) and generates a distribution across actions at each

time t depending on the current state (or state) st as well as past states, actions,

and rewards. Similar to RL2, at test time SNAIL does not update its parameters

but instead absorbs experience through its hidden space to produce context and

adapt to new tasks.

3.2.3 Efficient Off-Policy Meta-Reinforcement Learning via

Probabilistic Context Variables (PEARL)

PEARL [8] is an off-policy meta-RL method that integrates an existing off-policy

RL algorithm with online inference of probabilistic context variables. In contrast

to the previous context-based methods described, it does not use recurrence but

instead achieves fast adaptation by learning a probabilistic latent representation of

prior experience. PEARL can be considered a meta-learning variant of posterior

sampling [54]. In posterior sampling, the agent maintains a posterior distribution

of possible MDPs and iteratively samples a MDP from this distribution and acts

optimally according to it, updating the distribution to the collected experience

and improving the agent’s exploration. For the meta-RL case PEARL represents

their distribution over MDPs as a distribution over Q-functions.

PEARL conditions an agent policy on a latent probabilistic context variable Z as

26 Chapter 3. Related Work

πθ(a|s, z). This variable Z stores information on how the current task should be

completed, allowing the policy πθ to adjust its behavior according to the task. To

learn to infer Z an inference network qφ(z|c), parametrized by φ, is trained which

estimates the posterior p(z|c), where c is experience(context) collected from the

task. This posterior can be seen as a Gaussian.

For training the RL agent Soft-Actor-Critic (SAC) [55] is used. During meta-

training, PEARL leverages data from a set of training tasks to learn to infer the

value of Z from recent experience in the current task, while it optimizes the agent’s

policy to solve the task given samples from the posterior over Z. The inference

network is optimized to model the Q value functions with gradients from the critic

and an information bottleneck N that constraints mutual information between Z

and c. The intuition behind this bottleneck is to limit z to contain only information

from c that is useful to adapt to the current task, therefore reducing overfitting to

the training tasks.

While the parameters φ of the inference network Z are optimized during meta-

training, the latent context for a new task is simply inferred from collected experi-

ence at meta-test time, in a feedforward manner without updating its parameters,

allowing the agent to adapt to the task at hand due to the information contained

in Z which conditions policy πθ(a|s, z).

3.2.4 Small Sample Meta-RL

The previously described methods have been shown to be successful in different ap-

plications; however, none of them has considered the performance of their method

in a few-task setting, where training sets might need to be carefully built. In this

work, we focus on a small sample framework in which agents have access to a

limited number of tasks to train on. In this framework, each training task has

3.3. Task Selection for Reinforcement Learning 27

a substantial influence on the agent’s final performance, hence creating the best

possible selection of training tasks is critical.

With this framework in mind, we propose task selection methods that filter a set

of available training tasks to a build better and smaller training set, which can be

learnt faster and results in better performance.

We use MAML (and FOMAML) [6] and RL2 [7, 9] for our experimental evaluations,

since they are some the most popular and simplest methods in each category. The

simplicity of these methods allows us to focus our evaluations on what is of interest

in this work, which is the quality of the training sets selected by our task selection

methods.

3.3 Task Selection for Reinforcement Learning

3.3.1 Transfer Learning

Transfer learning in RL can be described as an approach that enables an agent

to leverage acquired knowledge from prior interactions in a source task to achieve

better or faster performance in a separate but related target task. The knowledge

acquired from the source task can give the agent information to avoid less promising

states in the target task, improving its exploration and reducing the time required

to learn the task. However, for transfer to be positive, meaning that transferring

knowledge from the source task to the target task improves the performance of

the agent compared to training from scratch without previous information, both

tasks, the source and the target, must be related.

To ensure positive transfer between source tasks and target tasks, different ap-

proaches for measuring task similarity, task clustering and task selection have

been proposed [56, 57]. For instance, Ammar et al. [12] proposed the use of

28 Chapter 3. Related Work

Restricted Boltzmann Machines (RBM) to measure similarity between a pair of

tasks. In their work they use each task in a set of source tasks to train a RBM

that represents the task transitions in a richer feature space. The trained RBMs

were used to reconstruct samples from a new task, and calculated a reconstruction

error by measuring the Euclidean distance between the original sample and its

reconstruction, the lower the error, the more similar two task are.

Mahmud et al. [17], proposed to measure similarity between tasks by extracting

the value of the initial state on the source task and target task using value function

learnt on the source task. They calculated the difference between the values and

took it as a measurement of similarity; two tasks were considered to be closely

related if the difference between the values was small.

Karimpanal and Bouffanais [14], proposed to store the value weights of a model

which has been trained on a source task. The stored weights are used as input in a

Self-Organizing Map (SOM), which is capable of extracting characteristic features

of the weights vectors associated with the source tasks. Once all source tasks have

been assimilated by the SOM, it is used to aid in the training of the target task,

by transferring the value function weight vector from the source task that is most

similar, to the target task value function weight vector.

Carroll and Seppi [16], proposed to compare two tasks by counting the number of

states in which their polices are identical; the larger the count, the more similar

the two tasks are. In the same work, they propose using the mean squared error

between the stored values of two tasks state by state as a different measurement

of similarity, providing that both tasks have the same state space.

Sinapova et al. [58], proposed a framework for selecting source tasks in the absence

of a defined model or target by using attribute-value pairs associated with each

task to determine the expected benefit of transfer given a source-target task pair.

3.3. Task Selection for Reinforcement Learning 29

The idea is to employ parameters or features that characterize two tasks to help an

agent learn the advantages of transferring knowledge from one task to the other.

Although these methods have been proved to be beneficial for single task transfer

scenarios, there are some distinctions between the transfer learning framework

and the main topic of this thesis, which is meta-RL. In transfer learning, a prior

is obtained by learning on a source task without considering the use of a meta-

objective, while in meta-RL the prior is defined by the outer-loop optimization

that evaluates the benefit of the prior when learning a new task [39]. Moreover,

in transfer learning, we look to build pairs of tasks that are closely related so that

transferring information from a source task to a target task speeds up training and

improves performance. However, it has been shown that in multi-task settings,

training on a set of closely related tasks can cause the learning model to overfit,

reducing performance and generalization [59]. One of the main purposes of meta-

RL is to build an agent that can generalize to a large number of tasks, and utilizing

a set of closely related tasks to train the model can hurt this quality.

3.3.2 Curriculum Learning

Transfer learning transfers knowledge from one or more source tasks directly to

a target task, assuming that the transfer occurs in one single step, directly from

the source to the target. In curriculum learning, on the other hand, a curriculum

comprised of a sequence of tasks is created, in which transfer occurs in various

steps, transferring from one task in the sequence to the next one, until reaching

the final task [60]. Tasks are usually organized by difficulty; the agent starts by

training on the easiest problem in the set and then transfers the learned information

to train on the next, more difficult task; this process continues until the final task,

the most difficult of all, is achieved. The goal is to be able to learn the final task

30 Chapter 3. Related Work

faster and/or better than learning the task from scratch.

In the framework of curriculum learning, optimal task selection has been stud-

ied [18, 19, 20, 21, 22, 61]. Tasks are selected and ordered to build an optimal

task sequence to train for a given set of test tasks. These approaches select and

sort tasks to be of increasing complexity, so as to identify the best sequence that

maximizes sample efficiency and/or final performance in the test tasks. Foglino

et al. [21], for example, provided a method to automatically discover the best

curriculum for a target task by doing a heuristic search of the many potential

task sequences that may be formed from a given collection of source tasks. These

various sequences are assessed by comparing their performance in a series of sim-

ulated target tasks (placeholders of the real target tasks used only for evaluation),

therefore determining the best performing sequence from the given source task set.

In contrast, Svetlik et al. [20] propose a method to build a curriculum sequence

without task execution. Instead they use task descriptors and a heuristic measure

of task similarity to select and build their curriculum.

Although task selection have shown great performance in the framework of cur-

riculum learning, training is sequential and tasks are used one at a time with the

aim to improve the performance on one final target task. Many of these meth-

ods test different combinations of tasks doing evaluations in different steps of the

training process. However, most of standard meta-RL methods train a meta-policy

that contains information of all the training tasks, sampling from large batches of

training tasks at the same time and ignoring its order. Moreover, the main focus

of Curriculum Learning is not generalize to a potentially large number of unseen

test tasks but create a curriculum of tasks that allows an agent to achieve good

performance in complex tasks and/or reduce the training time required to achieve

the desired performance.

3.3. Task Selection for Reinforcement Learning 31

3.3.3 Meta-Learning

For standard meta-RL approaches, the most common practice to build a training

set by iteratively sampling from a task distribution until the whole task space is

densely covered (dense sampling) [6, 9, 38]. Although dense sampling works well

in simulated environments where task can be generated indefinitely, this practice

has a high computational cost, and in challenging domains, dense sampling may

not be possible.

There have been several efforts in the field of supervised learning to develop strate-

gies that improve meta-learning by leveraging the training set. Task scheduling

strategies, for example, have been proposed to change the frequency or order in

which tasks are sampled in order to improve the generalization and performance of

the meta-learning model [62, 63, 64, 65]. Furthermore, unsupervised meta-learning

has been investigated, with methods developed to generate and augment training

sets in an unsupervised manner [66, 67]. Similarly, recent research proposes to im-

prove a training task set by generating extra tasks using task interpolation between

pairs of randomly selected training tasks [68]. Although these methods enhance

meta-learning performance in supervised learning contexts, it is not investigated

in RL, where task scheduling and generation may be more challenging due to the

nature of the tasks.

In the scope of meta-RL, unsupervised meta-RL methods have been proposed, with

the goal of generating sets of training tasks by modifying reward functions [69] or

employing information maximization between a latent task variable and the meta-

learner’s data distribution in domains with pixel observations [70]. An important

disadvantage of these methods is that they interfere with the meta training process,

making them dependent of the method employed in meta-training.

32 Chapter 3. Related Work

Although the strategies discussed previously serve to increase meta-learning per-

formance, many of them do so by increasing the number of tasks used for training.

Instead of creating more tasks to better the meta-learning training process, we

use the opposite approach in this thesis. We investigate and suggest strategies

for making the most of a small training set in meta-RL, minimizing computation

through effective task selection, therefore reducing the number of tasks on which

the meta-RL agent is trained. Furthermore, because our approaches prepare the

original training set before meta-training, our suggested methods are agnostic to

the method utilized for training.

3.4 Learning Planning Heuristics

Building planning heuristics that enable forward search algorithms to create high-

quality plans is a continual focus of AI planning research. With the great success

in planning competitions and applications [43, 44, 71, 72] that heuristic search

algorithms have shown, we can understand where this interest stems from. The

heuristic function, which calculates the cost of reaching the goal from any state,

is a key component of these algorithms.

Much of the recent research in heuristic planning has been focused on developing

methods that make use of Deep Learning to learn heuristic functions. Most of

these methods improve or combine on existing heuristics [23, 25, 26, 28, 73, 74].

All these methods make use of supervised learning to learn a heuristic function.

Although the generalization and quick adaptation properties of meta-RL could

greatly benefit heuristic planning, there has not been any research on meta-RL in

this scope.

For instance, Samadi, Felner, and Schaeffer [25] propose to combine different

3.4. Learning Planning Heuristics 33

heuristics using a neural network. In their work, a neural network is build to

learn the cost of reaching a goal given k number of heuristics. For each tasks

in the training set, k heuristic values and their precomputed optimal plans are

fed into the neural network with the aim of learning a heuristic function which

optimally combines the heuristics used for training and improves their individual

performance.

Groshev et al. [26] combine convolutional neural networks and graph neural net-

works to learn heuristics. For training their model they make use of images,

obtained from a hand-coded state translation, and precomputed plans obtained

with the Fast-Forward planner [43], as input.

Toyer et al. [27] propose ASNet, a weight sharing neural model dedicated to plan-

ning with the ability to generalize to different planning problems from the same

domain. To learn their heuristic function, during their training process, they make

use of heuristic values obtained from LM-CUT [40] as input of their model.

Shen, Trevizan, and Thiébaux [28] propose Hypergraph Networks (HGNs) which

generalises Graph Networks [75] to hypergraphs. HGNs learns a heuristic by train-

ing on delete-relaxation hypergraphs of a planning problem and state-values pairs

(s, h∗(s)) obtained from an optimal heuristic function h∗.

Despite the fact these prior methods have shown good performance, one of the

disadvantages of supervised learning approaches is that they make use of optimal

heuristics and precomputed planning problems to train their models. This stan-

dard practice ignores suboptimal states that could provide relevant information

during training to the learning model used to build the heuristic, which can harm

generalization and performance.

In RL, an agent’s exploration is guided by a value function, just as a planner’s

exploration is guided by a heuristic function. This value function is learnt by

34 Chapter 3. Related Work

exploring the whole state space, gradually improving during training until it con-

verges to lowest cost from any state to a goal. However, because value functions are

task-specific, we would have to learn a new value function for each new planning

task provided. This is a shortcoming that can be addressed with meta-RL.

In this thesis, we propose to use meta-RL instead of supervised learning in the

context of heuristic planning, and to learn by exploration on a limited number of

instances from the planning domain, rather than from precomputed plans. The

exploration allows the agent to learn values of sub-optimal states as well, which

we hypothesise to provide valuable information to transfer.

3.5 Summary

In this chapter we introduced the most relevant methods in meta-RL; we described

each method’s relevant properties and learning procedure. Although these methods

tackle the meta-learning problem in different ways, there are still challenges to be

resolved. One of these is sample efficiency, training meta-RL agents that are able

to obtain good performance with a small set of training tasks. Task selection

in RL has been widely studied in different fields of RL such as transfer learning

and curriculum learning, demonstrating that proper task selection can improve

the performance of a RL agent at test time, by learning a better transferable

representation of the problem. Despite the benefits of task selection demonstrated

by these methods, it has received little attention in the field of meta-RL, where

dense sampling of task distributions is standard practice.

Moreover, we introduce approaches that have employed deep learning to learn an

heuristic function for classical planning. One common trend of these methods is the

use of supervised learning to learn from precomputed plans and build a heuristic

3.5. Summary 35

function, which ignores relevant information that suboptimal states could provide

to the learning model.

37

Chapter 4

Information-theoretic Task Selection

for Meta-Reinforcement Learning

4.1 Introduction

As previously discussed, the usual approach for building training sets in meta-RL

is to dense sample from a task distribution, which is computationally costly and

may be infeasible in some challenging domains.

In this chapter, we study meta-RL in a few-task settings and show that when a

limited set of training tasks is available for training, not all tasks are necessarily

beneficial, and selecting a subset of training tasks may lead to a better performance

at test time.

We introduce an Information-Theoretic Task Selection (ITTS) algorithm that we

developed, that filters the set of training tasks identifying a subset of tasks that

are both different enough from one another, and relevant to tasks sampled from

the target distribution. The method is independent of the meta-learning algorithm

used. The goal of ITTS is to build a smaller training set, which can be learned

more quickly and results in better performance, a higher return, than the original

set.

38
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

Task selection is performed before meta-learning and in conjunction with an ex-

isting meta-learning algorithm. We identified five domains in the literature that

have been used to assess existing meta-RL algorithms, and evaluated ITTS in

the same settings. The results show that task-selection improves the performance

of two popular meta-RL algorithms (RL2 [9] and MAML[6]) in all domains. We

also introduce a sixth domain as an example of a real-world application on device

control for micro grids, and use it to validate our approach in a realistic setting.

4.2 Task Selection for Meta-Reinforcement Learn-

ing

ITTS is executed in conjunction with an existing meta-RL algorithm, and therefore

falls into the meta-RL framework introduced in Chapter 2. We make two further

assumptions: that training tasks T can be learned to convergence, and therefore

their optimal policies {π∗i }Ti=1 are available; and that the state space of training

tasks can be sampled, which will allow us to estimate the difference and relevance

as introduced in this section.

ITTS takes as input two sets of tasks sampled from p(M). The first set of T tasks

is the training set T common to all meta-learning algorithms. The second set,

F = {mj}Kj=1 of K tasks, such that mj ∼ p(M) and T ∩ F = ∅ is the validation

set. The intuition behind ITTS is that the most useful subset of T contains tasks

that are both different enough from one another, to reduce overfitting and increase

generalization, and relevant for the validation tasks, discarding tasks that may not

be beneficial for the the target or test tasks in which we are interested our agent

to perform. In the rest of this section we translate this intuition into a heuristic

algorithm.

4.2. Task Selection for Meta-Reinforcement Learning 39

We take an information-theoretic perspective to measure the difference and rele-

vance of training tasks, based on the policies that the agent learns for them. We

define the difference between two training tasks m1 and m2 as the average KL

divergence of the respective policies over the states of the validation tasks:

δ(m1,m2) :=
1

K

∑
mj∈F

1

|Sj|
∑
s∈Sj

∑
a∈A

π∗m1
(a|s) log

π∗m1
(a|s)

π∗m2
(a|s)

. (4.1)

Maximizing a policy’s entropy has been demonstrated to be effective at enhancing

its generalization [76]. Since we want to compare two different distributions and

calculate how different are to each other the natural choice is the relative entropy

or KL divergence, which have been previously used to reduce overfitting in meta-

RL [8, 47]. Despite employing a measure like the Jensen-Shannon Divergence [77]

may appear to be a better alternative due to its symmetric nature, we found out

that there was no difference in the method’s performance when using it while being

more computationally expensive.

To define the relevance of a task m1 to a task mj ∈ F , we consider the optimal

policy of m1, π∗m1
, and its transfer to mj. The policy obtained after l episodes

of learning in mj starting from policy π∗m1
will be denoted as πlm1,mj

. We define

relevance as the expected difference in entropy of the policies before and after

learning, over the states of the validation tasks, with respect to the on-policy

distribution before learning:

ρl(m1,mj) := E
s∼d

mj
π∗m1

,πlm1,mj

[
H(πlm1,mj

(a|s))−H(π∗m1
(a|s))

]
. (4.2)

The ITTS algorithm is shown in Algorithm 1. Before execution, n states are

sampled uniformly from the tasks in F and stored in a set of validation states

Sv. In practice, for continuous state and action spaces, the states can be sampled

40
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

on-policy, using the policy of the validation task from which the samples are being

collected. These state samples will be used to estimate δ from Equation 4.1, in

place of the sum over all states for all validation tasks. The set of training tasks T ,

validation tasks F , and sample states Sv are given in input to the ITTS algorithm.

Algorithm 1 Information-Theoretic Task Selection
1: Input: T all available task and F validation tasks, Sv sample states, ε differ-

ence threshold, i iterations of initial policy , l learning episodes.
2: Output: C optimal meta training source tasks
3: C ← {}
4: for m in T do
5: different ← true
6: for c in C do
7: δc ← 1

n

∑
s∈Sv DKL(π∗m(a|s), π∗c (a|s)) ≥ ε

8: different ← different ∧ δc
9: end for

10: relevant ← RelevanceEvaluation(πm,F , i, l)
11: if different ∧ relevant then
12: C ← C ∪ {m}
13: end if
14: end for

The subset of selected training tasks C is initialized with the empty set (line 3).

Each task m ∈ T is then evaluated for difference from the tasks in C and relevance

with respect to the validation tasks. The algorithm computes an estimate of

δ(m, c) for tasks m ∈ T and c ∈ C and tests whether it is greater than or equal

to a parameter ε (line 7).

ITTS then proceeds to check for relevance (Algorithm 1 line 10), as shown in

Algorithm 2. The agent executes the optimal policy of a training task m in a

validation task f ∈ F for a number of episodes, generating a set of n traversed

states, which are stored in Se (Algorithm 1 line 7). This set is a sample of the

states according to the on-policy distribution, used in estimating the expectation

in Equation 4.2. Then the agent learns for l episodes, starting from the transferred

policy π∗m, resulting in a learned policy πlm,f (Algorithm 1 line 8). The entropy of

4.2. Task Selection for Meta-Reinforcement Learning 41

Algorithm 2 RelevanceEvaluation
1: Input: πm, F , i learning epochs in validation task, l learning episodes
2: Output: isRelevant
3: isRelevant← False
4: for f in F do
5: ηb ← 0, ηa ← 0
6: for 1 to i do
7: Se ← execute(π∗m, f)
8: πlm,f ← train(π∗m, f, l)

9: ηb ← ηb + 1
n

∑
s∈Se Hπm(s) //Equation 4.2

10: ηa ← ηa + 1
n

∑
s∈Se Hπlm,f

(s) //Equation 4.2
11: end for
12: ρ̂l(m, f)← ηa − ηb
13: if ρ̂l(m, f) ≤ 0 then
14: return true
15: end if
16: end for
17: return false

both the transferred policy and the learned policy is evaluated on the set of states

Se (Algorithm 1 line 9 and 10) by:

Hπ(s) = −
∑
a

π(a|s) log π(a|s).

The learning process is repeated i times, sampling i policies which are used to

estimate the expectation with respect to the learned policy in Equation 4.2. If

learning produced on average a policy of lower entropy (therefore an information

gain) we consider the training task that provided the transfer policy as relevant

(line 14 in Algorithm 1).

If a task m ∈ T is different from all the currently selected tasks in C and relevant

for at least a validation task in F it is added to C (line 12 in Algorithm 2).

42
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

4.3 Experimental Evaluation

The main aim of this evaluation is twofold: to demonstrate that task selection

is indeed beneficial for meta-RL, and show that applying ITTS to existing meta-

RL algorithms consistently results in better performance on test tasks. We also

analyze the effect of the main algorithm parameter, ε, on the results, and perform

an ablation study to show that both difference and relevance contribute to the

performance of ITTS.

We used RL2 [9] and MAML[6] to execute in conjunction with ITTS, each one

being a popular algorithm from the category of context-based and gradient-based

method respectively. However, instead of following the standard meta-training

process in which an agent has continuous access to a dense distribution of train-

ing tasks, a fixed set of tasks is sampled for training. We surveyed the literature

to identify domains used to demonstrate meta-RL algorithms, with the following

two characteristics: available source code, and programmatic access to the task

distribution p(M) to generate further tasks. We identified five such domains: Cart-

Pole [31, 34, 45], MiniGrid [78], Locomotion(Cheetah) [6], Locomotion(Ant) [6],

and KrazyWorld [35]. CartPole and MiniGrid are less computationally demanding,

and have been used for the parameter and ablation studies. The other domains are

more complex control problems and have been used, in addition to the previous

ones, to evaluate the effectiveness of ITTS in the same setting as either RL2 or

MAML[6]. We also introduce a sixth domain, MGEnv, as a representative of a

realistic application in micro-grid control.

In the rest of this section, we first introduce the domains, then evaluate the effect

of the threshold ε, show the results of the ablation study, and lastly we apply ITTS

to RL2 and MAML in their respective domains.

4.3. Experimental Evaluation 43

4.3.1 Domains

In this section, we describe the experimental domains as well as the technique used

to produce the tasks common to train, validation, and test sets. We limited the

number of training tasks in each domain so that the generation and training until

convergence repeated for 5 times would not exceed 72 hours of computation on an

8-core machine at 1.8GHz and 32GB of RAM. As a consequence, simple domains

like CartPole have more training tasks than more complex domains, like MGEnv.

In every domain we used K = 5 validation tasks.

4.3.1.1 CartPole

Figure 4.1: Representation of the CartPole domain

CartPole, from OpenAI gym [79], is a classic control task in which a pole is attached

by an unactuated joint to a cart which moves along a track. The goal is to prevent

the pole from falling over. The cart is controlled by applying a positive or negative

force, and a reward of +1 is obtained for each time step the pole remains upright.

For this domain, 60 different training tasks were created by sampling the param-

eters of the environment from a uniform distribution. The parameters are: the

length and the mass of the pole, the mass of the cart, the intensity of gravity, the

44
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

quantity of force applied to the cart in an action, and the degrees from the vertical

position in which the pole is considered as fallen.

4.3.1.2 MiniGrid

Figure 4.2: Representation of the MiniGrid domain

MiniGrid is an open-source grid world package proposed as an RL benchmark [80].

In the grid world used for our experiments, the agent navigates a maze with the

purpose of reaching a goal state. The agent receives a reward between 0 and 1

when it reaches the objective, proportional to the number of time steps taken to

reach it. For this domain, 34 training tasks were created by randomly changing

the shape of the maze, the initial position, and the goal.

4.3.1.3 Locomotion

The locomotion domains are borrowed from the MAML paper[6]. In these domains

two simulated robots, a planar cheetah and a 3D quadruped ("ant"), are required

to run at a particular velocity. The reward is the negative absolute value between

the current velocity of the robot and the target velocity. This target velocity is

chosen uniformly at random between 0.0 and 2.0 for the cheetah and 0.0 and 3.0

for the ant. 40 training tasks were created for each domain. The target velocity

on test tasks was chosen randomly and uniformly.

4.3. Experimental Evaluation 45

Figure 4.3: Representation of the
Cheetah domain.

Figure 4.4: Representation of the
Ant domain.

4.3.1.4 KrazyWorld

KrazyWorld [35] is a grid world domain proposed to test adaptation of meta-RL

agents. In this domain the agent explores the environment looking for goal squares

which provide a reward of +1 while evading obstacle squares which delay or kill

the agent. A colour is assigned to each type of square for the agent to able to

identify them. For each generated task, the position of the agent, the position of

the goal and obstacle squares, and the colour assigned to them is randomly chosen.

For this domain, 40 different tasks were used to build the training set.

4.3.1.5 MGEnv

The purpose of this domain is to validate our approach in a real-world scenario.

We aim to demonstrate that our method is suitable for this kind of tasks, where the

parameters of the environment can be highly variable and suboptimal performance

is highly costly.

MGEnv is a simulated micro-grid domain created out of real data from the PecanStreet

Inc. database. The domain includes historical data about energy consumption and

solar energy generation of different buildings in the USA. Tasks in this domain are

46
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

defined as a combination of three elements: the model of the electrical device to

optimize, the user’s schedule, specifying if the device must be run in given day,

and the building data, containing the energy generation and consumption of the

given building. The devices used for the experiments behave as time-shifting loads,

meaning that, once started, they run for several time steps and cannot be inter-

rupted before the end of their routine. The goal of the agent is to find the best

time slot to run the given device, optimizing direct use of the generated energy,

while following the user’s device schedule. The agent receives a positive reward

when it uses energy directly from the building generation and a negative reward

when consuming energy from external sources. The reward amount depends on

the quantity of energy used from both sources. A reward of −200 is obtained if the

device is not run accordingly to the user schedule. The simulator replays real data

of energy generation and consumption of the building (other than of the simulated

controlled device), and is therefore as close as possible to running the device in

the real building at that time.

For this domain 24 tasks were used to build the set of training tasks. These tasks

represented 24 buildings with different energy consumption, energy generation,

schedule, and devices’ energy consumption and running time. Test tasks were

selected by choosing buildings that had an energy generation and consumption

levels at most 80% similar to the ones presented in the validation set, while the

devices’ properties were different for all the tasks in both sets.

4.3.2 Results

A full experimental run proceeds as follows: tasks are selected according to ITTS,

the meta-learning algorithm is run to obtain a meta-policy, and the policy is evalu-

ated in the test tasks. RL2 [7, 9] was used as the meta-RL algorithm in KrazyWorld

4.3. Experimental Evaluation 47

and MGEnv, in addition to the parameter and ablation studies. MAML was used

in Ant and Cheetah. In both cases, we aimed at reproducing the results of the

papers where the domain is presented. For all domains we show the average per-

formance over all the runs. This accounts for slight discrepancies with respect

to some of the original papers when they show the best model, rather than the

average. In all the plots the error bars are 95% confidence intervals.

4.3.3 Parameter Evaluation

We start by studying the effect of the main threshold parameter, ε, of the algorithm

in the two least computationally expensive domains, which allows us to repeat the

learning process 10 times over 5 test tasks, with a total of 50 different test tasks.

The threshold determines when a task is considered different enough from another

task, that is, their difference measured as in Equation 4.1 is greater than or equal

to ε. The results are shown in Figure 4.5a and 4.5b for CartPole and MiniGrid re-

spectively. The plots show that the optimal value is domain dependent, but rather

easy to determine, since the return in the test tasks with respect to the parameter

ε is convex. A parameter of ε = 0 corresponds to ignoring task difference, and con-

sidering only task relevance. The optimal parameters established this way have

been used in the rest of the experiments. For better comparison between domains,

the ε values shown in the figures were normalized by the number of actions in each

domain. Returns are also normalized between 0 and 1.

4.3.4 Ablation Study

In this experiment we aim at establishing that both difference and relevance indeed

contribute to the transfer. We evaluated the agent using only relevance, only

difference, and both (ITTS). The results are shown in Figure 4.6a for CartPole

48
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

(a) CartPole (b) MiniGrid

Figure 4.5: Results of parameter evaluation. Values shown on the x-axis represent
the normalized values used for ε while the y-axis shows normalized returns

(a) CartPole (b) MiniGrid

Figure 4.6: Ablation study. The plot shows average performance on test tasks of
the agents trained using only relevance, only difference, and both (ITTS). "T "
is the performance obtained using all training tasks, without task selection. The
error bars are 95% confidence intervals.

and Figure 4.6b for MiniGrid. The results were obtained, similarly to the previous

experiment, by evaluating the agent in 5 test tasks for 10 runs. In both domains,

neither difference nor relevance alone can obtain the same performance than when

used in combination (ITTS).

4.3.5 Transfer Results

Lastly, we evaluate the effect of ITTS on existing meta-RL algorithms on all six

domains. In addition to the meta-RL algorithm with and without ITTS (using all

the tasks in T), we also consider as a baseline a random subset of the training tasks,

and using the validation set F as the training set (without ITTS). The results are

shown for CartPole in Figure 4.7, for MiniGrid in Figure 4.8, for Ant in Figure 4.9,

4.4. Summary 49

CartPole MiniGrid KrazyWorld Ant Cheetah MGEnv
14 12 24 20 16 9

Table 4.1: Number of tasks selected by ITTS.

for Cheetah in Figure 4.10, for KrazyWorld in Figure 4.11 and for MGEnv in Figure

4.12. The agents were evaluated over 5 test tasks per run, with results averaged

over 5 runs (25 different test tasks in total). The results of random selection are

averaged over 4 random subsets of random size. In these plots as well, the shaded

area is the 95% confidence interval. The number of tasks selected by ITTS are

shown in Table 4.1. The results show the consistent performance improvement

achieved by ITTS over the baselines. Interestingly, the set of training tasks is

not always significantly better than the set of validation tasks (when used for

training), despite the latter is much smaller. This also confirms that more tasks

do not necessarily improve the final performance, and appropriate tasks must be

selected.

Figure 4.7: Results on CartPole do-
main.

Figure 4.8: Results on MiniGrid do-
main.

4.4 Summary

We introduced an Information-Theoretic Task Selection algorithm for meta-RL,

with the goal of improving the performance of an agent in unseen test tasks. We

experimentally showed that an agent trained using a subset of tasks selected by

50
Chapter 4. Information-theoretic Task Selection for Meta-Reinforcement

Learning

Figure 4.9: Results on Ant domain. 20
rollouts per gradient were used.

Figure 4.10: Results on Cheetah do-
main. 20 rollouts per gradient were
used.

Figure 4.11: Results on KrazyWorld
domain

Figure 4.12: Results on MGEnv do-
main. Returns are normalized

our algorithm outperforms agents that were trained using all the available training

tasks or random subsets of these tasks. We also showed how both difference and

relevance are important in ITTS for boosting the performance of the agent.

The presented results unequivocally demonstrate the potential of task selection in

meta-RL, which has been so far overlooked. However, for our method to work,

the policies of all the tasks in the original training set must be learnt, since they

are required to calculate the different metrics used to filter tasks. Moreover, the

heuristic nature of our algorithm raises the question of a theoretical understanding

of the role of tasks on generalization in meta-RL. In the next chapter, we gain

insight into the behaviors learnt with meta-RL and suggest a novel task selection

method that addresses some of the shortcomings of ITTS.

51

Chapter 5

Few-Task Meta-Reinforcement

Learning

5.1 Introduction

We have shown how task selection can improve the performance of meta-RL when

agents have access to a limited set of training tasks. ITTS allows us to filter a

set of tasks and build a training set that give us better performance than training

with all the available tasks.

Although ITTS has shown great advantages, it has some shortcomings. ITTS

requires access to the optimal policies of all the available tasks. Depending on

the domain, learning the optimal polices could have a large computational cost.

Moreover, ITTS requires a set of validation tasks and a difference threshold for

its task selection process, which when not defined correctly, can harm the task

selection process.

In this chapter, we build insight into the meta-RL learning procedure in a simple

scenario, showing the behaviour learnt by a meta-RL method, and propose a new

task selection method which we call Few Tasks Meta-RL (FETA), which similarly

to ITTS, aims to build a set of training tasks that improves the performance of

52 Chapter 5. Few-Task Meta-Reinforcement Learning

meta-RL agents in scenarios in which a small set of training tasks is available.

FETA selects tasks by leveraging the policy transfer properties of RL to discard

potentially redundant data, improving the performance and sample efficiency of

the meta-learned policy. The FETA sequential filtering process does not require

the optimal policies of all the available tasks T , but only the ones in the set of

selected training tasks C. FETA achieves similar or better performance than ITTS

when training using MAML as meta-RL training algorithm, while having a much

smaller computational cost.

5.2 Meta-Policy Analysis

To build insight and further understand the convergence properties of meta-learnt

policies, we investigate policies obtained with FOMAML, a gradient-based meta-

learning approach, in a simple scenario where the policy behavior can be seen and

"dense" sampling over all possible tasks is feasible.

The experimental domain is a 6 by 6 Gridworld with the initial state set at the top

left corner and the goal spawning in 10 distinct spots, 4 in the 4 cells at the top

right corner, 4 in the 4 cells at the bottom right corner, and 2 goals in the 2 cells

at the bottom left corner as shown in Figure 5.1. In this domain, the agent’s sole

purpose is to navigate across the grid to reach the goal. The 4 possible actions are

moving south, moving north, moving east and moving west. Ten different tasks

were used for this experiment, each task with a different goal position.

Using tabular value functions, we trained a meta-RL agent using a training set T

containing all ten tasks, to obtain an optimal policy πT , which contains information

from all possible tasks of the domain. Figure 5.2 shows the heat map of the policy

πT learnt by the agent. Each cell in the map shows the probability of taking that

5.2. Meta-Policy Analysis 53

action in that state. We can see that agent discovers certain paths, which seem to

favour specific goals, partitioning the state space in three different zones. Since the

initial state is constant, the state space partitioning is particular clean in this case.

From the learned behaviour displayed in the figure, we could identify individual

tasks, distributed along the grid, that could give the agent enough information to

cover the three different zones and create similar paths, allowing us to train an

agent which learns a similar policy using a fewer tasks.

We now place the same experiment in our few-task framework. We must be able to

learn equivalent behavior with fewer tasks in order to demonstrate the validity of

the framework. From figure 5.2 one can easily identify and handpick tasks whose

combined policies could cover the whole task space. With that in mind, we built a

training set C containing 3 handpicked tasks, 1 task per corner, excluding the top

left one.

To better illustrate the information that each task in C is providing, we calculated

the KL-Divergence between each optimal policy {π∗j}Cj=1 and the meta-policy πT ,

state by state. Figure 5.3 shows the results obtained from this evaluation. For

each state, the corresponding color of the optimal policy π∗j with the lowest KL-

Divergence towards πT in that state, was plotted. We can see that these 3 tasks in

C are enough to partition the policy in the three different zones, that we identified

in Figure 5.2, in which the agent expects that goals might be allocated, containing

enough information to teach the agent the desired behaviour.

Furthermore, we train a meta-RL agent on C to obtain policy πC and evaluate how

different it is from πT . To carry out this evaluation, we calculate the KL-Divergence

between πC and πT , state by state. Figure 5.5 shows the results of the evaluation

while Figure 5.4 shows the heat map of the policy πC learnt by the agent. For

comparison, the KL-Divergence between the two opposite deterministic policies,

54 Chapter 5. Few-Task Meta-Reinforcement Learning

meaning that each policy guides the agent to a completely different direction, is

6.5. We can see that although πC was trained with only 3 tasks compared to the

10 that were used to train πT , both policies are closely related, and even when

some information is lost due to the removal of the tasks, the agent still learns a

proper exploration strategy which allows it to achieve quick adaptation.

Finally, we evaluated the success rate of both policies in all the 10 original tasks,

testing policies πT and πC for 100 episodes per task. In this evaluation, both

policies were able to obtain a success rate of 100%, meaning that both agents were

able to reach the goal in all the testing episodes.

We may conclude from the results of these evaluations that even when some tasks

are eliminated from the training set, provided the remaining tasks are appropri-

ately selected and distributed, the meta-RL agent can learn a policy comparable

to the optimal with fewer tasks.

Figure 5.1: Representation of the Gridworld domain. Green squares represent the
goals while the red square the initial position of agent. One goal per task.

5.2. Meta-Policy Analysis 55

Figure 5.2: Map of the probability distribution over the actions of πT on the
Gridworld domain. Each cell group represents a state (position) on the grid, while
each number in a cell the probability of taking the action in the plotted direction.

Figure 5.3: Map of similarity between optimal policies of handpicked tasks C
and the meta-policy trained on all available tasks T . Each handpicked task is
represented by a different color. The color plotted shows which optimal policy is
closest to the meta-policy in that sate. G represents the position of a goal.

56 Chapter 5. Few-Task Meta-Reinforcement Learning

Figure 5.4: Map of the probability distribution over the actions of πC on the
Gridworld domain. Each cell group represents a state (position) on the grid, while
each number in a cell the probability of taking the action in the plotted direction.

Figure 5.5: Map of the KL-Divergence between policies πT and πC.

5.3. Filtering Tasks in Meta-RL 57

5.3 Filtering Tasks in Meta-RL

Handpicking tasks whose policies could cover the whole task space for a domain

such as the Gridworld presented in Section 5.2 is not difficult; nevertheless, most

domains worth addressing are not as simple to visualize and analyze. For that

reason, we propose an automated approach to automatically identify those tasks

whose combined policies are close to the meta-policy on all tasks and discard tasks

that provide redundant information, which we call Few Tasks Meta-RL (FETA).

We make two assumptions when using FETA: the optimal policies of the tasks in

the training set T can be learnt, and a binary function R : ΠT ×T → {0, 1}, where

ΠT is a set of all possible policies of the tasks in T , which measures successful

transfer, can be defined. The intuition behind this function comes from meta-

learning itself. R takes as input a policy πi and a target task m; transfer is

considered successful if policy πi is able to adapt to the new task m after a few

training steps, implying that the agent was able to achieve a goal or attain a

particular cumulative reward. The function outputs a true flag if transfer was

successful and false otherwise. This function R can bee seen as a measure of

difference between the optimal policies of two tasks, which differently from the

KL-Divergence we used on ITTS, takes into account the learning algorithm since

it is used during the transfer process.

FETA takes as input a set of training tasks T and a successful transfer function R

and outputs a set of selected training tasks C. The principle behind FETA comes

from the the transfer properties of RL. If the optimal policy of a task mi ∈ T

is transferred to a different task mj ∈ T and is able to complete it successfully

in a few adaptation steps, both tasks can be considered similar; thus, task mj

may be deemed redundant and does not provide new information to the meta-RL

58 Chapter 5. Few-Task Meta-Reinforcement Learning

agent, and as shown in chapter 4 can potentially degrade the meta-RL agent’s

performance.

Algorithm 3 Task Filtering
1: Input: T available training, R transfer function, Ne adaptation episodes.
2: Output: C optimal meta training tasks
3: C ← {}
4: for m in T do
5: similar ← false
6: for c in C do
7: similar← similar or R (π∗c ,m,l)
8: end for
9: if not similar then

10: C ← C ∪ {m}
11: learn π∗m
12: end if
13: end for

FETA’s task selection process shown in Algorithm 3, builds a training set C ⊆ T

by filtering tasks that may be redundant. FETA sequentially samples tasks from

T and evaluates the sampled task against the tasks in C that have been already

selected. When C is empty the first task m ∈ T is added to set C and its optimal

policy π∗m is learnt. From there, a new taskm ∈ T is sampled and evaluated against

all tasks in C(line 4). The evaluation is carried out by function R, transferring

the optimal policies {π∗j}Cj=1 of the all tasks in C to the new sampled task m. If

any of the policies in C is successfully transferred to task m after a Ne adaptation

episodes (line 7), m is discarded and a new task is sampled from T . However,

if none of the tasks {π∗j}Cj=1 successfully transfer to m, m is added to C and its

optimal policy {π∗m} is learnt (line 9). The process is completed once all the tasks

in T have been evaluated or a desired number of tasks in C has been reached.

5.4. Experimental Evaluation 59

5.4 Experimental Evaluation

In this experimental evaluation, we seek to answer four key questions: (1) How

does FETA compare to ITTS? (2) Being a sequential process, does the order of

the tasks impact the method’s outcome? (3) Does FETA choose the best selection

of tasks from all available tasks? (4) How much does FETa cost computationally

as compared to utilizing ITTS or training with all available tasks?

For the evaluations, we use MAML [6] as meta-learning method to run alongside

FETA. We utilize the same fixed set of available tasks and test tasks from domains

that were used in the ITTS experimental evaluation (section 4.3). In all the plots

the shaded area are 95% confidence intervals. Like in ITTS for all the experiments

we show the average performance over their respective runs. For all our experi-

ments, 10 adaptation steps were used to evaluate successful transfer with function

R (l = 10) .

In the rest of the section, we answer the previously stated questions.

5.5 Transfer Results

We start by evaluating the performance of FETA against two baselines: ITTS and

MAML training in all the available tasks (MAML on T). All the trained agents

were evaluated over 5 tests tasks per run, with results averaged over 5 runs. We

used the same order of the original training tasks used in the ITTS experimental

evaluation. The results for Cheetah are shown in Figure 5.6, for Ant in Figure

5.7, for MGEnv in Figure 5.8, for KrazyWorld in Figure 5.9. The number of tasks

selected by FETA in each domain are shown in Table 5.1. From the results it

can be seen that FETA’s outperforms MAML on T and matches or outperforms

60 Chapter 5. Few-Task Meta-Reinforcement Learning

KrazyWorld Ant Cheetah MGEnv
21 22 21 10

Table 5.1: Number of tasks selected by FETA.

ITTS in all domains. Even though FETA decreases the computational costs of

task selection when compared to ITTS, by reducing the number of policies that

are required to be learnt, it still produces a high-quality training set.

Figure 5.6: Results on Cheetah. Figure 5.7: Results on Ant domain.

Figure 5.8: Results on MGEnv. Re-
turns are normalized.

Figure 5.9: Results on Krazyworld do-
main.

5.6 Task Selection Sequence

A property of a sequential method like FETA is that the order in which the tasks

are fed to the algorithm affects the output. Once a task mi is added to the set

of selected tasks C, any subsequent task that is similar to mi will be discarded.

When the order in which tasks T are fed to the algorithm changes, the output C

may also vary.

5.6. Task Selection Sequence 61

To evaluate the impact that task ordering might have over the FETA task selection

process, we trained a series of MAML agents on many different set of selected tasks

C. Iteratively we randomly changed the order in which tasks T were fed to FETA,

and a series of unique sets C were obtained. An agent was trained with each unique

set and evaluated in the same set of test tasks.

For this evaluation, we used Gridworld, which we introduced in Section 5.2, and

Ant as experimental domains. For Gridworld, we ran FETA over 100 unique orders

of T , resulting in 18 unique agents. For Ant, we limited the number of runs so

that task selection and meta-training would not would not exceed 960 hours of

computation time, which led to 20 unique agents. Figure 5.10 for Gridworld and

Figure 5.11 for Ant show the results obtained. Despite the fact that each agent

was trained on a unique set of tasks, the performance of all agents in both domains

is closely related, with higher variance presented in the Ant domain but with an

average performance similar to the one obtained in the experiments in Section 5.5.

Although in different domains order might affect FETA’s performance, in the

results obtained in this evaluation, task ordering did not had any observable impact

on its performance.

Figure 5.10: Task selection changing
order of tasks T on the Gridworld do-
main. Each line represents the perfor-
mance of an agent trained on unique
set of tasks selected by FETA.

Figure 5.11: Task selection changing
order of tasks T on the Ant domain.
Each line represents the performance
of an agent trained on unique set of
tasks selected by FETA.

62 Chapter 5. Few-Task Meta-Reinforcement Learning

5.7 Optimal Task Selection

An important question with a task selection method such as FETA is whether the

method actually selects the best set of tasks from all available task combinations.

To answer this question and prove global optimality we could use an exhaustive

approach, enumerating all possible unique set of tasks and evaluate all of them

against FETA. However, the time and resources cost to carry out such experi-

ment would be prohibitively expensive; therefore we take inspiration from local

optimization and adapt it to our combinatorial problem, comparing a set of tasks

selected by FETA against its "neighbour" sets. We take a set of selected tasks C

and remove/add tasks to it, creating a series of different training sets, to helps us

evaluate the local optimality of FETA.

As in the previous section, Gridworld and Ant were used. For Gridworld the set

C selected by FETA has three tasks. We added or removed one task at a time,

creating 10 unique training sets from all possible combinations of length 2 and 4

starting from C.

For Ant, the set C contains 22 tasks. We added or removed 5 tasks at a time,

creating unique training sets of length 17 and 27 starting from C. We limited the

number of runs to 960 hours of computation time as in the previous experiment,

obtaining 30 different training sets, 15 of length |C|+ 5 and 15 of length |C| − 5.

The results of the experiment are shown in Figure 5.12 for Gridworld and Figure

5.13 for Ant. FETA- refers to the agents trained with the resultant set of tasks

produced by removing tasks from C and FETA+ refers to the agents trained with

the sets obtained by adding tasks to C. The displayed results are the average of all

the trained agents for each category. We can see that when tasks are removed from

C the agent’s performance deteriorates, but adding tasks to C does not improve its

5.8. Computational Costs 63

performance.

The results obtained from this evaluation show that FETA is able to achieve local

optimality, creating sets of tasks that are minimal, obtaining good performance

with the least possible number of tasks. Although this evaluation was conducted

in two domains, we expect that this results can be replicated in many different

domains if the successful transfer function R is properly defined.

Figure 5.12: Results of FETA’s local
optimality evaluation on the Gridworld
domain.

Figure 5.13: Results of FETA’s local
optimality evaluation on the Ant do-
main.

5.8 Computational Costs

Lastly, is important to assess how much using FETA costs in comparison to ITTS

and the standard training approach of using all the available training tasks. To

carry out this evaluation, we measured the wall-clock time required to complete one

full loop for each approach. For ITTS, this means learning the optimal policies of

all available tasks, filtering tasks and meta-training a model with the selected tasks,

whereas for FETA, it entails learning the optimal policies of the tasks that are

selected, doing the evaluations to filter tasks and meta-training a model with the

output set of selected tasks. We employ two experimental domains, KrazyWorld

and Ant, one simple and one complex domain, to analyze how much the costs differ

64 Chapter 5. Few-Task Meta-Reinforcement Learning

with different task complexity. Figure 5.14 shows the results for KrazyWorld while

5.15 shows the results for Ant.

From the results, we can see that FETA is the more efficient of the two task

selection approaches, requiring about half the time that ITTS does in the Ant

domain. However, although both methods are more efficient than training with all

tasks in KrazyWorld, in a complex domain such as Ant, the more efficient method,

FETA, requires more than double the time. Complex tasks require a considerable

amount of time to learn their optimal policies, and since we require to learn the

optimal policy of the tasks that are being selected by FETA, each new selected

tasks adds up to the costs of the task selection process. On the other hard, in

a simpler domain such as KrazyWorld, the greatest cost comes from learning the

meta-policy, since learning the optimal policy of each individual task is not hard.

Although FETA has a lower computational cost than training with all available

tasks in a simple domain, in a more difficult domain such as Ant, FETA’s cost is

significantly higher, which can be a clear disadvantage if we do not have access to

the optimal policies ahead of time and the main interest is to reduce computation

costs rather than improving the final performance of the meta-RL agent.

5.9 Summary

We investigated the learned behaviours of a gradient-based meta-RL method and

have shown how certain tasks may offer redundant information to the learning

model, demonstrating that not all tasks are required for a meta-RL agent to ac-

quire the intended behavior. Moreover, we introduced FETA, a task selection

method for meta-RL, that takes advantage of the policy transfer properties of RL

to improve the performance of meta-RL agents. We experimentally showed that

5.9. Summary 65

Figure 5.14: Results of the wall-clock
time required for one full loop of
FETA, ITTS and training with all
available tasks (ALL) on the Krazy-
World domain. Y axis show the time
required in minutes

Figure 5.15: Results of the wall-clock
time required for one full loop of FETA,
ITTS and training with all available
tasks (ALL) on the Ant domain. Y axis
show the time required in minutes.

FETA outperforms agents that were trained using all the available training tasks,

and is able to perform equally or better than ITTS while being more cost efficient.

We investigated the effect that task order has on FETA’s performance as well as

the optimality of FETA’s task selection process in a local setting and show that

the generated sets are minimal. Finally, we evaluated the computational cost of

FETA, showing that the FETA cost is highly related the complexity of the tasks

in hand.

67

Chapter 6

Meta-Reinforcement Learning for

Heuristic Planning

6.1 Introduction

In previous chapters we introduced task selection methods and showed the positive

impact they have over meta-RL performance. One application where we aim to

achieve great performance with a low training cost and using a small pool of

training tasks is heuristic planning.

Developing planning heuristics that allow forward search algorithms to generate

high quality plans is a constant focus in AI planning research. As discussed in

Chapter 2, a central component of these planning algorithms is the heuristic func-

tion, which estimates the cost of reaching the goal from any state. This estimate

guides the planner to low cost states discarding unpromising regions of the state

space. When using Deep Learning to learn a heuristic function, the goal is to ob-

tain a heuristic that expands the fewest possible number of states to find a solution

and is as sample efficient as feasible during training.

In this chapter, we define the process to learn heuristic functions for a given plan-

ning domain through meta-reinforcement learning and ITTS, learning a heuristic

68 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

function that is able to generalize across different instances of a planning domain.

Task selection through ITTS allows us to learn a good heuristic using a limited

set of training tasks, reducing the training costs, an important feature in plan-

ning. We show that the learned heuristic generalizes effectively in a collection of

domains from the International Planning Competition (IPC) and the FF Domain

Collection.

6.2 Learning Planning Heuristics

We take advantage of the generalization properties of RL2 [7, 9], a context-based

meta-RL method, and apply it to classical planning. Since RL2 does not require

learning during deployment, it is better suited for planning than gradient-based

methods. Our aim is to learn a heuristic function that gets as close as possible to

an optimal value function. The methodology is summarized in algorithm 4 and

consists of the following steps.

6.2.1 Learning Problem Definition

A numerical representation of the state space and the reward function must be

defined, so that they can be used in the input and objective function of the neural

networks encoding the policy and the value function. We define a numerical vector

si = 〈s(1)i , s
(2)
i , . . . , s

(n)
i 〉, representing the state at time step i, from a domain de-

scription in PDDL 3.1. This vector is created by concatenating Boolean predicates

and numeric variables that compose the problem, such as object positions, goal

positions, binary state of an object, goals achieved, and so on. Each predicate is

translated into a value in {0, 1}, while numeric variables are directly added to the

state representation.

6.2. Learning Planning Heuristics 69

The cost function of the planning problem maps onto the reward function of the

learning problem, so that P (s′, r|s, a) = 1 if r = −c(s, a, s′), and P (s′, r|s, a) = 0

otherwise. For shortest planning problems, we used a reward of −1 per action. We

also used a positive reward rG for reaching a goal state, to distinguish this condition

from other possible ways to end an episode (for instance, the agent reaching a dead

end, or maximum number of actions executed).

Algorithm 4 Meta-Reinforcement Learning for Heuristic Planning
1: Input: N number of tasks to generate
2: Output: Meta-trained value function vθ
3: T ← Generate N tasks
4: Learn the optimal policies for all the tasks in T using PPO
5: Run ITTS on T to obtain a subset of optimal tasks C
6: Meta train on parameters θ with RL2 using tasks C to obtain vθ.

6.2.2 Training Task Generation and Selection

The first step in the methodology consists of generating a number of training task

candidates, forming the initial set of tasks T . This step is in general domain

dependent. A common way relies on a parametrized description of the domain, so

that a distribution can be defined over the parameters’ range. Examples of this

method for task generation are discussed in the experimental section.

Once the set of initial tasks has been T generated, task selection is used to select

a subset C from T and improve the quality of the training set. Since FETA was

derived out of the insight we got from gradient-based meta-RL, which might not

work with context-based approaches, we use ITTS as the task selection method.

70 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

6.2.3 Model Training

The meta-RL model is trained using C as a training set and Proximal Policy

Optimization (PPO) [30] as the learning algorithm.

The meta-trained value function vθ, parametrized by θ, is an adaptive estimate of

the value v∗ for every task in the domain. The adaptation takes place over the ini-

tial transitions, when the memory of the LSTM network fills up (cf. Section 3.2.1),

providing the context of the new task. When learning converges on the training

tasks, the learned value function can be used to define the planning heuristic, so

that hMRL(s) = −vθ(s). The optimal value function for a given task is an admis-

sible heuristic for that task. The meta-learned heuristic, however, is subject to

function approximation and generalization across tasks; therefore it may not be

admissible.

6.3 Experimental Evaluation

The experimental evaluation aims at: (1) showing that the meta-learned heuris-

tic leads to the expansion of fewer states than both popular domain-dependent

heuristics and a supervised-learned heuristic with the same state representation;

(2) evaluating the quality of the generated plans, since the heuristic is not admissi-

ble in general, and may return suboptimal plans; (3) determining how many more

tasks a supervised learning approach needs to reach a comparable performance.

As baselines, we used no heuristic (Blind), hmax, hadd and LM-cut, from the popular

FastDownward system [44]. We also used a supervised learning approach, hSUPER,

derived from existing approaches (cf. Chapter 3), but using the same PDDL-based

state representation as the meta-RL heuristic. This allows us to compare meta-

RL with supervised learning without any specific representation tuning for either

6.3. Experimental Evaluation 71

method.

For the supervised-learned heuristic, we followed the popular approach of using

optimal plans to obtain the real heuristic h∗(s) of each state s of the plan. To

obtain these optimal plans we used FastDownward. The network is trained using

s as input and h∗(s) as the target. We tuned the hyperparameters and architecture

of the model, and selected the best performing combination.

6.3.1 Domains

To evaluate and compare hMRL against classical planning heuristics from the Fast-

Downward system, domains must be defined in a PDDL format. For that reason,

we introduce a set of new domains. The domains we introduce are benchmarks of

the classical planning track of IPC and the FF Domain Collection [43, 81], some of

which have also been used to evaluate deep learning approaches in planning. Tasks

were generated by drawing their parameters uniformly at random as reported for

each domain below. In addition, we also randomly sampled 5 validation tasks for

ITTS, and a number of test tasks. The number of training and test tasks varies for

each domain, as some allow more parameter combinations than others. At least

10 test tasks were used for every domain. The learning process was repeated 5

times for both meta-RL and supervised learning, and all graphs show mean and

standard deviation.

6.3.1.1 Snake

Snake was introduced in IPC-2018. In this domain, a snake navigates a grid with

the goal of eating apples that are spawned in the grid. Each time an apple is

eaten, the snake extends its length by one and a new apple spawns until there are

no more apples left. The grid has a fixed size of 6x6 with 15 apples in all instances.

72 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

The grid is initialized with 5 apples, while the others spawn as the snake eats the

available ones. The position of the apples and the initial position of the head and

tail of the snake are randomly selected. A total of 20 training tasks were generated,

of which ITTS selected 12. A total of 15 instances were used for testing.

6.3.1.2 Sokoban

Sokoban is a game from IPC-2008, also used to evaluate previous Deep Learning

approaches [28, 26]. The agent must push objects around a grid with the goal

of moving them to specific locations. The grid has size 5x5 with 2 objects and 3

obstacles in all instances. The initial positions of the agent, objects, and obstacles,

and the position of the goals (one per object) are randomly selected. A total of 20

training tasks were generated, of which ITTS selected 11. A total of 12 instances

were used for testing.

6.3.1.3 Gripper

Gripper is a modification of the domain used in IPC-1998, as used in previous

work for learning heuristic functions [28]. In this domain there is a robot with

two grippers that can carry an object each. The goal is to move a certain number

of objects from one room to another. All instances have 2 rooms and 4 objects.

The initial location of the objects and the robot, as well as the target room, are

randomly selected. A total of 15 training tasks were generated, of which ITTS

selected 10. A total of 10 instances were used for testing.

6.3.1.4 Blocksworld

Blocksworld is a popular planning domain from IPC-2001, also used to evaluate

previous approaches [28]. A set of blocks lie on a table. The goal is to build stacks

6.3. Experimental Evaluation 73

of blocks. Only one block can be moved at a time. All instances had 4 blocks.

Each block can be free, under another block, and/or over another block. The

initial configuration of the blocks as well as the goal configuration are randomly

selected. 15 training tasks were generated, of which ITTS selected 10. A total of

10 instances were used for testing.

6.3.1.5 Ferry

This domain was extracted from the FF Domain Collection, because it has been

used to evaluate previous approaches [28, 82]. In this domain, a ferry must trans-

port a certain number of cars from their start location to a goal location. The ferry

can only carry one car at a time. In all instances there are 4 cars and 4 locations.

The initial positions of the cars and the ferry, as well as the goal position of the

cars are randomly selected. A total of 15 training tasks were generated, of which

ITTS selected 12. A total of 10 instances were used for testing.

6.3.1.6 Nurikabe

Nurikabe was introduced in IPC-2018. In Nurikabe a robot must paint a certain

pattern in a grid. The robot cannot move into locations that have been painted

or have already been assigned to a non-painted block. All instances have a grid of

size 5x5, 2 colours (black or white), and each colour has 3 or 4 assigned cells. The

initial position of the robot, of the sources (where the robot can start painting),

and the position of the cells that must be painted are randomly selected. A total

of 15 training tasks were generated, of which ITTS selected 10. A total of 10

instances were used for testing.

74 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

Nodes Expanded Normalized Plan Length
Sn

ak
e

So
ko

ba
n

B
lo

ck
s

N
ur

ik
ab

e
Fe

rr
y

G
ri

pp
er

Figure 6.1: Comparison of hMRL against domain-independent planning heuristics.
Error bars in the bar plot, and shaded areas in the line plot, show the standard
deviation of the learning method. The Y axis shows the number of nodes expanded
to find a plan, the lower the better.

6.3. Experimental Evaluation 75

Nodes Expanded Task Addition on hSUPER

Sn
ak

e
So

ko
ba

n
B

lo
ck

s
N

ur
ik

ab
e

Fe
rr

y
G

ri
pp

er

Figure 6.2: Comparison of the learning methods. Y axis shows the number of
nodes expanded to find a plan, the lower the better. Error bars in the bar plot
represent standard deviation over 5 repetitions. The shaded area in the Normalized
Expanded Nodes (NEN) shows the 95% confidence interval, since this is the mean
over all instances. The number after the + sign refers to the number of tasks
added to the original training set for hSUPER.

76 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

6.3.2 Results

Figure 6.1 shows the results of the comparison between hMRL and the domain-

independent heuristics in all domains. Since LM-CUT does not support condi-

tional effects it is not possible to use it in Nurikabe. The left-most column of plots

shows the nodes expanded by A* for each test instance in each domain, where the

blind heuristic gives an indication of the difficulty of the instance. The instances,

on the x axis, are sorted in increasing number of states expanded using the blind

heuristic. While no heuristic outperforms all the other ones in every instance,

hMRL outperforms the baselines in most of them, and on average overall as shown

in Table 6.1. The advantage is particularly evident on hard instances, where the

blind heuristic leads to the expansion of the highest number of states. On the other

hand, instances that are solved by short plans benefit the least, probably because

the internal memory of the function approximator requires a few transitions to

generate the context, and stabilize the estimate of the costs. The meta-learned

heuristic is therefore less reliable in the first few states. The right-most column of

the plots shows the length of the computed plans against hadd, which is also not ad-

missible but quite commonly used, normalized over the length of the optimal plan.

The meta-learned heuristic achieves comparable, if not better, plan length overall.

Furthermore, all domain-independent heuristics show a performance that is highly

dependent on the single instance, while hMRL has quite consistent performance

within each domain.

In the left-hand column of Figure 6.2, we show the results on the same instances

against the supervised learning approach, and against a meta-learned heuristic

without task selection, indicated as hMRL−ITTS. The supervised heuristic hSUPER

has been trained on the same instances as hMRL. ITTS improved the meta-learned

6.3. Experimental Evaluation 77

Heuristic Expanded States
hMRL 0.0749112
hMRL−ITTS 0.0894698
hadd 0.1341158
LM-CUT 0.1473007
hSUPER 0.1991076
hmax 0.3566618
Blind 1

Table 6.1: Average number of expanded states over all domains, normalized with
respect to the Blind heuristic.

heuristic in almost every instance, while at the same time greatly reducing the vari-

ance. The meta-learned heuristic outperforms hSUPER in almost every instance,

often by a large margin, with the exception of a few instances with short plans, as

previously noted. Overall, hMRL expands less than half the states as hSUPER.

The last set of plots, in the right-most column of Figure 6.2, shows the performance

of the supervised heuristic as the number of randomly generated training tasks

increases. The “+0” value in these plots corresponds to the C training set for

each domain, and reported in the domain description above. The y axis reports

Normalized Expanded Nodes (NEN), which are the number of expanded states

divided by the length of the optimal plan. The normalization allows us to average

the results over all instances within the domain. In Snake and Block it takes

40 additional training tasks for the performance of the supervised heuristic to be

comparable. In all other domains even with 40 additional tasks (which makes a

total number of training tasks about 5 times larger) the supervised heuristic still

expands more nodes than hMRL trained over the “+0” set.

78 Chapter 6. Meta-Reinforcement Learning for Heuristic Planning

6.4 Summary

We introduced hMRL, a meta-RL heuristic able to generalise in a wide range of

planning domains. We show that hMRL outperforms on average both popular

domain-independent heuristics, and a supervised learning one. The meta-learning

approach appears to be particularly advantageous on hard tasks, while it is less

competitive on easier tasks, solved by short plans. A simple solution for this

problem would be to expand states according to a domain-independent heuristic

while the LSTM memory is filled, and let the meta-RL heuristic take over from

there. These results were obtained without any particular encoding of the state

space, which instead has received a fair amount of attention in the supervised

learning literature. We expect that the results can be further improved with ad-

hoc state encodings. Most importantly, this chapter shows that meta-RL heuristics

are viable in planning, and thus creates a new line of heuristic learning.

79

Chapter 7

Future Work and Conclusions

7.1 Results Summary

In this thesis, we introduced the few-task framework for Meta-Reinforcement

Learning, in which agents must be able to achieve good performance even when

they have access to small set of training tasks. The proposed framework can help

meta-RL to be practical in real-world and sensible scenarios where standard dense

task sampling practices are not ideal.

With this framework in mind, we developed an Information-theoretic Task Selec-

tion which filters a set of available training tasks employing two concepts from in-

formation theory: KL-Divergence and Entropy. The outcome of ITTS is a smaller

training set, which can be learned more quickly and results in better performance

than the original set. ITTS demonstrated that proper task-selection can have a

significant impact over the performance of meta-RL agents and shown that the

quality of the training set, a property has been lacking attention in meta-RL, is

directly related to the performance of meta-RL agents.

We studied and built insight into the behaviours learned by a gradient-based meta-

RL method in a simple domain which allowed to visualize and analyse the learned

policy. Moreover, we developed FETA, an improvement over ITTS, that takes

80 Chapter 7. Future Work and Conclusions

advantage of the policy transfer of properties of RL to filter tasks and build an

optimal training set for meta-RL. FETA, a simpler and more efficient task selection

process, showed to be able to achieve equal or better performance than ITTS in

the experimental evaluation.

FETA helped us gain a better understanding of the task selection process and

showed us that not all tasks are necessary for a meta-RL policy to learn a close

to optimal exploration strategy that allows for fast adaption. Moreover, FETA

showed that a simple task evaluation can be enough to significantly improve meta-

RL’s performance.

Finally, we proposed the use of meta-RL and ITTS to learn domain-dependent

heuristic functions for classical planning. We evaluated our approach, which we

call hMRL, in many different domains, outperforming popular domain-independent

heuristics and a standard supervising learning approach. With hMRL we demon-

strated the effectiveness of meta-RL and task-selection in an interesting application

such as heuristic planning.

7.2 Limitations

In this work, we investigated the few-task framework, in which the agent has access

to a limited number of tasks to train on, and demonstrated how task selection

may help us enhance meta-RL performance in those settings. Although the work

presented in this thesis bring many benefits to meta-RL, our methods have some

shortcomings.

For instance, ITTS requires to learn the optimal policies of all the available tasks,

which can be computationally expensive. Moreover, for ITTS to work optimally,

7.3. Future Work 81

we need to fine tune the difference threshold, which requires training various meta-

RL models until we find a good threshold value to utilize. Each new meta-RL

model we train adds significant cost to the process which does not allow for an ex-

haustive parameter search. Furthermore, to create the validation tasks we assume

that we have access to the target or test task distribution, which may limit the

method’s applicability in some domains.

On the other hand, FETA has a lower computational cost than ITTS and even

lower cost than training with all available tasks in a simple domain. However, it

is still quite expensive for complex domains, since it requires learning the optimal

policies of the tasks that are selected, and the cost of learning the optimal policy

of a task is proportional to its complexity. Moreover, FETA requires a successful

transfer function to be defined, which assumes knowledge of the domain, knowledge

that is often but not always accessible.

Finally, although hMRL showed to be able to learn a efficient heuristic that expands

a small number of states to find a solution, it requires an RL environment to

interact with, and since most of the planning problems of interest in classical

planning are defined in PDDL format, we require to translate the different PDDL

parameters to an RL environment that can be used by hMRL.

7.3 Future Work

Meta-Reinforcement Learning is a relatively new topic of research, in which many

aspects are unexplored and require more attention. We believe that our work form

a solid foundation for future research that can build and improve on our ideas.

For instance, since both of the proposed task selection methods are heuristic in

nature, theoretical understanding of the task selection process in the context of

82 Chapter 7. Future Work and Conclusions

meta-RL is an interesting topic of research going forward. Understanding the

effect that each individual task might have over the meta-learning process could

help develop more efficient meta-learning methods and increase its efficacy in the

real world.

Moreover, both of our proposed methods require the optimal policy of at least the

tasks that have been selected. The information gained during the task selection

process may be utilized during meta-training, reducing the added cost of task

selection. Approaches such as offline meta-RL [83, 84] or guided meta-policy search

[85] could be employed for that purpose, developing offline meta-RL methods that

reuse the data collected during the tasks selection process or use imitation learning

to combine the learned policies.

In this work, task selection was used to exclude tasks that could offer redundant

data to the meta-RL agent. Future work to balance the task distribution in such

a manner that similar tasks are sampled less frequently than tasks that are less

present in the training set, without discarding any tasks, might be an alternative

strategy to improve performance of meta-RL in a few-tasks setting.

Finally, in Chapter 6, we showed the benefits that meta-RL in our framework can

have in an field such as heuristic planning. It would be interesting to identify

other fields that might benefit from this framework and evaluate it in real-world

applications such as robotics.

7.4 Conclusions

Meta-RL is an exciting research topic which has the potential for strong impact

in the real world. It has been exciting to observe an increasing interest in the

developing methods and tools that leverage training tasks in meta-learning such

7.4. Conclusions 83

as task scheduling [62, 63, 64, 65] and task generation [66, 67] to improve the

performance of meta-learning models.

In a continually changing environment like the real world, meta-RL might be an

ideal solution to many of today’s research challenges, building autonomous agents

that can quickly adapt to perform optimally in complex domains, such as robotics,

autonomous driving and energy management. We hope that the work presented

in this thesis serves as inspiration for future research in this area.

We conclude with the following:

• The use of task selection to improve the quality of the training set can

considerably improve the performance of meta-RL agents, particularly in a

few-task context.

• Learning a proper meta-RL policy which learns a proper exploration strategy

that enables an agent to quickly adapt to new unseen tasks is possible with

a limited number of training tasks.

• Meta-RL and task selection can considerably aid research areas such as

heuristic planning that are interested in getting strong performance with

a cheap training cost and a small pool of training tasks.

85

Bibliography

[1] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-

maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Has-

sabis. “A general reinforcement learning algorithm that masters Chess, Shogi,

and Go through self-play”. In: Science (2018).

[2] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max

Jaderberg, Wojtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev,

Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka,

John Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre,

Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden,

Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Dani

Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Tim-

othy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David

Silver. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.

https : / / deepmind . com / blog / alphastar - mastering - real - time -

strategy-game-starcraft-ii/. 2019.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys-

law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,

Christopher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub

Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman,

Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

86 Bibliography

Jie Tang, Filip Wolski, and Susan Zhang. “Dota 2 with Large Scale Deep

Reinforcement Learning”. In: CoRR abs/1912.06680 (2019). arXiv: 1912.

06680. url: http://arxiv.org/abs/1912.06680.

[4] D.K. Naik and R.J. Mammone. “Meta-neural networks that learn by learn-

ing”. In: [Proceedings 1992] IJCNN International Joint Conference on Neural

Networks. Vol. 1. 1992, 437–442 vol.1. doi: 10.1109/IJCNN.1992.287172.

[5] Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer Science &

Business Media, 1998.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-

learning for fast adaptation of deep networks”. In: Proceedings of the 34th

International Conference on Machine Learning-Volume 70 (ICML). 2017,

pp. 1126–1135.

[7] JX Wang, Z Kurth-Nelson, D Tirumala, H Soyer, JZ Leibo, R Munos, C

Blundell, D Kumaran, and M Botivnick. Learning to reinforcement learn.

arXiv preprint arXiv:1611.05763. 2017.

[8] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine.

“Efficient off-policy meta-reinforcement learning via probabilistic context

variables”. In: Proceedings of the 36th International Conference on Machine

Learning (ICML). 2019.

[9] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and

Pieter Abbeel. RL2: Fast reinforcement learning via slow reinforcement learn-

ing. arXiv preprint arXiv:1611.02779. 2016.

[10] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter

Abbeel, Sergey Levine, and Chelsea Finn. “Learning to adapt in dynamic,

real-world environments through meta-reinforcement learning”. In: Interna-

tional Conference on Learning Representations (ICLR). 2019.

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://doi.org/10.1109/IJCNN.1992.287172

Bibliography 87

[11] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,

Alex Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint

arXiv:1808.00177. 2018.

[12] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin

Mocanu, Kurt Driessens, Gerhard Weiss, and Karl Tuyls. “An automated

measure of MDP similarity for transfer in reinforcement learning”. In: Work-

shops at the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI).

2014.

[13] David Isele, Eric Eaton, Mark Roberts, and David W Aha. “Modeling Con-

secutive Task Learning with Task Graph Agendas”. In: Proceedings of the

17th International Conference on Autonomous Agents and MultiAgent Sys-

tems (AAMAS). 2018, pp. 1965–1967.

[14] Thommen George Karimpanal and Roland Bouffanais. “Self-organizing maps

as a storage and transfer mechanism in reinforcement learning”. In: Adaptive

Learning Agents (ALA) Workshop. 2018.

[15] Jinhua Song, Yang Gao, Hao Wang, and Bo An. “Measuring the distance be-

tween finite markov decision processes”. In: Proceedings of the 2016 Interna-

tional Conference on Autonomous Agents & Multiagent Systems (AAMAS).

2016, pp. 468–476.

[16] James L Carroll and Kevin Seppi. “Task similarity measures for transfer in

reinforcement learning task libraries”. In: Proceedings. 2005 IEEE Interna-

tional Joint Conference on Neural Networks (IJCNN). Vol. 2. 2005, pp. 803–

808.

88 Bibliography

[17] M. M. Hassan Mahmud, Majd Hawasly, Benjamin Rosman, and Subrama-

nian Ramamoorthy. Clustering Markov Decision Processes For Continual

Transfer. arXiv:1311.3959. 2016.

[18] Felipe Leno Da Silva and Anna Helena Reali Costa. “Object-oriented cur-

riculum generation for reinforcement learning”. In: Proceedings of the 17th

International Conference on Autonomous Agents and MultiAgent Systems

(AAMAS). 2018, pp. 1026–1034.

[19] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. “Autonomous Task Se-

quencing for Customized Curriculum Design in Reinforcement Learning.” In:

Proceedings of the 26th International Joint Conference on Artificial Intelli-

gence (IJCAI). 2017, pp. 2536–2542.

[20] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker,

and Peter Stone. “Automatic curriculum graph generation for reinforcement

learning agents”. In: Thirty-First AAAI Conference on Artificial Intelligence.

2017.

[21] Francesco Foglino, Christiano Coletto Christakou, Ricardo Luna Gutierrez,

and Matteo Leonetti. “Curriculum Learning for Cumulative Return Max-

imization”. In: Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI). 2019.

[22] Francesco Foglino, Christiano Coletto Christakou, and Matteo Leonetti. “An

Optimization Framework for Task Sequencing in Curriculum Learning”. In:

Proceedings of 9th Joint IEEE International Conference on Development and

Learning and on Epigenetic Robotics (ICDL-EpiRob). 2019.

[23] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Learn-

ing to rank for synthesizing planning heuristics”. In: International Joint Con-

ferences on Artificial Intelligence (IJCAI). 2016.

Bibliography 89

[24] Pawel Gomoluch, Dalal Alrajeh, Alessandra Russo, and Antonio Bucchiarone.

Towards learning domain-independent planning heuristics. IJCAI-17 Work-

shop on Architectures for Generality and Autonomy. 2017.

[25] Mehdi Samadi, Ariel Felner, and Jonathan Schaeffer. “Learning from Mul-

tiple Heuristics”. In: AAAI Conference on Artificial Intelligence (AAAI).

2008.

[26] Edward Groshev, Aviv Tamar, Maxwell Goldstein, Siddharth Srivastava, and

Pieter Abbeel. “Learning Generalized Reactive Policies Using Deep Neural

Networks”. In: AAAI Conference on Artificial Intelligence. 2018.

[27] Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing Xie. “Action schema

networks: Generalised policies with deep learning”. In: AAAI Conference on

Artificial Intelligence. 2018.

[28] William Shen, Felipe Trevizan, and Sylvie Thiébaux. “Learning domain-

independent planning heuristics with hypergraph networks”. In: Interna-

tional Conference on Automated Planning and Scheduling (ICAPS). 2020.

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. The MIT press, 2018.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

2017.

[31] Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. “Learning to Explore

via Meta-Policy Gradient”. In: International Conference on MachineLearning

(ICML). 2018.

[32] Zhongwen Xu, Hado van Hassel, and David Silver. “Meta-Gradient Rein-

forcement Learning”. In: Conference on Neural Information Processing Sys-

tem (NeurIPS). 2018.

90 Bibliography

[33] Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wol-

ski, Jonathan Ho, and Pieter Abbeel. “Evolved Policy Gradients”. In: Con-

ference on Neural Information Processing Systems (NeurIPS). 2018.

[34] Flood Sung, Li Zhang, Tao Xiang, and Timothy Hospedales. Learning to

Learn: Meta-Critic Networks for Sample Efficient Learning. arXiv preprint

arXiv:1706.09529v1. 2017.

[35] Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai

Wu, Pieter Abbeel, and Ilya Sutskever. “The importance of sampling in

meta-reinforcement learning”. In: Advances in Neural Information Processing

Systems (NeurIPS). 2018, pp. 9280–9290.

[36] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel.

“PROMP: Proximal Meta-Policy Search”. In: International Conference on

Learning Representations (ICLR). 2019.

[37] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin

Gal, Katja Hofmann, and ShimonWhiteson. “VariBAD: A Very Good Method

for Bayes-Adaptive Deep RL via Meta-Learning”. In: International Confer-

ence on Learning Representations (ICLR). 2020.

[38] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. “A simple

neural attentive meta-learner”. In: In International Conference on Learning

Representations (ICLR). 2018.

[39] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.

Meta-Learning in Neural Networks: A Survey. 2020. arXiv: 2004 . 05439

[cs.LG].

[40] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths and Ab-

stractions: What’s the Difference Anyway?” In: Graph Search Engineering.

Ed. by Lubos Brim, Stefan Edelkamp, Erik A. Hansen, and Peter Sanders.

https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/2004.05439

Bibliography 91

Dagstuhl Seminar Proceedings 09491. Dagstuhl, Germany: Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, Germany, 2010. url: http://drops.

dagstuhl.de/opus/volltexte/2010/2432.

[41] M. Fox and D. Long. “PDDL2.1: An Extension to PDDL for Expressing

Temporal Planning Domains”. In: Journal of Artificial Intelligence Research

20 (Dec. 2003), pp. 61–124. issn: 1076-9757. doi: 10.1613/jair.1129. url:

http://dx.doi.org/10.1613/jair.1129.

[42] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for

the Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions

on Systems Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/

TSSC.1968.300136.

[43] Jörg Hoffmann and Benhard Nebel. “The FF Planning System: Fast Plan

Generation Through Heuristic Search”. In: Journal of Artificial Intelligence

Research (2001).

[44] Malte Helmert. “The Fast Downward Planning System”. In: Journal of Ar-

tificial Intelligence Research (2006).

[45] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. “Learning

to generalize: Meta-learning for domain generalization”. In: Thirty-Second

AAAI Conference on Artificial Intelligence (AAAI). 2018.

[46] Nicolas Schweighofer and Kenji Doya. “Meta-learning in reinforcement learn-

ing”. In: Neural Networks 16.1 (2003), pp. 5–9.

[47] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey

Levine. “Meta-reinforcement learning of structured exploration strategies”.

In: Advances in Neural Information Processing Systems (NeurIPS). 2018,

pp. 5302–5311.

http://drops.dagstuhl.de/opus/volltexte/2010/2432
http://drops.dagstuhl.de/opus/volltexte/2010/2432
https://doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

92 Bibliography

[48] Joshua Achiam Alex Nichol and and John Schulman. On First-Order Meta-

Learning Algorithms. arXiv preprint arXiv:1803.02999. 2018. arXiv: 1803.

02999.

[49] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.

Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

arXiv:1703.03864. 2017.

[50] Sepp Hochreiter and JÃ¼rgen Schmidhuber. “Long Short-Term Memory”.

In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667.

doi: 10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/

neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. url:

https://doi.org/10.1162/neco.1997.9.8.1735.

[51] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray

Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio”. In: CoRR

abs/1609.03499 (2016). arXiv: 1609.03499. url: http://arxiv.org/abs/

1609.03499.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You

Need”. In: Advances in Neural Information Processing Systems (NIPS). 2017.

[53] Mike Huisman, Jan N. van Rijn, and Aske Plaat. “A Survey of Deep Meta-

Learning”. In: CoRR abs/2010.03522 (2020). arXiv: 2010.03522. url: https:

//arxiv.org/abs/2010.03522.

[54] Malcolm J A Strens. “A Bayesian Framework for Reinforcement Learning”.

In: International Conference on Machine Learning (ICML). 2000.

[55] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning

https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1803.02999
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/2010.03522

Bibliography 93

with a Stochastic Actor”. In: International Conference on Machine Learning

(ICML). 2018.

[56] Matthew E. Taylor and Peter Stone. “Transfer Learning for Reinforcement

Learning Domains: A Survey”. In: Journal of Machine Learning Research

10.56 (2009), pp. 1633–1685. url: http://jmlr.org/papers/v10/taylor09a.

html.

[57] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer Learning in Deep

Reinforcement Learning: A Survey. 2021. arXiv: 2009.07888 [cs.LG].

[58] Jivko Sinapova, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. “Learn-

ing Inter-Task Transferability in the Absence of Target Task Samples”. In:

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS). 2015.

[59] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on

overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893.

2018.

[60] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E

Taylor, and Peter Stone. “Curriculum Learning for Reinforcement Learn-

ing Domains: A Framework and Survey”. In: Journal of Machine Learning

Research (2020).

[61] Francesco Foglino, Matteo Leonetti, Simone Sagratella, and Ruggiero Seccia.

“A Gray-Box Approach for Curriculum Learning”. In: World Congress on

Global Optimization. 2019.

[62] Jean Kaddour, Steindór Sæmundsson, and Marc Peter Deisenroth. “Proba-

bilistic Active Meta-Learning”. In: Conference on Neural Information Pro-

cessing Systems (NeurIPS). 2020.

http://jmlr.org/papers/v10/taylor09a.html
http://jmlr.org/papers/v10/taylor09a.html
https://arxiv.org/abs/2009.07888

94 Bibliography

[63] Huaxiu Yao, Yu Wang, Ying Wei, Peilin Zhao, Mehrdad Mahdavi, Defu

Lian, and Chelsea Finn. “Meta-learning with an Adaptive Task Scheduler”.

In: Conference on Neural Information Processing Systems (NeurIPS). 2021.

[64] Chenghao Liu, Zhihao Wang, Doyen Sahoo, Yuan Fang, Kun Zhang, and

Steven C.H. Hoi. “Adaptive Task Sampling for Meta-Learning”. In: European

Conference on Computer Vision (ECCV). 2020.

[65] Su Lu, Han-Jia Ye, Le Gan, and De-Chuan Zhan. “Towards Enabling Meta-

Learning from Target Models”. In: Conference on Neural Information Pro-

cessing Systems (NeurIPS). 2021.

[66] Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised Learning via Meta-

Learning. 2019. arXiv: 1810.02334 [cs.LG].

[67] Siavash Khodadadeh, Ladislau Bölöni, and Mubarak Shah. “Unsupervised

Meta-Learning for Few-Shot Image Classification”. In: Conference on Neural

Information Processing Systems (NeurIPS). 2019.

[68] Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-Learning with Fewer

Tasks through Task Interpolation. arXiv preprint arXiv:2106.02695v1. 2021.

[69] Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine.

Unsupervised Meta-Learning for Reinforcement Learning. 2020. arXiv: 1806.

04640 [cs.LG].

[70] Allan Jabri, Kyle Hsu, Benjamin Eysenbach, Abhishek Gupta, Sergey Levine,

and Chelsea Finn. “Unsupervised Curriculafor Visual Meta-Reinforcement

Learning”. In: Conference on Neural Information Processing Systems (NeurIPS).

2019.

[71] Stefan Edelkamp and Stefan Schrödl. Heuristic Search: Theory and Appli-

cations. Morgan Kaufmann, 2012.

https://arxiv.org/abs/1810.02334
https://arxiv.org/abs/1806.04640
https://arxiv.org/abs/1806.04640

Bibliography 95

[72] Santiago Franco, Levi H. S. Lelis, Mike Barley, Stefan Edelkamp, Moises

Martinez, and Ionut Moraru. “The Complementary Planner in the IPC 2018”.

In: Association for the Advancement of Artificial Intelligence (AAAI). 2018.

[73] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. “Learning heuris-

tic functions for large state spaces”. In: Artificial Intelligence 175 (2011),

pp. 2075–2098.

[74] Jordan T. Thayer, Austin Dionne, and Wheeler Ruml. “Learning Inadmis-

sible Heuristic During Search”. In: International Conference on Automated

Planning and Scheduling (ICAPS). 2011.

[75] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinıcius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Ra-

poso, Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, An-

drew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R.

Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan

Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and

Razvan Pascanu. “Relational inductive biases, deep learning, and graph net-

works”. In: CoRR abs/1806.01261 (2018). arXiv: 1806.01261. url: http:

//arxiv.org/abs/1806.01261.

[76] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning

with a Stochastic Actor”. In: International Conference on Machine Learning

(ICML). 2020.

[77] M.L. MenÃ©ndez, J.A. Pardo, L. Pardo, and M.C. Pardo. “The Jensen-

Shannon divergence”. In: Journal of the Franklin Institute 334.2 (1997),

pp. 307–318. issn: 0016-0032. doi: https://doi.org/10.1016/S0016-

https://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4

96 Bibliography

0032(96)00063- 4. url: https://www.sciencedirect.com/science/

article/pii/S0016003296000634.

[78] John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjee, Nick Altieri, Jacob

Andreas, John DeNero, Pieter Abbeel, and Sergey Levine. “Guiding Poli-

cies With Language Via Meta-Learning”. In: International Conference on

Learning Representations (ICLR). 2019.

[79] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint

arXiv:1606.01540. 2016.

[80] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic

Gridworld Environment for OpenAI Gym. https://github.com/maximecb/

gym-minigrid. 2018.

[81] Jörg Hoffmann, Stefan Edelkamp, Sylvie Thiébaux, Roman Englert, Fred-

erico dos Santos Liporace, and Sebastian Trüg. “Engineering Benchmarks for

Planning: the Domains Used in the Deterministic Part of IPC-4”. In: Journal

of Artificial Intelligence Research (JAIR) (2006).

[82] Silvan Sievers, Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Patrick

Ferber. “Deep Learning for Cost-Optimal Planning: Task-Dependent Planner

Selection”. In: AAAI Conference on Artificial Intelligence (AAAI). 2019.

[83] Vitchyr H. Pong, Ashvin Nair, Laura Smith, Catherine Huang, and Sergey

Levine. “Offline Meta-Reinforcement Learning with Online Self-Supervision”.

In: International Conference on Machine Learning (ICML). 2021.

[84] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea

Finn. “Offline Meta-Reinforcement Learning with Advantage Weighting”. In:

International Conference on Machine Learning (ICML). 2021.

https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Bibliography 97

[85] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Sergey Levine Pieter

Abbeel, and Chelsea Finn. “Guided Meta-Policy Search”. In: Advances in

Neural Information Processing Systems (NeurIPS). 2019.

[86] The garage contributors. Garage: A toolkit for reproducible reinforcement

learning research. https://github.com/rlworkgroup/garage. 2019.

https://github.com/rlworkgroup/garage

99

Appendix A

Experimental Details

For ITTS and FETA experiments the same model architecture and hyperparame-

ters were used, table A.1 show the parameters for the models trained with MAML

while table A.2 show the parameters for the models trained with RL2. For all the

models trained with RL2 a LSTM of 64 hidden nodes is used as the first layer, which

is shared for the Actor and Critic. The first two rows show the number of layers

and hidden nodes for the Actor and the Critic after the LSTM. The code used for

the experiments can be here https://github.com/RicardoLunaG/ITTS for ITTS

and here https://github.com/RicardoLunaG/FETA for FETA. For training the

individual tasks and the meta-RL agents, as well as testing the agents garage was

used [86].

Ant HC KrazyWorld MGEnv
Actor arch. [64,64] [64,64] [64,64] [100, 100]
Critic arch. [32,32] [32,32] [64,64] [64,64]
Gamma 0.99 0.99 0.99 0.99

Gae Lambda 1.0 1.0 0.95 0.95
Inner LR 0.1 0.1 0.1 0.1
Outer LR 0.0001 0.0001 0.0001 0.0001

Table A.1: Architecture and hyperparameters of the models trained with MAML
for ITTS and FETA experiments. LR refers to learning rate.

https://github.com/RicardoLunaG/ITTS
https://github.com/RicardoLunaG/FETA

100 Appendix A. Experimental Details

CartPole MiniGrid KrazyWorld MGEnv
Actor arch. [64] [64] [64] [200]
Critic arch. [64] [64] [64] [200]
Gamma 0.99 0.99 0.99 0.99

Gae Lambda 0.95 0.95 0.95 0.95
LR 0.0001 0.0001 0.0001 0.0001

Table A.2: Architecture and hyperparameters of the models trained with RL2 for
the ITTS and FETA experiments. LR refers to learning rate.

For the hMRL experiments two LSTMs of 64 hidden nodes each, one for the Actor

and one for the Critic, were used as first layer. Table A.3 show the parameters used

to train the models in each domain. The first two rows show the number of layers

and hidden nodes for the Actor and the Critic after the LSTMs. The code used

for the hMRL experiments can be found in the following link: https://github.

com/RicardoLunaG/Meta-Reinforcement-Learning-for-Heuristic-Planning

Blocks Ferry Gripper Nurikabe Snake Sokoban
Actor arch. [64] [64] [64] [126] [64] [126]
Critic arch. [64] [64] [64] [126] [64] [126]
Gamma 0.99 0.99 0.99 0.99 0.99 0.99

Gae Lambda 0.95 0.95 0.95 0.95 0.95 0.95
LR 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table A.3: Architecture and hyperparameters of the models trained with RL2 for
the hMRL experiments. LR refers to learning rate.

For the hSUPER heuristic, the network was composed by standard dense layers.

The parameters and architecture of the models used in each domain is shown in

table A.4

Blocks/Ferry/Gripper Nurikabe/Snake/Sokoban
Architecture [100,64,64] [100,100,64]

LR 0.001 0.001

Table A.4: Architecture and hyperparameters of the models used to learn the
hSUPER heuristic. LR refers to learning rate.

https://github.com/RicardoLunaG/Meta-Reinforcement-Learning-for-Heuristic-Planning
https://github.com/RicardoLunaG/Meta-Reinforcement-Learning-for-Heuristic-Planning

	Introduction
	Task Selection
	Heuristic Planning
	Contributions
	Thesis Outline

	Background
	Reinforcement Learning
	Policy Gradient

	Deep Reinforcement Learning
	Proximal Policy Optimization
	Meta-Reinforcement Learning
	Planning

	Related Work
	Gradient-based methods
	Model-Agnostic Meta-Learning (MAML)
	First-Order MAML (FOMAML)
	Reptile
	Evolved Policy Gradients (EPG)
	Meta-Gradient Reinforcement Learning
	Meta-Reinforcement Learning of Structured Exploration Strategies (MAESN)

	Context-based methods
	
	Simple Neural Attentive Meta-Learner (SNAIL)
	Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables (PEARL)
	Small Sample Meta-RL

	Task Selection for Reinforcement Learning
	Transfer Learning
	Curriculum Learning
	Meta-Learning

	Learning Planning Heuristics
	Summary

	Information-theoretic Task Selection for Meta-Reinforcement Learning
	Introduction
	Task Selection for Meta-Reinforcement Learning
	Experimental Evaluation
	Domains
	CartPole
	MiniGrid
	Locomotion
	KrazyWorld
	MGEnv

	Results
	Parameter Evaluation
	Ablation Study
	Transfer Results

	Summary

	Few-Task Meta-Reinforcement Learning
	Introduction
	Meta-Policy Analysis
	Filtering Tasks in Meta-RL
	Experimental Evaluation
	Transfer Results
	Task Selection Sequence
	Optimal Task Selection
	Computational Costs
	Summary

	Meta-Reinforcement Learning for Heuristic Planning
	Introduction
	Learning Planning Heuristics
	Learning Problem Definition
	Training Task Generation and Selection
	Model Training

	Experimental Evaluation
	Domains
	Snake
	Sokoban
	Gripper
	Blocksworld
	Ferry
	Nurikabe

	Results

	Summary

	Future Work and Conclusions
	Results Summary
	Limitations
	Future Work
	Conclusions

	Experimental Details

